
DEC I PHER ING CELLULAR
HETEROGENE I T Y BY S INGLE -CE L L

TRANSCR I P TOME ANALYS I S

Lam-Ha Ly

Dissertation zur Erlangung des Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

Berlin, April 2022



Erstgutachter: Prof. Dr. Martin Vingron
Zweitgutachter: Prof. Dr. Hanspeter Herzel

Tag der Disputation: 11. Juli 2022

Lam-Ha Ly: Deciphering cellular heterogeneity by single-cell transcriptome analysis © April 2022



“There is always light if only we’re brave enough to see it, if only we are brave enough to be it.”"

— Amanda Gorman (The Hill We Climb)

To my mum Dr. Thuy-Le Phan





PRE FACE

publication & contributions

For several studies in this thesis work was undertaken by many collaborators that are listed in

the following.

∙ In Chapter 4.1, the �rst study resulted from a collaboration between the lab of Udo Reichl and

Martin Vingron. The experiments with the virus infected cells, including cell preparation

and isolation was performed by Sascha Kupke. Stefan Börno performed the single-cell

RNA-seq on the cells. Stefan Haas investigated and supervised the computational analyses.

The results were published as a shared �rst authorship between Kupke, Ly and Börno in

Viruses (Kupke et al., 2020).

∙ In Chapter 5, Virginie Stanislas provided literature research information and performed

some initial analyses on the experimental dataset.

∙ In Chapter 6, the presented study was published in Patterns, (Ly et al., 2021).

acknowledgements

Doing a PhD and writing the thesis is demanding. Pursuing a PhD with a kid is even more

challenging. However, completing a PhD with a kid during a pandemic is just insane. Therefore, I

have to thank a bunch of people making it possible to reach where I am now.

First, and foremost I thank my supervisor Martin Vingron for giving me the opportunity and the

necessary supportive environment to work and grow both my research and personal skills in

his lab. It has been a fruitful mentorship based on mutual respect and encouragement and I am

beyond grateful for calling him my PhD supervisor.

I thank Stefan Haas for his co-supervision especially in the �rst time period of my PhD providing

me constructive feedback, his caring assistance throughout my PhD and for proof-reading my

doctoral thesis. I appreciate Hanspeter Herzel for being part of my thesis advisory committee and

my second reviewer of my dissertation.

I would also like to acknowledge the facilities at the Max Planck Institute such as the IT helpdesk

and the sequencing facility. Special thanks goes to Paul Menzel and Thomas Kreitler who solved

every IT-related issue reliably and very quickly as well as Stefan Börno for his collaborative work

and expertise about processing single-cell RNA-seq data.

v



I am extremely grateful for being part of two graduate schools, the Computational Systems Biology

(CSB) school and the International Max Planck Research School for Biology and Computation

(IMPRS-BAC). Both gave me the opportunities to meet fellow students that I could exchange

ideas and advises with, but also to attend interesting conferences and workshops to develop my

scienti�c skills. At this point I would like to express my sincere gratitude to the amazing PhD

coordinators Mary Louise Grossman and Cordelia Arndt-Sullivan from the CSB graduate school

as well as Kirsten Kelleher and Anne-Dominique Gindrat from the IMPRS-BAC graduate school.

Everyone of them has provided and organized useful scienti�c workshops and events. More

importantly, they have assisted me in childcare related issues and always have had an open-ear

for my worries and di�culties. Thank you, Kirsten, for also proof-reading parts of my thesis.

I would also like to acknowledge the whole Vingron department for their scienti�c input and

helpful discussions. Special thanks goes to Prabhav Kalaghatgi and Virginie Stanislas for providing

me feedback about the dissertation. As my o�ce mates, Virginie and Maryam Ghareghani, have

always giving me a good reason to come to the o�ce and sweeten my o�ce life with little snacks,

laughter and chats. I very much appreciate my former colleague Lisa Barros de Andrade e Sousa

for her supportive and encouraging friendship and my colleague Hossein Moeinzadeh for his

valuable input and conversations. During the pandemic he and his family shared childcare with

us and established a supportive and safe environment to work and to accommodate the kids.

I would like to extend my sincere gratitude to many people outside of academia. I very much

appreciate my parents in law, Christine and Manfred Hartmann, for taking care of their grand

child while I was extending my working hours in the o�ce. Special thanks go to Lisa-Marie

Göppert, Khanh-Ly Nguyen, my brother Hong-Linh Ly, my sisters Lam-Tuyen Ly and Lam-Thanh

Ly for their emotional support and their empowering words throughout my academic career.

A sincere and deep thank you to my mum, Thuy-Le Phan, and dad, Truong-Van Ly, for your

guidance, your love and the basis you build my life on. Thank you for creating the stable backbone,

a place I call home and the nutritious and delicious food every now and then. Words cannot

express the grateful feeling to have people surrounding and cheering you in every step, in every

goal, no matter how big or small it is.

Last, but not least I would like to express my deepest acknowledgment to my family. Thank you,

Aaron Liem, for reminding me to set my priorities, �ooding me with love and keep telling me

I am the best human being of your world (for now). Thank you, Martin Hartmann, for always

being there bearing my ups and downs and for putting aside your needs. Your mental support,

your belief in my skills and your patience have been a major contributor to my PhD process.



ABSTRACT

The advances of single-cell transcriptomics enable a plethora of new analytical approaches but

also challenges. One of the main di�culties in single-cell RNA-seq data is to di�erentiate between

the unwanted technical and desired biological variability across cells. In the �rst part of the thesis

we show how to assess the technical variability in both experimental single-cell RNA-seq data and

in a simulated framework that we established by downsampling single cells from bulk reference

samples. In the course of this study we show how bulk RNA-seq samples can be integrated

in a pre-computed topology trained on single cells. Furthermore we reveal biases in similarity

measures between the derived samples that strongly depend on the gene detection rate of an

experiment. In the second part we focus on how to interpret cellular variability by predicting

regulatory interactions between genes in the context of network reconstruction. We implement

the neighborhood selection method that uses a two-fold model selection criteria for parameter

estimation. We apply the method on data generated in silico exhibiting di�erent developmental

trajectories commonly seen in single-cell biology. We dynamically infer time-dependent gene

regulatory networks evolving through the course of temporally ordered trajectory and revealing

active gene regulations in a particular time-frame. Furthermore, we systematically evaluate the

e�ect of data imputation on gene regulatory network reconstruction. We observe an in�ation

of gene-gene correlations after data imputation that a�ects the predicted network structures

and may decrease the performance of network reconstruction in general. Altogether this thesis

provides insights about how to deal with the observed heterogeneity and how it can be used to

infer regulatory associations between genes using single-cell transcriptome data.

ZUSAMMENFAS SUNG

Mit dem Fortschritt in der Einzelzell-Transkriptombiologie ergeben sich viele Möglichkeiten

verschiedenster und neuer analytischen Konzepte zur Beantwortung biologischer Fragestellungen.

Zeitgleich birgt diese aber auch viele Herausforderungen. Eine der Hauptschwierigkeiten bei

Einzelzell-Transkriptomdaten ist die Di�erenzierung zwischen der technischen und der biologi-

schen Variabilität in Zellpopulationen. Ersteres ist arti�ziell und sollte daher bei den Analysen

außer Acht gelassen werden. Im ersten Teil der Arbeit wird gezeigt, wie die technische Variabilität

sowohl in experimentellen Einzelzell-Transkriptomdaten als auch in einem etablierten simulierten

Datenmodell gemessen werden kann. In dem simulierten Datenmodell werden Einzelzellen aus

einer populationsbasierten Referenzprobe abgeleitet und auf verschiedene statistische Eigen-

schaften untersucht. Im Verlauf dieser Studie wird aufgezeigt, wie klassische, populationsbasierte

Transkriptomproben in eine vorberechnete, auf Einzelzellen trainierte Topologie integriert wer-

den können. Darüber hinaus werden verschiedene Ähnlichkeitsmaße zwischen den abgeleiteten

Proben betrachtet und Verzerrungen beobachtet, die stark von der Gendetektionsrate eines Experi-

ments abhängen. Der Fokus des zweiten Teils der Arbeit liegt auf der Interpretation der zellulären

Variabilität durch die Vorhersage von regulatorischen Interaktionen zwischen Genen im Kontext

der Netzwerkrekonstruktion. Die implementierte Methode neighborhood selection verwendet ein

zweifaches Auswahlkriterium, um einen geeigneten Parameter für die Netzwerkrekonstruktion zu

schätzen. Deren Anwendung �ndet auf Daten statt, die in silico generiert wurden und unterschied-

liche, in der Einzellzellbiologie üblich vorkommende Zelldi�erenzierungsverläufe aufweisen.
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Unter Hinzuziehung der Daten werden dynamische, genregulatorische Netzwerke abgeleitet, die

sich im Laufe einer zeitlich geordneten Trajektorie entwickeln und aktive Genregulationen in

einem bestimmten Zeitrahmen o�enbaren. Darüber hinaus liefert die Arbeit eine systematische

Evaluierung über die Auswirkungen der Datenimputation auf die Rekonstruktion genregulatori-

scher Netzwerke. Es wird eine in�ationäre Zunahme der Gen-Gen-Korrelationswerte nach der

Datenimputation beobachtet, die sich auf die vorhergesagten Netzwerkstrukturen auswirkt und

die Prognosefähigkeit der Netzwerkrekonstruktion im Allgemeinen mindern kann. Insgesamt

liefert diese Arbeit Erkenntnisse darüber, wie mit der beobachteten Heterogenität in Einzell-

daten umzugehen ist und wie sie genutzt werden kann, um aus Einzelzell-Transkriptomdaten

zuverlässiger auf Assoziationen zwischen Genen schließen zu können.
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1 I N TRODUCT ION

Cells are the smallest units of life and represent a complex biological system. Every multi-cellular

organism evolves from a single cell that di�erentiates into tissues and develop complex organs.

In 1957, Conrad Waddington introduced the landscape of cell fate commitment which illustrates

cell di�erentiation (Fig. 1.1). It represents a ball rolling down a landscape consisting of hills and

valleys. Along the ball’s path it reaches intermediate branching points at which the ball can either

take the left or right direction. Once the ball reaches an end point it represents the di�erentiated

cell state. The idea beneath the landscape is that gene regulatory processes happen controlling

the cell fate’s decision. One of the key points in systems biology is to comprehend the factors

regulating cell di�erentiation that form complex multi-cellular tissues.

With the advances of single-cell transcriptome data it is possible to "follow" a cell di�erentiation

path by arranging the cells in a temporal order along the path. This procedure enables to identify

key factors that determine the cell fate’s decision or the cellular identity. These key factors are

often called transcription factors regulating the transition to another cell type or maintaining a

cell state. They are of particular interest as they control their target gene’s activity level. Once

deleted or modi�ed, transcription factors can cause the lost of cell identity inducing dysfunction

or diseases. Identi�cation of transcription factors causing diseases can be used to develop medical

treatment to target towards them.

Figure 1.1: TheWaddington landscape.
A model to illustrate cell fate commitment.

A ball goes through a path within the land-

scape depicting the di�erentiation path.

Along the path, there are branching points

at which the ball is either taking the left or

right path. Once the ball reaches the end

point, it is in a di�erentiated state.

In this thesis we use single-cell transcriptome data to unravel cellular heterogeneity in order to

study gene regulation. One of the �rst goal of the thesis was to have some hands-on experience

on single-cell transcriptome data. The aim here was to investigate In�uenza A virus infected

cells and explain the cell-to-cell variability in the viral production rate across cells. However,

through the course of this study it became apparent that the experimental data composition was

challenging to deal with. It prevented us from disentangling the observed heterogeneity into the

technical variability (noise) and the biological variability (signal) within the cells that we are

interested in. Having faced this di�culties, we moved on with developing a simulation framework
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2 introduction

where we could study the technical variability in a controlled environment. In the course of the

simulation study we examined also features such as the integration between bulk and single-cell

samples and the investigation of similarity measures between a reference bulk sample and its

derived simulated single cell.

In the second part of the thesis we aim to investigate gene regulation by reconstructing gene

networks from single-cell transcriptome data. After providing a short mathematical introduction

and summary about state-of-the-art algorithms, we apply a method based on the concept of neigh-
borhood selection to infer regulatory networks. We evaluated the proof-of-concept on simulated

data and examined gene regulatory networks evolving through a temporal ordered trajectory.

We tested the method on experimental data but only saw weak performances compared to other

network reconstruction algorithms. We attempted to apply data imputation that smooths the data

and predicts values where no information is available, prior to network reconstruction. However,

the neighborhood selection did not pro�t from imputation and resulted in a poorer performance

than without data imputation. We asked whether this is a method-speci�c artifact or a systematic

problem of imputation in general. To test this, we study systematically the interplay between

imputation and network reconstruction in multiple state-of-the-art algorithms across di�erent

experimental datasets. We show that data imputation can enhance gene-gene correlations sig-

ni�cantly in�uencing network structures such that the network reconstruction performance

decreases upon imputation.

Thesis outline

Following this Chapter, a detailed biological introduction is given in Chapter 2. It provides some

background information relevant to this thesis in biology and gives a broad overview about

technologies performing transcriptome-wide experiments.

Chapter 3 provides an introduction about computational challenges and steps relevant for a data

analysis on single-cell transcriptome data. It is separated into a preprocessing and a downstream

analysis part.

Chapter 4 deals with assessing the variability in single-cell data. The �rst part covers the chal-

lenges that we faced when we attempted to distinguish between the technical and the biological

variability in an experimental dataset. The second part investigates the variability and other

technical features in a simulated framework.

Chapter 5 investigates transcriptome data with respect to gene regulation in the context of gene

networks. We use a mathematical concept based on neighborhood selection to infer gene reg-

ulatory networks in a static and dynamical way using temporally ordered data. We apply the

method on several datasets, both simulated and experimental data.

Chapter 6 examines the combination between data imputation prior to gene regulatory network

reconstruction and evaluates the predicted network models. Lastly, the conclusions and future

insights of this thesis are summarized and discussed in Chapter 7.



2 B IOLOG ICAL BACKGROUND

This chapter introduces the fundamentals in molecular biology relevant to this thesis. It serves as

a baseline in order to understand the biological mechanisms throughout the thesis. Moreover it

provides an overview of technologies for performing transcriptome pro�ling in bulk populations

as well as single cells. The information in the �rst part (Chapter 2.1 – 2.2.1) covering the basics in

molecular biology until transcriptome pro�ling in bulk populations is mainly extracted from the

textbook The Molecular biology of the Cell by Alberts et al., 2014 if not stated otherwise.

2.1 central dogma of molecular biology

Each cell contains genetic material that preserves the hereditary information about its organism,

the genome. It stores the information as a double-stranded helix known as the DNA (Fig. 2.1A).

Each strand is of a sequence of four di�erent nucleotides consisting of a sugar molecule, a phosh-

pate group as well as one of the four nucleobases: Adenosine (A), Thymine (T), Guanine (G) and

Cytosine (C). Two nucleic strands are able to bind to each other via hydrogen bonds following

a complementary base pair (bp) pattern discovered by Watson and Crick in 1956: adenosine–

thymine and cytosine–guanine.

In order to pass the genetic information to the next generation, the DNA needs to be duplicated.

This process is called replication. In eukaryotes, replication happens during mitosis in the course

of the cell cycle: The double-stranded DNA gets unwound such that a part of the DNA is split up

into two single strands serving as templates. Now, by complementing the two single strands from

free nucleotides in the cell new DNA gets synthesized and distributed among two cells.

The expression of information stored in the DNA to a functional molecular unit in the cell is

summarized in the central dogma in molecular biology (Fig. 2.1B) and covers two processes: First,

the transcription from the DNA to an intermediate nucleic single-stranded molecule, the RNA,

and secondly, the translation passing information from RNA to the synthesis of the functional

gene products, the proteins.

Transcription. During transcription a segment of DNA (gene) is read and copied into a process-

able RNA (often messenger RNA (mRNA)). Here, proteins, so called transcription factors (TFs),

along with enzyme, the RNA polymerase, bind to the a regulatory region, called promoter, at

the 5’ UTR (untranslated region) (see Figure 2.1C). Transcription initiation starts and the RNA

polymerase synthesizes by recruiting the matching nucleotides the complementary strand. In

eukaryotes a 5’ cap is added to the 5’ end in order to ensure that the mRNA does not get de-

graded. The transcription process remains until the RNA polymerase reaches the transcription

stop site at the 3’ UTR. A poly(A) tail, a stretch of adenine bases, is added to the 3’UTR and the

RNA polymerase releases from the DNA. The precursor mRNA (Fig. 2.1C) is synthesized and is

3



4 biological background

post-transcriptionally modi�ed by a process called splicing in which the non-coding regions

(introns) are removed while coding regions (exons) remain. Now, the mature mRNA is formed

and serves as a template for protein synthesis.

Translation. The last process, translation, is the decoding of a sequence written in a 4-letter

nuleotide alphabet to a sequence written in a 20-letter amino acids alphabet, the proteins. Here,

ribonucleoproteins called ribosomes read the mRNA in a moving triplet base pair window, the

codon. Each codon encodes an amino acid that the transfer RNA (tRNA) attaches to the synthe-

sized amino acid chain. The end products, the proteins, ful�ll the majority of a cell’s function: They

act as enzymes for catalytic reactions, regulators during gene expression, cell surface markers

and many more.

Adenosine

Thymine Guanine

Cytosine

A

B

C

Figure 2.1: The genome and how
the cell reads the genome. (A) The

genome is a double helix with four

nucleic bases: adenosine, thymine, cy-

tosine and guanine. (B) The central

dogma of molecular biology. From

DNA over RNA to proteins. (C)
Post-transcriptional RNA processing

in eukaryotes. pre-mRNA is copied

from a DNA segment and processed

by 5’ capping, RNA splicing and 3’

polyadenylation to generate the ma-

ture mRNA.

2.2 transcriptome profiling

Each multi-cellular organism derives from one cell, the zygote, and di�erentiates into many cell

lineages forming tissues. Each cell contains the same underlying DNA. However, the cells vary
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across tissues which in turn consist of of many cell types. The di�erence of these cells is shaped

by the amount of expressed genes, the transcripts. The total amount of transcripts, the transcrip-
tome, comprises all RNA molecules including protein-coding and non-coding transcripts. The

transcriptome gives rise about a cell’s identity and thus, there is great interest in pro�ling the

transcriptome. It allows us to get more insights into gene regulation and to better understand and

characterize cell types.

One way to pro�le the transcriptome is to measure the abundance of synthesized mRNAs at a

current time point of a biological sample. Hence, we obtain a snapshot of the gene expression

activity within a sample. Nowadays, a sample can be a cell population, tissue or a single cell. The

next sections cover a historic overview of technologies used for pro�ling the transcriptome from

hybridization to sequencing techniques in bulk. Then, we move to sequencing technologies in

single cells and cover di�erent technologies for measuring gene expression in individual cells.

2.2.1 From hybridization to sequencing technologies

For the �rst time the simultaneous pro�ling of thousands of genes was possible with the de-

velopment of DNA microarrays in the 1990s (Lockhart et al., 1996; Schena et al., 1995). DNA

microarrays are a chip-based technology that compares the gene expression level of two sam-

ples. It makes use of a process called hybridization in which thousands of short DNA fragments

(oligonucleotides) are used. Attached to the chip, these oligonucleotides serve as a probe for

the sample’s mRNA. Once extracted from the biological sample, the mRNAs are converted to

complementary DNA (cDNA) and labeled with �uorescence. Comparing two di�erent samples,

each sample gets either a red or green �uorescent marker. Now the labeled cDNAs can hybridize

to the oligonucleotides attached to the microarray. Here, the chips are designed such that an array

spans the whole transcriptome of the biological sample. Thus, the sequence of the transcripts

needs to be known beforehand such that it can be captured. Otherwise, it cannot be hybridized

and is missed for further analysis. A microscope reads out the changes of gene expression values

as an image. The colors can be read as the following: A red dot represents a higher expression

level for the red-dyed sample, and vice versa for a green dot. A yellow dot means an approximately

equal expression level in both samples. The intensity of the dot represents the amount of captured

transcript.

In summary, DNA microarrays provide a relatively inexpensive way to quantitatively measure

gene expression changes between two samples. However, they have some important drawbacks:

Firstly, the sequences of mRNA samples need to be known beforehand and secondly, the read out

is a relative measurement between the two samples and does not represent absolute measures of

the sample’s gene expression.

As prerequisite in DNA microarrays, one needs to know the sequence of the mRNA samples. Hence,

determining the nucleotide sequence has been of great interest since long before the development

of hybridization technology. In 1977, Frederick Sanger developed a method called Sanger sequenc-
ing to determine the sequence of a DNA fragment (Fig. 2.3). Here, a short oligonucleotide, called

primer, is used, along with a DNA polymerase. A mixture of normal deoxynucleotides (dNTPs) is

added, as well as chain-terminating nucleotides (dideoxynucleotides (ddNTPs)) which are labeled

with four di�erent �uorescence markers. Firstly, the primer hybridizes to the DNA fragment.
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Figure 2.2: DNAmicroarray technology. DNA microarray to capture gene expres-

sion changes in two samples. mRNAs are extracted from two samples and converted

to cDNA. cDNAs from sample 1 and 2 are labeled with red and green �uorescence

markers, respectively. After mixing the cDNAs, the cDNAs hybridize to the oligonu-

cleotides attached to the microarray. A microscope reads out the signals. Reprinted

from Alberts et al., 2014.

Secondly, the DNA polymerase extends the primer sequence by complementary base pairing

with four normal nucleotides. Occasionally, a ddNTP gets paired such that the copied sequence

is terminated. This results in a set of DNA fragments with di�erent lengths terminating with

dyed ddNTPs. Thirdly, the set of DNA fragments are loaded onto a long glass capillary. Using

electrophoresis the fragments are sorted by size. Then, a detector records the color of each dye

labeled DNA fragment. Finally, a software reads the data and assembles the sequence.

With this technology it was possible to determine the genome of several species. However, with

Sanger sequencing it was only possible to determine the sequence of limited length (up to 1000

bp). For this reason, the genome of interest was fragmented into random sizes using shotgun
sequencing. Then, each DNA fragment, called read, is sequenced separately and afterwards

assembled to a longer DNA sequence. This assembly is an approximate reconstruction of the

whole genome. In the early 2000s, the human genome was �rst sequenced representing a major

breakthrough (Collins et al., 2003). However, due to the low throughput, the process to sequence

the human genome was very tedious: This project lasted more than a decade and required many

scientists collaborating worldwide.

With the next generation, sequencing became high-throughput. The second-generation sequenc-
ing lowered the cost and speed dramatically by massively parallel sequencing. As an example,

the company called Illumina provides a sequencing platform. Here, in brief, the experimental

work�ow is divided into four main parts covering library preparation, cluster ampli�cation,

sequencing and data analysis (Bentley et al., 2008).

Firstly, during library preparation the genome is randomly fragmented into segments of similar

size. In case of transcriptome sequencing, the RNA is converted into cDNA beforehand. At both

ends of the DNA fragments, adapters ligate and the whole sequence gets ampli�ed by a process

called polymerase chain reaction (PCR). As a result, multiple copies of the sequence are generated.

Secondly, during cluster ampli�cation, the library is loaded into a �ow cell and again gets ampli�ed

massively using bridge ampli�cation. This step ensures that the same copies of the original DNA

fragment get ampli�ed in proximal space, generating clusters of DNA fragments.

Thirdly, these clusters are sequenced simultaneously. Here, Illumina uses speci�cally designed

dNTPs that reversibly attach to the DNA template strand. The dNTPs are labeled with four
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Figure 2.3: Automated Sanger se-
quencing. A DNA fragment of inter-

est serves as a template to determine

its sequence. A mixture of dNTPs

and �uorescently-labeled ddNTPs

are used to sequence short oligonu-

cleotides. Occasionally ddNTPs are

incorporated in the elongation phase

such that oligonucleotides are gener-

ated with with varying lengths. The

oligonucleotides are size separated

by a capillary gel electrophoresis. A

laser excites the �uorescent label and

a detector catches the light emitted

providing the label for each termi-

nal ddNTP. The result output is a

chromatograph showing �uorescent

peaks for each ddNTP which can then

be assembled to determine the se-

quence of interest.

di�erent dyes emitting light once incorporated to the strand. A detector captures the color of the

four nucleotides added to each template strand in each cluster. Thus, simultaneous tracking of

the colors for each cluster gives rise to the sequenced read on a base-by-base accuracy.

Finally, data analysis is performed and all the sequenced reads are put together computationally

by either aligning or mapping them to a reference genome or by assembling the reads if there is

no reference given. Having RNA transcripts sequenced, the reads can now be quanti�ed to get

the transcriptional pro�le of the sample.

Sequencing the transcriptome of cell populations is known as bulk RNA sequencing, or in short

bulk RNA-seq (Mortazavi et al., 2008). In contrast to DNA microarrays, bulk RNA-seq does not

need to know the sequences of the samples beforehand. This tool allows sequencing of the set of

polyadenylated mRNA molecules within a cell population on a base-by-base resolution. Hence,

besides di�erential expression analysis it also o�ers opportunities to compare the samples in a

sequence speci�c manner, e.g. by studying alternative splicing events. Thus, since its discovery,

bulk RNA-seq provides a wide range of applications especially in comparative studies in biological

research and medicine, e.g. from evolutionary studies comparing the same tissues across di�erent
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Figure 2.4: Illumina sequencing.
A DNA fragment of interest serves

as a template to determine its

sequence. A mixture of dNTPs and

�uorescently-labeled ddNTPs are

used to sequence short oligonu-

cleotides. Occasionally, ddNTPs are

incorporated in the elongation phase

such that oligonucleotides are gener-

ated with with varying lengths. The

oligonucleotides are size separated

by a capillary gel electrophoresis. A

laser excites the �uorescent label and

a detector catches the light emitted

providing the label for each terminal

ddNTP. The resulting output is a

chromatograph showing �uorescent

peaks for each ddNTP which can

then be assembled to determine the

sequence of interest.

species (Brawand et al., 2011) studying di�erences between healthy and disease samples or

comparing cell populations before and after a treatment.

2.2.2 From bulk to single cell resolution

Sequencing the transcriptome can give valuable insights into a cell population. However, in order

to perform bulk RNA-seq experiments, one needs cell populations consisting of thousands to mil-

lions of cells. Here, the polyadenylated amount of mRNAs of the whole population of cells derived

from tissues or cell line samples are extracted and puri�ed together before being sequenced. As a

result, the average gene expression level across cells is measured. Although this gives us useful

insights into comparative studies as stated above, this technology is nonetheless insu�cient if

we want to analyze complex or heterogeneous tissues such as brain or cancerous tissues. The

tissues consist of many di�erent cell types which are partly unknown. As a consequence, taking

the average signal per gene across all cells within the samples might mask biologically relevant

variation between cells.

Another limitation of bulk RNA-seq experiments is the lack of large cell populations in some

research �elds, e.g. when studying cell lineages upon cell di�erentiation. As an example, during

early embryogenesis, a single fertilized zygote divides into more and more pluripotent cells,

reaching intermediate cell states until �nally forming a whole tissue or organism. This cell state

change into a more specialized cell type is a popular but complex research �eld and little is known

about the regulatory processes controlling cell fate decisions. Thus, especially with regard to cell

di�erentiation there is a strong motivation to study the dynamic processes in gene regulation
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with a single-cell resolution.

Overall, there has been great interest in studying the transcriptional pro�le by assaying gene

expression at a single-cell level for multiple reasons. One aim was to identify previously unknown

and possibly rare cell sub-populations in heterogeneous tissues, but also to study their cellular

frequency composition (Stegle et al., 2015). Another aim was to identify (new) marker genes

speci�cally expressed in certain sub-populations but also to investigate the dynamic gene expres-

sion pattern across cell di�erentiation and to ultimately understand the regulatory relationships

between genes (Kolodziejczyk et al., 2015b).

2.2.3 From ten to hundreds of thousands of cells

Within a decade the number of individual cells being sequenced in one experiment grew exponen-

tially (Svensson et al., 2018). It started with just a few dedicated cells to hundreds of thousands

and now up to even millions of cells. Generally, in order to generate single-cell gene expression

data from a biological sample one has to follow an experimental procedure including four main

steps (Kolodziejczyk et al., 2015b; Luecken et al., 2019):

1. single-cell dissociation

2. single-cell isolation

3. library construction and

4. sequencing

Starting with the biological sample of interest, the �rst step requires dissociation of the sample

(for example a tissue) into individual cells. Therefore, a single-cell suspension is added in order to

digest the extracellular matrix of the sample loosening cell-cell junctions (Reichard et al., 2019).

The next step, the isolation of single cells depends on the use of the experimental technology. The

following section summarizes key technologies highlighting major di�erences occurring during

single-cell isolation and library construction. Furthermore, they represent major jumps regarding

the scalability in the number of sequenced single cells.

