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1 Introduction

The lithosphere is the rigid, outermost layer of the Earth and consists of the crust
and upper mantle. It is divided into separate, distinct tectonic plates, which are
rigid but deform elastically and through brittle failure during very long periods of
geologic time. The tectonic plates ride on the underlying weaker, hotter, deeper
and comparatively more ductile part of the upper mantle—the asthenosphere. In
contrast to the lithosphere, the asthenosphere deforms viscously under stress and
accommodates strain through plastic deformation. The dynamics of tectonic plates
are attributed to an interplay of various phenomena like convection caused by lateral
density variations in the mantle, the motion of the seafloor away from spreading
ridges due to differences in topography, changes in density of the crust as it ages
and cools, as well as varying tidal forces generated by the Sun and Moon. The
induced relative motion of multiple tectonic plates identifies three major types of
plate boundaries.

Divergent boundaries feature two plates sliding apart from each other, while typically
producing new ocean basin. Examples of divergent boundaries include active zones
of mid-ocean ridges such as the Mid-Atlantic Ridge or East Pacific Rise as well as
continent-to-continent rifting sites like the East African Rift. Convergent boundaries
exhibit two plates sliding toward each other and either colliding or one plunging
underneath the other in a subduction zone. The collision of continental lithosphere,
where neither mass is subducted, leads to a compression, folding, and uplift of plate
edges, which can be observed in the Himalayas and Alps. The Andes mountain range
in South America and Japanese island arc are instances of ocean-to-continent and
ocean-to-ocean subduction zones, respectively. Transform boundaries are charac-
terized by plates grinding past each other and plate area neither being created nor
destroyed, e.g. the San Andreas Fault in California.

In general, the dynamics at the plate boundaries give rise to geological events like
earthquakes, see Figure 1.1, and the development of topographic features such as
mountains, volcanoes, oceanic trenches, and mid-ocean ridges. Due to their large
area of impact in short time periods, earthquakes are historically the most hazardous
of these phenomena in terms of economic damage, devastation of infrastructure and
threat to human life. For example, the 2011 Tōhoku undersea megathrust earthquake
occurred in the Pacific ocean east of the Tōhoku region in Japan with a magnitude
of approximately 9.1 Mw, lasted 6 minutes and triggered a tsunami causing the
Fukushima Daiichi nuclear disaster [60]. The earthquake and its aftermath cost
about 20, 000 people their lives and an estimated US$ 235 billion in economic damage
making it the single most expensive natural disaster in recorded history [71].
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1 Introduction

Figure 1.1: Tectonic plate boundaries (blue) and epicenters (red) of earthquakes between 01.01.2000
and 31.12.2020 with magnitudes of at least 5.5 Mw.1

Fault networks in the lithosphere

Lithospheric faults are structural discontinuities in Earth’s lithosphere, are thin
relative to the surrounding rock and commonly approximated as locally planar.
Compared to the rather homogeneous surrounding rock, faults possess different
physical properties and are host to phenomena like lubrication due to water, which
alter the overall behavior of the system and play a crucial role in understanding
and describing its dynamics. Faults are not distributed homogeneously over the
entire lithosphere, but occur in multiscale spatial clusters called fault zones or fault
networks that are typically situated at plate boundaries. Spatial scales range from
fractures in grains (∼ 10−6 m) over rocks (∼ 101 m) all the way up to tectonic plates
(∼ 106 m). Figure 1.2 exemplifies part of the scale range occurring around the San
Andreas Fault in Southern California and illustrates these clusters typically featuring
“self-similar” geometries over many orders of magnitude. Fault networks develop in
regions of high strain with preexisting weaknesses due to material contrasts or large
differences in compressive stresses over millions of years. On these geological time
scales, crack formation through brittle fracture, fault opening and healing lead to an
ever changing geometry.

1Data source: U.S. Geological Survey, Earthquake Hazards Program, 2017, Advanced National
Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products.

2Data Source: U.S. Geological Survey, 2014 National Seismic Hazard Maps fault sources, accessed
October 8, 2021, at
https://earthquake.usgs.gov/static/lfs/nshm/qfaults/hazfaults2014.zip.

3Data Source: U.S. Geological Survey and California Geological Survey, Quaternary fault and
fold database for the United States, accessed October 8, 2021, at
https://earthquake.usgs.gov/static/lfs/nshm/qfaults/Qfaults_GIS.zip.

4Retrieved from http://www.sanandreasfault.org/Palmdale_Road_Cut.jpg on October 8,
2021.
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Figure 1.2: Exemplary range of spatial scales occurring around the San Andreas fault showing
Southern California2, the greater Palmdale region3 and picture of a roadside cut4 with increasing
resolution from left to right.

Fault slip and the seismic cycle

Fault surfaces possess asperities—a geometric roughness—that cause friction forces
along the interface. Static friction locks bulk material separated by a fault in place,
while strain builds up, which eventually leads to stresses exceeding the friction
force causing relative displacement or slip. Lithospheric earthquake activity, i.e.
seismic fault slip, fault creep and slow earthquakes are the major slip mechanisms
accommodating strain and releasing stress along faults. In the geosciences, the
frictional behavior of these processes is predominantly described by rate-and-state
friction (RSF) models [14, 110, 112]. In the following, the focus will be on earthquake
and rupture processes, where faults unlock suddenly and slide rapidly on timescales
of seconds to minutes relieving built-up strain.

During such an event, energy is released in form of seismic waves. On Earth’s
surface, this manifests as rapid displacement and disruption of the ground, which
may trigger secondary natural disasters like tsunamis, landslides, volcanic activity
or nuclear accidents. Seismic activity occurs at all plate boundaries and varies
in intensity as well as frequency depending on the type of relative displacement
(divergent, convergent, transform) and the location of the hypocenter. Cyclic strain
accumulation by far field stresses leads to a clustering of earthquakes in space and
time [5]. Nonetheless, the average dynamics of the plate boundary dominate the
effects of local slip instabilities in the long run.
In 1910, Reid [111] observed that earthquakes rupture the same part of a fault
repeatedly and delineated seismic activity as three characteristic phases coined the
seismic cycle sketched in Figure 1.3:

• interseismic phase: It is a period between earthquakes of relative tectonic
quiescence with slow accumulation of elastic strain, while faults are (partially)
locked due to friction.

• coseismic phase: Once stresses exceed the friction force, a seismogenic fault
patch unlocks and built-up strain is suddenly released by rapid shallow slip
(earthquake).

3



1 Introduction

• postseismic slip: During days up to years after an earthquake, further seismic
activity in the vicinity of the initial rupture continues to relieve strain (after-
shocks) and postseismic slip eventually relaxes back to interseismic levels by
slow deep slip activity on ductile segments of the fault.

time

strain

Figure 1.3: Sketch of qualitative strain accumulation and release at a single fault during interseismic
(line), coseismic (dashed) and postseismic (dotted) phases of the seismic cycle, where a red dot
indicates the occurrence of an earthquake.

As the terminology implies, it was believed that the seismic cycle indeed described
a periodic phenomenon and could be harnessed to predict future rupture events.
This may be true for isolated, single faults in a controlled laboratory setting, how-
ever, for natural earthquakes accurate quantitative prediction of time, location and
magnitude beyond statistical statements is currently an unsurmounted challenge.
Extrinsic factors such as other faults, different active fault zones interacting with
each other and deformation or otherwise dependent material properties are very
demanding to quantify [5]. This was demonstrated by the failure to forecast the
2004 Sumatra–Andaman and 2011 Tōhoku earthquakes [51]. Therefor, humanity
relies on identifying characteristic precursor phenomena that warn of immediately
impending earthquakes. For instance, seismic warning systems may register pressure
waves preceding usually more destructive shear and Rayleigh waves.

Multiscale character of seismic fault slip

It has become evident over the course of this chapter, that there is an entire contin-
uum of spatiotemporal scales involved in earthquake and rupture processes. Insights
from experiments and geophysical (analogue) modeling suggest that grain sizes in
fractured rock [93, 126] as well as fragmentation due to tectonic deformation [116] are
distributed in a fractal sense, i.e. grain sizes and interfaces adhere to an exponential
law. Their interplay contributes to complex dynamics in earth’s lithosphere and is
host to phenomena on time scales of seconds, e.g. earthquakes, all the way to plate
tectonics and evolving fault networks over millions of years.
Moreover, geoscientific evidence hints at seismic fault slip exhibiting multiscale
characteristics in terms of total earthquake magnitudes and slip velocities, whose
statistics are described by empirical power laws. Measuring the strength of earth-
quakes using the Richter magnitude, which is determined by the logarithm of the
amplitude of seismic waves, and recording the number of occurrences in a set period
of time and region reveals scale invariant earthquake statistics over ten orders of
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magnitude as expressed by the Gutenberg-Richter law. Here, scale invariance means
that scaling the argument of the power law by a constant simply multiplies the
original relation by a constant factor. Omori’s law establishes a qualitatively similar
relation of magnitude and frequency of aftershocks with respect to the time passed
after the main rupture. These laws may be valid and have predictive power for
earthquake recurrence on a global scale, but individual faults may produce very
different statistics [14].

The scarcity of large earthquakes with recurrence times of hundreds thousands of
years and incompleteness of paleoseismic, historical and instrumental record lead
to a fundamental lack of insight into the multiscale, spatiotemporal interaction of
different faults and fault networks, as noted by Goldfinger et al. in [51]. This thesis
represents parts of an interdisciplinary simulation strategy pursued in project B01 of
the Collaborative Research Center 1114. As a first step towards reliable earthquake
prediction and quantitative hazard analysis, the focus will be on the mathematical
modeling and efficient simulation of prototypical, layered fault networks on short time
scales covering few seismic cycles. On the considered time intervals, the geometry of
the fault networks is assumed to be invariant.

Outline

In Chapter 2, this exposition begins by establishing a layered fault system consisting
of m bodies with viscoelastic Kelvin-Voigt rheology and m− 1 non-intersecting faults
featuring rate-and-state friction as proposed by Dieterich [38] and Ruina [114]. The
individual bodies are assumed to experience small viscoelastic deformations, but
possibly large relative tangential displacements. Thereafter, a variational formulation,
its discretization and the construction of a numerical solver are introduced extending
ideas originally developed for the simulation of a subduction zone modeled by
unilateral frictional contact between a rigid foundation and deformable slider in [102].
Following Rothe’s approach, semi-discretization in time with the classical Newmark
scheme yields a sequence of continuous, coupled, spatial velocity and state problems
for each time step, that are decoupled by means of a fixed point iteration, cf.
[102]. Subsequently, the focus will be on discretizing and solving the ensuing
velocity problems parametrized with given state using linear finite elements and a
dual mortar discretization of the non-penetration constraints [130, 132, 133]. This
discretization ansatz entails a hierarchical decomposition of the discrete solution
space, that enables the localization of the non-penetration condition as well as
friction nonlinearity leading to a convex minimization problem with a nonsmooth,
block-separable friction functional. Exploiting the block-separability of the problem,
a variant of the Truncated Nonsmooth Newton Multigrid (TNNMG) method [55, 53,
56] is constructed for the solution of the corresponding algebraic problems. It is
globally convergent due to nonlinear, block Gauß–Seidel type smoothing and employs
nonsmooth Newton and multigrid ideas to enhance robustness and efficiency of the
overall method. A key step in the TNNMG algorithm is the efficient computation of
a correction obtained from a linearized, inexact Newton step.
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1 Introduction

Although the layered fault system possesses multiple spatial scales, it is not envisioned
to model the full range of spatial scales and thus the multiscale nature observed
in geological settings as depicted in Figure 1.2. Thence, Chapter 3 addresses the
construction and analysis of efficient numerical methods for the solution of variational
problems, that are structurally similar to the ones arising in the linearized correction
step of the TNNMG method, but incorporate the full spatial complexity in terms
of truly multiscale fractal interface networks. In particular, the object of study
are scalar, linear, self-adjoint, elliptic variational problems involving linear jump
contributions across interfaces. One outcome of this investigation is the effect of
approximating fractal interface networks by truncating finer scales—the strategy
employed in Chapter 2 implicitly.
In the spirit of [61], a sequence of faults (Γl)l∈N is ordered from “strong” to “weak”
by introducing an exponential scaling of the resistance to jumps across Γl and thus
decreasing discontinuities. The limiting fractal interface network Γ contains all faults
Γl, l ∈ N. After defining a suitable fractal function space H for the multiscale
interface network Γ with assumptions on its shape regularity and fractal character,
fractal interface problems in H will be considered. Their multiscale character exceeds
the usual lack of smoothness commonly present in multiscale problems, because
the solution space H depends on the fractal geometry which is not accessible by a
fixed, classical finite element space. Introducing K-scale problems for approximating,
K-scale spaces HK ⊂ H containing jumps across the faults Γl, 1 ≤ l ≤ K, suitable
piecewise linear finite element spaces SK ⊂ HK for the approximation of the k-scale
problems will be investigated.
The next Section 3.2 contains the main contribution of this thesis. Therein, suit-
able projections Π : H → SK with approximation and stability properties will be
constructed and analyzed relying on local Poincaré inequalities and a trace lemma
following standard ideas published by Carstensen [22] and Verfürth [129]. This en-
deavor is complicated by the presence of jump terms. For instance, counterexamples
show that it is not possible to bound jumps of local averages by jumps of the original
functions, which leads to strong assumptions on the locality of Γ. Thereafter, the
projections Π are applied in the construction and analysis of a LOD-type multiscale
discretization with optimal error estimates in the spirit of [76, 89] and subspace
correction methods going back to Xu [134] and Yserentant [136], that are mesh-
and scale-independent. This chapter is concluded by numerical experiments with
increasingly complex interface networks less and less covered by theory, that illustrate
the theoretical results and the applicability of the approach beyond their limits.
Finally, the previous findings are applied to geological fault systems in a series of
numerical experiments in Chapter 4. The properties and performance of the TNNMG
variant presented in Chapter 2, whose linear correction is obtained inexactly by a
standard multigrid V-cycle, will be assessed in a generic 2-body spring slider setting
with deformable foundation and slider. Last, in the context of the layered fault
system, the scaling properties of the proposed method will be investigated with
respect to the number of faults.
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2 Numerical simulation of geological
fault networks

It is well-established in the geosciences, that lithospheric earthquake activity is
one of the slip mechanisms accommodating strain and releasing stress along fault
networks as described by rate-and-state friction (RSF) models [14, 110, 112]. The
computational simulation of earthquake and rupture dynamics constitutes an integral
part of seismic hazard assessment and has therefore quite a history in the field
(see, e.g., [4, 10, 30, 85] and the references cited therein). For typical applications
in the geosciences, it is imperative to be able to handle realistic geometries with
high computational efficiency. In the literature, there is a wide range of numerical
methods implementing the dynamics of earthquake rupture of which the following
paragraphs provide a brief excerpt.
Finite difference schemes as investigated in [32] exhibit mesh-independent conver-
gence in practice, but suffer from the inherent difficulty to resolve complex geometries
and usually operate on tensor product grids. Spectral element methods [47] leverage
high degree piecewise polynomial basis functions to discretize the solution space
in order to achieve a very high order of accuracy. On the other hand, resolving
complicated (fault) geometries poses a major challenge, especially for hexahedral
elements in three space dimensions, compared to the flexibility of finite element
approaches. De la Puente [104] introduced a numerical method for simulating
wave propagation and dynamic rupture based on a discontinuous Galerkin (DG)
discretization in space combined with arbitrary high-order derivatives (ADER) time
integration [124]. Subsequently, it was extended to three space dimensions [96] and
integrated into the software package SeisSol (see [70] and the references cited therein).
SeisSol is optimized for high performance computing on parallel clusters and has
experienced widespread application to, e.g., a subduction zone in the context of the
2004 Sumatra-Andaman earthquake [128], a strike-slip fault and the 1992 Landers
earthquake [62] as well as weak crustal faults and the 2016 Kaikōura earthquake
cascade [127].
A conceptually different class of approaches is based on viscous fluid flows incorpo-
rating faults through plasticity models. Here, faults are no longer resolved exactly by
the computational grid as sharp interfaces, but represented in a diffuse way. Some of
the corresponding numerical algorithms have been implemented in publicly available
software packages, e.g. Slim3d [103] and Aspect [7, 83], and applied successfully
to various geological settings including subduction zones [49, 63, 122] and strike-slip
faults [31]. This ansatz is well-suited for modeling complex fault geometries, that
change over time, and thus for simulating temporal multiscale aspects over longer
time scales of minutes to millions of years. However, their mathematical structure,
e.g. Stokes problems with saddle point structure [103], is more complicated and
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2 Numerical simulation of geological fault networks

computationally more demanding due to currently less efficient numerical solvers for
the arising algebraic problems.

This chapter commences with a short introduction to continuum mechanics, the math-
ematical modeling of viscoelastic Kelvin-Voigt rheologies as well as non-penetration
of bodies and rate-and-state friction as envisioned by Dieterich [38] and Ruina [114].
Based on these concepts and ideas from [102] for unilateral frictional contact, a
layered fault system consisting of m bodies and m− 1 non-intersecting faults with
rate-and-state friction will be developed and guide the rest of the exposition. The
individual bodies are assumed to experience small viscoelastic deformations, but
possibly large relative tangential displacements. Following ideas for the variational
formulation of RSF presented therein, a weak formulation of this model problem
will be discretized using Rothe’s approach. Time discretization with the classical
Newmark scheme leads to a sequence of continuous spatial problems for each time
step. These spatial problems consist of coupled velocity—thus rate—and state
problems, that will be decoupled by means of a fixed point iteration, cf. [102]. The
resulting state problem for given rate is discretized in space using piecewise constant
functions, which entails a spatial decomposition into independent scalar subproblems
that can be solved with bisection. On the other hand, obtaining a discretization and
approximation of a solution to the rate problems parametrized with given state is
much more involved. Using linear finite elements and a dual mortar discretization
of the non-penetration constraints suggested and analyzed in [130, 132, 133] yields
fully discrete rate problems. A major advantage of this approach is that it entails a
hierarchical decomposition of the discrete solution space into a subspace with weak
zero jump across the faults and a subspace containing the relative velocities at the
faults. Then, computing normal and tangential relative velocities across the faults,
which is essential for evaluating the non-penetration and friction contributions, can
be done in the appropriate subspace. Motivated by this decomposition, a suitable
basis transformation localizes the non-penetration condition to pointwise constraints
at the faults. Subsequent lumping of the friction nonlinearity gives a convex mini-
mization problem with a nonsmooth, block-separable friction functional. Due to this
structure, a nonlinear block Gauß–Seidel type relaxation method converges globally
albeit with quickly diminishing convergence rates for finer and finer meshes. The
Truncated Nonsmooth Newton Multigrid (TNNMG) method builds on the global
convergence of this smoothing iteration and augments it with nonsmooth Newton
and multigrid techniques to accelerate convergence. It is designed for problems with
block-separable, nonsmooth functionals and typically exhibits mesh independent con-
vergence rates. Gräser and Sander [56] contributed a variant for non-scalar problems,
whose application to the fully discrete rate problems concludes this chapter.
Much of the content presented here is subject of an upcoming publication [54].

8



2.1 Contact mechanics

2.1 Contact mechanics

The following section introduces basic concepts, that are fundamental to the mathe-
matical modeling of a layered fault system. First, a continuum mechanical description
of viscoelasticity with small bodywise deformations is stated before non-penetration
is modeled in a regime of large relative displacements at the contact boundary. Last,
a Dieterich-Ruina model of rate-and-state friction is established.

2.1.1 Stress and strain

Consider an open, bounded, connected set Ω ⊂ Rd, d ∈ {2, 3}. The closure Ω of
the set Ω represents the volume occupied by an undeformed body, i.e. its stress-
free equilibrium state in the absence of external forces, and is called the reference
configuration. Its boundary is denoted by ∂Ω and assumed to be composed of two
disjoint subsets ΓD and ΓN , where ΓD has nonzero (d− 1)-dimensional Hausdorff
measure and ∂Ω = ΓD ∪ ΓN holds. Along the Dirichlet boundary ΓD, the body is
fixed in space, while it is subject to surface forces on the Neumann boundary ΓN .
Moreover, let us assume that ∂Ω is piecewise Lipschitz continuous, thus leading to
the existence of an outward unit normal vector field n : ∂Ω→ Rd almost everywhere
on ∂Ω [27].
When surface and volume forces act on a body, it will deform and attain a new
equilibrium given by a deformation function

y : Ω→ Rd,

that maps points in the reference configuration to their respective positions in the
deformed one. In order to avoid unphysical self-penetration, this function is assumed
to be orientation-preserving in Ω and injective on Ω.
With the canonical basis {e1, . . . , ed} in Rd and the representation

y =
d∑
i=1

yiei

of the deformation, the deformation gradient is defined as

∇y =


∂y1
∂x1

· · · ∂y1
∂xd... . . . ...

∂yd
∂x1

· · · ∂yd
∂xd

 (2.1.1)

for all x ∈ Ω. The deformation gradient ∇y(x) is invertible for all x ∈ Ω, since the
deformation y is orientation-preserving, i.e., it holds

det∇y(x) > 0 ∀x ∈ Ω.

Rather than in absolute terms, deformation can be phrased as a displacement function

u : Ω→ Rd, u(x) = y(x)− x (2.1.2)

9



2 Numerical simulation of geological fault networks

relative to the reference configuration. This characterization is frequently used in the
setting of linear elasticity and will be employed throughout the rest of the exposition.
Although the deformation gradient characterizes local deformations with first order
accuracy, it is not a suitable strain measure, since it is not invariant under rigid-body
motions, i.e. translation and rotation [27]. This motivates the definition of the right
Green-St.Venant strain tensor

E : Ω→ Sd, E(x) = 1
2

(
∇u(x) + (∇u(x))T + (∇u(x))T ∇u(x)

)
, (2.1.3)

where Sd is the space of symmetric second-order tensors in Rd, that remedies this
shortcoming [27].
Assuming infinitesimal deformations, i.e. the displacement gradient ∇u is infinitesi-
mally small compared to unity, the quadratic term in (2.1.3) can be neglected, which
yields the linearized strain tensor

ε = 1
2

(
∇u+ (∇u)T

)
,

which is invariant under translations, but not rotations.
The Euler-Cauchy stress principle establishes the existence of a symmetric stress
tensor field σ : Ω→ Sd encoding internal forces that arise due to boundary conditions
or external loading, e.g. by compression, tension, shear, torsion, or bending. For
any sub-volume V ⊂ Ω, the traction force acting on its boundary ∂V with outer
unit normal field n is induced by the surrounding material and given by the Cauchy
stress vector

t = σn on ∂V. (2.1.4)

Until this point, the previous continuum mechanical description of bodies and their
deformation is a general framework and does not incorporate any specific materials.
In a concrete setting, materials and their properties are characterized by a given
constitutive relation, that quantifies the stress dependence on strain.
A material is called elastic, if the stress σ at a point x ∈ Ω depends only on the
deformation gradient at x and possibly on x itself, i.e.

σ (x) = σ̂ (∇u(x), x) . (2.1.5)

A material is called homogeneous, if (2.1.5) does not depend on its second argument.
It is called isotropic, if it behaves the same “in all directions”, i.e.,

σ̂ (FQ, x) = σ̂ (F, x) ∀F ∈ Rd×d
+ ∀Q ∈ SO(d),

where Rd×d
+ denotes the set of real d × d matrices with positive determinant and

SO(d) the group of rotations.
Under the infinitesimal deformation assumption and in the regime of linear elasticity,
higher order strain contributions are negligible and stress σ depends linearly on
strain ε

σ (u) = Bε (u) ,
with the fourth-order elasticity tensor B. This proportionality factor is also called
the Hooke tensor and a higher dimensional analog of the 1-D spring constant known
from basic physical model problems like the harmonic oscillator.

10



2.1 Contact mechanics

Kelvin-Voigt model

On the spatiotemporal scales of interest, the lithosphere exhibits a reversible, vis-
coelastic behavior, i.e. such solids deform elastically under external stresses like a
spring, but the elastic response may be delayed by a Newtonian (viscous) damper.
In this setting, the Kelvin-Voigt model of linear viscoelasticity is a common choice,
see, e.g., [101, 102]. Its constitutive law augments the linearly elastic model (2.1.1)
by a viscosity term and relates stress and strain according to the linear first-order
differential equation

σ (u) = Aε̇ (u) +Bε (u) ,
where A and B denote viscosity and elasticity tensors. For the remainder, these
tensors are assumed to possess the symmetry properties

Aijkl = Aklij, Aijkl = Ajikl, Bijkl = Bklij, Bijkl = Bjikl

such that the stress tensor σ(u) and the bilinear forms induced by A and B are
symmetric. If the material is homogeneous and isotropic, the inherent geometric
symmetries enforce the above symmetry of the tensors.
In general, the material gradually relaxes to its undeformed state, when stress is
reduced. If constant stress is applied, the material deforms at a decreasing rate,
asymptotically approaching the steady-state strain.

2.1.2 Non-penetration

Modeling frictional contact requires a mathematical notion of bodies that are in
contact, but not penetrating one another. In the established literature, there are
numerous approaches enforcing such non-penetration. Especially early contributions
assume a discrete setting with a suitable triangulation of the contact boundary. Some
of these descriptions rely on the existence of outer normal fields [13, 66], where others
manage to avoid them at the cost of additional constraints per face on the contact
boundary [69]. This section introduces a variant of a continuum-based model first
proposed by Laursen and Simo [86]. It leads to weak formulations and subsequent
finite element discretizations in a natural fashion and is thus widely applied in
modern approaches to elastic contact problems. The following presentation is based
on Wohlmuth and Krause [133] as well as [54].
Consider two viscoelastic bodies represented by two disjoint domains Ω1,Ω2 ⊂ Rd,
d = 2, 3, with piecewise Lipschitz continuous boundaries ∂Ωi, i = 1, 2, that are in
contact along a common interface and slide against each other. Denote with ui their
respective configurations. The boundaries ∂Ωi can be decomposed into three pairwise
disjoint parts, namely the Dirichlet boundary ΓDi , the Neumann boundary ΓNi and
the common contact boundary ΓF = ΓF1,2 = Ω1 ∩Ω2 (see Figure 2.1). Let us suppose,
that ΓF is compactly contained in ∂Ωi\Γ

D

i , i.e. there is a compact set K such that

ΓF ⊂ K ⊂ ∂Ωi\Γ
D

i . (2.1.6)

11
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ΓN1 ΓN1

ΓN2 ΓN2

ΓD1

ΓD2

ΓF1,2

Figure 2.1: Spring slider configuration with deformable foundation.

Denoting v = (v1, v2) with vi : Ωi → Rd, i = 1, 2, the restrictions of v to ΓF—possibly
in the sense of traces—from the top Ω2 and the bottom Ω1 are identified by vT and
vB, respectively, via

vT = v2|ΓF , vB = v1|ΓF .

Let n = (n1, n2) and refer with ni ∈ Rd to the outward unit normal to Ωi, i = 1, 2.
For the top and bottom normals on ΓF , it holds nB = −nT .

Although individual bodies are assumed to experience small interior viscoelastic
displacements as per the previous section, their relative tangential displacements
may be large after many seismic cycles. Hence, the contact conditions cannot be
formulated only with respect to the reference configuration, but must take the actual,
possibly large, relative displacements into account, i.e., phrased in terms of the
deformed bodies. Considering a sufficiently smooth displacement field

u = (u1, u2), ui : Ωi → Rd

where ui is the displacement of the body Ωi, i = 1, 2, the corresponding deformations
are given by Id +ui and the deformed bodies by (Id +ui)(Ωi). Thus, in the deformed
configuration, the deformed contact boundary is obtained by

γu = (Id +uB)(ΓF ) ∩ (Id +uT )(ΓF ),

and its pullback to the bottom and top reference configurations yields

ΓF,uB = (Id +uB)−1(γu) ⊂ ΓF , ΓF,uT = (Id +uT )−1(γu) ⊂ ΓF .

Then, there is a parameterization of the bottom reference boundary ΓF,uB over the
top reference boundary ΓF,uT via the bijective contact mapping

πu : ΓF,uT → ΓF,uB , πu = (Id +uB)−1 ◦ (Id +uT ),

that assigns each point x ∈ ΓF,uT to the unique point y ∈ ΓF,uB with which it coincides
in the deformed configuration, i.e. it holds (Id +uT )(x) = (Id +uB)(y). Using the
contact mapping, there are parameterizations of the deformed contact boundary γu
over ΓF,uT via Id +uT = (Id +uB) ◦ πu and over ΓF,uB via Id +uB = (Id +uT ) ◦ (πu)−1,
respectively. Figure 2.2 shows the deformation-dependent quantities, that were just
introduced, and illustrates the contact mapping πu.
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2.1 Contact mechanics

Ω1

Ω2

ΓF,uT

ΓF,uB
(Id + u1)(Ω1)

(Id + u2)(Ω2)

γu

(Id + uT )

(Id + uB)−1

Figure 2.2: Illustration of the contact mapping πu parameterizing ΓF,uB over ΓF,uT in the reference
configuration (left) via the deformed contact boundary γu (right).

For any piecewise defined scalar or vector field

v = (v1, v2) ∈ H1(Ω1)k ×H1(Ω2)k

with k = 1 or k = d, let us define the jump of v across the deformed contact boundary
γu on the top reference boundary ΓF,uT according to

[v]u = vT − vB ◦ πu on ΓF,uT .

Contact conditions, and in particular the non-penetration condition, as well as the
friction law will be incorporated in terms of constraints on the normal and tangential
components of displacements and velocities on the deformed contact boundary γu. In
order to construct this decomposition, let us introduce an outer normal field nu(x) to
the deformed body (Id +ui)(Ωi), i = 1, 2, at the point (Id +ui)(x), x ∈ ΓF,uT , that has
been pulled back to the reference configuration i.e. nu(x) is obtained as the pullback
of an oriented normal field of the deformed contact boundary γu = (Id +uT )(ΓF,uT )
to ΓF,uT using the map (Id +uT )−1. Then, any vector field on ΓF,uT is decomposed into
its normal and tangential components with respect to the deformed configuration by

v = vt + vnn
u, vn = v · nu, vt = v − vnnu.

By this construction, the decomposition depends on the deformation-dependent
normal field nu of the deformed top body (Id +u2)(Ω2) and not on the normal field
of the reference bodies Ωi.
Requiring that the relative displacement of the deformed bodies Ωi, i = 1, 2, is
tangential to the actual contact boundary γu per the closed-fault condition

[u]un = [u]u · nu = 0 (2.1.7)

on ΓF,uT ensures non-penetration and prohibits fault opening.

Remark 2.1.1. Above notions, especially the non-penetration condition, are phrased
with respect to the top boundary ΓF,uT . Due to the geometric symmetry, there are
analogous concepts in terms of the bottom boundary ΓF,uB , see [54]. However, the
upcoming approach to mathematical modeling and the subsequent discretization will
not be independent of this choice.
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Remark 2.1.2. This setting can be extended to scenarios allowing gaps between the
two bodies. Usually, an additional contact mapping Φ, e.g. the closest point [133]
or normal projection [125], is used to identify points on the (deformed) contact
boundaries. Based on this choice, a gap function gΦ : ΓF,uT → R and relative
displacement [u]uΦ can be defined leading to a more general non-penetration constraint.
The upcoming analysis, discretization and subsequent numerical approach cover this
slight modification without conceptual differences.

The closed-fault condition imposes kinetic constraints on the physical system that
are further augmented by the stress balance on ΓF,uT according to Newton’s third law

(σ(u)n)T = −ωu(σ(u)n)B ◦ πu, (2.1.8)

where σ(u) denotes the stress tensor on Ω = Ω1 ∪ Ω2. In particular, the stress
(σ(u)n)B represents a force per surface area. Thus, changing the area element via
the pullback to ΓF,uT with πu requires an additional scaling by the weighting factor
ωu =

√
det((Dπu)TDπu + nT ⊗ nT ), that is associated with this transformation.

Again, the stress field (σ(u)n)T can be decomposed into normal and tangential
components

σn(u) = (σ(u)n)T · nu, σt(u) = (σ(u)n)T − σn(u)nu,

on the top side, such that (σ(u)n)T = σt + σnn
u holds. Frequently, σn is referred

to as the normal stress and σt as the shear stress. The shear stress σt encodes the
frictional response and will be discussed in the next section.

Remark 2.1.3. Since there are only small, interior deformations inside the individual
bodies by assumption, the stress vector (σ(u)n)T is determined for the reference
normal nT , whereas its decomposition into normal and shear stress is carried out
in terms of the deformed configuration and its corresponding normal nu, which is
necessitated by a possibly large relative displacement of the two bodies.

2.1.3 Friction

Friction is the force at the contact interface ΓF that opposes the relative lateral
motion of two bodies sliding against each other. Exempting molecular friction,
friction captures the effective, macroscopic response arising from the interaction of
microscale surface features known as asperities. Experiments by Rabinowicz [109,
108, 107] showed that these kinds of slip systems exhibit two frictional regimes. First,
static friction signifies a stationary (interseismic) state without any relative motion
of the two bodies at the friction interface. Once the system has been loaded by
stress accumulation sufficiently to overcome static friction, it enters an active, sliding
(coseismic) state of dynamic friction.
As early as the 15th to 18th centuries, experimental studies investigated elementary
properties of dynamic friction and lead to the following empirical laws.
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2.1 Contact mechanics

Amontons’ Laws: The force of friction is
• independent of the projected area of contact
• proportional to the applied load.

The former implies that friction is a local process at every point on the surface of
contact, whereas the latter postulates the existence of a scalar µ called the friction
coefficient relating tangential and normal stresses as per

|σt| = µ |σn| . (2.1.9)

Any friction law based on these assumptions needs to provide an explicit representa-
tion of the friction coefficient. Choosing a suitable friction law is a modeling decision
and depends on the physical system and phenomena one wants to simulate.
The simplest choice for the friction coefficient is a constant µ ≥ 0. Assuming
collinearity of relative tangential velocity and shear stress in addition, i.e.,

− |σt| [u̇]ut = |[u̇]ut |σt, (2.1.10)

Tresca friction postulates the relation

− σt = µ |σn|
[u̇]ut
|[u̇]ut |

, if [u̇]ut 6= 0, and |σt| ≤ µ |σn| , if [u̇]ut = 0. (2.1.11)

with a deformation-independent normal stress σn = σn(u). Note that in this simplest
of settings, the frictional response is independent of the sliding velocity.

Dieterich-Ruina model of rate-and-state friction

Observations from natural earthquakes and rock friction experiments uncovered a
dependence of typical dynamical parameters on slip distance, slip velocity, normal
stress, and their histories. For example, for rock surfaces and fault gouge, the
stress needed to overcome static friction and transition to dynamic slipping depends
on hold time. Marone [90] and Dieterich [39] attributed this phenomenon to a
time dependent healing effect, that alters asperities such that the effective area of
contact grows. Then, in the regime of dynamic friction, rock surfaces and fault gouges
demonstrate characteristic velocity weakening, i.e. the friction coefficient decreases as
the sliding velocity increases [38]. Moreover, velocity step tests indicate a non-linear
relaxation-type response of stress to sudden jumps in velocity (see Dieterich [35]).
The empirical rate-and-state friction framework pioneered by Dieterich [38] and
Ruina [114] is able to model these features. It is a versatile model and is not only
applicable to rock friction [36, 37] but also the frictional behavior of soils, engineered
structures and abrasive processes [64, 119]. Assuming collinearity of relative tangen-
tial velocity and shear stress (2.1.10) as well as a deformation-independent normal
stress σn = σn(u), cf. Tresca friction, the dynamic friction relation between shear
and normal stresses reads

− σt = [µ(|[u̇]ut | , θ) |σn|+ C] [u̇]ut
|[u̇]ut |

, (2.1.12)
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where C denotes a cohesion parameter, and introduces a friction coefficient µ now
depending on the relative tangential velocity as well as a state field θ encoding the
history of dynamic sliding. Setting V = |[u̇]ut |, the friction coefficient is typically
given by

µ(V, θ) = µ0 + a log V
V0

+ b log V0θ

L
(2.1.13)

and positive parameters µ0, a, b, V0 and L ∈ R (see Dieterich [35] and the references
therein). Relying on experiments, these frictional parameters are fitted to the
observed frictional response caused by a velocity perturbance. The reference friction
µ0 is measured at reference speed V0. The friction parameter a quantifies the
immediate response to a velocity perturbance, whereas b is the difference between
peak response given by a and the new steady state level of friction. The critical slip
distance L is related to the characteristic slip distance over which the relaxation
from peak to new steady state friction occurs. All of these parameters are material
dependent (consult [64, 35, 90] for more in depth information on these parameters
and their respective effects).
Note that (2.1.13) is nonphysical and meaningless for very small velocities V , since
µ (V, θ)→ −∞ for V → 0 and fixed θ. This deficit has been remedied by means of
regularization or truncation in the literature. Reformulating (2.1.13) with the sign-
change velocity Vθ, for which smaller velocities lead to negative and thus inadmissible
friction coefficients, leads to

µ (V, θ) = a log V
Vθ
, Vθ = V0 exp

(
−µ0 + b log(θV0/L)

a

)
. (2.1.14)

The regularized law [18] replaces the first equation of (2.1.14) by

µr(V, θ) = a sinh−1 V

2Vθ
, (2.1.15)

and the truncated law [102] by

µt(V, θ) = a log+ V

Vθ
, log+ x =

log x, if x ≥ 1
0, otherwise.

(2.1.16)

In practice, both versions differ so little that the actual choice is of no consequence.
The state variable θ, however, displays a characteristic evolution over time. Dieterich
and Kilgore interpreted it as a characteristic time measuring the nature of the
respective contact dynamics [39]. It can be used to incorporate complex, time-
dependent phenomena implicitly, e.g., fault healing or fault lubrication due to
frictional melting or water in the pore space, that are crucial for natural rupture
processes.
The aging law introduced by Dieterich [36, 114] approximates the state evolution
according to

θ̇ = 1− V

L
θ. (2.1.17)
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The state evolves with ongoing slip and during hold times of stationary contact, i.e.,
θ increases for V = 0. Thus, it captures effects due to contact aging and healing
processes implicitly.
In contrast, Ruina’s slip law [114] given by

θ̇ = −V
L
θ log V

L
θ (2.1.18)

only leads to a frictional response during slip. Both state equations feature increasing
states θ for decreasing slip rates V and vice versa. A state evolution due to the aging
law attains the new frictional steady state slower than the slip law. Moreover, the
slip law is able to approximate an initially strong decay of shear stress better, that
occurs in some experiments [88]. Again, the choice of a suitable state evolution is a
modeling decision.

Remark 2.1.4. At present, there is a fundamental lack of understanding regarding
the rigorous derivation of rate-and-state friction from first principles. It is a purely
heuristic model that is obtained by geoscientific experiments and the observation
of natural processes. Nonetheless, there has been progress in the mathematical
modeling of simpler frictional settings.
Mielke and Roubíček [92] investigated the coupling of finite-strain elasticity and plas-
ticity in the context of unilateral frictionless contact. Moreover, Mielke introduced a
finite-dimensional model for rate-and-state friction in a single fault setting, that is
thermodynamically consistent in the sense of the GENERIC framework (see [91] and
references therein).
Recently, Cheng and Spiers [26] developed a physical model describing the frictional
behavior of a system with strong rate-and-state characteristics (carbonate fault
gouge) on the microscale. The microscale is represented by granular beads that are
tightly packed in a “honey comb”-like structure and do not roll or fracture, but
slide over one another. It was suggested that two competing processes of dilata-
tion due to shear-induced granular flow and compaction by intergranular pressure
solution (a mechanism of bulk deformation and pore volume change) augmented
by thermodynamical considerations give rise to full rate-and-state-type behavior
qualitatively similar to experiments. The authors believe their model to capture
the key mechanisms and physics underlying rate-and-state-type behavior and the
rate-and-state friction law. However, it is a matter of future research how to obtain
macroscopic rate-and-state parameters, e.g. a and b, from this approach and thus
transition from micro- to macroscale.

