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NUMERICAL HOMOGENIZATION OF FRACTAL INTERFACE PROBLEMS

Ralf Kornhuber1,*, Joscha Podlesny1 and Harry Yserentant2

Abstract. We consider the numerical homogenization of a class of fractal elliptic interface problems
inspired by related mechanical contact problems from the geosciences. A particular feature is that
the solution space depends on the actual fractal geometry. Our main results concern the construction
of projection operators with suitable stability and approximation properties. The existence of such
projections then allows for the application of existing concepts from localized orthogonal decomposition
(LOD) and successive subspace correction to construct first multiscale discretizations and iterative
algebraic solvers with scale-independent convergence behavior for this class of problems.
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1. Introduction

Classical homogenization aims at deriving computationally feasible, effective mathematical descriptions of
multiscale phenomena by capturing the fine scales in terms of local cell problems. Starting from elliptic problems
with oscillating coefficients [2,3] and its random counterparts [25,50] (stochastic) homogenization has become a
flourishing field of research and a well-established, powerful tool in mathematical modeling with multiple scales.
An enormous variety of applications include multiscale materials, featuring irregular or even fractal boundaries,
transmission conditions across fractal interfaces, or long, thin fibers [17, 29, 31], biological materials like lung
tissue [4,9], or polycrystals giving rise to multiscale interface problems with jump conditions across a fine scale
network of interfaces [10,12,18]. Corresponding stochastic variants have been studied in Heida [20] and Hummel
[24].

Classical homogenization typically relies on scale separation and periodicity of fine scale behavior. To over-
come these limitations in practical computations, numerical homogenization aims at deriving multiscale dis-
cretizations and iterative algebraic solution methods that are robust with respect to the inherent lack of smooth-
ness of multiscale problems. A natural approach to multiscale discretization is to build all relevant fine scale
features of a given problem directly into the approximating ansatz space. Over more than two decades, this basic
idea has led to composite finite elements [19, 38], variational multiscale methods [23], heterogeneous multiscale
methods [1,46], and multiscale finite elements [13,22]. A certain breakthrough in the mathematical understand-
ing of multiscale discretization methods for elliptic self-adjoint problems with oscillating coefficients came with
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the seminal paper on localized orthogonal decomposition (LOD) by Målqvist and Peterseim [30]. Starting from
a projection Π : ℋ → 𝒮ℎ that maps the solution space ℋ onto some given finite element space 𝒮ℎ ⊂ ℋ ⊂ 𝐿2

with mesh size ℎ and satisfies the following stability and approximation property

‖Π𝑣‖ℋ ≤ 𝑐‖𝑣‖ℋ, ‖𝑣 −Π𝑣‖𝐿2 ≤ 𝐶ℎ‖𝑣‖ℋ ∀𝑣 ∈ ℋ, (1.1)

they observed that the 𝑎-orthogonal complement 𝒲 of the kernel of Π (the orthogonal complement with respect
to the underlying energy scalar product 𝑎(·, ·)) has the same dimension as 𝒮ℎ and, without any additional
assumptions on periodicity or scale separation, provides an approximation with optimal accuracy. Moreover,
optimal accuracy is preserved under localization of the 𝑎-orthogonalized nodal basis of 𝒲. The actual compu-
tation of these localized basis functions amounts to an approximate solution of local problems, utilizing a much
larger finite element space 𝒮 that resolves all fine scale features of the given problem.

An alternative to multiscale discretization methods is to use such a large finite element space 𝒮 directly
for discretization and derive iterative algebraic solution methods that converge independently both of the
discretization parameters and of the regularity of the continuous solution. The construction of such methods
has been carried out successfully in the framework of iterative subspace correction [27, 47–49]. Each iteration
step typically requires the solution of a set of fully decoupled local subproblems that capture the different
frequencies of the actual error. In particular, subspace correction methods can be applied to localization in
LOD [28] and are often merged with multiscale discretization techniques e.g., to enhance convergence of multigrid
methods by enrichment of coarse grid spaces [19,26]. While the LOD approach to the construction of multiscale
discretizations makes explicit use of a projection Π : ℋ → 𝒮ℎ with stability and approximation property (1.1),
such kind of projections play a crucial role in the convergence analysis of subspace correction methods (see, e.g.,
Kornhuber and Yserentant [26] and the references cited therein). The explicit construction and analysis of such
operators for standard Sobolev and finite element spaces has therefore quite a history with further applications
in finite element convergence theory and a posteriori error analysis [7, 8, 11,14,34,45].

In this paper, we consider numerical homogenization of a class of elliptic fractal interface problems without
periodicity and scale separation that is motivated by geology. Experimental studies suggest that grains in
fractured rock are distributed in a fractal manner [32,43], an observation which is also reflected by geophysical
modeling of fragmentation due to tectonic deformation [40]. All spatial scales ranging from grains and rocks even
up to tectonic plates are interacting in geophysical fault networks that play an essential role in the dynamics
of earthquake sources (see, e.g., Rundle et al. [39] and the literature cited therein). Mathematical modeling of
stress accumulation and release in fault networks gives rise to continuum mechanical problems with frictional
contact along the interfaces (see, e.g., Pipping et al. [36] and the literature cited therein). Linearization of
contact conditions leads to elliptic interface problems, where frictional motion along interfaces is replaced by
weighted jumps of displacement.

Scalar versions of such interface problems with fractal interface geometry have recently been suggested and
analyzed by Heida et al. [21]. More precisely, the fractal interface Γ is the limit of level-𝑘 interface networks Γ(𝑘)

for 𝑘 →∞ and a level-𝑘 interface network Γ(𝑘) =
⋃︀𝑘

𝑗=1 Γ𝑗 consists of single faults Γ𝑗 . Here, the single faults Γ𝑗

are ordered from ”strong” to ”weak” in the sense that discontinuities of displacements along Γ𝑗 are expected to
decrease for increasing 𝑘, because ”more fractured” media are expected to show higher resistance [16,33]. For each
fixed 𝑘, the level-𝑘 networks Γ(𝑘) divide the computational domain Ω into a finite number of cells representing,
e.g., geological grains, rocks, and plates. For each 𝑘 ∈ N, we define a Hilbert space ℋ𝑘 by completion of piecewise
smooth functions in Ω∖Γ(𝑘) with respect to a scalar product involving the broken 𝐻1-seminorm and weighted
𝐿2-norms of jumps across Γ𝑗 , 𝑗 = 1, . . . , 𝑘. The solution space ℋ for interface problems on the limiting fractal
geometry Γ is finally defined by completion of

⋃︀∞
𝑘=1ℋ𝑘. We consider self-adjoint elliptic variational problems in

ℋ. Observe that the multiscale character of such problems goes beyond the usual lack of smoothness, because
the solution space ℋ itself depends on the actual fractal geometry which is not accessible by a fixed classical
finite element space. This suggests multiscale modifications of classical finite elements as ansatz spaces allowing
for a priori discretization error estimates.
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The main results of this paper concern the construction of projection operators Π𝑘 : ℋ → 𝒮𝑘 with the
stability and approximation property (1.1) for spaces 𝒮𝑘 of piecewise linear finite elements with respect to a
triangulation 𝒯 (𝑘) resolving the level-𝑘 interface network Γ(𝑘), 𝑘 ∈ N. These results allow for direct access
to existing approaches to numerical homogenization, e.g., by LOD or subspace correction. Our construction
consists of two steps. We first consider projections Πℋ𝑘

: ℋ → ℋ𝑘 and then Π𝒮𝑘
: ℋ𝑘 → 𝒮𝑘, both with the

desired properties (1.1). As projections Π𝒮𝑘
can be essentially taken from the literature [7, 8, 11, 14, 34, 45],

we mainly concentrate on the construction and analysis of Πℋ𝑘
by extending common concepts based on

local Poincaré inequalities [8, 45]. Here, the presence of jump terms creates various technical difficulties. In
particular, counterexamples show that it is not possible to bound jumps of local averages by jumps of the
original functions. Therefore, stability of Πℋ𝑘

requires strong assumptions on the locality of Γ that rule out,
e.g., the Cantor network [21, 43]. The existence of suitable projections Π𝑘 then opens the door to a variety of
existing numerical homogenization methods. We only consider two simple examples to fix ideas (see Podlesny
[37] for more advanced applications). The application of LOD with cell-based localization by subspace correction
in the spirit of Kornhuber et al. [28] and Målqvist and Peterseim [30] provides a multiscale discretization with
optimal error estimates. Using concepts from Kornhuber and Yserentant [27], we also present continuous and
discrete versions of a two-level multigrid method with cell-based block Gauss–Seidel smoother and convergence
rates that are independent of mesh and scale parameters. In the concluding numerical experiments with a highly
localized fractal geometry, we found the theoretically predicted behavior of this method. Moreover, application
to a geologically inspired crystalline structure illustrates the potential of our approach in future applications.

The paper is organized as follows. The first section contains the continuous problem formulation. After a
detailed description of the geometry of the multiscale network Γ(𝑘), 𝑘 ∈ N, together with some assumptions
capturing its shape regularity and fractal character, we introduce a fractal interface problem and state existence
and uniqueness. In the next section, we discuss convergence of its 𝑘-scale approximation associated with the
subspaces ℋ𝑘 ⊂ ℋ. Then we introduce suitable piecewise linear finite element spaces 𝒮𝑘 ⊂ ℋ𝑘 for the approx-
imation of these 𝑘-scale problems and state convergence. The ensuing Section 4 is the core of the paper. It
contains the construction and analysis of projections Π𝑘 = Π𝒮𝑘

∘ Πℋ𝑘
via local Poincaré inequalities, a trace

lemma, and quasi-interpolation. The next two sections are devoted to first applications of these projections Π𝑘

to construct and analyze a LOD-type multiscale discretization with optimal error estimates and a mesh- and
scale-independent subspace correction method. We finally report on some numerical experiments that illustrate
our theoretical findings and open a perspective to future practical applications.

2. Fractal interface problems

2.1. Interface networks

Let Ω ⊂ R𝑑, 𝑑 = 1, 2, 3, be a bounded domain with Lipschitz boundary 𝜕Ω that contains a countable set of
mutually disjoint interfaces Γ𝑗 , 𝑗 ∈ N. We assume that each interface Γ𝑗 is piecewise affine with finite (𝑑− 1)-
dimensional Hausdorff measure. We consider the 𝑘-scale interface networks Γ(𝑘) and their fractal limit Γ, given
by

Γ(𝑘) =
𝑘⋃︁

𝑗=1

Γ𝑗 , 𝑘 ∈ N, Γ =
∞⋃︁

𝑗=1

Γ𝑗 ,

respectively. Since all interfaces Γ𝑗 , 𝑗 ∈ N, have Lebesgue measure zero in R𝑑, their countable union Γ has
Lebesgue measure zero as well. However, Γ might have fractal (Hausdorff-) dimension 𝑑− 𝑠 for some 𝑠 ∈ (0, 1)
and infinite (𝑑− 1)-dimensional measure.