In 2009 Tang et. al. succeeded in sequencing the transcriptome of a single cell for the �rst

time (Tang et al., 2009). Here, the experimental protocol was adapted to the low genetic starting

material by improving the ampli�cation of cDNA from single cells in an unbiased way. However,

the isolation of the single cell by manually selecting a single cell under the microscope prior to

the sequencing step was tedious. For this reason the following studies sequenced only a couple of

cells mainly focusing on early embryonic developments and later on cancer cells (Ramsköld et al.,

2012; Tang et al., 2010, 2011).

Sample multiplexing. Initial parallel sequencing of almost 100 single cells was performed by

Islam et. al. using a multiplexing method called single-cell tagged reverse transcription (STRT)-seq

(Islam et al., 2011). Here, multiplexing in the context of sequencing refers to a procedure where

the samples are pooled together to be processed and sequenced simultaneously (Wong et al.,
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2013). More speci�cally in STRT-seq, each cell is loaded into a well of a 96-well plate. During

library preparation, a barcode is introduced and used as a tag for each reverse transcribed cDNA

for each cell allowing the assignment of the transcripts to the cell. After pooling the cells with

their corresponding cDNAs as one single mixture, this mRNA mixture gets sequenced. However,

instead of sequencing the full length of each mRNA transcripts, only the 5’ end of the transcripts

gets sequenced. Now, using the barcodes each transcript can be assigned to its respective cell.

Regarding cell isolation another improvement was introduced with this technology: Instead of

manually isolating the cells into tubes, a semi-automatic device was developed to select the single

cells, loading them into the wells. As an alternative, researchers also used �uorescence-activated

cell sorting (FACS) in order to select and to load the cells.

Integrated micro�uidic chip. With the development of micro�uidic chips (C1) by the company

Fluidigm, automatic cell capturing became possible, simplifying the cell isolation step (Xin et al.,

2016). Here, the cells are loaded onto a chip. By sequentially �owing through the chip, the cells are

captured in chambers. Within these chambers biomolecular reactions can be performed including

reverse transcription and PCR ampli�cation in order to prepare the sequencing library. After that,

the library can be extracted and loaded into the 96-well plates before sequencing. An advantage of

using this C1 system is that it is compatible with multiple single cell RNA-seq protocols. Su�ering

from the manual selection before, the mRNA-seq protocol (SMART-seq) used in Ramsköld et al.,

2012, the combination of the C1 system now allows an automatic way of cell capturing of several

hundreds of cells with a full-length transcript sequencing procedure.

Droplet-based micro�uidics. Technologies based on droplet emulsions enabled the next big

jump into several thousands of sequenced cells. InDrop (Klein et al., 2015) and Drop-seq (Macosko

et al., 2015) protocols and also the commercially available 10x Genomics platform use barcoded

beads encapsulating the cells in a micro�uidic device. Commonly, each bead has a cellular barcode

assigning the cell’s membership and biochemical reagents for library preparation. After reverse

transcription and PCR ampli�cation taking place in each bead for each cell individually, the beads

get lysed. Then, all captured transcripts are pooled and puri�ed before sequencing. Similar to

STRT-seq, these protocols do not capture the full-length transcript but only the 3’ end of each

transcript.

Combinatorial in-situ barcoding. Most recently, another concept was developed called single-

cell combinatorial-indexing RNA-seq (sci-RNA-seq) and is based on a combinatorial way of

multiple indexing cycles. It allows for pro�ling up to hundreds of thousands or even millions of

cells. Instead of isolating single cells, the technique randomly distributes a small pool of cells

into microwell plates. Each well with its corresponding pool of cells gets a unique barcode that

is integrated in situ to the mRNA of each cell. Then, all cells of the whole microwell plate are

pooled and randomly redistributed into small pools across a plate repeatedly. As a second round,

a well-speci�c barcode is integrated and all the cells are pooled again. This procedure can be

repeated a third time. Using multiple cycles of random sorting and distributing the probability of

two cells having the same sequence of wells and thus the same sequential barcode is arbitrarily

low. In a �nal step, the genetic material is pooled and ampli�ed to prepare the sequence library.
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After library construction a sequencing machine produces the raw sequencing reads that need

to be processed computationally. Similar to the bulk RNA-seq experiments, the generated reads

need to be aligned to a reference genome and quanti�ed. If a multiplex protocol has been used

the data needs to be demultiplexed assigning the mRNA counts to its corresponding cell by the

cellular barcode. This results in a �nal gene expression matrix which can be further analyzed.

The technologies summarized here represent available experimental procedures and platforms to

pro�le the transcriptome on a single-cell level. Each of them have advantages and disadvantages

which were assessed here (Svensson et al., 2017; Ziegenhain et al., 2017). The technologies do

not only di�er in the number of sequenced cells feasibly pro�led in a single run or whether a

full-length compared to a 5’ or 3’ RNA sequence tagging procedure is used but they also vary in

their performances. There are di�erences regarding the sensitivity in capturing lowly expressed

genes, the accuracy in the quanti�cation of the actual gene expression level as well as the cost per

cell. While designing a single-cell study, it is necessary to think thoroughly about the experimental

setup as this in�uences the computational analysis to a great extent.
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Figure 2.5: Single-cell experimental procedure. The four main steps of a single-

cell experiment are (i) tissue dissociation, (ii) single-cell isolation, (iii) library construc-

tion and (iv) sequencing. (i) During tissue dissociation single cells are detached from

their tissue environment and separated into individual cells. (ii) For single-cell isola-

tion there exist many technologies including the manual selection with a microscope,

FACS machine, micro�uidic chip, droplet-based micro�uidics and combinatorial bar-

coding. (iii) Library construction depends on the corresponding protocol. First cellular

mRNA is captured by oligo dT primers (with or without umi/ cell barcodes) and ampli-

�ed by polymerase chain reaction (PCR). Tagmentation produces the �nal sequencing

library resulting either in full-length transcript or 3’ or 5’ enriched transcripts (not

shown). (iv) The sequencing library is sent to the sequencing machine to generate

the raw reads.
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S INGLE -CE L L TRANSCR I P TOM ICS

In recent years, the number of published single-cell studies has increased exponentially with

growing numbers of sequenced single cells (Angerer et al., 2017; Svensson et al., 2020). Publicly

available atlases derived from mouse tissues (Han et al., 2018), or whole model organisms such

as zebra�sh, frog or �atworm serve as reference maps and give rise to the identi�cation of new

cell types or the cellular composition of tissues or the organisms.

However, new insights from such studies can only be revealed through appropriate analysis and

interpretation of the results. For this reason it is crucial to understand the "nature" of single-cell

RNA-seq data in order to develop suitable computational tools which require modeling of the un-

derlying statistical distribution of the data. Only when we have done this, and correctly interpret

the results, can these tools assist in answering biological questions.

Dealing with single-cell data is not trivial. Researchers not only have to be aware of the di�erent

available experimental platforms but also the availability of the enormous number of computa-

tional tools. The rapid growth in single-cell transcriptomics lacks a consensus on how to analyze

single-cell RNA-seq data computationally (Vieth et al., 2019). Depending on the hypothesis of a

single-cell study, the question whether some analysis steps can or even should be used makes it

di�cult to agree on a consensus pipeline. Additionally, the consecutive combination of multiple

analytical components may have a critical e�ect on the interpretation of the results.

For this reason, I �rst provide an overview about the sources of technical noise and biases occur-

ring in single-cell data in order to understand the complexity and challenges associated with the

data analysis. I summarize the individual computational components that (i) can be integrated

into a preprocessing pipeline in Section 3.1 and (ii) can be applied onto the preprocessed data in

order to explain the cellular heterogeneity in downstream analyses in Section 3.2. I mostly refer

to the guidelines presented by Luecken et al., 2019: Current best practices in single-cell RNA-seq
analysis: a tutorial.

3.1 preprocessing single-cell rna-seq data

Collecting the sequencing data in a raw read count matrix, or a gene expression matrix, the data

needs to undergo certain steps of data cleaning or also called data preprocessing.

Preprocessing data in general is crucial and guarantees the comparability across the samples. It

includes data cleaning, correction and normalization in order to ensure outlier and error removal

as well as a standardized data format for the correct interpretation of the results in the data

analysis. Many preprocessing methods have been developed for bulk RNA-seq data including

normalization (Smyth et al., 2003) or data correction such as for batch e�ects (Johnson et al., 2007).

13



14 analytical challenges and steps in single-cell transcriptomics

However, due to the particularities of single-cell transcriptome data that will be highlighted in

the following sections, the previously available tools need to be adapted or re-developed.

3.1.1 �ality control

As every data analysis work�ow begins, quality control represents the very �rst step before ana-

lyzing single-cell RNA-seq data. It ensures that low quality cells are �ltered out and excluded from

further downstream analyses as they might in�uence the analysis leading to misinterpretation

of the data (Ilicic et al., 2016). There a di�erent reasons for a sample being of low quality that

we will now present. We will refer to the term sample instead of cell as we are uncertain if the

sample as it occurs in our data matrix corresponds to an actual single cell.

During the automatic cell capturing process, the samples de�ned by the cellular barcode can be

erroneous in two respects: The samples can either represent empty droplets/wells with no cell

captured or even multiple cells (often called doublets). Here, di�erent computational strategies

allow for identifying empty samples or doublets. A simple procedure is to look at the library size

and gene detection distribution and use a thresholding procedure in order to �lter out samples

with very low or high library sizes, or gene detection rates, respectively (Luecken et al., 2019). A

more sophisticated alternative to identifying doublets is the application of an outlier detection

algorithm (Ilicic et al., 2016).

Another reason for low quality cells are cells under stress due to damage received during the cell

capturing process. These cells produce stress signals and might even undergo apoptosis misleading

the interpretation of the biological results. Upon cell damage a�ecting the cell membrane, the

cellular mRNA in the cytoplasm is abandoned while mitochondrial mRNA is conserved due to its

compartmental membrane. Thus, a relatively low library size as well as low gene detection rates

with a high amount of mitochondrial gene count per sample are indicative for damaged and thus

low quality cells (Luecken et al., 2019). In addition, biological features such as an enrichment of

expressed genes associated with apoptosis can also be used to identify low quality cells (Ilicic

et al., 2016).

3.1.2 Discerning technical noise for normalization

Di�erences in the analysis between bulk RNA-seq data and single-cell RNA-seq data originate

mainly in the modeling of the technical noise (or variability). Here, the technical noise is a result

of the process of (i) capturing and (ii) amplifying mRNA transcripts within a single cell as well as

(iii) varying sequencing depths across cells (Hicks et al., 2018; Kharchenko et al., 2014). When

analyzing single-cell data it is crucial to take these factors into account.

mRNA capture e�ciency. One of the most remarkable di�erence between bulk and single-cell

RNA-seq data is the high number of zeroes dominating in the latter case. Oftentimes this phe-

nomenon is called zero inflation and is attributable to the low amount of biological starting

material. In general, there are two reasons for the presence of a zero count: (i) the gene was not

expressed and thus no mRNA was synthesized referring to an actual biological zero count or
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(ii) the gene was expressed, but the mRNA was not captured in the cell, possibly due to a low

concentration, in which case we refer to a technical zero, often called dropout (Lun et al., 2016;

Zhu et al., 2018). Technical zeroes are mainly due to the mRNA capture e�ciency. It represents

the sensitivity of an experimental protocol in capturing lowly abundant transcripts and di�ers

across the technologies (Svensson et al., 2017).

Ampli�cation bias. The second source of technical variation is due to the di�erent ampli�cation

e�ciencies of the captured sequences. By their structural properties such as length and GC

content, the sequence composition introduces a bias during the ampli�cation process (McDowell

et al., 1998). In order to assess and to estimate the overall variability across the cells for each gene,

a set of external spike-in RNAs has been introduced and can be used in single-cell experiments

(Jiang et al., 2011). Here, a known and equal amount of di�erent spike-in RNAs is added to each

cell before library preparation. The set of external spike-in RNAs have di�erent concentration

levels mimicking the di�erent expression levels of the cell’s transcripts. Then, the cell’s internal

mRNA as well as the added external spike-in RNA are sequenced simultaneously. After sequenc-

ing and by quantifying the amount of spike-in RNAs we can compare the known concentration

and the measured spike-in RNA abundance. The deviation between the input and the measured

abundances provides an additional quality control but also a technical baseline that one can use

for normalization (Brennecke et al., 2013; Lun et al., 2016). In fact, spike-in RNAs have been used

in bulk experiments as well.

Furthermore, to account for the ampli�cation bias, unique molecular identi�ers (UMIs) are

used in many experimental protocols (Sena et al., 2018). UMIs are short (6–10 bp) oligonucleotides

providing barcodes that label each captured transcript in the cell. During library preparation

the captured sequences are constructed in such a way that the sequences include (i) the reverse-

transcribed mRNA, (ii) the cellular barcode labeling each cell and (iii) the UMI barcode. The

constructed sequence is then ampli�ed as a whole. By counting the unique pairs between cellular

and UMI barcode it enables us to distinguish between ampli�ed copies and actual biological copies

of multiple mRNA transcripts of the same gene (Fig. 3.1).

Sequencing depth. Each sample has di�erent number of sequenced reads, referred to as the

sequencing depths. To establish comparability across the samples, it is necessary to normalize the

samples’ read count. Commonly used techniques for scaling across di�erent sequencing depths

is called counts per million reads (CPM) or transcripts per million reads (TPM). The latter

normalization is used in full-length protocols considering the transcript sequence length. The

assumption for both normalization techniques is that the initial amount of mRNA level in each

cell is equal and that the sequencing depth varies due to a sampling procedure. This assumption

holds true in bulk RNA-seq data. However, in single-cell RNA-seq it is uncertain how much mRNA

content has initially existed within each cell. By pro�ling a tissue that consists of many di�erent

(partly unknown) cell types it is hard to predict which and how many cell types are present as

the amount of mRNA varies across cell types. As sequencing of the transcripts happens in a

multiplex procedure, the total amount of genetic material is pooled and simultaneously sequenced.

Hence, cell-type speci�c factors and the variability in the mRNA capture e�ciency contribute to

the varying sequencing depths across cells. Here, spike-ins can be used to estimate the capture

e�ciency as well as the relative variability in cell size for UMI-based single-cell RNA-seq data
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Figure 3.1: Correcting for am-
pli�cation bias using UMIs. The

polyadenylated mRNA molecules are

captured in each cell. During library

preparation UMI barcode, cell bar-

code and sequencing adapter are lig-

ated to the captured mRNA molecule.

The whole sequence is ampli�ed and

sequenced. The resulting reads con-

sist of the sequencing adapters (on

both ends), the cell barcode that la-

bels the cell, the UMI barcode and the

transcript sequence. During the am-

pli�cation process, the quantitative

amount of the reads derived from a

transcript can deviate from the biolog-

ically available transcripts. This intro-

duces a bias distorting the relative ex-

pression level across cells. By count-

ing the unique pairs of transcripts and

UMI barcode it is possible to eliminate

that bias.

(Stegle et al., 2015, Fig. 2b,c).

In order to account for the unwanted technical noise including the above mentioned sources and

the varying sequencing depths, computational methods have been developed for normalizing

cell-to-cell variability accordingly with the option to use spike-ins and/or UMIs.

3.1.3 Correcting for systematic biases

In the former section we describe technical factors as a source of technical variability a�ect-

ing single-cell RNA-seq data in an undesired way. Dependent on the biological question and

hypothesis that researchers design, there can be also unwanted biological factors in�uencing

gene expression levels that need to be taken into account. These factors are often referred as

confounding factors. They correspond to unobserved covariates which can blur the data signal

and lead to misinterpretations when not correctly taken into account (Stegle et al., 2015). A

simple example can be the presence of batch e�ects that also occur in bulk RNA-seq studies if

experiments were performed on di�erent days, laboratories or sequencing runs. Another case
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occurs in studies examining e.g. di�erentiation processes. Usually these studies require a cell

ordering according to the cell lineage from naïve to more di�erentiated cell states. Here, a possible

confounding factor is introduced by the cell-cycle (Buettner et al., 2015). Cells in di�erent stages

of the cell-cycle show di�erent gene expression patterns and thus might obscure the ordering of

the cells according to the cell lineage. As a last example, another confounding e�ect occurs in

studies investigating embryonic stem cell development. Oftentimes, samples of multiple early

embryo tissues are selected before the development of sexual organs. Thus, the embryo’s sex

is unknown. However, sex-speci�c gene expression plays an important role already within the

early days of embryonic development, thus causing di�erences in the gene expression signature.

Integrating embryonic tissues from multiple embryos can show a diverging gene expression

pattern caused by the di�erent sexes.

While batch e�ects can be removed computationally by using the given annotation of the experi-

ments, the two latter cases require preceding analysis in order to estimate either the cell-cycle

state or the sex for each sequenced cell. Computational approaches allow the prediction of the

cell state in order to account for unwanted biological variability (Buettner et al., 2015).

3.1.4 Distributional assumptions for normalization

For normalizing single-cell RNA-seq data many statistical models have been developed assuming

di�erent data distributions in order to account for the technical variability. Here, we present

distributions that are commonly used to estimate the technical variability in the data.

Multinomial distribution. To model UMI-based counts in single-cell RNA-seq data oftentimes

a multinomial distribution is hypothesized (Townes et al., 2019). The multinomial distribution is a

generalization of the binomial distribution modeling counts with k categories and n number of

independent trials. In case k = 2 (failure and success) the multinomial distribution refers to the

binomial distribution.

For UMI read counts the multinomial distribution assumes the following: Let a single cell i contain

ti total amount of (unknown) mRNA transcripts and ni be the total number of UMIs (measured)

for the same cell. Note, that the UMI counts do not contain any PCR ampli�cation biases (see

Fig. 3.1). Due to the ine�cient process of mRNA capturing the number of UMI counts is much

lower than the actual number of mRNA transcripts within the cell (ni ≪ ti) (Townes et al., 2019) .

While UMI counts ni can range between 1,000–10,000 the estimated number of mRNA transcripts

is approximately 200,000 for a typical mammalian cell (Shapiro et al., 2013; Townes et al., 2019).

Now, let xij denote the (unknown) number of mRNA transcript of a particular gene j in cell i, and

yij the number of UMI counts of gene j in cell i. Also here applies yij ≪ xij . Intuitively, genes with

a higher number of available transcripts in the cell have a higher probability to be measured as

a non-zero UMI count whereas genes with low abundances of the available transcripts have a

lower probability to be measured and are likely to result in a zero count. Hence, the UMI counts

yij follow a multinomial sampling procedure of the unknown actual counts xij .
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Poisson distribution. In each each gene with abundance xij we either measure the gene’s tran-

script or not in n number of trials. Here, the number of trials re�ects the library depth in a

sequencing experiment. Hence, the multinomial sampling can be approximated by the Poisson

distribution. The probability mass function is given by:

P(X = l) = �ke−�
k! (3.1)

with l being the number of occurrences l = 0, 1, 2, 3, ... and � the intensity parameter. Here, we

calculate the probability of a given gene to count its transcript l times with � being proportional

to the fraction of xij compared to all other gene counts in cell i. For Poisson distributed data there

is a constant mean-variance relationship with:

� = E(X) = Var(X ) (3.2)

The probability of observing a zero count is determined by:

P(X = 0) = e−� (3.3)

Negative binomial distribution. As the Poisson distribution restricts the mean-variance rela-

tion to be constant, RNA-seq data is often modeled as a Gamma-Poisson mixture distribution or

as an equivalent a negative binomial distribution (Anders et al., 2010). It allows the variance to

grow in a quadratic relation to the mean and uses an additional parameter called dispersion to

better model the variance-mean relation as we derive in the following. The negative binomial

distribution is de�ned by two parameters: p as the probability of a single successful event (to ob-

serve a read count) and r as the number of failures occurring within the sequence of independent

Bernoulli trials:

P(X = l|p, r) = (
l + r − 1

l )(1 − p)
r (p)l (3.4)

Here, l denotes the number of successes. The negative binomial distribution has a mean � (expected

number of successes) computed as:

� = pr
1 − p (3.5)

and variance �2 de�ned as:

�2 = pr
(1 − p)2 (3.6)

Hence, solving Formula 3.5 to p with p = �
�+r the variance �2 can also be expressed as

�2 = � (
�
r + 1) . (3.7)
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Note, the quadratic relation between the variance �2 and the mean � in this formula leading to a

quadratic increase of the �2 as a function of �.

We can also express the probability function (3.4) subject to the parameters � and r with:

P(X = l|�, r) = (
l + r − 1

l )(
r

r + �)
r

(
�

� + r )
l

(3.8)

Instead of r , one often uses the dispersion parameter � which is the reciprocal of r . This gives

us our �nal model with respect to its mean expression � and dispersion parameter �. Thus, the

probability of observing a read count l is de�ned as:

P(X = l|�, �) = (
l + �−1 − 1

l )(
�−1

� + �−1)
�−1

(
�

� + �−1)
l

(3.9)

Similarly, the variance �2 in Formula (3.7) can be expressed by:

�2 = � (�� + 1) . (3.10)

For observing "no read count with l = 0" we obtain the probability

P(X = 0|�, �) = (
�−1

� + �−1)
�−1

(3.11)

Zero-in�ated negative binomial distribution. As single-cell RNA-seq data is dominated by

large numbers of zeros researchers have modeled an additional distribution in order to account

for the large numbers of zeros (Eraslan et al., 2019; Lopez et al., 2018; Risso et al., 2018). Besides of

estimating the distribution of the count data the models add a probability of observing no read

count in each gene by assuming a zero-in�ated negative binomial distribution (Svensson, 2020).

However, it is controversially debated if single-cell data needs to model an additional distribution

estimating the ’zero-in�ation’ (Jiang et al., 2022).

3.1.5 Imputation

A series of computational methods originally developed for bulk RNA-seq fails to analyze single-

cell RNA-seq data due to the distinct technical features and the high number of zero counts (Chen

et al., 2018b). For this reason, imputation methods have been developed in order to counteract

against the high number of zero counts by estimating values for zero counts referring to technical

zeros and eventually smooth the data removing the noise. Thus, they are also called expression
recovery or denoising methods. Imputation methods can be integrated within the preprocessing

pipeline as an option. Whilst facilitating downstream analysis by improving gene-gene correlations,

imputation methods however may also introduce false correlation signals (Andrews et al., 2018).

In Chapter 7 we will further go into details about the e�ect of imputation methods on the

reconstruction of gene regulatory networks.
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3.1.6 Feature selection and dimensionality reduction

The human reference genome consists of about 20,000 protein-coding genes representing features
in our data matrix. Hence, the raw count matrix is in a ∼20,000 dimensional space. For many

tools, this high-dimensionality is computationally expensive in terms of memory and run time.

Feature selection provides a �rst step of reducing the dimensions by focusing on more informative
genes. Here, we consider genes with high variability and high expression level across the cells as

informative. We facilitate the analysis by removing genes with a constant and low gene expression

level. However, the selection of the most informative genes is highly dependent on the steps prior

to the selection step. Normalization accounting for the technical variability and data correction

(as described in Sec. 3.1.2 and Sec. 3.1.3) can highly a�ect the selection of the most informative

genes. Luecken et al., 2019 suggest using a subset of 1,000 – 5,000 most informative genes for

further analysis.

After feature selection, another strategy to further reduce the dimension is to use an algorithmic

approach. Here, the algorithms project the gene expression matrix into a low-dimensional space.

Ideally, the projection decreases the noise level while retaining the main signal of interest. Here,

we are interested in the signal that leads to the inherent structure of the data (Heimberg et al.,

2016). Di�erent algorithms exist in order to identify a lower dimensional space. However, the

most commonly used approach is the principal component analysis (PCA) (Pearson, 1901).

PCA is a linear approach that projects each data point (here cell) onto a lower-dimensional space

by summarizing the data by their �rst principal components. These components explain the

highest percentage of the variation of the data. Please note, that the variation does not have to

be necessarily biologically meaningful (as referred in Section 3.1.2 and Section 3.1.3). Without

explicitly accounting for the unwanted technical or biological variation it has been reported

that the �rst or second principal component often correlates with a technical factor such as the

fraction of genes expressed per cell (read count greater than 0) (Finak et al., 2015). Hence, principal

components correlating with an unwanted factor should be discarded in the advancing procedure

of data analysis. Finally, the lower-dimensional space provides a basis for the visualization of the

data as well as other downstream analyses such as clustering and trajectory inference (Luecken

et al., 2019).

3.1.7 Visualization

Visualizing the data is key in order to identify possible artifacts. We need to further reduce the

dimensions in order to make the data "readable" for the human eye. For this reason, non-linear

dimensionality reduction algorithms are commonly used. The two most prominently used al-

gorithms are: t-distributed stochastic neighbor embedding (Maaten et al., 2008) and Uniform

Approximation and Projection method (preprint: McInnes et al., 2018), or abbreviated t-SNE and

UMAP, respectively. While t-SNE captures well local similar structures in high-dimensional data,

it su�ers when representing global structures of the data. In other words, the visualization of the

data is meaningful for data points within a cluster but less interpretable for data points across

clusters (Kobak et al., 2019). In contrast to t-SNE, UMAP captures both local as well as global

structures representing an accurate approximation of the underlying topology (Luecken et al.,
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2019; Wolf et al., 2018). Besides for visualization purposes and similar to PCA, UMAP can also be

applied to summarize high-dimensional data into a lower-dimensional space, but in a non-linear

way. However, the components in the lower-dimensional space become less interpretable. Thus,

PCA is preferred as a dimensionality reduction algorithm and UMAP as a visualization technique

(Luecken et al., 2019). Another non-linear dimensionality reduction tool for visualization is based

on di�usion maps (Haghverdi et al., 2015). Similar to a random walk approach it computes a

Markovian transition probability matrix. The eigenvectors of the matrix represent the components

that one can use for dimensionality reduction and visualization.

With the data visualization one can now explore and inspect the data by highlighting genes of

interest (usually known marker genes) by their gene expression value. This step leads to the �rst

annotation of cell populations. In some cases, however, undesired data structures become visible.

As an example, batch e�ects can be seen if the di�erent batches (which need to be color-coded)

separate within clusters. Oftentimes, the preprocessing steps need to get revised in order to

proceed with the downstream analysis.

3.2 computational steps for downstream anal-
ysis

Single-cell transcriptomics has undergone an exponential growth not only in the number of

published datasets (Angerer et al., 2017; Svensson et al., 2020) but also in the number of published

tools analyzing single-cell RNA-seq data (https://www.scrna-tools.org/; Zappia et al., 2018).

In November 2021, there exist 1115 tools which can be categorized into 30 di�erent broad categories.

This section outlines some analysis steps that are commonly used on single-cell transcriptome

data. Basically, Luecken et al., 2019 distinguishes two types of downstream analyses: The cell-level

and gene-level approaches.

3.2.1 Cell-level analysis

The cell-level approach describes the data on a global scale considering the cellular context. It

includes computational analyses such as clustering and trajectory inference characterizing

cellular structures.

Clustering allows for grouping cells with a similar gene expression pattern. By forming groups

of cells, this approach tries to �nd substructures of cell populations. In the early days, the sub-

structures were often declared cell types (Shalek et al., 2014; Zeisel et al., 2015). However, over

time it has emerged as uncertain whether the speculative new cell types are truly biologically

meaningful or rather an e�ect of the outcome of the computational analysis (Wagner et al., 2016).

In particular, depending on the choice of clustering algorithm and the choice of parameters it may

result into an arbitrary number of groups. For this reason, nowadays the common terminology

describing the substructures is cell identities (Clevers et al., 2017; Luecken et al., 2019; Wagner

https://www.scrna-tools.org/
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et al., 2016). With the help of known marker genes, the substructures can then be further annotated.

During a di�erentiation process, trajectory analysis allows the ordering of cells along a time path

often known as pseudotime. In a single-cell experiment, the cells are sequenced simultaneously

and thus their individual transcriptome represents a snapshot within the di�erentiation process.

However, the cells derive from a heterogeneous population spanning di�erent stages of the

dynamic processes during di�erentiation. Now, the trajectory analysis uses the dynamic processes

inferring a temporal order of the cells. Moreover, it also allows for capturing di�erentiation paths

diverging into multiple cellular end states or fates (bifurcation or multifurcation).

3.2.2 Gene-level analysis

Cell-level analysis compares and characterizes the cells with respect to their cellular context.

Thus, it aims to describe the cellular heterogeneity. However, gene-level analysis dives deeper into

the data and rather uses the cellular heterogeneity in order to investigate the molecular signals

of the data. Thus, it aims to explain the question why do we see what we see. Here, we present

two common approaches for substantiating the topology of the data: di�erential expression
analysis and gene regulatory network inference.