2.2 Subdifferential friction law and state evolution

Following Pipping, Sander and Kornhuber [102], let us reformulate the rate-and-state
friction law and state evolution as subdifferential inclusions in order to facilitate their
incorporation into a variational formulation of the upcoming model problem 2.3.1.
For this purpose, the Dieterich-Ruina model of friction will be restated in terms of a
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transformed state variable α = log (θV0/L). Thus, the friction coefficient, formerly
given by (2.1.14), becomes

µ (V, α) = a log V

Vα
, Vα = V0 exp

(
−µ0 + bα

a

)
, (2.2.1)

whereas the state evolution due to aging (2.1.17) and slip law (2.1.18) read

− α̇ = V − V0 e
−α

L
, −α̇ = V

L

(
α + log V

V0

)
, (2.2.2)

respectively.

The first objective is to phrase the friction law (2.1.12) as a subdifferential inclusion.
Consider the convex, non-decreasing functional φ(·, α) : Rd → R corresponding to
the truncation of µ in (2.1.16)

φ(v, α) =
a |σn| (|v| log (|v| /Vα)− |v|+ Vα) + C |v| , |v| ≥ Vα

C |v| , otherwise.
(2.2.3)

Then, using the collinearity assumption (2.1.10) as well as the chain rule leads to

−σt ∈ ∂[u̇]ut φ([u̇]ut , α)

or equivalently

σt(x) · (v − [u̇]ut (x)) + φ(v, α) ≥ φ([u̇]ut (x), α) ∀v ∈ Rd (2.2.4)

at any x ∈ ΓF,uT .

Lastly, a subdifferential inclusion representing the state evolution of α will be
developed. Rewriting Dieterich’s law with a suitable function ψd(α, V ), it becomes

− α̇ = d

dα
ψd(α, V ), ψd(α, V ) = V

L
α + e−α (2.2.5)

while Ruina’s law turns into

− α̇ = d

dα
ψr(α, V ), ψr(α, V ) = V

L

(1
2α

2 + log
(
V

L

)
α
)
. (2.2.6)

Both ψ( · , V ) = ψd( · , V ) or ψ( · , V ) = ψr( · , V ) are convex, hence yielding the
subdifferential inclusion −α̇ ∈ ∂αψ(α, V ), or equivalently

α̇(x) · (β − α(x)) + ψ(β, V ) ≥ ψ(α(x), V ) ∀β ∈ L2(ΓF,uT ) (2.2.7)

at any x ∈ ΓF,uT . Additionally, −α̇ = 0 prescribes a constant state α on ΓF \ΓF,uT ,
where no contact occurs.
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2.3 Layered fault system with rate-and-state friction

2.3 Layered fault system with rate-and-state friction

Building on the previous insights, let us develop a mathematical model describing
a geological structure consisting of a deformable body with reference configuration
Ω ⊂ Rd, d = 2, 3, that is split into m viscoelastic sub-bodies Ωi ⊂ Ω, i = 1, . . . ,m,
by a system of non-intersecting faults, i.e. it holds

Ω =
m⋃
i=1

Ωi.

These bodies are assumed to be non-empty, bounded Lipschitz domains, to not
penetrate each other, and to be layered in the sense that at most two sub-bodies are
in contact at any point in Rd (no crosspoints), see, e.g., Figure 2.3 for an illustration
with m = 5 bodies and m− 1 = 4 faults.

ΓN1 ΓN1

ΓN2 ΓN2

ΓN3 ΓN3

ΓN4 ΓN4

ΓN5 ΓN5

ΓD1

ΓD5

ΓF1,2 ΓF2,3 ΓF3,4 ΓF4,5

Figure 2.3: Layered fault system with m = 5 bodies and m− 1 = 4 faults.

Consequently, there is an ordering of all sub-bodies, such that there exist possible
contact interfaces ΓFi,i+1 = Ωi ∩ Ωi+1, i = 1, . . . ,m− 1, while all other intersections
of sub-bodies are empty.
The next objective is to extend concepts and notation introduced in the previous
sections to this m body setting. As described in Section 2.1.2, the boundary ∂Ωi of
Ωi is decomposed into Dirichlet ΓDi , Neumann ΓNi and contact ΓFi = ΓFi−1,i ∪ ΓFi,i+1
parts according to ∂Ωi = ΓDi ∪ΓNi ∪ΓFi , where ΓF0,1 = ΓFm,m+1 = ∅ is set for notational
convenience. Let us denote

ΓD =
m⋃
i=1

ΓDi , ΓN =
m⋃
i=1

ΓNi , ΓF =
m−1⋃
i=1

ΓFi,i+1.

For any v = (v1, . . . , vm) with vi : Ωi → Rd, i = 1, . . . ,m, the restrictions of v to ΓF—
possibly in the sense of traces—from the top Ωi+1 and bottom Ωi of the the individual
faults ΓFi,i+1, are identified by vT = (vT,1, . . . , vT,m−1) and vB = (vB,1, . . . , vB,m−1),
respectively, via

vT,i = vi+1|ΓFi,i+1
, vB,i = vi|ΓFi,i+1

, i = 1, . . . ,m− 1.

On occasion, it will prove helpful to regard these top and bottom restrictions as
functions vT and vB defined piecewise on ΓF by vT |ΓFi,i+1

= vT,i and vB|ΓFi,i+1
= vB,i,

i = 1, . . . ,m − 1. Moreover, let n = (n1, . . . , nm) and refer with ni ∈ Rd to the
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outward unit normal to Ωi, i = 1, . . .m. For the top nT = (nT,1, . . . , nT,m−1) and
bottom normals nB = (nB,1, . . . , nB,m−1) on ΓF , it holds nB = −nT .

Suppose that a body force f , e.g. gravity, acts on all of Ω, while the Neumann
boundary ΓN is subject to surface forces fN . On the Dirichlet boundary ΓD, the
velocity u̇(t) and displacement fields u(t) of the deformable body Ω are prescribed at
all times t > 0 and set to u(t) = u̇(t) = 0 for notational simplicity. The concepts,
that will be developed hereafter, can be generalized to the inhomogeneous case. All
boundary forces are assumed to be compressive, meaning that no fault opening occurs
and adjacent bodies Ωi and Ωi+1, i = 1, . . . ,m− 1 remain in contact throughout the
entire evolution.

Considering a sufficiently smooth displacement field

u = (u1, . . . , um), ui : Ωi → Rd

where ui is the displacement of the body Ωi, i = 1, . . . ,m, the corresponding
deformations are given by Id +ui and the deformed bodies by (Id +ui)(Ωi). Recall
that the interior displacements ui inside each body Ωi are assumed to be small, while
their relative displacement may be large. Furthermore, the associated deformations
are assumed to be small, such that different faults ΓFi,i+1 do not get in contact after
deformation. Then, the deformed contact boundary γu, its pullback to the bottom
ΓF,uB and top ΓF,uT reference configurations as well as the parameterization of the
bottom reference boundary ΓF,uB over the top reference boundary ΓF,uT via the bijective
contact mapping πu can literally be defined as in Section 2.1.2.

For any piecewise defined scalar or vector field

v = (v1, . . . , vm) ∈ H1(Ω1)k × · · · ×H1(Ωm)k

with k = 1 or k = d, let us define the jump of v across the deformed contact boundary
γu on the top reference boundary ΓF,uT according to

[v]u = vT − vB ◦ πu on ΓF,uT . (2.3.1)

Again, a decomposition of any vector field on ΓF,uT into normal and tangential
components with respect to the deformed contact boundary γu is constructed in
terms of an outer normal field nu to the deformed bodies (Id +ui)(Ωi), i = 1, . . . ,m,
that has been pulled back to the reference configuration, according to

v = vt + vnn
u, vn = v · nu, vt = v − vnnu.

To be precise, nu is obtained as the pullback of an oriented normal field of the
deformed contact boundary γu = (Id +uT )(ΓF,uT ) to ΓF,uT using the map (Id +uT )−1.

The extension of the closed-fault condition establishes that the relative displacement
of the deformed bodies Ωi and Ωi+1, i = 1, . . . ,m − 1, is tangential to the actual
contact boundary γu per

[u]un = [u]u · nu = 0
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on ΓF,uT and ensures non-penetration as well as prohibits fault opening. Together
with the previous assumptions, the normal relative velocity vanishes as well, i.e. it
holds

[u̇]u · nu = 0 (2.3.2)
on ΓF,uT . Thus, the jump of the relative tangential velocity across ΓF satisfies

[u̇]ut = [u̇]u − ([u̇]u · nu)nu = [u̇]u on ΓF,uT .

Hereafter, the superscript indicating the deformation-dependence of the jump terms
will mostly be dropped and [ · ] = [ · ]u written instead.
The stress balance (2.1.8) carries over to the layered fault system and reads

(σ(u)n)T = −ωu(σ(u)n)B ◦ πu (2.3.3)

on ΓF,uT with the stress tensor σ(u) on Ω. Using [u̇]ut = [u̇]u and decomposing the
stress field (σ(u)n)T = σt + σnn

u into normal and tangential components

σn(u) = (σ(u)n)T · nu, σt(u) = (σ(u)n)T − σn(u)nu,

on ΓF,uT , a rate-and-state friction law with a state-dependent convex functional
φ(·, α) and a state evolution with a second convex functional ψ(·, V ) for given
relative slip rate V = |[u̇]u|, cf. Section 2.2, are prescribed on ΓF,uT . As all faults
ΓFi,i+1, i = 1, . . . ,m− 1, hold the same, scale-invariant friction law, possible spatial
multiscale features are solely induced by the number m of bodies Ωi and their
respective size.
Let us fix a final time T > 0. Based on balance of momentum and Cauchy’s stress
principle, the deformation of a viscoelastic body Ω of Kelvin–Voigt material with a
layered system of faults ΓF and rate-and-state friction is governed by the following
formal set of equations and boundary conditions.

Problem 2.3.1 (Layered fault system with rate-and-state friction, cf. [54]). Find

u : Ω× [0, T ]→ Rd and α : ΓF × [0, T ]→ R

such that

σ(u) = Aε(u̇) +Bε(u) in Ω\ΓF (Kelvin–Voigt material) (2.3.4)
divσ(u) + f = ρü in Ω\ΓF (balance of momentum) (2.3.5)

with boundary conditions,
u = u̇ = 0 on ΓD (Dirichlet condition)
σ(u)n = fN on ΓN (Neumann condition)

frictional contact conditions,
[u̇]u · nu = 0 on ΓF,uT (closed-fault condition)

(σ(u)n)T = −ωu(σ(u)n)B ◦ πu on ΓF,uT (stress balance)
−σt ∈ ∂[u̇]uφ([u̇]u , α) on ΓF,uT (state-dependent friction law)
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2 Numerical simulation of geological fault networks

contact state condition,
−α̇ ∈ ∂αψ(α, |[u̇]u|), on ΓF,uT (rate-dependent state law)

and non-contact interface conditions
−α̇ = 0 on ΓF \ΓF,uT (non-contact state condition)

(σ(u)n)T = 0 on ΓF \ΓF,uT (top Neumann condition)
(σ(u)n)B = 0 on ΓF \ΓF,uB (bottom Neumann condition)

holds for all t ∈ [0, T ] with viscosity and elasticity tensors A and B, body forces f
as well as a constant material density ρ > 0. Additionally, initial conditions are
imposed on the displacement u, velocity u̇ and state α.

Remark 2.3.2. This is an extension of the model presented in [102], where a single
deformable body in contact with a rigid foundation and unilateral rate-and-state
friction on the contact interface was considered. Note that the main adaptation is to
replace the tangential velocity relative to the fixed rigid foundation by the relative
tangential velocity of adjacent deformable bodies.

In principle, fault opening can be incorporated into the model by replacing (2.3.2)
with the non-penetration condition [u]u · nu ≤ 0 on ΓF,uT and dynamically freezing or
thawing rate-and-state friction as described by the sudifferential inclusions, when
faults open or close, i.e. adjacent bodies lose or come in contact to one another,
respectively.

2.4 Weak formulation

A weak formulation typically represents a variational principle that a physical system
satisfies. It encodes the notion of minimizing a physical or abstract energy to obtain
a solution and is formally derived by multiplying the strong form with a suitable test
function, then integrating over the domain, and applying integration by parts. By
the integrals and the last step transfering derivatives to the test function, necessary
assumptions on the regularity of solutions are relaxed. Moreover, appropriate solution
and test spaces are chosen such that the arising integrals are well-defined.
With the Hilbert space H = H1(Ω1)d × · · · × H1(Ωm)d and the canonical inner
product (v, w)H = ∑m

i=1(vi, wi)H1(Ωi)d , vi, wi ∈ H1(Ωi), i = 1, . . . ,m, let us introduce
the closed linear subspace

H0 =
{
v ∈ H : v = 0 on ΓD

}
of admissible displacements and velocities satisfying the Dirichlet boundary conditions.
In the closed affine subspace

Hu
0 = {v ∈ H0 : [v]u · nu = 0} , (2.4.1)

the closed-fault condition in form of the normal jump condition (2.3.2) is fulfilled
with respect to sufficiently smooth u in addition.
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2.4 Weak formulation

Assuming that the viscosity and elasticity tensors A and B are uniformly elliptic
in the sense that the bilinear forms induced by A(x) and B(x) on the space of
symmetric d × d matrices are elliptic with constants independent of x ∈ Ω, the
bilinear forms

a(v, w) =
ˆ

Ω\ΓF
Aε(v) : ε(w) dx, b(v, w) =

ˆ
Ω\ΓF

Bε(v) : ε(w) dx, v, w ∈ H0,

where the symbol : denotes the tensor contraction, are well-defined. Moreover, let us
introduce the linear functional

`(v) =
ˆ

Ω
fv dx+

ˆ
ΓN
fNv ds, v ∈ H0.

Following the usual steps of inserting the stress–strain relation of the material law
(2.3.4) into the balance of momentum (2.3.5), testing with functions v− u̇, integrating
by parts, using the symmetry of σ (u) and taking the boundary conditions on ΓD
and ΓN into account formally leads to

〈ρü, v − u̇〉+ a(u̇, v − u̇) + b(u, v − u̇)− `(v − u̇)

=
ˆ

ΓF
(σ(u)n)T · (v − u̇)T ds+

ˆ
ΓF

(σ(u)n)B · (v − u̇)B ds

for all v ∈ H0 and t ∈ (0, T ), where 〈·, ·〉 denotes the pairing of H0 and its dual
H∗0. Using the non-contact interface conditions (σ(u)n)T = 0 on ΓF \ΓF,uT and
(σ(u)n)B = 0 on ΓF\ΓF,uB , the definition of jumps (2.3.1), the integral transformation
from ΓF,uB to ΓF,uT , and the stress balance (2.3.3), the right hand side reduces to

ˆ
ΓF,uT

(σ(u)n)T · (v − u̇)T ds+
ˆ

ΓF,uB
(σ(u)n)B · (v − u̇)B ds

=
ˆ

ΓF,uT
(σ(u)n)T ·

(
[v − u̇]u + (v − u̇)B ◦ πu

)
+ ωu

(
(σ(u)n)B · (v − u̇)B

)
◦ πu ds

=
ˆ

ΓF,uT
(σ(u)n)T · [v − u̇]u ds. (2.4.2)

For given state α, let us consider the convex functional Φu on H0 defined by

Φu( · , α) =
ˆ

ΓF,uT
φ([ · ]u , α) ds (2.4.3)

with the convex functional φ from (2.2.3). Then, any v ∈ Hu
0 ⊂ H0 satisfies the

closed-fault condition (2.3.2) and using the decomposition (σ(u)n)T = σt + σnn
u,

the closed-fault condition [v − u̇]u · nu = 0 on ΓF,uT and the subdifferential friction
law (2.2.4) results in the estimate

ˆ
ΓF,uT

(σ(u)n)T · [v − u̇]u ds ≥ Φu(u̇, α)− Φu(v, α). (2.4.4)
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2 Numerical simulation of geological fault networks

Finally, the weak form of the rate equation is obtained by inserting (2.4.4) into
(2.4.2)

〈ρü, v − u̇〉+ a(u̇, v − u̇) + b(u, v − u̇) + Φu(v, α)− Φu(u̇, α) ≥ `(v − u̇) ∀v ∈ Hu
0 .

On the other hand, for given velocity u̇ ∈ Hu
0 and thus given rate V = |[u̇]u|, let us

define the convex functional Ψu on L2(ΓF ) by

Ψu( · , u̇) =
ˆ

ΓF,uT
ψ( · , |[u̇]u|) ds (2.4.5)

with the convex functional ψ taken from the state law (2.2.7) and test the subdiffer-
ential state evolution with β ∈ L2(ΓF ) to obtain its weak formulation

(α̇, β − α)L2(ΓF ) + Ψu(β, u̇)−Ψu(α, u̇) ≥ 0 ∀β ∈ L2(ΓF ).

Although Ψu is defined on L2(ΓF ), it only depends on values of α on the contact
boundary ΓF,uT . Therefore, the above weak state evolution intrinsically fulfills the
non-evolution condition −α̇ = 0 on the non-contact boundary ΓF\ΓF,uT . Consequently,
the weak formulation of the coupled rate-and-state friction problem 2.3.1 reads as
follows.

Problem 2.4.1 (Weak formulation, cf. [54]). Find a sufficiently smooth

u ∈ H1((0, T ),H0) ∩H2((0, T ),H∗0) and α ∈ H1((0, T ), L2(ΓF ))

such that u̇ ∈ Hu
0 holds and

〈ρü, v − u̇〉+ a(u̇, v − u̇) + b(u, v − u̇) + Φu(v, α)− Φu(u̇, α) ≥ `(v − u̇) ∀v ∈ Hu
0

(α̇, β − α)L2(ΓF ) + Ψu(β, u̇)−Ψu(α, u̇) ≥ 0 ∀β ∈ L2(ΓF )

is satisfied for almost all t ∈ (0, T ) with initial conditions

u(0) = u0, u̇(0) = u̇0, α(0) = α0

and given u0, u̇0 ∈ Hu0
0 and α0 ∈ L2(ΓF ).

A generic choice of initial conditions, which is consistent with the Dirichlet boundary
conditions, is the equilibrium configuration consisting of vanishing velocities u̇0 = 0
and an initial displacement u0, that is obtained as the solution of the stationary
problem

u0 ∈ Hu0
0 : b(u0, v) = `(v) ∀v ∈ Hu0

0 . (2.4.6)
In the numerical simulations conducted in Chapter 4, the solution of (2.4.6) is
approximated by one step of a fixed point iteration over the geometric nonlinearity,
i.e. u0 is computed as the unique solution (up to tangential rigid body motions) of
the linear problem on Hu0

0
0 , where the initial iterate is given by u0

0 = 0.

Remark 2.4.2. A precise characterization of the solution space for the deformations
u is subject to further research on the existence and uniqueness of solutions for this
weak coupled rate-and-state friction problem. However, Pipping [100] showed the
existence of long-time solutions in a setting with unilateral frictional contact of a
single deformable body with a rigid foundation and Dieterich’s aging law.
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2.5 Semi-discretization in time

2.5 Semi-discretization in time

Until this point, the coupled variational RSF Problem 2.4.1 is continuous both in time
and space. In this section, time-discrete approximations of its parametrized rate and
state subproblems will be considered proceeding similarly to [102], before deriving
fully discrete versions after spatial discretization in Section 2.6. This time-then-
space discretization ansatz is called Rothe’s method [113]. As will be demonstrated,
discretization in time leads to an elliptic boundary value problem in function space
in each time step. In principle, for each stationary problem, the subsequent spatial
discretization using finite elements and the associated finite element space can easily
be chosen differently, e.g. varying grids, ansatz functions, polynomial degrees. This is
advantageous for a priori and a posteriori error analysis, which is why this approach is
particularly suited for adaptivity and is thus a common choice in the FE community.

Rate problem with given state For contact problems, there is a plethora of time
integration methods, see e.g. [87] for an overview. In the setting of dynamic contact
problems, the classical Newmark scheme or variants thereof are the most prevalent
options due to their consistency and stability properties in the absence of contact.
Assuming that the time interval [0, T ] is partitioned into N subintervals [tn−1, tn],
n = 1, . . . , N , with 0 = t0 < · · · < tN = T and uniform step size τ = τn = tn − tn−1,
the classical Newmark discretization of the weak rate problem 2.4.1 for given state
α ∈ L2(ΓF ) is based on the extended mean value theorem approximating first and
second derivatives and reads

u̇n = u̇n−1 + τ ((1− γ)ün−1 + γün)
un = un−1 + τ u̇n−1 + τ2

2 ((1− 2β)ün−1 + 2βün)

with spatial approximations un = u(tn), u̇n = u̇(tn) and ün = ü(tn), 0 < n ≤ N as
well as parameters 0 ≤ γ ≤ 1 and 0 ≤ 2β ≤ 1.
It is a one-step method, meaning that it only uses information from its immediate
predecessor to compute an approximation of the solution at the next time step.
Hence, it is fully described by the time step size and a time-stepping procedure from
arbitrary initial data to the next time step.
In the absence of contact, the Newmark scheme is second-order consistent for γ = 1

2
and unconditionally stable for 2β ≥ 1

2(γ+ 1
2)2. A typical choice is 2β = γ = 1

2 , where
the scheme coincides with the trapezoidal rule and is energy conserving [59].
In case of contact, the classical Newmark scheme is known to exhibit some shortcom-
ings. Although it is energy conserving, if the actual contact boundary is invariant
during the time step [87], the energy is not guaranteed to remain bounded during
time integration in general. Moreover, artificial oscillations in the contact stresses,
displacements and velocities at the contact boundary may occur due to an unfavorable
interplay of space and time discretizations or due to a violation of the persistency
condition, i.e. the relative velocity in normal direction at the contact boundary has
to vanish. Several modifications of the classical scheme are suggested in the literature
to overcome these drawbacks (see Krause & Walloth [82] and the references cited
therein for an overview and comparison).
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2 Numerical simulation of geological fault networks

In particular, the contact-stabilized Newmark scheme originally presented by Deu-
flhard et al. in [34] and further improved in Klapproth [72] features additional
dissipation in case of contact in order to prevent energy blow-up as well as guarantee
physical contact forces and relative velocities at the contact boundary. Moreover,
there is extensive theory on this variant including consistency results [74] and adaptive
time step control [73] for the frictionless case.
However, as the focus of this thesis is on the resolution of the spatial multiscale
aspects of the problem, the classical scheme with 2β = γ = 1

2 , i.e.

u̇n = u̇n−1 + τ
2 (ün−1 + ün)

un = un−1 + τ u̇n−1 +
(
τ
2

)2
(ün−1 + ün)

for n = 1, . . . , N , will be used in the remainder, cf. [102]. Solving the first equation
for ün makes

ün = 2
τ

(u̇n − u̇n−1)− ün−1 (2.5.1)

and inserting into the second yields

un = un−1 + τ
2 (u̇n−1 + u̇n) . (2.5.2)

Then, inserting into the weak rate inequality in problem 2.4.1 at fixed time t = tn and
evaluating the deformation-dependent closed-fault condition as well as the friction
law with respect to un−1 results in the spatial variational inequality

u̇n ∈ Hun−1
0 : an(u̇n, v − u̇n) + Φun−1(v, α)− Φun−1(u̇n, α) ≥ `n(v − u̇n) (2.5.3)

for all v ∈ Hun−1
0 and n = 1, . . . , N , where

an(v, w) = 2
τ

(ρv, w) + a(v, w) + τ
2b(v, w) (2.5.4)

with the canonical L2(Ω) inner product (·, ·) and

`n(v) = `(v) + (ρün−1, v) + 2
τ

(ρu̇n−1, v)− τ
2b(u̇n−1, v)− b(un−1, v).

So far, ü0 has not been prescribed in the continuous problem 2.4.1. In case the initial
configuration manifests acceleration towards equilibrium, it can be computed by
solving

ü0 ∈ H0 : (ρü0, v) + a(u̇0, v) + b(u0, v) = `(v) ∀v ∈ H0 (2.5.5)

in general. However, if the system starts in equilibrium, this initial acceleration
equates to ü0 = 0.

Remark 2.5.1. By evaluating the jump terms [ · ]u, the contact boundary ΓF,uT , and
the contact mapping πu with respect to the deformation (Id +un−1)(ΓF ) associated
with the previous time step, the geometric nonlinearity incorporating large (relative)
deformations of the contact boundary is eliminated. Hence, in each time step, the
variational inequality (2.5.3) is to be solved on the affine subspace Hun−1

0 ⊂ H0.
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2.5 Semi-discretization in time

In (2.5.3), u̇n is the sole unknown for given state α. Due to the symmetry of
the bilinear form an(·, ·), its positive definiteness and the convexity of Φ(·, α), this
variational inequality is equivalent to the minimization problem

u̇n ∈ Hun−1
0 : J (u̇n, α) ≤ J (v, α) ∀v ∈ Hun−1

0 (2.5.6)

with the generic energy functional

J (v, α) = 1
2an(v, v) + Φun−1(v, α)− `n(v). (2.5.7)

The existence and uniqueness of solutions for the spatial rate problem (2.5.6) relies
on techniques from convex minimization and the theory of superposition operators.
Once the spatial rate problem has been solved, the displacements un are obtained
with (2.5.2).

Lemma 2.5.2 (cf. [102, Proposition 4.3]). The rate functional Φun−1(·, α) from
(2.4.3) corresponding to the Dieterich–Ruina model (2.2.3) of friction is proper,
convex, and lower semi-continuous for any state α ∈ L2(ΓF ).

Proof. The rate functional Φun−1(·, α) is a superposition operator in the sense of
[102, Lemma 4.2]. As φ( · , α) is convex, so is Φun−1( · , α). Moreover, Φun−1( · , α) is
proper, because φ(0, α) = 0. It is lower semi-continuous by [102, Lemma 4.2], since
φ is continuous and non-negative.

These properties and the following proposition lead to the desired statement on the
existence and uniqueness of solutions for (2.5.6).

Proposition 2.5.3 (cf. [54, Proposition 3.2], [102, Proposition 4.3]). Let f ∈ L2(Ω),
fN ∈ L2(ΓN) and assume that un−1, n = 1, . . . , N , is sufficiently smooth and does
not self-penetrate, so that the contact mapping πun−1 and thus Hun−1

0 are well-defined.
Then the spatial rate problem (2.5.6) has a unique solution u̇n ∈ Hun−1

0 for any given
state α ∈ L2(ΓF ).

Proof. The rate functional Φun−1(·, α) is proper, convex, and lower semi-continuous
for any state α ∈ L2(ΓF ) according to the previous Lemma 2.5.2. Moreover, by the
assumptions on A and B, the bilinear form (A(x) + τ

2B(x))(·) : (·) on the symmetric
d× d matrices is symmetric and uniformly elliptic with respect to x ∈ Ω. The rest
of the proof follows with Korn’s inequalities [123] and [50, Lemma 4.1].

Therefore, the solution operator R : L2(ΓF ) → Hun−1
0 of the spatial rate problem

(2.5.6)
L2(ΓF ) 3 α 7→ R(α) = u̇n ∈ Hun−1

0 , (2.5.8)

is well-defined under the above assumptions.
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State problem with given rate Discretizing the spatial state problem 2.4.1 with
given velocity u̇ ∈ Hun−1

0 in time using the backward Euler scheme and evaluating
the deformation-dependent state law with un−1 yields the variational inequality

αn ∈ L2(ΓF ) : (αn, β − αn)L2(ΓF ) + τΨun−1(β, u̇)− τΨun−1(αn, u̇)
≥ (αn−1, β − αn)L2(ΓF ) ∀β ∈ L2(ΓF )

(2.5.9)

where αn = α(tn), n = 1, . . . , N , denote the time-discrete, spatial approximations of
α. Again, this is equivalent to a convex minimization problem

αn ∈ L2(ΓF ) : E(αn, u̇) ≤ E(β, u̇) ∀β ∈ L2(ΓF ) (2.5.10)

with the convex state energy functional E( · , u̇) given by

E(β, u̇) = 1
2(β, β)L2(ΓF ) + τΨun−1(β, u̇)− (αn−1, β)L2(ΓF )

Once more, the existence and uniqueness of solutions follows with similar arguments
to the ones presented in [102]. Let us begin by recording properties of the state
functional Ψun−1 .

Lemma 2.5.4 (cf. [102, Proposition 4.4]). Let logL ∈ L∞(ΓF ). The state functional
Ψun−1(·, u̇) corresponding to Dieterich’s aging (2.2.5) or Ruina’s slip law (2.2.6) is
proper, convex, and lower semi-continuous for any velocity u̇ ∈ Hun−1

0 .

Proof. For fixed velocity u̇ ∈ Hun−1
0 and thus given rate V = |[u̇]un−1| ≥ 0 on ΓF , the

functional τΨun−1( · , u̇) is convex due to the convexity of ψ( · , V ). From ψr(0, V ) = 0
and ψd(0, V ) = 1 follows that Ψun−1 is proper in both cases. To show that Ψun−1 is
lower semi-continuous, let us decompose ψd and ψr into their linear and nonlinear
parts:

ψd = ψd,1 + ψd,2, ψd,1 : α 7→ V
L
α, ψd,2 : α 7→ e−α,

ψr = ψr,1 + ψr,2, ψr,1 : α 7→ V
L

log(V
L

)α, ψr,2 : α 7→ 1
2
V
L
α2

Consequently, ψd,1 and ψr,1 multiply their arguments with L2 functions and their
respective contribution to Ψun−1 is continuous in α. From the non-negativity of ψd,2
and ψr,2 follows the existence of the corresponding integrals and the application of
[102, Lemma 4.2] yields the lower semi-continuity of Ψun−1 .

Proposition 2.5.5 (cf. [54, Proposition 3.3], [102, Proposition 4.4]). For Dieterich’s
aging law (2.2.5) and Ruina’s slip law (2.2.6), the spatial state problem (2.5.10) has
a unique solution αn ∈ L2(ΓF ) for n = 1, . . . , N and any given velocity u̇ ∈ Hun−1

0
with sufficiently smooth un−1.

Proof. The proof follows from [50, Lemma 4.1].

With this statement, the solution operator S : Hun−1
0 → L2(ΓF ) of the spatial state

problem (2.5.10)
Hun−1

0 3 u̇ 7→ S(u̇) = αn ∈ L2(ΓF ) (2.5.11)
is well-defined.
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2.6 Spatial discretization

Coupled spatial problem Combining the spatial rate (2.5.3) and state (2.5.9)
problems yields a coupled, time-discrete version of problem 2.4.1.

Problem 2.5.6 (Semi-discretization in time). Find u̇n ∈ Hun−1
0 and αn ∈ L2(ΓF )

satisfying

an(u̇n, v − u̇n) + Φun−1(v, αn)− Φun−1(u̇n, αn) ≥ `n(v − u̇n),
(αn, β − αn)L2(ΓF ) + τΨun−1(β, u̇n)− τΨun−1(αn, u̇n) ≥ (αn−1, β − αn)L2(ΓF )

for all v ∈ Hun−1
0 and all β ∈ L2(ΓF ), n = 1, . . . , N , with given initial conditions

u0, u̇0 ∈ Hu0
0 , α0 ∈ L2(ΓF ) and ü0 obtained from (2.5.1) as well as problem (2.5.5).

Remark 2.5.7. Let us emphasize again, that the contact map πun−1 and thus a
well-defined Hun−1

0 are available, if the displacement un−1 is sufficiently smooth and
does not lead to self-penetration. This is a rather strong assumption, that can be
relaxed by enforcing non-penetration in terms of an approximate contact map rather
than exactly, see e.g. the next section on the spatial discretization, where round-off
errors necessitate a similar construction.

Proving existence and uniqueness of solutions for the time-discrete, coupled prob-
lem 2.5.6 is no trivial endeavor and not in the scope of this thesis. For unilateral
frictional contact between a deformable body and a rigid foundation, the setting
is simpler as nonlinearities arising due to non-penetration and large relative dis-
placements are absent and such results could be shown. In particular, existence and
uniqueness of solutions for frictional contact with Dieterich’s aging law have been
derived based on Banach’s fixed point theorem, see [99, Proposition 3.6.], whereas
Schauder’s fixed point theorem was used to show existence in case of Ruina’s slip
law [102, Theorem 5.14].

2.6 Spatial discretization

This section is devoted to the spatial discretization of the time-discrete, coupled
problem 2.5.6. Let Ti denote regular, simplicial partitions of polygonal bodies Ωi

with vertices N ∗i , i = 1, . . . ,m, that resolve the Dirichlet boundaries ΓDi . The set
of nodes actually carrying degrees of freedom is given by Ni = N ∗i \Γ

D

i . For each
body Ωi, the associated d-valued, linear finite element space adhering to the Dirichlet
boundary condition is defined as

Si =
{
v ∈ C(Ωi)d : v is linear on all T ∈ Ti and v|ΓDi = 0

}
.

The combined triangulation T = ⋃m
i=1 Ti with nodes N = ⋃m

i=1Ni partitions Ω and
induces the product space

S = S1 × · · · × Sm = span {λpej : p ∈ N , j = 1, . . . , d} ⊂ H0, (2.6.1)

where λp denotes the scalar nodal basis function corresponding to the node p ∈ N
and {e1, . . . , ed} the standard basis in Rd.
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2.6.1 Dual mortar discretization of the rate problem

In the context of contact problems, the discretization of non-penetration conditions
poses a key challenge. For a long time, node-to-segment approaches and its variants
were most popular and have experienced a wide variety of application [87]. The idea
is to identify nodes of the slave body with opposing segments of the master body at a
contact interface—typically by means of a projection. Afterward, non-penetration is
enforced for the slave side nodes with respect to the corresponding segments on the
master side. Unfortunately, this strategy suffers from instabilities due to artificial
jumps in the contact forces during (frictional) sliding [105].

In contrast, the mortar method is a segment-to-segment approach establishing non-
penetration in a weak sense using Lagrange multipliers. Originally, it was devised to
couple spectral and finite element methods [15] and applied as a domain decomposition
technique for non-matching grids [132]. Therefore, the approach is very versatile with
regard to the coupling triangulations and well suited for spatial adaptivity. For our
purposes, the triangulations Ti and Ti+1, i = 1, . . . ,m− 1, generally do not match at
the common interface ΓFi,i+1, i.e. Ni ∩ ΓFi,i+1 6= Ni+1 ∩ ΓFi,i+1. Beyond that, the sets of
nodes Ni are assumed to be pairwise disjoint, i.e. Ni ∩Ni = ∅, i 6= j, for notational
convenience. The weak non-penetration condition is obtained by multiplying the
pointwise constraint with suitable test functions from the mortar space and integrating
over the coupling interface of the slave side. Mortar space and test functions can be
chosen such that the resulting method possesses enhanced stability properties and
error estimates in comparison to the node-to-segment approach [65].
Wohlmuth and Krause were able to prove optimal error bounds by discretizing
the weak non-penetration constraints using dual basis functions satisfying a bi-
orthogonality property [133]. This strategy ultimately allows an efficient localization
of the non-penetration constraints by means of a basis transformation that changes the
role of the slave side nodal basis functions to span the space of relative displacements.
Moreover, with this discretization, the jump [ · ] across ΓF shows up directly, which
is desirable for an efficient algorithmic treatment of the non-penetration condition
(2.3.2) and friction law (2.1.12). This approach has been successfully applied to a
two-body contact problem with friction [81] and will be the course of action in this
exposition as well.

Following [54], the dual mortar discretization of the rate problem with given state
will be established using a hierarchical decomposition of the discrete solution space
into a subspace with weak zero jump across ΓF and a subspace containing the
relative velocity at ΓF . Another way of conveying the same discretization strategy
is based on algebraic representations similar to [118, Section 3.3]. While the latter
has its advantages in demonstrating the implementational details, the former excels
at highlighting the structural idea, is mathematically the more elegant approach
and fits thematically to the subspace decompositions, that will be encountered in
Chapter 3 of this thesis.

First, let us introduce some notation that will facilitate the description of the dual
mortar discretization of Hun−1

0 and incorporating non-penetration and tangential
friction along the faults ΓF . The triangulation of ΓF is considered to be induced
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2.6 Spatial discretization

by the top, non-mortar sides Ωi+1 of the individual faults ΓFi,i+1, i = 1, . . . ,m − 1,
according to

T F =
m−1⋃
i=1
T Fi , T Fi =

{
E = T ∩ ΓFi,i+1 : T ∈ Ti+1

}
,

with nodes N F = ⋃m−1
i=1 N F

i and N F
i = Ni+1 ∩ ΓFi,i+1, while the corresponding trace

spaces read

SF = (v1, . . . , vm−1) ⊂ L2(ΓF )d, vi ∈ SFi = Si+1|ΓFi,i+1

and are spanned by the nodal basis λpej|ΓF , p ∈ N F , j = 1, . . . , d.
Following the train of thought from the continuous case in Section 2.3, let us institute
with Γ̃FT ⊂ ΓF and Γ̃FB ⊂ ΓF approximations of the deformed contact boundaries
ΓF,un−1
T and ΓF,un−1

B from the previous time step, respectively. The non-mortar contact
boundary Γ̃FT is assumed to be resolved by T F . Moreover, denote with π̃ : Γ̃FT → Γ̃FB
a discrete approximation of the contact mapping πun−1 . These approximations
are necessary, since the triangulations of the deformed bodies (Id +un−1,i)(Ωi) will
generally not match across the actual deformed contact boundary γ̃

γ̃ = (Id +un−1,T )(Γ̃FT )

due to a suitable displacement un−1 or discretization errors, that arise from enforcing
non-penetration for un−1. Similar to (2.3.1), the jump of v ∈ S across the discrete
deformed contact boundary is defined on the top, non-mortar side via

[̃v] = vT − vB ◦ π̃ on Γ̃FT .

With the set of non-mortar contact nodes

Ñ F = N F ∩ Γ̃FT ,

the pullback of the L2(γ̃) inner product to Γ̃FT given by

〈v, w〉γ̃ = (v ◦ (Id +un−1,T )−1, w ◦ (Id +un−1,T )−1)L2(γ̃)

and the Kronecker-δ, the dual mortar basis functions ϕq, q ∈ Ñ F , are defined to be
piecewise linear on T F , form a partition of unity, have the same support as λq|ΓF ,
and satisfy the bi-orthogonality property

〈λp|ΓF , ϕq〉γ̃ = δp,q ∀p, q ∈ Ñ F . (2.6.2)

For simplicial grids, the dual mortar basis functions can be constructed elementwise
as linear combinations of the nodal basis functions, see e.g. [131], according to

ϕq|E = (dλq −
∑
p∈ÑF
p 6=q

λp)|E ∀E ∈ T F .
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This construction indicates that dual mortar basis functions are typically discontinu-
ous and thus not contained in SF .
Based on a weak version of the discrete jump across Γ̃FT with respect to the span
of the dual mortar basis functions as test space, the linear projection Π : S → S,
whose components are defined by

(Πv)j = Πvj = vj −
∑
p∈ÑF

〈[̃vj], ϕp〉γ̃ λp, j = 1, . . . d,

maps to functions, that are weakly continuous across the deformed contact boundary.
In an abuse of notation, Π identifies the projection of scalar as well as d-valued
functions in the following. Then, the projection Π induces a direct splitting of S

S = V ⊕W

into its range V = im Π and kernel W = ker Π. Since it holds [̃λp] = λp for p ∈ Ñ F ,
these subspaces are given by

V =
{
v ∈ S : 〈[̃v], ϕp〉γ̃ = 0, ∀p ∈ Ñ F and j = 1, . . . , d

}
= span

{
µpej : µp = Πλp, p ∈ N \Ñ F and j = 1, . . . , d

}
and

W =
{
v ∈ S : v(p) = 0, ∀p ∈ N \Ñ F

}
= span

{
λpej : p ∈ Ñ F and j = 1, . . . , d

}
.