For each fixed 𝑘 ∈ N, the set Ω∖Γ(𝑘) consists of finitely many, mutually disjoint, open, and simply connected
cells 𝐺 ∈ Ω(𝑘), i.e.,

Ω∖Γ(𝑘) =
⋃︁

𝐺∈Ω(𝑘)

𝐺.
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We assume that 𝜕𝐺 = 𝜕𝐺 (no slits) and that either 𝐺∩ 𝜕Ω has positive (𝑑− 1)-dimensional Hausdorff measure
or 𝐺 ∩ 𝜕Ω = ∅. We also assume that the cells 𝐺 ∈ Ω(𝑘) are star-shaped in the sense that for each 𝐺 ∈ Ω(𝑘)

there is a center 𝑝𝐺 ∈ 𝐺 of 𝐺 and a continuous function 𝜌𝐺 defined on the unit sphere 𝑆𝑑−1 in R𝑑 with values
in R+ = {𝑥 ∈ R | 𝑥 ≥ 0} such that

𝐺 =
{︀
𝑝𝐺 + 𝑟𝑠 | 𝑠 ∈ 𝑆𝑑−1, 0 ≤ 𝑟 < 𝜌𝐺(𝑠)

}︀
. (2.1)

Denoting
𝑅𝐺 = max

𝑠∈𝑆𝑑−1
𝜌𝐺(𝑠), 𝑟𝐺 = min

𝑠∈𝑆𝑑−1
𝜌𝐺(𝑠) (2.2)

we assume that the cell partitions (Ω(𝑘))𝑘∈N are shape regular in the sense that

𝑅𝐺

𝑟𝐺
≤ 𝛾 ∀𝐺 ∈ Ω(𝑘) ∀𝑘 ∈ N (2.3)

holds with some constant 𝛾 ≥ 1.
Introducing the subset of invariant cells

Ω(𝑘)
∞ =

{︁
𝐺 ∈ Ω(𝑘) | 𝐺 ∈ Ω(𝑗) ∀𝑗 > 𝑘

}︁
we define the maximal size

𝑑𝑘 = 2 max
{︁

𝑅𝐺 | 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞

}︁
(2.4)

of cells 𝐺 ∈ Ω(𝑘) to be divided on higher levels. Hence, 𝑅𝐺 ≤ 𝑑𝑘 for all 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ . Observe that 𝑑𝑘 is

monotonically decreasing in 𝑘 ∈ N. We assume

𝑑𝑘 → 0 for 𝑘 →∞. (2.5)

Let |𝑀 | ∈ N ∪ {+∞} stand for the number of elements of some set 𝑀 . Denoting

(𝑥, 𝑦) = {𝑥 + 𝑠(𝑦 − 𝑥) | 𝑠 ∈ (0, 1)},

we also assume that for each fixed 𝑘 ∈ N and all 𝑗 ∈ N with 𝑗 > 𝑘 we have

sup
𝐺∈Ω(𝑘)

ess sup
𝑥,𝑦∈Ω

|(𝑥, 𝑦) ∩𝐺 ∩ Γ𝑗 | = 𝐶𝑘,𝑗 < ∞. (2.6)

We set 𝐶1 = 1, 𝐶𝑗 = 𝐶1,𝑗 , 𝑗 = 2, . . . , and

𝑟𝑘 = sup
𝑗>𝑘

𝐶𝑘,𝑗

𝐶1,𝑗
, 𝑘 ∈ N. (2.7)

We finally assume that
𝑟𝑘𝐶𝑘 ≤ 𝐶0 ∀𝑘 ∈ N (2.8)

holds with some constant 𝐶0 which is typically the case for self-similar networks.
As an example, we consider a highly localized interface network in 𝑑 = 2 space dimensions. Let Ω = (0, 1)2

be the unit square and {𝑒1, 𝑒2} denote the canonical basis in R2. Then the interface networks Γ(𝑘), 𝑘 ∈ N, are
inductively constructed as follows. Let

Γ(1) = Γ1 =
{︀

1
4𝑒1 + (0, 𝑒2)

}︀
∪
{︀

1
4𝑒2 + (0, 𝑒1)

}︀
∪
{︀

1
2𝑒1 +

(︀
0, 1

4𝑒2

)︀}︀
∪
{︀

1
2𝑒2 +

(︀
0, 1

4𝑒1

)︀}︀
.

For given Γ(𝑘), 𝑘 ≥ 1, we define

Γ̃𝑘+1 = Γ(𝑘) ∪
{︁

𝑒1 + Γ(𝑘)
}︁
∪
{︁

𝑒2 + Γ(𝑘)
}︁

and set Γ𝑘+1 = 1
4 Γ̃𝑘+1∖Γ(𝑘). See Figure 1 for an illustration. The resulting interface network is self-similar by

construction which can be directly extended to 𝑑 = 3 space dimensions. We have 𝑑𝑘 =
√

2 4−𝑘, 𝐶𝑘 = 2𝑘 and
𝐶𝑘,𝑙 = 𝐶𝑙−𝑘+1, 𝑙 > 𝑘 = 2, . . . . Thus 𝑟𝑘 = 21−𝑘 and (2.8) holds with 𝐶0 = 2.
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Figure 1. Highly localized interface network in 𝑑 = 2 space dimensions: Γ(1) = Γ1 (red) and
Γ(𝑘) with Γ𝑘 (red) for 𝑘 = 2, 3, 4.

2.2. Fractal function spaces

For each fixed 𝑘 ∈ N, we introduce the space of piecewise smooth functions

𝒞1
𝑘,0(Ω) =

{︁
𝑣 : Ω∖Γ(𝑘) → R

⃒⃒⃒
𝑣|𝐺 ∈ 𝐶1(𝐺) ∀𝐺 ∈ Ω(𝑘) and 𝑣|𝜕Ω ≡ 0

}︁
on Ω∖Γ(𝑘). Let 𝑗 = 1, . . . , 𝑘. As Γ𝑗 is piecewise affine, there is a normal 𝜈𝜉 to Γ𝑗 at almost all 𝜉 ∈ Γ𝑗 and we
fix the orientation of 𝜈𝜉 such that 𝜈𝜉 · 𝑒𝑚 > 0 with 𝑚 = min{𝑖 = 1, . . . , 𝑑 | 𝜈𝜉 · 𝑒𝑖 ̸= 0}, and {𝑒1, . . . , 𝑒𝑑} denotes
the canonical basis of R𝑑. For 𝜉 ∈ Γ(𝑘) such that 𝜈𝜉 exists and for 𝑥 ̸= 𝑦 ∈ R𝑑 such that (𝑥 − 𝑦) · 𝜈𝜉 ̸= 0, the
jump of 𝑣 ∈ 𝐶1

𝑘,0(Ω) across Γ𝑗 at 𝜉 in the direction 𝑦 − 𝑥 is defined by

[[𝑣]]𝑥,𝑦(𝜉) = lim
𝑠↓0

(𝑣(𝜉 + 𝑠(𝑦 − 𝑥))− 𝑣(𝜉 − 𝑠(𝑦 − 𝑥))).

Up to the sign, [[𝑣]]𝑥,𝑦(𝜉) is equal to the normal jump of 𝑣 ∈ 𝐶1
𝑘,0(Ω)

[[𝑣]](𝜉) := [[𝑣]]𝜉−𝜈𝜉,𝜉+𝜈𝜉
(𝜉).

For some fixed material constant c > 0, that, e.g., determines the growth of resistance to jumps with increasing
fracturing, and the geometrical constant 𝐶𝑗 = 𝐶1,𝑗 taken from (2.6), we introduce the scalar product

⟨𝑣, 𝑤⟩𝑘 =
ˆ

Ω∖Γ(𝑘)
∇𝑣 · ∇𝑤 d𝑥 +

𝑘∑︁
𝑗=1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗

[[𝑣]][[𝑤]] dΓ𝑗 , 𝑣, 𝑤 ∈ 𝐶1
𝑘,0(Ω), (2.9)

with the associated norm ‖𝑣‖𝑘 = ⟨𝑣, 𝑣⟩1/2
𝑘 . Observe that (1+c)𝑗 generates an exponential scaling of the resistance

to jumps across Γ𝑗 .
Standard completion of 𝒞1

𝑘,0(Ω) leads to a hierarchy of 𝑘-scale Hilbert spaces

ℋ1 ⊂ ℋ2 ⊂ · · · ⊂ ℋ𝑘, 𝑘 ∈ N,

with the scalar products ⟨·, ·⟩𝑘 and dense subspaces 𝒞1
𝑘,0(Ω) ⊂ ℋ𝑘, 𝑘 ∈ N. A limiting fractal Hilbert space ℋ

with scalar product

⟨𝑣, 𝑤⟩ =
ˆ

Ω∖Γ
∇𝑣 · ∇𝑤 d𝑥 +

∞∑︁
𝑗=1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗

[[𝑣]][[𝑤]] dΓ𝑗 , 𝑣, 𝑤 ∈ ℋ, (2.10)

and associated norm ‖·‖ = ⟨·, ·⟩1/2 is obtained by completion of
⋃︀

𝑘∈Nℋ𝑘. We recall the main properties of ℋ
for later use and refer to Heida et al. [21] for details.
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The smooth subspaces
(︁
𝒞1

𝑘,0(Ω)
)︁

𝑘∈N
, and thus the finite-scale spaces (ℋ𝑘)𝑘∈ℋ, are dense in ℋ in the sense

that for any 𝑣, 𝑤 ∈ ℋ there are sequences (𝑣𝑘)𝑘∈N, (𝑤𝑘)𝑘∈N ⊂
(︁
𝒞1

𝑘,0(Ω)
)︁

𝑘∈N
, i.e., with 𝑣𝑘, 𝑤𝑘 ∈ 𝒞1

𝑘,0(Ω) for all

𝑘 ∈ N, such that
‖𝑣 − 𝑣𝑘‖ → 0, ⟨𝑣𝑘, 𝑤𝑘⟩𝑘 → ⟨𝑣, 𝑤⟩ for 𝑘 →∞. (2.11)

Observe that

Ω∖Γ = Ω ∩

⎛⎝ ∞⋃︁
𝑗=1

Γ𝑗

⎞⎠{

⊂ Ω∖Γ(𝑘)

is Lebesgue measurable so that the space 𝐿2(Ω∖Γ) implicitly appearing in (2.10) is well-defined. For the definition
of generalized jumps [[𝑣]], 𝑣 ∈ ℋ, also appearing in (2.10), we introduce the sequence space

(︀
𝐿2(Γ𝑗)

)︀
𝑗∈N equipped

with the weighted norm

‖𝑧‖Γ =

⎛⎝ ∞∑︁
𝑗=1

(1 + c)𝑗𝐶𝑗‖𝑧𝑗‖20,Γ𝑗

⎞⎠ 1
2

, 𝑧 = (𝑧𝑗)𝑗∈N ∈
(︀
𝐿2(Γ𝑗)