Even in bulk RNA-seq experiments di�erential gene expression analysis has been a common

procedure for comparing two groups of experimental conditions in order to explain di�erences

in gene expression. Bulk RNA-seq experiments are usually designed with two or three repli-

cates for each condition. Hence, the bulk tools needed to account for gene variance in just a

few samples. However, single-cell RNA-seq experiments do not have replicates per se but rather

multiple cells with a similar gene expression pro�le (for example in a cluster). Cells derived

from the same cluster di�er across cells due to the technical noise as stated above. For this

reason, methods designed to test di�erential gene expression in single-cell experiments model

the cell-to-cell variability accordingly. In fact, it has been shown that di�erential expression

analysis tools designed for bulk experiment perform as well as single-cell tools or even better

if estimated gene weights have been introduced (Berge et al., 2018; Soneson et al., 2018). In any

case, after testing for di�erential expression, p-values are assigned to each gene giving a measure

of signi�cance. However, even after correcting for multiple testing, it results into arbitrarily low

p-values reaching values far below alpha signi�cance level (� < 0.05). Thus, statistically the

majority of genes are considered signi�cantly di�erentially expressed even though the biological

meaningfulness is missing. This in�ation of p-values is attributed to the computational design:

Since usually clustering has been performed before testing for di�erentially expressed genes, the

design forces the algorithm to reveal di�erences between the groups of cells. Here, one cluster is

compared against all the remaining clusters. Hence, the identi�ed di�erentially expressed genes

are only speci�cally expressed within these pre-de�ned clusters. For this reason, there is a strong

e�ort to develop methods testing for di�erential expression in a clustering-independent manner

(Kim et al., 2020; Vandenbon et al., 2020). Nonetheless, the list of di�erentially expressed genes

that might be �ltered by the top ranks give us further insight into the biological data. Using a

gene enrichment analysis an overrepresentation of a given gene set, for example pathways or

other gene annotations using Gene Ontology, can be tested. It facilitates classi�cation and further
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characterization of the identi�ed list of di�erentially expressed genes.

Another common gene-level analysis is the inference or reconstruction of gene regulatory net-

works (GRNs). This approach starts from the idea that genes do not operate independently from

each other but rather in a complex network regulating each other’s expression level dynamically.

Uncovering the regulatory landscape from the expression data by predicting possible interactions

between genes is one of the key aims to achieve in molecular biology. We will further go into

more detail about the inference of GRNs in Chapter 5.





4 ASSE S S ING VAR IAB I L I T Y IN S INGLE -CE L L
RNA - S EQ DATA

This chapter covers two scenarios of assessing variability in single-cell transcriptome data. The

�rst scenario in Section 4.1 includes an experimental dataset published by Kupke et al., 2020.

It is a study about In�uenza A virus infected single cells and investigates the heterogeneity in

the virus replication across cells. In this study our collaborators in the lab of Udo Reichl per-

formed the experiments, while the single-cell RNA-seq experiments has been performed at the

Max Planck Institute for Molecular Genetics by Stefan Börno. I processed the data and designed

the computational work�ow including preprocessing and analysis pipeline. The study was pub-

lished in Viruses by Kupke et al., 2020. I will not go into detail of the published results but I will

use the dataset in order to exemplify the computational challenges when facing experimental data.

The second scenario in Section 4.2 deals with a simulated framework. Unlike experimental datasets

simulated single-cell transcriptome data provides a controlled environment in order to investigate

the features of the data and its susceptibility to varying parameters without the in�uence of

external factors. I implemented the simulation, thereby assessing the technical variability and

investigated technical features such as the integration as well as similarity measures between

bulk and single-cell derived samples.

4.1 a case study in influenza a virus infected
cells

In�uenza A viruses (IAV) cause respiratory diseases in humans - commonly known as the �u. A

viral spread in the human population leads annually to seasonal epidemic outbreaks leading to

high morbidity and mortality rates (Fauci, 2006). As pathogens, viruses infect a host cell hijacking

the transcription machinery in order to replicate the viral genetic material as part of the viral life

cycle (Fig. 4.1). This provides the blueprint for viral proteins to form new viruses, further denoted

as viral particles, that are released through the host cell.

Viruses need a host cell in order to reproduce themselves. However, this reproduction rate varies

from cell to cell. The rate ranges from just a few to up to multiple hundreds of released viral

particles per cell (Heldt et al., 2015). In order to examine the reasons for the large cell-to-cell

heterogeneity Kupke et al., 2020 designed the following experimental setup summarized in Fig-

ure 4.2. First, In�uenza A viruses are injected into single cells using an initial viral amount of

8–10 multiplicity of infection (MOI). Then, after 12 hours of infection, the extracellular amount

of released viral particles, the virus yield, is assessed by the plaque forming unit (PFU) value.

Small or large PFU values correspond to low or high productive cells with regard to virus yield,

respectively. Next, low and high productive cells are selected and prepared for sequencing. For

25
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Figure 4.1: The viral life cycle.
A virus infects a host cell and re-

leases its genetic material into the

cytoplasm. An enzyme, the viral re-

verse transcriptase, converts the vi-

ral RNA to a double-stranded DNA

that gets integrated into the host’s

genome. The host transcription ma-

chinery is used in order to transcribe

the viral genes to RNA to then synthe-

size viral proteins. The viral proteins

are assembled to new viruses and are

released from the host cell.

sequencing SMART-seq2 single-cell protocol is used to obtain full-length transcripts. Furthermore,

external spike-in RNAs from the External RNA Control Consortium (ERCC) are added to the each

IAV-infected single cell in order to assess the technical variability across the single-cell experiment.

Figure 4.2: Experimental setup
for In�uenza A virus infection.
Every host cell gets infected with the

same initial viral amount (8–10 mul-

tiplicity of infection (MOI)) in a well.

12 hours post infection (p.i.) the extra-

cellular amount of released viral parti-

cle is measured using plaque forming

unit (PFU). Cells with the lowest and

highest amount of PFU values are se-

lected and prepared for sequencing.

In the following section, we demonstrate the complexity and di�culties along the analysis of

single-cell transcriptome data faced in the context of this study. We focus on the preprocessing

steps with an emphasis on the impact of the technical variability.

4.1.1 Removing systematic biases

Originally, the data consists of 96 single cells divided evenly into cells with a low and high

virus yield. The sequencing data per cell pro�led the host, pathogen as well as the spike-in RNA

transcripts. Quality control was performed using a sequencing library size of >150,000 reads and

an ERCC accuracy of >0.75. After quality control, 86 single cells remained with 45 low and 41

high productive cells.

For preprocessing we apply zinbwave (Risso et al., 2018) assuming a zero-in�ated negative bino-

mial distribution on the IAV-infected single-cell RNA-seq data. As a computational tool, zinbwave
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can be used for normalization by modeling the data according to the statistical data distribution

and by accounting for di�erent library sizes per sample. Basically, the tool uses multiple regression

models that can optionally incorporate unwanted sample-level covariates as well as unwanted

factor-level (see Sec. 3.1.3). We plot the �rst two dimensions provided by zinbwave. Coloring

the single-cells by the gene detection rate with a threshold of >1 TPM we observe a strong bias

towards the gene detection rate (Fig. 4.3, left). Indeed, the Pearson’s correlation coe�cient between

the �rst dimension and the gene detection rate is approximately -0.75. Therefore, we incorpo-

rate the gene detection rate as a sample covariate into the regression model thereby regressing

out the unwanted technical factor. As Figure 4.3 (right) shows, the gene detection rate could

successfully be accounted for. This is perceivable by the mix of single-cells with di�erent gene de-

tection rates. However, we do not observe a separation between high and low IAV-productive cells.

Figure 4.3: Zinbwave corrects for gene detection rate in IAV-infected single-
cell RNA-seq data.
Low-dimensional representation of IAV-infected single-cell RNA-seq data using zinb-

wave before (left) and after (right) correcting the gene detection rate (color-coded) as

a technical factor. High and low productive cells are coded by the shape.

Exploring the IAV-infected single-cell RNA-seq data we show how a technical factor (here the

gene detection rate) can impact the result of a low-dimensional representation of the data. We

successfully remove this e�ect using zinbwave. Nonetheless, the low-dimensional representation

of the extended model does not show any separation between high and low productive cells. For

this reason we suspect di�culties in examining di�erentially expressed host genes in order to

explain the cell-to-cell heterogeneity in this dataset.

4.1.2 Technical vs biological variability

In general, the cell-to-cell variability in the single-cell RNA-seq data consists of two components:

the technical and the biological variability. While the �rst is a matter of an unwanted technical

e�ect attributed to noise in the single-cell experiment (see Section 3.1.2) the latter is the variability

that one is interested in, assuming we already removed unwanted biological confounding factors.

Assessing the technical variability, subsequently correcting for it and thus revealing the biological
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variability is one of the key challenges in the preprocessing of single-cell transcriptome data.

The use of external spike-ins facilitates the assessment of the technical variability within an exper-

iment. The ERCC set consists of 96 di�erent transcripts with varying concentrations, mimicking

the range of expression level of endogenous host transcripts. By comparing the known concentra-

tions with the measured transcripts per million reads (TPM) expression values it is possible to

quantify (i) the accuracy of the measurement per cell and (ii) the technical variability across the

experiment. The former, the accuracy, is calculated by Pearson’s correlation coe�cient between

the known and measured concentration level. The latter, the technical variability provides an

estimate of the degree of noise level in the data. It is derived from the relationship between the

squared coe�cient of variation de�ned as CV 2 = (�/�)2 and the mean expression level � for each

gene across all cells. A constant amount of ERCC spike-ins with the same concentration pro�le

has been added to each cell. Optimally, throughout the cells, the ERCC spike-in abundances

should be consistently measured with little to no variation despite the strength of expression

value. Hence, the coe�cient of variation should be a constant line in relation to the expression

value. However, due to the expected technical variability attributed to the sources of noise (mRNA

capture e�ciency and ampli�cation bias), we expect the technical line to be a curve starting with

high coe�cient of variation in lowly expressed with a decline of variation in highly expressed

ranges.

Figure 4.4: Assessing the tech-
nical variability using external
spike-ins.
For each gene, the mean TPM ex-

pression value is plotted against the

squared coe�cient of variation for 86

single cells on a log-log scale. Host

genes are color-coded in gray, viral

(H1N1) genes in blue and ERCCs in

red. The red �tted line represents the

overall technical variability within

the single-cell experiment.

Figure 4.4 shows the observed relation between the squared coe�cient of variation and the mean

TPM expression level per gene. As expected, lowly expressed genes have a high coe�cient of

variation that decline with a higher mean gene expression level. We use the ERCC spike-ins

(colored in red) to �t a baseline representing the overall observed technical variability within the

experiment. Notably, the spike-ins scatter with a high deviation around the estimated technical

variability. This deviation of the individual ERCC transcripts give us a degree of how noisy the

data is. ERCC transcripts with a low deviation from the �tted line imply an accurate estimate

of the technical variability. This allows for identifying con�dently biologically variable genes

deviating signi�cantly from the technical variabililty. However, if the ERCC transcripts have a

high deviation from the �tted line, conclusions about biologically variable genes cannot be drawn
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as they still fall in the range of technical noise.

Another observation that can be made from the plot is the high mean expression level of viral

genes compared to the endogenous host genes. Indeed, comparing the transcriptional activity

between the host and IAV genes, we observe a viral transcriptional activity that is signi�cantly

dominating the host activity level by three orders of magnitude (Fig. 4.5) This observation holds

true for both, low and high IAV-productive cells. Interestingly, low productive cells show a signif-

icantly higher gene expression activity than high productive cells coinciding with a lower viral

gene expression activity (p < 0.005 by Wilcoxon rank sum test).

Figure 4.5: Transcriptional activ-
ity in host and pathogen between
low and high productive cells.
Expression values (TPM ≥ 1) for host

and viral mRNAs are plotted on a log-

scale for cells classi�ed into low and

high virus yields (low and high PFU).

***, p < 0.0005 by the Wilcoxon rank

sum test Figure taken from Kupke et

al., 2020.

In summary, the exploratory data analysis of IAV-infected single cells with regard to the host

transcriptome reveals rather sobering results: Firstly, the low-dimensional representation of the

data does not reveal any inherent separation between high and low productive cells. Secondly, the

technical noise masks the biological variability to such an extent that statistically no conclusions

on the host gene-level can be drawn. Finally, the majority of host genes have a much weaker

signal than the viral genes that gets lost under the immanent technical variability.

4.1.3 Defective interfering particles a�ect the IAV replication

Although the noisy data quality prevents us from gaining any insights from the host expression

pro�le, it still allows us to inspect the viral transcripts in more detail. In the matter of investigating

the large cell-to-cell heterogeneity in the viral reproduction in the published study (Kupke et al.,

2020), we discovered an enrichment of defective interfering particles (DIPs) in low productive

cells. DIPs contain a long internal deletion in the viral genome segments leading to non-functional

viral proteins. Upon co-infection these particles interfere with full-length viral segments in the
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transcription process and thus contribute possibly to a decrease of released viral particles. Vividly

speaking, DIPs act as pathogens for the viruses themselves. The study examines thoroughly the

association between the co-occurrence of DIPs and the reproduction rate. However, as the detailed

results go beyond the scope of the thesis we refer the reader to the actual study for further reading

(Kupke et al., 2020).

4.1.4 Discussion

Aiming to explain the cell-to-cell heterogeneity in the viral reproduction we address several

hypotheses/perspectives: The �rst perspective is that the variability may originate from the

host cell. Conceivably, the host cell could have activated an immune response inhibiting the

transcription of viral transcripts as previously shown (Russell et al., 2019; Timm et al., 2017).

To test the hypothesis, the transcription of the cellular host genes needs to be analyzed and

compared between low and high productive cells. In fact, we generally observe a signi�cantly

higher gene expression of host genes in low productive cells along with a lower expression of viral

genes (Fig. 4.5). However, we could not relate this to an elevated immune response as the noise

level originating from technical factors masks the biological signal leading to insu�cient and

noisy data. Additionally, the dominating viral gene expression saturates the host signal such that

di�erential expression analysis led to no signi�cant results. The second perspective to explain the

cellular heterogeneity originates from the virus. Here, we found DIPs enriched in low productive

cells. In the course of the cellular transcription process, DIPs interfere with viral transcripts and

thus decrease the outcome of functional transcripts and in turn viruses.

The last perspective that could not be addressed due to the imbalanced transcriptional level of host

and viral genes is the interaction between the two species. Although these di�erent perspectives

are listed independently they do not necessarily need to be treated as such. Arguably there exist

di�erent factors contributing to the wide range of viral replication in IAV-infected cells that still

need to be elucidated.
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4.2 investigating simulated single cells from
bulk references

4.2.1 Modeling single-cell count data

Motivation

As previously seen, real biological data can be challenging to analyze. Many unforeseen factors

may in�uence the data introducing noise and biases that mask the biological signal.

Therefore, we were eager to set up a simulation framework to investigate the statistical char-

acteristics of single-cell RNA-seq count data. The aim is to get a better understanding of the

technical problems and pitfalls that govern single-cell RNA-seq data. A simulation framework

provides a controlled environment to test our assumptions and a range of metrics by comparing

the simulated data to a known ground truth. Here, the parameter settings enable us to regulate

the simulation allowing us to investigate the direct consequences on the data composition.

In particular, in the early days of single-cell transcriptomics, bulk RNA-seq samples were often

sequenced simultaneously to the single-cell samples in order to validate the performance of the

experiment (Camp et al., 2015; Kolodziejczyk et al., 2015a; Shalek et al., 2014). The aggregation

of all sequenced single cells allows us to compare their aggregated expression pro�le to the

bulk reference. Ideally, the aggregated expression pro�le correlates well with the corresponding

reference and con�rms the proof of concept.

This section deals with the reverse scenario. In our simulation framework a bulk RNA-seq sample

is used as a reference to generate single-cell-like data. The key point hereby is, that we are

fully aware of the origin of the sample from which it is drawn enabling us to reveal di�erent

statistical properties between the reference and its derived simulated sample. Firstly, we can use

the simulated data to approximate the bulk reference to the single cell population. To do so, we

examine if bulk RNA-seq samples can be projected into the computed embedding of single cells

thereby integrating bulk RNA-seq and single cell samples in the same topological map. Secondly,

the data allows us to measure the technical variability by deriving multiple single cells from the

identical bulk RNA-seq reference and assessing the variance across the cells. By this, we are able

to investigate distributional assumptions of the technical variability. Lastly, we can study technical

deviations between the single cells and the derived reference by measuring di�erent similarity

measures. More speci�cally, we can pose the question how much the simulated samples resemble

the reference sample and which factors may in�uence the similarity to each other. Hence, the

simulated framework provides an environment to investigate di�erent statistical hypotheses and

properties in order to gain more knowledge about single-cell RNA-seq data.

Data collection and processing

In order to study the above mentioned concept, we collect bulk transcriptome data from the

Genotype-Tissue Expression (GTEx) portal (https://gtexportal.org/, Consortium, 2015).

The database is a resource to study gene expression and regulation from non-diseased, post-mortal

human tissues. In total, the GTEx dataset consists of approximately 11.6K samples, classi�ed into

https://gtexportal.org/
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30 broad tissues, and 54 sub-tissues (Fig. 4.6). Note that Figure 4.6 visualizes samples color-coded

by the broad tissues and can be topologically separated in the UMAP embedding referring to

sub-tissues (not shown). The missing annotation of the sub-tissues has no impact on our further

analysis. However, we �nd individual samples that fall into a di�erent group of tissue samples and

classi�ed them as ambiguous. For example, we can identify mismatched samples in the muscle

cluster (top), the blood vessel cluster (bottom left) or even the skin cluster (bottom).

We are certainly aware that these ambiguous samples might be a consequence of the dimen-

sionality reduction process. Here, the embedding displays the high-dimensional data onto a

2-dimensional representation. Of course, during this process, information may get lost and the

data is "squeezed" into this low-dimensional space. Plotting the data in more dimensions would

probably resolve the ambiguity of the samples. However, for the purpose of this simulation and the

sake of simplicity we remove the "ambiguous" samples. This results in a �nal matrix of about 7,200

bulk RNA-seq samples and approximately 56,000 genes including protein-coding and non-coding

genes.
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Figure 4.6: GTEx data comprises gene expression data for 30 di�erent human
tissues.
(A) Sample frequency of 30 di�erent tissues. (B) Low-dimensional representation of

GTEx bulk RNA-seq data color-coded by tissue annotation. Note, that tissues can

be annotated further into sub-tissues and might be split apart in the embedding (for

example samples derived from skin tissues).

Simulation scheme

Given any bulk RNA-seq sample providing a reference distribution, we simulate a single cell

following a downsampling approach: We treat the bulk reference as a multinomial distribution
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as it has been assumed previously (Baran et al., 2019) (see Section 3.1.4). We model the probability

of occurrences with a m-sided die which is rolled s times. Here, m represents the number of genes

and s represents the sequencing depth. Alternatively, we can illustrate the downsampling approach

of a multinomial distribution by an urn experiment (Fig. 4.7). The number of balls m represents

the number of the genes with their respective occurrences. We transform the occurrences into m
subintervals. The length of the subintervals is equal to the corresponding ball occurrences within

the urn. After transforming the intervals into probability intervals spanning the range between 0

and 1, we can generate random variables X ∼  (0, 1), each time representing the drawing of a

ball. We repeat the sampling procedure s times emulating the sequencing depth. Note that s is

illustrated as a �xed number. However, in our computational realization, we draw the sequencing

depth s from a normal distribution  (�, �/10) with mean � and standard deviation �/10. Finally,

we count the number of occurrences in each interval. A pseudo code for the downsampling

procedure is provided (Algorithm 1).
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Figure 4.7: Simulation scheme.
Bulk RNA-seq experiments illustrated

as an urn experiment: Balls represent

genes, the occurrence of a ball refers

to its gene count. We derive the count

numbers for each gene and divide

them into intervals. The length of

the interval re�ects the count number.

The intervals are turned into proba-

bilities accumulating to 1. We sample

from a uniform distribution between

0 and 1 s times as we would sample

from the urn with the given probabil-

ities and report the event. Finally, we

count the number of occurrences for

each gene and obtain the downsam-

pled bulk experiment.

Algorithm 1: Simulation scheme

Input :count vector x = (x1, x2, … , xm),
sequencing depth s

1) init yi = 0 , with i = 1…m
2) Compute probabilities pi = xi/sum(x)

repeat
j = sample from 1 … m with probabilities p;

y[j] = y[j] + 1;

until s times;

return downsampled count vector y



34 assessing variability in single-cell rna-seq data

4.2.2 Simulating bulk-derived single cells

Using the GTEx bulk RNA-seq samples and the presented simulation scheme, we simulate single

cell samples. Overall, the simulated dataset comprises 1,600 single cells distributed over 16 di�er-

ent tissues (100 single cells for each tissue). We use two simulation scenarios with a sequencing

depth of roughly 1,000 and 10,000 reads, respectively (Fig. 4.8). As Figure 4.8A shows, the sim-

ulated single cell can be downsampled from its reference bulk population resulting in a higher

enrichment of lowly expressed genes. Furthermore, comparing the two simulation scenarios, we

observe that the simulated library sizes scatter around 1,000 and 10,000 reads, respectively which

is due to the normal distribution that the library sizes are drawn from (Fig. 4.8B). As expected, we

see higher numbers of detected genes (read count ≥ 1) with a greater sequencing depth. After

selecting the �rst 50 principal components, we displayed the simulated data using the �rst 2

dimensions the UMAP embedding. Here, the samples separate well. Hence, we established a

simulation framework that generates bulk-derived single cells. We are now able to investigate

further the simulated data according to our following statistical analyses.

4.2.3 Integrating single-cell and bulk RNA-seq samples

In this section, we want to investigate whether bulk RNA-seq and single-cell samples can be

integrated into the same embedding. Computing a topological map with e.g. UMAP can be com-

putationally very expensive especially if the datasets include a large number of sample sizes. In

order to prevent computational re-calculations if new data is added to the analysis we aim to use

the existing embedding to integrate the newly added data points to that embedding. In case bulk

samples represent data points that shall be added to the embedding it allows us to characterize

and annotate cell clusters by using the proximity of bulk samples to the closest single-cell clusters

in an unsupervised way.

The concept that we develop to project samples into a pre-computed embedding is illustrated in

Fig. 4.9. The idea is to train a model that computes an embedding for single cells. The trained

model includes a dimension reduction using PCA. By choosing the top k principal components

the model computes the UMAP embedding and projects the trained samples into the �rst two

dimensions. Then, we use the bulk RNA-seq samples (or another set of single cells left out from

the training procedure) and predict the PCA coordinates using the trained model. By using the

predicted coordinates in the PCA space we further predict UMAP coordinates of the pre-trained

UMAP embedding. By this we are able to use a pre-computed embedding in order to integrate

di�erent sources of data points into the same topological map.

We train our model using the simulated single-cell dataset with a library size of ∼1,000 reads

normalized to counts per million reads (CPM). The trained model includes a dimension reduction

on the �rst 22 principal components and uses the reduced PCA space to compute the UMAP

embedding on the �rst two dimensions. Instead of selecting a �xed number of principal compo-

nents as it was done before we chose the �rst 22nd principal components based on a convergence

criteria also known as the elbow approach (Thorndike, 1953). Using the trained model we predict
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Figure 4.8: GTEx derived simulated single cells
(A) Gene expression distribution (log-scaled y-axis) between bulk and derived sim-

ulated single cell sample (exempli�ed). (B) Library size vs gene detection rate of

simulated single cells (n=1,600 for each sequencing depth) on a log-log scale. In the

simulation setting, gene detection rate is higher with higher sequencing depth. (C)

UMAP visualization for 1,600 simulated single cells derived from 16 tissues (100 cells

for each tissue) with a sequencing depth of 1,000.

the PCA coordinates of the matched and normalized bulk RNA-seq samples from which the

simulated single cells were derived from. Using these PCA-predicted coordinates we further

predict the UMAP coordinates of the pre-trained UMAP model and plotted the results in Figure

4.10(left). Notably, the predicted location of the matched bulk samples locate in close proximity

to the simulated single cells but not directly into the tissue clusters. In some cases, as for heart or

stomach samples, the matched bulk and simulated single cells are closer than in other cases, as

for nerve and lung samples. Assuming di�erent technical characteristics between bulk and single

cell samples cause the partial separation of tissue clusters, we initiated the next investigation. We

now downsample the bulk references using library sizes of ∼10,000 reads and used the pre-trained

model to predict the coordinates in the PCA space as well as in the UMAP embedding following

the procedure above (Fig. 4.10(right)). Now, the predicted locations of the downsampled (reference)
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Figure 4.9: Concept of integrating data in a pre-computed embedding.
During training a set of single cells is used to reduce dimensions using PCA. Top-

k principal components are used to compute UMAP coordinates for visualization.

The prediction set consists of either bulk RNA-seq samples or other single cell sam-

ples excluded from training. Coordinates in the PCA space are predicted using the

trained PCA model. Using the predicted PCA coordinates we further predict UMAP

coordinates of the trained UMAP model.

single cells precisely fall into the corresponding tissue clusters.

Hence, bulk RNA-seq samples can be projected into the same embedding of a single-cell map.

However, they do not necessarily appear directly in the cell cluster that they are associated with.

As the simulated and matched bulk samples are biologically identical, the di�erences are solely

due to the technical characteristics that cause the separation between the bulk and single-cell

clusters from the same tissue. Using a downsampling approach on the bulk samples, it is possible

to co-locate the bulk RNA-seq samples with the single-cell clusters.
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Figure 4.10: Integrating single-cell and bulk RNA-seq samples
For visualization, the dimensional reduction by PCA was trained on simulated single-

cells with a library size of ∼1,000 reads. The �rst 22 principal components were

used to further train the UMAP embedding. The trained model was used to predict

the location of bulk as well as downsampled single cells. On the right, we used the

matched bulk samples of the simulated single cell to predict the location within the

trained UMAP embedding. On the left, we generate new downsampled data (10 for

each tissue) with a library size of ∼10,000 reads. After downsampling bulk samples,

the training and predicted data co-locate precisely in the UMAP embedding.
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4.2.4 Assessing the technical variability in simulated single-

cell count data

The above analysis initiates further investigation of the statistical features of the simulated single-

cell data. Therefore, we randomly select a bulk reference RNA-seq sample and downsample 1,000

single-cells from this sample using a sequencing depth of 1,000 reads (Fig. 4.11). We reduce the

dimensions by PCA and apply UMAP by calculating the embedding using the reference sample

and the derived simulated single cells simultaneously. The projection shows a rounded-shape

cloud formed by the simulated single cells along with the reference sample co-locating peripher-

ally in the cloud. Note that the di�erences between the simulated samples are purely technical as

they all derive from the exact same bulk sample. This provides a fundamental basis to investigate

the cell-to-cell variation with respect to the technical variability discarding the in�uence of the

biological variability.
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Figure 4.11: UMAP projection of
tibial nerve derived single cells.
1,000 cells were derived and down-

sampled from the exact same bulk

RNA-seq reference sample using a li-

brary size of 1,000 reads. UMAP em-

bedding was calculated using the sin-

gle cells and the reference sample to-

gether. The reference sample was ran-

domly selected (GTEX-SN8G-0426-
SM-32PLF_Nerve_Nerve - Tib-
ial).

As Figure 4.11 shows, none of the samples are identical showing variations in the gene counts

between the downsampled cells. Inspecting the data with regard to the technical variability we

look at (i) the relation between the mean gene expression and variance across the cells and

(ii) the relation between the dropout probability and mean gene expression in order to test the

distributional hypotheses formulated in Section 3.1.4.

First, we plot the variance to mean relation for each gene across the simulated cells and plotted

them in Figure 4.12(top). Observing a linear mean-to-variance relation with �2 = � we assume

a Poisson distribution and plotted a line with y = x into the plot. Accurately the line stating a

constant mean-to-variance relation characteristic for the Poisson distribution agrees with the

observed data. As a next step, we plot the observed proportion of zero counts per gene across

all cells in dependence of the mean gene expression in Figure 4.12(bottom). Remarkably the

number of zeros observed in our data is highly dependent on the mean expression value and

follows a sigmoidal curve where the amount of zero counts drops with a higher mean gene

expression. Using Formula 3.3 we calculate the probability of observing zero counts under the

assumption of an underlying Poisson distribution. We plot the calculated probabilities as a blue

line. Precisely, the calculated probabilities and the observed zero counts match with one another,

aligning with the assumptions about an underlying Poisson distribution. Note the sigmoidal curve
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of the exponential function is due to the log-scaling of the x-axis.

Figure 4.12: Technical variability follows a Poisson
distribution.
1,000 cells were derived and downsampled from the exact

same bulk RNA-seq reference sample using a library size

of 1,000 reads. Above, mean expression and variance (log-

log scale) for each gene is compared across all cells. The

blue line (y = x) indicates the constant mean-variance

relation in the Poisson distribution (Formula 3.2). Below,

mean expression (log-scale) and dropout probability as

the observed number of zeros is shown. Clearly, lowly

expressed genes have a higher dropout probability. The

mean expression refers to the intensity parameter � of the

Poisson distribution. The blue line represents the predicted

dropout probability using e−� (Formula 3.3).