In particular, V contains all functions in S, that are weakly continuous across the
deformed contact boundary in terms of the pullback L2 inner product 〈·, ·〉γ̃ and the
test space spanned by the dual mortar basis functions. The basis functions µp = Πλp
spanning V are the usual nodal basis functions λp in the interior of Ωi, i = 1, . . . ,m
and on the mortar side of ΓF , i.e. for all p ∈ N \Ñ F , while they are extended to the
non-mortar side in a weakly continuous way for p ∈ Ñ F .
The space W is spanned by the usual nodal basis functions λp, p ∈ Ñ F , on the
non-mortar side and represents the space of (weak) normal and tangential jumps
across ΓF , since the jumps of v ∈ V are weakly zero.
The next objective is to split W locally into its normal and tangential part. For this
purpose, the nodal approximation nS of the normal to the discrete, deformed contact
boundary γ̃ is introduced as

nS =
∑
p∈ÑF

npλp|Γ̃FT , np =
∑
E∈T Fp nE∣∣∣∑E∈T Fp nE

∣∣∣ ,
and parametrized over Γ̃FT , where T Fp denotes the set of simplices E ∈ T Fi with
common vertex p ∈ Ñ F , and nE is an approximation of the normal to the deformed
face (Id +un−1)T (E) by its average. In addition, Tpγ̃ = (span{np})⊥ ⊂ Rd denotes
the approximate tangent space to the deformed contact boundary γ̃ with respect to
the nodal approximate normal np in p ∈ Ñ F .
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2.6 Spatial discretization

With this notation, a decomposition of W into its normal and tangential parts is
given by W =Wn ⊕Wt and

Wn =
{
λpx : p ∈ Ñ F , x ∈ span{np}

}
, Wt =

{
λpx : p ∈ Ñ F , x ∈ Tpγ̃

}
.

Remark 2.6.1. In practice, it is convenient to implement the decomposition
S = V ⊕Wn ⊕Wt by means of a basis transformation. Using the set of interior N I ,
non-mortar Ñ F and mortar nodes ÑM = N\(N I ∪ Ñ F ), let us split the nodal basis
{λ} of S into corresponding subsets λI , λF , λM . With a similar notation for the
bases of V and W and their standard algebraic representation as vectors consisting
of d-dimensional blocks, the transformed basis {µI , λ̃F , µM} is defined by

 µI

λ̃F

µM

 = OB

 λI

λF

λM

 =

 I 0 0
0 OF 0
0 0 I


 I 0 0

0 I 0
0 (D−1M)T I


 λI

λF

λM

 ,
where the block-diagonal matrix O consists of the Householder reflections Opp = OF

pp

mapping the first standard basis vector e1 of Rd to the averaged domain normal
np, p ∈ Ñ F , and d-dimensional identity matrices otherwise. Note, that Opp is an
orthogonal matrix, i.e. it holds O−1

pp = OT
pp. The matrix D is given by

Dpq = Id
d×d
〈λq, ϕp〉γ̃, p, q ∈ Ñ F

and is diagonal due to the bi-orthogonality relation (2.6.2). The matrix M with
entries

Mpq = Id
d×d
〈λq, ϕp〉γ̃, p ∈ Ñ F , q ∈ ÑM ,

is sparse, but involves basis functions from both mortar and non-mortar side. Hence,
an efficient implementation of M is not trivial, see e.g. [118] for details.

Remark 2.6.2. This dual mortar approach to non-penetration can be applied to a
setting with fault opening, i.e. [u]u · nu ≤ 0, see the literature cited throughout this
section.

Remark 2.6.3. A generalization of the dual mortar discretization to body configu-
rations, where multiple, possibly conflicting constraints on non-mortar nodes would
occur, has been suggested in the literature, see e.g. [106] for an overview. This
issue arises if more than two bodies meet in a single point on the contact boundary
at so-called crosspoints or if ΓD ∩ ΓF 6= ∅. The idea is to alter the dual basis in
the vicinity of such points (d = 2) or lines (d = 3). For d = 2 and a first-order
dual basis, e.g., one would discard the dual basis functions ϕp corresponding to such
points p ∈ Ñ F while neighboring dual basis functions are chosen to be constant on
the elements containing p to ensure consistency and preserve its partition of unity
property, see [106] for an illustration.
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Dual mortar discretization of the solution space In the spirit of [131], the (non-
conforming) finite element analog of the solution space Hun−1

0

Sun−1
0 = V ⊕Wt.

incorporates non-penetration by removing the normal jumps. This decomposition
motivates the unique splitting of any v ∈ Sun−1

0

v = vV + vW , v ∈ Sun−1
0 (2.6.3)

into contributions

vV = Πv =
∑
N\ÑF

v(p)µp ∈ V , vW = (Id−Π)v =
∑
p∈ÑF

[v]p λp ∈ Wt.

Here, [v]p identifies the weak nodal jump of v at p ∈ Ñ F given by

[v]p = (v − Π(v))(p) = (〈[̃vj], ϕp〉γ̃)dj=1 ∈ Rd.

By construction, the weak normal jump [v]p ·np = 0 vanishes for the nodal vectors [v]p
and all p ∈ Ñ F . Therefore, vW represents a nodal approximation of the tangential
jump of v across γ̃ pulled back to Γ̃FT .

Fully discretized rate problem with given state Using the finite element approx-
imation Sun−1

0 ⊂ Hun−1
0 , let us discretize the spatial rate problem with given state

α ∈ L2(ΓF ) from (2.5.3) by inserting the splitting (2.6.3). Proceeding as in [99, 102],
the friction functional Φu from (2.4.3) is diagonalized using a lumping strategy, i.e.
the integrand φ([v]u , α) is replaced by its nodal interpolation in SF leading to the
approximate functional ΦS : Sun−1

0 → R,

ΦS(v, α) =
∑
p∈ÑF

φp([v]p , α), φp([v]p , α) = φ([v]p , α(p))
ˆ

Γ̃FT
λp ds. (2.6.4)

This nodal interpolation requires α to be continuous in a neighborhood of each
p ∈ Ñ F . Altogether, the mortar discretized rate problem (2.5.3) reads

u̇n,S ∈ Sun−1
0 : an(u̇n,S , v− u̇n,S) + ΦS(v, α)−ΦS(u̇n,S , α) ≥ `n,S(v− u̇n,S) (2.6.5)

for all v ∈ Sun−1
0 and n = 1, . . . , N with the bilinear form an(·, ·) from (2.5.4) and a

discrete version `n,S of the linear functional `n
`n,S(v) = `(v) + (ρün−1,S , v) + 2

τ
(ρu̇n−1,S , v)− τ

2b(u̇n−1,S , v)− b(un−1,S , v).

Here, the data from the previous time step ün−1,S , u̇n−1,S , un−1,S is either obtained by
finite element approximations u̇0,S , u0,S ∈ S of the initial conditions u̇0, u0 ∈ Hu0

0 and
a corresponding approximation ü0,S ∈ S of the initial acceleration via the auxiliary
problem (2.5.5) or determined by discrete analogues of (2.5.1) and (2.5.2).
Since Sun−1

0 is a subspace of Hun−1
0 , the existence and uniqueness of discrete, spatial

solutions u̇n,S ∈ Sun−1
0 , n = 1, . . . , N , carries over from the continuous setting in

Proposition 2.5.3 by the same arguments and under the same assumptions.
The efficient computation of numerical solutions to the fully discrete rate problem
(2.6.5) is a challenging task that will be addressed in Section 2.7.
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2.6 Spatial discretization

2.6.2 Piecewise constant discretization of the state problem

Let us turn our attention to the spatial discretization of the state problem (2.5.10)
with given rate. Denoting with CF = {Cp ⊂ ΓF : p ∈ N F} a dual partition of the
trace grid T F of ΓF , let us consider the subspace BF ⊂ L2(ΓF ) of functions, that
are constant on the individual cells Cp ∈ CF , p ∈ N F . For given rate u̇ ∈ Sun−1

0 , a
piecewise constant discretization of the state problem (2.5.10) using BF yields

αn,B ∈ BF : (αn,B, β − αn,B)L2(ΓF ) + τΨB(β, u̇)− τΨB(αn,B, u̇)
≥ (αn−1,B, β − αn,B)L2(ΓF ) ∀β ∈ BF ,

(2.6.6)

where the nodal approximation ΨB : BF → R

ΨB(β, u̇) =
∑
p∈ÑF

ψ(β(p), | [u̇]p |) |Cp| (2.6.7)

of the state functional Ψ(·, u̇) from (2.4.5) is obtained by replacing the integrand
ψ( · , |[u̇]u|) with its nodal interpolation in SF .
Again, the existence and uniqueness of spatial solutions αn,B ∈ BF , n = 1, . . . , N ,
transfers directly from the continuous setting, see Proposition 2.5.5.

This variational inequality is equivalent to the convex minimization problem

αn,B ∈ BF : EB(αn,B, u̇) ≤ EB(β, u̇) ∀β ∈ BF

with the discrete, convex state energy functional EB( · , u̇) given by

EB(β, u̇) = 1
2 (β, β)L2(ΓF ) − (αn−1,B, β)L2(ΓF ) + τΨB(β, u̇), β ∈ BF .

Note, that the global state energy functional EB( · , u̇) fully decouples into nodal
contributions. Consequently, the minimizer of EB( · , u̇) can be determined by
minimizing the local, scalar, convex functionals independently from each other. In
general, the associated algebraic problems can be solved with bisection. However,
there is an analytic solution in terms of elementary functions in the specific instance
of Ruina’s slip law (2.2.6):

αn,B(p) = L
L+τV

(
αn−1,B(p)− τV

L
log(V

L
)
)
, p ∈ Ñ F .

For Dieterich’s aging law, the analytic solution contains the Lambert W function.

2.6.3 Fully discretized coupled rate-and-state problem

At last, all necessary steps have been taken to state a fully discrete version of the
weak coupled rate-and-state problem 2.4.1. Its discretization in time and space is
obtained by combining (2.6.5) and (2.6.6) as follows.
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Problem 2.6.4 (Discretization in time and space). Find u̇n,S ∈ Sun−1
0 and αn,B ∈ BF

satisfying

an(u̇n,S , v − u̇n,S) + ΦS(v, αn,B)− ΦS(u̇n,S , αn,B) ≥ `n,S(v − u̇n,S)
(αn,B, β − αn,B)L2(ΓF ) + τΨB(β, u̇n,S)− τΨB(αn,B, u̇n,S) ≥ (αn−1,B, β − αn,B)L2(ΓF )

for all v ∈ Sun−1
0 and β ∈ BF , n = 1, . . . , N , with given initial conditions u0,S ∈ Sun−1

0 ,
u̇0,S ∈ Sun−1

0 and α0,B ∈ BF .

Proceeding as suggested for the case of unilateral frictional contact [99, 102], this
problem is decoupled by means of a fixed point iteration. Similarly to the continuous
setting, denote with RS : BF → Sun−1

0 and SB : Sun−1
0 → BF the solution operators

corresponding to the rate problem with given state (2.6.5) and the state problem
with given rate (2.6.6), respectively. Then, the fully discretized coupled problem 2.6.4
is solved iteratively using the fixed point iteration

u̇ν+1
n,S = RS

(
ωαν+1

n,B + (1− ω)ανn,B
)
, αν+1

n,B = SB
(
u̇νn,S

)
, ν = 0, 1, . . . (2.6.8)

with initial iterate (u̇0
n,S , α

0
n,B) = (u̇n−1,S , αn−1,B) and suitable damping parameter

ω ∈ (0, 1]. Note that the cells Cp ∈ CF , p ∈ N F , contain p in the interior by
construction. Thus, the state functions α ∈ BF are constant and hence continuous in
a neighborhood of each node p ∈ N F fulfilling the regularity assumptions for nodal
interpolation in (2.6.4).

Remark 2.6.5. Showing convergence of the fixed point iteration is a subject of
future research. One approach could be to extend a similar proof conducted in case
of unilateral rate-and-state contact for a subduction zone [99, 102] to the current
layered fault system.

2.7 Truncated Nonsmooth Newton Multigrid
algorithm

The last open component for the numerical simulation of the model problem is a
highly robust and efficient algebraic solver for the rate problem (2.6.5) with given
state α ∈ BF . As in the setting with unilateral contact and rate-and-state friction [99,
102], a variant of the Truncated Nonsmooth Newton Multigrid (TNNMG) method
will be used. It was originally designed for quadratic obstacle problems [53] and
later extended to variational inequalities of second kind with separable nonsmooth
nonlinearities [56, 52, 55]. Prior to its inception, monotone multigrid methods (MMG)
[75, 133] were the fastest, globally convergent solvers for two body contact problems
in the literature. Once the active set is found in the MMG iteration, it reduces to a
linear multigrid method and thus features linear multigrid convergence asymptotically.
The computational effort per iteration is comparable for both methods, but TNNMG
typically reaches the asymptotic phase sooner leading to fewer iterations and faster
computation times in practice, see e.g. [55].
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2.7 Truncated Nonsmooth Newton Multigrid algorithm

Both TNNMG and MMG build on the observation, that the convergence of a simple,
globally convergent nonlinear relaxation scheme, e.g. of Gauß-Seidel type, can be
accelerated by a suitable Newton-type correction obtained from a linearized problem,
that decreases energy efficiently.
An application of TNNMG to the fully discrete rate problem (2.6.5) with given state
α ∈ BF is straightforward in many aspects that will be omitted. For details, the
interested reader may consult the references mentioned above. Nonetheless, the basic
steps will be sketched and important, problem-specific nuances will be highlighted in
the following.

Nonlinear smoothing

The variational inequality (2.6.5) with given state α ∈ BF can equivalently be phrased
as the minimization problem

u̇n,S ∈ Sun−1
0 : JS(u̇n,S) ≤ JS(v) ∀v ∈ Sun−1

0 (2.7.1)

with the discrete convex rate energy functional

JS(v) = 1
2an(v, v)− `n,S(v) + ΦS(v, α).

Using the splitting (2.6.3) suggested by the decomposition Sun−1
0 = V ⊕Wt, there is

the basis representation

v =
∑

p∈N\ÑF
vpµp +

∑
p∈ÑF

vpλp (2.7.2)

of all v ∈ Sun−1
0 with coefficients vp = v(p), p ∈ N \Ñ F and vp = [v]p, p ∈ Ñ F ,

cf. Remark 2.6.1. In the following, each v ∈ Sun−1
0 is identified with its unique

algebraic representation (vp)p∈N , vp ∈ Rd. In this basis, the discrete nonlinear friction
functional

ΦS(v, α) =
∑
p∈ÑF

φp(vp, α)

decouples into separate blocks for the coefficients vp ∈ Rd with respect to the local
nonlinearity φp, p ∈ Ñ F .
The block-separable structure of the convex minimization problem (2.7.1), where
blocks correspond to local subspaces at the nodes p ∈ N , motivates the subspace
decomposition

Sun−1
0 =

∑
p∈N
Vp, Vp =

{µpx : x ∈ Rd}, if p ∈ N \Ñ F

{λpx : x ∈ Tpγ̃}, if p ∈ Ñ F

which induces a nonlinear block Gauß–Seidel method [50]. Enumerating the nodes
N = {p1, . . . , pM} in an arbitrary but fixed order, it minimizes JS successively in
the individual subspaces Vpi corresponding to the nodes pi ∈ N : Starting from an
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initial iterate vν ∈ Sun−1
0 and setting w0 = vν , nodewise successive corrections in the

local subspaces Vpi yield the intermediate iterates

wi = wi−1 + arg min
∆w∈Vpi

JS(wi−1 + ∆w), i = 1, . . . ,M. (2.7.3)

Here, the nodewise correction ∆w ∈ Vp, p ∈ Ñ F , for given intermediate iterate w
can be determined by minimizing the convex, nonsmooth local functional

JS,p(∆w) = 1
2App∆w ·∆w − r

T
p ·∆w + φp(wp + ∆w, α), p ∈ Ñ F

in a suitable subspace of Rd associated with the local tangent space Vp, where A and
b identify the matrix and vector representations of an(·, ·) and `n,S(·) with respect
to (2.7.2) and rp = bp −

∑
q∈N Apqwq denotes the local residual. Eventually, the new

iterate is obtained by v̄ = wM . This iterative scheme converges globally albeit usually
with rapidly deteriorating convergence rates if the system matrix originates from the
discretization of a differential operator on increasingly fine grids [56].

First-order dominating model It turns out, that it suffices to determine the
local corrections inexactly as long as they generate enough decent towards the
unique minimizer of (2.7.1). This notion is captured by the theory of first-order
dominating models [56] and has been applied in a setting with local rate-and-state
nonlinearities [99]. Most concepts from the latter publication carry over to the
present task.
The general idea behind this approach is to approximate the quadratic part of the
functional JS,p, p ∈ Ñ F , while the local nonlinearity is evaluated exactly. For this
purpose, denote with σp the largest eigenvalue of App and introduce the model

Ip(∆w) = 1
2σp |∆w|

2 − rTp ·∆w + φp(wp + ∆w, α)
= 1

2σp |wp + ∆w|2 − r̂Tp · (wp + ∆w) + φp(wp + ∆w, α) + const.

where r̂p = rp+σpwp. As the subdifferential ∂ωφp(ω, α) is a one dimensional subspace
in direction ω or zero, the unique minimizer of

ω 7→ 1
2σp |ω|

2 − r̂Tp · ω + φp(ω, α)

is a multiple of r̂p. Thus, determining the minimizer of Ip comes down to solving a
rotationally symmetric (hence one dimensional), scalar convex minimization problem
in Vp, which can be achieved with bisection.
For the linear d-dimensional problems in Vp, p ∈ N \Ñ F , the quadratic part is
approximated by the largest eigenvalue as well.
Note, that the model Ip is first-order accurate, i.e. it holds

JS,p(0) = Ip(0) and ∂JS,p(0) = ∂Ip(0),

and dominates JS,p in the sense JS,p ≤ Ip. Moreover, if ∆w is a descent direction of
Ip, i.e. Ip(∆w) < Ip(0), then also of JS,p, since it holds

JS,p(∆w) ≤ Ip(∆w) < Ip(0) = JS,p(0).
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2.7 Truncated Nonsmooth Newton Multigrid algorithm

Due to these properties, the first-order dominating model Ip produces sufficient
decent such that an inexact block Gauß-Seidel smoother, that minimizes Ip instead
of JS,p, still converges globally to the solution of problem (2.7.1), see [56].

Remark 2.7.1. When computing the largest eigenvalue σp of App, p ∈ N , numeri-
cally, one has to be careful not to generate false complex eigenvalues that may arise
due to round-off errors. A formulation in d = 2 space dimensions for App = (aij)i,j=1,2,
that is robust in this regard, reads

σp = 1
2(a11 + a22) +

√
1
4(a11 − a22)2 + a12 a21.

Truncated linear correction

The fundamental idea behind TNNMG methods is to accelerate convergence of
nonlinear Gauß–Seidel smoothing (2.7.3) by a suitable correction, that decreases
energy efficiently and is essentially determined by a Newton-type search direction δv
obtained from a linearized defect problem. Let us suppose that previous nonlinear
smoothing yields the smoothed iterate v̄ ∈ Sun−1

0 . Then, the ensuing nonsmooth
Newton step consists of determining a large subspace W(v̄) ⊂ Sun−1

0 , such that the
functional JS |v̄+W(v̄) is twice differentiable in a neighborhood of v̄ and subsequently
finding δv via

J ′′S (v̄)|W(v̄)×W(v̄) δv = −J ′S(v̄)|W(v̄), (2.7.4)
where J ′′S (v̄)|W(v̄)×W(v̄) denotes the Hessian and J ′S(v̄)|W(v̄) the gradient of JS re-
stricted to the subspaces W(v̄)×W(v̄) and W(v̄), respectively. These restrictions
account for the nonsmoothness of the friction nonlinearity ΦS .
In general, the locally nonsmooth components of ΦS are identified by the set of nodes

K(v̄) = {p ∈ Ñ F : ∂φp(v̄p, α) is not single-valued or φ′′p(v̄p, α) > C}

with a large constant C. For the friction law (2.2.1) and its truncation according to
(2.1.16), this set is given by K(v̄) = {p ∈ Ñ F :

∣∣∣[v̄]p
∣∣∣ ≤ Vα(p)}. Then, the reduced

subspace W(v̄) ⊂ Sun−1
0 is chosen as

W(v̄) = V + span{λpx : x ∈ Tpγ̃, p ∈ Ñ F \K(v̄)}.

Since the functional JS is strongly convex, the coefficient matrix J ′′S (v̄)|W(v̄)×W(v̄) in
the linear problem (2.7.4) is symmetric and positive definite on the subspace W(v̄).
Therefore, the correction δv can be approximated efficiently by one or few standard
linear multigrid steps, that require only slight modifications to incorporate the basis
from (2.7.2) and restrictions to W(v̄), see e.g. [55].
The overall method inherits the global convergence of nonlinear Gauß–Seidel smooth-
ing (2.7.3) as long as the correction ζ δv does not increase energy with a suitably
chosen damping factor ζ ∈ [0,∞), i.e. it holds

JS(v̄ + ζ δv) ≤ JS(v̄). (2.7.5)
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2 Numerical simulation of geological fault networks

Remark 2.7.2. By replacing the standard multigrid prolongation operator P with
P̃ = OB−1P for the transition from the second finest to the finest level, coarser
levels are discretized with respect to the standard basis {λ}. Thus, for all other
transitions between levels, the standard multigrid prolongation operators can be
used [118]. Note that the inverse of the transformation matrix B can be computed
efficiently via

B−1 =

 I 0 0
0 I 0
0 −(D−1M)T I

 .

Line search

The last building block of the TNNMG iteration is a line search performed in Sun−1
0

in direction δv in order to find an optimal damping factor ζ∗ ∈ [0,∞) in (2.7.5) and
guarantee monotonicity as well as global convergence of the overall method. In this
particular instance, the line search step consists of solving

ζ∗ = argmin
ζ∈[0,∞)

JS(v̄ + ζ δv) (2.7.6)

with bisection to determine ζ∗.

TNNMG iteration

Denoting with P , MG, and ζ the (inexact) solution operators corresponding to
nonlinear Gauß–Seidel smoothing (2.7.3), the approximation of suitable Newton-type
search directions via the linear problem (2.7.4) and a line search determining an
optimal damping factor (2.7.6), one step of the TNNMG iteration applied to a given
initial iterate vν ∈ Sun−1

0 reads:

v̄ν = P (vν) (nonlinear smoothing)
δvν = MG

(
J ′′S (v̄ν)|W(v̄ν)×W(v̄ν), J ′S(v̄ν)|W(v̄ν)

)
(linear correction) (2.7.7)

vν+1 = v̄ν + ζ(v̄ν , δvν) δvν (line search)

Global convergence of the TNNMG iteration follows from [56, Corollary 4.5] in
conjunction with [56, Theorem 5.6 and Lemma 5.8] incorporating the inexact pre-
smoothing operator P , that approximates the local functionals JS,p by first-order
dominating models, cf. [54].

Proposition 2.7.3. For any initial iterate v0 ∈ Sun−1
0 , the sequence of iterates

vν ∈ Sun−1
0 , ν = 1, . . ., generated by the TNNMG method (2.7.7) converges to the

unique solution of the mortar-discretized rate problem (2.6.5) with given state α ∈ BF .

An identical proposition holds, if more than one nonlinear pre-smoothing step is used.
Since nonlinear post-smoothing can be interpreted as additional pre-smoothing in
the following TNNMG step, this statement also applies to TNNMG schemes using
one or more post-smoothing steps.
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2.7 Truncated Nonsmooth Newton Multigrid algorithm

Extension to fault opening The presented TNNMG variant can be extended
to a setting that allows fault opening with straightforward modifications, see the
respective literature with applications to obstacle problems, e.g. [55, 53, 118]. First,
the nonlinear Gauß–Seidel smoother is augmented by an additional projection step
enforcing admissibility of the intermediate iterates with respect to the obstacle. For
obstacle problems, another advantage of TNNMG as compared to other established
monotone multigrid methods, e.g. MMG, is, that coarse defect obstacles do not
have to be constructed explicitly, when using a standard multigrid iteration for an
inexact solution of the linear defect problem. In particular, the mortar matrix M
only needs to be computed on the finest level and any coarse grid corrections are
determined in canonical coordinates without obstacles, i.e. the standard transfer
operators can be utilized. Thus, it is significantly easier to implement than other
nonlinear multigrid methods such as MMG, while at the same time displaying similar
or better convergence rates [118]. Since such a correction step does not take obstacles
and thus the domain of the functional into account sufficiently, its result δvν may
violate the non-penetration constraints. Therefore, yet another projection is applied
to guarantee admissibility of the coarse correction δvν with respect to the obstacle.
A key component of this solution approach is the robust and efficient (inexact)
solution of the linear problem (2.7.4). As was noted, this can be achieved, e.g., with a
standard multigrid iteration. However, the scaling properties and performance of this
linear solver for problems involving multiscale fault geometries, that are typical for
geological fault networks, are not clear at this point. Thus, the next chapter focuses
on the efficient numerical solution of structurally similar problems, i.e. an elliptic
model problem with linear jumps across interfaces, featuring spatially multiscale
interface networks with characteristics of geological fault networks.
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3 Numerical homogenization of
multiscale interface problems

In nature, there is an entire continuum of spatial scales ranging from grains (micro)
over rocks (meso) all the way up to tectonic plates (macro) that interacts in geo-
physical fault networks. Their interplay gives rise to complex dynamics in earth’s
lithosphere and is the source of earthquakes (see, e.g., [115] and the literature cited
therein).
Insights from experiments and geophysical (analogue) modeling suggest that grain
sizes in fractured rock [93, 126] as well as fragmentation due to tectonic deforma-
tion [116] are distributed in a fractal sense, i.e. grain sizes and interfaces adhere
to an exponential law. Sammis et al. [116] proposed a model of fragmentation in
tectonic deformation, wherein the breakage of entities due to deformation is caused
by the interaction of adjacent blocks of similar size. This assumption results in a
Cantor-type geometry [93, 126]. A prototypical geometry used both in the mathemat-
ical [61] as well as geoscientific [126] communities is a Cantor set, whose finite-scale
approximations are depicted in Figure 3.1.

Figure 3.1: Finite-scale, Cantor-type interface networks Γ(K) from [126] in d = 3 space dimensions
with K = 4, 5, 6 and increasing resolution from left to right.

As motivated in Section 2.1, mathematical modeling of stress accumulation and
release in geological fault networks involves continuum mechanical descriptions of
deformations, non-penetration and frictional contact along the faults. Although the
considered layered fault system involves multiple spatial scales, it does not exhibit the
full range of spatial scales characteristic for multiscale fault networks. This chapter
focuses on the spatial multiscale aspects and the challenges presented by the fractal
geometry of fault networks. It aims at a thorough and detailed understanding of a
class of scalar, elliptic fractal interface problems augmented by linear jumps across
interfaces and the construction of robust, efficient and scale-independent algebraic
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solvers. Such problems have recently been suggested and analyzed by Heida et
al. [61]. Note that they are structurally similar to the linear problems appearing in
the correction step of the TNNMG method (2.7.4). Much of the content and ideas
presented hereafter has previously appeared in [61] and [78].
Let us consider a simple domain Ω ⊂ Rd, d > 1, containing individual faults Γl
that can be ordered from “strong” to “weak”, i.e. discontinuities of displacements
across Γl decrease for increasing l. The intuition is that “more fractured” media
exhibit a higher resistance to fragmentation [48, 94]. Then, the level-K interface
network Γ(K) = ⋃K

l=1 Γl consists of all faults Γl up to resolution K. Each level-K
interface network Γ(K) splits the domain Ω into a finite number of cells representing
geological grains, rocks, and plates for example. The completion of piecewise smooth
functions in Ω\Γ(K) defines a Hilbert space HK with respect to a scalar product
involving the broken H1-seminorm and weighted L2-norms of jumps across the Γl,
1 ≤ l ≤ K. The weights of the individual interfaces introduce an exponential scaling
of the resistance to jumps across Γl. The limit K → ∞ of the level-K interface
networks Γ(K) is the fractal interface network Γ. In turn, the fractal function space H
on the limiting fractal geometry Γ is given by completion of ⋃∞K=1HK . Then, a class
of self-adjoint elliptic variational problems in H and their level-K approximations
on HK are considered. Note that the spatial scales are not separable or periodic
due to the fractal nature of the geometry. Moreover, the multiscale character of
fractal interface problems exceeds the usual lack of smoothness commonly present in
multiscale problems, because the solution space H depends on the fractal geometry
which is not accessible by a fixed classical finite element space.
Usually, the field of classical homogenization is a premier candidate for studying
computationally feasible, effective mathematical descriptions of multiscale phenom-
ena. Originally developed for elliptic problems with oscillating [2, 3] and random
coefficients [68, 137], homogenization theory has become widely popular and applied
in an astonishing variety of scenarios including multiscale materials [57, 84], biolog-
ical materials like lung tissue [6], or polycrystallines [40]. Historically, numerical
homogenization mimics paradigms introduced in classical homogenization to derive
multiscale discretizations and algebraic solution methods that are robust with respect
to the inherent lack of smoothness of multiscale problems. As a global discretiza-
tion of all scales is computationally unfeasible, the multiscale problem is typically
decomposed into a global problem associated with a finite element grid and local
auxiliary subproblems. The specific setup of global and local problems characterizes
the individual methods. A basic idea, that has been pursued for more than two
decades, is to consider multiscale discretizations with approximating ansatz spaces
having all relevant fine scale features of a given problem built-in. It gave rise to
variational multiscale methods [67], heterogeneous multiscale methods [1, 44], and
multiscale finite elements [45]. However, these homogenization strategies usually
inherit the necessity of scale separation and periodicity of fine scale behavior from
the classical setting. Recall that fractal interface problems possess neither, thus
requiring another approach.
With their publication on localized orthogonal decomposition (LOD) [89], Målqvist
and Peterseim accomplished a breakthrough in the mathematical understanding of
multiscale finite element methods for self-adjoint elliptic problems with oscillating
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coefficients. Based on a projection Π : H → Sh mapping the solution space H onto a
given finite element space Sh ⊂ H ⊂ L2 with mesh size parameter h that satisfies
stability and approximation properties of the form

‖Πv‖H ≤ c ‖v‖H , ‖v − Πv‖L2 ≤ Ch ‖v‖H ∀v ∈ H, (3.0.1)

they introduced the space W as the a-orthogonal complement of the kernel of
Π, i.e. the orthogonal complement with respect to the energy scalar product.
Interestingly, W has the same dimension as Sh and provides approximations with
optimal accuracy without requiring any assumptions on scale separation or periodicity.
This is the outstanding feature compared to other established methods. In general,
the a-orthogonalized nodal basis of W has global support calling for a localization
procedure to obtain a feasible method. The localized basis functions are computed as
approximate solutions of local problems posed in a much larger finite element space
S that resolves all fine scale features of the given problem. In the original paper,
these local fine scale problems are decoupled and possess a saddlepoint structure,
whereas a more recent, computationally more efficient variant [76] employs subspace
correction arguments using a simple local smoother on moderately growing patches.
Instead of deriving low dimensional ansatz spaces with built-in fine scale features in
the spirit of multiscale discretization methods, one could discretize the solution space
H directly using a large finite element space S resolving all relevant scales and come
up with suitable iterative methods, that converge independently of discretization
parameters, e.g. the mesh size of the underlying grid, and of the regularity of the
continuous solution. A first major breakthrough was the advent of multigrid methods
in the 1970s and 1980s (see the monograph by Hackbusch [58] and the literature cited
therein), that combine discretizations on different grids in an iterative scheme and
possess optimal complexity, i.e. computational effort scales linearly with the number
of unknowns, in contrast to previously state-of-the-art SOR methods [135]. However,
classical convergence proofs [19] relied on regularity properties of the continuous
solutions seldomly fulfilled in practice. In an effort to eliminate these and other
assumptions, e.g. quasi-uniformity of triangulations, in the established multigrid
theory, the 1980s also saw the introduction of hierarchical basis [8] and domain
decomposition methods [42, 41]. These developments culminated in widely noticed
and acclaimed overview contributions by Xu [134] and Yserentant [136] founding
the unifying framework of iterative subspace correction. Its central paradigm is to
reduce the remaining error by targeting its different frequencies on a set of fully
decoupled local subproblems posed in suitably chosen subspaces in each iteration
step. Here, projection operators with properties as described in (3.0.1) play an
important role in their convergence analysis, see e.g. [79]. Recently, results from
classical subspace correction theory have been reinterpreted in a typical multiscale
setting with oscillating coefficients by Kornhuber and Yserentant [80].
Both the iterative approach to numerical homogenization based on subspace correc-
tion [80] and LOD [89] rely on the existence of suitable projection operators with
approximation and stability properties as sketched in (3.0.1) for the construction
of the respective local subproblems. A conceptual difference is, that these projec-
tions are merely an analytical tool for convergence proofs of the former, while they
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actually have to be implemented for the latter. In practice, iterative numerical
homogenization is preferable, if the considered problem only has to be solved once or
very few times, since LOD requires the solution of local problems with saddlepoint
structure and because assembling the algebraic representation of the multiscale basis
is computationally rather expensive. The LOD variant is advantageous, if a problem
has to be solved for many right hand sides, i.e. the multiscale basis only has to be
assembled once and can be reused. A more detailed comparison of the aforementioned
approaches is discussed in [77].
The main contribution of this chapter is the explicit construction and analysis of
projections ΠHK : H → HK , ΠSk : H → Sk and their composition Πk,K = ΠSk ◦ΠHK ,
K ≥ k, to approximating K-scale spaces HK and finite element spaces Sk ⊂ HK ,
respectively, that all possess the desired properties (3.0.1), relying on local Poincaré
inequalities and a trace lemma following standard ideas published by Carstensen [22]
and Verfürth [129]. For standard Sobolev and finite element spaces, such projection
operators are not only essential in the construction and analysis of multiscale finite
element and subspace correction methods as mentioned above, but also in finite
element convergence theory and a posteriori error analysis [20, 22, 29, 95, 129].
Compared to the established theory, this endeavor is complicated by the presence
of jump terms. Since counterexamples show that local averages cannot be bounded
by jumps of the original functions, strong assumptions on the locality of Γ will be
necessary.
The projection ΠHK truncates all but the firstK scales based on a best-approximation
on the individual cells generated by the partition Ω\Γ(K). Its stability and approxi-
mation properties follow with general results from functional analysis. On the other
hand, ΠSk projects onto finite element spaces relying on Clément-type local averaging.
One major advantage is that it can be implemented efficiently. Their composition
Πk,K , e.g., allows to decompose discretization error estimates into a part correspond-
ing to the truncation of all but the first K scales in abstract function spaces and
another part associated with the spatial discretization using finite elements. This
observation suggests the utilization of Πk,K in the context of LOD-type multiscale
discretizations such as [89], where the suitability of ΠSk for efficient implementation
is an important factor for the actual construction of multiscale bases. If projections
with the aforementioned properties are only an analytic tool, e.g. in the convergence
proofs of iterative subspace correction methods, one can omit the cell-based detour
via HK and use ΠSk directly. Altogether, these different variants represent somewhat
flexible building blocks that can be adapted to the demands imposed by the numerical
approach.
Thereafter, the projection Πk,K withK = k is applied in the construction and analysis
of a LOD-type multiscale discretization with optimal a priori discretization error
estimates in the spirit of [76, 89], see [78]. This approach is not suited for an efficient
solution of the linear problem (2.7.4) in the correction step of the TNNMG method,
since the underlying rate energy functional generally differs for individual time steps
wasting the reusability of the multiscale basis, and is thus to be understood as a
brief proof of concept. Finally, mesh- and scale-independent convergence of various
subspace correction methods, that feature cell- and patch-based preconditioners, will
be shown with ΠSk following [80] and building on arguments going back to Xu [134]
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and Yserentant [136]. This chapter is concluded by numerical experiments with
increasingly complex fractal interface networks less and less covered by theory, that
illustrate the theoretical results obtained for iterative subspace correction methods
and the applicability of the approach beyond their limits.

3.1 Multiscale interface problems

Following [61, 78], this section introduces a sequence of faults (Γl)l∈N, the limiting
fractal interface network Γ = ⋃∞

l=1 Γl and the associated fractal function space H
as well as their K-scale approximations Γ(K) ⊂ Γ and HK ⊂ H, K ∈ N. With
assumptions on the shape regularity and fractal character of the fractal interface
network, fractal interface problems inH andHKwill be considered. The last objective
is to state K-scale approximations in piecewise linear finite element spaces SK ⊂ HK

containing jumps across the interfaces Γl, 1 ≤ l ≤ K.

3.1.1 Multiscale interface networks

Let Ω ⊂ Rd be a bounded, convex domain with Lipschitz boundary ∂Ω, that contains
a sequence of mutually disjoint interfaces Γl ⊂ Ω, l ∈ N. Each interface Γl is assumed
to be piecewise affine and possess a finite (d − 1)-dimensional Hausdorff measure
almost everywhere. The fractal interface network Γ and its finite scale approximations
Γ(K) are given by

Γ =
∞⋃
l=1

Γl, Γ(K) =
K⋃
l=1

Γl, K ∈ N,

respectively. Observe that Γ has Lebesgue measure µd (Γ) = 0 as it is a countable
union of interfaces satisfying µd (Γk) = 0. However, its fractal- (and Hausdorff-)
dimension may be larger than d− 1. For each K ∈ N, the K-scale interface network
splits the domain Ω into mutually disjoint, open, simply connected cells G ∈ G(K)

Ω\Γ(K) =
⋃

G∈G(K)

G

satisfying ∂G = ∂G, i.e. the cells do not admit slits. For notational convenience,
set G(0) = {Ω}. Moreover, the cells G ∈ G(K) are assumed to be star-shaped in the
sense that for each G ∈ G(K) there is a center pG ∈ G and a continuous function
ϑG : Sd−1 → R≥0 on the unit sphere Sd−1 in Rd, where R≥0 = {x ∈ R : x ≥ 0},
such that

G =
{
pG + rs : s ∈ Sd−1, 0 ≤ r < ϑG(s)

}
. (3.1.1)

Denoting with
RG = max

s∈Sd−1
ϑG(s), rG = min

s∈Sd−1
ϑG(s) (3.1.2)

the radii of the smallest ball containing G and the largest ball inside G, respectively,
we define the shape regularity ρG = RG

rG
≥ 1 of G. All cells G ∈ G(K) are assumed to

be shape regular in the sense that

ρG ≤ ρ ∀G ∈ G(K) ∀K ∈ N
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holds with a constant ρ ≥ 1.