)︀
𝑗∈N,

with ‖ · ‖0,Γ𝑗
denoting the usual norm in 𝐿2(Γ𝑗). Then, for each 𝑣 ∈ ℋ and each sequence (𝑣𝑘)𝑘∈N with 𝑣𝑘 ∈ ℋ𝑘,

the limits
∇𝑣 = lim

𝑘→∞
∇𝑣𝑘 in 𝐿2(Ω∖Γ) and [[𝑣]] = lim

𝑘→∞
[[𝑣𝑘]] in (𝐿2(Γ𝑘))𝑘∈N

exist and are called weak gradient ∇𝑣 and generalized jump [[𝑣]] of 𝑣, respectively. We have the Green’s formula

ˆ
Ω

𝑣∇ · 𝜙 d𝑥 = −
ˆ

Ω∖Γ
∇𝑣 · 𝜙 d𝑥 +

∞∑︁
𝑗=1

ˆ
Γ𝑗

[[𝑣]]𝜙 · 𝜈𝑗 dΓ𝑗 ∀𝜙 ∈ 𝐶∞0 (R𝑑)𝑑 (2.12)

and the Poincaré-type inequality

‖𝑣‖0,Ω ≤ 𝐶𝑃

⎛⎝|𝑣|21,Ω∖Γ +
∞∑︁

𝑗=1

(1 + c)𝑗
𝐶𝑗‖[[𝑣]]‖20,Γ𝑗

⎞⎠1/2

(2.13)

where |𝑣|1,Ω∖Γ = ‖ |∇𝑣| ‖0,Ω∖Γ and the constant 𝐶 is bounded in terms of
(︀
1 + 1

c

)︀
diam(Ω). Moreover, the

continuous embedding ℋ ⊂ 𝐻𝑠(Ω), 𝑠 ∈
[︀
0, 1

2

)︀
, into Sobolev-Slobodeckij spaces 𝐻𝑠(Ω) (see, e.g., [41,42]) allows

to identify ℋ with a subspace of
⋂︀

𝑠∈[0, 1
2 ) 𝐻𝑠(Ω).

2.3. Fractal interface problem

We consider the fractal interface problem

𝑢 ∈ ℋ : 𝑎(𝑢, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ ℋ (2.14)

with 𝑓 ∈ 𝐿2(Ω), the usual scalar product (·, ·) in 𝐿2(Ω), and the bilinear form

𝑎(𝑣, 𝑤) =
ˆ

Ω∖Γ
𝐴∇𝑣 · ∇𝑤 d𝑥 +

∞∑︁
𝑗=1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗

𝐵[[𝑣]][[𝑤]] dΓ𝑗 , 𝑣, 𝑤 ∈ ℋ, (2.15)

involving the functions 𝐴 : Ω∖Γ → R𝑑×𝑑 and 𝐵 : Γ =
⋃︀∞

𝑗=1 Γ𝑗 → R. We assume that 𝐴(𝑥) ∈ R𝑑×𝑑 is symmetric
for all 𝑥 ∈ Ω∖Γ and has the properties

𝛼0|𝜉|2 ≤ 𝐴(𝑥)𝜉 · 𝜉, |𝐴(𝑥)𝜉 · 𝜂| ≤ 𝛼1|𝜉||𝜂|, ∀𝜉, 𝜂 ∈ R𝑑 ∀𝑥 ∈ Ω∖Γ (2.16)
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with positive constants 𝛼0, 𝛼1 ∈ R. We also assume that 𝐵 satisfies

0 < 𝛽0 ≤ 𝐵(𝑥) ≤ 𝛽1 ∀𝑥 ∈ Γ (2.17)

with constants 𝛽0, 𝛽1 ∈ R. The assumptions (2.16) and (2.17) imply that 𝑎(·, ·) is symmetric and elliptic in the
sense that

a‖𝑣‖2 ≤ 𝑎(𝑣, 𝑣), |𝑎(𝑣, 𝑤)| ≤ A‖𝑣‖‖𝑤‖ ∀𝑣, 𝑤 ∈ ℋ (2.18)

holds with a = min{𝛼0, 𝛽0} and A = min{𝛼1, 𝛽1}. Hence, 𝑎(·, ·) is a scalar product in ℋ and the associated
energy norm ‖·‖𝑎 = 𝑎(·, ·)1/2 is equivalent to ‖·‖.

Note that we have (𝑓, ·) ∈ ℋ−1 due to the continuous embedding (2.13) ofℋ into 𝐿2(Ω). Hence, well-posedness
follows directly from the Lax–Milgram lemma.

Proposition 2.1. The fractal interface problem (2.14) admits a unique solution 𝑢 ∈ ℋ satisfying the stability
estimate

‖𝑢‖ ≤ 1
a 𝐶𝑃 ‖𝑓‖0,Ω. (2.19)

We now focus on the numerical approximation of the solution 𝑢 of the fractal interface problem (2.14).

3. Finite-scale discretization

3.1. Finite scales

As ℋ is characterized by limiting properties of the 𝑘-scale spaces ℋ𝑘, 𝑘 ∈ N, it is natural to consider the
interface problems

𝑢ℋ𝑘
∈ ℋ𝑘 : 𝑎(𝑢ℋ𝑘

, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ ℋ𝑘 (3.1)

on finite scales 𝑘 ∈ N. Note that

𝑎(𝑣, 𝑤) = 𝑎𝑘(𝑣, 𝑤) =
ˆ

Ω∖Γ
𝐴∇𝑣 · ∇𝑤 d𝑥 +

𝑘∑︁
𝑗=1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗

𝐵[[𝑣]][[𝑤]] dΓ𝑗 , 𝑣, 𝑤 ∈ ℋ𝑘. (3.2)

While the Lax–Milgram lemma implies existence and uniqueness, a straightforward error estimate follows from
Céa’s lemma.

Proposition 3.1. For each 𝑘 ∈ N the 𝑘-scale interface problem (3.1) admits a unique solution 𝑢ℋ𝑘
∈ ℋ𝑘

satisfying the error estimate
‖𝑢− 𝑢ℋ𝑘

‖ ≤ A
a inf

𝑣∈ℋ𝑘

‖𝑢− 𝑣‖. (3.3)

In the light of (2.11), this directly implies convergence

‖𝑢− 𝑢ℋ𝑘
‖ → 0 for 𝑘 →∞. (3.4)

In the case 𝐴(𝑥) = 𝐼 and (quite restrictive) shape regularity conditions on 𝐺 ∈ Ω(𝑘), 𝑘 ∈ N, there are even
exponential error estimates of the form

‖𝑢− 𝑢ℋ𝑘
‖ ≤ 𝐶‖𝑓‖0,Ω

1
c (1 + c)−(𝑘−1) (3.5)

with 𝐶 depending only on the space dimension 𝑑, the Poincaré-type constant in (2.13), and shape regularity ([21],
Thm. 4.2).
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3.2. Finite elements on finite scales

Let 𝒯 (0) be a partition of Ω into simplices with maximal diameter ℎ0 > 0, which is regular in the sense that
the intersection of two different simplices 𝑇, 𝑇 ′ ∈ 𝒯 (0) is either a common 𝑛-simplex for some 𝑛 = 0, . . . , 𝑑− 1
or empty. The shape regularity 𝜎 > 0, i.e., the maximal ratio of the radii of the circumscribed and the inscribed
ball of 𝑇 ∈ 𝒯 (0) is preserved under uniform regular refinement [5,6]. We assume that the sequence of partitions
resulting from successive uniform regular refinement of 𝒯 (0) resolves the interface network in the sense that for
each fixed 𝑘 ∈ N there is a partition 𝒯 (𝑘), as obtained by a finite number of refinement steps, such that the
interfaces Γ𝑗 , 𝑗 = 1, . . . , 𝑘, can be represented by faces of simplices 𝑇 ∈ 𝒯 (𝑘), i.e.,

Γ(𝑘) =
⋃︁

𝐸∈ℰ(𝑘)
Γ ⊂ℰ(𝑘)

𝐸 (3.6)

holds with a suitable subset ℰ(𝑘)
Γ of the set ℰ(𝑘) of faces of simplices 𝑇 ∈ 𝒯 (𝑘). In particular, this implies that

for all 𝐺 ∈ Ω(𝑘) the set 𝒯 (𝑘)
𝐺 =

{︀
𝑇 ∈ 𝒯 (𝑘) | 𝑇 ⊂ 𝐺

}︀
is a local partition of 𝐺 and that the maximal diameter

ℎ𝑘 of 𝑇 ∈ 𝒯 (𝑘) is bounded by the maximal diameter 𝑑𝑘 of 𝐺 ∈ Ω(𝑘). We additionally assume that Ω(𝑘) is not
over-resolved in the sense that 𝑑𝑘 can be uniformly bounded by ℎ𝑘, i.e., that

𝛿𝑑𝑘 ≤ ℎ𝑘 ≤ 𝑑𝑘, 𝑘 ∈ N, (3.7)

holds with a constant 𝛿 > 0 independent of 𝑘 ∈ N. Let 𝒩 (𝑘)
𝐺 denote the set of vertices of 𝑇 ∈ 𝒯 (𝑘)

𝐺 that are not
located on the boundary 𝜕Ω. Observe that each vertex located on an interface Γ𝑗 with two (or more) adjacent
cells 𝐺, 𝐺′ ∈ Ω(𝑘), gives rise to two (or more) different nodes 𝑝 ∈ 𝒩 (𝑘)

𝐺 and 𝑝′ ∈ 𝒩 (𝑘)
𝐺′ . For each 𝐺 ∈ Ω(𝑘),

we introduce the local finite element space 𝒮𝑘(𝐺) of piecewise affine functions with respect to 𝒯 (𝑘)
𝐺 that are

vanishing on 𝜕𝐺∩𝜕Ω. The space 𝒮𝑘(𝐺) is spanned by the standard nodal basis 𝜆
(𝑘)
𝑝 , 𝑝 ∈ 𝒩 (𝑘)

𝐺 . Extending these
functions by zero from 𝐺 to Ω, we define the broken finite element space

𝒮𝑘 = span
{︁

𝜆(𝑘)
𝑝 | 𝑝 ∈ 𝒩 (𝑘)

}︁
, 𝒩 (𝑘) =

⋃︁
𝐺∈Ω(𝑘)

𝒩 (𝑘)
𝐺 .

The discretization of the 𝑘-scale interface problem (3.1) with respect to 𝒮𝑘 is given by

𝑢𝒮𝑘
∈ 𝒮𝑘 : 𝑎𝑘(𝑢𝒮𝑘

, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝒮𝑘 (3.8)

with 𝑎𝑘(·, ·) taken from (3.2). Existence and uniqueness of the resulting finite element approximation 𝑢𝒮𝑘

of 𝑢ℋ𝑘
∈ ℋ𝑘 follows from the Lax–Milgram lemma. Convergence is implied by Céa’s lemma together with

inf𝑣∈𝒮𝑘
‖𝑢− 𝑣‖ → 0 for 𝑘 →∞ and (3.4).