We have shown that the variation due to downsampling from a multinomial distribution (the refer-

ence sample) follows a Poisson distribution as stated in Section 3.1.4. Here, we purely measure the

technical variability across the samples as they have been derived from the same sample. However,

in experimental RNA-seq datasets it has been observed that the variance increases more rapidly

than the mean expression (Anders et al., 2010). Examples with the quadratic variance-mean relation

of real single-cell RNA-seq data has been extracted from this blogpost by Svensson (https://www.

nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated, downloaded

03/03/2022) and are depicted in Fig. 4.13. In these cases the assumptions of a constant mean-

variance relation in a Poisson distribution are violated. Instead, a negative binomial distribution

can be assumed allowing us to include and estimate the dispersion parameter to �t the data

appropriately as pointed out in Section 3.1.4.

Considering the simulated dataset as well as the experimental single-cell RNA-seq count data we

do not see any need to add a probability of observing zero counts in each gene by assuming a

zero-in�ated negative binomial distribution. The observed numbers of zeros in our simulated data

can be modeled appropriately by the Poisson distribution solely. However, it does not account for

biological variability as also previous studies have shown (Townes et al., 2019). In this case the

negative binomial distribution is a better �t to model experimental single-cell RNA-seq data.

https://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated
https://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated
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Figure 4.13: Quadratic mean-to-variance relation in experimental single-cell
RNA-seq data.
Figure extracted from Droplet scRNA-seq is not zero in�ated —What do you
mean "heterogeneity"? (https://www.nxn.se/valent/2017/11/16/
droplet-scrna-seq-is-not-zero-inflated, downloaded 03/03/2022)

showing the experimental data following a negative binomial distribution. Red

line represents the �t assuming a negative binomial distribution with an estimated

dispersion parameter.

4.2.5 Studying cell similarities

The established simulation framework allows us to study technical di�erences between the simu-

lated cells and their derived bulk references. In this section we want to investigate the similarities

between the two the reference and its derived sample. Similarity measures provide an assessment

to quantify how similar in terms of likeness or resemblance two objects are (Mulekar et al., 2017).

Especially in single-cell RNA-seq data pro�ling many cells simultaneously, it is important to

estimate which cells are more similar to each other than others in order to identify commonalities

and hence cell identities (see Section 3.2.1). Equivalently, we can also talk about distance as the

reciprocal metric for a similarity measure. Besides similarity and distance measures there exists

measures of association as well. Measures of association for example Pearson’s or Spearman’s

correlation coe�cients are, strictly speaking, di�erent from similarity measures in a formal per-

spective. They do not need to ful�ll the criteria for a metric (de�ned below). However, for the

sake of consistency and simplicity we use the term similarity measure in order to include all forms

of "similarities" as an intuitive way.

There exists a large amount of measures in order to quantify similarities between two objects. In

the following section we introduce some basics about di�erent measures of similarity. We �rst

start with the similarity measures representing a formal metric with d as a function on a set X

with d ∶ X × X ↦ R ful�lling the the following axioms ∀x, y, z ∈ X :

(i) d(x, y) ≥ 0

(ii) d(x, y) = 0 ⇔ x = y

(iii) d(x, y) = d(y, x) (symmetry)

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

https://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated
https://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated
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We brie�y summarize a few similarity measures that are used in this work:

Euclidean distance. The euclidean distance ful�lls the metric criteria and is a popular measure

used for continuous data. It is de�ned as the length of the line segment between two points x and

y connecting them. In an n-dimensional space the following holds:

d(x, y) =
√
(x1 − y1)2 +⋯ + (xn − yn)2 (4.1)

Correlation coe�cients. In statistics, there are two types to determine correlation coe�cients:

Pearson’s correlation coe�cient (Pearson’s r ) and Spearman’s rank correlation coe�cient (Spear-

man’s �). Let X and Y be two random variables. Pearson’s correlation coe�cient is calculated as:

rX,Y =
cov(X , Y )
�X�Y

(4.2)

with cov(X , Y ) as the covariance between X and Y, and �X and �Y the standard deviations of X

and Y, respectively.

In contrast to Pearson’s r , Spearman’s rank correlation coe�cient is calculated between the ranks

of X and Y with rkX and rkY , respectively:

�X,Y =
cov(rkX , rkY )
�rkX �rkY

(4.3)

Both types of correlation coe�cients are not considered as a metric and therefore considered as

measures of association. They can range from -1 to 1, interpreted as perfect anti-correlations to

perfect correlation. However, Pearson’s correlation coe�cient assumes normally distributed data

assessing linear associations whereas Spearman’s rank correlation coe�cient is non-parametric

without any underlying assumptions on the data distribution. Hence, Spearman’s rank correlation

coe�cient can be applied to any ordered data, continuous or discrete ordinal. In addition to that,

Spearman’s � is less sensitive to outliers as it considers solely the ranks of the variables in contrast

to Pearson’s r considering the actual values.

Shannon entropy and Kullback-Leibler divergence. In information theory the Shannon

entropy is a measure of uncertainty and is de�ned as

H = −∑
x∈X

P(x)log(P(x)) (4.4)

The Kullback-Leibler (KL) divergence, also known as the relative entropy, between two probability

distributions P and Q is de�ned as:

DKL(P ||Q) = ∑
x∈X

P(x)log (
P(x)
Q(x)) (4.5)

The Shannon entropy is a special case of the KL divergence with the probability distribution of

the sample P and the probability distribution Q as the uniform distribution. The Kullback-Leibler

divergence is asymmetric because generally DKL(P ||Q) ≠ DKL(Q||P). However, a symmetric mea-

sure can be obtained by the sum of the two asymmetric measures: Dsym
KL = DKL(P ||Q) + DKL(Q||P).
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Similarities between the reference and its derived single cell sample

Given the above introduced similarity measures, we now investigate the similarities in our

simulated data. We model the simulated single cells in a downsampling procedure derived from

their bulk references that presume a multinomial distribution. Hence, we can consider two

probability distributions and use the Kullback-Leibler (KL) divergence with P as being the single-

cell sample and Q its corresponding reference sample. In our simulation scenario we derive

single-cell count data from a bulk reference sample using a sequencing depth of ∼1,000 and

∼10,000 reads. We can now use the reference sample and each of its derived single-cell samples to

compare the similarities with one another using the KL divergence (Fig. 4.14).

First, we look at the general KL divergences in the simulated dataset with a sequencing depth of

1,000 and 10,000, respectively (Fig. 4.14A). Interestingly, we get di�erent value ranges with respect

to the KL divergences between the low and high sequencing depth simulation scenarios. The

KL divergences in the low sequencing depth dataset have a considerably higher KL divergence

values with a stronger variation than in the high sequencing depth dataset. Next, we divide the

KL divergences into their corresponding originating tissue — distinguishing between low and

high sequencing depth data (Fig. 4.14B). We can clearly see that di�erent tissues have di�erent

KL divergence distributions that are very similar across the two simulated sequencing depth

scenarios. However, as Figure 4.14A indicates, the corresponding mean values of the KL distances

in the respective tissue distributions are larger for single cells with a low sequencing depth.
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Figure 4.14: Kullback-Leibler divergence between reference and single-cell
derived sample.
(A) Lowly sequenced simulated cells have a generally higher Kullback-Leibler (KL)

divergences than simulated cells with a larger sequencing depth. (B) KL divergences

across tissues for simulated cells with a ∼1,000 read library size (top) and a ∼10,000

read library size (bottom). Note, that the value ranges between the y-axis are di�erent.

We additionally derive Pearson’s correlation coe�cient between the reference and its correspond-

ing single cell. As a measure of association Pearson’s correlation coe�cient estimates the linear

relationship between the reference and its derived single cell sample. Similar to the KL divergence
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we see distinct distributions for the two simulation scenarios with higher Pearson’s correlation

coe�cients in larger sequencing depths (Fig. 4.15A). Here, cells with a sequencing depth of ∼10,000

reads lead to almost perfect Pearson’s correlation with only little variation. However, similarity

scores obtained from cells with a lower sequencing depth range from roughly 0.6 to almost perfect

correlation. Examining the similarity score distributions within the tissues we see large di�erences

for both simulation scenarios (Fig. 4.15B). Tissues such as heart, liver and pancreas have very

high correlation coe�cients whereas lung, nerve and ovary have considerably lower values in

the respective sequencing depths scenarios. However, similarly to the tissue distributions of the

KL divergences the correlation distributions do not di�er much for the respective tissues albeit

from the di�erent sequencing depths simulation.
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Figure 4.15: Pearson’s correlation coe�cient between reference and single-
cell derived sample.
(A) Lowly sequenced simulated cells have a generally lower correlation than simulated

cells with a larger sequencing depth. (B) Pearson’s r across tissues for simulated cells

with a ∼1,000 read library size (top) and ∼10,000 read library size (bottom). Note, that

the value ranges between the y-axis are di�erent.

In conclusion, we observe that similarity measures are strongly dependent on the sequencing

depth. Here, larger sequencing depths lead to more similar values with respect to its correspond-

ing reference sample. However, we see a remarkable di�erence in the distribution of similarity

measures across tissues that are reproducible with di�erent sequencing depths. Even the very low

number of ∼1,000 reads per cell preserve the distribution of Pearson’s correlation values within

each tissue. Hence, we observe a robust tissue-speci�c signal across varying sequencing depths.

Cell similarity and gene detection rate concordance

The two similarity measures, KL divergence and Pearson’s correlation coe�cient have a reciprocal

relation: Samples with high KL divergences tend to generally have a low Pearson correlation

(Fig. 4.16A). Considering the tissues, there are di�erences in how the samples spread across the

similarity measure ranges: For example, muscle, pancreas and liver samples span only a short
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range of Pearson correlation coe�cients with a relatively large range of KL divergences values.

As opposed to that, testis, nerve, lung or thyroid derived samples have a relatively small span in

KL divergences but a large range of Pearson correlation coe�cients. Hence, the above obtained

similarity measures between the reference and its derived single cell emphasize a tissue or sample

speci�c dependency.

Further, we look at the gene detection rate per sample and compare it to the corresponding

Pearson’s correlation coe�cient (Fig. 4.16B). Interestingly, we see a similar trend between the

two measures as compared to the relation between the KL divergence and Pearson’s correlation

coe�cients: Generally, higher gene detection rates go along with a low Pearson correlation.

However, we do see again some tissue-speci�c dependency in�uencing the variation of the Pear-

son correlation. We can explain the same trend between the KL divergence and detection rate,

respectively by the Shannon entropy assessing the level of uncertainty. Hence, the Shannon

entropy of a sample is higher for higher gene detection rates (Fig. 4.16C). For this reason we see

a similar tendency between the KL divergence and the detection rate to the respective Pearson

correlation. However, it still remains of a particular concern that a similarity measure is coupled

with a sample’s detection rate.

The above analyses use the reference bulk sample as a ground truth in order to evaluate similarity

measures from its derived single cell. Our �ndings show that given a sequencing depth there is a

tissue/sample-dependent factor a�ecting similarity scores between the reference and its derived

sample. Furthermore, we see that the presented similarity measures are highly dependent on the

detection rate. Subject to these considerations one needs to account for these technical factors in

order to appropriately estimate similarities.

4.3 discussion

This chapter gave us a �rst glimpse of single-cell RNA-seq data along with its challenges in

particular with regard to its noise level and the cell-to-cell variability.

The �rst Section covered an experimental dataset with In�uenza A virus infected cells charac-

terized by cells with a high and low viral replication rate. We made an attempt to explain the

heterogeneity within these cells. However, the dataset was marked by a high technical noise level

measured by external spike-ins masking the biological signal. In addition, high expression levels

from the viruses make it di�cult to read out the cellular gene expression. For this reason, it was

not possible to �nd clear evidences from the cells’ gene expression explaining the cell-to-cell

variability. Nonetheless, our results have shown an association between the viral replication rate

and defective interfering particles originated from the viruses. These results are presented in the

research study originated by Kupke et al., 2020.

The second Section covered a simulated single-cell dataset generated from the GTEx database —

a public bulk RNA-seq data resource for human tissues. We implemented a simulation framework

allowing us to generate reference-derived single-cells. Using the GTEx derived single cells we
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Figure 4.16: Gene detection rate associated with cell similarities.
(A) Relation between Kullback-Leibler (KL) divergence and Pearson’s correlation

coe�cient in single cells with ∼1,000 reads. Measures were obtained between the

reference and its derived simulated single cell, respectively. (B) Gene detection rate and

Pearson’s correlation coe�cient. Gene detection rate was measured in the simulated

single cells (CPM > 0). Lines represent linear regressions of the corresponding tissue-

derived samples (color-coded) for both plots. (C) Shannon entropy and gene detection

rate scatterplot show good correlation with one another.

could do multiple investigations in silico: We �rst show how single-cell and bulk RNA-seq sam-

ples can be integrated into the same embedding. By training a pre-computed embedding bulk

RNA-seq samples can be integrated into the topological map. Here, similar sequencing depths

(e.g. by downsampling bulk samples) to the samples used for training yield more accurate co-

locations within the embedding. In the future this framework can be used to co-locate single-cell

experiments with bulk RNA-seq experiments. This allows us to characterize and annotate cell

clusters without searching for marker gene expression. Certainly, if the two experimental dataset

used for training and prediction arise from di�erent sources (di�erent labs, time points etc.)

an appropriate preprocessing procedure including normalization and batch correction needs to

be performed prior to the data integration. Using the simulated framework we further derive

multiple single cells from the same bulk RNA-seq sample and examined the variability across the

simulated cells. As the cells were drawn from the same reference sample they only di�er by their

technical variability enabling us to assess the variability across the cells. We are able to �t the

technical variability of the simulated cells by a Poisson distribution characterized by a constant

mean-to-variance relation. Lastly, we evaluated similarity measures between a reference bulk and

its derived single-cell sample and observed a high dependence between the gene detection rate

and similarity measures such as Pearson’s correlation coe�cient.
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This chapter explored technical factors within single-cell transcriptome data and had a focus

on measuring the technical variability and di�erences between the bulk RNA-seq samples and

the derived single cells. The next chapter aims the attention at the observed biological hetero-

geneity in single-cell transcriptome data. It examines the data with an analytical viewpoint

inferring associations between genes with regard to their regulatory interactions using network

reconstruction.





5 FROM TRANSCR I P TOME DATA TO GENE
REGULATORY NETWORKS

Biological experiments measuring transcription pro�les represent a snapshot of the underlying

biological process. By selecting samples from di�erent time points one might get a picture of

how samples, i.e. cells, evolve. In fact, the identity of each cell is determined by a biological

process that is carefully regulated by certain factors. These factors, called transcription factors,

regulate and control cell di�erentiation and drive transitions from one cellular state to another

or maintain cell identities. A powerful tool in systems biology is the use of gene regulatory

networks (GRNs) in order to study gene interactions that drive biological processes. As GRNs are

often unknown, researchers reconstruct or infer the underlying network from high-throughput

data such as RNA-seq data. In this process the cellular heterogeneity plays an important role.

In order to study gene regulatory networks a certain level of cell-to-cell variability is needed to

explain and understand the heterogeneity across the cells during dynamic processes. Otherwise,

with cells being very homogeneous and only di�ering by their technical variance, the content for

biological information is very low.

This chapter investigates the use of variability in single cell transcriptome data to reconstruct

GRNs. I �rst give an introduction about the mathematical fundamentals in network theory and

further present state-of-the-art algorithms to reconstruct GRNs. Then, I introduce an algorithm

called neighborhood selection (Meinshausen et al., 2006). I use a methodology based on that concept

and adapted the algorithm to infer GRNs using transcriptome data. To test the implementation, I

applied our method to in silico data that was generated with a known network structure. The

networks has been designed in such a way that they simulate common di�erentiation scenarios

observed in systems biology from simple linear di�erentiation paths to complex di�erentiation

paths branching into di�erent cell states. Furthermore the data allows us to dynamically recon-

struct networks along the di�erentiation path and investigate how the reconstructed networks

change upon time-ordered transcriptome data. Additionally, I apply our method on experimental

single-cell RNA-seq data sampled from hematopoietic stem cell di�erentiation in mice to test the

prediction performance on real data.

5.1 mathematical prerequisites

A gene regulatory network can be represented as a graph G. In graph theory, a graph is de�ned as

a pair (V , E) with V as a set of vertices or nodes, and E as a set of edges. In GRNs nodes represent

genes and an edge their interaction with one another.

Edges can be either undirected or directed. Directed edges have a source and a sink node, where

the source node usually represents the regulator, also known as a transcription factor , and the

sink node represents the target gene. Furthermore, there are two types of interactions between

genes. They can be either activating or inhibiting interactions. While the former activates the
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target gene which is indicated by an increase in the target gene’s expression level, the latter

inhibits the target gene’s activity which is indicated by a decrease in the target gene’s expression

level.

There are several terms characterizing a network that can be formulated as follows: the size of a

network simply corresponds to the number of vertices within a network.

The network density includes the number of edges and captures the number of edges in relation

to the total number of possible edges. In an undirected network this corresponds to:

d = |E|
|V | ∗ (|V | − 1)/2 (5.1)

Here, the denominator is to the binomial coe�cient (|V |
2 ). Furthermore, the node degree corre-

sponds to the number of outgoing edges from a source node. Nodes with a high node degree are

particularly interesting as they usually represent highly connected nodes, so-called hubs. Those

hubs serve as potential key factors regulating important biological processes.

5.1.1 Network data structures

In graph theory and as computer–readable format there are two common data structures to

represent a network:

Adjacency matrix. Given a graph G = (V , E) the adjacency matrix A is a |V | × |V | = n × n
dimensional matrix :

A =
⎛
⎜
⎜
⎜
⎝

a11 ⋯ a1n
⋮ ⋱ ⋮
an1 ⋯ ann

⎞
⎟
⎟
⎟
⎠

with entries aij = 1 if there is an edge between node i to node j, and aij = 0 if there is no edge. In

case the graph has weights aij ≠ 0 for each edge e ∈ E. The adjacency matrix is symmetric if the

graph is undirected with aij = aji .

Adjacency list. As an alternative, a graph G = (V , E) can be represented by an adjacency list

L which is an array of length |V | = n comprising |E| = m elements. The i-th entry of L is the

set comprising the neighbors of node i. In case the graph has weights, the set consists of tuples

(vj , w), with w being the weight of the edge between node i and node j.

5.1.2 Problem definition

Given a gene expression dataset M represented by a N × P matrix with N samples (here cells)

and P genes. A row vector n with n = 1, ..., N represents an N -dimensional vector with gene

expression values for each cell, and a column vector y with y = 1, ..., P represents a P-dimensional

vector with gene expression values for each gene in the respective cells. The research aim is

to infer the underlying network from the given gene expression matrix M . The predicted GRN
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consists of a set of regulatory interactions between any two genes from the total of P genes

assembling to a graph with P nodes. The regulatory interactions can either represent a direct

physical association or an indirect association between two genes. Indirect regulation may arise

from transitive associations where gene A is associated with gene B, and gene B is associated with

gene C. As a consequence, the indirect association between gene A and gene C oftentimes arises

undesirably. Ideally, GRNs are free of indirect regulations. However, this remains a challenging

task as we will see in the matter of this chapter. In the following we summarize a few approaches

to reconstruct GRNs from transcriptome data.

5.2 state-of-the-art algorithms to reconstruct
gene regulatory networks

Algorithms to reconstruct GRNs go back to mid-2000s and were �rst developed for population

based samples such as micro arrays or later bulk RNA-seq experiments. There are two extensive

benchmark studies summarizing and evaluating the performance of individual GRN reconstruction

algorithms (Chen et al., 2018b; Pratapa et al., 2020). In this section we introduce a few algorithms

with their rough mathematical concepts divided into information, correlation, regression-based

approaches. Based on the their concept, the methods provide an (un-)directed network, either with

or without the information about the mode of the potential interaction. Table 5.1 provides a short

overview of a few selected algorithms. Note that the selected algorithms are not an exhaustive

list of published tools but rather give a broad overview about possible concepts for network

reconstruction in gene expression data, both for bulk RNA-seq experiments as well as speci�cally

designed for single-cell RNA-seq data. We selected the algorithms based on good performances

that was evaluated by a benchmark study published by Pratapa et al., 2020.

Table 5.1: Tools for reconstructing gene regulatory networks. Selected algorithms ordered by the

underlying mathematical approach and year. Column ’Time’ indicates whether temporal ordered cells are

required. Columns ’Directed’ and ’Interaction type’ refer to the output network whether the edges have a

direction and the information if there is an activation or inhibition.

Tool Author, Year Approach Time Directed Interaction type

PIDC Chan et al., 2017 information theory no no no

PPCOR Kim, 2015 correlation no no yes

GENIE3 Huynh-Thu et al., 2010 regression no yes no

GRNBoost2 Moerman et al., 2019 regression no yes no

SINCERITIES Papili Gao et al., 2018 regression yes yes yes
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5.2.1 Information theoretic approaches

Oftentimes, information based approaches use the mutual information (MI) as a measure of

association. The MI is a pairwise measure which determines the degree of statistical dependency

between two random variables (i.e. genes) X and Y. It is de�ned by

MI(X , Y ) = ∑
i,j
P(xi , yj)log (

P(xi , yj)
P(xi)P(yj))

= H(X) + H(Y ) − H(X , Y )
(5.2)

where P(xi) and P(yj) are the marginal probabilities of xi and xj , respectively, P(xi , yj) is the joint

probability distribution over X and Y, and H(X) is the Shannon entropy (see Eq. 4.4). Note that

the MI is linked to the previously introduced Kullback-Leibler divergence as follows.

MI(X , Y ) = DKL(P(X ,Y )||P(X ) × P(Y )) (5.3)

Here, the product of the marginal probabilities are compared to the joint probabilities. Thus, MI

values of zero values represent an equal probability between the joint and the product of the

marginal probabilities. Conclusively, X and Y are independent from each other which means the

observation of X does not inform anything about Y.

PIDC (Chan et al., 2017). This algorithm is based on partial information decomposition (PID) and

explores for every three genes g1, g2 and g3 their statistical dependencies to one another. Here,

the mutual information between g1 and g2, given the third gene g3 is estimated by partitioning

the mutual information into redundant, synergistic and unique contributions. More speci�cally,

the algorithms uses the ratio between the unique contribution and the mutual information for

each gene (i.e. g1 and g2) conditioned on the third gene g3. By iterating the third gene across all

remaining genes in the network and subsequently taking the sum of these ratios the proportional
unique contribution is estimated. By this, every triplet gene combination is considered. Finally,

PIDC detects the most important interactions per gene using a threshold that depends on the un-

derlying distribution and con�dence score. As the proportional unique contribution is symmetric

PIDC provides an undirected graph.

5.2.2 Correlation based approaches

We determined earlier the measure of pairwise correlation values (Section 4.2.5) that a few algo-

rithms make use of. Generally, correlation values range from -1 to 1. The signs of the resulting

correlation values can be interpreted as inhibitory and activating regulations in gene regulatory

networks.

PPCOR (Kim, 2015). As a correlation based approach PPCOR employs the concept of partial or

semi-partial correlation in order to infer the network structure. Partial or semi-partial correlations

are a mean of association between two genes considering the e�ect of all or a subset of the

remaining genes, respectively. The package provides p-values and further statistics in order to
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estimate the level of signi�cance between the potential associations. As a symmetric measure and

by using the signs of the correlation values, PPCOR provides an undirected graph with inhibitory

and activating associations.

5.2.3 Regression based approaches

Regression based approaches use the expression pattern of a set of genes (features) in order

to predict the expression pattern of a target gene (response). The underlying prediction model

matters if the resulting network includes signed or directed interactions.

GENIE3 (Huynh-Thu et al., 2010). Initially developed for bulk transcriptome data, GENIE3 uses a

tree-based ensemble method with Random Forest in order to predict the gene expression pattern

of the target gene using all remaining genes as predictors. Iteratively, every gene is used as a

target gene in each random forest model. The importance of the predictors are collected and

aggregated over all runs. This provides a ranking of possible interactions from which the directed

gene regulatory network is reconstructed from.

GRNBoost2 (Moerman et al., 2019). This approach uses the principle of GENIE3 and is a fast

alternative on datasets with large sample sizes, e.g. in single-cell RNA-seq data. It uses gradient

boosting machine with regularized stochastic variation in order to increase computational e�-

ciency. As a derivation of GENIE3 it provides a gene regulatory network with directed interactions

ranked by their importance.

SINCERITIES (Papili Gao et al., 2018). Using time-stamped gene expression data, this method uses

regularized linear regression models (ridge regression) in order to recover directed interactions

from gene expression data. Here, the changes in expression of one gene in a given time interval

are used to predict the changes in the gene expression of another (target) gene in the next time

interval. Therefore, Granger causality concept is applied providing directed regulations among

genes. Furthermore, it uses partial correlation values in order to determine the mode of interaction

(activating or inhibiting).

5.3 neighborhood selection to reconstruct gene
regulatory networks

Gene regulation drives biological processes such as cell di�erentiation and the maintenance of

cell identity. Thus, revealing the underlying gene regulatory landscape using graph structures

in single-cell transcriptome data is an active �eld of research. We introduced a few algorithms

attempting to infer graph structures. Mainly, they di�er in their main mathematical concept but

also in prerequisites such as (pseudo) time information of the data. Additionally, the estimated

network di�ers with regard to the interaction type and causality of gene regulation. Benchmark

studies published by Chan et al., 2017 and Pratapa et al., 2020 provide extensive evaluation results
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of the current available methods.

In addition to the available methods we reconstruct gene regulatory networks using a regression-

based approach called neighborhood selection. This algorithm infers graph structures in high-

dimensional data using lasso regression (Tibshirani, 1996) and was developed by Meinshausen and

Bühlmann in 2006 (Meinshausen et al., 2006). In neighborhood selection the algorithm decomposes

the prediction of adjacent genes (neighborhood) of P target genes into P separate regression

problems. Here, the lasso regression enables feature selection via a shrinkage parameter � that

speci�es the size of the neighborhood. Hence, adjacent genes in a neighborhood are conditionally

dependent given all remaining genes. In turn, non-adjacent genes (without an edge) are condi-

tionally independent given all remaining genes in the network.

5.3.1 Mathematical background

Before we show how we use neighborhood selection in order to reconstruct gene regulatory

networks we introduce some linear algebra underlying the mathematical basics. Here, we mainly

extract the basics from the textbook "The Elements of Statistical Learning" (Hastie et al., 2009)

and Prof. Martin Vingron’s lecture notes "Construction of Biological Networks" from Summer 2019.

Gaussian graphical models. Let us assume our data comes from a multivariate Gaussian distri-

bution with random variables X1, ..., XP and mean � and a covariance matrix Σ:

X = (X1, ..., XP ) ∼ (�, Σ) (5.4)

The graphical model is a graph G = (V , E) that explains the statistical dependencies among the

variables in the data matrix. Here, statistical independence in the context of probability theory

means:

P(A|B) = P(A) and P(B|A) = P(B) (5.5)

with P(A|B) = P(A, B)/P(B). Hence, conditioning on either A or B has no in�uence on the re-

spective probability. In context of the graphical model two variables Xi , and Xj are conditionally

independent if the respective entry of the covariance matrix Σ is 0.

Partial correlation. In Gaussian graphical models we de�ne partial covariances as the degree of

association between Xi and Xj , conditioned on all remaining random variables in the data. Partial
correlation, in turn, is the scaled version of partial covariance. It can be derived by studying a

prediction problem where we aim to estimate any response vector Y from the data X:

Y ∼ �TX (5.6)

with � being the coe�cients to obtain estimates Ŷ . We now want to calculate the partial correlation

between Xi and Xj by �tting two linear models:

1. Xi ∼ �TX ⧵ {Xi , Xj}
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2. Xj ∼ �TX ⧵ {Xi , Xj}

Now, the partial correlation refers to the Pearson correlation of the residuals arising from the two

linear regression models:

�Xi ,Xj = cor(Xi − X̂i , Xj − X̂j) (5.7)

Here, the partial correlation is 0 if and only if the two random variables are conditionally inde-

pendent given all remaining variables.

Inverse covariance matrix. For Gaussian data the entries of inverse of the covariance matrix P

= Σ−1 (also known as precision matrix or concentration matrix) refer to the partial correlation of

any two pairs of random variables Xi and Xj in the set of nodes V:

�Xi ,Xj |rest = −
pij√piipjj

(5.8)

Hence, if the entry (i,j) in Σ−1 is 0 Xi and Xj are conditional independent given all remaining vari-

ables. Conclusively, for Gaussian data missing edges in the graphical model refer to a conditional

independence between a pair of variables with respect to the remaining variables.

However, it is not trivial to invert Σ−1 especially if the data matrix is singular (not full rank) or

ill-conditioned. There exist many approaches estimating Σ−1 to obtain the graph structure. We

use a lasso regularization introduced by Meinshausen et al., 2006 that delivers an approximation

of the graph explaining the underlying data.