Next, let us introduce important quantities characterizing the geometry in the
upcoming analysis. With the set of invariant cells on level K ∈ N

G(K)
∞ =

{
G ∈ G(K) : G ∈ G(L) ∀L > K

}
,

i.e. cells G ∈ G(K), that will not be split by any Γ(L), L > K, define the maximal size

dK = max
{

2RG : G ∈ G(K)\G(K)
∞

}
of cells G ∈ G(K) to be divided on higher levels. Assume that the sequence of
interfaces (Γl)l∈N splits smaller and smaller cells for increasing l, i.e. it holds

dK → 0 for K →∞. (3.1.3)

Let the cardinality of any set M be denoted by |M | ∈ N ∪ {∞} and the open line
segment by

(x, y) = {x+ t(y − x) : t ∈ (0, 1)},
for any x, y ∈ Rd. Furthermore, assume that for all fixed k, l ∈ N ∪ {0} with k < l,
there is a constant Ck,l ≥ 0, such that

|(x, y) ∩G ∩ Γl| ≤ Ck,l ∀G ∈ G(k) (3.1.4)

holds for almost all x, y ∈ Ω. Finally, set Cl = C0,l and

rk = sup
l>k

Ck,l
C0,l

, k ∈ N (3.1.5)

and assume that the interface network Γ(K) is self-similar in the sense that

rKCK ≤ C0 ∀K ∈ N (3.1.6)

is bounded by a constant C0.
To fix ideas and illustrate this notion of multiscale interface networks, consider the
following highly localized example adhering to the previous setting.

Example 3.1.1 (Interface network in 2D). In the spirit of [61, 126], let us con-
struct a Cantor-type albeit more local interface network. Consider the unit square
Ω = (0, 1)2 ⊂ R2 with canonical basis {e1, e2} in R2 and construct the sequence of
interfaces (Γk)k∈N inductively as follows. Set

Γ(1) = Γ1 = {1
4e1 + (0, e2)} ∪ {1

4e2 + (0, e1)} ∪ {1
2e1 + (0, 1

4e2)} ∪ {1
2e2 + (0, 1

4e1)}.

and, for given Γ(k), k ≥ 1, define

Γ̃k+1 = Γ(k) ∪ {e1 + Γ(k)} ∪ {e2 + Γ(k)}

as well as Γk+1 = 1
4 Γ̃k+1\Γ(k). See Figure 3.3 for an illustration. The resulting limit

network Γ is self-similar by construction and an extension to d = 3 is straightforward.
The associated geometric quantities are given by dk =

√
2 4−k, Ck,l = 2l−k+1, and

Ck = 2k+1, k ≥ 1. Thus, it holds rk = 2−k and C0 = 2 in (3.1.6).
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3.1.2 Fractal function spaces

Ultimately, the goal of this section is to formulate a scalar elliptic model problem on
the fractal geometry Ω\Γ, whose solution allows for jumps across the fractal interface
network Γ. However, the fractal nature of the geometry constitutes a challenging
setting for which suitable mathematical notions and a meaningful formalism have to
be developed. Natural questions that arise are:

• What is a suitable solution space?
• Do basic notions like weak gradients or jumps across interfaces exist?

To answer these questions and work towards the stated goals, we follow a strategy
that is very common in (functional) analysis, the construction of complete metric
spaces and Banach spaces in particular. Rather than working with the complete but
complicated space, one characterizes it by (equivalence classes of) approximating
sequences in a dense subspace. Usually, this subspace is chosen such that it is
more accessible with established mathematical tools. Then, concepts developed
for approximating sequences carry over to the complete space by density. There
is a plethora of instances for this approach including the introduction of R as the
completion of rational numbers or the construction of Sobolev spaces.
For each fixed K ∈ N, consider the space of piecewise smooth functions

C1
K,0 :=

{
v : Ω\Γ(K) → R : v|G ∈ C1(G) ∀G ∈ G(K) and v|∂Ω ≡ 0

}
.

on Ω\Γ(K), that vanish on the boundary ∂Ω. As Γl is piecewise affine, l = 1, . . . , K,
there is a normal νξ to Γl at almost all ξ ∈ Γl. We fix its orientation such that
νξ · em > 0 with m = min{i = 1, . . . , d : νξ · ei 6= 0} and {e1, . . . , ed} denoting the
canonical basis of Rd. For every ξ ∈ Γl for which there is a normal νξ and any
x 6= y ∈ Rd such that (y − x) · νξ 6= 0, the jump of v ∈ C1

K,0 across Γl at ξ in the
direction y − x is defined by

JvKx,y (ξ) = lim
s↓0

(v (ξ + s(y − x))− v (ξ − s(y − x))) .

Moreover, since v ∈ C1
K,0 is continuous on both sides of the interface Γl, JvKx,y (ξ) is

equal to the normal jump of v ∈ C1
K,0 at ξ ∈ Γl

JvK (ξ) = JvKξ−νξ,ξ+νξ (ξ)

up to the sign.
For some fixed material constant c > 0 and the geometrical constants Cl, l ∈ N,
taken from (3.1.4), let us introduce a scalar product on C1

K,0

〈v, w〉K =
ˆ

Ω\Γ(K)
∇v · ∇w dx+

K∑
l=1

(1 + c)l Cl
ˆ

Γl
JvK JwK dΓl, v, w ∈ C1

K,0

and the associated norm ‖v‖K = 〈v, v〉1/2K , that scales the jumps across Γl with the
exponential factor (1 + c)l, l ≤ K. Thus, the material constant c determines the
growth of resistance to jumps with increasing fracturing.
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Classical completion of C1
K,0 with respect to ‖ · ‖K results in a hierarchy of K-scale

Hilbert spaces
H1 ⊂ · · · ⊂ HK−1 ⊂ HK , K ∈ N,

with scalar products 〈 · , · 〉K , dense subspaces C1
K,0 ⊂ HK and isometric embeddings.

For fixed K ∈ N, the Hilbert space HK is topologically equivalent to a broken Sobolev
space H1(Ω,G(K)) supplied with the standard broken Sobolev norm.
Then, a limiting fractal Hilbert space H with scalar product

〈v, w〉 =
ˆ

Ω\Γ
∇v · ∇w dx+

∞∑
l=1

(1 + c)l Cl
ˆ

Γl
JvK JwK dΓl, v, w ∈ H (3.1.7)

and associated norm ‖v‖H = 〈v, v〉1/2 is obtained by completion of ⋃K∈N .HK . For
details, the interested reader is referred to [61]. Hereafter, essential properties of the
space H, that were derived in the same publication, will be summarized for later use.
Due to the construction of H, the smooth subspaces (C1

K,0)K∈N and thus the finite-
scale spaces (HK)K∈N are dense in H, i.e. for any v, w ∈ H there are sequences
(vK)K∈N, (wK)K∈N ⊂ (C1

K,0)K∈N satisfying vK , wK ∈ C1
K,0 for all K ∈ N, such that

‖v − vK‖H → 0, 〈vK , wK〉K → 〈v, w〉 for K →∞. (3.1.8)

Note that the space L2(Ω\Γ) implicitly appearing in (3.1.7) is well-defined, since
Ω\Γ is Lebesgue measurable according to

Ω\Γ = Ω ∩ (⋃∞l=1 Γl){ ⊂ Ω\Γ(K).

Moreover, to really understand (3.1.7), notions of generalized jumps and gradients
need to be defined. For this purpose, let us introduce the sequence space (L2(Γl))l∈N
equipped with the weighted norm

‖z‖2
Γ =

∞∑
l=1

(1 + c)lCl ‖zl‖2
0,Γl , z = (zl)l∈N ∈ (L2(Γl))l∈N,

where ‖ · ‖0,Γl denotes the usual norm in L2(Γl). Then, for each v ∈ H and each
sequence (vK)K∈N with vK ∈ HK , the limits

∇v = lim
K→∞

∇vK in L2(Ω\Γ) and JvK = lim
K→∞

JvKK in (L2(ΓK))K∈N

exist and are called weak gradient ∇v and generalized jump JvK of v, respectively.
Additionally, for all v ∈ H, there holds a Green’s formula

ˆ
Ω
v∇ · ϕdx = −

ˆ
Ω\Γ
∇v · ϕdx+

∞∑
l=1

ˆ
Γl

JvKϕ · νl dΓl ∀ϕ ∈ C∞0 (Rd)d

and a global Poincaré-type inequality

‖v‖2
0 ≤ c

(
|v|21,Ω\Γ +

∞∑
l=1

(1 + c)l Cl ‖JvK‖2
0,Γl

)
(3.1.9)
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3.1 Multiscale interface problems

where ‖ · ‖2
0 denotes the standard L2(Ω) norm, ‖ · ‖2

0,M the standard L2(M) norm
and |v|1,M\Γ = ‖ |∇v| ‖0,M\Γ for suitable sets M ⊆ Ω; the constant c is bounded
in terms of (1 + 1

c
)diam(Ω). Lastly, there is a continuous embedding of the fractal

space H into the Sobolev-Slobodeckij spaces Hs(Ω) (see, e.g. [121]), i.e. H ⊂ Hs(Ω)
with s ∈ [0, 1

2). Therefore, the fractal space H can be identified with a subspace of⋂
s∈[0, 12 ) H

s(Ω), see [61].

3.1.3 Fractal interface problems

Consider the fractal interface problem

u ∈ H : a(u, v) = (f, v) ∀v ∈ H (3.1.10)

with f ∈ L2(Ω), the standard scalar product ( · , · ) in L2(Ω), and the bilinear form

a(v, w) =
ˆ

Ω\Γ
A∇v · ∇w dx+

∞∑
l=1

(1 + c)l Cl
ˆ

Γl
B JvK JwK dΓl, v, w ∈ H (3.1.11)

for given functions A : Ω\Γ→ Rd×d and B : Γ = ⋃∞
l=1 Γl → R. Furthermore, assume

that A(x) ∈ Rd×d is symmetric for all x ∈ Ω\Γ and satisfies the properties

α0 |ξ|2 ≤ A(x)ξ · ξ, |A(x)ξ · η| ≤ α1 |ξ| |η| ∀ξ, η ∈ Rd ∀x ∈ Ω\Γ, (3.1.12)

where | · | denotes the Euclidean norm, with positive constants α0, α1 ∈ R. The
function B is assumed to fulfill

0 < β0 ≤ B(x) ≤ β1 ∀x ∈ Γ (3.1.13)

with constants β0, β1 ∈ R. By (3.1.12) and (3.1.13), the bilinear form a(·, ·) is
symmetric and elliptic in the sense that

a ‖v‖2
H ≤ a(v, v), |a(v, w)| ≤ A ‖v‖H ‖w‖H ∀v, w ∈ H (3.1.14)

holds with a = min{α0, β0} and A = min{α1, β1}. Hence, a(·, ·) is a scalar product
on H and the associated energy norm ‖ · ‖ = a(·, ·)1/2 is equivalent to ‖ · ‖H.
Due to the continuous embedding (3.1.9) ofH into L2(Ω), it holds (f, ·) ∈ H−1, where
H−1 denotes the dual space of H, and the Lax-Milgram lemma implies well-posedness
of (3.1.10).

Proposition 3.1.2. The fractal interface problem (3.1.10) admits a unique solution
u ∈ H satisfying the stability estimate

‖u‖H ≤
1
a
c

1
2 ‖f‖0 (3.1.15)

with the constant c from (3.1.9).

Proof. Using (3.1.14), the Cauchy-Schwarz inequality and the embedding of H into
L2(Ω) by (3.1.9) implies

‖u‖2
H ≤

1
a
a(u, u) = 1

a
(f, u) ≤ 1

a
‖f‖0 ‖u‖0 ≤

1
a
c

1
2 ‖f‖0 ‖u‖H

for the unique solution u ∈ H of (3.1.10).
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3 Numerical homogenization of multiscale interface problems

Remark 3.1.3. In order to model highly heterogeneous media, A may be chosen
to oscillate rapidly in space. The numerical methods that will be introduced to
approximate the solution are robust with respect to this behavior [76, 80].

3.1.4 Finite scale discretization

Following [78], the fractal space H is characterized by limiting properties of the
finite scale spaces HK , K ∈ N, by construction. Thus, it is natural to consider the
approximating interface problems

uHK ∈ HK : a(uHK , v) = `(v) ∀v ∈ HK (3.1.16)

on finite scales K ∈ N. The finite scale bilinear form is given by

a(v, w) = aK(v, w) =
ˆ

Ω\Γ(K)
A∇v · ∇w dx+

K∑
l=1

(1 + c)l Cl
ˆ

Γl
B JvK JwK dΓl

for v, w ∈ HK . Again, the Lax-Milgram lemma implies the well-posedness of (3.1.16)
and a straightforward error estimate follows from Céa’s lemma.

Proposition 3.1.4. For each K ∈ N, the finite scale interface problem (3.1.16)
admits a unique solution uHK ∈ HK satisfying the error estimate

‖u− uHK‖H ≤
A
a

inf
v∈HK

‖u− v‖H . (3.1.17)

Due to the density of (HK)K∈N in H by (3.1.8), the above result implies convergence

‖u− uHK‖H → 0 for K →∞. (3.1.18)

Remark 3.1.5. For A(x) = I and cuboid cells G ∈ G(K), K ∈ N, that additionally
satisfy quite restrictive conditions on the shape regularity, one can prove exponential
error estimates of the form

‖u− uHK‖H ≤ c ‖f‖0
1
c
(1 + c)−(K−1)

with a constant c depending only on the space dimension d, the Poincaré-type
constant in (3.1.9), and shape regularity [61, Theorem 4.2]. The fractal interface
network from Example 3.1.1 fulfills these requirements.

Finite elements on finite scales

Let T (0) be a regular partition of Ω into simplices with maximal diameter h0 > 0
such that the intersection of two different simplices T, T ′ ∈ T (0) is either a common
n-simplex for some n = 0, . . . , d − 1 or empty. Denote the set of d − 1 faces of
T ∈ T (0) by E (0). The shape regularity σ > 0, i.e., the maximal ratio of the radii
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3.1 Multiscale interface problems

of the smallest ball containing and largest ball inscribed in T ∈ T (0), is preserved
under uniform regular refinement [9, 16].
Furthermore, assume that the sequence of partitions resulting from successive uniform
regular refinement of T (0) resolves the interface network in the sense that for each
fixed K ∈ N there is a partition T (K), as obtained by a finite number of refinement
steps, such that the interfaces Γl, l = 1, . . . , K, can be represented by faces of
simplices T ∈ T (K), i.e.

Γ(K) =
⋃

E∈E(K)
Γ ⊂E(K)

E (3.1.19)

holds with a suitable subset E (K)
Γ of the set E (K) of faces of simplices T ∈ T (K). In

particular, this implies that for all G ∈ G(K) the set T (K)
G = {T ∈ T (K) : T ⊂ G} is

a local partition of G and that the maximal diameter hK of T ∈ T (K) is bounded by
the maximal diameter 2dK of G ∈ G(K). We additionally assume that G(K) is not
overresolved by T (K) meaning that there is a uniform bound of dK by hK , i.e., that

δdK ≤ hK ≤ 2dK , K ∈ N, (3.1.20)

holds with a constant δ > 0 independent of K ∈ N.
Next, let us introduce appropriate local and global finite element space. For this
purpose, denote with N (K)

G the set of vertices of T ∈ T (K)
G that are not located on

the boundary ∂Ω. Consequently, each vertex located on an interface Γl with two
(or more) adjacent cells G,G′ ∈ G(K), gives rise to two (or more) different nodes
p ∈ N (K)

G and p′ ∈ N (K)
G′ . For each G ∈ G(K), define the cell based finite element

space SK(G) of piecewise affine functions with respect to T (K)
G that are vanishing on

∂G ∩ ∂Ω. The space SK(G) is spanned by the standard nodal basis functions λ(K)
p ,

p ∈ N (K)
G . Extending the functions λ(K)

p , p ∈ N (K)
G , by zero from G to Ω, the global

broken finite element space is given by

SK = span
{
λ(K)
p : p ∈ N (K)

}
, N (K) =

⋃
G∈G(K)

N (K)
G .

Then, the discretization of the K-scale interface problem (3.1.16) with respect to
SK reads

uSK ∈ SK : aK(uSK , v) = `(v) ∀v ∈ SK . (3.1.21)
Again, existence and uniqueness of the resulting finite element approximation uSK of
uHK ∈ HK follows from the Lax-Milgram lemma. Convergence is implied by Céa’s
lemma together with (3.1.18).

Proposition 3.1.6. The finite element approximations (uSK )K∈N converge to the
solution u of (3.1.10) in the sense that for each ε > 0 there is a sufficiently large
K ∈ N such that

‖uHK − uSK‖H < ε.

For each fixed K ∈ N, the expected order of convergence is obtained under suitable
regularity assumptions on uHK .
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3 Numerical homogenization of multiscale interface problems

Proposition 3.1.7. Let d ≤ 3, K ∈ N and assume that uHK |G ∈ Hr(G) ∀G ∈ G(K)

with r = 2, if d = 1, 2, and r = 2 + ε, ε > 0, if d = 3. Then the a priori error
estimate

‖uHK − uSK‖H ≤ chK
∑

G∈G(K)

‖uHK‖Hr(G) (3.1.22)

holds with a constant c depending only on the shape regularity σ of T (K).

Proof. The proof follows from well-known interpolation error estimates [43].

If the interface geometry is sufficiently regular such that exponential convergence of
uHK holds, see Remark 3.1.5, a priori estimates of the discretization error ‖u− uSK‖H
follow with (3.1.22) via

‖u− uSK‖H ≤ ‖u− uHK‖H + ‖uHK − uSK‖H .

In Section 3.3.1, optimal a priori estimates will be obtained directly relying on a
multiscale finite element discretization.

3.2 Projections

This section is dedicated to the construction of projection operators Π : H → Sk
from the fractal function space H to piecewise linear finite element spaces Sk with
respect to a triangulation T (k) resolving the level-k interface network Γ(k), k ∈ N,
that satisfy stability and approximation properties of the form

‖v − Πv‖2
0 ≤

(
1 + 1

c

)
c d2

K ‖v‖
2
H , ‖Πv‖H ≤ c′ ‖v‖H (3.2.1)

for all v ∈ H with suitable constants c, c′ > 0. The existence of such operators
extends the applicability of well-known approaches to numerical homogenization
especially in terms of local orthogonal decomposition and subspace correction to
fractal interface problems. Many of the insights presented hereafter have previously
appeared in [78].
The construction and analysis of suitable projections ΠHK : H → HK , ΠSk : H → Sk
and their composition Πk,K = ΠSk ◦ ΠHK , K ≥ k, that all possess the desired
properties (3.2.1), will be achieved by extending well-known ideas based on local
Poincaré inequalities [22, 129]. Following a strategy introduced by Verfürth [129],
the latter will be derived relying on estimates on balls and ball segments, whereby
the presence of jump terms poses a novel challenge. Another obstacle is the fact that
it is not possible to bound jumps of local averages by jumps of the original functions
as a counterexample will demonstrate. Therefore, strong assumptions on the locality
of the interface network Γ have to be fulfilled for the projections to be stable in the
sense of (3.2.1). This construction of quasi projections Πk,K is rather flexible and
guarantees their usefulness for the development of various multilevel methods and
corresponding numerical analysis. Colloquially, the choice of K and k introduces
adjustable building blocks, whose relative contributions can be adapted depending
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on the numerical algorithm. Whenever the existence of such quasi projections is only
an analytic tool and the actual definition unimportant for the implementation, ΠSk
or Πk,K with K = k could be generic candidates. However, if the goal is to derive
discretization error estimates with an approach that requires these operators to be
evaluated explicitly, e.g. a setting as presented in [89], concerns like computational
complexity arise and impose additional demands on the choice of Πk,K .

3.2.1 Local Poincaré inequalities

The focus in this section lies on the derivation of a local Poincaré-type inequality for
star-shaped sets ω ⊆ G ∈ G(k)\G(k)

∞ . It is imperative to quantify the dependence of
the Poincaré constant cp on various geometric quantities, when applying this result
to prove an approximation property of the quasi projection Πk,K . In H1(Ω), there
are various known approaches to achieve this task for non-convex, star-shaped sets
ω. One idea is to claim the existence of few reference configurations such that every
star-shaped set is affine equivalent to one of them and subsequently estimate cp for
each reference configuration. Alternatively, one could construct extension operators
from ω to a larger but simple domain, e.g. a ball, and assess the Poincaré constant
for the latter [24]. Verfürth introduced a third strategy, that relies on estimates of cp
on balls and ball segments [129]. Verfürth’s approach allows for a straightforward
extension to the fractal function space H. In this context, the sets ω exhibit a
non-empty intersection with Γl, l > k, in general. Thus, the main challenge will be
to handle contributions by jumps across the finer interfaces Γl.

Poincaré inequality on balls

As a first step, let us develop a local Poincaré inequality on balls. Let k ∈ N and
consider star-shaped sets ω ⊆ G ∈ G(k)\G(k)

∞ . The notation

B (ω,R) =
{
pω + rs : s ∈ Sd−1, 0 ≤ r < R

}
(3.2.2)

introduces a ball with radius R > 0, whose center is given by the one of ω. Moreover,
 
M

v dx = 1
µd (M)

ˆ
M

v dx

will be used forthwith with suitable sets M ⊂ Ω. Observe, that deriving a local
Poincaré inequality on balls B = B (ω, rω) according to the ansatz
∥∥∥∥∥v −

 
B

v dx

∥∥∥∥∥
2

0,B
=
ˆ
B

∣∣∣∣∣
 
B

v(x)− v(y) dx
∣∣∣∣∣
2

dy ≤
ˆ
B

 
B

|v(x)− v(y)|2 dx dy (3.2.3)

for all v ∈ H comes down to evaluating the differences |v(x)− v(y)|2. The following
lemma is a variant of Lemma 3.5 in [61] and estimates this difference in terms of
gradient and jump contributions.
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Lemma 3.2.1. Let k ∈ N∪{0}, G ∈ G(k)\G(k)
∞ and K > k. For almost all x 6= y ∈ G,

such that
∣∣∣(x, y) ∩ Γ(K)

∣∣∣ <∞ and (x, y) ⊂ G, the estimate

|v(x)− v(y)|2 ≤
(
1 + 1

c

)
|x− y|2

(ˆ 1

0
∇v (x+ t(y − x)) dt

)2

+
(
1 + 1

c

) K∑
l=k+1

(1 + c)l−k Ck,l
∑

ξ∈(x,y)∩Γl

JvK2 (ξ) ∀v ∈ C1
K,0

holds, where ∇v (x+ t(y − x)) is understood to vanish for x+ t(y − x) ∈ Γ(K).

Proof. Let v ∈ C1
K,0. The jumps of v across the sequence of interfaces (Γl)l∈N up to

level K and average gradient along the line (x, y) give the estimate

|v(x)− v(y)|2 ≤
 K∑
l=k+1

∑
ξ∈(x,y)∩Γl

JvKx,y (ξ) + (y − x)
ˆ 1

0
∇v (x+ t(y − x)) dt

2

.

Note, that G only contains parts of the interfaces Γk+1, . . . ,ΓK . Using the binomial
estimate

0 ≤ (a− bc)2 = a2 − 2abc + c2b2 ⇒ 2ab ≤ 1
c
a2 + cb2,

where a, b, c ∈ R and c > 0, let us infer

|v(x)− v(y)|2

≤
(
1 + 1

c

)
|x− y|2

(ˆ 1

0
∇v (x+ t(y − x)) dt

)2

+ (1 + c)
 K∑
l=k+1

∑
ξ∈(x,y)∩Γl

JvKx,y (ξ)
2

≤
(
1 + 1

c

)
|x− y|2

(ˆ 1

0
∇v (x+ t(y − x)) dt

)2

+ (1 + c)
(
1 + 1

c

) ∑
ξ∈(x,y)∩Γk+1

JvKx,y (ξ)
2

+ (1 + c)2

 K∑
l=k+2

∑
ξ∈(x,y)∩Γl

JvKx,y (ξ)
2

.

As |(x, y) ∩ Γl| ≤ Ck,l holds by definition of Ck,l in (3.1.4), the Cauchy-Schwarz
inequality in R|(x,y)∩Γl| yields

 ∑
ξ∈(x,y)∩Γl

JvKx,y (ξ)
2

≤ Ck,l
∑

ξ∈(x,y)∩Γl

JvK2 (ξ)

and the assertion follows by induction.

Plugging the statement of the previous lemma into the ansatz in equation (3.2.3)
leads to an estimate involving the integration of jump terms, which is addressed by
the following lemma (cf. Theorem 3.6 in [61]).
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Lemma 3.2.2. Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ be star-shaped, B = B (ω, rω) and

K ≥ l > k. It holds
ˆ
B

ˆ
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy ≤ c µd (B) rω
ˆ

Γl∩B
JvK2 dΓl ∀v ∈ C1

K,0

with a constant c that only depends on the space dimension d.

Proof. Let v ∈ C1
K,0 with arbitrary K ≥ l > k. Let B(0, 2rω) denote the ball centered

at zero with radius 2rω and set Bη = {x ∈ B : x+ η ∈ B} for all η ∈ B(0, 2rω).
Using the diffeomorphism Ψ defined by

Ψ : {(x, η) : η ∈ B(0, 2rω), x ∈ Bη} → B ×B, (x, y) = Ψ(x, η) = (x, x+ η)

to transform the integral in the statement of the lemma yields
ˆ
B

ˆ
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy =
ˆ
B(0,2rω)

ˆ
Bη

∑
ξ∈(x,x+η)∩Γl

JvK2 (ξ) dx dη. (3.2.4)

Next, choose η ∈ B(0, 2rω) arbitrary but fixed and consider the integral on Bη. As
Γl is piecewise affine, it can be represented as a countable union Γl = ⋃

i∈I Γl,i of its
affine components Γl,i, i ∈ I ⊂ N. For almost all x ∈ Bη, the set (x, x + η) ∩ Γl is
finite and ∑

ξ∈(x,x+η)∩Γl

JvK2 (ξ) =
∑
i∈I

ϕi(x),

where
ϕi(x) = JvK2 (ξ), if (x, x+ η) ∩ Γl,i = ξ ∈ Rd

and ϕi(x) = 0 if (x, x+ η) ∩ Γl,i = ∅.
Extending ϕi by zero to Rd and choosing a transformation Φ, that rotates the
canonical basis e1, . . . , ed of Rd such that Φ(eη) = e1, where eη = η/ |η|, leads to
ˆ
Bη

ϕi(x) dx =
ˆ
Rd−1

ˆ
R
ϕi(x1, x

′) dx1 dx
′ =

ˆ
Rd−1

ˆ
R
ϕi(Φ(xη, x′)) dxη dx′. (3.2.5)

Introducing the set Ui = {x′ ∈ Rd−1 : ∃xη ∈ R such that Φ(xη, x′) ∈ Γl,i ∩ Bη},
let us note that if Ui is empty or Γl,i is normal to Ui, i.e. Ui is a singleton, then
the integral in (3.2.5) vanishes. Otherwise, there is an explicit parameterization
γi : Ui → Γl,i of Γl,i given by γi(x′) = Φ(hi(x′), x′), where hi : Ui → R is a suitable
smooth function. By definition, ϕi is piecewise constant in η-direction and bounded
according to

0 ≤ ϕi(Φ(xη, x′)) ≤ JvK2 (γi(x′)), x′ ∈ Ui.

Hence, integration over xη and substitution of these bounds yield
ˆ
Rd−1

ˆ
R
ϕi(Φ(xη, x′)) dxη dx′ ≤

ˆ
Ui

|η| JvK2 (γi(x′)) dx′.
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As Γl,i is the graph of hi, its first fundamental form satisfies gγi(x′) = 1+|∇hi(x′)|2 ≥ 1
and thusˆ

Ui

|η| JvK2 (γi(x′)) dx′ ≤ |η|
ˆ
Ui

JvK2 (γi(x′))
√
gγi dx′ = |η|

ˆ
Γl,i∩Bη

JvK2 dΓl,i.

For the entirety of Γl, summing over i ∈ I leads to
ˆ
Bη

∑
ξ∈(x,x+η)∩Γl

JvK2 (ξ) dx =
∑
i∈I

ˆ
Bη

ϕi(x) dx ≤ |η|
ˆ

Γl∩B
JvK2 dΓl (3.2.6)

and inserting (3.2.6) into (3.2.4) concludes the proof.

A local Poincaré inequality on balls follows by collecting the results of this section.

Lemma 3.2.3 (local Poincaré inequality on balls). Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞

be star-shaped and B = B (ω, rω). It holds∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,B
≤
(
1 + 1

c

)
cB rω

rω |v|21,B\Γ +
∞∑

l=k+1
(1 + c)l−k Ck,l ‖JvK‖2

0,Γl∩B


for all v ∈ H with a constant cB only depending on the space dimension d.

Proof. As ⋃K∈N C1
K,0 is dense in H and all quantities in the statement of the lemma

depend continuously on v, it suffices to show the claim for v ∈ C1
K,0. Thus, let

v ∈ C1
K,0 with arbitrary K > k and note, that∥∥∥∥∥v −

 
B

v dx

∥∥∥∥∥
2

0,B
=
ˆ
B

∣∣∣∣∣
 
B

v(x)− v(y) dx
∣∣∣∣∣
2

dy ≤
ˆ
B

 
B

|v(x)− v(y)|2 dx dy.

Recalling Lemma 3.2.1 and using the Cauchy-Schwarz inequality, the difference
|v(x)− v(y)| can be estimated in terms of the average gradient and jump contributions
along the line segment (x, y) by

|v(x)− v(y)|2 ≤
(
1 + 1

c

)
|x− y|2

ˆ 1

0
|∇v (x+ t(y − x))|2 dt

+
(
1 + 1

c

) K∑
l=k+1

(1 + c)l−k Ck,l
∑

ξ∈(x,y)∩Γl

JvK2 (ξ).

Following well-known arguments for proving a standard Poincaré inequality on balls
for the gradient part (see e.g. Lemma 4.1 in [46]), one understands, that

ˆ
B

 
B

|x− y|2
ˆ 1

0
|∇v (x+ t(y − x))|2 dt dx dy

≤ c1

ˆ
B

rω

ˆ
B\Γ(K)

|∇v(y)|2 |x− y|1−d dx dy ≤ c1 r
2
ω |v|

2
1,B\Γ(K)
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holds with a constant c1 > 0 only depending on the space dimension d. Applying
Lemma 3.2.2 for the jump terms yields the estimateˆ

B

 
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy ≤ c2 rω

ˆ
Γl∩B

JvK2 dΓl,

where c2 only depends on the space dimension d, concluding the proof.

Using the same ideas as in the previous proof, one can show a trace analog of the
local Poincaré inequality on balls.

Lemma 3.2.4. Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ be star-shaped, B = B (ω, rω) and

K ≥ l > k. It holdsˆ
∂B

ˆ
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy ≤ c µd (B)
ˆ

Γl∩B
JvK2 dΓl ∀v ∈ C1

K,0

with a constant c that only depends on the space dimension d.

Proof. Let v ∈ C1
K,0 with arbitrary K ≥ l > k. Let B(0, 2rω) denote the ball centered

at zero with radius 2rω and set ∂Bx = {y − x : y ∈ ∂B} for any x ∈ B. Using
Fubini’s theorem and the diffeomorphism Ψ defined by

Ψ : {(x, η) : x ∈ B, η ∈ ∂Bx} → B × ∂B, (x, y) = Ψ(x, η) = (x, x+ η)

to transform the integral yieldsˆ
∂B

ˆ
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy =
ˆ
B

ˆ
∂Bx

∑
ξ∈(x,x+η)∩Γl

JvK2 (ξ) dη dx

=
ˆ
B

ˆ
∂B(0,2rω)

∑
ξ∈(x,x+η)∩Γl∩B

JvK2 (ξ) dη dx =
ˆ
∂B(0,2rω)

ˆ
B

∑
ξ∈(x,x+η)∩Γl∩B

JvK2 (ξ) dx dη.

Arguing exactly as in the derivation of equation (3.2.5) in the proof of Lemma 3.2.2
leads toˆ

B

∑
ξ∈(x,x+η)∩Γl∩B

JvK2 (ξ) dx ≤ |η|
ˆ

Γl∩B
JvK2 dΓl = 2rω

ˆ
Γl∩B

JvK2 dΓl

for any η ∈ ∂B(0, 2rω).

Continuing the train of thought, a trace lemma for balls is derived with the now
familiar strategy.

Lemma 3.2.5 (Trace theorem for balls). Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ be star-

shaped, B = B (ω, rω) and K > k. Then∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,∂B
≤
(
1 + 1

c

)
c∂B

rω |v|21,B\Γ +
∞∑

l=k+1
(1 + c)l−k Ck,l ‖JvK‖2

0,Γl∩B


holds for all v ∈ C1

K,0 with a constant c∂B only depending on the space dimension d.
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Proof. Let us proceed similarly to the proof of Lemma 3.2.3. Let v ∈ C1
K,0 with

arbitrary K > k and note, that∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,∂B
=
ˆ
∂B

∣∣∣∣∣
 
B

v(x)− v(y) dx
∣∣∣∣∣
2

dy ≤
ˆ
∂B

 
B

|v(x)− v(y)|2 dx dy.

Again, the difference |v(x)− v(y)| can be estimated in terms of gradient and jump
terms along the line segment (x, y) with Lemma 3.2.1 and the Cauchy-Schwarz
inequality. Well-known arguments for the gradient part (see e.g. Lemma 4.1 in [46])
lead to

ˆ
∂B

 
B

|x− y|2
ˆ 1

0
|∇v (x+ t(y − x))|2 dt dx dy

≤ c1

ˆ
∂B

rω

ˆ
B\Γ(K)

|∇v(y)|2 |x− y|1−d dx dy ≤ c1 rω |v|21,B\Γ(K) ,

where the constant c1 > 0 only depends on the space dimension d. Applying Lemma
3.2.4 for the jump terms yields the estimate

ˆ
∂B

 
B

∑
ξ∈(x,y)∩Γl

JvK2 (ξ) dx dy ≤ c2

ˆ
Γl∩B

JvK2 dΓl,

where c2 only depends on the space dimension d, concluding the proof.

Poincaré inequality on star-shaped sets

The next objective is to extend the Poincaré inequality on balls to star-shaped sets
ω ⊆ G ∈ G(k)\G(k)

∞ . For this purpose, split

‖v‖2
0,ω = ‖v‖2

0,B(ω,rω) + ‖v‖2
0,ω\B(ω,rω) ∀v ∈ C1

K,0, K > k

into a contribution from the associated ball B (ω, rω) and the remainder ω\B (ω, rω).
Strategically, the remainder term will be handled in a similar way as were balls
B (ω, rω) in the previous section. Again, estimating differences |v(x)− v(y)| in terms
of gradients and jumps according to Lemma 3.2.1 as well as the integral over jumps
in analogy to Lemma 3.2.2 will be essential components. The latter is accomplished
by the following lemma.

Lemma 3.2.6. Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ be star-shaped, W = ω\B (ω, rω) and

K ≥ l > k. It holds
ˆ
W

∑
ξ∈(pω ,y)∩Γl∩W

JvK2 (ξ) dy ≤ 1
d
ρd−1
ω Rω

ˆ
Γl∩W

JvK2 dΓl ∀v ∈ C1
K,0.

Proof. Let v ∈ C1
K,0 with arbitrary K ≥ l > k and assume pω = 0 without loss

of generality. As Γl is piecewise affine, it can be represented as a countable union
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Γl = ⋃
i∈I Γl,i of its affine components Γl,i, i ∈ I ⊂ N. For almost all y ∈ W , the set

(0, y) ∩ Γl ∩W is finite and ∑
(0,y)∩Γl∩W

JvK2 (ξ) =
∑
i∈I

ϕi(y),

where
ϕi(y) = JvK2 (ξ), if (0, y) ∩ Γl,i ∩W = ξ ∈ Rd

and ϕi(y) = 0 if (0, y)∩Γl,i∩W = ∅. Extending ϕi by zero to the ball B = B (ω,Rω),
let us consider the integral

ˆ
W

ϕi(y) dy =
ˆ
B\B(ω,rω)

ϕi(y) dy =
ˆ
Sd−1

ˆ Rω

rω

ϕi(Ψ(r, s)) rd−1 dr ds, (3.2.7)

where Ψ denotes the transformation from d-dimensional spherical to Cartesian
coordinates.
Introducing the set Si = {s ∈ Sd−1 : (0, Rωs) ∩ Γl,i ∩ W 6= ∅} of directions
that contribute to the integral in (3.2.7), denote with ∂Bi = {Rωs : s ∈ Si} the
corresponding segment of ∂B. If ∂Bi is empty or Γl,i is normal to ∂Bi, i.e. ∂Bi

is a singleton, then the integral in (3.2.7) vanishes. Otherwise, there is an explicit
parameterization γi : ∂Bi → Γl,i of Γl,i given by γi(s) = Ψ(hi(s)Rω, s), where hi :
∂Bi → (0, 1) is a suitable smooth function. By definition, ϕi is piecewise constant in
s-direction and bounded according to

0 ≤ ϕi(Ψ(r, s)) ≤ JvK2 (γi(s)), s ∈ Si.

Then, integrating over r and transforming the domain of the integral from Si to ∂Bi

yields
ˆ
Sd−1

ˆ Rω

rω

ϕi(Ψ(r, s)) rd−1 dr ds ≤ 1
d
Rω

ˆ
Si

JvK2 (γi(s))Rd−1
ω ds

≤ 1
d
Rω

ˆ
∂Bi

JvK2 (γi(s)) ds.

The first fundamental form gγi of Γl,i satisfies
√
gγi = hi(s)d−2

√
hi(s)2 + |∇hi(s)|2R2

ω

and using the shape regularity Rω
rω
≤ ρω as well as rω ≤ hi(s)Rω implies

1 ≤ ρω hi(s) ≤ ρd−1
ω hi(s)d−1 ≤ ρd−1

ω hi(s)d−2
√
hi(s)2 + |∇hi(s)|2R2

ω = ρd−1
ω

√
gγi .

Thus, inserting this intermediate estimate results inˆ
∂Bi

JvK2 (γi(s)) ds ≤ ρd−1
ω

ˆ
∂Bi

JvK2 (γi(s))
√
gγi ds = ρd−1

ω

ˆ
Γl,i∩W

JvK2 dΓl,i.

For the entirety of Γl, summing over i ∈ I leads toˆ
W

∑
(0,y)∩Γl∩W

JvK2 (ξ) dy =
∑
i∈I

ˆ
W

ϕi(y) dy ≤ 1
d
ρd−1
ω Rω

ˆ
Γl∩W

JvK2 dΓl.
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Using this result, let us derive an intermediate estimate in likeness to Lemma 4.1
in [129].

Lemma 3.2.7. Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ be star-shaped and K > k. It holds

‖v‖2
0,ω ≤ ‖v‖

2
0,B(ω,rω) + cRω

(
‖v‖2

0,∂B(ω,rω) +
(
1 + 1

c

)
Rω |v|21,ω\Γ(K)

)
+ 2

d

(
1 + 1

c

)
ρd−1
ω Rω

K∑
l=k+1

(1 + c)l−k Ck,l ‖JvK‖2
0,Γl∩(ω\B(ω,rω))

for all v ∈ C1
K,0 with a constant c only depending on the dimension d and the shape

regularity ρω.