Proposition 3.2. The finite element approximations (𝑢𝒮𝑘
)𝑘∈N converge to the solution 𝑢 of (2.14) in the sense

that for each 𝜀 > 0 there is a sufficiently large 𝑘 ∈ N such that

‖𝑢− 𝑢𝒮𝑘
‖ < 𝜀 and ‖𝑢ℋ𝑘

− 𝑢𝒮𝑘
‖ < 𝜀. (3.9)

A priori estimates for the discretization error ‖𝑢− 𝑢𝒮𝑘
‖ are difficult to obtain, because multiple scales are

incorporated into the solution space ℋ directly by the exponential growth of the weights (1+ c)𝑗𝐶𝑗 of the jumps
[[𝑢− 𝑢𝒮𝑘

]] across Γ𝑗 in combination with the fractal character of the interfaces Γ𝑗 .

4. Projections

This section is devoted to the construction of stable, surjective projections

Π𝑘 : ℋ → 𝒮𝑘, 𝑘 ∈ N,

satisfying an approximation property. To this end, we extend well-known arguments [8, 11, 45] to the present
situation.
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4.1. Local Poincaré-type inequalities

This subsection is devoted to local Poincaré-type inequalities on (subsets of) the cells 𝐺 ⊂ Ω(𝑘)∖Ω(𝑘)
∞ , which,

in contrast to cells from Ω(𝑘)
∞ , have non-empty intersection with Γ𝑗 for 𝑗 > 𝑘. We will frequently use the notation

𝐵(𝐺, 𝑅) =
{︀
𝑝𝐺 + 𝑟𝑠 | 𝑠 ∈ 𝑆𝑑−1, 0 ≤ 𝑟 ≤ 𝑅

}︀
for 𝐺 ∈ Ω(𝑘) and some 𝑅 > 0.

Differences can be expressed in terms of derivatives and intermediate jumps.

Lemma 4.1. Let 𝑘 ∈ N, 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , 𝑥, 𝑦 ∈ 𝐺 with (𝑥, 𝑦) ⊂ 𝐺,

⃒⃒
(𝑥, 𝑦) ∩ Γ(𝐾)

⃒⃒
< ∞, and 𝐾 > 𝑘. Then we

have

|𝑣(𝑥)− 𝑣(𝑦)|2 ≤
(︀
1 + 1

c

)︀
|𝑥− 𝑦|2

(︂ˆ 1

0

|∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥))|d𝑡

)︂2

+
(︀
1 + 1

c

)︀ 𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗

∑︁
𝜉∈(𝑥,𝑦)∩Γ𝑗

[[𝑣]]2(𝜉) ∀𝑣 ∈ 𝒞1
𝐾,0(Ω),

where ∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥)) is understood to be zero, if 𝑥 + 𝑡(𝑦 − 𝑥) ∈ Γ(𝐾).

Proof. The assertion follows by application of Lemma 3.5 from [21]. �

The following lemma provides upper bounds for gradients that are well-known from classical proofs of the
Poincaré inequality on balls, see, e.g., Section 4.5.2 of [15].

Lemma 4.2. Let 𝑘 ∈ N, 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , and 𝐾 > 𝑘. Then

ˆ
𝐵

ˆ
𝐵

|𝑥− 𝑦|2
ˆ 1

0

|∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥))|2 d𝑡 d𝑥 d𝑦 ≤ 𝑐 |𝐵| 𝑟2
𝐺|𝑣|

2
1,𝐵∖Γ(𝐾) ∀𝑣 ∈ 𝒞1

𝐾,0(Ω) (4.1)

where ∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥)) is understood to be zero, if 𝑥 + 𝑡(𝑦 − 𝑥) ∈ Γ(𝐾), holds with a positive constant 𝑐 only
depending on the space dimension 𝑑.

Proof. Let 𝑣 ∈ 𝒞1
𝐾,0(Ω). As stated, e.g., in the proof of Lemma 4.1 in Section 4.5.2 of [15], the estimate

ˆ
𝐵

|𝑥− 𝑦|2
ˆ 1

0

|∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥))|2 d𝑡 d𝑥 ≤ 𝑐 𝑟𝑑+1
𝐺

ˆ
𝐵∖Γ(𝐾)

|∇𝑣(𝑥)|2|𝑥− 𝑦|1−𝑑 d𝑥 (4.2)

holds for all 𝑦 ∈ 𝐵 with a constant 𝑐 only depending on the space dimension 𝑑. The assertion follows by
integrating over 𝑦 ∈ 𝐵. �

The next lemma provides corresponding estimates of jumps across the interfaces Γ𝑗 .

Lemma 4.3. Let 𝑘 ∈ N, 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , and 𝐾 ≥ 𝑗 > 𝑘. Then

ˆ
𝐵

ˆ
𝐵

∑︁
𝜉∈(𝑥,𝑦)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑥 d𝑦 ≤ 𝐶|𝐵| 𝑟𝐺

ˆ
Γ𝑗∩𝐵

[[𝑣]]2 dΓ𝑗 ∀𝑣 ∈ 𝒞1
𝐾,0(Ω) (4.3)

holds with a constant 𝐶 only depending on the space dimension 𝑑.
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Proof. We use a similar approach as in the proof of Theorem 3.6 from [21]. First, transformation of variables
(𝑥, 𝑦) = Ψ(𝑥, 𝜂) = (𝑥, 𝑥 + 𝜂) leads to

ˆ
𝐵

ˆ
𝐵

∑︁
𝜉∈(𝑥,𝑦)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑥 d𝑦 =
ˆ
{|𝜂|≤2𝑟𝐺}

ˆ
𝑀(𝜂)

∑︁
𝜉∈(𝑥,𝑥+𝜂)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑥 d𝜂 (4.4)

with 𝑀(𝜂) = {𝑥 ∈ 𝐵 | 𝑥 + 𝜂 ∈ 𝐵}. Next, choose 𝜂 ∈ 𝐵(0, 2𝑟𝐺) arbitrary but fixed and consider the integral
over 𝑀(𝜂). As the interfaces are piecewise affine, Γ𝑗 =

⋃︀
𝑖∈𝐼 Γ𝑗,𝑖 can be represented as a countable union of its

affine components Γ𝑗,𝑖, 𝑖 ∈ 𝐼 ⊂ N. We proceed by estimating the jump contributions across the individual affine
components Γ𝑗,𝑖. For almost all 𝑥 ∈ 𝑀(𝜂), the set (𝑥, 𝑥 + 𝜂) ∩ Γ𝑗 is finite and∑︁

𝜉∈(𝑥,𝑥+𝜂)∩Γ𝑗

[[𝑣]]2(𝜉) =
∑︁
𝑖∈𝐼

𝜙𝑖(𝑥),

where
𝜙𝑖(𝑥) = [[𝑣]]2(𝜉), if (𝑥, 𝑥 + 𝜂) ∩ Γ𝑗,𝑖 = 𝜉 ∈ R𝑑

and 𝜙𝑖(𝑥) = 0 if (𝑥, 𝑥 + 𝜂)∩Γ𝑗,𝑖 = ∅. Extending 𝜙𝑖 by zero to R𝑑 and choosing a transformation Φ, that rotates
the canonical basis 𝑒1, . . . , 𝑒𝑑 of R𝑑 such that Φ(𝑒𝜂) = 𝑒1, where 𝑒𝜂 = 𝜂/|𝜂|, leads to

ˆ
𝑀(𝜂)

𝜙𝑖(𝑥) d𝑥 =
ˆ

R𝑑−1

ˆ
R

𝜙𝑖(𝑥1, 𝑥
′) d𝑥1 d𝑥′ =

ˆ
R𝑑−1

ˆ
R

𝜙𝑖(Φ(𝑥𝜂, 𝑥′)) d𝑥𝜂 d𝑥′. (4.5)

Introducing the set 𝑈𝑖 = {𝑥′ ∈ R𝑑−1 | ∃𝑥𝜂 ∈ R : Φ(𝑥𝜂, 𝑥′) ∈ Γ𝑗,𝑖 ∩𝑀(𝜂)}, let us note that if 𝑈𝑖 is empty or
Γ𝑗,𝑖 is normal to 𝑈𝑖, i.e., 𝑈𝑖 is a singleton, then the integral in (4.5) vanishes. Otherwise, there is an explicit
parameterization 𝛾𝑖 : 𝑈𝑖 → Γ𝑗,𝑖 of Γ𝑗,𝑖 given by 𝛾𝑖(𝑥′) = Φ(ℎ𝑖(𝑥′), 𝑥′), where ℎ𝑖 : 𝑈𝑖 → R is a suitable smooth
function. By definition, 𝜙𝑖 is piecewise constant in 𝜂-direction and bounded according to

0 ≤ 𝜙𝑖(Φ(𝑥𝜂, 𝑥′)) ≤ [[𝑣]]2(𝛾𝑖(𝑥′)), 𝑥′ ∈ 𝑈𝑖.

Hence, integration over 𝑥𝜂 and substitution of these bounds yields
ˆ

R𝑑−1

ˆ
R

𝜙𝑖(Φ(𝑥𝜂, 𝑥′)) d𝑥𝜂 d𝑥′ ≤
ˆ

𝑈𝑖

|𝜂|[[𝑣]]2(𝛾𝑖(𝑥′)) d𝑥′.

As Γ𝑗,𝑖 is the graph of ℎ𝑖, its first fundamental form satisfies 𝑔𝛾𝑖(𝑥′) = 1 + |∇ℎ𝑖(𝑥′)|2 ≥ 1 and thus
ˆ

𝑈𝑖

|𝜂|[[𝑣]]2(𝛾𝑖(𝑥′)) d𝑥′ ≤ |𝜂|
ˆ

𝑈𝑖

[[𝑣]]2(𝛾𝑖(𝑥′))
√

𝑔𝛾𝑖 d𝑥′ = |𝜂|
ˆ

Γ𝑗,𝑖∩𝑀(𝜂)

[[𝑣]]2 dΓ𝑗,𝑖.

For the entirety of Γ𝑗 , summing over 𝑖 ∈ 𝐼 leads to
ˆ

𝑀(𝜂)

∑︁
𝜉∈(𝑥,𝑥+𝜂)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑥 =
∑︁
𝑖∈𝐼

ˆ
𝑀(𝜂)

𝜙𝑖(𝑥) d𝑥 ≤ |𝜂|
ˆ

Γ𝑗∩𝐵

[[𝑣]]2 dΓ𝑗 (4.6)

and inserting (4.6) into (4.4) concludes the proof. �

We are now ready to prove a Poincaré inequality on balls 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ . We will use the

notation  
𝑀

𝑣 d𝑥 =
1
|𝑀 |

ˆ
𝑀

𝑣 d𝑥

with suitable subsets 𝑀 ⊂ 𝐺.
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Proposition 4.4. Let 𝑘 ∈ N and 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ . Then

⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝐵

≤
(︀
1 + 1

c

)︀
𝐶 𝑟𝐺

⎛⎝𝑟𝐺|𝑣|21,𝐵∖Γ +
∞∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐵(𝐺,𝑟𝐺)

⎞⎠ (4.7)

holds for all 𝑣 ∈ ℋ with a constant 𝐶 depending only on the space dimension 𝑑.