5.3.2 Lasso regularization for graph estimation

Lasso (least absolute shrinkage and selection operator) regularization is commonly used in linear

regression models (Tibshirani, 1996) to select a set of features explaining the response or target

vector Y . The lasso estimate of a regression problem is de�ned as

�̂ = argmin
�

{1
2

N
∑
i=1
(yi − �0 −

P
∑
j=1

xij�j)2 + �
P
∑
j=1

|�j |
}

(5.9)

with yi being the entries of the response vector, xij being the entries of our data matrix, � being

the coe�cients to be estimated, � the shrinkage parameter, and ∑P
i |�j | being the L1 lasso penalty.

Similarly to a regression problem, we estimate the coe�cient of our linear models �̂ with an

intercept �0 by minimizing the prediction error between the model and the response vector Y.

However, in the lasso regularization, an additional parameter � is added controlling the strength of

the shrinkage of the regression coe�cients � . The higher the value of �, the higher the shrinkage

which typically results in many coe�cients in � being equal to 0. Thus, the number of non-zero

coe�cients and hence the number of included features is controlled by �.

Meinshausen and Bühlmann adopted the idea of Lasso regularization in the context of network

reconstruction (Meinshausen et al., 2006). The authors introduced neighborhood selection and

de�ned a neighborhood nei of a node i ∈ V as the smallest subset of V ⧵ {i} such conditioned on

variables Xnei in the neighborhood nei , Xi is conditionally independent of all remaining variables.
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The algorithm determines the neighborhood of node i by �tting a lasso regression using the

variable Xi as the response vector and the remaining variables as features. Given any shrinkage

parameter � the lasso regression estimates the coe�cients of � . Di�erent shrinkage-levels of �
lead to a denser (low � values) or to a sparser (high � values) network structure (Fig. 5.1). The

entries in �j re�ect the conditional (in)dependence between nodes i and j. However, an edge can

be drawn either if the respective entries from node i to j and from node j to i are non-zero (logical

AND (∧) operator), or if any of the entries is non-zero (logical OR (∨) operator).

Figure 5.1: Varying � in�uences the network structure.
Example network with 12 genes. We apply neighborhood selection with di�erent �
parameters and plot the resulting network. Red edges are negative correlations and

green edges positive correlations representing inhibiting or activating regulations.

Increasing � results in sparser networks.

5.4 generating in silico data

Similar to Section 4.2.1 we need to have ground truth data to verify the proposed method. Here,

we need gene expression data that are derived from a known regulatory network. To this end,

we generate in silico data using the tool BoolODE (Pratapa et al., 2020). BoolODE takes as input a

Boolean network which is dependent on Boolean rules and models stochastic time-course data

based on an ODE approach. This provides an optimal evaluation as the networks are known and

have a decent amount of nodes and interactions that are feasible to control. BoolODE covers a

set of synthetic networks as well as literature-curated networks. The synthetic networks model

di�erent scenarios occurring in single-cell biology such as cyclic, linear or diverging lineages.

The literature-curated networks are derived from well-studied cell di�erentiation processes with

known and validated interactions gathered from di�erent studies.

In this chapter we analyze three di�erent synthetic scenarios simulating linear, cyclic and mul-

tifurcating di�erentiation paths. Additionally, we examine a literature-curated network that

simulates myeloid blood di�erentiation giving rise to erythrocytes, megakaryocytes, monocytes

and granulocytes. The underlying Boolean networks have di�erent degrees of complexity with

regard to the number of genes and their regulations. This allows us to evaluate the reconstructed
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networks obtained by the method on rather simple scenarios (linear) to very complex biological

systems.

5.4.1 From network models to simulated data

A Boolean network is an easy way to describe gene regulatory networks. Here, the nodes (genes)

have a binary state which is either ’ON’ or ’OFF’. Depending on the mode of interaction, which

is either activating or inhibiting, the state of the regulator’s target gene can switch over time.

Hence, it is a dynamic way to explore the network’s status in a time-dependent manner. The

small network depicted in Figure 5.2 provides us a simple example:

A B C
Figure 5.2: Example of a regulatory network.

The regulatory network consists of three genes A,

B and C. Green arrows depict activating, red arrow

depicts inhibiting interactions.

We can now derive Boolean rules using the logic operators ∧ (AND), ∨ (OR), and ¬ (NOT),

representing the regulations among the genes in the above network:

B(t+1) = A ∧ C
A(t+1) = ¬B

(5.10)

Based on the Boolean rules we de�ne each status of the networks by using all possible ’ON’/’OFF’

or 1/0 combinations in order to determine the outcome of the network. Oftentimes truth table are

used for that purpose. Table 5.2 shows the truth table for gene B in Equation 5.10:

Table 5.2: Truth table for a Boolean rule w.r.t. gene B.

A C B

0 0 0

0 1 0

1 0 0

1 1 1

Once we de�ne the set of rules and their respective truth tables, we start to model the dynamic

system. The dynamic system needs to consider two aspects: The mRNA level and the protein

level. As described earlier (see Section 2.1), the mRNA level of a gene depends on the transcription

rate as well as its degradation rate. Upon mRNA transcript synthesis the mRNA needs to be

translated into a protein in order to regulate the target genes. Hence, the translation rate and its
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protein degradation rate need to be modeled accordingly. BoolODE models the mRNA level and

the protein level using the following system of coupled di�erential equations:

d[xi]
dt = mf (Ri) − lx [xi]
d[pi]
dt = r[xi] − lp[pi] (5.11)

with m as the transcription rate and lx the degradation rate of gene xi , r as the translation

rate of gene xi and lp the degradation rate of protein pi . f (Ri) are the functions including the

regulations de�ned in the Boolean rule. Following Pratapa et al., 2020 we use the Hill equation

which is a sigmoidal function modeling the respective concentrations of the gene products. Hence,

considering only the true value of gene B in our truth table 5.2 and assuming equal concentration

parameters for each gene product, gene B is modeled by the di�erential equation:

d[B]
dt = m(

[A][C]
1 + [A] + [C] + [A][C]) − lx [B]

(5.12)

The procedure has previously been used to generate in silico data from Boolean network models

(Scha�ter et al., 2011). BoolODE’s realization adds a stochasticity term to the di�erential equation

for noise ampli�cation according to gene expression data. Given a set of kinetic parameters

describing the di�erent rates of the ODE models (Tab. 5.3) and a set of initial conditions describing

which gene is initially active the tool starts stimulating stochastic time-course data. Here, in the

model simulation a vector of gene expression values corresponds to a particular time point within

the simulation procedure which refers to a single cell. By this, the provided in silico data models

the dynamic system in a time-course dependent manner.

Table 5.3: Kinetic parameters used in BoolODE.

Parameter Symbol Value

mRNA transcription rate m 20

mRNA degradation rate lx 10

Protein translation rate r 10

Protein degradation rate lp 1

Hill threshold k 10

Hill coe�cient n 10

5.4.2 Simulation results

We use BoolODE to depict three di�erent scenarios commonly observed in biological systems:

linear, cyclic and multifurcating (here trifurcating) trajectories (see Fig. 5.3). The linear trajectory
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is characterized by a single path where cells traverse directly from early time points to late time

points. The underlying network model (Fig. 5.3, top row) is a cascade of genes activating one

another using an initial state condition of g1 = 1 starting the cascade. The cascade of sequential

gene activation can be noticed in the gene expression heatmap (Fig. 5.3, middle row). Genes get

activated successively similar to a domino e�ect. Once g7 is activated it inhibits g1 which turns

o� the subsequent genes. The cyclic trajectory forms a single path where the initial state merges

with the �nal state arranging a circle. Similarly to the linear network model, the cyclic model

consists of a cascade of genes with two consecutive inhibiting interactions between g1 – g2 – g3

which is followed by two activating interactions between g3 – g4 – g5. Upon activation of g5 it

inhibits g1 which in turn activates g6. The initial state conditions are set to g1 = g2 = g2 = 1 to

start the simulation. The pairwise associations seen in the gene expression heatmap re�ect the

underlying interactions: While g1 is expressed it prevents g2 from being expressed which, in turn,

keeps g3 in an active state. The successive activating interactions between g3, g4 and g5 have the

same cascade expression pattern observed in the linear trajectory. The expression pattern of g6

can be traced back by its activation from g1. This model creates the cyclic trajectory visualized in

Fig. 5.3, bottom middle panel. A common example for cyclic trajectories is the cell cycle process.

Lastly, the trifurcating trajectory describes a process where cells start from a common initial

cell state and branch into three di�erent �nal cell states. While the �rst two underlying network

models are simple to understand due to the small number of interactions, the underlying network

modeling the trifurcating trajectory is more complex having genes with more than one interaction

partner. For some of those genes, e.g. g5, have self-loops activating the genes itself as well as

bidirectional types of regulations. Using an initial state condition with g1 = g7 = 1 the network

models a trajectory with three distinct cell states. Multifurcating trajectories are common during

cell di�erentiation processes with multiple cell fates.

Given the input Boolean network we apply BoolODE to generate in silico data. We use t-SNE

to visualize the trajectories that are modeled by the underlying reference networks (Fig. 5.3).

Clearly, the gene expression data follow the three expected trajectories that we aim to model. Early

to late cell stages are depicted in the color code. Hence, BoolODE successfully generates time-

dependent gene expression data that we can use to reconstruct the gene networks. By comparing

the predicted network with the actual underlying network, we can evaluate the performance of

the neighborhood selection method.
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Figure 5.3: Boolean networks and their corresponding time-course in silico
data.
Boolean networks modeling linear, cyclic and trifurcating lineage trajectories. Green

arrows represent activating regulations, red arrows represent inhibiting regulations.

The heatmap shows gene expression values for each simulated cells ordered by their

pseudotime from early (top row) to late (bottom row) time points. The derived time-

dependent data is visualized with t-SNE. Each dot represents a simulated single cell.

The colors represent the inferred pseudotime.

5.5 neighborhood selection recovers network
models

In neighborhood selection our parameter � determines the degree of penalization of the estimated

coe�cients in our model. Thus, it in�uences the shrinkage of the neighborhood size of a node,

and coupled with this the density of the estimated network structure (see Fig. 5.1). Ideally, the

resulting network should include interactions that contain the most important interactions and

should omit interactions that are unnecessary (e.g. indirect associations).
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5.5.1 Model selection

The choice of the hyperparameter � clearly a�ects the inferred network structure. For this reason

a careful selection of � needs to be made. We introduce a methodology on how to select an

appropriate � that depends on two criteria: Firstly, the cross validation (CV) error and secondly,

the stability of a network model.

The cross-validation error is determined by the prediction error between the train and test set

during k-fold cross validation procedure. Here, the sample set of the data matrix is split into k
partitions. In each iteration we use the k − 1 partitions to train our model with and use the left

out kth partition (test set) to predict its value. The di�erence between the predicted error and the

actual value of the edge weights are reported and averaged across the iterations. In our case we

use a 10-fold cross validation. Ideally, the error should be low.

The stability index indicates the agreement of predicted interactions in a sub-sampled data

matrix across k runs. In each run we remove a fraction f of the data samples and apply neighbor-

hood selection on the remaining data matrix. We report the predicted interactions and calculate

the number of agreeing interactions across all runs for each interaction. We sum up interactions

that were reported in each run and divide it by the median number of reported interactions. By

this, we normalize for the density of the network which varies with di�erent values of �. The

higher the index the more consistent and reliable the results are. In our realization we remove a

fraction (randomly sampled) of 20% and use 10 runs to determine the stability index.

Given any �xed � associated with a network we calculate the two indices and choose � appro-

priately. Thereby, we consider the above mentioned conditions associated with each criterion.

With regard to the CV error �, we determine the � value associated with the CV error with

the maximum decrease (in�ection point) and select a range of � scores around the in�ection

point. With regard to the stability index we identify � values that have a high stability score,

here > 0.8. We determine overlapping regions of both indices and suggest a range of � values,

that can be used for model selection. Dependent on the choice of � the sparsity of the network

gets chosen accordingly. This two-fold model selection criteria ensures an appropriate trade-o�

between the CV error and the stability of the reported networks. Figure 5.4 shows the two criteria

dependent on � for model selection. Here, we use an example gene expression dataset. For the

�rst � values we observe an increase of the CV error associated with low stability scores. Here,

the predicted network results in many interactions (not shown) susceptible to changes during

the cross validation and stability score calculation. At � index 6 it reaches its maximum CV error

value and decreases monotonously while the stability scores increase reaching a steady value

of 1. Note, that the CV error can still decrease while the stability of the network models stays

constant as the weight of the predicted edges are considered during cross validation. The last �
corresponding to a CV error of zero results in a network with no interactions. Hence, we neither

want to have a full and unstable network (�rst � values) nor a stable empty network (last � values).

For model selection, we search for a range of � values corresponding to a decreasing CV error

and a high stability score. For the �rst case, we identify a range around the "in�ection point", here

the associated � value with the maximum decrease in the CV error. For the latter case we �lter

for those � values associated to a stability score of greater than 0.8. According to our selection
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criteria we look for the intersecting � range and suggest � values depicted as a gray shaded region

in Fig. 5.4. The �nal � value can then be chosen manually by the user for network reconstruction.

Figure 5.4: Model selection criteria
with varying �.
For model selection we use two di�erent

criteria: (i) the cross validation (CV) error

and (ii) the stability index. We apply neigh-

borhood selection with 20 di�erent lambda

values on an example dataset and derive

the two scores. The gray shaded region

represent a range of � values considered

as appropriately for model selection. It is

determined by a decreasing CV error and

high stability score ( > 80 %). The x-axis is

on log-scale.

Using the two criteria we apply neighborhood selection on a range of di�erent datasets. First,

we perform network reconstruction on data generated in silico . By introducing dropouts we

investigate the e�ect of di�erent dropout rates on the performance of network reconstruction.

We further test our method on time-dependent networks that change dynamically along the

simulated trajectories. Moreover, we compare our method with other state-of-the-art methods.

5.5.2 Network prediction performance on in silico data

As a proof of concept we use the simulated data reproducing common scenarios in cell biology:

the linear developmental trajectory, the cyclic trajectory in periodic cell systems and the multi-

furcating trajectory branching into three di�erent cell states. Each simulated dataset consists of

2,000 cells with the respective number of genes of the underlying reference networks. For each

scenario we estimate � individually using the proposed criteria (Fig. 5.5, upper panel), and plot

the resulting reconstructed gene regulatory networks (Fig. 5.5).

We derive the area under receiver operating characteristic curve (AUROC) in order to compare

true network model with the predicted model. The AUROC score is a measure to evaluate the

performance of a prediction model and considers the true positive rate (sensitivity) against the

false positive rate (1-speci�city). AUROC scores of lower than 0.5 are considered as a random

prediction model. While evaluating the method we do not consider feedback loops nor the type

of interaction. As the neighborhood selection procedure does not consider causal inferences we

also omit the direction of the regulation. As mentioned earlier the gray shaded region indicates

a suggestion where the optimal � might be located and is characterized by an area of maximal

decrease in CV error values and a considerably high stability index of greater than 0.8.

In Figure 5.5 the straight line represents the � value located at the in�ection point. Using this

value we derive the predicted network and report the corresponding AUROC value. Using these �
values located at the in�ection points of each of the corresponding trajectory scenarios we obtain

AUROC values of 1 (linear), 0.67 (cycle) and 0.57 (trifurcation), ranging from perfect prediction to
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an almost random prediction model. However, if we choose other � values (depicted as a dashed

line in Fig. 5.5) we see better performances of AUROC scores of 0.89 (cycle) and 0.66 (trifurcation).

Hence, varying � values in the gray shaded region can lead to better improvements of the network

predictions leading to very good to reasonably good performances.

Generally, we observe a gradient in the prediction performance depending on the complexity of

the underlying network model. While in the linear scenario we only have perfectly predicted

interactions the number of false positives or false negatives increases in the cyclic scenario.

However, in the most complex scenario simulating a trifurcating trajectory we see more false

positive interactions, as well as false negatives interactions. This drop in performance might be

explained by the fact that we neither can resolve self-loops nor have any directional information

on the edges. Both types of interactions are crucial in this scenario and cannot be resolved by

the neighborhood selection procedure. Hence, the AUROC score is relatively poor compared to

the linear and cyclic scenarios. It is worth to mention (although it has not been discriminated in

the evaluation) that in majority of predicted interactions the type of interaction agrees with the

underlying network model.

Thus, using these synthetic network examples we can con�rm that neighborhood selection

coupled with the model selection methodology works well on data generated in silico .

Figure 5.5: Predicted network models by neighborhood selection using
model selection criteria.
Using the data generating the linear, cycle and trifurcating trajectories in silico we

perform neighborhood selection using the model selection criteria (upper panel).

Similar to Fig. 5.4 the criteria consist of the CV error and the stability index. We

highlight � values around the in�ection point with decreasing CV error rates as well

as high stability values. The straight line represents the in�ection points whereas the

dashed line represent alternative � values that can be used for network prediction.

We plot the predicted networks (lower panel) with respect to the corresponding �
values and report the respective AUROC scores.
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E�ect of dropout introduction

The data generated in silico provides a good framework to test the neighborhood selection method

in a controlled environment. However, one drawback of this dataset is the absence of dropouts.

Dropouts are commonly seen in single-cell transcriptome data and pose a great challenge during

single-cell data analysis. In order to measure the e�ect of dropouts on the network prediction

performance we introduce di�erent dropout rate scenarios seen in earlier studies (Chan et al.,

2017; Pratapa et al., 2020):

Given a data matrix, a dropout percentile q and a dropout rate of r we determine for each gene

its qth percentile expression level denoted as xq . Using this qth percentile expression level as a

threshold we set expression levels smaller than this threshold with a probability of r to zero. As

an example, we set q=50 and r=70 and determine the expression level at the 50th percentile x50
for each gene. A gene with a lower expression value of x50 has a 70% chance to become a zero

and is considered to be a dropout. Fig. 5.6A illustrates the e�ect of dropout introduction in an

example gene. The blue dots represent the original gene expression values. Red dots represent

the gene expression values after introducing dropouts with a percentile of 50 and dropout rate

of 70%. We test three di�erent scenarios with a dropout percentile of 25, 50, 50 and dropout

rate of 50, 50, 70, respectively. Overall, the dropout percentage of the corresponding datasets

in our simulation scenarios result in a dropout percentage of approximately 5%, 12% and 17%

(Fig. 5.6B). Note, in the original data we do not have any dropouts which results in non-visible bars.

Figure 5.6: Introducing dropouts to simulated data.
(A) Gene expression pro�le before (blue dots) and after (red dots) introducing dropouts

using a 50th percentile and dropout probability of 70%. (B) Overall dropout percentages

per dataset using various dropout options.

Raising the number of dropouts disrupts the trajectory pro�le. After introducing di�erent

dropout options to the dataset we inspect the visualization of the trajectory pro�les in the t-SNE

embedding. Figure 5.7 shows the progression of the linear trajectory before and after dropout in-

troduction using a 25th percentile and a 50th percentile with a respective 50% dropout probability.

In the trajectory without any dropouts we see a linear progression over time with a small split in

the very early time-ordered cells. Introducing dropouts with a 25th percentile and a 50% dropout

probability enhance the di�erence between those early time-ordered cells and additionally splits

up late time-ordered cells from the remaining cell population. Changing the 25th percentile to

the 50th percentile disrupts the trajectory pro�le entirely such that the linear progression is not
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visible anymore. Although the overall dropout percentage per dataset is comparably low with

respect to real experimental datasets it already has a high impact on the visualization of the

trajectory. Thus, we are keen to see what e�ect the presence of dropouts has on the network

reconstruction performance as a next step.

Figure 5.7: Dropouts disrupt visualization of the linear trajectory.
Dataset simulating linear trajectory without dropout introduction (left) and with

dropout introduction using 25th percentile and 50% dropout probability (middle)

as well as 50th percentile and 50% dropout probability (right). For visualization we

applied t-SNE and colored the cells according to their pseudo-time.

Mild in�uence of dropouts on the performance of network prediction. In order to investi-

gate the e�ect of dropouts we use the three simulated scenarios and applied the dropout procedure

with di�erent dropout percentiles and probabilities. Using the original dataset without dropouts

and the respective datasets with varying dropout options we apply neighborhood selection and

measured the AUROC scores to evaluate the performances. We use the whole parameter search

space of � and derived the corresponding AUROC scores plotted as a boxplot for each dataset (Fig.

5.8). In the linear scenario we observe a stably very good performance prediction irrespective

of the increase of dropout percentages in the datasets. In the cyclic scenario we see similar

performances without dropout and with low dropout percentages. Adding more dropouts by

using higher percentiles and/ or dropout rates we see a small decrease in performance but still in a

range of well predicted networks. Interestingly, in the trifurcating scenario we observe in general

better performances scores reaching up to ∼0.8 with increasing dropout percentages. Thus, we

conclude that in general introducing dropouts to our simulated data has only a minor e�ect on

the network reconstruction. In some cases it can even lead to better performances than without

any dropouts.

In summary, we have shown that the neighborhood selection method using the two-fold model

selection criteria works well on various types of datasets simulating di�erent developmental

trajectories. We have introduced varying dropout rates to increase the dropout percentages in

each dataset. Although the embedding of the trajectory gets disrupted with increasing amount

of dropouts the performance of network reconstruction using neighborhood selection is only

slightly a�ected. As a conclusion, we con�rm that our method is able to recover the underlying

reference networks in an adequate way.
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Figure 5.8: Network prediction perfor-
mance with varying dropout options.
Boxplots showing performance scores de-

rived from the whole hyperparameter

search space of � for each simulated trajec-

tory with varying dropout options. Outlier

AUROC scores are not shown.

5.5.3 Evolving gene regulatory networks upon time-ordered

cells

Single-cell transcriptome technologies allow for pro�ling thousands of cells that follow develop-

mental processes. Using algorithms inferring the pseudotemporal order of the cells we predict the

direction of the trajectories that the cells may follow. In contrast to bulk RNA-seq experiments

pro�ling only a few samples resulting in a lower resolution of sampled time-point experiments

it was di�cult to infer such a temporal ordering. Hence, single-cell experiments provide us to

track developmental paths with a high resolution such that we are able to examine the analyzed

system as a dynamic rather than a static biological system.

In this section we want to investigate if we can dynamically reconstruct gene regulatory networks

that evolve along a time-ordered path. To test this we designed a concept illustrated in Fig. 5.9.

Here, we specify a window size w and infer gene regulatory networks from cells assigned to that

window. We denote those networks as local networks. Then, we move the window with a step

size s and continue with the local network prediction until the last window referred to the latest

temporally ordered cell population is reached. Finally, we merge all local networks together by

aggregating the weights by their average in order to get a globally merged network.

Evolving networks on a linear trajectory recover reference network

In order to test the concept of dynamically evolving networks we apply the proposed method

on an example dataset simulating the linear trajectory. To this end, we sort the cells by their

pseudotemporal order by applying Slingshot (Street et al., 2018). For illustration issues we use

a window size of 1,000 cells and a step size of 500 resulting in a partition of three sub-populations

(Fig. 5.10 A+B). However, we apply this method also on a smaller window size of 500 and a step

size of 100 cells resulting into sixteen sub-populations making it more challenging for illustra-

tions but the result remains the same for both parameter settings. For each partition we apply

neighborhood selection using the same � parameter estimated by the whole dataset before (�
= 8.62e-05) resulting in locally inferred networks (Fig. 5.10C). These locally inferred networks

resolve the time-dependent partition re�ecting the gene regulations within the matching time

window. Hence, by partitioning the time-dependent data we can observe which part of the

gene network is active and which regulations happen in that speci�c time frame. Interestingly,
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Figure 5.9: Concept of evolving network reconstruction.
Single cells are temporally ordered by pseudotime. We determine a window of size

w and infer local networks from single cells assigned to that window. Moving the

window by a step size s we continue reconstructing networks until the last window

is reached. We aggregate all local networks to get a globally merged network.

by merging the local networks we are able to reconstruct the full reference network similar

to when we use the whole dataset before (AUROC=1). Hence, we do not su�er from any lost

of information if we �rst predict local networks and subsequently merge them to a global network.

Local network prediction on cyclic and trifurcating trajectories

Similarly to the linear trajectory scenario we performed local network reconstruction on the

cyclic trajectory. Again we sorted the cells by Slingshot and use a window size of 500 as well

as a step size of 100 cells. Merging the local networks results in a network with an AUROC score

of 0.78 displayed in Fig. 5.11A. Using the �=9.12e-05 at the in�ection point we are able to improve

the prediction results from 0.67 to 0.78. Taking the alternative choice with �=4.41e-05 dropped the

performance from AUROC=0.89 in the global scale to AUROC=0.81 in the local scale (not shown).

Also in the trifurcating scenario we obtain striking results. Here, we separated the dataset into the

three lineage branches identi�ed by pseudotime analysis. For each lineage we locally reconstruct

networks using �=5.40e-05 (Fig. 5.11B). The activating interactions between g1 – g2 – g3 re-occur

in every locally inferred network and probably refer to the common branch before the lineages

diverge. Merging the the local networks results in a network with an AUROC score of 0.71 (Fig.

5.11C). Thus, we observe a performance improvement from almost random (AUROC = 0.57) to

reasonably good (AUROC=0.71).

Notably, there are two ways of inferring networks locally: Either we de�ne a certain window size

and infer local networks from that partitioned sub-population and move the window forward,

or we identify lineage branches and recover lineage-speci�c networks. Comparing the global

network inference as it has been performed in the �rst part of the chapter to the local network

inference performed here we might see superior performances in the local network inference.
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Figure 5.10: Gene regulatory networks evolve along the linear trajectory.
(A) Three time-dependent partitions using a window size of 1,000 cells along the

linear trajectory. (B) Heatmap showing gene expression data (g1,...,g7) derived from

the respective partitions. (C) Predicted networks using neighborhood selection on

each partitioned time-ordered data. The networks partially overlap and recapitulate

the respective development over time. The merged network recovers the reference

network.

Nonetheless, it remains challenging to reconstruct networks from biological systems with complex

interactions which can be seen in the trifurcating scenario. A huge advantage of the local network

reconstruction is that it enables us to follow on-going regulations in a speci�c subset of cells. This

leads to a change of perspective in analyzing gene regulatory networks. Instead of reconstructing

a static network on a global scale this procedure allows us to investigate the dynamics of a given

gene regulatory network in a time-dependent manner.

Influence of window size on network prediction performance

In our procedure the window size w is a parameter that sets the time-frame range we currently

look at. Thus, it is a crucial parameter in�uencing the number of samples used to reconstruct the

gene networks. Setting the window size w too small lead to smaller sample sizes such that associ-

ations between genes cannot be appropriately estimated (i.e. bulk RNA-seq samples) whereas

large window sizes converge towards similar performances related to the network reconstruction

on a global scale. We believe that the in�uence of the step size parameter can be neglected as

long as the step size is smaller than the window size such that we obtain overlapping time-frames

along the trajectory.
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Figure 5.11: Evolving gene regulatory networks along di�erent trajectories.
(A) Merged network reconstructed from cyclic trajectory with window size 500 and

step size 100 cells using a �=9.12e-05. (B) Local network inference on trifurcating

trajectory by partitioning the data into three lineage-dependent sub-populations

using �=5.40e-05. (C) Merged network by aggregating the local networks from (B)

results in in an AUROC score of 0.71.

To test the in�uence of the window size w we vary the parameter in steps of 100, 250, 500, 750

and 1,000 cells using step sizes of 50 with the �rst window size and 100 otherwise. We perform

analyses on the linear and cyclic trajectory, respectively and report the AUROC scores in Figure

5.12. Notably, the small window sizes of 100 give only poor results in both trajectory scenarios.

The performance scores increase with larger window sizes. In the linear case we achieve constant

AUROC scores of 1 with window sizes from 500 cells on. In the cyclic scenario the maximum

AUROC scores is reached at window size 750 and slightly drops at 1,000 cells. We hypothesize

that this trend can be traced back due to the sampling problem. Despite of the the facts that

our simulated data consists of less than 10 genes, with relatively simple dependencies, neither

implying factors of technical noises nor containing other sources of biases it requires a high

amount of samples (more than ten-fold of the number of features) to infer correct associations

between those genes. This raises the concerns that even for more complex biological systems

is poses a great challenge to investigate gene regulatory networks on a larger scale with high

numbers of genes.
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Figure 5.12: Network prediction per-
formance with varying window sizes.
Barplots showing performance scores in de-

pendence of di�erent window sizes applied

on data simulating the linear and cyclic tra-

jectory.

5.5.4 Neighborhood selection in comparison to other GRN meth-

ods

Next, we want to compare the neighborhood selection method coupled with the model selection

criteria with other state-of-the-art methods and used the BEELINE pipeline developed by Pratapa

et al., 2020. We test di�erent methods that are referred to have superior performances according

to the benchmark study published with the BEELINE pipeline. The top three performing GRN

reconstruction algorithms are GENIE3, GRNBoost2 and PIDC. Additionally we add PPCOR as a

partial correlation based method providing a baseline and SINCERITIES as a regression-based

algorithm following a similar approach as the neighborhood selection method.