Proof. Let v ∈ C1
K,0 with arbitrary K > k and assume pω = 0 without loss of

generality. Then, split

‖v‖2
0,ω = ‖v‖2

0,B(ω,rω) + ‖v‖2
0,W ,

as motivated earlier and set W = ω \B (ω, rω) for notational convenience. The
essential task is to derive a suitable bound for ‖v‖2

0,W . For this purpose, let us use
spherical coordinates and split the integral into parts I1 and I2 as follows:

‖v‖2
0,W =

ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 |v(rs)|2 dr ds

=
ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 |v(rs)− v(rωs) + v(rωs)|2 dr ds

≤ 2
ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 |v(rs)− v(rωs)|2 dr ds︸ ︷︷ ︸
=I1

+ 2
ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 |v(rωs)|2 dr ds︸ ︷︷ ︸
=I2

As a first step, consider I1 and apply Lemma 3.2.1 to obtain

I1 ≤ 2
(
1 + 1

c

)ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1
(ˆ r

rω

∇v(zs) dz
)2

dr ds

+ 2
(
1 + 1

c

)ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1
K∑

l=k+1
(1 + c)l−k Ck,l

∑
ξ∈(rωs,rs)∩Γl

JvK2 (ξ) dr ds. (3.2.8)

Moreover, employing the Cauchy-Schwarz inequality and proceeding exactly as in
the proof of Lemma 4.1 in [129] for the gradient part yields

ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1
(ˆ r

rω

∇v(zs) dz
)2

dr ds

≤
ˆ
Sd−1

(ˆ ϑω(s)

rω

zd−1 |∇v(zs)|2 dz
)(ˆ ϑω(s)

rω

rd−1
ˆ r

rω

z1−d dz dr

)
ds.
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3.2 Projections

Using ϑω(s) < Rω, the shape regularity ρω = Rω
rω

and a straightforward calculation
leads toˆ ϑω(s)

rω

(
r

ˆ r

rω

z−1 dz

)
dr =

ˆ ϑω(s)

rω

r ln(r)− r ln(rω) dr ≤ 1
2

(
ln (ρω)− 1

2 + 1
2ρ
−2
ω

)
R2
ω

for d = 2 and toˆ ϑω(s)

rω

(
rd−1

ˆ r

rω

z1−d dz

)
dr =

ˆ ϑω(s)

rω

rd−1

d−2

(
r2−d
ω − r2−d

)
dr

≤ 1
d−2

(
ρd−2
ω

d
− 1

2 + d−2
2d ρ

−2
ω

)
R2
ω

for d ≥ 3 and s ∈ Sd−1. Thus, there is a constant c′ only depending on the space
dimension d and shape regularity ρω, such that

ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1
(ˆ r

rω

∇v(zs) dz
)2

dr ds ≤ c′R2
ω |v|

2
1,W\Γ(K)

≤ c′R2
ω |v|

2
1,ω\Γ(K) .

(3.2.9)

Estimating the jump contributions in (3.2.8) with Lemma 3.2.6 gives
ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 ∑
ξ∈(rωs,rs)∩Γl

JvK2 (ξ) dr ds =
ˆ
W

∑
ξ∈(0,y)∩Γl∩W

JvK2 (ξ) dy

≤ 1
d
ρd−1
ω Rω

ˆ
Γl∩W

JvK2 dΓl = 1
d
ρd−1
ω Rω ‖JvK‖2

0,Γl∩W .

and inserting together with (3.2.9) into (3.2.8) results in

I1 ≤ 2
(
1 + 1

c

)c′R2
ω |v|

2
1,W\Γ(K) + 1

d
ρd−1
ω Rω

K∑
l=k+1

(1 + c)l−k Ck,l ‖JvK‖2
0,Γl∩W

 .
A simple calculation for I2 using rω ≤ ϑω(s) < Rω and the shape regularity ρω
concludes the proof

I2 = 2
ˆ
Sd−1

ˆ ϑω(s)

rω

rd−1 |v(rωs)|2 dr ds = 2
ˆ
Sd−1

rd−1
ω |v(rωs)|2

ˆ ϑω(s)

rω

(
r
rω

)d−1
dr ds

= 2
ˆ
Sd−1

rd−1
ω |v(rωs)|2 rω

d

((
ϑω(s)
rω

)d
− 1

)
ds ≤ 2

d

(
ρdω − 1

)
Rω ‖v‖2

0,∂B(ω,rω) .

Finally, a local Poincaré inequality on star-shaped sets ensues.

Proposition 3.2.8 (Poincaré inequality on star-shaped sets, cf. [129] Lemma 4.3).
Let k ∈ N and ω ⊆ G ∈ G(k)\G(k)

∞ be star-shaped. It holds∥∥∥∥∥v −
 
ω

v dx

∥∥∥∥∥
2

0,ω
≤
(
1 + 1

c

)
cpRω

Rω |v|21,ω\Γ +
∞∑

l=k+1
(1 + c)l−k Ck,l ‖JvK‖2

0,Γl∩ω


for all v ∈ H, where cp only depends on the dimension d and the shape regularity ρω.
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Proof. Again, it suffices to prove the claim for v ∈ C1
K,0 with arbitrary K > k and

subsequently use a density argument, since all quantities depend continuously on
v. Observe that

ffl
ω
v dx minimizes the functional ‖v − · ‖2

0,ω. Denote B = B (ω, rω)
and apply Lemma 3.2.7 to obtain
∥∥∥∥∥v −

 
ω

v dx

∥∥∥∥∥
2

0,ω
≤
∥∥∥∥∥v −

 
B

v dx

∥∥∥∥∥
2

0,ω

≤
∥∥∥∥∥v −

 
B

v dx

∥∥∥∥∥
2

0,B
+ cRω

∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,∂B
+
(
1 + 1

c

)
Rω |v|21,ω\Γ(K)


+ 2

d

(
1 + 1

c

)
ρd−1
ω Rω

K∑
l=k+1

(1 + c)l−k Ck,l ‖JvK‖2
0,Γl∩(ω\B) .

To finish the proof, use rω < Rω and apply the Poincaré inequality on balls (Lemma
3.2.3)

∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,B
≤
(
1 + 1

c

)
cB Rω

Rω |v|21,B\Γ(K) +
K∑

l=k+1
(1 + c)l−k Ck,l ‖JvK‖2

0,Γl∩B


as well as the trace analogue from Lemma 3.2.5

∥∥∥∥∥v −
 
B

v dx

∥∥∥∥∥
2

0,∂B
≤
(
1 + 1

c

)
c∂B

Rω |v|21,B\Γ(K) +
K∑

l=k+1
(1 + c)l−k Ck,l ‖JvK‖2

0,Γl∩B

 .

Remark 3.2.9. In Proposition 3.2.8, the explicit dependence of the constant cp on
the space dimension d and shape regularity parameter ρω can be computed similarly
to [129].
Additionally, all estimates for star-shaped
ω ⊆ G ∈ G(k), k ∈ N, involving shape
regularity parameters can be improved by
allowing sphere segments in the definition
of star-shaped sets. With this extension,
the radius of the largest ball segment con-
tained in ω may be larger, which causes
the new shape regularity parameter to be
smaller compared to ρω (see Figure 3.2).
For ball segments, one would derive a lo-
cal Poincaré inequality by using Lemma
3.2.7, since they are star-shaped and ob-
tain an extension of Lemma 4.2 in [129].
Then, proving a trace lemma for ball seg-
ments with similar arguments will lead to
an improved version of Proposition 3.2.8
with a possibly smaller constant cp.

α

x1

Rd−1

− b
2e1

Bω

B

h

Figure 3.2: Ball segment Bω and largest
contained ball B with radii rω and 1

2rω
respectively, cf. [129].

64



3.2 Projections

3.2.2 Trace theorems

Beside the Poincaré-type inequalities from the previous section, another essential tool
for deriving suitable stability estimates for the projections Πk,K is a trace theorem.
Again, Verfürth’s approach in [129] guides our efforts. The central idea is to use
the triangulation T (k) resolving the cells G ∈ G(k), k ∈ N, and reduce the problem
to showing a trace estimate for the simplices T ∈ T (k). The latter is achieved by
a typical scaling argument employing an affine transformation F : T̂ → T , that
is continuously differentiable, bijective, and maps the reference d-simplex T̂ with
vertices e1, . . . , ed and ed+1 = 0, where {ei : 1 ≤ i ≤ d} denotes the standard basis in
Rd, to a simplex T ∈ T (k). The faces of the reference d-simplex T̂ are denoted by

Êi = {x̂ ∈ T̂ : x̂i = 0}, 1 ≤ i ≤ d, and Êd+1 =
{
x̂ ∈ T̂ :

d∑
i=1
|x̂i| = 1

}
.

The upcoming lemma provides an estimate for the jump terms in the reference
configuration.

Lemma 3.2.10. Let k ∈ N, T ∈ T (k) with T ⊆ G ∈ G(k)\G(k)
∞ , and Ei ∈ E (k) a

face of T , 1 ≤ i ≤ d. Denote with T̂ = F−1(T ) the reference simplex and with
Êi = F−1(Ei) the face corresponding to Ei in the reference simplex. It holds

ˆ
Êi

∑
ξ∈(x̂,x̂+ei)∩Γ̂l∩T̂

Jv̂K2 (ξ)2 dx̂ ≤
ˆ

Γ̂l∩T̂
Jv̂K2 (ξ) dΓ̂l

for all v̂ = v ◦ F , v ∈ C1
K,0 with K ≥ l > k, where Γ̂l ∩ T̂ = F−1 (Γl ∩ T ).

Proof. Let v ∈ C1
K,0 with arbitrary K ≥ l > k and denote v̂ = v ◦ F . As F is an

affine transformation, it preserves the dimension of any affine subspace. Therefore,
Γ̂l∩ T̂ = F−1 (Γl ∩ T ) is piecewise affine and can be represented as a countable union
Γ̂l ∩ T̂ = ⋃

j∈I Γ̂l,j of its affine components Γ̂l,j , j ∈ I ⊂ N. For almost all x̂ ∈ Êi, the
set (x̂, x̂+ ei) ∩ Γ̂l ∩ T̂ is finite and∑

ξ∈(x̂,x̂+ei)∩Γ̂l∩T̂

Jv̂K2 (ξ) =
∑
j∈I

ϕj(x̂),

where
ϕj(x̂) = Jv̂K2 (ξ), if (x̂, x̂+ ei) ∩ Γ̂l,j = ξ ∈ Rd

and ϕj(x̂) = 0 if (x̂, x̂+ ei) ∩ Γ̂l,j = ∅.

Introducing the set Uj = {x̂ ∈ Êi : ∃x̂i ∈ R such that x̂ + x̂iei ∈ Γ̂l,i}, let us note
that if Uj is empty or Γ̂l,j is normal to Uj, i.e. Uj is a singleton, then the integral in
(3.2.10) vanishes. Otherwise, there is an explicit parameterization γj : Uj → Γ̂l,j of
Γ̂l,j given by γj(x̂) = x̂+hj(x̂)ei, where hj : Uj → R is a suitable smooth function. As
Γ̂l,j is the graph of hj , its first fundamental form satisfies gγj (x̂) = 1 + |∇hj(x̂)|2 ≥ 1
and thus
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ˆ
Êi

ϕj(x̂) dx̂ =
ˆ
Uj

Jv̂K2 (γj(x̂)) dx̂

≤
ˆ
Uj

Jv̂K2 (γj(x̂))
√
gγj dx̂ =

ˆ
Γ̂l,j

Jv̂K2 dΓ̂l,j.
(3.2.10)

For the entirety of Γ̂l ∩ T̂ , summing over j ∈ I concludes the proof as perˆ
Êi

∑
ξ∈(x̂,x̂+ei)∩Γ̂l∩T̂

Jv̂K2 (ξ) dx̂ =
∑
j∈I

ˆ
Êi

ϕj(x̂) dx̂ ≤
ˆ

Γ̂l∩T̂
Jv̂K2 dΓ̂l.

Next, the previous lemma will be used to prove a trace lemma in the reference
configuration.

Lemma 3.2.11 (cf. [129] Lemma 3.1). Let k ∈ N, T ∈ T (k) with T ⊆ G ∈ G(k)\G(k)
∞ ,

and Ei ∈ E (k) a face of T , 1 ≤ i ≤ d. Denote with T̂ = F−1(T ) the reference simplex
and with Êi = F−1(Ei) the face corresponding to Ei in the reference simplex. It holds

‖v̂‖2
0,Êi ≤

(
1 + 1

c

)∥∥∥ ∂
∂x̂i
v̂
∥∥∥2

0,T̂\Γ̂(K)
+

K∑
l=k+1

(1 + c)l−k Ck,l ‖Jv̂K‖2
0,Γ̂l∩T̂


for all v̂ = v ◦ F satisfying v̂|Êd+1

= 0, where v ∈ C1
K,0 with K > k and denoting

Γ̂l ∩ T̂ = F−1 (Γl ∩ T ).

Proof. Let i ∈ {1, . . . , d}, x̂ ∈ Êi and v ∈ C1
K,0 such that v̂|Êd+1

= 0. Furthermore,
set η = 1−∑d

i=1 |x̂i| and note that x̂+ ηei ∈ Êd+1, which implies v̂(x̂+ ηei) = 0. A
derivation similar to the proof of Lemma 3.2.1 results in

|v̂(x̂)|2 = |v̂(x̂)− v̂(x̂+ ηei)|2 ≤
(
1 + 1

c

)ˆ η

0

∣∣∣ ∂
∂x̂i
v̂ (x̂+ tei)

∣∣∣2 dt
+
(
1 + 1

c

) K∑
l=k+1

(1 + c)l−k Ck,l
∑

ξ∈(x̂,x̂+ηei)∩Γ̂l

Jv̂K2 (ξ).

Integrating over Êi, applying Fubini’s theorem to the gradient term to switch the
order of integration and using Lemma 3.2.10 to estimate the jump term yields the
assertion.

Moreover, a trace lemma for simplices T ∈ T (k), k ∈ N, follows using the previous
trace lemma for the reference configuration and the affine transformation F .

Lemma 3.2.12 (cf. [129] Lemma 3.2). Let k ∈ N, T ∈ T (k) and E ∈ E (k) be a face
of the simplex T . It holds

‖v‖2
0,E ≤ c

(
1 + 1

c

)h−1
k ‖v‖

2
0,T + hk |v|21,T\Γ(K) +

K∑
l=k+1

(1 + c)l−k Ck,l ‖JvK‖2
0,Γl∩T


for all v ∈ C1

K,0 with K > k and a constant c depending only on the space dimension
d and the shape regularity σ of T (k).
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Proof. Let v ∈ C1
K,0 with K > k, T ∈ T (k) and E ∈ E (k) be a face of the simplex T .

Note that the set of nodal basis functions {λ(k)} is a partition of unity on E and
invoking the triangle inequality leads to

‖v‖0,E =
∥∥∥∥∥∥

∑
p∈N (k)(E)

λ(k)
p v

∥∥∥∥∥∥
0,E

≤
∑

p∈N (k)(E)

∥∥∥λ(k)
p v

∥∥∥
0,E

, (3.2.11)

where N (k)(E) = N (k) ∩ E denotes the vertices of E, that are not part of the
boundary ∂Ω.
Let p ∈ N (k)(E) and consider the affine transformation F : T̂ → T that is contin-
uously differentiable, bijective and maps ed+1 onto p. Thus, there is a reference
face Êi, 1 ≤ i ≤ d, such that F (Êi) = E and λ̂d+1 = λ(k)

p ◦ F , where λ̂d+1 is the
(d + 1)-barycentric coordinate of T̂ . Let us set v̂ = v ◦ F and apply the standard
rule of integral transforms to obtain

‖v‖2
0,E =

(
µd−1(E)
µd−1(Êi)

)
‖v̂‖2

0,Êi ,

‖v̂‖2
0,T̂ =

(
µd(T̂)
µd(T )

)
‖v‖2

0,T =
(
µd−1(Êi)
dµd(T )

)
‖v‖2

0,T ,
(3.2.12)

since µd
(
T̂
)

= 1
d! and µd−1

(
Êi
)

= 1
(d−1)! . Hence, with Lemma 3.2.11 follows

∥∥∥λ(k)
p v

∥∥∥2

0,E
=
(

µd−1(E)
µd−1(Êi)

) ∥∥∥λ̂d+1v̂
∥∥∥2

0,Êi

≤
(

µd−1(E)
µd−1(Êi)

) (
1 + 1

c

)∥∥∥ ∂
∂x̂i

(
λ̂d+1v̂

)∥∥∥2

0,T̂\Γ̂(K)
+

K∑
l=k+1

(1 + c)l−k Ck,l
∥∥∥∥rλ̂d+1v̂

z∥∥∥∥2

0,Γ̂l∩T̂

 .
The triangle inequality, the fact that ∂

∂x̂i
λ̂d+1 = −ei and

∥∥∥λ̂d+1

∥∥∥
∞,T̂

= 1 as well as
the Cauchy-Schwarz inequality lead to∥∥∥ ∂

∂x̂i

(
λ̂d+1v̂

)∥∥∥2

0,T̂\Γ̂(K)
≤ 2

∥∥∥v̂ ∂
∂x̂i
λ̂d+1

∥∥∥2

0,T̂
+ 2

∥∥∥λ̂d+1
∂
∂x̂i
v̂
∥∥∥2

0,T̂\Γ̂(K)

≤ 2 ‖v̂‖2
0,T̂ + 2

∥∥∥ ∂
∂x̂i
v̂
∥∥∥2

0,T̂\Γ̂(K)
.

(3.2.13)

In order to transform
∥∥∥ ∂
∂x̂i
v̂
∥∥∥

0,T̂\Γ̂(K)
back to the original simplex T , apply the chain

rule to obtain

∂
∂x̂i
v̂ (x̂) = ∂

∂x̂i
v (F (x̂)) =

d∑
j=1

∂v
∂xj

(F (x̂)) ∂Fj
∂x̂i

(x̂) = ∇v (F (x̂)) ·DF (x̂) · ei,

where DF denotes the Jacobian of F , and derive the estimate∥∥∥ ∂
∂x̂i
v̂
∥∥∥2

0,T̂\Γ̂(K)
=
(
µd−1(Êi)
dµd(T )

)
‖∇v ·DF · ei‖2

0,T\Γ(K)

≤
(
µd−1(Êi)
dµd(T )

)
|F (ei)− p|2 |v|21,T\Γ(K) ≤

(
µd−1(Êi)
dµd(T )

)
h2
k |v|

2
1,T\Γ(K) .

(3.2.14)
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Inserting (3.2.12) and (3.2.14) into (3.2.13) yields∥∥∥ ∂
∂x̂i

(
λ̂d+1v̂

)∥∥∥2

0,T̂\Γ̂(K)
≤ 2

d

(
µd−1(Êi)
µd(T )

) (
‖v‖2

0,T + h2
k |v|

2
1,T\Γ(K)

)
and together with∥∥∥∥rλ̂d+1v̂

z∥∥∥∥2

0,Γ̂l∩T̂
≤ ‖Jv̂K‖2

0,Γ̂l∩T̂ ≤
(

µd−1(E)
µd−1(Êi)

)
‖JvK‖2

0,Γl∩T

using again (3.2.12) follows the estimate
∥∥∥λ(k)

p v
∥∥∥2

0,E
≤ c

(
1 + 1

c

)h−1
k ‖v‖

2
0,T + hk |v|21,T\Γ(K) +

K∑
l=k+1

(1 + c)l−k Ck,l ‖JvK‖2
0,Γl∩T


with a constant c only depending on the space dimension d and the shape regularity
σ of T (k). Plugging this into (3.2.11) concludes the proof.

As the triangulation T (k), k ∈ N, resolves the cells G ∈ G(k)\G(k)
∞ and interfaces Γl,

l < k, any Γl ∩ ∂G can be represented by a set of edges. Then, applying the previous
trace lemma leads to an estimate controlling the jump across Γl on the side of G.

Lemma 3.2.13. Let k ∈ N, ω ⊆ G ∈ G(k)\G(k)
∞ a patch that is locally partitioned by

T (k), i.e. there is a set T (k)
ω ⊆ T (k) such that ω = ⋃

T∈T (k)
ω
T , and 1 ≤ l ≤ k. It holds

‖v‖2
0,Γl∩∂ω ≤ c

(
1 + 1

c

)h−1
k ‖v‖

2
0,ω + hk |v|21,ω\Γ(K) +

K∑
s=k+1

(1 + c)s−k Ck,s ‖JvK‖2
0,Γs∩ω


for all v ∈ C1

K,0 with K > k and a constant c that depends only on the space dimension
d, the shape regularity σ of T (k).

Proof. Let v ∈ C1
K,0, K > k, and denote by E (k)

ω ⊂ E (k) the set of faces of simplices
T ∈ T (k)

ω . Then, there is a subset of faces E (k)
∂ω ⊂ E (k)

ω that resolves the cell boundary,
i.e.

∂ω =
⋃

E∈E(k)
∂ω

E.

For each face E ∈ E (k)
∂ω , there is a simplex TE ⊂ T (k)

ω such that E is a face of TE.
Note that a single simplex T ∈ T (k)

ω may contribute at most all of its d+ 1 faces to
E (k)
∂ω . With the previous trace lemma for simplices (Lemma 3.2.12), it follows
‖v‖2

0,Γl∩∂ω =
∑

E∈E(k)
∂ω

‖v‖2
0,E

≤ c′
(
1 + 1

c

) ∑
E∈E(k)

∂ω

h−1
k ‖v‖

2
0,TE + hk |v|21,TE\Γ(K) +

K∑
s=k+1

(1 + c)s−k Ck,s ‖JvK‖2
0,Γs∩TE



≤ c
(
1 + 1

c

) ∑
T∈T (k)

ω

h−1
k ‖v‖

2
0,T + hk |v|21,T\Γ(K) +

K∑
s=k+1

(1 + c)s−k Ck,s ‖JvK‖2
0,Γs∩T


≤ c

(
1 + 1

c

)h−1
k ‖v‖

2
0,ω + hk |v|21,ω\Γ(K) +

K∑
s=k+1

(1 + c)s−k Ck,s ‖JvK‖2
0,Γs∩ω


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with a constant c that only depends on the space dimension d and the shape regularity
σ of T (k).

Recall that the triangulation T (k)
G ⊂ T (k) is a local partition of G ∈ G(k)\G(k)

∞ , k ∈ N.
Thus, setting ω = G in the previous lemma yields a cell-based version, see [78].

Corollary 3.2.14. Let k ∈ N, G ∈ G(k)\G(k)
∞ , and 1 ≤ l ≤ k. It holds

‖v‖2
0,Γl∩∂G ≤ c

(
1 + 1

c

)d−1
k ‖v‖

2
0,G + dk |v|21,G\Γ(K) +

K∑
s=k+1

(1 + c)s−k Ck,s ‖JvK‖2
0,Γs∩G


for all v ∈ C1

K,0 with K > k and a constant c that depends only on the space dimension
d, the shape regularity σ of T (k) and the constant δ in (3.1.20).

3.2.3 Projections to HK

This section is devoted to the construction of a projection ΠHK : H → HK from
the fractal space H to a finite scale approximation HK , K ∈ N, that satisfies
approximation and stability properties of the form

‖v − ΠHKv‖
2
0 ≤

(
1 + 1

c

)
c d2

K ‖v‖
2
H , ‖ΠHKv‖H ≤ c′ ‖v‖H

for all v ∈ H with suitable constants c, c′ > 0.

To motivate the approach presented hereafter, observe that v ∈ HK consists of
cell-based, local contributions v|G ∈ H1(G), G ∈ G(K). Colloquially, the projection
ΠHK has to approximate v|G, v ∈ H, on the cells G ∈ G(K)\G(K)

∞ by a function
ΠHKv|G ∈ H1(G) and thus remove all jumps across Γ ∩ G in a suitable fashion.
Constructing the projection ΠHK such that it preserves the mean value of v, i.e.ffl
G
v dx =

ffl
G

ΠHKv dx, guarantees that v−ΠHKv has mean value zero and facilitates
the straightforward application of previously derived Poincaré inequalities in the
derivation of the desired approximation and stability properties.

Observe that ||| · |||2G = (
ffl
G
· dx)2 + | · |21,G is a norm on H1(G), which is equivalent

to the standard H1-norm. The best approximation of v|G with respect to ||| · |||G in
the affine space

ffl
G
v dx+W , where W = {w ∈ H1(G) :

ffl
G
w dx = 0}, will turn out

to be a good choice.

Definition 3.2.15. For every K ∈ N, define the linear projection ΠHK : H → HK

by setting

(ΠHKv)|G =


arg min
vK∈H1(G)

{|v − vK |1,G\Γ :
ffl
G
v − vK dx = 0}, G ∈ G(K)\G(K)

∞

v|G, G ∈ G(K)
∞

for all G ∈ G(K) and v ∈ H.
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3 Numerical homogenization of multiscale interface problems

This operator is indeed a linear projection and well-defined. For G ∈ G(K)\G(K)
∞ ,

the set of feasible functions from H1(G) with appropriate mean value—the affine
space

ffl
G
v dx +W—is closed and convex. Therefore, the quadratic optimization

problem associated with the cell G ∈ G(K)\G(K)
∞ consists of minimizing a strictly

convex functional over a closed and convex set, thus admitting a unique solution. Its
critical point, the local contribution vK ∈ H1(G), and hence unique global minimizer
satisfies ˆ

G\Γ
∇v · ∇w dx =

ˆ
G\Γ
∇vK · ∇w dx ∀w ∈ W . (3.2.15)

Example 3.2.16 (1D best approximation). Consider ΠHK for a 1D domain Ω ⊂ R
on the cell G ∈ G(K)\G(K)

∞ . The cell (interval) G is partitioned into subintervals
I1, . . . , Im by the finer level interface networks Γl, l > K. On these subintervals, v|Ii
is piecewise in H1(Ii), 1 ≤ i ≤ m. Colloquially, ΠHKv|G can be constructed from the
v|Ii by shifting the individual functions, i.e. adding a specific constant, such that
ΠHKv|G is continuous across finer interfaces Γl, l > K, and

´
G

ΠHKv dx =
´
G
v dx

holds. In higher space dimensions, the strategy of gluing piecewise H1(Ii) functions
at the interior jumps of v|G, v ∈ H, to obtain a H1(G) function for the entirety of G
does not work in general.

Lemma 3.2.17 (local stability property). Let K ∈ N and G ∈ G(K)\G(K)
∞ . The

linear projection ΠHK satisfies

|ΠHKv|1,G ≤ |v|1,G\Γ ∀v ∈ H.

Proof. Let v ∈ H, denote vK = ΠHKv|G and use equation (3.2.15) as well as the
Cauchy-Schwarz inequality to obtain

|vK |21,G =
ˆ
G\Γ
∇v · ∇vK dx ≤ |v|1,G\Γ |vK |1,G .

Approximation property

The following global approximation lemma is a consequence of the local Poincaré
inequality for star-shaped domains (Proposition 3.2.8).

Lemma 3.2.18. Let K ∈ N. The linear projection ΠHK satisfies

‖v − ΠHKv‖
2
0 ≤

(
1 + 1

c

)
cK dK

dK |v|21,Ω\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl


for all v ∈ H with a constant cK > 0 that only depends on the dimension d and the
shape regularity parameter ρK.

Proof. Let v ∈ H and note that

‖v − ΠHKv‖
2
0 =

∑
G∈G(K)

‖v − ΠHKv‖
2
0,G =

∑
G∈G(K)\G(K)

∞

‖v − ΠHKv‖
2
0,G , (3.2.16)
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3.2 Projections

since ΠHK is the identity on cells G ∈ G(K)
∞ . Henceforth, consider the cells G ∈

G(K)\G(K)
∞ and observe that

ffl
G
v −ΠHKv dx = 0, i.e. v −ΠHKv has mean value zero

on G, by definition of ΠHK in 3.2.15. Moreover, ΠHKv|G does not jump across Γl,
l > K. Thus, applying the local Poincaré inequality for star-shaped sets (Proposition
3.2.8) on the cells G ∈ G(K)\G(K)

∞ yields

‖v − ΠHKv‖
2
0,G

≤
(
1 + 1

c

)
cG dK

dK |v − ΠHKv|
2
1,G\Γ +

∞∑
l=K+1

(1 + c)l−K CK,l ‖JvK‖2
0,Γl∩G


with a constant cG that only depends on the space dimension d and shape regularity
ρG. Using the triangle inequality and local stability given by Lemma 3.2.17 results in

|v − ΠHKv|1,G\Γ ≤ 2 |v|1,G\Γ

and the local approximation estimate

‖v − ΠHKv‖
2
0,G ≤

(
1 + 1

c

)
cG dK

dK |v|21,G\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩G

 .
Finally, insertion into (3.2.16) concludes the proof.

Remark 3.2.19. Let K ∈ N and G ∈ G(K)\G(K)
∞ . Following the previous proof, it

becomes evident that there is a local variant of the global approximation lemma
establishing

‖v − ΠHKv‖
2
0,G ≤

(
1 + 1

c

)
cG dK

dK |v|21,G\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩G


for all v ∈ H with a constant cG > 0 that only depends on the dimension d and the
shape regularity parameter ρG.

With additional assumptions on the geometry of the interface network Γ, we infer an
approximation property for the projections ΠHK , K ∈ N.

Corollary 3.2.20 (approximation property). Let K ∈ N and assume that the
condition

rK (1 + c)−K ≤ dK (3.2.17)

on the geometry of the interface network Γ is fulfilled. Then the linear projection
ΠHK has the approximation property

‖v − ΠHKv‖
2
0 ≤

(
1 + 1

c

)
cK d

2
K ‖v‖

2
H ∀v ∈ H

with a constant cK > 0 that only depends on the dimension d and the shape regularity
ρK.
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Proof. Let v ∈ H. By the definition of rK in (3.1.5) and condition (3.2.17), it holds

(1 + c)−K CK,l ≤ rK (1 + c)−K Cl ≤ dK Cl (3.2.18)

and applying the global approximation Lemma 3.2.18 leads to the estimate

‖v − ΠHKv‖
2
0 ≤

(
1 + 1

c

)
cK d

2
K

|v|21,Ω\Γ +
∞∑

l=K+1
(1 + c)l Cl ‖JvK‖2

0,Γl


≤
(
1 + 1

c

)
cK d

2
K ‖v‖

2
H

with a constant cK only depending on the dimension d and the shape regularity
ρK .

Stability

For each fixed K ∈ N, the boundedness of ΠHK

‖ΠHKv‖H ≤ κK ‖v‖H ∀v ∈ H

with a constant κK > 0 is a consequence of the closed graph theorem and can be
derived with general results from functional analysis. In preparation for this proof,
let us show the following well-known statement.

Lemma 3.2.21. Let P : X → X be a linear projection on a Banach space X . If
kerP and imP are closed, then P is continuous.

Proof. Let (vn)n∈N be a sequence in X , such that vn → v ∈ X and Pvn → vK . Thus,
vn − Pvn ∈ kerP , since

P (vn − Pvn) = Pvn − Pvn = 0

and vn − Pvn → v − vK . As kerP and imP are closed by assumption, it holds

v − vK ∈ kerP and vK ∈ imP.

This leads to 0 = P (v − vK) = Pv − PvK and ultimately Pv = PvK = vK , since
Pw = w for all w ∈ imP . Altogether, the graph of P is closed as Pvn → vK = Pv.
Applying the closed graph theorem yields the statement of the lemma.

Lemma 3.2.22. Let K ∈ N. The linear projection ΠHK is continuous with respect
to the ‖ · ‖H-norm and thus bounded.

Proof. Note, that im ΠHK = HK is a complete subspace of H and thus closed. Let
us show that the kernel ker ΠHK ⊂ H is closed and subsequently apply the previous
lemma.
Let (vn)n∈N be a sequence in ker ΠHK converging to v ∈ H. For all G ∈ G(K)

∞ and
n ∈ N, it holds (ΠHKvn)|G ≡ 0 and hence (ΠHKv)|G ≡ 0.
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For all G ∈ G(K)\G(K)
∞ and n ∈ N, it holds

´
G
vn dx = 0 and inserting into (3.2.15)

yields ˆ
G\Γ
∇vn · ∇w dx = 0 ∀w ∈ W .

Therefore, as n→∞, we conclude
´
G
v dx = 0 andˆ

G\Γ
∇v · ∇w dx = 0 ∀w ∈ W

by continuous embedding H ⊂ L2(Ω) ⊂ L1(Ω). The optimization problem associ-
ated with ΠHKv|G on G ∈ G(K)\G(K)

∞ admits a unique solution vK ∈ H1(G) (see
Definition 3.2.15 f.) satisfyingˆ

G\Γ
∇vK · ∇w dx =

ˆ
G\Γ
∇v · ∇w dx = 0 ∀w ∈ W .

Thus, ΠHKv|G = vK ≡ 0 for any G ∈ G(K)\G(K)
∞ and v ∈ ker ΠHK .

Although the previous arguments establish the boundedness of ΠHK and therefore the
existence of a constant κK , its dependence on K ∈ N remains to be investigated. The
upcoming considerations aim at assessing this dependence and identifying sufficient
conditions for the uniform stability of ΠHK .
As a first step, we provide a bound for the jump contributions to ‖ΠHKv‖H in terms
of ‖v‖H.

Lemma 3.2.23. Let K ∈ N and assume that conditions (3.1.20) and (3.2.17) are
fulfilled. Then it holds

K∑
l=1

(1 + c)lCl ‖Jv − ΠHKvK‖
2
0,Γl ≤ c

(
1 + 1

c

)2
dK

(
K∑
l=1

(1 + c)lCl
)
‖v‖2

H

for all v ∈ C1
L,0 with L > K and a constant c only depending on the space dimension

d, shape regularity ρK, shape regularity σG of T (K) and the constant δ in (3.1.20).

Proof. Let K ∈ N, v ∈ C1
L,0 with L > K and consider that

‖Jv − ΠHKvK‖
2
0,Γl =

∑
G,G′∈G(K)

G 6=G′

ˆ
Γl∩∂G∩∂G′

((v − ΠHKv)|G − (v − ΠHKv)|G′)2 dΓl

≤ 4
∑

G∈G(K)

‖v − ΠHKv‖
2
0,Γl∩∂G (3.2.19)

holds for l ≤ K. As ΠHKv does not jump across Γs, s > K, applying trace
Corollary 3.2.14 and using the local stability of ΠHK (Lemma 3.2.17) leads to

‖v − ΠHKv‖
2
0,Γl∩∂G ≤ c

′
(
1 + 1

c

)(
d−1
K ‖v − ΠHKv‖

2
0,G

+ 4dK |v|21,G\Γ(L) +
L∑

s=K+1
(1 + c)s−K CK,s ‖JvK‖2

0,Γs∩G

)
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with a constant c′ only depending on the space dimension d, the shape regularity σ of
T (k) and the constant δ in (3.1.20). Furthermore, the local approximation estimate
from Remark 3.2.19 states

‖v − ΠHKv‖
2
0,G ≤

(
1 + 1

c

)
cG dK

dK |v|21,G\Γ(L) +
L∑

s=K+1
(1 + c)s−K CK,s ‖JvK‖2

0,Γs∩G


with a constant cG depending only on the space dimension d and the shape regularity
parameter ρG. Thus, inserting the local approximation estimate and using equation
(3.2.18), which is a consequence of condition (3.2.17), yields

‖v − ΠHKv‖
2
0,Γl∩∂G

≤ c
(
1 + 1

c

)2
dK

|v|21,G\Γ(L) +
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩G

 (3.2.20)

with a constant c depending only on the space dimension d, the shape regularity
parameter ρG, the shape regularity σ of T (k) and the constant δ in (3.1.20). Plugging
(3.2.20) into (3.2.19) and summing over G ∈ G(K) results in the assertion.

Next, a stability result for the projections ΠHK , K ∈ N, will be proved.

Proposition 3.2.24. Assume that (3.1.20) and condition (3.2.17) are fulfilled. Then
the projection ΠHK , K ∈ N, is stable in the sense that

‖ΠHKv‖
2
H ≤ c

(
1 + 1

c

)3
dK

(
K∑
l=1

(1 + c)lCl
)
‖v‖2

H ∀v ∈ H

holds with a constant c that only depends on the space dimension d, shape regularity
ρK, shape regularity σG of T (K) and the constant δ in (3.1.20).

Proof. As ⋃L∈N C1
L,0 is dense in H and ΠHK is continuous for each fixed K ∈ N by

Lemma 3.2.22, it is sufficient to prove the assertion for any v ∈ C1
L,0 with arbitrary

L ≥ K. To that end, it suffices to show a corresponding bound for ‖I − ΠHK‖H,
since

‖ΠHKv‖H ≤ ‖v − ΠHKv‖H + ‖v‖H .
Now, apply the triangle inequality as well as the stability of ΠHK with respect to
| · |1,Ω\Γ implied by Lemma 3.2.17 and use that, by construction, ΠHKv does not
jump across Γl, l > K, to obtain

‖v − ΠHKv‖
2
H = |v − ΠHKv|

2
1,Ω\Γ +

(
1 + 1

c

) L∑
l=1

(1 + c)l Cl ‖Jv − ΠHKvK‖
2
0,Γl

≤ 4 ‖v‖2
H +

(
1 + 1

c

) K∑
l=1

(1 + c)l Cl ‖Jv − ΠHKvK‖
2
0,Γl .

Estimating the remaining jump contributions with Lemma 3.2.23 concludes the
proof.
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Finally, uniform stability of ΠHK is obtained, if dK balances out the exponential
factors in the statement of Proposition 3.2.24.

Corollary 3.2.25. Assume that (3.1.20) and condition (3.2.17) are satisfied and
additionally

dK

(
K∑
l=1

(1 + c)lCl
)
≤ c0, K ∈ N, (3.2.21)

holds with a constant c0 independent of K. Then the projections ΠHK , K ∈ N, are
uniformly stable, i.e.,

‖ΠHKv‖H ≤ c ‖v‖H ∀v ∈ H

holds for each K ∈ N with a constant c depending only on the space dimension d,
shape regularity ρ of G(k)K, shape regularity σ of T (K), the constant δ in (3.1.20),
the constant c0 in (3.2.21), and the material constant c.

Remark 3.2.26. In the spirit of Occam’s razor, one strives for a version of the
previous corollary that is sufficiently general while relying on as few and nonrestrictive
assumptions as possible. Pursuing this ideal, one would like to get rid of the condition
stated in (3.2.21) by using an estimate of the form

‖Jv − ΠHKvK‖0,Γl

?
≤ cl ‖JvK‖0,Γl ,

where cl > 0 is an appropriate constant, instead of Lemma 3.2.23. This way,
contributions involving the | · |1- or ‖ · ‖0-norms need not scale suitably with the
factors (1 + c)lCl in the proof of Proposition 3.2.24.
However, finding such an estimate is impossible as the following counter-example
suggests. Recall the 1D setting from Example 3.2.16. In particular, suppose that
G = (0, 1) ⊂ R is partitioned into I1 = (0, x1), I2 = (x1, x2) and I3 = (x2, 1) with
x1 < x2. Consider a piecewise constant v|G, v ∈ H, namely v|I1 := 0, v|I2 := z 6= 0
and v|I3 := 0. Then ΠHKv|G = (x2 − x1)z 6= 0 and

0 < ‖v − ΠHKv‖0,∂G 6≤ cl ‖v‖0,∂G = 0.