Proof. As
{︀
𝑣 ∈ 𝒞1

𝐾,0(Ω) | 𝐾 ∈ N
}︀

is dense in ℋ and the quantities in (4.7) are depending continuously on 𝑣, it
is sufficient to prove the assertion for 𝑣 ∈ 𝒞1

𝐾,0(Ω). Let 𝑣 ∈ 𝒞1
𝐾,0(Ω) with arbitrary 𝐾 > 𝑘 and note that the

triangle inequality and Fubini’s theorem imply⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣

⃦⃦⃦⃦2

0,𝐵

=
ˆ

𝐵

⃒⃒⃒⃒ 
𝐵

𝑣(𝑥)− 𝑣(𝑦) d𝑦

⃒⃒⃒⃒2
d𝑥 ≤

 
𝐵

ˆ
𝐵

|𝑣(𝑥)− 𝑣(𝑦)|2 d𝑥 d𝑦. (4.8)

Lemma 4.1 and the Cauchy–Schwarz inequality provide

|𝑣(𝑥)− 𝑣(𝑦)|2 ≤
(︀
1 + 1

c

)︀
|𝑥− 𝑦|2

ˆ 1

0

|∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥))|2 d𝑡 +
(︀
1 + 1

c

)︀ 𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗

∑︁
𝜉∈(𝑥,𝑦)∩Γ𝑗

[[𝑣]]2(𝜉).

Integration and application of Lemma 4.2 to the gradient term in this estimate leads to
 

𝐵

ˆ
𝐵

|𝑥− 𝑦|2
ˆ 1

0

|∇𝑣(𝑥 + 𝑡(𝑦 − 𝑥))|2 d𝑡 d𝑥 d𝑦 ≤ 𝑐 𝑟2
𝐺|𝑣|

2
1,𝐵∖Γ(𝐾) (4.9)

and application of Lemma 4.3 to the jump term provides
ˆ

𝐵

 
𝐵

∑︁
𝜉∈(𝑥,𝑦)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑦 d𝑥 ≤ 𝑐′𝑟𝐺

ˆ
Γ𝑗∩𝐵

[[𝑣]]2 dΓ𝑗 (4.10)

with constant 𝑐, 𝑐′ depending only on 𝑑. Finally, inserting (4.9) and (4.10) into (4.8) concludes the proof. �

One obtains trace analogues of (4.9) and (4.10) by integrating over spheres 𝜕𝐵 instead of balls 𝐵 and treating
gradient and jump terms in the same way as in the proofs of Lemma 4.2 and 4.3, respectively. Utilizing these
analogues, the proof of Proposition 4.4 carries over to its following trace analogue on spheres. We refer to
Lemma 3.2.5 of [37] for details.

Lemma 4.5. Let 𝑘 ∈ N, 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , and 𝐾 > 𝑘. Then

⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝜕𝐵

≤
(︀
1 + 1

c

)︀
𝐶

⎛⎝𝑟𝐺|𝑣|21,𝐵∖Γ(𝐾) +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐵

⎞⎠ ∀𝑣 ∈ 𝒞1
𝐾,0(Ω)

holds with a constant 𝐶 depending only on the space dimension 𝑑.

The following lemmata prepare the extension of the Poincaré inequality from balls to cells 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ .

We start by controlling intermediate jumps in 𝐺∖𝐵(𝐺, 𝑟𝐺).

Lemma 4.6. Let 𝑘 ∈ N, 𝐵 = 𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , 𝑀 = 𝐺∖𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺, and 𝐾 ≥ 𝑗 > 𝑘. Then we

have ˆ
𝑀

∑︁
𝜉∈(𝑝𝐺,𝑦)∩Γ𝑗∩𝑀

[[𝑣]]2(𝜉) d𝑦 ≤ 𝛾𝑑−1

𝑑 𝑅𝐺

ˆ
Γ𝑗∩𝑀

[[𝑣]]2 dΓ𝑗 ∀𝑣 ∈ 𝒞1
𝐾,0(Ω).
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Proof. Assume 𝑝𝐺 = 0 without loss of generality and let 𝑣 ∈ 𝒞1
𝐾,0(Ω) with arbitrary 𝐾 ≥ 𝑗 > 𝑘. As the

interfaces are piecewise affine, Γ𝑗 =
⋃︀

𝑖∈𝐼 Γ𝑗,𝑖 can be represented as a countable union of its affine components
Γ𝑗,𝑖, 𝑖 ∈ 𝐼 ⊂ N. For almost all 𝑦 ∈ 𝑀 , the set (0, 𝑦) ∩ Γ𝑗 ∩𝑀 is finite and we set∑︁

𝜉∈(0,𝑦)∩Γ𝑗∩𝑀

[[𝑣]]2(𝜉) =
∑︁
𝑖∈𝐼

𝜙𝑖(𝑦) (4.11)

denoting
𝜙𝑖(𝑦) = [[𝑣]]2(𝜉), if (0, 𝑦) ∩ Γ𝑗,𝑖 ∩𝑀 = 𝜉 ∈ R𝑑,

and 𝜙𝑖(𝑦) = 0, if there is no intersection of (0, 𝑦) with Γ𝑗,𝑖 in 𝑀 . We extend 𝜙𝑖 by zero to the ball 𝐵(𝐺, 𝑅𝐺) ⊃
𝐺 ⊃ 𝑀 . This leads to

ˆ
𝑀

𝜙𝑖(𝑦) d𝑦 =
ˆ

𝐵(𝐺,𝑅𝐺)∖𝐵(𝐺,𝑟𝐺)

𝜙𝑖(𝑦) d𝑦 =
ˆ

𝑆𝑑−1

ˆ 𝑅𝐺

𝑟𝐺

𝜙𝑖(Ψ(𝑟, 𝑠)) 𝑟𝑑−1 d𝑟 d𝑠, (4.12)

where Ψ stands for the transformation from 𝑑-dimensional spherical to Cartesian coordinates.
We introduce the section 𝑆𝑖 = {𝑠 ∈ 𝑆𝑑−1 | (0, 𝑅𝐺𝑠) ∩ Γ𝑗,𝑖 ∩ 𝑀 ̸= ∅} of directions that contribute to the

integral in (4.12), and 𝜕𝐵𝑖 = {𝑅𝐺𝑠 | 𝑠 ∈ 𝑆𝑖} is the corresponding subset of the boundary 𝜕𝐵(𝐺, 𝑅𝐺) of
𝐵(𝐺, 𝑅𝐺). If these sets are empty or if Γ𝑗,𝑖 is normal to 𝜕𝐵𝑖, i.e., 𝜕𝐵𝑖 is a singleton, then the integral in (4.12)
vanishes. Otherwise, there is an explicit parameterization 𝜉(𝑠) = Ψ(𝑔𝑖(𝑠)𝑅𝐺, 𝑠) of Γ𝑗,𝑖 ∩ 𝑀 over 𝜕𝐵𝑖 with a
smooth function 𝑔𝑖 : 𝜕𝐵𝑖 → (0, 1] and, by definition,

0 ≤ 𝜙𝑖(Ψ(𝑟, 𝑠)) ≤ [[𝑣]]2(𝜉(𝑠)), 𝑠 ∈ 𝑆𝑖.

Therefore, integration over 𝑟 and substitution yields

ˆ
𝑆𝑑−1

ˆ 𝑅𝐺

𝑟𝐺

𝜙𝑖(Ψ(𝑟, 𝑠)) 𝑟𝑑−1 d𝑟 d𝑠 ≤ 1
𝑑 𝑅𝐺

ˆ
𝑆𝑖

[[𝑣]]2(𝜉(𝑠))𝑅𝑑−1
𝐺 d𝑠 ≤ 1

𝑑 𝑅𝐺

ˆ
𝜕𝐵𝑖

[[𝑣]]2(𝜉(𝑠)) d𝑠. (4.13)

The area element of Γ𝑗,𝑖 is given by

dΓ𝑗,𝑖 = 𝑔𝑑−2
𝑖 (𝑠)

√︁
𝑔2

𝑖 (𝑠) + |∇𝑔𝑖(𝑠)|2𝑅2
𝐺 d𝑠.

Now 𝑔𝑖(𝑠)𝑅𝐺 ≥ 𝑟𝐺, 𝑠 ∈ 𝑆𝑖, together with shape regularity 𝑅𝐺 ≤ 𝛾𝑟𝐺 implies

1 ≤ 𝛾𝑔𝑖(𝑠) ≤ 𝛾𝑑−1𝑔𝑑−1
𝑖 (𝑠) ≤ 𝛾𝑑−1𝑔𝑑−2

𝑖 (𝑠)
√︁

𝑔2
𝑖 (𝑠) + |∇𝑔𝑖(𝑠)|2𝑅2

𝐺

which in turn leads to
ˆ

𝜕𝐵𝑖

[[𝑣]]2(𝜉(𝑠)) d𝑠 ≤ 𝛾𝑑−1

ˆ
𝜕𝐵𝑖

[[𝑣]]2(𝜉(𝑠))𝑔𝑑−2
𝑖

√︁
𝑔2

𝑖 + |∇𝑔𝑖|2𝑅2
𝐺 d𝑠 = 𝛾𝑑−1

ˆ
Γ𝑗,𝑖∩𝑀

[[𝑣]]2 dΓ𝑗,𝑖. (4.14)

In light of (4.11)–(4.14), summation over 𝑖 ∈ 𝐼 finally leads to
ˆ

𝑀

∑︁
𝜉∈(0,𝑦)∩Γ𝑗∩𝑀

[[𝑣]]2(𝜉) d𝑦 =
∑︁
𝑖∈𝐼

ˆ
𝑀

𝜙𝑖(𝑦) d𝑦 ≤ 𝛾𝑑−1

𝑑 𝑅𝐺

∑︁
𝑖∈𝐼

ˆ
Γ𝑗,𝑖∩𝑀

[[𝑣]]2 dΓ𝑗,𝑖 = 𝛾𝑑−1

𝑑 𝑅𝐺

ˆ
Γ𝑗∩𝑀

[[𝑣]]2 dΓ𝑗 .