We report AUROC scores for each trajectory scenario and compared the above mentioned al-

gorithms with (i) our baseline method using � at the in�ection point with a maximal decrease

in CV error and high stability index, denoted as ’NB_SELECT’, (ii) the alternative choice of �
providing better results denoted as ’NB_SELECT (alt.)’ and (iii) the merged network approach

from local network predictions along the trajectory, denoted as ’NB_SELECT (merged local)’ (Tab.

5.4). In the linear scenario we see similarly to SINCERITIES perfect network predictions with the

neighborhood selection method whereas the other tools are slightly worse in the performance

with 0.88 or 0.9. In the cyclic scenario almost all method perform equally well between 0.74 and

0.79 AUROC scores, except for our baseline method with 0.67 and the alternative achieving the

best results with 0.89. In the trifurcating – the most challenging – scenario we observe mixed

results. While our baseline method performs poorly compared to other methods, the alternative

neighborhood selection method is on a similar level as GENIE3, PIDC, PPCOR and SINCERITIES

whereas our merged local approach is able to compete with the best performing algorithm GRN-

BOOST2.

Altogether there is no tool performing best throughout all simulated data scenarios. However,

with our approach we are able to compete with other state-of-the-art methods. We see superior

performances in our ’alternative’ and ’merged local’ approach compared to our baseline approach

and suggest the user to either inspect manually the inferred networks in the suggested � region

provided by the algorithm or pick � on a global scale and partition the data into many overlapping

time-frames. The latter approach allows the user to examine networks in a more dynamical way

along a time-dependent trajectory. However, the size of the window needs to be chosen carefully
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as it might in�uence the performance of the network prediction.

Table 5.4: Comparing network prediction performances across GRN methods. Reported AUROC

scores for each method and trajectory scenarios. NB_SELECT refers to our neighborhood selection method

using two-fold model selection criteria. alt.: is the alternative parameter selection mentioned in Sec. 5.5.2.

merged local: refers to the local network predictions treated above.

Tool linear cycle trifurcation

GENIE3 0.88 0.74 0.64

GRNBOOST2 0.88 0.76 0.71

PIDC 0.9 0.75 0.64

PPCOR 0.9 0.75 0.67

SINCERITIES 1 0.79 0.64

NB_SELECT 1 0.67 0.57

NB_SELECT (alt.) 1 0.89 0.66

NB_SELECT (merged local) 1 0.78 0.71

In conclusion, we developed a network reconstruction method that we tested on several simulated

datasets with di�erent trajectory scenarios commonly seen in systems biology. We developed a

strategy based on a two-fold model selection criteria in order to choose optimally for the network

hyperparameter �. As a proof-of-concept we apply the approach on the simulated datasets and

additionally introduced dropouts. We only see minor e�ects on network prediction performances.

Next, we inferred gene regulatory networks in a more dynamic way by moving a time-dependent

window along the trajectory and infer local networks speci�c to that time window. We see better

network prediction performances compared to the baseline approach. Finally, we compare our

developed method to other state-of-the-art network reconstruction algorithms and consider our

method as a competing approach to the other algorithms.
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5.6 neighborhood selection on blood stem and
progenitor cell differentiation

5.6.1 Myeloid di�erentiation as a model system to study gene

regulatory networks

In this section we want to investigate the prediction performance of the proposed methodology

on a well-examined biological model system. We chose to study blood stem and progenitor cell

di�erentiation which is an extensively studied research �eld (Iwasaki et al., 2007; Krumsiek et al.,

2011; Laiosa et al., 2006; Nestorowa et al., 2016). The cell lineage pathways is depicted in Fig. 5.13A.

A population of hematopoietic stem cells (HSCs) di�erentiates into multipotent progenitors (MPPs)

which diverge either into two intermediate cell stages common myeloid progenitor (CMP) or

common lymphoid progenitor (CLP) cells. The latter provides precursor cells for lymphocytes

while CMP cells can further branch into the megakaryocyte-erythrocyte progenitor (MEP) lineage

from which erythrocytes and megakaryotes derive or into the granulocyte/ macrophage progenitor

(GMP) lineage from which monocytes and granulocytes derive. The cell lineage speci�cation

starting from common myeloid progenitors (CMPs) to megakaryocytes, erythro-, mono- and

granulocytes is called myeloid di�erentiation. As a model system a lot of research has been

performed on myeloid di�erentiation. Thus, the regulation between the genes has been studied in

depth throughout the years (see Review by Iwasaki et al., 2007). Krumsiek et al., 2011 curated the

literature and proposed a Boolean network (Fig. 5.13B) that models myeloid di�erentiation using

eleven transcription factors. These lineage-speci�c transcription factors govern the process of cell

fate decision and can be can be classi�ed into three groups (Krumsiek et al., 2011). In parentheses

we denote genes name aliases:

1. Early hematopoietic factors

∙ Gata2, Cebpa

2. Intermediate factors

∙ Gata1, Pu1 ("SPI1")

3. Secondary fate determinants and cofactors

∙ Eklf ("KLF1"), Fli1, Fog1 ("ZFPM1"), Scl ("TAL1"), G�1, cJun ("JUN"), EgrNab (integra-

tion of "EGR1", "EGR2" and "NAB2")

We use the Boolean network proposed by Krumsiek et al., 2011 and simulate gene expression data

similarly to the synthetic networks using BoolODE. Figure 5.13C visualizes the cell lineages as

well as their inferred pseudotime in a 2D t-SNE representation. Notably, the central cell population

represent the earliest cells di�erentiating into three visible branches. Figure 5.14 shows speci�c

gene expression values for each cell lineage. The middle cell population consist of mainly CMP

cells characterized by Gata2 gene expression. Starting from CMP cell population may emerge (i)

to the top right branch representing granulocytes de�ned by high G�1 expression, (ii) to the top

left branch representing monocytes de�ned by high EgrNab expression, or (iii) downwards either
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Figure 5.13: Literature-curated model for myeloid di�erentiation.
(A) Di�erentiation pathways from hematopoietic stem cells to di�erent blood cell

types. HSC: hematopoietic stem cells, MPP: multipotent progenitor, CMP: com-

mon myeloid progenitor, CLP: common lymphoid progenitor, MEP: megakaryocyte-

erythrocyte progenitor, GMP: granulocyte-monocyte progenitor. (B) Literature-

curated gene regulatory network of eleven marker genes controlling cell fate decision

into erythrocytes, megakaryotes, monocytes and granulocytes. Sub�gures (A) and (B)

are modi�ed from Krumsiek et al., 2011. (C) t-SNE visualization of simulated myeloid

data with boolODE using the GRN model from (B).

to erythrocytes showing high Eklf expression or megakaryotes showing high Fli1 expression level.

As the pseudotime method Slingshot has been able to only infer three lineages appropriately we

decide to combine the erythrocyte and megakaryocyte cell lineage as one cell lineage. Since both

cell states derive from the same intermediate cell state (MEP) the combination of the two cell

populations is also biologically meaningful.

5.6.2 Network reconstruction on simulated myeloid di�eren-

tiation data

We use the two-fold model selection criteria in order to estimate the � hyperparameter for network

reconstruction. The algorithm yields a parameter range depicted in the gray box in Figure 5.15

de�ned by a fast decrease in the cross-validation error and high stability index. We choose a �
value of 0.0001 and inferred local networks for each cell lineage (Fig. 5.16A).

The cell lineage branch emerging towards erythrocytes and megakaryocytes reveal a gene reg-

ulatory network in which the cell-type speci�c lineage factors Eklf and Fli1 controlling for

erythrocytes and megakaryocytes respectively are both involved in the regulatory network. The

remaining interacting transcription factors (except for G�1) are known to regulate cell fate com-

mitment from early CMP cells to erythrocytes and megakaryocytes. In the next cell lineage branch
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Figure 5.14: t-SNE visualizations of simulated cell lineages during myeloid
di�erentiation.
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Figure 5.15: Model selection on simu-
lated myeloid di�erentiation data.
Using the whole simulated dataset on a

global scale the algorithm suggests an area

(gray shaded box) around the in�ection

point at �=0.0001 (dotted line). We use this

value for reconstructing the gene regula-

tory networks shown in Fig. 5.16.

di�erentiating towards granulocytes we see regulatory interactions involving the lineage-speci�c

factor G�1. Again, early hematopoietic factors such as Cebpa, Gata2 and Pu1 are part of the

regulatory network reconstructed by our method. In the last cell lineage branch giving rise to

monocytes EgrNab as the lineage-speci�c marker is involved in the predicted regulatory network.

Remarkably, all regulatory interactions predicted in this cell lineage agree with the underlying

literature-curated Boolean network and thus are true positive predictions. Aggregating all local
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networks lead us to the merged gene regulatory network plotted in Figure 5.15B with an overall

prediction performance of an AUROC=0.65. In comparison to that, the global network reconstruc-

tion performs slightly minor with an AUROC=0.61.
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Figure 5.16: Reconstructed gene regulatory networks during myeloid di�er-
entiation.
(A) Locally reconstructed GRNs for each cell lineage using � = 0.0001. Erythrocytes

and megakaryotes are fused indicating the megakaryocyte-erythrocyte progenitor

cell type. Cells are color-coded by the inferred pseudotime. (B) Merged GRN from

local networks reconstructed in (A) leads to an AUROC value of 0.65. (C) Globally

inferred GRN leads to a minor prediction performance of AUROC=0.61.

A clear advantage of the local network inference is not only the better performance but also the

possibility to examine speci�c gene regulations for a particular cell lineage. The above analysis

has shown which factors are involved in regulatory interactions at a particular period of time.

This allows us to reveal active gene regulations in a lineage-speci�c manner.

5.6.3 Network reconstruction on experimental hematopoietic

stem cell di�erentiation

Using simulated data with an underlying ground truth dataset provides a useful approach in a

controlled environment to test the performance of a computational method. However, oftentimes

the simulations do not re�ect the full range of computational challenges that one is faced in

experimental datasets. In our case, the simulations performed in this chapter neither su�er from

sources of technical biases nor the curse of high-dimensionality where the number of features
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(i.e. genes) is much higher than the number of samples (i.e. cells). In this section we pursue gene

regulatory network reconstruction on an experimental dataset published by Nestorowa et al.,

2016. As an analogue of the previous dataset simulating myeloid di�erentiation Nestorowa et al.,

2016 provides a single-cell map in mice of hematopoietic stem and progenitor di�erentiation

emerging towards early stages of myeloid and lymphoid cell types. Lymphoid cells comprise cell

types that are part of the innate immune system such as B-cells, T-cells or natural killer cells.

Data preparation. We use the already preprocessed and normalized mouse hematopoietic stem

cell (mHSC) data published along with the BEELINE framework (Pratapa et al., 2020) (Fig. 5.17A).

After quality control and �ltering it constitutes of 1,656 cells and 4,762 genes. As originally

performed by Nestorowa et al., 2016 we use di�usion maps to visualize the data in a 3-dimensional

representation (Fig. 5.17B). Following Pratapa et al., 2020 we use the data split into three cell-

lineages: erythrocytes, granulomonocytes and lymphoid cells (Fig. 5.17C). In order to reduce

the dimensions we select the 500 highly variable genes (HVGs) along the pseudotime together

with signi�cantly varying transcription factors for each cell-lineage correspondingly. The sizes of

respective sub-datasets denoted as mHSC-E (erythrocytes), mHSC-GM (granulomonocytes) and

mHSC-L (lymphocytes) are summarized in Table 5.5. Note that common progenitor cells across

the lineages can occur several times. For each sub-dataset we now infer GRNs using neighborhood

selection.
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Figure 5.17: Single-cell RNA-seq data of mouse hematopoietic stem cells
(mHSCs) by Nestorowa et al., 2016.
(A) Data quality plotting detection rate in dependence of library size. Dots represent

single cells and are color-coded by the dots’ density. Dataset comprises 1,656 cells

and 4,762 genes after quality control. (B) First three di�usion components of mHSCs

color coded by pseudotime. (C) Cell lineages with respective pseudotime information

of erythrocytes, granulomonocytes and lymphoid cells in a 3D representation using

di�usion maps.

Evaluation. As a measure of evaluation we use the early precision ratio (EPR) score and only

consider interactions between transcription factors likewise to the BEELINE framework. Most

of the network reconstruction algorithms infer networks that are close to a full graph. Being

more interested in the most important predicted interactions we analyzed the interactions with
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Table 5.5: Data statistics of mHSC data. Overall, 1,656 were analyzed and split into three cell-lineages

using pseudotime analysis. Note that some (early progenitor) cells can occur multiple times. We select the

top 500 HVGs and signi�cantly varying transcription factors (TFs) along pseudotime.

Cell type numCells numGenes+TFs

mHSC-E 1,071 704

mHSC-GM 889 632

mHSC-L 847 560

the highest (absolute) weights and thus the top ranked interactions within the network (top-k

network). For this reason and to evaluate the performance of each inferred network based on using

early precision (EP) score which is given by the number of true positives divided by the number

of positively predicted observations within the top-k network. In order to maintain comparability

across datasets we divide the EP score by the network density of each evaluation subnetwork

obtaining EP ratios (EPR). Thus, EPR of 1 is indicative of a random predictor consistently. With

regard to the evaluation network we use the STRING database (Szklarczyk et al., 2019) and selected

for each sub-datasets only the evaluation sub-networks including genes overlapping with the

corresponding sub-dataset. For the comparison with the evaluation network, we only consider

and �lter for edges going out of transcription factors.

Neighborhood selection on mHSC data

We use the two-fold model selection criteria in order to estimate an appropriate � value (Fig.

5.18A). Across all sub-datasets the curve of the CV error line is similar. It is characterized by an

increase of CV error reaching its maximum value at around � index 6 decreases continuously.

While the CV error decreases from � index 6 the stability score stays very low with respect to

mHSC-E and mHSC-GM data. Here, the choice of an optimal � remains ambiguous as the majority

of � values leads to unstable network predictions. Hence, there is no region suggested by the

algorithm in these sub-datasets. In mHSC-L data we see high stability scores around the in�ection

point of the CV error curve. Here, we can provide a region to the user ful�lling the model selection

criteria. Leaving the stability index unattended for now in mHSC-E and mHSC-GM data, we

choose to use the � value with the maximal decrease in the CV error depicted as a dotted line

across all three sub-datasets.

We use the respective hyperparameter value and predicted the GRNs correspondingly (Fig. 5.18B).

Unfortunately, due to the hairball-like structure the reconstructed networks are hardly readable

but should provide a glimpse about the complexity of the predicted networks. For evaluation

we inspect the top-k network �ltered for transcription factor - gene interactions as stated above

(Fig. 5.18C). We calculate EPR scores resulting in decent performances in case of mHSC-E and

mHSC-GM achieving EPR scores of 2.87 and 3.94, respectively. However, mHSC-L data is close

to the random prediction model with an EPR score close to 1. Using the biological knowledge

about erythrocyte and granulo-monocyte di�erentiation we can further search for interactions in
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which lineage-speci�c factors are involved (Fig. 5.18D). During erythrocyte di�erentiation Eklf
(here KLF1) is a marker that is part of the top-k network. Indeed, we are also able to reconstruct

interactions with GATA1. With regard to the granulo-monocyte di�erentiation GF1B and EGR1
(as part of the EgrNab complex) present important factors that we use for �ltering within the

top-k network. Here, neighborhood selection predicts interactions with GATA2 which is part of

the myeloid di�erentiation process.

Although mHSC-E and mHSC-GM did not ful�ll the model selection criteria due to unstable

network predictions, the performance achieve better results in comparison to the mHSC-L data

and also lead to predictions with biologically meaningful interactions. The attempt of using a �
index with a higher stability score (at the index around 19) in mHSC-E or mHSC-GM data yield

to almost empty networks with random prediction performances (not shown). In contrast to that,

in mHSC-L data ful�lling the two-fold model selection criteria leads to random predictions which

makes us wonder how the experimental dataset behave and if the model selection criteria are

appropriate for sparse and noisy data. We suspect that di�erent data issues such as the number of

dropouts or the presence of multiple heterogeneous cell states in�uences the prediction perfor-

mances. This shows how complex experimental datasets are and how di�erent the results can

turn out in comparison to a simulated framework.

Comparison to other GRN algorithms. Next, we compare the prediction performance of our

proposed method to other state-of-the art GRN reconstruction algorithms. We use results obtained

from he BEELINE framework and report the EPR scores of the top 5 algorithms in Table 5.6 and

added the recorded EPR obtained by our analysis from Fig. 5.18. We observe minor prediction

performances in comparison to the top 3 algorithms PIDC, GENIE3 and GRNBoost2 but better

results than PPCOR (except for mHSC-L data) and SINCERITIES. While SINCERITIES performed

quite well in the synthetic datasets it scores very poorly for the experimental dataset. This reveals

that the di�erence between simulated and experimental datasets can diverge to a great extent

even in established algorithms. However, with regard to our computational running time there is

still room for improvement. While the analysis lasted only for 1-2 minutes for the synthetic net-

work datasets it took approximately 1-2 days to �nish the calculations for the experimental dataset.

Table 5.6: Performance comparison to otherGRN reconstruction algorithms.We report EPR scores

comparing the prediction performance across state-of-the-art algorithms for network reconstruction. EPR

results were adapted from the BEELINE benchmark paper (Main Fig. 5 by Pratapa et al., 2020) and added

the EPR scores by our proposed neighborhood selection method.

Cell type PIDC GENIE3 GRNBOOST2 PPCOR SINCERITIES NEIGHSELECT

mHSC-E 7.49 6.7 6.05 1.56 0.74 2.87

mHSC-GM 8.36 8.7 7.96 1.89 0.4 3.94

mHSC-L 6.22 6.83 6.67 4.33 0.76 1.06

Although our proposed method competes in the middle range of the top5 state-of-the-art GRN

algorithms we are still surprised how di�erent the prediction performances between simulated
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Figure 5.18: Network reconstruction on mHSC data.
(A) Model selection for hyperparameter estimation for each sub-dataset. (B) Recon-

structed gene regulatory networks. (C) Top-k networks used to determine early preci-

sion ratios. (D) Selected top-k network including lineage-speci�c transcription factors:

KLF1 (Eklf) for mHSC-E; EGR1 (EgrNab) and GFI1 for mHSC-GM. No interactions for

lineage-speci�c transcription factors for mHSC-L were found.

and experimental datatsets can emerge. As we suspect the sparsity and the high level of noise

might be a source of this divergence we think of imputation methods to counteract against theses

challenges. For this reason we aim to apply an imputation method prior to network reconstruction

that can possibly improve the prediction results in the next section.

5.6.4 Network reconstruction with data imputation

To date there are many data imputation methods available. As pointed out earlier (Section 3.1.5)

imputation methods predict zero counts in single-cell RNA-seq data and can be sometimes used

to normalize the data in addition. We address di�erent imputation methods explicitly later in
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Section 6.1. As we have shown before, the neighborhood selection method on experimental data

performs in a decent way but by far from optimal if we compare it with the other top 3 GRN

reconstruction algorithms. We assume that this is caused by the high numbers of zero counts and

the noise level present in single-cell RNA-seq data. Therefore, we select an imputation method

called dca (Eraslan et al., 2019). dca stands for a deep count autoencoder and is a deep learning

based tool that denoises single-cell RNA-seq data. It claims to facilitate downstream analyses that

"enhances the modeling of gene regulatory correlations" (Eraslan et al., 2019). It can be used as an

’all-inclusive’ tool reducing the amount of zeros, normalization and dimensionality reduction that

can be applied as a preprocessing step before network inference (Eraslan et al., 2019). Intrigued

by the usability we apply dca to our dataset.

Comparing the gene expression distribution before and after imputation we observe much higher

values after imputation (Fig. 5.19). While in the data without imputation we see a high peak of

zero counts followed by a bimodal distribution of gene expression values we see no zero counts

and a unimodal distribution after imputation using dca.
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Figure 5.19: Distribution of gene ex-
pression values before and after impu-
tation.
Comparison of density plots before (blue)

and after (red) imputation using dca. A

pseudo count was added to the gene ex-

pression values. X-axis is on a log-scale

Next, we investigate how the correlations between genes alter after imputation. Therefore, we

select the known myeloid transcription factors that are present in the mHSC-E dataset and plot-

ted pairwise gene-gene relationships (Fig. 5.20). As expected, dca overall enhances gene-gene

correlations. We observe changes in correlations, e.g. from 0.014 to 0.552 (EGR1 – GF1) or 0.433 to

0.852 (EGR1 – JUN ). These interactions are also reported in the reference network (see Fig. 5.13B).

However, there are cases where the correlation values get enhanced but without a literature-

curated evidence, e.g. KLF1 (Eklf ) – EGR1 (EgrNab) changing from -0.136 to -0.665 or GATA2 –

JUN (cJun) changing from 0.183 to 0.508. Another example and as an exception, the gene-gene

relationship between SPI1 (Pu1) and GATA2 decreases from 0.11 to -0.0003. Here, we actually

expect a higher statistical dependence since the reference model reports an interaction between

the two genes.

Intrigued by the changes in correlation values we apply neighborhood selection using the two-fold

model selection criteria and evaluate the prediction performance (Fig. 5.21). In contrast to the

experimental data without imputation the algorithm is able to suggest a region that ful�lls the

model selection criteria: A strong decrease in the CV error and a high stability score. We select

the � parameter as usual, depicted as a dotted line in Fig. 5.21A. However, choosing the � value as

stated leads to very sparse network predictions resulting in EPR scores equal to zero across all

sub-datasets. We also try to use alternative � values for network reconstruction and plotted the
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A B

Figure 5.20: Pairwise gene-gene scatterplots in mHSC-E data.
(A) Gene-gene relationships of selected myeloid genes before imputation on pre-

processed and normalized mHSC-E data. Every dot represents a single cell, colors

represent the density of the dots. Gene names are speci�ed as their aliases (see

Sec. 5.6.1). Correlation values are measured in Pearson’s correlation coe�cient. (B)

Gene-gene relationships after imputation using dca.

results in Supp. Fig. A1. Even though the structure of the predicted networks is denser compared

to Fig. 5.21B the overlap between the alternative reconstructed GRNs and the evaluation networks

is still very little resulting in poor performances. Hence, we do not see any improvement of

network inference using dca and the proposed neighborhood selection method.
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Figure 5.21: Data imputation and GRN reconstruction on mHSC data.
(A) Model selection criteria on imputed data. Across all datasets the algorithm is able to

suggest a region ful�lling the conditions for parameter estimation. (B) Reconstructed

networks using the � values depicted as a dotted line in (A). Prediction performance

is very poor with EPR=0 across all datasets.
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5.7 discussion and conclusion

We have introduced a network reconstruction method using neighborhood selection with a

hyperparameter estimation. The hyperparameter is selected based on two-fold selection criteria.

Using the cross validation error and the stability index of the reconstructed networks we have

proposed a strategy to choose the hyperparameter �. Here, the algorithm suggests a range of �
values ful�lling two conditions: (i) � values associated with a strong decline (around the in�ection

point) regarding the cross-validation error and (ii) � values associated with a high stability index.

On the one hand, the CV error condition ensures that the prediction error during 10-fold cross

validation gets smaller and thus network edge weight predictions associated with the speci�c �
are more reliable. On the other hand, the stability index ensures stable network predictions with

respect to the reported interactions across multiple runs using a sub-sampling procedure. Thus,

the stability index indicates how consistent the network predictions are. Together the two criteria

allow us to give us some con�dence about the choice of the hyperparameter �.

We have shown the usability of our method on di�erent datasets. This �rst includes data generated

in silico from known network models that were used to simulate three common trajectories in

single-cell transcriptomics. We have further investigated the network inference using neighbor-

hood selection based on time-ordered data and observe the possibility to study time-evolving

networks as well as lineage-speci�c networks. Lastly, we use our approach to infer gene regulatory

networks on a well studied biological model system with both simulated data and experimental

single-cell RNA-seq data examining blood stem and progenitor di�erentiation in mice.

The �rst simulation dataset provides clear trajectory scenarios to evaluate network models in a

controlled framework. We use that dataset to verify the validity of the neighborhood selection

procedure. With increased network complexity characterized by larger number of edges, we

have observed di�culties in predicting the underlying network structure. However, indirect

edges due to transitive associations could be successfully resolved using neighborhood selection.

Furthermore, we introduced dropouts as an attempt to approximate the datasets generated in silico
to a more single-cell like dataset. We see only mild e�ects on the network prediction performance

by introducing dropouts. However, the data misses many other characteristics of single-cell data

such as the high number of features which oftentimes exceed the number of samples as well as

other sources of noises and biases.

Inferring networks from time-dependent data is an active area of research. We have used synthetic

trajectory scenarios and have been able to predict time-dependent gene regulatory networks

that evolve through time-course data along a linear trajectory. By this, it has become possible to

predict gene-regulatory interactions that are particularly active in a corresponding time frame

and examine the change of network structures along time. Using this approach gene regulatory

networks can be even inferred from complex trajectories by �rst dividing multifurcating tra-

jectories to multiple linear trajectories, separately inferring local networks, and subsequently

assembling them to form a global network. We observe superior network prediction performances

than reconstructing GRNs on a global scale. However, integrating pseudotime analysis to order

the cells in a temporal axis with gene regulatory network reconstruction requires the cells to

be correctly ordered over time and hence might pose the risk of being sensitive with respect to
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the pseudotime algorithm. Nevertheless, we are convinced that in the future the development of

network inference algorithms will consider temporal information in single-cell RNA-seq data in

order to examine dynamical changes along one or multiple trajectories.

The most challenging task was to predict gene regulatory networks in experimental data. The

chosen experimental dataset is a well-studied model of cellular di�erentiation with literature-

curated marker genes and their regulation. We have used a work�ow for network reconstruction

previously applied by Pratapa et al., 2020 and �ltered the datasets by the 500 highest variable genes

and signi�cantly varying transcription factors along the pseudotime. We applied the neighbor-

hood selection method and evaluated the predicted networks following the protocol published by

Pratapa et al., 2020. By this, we establish comparability between the benchmark paper of Pratapa

et al., 2020 to our proposed method. Although the conditions of our the two-fold model selection

criteria could not be ful�lled for two of three datasets, the predicted networks are reasonable

and have decent prediction performances that are able to compete with state-of-the-art GRN

algorithms. Still, the divergence between the good performance prediction on simulated data

and the decent performance on experimental datasets make us think about possible reasons for

this observations. We suspected the high amount of zeros causing high levels of noise and thus

obscuring biological heterogeneity are the reasons that the algorithm has di�culties in predicting

associations among genes.

To remedy this we apply an imputation method that predicts zero counts and denoises the data

simultaneously. However, the results with imputed data were very poor leading to very sparse

network results. Hence, we wonder what e�ect imputation methods have on network reconstruc-

tion in general and if it is even suitable to infer gene regulations from imputed data.

Lastly, we want to address the choice with regard to hyperparameter �. The network results

and its performance of the network reconstruction are highly dependent on the selection of �.

While in the linear trajectory scenario the model selection of � is stable across a stretch of �
value ranges the choice of � does make a strong di�erence in other scenarios (see Fig. 5.8, w/o

dropout). A proper sensitivity analysis on a variety of � value is missing and can be resolved

in future work. However, our observation is that the more complex the data and the underly-

ing network model is, the more sensitive is the resulting network model towards the selection of �.

As a concluding remark, this chapter provides multiple approaches tested on several datasets

to reconstruct networks using neighborhood selection with a two-fold strategy for parameter

optimization. The approach is able to compete with current state-of-the-art network reconstruction

algorithm. However, as we observe a strong distortion of the reconstructed network using dca

imputation we suspect that imputation does not improve network reconstruction in single-cell

RNA-seq data, and intend to extensively investigate the relation between imputation and network

reconstruction in a systematic way in the next chapter.





6 E F F ECT OF IMP U TAT ION ON GENE
REGULATORY NETWORK RECONSTRUCT ION

A single-cell RNA-seq pipeline can be built up with many di�erent preprocessing and analyzing

tools (Luecken et al., 2019; Vieth et al., 2019). In Chapter 3 we introduced some preprocessing

modules that can be combined successively in a data analysis pipeline. They include normalization,

bias correction, imputation and feature selection. Preprocessing the data has a crucial e�ect on

the results obtained from downstream analyses: For example, omitting normalization techniques

that include variance stabilization results in the undesirable detection of lowly expressed genes

with high variances when performing a di�erential expression analysis. Or, not correcting for

systematic biases results in the detection of unwanted confounding factors. In these cases omit-

ting the preprocessing steps may distort the results. Certainly, it matters which tools in which

context have been used. Previous studies have systematically evaluated di�erent combinations of

preprocessing modules on the result of various analyses steps (Hou et al., 2020; Vieth et al., 2019).

Vieth et al., 2019 studied the interplay between di�erent combinations of modular tools and

their e�ect of di�erential expression analysis. Hou et al., 2020 benchmarked imputation methods

with regard to di�erential expression analysis, clustering and visualization as well as pseudotime

analysis. However, it still remains unclear how preprocessing a�ects network results obtained by

network reconstruction algorithms (Blencowe et al., 2019).