Extending this construction to higher space dimensions is straightforward.

Thus, condition (3.2.21) is a consequence of the fact that the jump contributions of
‖ΠHKv‖H cannot be bounded by the jump contributions of ‖v‖H alone. It relates
the geometry of the interface network represented by dK and Cl with the material
constant c and implies highly localized Γ(K) for feasible c > 0, e.g., the network
described in Example 3.1.1. The condition is quite restrictive and actually excludes
regular Cantor networks such as [61, 126]. For given interface geometry, (3.2.21)
leads to an upper bound for c, while (3.2.17) establishes a lower bound.

Example 3.2.27. Recall the Cantor-type interface network introduced in Example
3.1.1. In this specific instance, the geometric condition given by (3.2.17) is satisfied,
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3 Numerical homogenization of multiscale interface problems

if c ≥ 1. Moreover, condition (3.2.21) is fulfilled, if there is a constant c0 independent
of K such that

dK
K∑
l=1

(1 + c)lCl =
√

2 4−K
(
2K(1 + c)K − 1

)
2+2c
1+2c ≤ c0

holds. This is the case for all c ≤ 1. In conjunction, c = 1 is the only possible
parameter choice to adhere to both conditions.

3.2.4 Projections to finite element spaces SK

The next objective is to introduce projections ΠSK : H −→ SK , K ∈ N, that
approximate functions from the fractal space H by suitable candidates from a finite
element space SK . As nodal interpolation loses its approximation properties in
higher space dimensions, the coefficients of the FE basis functions are determined
by Clément-type local averaging. This Clément-type operator is chosen such that
it smoothes jumps across the interfaces (Γl)k<l≤K , is computationally feasible and
fulfills approximation and stability properties of the form

‖v − ΠSKv‖
2
0 ≤

(
1 + 1

c

)
c h2

K ‖v‖
2
H , ‖ΠSKv‖H ≤ c′ ‖v‖H

for all v ∈ H with suitable constants c, c′ > 0.

Definition 3.2.28. For any K ∈ N, the Clément-type projection ΠSK : H → SK is
defined by setting

ΠSKv =
∑

p∈N (K)

(
Πωpv

)
λ(K)
p , (3.2.22)

where ωp = suppλ(K)
p , p ∈ N (K), denotes the support of the corresponding nodal

basis function and Πωp : H → R satisfies the properties
(P1) Πωp is linear, i.e., it holds Πωp(v + w) = Πωpv + Πωpw for all v, w ∈ H.
(P2) Πωp is the identity on constant functions, i.e. Πωpv = v for all v ∈ P0(G),

ωp ⊂ G ∈ G(K).
(P3) Πωp satisfies a uniform stability estimate of the form∥∥∥Πωpv

∥∥∥
0,ωp
≤ c ‖v‖0,ωp ∀v ∈ H

for all patches ωp, p ∈ N (K), where the constant c only depends on the space
dimension d and shape regularity σ of T (K).

There are a plethora of local operators Πωp satisfying (P1)-(P3) that are known from
standard finite element theory. Some examples include the original Clément operator
or the Oswald projection (see e.g. [21, 98]). However, the L2-stability required by
(P3) is not a standard property of all such operators in the literature, e.g., it does
not hold for the Scott-Zhang quasi-interpolation [120]. To fix ideas, consider the
following example.

76



3.2 Projections

Example 3.2.29 (Weighted Clément quasi-projection). Let ωp = suppλ(K)
p , p ∈

N (K), and consider the operator Πωp : H → R given by

Πωpv =
´
ωp
λ(K)
p v dx´

ωp
λ

(K)
p dx

. (3.2.23)

The weighted Clément quasi-projection is a projection onto R with respect to the
weighted L2(ωp) inner product (u, v) =

´
ωp
λ(K)
p u v dx. For a detailed discussion of

this operator, see e.g. [23] and [22].
Showing (P1)-(P2) is straightforward and property (P3) follows with the Cauchy-
Schwarz inequality (see e.g. [25]). It holds

∥∥∥Πωpv
∥∥∥

0,ωp
≤ µd (ωp)

1
2

∣∣∣∣∣
ˆ
ωp

λ(K)
p dx

∣∣∣∣∣
−1 ∥∥∥λ(K)

p

∥∥∥
0,ωp
‖v‖0,ωp ≤ c ‖v‖0,ωp ,

for all v ∈ L2 (Ω) with a constant c = maxp∈N (K) µd (ωp)
1
2
∣∣∣´
ωp
λ(K)
p dx

∣∣∣−1 ∥∥∥λ(K)
p

∥∥∥
0,ωp

that is independent of the patch size, since the second term is bounded by µd (ωp)−1

according to the mean value theorem and the third by µd (ωp)1/2.

Approximation property

Expanding general arguments presented in [22, Lemma 2.5], a local approximation
estimate on the patches ωp, p ∈ N (K), can be shown.

Lemma 3.2.30. Let K ∈ N, p ∈ N (K) and consider the patch ω = suppλ(K)
p . Then

it holds

‖v − Πωv‖2
0,ω ≤

(
1 + 1

c

)
c hK

hK |v|21,ω\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩ω


for all v ∈ H with a constant c that only depends on the space dimension d and shape
regularity σ of T (K).

Proof. Let v ∈ H and observe that∥∥∥∥∥Πωv −
 
ω

v dx

∥∥∥∥∥
2

0,ω
=
∥∥∥∥∥Πω

(
v −

 
ω

v dx

)∥∥∥∥∥
2

0,ω
≤ c

∥∥∥∥∥v −
 
ω

v dx

∥∥∥∥∥
2

0,ω

holds with a constant c that only depends on the space dimension d and shape
regularity σ of T (K) due to properties (P1)-(P3) of Πω. Then, using the triangle
inequality yields

‖v − Πωv‖2
0,ω ≤ 2

∥∥∥∥∥v −
 
ω

v dx

∥∥∥∥∥
2

0,ω
+2

∥∥∥∥∥Πωv −
 
ω

v dx

∥∥∥∥∥
2

0,ω
≤ (2+2c)

∥∥∥∥∥v −
 
ω

v dx

∥∥∥∥∥
2

0,ω
.

Since ω ⊆ G ∈ G(K) \G(K)
∞ is star-shaped, applying the Poincaré inequality for

star-shaped sets (Proposition 3.2.8) leads to the assertion.

77



3 Numerical homogenization of multiscale interface problems

Next up is a similar estimate on patches ω ⊆ G ∈ G(k)\G(k)
∞ , k ≤ K, that are locally

partitioned by T (k)
ω ⊆ T (k). By assumption, T (K) is a refinement of T (k). Thus, there

is a set of simplices T (K)
ω = {T ∈ T (K) : T ∩ ω 6= ∅} ⊆ T (K) that is a triangulation

of ω. Denote with N (K)
ω = {p ∈ N (K) : µd

(
suppλ(K)

p ∩ ω
)
> 0} the set of vertices,

whose associated nodal basis functions {λ(K)
p |ω} form a partition of unity on ω, i.e.∑

p∈N (K)
ω

λ(K)
p |ω = 1 (3.2.24)

in ω. Moreover, denote with νp = suppλ(K)
p |ω the support patch corresponding to

p ∈ N (K)
ω .

Proposition 3.2.31. Let K ∈ N and ω ⊆ G ∈ G(k)\G(k)
∞ , k ≤ K, a patch that is

locally partitioned by T (k)
ω ⊆ T (k). Then the projection ΠSK : H → SK satisfies

‖v − ΠSKv‖
2
0,ω ≤

(
1 + 1

c

)
c hK

hK |v|21,ω\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩ω


for all v ∈ H with a constant c that only depends on the space dimension d and shape
regularity σ of T (K).

Proof. Let v ∈ H. Thus, it follows with (3.2.24) and Hölder’s inequality in `1

‖v − ΠSKv‖
2
0,ω =

∥∥∥∥∥∥∥
∑

p∈N (K)
ω

(
v − Πνpv

)
λ(K)
p

∥∥∥∥∥∥∥
2

0,ω

≤
ˆ
ω

 ∑
p∈N (K)

ω

∣∣∣v − Πνpv
∣∣∣2 λ(K)

p


 ∑
p∈N (K)

ω

λ(K)
p

 dx.

Using (3.2.24) and applying the local approximation estimate from Lemma 3.2.30
yields

‖v − ΠSKv‖
2
0,ω

≤
∑

p∈N (K)
ω

ˆ
ω

∣∣∣v − Πνpv
∣∣∣2 λ(K)

p dx ≤
∑

p∈N (K)
ω

∥∥∥v − Πνpv
∥∥∥2

0,ω

≤
∑

p∈N (K)
ω

(
1 + 1

c

)
c hK

hK |v|21,νp\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩νp


≤
(
1 + 1

c

)
(d+ 1) c hK

hK |v|21,ω\Γ +
∞∑

l=K+1
(1 + c)l−K CK,l ‖JvK‖2

0,Γl∩ω


with a constant c depending only on the space dimension d and shape regularity σ
of T (K), as any part of ω is covered by at most d+ 1 patches νp, p ∈ N (K)

ω .

As was the case for the projection ΠHK , additional assumptions on the geometry
imply a similar approximation property.
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Corollary 3.2.32 (approximation property). Let K ∈ N and ω ⊆ G ∈ G(k)\G(k)
∞ ,

k ≤ K, a patch that is locally partitioned by T (k)
ω ⊆ T (k). Assume that condition

(3.2.17) is fulfilled. Then the projection ΠSK : H → SK satisfies

‖v − ΠSKv‖
2
0,ω ≤

(
1 + 1

c

)
c h2

K

|v|21,ω\Γ +
∞∑

l=K+1
(1 + c)l Cl ‖JvK‖2

0,Γl∩ω


for all v ∈ H with a constant c that only depends on the space dimension d, shape
regularity σ of T (K) and the constant δ in (3.1.20).

A global version is obtained by setting ω = Ω and following the proof of Proposi-
tion 3.2.31.

Corollary 3.2.33 (global approximation property). Let K ∈ N and assume that
condition (3.2.17) is fulfilled. Then the projection ΠSK : H → SK satisfies

‖v − ΠSKv‖
2
0 ≤

(
1 + 1

c

)
c h2

K ‖v‖
2
H

for all v ∈ H with a constant c that only depends on the space dimension d, shape
regularity σ of T (K) and the constant δ in (3.1.20).

Stability

Proving the desired stability property involves essentially the same arguments as
for the projection ΠHK . Let us start with a first auxiliary result bounding the local
gradient contributions to ‖ΠSKv‖H in terms of ‖v‖H.

Lemma 3.2.34. Let K ∈ N and ω ⊆ G ∈ G(k)\G(k)
∞ , k ≤ K, a patch that is locally

partitioned by T (k)
ω ⊆ T (k). Assume that condition (3.2.17) is fulfilled. Then the

projection ΠSK : H → SK satisfies

|ΠSKv|
2
1,ω\Γ ≤

(
1 + 1

c

)
c

|v|21,ω\Γ +
∞∑

l=K+1
(1 + c)l Cl ‖JvK‖2

0,Γl∩ω

 ∀v ∈ H

with a constant c only depending on the space dimension d, shape regularity σ of
T (K) and the constant δ in (3.1.20).

Proof. Let v ∈ H. Since {λ(K)
p |ω : p ∈ N (K)

ω } is a partition of unity on ω (see
(3.2.24)), it holds ∑

p∈N (K)
ω
∇λ(K)

p |ω = 0 almost everywhere in ω. Thus, using Hölder’s
inequality in `1 leads to the estimate

|ΠSKv|
2
1,ω\Γ =

∣∣∣∣∣∣∣
∑

p∈N (K)
ω

(
v − Πνpv

)
∇λ(K)

p

∣∣∣∣∣∣∣
2

1,ω\Γ

≤
ˆ
ω\Γ

 ∑
p∈N (K)

ω

h−2
K

∣∣∣(I − Πνp

)
v|νp

∣∣∣2

 ∑
p∈N (K)

ω

∣∣∣∇λ(K)
p

∣∣∣2 h2
K

 dx.
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Due to the construction of the triangulation T (K) in Section 3.1.4, the second sum
is bounded by a constant c′ that only depends on its shape regularity σ. Then,
applying the local approximation property from Corollary 3.2.32 yields

|ΠSKv|
2
1,ω\Γ ≤ c′

∑
p∈N (K)

ω

h−2
K

∥∥∥v − Πνpv
∥∥∥2

0,νp

≤
(
1 + 1

c

)
c
∑

p∈N (K)
ω

|v|21,νp\Γ +
∞∑

l=K+1
(1 + c)l Cl ‖JvK‖2

0,Γl∩νp


with a constant c depending only on the space dimension d, the shape regularity σ of
T (K) and the constant δ in (3.1.20). Finally, any part of ω is covered at most d+ 1
times by local patches νp ∈ Ω(K)

ω resulting in the assertion.

The next step is to bound the jump contributions to ‖ΠSKv‖H in terms of ‖v‖H.

Lemma 3.2.35. Let K ∈ N and ω ⊆ G ∈ G(k)\G(k)
∞ , k ≤ K, a patch that is locally

partitioned by T (k)
ω ⊆ T (k). Assume that conditions (3.1.20) and (3.2.17) are fulfilled.

Then the projection ΠSK : H → SK satisfies

K∑
l=k+1

(1 + c)lCl
ˆ

Γl∩ω
Jv − ΠSKvK

2 dΓl

≤ c
(
1 + 1

c

)2
hK

 K∑
l=k+1

(1 + c)lCl

|v|21,ω\Γ(L) +
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩ω


for all v ∈ C1

L,0, L > K, with a constant c only depending on the space dimension d,
shape regularity σ of T (K) and the constant δ in (3.1.20).

Proof. Let v ∈ C1
L,0, L > K. By assumption, the triangulation T (K) is a regular

refinement of T (k). Thus, the interface network Γ(K) splits ω into subcells Gω = G∩ω,
G ∈ G(K), that are locally partitioned by T (K)

Gω ⊆ T
(K). Note that ΠSKv does not

contain any jumps inside the Gω, since it does not jump across Γs, s > K. The rest
of the proof is similar to the one of Lemma 3.2.23. It holds

‖Jv − ΠSKvK‖
2
0,Γl∩ω =

∑
G,G′∈G(K)

G 6=G′

ˆ
Γl∩∂Gω∩∂G′ω

(
(v − ΠSKv)|Gω − (v − ΠSKv)|G′ω

)2
dΓl

≤ 4
∑

G∈G(K)

‖v − ΠSKv‖
2
0,Γl∩∂Gω (3.2.25)

for k ≤ l ≤ K and applying trace Lemma 3.2.13 as well as (3.2.18), which is a
consequence of condition (3.2.17), leads to

‖v − ΠSKv‖
2
0,Γl∩∂Gω ≤ c

(
1 + 1

c

) (
h−1
K ‖v − ΠSKv‖

2
0,Gω + hK |v − ΠSKv|

2
1,Gω\Γ(L)

+ hK
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩Gω

 (3.2.26)
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with a constant c only depending on the space dimension d, the shape regularity σ of
T (K) and the constant δ in (3.1.20). With the local stability of ΠSK (Lemma 3.2.34)
follows

|v − ΠSKv|
2
1,Gω\Γ(L) ≤ 2 |v|21,Gω\Γ(L) + 2 |ΠSKv|

2
1,Gω\Γ(L)

≤
(
1 + 1

c

)
c

|v|21,Gω\Γ(L) +
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩Gω

 ,
where the constant c has the same dependencies as in (3.2.26). Inserting this estimate
and the local approximation property (Corollary 3.2.32) into (3.2.20) yields

‖v − ΠSKv‖
2
0,Γl∩∂Gω

≤ c
(
1 + 1

c

)2
hK

|v|21,Gω\Γ(L) +
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩Gω

 , (3.2.27)

where the constant c has the same dependencies as in (3.2.26). Plugging (3.2.27)
into (3.2.25) and summing over G ∈ G(K) concludes the proof.

Remark 3.2.36. Assuming that conditions (3.1.20) and (3.2.17) are fulfilled, ar-
guments similar to the derivation of equation (3.2.27) imply that for K ∈ N and
ω ⊆ G ∈ G(k)\G(k)

∞ , k ≤ K, a patch that is locally partitioned by T (k)
ω ⊆ T (k), the

projection ΠSK : H → SK satisfies

‖v − ΠSKv‖
2
0,Γl∩∂ω ≤ c

(
1 + 1

c

)2
hK

|v|21,ω\Γ(L) +
L∑

s=K+1
(1 + c)sCs ‖JvK‖2

0,Γs∩ω

 ,
for interfaces Γl, l ≤ k, for all v ∈ C1

L,0, L > K, with a constant c only depending on
the space dimension d, shape regularity σ of T (K) and the constant δ in (3.1.20).

Combining the previous findings leads to a global stability result.

Proposition 3.2.37. Let K ∈ N and assume that (3.1.20) and condition (3.2.17)
are fulfilled. Then the projection ΠSK is stable in the sense that

‖ΠSKv‖
2
H ≤ c

(
1 + 1

c

)3
(

4 + hK

(
K∑
l=1

(1 + c)lCl
))
‖v‖2

H ∀v ∈ H

holds with a constant c that only depends on the space dimension d, shape regularity
ρK, shape regularity σ of T (K) and the constant δ in (3.1.20).

Proof. By a density argument, it is sufficient to prove the assertion for any v ∈ C1
L,0

with arbitrary L ≥ K. To that end, we derive a corresponding bound for ‖I − ΠSK‖H,
since

‖ΠSKv‖H ≤ ‖v − ΠSKv‖H + ‖v‖H .
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Now, apply the triangle inequality as well as the stability of ΠSK with respect to
| · |1,Ω\Γ(L) implied by Lemma 3.2.34 and use that, by construction, ΠSKv does not
jump across Γl, l > K, to obtain

‖v − ΠSKv‖
2
H = |v − ΠSKv|

2
1,Ω\Γ(L) +

(
1 + 1

c

) L∑
l=1

(1 + c)l Cl ‖Jv − ΠSKvK‖
2
0,Γl

≤ 4 c
(
1 + 1

c

)
‖v‖2

H +
(
1 + 1

c

) K∑
l=1

(1 + c)l Cl ‖Jv − ΠSKvK‖
2
0,Γl

with a constant c only depending on the space dimension d, shape regularity σ of
T (K) and the constant δ in (3.1.20). Estimating the remaining jump contributions
with Lemma 3.2.23 concludes the proof.

Finally, uniform stability of ΠSK is obtained, if hK balances out the exponential
factors in the statement of Proposition 3.2.37.

Corollary 3.2.38. Assume that (3.1.20) and conditions (3.2.17) and (3.2.21) are
satisfied. Then the projections ΠSK , K ∈ N, are uniformly stable, i.e.,

‖ΠSKv‖H ≤ c ‖v‖H ∀v ∈ H

holds with a constant c depending only on the space dimension d, shape regularity ρ
of G(k)K, shape regularity σ of T (K), the constant δ in (3.1.20), the constant c0 in
(3.2.21), and the material constant c.

By composing the previously established projections ΠHK and ΠSk , a projection

Πk,K : H → Sk

is obtained, that exhibits similar approximation and stability properties. For K = k,
this construction of Πk,k coincides with the projection Πk presented in [78].

Definition 3.2.39. For every k,K ∈ N with K ≥ k, define the quasi projection

Πk,K = ΠSk ◦ ΠHK : H → Sk.

The operator Πk,K inherits the approximation property from the (quasi) projections
ΠSk and ΠHK .

Theorem 3.2.40. Let k,K ∈ N with K ≥ k and assume that the conditions
(3.1.20), (3.2.17), (3.2.21) hold. Then the quasi projection Πk,K : H → Sk possesses
the approximation property

‖v − Πk,Kv‖0 ≤ chk ‖v‖H v ∈ H

with a constant c that only depends on the space dimension d, shape regularity ρK of
G(K), shape regularity σk of T (k), the constant δ in (3.1.20) and the constant c0 in
(3.2.21).
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Proof. With the triangle inequality, the stability of ΠSk from Corollary 3.2.38 as
well as the approximation properties from Corollary 3.2.20 and 3.2.32, the assertion
follows via

‖v − Πk,Kv‖0 ≤ ‖v − ΠSkv‖0 + ‖ΠSk (v − ΠHKv)‖0 ≤ chk ‖v‖H .

The uniform stability of Πk,K follows directly from the uniform stability of ΠHK and
ΠSk (see Corollary 3.2.25 and 3.2.38).

Theorem 3.2.41. Let k,K ∈ N with K ≥ k and assume that the conditions (3.1.20),
(3.2.17), (3.2.21) hold. Then the quasi projection Πk,K : H → Sk is uniformly stable,
i.e. it holds

‖Πk,Kv‖H ≤ c ‖v‖H v ∈ H
with a constant c that only depends on the space dimension d, shape regularity ρK of
G(K), shape regularity σk of T (k), the constant δ in (3.1.20) and the constant c0 in
(3.2.21).

This construction of quasi projections Πk,K is rather flexible and guarantees their
usefulness for the development of various multilevel methods and corresponding
numerical analysis. Colloquially, the choice of K and k introduces adjustable building
blocks, whose relative contributions can be adapted depending on the numerical
algorithm and desired statements one wants to prove. Next, the previous findings will
be applied to iterative subspace correction methods and a multiscale finite element
method based on localized orthogonal decomposition, respectively.

3.3 Numerical homogenization

Now that the existence of projection operators with suitable stability and approxi-
mation properties has been established in the context of fractal interface networks,
let us turn our attention to the construction of fast and efficient numerical methods
for problem (3.1.10).
First, a LOD-type approach by Målqvist and Peterseim [89] will be considered. Note
that the broader class of multiscale finite element methods is not suited for the
efficient solution of spatial problems arising from the time-discretization of contact
problems with friction as described in Chapter 2. A key benefit of these methods is
that the computationally expensive part, i.e. assembling the multiscale finite element
basis and corresponding stiffness matrix, can be treated in an offline stage and reused
for different right hand sides. Unfortunately, the system matrix of the truncated linear
correction problem (2.7.4) generally differs for individual time steps, which wastes
the reusability and makes iterative subspace correction methods the superior choice.
Nonetheless, a simple application of LOD with cell-based localization by subspace
correction, cf. [78], will be presented as a proof of concept. The corresponding
multiscale discretization provides optimal a priori discretization error estimates.
Extensions to patch-based localization in the spirit of [89] and computationally more
efficient approaches analogous to [76] are possible, but will not be examined.
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Thereafter, various subspace correction methods arising from cell- and patch-based
subspace decompositions as well as parallel and sequential preconditioning will be
introduced using ideas from [80]. Then, well-known results from subspace correction
theory [134, 136] yield convergence rates that are independent from mesh size and
scale parameters. Finally, the different subspace correction schemes and theoretical
findings will be assessed in a series of numerical experiments with a highly localized
fractal interface geometry. In further experiments with fractal interface geometries
less and less covered by theory, the potential of the approach beyond the rigorous
results will be demonstrated.

3.3.1 Multiscale finite element discretization

Following the delineation in [78], let us fix k ∈ N and construct a multiscale finite
element space with the same dimension as Sk, whose discretization error is of order
hk, based on the cells G ∈ G(k).
Using the projection Πk : H → Sk given by

Πk = ΠSk ◦ ΠHk , (3.3.1)

cf. Definition 3.2.39 with the choice K = k, a suitable multiscale basis can be
derived by applying local orthogonal decomposition [89] with localization by subspace
decomposition [76].
Let Vk = ker Πk ⊂ H denote the kernel of Πk, i.e. the high-frequency features of
H not represented by the projection Πk, and C : H → Vk the orthogonal projection
of H onto Vk with respect to the scalar product a(·, ·) in H. Then, the orthogonal
complement Wk of ker Πk in H, i.e. H = Wk ⊕ Vk, is a multiscale finite element
space

Wk = {v − Cv : v ∈ H} = {v − Cv : v ∈ Sk} = span{(I − C)λ(k)
p : p ∈ N (k)}

and isomorphic to Sk. Since dimWk = dimSk, it is viewed as a modified coarse
space that is enriched with fine scale information.
Proceeding similarly to the error analysis first presented in Peterseim [97], Målqvist
and Peterseim [89] and later also [76], the multiscale discretization

uk ∈ Wk : a(uk, v) = (f, v) ∀v ∈ Wk. (3.3.2)

satisfies the following a priori discretization error estimate.

Lemma 3.3.1. The discrete problem (3.3.2) possesses a unique solution uk ∈ Wk

given by
uk = (I − C)Πku, (3.3.3)

where u ∈ H denotes the unique solution of the fractal interface problem (3.1.10).
The discretization error has the representation u− uk = Cu and the error estimate

‖u− uk‖H ≤ chk ‖f‖0

holds with c depending only on the constants appearing in Theorem 3.2.40.
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Proof. The functions inWk are a-orthogonal to the functions in the range of C, hence

a(u− uk, v) = 0 ∀v ∈ Wk

holds and uk given by (3.3.3) is the unique solution of the discrete problem (3.3.2).

Note that Πk(u−Πku) = 0 holds and thus u−Πku ∈ ker Πk. Therefore, the error
u− uk can be written as

u− uk = u− (I − C)Πku = (I − C)(u− Πku) + Cu = Cu

and with the identity

‖Cu‖2
H = a(u, Cu− ΠkCu) = (f, Cu− ΠkCu)

as well as the Cauchy-Schwarz inequality follows the estimate

‖Cu‖2
H ≤ ‖f‖0 ‖Cu− ΠkCu‖0 ≤ chk ‖f‖0 ‖Cu‖H ,

where the second inequality is obtained using the approximation theorem 3.2.40 of
Πk.

Although this multiscale space possesses the desired properties, it is computationally
unfeasible, unfortunately. As is typical for this kind of construction, the multiscale
basis functions (I−C)λ(k)

p , p ∈ N (k), ofWk have global support. This leads to a dense
stiffness matrix, which is detrimental to the construction of fast and efficient solvers.
To remedy this shortcoming, let us consider the following strategy of localization.
The local approximations Cν : H → H, ν ∈ N, of C induce the approximate subspaces

W(ν)
k = span{(I − Cν)λ(k)

p : p ∈ N (k)}

and corresponding Galerkin discretizations

u
(ν)
k ∈ W

(ν)
k : a(u(ν)

k , v) = (f, v) ∀v ∈ W(ν)
k . (3.3.4)

Provided that the sequence of approximations converges, there holds a discretization
error estimate as derived in [76].

Theorem 3.3.2. Assume that the approximations Cν : H → H, ν ∈ N, of C are
convergent in the sense that

‖Cv − Cνv‖a ≤ q ‖Cv‖a , ν ∈ N, (3.3.5)

holds for all v ∈ H with some convergence rate q < 1. Then, it holds the discretization
error estimate∥∥∥u− u(ν)

k

∥∥∥
H
≤ (1 + qν) A

a
‖u− uk‖H + qν A

a
‖u− Πku‖H , ν ∈ N. (3.3.6)
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Proof. Using (I − Cν)Πku ∈ W(ν)
k and the representation uk = (I − C)Πku from

(3.3.3) yields∥∥∥u− u(ν)
k

∥∥∥
a
≤ ‖u− (I − Cν) Πku‖a = ‖(u− uk)− (CΠku− CνΠku)‖a .

Next, the convergence of the approximations Cν by (3.3.5) together with (3.3.3)
provides

‖CΠku− CνΠku‖a ≤ qν ‖CΠku‖a ≤ qν(‖u− uk‖a + ‖u− Πku‖a),

which leads to the assertion with the triangle inequality and the norm equiva-
lence (3.1.14).

Cell-based subspace correction

All that remains to be done is to construct convergent local approximations Cν :
H → H, ν ∈ N, by local subspace correction. The cell-based construction of ΠHk via
Definition 3.2.15 and locality of ΠSk by Definition 3.2.28 motivate splitting

Vk =
∑

G∈G(k)

VG (3.3.7)

into the subspaces

VG = {(I − Πk)v|G : v ∈ H} ⊂ Vk, G ∈ G(k), (3.3.8)

where the restriction to cells v|G is defined by v|G(x) = v(x) for x ∈ G and v|G(x) = 0
otherwise. Due to the trace Lemma 3.2.14 and the continuous embedding of H into
L2(Ω), the linear map H 3 v → v|G ∈ H is uniformly bounded in H for all G ∈ G(k)

and fixed k ∈ N.
Moreover, the subspaces VG are closed. To prove this statement, note that convergence
of a sequence (vi)i∈N ⊂ VG ⊂ Vk to some v ∈ H implies v ∈ Vk, i.e. Πkv = 0, as Vk
is closed. Then, v = v|G, as supp vi ⊂ G for all i ∈ N, leads to v = (I −Πk)v|G ∈ VG.
The following lemma institutes stability and boundedness of the cell-based splitting
and is the central result of this section.

Lemma 3.3.3. The splitting (3.3.7) is stable in the sense that for each v ∈ Vk there
is a decomposition (vG)G∈G(k) of v with vG ∈ VG, G ∈ G(k), such that∑

G∈G(k)

‖vG‖2
a ≤ K1 ‖v‖2

a (3.3.9)

holds with a constant K1 depending only on the constants appearing in Theo-
rems 3.2.40, 3.2.41, the geometric constant C0 in (3.1.6) and the ellipticity constants
a, A from (3.1.14).
Assume that the number of neighboring cells of G in G(k) is uniformly bounded by
cN ∈ R for all k ∈ N and G ∈ G(k). Then the splitting (3.3.7) is bounded in the
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sense that for each v ∈ Vk all decompositions (vG)G∈G(k) of v with vG ∈ VG, G ∈ G(k),
satisfy

‖v‖2
a ≤ K2

∑
G∈G(k)

‖vG‖2
a (3.3.10)

with a constant K2 depending only on cN .

Proof. Note that the overlap of the subspaces VG, G ∈ G(k), is Γ(k). Thus, the
claimed boundedness in (3.3.10) with a constant K2 depending only on cN follows
immediately with the Cauchy-Schwarz inequality.
By density and continuity arguments, it is sufficient to show (3.3.9) for v ∈ Vk ∩HK .
Let us consider the splitting of v into its local components

vG = (I − Πk)v|G ∈ VG, G ∈ G(k).

Due to the locality of the construction of Πk, it holds ((I − ΠK)v) |G = (I−ΠK)(v|G),
which implies

‖vG‖2
H = |v − Πkv|21,G\Γ(K) +

k∑
l=1

(1 + c)lCl ‖v − Πkv‖2
0,Γl∩∂G

+
K∑

l=k+1
(1 + c)lCl ‖JvK‖2

0,Γl∩G .

(3.3.11)

The individual terms on the right hand side can be estimated as follows. Lemma 3.2.34
implies the local boundedness of ΠSk

|ΠSkw|
2
1,G ≤ (1 + 1

c
) c |w|21,G ∀w ∈ Hk,

since w ∈ Hk does not jump on levels finer than k. Then, the Cauchy-Schwarz
inequality and Lemma 3.2.17 lead to

|v − Πkv|21,G\Γ(K) ≤ C |v|21,G\Γ(K) (3.3.12)

with a constant C depending only on the space dimension d, shape regularity σ of
T (k) and the constant δ appearing in (3.1.20). Using the trace Lemma 3.2.14 in
conjunction with local boundedness (3.3.12), as well as the geometric conditions
(3.1.6), (3.2.17) and (3.2.21), the second term is estimated according to

k∑
l=1

(1 + c)lCl ‖v − Πkv‖2
0,Γl∩∂G

≤ C
(

(1 + c)kCkd−1
k ‖v − Πkv‖2

0,G + (1 + c)kCkdk |v|21,G\Γ(K)

+
K∑

l=k+1
(1 + c)lCk,lCk ‖JvK‖2

0,Γl∩G

)

≤ C ′

d−2
k ‖v − Πkv‖2

0,G + |v|21,G\Γ(K) +
K∑

l=k+1
(1 + c)lCl ‖JvK‖2

0,Γl∩G



87



3 Numerical homogenization of multiscale interface problems

with C ′ additionally depending on the material constant c, the constant δ in (3.1.20)
and the constants appearing in (3.1.6) and (3.2.21). After inserting the previous
findings into (3.3.11), summing over G and estimating dk by hk via (3.1.20) yield∑

G∈G(k)

‖vG‖2
H ≤ C ′′

(
h−2
k ‖v − Πkv‖2

0 + ‖v‖2
H

)
.

Finally, the approximation property stated in Proposition 3.2.40 and norm equiva-
lence (3.1.14) give rise to the assertion.

With the previous lemma, it is straightforward to construct local approximations Cν
based on the preconditioner

T =
∑

G∈G(k)

PG

with a-orthogonal Ritz projections PG : H → VG, G ∈ G(k), given by

PGw ∈ VG : a(PGw, v) = a(w, v) ∀v ∈ VG (3.3.13)

for w ∈ H. Now, Lemma 3.3.3 and a proof similar to [80, Lemma 3.1] show

1/K1a(v, v) ≤ a(Tv, v) ≤ K2a(v, v) ∀v ∈ Vk

or, equivalently, the bound κ ≤ K1K2 of the condition number κ = ‖T‖a ‖T−1‖a of
T restricted to Vk, see [80, Theorem 3.2].
The local approximations Cν of C are defined by a basic damped Richardson iteration

Cν+1 = Cν + ωT (I − Cν), C0 = 0, (3.3.14)

with a suitable damping parameter ω. It holds Cνv ∈ Vk, ν ∈ N, for any v ∈ H
and convergence of the Richardson iteration (3.3.14) is established by elementary
arguments, see e.g. [33, Chapter 8].

Theorem 3.3.4. Assume that the number of neighboring cells of G from G(k) is
uniformly bounded by cN ∈ R for all k ∈ N and G ∈ G(k). Then the approximations Cν,
ν ∈ N, of C defined in (3.3.14) are convergent for ω < 2/K2 in the sense of (3.3.5).
Choosing the damping factor ω = 1/K2 yields convergence with q = 1− 1/(K1K2).
The constants K1, K2 depend only on constants appearing in Theorems 3.2.40, 3.2.41,
the geometric constant C0 in (3.1.6), cN , and the ellipticity constants a, A from
(3.1.14).

Naturally, better convergence rates can be achieved with more elaborate iterative
schemes [76]. Starting with (3.3.6) and using Lemma 3.3.1 yields the sought dis-
cretization error estimate ∥∥∥u− u(ν)

k

∥∥∥
H

= O(hk)

once ν ∈ N is large enough such that the stopping criterion qν A
a
‖u− Πku‖H = O(hk)

is fulfilled.
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Initially, the support of the first iterate (I−C1)λ(k)
p = (I−ωT )λ(k)

p is either contained
in G, if p is an inner node in G, or contained in the neighboring cells G ∪ G′,
if p ∈ G ∩ Γk ∩ G′ is an interface node. Using the same reasoning inductively,
one understands that the support of the approximate multiscale basis functions
(I − Cν)λ(k)

p = (I − ωT )νλ(k)
p , p ∈ N (k), grows at most by one layer of cells in each

iteration step. Consequently, the support of the multiscale basis functions depends
logarithmically on the desired accuracy of order hk.

Discretization

Constructing the multiscale basis of W(ν)
k comes down to solving the local prob-

lems (3.3.13) in infinite dimensional function spaces VG, G ∈ G(k). A computationally
feasible multiscale finite element discretization is obtained by replacing H with a
large finite element space S ⊂ H associated with a strong refinement T of T (k)

that resolves the necessary fine scale features of the multiscale interface problem to
provide the desired accuracy of order hk. Substituting H and the subspaces with
their discrete counterparts and proceeding literally as above gives rise to discrete
variants of the discretization error estimates in Lemma 3.3.1 and Theorem 3.3.2 as
well as the convergence result in Theorem 3.3.4. In the discrete setting, the damped
Richardson iteration (3.3.14) manifests as a damped block Jacobi iteration, whose
blocks are given by the cells G ∈ G(k).

3.3.2 Iterative subspace correction

Next, let us consider the construction and convergence analysis of subspace correction
methods for the fractal interface problem (3.1.10) and computationally feasible,
discrete versions for K-scale finite element approximations (3.1.21). Building on
the train of thought from [78] and the previous section, a cell-based, multilevel
subspace decomposition will be introduced. Thereafter, we will focus on a subspace
decomposition in function space based on a spatial hierarchy of local patches in
the spirit of [80]. These decompositions induce preconditioners that accelerate the
convergence of a global conjugate gradient (cg) iteration. The convergence of the
method follows from notions established in subspace correction theory [134, 136]
with convergence rates that are independent of the mesh size hK and scales K ∈ N.

Cell-based subspace decomposition

Fixing a coarse and fine level k < K ∈ N, let us begin by introducing the cell-based
multilevel splitting

H = V(k) +
K∑

l=k+1

∑
G∈G(l)

V(l)
G (3.3.15)

with
V(k) = Sk, V(l)

G = {v|G : v ∈ H}, G ∈ G(l), k < l ≤ K.
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Using the projections Πl = ΠSl ◦ ΠHl , k ≤ l < K, from the previous section, each
v ∈ H can be decomposed into its local components inductively. For this purpose,
set v(k) = Πkv ∈ Sk,

v
(l)
G = (Πlv − Πl−1v)|G ∈ V

(l)
G , G ∈ G(l) k < l < K,

v
(K)
G = (v − ΠK−1v)|G ∈ V

(K)
G , G ∈ G(K) (3.3.16)

for all v ∈ H. By construction, it holds

v(k) +
K∑

l=k+1

∑
G∈G(l)

v
(l)
G = Πkv +

K−1∑
l=k+1

(Πlv − Πl−1v) + v − ΠK−1v = v

for all v ∈ H. With the existence of this splitting up to level K ∈ N, a suitable
splitting up to level K + 1 can be obtained by using∑

G∈G(K)

v
(K)
G = v − ΠK−1v =

∑
G∈G(K)

(ΠKv − ΠK−1v)|G +
∑

G∈G(K+1)

(v − ΠKv)|G .

Using stability and approximation properties of Πl : H → Sl and arguing similarly
to the proof of Lemma 3.3.3 leads to the stability and boundedness of the cell-based
splitting (3.3.15) with corresponding constants K1 and K2.

Lemma 3.3.5 (stability). The splitting (3.3.15) is stable in the sense that for each
v ∈ H there is a decomposition of v given by (3.3.16), such that

∥∥∥v(k)
∥∥∥2

a
+

K∑
l=k+1

∑
G∈G(l)

∥∥∥v(l)
G

∥∥∥2

a
≤ K1 ‖v‖2

a

holds with a constant K1 only depending on the number of levels K − k + 1, the
constants appearing in Theorems 3.2.40, 3.2.41, the geometric constant C0 in (3.1.6)
and the ellipticity constants a, A from (3.1.14).

Lemma 3.3.6 (boundedness). Assume that the number of neighboring cells of G in
G(l) is uniformly bounded by cN ∈ R for all l ∈ N and G ∈ G(l). Then, the splitting
(3.3.18) is bounded such that for each v ∈ H all decompositions v(k) ∈ V(k) and
v

(l)
G ∈ V

(l)
G , k < l ≤ K, satisfy

‖v‖2
a ≤ K2

∥∥∥v(k)
∥∥∥2

a
+

K∑
l=k+1

∑
G∈G(l)

∥∥∥v(l)
G

∥∥∥2

a


with a constant K2 only depending on cN .