�

The next lemma is an analogue of Lemma 4.1 in [45].
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Lemma 4.7. Let 𝑘 ∈ N, 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , and 𝐾 > 𝑘. Then

‖𝑣‖20,𝐺 ≤ ‖𝑣‖20,𝐵(𝐺,𝑟𝐺) + 𝐶𝑅𝐺‖𝑣‖20,𝜕𝐵(𝐺,𝑟𝐺)

+
(︀
1 + 1

c

)︀
𝐶𝑅𝐺

⎛⎝𝑅𝐺|𝑣|21,𝐺∖Γ(𝐾) +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩(𝐺∖𝐵(𝐺,𝑟𝐺))

⎞⎠
holds for all 𝑣 ∈ 𝒞1

𝐾,0(Ω) with a constant 𝐶 depending only on the dimension 𝑑 and shape regularity 𝛾 of Ω(𝑘).

Proof. Utilizing
‖𝑣‖20,𝐺 = ‖𝑣‖20,𝐵(𝐺,𝑟𝐺) + ‖𝑣‖20,𝐺∖𝐵(𝐺,𝑟𝐺)

we have to derive a suitable bound for ‖𝑣‖20,𝐺∖𝐵(𝐺,𝑟𝐺). We set 𝑀 = 𝐺∖𝐵(𝐺, 𝑟𝐺) for notational convenience and
assume 𝑝𝐺 = 0 without loss of generality. Transformation to spherical coordinates then yields the splitting

‖𝑣‖20,𝑀 =
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1|𝑣(𝑟𝑠)|2 d𝑟 d𝑠

=
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1|𝑣(𝑟𝑠)− 𝑣(𝑟𝐺𝑠) + 𝑣(𝑟𝐺𝑠)|2 d𝑟 d𝑠

≤ 2
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1|𝑣(𝑟𝑠)− 𝑣(𝑟𝐺𝑠)|2 d𝑟 d𝑠⏟  ⏞  
=:𝐼1

+ 2
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1|𝑣(𝑟𝐺𝑠)|2 d𝑟 d𝑠⏟  ⏞  
=:𝐼2

.

We will provide suitable bounds for these two parts and first consider 𝐼1. Lemma 4.1 leads to

𝐼1 ≤ 2
(︀
1 + 1

c

)︀ˆ
𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1

(︂ˆ 𝑟

𝑟𝐺

|∇𝑣(𝑧𝑠)|d𝑧

)︂2

d𝑟 d𝑠

+ 2
(︀
1 + 1

c

)︀ ˆ
𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗

∑︁
𝜉∈(𝑟𝐺𝑠,𝑟𝑠)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑟 d𝑠. (4.15)

By the Cauchy–Schwarz inequality and straightforward computations, as in the proof of Lemma 4.1 from [45],
the gradient term in (4.15) can be bounded according to
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1

⃒⃒⃒⃒ˆ 𝑟

𝑟𝐺

∇𝑣(𝑧𝑠) d𝑧

⃒⃒⃒⃒2
d𝑟 d𝑠 ≤

ˆ
𝑆𝑑−1

(︃ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑧𝑑−1|∇𝑣(𝑧𝑠)|2 d𝑧

)︃(︃ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1

ˆ 𝑟

𝑟𝐺

𝑧1−𝑑 d𝑧 d𝑟

)︃
d𝑠

≤ 𝑐𝑅2
𝐺|𝑣|

2
1,𝑀∖Γ(𝐾) (4.16)

with a constant 𝑐 depending only on the dimension 𝑑 and shape regularity 𝛾 ≥ 𝑅𝐺

𝑟𝐺
of Ω(𝑘). In order to bound

the jump contributions in (4.15) in terms of integrals along interfaces, we apply Lemma 4.6 to obtain
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1
∑︁

𝜉∈(𝑟𝐺𝑠,𝑟𝑠)∩Γ𝑗

[[𝑣]]2(𝜉) d𝑟 d𝑠 =
ˆ

𝑀

∑︁
𝜉∈(0,𝑦)∩Γ𝑗∩𝑀

[[𝑣]]2(𝜉) d𝑦

≤ 𝛾𝑑−1

𝑑 𝑅𝐺

ˆ
Γ𝑗∩𝑀

[[𝑣]]2 dΓ𝑗 = 𝛾𝑑−1

𝑑 𝑅𝐺‖[[𝑣]]‖20,Γ𝑗∩𝑀 . (4.17)

Inserting 𝑀 = 𝐺∖𝐵(𝐺, 𝑟𝐺) ⊂ 𝐺, the estimates (4.16) and (4.17) provide

𝐼1 ≤ 2
(︀
1 + 1

c

)︀⎛⎝𝑐𝑅2
𝐺|𝑣|

2
1,𝐺∖Γ(𝐾) + 𝛾𝑑−1

𝑑 𝑅𝐺

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩(𝐺∖𝐵(𝐺,𝑟𝐺))

⎞⎠. (4.18)
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Straightforward calculation leads to

𝐼2 = 2
ˆ

𝑆𝑑−1

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

𝑟𝑑−1|𝑣(𝑟𝐺𝑠)|2 d𝑟 d𝑠 = 2
ˆ

𝑆𝑑−1
𝑟𝑑−1
𝐺 |𝑣(𝑟𝐺𝑠)|2

ˆ 𝜌𝐺(𝑠)

𝑟𝐺

(︁
𝑟

𝑟𝐺

)︁𝑑−1

d𝑟 d𝑠

= 2
ˆ

𝑆𝑑−1
𝑟𝑑−1
𝐺 |𝑣(𝑟𝐺𝑠)|2 𝑟𝐺

𝑑

(︂(︁
𝜌𝐺(𝑠)

𝑟𝐺

)︁𝑑

− 1
)︂

d𝑠 ≤ 2
𝑑

(︂(︁
𝑅𝐺

𝑟𝐺

)︁𝑑

− 1
)︂

𝑟𝐺‖𝑣‖20,𝜕𝐵(𝐺,𝑟𝐺). (4.19)

Together with (4.18) this concludes the proof. �

As a direct extension of Lemma 4.3 in [45], we are now ready to state a local Poincaré inequality on cells
𝐺 ∈ Ω𝑘∖Ω(𝑘)

∞ .

Proposition 4.8. For every 𝑘 ∈ N and every cell 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ , the local Poincaré inequality⃦⃦⃦⃦

𝑣 −
 

𝐺

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝐺

≤ 𝐶
(︀
1 + 1

c

)︀
𝑑𝑘

⎛⎝𝑑𝑘|𝑣|21,𝐺∖Γ +
∞∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠ (4.20)

holds for all 𝑣 ∈ ℋ with a constant 𝐶 depending only on the dimension 𝑑 and shape regularity 𝛾 of Ω(𝑘).

Proof. It is sufficient to show (4.20) for 𝑣 ∈ 𝒞1
𝐾,0(Ω) with arbitrary 𝐾 > 𝑘, and then use a density argument.

Observe that
ffl

𝐺
𝑣 d𝑥 minimizes the functional ‖𝑣 − · ‖20,𝐺. Denoting 𝐵 = 𝐵(𝐺, 𝑟𝐺), we conclude from Lemma 4.7⃦⃦⃦⃦

𝑣 −
 

𝐺

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝐺

≤
⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝐺

≤
⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝐵

+ 𝐶𝑅𝐺

⃦⃦⃦⃦
𝑣 −

 
𝐵

𝑣 d𝑥

⃦⃦⃦⃦2

0,𝜕𝐵

+ 𝐶𝑅𝐺

(︀
1 + 1

c

)︀⎛⎝𝑅𝐺|𝑣|21,𝐺∖Γ(𝐾) +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩(𝐺∖𝐵)

⎞⎠.

Now the assertion follows from the Poincaré inequality on balls stated in Proposition 4.4 together with its trace
analogue for spheres Lemma 4.5. �

4.2. A trace lemma

In order to control the jump contributions in the stability estimates below, we provide some estimates of traces
on the interfaces Γ𝑗 of functions 𝑣 ∈ 𝒞1

𝐾,0(Ω) with arbitrary 𝐾 ∈ N. For this purpose, we follow the approach
by Verfürth [45] and utilize the triangulations 𝒯 (𝑘) introduced in Section 3.2. The following lemma is a direct
extension of Lemma 3.2 from [45] and can be shown along the same lines of proof. Since the simplices 𝑇 ∈ 𝒯 (𝑘)

are convex, the additionally arising jump contributions can be controlled in a similar way as in Lemma 4.3, see
also Theorem 3.6 of [21]. We refer to Lemma 3.2.12 of [37] for details.

Lemma 4.9. Let 𝑘 ∈ N, 𝑇 ∈ 𝒯 (𝑘), and 𝐸 ∈ ℰ(𝑘) be a face of 𝑇 . Then

‖𝑣‖20,𝐸 ≤ 𝑐
(︀
1 + 1

c

)︀⎛⎝ℎ−1
𝑘 ‖𝑣‖20,𝑇 + ℎ𝑘|𝑣|21,𝑇∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝑇

⎞⎠
holds for all 𝑣 ∈ 𝒞1

𝐾,0(Ω) with 𝐾 > 𝑘 and a constant 𝑐 depending only on the space dimension 𝑑 and shape
regularity 𝜎 of 𝒯 (𝑘).
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Now we are ready to state the desired trace lemma.

Lemma 4.10. Let 𝑘 ∈ N and 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ and 𝑙 = 1, . . . , 𝑘. Then

‖𝑣‖20,Γ𝑙∩𝜕𝐺 ≤ 𝐶
(︀
1 + 1

c

)︀⎛⎝𝑑−1
𝑘 ‖𝑣‖20,𝐺 + 𝑑𝑘|𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠
holds for all 𝑣 ∈ ℋ𝐾 with 𝐾 > 𝑘 and a constant 𝐶 depending only on the space dimension 𝑑 and the shape
regularity 𝛾 of Ω(𝑘).

Proof. The shape regularity of the cell partitions Ω(𝑘), 𝑘 ∈ N, implies that there is an associated sequence of
triangulations with shape regularity 𝜎 depending only on 𝛾 that also satisfies condition (3.7) with some 𝛿 > 0.
We assume without loss of generality that (𝒯 (𝑘))𝑘∈N is such a sequence.

By a density argument, it is sufficient to consider 𝑣 ∈ 𝒞1
𝐾,0(Ω). Let 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)

∞ and recall that 𝒯 (𝑘)
𝐺 ⊂ 𝒯 (𝑘)

is a local partition of ℰ(𝑘)
𝐺 ⊂ ℰ(𝑘). Denoting the set of faces of simplices 𝑇 ∈ 𝒯 (𝑘)

𝐺 by ℰ(𝑘)
𝐺 , select the subset of

faces ℰ(𝑘)
𝜕𝐺 ⊂ ℰ(𝑘)

𝐺 such that

𝜕𝐺 =
⋃︁

𝐸∈ℰ(𝑘)
𝜕𝐺

𝐸.