As we observed in the previous chapter the imputation of single-cell RNA-seq data resulted

in a drop of performance when reconstructing gene regulatory networks with neighborhood

selection. Hence, we are particularly interested how the inclusion of a preprocessing module,

here imputation, a�ects the performance of network reconstruction in general. To study this

question, we systematically evaluated di�erent combinations of imputation methods and GRN

reconstruction methods using multiple experimental datasets. We build upon previously published

benchmark studies and select the best-performing computational tools for both imputation and

network reconstruction (Hou et al., 2020; Pratapa et al., 2020).

The chapter is based on an article published in Patterns (Ly et al., 2021). It is structured by �rst,

an overview of current imputation methods; second, the impact of imputation on gene-gene

relationships; third, the systematic evaluation of network results obtained from imputed data;

fourth, the analysis of obtained network models with regard to network similarities and motif

analysis and �nally a discussion. The article can be read under this link: https://doi.org/10.

1016/j.patter.2021.100414

6.1 state-of-the-art imputation methods

As a common preprocessing step imputation methods are used to predict missing values and to

smooth the data in single-cell RNA-seq experiments. This reduces the noise level and is ought
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to facilitate downstream analyses. In contrast to normalization which corrects for di�erent read

depths between cells ensuring comparability across samples and genes, imputation methods

estimate unobserved read counts in cases where the method deems that experimental or technical

noise has led to the absence of a count (dropouts). In some imputation tools a normalization step

is integrated while in other tools imputation can be applied on previously normalized data.

Up to date, a wide range of imputation methods are publicly available (Chen et al., 2018a; Dijk

et al., 2018; Eraslan et al., 2019; Huang et al., 2018; Linderman et al., 2018; Lopez et al., 2018;

Mongia et al., 2019; Tang et al., 2020; Wagner et al., 2017). The models that the methods are based

on underlie di�erent assumptions on the data distributions and can predict linear or non-linear

gene-gene relations. We present a few state-of-the-art methods for data imputation that are

categorized into four three categories: model-based, smoothing-based and deep-learning-based

algorithms (Hou et al., 2020).

Derived from Hou et al., 2020, Table 6.1 provides an overview of selected available methods and

their underlying concept with their respective assumptions on the data distributions. Although

the list does not provide a complete list of publicly available tools it provides a rough overview

about state-of-the-art methods and their underlying methodology. Other tools that are not listed

have a similar mathematical concept implemented. Below, we further describe brie�y how the

categorized approaches work.

Table 6.1: Tools for scRNA-seq data imputation. Selected methods for data imputation categorized

into three main concepts. Distributional assumption is the underlying hypothesis that the data is arisen

from. Possible scenarios predicting gene-gene relation are indicated as an output. NB: negative binomial

distribution; ZINB: zero-in�ated negative binomial distribution.

Tool Author, Year Concept

Distributional

assumption

Gene-gene

relation predictions

knnsmooth Wagner et al., 2017 smoothing NB linear

magic Dijk et al., 2018 smoothing

low-rank

representation

non-linear

saver Andrews et al., 2018 modeling NB linear

dca Eraslan et al., 2019 deep learning NB/ ZINB non-linear

Smoothing-based methods. These imputation methods identify similar cells by their gene

expression pro�les, for example, by arranging them in a graph structure (i.e. k-nearest neigh-

bor (kNN) graph). The expression values are smoothed or di�used through similar cells. By this,

all zero as well as non-zero values are adjusted accordingly.

Model-based methods. This group of imputation methods aims to model zero counts using

probabilistic models. Here, the models attempt to di�erentiate between biological and technical

zeros and impute expression values for the latter case.
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Deep-learning-based methods. Deep-learning approaches are able to impute non-linear gene-

gene relationships. They are able to represent the gene expression matrix in a hidden non-linear

latent space. Usually, a normalization step as well as dimensionality reduction (by using the latent

space) is integrated within the tools. The imputed values are then estimated from the latent space.

6.2 evaluating network models with imputed data

Table 5.1 and Table 6.1 provide an overview about selected tools reconstructing gene regulatory

networks and data imputation, respectively. The aim is now to evaluate the e�ect of imputa-

tion methods on the predicted networks on di�erent experimental datasets. The combination

between imputation and network inference on di�erent datasets results in a cubic evaluation

matrix. To manage this we restrict our selection to state-of-the-art computational tools, both for

imputation and network inference, that perform most accurately and have been recommended

in recent benchmark studies (Hou et al., 2020; Pratapa et al., 2020). Note that we excluded the

network reconstruction algorithm SINCERITIES from our analysis as it performs very poorly on

experimental datasets. Consequently, we developed a computational pipeline to study seven cell

types that were obtained from di�erent single-cell RNA-seq experiments, using four state-of-the-

art imputation methods combined with the top performing GRN methods as depicted in Figure 6.1.

Information on the seven cell types was derived from �ve experimental single-cell RNA-seq

datasets: human embryonic stem cell (hESC) (Chu et al., 2016), human hepatocytes (hHep) (Camp

et al., 2017), mouse embryonic stem cell (mESC) (Hayashi et al., 2018), mouse dendritic cells (mDC)

(Shalek et al., 2014) and mouse hematopoietic stem cells (mHSC) (Nestorowa et al., 2016) that

were further separated into the following subtypes: erythrocytes (mHSC-E), granulo monocytes

(mHSC-GM) and lymphocytes (mHSC-L). We preselected the datasets according to signi�cantly

varying transcription factors and the most highly variable genes across pseudotime.

For the four imputation methods, we chose the following methods summarized in Table 6.1 before:

two smoothing-based tools magic (Dijk et al., 2018) and knn-smoothing (Wagner et al., 2017);

a Bayesian model-based tool saver (Huang et al., 2018) and a deep-autoencoder based tool dca

(Eraslan et al., 2019). We included dca because the authors speci�cally expect to improve network

reconstruction. A baseline model was established using normalized but unimputed data.

As for GRN reconstruction, we selected the following tools: an information-based tool PIDC

(Chan et al., 2017), and two tree-based tools GENIE3 (Huynh-Thu et al., 2010) and GRNBoost2

(Moerman et al., 2019). The PPCOR (Kim, 2015) method is based on partial correlations and as

such also a contender for a good network reconstruction method. However, PPCOR results on

single-cell data are clearly inferior to those obtained with any of the �rst three methods as shown

in Supp. Fig. A2. While we have included PPCOR in this performance comparison, we focus the

study of the relationship between imputation and network reconstruction on the other three

methods.
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Figure 6.1: Systematic evaluation of network reconstruction from imputed
and unimputed data.
Cubic evaluation matrix consists of seven cell types from experimental scRNAseq

data, four imputation methods (see text) and three network reconstruction algorithms.

Imputed and unimputed (“noimp” in the Figure) scRNAseq data provide input expres-

sion matrices which are used by the gene regulatory network (GRN) reconstruction

algorithms using the BEELINE framework (Pratapa et al., 2020). We evaluate the

performances using the early precision ratios (EPR) and compare network results

across di�erent models. Additionally, we inspect the e�ect of gene-gene correlation on

prediction classes (true positives (TP), false positives (FP), false negatives (FN)) before

and after imputation, and we search for common motifs within the reconstructed net-

works. hESC: human embryonic stem cells, hHep: human hepatocytes, mDC: mouse

dendritic cells, mESC: mouse embryonic stem cells, mHSC-E, mHSC-GM, mHSC-L:

mouse hematopoietic stem cells - erythrocytes, granulo monocytes, lymphocytes.

In the remainder of this chapter we use the term “model” to refer to the combination of a GRN

reconstruction algorithm with an imputation method or no imputation, respectively. We obtain the

evaluation networks from the STRING database – a functional protein-protein interaction network

(Szklarczyk et al., 2019) as well as cell-type speci�c ChIP-seq derived networks provided by Pratapa

et al., 2020. Studying gene regulation we only consider edges outgoing from transcription factors

in the reconstructed networks. To evaluate the performance of each network model we use the

evaluation framework BEELINE (Pratapa et al., 2020) (see Appendix A.3.4). Furthermore, we

inspect the reconstructed network and compare the results with one another.

6.2.1 Imputation does not improve the performance of net-

work reconstruction in general

A compact overview of the results obtained under all the models compared to the STRING network

is provided in Figure 6.2. Analyses have been performed on sets of signi�cantly varying transcrip-

tion factors (TFs) along with 500 and, respectively, 1000 most highly variable genes (HVGs). Each

box summarizes results for one GRN reconstruction method. The performance measurements

achieved by the respective model on the seven cell types are arranged on a vertical axis. Two

performance measures have been computed for each pre�ltered gene set correspondingly: the

early precision ratios (EPR) (Pratapa et al., 2020) which are shown in the three boxes of Fig. 6.2A,
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and the log2-ratios between EPRimputed and EPRunimputed which are shown in the three boxes

of Fig. 6.2B. EPR refers to the number of true positive interactions within the top-k network

normalized by the network density. Here, k refers to the number of positive interactions found

in the evaluation network. An EPR of 1 indicates a random predictor. The second performance

measure compares the performance of an imputation method relative to the performance of not

using imputation. Here, a value of zero means no change, while a negative value indicates a

detrimental e�ect of the imputation.

The EPR scores for unimputed data that were reported by Pratapa et al., 2020 could be reproduced

with minor deviations in our analysis. The EPR scores are illustrated as a dashed line in Figure

6.2A. Results vary strongly with the datasets; the scores range from approximately 2 (for the mDC

dataset) to 8 (for mHSC-GM), with less variation across GRN reconstruction algorithms. Applying

imputation with either dca, knnsmooth or magic, does not improve the performance in any of the

GRN reconstruction methods. While in mDC data the performance scores in each model scatter

around the unimputed model, in mHSC-GM data the performance scores vary strongly, dropping

from 8 to just below 5 for the magic/GENIE3 model. As pointed out above, for PPCOR we observe

considerably lower performance scores compared to the remaining GRN algorithms (Supp. Fig.

A2). The respective EPR scores indicate predictions comparable to a random model that we decide

to exclude PPCOR from further evaluations.

Focusing on the change of performance due to imputation as measured using the log2-ratios

between imputed and unimputed EPR scores, we observe that only saver is able to improve the

performance (Fig. 6.2B). The saver/PIDC model achieves log-fold-ratios up to +0.5 in 5 out of

7 datasets and 2 out of 7 datasets combined with GENIE3 or GRNBoost2. All other imputation

methods worsen the performance with log-fold-ratios down to -1 which represents a perfor-

mance decline of 50% in comparison to the unimputed model. Generally, the performance results

regarding the number of most highly variable genes are highly consistent suggesting that the

predictions are irrespective of the number of genes selected as an input.

Furthermore, we use cell type-speci�c networks derived from ChIP-seq data as an evaluation net-

work (Supp. Fig. A2). Here, absolute EPR scores report very poor performances close to or worse

than a random predictor regardless of the model or the number of input genes across all datasets.

Thus, the ChIP-seq network does not serve us well for distinguishing between methods in terms

of their accuracy. The STRING database, on the other hand, may contain indirect interactions

reported in the protein-protein interaction data. We will return to this issue below in the context

of network motif analysis. Nevertheless, independent of the evaluation network we do not see an

improvement of GRN reconstruction if imputation has been used in advance.

We further asked the question whether data quality as given by sequencing depth is a determinant

of the success of imputation prior to GRN reconstruction. To answer this, we simulated cells in
silico by downsampling the gene counts of the given experiments to 60% of their sequencing

depth, thereby lowering the detection rate (Supp. Fig. A3). The hope would be that imputation has

a more bene�cial e�ect in these simulated data sets as compared to the original, higher quality

data. However, similar results as above were obtained when we subjected the lower quality in
silico data to our analysis pipeline (Supp. Fig. A4). Like with the original datasets, saver/PIDC
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Figure 6.2: Impact of imputation on network reconstruction performances.
Results under all models with two di�erent sets of genes compared to the STRING

network. (A) Absolute EPR scores across imputation methods (x axis label) and GRN

inference algorithms (box) on seven di�erent cell types (coded by shape and color).

Dashed lines represent EPR scores obtained without imputation. EPR = 1 corresponds

to a random predictor. (B) log2-ratios between EPR scores obtained using imputed and

unimputed data. Log2-ratio = 0 represents no change in performance (grey dashed

line) after imputation.

obtain the highest improvements compared to the downsampled unimputed datasets. Nonetheless

on downsampled data, dca, knnsmooth and magic are able to improve performance in some of

the tested datasets, although not consistently.

Overall, our results demonstrate that model performances are highly dataset-dependent. Applying

imputation on the original data resulted mostly in a drop of performance of GRN reconstruction

compared to the unimputed model, although potentially improving performance on low-quality

data tested in silico.

6.2.2 Imputation method rather than GRN method determines

results

The analysis presented in the preceding section raises the question how strongly either the choice

of imputation method or of network reconstruction algorithm a�ects the results. To answer this

question we �rst address the variability in results when varying either the one or the other, and
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then study similarity among computed networks across the models.

With regard to the performance variability, we compare the variance of EPR log-fold-ratios under

a �xed GRN reconstruction algorithm while varying across imputation methods, and, vice versa,

varying the GRN algorithm while keeping the imputation method �xed. As Figure 6.3A shows,

EPR log-fold-ratios vary much more strongly across the imputation methods than across GRN

methods (wilcoxon-test p-value ∼7.86×10-6). Since this analysis aggregates all datasets jointly,

it discards the di�erences between datasets. Comparing e.g. hESC and mHSC-L, we see large

di�erences between the distributions of variances across imputation methods and GRN algo-

rithms, respectively. To resolve this, we perform an analysis of variance (ANOVA) with respect

to the EPR log-fold-ratios for each dataset separately. The results give evidence that imputation

has a larger contribution to the variance of performance scores compared to GRN algorithms,

prevalent in all datasets except mHSC-L (Supp. Tab. A1). This implies that the choice of imputation

method determines the quality of results to a larger degree than the choice of GRN reconstruction

algorithm.

A direct consequence of this observation is the suspicion that the topology of the predicted

networks may also be largely determined by the imputation method and to a lesser degree by the

GRN reconstruction method. To test this, we inspect the overlap among the 500 most important

gene-gene interactions of the computed networks. Here, we calculate pairwise similarity scores

using the Jaccard index and use it to hierarchically cluster the networks. We found that networks

tend to cluster with respect to imputation methods but not GRN methods (Fig. 6.3B). To make this

more precise, we use as a measure of cluster purity the adjusted rand index (ARI) (Gates et al., 2017;

Hubert et al., 1985). ARI coe�cients calculated across the seven di�erent cell types show higher

cluster purity when labeled with imputation methods as opposed to network reconstruction

algorithms (Fig. 6.3C).

We conclude that the imputation method largely determines model performance, leaving little

in�uence to the subsequent GRN reconstruction algorithm. The choice of imputation method

further biases the outcoming network leading to little consensus across the most important

recovered gene-gene interactions as computed based on di�erent imputation methods.

6.2.3 Inflation of gene-gene correlations and its impact on the

network topology

Based on the reported results, we examine how imputation generally a�ects gene-gene corre-

lation coe�cients. Although not all network reconstruction algorithms use correlation-based

measures to recover interactions, we still use Pearson’s correlation coe�cient as a proxy for the

association between two genes. Subsequently, we will investigate whether the interactions within

the reconstructed networks a�ect the global network structure.

Exploring the overall distributions of gene-gene correlations after imputation on single-cell

RNA-seq data we observe a strong enhancement in gene-gene correlations (Fig. 6.4A). Generally,

gene-gene correlations go from almost no correlation when computed using unimputed data to

very good anti- and positive correlations due to imputation. Here, magic leads to the most extreme

enhancement. Surprisingly, even the unimputed distribution within the mDC data is skewed
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Figure 6.3: Variability in network results largely stems from imputation
methods.
(A) Variance distribution of EPR scores across imputation methods. Left violin plot

keeps the GRN algorithm �xed and depicts the variances in EPR log-fold-ratios for

each dataset across the imputation methods. Right violin plot shows the variances for

�xed imputation methods. **** corresponds to p-value ≤ 0.0001 by wilcoxon rank sum

test. (B) Clustered heatmap of network similarities measured by Jaccard index within

top 500 reported interactions. Columns (horizontal axis, above) are color-coded by

imputation methods. Rows (vertical axis, left) are color-coded by network inference

algorithms. More pure clusters are obtained by imputation than by GRN algorithm.

(C) Adjusted rand index (ARI) obtained for clustering results in each cell type by

annotation label “algorithm” (pink) and “imputation” (blue), respectively.

towards positively correlated values. We have checked that this is not due to selection of the

most highly variable genes, but rather already present in the dataset. Figure 6.4B exempli�es the

association between three genes before and after imputation, transforming very weak correlations

to almost perfect (anti-)correlations. This particular set of gene interactions was observed in the

top-k network computed with GRNBoost2 on hESC data, comparing no imputation with dca

imputation. Indeed, we commonly �nd such associations across di�erent datasets and imputation

methods.

In order to see what impact this enhancement of correlation has on the network structure we next

investigated the network density after imputation in relation to the unimputed data using log-

ratios (Fig. 6.5A). Here, we looked at the top-k networks according to the EPR score. Imputation

methods alter the network densities with log-ratios ranging from -0.5 and +0.5 in hESC, hHep,

mDC and mESC data, except for saver and PIDC in hESC data with a slightly higher value of 0.59.

For the three subtypes of mHSC data we observe larger changes in network density reaching

log-ratios beyond ±1. Especially here, imputations combined with GENIE3 and GRNBoost2 lead

to a sparser network whereas all combinations of imputation methods with PIDC lead to a denser

network structure. We assume that this is due to redistribution of edges occurring in the tree-based

algorithms which is also re�ected in the node degree distribution (Fig. 6.5B).

Before imputation we observe a heavy tail node degree distribution predominantly in GENIE3

and GRNBoost2 indicating the presence of many hub nodes. After imputation the heavy tail

disappears when using dca, magic and knnsmooth while it still exists when using saver. Generally,
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Figure 6.4: Gene-gene correlations before and after imputation.
(A) Gene-gene correlation distributions obtained in each cell type color-coded by

imputation method among top 500 most variable genes and signi�cantly varying TFs.

(B) Paired density scatter plots before and after imputation with dca. GRNBoost2

reported the pairwise interactions between ASXL1, SNAPC3 and ZNF488 among the

top-k network after imputation in hESC data.

PIDC does not lead to this structural change in node degree distribution.

As a conclusion, the enhancement of gene-gene correlations due to imputation appears to lead to

notable changes in the topology of the predicted gene networks.

6.2.4 Increased correlation values lead to inflation of false pos-

itive predicted interactions

Since we have observed that imputation may decrease the performance of GRN network recon-

struction, we attempt to understand how the altered correlations in imputed data a�ect network

reconstruction. To this end, we explore the change of edge ranks and correlation values of the

reported (i.e., positively predicted) and missed (i.e., negatively predicted) interactions.

Overall, the ranks of true positive (TP) interactions reported in the unimputed data change signif-

icantly after imputation (Fig. 6.6A, Supp. Tab. A2, Supp. Fig. A6). Some of the previously reported

TP interactions could be recovered after imputation. Nevertheless, the majority of previously

reported TP interactions shift after imputation towards the end of the gene interaction ranking list,

and are considered less important. As a consequence, other interactions become more important.

Therefore, we look at the change of correlation of positively predicted interactions before and after

imputation. Figure 6.6B (and Supp. Fig. A7) show scatter plots of gene-gene interactions with the

absolute values of correlation coe�cients before imputation on the horizontal axis and the correla-

tion coe�cient after imputation on the vertical axis. For each model, red dots are the true positive

interactions, yellow are the false positives, and blue are the false negatives. The general shape of

the scatter plot reiterates the observation that correlation coe�cients tend to get enhanced by

imputation. For each class we computed regression lines. For better recognition of true positives
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Figure 6.5: Structural changes in inferred networks.
(A) Change of node density before and after imputation. Log2 ratios between density

(after imputation) and density (before imputation) are color-coded. Positive values

represent a denser whereas negative values represent a more sparse network with

respect to the unimputed model. (B) Node degree distribution across all models. Y-axis

is log-scaled.

after imputation, one would hope for the TP regression line (shown in red in Fig. 6.6B) to lie well

above the others – which is not really the case. We generally observe a strong enhancement of

correlations as indicated by the height of the intercept of the regression lines. In 11 out of 12 cases

the regression lines for both true and false positive predictions are almost congruent with each

other. Note that the red color dominates the other ones and the dots below a red one are not visible.

Interestingly, we see remarkably di�erent regression lines if we take the false negative (FN,

blue) interactions into account. The majority of FN correlations remain low after imputation,

as indicated by the height of the intercept in Fig. 6.6B. Presumably, the FN correlation values

that actually get enhanced get lost in the background due to the in�ation of FP correlations

in the inferred top-k network. Thus, the boost of correlation values makes it harder for GRN

reconstruction methods to separate the actual signal from the background.
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Figure 6.6: Impact on predicted inter-
action classes after imputation.
(A) Change of edge ranks in true posi-

tive (TP) interactions identi�ed by unim-

puted model after imputation in hESC data.

Dashed line indicates the rank threshold

corresponding to the top-k network. Inter-

actions below the dashed line represent

TP within the respective model. Low edge

ranks represent highly important interac-

tions. (B) Scatter plots comparing correla-

tion values between genes before vs after

imputation. Each scatter plot corresponds

to one model in hESC data. True positives

are red crosses, false positives are yellow

dots, and false negatives are blue dots. For

each scatter plot we �t one regression line

for TPs, FPs, FNs, respectively, with the

corresponding color. For visualization pur-

poses we added a background color to the

lines to better distinguish the line and the

dots. Positively predicted interactions dif-

fer clearly from FN interactions.

Many GRN reconstruction methods have the goal of distinguishing direct interactions from transi-

tively inferred ones (Ghanbari et al., 2019). Therefore, we tested whether the GRN reconstruction

algorithms analyzed in this study are able to make the necessary distinction. Given three genes X,

Y, and Z where X is correlated with Y, and Y is correlated with Z, these genes form a network

chain. However, oftentimes by transitivity these associations seem to imply a correlation between

X and Z, thus forming a network loop. Generally, in network theory it is challenging to distinguish

chains from loops and algorithms deal di�erently with it. PIDC constrains the inferred interactions

based on a con�dence score to discriminate between direct and indirect interactions. GENIE3 and

GRNBoost2 allow the user to set a parameter for �ltering out presumably indirect interactions.

In this context, we analyze how the models deal with the identi�cation of network chains from

imputed data among the top-k networks. Errors are counted if a supposedly false loop is detected

(false negative, FN) or a chain is detected instead of a loop (false positive, FP). However, STRING

is less suited as an evaluation network in this context because false positive counts might be

overestimated upon comparison to STRING. This is due to the fact that the STRING database is

not designed to contain only direct interactions. For example, protein complexes are reported in

STRING and may contain indirect associations. Therefore, in this analysis we use the ChIP-seq

derived networks as the more appropriate evaluation networks. Figure 6.7A shows true positive

(TP) counts together with the error counts in hESC data. Here, we observe mainly lower motif

counts after imputation. In general, low count numbers in the motif search are indicative for

isolated edges between a gene pair. Hence, the algorithms detect fewer connected edges among

the top-k networks.

In order to measure the performance between true and false predictions we also calculate the true
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positive rates (TPR) and false discovery rates (FDR) for each network inference and imputation

method applied to each dataset (Fig. 6.7B). Ideally, the values for TPR should be higher (yellow)

while the values for FDR stay low (purple). Comparing the TPR and FDR scores after imputation,

however, we do not see systematic di�erences. We conclude from this observation that the per-

formance of network motif detection among the top-k networks does not seem to be a�ected by

imputation. Hence, either imputation methods do not necessarily induce transitive correlations

or the network reconstruction methods deal well with transitively induced correlations.

Figure 6.7: Network motif counts across models.
(A) Counts of positively and negatively predicted network chain motifs in hESC data

for each model. TP network chains agree both in prediction and evaluation networks

(ChIP-seq derived network). FP network chains are falsely positively predicted chains

being actual feed-forward loops in the evaluation network. FN network chains are

falsely predicted as being feed-forward loops when they are actually network chains

in the evaluation network. (B) TPR and FDR scores for network chain motifs obtained

by statistics in A). mDC dataset is not included as no motifs could be found among the

top-k network. Ideally, TPR values should be close to 1 whereas FDR values should

be close to 0.

6.3 discussion

The advent of single-cell transcriptomics has rekindled the interest in reconstructing gene reg-

ulatory networks from transcriptomics data, primarily for two reasons. Firstly, it is of great

interest to study regulation from single-cell data in the hope to eventually uncover how, e.g.,

di�erentiation processes proceed. Secondly, the main obstacle in gene network reconstruction

from bulk transcriptome data appears to be the low number of available samples in comparison

to the large numbers of genes. For example, simulations have demonstrated that high quality

reconstruction of gene networks requires a much larger number of samples than the number

of genes (Ghanbari et al., 2019). Seeing each single cell as a sample, the expectation arose that

single-cell transcriptomics would solve this conundrum by providing a su�ciently large number
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of samples, thus putting high quality network reconstruction within reach.

It was sobering for us to see that due to the sparse nature of single-cell RNA-seq data, indi-

vidual cells cannot contribute as much information to network reconstruction as bulk samples.

Indeed, preprocessing of single-cell data for data analysis is crucial (Vieth et al., 2019), and is

implemented in many computational pipelines. Imputation has become a possible element of this

preprocessing in the hope it would supplement the missing information. In this study we have,

however, demonstrated that the choice of imputation prior to GRN reconstruction in�uences the

results in a two-fold manner: First, it a�ects the performance of network reconstruction leading

to highly variable accuracies and, secondly, the reconstructed network is determined more by the

imputation method than by the choice of network reconstruction method.

The focus of our work on the interplay of the imputation step with GRN reconstruction clearly

also limits the scope of our work: We have not attempted to compare GRN methods as such, nor

to improve GRN reconstruction. Many other publications are dedicated to these issues, with GRN

reconstruction being a particularly hard problem as evidenced by the overall meager results that

can be obtained (Chen et al., 2018a; Pratapa et al., 2020). Still, what has been clearly understudied

is the interdependence between imputation, which is routinely done in single-cell data analysis,

and GRN reconstruction.

We have systematically evaluated the e�ect of imputation on GRN reconstruction using exper-

imental scRNAseq data on seven cell types. In agreement with previous studies, we see that

imputation may boost gene-gene correlations in a questionable way, thereby introducing false

positive edges in a network (Breda et al., 2019; Steinheuer et al., 2021). Steinheuer et al., 2021

evaluated the impact of data imputation on network inference via a gene correlation analysis

using simulated data. There, the authors downsampled bulk RNA-seq data, applied imputation

methods and compared the gene module preservation and edge recovery upon imputation. Similar

to our observation they notice a higher number of false positive interactions after imputation.

We have provided evidence that these false positives may lead network algorithms to reinforce

dependencies that have been introduced by imputation. For example, regression-based methods

like GENIE3 and GRNBoost2 will be strongly predisposed to including imputation-generated

correlations into a network. Table 6.1 recalls which assumptions imputation methods make with

respect to signal distribution and the linear or non-linear nature of interactions. Likewise, GRN

reconstruction algorithms are each based on their own respective assumptions (Table 5.1). This

may lead to reinforcement of imputation decisions or, generally, to the identi�cation of wrong

gene-gene dependencies. Andrews et al., 2018 have warned of this circularity before, albeit in the

context of di�erential expression analysis (Andrews et al., 2018). Consistent with our �ndings,

Andrews et al., 2018 showed that saver introduces the smallest number of spurious gene-gene

correlations. We speculate that the combination of saver/PIDC works well because saver is a

model-based imputation method and PIDC is a mutual-information based algorithm discretizing

the data beforehand; the two approaches follow independent assumptions complementing one

another, thus avoiding the use of redundant information.

In this study we have tested our hypothesis on experimental datasets with fairly large library

sizes and gene detection rates (Supp. Fig. A3). In order to test our hypothesis on more shallowly
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sequenced single-cell experiments we in silico lowered the detection rate introducing more zero

counts. These results again show that using saver with PIDC improves results in most cases. Thus,

if single-cell data is too sparse to avoid imputation altogether, we recommend the use of saver and

PIDC. It should be noted, though, that we are not discouraging imputation in general. There may

be many other applications that are not studied here, where imputation can be useful, depending

on the type of analysis that is subsequently performed.

We believe that the described interdependence among processing steps within a data analysis

pipeline is exemplary for many data analysis tasks. Software is generally being built to allow

the user to freely combine algorithms, each dedicated to a particular step of the analysis. Little

attention is given to the possible in�uences one algorithm might have on the behavior of the

other. We are not referring to a syntactic interaction in terms of data structures or variables

passed, since good, modular software design will exclude such con�icts between processing steps.

Much rather, as we demonstrated for imputation and GRN reconstruction, decisions taken within

one algorithm may predispose the results that can be obtained in a downstream analysis step.

Thus, user friendliness in pipeline design allowing the free combination of algorithms may carry

substantial risk with respect to the scienti�c validity of data analysis results.