It will be convenient to introduce a numbering {G1, . . . , Gm} of the cells Gi ∈ V(l)
Gi
,

k < l ≤ K to describe a sequential subspace correction method induced by the
splitting (3.3.15). Therefor, the first iK =

∣∣∣G(K)
∣∣∣ cells consist of the level-K splitting

{G1, . . . , GiK} = G(K), the next iK−1 =
∣∣∣G(K−1)

∣∣∣ cells consist of the level-(K − 1)
splitting {GiK+1, . . . , GiK+iK−1} = G(K−1) and so on. Denote the corresponding
subspaces Vi = VGi and V0 = V(k). Using this notation, the following Cauchy-
Schwarz-type inequality holds for the splitting (3.3.18), which is a crucial property
for convergence proofs of sequentially preconditioned iterative schemes.
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Lemma 3.3.7 (Cauchy-Schwarz type inequality, cf. [78]). Assume that the number
of neighboring cells of G in G(l) is uniformly bounded by cN ∈ R for all l ∈ N and
G ∈ G(l). Then the Cauchy-Schwarz type inequality

m∑
i,j=0

a(vi, wj) ≤ K3 (K − k + 1)
(

m∑
i=0

a(vi, vi)
)1/2

 m∑
j=0

a(wj, wj)
1/2

holds for all vi ∈ Vi, wj ∈ Vj, i, j = 0, . . . ,m, with a constant K3 depending only on
cN .

Proof. Fixing G ∈ G(s), k < s ≤ K, let us introduce the local scalar product

aG(v, w) =
ˆ
G\Γ

A∇v · ∇w dx+ 1
2

s∑
l=1

(1 + c)l Cl
ˆ

Γl∩G
B JvK JwK dΓl

+
∞∑

l=s+1
(1 + c)l Cl

ˆ
Γl∩G

B JvK JwK dΓl v, w ∈ H

satisfying ∑
G∈G(s)

aG(v, w) = a(v, w), v, w ∈ H. (3.3.17)

Since the common support of vi ∈ Vi and wj ∈ Vj is contained in Gi ∩ Gj, i, j =
1, . . . ,m, the Cauchy-Schwarz inequality and Gershgorin’s theorem lead to

m∑
i,j=0

aG(vi, wj) ≤ (cN + 1)
(

m∑
i=0

aG(vi, vi)
)1/2

 m∑
j=0

aG(wj, wj)
1/2

.

Finally, summing over G ∈ G(l), k < lK and applying the Cauchy-Schwarz inequality
in Rm+1 together with (3.3.17) lead to the assertion.

Patch-based subspace decomposition

Fixing a coarse and fine level k < K ∈ N, let us consider the multilevel splitting

H = V(k) +
K∑

l=k+1

∑
p∈N (l)

V(l)
p (3.3.18)

with V(k) = Sk and

V(l)
p = {λ(l)

p v : v ∈ Sl}, p ∈ N (l), k < l < K

V(K)
p = {λ(K)

p v : v ∈ H}, p ∈ N (K),

where ωp = suppλ(l)
p , p ∈ N (l), k < l ≤ K, is the support patch of the respective

nodal basis function. All vp ∈ V(l)
p , k < l ≤ K, satisfy vp|∂ωp\Γ(l) = 0. In particular,
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if p is not a vertex of an edge resolving the interface network Γ(l), it holds vp|∂ωp = 0.
Due to the locality of the spaces V(l)

p , k < l ≤ K, we have

‖vp‖2
H = |vp|21,ωp\Γ +

l∑
s=1

(1+c)sCs ‖vp‖2
0,Γs∩∂ωp+

∞∑
s=l+1

(1+c)sCs ‖JvpK‖2
0,Γs∩ωp (3.3.19)

for all vp ∈ V(l)
p .

Next, the aforementioned splitting will be constructed inductively using the projec-
tions ΠSl , k ≤ l < K, from the previous section. For this purpose, let us set

v(k) = ΠSkv, v(l)
p = λ(l)

p

(
ΠSlv − ΠSl−1v

)
, v(K)

p = λ(K)
p

(
v − ΠSK−1v

)
(3.3.20)

with k < l < K for all v ∈ H. As the nodal basis {λ(l)
p } is a partition of unity, it

holds

v(k) +
K∑

l=k+1

∑
p∈N (l)

v(l)
p = ΠSkv +

K−1∑
l=k+1

(
ΠSlv − ΠSl−1v

)
+ v − ΠSK−1v = v

for all v ∈ H. With the existence of this splitting up to level K ∈ N, a suitable
splitting up to level K + 1 can be constructed using∑
p∈N (K)

v(K)
p = v−ΠSK−1v =

∑
p∈N (K)

λ(K)
p

(
ΠSKv − ΠSK−1v

)
+

∑
p∈N (K+1)

λ(K+1)
p (v − ΠSKv) .

The following lemma establishes an important intermediate statement for proving the
stability and boundedness of the splitting (3.3.18). It is an extension of well-known
arguments presented, e.g., in [80, Lemma 4.3].

Lemma 3.3.8. Let 1 < k ∈ N, l = k − 1, k, and assume that conditions (3.2.17)
and (3.2.21) are satisfied. Moreover, let the refinement factor

hK
hK+1

≤ cr ∀K ∈ N (3.3.21)

be uniformly bounded by the constant cr. It holds∑
p∈N (k)

∥∥∥λ(k)
p (v − ΠSlv)

∥∥∥2

H
≤ c ‖v‖2

H

for all v ∈ H with a constant c only depending on the space dimension d, shape
regularity σ of T (k) and T (l) as well as the constant δ in (3.1.20) and cr.

Proof. By a density argument, it suffices to show the claim for any v ∈ C1
L,0 with

arbitrary L > k. Fix p ∈ N (k) and denote w = v − ΠSlv. Using the locality of λ(k)
p w

from (3.3.19) yields
∥∥∥λ(k)

p w
∥∥∥2

H
=
∣∣∣λ(k)
p w

∣∣∣2
1,Ω\Γ(L)

+
k∑
s=1

(1 + c)sCs
∥∥∥λ(k)

p w
∥∥∥2

0,Γs∩∂ωp

+
L∑

s=k+1
(1 + c)sCs

∥∥∥qλ(k)
p w

y∥∥∥2

0,Γs∩ωp
. (3.3.22)
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Moreover, it holds ∇(λ(k)
p w) = w∇λ(k)

p + λ(k)
p ∇w in a weak sense, λ(k)

p

2 ≤ λ(k)
p and

thus ∣∣∣λ(k)
p w

∣∣∣2
1,Ω\Γ(L)

≤ 2
ˆ

Ω\Γ(L)

(
w∇λ(k)

p

)2
dx+ 2

ˆ
Ω\Γ(L)

(
λ(k)
p ∇w

)2
dx

≤ 2
ˆ

Ω\Γ(L)
w2
∣∣∣∇λ(k)

p

∣∣∣2 dx+ 2
ˆ

Ω\Γ(L)
λ(k)
p |∇w|

2 dx.

Due to the construction of the triangulation T (k) in section 3.1.4, the sum∑
p∈N (k)

∣∣∣∇λ(k)
p

∣∣∣2 h2
k ≤ c′

is bounded by a constant c′ that only depends on the shape regularity σ of T (k).
Thus, summing over p ∈ N (k), using that {λ(k)

p } is a partition of unity and applying
the global approximation property (Corollary 3.2.33) of ΠSl as well as the implied,
global version of Lemma 3.2.34 results in∑

p∈N (k)

∣∣∣λ(k)
p w

∣∣∣2
1,Ω\Γ(L)

≤ 2c′ h−2
k ‖w‖

2
0 + 2 |w|21,Ω\Γ(L) ≤

(
1 + 1

c

)
c ‖v‖2

H , (3.3.23)

with a constant c only depending on the space dimension d, shape regularity σ of
T (k) and T (l) as well as the constant δ in (3.1.20) and the refinement factor cr in
(3.3.21).
The boundary terms in (3.3.22) vanish for p 6∈ Γs and can otherwise be estimated by
Remark 3.2.36 as per∥∥∥λ(k)

p w
∥∥∥2

0,Γs∩∂ωp

≤ ‖w‖2
0,Γs∩∂ωp ≤ c

(
1 + 1

c

)2
hl

|v|21,ωp\Γ(L) +
L∑

t=l+1
(1 + c)tCt ‖JvK‖2

0,Γt∩ωp

 (3.3.24)

for interfaces Γs, s ≤ k, with a constant c only depending on the space dimension
d, shape regularity σ of T (k) and the constant δ in (3.1.20). Inserting assumptions
(3.2.21) and (3.1.20) yields
k∑
s=1

(1+c)sCs
∥∥∥λ(k)

p w
∥∥∥2

0,Γs∩∂ωp
≤ c

(
1 + 1

c

)2
|v|21,ωp\Γ(L) +

L∑
t=l+1

(1 + c)tCt ‖JvK‖2
0,Γt∩ωp

 ,
where the constant c now additionally depends on the refinement factor cr from
(3.3.21).
Any simplex T ∈ T (k) is covered by at most d + 1 patches ωp, p ∈ N (k). Thus,
summing (3.3.22) over p ∈ N (k), inserting (3.3.23) and (3.3.24) as well as using that
ΠSl does not jump in ωp, which implies

∥∥∥qλ(k)
p w

y∥∥∥
0,Γs∩ωp

≤ ‖JvK‖0,Γs∩ωp , results in
the desired statement.

As a consequence of the approximation and stability properties of ΠSl , k ≤ l < K,
the patch-based splitting (3.3.18) possesses stability, boundedness properties and
satisfies a Cauchy-Schwarz-type inequality.
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Lemma 3.3.9 (stability). Let k < K ∈ N and assume that conditions (3.2.17) and
(3.2.21) are satisfied. The splitting (3.3.18) is stable in the sense that for each v ∈ H
there is a decomposition given by (3.3.20), such that

∥∥∥v(k)
∥∥∥2

a
+

K∑
l=k+1

∑
p∈N (l)

∥∥∥v(l)
p

∥∥∥2

a
≤ K1 ‖v‖2

a

holds with a constant K1 only depending on the number of levels K − k + 1, the
constants appearing in Lemma 3.3.8, Corollary 3.2.38, and the ellipticity constants
a, A from (3.1.14).

Proof. Let v ∈ H and consider the decomposition (3.3.20). Its stability is a con-
sequence of the stability of ΠSl , k ≤ l < K, in Corollary 3.2.38 and Lemma 3.3.8,
since∑

p∈N (l)

∥∥∥v(l)
p

∥∥∥2

H
≤

∑
p∈N (l)

2
∥∥∥λ(l)

p (v − Πlv)
∥∥∥2

H
+ 2

∥∥∥λ(l−1)
p (v − Πl−1v)

∥∥∥2

H
, k < l < K

∑
p∈N (K)

∥∥∥v(K)
p

∥∥∥2

H
=

∑
p∈N (K)

∥∥∥λ(K)
p (v − ΠK−1v)

∥∥∥2

H
.

The norm equivalence in (3.1.14) concludes the proof.

Lemma 3.3.10 (boundedness). The splitting (3.3.18) is bounded such that for each
v ∈ H all decompositions v(k) ∈ V(k) and v(l)

p ∈ V(l)
p , k < l ≤ K, satisfy

‖v‖2
a ≤ K2

∥∥∥v(k)
∥∥∥2

a
+

K∑
l=k+1

∑
p∈N (l)

∥∥∥v(l)
p

∥∥∥2

a


with a constant K2 only depending on the space dimension d.

Proof. A standard covering argument yields the boundedness of the splitting. By
induction, any simplex T ∈ T (K) is contained in at most K2 = 1 + (d+ 1)(K − k)
patches. Using the triangle and Cauchy-Schwarz inequalities in R1+(d+1)K leads to
the assertion according to

‖v‖2
a ≤

∥∥∥v(k)
∥∥∥
a

+
K∑

l=k+1

∑
p∈N (l)

∥∥∥v(l)
p

∥∥∥
a

2

≤ K2

∥∥∥v(k)
∥∥∥2

a
+

K∑
l=k+1

∑
p∈N (l)

∥∥∥v(l)
p

∥∥∥2

a

 .
To describe a sequential subspace correction method induced by the splitting (3.3.20),
let us introduce a numbering {p1, . . . , pm} of the nodes p ∈ N (l), k ≤ l ≤ K, such
that the first iK =

∣∣∣N (K)
∣∣∣ nodes consist of the level-K nodes in some fixed order,

the next iK−1 =
∣∣∣N (K−1)

∣∣∣ nodes consist of the level-(K − 1) nodes in some fixed
order and so on. Denote the corresponding subspaces Vi = Vpi and Ritz projections
Pi = PVi , i = 1, . . . ,m.
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Lemma 3.3.11 (Cauchy-Schwarz type inequality). The Cauchy-Schwarz type in-
equality

m∑
i,j=0

a(vi, wj) ≤ K3

(
m∑
i=0

a(vi, vi)
)1/2

 m∑
j=0

a(wj, wj)
1/2

holds for all vi ∈ Vi and wj ∈ Vj with i, j = 0, . . . ,m, with a constant K3 depending
only on the space dimension d.

Proof. Any simplex T ∈ T (K) is contained in at most K2 patches (see previous
proof). Then, using the Cauchy-Schwarz inequality as in the proof of [80, Lemma
5.1] leads to the assertion.

Parallel subspace correction

Utilizing the cell- and patch-based subspace decompositions, let us approximate the
solution u of the multiscale interface problem (3.1.10) employing a basic iteration in
function space as in [80]. Its convergence is a consequence of well-known results from
subspace correction theory [134, 136] and later extensions to an infinite dimensional
solution space [80], whose applicability relies on the stability and boundedness of the
respective splitting.
The splittings (3.3.18) and (3.3.15) provide a preconditioner of the form

T = P0 + · · ·+ Pm (3.3.25)

with a-orthogonal Ritz projections Pi : H → Vi

a(Piv, vi) = a(v, vi) ∀vi ∈ Vi,

whose numbering corresponds to the one of the respective subspaces. Evaluating
the operator T comes down to solving a global problem associated with V0 and
continuous local problems in Vi. Since all of these subproblems take the same input,
they can be processed in parallel.
Similar to basic findings from subspace correction theory in finite dimensions [134,
136], stability and boundedness of the splittings imply the following spectral equiva-
lence, see [80, Lemma 3.1].

Lemma 3.3.12. The operator T : H → H from (3.3.25), that is induced by the
splitting (3.3.15) or (3.3.18), is symmetric with respect to the inner product a(·, ·) in
H. Under the assumptions of Lemma 3.3.5 and Lemma 3.3.6 or Lemma 3.3.9 and
Lemma 3.3.10, it holds

1/K1 a(v, v) ≤ a(Tv, v) ≤ K2 a(v, v)

for all v ∈ H with their respective positive constants K1 and K2.

Then, the Riesz representation theorem leads to an estimate of the condition number
κ of the preconditioner T , i.e. the ratio of smallest upper to largest lower bound of
its spectrum, in terms of the constants K1 and K2, see [80, Theorem 3.2].
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Theorem 3.3.13. The spectrum of the operator T : H → H from (3.3.25), that is
induced by the splitting (3.3.15) or (3.3.18), is a subset of the interval [1/K1, K2]
with constants K1 and K2 from Lemma 3.3.12 under the assumptions stated therein.
Thus, the condition number κ of T satisfies the estimate

κ ≤ K1K2. (3.3.26)

After fixing a starting value w(0) = u(0), the solution u of the multiscale interface
problem is approximated by the iteration

w(l) =
l∑

ν=0
αlνu

(ν),
l∑

ν=0
αlν = 1, (3.3.27)

with iterates w(l), that consist of weighted averages of the basic iterates

u(ν+1) = u(ν) + T
(
u− u(ν)

)
. (3.3.28)

In order to obtain a general error estimate of this method, let us consider the
difference of the exact solution u and the iterates w(l) generated by (3.3.27). By
induction, the basic iterates can be reformulated as

u(ν) = u− (I − T )ν
(
u− u(0)

)
and thus it holds

u− w(l) = u− u
l∑

ν=0
αlν +

l∑
ν=0

αlν(I − T )ν
(
u− u(0)

)
=

l∑
ν=0

αlν(I − T )ν
(
u− u(0)

)
.

Using the spectral mapping theorem from the appendix in [80], the spectrum of the
operator polynomial

p(T ) =
l∑

ν=0
αlν(I − T )ν

is given in terms of the spectrum σ(T ) of T , in particular by p(λ) with λ ∈ σ(T ). Since
p(T ) is a bounded, symmetric, linear operator, its norm corresponds to its spectral
radius, which ultimately entails an error estimate with respect to the condition
number κ of T . Different choices of weights αlν lead to distinct iterative methods.
The minimal value of the spectral radius of p(T ) is attained for suitable Chebyshev
polynomials. Hence, choosing the weights αlν accordingly, which is implemented by
the conjugate gradient (cg) method, yields minimal and therefore optimal convergence
rates [33, Chapter 8].

Theorem 3.3.14 (cf. [80, Theorem 3.4]). The iteration (3.3.27) with optimally
chosen weights αlν admits the error estimate∥∥∥u− w(l)

∥∥∥
a
≤ 2ql

1+q2l

∥∥∥u− u(0)
∥∥∥
a

for any fixed initial iterate u(0) ∈ H with convergence rate

q =
√
κ−1√
κ+1 ,

where κ ≤ K1K2 denotes the condition number of the operator T from (3.3.25).
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In particular, this theorem implies that given a current iterate u(0), the number
of conjugate gradient iterations l ∼ ln(1/ε) required to reduce the norm of the
approximation error by a factor ε, i.e. it holds∥∥∥u− w(l)

∥∥∥
a
≤ ε

∥∥∥u− u(0)
∥∥∥
a
,

is proportional to the logarithm of the required accuracy. See [33, Corollary 8.18] for
a more thorough investigation of the required number of iterations. Moreover, since
the constants K1 and K2 given by Lemma 3.3.5 and Lemma 3.3.6 or Lemma 3.3.9 and
Lemma 3.3.10, respectively, are independent of the mesh size and scale parameters for
the cell- or patch-based splittings, so is the convergence rate q of the preconditioned
cg iteration.

Sequential subspace correction

Recall that the basic parallel scheme (3.3.28) computes corrections in the subspaces
Vi, 0 ≤ i ≤ m, for the same initial iterate u(ν). Another approach are Gauß-Seidel
type methods, where corrections in the subspaces Vi are processed sequentially in an
arbitrary but fixed order and previous, intermediate ones are taken into account. In
particular, this idea leads to an iteration, where, given an arbitrary initial iterate
u(0) ∈ H, one step of the basic scheme consists of computing intermediate corrections

u(ν,0) = u(ν), u(ν,i+1) = u(ν,i) + Pi(u− u(ν,i)), i = 0, . . . ,m (3.3.29)

and setting the new iterate u(ν+1) = u(ν,m+1). In practice, Gauß-Seidel type methods
typically converge faster than similar parallel versions – at the cost of parallelizability.
If the subspaces Vi, 0 ≤ i ≤ m, are traversed in a symmetric fashion, e.g., as
determined by the symmetric error propagation operator E

E = (I − Pm) · · · (I − P1)(I − P0)(I − P1) · · · (I − Pm), (3.3.30)

its convergence can be accelerated with the cg iteration as in the previous section. In
the spirit of [134, 136], let us derive a basic convergence result using the stability of
the subspace decomposition and a Cauchy-Schwarz type inequality for the respective
splittings. Its proof is similar to the one of [80, Theorem 5.2].

Theorem 3.3.15. The linear, Gauß-Seidel type iteration corresponding to the error
propagation operator E converges with respect to the energy norm and satisfies the
error estimate ∥∥∥u− u(ν+1)

∥∥∥
a
≤
(
1− 1

K1K2
3

) ∥∥∥u− u(ν)
∥∥∥
a

for any initial iterate u(0) ∈ H with K1, K3 depending only on the constants appearing
in Lemma 3.3.5 and Lemma 3.3.7 for the cell-based splitting (3.3.16) or Lemma 3.3.9
and Lemma 3.3.11 for the patch-based splitting (3.3.20).

Proof. Let v ∈ H and v = v0 + · · · vm a stable decomposition given by (3.3.16) or
(3.3.20). Denote E−1 = I, Em = E and define the intermediate error propagation
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operators Ej, 0 ≤ j ≤ m, recursively by Ej = (I − Pj)Ej−1(I − Pj). Then, it holds
I − E0 = P0 = P0E−1 + E−1P0 − P0E−1P0 and

j∑
i=0

PiEi−1 + Ei−1Pi − PiEi−1Pi = I − Ej−1 + PjEj−1 + Ej−1Pj − PjEj−1Pj

= I − (I − Pj)Ej−1(I − Pj) = I − Ej (3.3.31)

for j ≤ m by induction. Note that Ej maps into the a-orthogonal complement of Vj ,
i.e. a(Ejv, vj) = 0, which implies

‖v‖2
a =

m∑
j=0

a((I − Ej)v, vj) =
m∑
j=0

j∑
i=0

a((PiEi−1 + Ei−1Pi − PiEi−1Pi)v, vj)

together with the previous identity (3.3.31). Applying the Cauchy-Schwarz type
inequality in Lemma 3.3.7 for the cell-based splitting or the one in Lemma 3.3.11 for
the patch-based splitting leads to the estimate

‖v‖2
a ≤ K3

(
m∑
i=0
‖(PiEi−1 + Ei−1Pi − PiEi−1Pi)v‖2

a

)1/2
 m∑
j=0
‖vj‖2

a

1/2

with the respective constants K3. Then, squaring the previous estimate and using
the stability of the given decomposition of v by Lemma 3.3.5 or Lemma 3.3.9 yields

‖v‖2
a ≤ K1K

2
3

m∑
i=0
‖(PiEi−1 + Ei−1Pi − PiEi−1Pi)v‖2

a .

The summands can be expressed as differences according to

‖(PiEi−1 + Ei−1Pi − PiEi−1Pi)v‖2
a = ‖Ei−1v‖2

a − ‖Eiv‖
2
a ,

see (3.3.31), and all but the first and last terms cancel in the telescoping sum, i.e. it
holds

‖v‖2
a ≤ K1K

2
3

(
‖v‖2

a − ‖Ev‖
2
a

)
.

Discrete versions

Performing the iterations (3.3.28) and (3.3.29) in function space requires evaluating
the Ritz projections to infinite dimensional subspaces Vi corresponding to the finest
level of the subspace decomposition and is thus computationally unfeasible. Recall
that the approximation of H by HK , which effectively truncates all contributions
from interfaces ΓL, L > K, finer than K, converges for K → ∞, see (3.1.18). For
the fractal interface network from Example 3.1.1, there are even exponential error
estimates, see Remark 3.1.5. Subsequently, the finite element discretization (3.1.21)
is obtained by approximating HK with the finite element space SK . Essentially,
the previous construction of iterative solvers and their convergence theory translate
directly to the discrete setting by replacing the infinite dimensional solution space H
with SK .
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However, there is one subtlety that requires special attention. The construction of the
patch-based decomposition (3.3.20) that is stable in the sense of Lemma 3.3.9 needs
adaptation, since the product λ(l)

p v, v ∈ Sl and k < l ≤ K, is piecewise of degree ≤ 2
and therefore no longer contained in Sl, i.e. V(l)

p 6⊂ SK . As a remedy, let us employ
the nodal interpolation operator Il : C1

l,0 → Sl, k < l ≤ K, that interpolates at the
nodes p ∈ N (l) and is the identity for functions in Sl. Interpolating the individual
contributions of the splitting (3.3.20) guarantees Il(λ(l)

p v) ∈ Sl for all v ∈ Sl, see [80]
for similar arguments in a 2-level setting. Thus, a suitable discrete variant of the
former decomposition reads

ṽ(k) = ΠSkv,
ṽ(l)
p = Il

(
λ(l)
p

(
ΠSlv − ΠSl−1v

))
,

ṽ(K)
p = IK

(
λ(K)
p

(
v − ΠSK−1v

)) (3.3.32)

for all v ∈ SK . Note that it holds ṽ(k) ∈ Sk and ṽ(l)
p ∈ Sl, k < l ≤ K. Provided that

an estimate of the form∥∥∥Il(λ(l)
p (ΠSlv − ΠSl−1v))

∥∥∥
H
≤ cI

∥∥∥λ(l)
p (ΠSlv − ΠSl−1v))

∥∥∥
H

k < l ≤ K (3.3.33)

holds for all v ∈ SK with a suitable constant cI , a stability property similar to
Lemma 3.3.9 carries over from the stability of the decomposition (3.3.20).

Lemma 3.3.16. Let k < K ∈ N and assume that conditions (3.2.17) and (3.2.21)
are satisfied. The discrete splitting of SK is stable in the sense that for each v ∈ SK
there is a decomposition given by (3.3.32), such that

∥∥∥ṽ(k)
∥∥∥2

a
+

K∑
l=k+1

∑
p∈N (l)

∥∥∥ṽ(l)
p

∥∥∥2

a
≤ K1 ‖v‖2

a

holds with a constant K1 only depending on the number of levels K − k + 1, the
constants appearing in Lemma 3.3.8, Corollary 3.2.38, the ellipticity constants a, A
from (3.1.14) and cI.

To prove (3.3.33), observe that v ∈ Sl is continuous on the simplices T ∈ T (l) and
that the nodal interpolation operator possesses the following standard approximation
and stability properties

‖v − Ilv‖0,T ≤ chl |v|1,T , |Ilv|1,T ≤ c |v|1,T ∀v ∈ C0(T ) (3.3.34)

for all T ∈ T (l) with a constant c only depending on the space dimension d and
shape regularity σ of T (l), see, e.g. [28, Chapter 3]. Finally, proceeding similarly to
the stability proof of ΠSK in Corollary 3.2.38 and estimating the jump contributions
in analogy to Lemma 3.2.35 leads to (3.3.33) with a constant cI that only depends
on the space dimension d, shape regularity σ of T (l), the constant δ in (3.1.20), the
constant c0 in (3.2.21), and the material constant c.
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Complexity considerations

Let us consider the highly localized interface network from Example 3.1.1 in two
space dimensions. Starting from the partition T (0) of Ω consisting of two congruent
triangles, subsequent triangulations T (k), k ≥ 1, resolving Γ(k) are obtained by
applying two uniform regular refinement steps to T (k−1).
For given k < K, the cell-based schemes require the evaluation of Ritz projections
to the cells G ∈ G(l), k ≤ l ≤ K. Note that the cell Gmax ∈ G(1)

∞ with the largest
diameter is present in every G(l), since it will not be split by any finer interfaces
Γl, l > 1, and covers more than half of the domain. Because of (3.1.20), solving
the cell problem corresponding to the Ritz projection to Gmax for a single subspace
correction is asymptotically as costly as solving the entire problem.
A single iteration step of one of the patch based schemes with k ≤ K has the optimal
algorithmic complexity of a multigrid V-cycle, i.e. O(N), where N is the number of
vertices in the triangulation T (K) of the finest level.

Numerical experiments

Naturally, there is a plethora of problem and solver parameters for which the
performance of the numerical approach can be assessed and optimized. In an effort
to confirm the theoretical findings from the previous sections, the focus will be on an
evaluation of the convergence behavior of the various subspace corrections methods in
the context of progressively more elaborate interface network geometries, that satisfy
fewer and fewer assumptions and are less and less covered by theory. An example
inspired by geophysical, spatial structures illustrates their applicability in settings
beyond the presented theoretical framework. The implementation is based on the
Distributed and Unified Numerics Environment (Dune) [12, 17, 117], written in
C++ and available as the separate module dune-faultnetworks1.
In the remainder, let us consider the finite element discretization (3.1.21) of the
fractal interface problem (3.1.10) with Ω = (0, 1)2 ⊂ R2, c = 1, the identity matrix
A = I ∈ Rd×d, B = 1 and three different fractal interface network geometries,
whose construction will be described shortly. Numerical approximations will be
obtained resting on discrete analogues of the cg iteration with basic iterates from
(3.3.28) and (3.3.29) and block Jacobi and Gauß-Seidel smoothers induced by the
multilevel cell- and patch-based splittings (3.3.15) and (3.3.18), respectively, with
coarse space Sk = S1 and fine space SK corresponding to the discrete solution space
SK , K = 1, . . . , Kmax. All experiments start with an initial iterate u(0) = uS1 , that
is given by the finite element approximation on the coarse grid T (1). In particular,
the following methods will be investigated:
(MG) standard multigrid V-cycle with Gauß-Seidel smoother induced by the

multilevel patch-based splitting (3.3.18) with 3 pre- and post-smoothing
steps on each level

(patch-JA) cg method preconditioned with block Jacobi smoother induced by the
multilevel patch-based splitting (3.3.18)

1https://git.imp.fu-berlin.de/podlesny/dune-faultnetworks
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(patch-GS) cg method preconditioned with block Gauß-Seidel smoother induced by
the multilevel patch-based splitting (3.3.18)

(cell-JA) cg method preconditioned with block Jacobi smoother induced by the
multilevel cell-based splitting (3.3.15)

(cell-GS) cg method preconditioned with block Gauß-Seidel smoother induced by
the multilevel cell-based splitting (3.3.15)

In order to assess the convergence properties of the numerical methods, two compu-
tationally feasible quantities will be examined. First, let us consider the minimal
number of iteration steps νstop needed to reduce the algebraic error below discretiza-
tion accuracy on the finest grid. It is computed according to the hierarchical error
estimate [80] ∥∥∥uSK − u(νstop)

SK

∥∥∥
H
≤
∥∥∥uSK+1 − uSK

∥∥∥
H
≤ ‖u− uSK‖H . (3.3.35)

Here, the last estimate follows by best-approximation of the discretization error
‖u− uSK‖H in SK+1. The number of iterations νstop governs the computational
efficiency of the individual methods and characterizes their convergence speed in
practice as well as their robustness with respect to the scale K. Second, the error
reduction factors

ρ
(ν)
K =

∥∥∥uSK − u(ν)
SK

∥∥∥
H∥∥∥uSK − u(ν−1)

SK

∥∥∥
H

, ν = 1, . . . , 9,

and their geometric mean ρK approximate the convergence rates for the respective
methods and levels K = 1, . . . , Kmax.

Highly localized interface network. The first experimental setup features the
highly localized fractal interface network introduced in Example 3.1.1, see Figure 3.3
for an illustration.

Figure 3.3: Highly localized interface network: Construction of Γ(K) with ΓK (orange) in d = 2
space dimensions for K = 1, . . . , 4 from left to right.

Recall, that dk =
√

2 4−k, Ck = 2k+1, and rk = 2−k hold. Thus, all assumptions
on the interface geometry from Section 3.1.1 and in particular (3.1.3), (3.1.6) are
fulfilled. Moreover, the conditions (3.2.17) and (3.2.21) are satisfied for c = 1, see
Example 3.2.27.
Starting from the partition T (0) of Ω consisting of two congruent triangles, the
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initial triangulation T (1) resolving Γ(1) is obtained by two uniform regular refinement
steps thereof, while subsequent triangulations T (k+1) result from two uniform regular
refinement steps applied to T (k), k ≥ 1. By construction, it holds hk =

√
2 4−k,

therefore (3.1.20) is satisfied with δ = 1 and the refinement factor from (3.3.21)
is bounded by cr = 4. The number of neighboring cells of G ∈ G(k) from G(k) is
uniformly bounded by cN = 6, k ∈ N.
Hence, for this specific fractal interface network, all conditions for the uniform
approximation and stability properties of the projections ΠSk , k ∈ N, stated in
Corollary 3.2.33 and Corollary 3.2.38, as well as the uniform convergence results in
Theorem 3.3.14 and Theorem 3.3.15 are fulfilled.

ν K = 2 K = 3 K = 4 K = 5
1 0.291 0.326 0.329 0.337
2 0.352 0.410 0.423 0.442
3 0.387 0.446 0.461 0.489
4 0.400 0.457 0.475 0.511
5 0.404 0.461 0.480 0.526
6 0.406 0.463 0.482 0.540
7 0.406 0.464 0.484 0.553
8 0.406 0.464 0.485 0.565
9 0.406 0.464 0.485 0.575
ρK 0.382 0.437 0.453 0.498

Table 3.1: Highly localized interface network:
Error reduction factors and geometric mean
ρK of (MG).

2 3 4 5

K

0.00

0.25

0.50

0.75

1.00

ρK

Figure 3.4: Highly localized interface network:
Geometric means ρK of error reduction factors
ρ

(ν)
K , ν = 1, . . . , 9, for the methods MG, patch-

JA, patch-GS, cell-JA, cell-GS.

Table 3.1 shows the error reduction factors ρ(ν)
K of (MG) for the iteration steps

ν = 1, . . . , 9 and the corresponding geometric mean ρK , K = 2, . . . , 5. On each level
K, the error reduction factors converge to the level specific convergence rate and
appear to be bounded away from 1 for increasing K. The other, cg-based methods
exhibit a qualitatively similar behavior, however, their error reduction factors are not
monotonically increasing as the iteration scheme is nonlinear. Figure 3.4 illustrates
the geometric means ρK of the reduction factors ρ(ν)

K for all considered methods with
respect to the scale K = 2, . . . , 5. Generally, one observes faster convergence for
sequential versions of the respective algorithms. For (cell-JA), they seem to saturate
at 0.70, which is also a rough estimate on the upper bound for (patch-JA) and (MG),
while 0.15 is a bound for the sequential variants. This finding suggests mesh- and
scale-independent convergence of all considered methods.

The discretization accuracy according to (3.3.35) is reached with fewer iteration steps
of the sequential methods than the parallel variants, see Table 3.2. Moreover, the
parallel methods (cell-JA) and (patch-JA) as well as (MG) seem to scale slightly worse
with K, however, they still appear to be rather robust in this regard. Naturally, this
observation agrees with the significantly smaller reduction factors for the sequential
versions.
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K patch-GS cell-GS MG patch-JA cell-JA
2 1 1 1 2 1
3 1 1 2 4 3
4 1 1 3 5 5

Table 3.2: Highly localized interface network: Number νstop of iterations until criterion (3.3.35) is
satisfied.

Cantor-type interface network Next, let us consider a Cantor set proposed in
[126] and later investigated in the context of fractal homogenization in [61]. It is
constructed similarly to the highly localized interface network from Example 3.1.1,
that was considered in the last numerical experiment.
Let Ω = (0, 1)2 ⊂ R2 denote the unit square, {e1, e2} the canonical basis in R2 and
construct the sequence of interfaces (Γk)k∈N inductively as follows. Set Γ(0) = Γ0 = ∂Ω
and, for given Γ(k), k ≥ 0, define

Γ̃k+1 = Γ(k) ∪ {e1 + Γ(k)} ∪ {e2 + Γ(k)}

as well as Γk+1 = 1
2 Γ̃k+1\Γ(k), see Figure 3.5 for an illustration.

Figure 3.5: Cantor interface network: Construction of Γ(K) with ΓK (orange) in d = 2 space
dimensions for K = 1, . . . , 4 from left to right.

The resulting fractal interface network Γ is self-similar by construction and the
associated geometric quantities are given by dk =

√
2 2−k, Ck = 2k, and Ck,l = Cl−k,

l > k. Thus, it holds rk = 2−k and C0 = 1 in (3.1.6). Therefore, all assumptions
on the interface geometry from Section 3.1.1 and in particular (3.1.3), (3.1.6) are
fulfilled. Moreover, condition (3.2.17), which leads to the uniform approximation
property of the considered projections is satisfied for c = 1. However, there is no
c > 0, such that (3.2.21) holds. Consequently, the stability results for the projections
and the convergence theory derived therewith cannot be applied. In the context of
cell-based subspace decompositions, the geometry of the interface network induces
another, prohibitive issue, since there is no uniform bound cN on the number of
neighboring cells of G ∈ G(k) from G(k), k ∈ N. Strictly speaking, the convergence
theory, that was previously developed, cannot be applied to this interface network.
Still, most assumptions are satisfied and there is hope that the considered methods
perform similarly well.
The simplicial triangulations T (k) resolving Γ(k) are constructed by partitioning Ω
uniformly into squares of edge length 2−k and subsequently subdividing each square
into two triangles. Note that any such triangulation T (K) resolves the Cantor level
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ν K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9
1 0.486 0.506 0.506 0.505 0.504 0.504 0.504
2 0.527 0.592 0.597 0.596 0.596 0.596 0.596
3 0.544 0.649 0.668 0.668 0.668 0.669 0.669
4 0.551 0.682 0.722 0.724 0.724 0.725 0.725
5 0.555 0.700 0.760 0.766 0.766 0.767 0.767
6 0.557 0.710 0.786 0.798 0.798 0.798 0.799
7 0.558 0.715 0.804 0.822 0.823 0.823 0.823
8 0.558 0.719 0.816 0.840 0.842 0.842 0.842
9 0.559 0.721 0.823 0.854 0.857 0.857 0.857
ρK 0.543 0.662 0.712 0.721 0.721 0.721 0.721

Table 3.3: Cantor interface network: Error reduction factors and geometric mean ρK of (MG).
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Figure 3.6: Cantor interface network: Geometric means ρK of the error reduction factors ρ(ν)
K ,

ν = 1, . . . , 9, for the methods MG, patch-JA, patch-GS, cell-JA, cell-GS.

interface network Γ(k), K > k. By construction, it holds hk =
√

2 2−k and (3.1.20) is
satisfied with δ = 1. The refinement factor from (3.3.21) is bounded by cr = 2.

As is demonstrated in Table 3.3, the error reduction factors ρ(ν)
K of (MG) converge

to the level specific convergence rates and appear to be bounded away from 1 for
increasing K, K = 3, . . . , 9. The cg-based methods show a qualitatively similar
behavior, although their error reduction factors are not monotonically increasing as
the iteration scheme is nonlinear. Again, the geometric means ρK of the reduction
factors ρ(ν)

K with respect to the scale K = 3, . . . , 9 illustrate, that sequential versions
converge faster than their parallel counterparts, see Figure 3.6. The error reduction
factors for all methods seem to saturate with increasing K, suggesting mesh- and
scale-independent convergence.
The discretization accuracy according to (3.3.35) is reached with fewer iteration steps
of the sequential methods than the parallel variants, see Table 3.4. Moreover, the
parallel methods (cell-JA) and (patch-JA) as well as (MG) appear to scale worse

K patch-GS cell-GS MG patch-JA cell-JA
3 1 1 2 2 3
5 1 2 5 4 6
7 1 2 > 10 6 10
9 1 3 > 10 8 > 10

Table 3.4: Cantor interface network: Number νstop of iterations until criterion (3.3.35) is satisfied.
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with K, while the others remain rather robust in this regard. In comparison to
the previous numerical experiment with the highly localized interface network, the
overall convergence behavior is slightly worse but still highly efficient and robust
with respect to the mesh size as well as scale K.