Note that for each 𝐸 ∈ ℰ(𝑘)
𝜕𝐺 there is a simplex 𝑇𝐸 ∈ 𝒯 (𝑘)

𝐺 with face 𝐸 and a simplex 𝑇 ∈ 𝒯 (𝑘)
𝐺 can contribute

at most all of its 𝑑 + 1 faces to ℰ(𝑘)
𝜕𝐺 . Utilizing the trace Lemma 4.9 and (3.7), we get

‖𝑣‖20,Γ𝑙∩𝜕𝐺 ≤
∑︁

𝐸∈ℰ(𝑘)
𝜕𝐺

‖𝑣‖20,𝐸

≤ 𝑐
(︀
1 + 1

c

)︀ ∑︁
𝐸∈ℰ(𝑘)

𝜕𝐺

⎛⎝ℎ−1
𝑘 ‖𝑣‖20,𝑇𝐸

+ ℎ𝑘|𝑣|21,𝑇𝐸∖Γ(𝐾) +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝑇𝐸

⎞⎠
≤ 𝑐(𝑑 + 1)

(︀
1 + 1

c

)︀ ∑︁
𝑇∈𝒯 (𝑘)

𝐺

⎛⎝ℎ−1
𝑘 ‖𝑣‖20,𝑇 + ℎ𝑘|𝑣|21,𝑇∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝑇

⎞⎠
≤ 𝐶

(︀
1 + 1

c

)︀⎛⎝𝑑−1
𝑘 ‖𝑣‖20,𝐺 + 𝑑𝑘|𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠
with a constant 𝐶 depending only on the space dimension 𝑑, shape regularity 𝜎 of 𝒯 (𝑘), and the constant 𝛿 in
(3.7). �

4.3. Projections on finite-scale spaces ℋ𝑘
Definition 4.11. For every 𝑘 ∈ N, we define the linear projection Πℋ𝑘

: ℋ → ℋ𝑘 by setting

Πℋ𝑘
𝑣|𝐺 =

⎧⎨⎩ arg min
𝑣𝑘∈𝐻1(𝐺)

{︀
|𝑣 − 𝑣𝑘|1,𝐺∖Γ |

´
𝐺

(𝑣 − 𝑣𝑘) d𝑥 = 0
}︀
, 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)

∞

𝑣|𝐺, 𝐺 ∈ Ω(𝑘)
∞

(4.21)

for all 𝐺 ∈ Ω(𝑘) and 𝑣 ∈ ℋ.
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The operator Πℋ𝑘
is well-defined. Indeed, for every 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)

∞ its local contribution 𝑣𝑘 is the unique
solution of a quadratic minimization problem on the affine space

ffl
𝐺

𝑣 d𝑥+𝑊 , 𝑊 =
{︀
𝑤 ∈ 𝐻1(𝐺) |

´
𝐺

𝑤 d𝑥 = 0
}︀

,
which is characterized by the variational equality

(∇𝑣𝑘,∇𝑤) = (∇𝑣,∇𝑤) ∀𝑤 ∈ 𝑊. (4.22)

Lemma 4.12. For every 𝑘 ∈ N the linear projection Πℋ𝑘
satisfies

 
𝐺

(𝑣 −Πℋ𝑘
𝑣) d𝑥 = 0 and |Πℋ𝑘

𝑣|1,𝐺 ≤ |𝑣|1,𝐺∖Γ ∀𝑣 ∈ ℋ. (4.23)

Proof. Setting 𝑣𝑘 = Πℋ𝑘
𝑣|𝐺, the first equality follows by definition (4.21) and after testing with 𝑤 = 𝑣𝑘−

ffl
𝐺

𝑣 d𝑥
in (4.22), the remaining local stability of Πℋ𝑘

follows from the Cauchy–Schwarz inequality. �

We now state an approximation property of the projections Πℋ𝑘
𝑣, 𝑘 ∈ N.

Theorem 4.13. Assume that the condition

𝑟𝑘(1 + c)−𝑘 ≤ 𝑑𝑘 (4.24)

on the geometry of the interface network Γ is satisfied. Then the projections Πℋ𝑘
: ℋ → ℋ𝑘, 𝑘 ∈ N, have the

approximation property
‖𝑣 −Πℋ𝑘

𝑣‖20 ≤ 𝑐
(︀
1 + 1

c

)︀
𝑑2

𝑘‖𝑣‖
2 ∀𝑣 ∈ ℋ (4.25)

with a constant 𝑐 depending only on the space dimension 𝑑 and shape regularity 𝛾 of Ω(𝑘).

Proof. Let 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ and 𝑣 ∈ ℋ. As 𝑣 −Πℋ𝑘

𝑣 has mean-value zero and Πℋ𝑘
𝑣 does not jump across Γ𝑙 for

𝑙 ≥ 𝑘 + 1, the local Poincaré inequality stated in Proposition 4.8 yields

‖𝑣 −Πℋ𝑘
𝑣‖20,𝐺 ≤ 𝑐

(︀
1 + 1

c

)︀
𝑑𝑘

⎛⎝𝑑𝑘|𝑣 −Πℋ𝑘
𝑣|21,𝐺∖Γ +

∞∑︁
𝑗=𝑘+1

(1 + c)𝑗−𝑘𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠ (4.26)

with a constant 𝑐 depending only on the dimension 𝑑 and shape regularity 𝛾 of Ω(𝑘). Assumption (4.24) and
the definition (2.7) of 𝑟𝑘 imply

(1 + c)−𝑘𝐶𝑘,𝑗 ≤ 𝑟𝑘(1 + c)−𝑘𝐶𝑗 ≤ 𝑑𝑘𝐶𝑗 , 𝑗 > 𝑘. (4.27)

Now we insert these estimates into (4.26) and make use of the Cauchy–Schwarz inequality and of the local
stability (4.23) to obtain

‖𝑣 −Πℋ𝑘
𝑣‖20,𝐺 ≤ 𝑐

(︀
1 + 1

c

)︀
𝑑2

𝑘

⎛⎝2|𝑣|21,𝐺∖Γ +
∞∑︁

𝑗=𝑘+1

(1 + c)𝑗𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠.

As ‖𝑣 −Πℋ𝑘
𝑣‖0,𝐺 = 0 for all 𝐺 ∈ Ω(𝑘)

∞ , summation over 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ completes the proof. �

For each fixed 𝑘 ∈ N, boundedness of Πℋ𝑘
follows from the closed graph theorem.

Lemma 4.14. For every 𝑘 ∈ N, the linear projection Πℋ𝑘
is bounded, i.e., it holds

‖Πℋ𝑘
𝑣‖ ≤ 𝜇𝑘‖𝑣‖ ∀𝑣 ∈ ℋ (4.28)

with a constant 𝜇𝑘 > 0.



NUMERICAL HOMOGENIZATION OF FRACTAL INTERFACE PROBLEMS 1467

Proof. Note, that the image im Πℋ𝑘
= ℋ𝑘 of Πℋ𝑘

is a complete subspace of ℋ and thus closed. We show that
the kernel ker Πℋ𝑘

⊂ ℋ is also closed, which would imply that Πℋ𝑘
is continuous and thus bounded by the

closed graph theorem.
Let (𝑣𝑛)𝑛∈N be a sequence in ker Πℋ𝑘

converging to 𝑣 ∈ ℋ. By the definition (4.21), it holds 𝑣𝑛|𝐺 =
(Πℋ𝑘

𝑣𝑛)|𝐺 ≡ 0 for all 𝐺 ∈ Ω(𝑘)
∞ and 𝑛 ∈ N which implies 𝑣|𝐺 = (Πℋ𝑘

𝑣)|𝐺 ≡ 0. For all 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ and 𝑛 ∈ N,

(Πℋ𝑘
𝑣𝑛)|𝐺 ≡ 0 implies

´
𝐺

𝑣𝑛 d𝑥 = 0 and, according to (4.22), the property

ˆ
𝐺∖Γ

∇𝑣𝑛 · ∇𝑤 d𝑥 = 0 ∀𝑤 ∈ 𝑊 =
{︂

𝑤 ∈ 𝐻1(𝐺) |
ˆ

𝐺

𝑤 d𝑥 = 0
}︂

.

Therefore, as 𝑛 →∞, we conclude
´

𝐺
𝑣 d𝑥 = 0 and
ˆ

𝐺∖Γ
∇𝑣 · ∇𝑤 d𝑥 = 0 ∀𝑤 ∈ 𝑊

by the continuous embedding ℋ ⊂ 𝐿2(Ω) ⊂ 𝐿1(Ω). By definition, 𝑣𝑘,𝐺 = (Πℋ𝑘
𝑣)|𝐺 is characterized by the

variational problem
ˆ

𝐺

(𝑣𝑘,𝐺 − 𝑣) d𝑥 =
ˆ

𝐺

𝑣𝑘,𝐺 d𝑥 = 0,

ˆ
𝐺∖Γ

∇𝑣𝑘,𝐺 · ∇𝑤 d𝑥 =
ˆ

𝐺∖Γ
∇𝑣 · ∇𝑤 d𝑥 = 0 ∀𝑤 ∈ 𝑊

with the unique solution 𝑣𝑘,𝐺 ≡ 0. Hence, (Πℋ𝑘
𝑣)|𝐺 ≡ 0 holds for all 𝐺 ∈ Ω(𝑘) and thus 𝑣 ∈ ker Πℋ𝑘

. �

In order to identify sufficient conditions for uniform stability of Πℋ𝑘
, we want to further clarify the dependence

of 𝜇𝑘 on 𝑘 ∈ N. To this end, the following lemma provides a bound for the jump contributions to ‖Πℋ𝑘
𝑣‖ in

terms of ‖𝑣‖.

Lemma 4.15. Let 𝑘 ∈ N and assume that conditions (3.7) and (4.24) are satisfied. Then

𝑘∑︁
𝑙=1

(1 + c)𝑙𝐶𝑙‖[[𝑣 −Πℋ𝑘
𝑣]]‖20,Γ𝑙

≤ 𝐶
(︀
1 + 1

c

)︀2
𝑑𝑘

(︃
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙

)︃
‖𝑣‖2

holds for all 𝑣 ∈ 𝒞1
𝐾,0(Ω) with 𝐾 > 𝑘 and a constant 𝐶 depending only on the space dimension 𝑑 and the shape

regularity 𝛾 of Ω(𝑘).

Proof. Let 𝑘 ∈ N and 𝑣 ∈ 𝒞1
𝐾,0(Ω) with 𝐾 > 𝑘. Note that

‖[[𝑣 −Πℋ𝑘
𝑣]]‖20,Γ𝑙

=
∑︁

𝐺,𝐺′∈Ω(𝑘)

𝐺 ̸=𝐺′

ˆ
Γ𝑙∩𝜕𝐺∩𝜕𝐺′

((𝑣 −Πℋ𝑘
𝑣)|𝐺 − (𝑣 −Πℋ𝑘

𝑣)|𝐺′)2 dΓ𝑙

≤ 4
∑︁

𝐺∈Ω(𝑘)

‖𝑣 −Πℋ𝑘
𝑣‖20,Γ𝑙∩𝜕𝐺, 𝑙 = 1, . . . , 𝑘.