Limitations and future insights

The �ndings of the study presented have some limitations that we want to address here. Above

all, the wiring of the cell is still not fully understood and thus the choice of gold standard dataset

for GRN reconstruction will necessarily remain problematic. We follow the literature in that we

use STRING, containing protein-protein interactions, and cell-type speci�c datasets of ChIP-seq

derived interactions. However, all methods studied have di�culties in identifying interactions

from the latter dataset. Thus, we learn more from the STRING database although it does not

contain cell type speci�c information.

There is further room for improvement in exploiting pseudotime derived from single cell data.

However, the methods geared towards this goal follow di�erent principles and Pratapa et al., 2020

have shown that network reconstruction algorithms using pseudo time information are very sen-

sitive to the temporal ordering of the cells. Thus, in addition to studying the dependence between

imputation and GRN reconstruction, it would also be necessary to study the interplay between

pseudotime reconstruction method and GRN reconstruction. The preeminent question following

from our study is clearly how one can best utilize the large number of cellular transcriptomes for

the purpose of GRN reconstruction without initially relying on imputation.
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In this thesis we introduce how transcriptome pro�ling evolve from experiments based on bulk

technologies to single-cell RNA-seq technologies (Chapter 2) and describe what computationally

challenges and steps need to be considered in analyzing single-cell RNA-seq data (Chapter 3). We

show how we can assess the variability within biological experiments and in a simulation frame-

work (Chapter 4) and how we study gene regulation in the context of gene regulatory networks

as well as how preprocessing may in�uence the network prediction performance (Chapter 5-6).

The research �eld of single-cell transcriptome pro�ling emerges rapidly allowing for sequencing

up to millions of cells. With the increasing amount of pro�led sample sizes using single-cell

technologies, the expectation of resolving gene regulatory networks appear. However, successful

reconstruction of gene regulatory networks depend on multiple factors: (i) su�ciently large

biological variability across samples and (ii) a good data quality ensuring to have su�cient infor-

mation about gene expression level, i.e. the rate of detected genes in a single-cell experiment.

In Chapter 4 we show how challenging it has been to reveal the biological heterogeneity that

we are interested in a single-cell experiment. This study has shown how the technical variability

covered the biological signal preventing us from studying di�erentially expressed genes across

In�uenza A infected single cells. We were able to identify defective interfering particles that

co-infect cells and get ampli�ed as part of the viral replication procedure. The co-infection and

ampli�cation of the defective interfering particles might compete with viral transcripts leading

to a decrease in the viral reproduction rate. Although our results have not been able to reveal

any explanation arising from the host cells, we want to address and emphasize on the di�culties

in analyzing the single-cell experimental data. These di�culties have led us to implement a

simulation framework to study the variability present in single-cell transcriptome data. We show

that in our simulated dataset the technical variability, in the course of the sampling process, arises

from the Poisson distribution. The simulation framework has allowed us to study other technical

characteristics as the integration of bulk and single-cells into the same topology.

In fact, the methodology of projecting bulk and single-cell samples in the same topological

embedding using UMAP has been used in other research studies within our group as well. Vir-

ginie Stanislas has applied this method on one of her research studies projecting immune cell

(T-cell) bulk RNA-seq samples onto a pre-calculated embedding using single-cell RNA-seq data

of peripheral blood mononuclear cells (PBMCs) that has been �ltered for T-cell population. In

another project Aybuge Altay has used this procedure to project bulk and single-cell ATAC-seq

data obtained from PBMC samples onto the same embedding. ATAC-seq is a technology that

allows the quanti�cation of accessible DNA regions referring to open chromatin regions. Thus,

the methodology of projecting bulk and single-cell samples is not only applicable as part of our

simulation study but can be also transferred to experimental datasets, for both RNA-seq and
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ATAC-seq data.

Furthermore, we have investigated similarity measures and have observed a bias towards samples

in which the gene detection rate was high. Cells with a higher amount of detected genes have

a "better" similarity score when we compare them with its reference bulk sample. This might

pose a risk because of this purely technical factor samples with a generally higher detection rate

might appear more similar than those with a lower gene detection rate. Hence, this needs to be

taking into account when measuring cell similarity measure on read count data only. Overall, this

chapter provides a solid basis to understand and assess the heterogeneity regarding the technical

variability. Along this investigation other important technical features could be studied that needs

to be considered when analyzing single-cell transcriptome data.

The next aim of the thesis has been to study gene regulatory networks using single-cell transcrip-

tome data. We have reconstructed gene regulatory networks using the neighborhood selection
procedure. We have developed a methodology based on a two-fold selection criteria to select for

the hyperparameter �. We have successfully applied this method on several scenarios simulating

dynamical processes evolving through a continuous time-dependent trajectory. This provides

a fundamental analysis for future studies to reconstruct gene regulatory networks that evolve

dynamically capturing di�erent stages of cell di�erentiation. Our attempts to apply the neighbor-

hood selection procedure on experimental data has not shown encouraging results. We reason this

moderate performance due to the high numbers of zero thus the increased level of technical noise.

For this reason, we have applied imputation but observed a drop in the prediction performance

relating to a random predictor. This observation has guided us to the question if imputation

generally improves or hinder the reconstruction of gene regulatory networks. Due to the lack

of consensus pipeline and con�icting attitudes whether or not imputation facilitates network

reconstruction, we systematically evaluated the e�ect of data imputation on the performance

of network inference using state-of-the-art algorithms. The insights gained from the studies

are valuable and let us conclude that adding information by imputation might bias and obscure

network structures towards the imputation method that has been applied prior to the network

algorithm.

Hence, for future studies we recommend avoiding the use of imputation but to rather aggregate

closely related cells to form small-sized populations of cells (so called pseudo-bulks). As a result,

the pseudo-bulk samples have eventually a smaller fraction of zero counts such that network

reconstruction algorithms do not fail in performing due to the large amount of zero counts.

However, it is important to keep in mind that the biological variability needs to be maintained

as much as possible while "�lling up" the dropouts when aggregating the cells. In an extreme

scenario of repetitively aggregating samples, one indeed ends up with highly informative samples

with almost no zero counts but only little variation across the small sample sizes, similarly to

bulk RNA-seq experiments. Thus, during the aggregation process one needs to �nd a trade-o�

between information/signal content versus biological variability in order to be able to reconstruct

gene regulatory networks successfully.

In conclusion, we have dissected single-cell transcriptome data in terms of heterogeneity and used

the biological heterogeneity in order study gene regulatory networks. This thesis contributed



concluding remarks 99

valuable insights for the single-cell community and provides a fundamental basis to develop

further algorithms reconstructing gene regulatory networks using single-cell transcriptome data.





ABBREV IAT IONS

AUROC area under receiver operating characteristic curve

bp base pair

cDNA complementary DNA

CLP common lymphoid progenitor

CMP common myeloid progenitor

CPM counts per million reads

CV cross validation

DIP defective interfering particle

dNTP deoxynucleotide

ddNTP dideoxynucleotide

EP early precision

EPR early precision ratio

ERCC External RNA Control Consortium

FACS �uorescence-activated cell sorting

GMP granulocyte/ macrophage progenitor

GTEx Genotype-Tissue Expression

GRN gene regulatory network

HSC hematopoietic stem cell

HVG highly variable gene

IAV In�uenza A virus

KL Kullback-Leibler

kNN k-nearest neighbor

MI mutual information

MEP megakaryocyte-erythrocyte progenitor

mHSC mouse hematopoietic stem cell
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MOI multiplicity of infection

MPP multipotent progenitor

ODE ordinary di�erential equation

PCA principal component analysis

PCR polymerase chain reaction

PID partial information decomposition

PFU plaque forming unit

STRT single-cell tagged reverse transcription

sci-RNA-seq single-cell combinatorial-indexing RNA-seq

TF transcription factor

TPM transcripts per million reads

t-SNE t-distributed stochastic neighbor embedding

UMAP Uniform Approximation and Projection

UMI unique molecular identi�er
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A APPEND I X

a.1 experimental procedures and data process-
ing

Procedure for single-cell RNAseq in IAV-infected cells. The single-cell lysates (5 µL) were

transferred to a 96-well plate, and subjected to a protocol for Smart-seq2 that allows for the gener-

ation of full-length cDNA and sequencing libraries, according to Picelli et al., 2014. Brie�y, 0.1 µL

of 1:80,000 External RNA Control Consortium (ERCC) RNA spike in controls, 1 µL of dNTPs (10

mM), and 0.1 µL of oligo-dT30VN (5’-AAGCAGTGGTATCAACGCAGAGTACT30VN-3’; 100 µM)

were added to the 5 µL of cell lysate (on ice). The mixture was incubated for 3 min at 72 °C followed

by 10 min at 10 °C. After hybridization of oligo-dT to the polyA tail, reverse transcription was per-

formed: to each well a master mix containing 0.25 µL RNase-Inhibitor (40 U/µL; �nal amount/rxn

10 U), 3.4 µL SuperScript First Strand Bu�er (5x; �nal amount/rxn 1x), 0.85 µL DTT (100 mM;

�nal amount/rxn 5 mM), 3.4 µL Betaine (5 M, �nal amount/rxn 1 M), and 2.04 µL MgCl2 (50 mM;

�nal amount/rxn 6 mM) were added. To start the reverse transcription, at the very last moment,

0.2 µL template switching oligo (TSO: 5’-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3’)

(100 µM; �nal amount/rxn 1 µM) and 0.7 µL of SuperScript II reverse transcriptase (200 U/µl;

�nal amount/rxn 140 U) were added and the following incubation program was started in a

thermocycler with a heated lid: 90 min of incubation at 42 °C, 10 cycles of 50 °C for 2 min and 42

°C for 2 min, and 15 min of incubation at 70 °C for enzyme inactivation.

Reverse transcription was followed by a preampli�cation step that was performed on magnetic

Agencourt Ampure XP beads (Thermo Scienti�c): 17 µL of beads was mixed with the RT mix

and incubated for 8 min. The plate was put on a magnetic stand for 2 min and the supernatant

discarded. To each well, 16 µL of PCR mastermix was added (8 µL of 2x KAPA Hi� Mix, 0.2 µL of

ISPCR-primer (5’-AAGCAGTGGTATCAACGCAGAGT-3’, 10 µM) and 8 µL of nuclease free water)

and the following PCR program was run: 98 °C for 3 min, 18 cycles of 98 °C for 20 s, 67 °C for 15 s,

and 72 °C for 6 min, followed by a �nal incubation at 72 °C for 5 min.

For clean-up, 16 µL of Ampure XP beads was added and incubated for 8 min. After placement

on a magnetic stand, the supernatant was discarded and the beads washed twice with 200 µL of

freshly prepared ethanol. Beads were resuspended in 10 µL EB and after further incubation on the

magnetic stand, the supernatant containing the DNA was used for library preparation following

Illumina’s Nextera XT protocol.

Therefore, we used 1/5 of the recommended volumes: 2 µL of Tagment DNA (TD) bu�er (2x), 1 µL

of Amplicon Tagment mix were mixed with 1 µL of the cDNA and incubated for 4 min at 55 °C.

Then, 1 µL of NT bu�er was added and incubated for 5 min at room temperature. Adapter ligated

fragments were barcoded and ampli�ed by adding 3 µL Nextera PCR master mix, and 1 µL of each

index 1 and index 2 primers by applying the following cycling protocol: 72 °C for 3 min, 95 °C

for 30 s, 15 cycles of 95 °C for 10 s, 55 °C for 30 s, 72 °C for 30 s, and a �nal incubation of 72 °C
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for 5 min. Barcoded libraries were pooled and cleaned up using 0.6 volumes of AmpureXP beads.

Beads were washed twice with 80% ethanol, eluted in 300 µL EB and a further cleanup was per-

formed by adding an additional 180 µL of beads followed by two washes with 80% ethanol. Beads

were resuspended in 100 µL EB. Quality controls were performed involving Qubit quanti�cation

(Thermo Fisher), Bioanalyzer size assessment (Agilent), and qPCR (Roche: KAPA library quanti�ca-

tion kit). Sequencing was performed on a full lane of the Illumina HiSeq2500 system in PE50 mode.

scRNAseq data processing and quality control. Gene expression was quanti�ed by Salmon

(Patro et al., 2017), version 0.7.2 including the parameter libType = IU, –posBias and –gcBias.

The transcriptome index was built using the Ensembl version 86 Canis familiaris (genome assembly

CanFam3.1) cDNA sequences, the genome of IAV of strain PR8, and the sequences of the ERCC

RNA spike-ins. For the coverage analysis, STAR (version 2.5.2a) (Dobin et al., 2013) was used

in the paired-end and single-end mode, allowing a minimum chimeric segment length of 10

(chimSegmentMin = 10). Other parameters used for STAR:

--outFilterMultimapNmax 5
--outFilterScoreMinOverLread 0.25
--outFilterMatchNminOverLread 0.25
--outSJfilterOverhangMin 10 10 10 10
--outSJfilterCountUniqueMin 1 1 1 1
--outSJfilterCountTotalMin 1 1 1 1

As a measure of quality control, a sequencing depth of more than 150,000 reads and an ERCC

spike-in accuracy of 0.75 was considered. The accuracy was calculated by the Pearson’s correlation

coe�cient between the known concentration and the measured expression level. Additionally,

samples with at least 10,000 reads mapping to PR8 in the deletion junction analysis were consid-

ered.

Salmon quanti�es expression level by transcripts per millions (TPM), which includes the ERCC

spike-ins. By removing the ERCC spike-ins and scaling the expression values to a million mapped

reads, we obtained the expression level from the endogenous transcripts. Genes were �ltered out,

which were detected (TPM ≥ 1) in less than �ve samples.

Analysis of Deletion Junctions. Absolute insert sizes of mate pairs mapping to PR8 were ex-

tracted from bam �les. We calculated the log2 ratios between the number of large insert sizes

(>1000 bp) and small insert sizes (≤1000 bp) on PR8 S1, S2, and S3 with a pseudocount of 1x10-7,

avoiding the logarithm of zero. In order to identify the deletion junctions by their exact position,

sequence alignment information of split or chimeric reads spanning the junction were used. To

obtain the chimeric read information, we �rst ran STAR using the single-end mode for each read

pair separately reducing the alignment artifacts. Next, the two Chimeric.out.junction output �les

were joined and chimeric reads spanning the junction were counted. Finally, we calculated the

deletion junction distance considering the ambiguous split positions by merging chimeric reads

with the same distance spanning the same locus with +/- 3 bp di�erence. Regarding the viral bulk

population, junctions were considered that had a distance >1000 bp and covered by >10 reads.

For IAV-infected single cell experiments, we included junctions ful�lling the above condition or if

junctions were detected in the viral bulk population. Read counts were normalized by counts per

millions (CPM).
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Data and Software Availability. Collection of next-generation sequencing (NGS) data related

to this publication is under BioProject PRJNA590388. The link for the repository that includes the

computational analysis is https://github.com/lylamha/influenza_sc.

GTEx data collection and processing. GTEx gene expression data was downloaded from the

GTEx portal https://gtexportal.org/home/datasets on the 09/01/2019. The respective

�lename was GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_reads.gct. The ma-

trix consists of 11,690 samples and 56,202 genes.

First, we normalized the samples using z-score (mean=0 and standard deviation=1) and applied

principal component analysis (PCA). Secondly, we applied UMAP using the �rst 50 principal

components and lastly visualized the data in the 2-dimensional UMAP embedding.

We identi�ed ambiguous samples by using a clustering approach. Using the shared nearest

neighbor algorithm (by ’dbscan’ R package version 1.1.3) we clustered the samples using the

2-dimensional UMAP embedding and identi�ed the tissue dominating each cluster with a fre-

quency of 90%. Samples falling into that cluster but are di�erent from the dominating tissue were

discarded from further analysis. This resulted in a matrix with 7,219 samples.

a.2 network reconstruction with neighborhood
selection
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Figure A1: Alternative GRNs using data imputation with dca.
(A) Model selection criteria on imputed data similar to Fig. 5.21A using alternative �
values (dotted line) (B) Alternative GRNs compared to Fig. 5.21.
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a.3 effect of imputation on gene regulatory net-
work reconstruction

a.3.1 Data collection and preprocessing of scRNAseq data

We collected preprocessed and normalized experimental scRNAseq count data provided in the

BEELINE paper Pratapa et al., 2020. Here, the authors also provide the corresponding pseudotime

for each dataset / cell type. Please refer to the BEELINE paper for information about preprocessing,

normalization, and pseudotime inference. However, dca needs unnormalized raw count data.

Therefore, we downloaded the fastq �les using the corresponding accession numbers: GSE75748

(hESC) (Chu et al., 2016), GSE81252 (hHEP) (Camp et al., 2017), GSE98664 (mESC) (Hayashi et al.,

2018), GSE48968 (mDC) (Shalek et al., 2014) and GSE81682 (mHSC) (Nestorowa et al., 2016). For

human and mouse we aligned the fastq �les to hg19 (GENCODE release 29) or mm10 (GENCODE

release M19), respectively and counted the reads per gene using STAR (version 2.7.4a) (Dobin et al.,

2013). Following the BEELINE approach, using normalized count data we select the top 500 most

variable genes (or top 1000 most variable genes respectively) across pseudotime using a general

additive model (‘gam’ R package). In addition to these genes we also include signi�cantly varying

TFs (Bonferroni corrected p-value < 0.01). We �lter both imputed and unimputed scRNAseq data

using the same set of (i) top 500 most variable genes (or top 1000 HVGs) and (ii) all signi�cantly

varying TFs, in order to make a fair comparison between networks inferred using imputed and

unimputed data.

a.3.2 Code availability

All relevant scripts and R notebooks for reproducing the results are available at Github (https:

//github.com/lylamha/imputation_GRN_inference). The release includes tutorials from

data imputation to the evaluation of the reconstructed networks. It covers the evaluation pipeline

with the corresponding analyses and plotting results.

a.3.3 Imputation

To impute scRNAseq data we use dca (version 0.2.3), knnsmooth (version 2.1), magic (‘Rmagic’

R package version 2.0.3) and saver (‘SAVER’ R package version 1.1.2). Our rationale for selecting

knnsmooth, magic and saver is based on a previous comprehensive benchmark evaluation of

various imputation methods (Hou et al., 2020). Additionally, we also include dca as it has been

explicitly recommended as improving GRN reconstruction (Eraslan et al., 2019). We apply each

imputation method to normalized count data except for dca where we use the raw counts (see

github page).

https://github.com/lylamha/imputation_GRN_inference
https://github.com/lylamha/imputation_GRN_inference
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a.3.4 Network reconstruction via BEELINE

Several tools have been developed to infer GRNs from scRNAseq data di�ering in their algorith-

mic approach. They can be categorized into four main classes: correlation-, regression-, mutual

information- or modelling-based approaches (Pratapa et al., 2020). In this study we evaluated

PIDC, GENIE3 and GRNBoost2 which have been previously recommended by Pratapa et al., 2020.

Moreover, we included PPCOR as a partial regression based algorithm providing a baseline GRN

algorithm. We use the imputed and unimputed scRNAseq data as input matrices for network

reconstruction with PIDC, GENIE3 and GRNBoost2 using default parameters. To this end, we

use the evaluation framework BEELINE (version 1.0). In order to evaluate PPCOR results we

adjusted the code of the BEELINE framework. In the publicly available version of BEELINE PPCOR

considers the corrected p-values of each reported interaction with its respective partial correlation

value. However, in our case there were only NA’s produced due to ill-conditioned matrices. Thus,

we discard the p-values and use a threshold of 0.1 absolute partial correlation value and selected

interactions higher than the threshold.

As part of the BEELINE pipeline we �rst run ‘BLRunner.py’ to reconstruct the networks. Net-

work reconstruction methods may compute undirected or directed edges, while the STRING

database contains undirected edges. Thus, in evaluating a network reconstruction method that

predicts undirected edges, for both STRING and predicted networks undirected edges get sub-

stituted by two opposing directed edges. For the comparison to the evaluation networks, we

only consider and �lter for edges going out of TFs. With this convention, bidirectional edges

get counted only once (except where two TFs are connected by an interaction). This is meant to

minimize the advantage which a method producing undirected edges might possibly have.

Finally, we use ‘BLevaluater.py’ to compute early precision scores evaluating the performance

of each network by comparing it to an evaluation network. Here, we choose the functional protein-

protein interaction database STRING and cell-type speci�c ChIPseq derived network provided by

the BEELINE framework. We �lter the network genes that only occur in the input expression

matrix.

By using early precision scores we only analyze the top-k networks.

a.3.5 Characterizing the reconstructed networks

Top-k network. For comparability reasons we focus our analyses on the top-k networks. The

top-k network of a reconstructed network includes the �rst k interactions selected by their

ranks which were assigned by descendingly ordered edge weights. Here, k represents the num-

ber of positive interactions in the evaluation network. Interactions can share the same ranks,

e.g., the forward and backward interactions in an undirected graph. So with k interactions re-

ported in the evaluation network we select all interactions whose ranks are lower than or equal to

k obtaining the top-k network. Note, that the number of reported interactions can be higher than k.

Network density and node degree. Taking into account the interaction between transcription

factors and genes only the network density is calculated by numEdges/((numGenes ⋅ numTFs) −
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numTFs). In order to calculate the node degree we consider all out- and incoming edges for a

given node.

a.3.6 Methodology of evaluation

Early Precision Ratios (EPR). Most of the network reconstruction algorithms infer networks

that are close to a full graph. Being more interested in the most important predicted interactions

we analyzed the interactions with the highest (absolute) weights and thus the top ranked interac-

tions within the network (top-k network). For this reason and to evaluate the performance of each

inferred network based on using early precision sores (EP) which is given by the number of TP

divided by the number of positively predicted observations within the top-k network. EP scores

were calculated using BEELINE. Each dataset has a di�erent underlying evaluation subnetwork,

hence di�erent evaluations regarding the random predictor. To account for these di�erences and

in order to maintain comparability across datasets we divide the EP scores by the network density

(see formula above) of each evaluation subnetwork obtaining EP ratios (EPR). Thus, EPR of 1

is indicative of a random predictor in all experimental datasets. To compare the performance

of network inference in each imputation method with the corresponding unimputed data, we

calculate log2-ratios between EPRimputed and EPRunimputed .

ANOVA. For each dataset we performed a separate two-way ANOVA using the built-in R func-

tion: First, we �t a linear model using the log2-ratios of EPR values as a target variable and both,

the GRN algorithm and the imputation as regressor variables. Secondly, we summarize the vari-

ance model of the linear �t and report the p-values. The source code is included on the github page.

Network similarities. In order to compare similarities across the reconstructed networks we

select the top 500 interactions reported in each model. Given two networks, similarity scores are

obtained by the Jaccard index which is de�ned as the number of overlapping interactions divided

by the number of uni�ed reported interactions. Repeating this in a pairwise iterative manner

we obtain a similarity matrix which we use as an input for a heatmap that is clustered row- and

column-wise (‘pheatmap’ R Package). We calculate adjusted rand index (ARI) scores (‘mclust’ R

package) in order to evaluate the clustering results based on an annotation label (Hubert et al.,

1985). As annotation labels we use the network reconstruction algorithm as well as the imputation

method. We compare ARI scores across datasets obtained by the two labels using the pairwise

wilcoxon rank sum test.

a.3.7 Supplementary Information
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Table A1: Analysis of variance of performance scores for each dataset. ANOVA results on EPR

log-fold-ratios. Signi�cance codes are 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 0. Higher signi�cance p-values in

imputation give evidence that a higher variance within imputation methods compared to GRN algorithms

is prevalent, and vice versa. .

data factor sum of squares mean of squares p-values

hESC

GRN

imputation

0.0455

2.3036

0.0228

0.7679

0.68436

0.00435 **

hHep

GRN

imputation

0.0205

1.4728

0.0103

0.4909

0.75904

0.00421 **

mDC

GRN

imputation

0.0061

0.3728

0.00307

0.12428

0.68601

0.00275 **

mESC

GRN

imputation

0.1324

1.1478

0.0662

0.3826

0.00638 **

3.64e-05 ***

mHSC-E

GRN

imputation

0.1456

0.6497

0.07281

0.21657

0.07206 .

0.00541 **

mHSC-GM

GRN

imputation

0.1748

0.5445

0.08739

0.18151

0.000247 ***

2.02e-05 ***

mHSC-L

GRN

imputation

0.11682

0.08218

0.05841

0.02739

0.000572 ***

0.003099 **
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Figure A2: Performance scores of network models including PPCOR com-
pared to STRING and ChIP-seq derived networks as evaluation networks.
Upper panel is similar to Fig. 6.2 comparing the inferred network results with the

STRING network. Here, we include PPCOR as a baseline GRN algorithm. PPCOR

performs almost similarly to a random predictor. In some cases PPCOR failed to

run due to ill-conditioned data matrices corresponding to EPR scores equal to 0.

Below panel compares the inferred network results with cell type-speci�c ChIP-seq

derived networks. In both pre�ltered datasets the performances are close to random.

Imputation does not improve the network predictions. Due to normalization by using

the network density, the EPR scores in mHSC-L imputed data di�er strongly from the

unimputed data. Here, low numbers of genes/ TFs and edges lead to di�erent network

densities. In both evaluation scenarios the results between the pre�ltered datasets

based on the number of highly variable genes (HVGs) are comparable. Hence, varying

the number of genes has little e�ect on the network performance predictions.
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Figure A3: Gene detection rate and library size in experimental scRNAseq
datasets (original and downsampled).
Scatterplots colored by density of points (cells). Gene detection using a threshold of

gene count > 0. Library size determined by the sum of all gene counts. Downsampling

procedure performed by sampling n times (60% of the original library size) according

to the multinomial distribution.
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Figure A4: Performance measures of networkmodels obtained by downsam-
pled dataset.
Performance scores reported on downsampled scRNAseq data (60% of original library

size) and pre�ltered dataset (TFs and 500 HVGs). (Left) Absolute EPR scores. Dashed

line represents EPR scores obtained without imputation. (Right) log2-ratios between

imputed and unimputed EPR scores. Log2ratio = 0 represents no change in perfor-

mance (grey dashed line) after imputation. Generally, more improvements (positive

log2ratios) than in the respective column of Figure 6.2 (TFs and 500 HVGs).
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Figure A5: Network similarities across all models and cell types.
According to Figure 6.3B we inspect the heatmap of network similarities of the

remaining cell types. Network similarity scores obtained by pairwise Jaccard index

from top500 interactions. Columns are annotated by imputation method, rows are

annotated by GRN reconstruction algorithm.
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Figure A6: True positive interactions identi�ed on unimputed data and their
change in edge ranks after imputation.
According to Figure 6.6A we inspect the change of unimputed TP ranks after imputa-

tion in the remaining cell types. Corrected p-values obtained by Wilcoxon rank sum

test can be taken from Suppl. Tab. A2.
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Figure A7: Absolute Pearson’s correlation coe�cients before and after impu-
tation colored by prediction class obtained in each model.
According to Figure 6.6B we inspect the change of correlation values for TP, FP and

FN classi�ed by each model in the remaining cell types. Colors correspond to the

prediction classes in each model.
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TableA2: Di�erences inTP edge rank distribution before and after imputation.Corrected p-values

(Bonferroni method) obtained after Wilcoxon rank sum test between ranks of unimputed true positive

edges and their respective ranks after imputation.

data imputation PIDC GENIE3 GRNBoost2

hESC

dca 6.23E-59 1.35E-52 3.22E-57

knnsmooth 9.30E-70 5.56E-30 1.72E-35

magic 5.41E-45 1.89E-47 1.68E-51

saver 1.99E-15 5.46E-12 8.93E-13

hHep

dca 2.77E-144 3.67E-89 5.47E-83

knnsmooth 1.11E-130 3.88E-85 5.87E-86

magic 1.26E-126 1.19E-125 1.86E-108

saver 1.66E-23 1.08E-37 1.34E-29

mDC

dca 1.15E-48 1.91E-39 8.93E-42

knnsmooth 1.47E-46 5.11E-38 3.20E-38

magic 2.14E-58 6.35E-31 9.12E-32

saver 2.69E-10 7.78E-08 3.66E-10

mESC

dca 2.85E-75 6.53E-79 7.09E-83

knnsmooth 2.84E-75 9.74E-59 5.33E-77

magic 1.54E-78 1.25E-80 4.75E-90

saver 3.61E-05 3.28E-07 7.37E-10

mHSC-E

dca 1.93E-08 2.97E-24 6.55E-25

knnsmooth 1 4.70E-07 1.72E-10

magic 2.44E-14 6.80E-27 4.39E-26

saver 1 0.001687 0.0004226

mHSC-GM

dca 5.32E-44 1.02E-33 7.75E-32

knnsmooth 0.05846 2.32E-09 9.27E-17

magic 8.66E-21 2.31E-23 2.89E-22

saver 1 8.45E-07 6.18E-09

mHSC-L

dca 1 0.006637 1.51E-05

knnsmooth 1 1 0.3427

magic 0.005388 0.004132 3.54E-06

saver 0.7522 1 0.0006845
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