Geologically inspired interface network The last interface network mimics a
fractal crystalline structure. It is constructed using an algorithm with certain random
components first published in [78] and produces geometries, that are reminiscent of
microstructures observed in the geosciences, e.g. Quartz grain deformation patterns
or during subgrain rotation recrystallization. The triangulation T (1) results from
applying four uniform regular refinement steps to the initial partition T (0) consisting
of two congruent triangles. Moreover, any further triangulation T (k+1) ensues from
uniform regular refinement of T (k), k ≥ 1. The level-k interfaces are constructed
inductively as follows.
Let G0 = Ω denote the initial cell with center c = (0.5, 0.5)T and midpoints l, t, r, b ∈
R2 of its left, top, right, and bottom boundary. The level-1 interface Γ1, as shown in
the left picture of Figure 3.7, then consists of four connected paths of edges in E (1)

starting with l, t, r, b and ending with c. The edges are selected randomly with strong
bias towards the straight line connecting the corresponding start and end points
under the constraint, that the four paths do not self-intersect and meet in and only
in c. Thus, Γ(1) = Γ1 splits G0 into four level-1 subcells Gi ∈ G(1), 1 ≤ i ≤ 4, whose
“centers” c(1)

i are given by 1
2(l + t), 1

2(t+ r), 1
2(r + b), 1

2(b+ l). The “midpoints” for
their left, top, right, and bottom boundaries are derived from their respective c(1)

i by
selecting appropriate points in Γ(1)∩{c(1)

i +se1 : s ∈ R} and Γ(1)∩{c(1)
i +se2 : s ∈ R}.

Each cell Gi ∈ G(1) is either marked for refinement now or will remain invariant
forever. Marking a cell for refinement or setting Gi ∈ G(1)

∞ is done randomly according
to the probability P(min{ci,1, ci,2}) with density ρ(ξ) = 2(1− ξ), ξ ∈ (0, 1), i.e., with
a linear bias towards the left and the lower boundary of Ω. The cells Gi ∈ G(1)\G(1)

∞ ,
that are to be refined, are split into four subcells by four, randomly generated paths
of edges in E (2) starting with midpoints of its left, top, right, and bottom boundary
and ending in ci similarly to the splitting of the initial cell G0. The union of all these
paths constitutes the level-2 interface Γ2. Repeating these steps inductively leads to
all further interface networks Γk, k = 2, . . . , 6 (see Figure 3.7).

Figure 3.7: Geologically inspired interface network: Construction of Γ(K) with ΓK (orange) in d = 2
space dimensions for K = 1, 3, 5, 6.

By construction, the resulting interface network satisfies dk → 0 for k →∞. Yet, it
is not obvious how sharp estimates for the geometric quantities from Section 3.1.1,
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namely dk, Ck, and rk, k ≥ 1, turn out. For the ensuing numerical computations, Ck
from the Cantor interface network will be used. In general, the interface network
does not fulfill the conditions stated in Corollary 3.2.33 and Corollary 3.2.38 that
finally lead to the convergence results developed in this section.

ν K = 2 K = 3 K = 4 K = 5 K = 6
1 0.598 0.614 0.582 0.545 0.519
2 0.637 0.695 0.690 0.668 0.652
3 0.660 0.742 0.748 0.733 0.721
4 0.676 0.773 0.789 0.780 0.769
5 0.688 0.795 0.818 0.817 0.805
6 0.698 0.810 0.840 0.845 0.833
7 0.706 0.821 0.857 0.868 0.856
8 0.713 0.829 0.870 0.885 0.875
9 0.719 0.835 0.879 0.899 0.890
ρK 0.676 0.765 0.780 0.774 0.759

Table 3.5: Geologically inspired interface network: Error reduction factors and geometric mean ρK
of (MG).
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Figure 3.8: Geologically inspired interface network: Geometric means ρK of the error reduction
factors ρ(ν)

K , ν = 1, . . . , 9, for the methods MG, patch-JA, patch-GS, cell-JA, cell-GS.

Nevertheless, the error reduction factors ρ(ν)
K of (MG) as displayed in Table 3.5

converge to the level specific convergence rates, appear to be bounded away from 1
for increasing K, K = 3, . . . , 9 and only moderately deteriorate in comparison with
the highly localized and Cantor-type cases. The cg-based methods demonstrate a
qualitatively similar behavior. Sequential versions converge faster than their parallel
counterparts as the geometric means ρK of the error reduction factors ρ(ν)

K with respect
to K = 2, . . . , 6 depicted in Figure 3.8 show. For all methods, the error reduction
factors seem to saturate with increasing K, suggesting mesh- and scale-independent
convergence.
According to (3.3.35), the discretization accuracy is reached with fewer iteration
steps of the sequential methods than the parallel variants, see Table 3.6. Moreover,
the parallel methods (cell-JA) and (patch-JA) appear to scale slightly worse with K,
while the others remain rather robust for increasing K.
Evidently, the numerical methods are not only very robust with respect to the mesh
size and the scale K, but also with regard to the geometry of the interface network.
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Although only the first, highly localized interface network satisfies all conditions
to apply the presented convergence theory, the performance of the investigated
algorithms deteriorates only slightly for the other interface networks and the same
qualitative behavior is observed.

K patch-GS cell-GS MG patch-JA cell-JA
2 1 1 1 1 1
4 1 1 2 3 4
6 1 2 4 6 8

Table 3.6: Geologically inspired interface network: Number νstop of iterations until criterion (3.3.35)
is satisfied.
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4 Application to geological fault
networks

In this concluding chapter of the thesis, the discretization approach and algorithmic
approximation of layered fault systems, that was developed in Chapter 2, will be put
to the test in a series of numerical experiments. All considered setups consist of a
deformable body of St. Venant Kirchhoff material in d = 2 space dimensions, that
is split into m sub-bodies with corresponding reference domains Ωi, i = 1, . . . ,m,
by m − 1 planar faults. In particular, the dynamics of the systems and solver
performance will be investigated over the time interval [0, T ] with final time T = 60 s.
Some of the findings presented hereafter are subject of an upcoming publication [54].
The implementation is based on the Distributed and Unified Numerics Environment
(Dune) [12, 17, 117], written in C++ and available as the separate module dune-
tectonic1. Dune is a modular software framework for solving partial differential
equations with widely used grid-based methods, e.g. finite element, finite volume
and finite difference methods. One important design feature is the separation of
concerns, i.e. data structures and functionality, through slim, template dependent
interfaces. This leads to a very flexible, efficient (both with respect to scientific
computations and implementation time) and extendable framework. Apart from
the available core and grid modules, the implementation depends on additional ones
providing finite element assemblers (dune-fufem), solvers (dune-solvers, dune-tnnmg),
data structures (dune-matrix-vector), and dual mortar coupling (dune-contact), that
are developed and maintained at Freie Universität Berlin2. Note that dune-contact
makes use of the dune-grid-glue library [11], which provides infrastructure for the
coupling of two unrelated Dune grids3.

4.1 Discretization and algebraic solution

Time stepping strategies In the subsequent experiments, time discretization will
be carried out using two different strategies for time step size selection. The first is
given by a straightforward partition of the interval [0, T ] into N uniform time steps
of length τ = T/N .
However, the seismic cycle postulates strongly varying dynamics of stick-slip systems
ranging from phases of slow interseismic loading to fast coseismic periods. In this
light, one expects to benefit from adaptive time step size selection in terms of shorter
1https://git.imp.fu-berlin.de/podlesny/dune-tectonic
2https://git.imp.fu-berlin.de/agnumpde
3https://gitlab.dune-project.org/extensions/dune-grid-glue
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computation times while maintaining accuracy. This is pursued by the following
standard, adaptive strategy and based on the assumption that the dynamics can be
resolved efficiently with only slightly varying, subsequent time step sizes.
For given approximate solution of the coupled spatial Problem 2.6.4 at time tn ∈ [0, T ),
that was obtained with the time step size τn−1, choose τ ∗n = τn−1 for n ≥ 0 and
τ−1 = 10−4 T as an initial guess for the new time step size τn. Then, compute an
approximate solution (u̇(C)

n+1, α
(C)
n+1) of the coupled spatial Problem 2.6.4 at tn + 2τ ∗n

with one time step of size 2τ ∗n and another solution (u̇(R)
n+1, α

(R)
n+1) with two time steps

of size τ ∗n. If the criterion

‖α(C)
n+1 − α(R)

n ‖L2(ΓF ) ≤ δτ m1/2 (4.1.1)

is fulfilled for a suitable tolerance δτ , then the time step is coarsened by setting
τ ∗n := 2τ ∗n and the above coarsening procedure repeated until (4.1.1) is no longer
satisfied. If coarsening the time step size is not feasible, i.e. the criterion (4.1.1) is
violated for the initial guess τ ∗n = τn−1, then proceed similarly to refine it. Refinement
is performed by successive bisection of the time step size τ ∗n := τ ∗n/2 until (4.1.1) is
met for the first time. The last accepted time step size candidate τ ∗n determines the
new time step size τn = τ ∗n. The tolerance δτ is fixed in alignment with the prescribed
accuracy of the inner fixed point iteration and is specified below.

Triangulations The ensuing spatial problems, that have to be solved in each time
step, are discretized with respect to triangulations T (K)

i resulting from K refinement
steps applied to initial triangulations T (0)

i of the domains Ωi, i = 1, . . . ,m. Their
generation varies for the individual experiments and will be detailed in their respective,
dedicated sections. These triangulations give rise to an associated hierarchy of finite
element spaces, which are basis for the construction of the algebraic solvers and in
particular the TNNMG method.

Fixed point iteration A major building block of the proposed solution algorithm
is decoupling the spatial rate-and-state Problem 2.6.4 by means of the fixed point
iteration (2.6.8). The relaxation parameter is set to ω = 1/2 and the iteration is
terminated once the stopping criterion

‖ανn,B − αν−1
n,B ‖L2(ΓF ) ≤ 10−1δτ m1/2 (4.1.2)

is satisfied. The required number of fixed point iterations νstop to meet the criterion
is crucial to the feasibility of this approach in practice. The tolerance parameter δτ
is the same as in the adaptive time stepping strategy (4.1.1), selected to ensure a
comparable accuracy of fixed point iteration and time stepping, and intended to be
in the range of the discretization error. This choice and its actual value δτ = 10−5

are motivated by systematic trial and error optimizing computational efficiency in
the setting of unilateral frictional contact, cf. [101, Section 3.3]. Similar efforts could
be undertaken in the present setting, but are not part of this thesis.
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4.2 Spring slider with deformable foundation

Algebraic solution of the parametrized rate and state problems The algebraic
solution of the discrete state problem (2.6.6) with given rate for Dieterich’s aging
law is approximated using pointwise bisection until the pointwise error is uniformly
bounded by the threshold 10−12.
The algebraic solution of the discrete rate problem (2.6.5) with given state is computed
using the Truncated Nonsmooth Newton Multigrid (TNNMG) method described
in Section 2.7. The initial iterate is given by the final iterate of the preceding step
in the fixed point iteration. In each TNNMG step, the truncated, linear correction
is determined with 5 iteration steps of a standard multigrid V-cycle with 3 pre-
and 3 post-smoothing steps, i.e. the linear solver (MG) employed for the scalar,
multiscale interface problems from the numerical experiments in Section 3.3.2 that
demonstrated rapid, mesh- and scale-independent convergence rates. The iteration
is terminated once the stopping criterion∥∥∥u̇ν − u̇ν−1

∥∥∥
n
≤ 10−8 W1/2m1/2 (4.1.3)

is fulfilled, where ‖ · ‖n = an(·, ·)1/2 denotes the time-dependent energy norm with
an(·, ·) from (2.5.4). This way, the error of the inner multigrid iteration is reduced
several orders of magnitude below the error of the outer fixed point iteration.

4.2 Spring slider with deformable foundation

As a first application, let us consider a spring slider experiment similar to the one
presented in [102], but featuring a deformable instead of a rigid foundation. It
consists of two bodies each with dimensions 5 m × 1 m, whose reference domains
are given by Ω1 = (−2.5, 2.5) × (−1, 0) and Ω2 = (−2.5, 2.5) × (0, 1) with contact
interface ΓF = (−2.5, 2.5)×{0}. The bodies are subject to gravity, i.e. the body force
f is constant and given by f = −ρg · e2, where g denotes the gravitational constant.
On the vertical boundaries ΓNi of the reference configurations Ωi, i = 1, 2, let us
impose homogeneous Neumann conditions fN = 0. The foundation is fixed along
its lower boundary ΓD1 via homogeneous Dirichlet conditions u( · , t) = u̇( · , t) = 0,
0 ≤ t ≤ T . Along the upper Dirichlet boundary ΓD2 of the slider, the condition
u̇( · , t) = vD ξ(t) · e1 prescribes a smooth transition of the velocities from zero to a
regime with constant loading speed vD = 2× 10−4 m/s using

ξ(t) =


1
2(1− cos(4πt/T )), if t ≤ T/4
1 otherwise.

(4.2.1)

At the friction boundary ΓF between foundation and slider, rate-and-state friction
conditions hold with Dieterich’s aging law. See Figure 2.1 for an illustration of the
experimental setup.
At t = 0, the initial deformation u(·, 0) is determined by one step of the fixed point
iteration associated with the stationary problem (2.4.6) and thus approximates the
equilibrium configuration. Furthermore, the initial velocity field is set to u̇( · , 0) = 0
on Ω, which is consistent with the Dirichlet conditions and the initial state field is
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bulk parameter value friction parameter value
bulk modulus E 4.12× 107 Pa ref. velocity V0 1× 10−6 m/s
Poisson ratio ν 0.3 ref. friction coeff. µ0 0.6
mass density ρ 5× 103 kg/m2 a 0.010
gravity g 9.81 N/kg b 0.015

charact. slip dist. L 1× 10−5 m

Table 4.1: Material parameters.

defined as α( · , 0) = −10 on ΓF . The remaining material parameters are selected in
accordance to Table 4.1.
The initial triangulations T (0)

i of the domains Ωi, i = 1, 2, are shown in the left
picture of Figure 4.1. For the upcoming experiments, various final triangulations
T (K)
i , i = 1, 2, resulting from K = 2, . . . , 5 steps of global red refinement, i.e.

bisection of all edges of all triangles T ∈ T (k)
i to obtain the refined triangulation

T (k+1)
i , k = 0, . . . , K − 1, will be considered. The right picture of Figure 4.1 depicts

the triangulations T (3)
i , i = 1, 2.

Figure 4.1: Spring slider: Initial triangulations T (0)
i (left) and uniformly refined triangulations T (K)

i

with K = 3 (right), i = 1, 2. The fault is shown in orange.

Simulation results

Next, let us examine the qualitative dynamics of the deformed bodies during the time
interval [0, T ]. For this purpose, Figure 4.2 shows the mean value of the approximate
relative velocity|[u̇n,S ]un−1,S | over the entire fault ΓF for each time instant tn ∈ [0, T ].
One observes that the behavior of the system is characterized by slider and foundation
undergoing an initial loading phase, until at roughly tn = 24 s it transitions into a
pattern of almost periodic peaks in relative velocity indicating the occurrence of slip
events. Here, the periodicity of slip events is slightly perturbed in relation to the
one discovered in numerical experiments with a rigid foundation [102].
The spatial propagation of individual slip events along the entire fault is illustrated in
Figure 4.3. Choosing a uniform time step size of τ = T/106 and final triangulations
T (4)
i , i = 1, 2, it depicts isolines of approximate relative velocities on the fault ΓF

(horizontal axis) offset by the loading velocity evolving over various short time
intervals (vertical axis) corresponding to the first six slip events (top left to bottom
right). The first slip event represents a bilateral rupture, i.e. it nucleates at the center
of ΓF and spreads towards both its edges. This behavior is qualitatively similar to
the one observed in the case of unilateral contact in [102]. Moreover, symmetric
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4.2 Spring slider with deformable foundation
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Figure 4.2: Spring slider: Initial loading phase and almost periodic slip events evidenced by the
mean value of relative velocities over the entire fault ΓF for each time instant tn ∈ [0, T ] computed
with uniform time step sizes τ = T/106 and final triangulations T (4)

i , i = 1, 2.

aftershocks occur where the primary wave ran out towards the edges of the fault.
The second slip event features symmetric foreshocks situated approximately where
the aftershocks of the previous slip event took place before the fault ruptures along
most of its length. Again, it is followed by aftershocks in a similar location. Both of
these events appear to be spatially symmetric with respect to the center of the fault.
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Figure 4.3: Spring slider: Isolines (101 µm/s green, 102 µm/s blue, 103 µm/s orange, 104 µm/s red)
of relative velocities along ΓF over different time intervals resolving the first 6 slip events (top left
to bottom right).

In contrast, the other shown events do not possess this symmetry, but nucleate close
to the center and spread bilaterally across the entire fault nonetheless. Especially
event 5 and 6 display more pronounced dynamics to the right and left of ΓF ,
respectively. Generally, primary ruptures seem to be preceded by foreshocks located
mainly towards the center of the fault, where subsequently the slip events emerge.
Furthermore, aftershocks can be observed typically wherever the primary rupture last
subsided. These characteristics are considerably different from the purely periodic
behavior observed in simulations of a subduction zone with rigid foundation [101].
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4 Application to geological fault networks

The next objective is to investigate the behavior in the stick-slip regime and assess
properties of the time discretization, fixed-point iteration and performance of the
algebraic solver.

Convergence properties of the time discretization

Focusing on the beginning of the strike-slip regime and the first 6 slip events,
let us take a closer look at the mean value of the approximate relative velocity
|[u̇n,S ]un−1,S | over the entire fault ΓF during the time interval [24.7, 33.5]. While the
final triangulations T (K)

0 and T (K)
1 remain fixed with K = 4, a series of experiments

using the classical Newmark scheme with uniform step sizes τj = T/Nj, Nj = 104+j,
j = 0, 1, 2, is conducted, see Figure 4.4. For decreasing time step sizes, the resulting
approximate relative velocity seems to converge.
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Figure 4.4: Spring slider: Mean approximate relative velocities over the fault ΓF with final
triangulations T (4)

i , i = 1, 2, and uniform Newmark time stepping using decreasing sizes τj = T/Nj ,
Nj = 104+j , j = 0, 1, 2 (top to bottom).

However, one observes highly oscillatory behavior on much smaller time scales than
the low frequency stick-slip process, that persists through refinement of the time
step. The cause of this phenomenon is twofold.
Similar, high frequency oscillations turn out utilizing the dissipative backward Euler
method and sufficiently fine time steps τ = T/106, see Figure 4.5. In comparison
to the Newmark discretization, cf. the bottom picture in Figure 4.4, the resulting
amplitudes appear to be smaller. This suggests a physical origin for some of the
oscillatory behavior, which is supported by findings from simulations for unilateral
frictional contact [102].
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4.2 Spring slider with deformable foundation
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Figure 4.5: Spring slider: Mean approximate relative velocities over the fault ΓF with final
triangulations T (4)

i , i = 1, 2, and uniform backward Euler time stepping with step size τ = T/106.

Secondly, high frequency oscillations and instability are numerical artifacts attributed
to known shortcomings of the classical Newmark scheme in the context of (frictional)
contact problems, see Section 2.5 for a detailed discussion. In the established litera-
ture, several modifications are suggested to overcome these drawbacks (see Krause &
Walloth [82] and the references cited therein for an overview and comparison).

Adaptive time stepping

The bottom picture of Figure 4.6 shows the mean approximate relative velocity
using adaptive time stepping with minimal step size τmin = 1.5T/106 (black) and
unrestricted step size selection leading to minimal step sizes of τmin = 9.8T/108

(blue). In the following, the version with unrestricted step size selection serves as
an approximation of the exact solution. The evolution of the depicted velocities
appears to be identical except for the last peak suggesting convergence and a certain
robustness with respect to the temporal resolution of the slip events on the considered
time interval.
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Figure 4.6: Spring slider: Mean approximate relative velocities over the fault ΓF with final
triangulations T (4)

i , i = 1, 2, using uniform Newmark time stepping with step size τ = T/106

(top) and adaptive time stepping (bottom) with minimal step size τmin = 1.5T/106 (black) and
unrestricted step size selection (blue).
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4 Application to geological fault networks

Moreover, the mean velocities computed with restricted, adaptive time stepping seem
closer to the exact solution (blue) than the ones obtained with uniform Newmark
time stepping with a comparable step size, see the top picture of Figure 4.6. On one
hand, this is rather surprising as the approach with uniform time steps possesses a
much finer resolution of the interseismic phase in addition to a similar resolution
of coseismic dynamics. Unfortunately, the improved temporal resolution does not
lead to more accurate solutions in the interseismic phase, but adds unnecessarily
computed time steps in which numerical instabilities accumulate. This explains the
observed phenomenon.

Convergence properties of the fixed point iteration

Discretizing [0, T ] uniformly in time with 104 steps, the average and maximum
number of fixed point iterations per time step for spatial problems arising from the
final triangulations T (K)

0 and T (K)
1 , K = 2, . . . , 6, is depicted in Figure 4.2. The

average number of required iterations seems to saturate indicating mesh-independent
convergence of the fixed point iteration. In case of unilateral contact, this claim is
supported by theoretical results [99] and practical experience [102].
The maximum number of fixed point iterations is attained during slip events indicating
that the utilized time step size τ = T/104 is too coarse to resolve the dynamics
during ruptures accurately. The suggested adaptive time step size selection is a
suitable remedy as the next section demonstrates.

K 2 3 4 5 6
max 30 36 47 53 56
avg 3.76 4.14 4.05 4.10 4.05

Table 4.2: Spring slider: Average and maximum number of fixed point iterations per 104 uniform
time steps depending on the number of grid refinements K.

Adaptive time stepping and performance of the algebraic solver

Last, let us assess the adaptive selection of time steps as well as the performance of the
algebraic solver that is composed of the fixed point iteration (2.6.8) decoupling rate
and state and the TNNMG method for the solution of the rate problem as described
in Section 2.7. The top picture of Figure 4.7 shows the adaptively selected time step
sizes τn for the time instants tn ∈ [24, T ] starting shortly before the end of the loading
phase. Note that the time step size is reduced by about 2 orders of magnitude,
whenever slip events occur, to maintain accuracy. Consequently, resolving slip events
with sufficiently small time steps leads to few fixed point iterations required to satisfy
the stopping criterion (4.1.2). As opposed to a uniform time step size in the previous
section, here, usually 2 - 4 fixed point iterations suffice for adaptively selected time
steps, see the middle picture. In each step of the outer fixed point iteration, the
sum of all inner TNNMG iterations necessary to fulfill the stopping criterion (4.1.3)
ranges from 5 to 23 as the bottom picture demonstrates.
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Figure 4.7: Spring slider: Adaptive time step selection and performance of the algebraic solver in
terms of computed outer fixed point (fp) iterations per time step and corresponding sum of inner
TNNMG (mg) iterations.

4.3 Layered fault system

The last application involves the layered fault system introduced as the mathematical
model problem in section 2.3 and accompanied us throughout the rest of the exposition.
It is an extension of the 2-body spring slider setup to multiple spatial scales.
The various experimental setups considered here consist of m = 2, . . . , 5 layered
bodies with dimensions 5 m× 0.3si m, i = 1, . . . ,m, where

si =
i− 1, if i < 1 +m/2
m− i, otherwise

and associated reference configurations Ωi resulting from the decomposition of
Ω = (−2.5, 2.5)× (0,∑m

i=1 0.3si) by the faults

ΓF =
m−1⋃
i=1

ΓFi,i+1 =
m−1⋃
i=1

(−2.5, 2.5)×
{∑i

j=1 0.3sj
}
.

This construction leads to a layering such that the height of bodies shrinks exponen-
tially from bottom and top towards the center of the stack of bodies, see Figure 2.3.
For m = 2, the spring slider configuration from the previous section is recovered.

Similar to the spring slider setting in Section 4.2, the layered fault system is fixed
by homogeneous Dirichlet conditions u(·, t) = u̇(·, t) = 0, 0 ≤ t ≤ T at the bottom
boundary ΓD1 of the bottom body Ω1. At the upper Dirichlet boundary ΓDm of the
top body Ωm, m = 2, . . . , 5, the condition u̇(·, t) = vD ξ(t) · e1 prescribes the same
smooth transition from zero velocity to a regime of constant loading, cf. (4.2.1).
Otherwise, the material parameters, body force, bodywise homogeneous Neumann
boundary conditions and rate-and-state friction conditions with Dieterich’s aging
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4 Application to geological fault networks

law on ΓF as well as the initial deformation, velocity and state fields are chosen in
analogy to the ones introduced in Section 4.2.

For all experiments performed in this section, time discretization and the selection of
time step sizes is controlled by the adaptive procedure described in Section 4.1. The
ensuing spatial problems occurring in each time step are discretized with respect to
triangulations T (K)

i resulting from K refinement steps applied to initial triangulations
T (0)
i of the domains Ωi, i = 1, . . . ,m. The initial triangulations T (0)

i are determined
by partitioning Ωi into M = b5/0.3sic rectangles of dimensions 5/M m× 0.3si m and
then splitting each rectangle into two triangles, e.g., see the left picture of Figure 4.8
for the resulting initial triangulations for m = 5.

Figure 4.8: Initial triangulations T (0)
i (left) and adaptively refined final triangulations T (5)

i (right)
for m = 5 bodies, i = 1, . . . ,m. The m− 1 faults are shown in orange.

Subsequently, a priori red-green refinement is concentrated at the faults and achieved
by the following adaptive procedure. Starting with T (0)

i , regular (red) refinement, i.e.
bisection of all edges, is applied to all triangles T ∈ T (k)

i , k ≥ 0, whose diameter hT
violates the criterion

hT < (1 + 80 d(T,ΓF )hmin, (4.3.1)

where d(T,ΓF ) denotes the distance of T to ΓF and hmin = 6.25 cm. Afterwards, the
triangles, for which two or three edges have been bisected by previous red refinement,
are marked and refined regularly until only those with no or only one bisected edge
remain. The latter ones are refined by (green) closures connecting the midpoint of the
bisected edge with the opposite vertex. By this procedure, the resulting triangulation
T (k+1)
i is conforming. In order not to jeopardize shape regularity, the (green) closures

are removed before another step of red-green refinement is applied [9]. This strategy
for a priori, adaptive refinement terminates with K = k, once the criterion (4.3.1)
is satisfied for all triangles T ∈ T (k)

i and all i = 1, . . . ,m. For m = 5, the final
triangulations T (K)

i after K = 5 refinement steps are shown in the right picture of
Figure 4.8.
For each number of bodies m = 2, . . . , 5, Table 4.3 summarizes the total number of
grid vertices as well as bounds on the triangle diameters hT , T ∈ T (K)

i , i = 1, . . . ,m,
generated by this procedure.
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4.3 Layered fault system

m 2 3 4 5
no. vertices 1274 2113 2952 4057
min(hT ) in cm 4.4 4.4 4.4 3.2
max(hT ) in cm 70.8 70.8 70.8 70.8

Table 4.3: Fault system: Total number of (no.) grid vertices and bounds on the triangle diameters
hT , T ∈ T (K)

i , i = 1, . . . ,m depending on the number of bodies m = 2, . . . , 5 in the layered fault
system.

Simulation results

As in the spring slider experiment, let us examine the mean value of approximate
relative velocities on the faults ΓF . The layered fault system with m = 3 bodies
exhibits an initial loading phase and stick-slip pattern consisting of almost periodic
slip events on the top fault ΓF2,3, see the top picture of Figure 4.9, that are qualitatively
similar to the one observed for a single fault in the spring slider experiment. The
bottom fault ΓF1,2 reveals a highly oscillatory loading phase, for which it is currently
not understood whether these oscillations are physical, e.g. caused by the fixed
foundation of Ω1, or numerical artifacts. Afterwards, at about 48.0 s, there is a jump
in mean relative velocity that seems to saturate, albeit with isolated perturbances,
and may transition to steady creep or lead to later slip events.
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Figure 4.9: Layered fault system: Mean relative velocities over the faults ΓF2,3 (top) and ΓF1,2
(bottom) for the layered fault system with m = 3 bodies.

Interestingly, these overall dynamics at the top and bottom fault are retained for the
layered fault system with m = 5 bodies, cf. Figure 4.10 showing the mean relative
velocities on the top fault ΓFm−1,m in the top picture and on the bottom fault ΓF1,2 in
the bottom picture. On the top fault, the stick-slip process seems to possess a similar
frequency and amplitude. Again, the bottom fault is host to a highly oscillating
loading phase before saturating at about 57.5 s. The middle two faults ΓF3,4 and ΓF2,3
show comparable mean relative velocities, see the middle two pictures of Figure 4.10.
The same jump in mean relative velocity at about 57.5 s as for the bottom fault
is present. Subsequently, mean relative velocities may continue to saturate and
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Figure 4.10: Layered fault system: Mean relative velocities over the faults ΓFi,i+1, i = 1, . . . , 4, from
ΓF4,5 (top) to ΓF1,2 (bottom) for the layered fault system with m = 5 bodies.

transition to steady creep or lead to future slip events.
Studying the time of first rupture on the top fault ΓFm−1,m, i.e. identified by the first
peak in mean relative velocity, one notices that it increases monotonically with the
number of bodies m = 2, . . . , 5 from 25.2 s to 32.2 s, see Table 4.4. Intuitively, this
observation is expected since there is more bulk material available to accommodate
strain and growing opportunity for stress release along more faults for an increasing
number of bodies.

m 2 3 4 5
tfirst in s 25.2 28.0 31.2 32.2

Table 4.4: Layered fault system: Time of first rupture tfirst on the top fault ΓFm−1,m identified by
the first peak in mean relative velocity depending on the number of bodies m = 2, . . . , 5 in the
layered fault system.

The spatial propagation of individual slip events along the top fault ΓFm−1,m for
the layered fault network with m = 5 bodies is illustrated in Figure 4.11. It lays
out isolines of approximate relative velocities on the fault (horizontal axis) offset
by the loading velocity evolving over various short time intervals (vertical axis)
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Figure 4.11: Layered fault system: Isolines (101 µm/s green, 102 µm/s blue, 103 µm/s orange,
104 µm/s red) of relative velocities along the top fault ΓFm−1,m of the layered fault system with
m = 5 bodies over different time intervals resolving the first 6 slip events (top left to bottom right).

corresponding to the first six slip events (top left to bottom right). Except for the
first and second slip event, which feature either no foreshocks or asymmetrical ones
on the left side of ΓFm−1,m, respectively, ruptures are preceded by foreshocks located
in the middle of ΓFm−1,m that trigger bilateral events. Moreover, most slip events are
followed by small aftershocks. Qualitatively, the characteristics of these ruptures are
very similar to the ones discovered with the spring slider setup, cf. Figure 4.3.

Performance and scaling properties of the algebraic solver

As Figure 4.12 indicates, the performance of adaptive time step selection and of the
algebraic solver is essentially the same for the layered fault system with m = 5 bodies
as in the spring slider experiment. Once more, the adaptive time stepping procedure
reduces time step sizes by about 2 orders of magnitude in order to resolve slip events
on the top fault ΓFm−1,m. As in the spring slider experiment, the number of outer
fixed point iterations takes values between 2 to 4 and the sum of all inner TNNMG
iterations in each of these steps is bounded by 19 during the stick-slip phase except
for slightly larger values around the first slip event and the event at 57.5 s, where
the relative velocities jump on all faults simultaneously.
This not only holds for m = 5, but also for layered fault systems with m = 2, 3, 4
bodies, see Table 4.5. However, for m = 2 , there is one outlier time step during the
loading phase requiring unusually many fixed point iterations. Excluding this single
instance, one recovers characteristic iteration numbers as for the other experiments.
This issue could be addressed by refining the time step size, if the number of fixed
point iterations increases beyond a reasonable threshold. Furthermore, it strongly
suggests that the building blocks of the algebraic solver, i.e. the outer fixed point and
inner TNNMG iteration, and their convergence properties are independent of scaling
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Figure 4.12: Fixed point (fp) iterations, total number of TNNMG (mg) iterations over all fixed point
iterations and absolute time step size τ as determined by the adaptive time stepping procedure
(top to bottom) of the numerical solver.

m 2 3 4 5
τmax in s 6.1 3.1 3.1 3.1
τmin in s 2.9× 10−6 5.9× 10−6 5.9× 10−6 5.9× 10−6

fp iter. max 15 (5) 5 5 5
fp iter. avg 2.72 2.67 2.63 2.68

mg iter. max 106 (21) 21 27 35
mg iter. avg 6.95 6.71 6.62 6.78

Table 4.5: Layered fault system: Smallest (τmin ) and largest time step size (τmax) selected by
adaptive time stepping, maximum and average number of fixed point (fp) as well as TNNMG (mg)
iterations performed by the algebraic solver depending on the number of bodies m = 2, . . . , 5 in
the layered fault system. The values in parentheses for m = 2 denote the individual values when
excluding the one time step with the maximum number of fixed point iterations.

phenomena induced by the number of bodies and faults in the layered fault system.
These results attest to the robustness and efficiency of this solution approach.
Although the numerical algorithm and its implementation are highly efficient, this
kind of experimental setup and choice of parameters is the limit of what is currently
achievable in a single threaded environment with reasonable computation times
of less than a week. Higher spatiotemporal resolution, problems in three space
dimensions, longer final simulation times T or otherwise added complexity require
parallelization of the algorithm and implementation, preferably both in space and
time, to guarantee feasible running times.
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2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults”. In: Nature
communications 10.1 (2019), pp. 1–16. doi: 10.1038/s41467-019-09125-w.

[128] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich, S. Woll-
herr, and A.-A. Gabriel. “Extreme Scale Multi-Physics Simulations of the
Tsunamigenic 2004 Sumatra Megathrust Earthquake”. In: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’17. Denver, Colorado: Association for Computing
Machinery, 2017, pp. 1–16. doi: 10.1145/3126908.3126948.

[129] R. Verfürth. “Error estimates for some quasi-interpolation operators”. In:
ESAIM: Mathematical Modelling and Numerical Analysis 33.4 (1999), pp. 695–
713. doi: 10.1051/m2an:1999158.

[130] B. Wohlmuth. “Variationally consistent discretization schemes and numerical
algorithms for contact problems”. In: Acta Numerica 20 (May 2011), pp. 569–
734. doi: 10.1017/S0962492911000079.

[131] B. I. Wohlmuth. “A mortar finite element method using dual spaces for the
Lagrange multiplier”. In: SIAM journal on numerical analysis 38.3 (2000),
pp. 989–1012. doi: 10.1137/S0036142999350929.

[132] B. I. Wohlmuth. Discretization Methods and Iterative Solvers Based on Do-
main Decomposition. Vol. 17. Lecture Notes in Computational Science and
Engineering. Springer, 2001. isbn: 9783540410836. doi: 10.1007/978-3-642
-56767-4.

[133] B. I. Wohlmuth and R. H. Krause. “Monotone Multigrid Methods on Non-
matching Grids for Nonlinear Multibody Contact Problems”. In: SIAM journal
on scientific computing 25.1 (2003), pp. 324–347. doi: 10.1137/S106482750
2405318.

[134] J. Xu. “Iterative Methods by Space Decomposition and Subspace Correction”.
In: SIAM Review 34 (4 1992), pp. 581–613. doi: 10.1137/1034116.

[135] D. M. Young. “Iterative methods for solving partial differential equations of
elliptic type”. PhD thesis. Cambridge, MA: Harvard University, 1950.

[136] H. Yserentant. “Old and new convergence proofs for multigrid methods”. In:
Acta numerica 2 (1993), pp. 285–326. doi: 10.1017/S0962492900002385.

[137] V. V. Zhikov and A. Pyatnitskii. “Homogenization of random singular struc-
tures and random measures”. In: Izvestiya: Mathematics 70.1 (2006), pp. 19–
67.

133

https://doi.org/10.1038/s41467-019-09125-w
https://doi.org/10.1145/3126908.3126948
https://doi.org/10.1051/m2an:1999158
https://doi.org/10.1017/S0962492911000079
https://doi.org/10.1137/S0036142999350929
https://doi.org/10.1007/978-3-642-56767-4
https://doi.org/10.1007/978-3-642-56767-4
https://doi.org/10.1137/S1064827502405318
https://doi.org/10.1137/S1064827502405318
https://doi.org/10.1137/1034116
https://doi.org/10.1017/S0962492900002385




Zusammenfassung
Die Akkumulation von Deformationen und der Abbau von Spannungen entlang
multiskaliger, geologischer Störungsnetzwerke sind fundamentale Bestandteile der
Dynamik von Erdbeben- und Bruchprozessen in der Lithosphäre. Solche Störungen
werden nach ihrer Relativbewegung an der Grenzfläche klassifiziert und reichen von
Subduktionszonen wie dem japanischen Inselbogen, über Transformstörungen wie
der San Andreas Verwerfung bis hin zu mehrskaligen Störungssystemen wie der
Atacama-Region. Aufgrund langer Phasen seismischer Ruhe und kurzer, plötzlicher
Erdbeben findet das mechanische Verhalten über eine große Spanne von Zeitskalen
statt, was zu einer unzureichenden Datenlage aus Naturbeobachtungen führt und
das Gewinnen von geophysikalischen Einblicken erschwert. Ziel dieser Arbeit ist
es einen Beitrag zur Schließung dieser Lücke mittels mathematischer Modellierung
und numerischer Analysis zu leisten sowie geophysikalisch relevante, numerische
Simulationen von Störungsnetzwerken zu entwickeln.
Zunächst wird ein mathematisches Modell für die Deformation eines geologischen
Systems mit Störungen, die sich nicht schneiden, eingeführt, das aus geschichteten,
viskoelastischen Körpern besteht und mit einem Dieterich-Ruina Modell von raten-
und zustandsabhängiger Reibung auf den Kontaktflächen versehen ist. Hierbei
werden die körperinternen Deformationen als klein angenommen, während große
Relativverschiebungen zugelassen sind. Dann führt die Zeitdiskretisierung einer
Variationsformulierung des Modellproblems mit der klassischen Newmark Metho-
de in jedem Zeitschritt zu einem gekoppelten System von nicht-glatten, konvexen
Minimierungsproblemen für die Raten und Zustände. Dieses System wird mit
einer Fixpunktiteration entkoppelt und im Raum durch einen Mortar-Ansatz
und stückweise konstante Finite-Elemente diskretisiert. Das daraus resultierende,
parametrisierte Raten-Problem kann anschließend mit einer nicht-glatten Mehr-
gittermethode (TNNMG) effizient algebraisch gelöst werden. Die Konvergenz-
geschwindigkeit dieses Verfahrens hängt wesentlich von einer effizienten Fehlermini-
mierung in einem dazugehörigen linearen Korrekturschritt ab.
Der zweite Teil beschäftigt sich mit der numerischen Homogenisierung von ellip-
tischen Variationsproblemen auf fraktalen Interface-Netzwerken, die den linearen
Problemen im Korrekturschritt des TNNMG Verfahrens strukturell ähneln. An-
ders als im ersten Teil wird hier der volle Umfang räumlicher Skalen geologischer
Störungsnetzwerke in Form von fraktalen Multiskalen-Geometrien abgebildet. Hier-
für stellt die Konstruktion von Projektionsoperatoren mit geeigneten Stabilitäts-
und Approximationseigenschaften den wichtigsten Beitrag dieser Arbeit dar. Die
Existenz dieser Projektionen ermöglicht die Anwendung etablierter Ansätze wie der
lokalisierten, orthogonalen Zerlegungen (LOD) zur Konstruktion von Multiskalen-
Diskretisierungen mit optimaler a priori Schätzung des Diskretisierungsfehlers oder
wie Teilraumkorrekturmethoden, die zu algebraischen Lösern mit gitter- und skalen-
unabhängigem Konvergenzverhalten führen.
Abschließend illustrieren numerische Simulationen mit einer Einzelstörung und dem
geschichteten, mehrskaligen Störungssystem sowohl die Eigenschaften des mathema-
tischen Modells als auch die Effizienz, Zuverlässigkeit und Skalenunabhängigkeit des
algebraischen Lösers.
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