By Definition 4.11 we have Πℋ𝑘
𝑣|𝐺 = 𝑣|𝐺 and thus ‖𝑣 −Πℋ𝑘

𝑣‖0,Γ𝑙∩𝜕𝐺 = 0 for 𝐺 ∈ Ω(𝑘)
∞ . Hence, let 𝐺 ∈

Ω(𝑘)∖Ω(𝑘)
∞ . Inserting (4.27) (a consequence of assumption (4.24)) into the local approximation property (4.26),

we get

‖𝑣 −Πℋ𝑘
𝑣‖20,𝐺 ≤ 𝑐

(︀
1 + 1

c

)︀
𝑑2

𝑘

⎛⎝|𝑣 −Πℋ𝑘
𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠. (4.29)
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As [[Πℋ𝑘
𝑣]] = 0 on Γ𝑗 for 𝑗 > 𝑘, application of the trace Lemma 4.10, together with (4.29), Lemma 4.12, and

(4.27) lead to

‖𝑣 −Πℋ𝑘
𝑣‖20,Γ𝑙∩𝜕𝐺 ≤ 𝑐′

(︀
1 + 1

c

)︀⎛⎝𝑑−1
𝑘 ‖𝑣 −Πℋ𝑘

𝑣‖20,𝐺 + 𝑑𝑘|𝑣 −Πℋ𝑘
𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑠−𝑘
𝐶𝑘,𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠
≤ 𝐶 ′

(︀
1 + 1

c

)︀2
𝑑𝑘

⎛⎝|𝑣|21,𝐺∖Γ(𝐾) +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗
𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠
with constants 𝑐′, 𝐶 ′ depending on the space dimension 𝑑 and the shape regularity 𝛾 of Ω(𝑘). Summation over
𝐺 ∈ Ω(𝑘) yields

‖𝑣 −Πℋ𝑘
𝑣‖20,Γ𝑙

≤ 𝐶
(︀
1 + 1

c

)︀2
𝑑𝑘‖𝑣‖2

and the assertion follows. �

We are ready to state stability of the projections Πℋ𝑘
, 𝑘 ∈ N.

Theorem 4.16. Assume that conditions (3.7) and (4.24) are satisfied. Then the projections Πℋ𝑘
: ℋ → ℋ𝑘,

𝑘 ∈ N, are stable in the sense that

‖Πℋ𝑘
𝑣‖2 ≤ 𝑐

(︃
1 +

(︀
1 + 1

c

)︀3
𝑑𝑘

(︃
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙

)︃)︃
‖𝑣‖2 ∀𝑣 ∈ ℋ (4.30)

holds for each 𝑘 ∈ N with a constant 𝑐 depending only on the space dimension 𝑑 and the shape regularity 𝛾 of
Ω(𝑘).

Proof. As 𝒞1
𝐾,0(Ω), 𝐾 ∈ N, is dense in ℋ and Πℋ𝑘

is continuous for each fixed 𝑘 ∈ N, it is sufficient to prove
(4.30) for 𝑣 ∈ 𝒞1

𝐾,0(Ω) with arbitrary 𝐾 ≥ 𝑘. In light of

‖Πℋ𝑘
𝑣‖ ≤ ‖𝑣 −Πℋ𝑘

𝑣‖+ ‖𝑣‖

it is sufficient to derive a corresponding bound for ‖𝑣 −Πℋ𝑘
𝑣‖. Utilizing that, by construction, Πℋ𝑘

𝑣 does not
jump across Γ𝑙, 𝑙 > 𝑘, and boundedness of Πℋ𝑘

with respect to | · |1,Ω∖Γ, cf. Lemma 4.12, we obtain

‖𝑣 −Πℋ𝑘
𝑣‖2 = |𝑣 −Πℋ𝑘

𝑣|21,Ω∖Γ +
(︀
1 + 1

c

)︀ 𝐾∑︁
𝑙=1

(1 + c)𝑙
𝐶𝑙‖[[𝑣 −Πℋ𝑘

𝑣]]‖20,Γ𝑙

≤ 2
(︁
|𝑣|21,Ω∖Γ + |Πℋ𝑘

𝑣|21,Ω∖Γ

)︁
+
(︀
1 + 1

c

)︀ 𝐾∑︁
𝑙=𝑘+1

(1 + c)𝑙
𝐶𝑙‖[[𝑣]]‖20,Γ𝑙

+
(︀
1 + 1

c

)︀ 𝑘∑︁
𝑙=1

(1 + c)𝑙
𝐶𝑙‖[[𝑣 −Πℋ𝑘

𝑣]]‖20,Γ𝑙

≤ 4‖𝑣‖2 +
(︀
1 + 1

c

)︀ 𝑘∑︁
𝑙=1

(1 + c)𝑙
𝐶𝑙‖[[𝑣 −Πℋ𝑘

𝑣]]‖20,Γ𝑙
.

Now the assertion follows from Lemma 4.15. �

Uniform stability of Πℋ𝑘
is obtained under an additional condition on the geometry of the interface network

Γ.
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Corollary 4.17. Assume that conditions (3.7) and (4.24) are satisfied and that the additional condition

𝑑𝑘

(︃
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙

)︃
≤ 𝐶Γ, 𝑘 ∈ N, (4.31)

holds with a constant 𝐶Γ independent of 𝑘. Then the projections Πℋ𝑘
, 𝑘 ∈ N, are uniformly stable, i.e.,

‖Πℋ𝑘
𝑣‖ ≤ 𝑐‖𝑣‖ ∀𝑣 ∈ ℋ (4.32)

holds for each 𝑘 ∈ N with a constant 𝑐 depending only on the space dimension 𝑑, the shape regularity 𝛾 of Ω(𝑘),
and the material constant c.

The additional condition (4.31) reflects the fact that the jump contributions to ‖Πℋ𝑘
𝑣‖ cannot be bounded

by the jump contributions to ‖𝑣‖ (see Podlesny [37], Rem. 3.2.26 for a simple counterexample). Relating the
material constant c to the geometry of the interface network, it implies that the interfaces Γ(𝑘) are highly
localized for feasible c > 0 and thus excludes, e.g., the Cantor network [21, 43, 44]. For example, the highly
localized network described in Section 2.1 above satisfies condition (4.31) for c ≤ 1.

4.4. Quasi-interpolation on finite element spaces 𝒮𝑘
We now construct and analyze suitable projections Π𝒮𝑘

: ℋ𝑘 → 𝒮𝑘, utilizing well-known concepts from finite
element analysis.

Definition 4.18. For every 𝑘 ∈ N, we define the Clément-type quasi-interpolation Π𝒮𝑘
: ℋ𝑘 → 𝒮𝑘 by setting

Π𝒮𝑘
𝑣 =

∑︁
𝑝∈𝒩 (𝑘)

(Π𝑝𝑣) 𝜆(𝑘)
𝑝 (4.33)

with Π𝑝 : ℋ𝑘 → R defined by

Π𝑝𝑣 =
 

𝜔𝑝

𝑣 d𝑥, 𝜔𝑝 = supp 𝜆(𝑘)
𝑝 , 𝑝 ∈ 𝒩 (𝑘), (4.34)

for 𝑣 ∈ ℋ𝑘.

For 𝑣 ∈ ℋ𝑘, 𝑘 ∈ N, the restrictions 𝑣|𝐺 ∈ 𝐻1(𝐺) to the cells 𝐺 ∈ Ω(𝑘) are functions from standard Sobolev
spaces. Hence, Π𝒮𝑘

possesses local approximation and stability properties as established in the literature [8,45].

Lemma 4.19. Let 𝑘 ∈ N, 𝐺 ∈ Ω(𝑘), 𝑇 ∈ 𝒯 (𝑘)
𝐺 ⊂ 𝒯 (𝑘), and 𝐸 ∈ ℰ(𝑘) such that 𝐸 ⊂ 𝐺. The projection Π𝒮𝑘

defined in (4.33) satisfies the local approximation properties

‖𝑣 −Π𝒮𝑘
𝑣‖20,𝑇 ≤ 𝑐ℎ2

𝑘

∑︁
𝑝∈𝑇∩𝒩 (𝑘)

𝐺

|𝑣|21,𝜔𝑝
, (4.35)

ˆ
𝐸

|𝑣|𝐺 −Π𝒮𝑘
𝑣|𝐺|2 d𝐸 ≤ 𝑐

∑︁
𝑝∈𝒩𝐸

ℎ𝑘|𝑣|𝐺|21,𝜔𝑝
(4.36)

and local stability property

|Π𝒮𝑘
𝑣|21,𝐺 ≤ 𝑐|𝑣|21,𝐺 (4.37)

for all 𝑣 ∈ ℋ𝑘 with constants 𝑐 depending only on the dimension 𝑑 and shape regularity 𝜎 of 𝒯 (𝑘).
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Proof. The approximation properties (4.35) and (4.36) are stated in Proposition 2.1 of [45], while the stability
estimate (4.37) can be found in Theorem 2.4(c) of [8]. �

Proposition 4.20. Let 𝑘 ∈ N and 𝐺 ∈ Ω(𝑘). Then the projection Π𝒮𝑘
defined in (4.33) has the local approxi-

mation property
‖𝑣 −Π𝒮𝑘

𝑣‖0,𝐺 ≤ 𝑐ℎ𝑘|𝑣|1,𝐺 ∀𝑣 ∈ ℋ𝑘 (4.38)

with a constant 𝑐 depending only on the dimension 𝑑 and shape regularity 𝜎 of 𝒯 (𝑘).

Proof. Exploiting shape regularity, the assertion follows by summation of (4.35) over 𝑇 ∈ 𝒯 (𝑘)
𝐺 . �

Proposition 4.21. The projections Π𝒮𝑘
, 𝑘 ∈ N, defined in (4.33) are stable in the sense that

‖Π𝒮𝑘
𝑣‖ ≤ 𝑐

(︃
1 + 𝑑𝑘

(︃
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙

)︃
‖𝑣‖

)︃
∀𝑣 ∈ ℋ𝑘 (4.39)

holds with a constant 𝑐 depending only on the dimension 𝑑 and shape regularity 𝜎 of 𝒯 (𝑘).

Proof. Let 𝑣 ∈ ℋ𝑘 and observe that

‖Π𝒮𝑘
𝑣‖2 ≤ 2‖𝑣‖2 + |Π𝒮𝑘

𝑣|21,Ω∖Γ(𝑘) + 2
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙‖[[𝑣 −Π𝒮𝑘
𝑣]]‖20,Γ𝑙

(4.40)

follows from the triangle inequality and the Cauchy–Schwarz inequality. Using local stability (4.37) on the cells
𝐺 ∈ Ω(𝑘), it holds

|Π𝒮𝑘
𝑣|21,Ω∖Γ(𝑘) =

∑︁
𝐺∈Ω(𝑘)

|Π𝒮𝑘
𝑣|21,𝐺 ≤ 𝑐

∑︁
𝐺∈Ω(𝑘)

|𝑣|21,𝐺 = 𝑐|𝑣|21,Ω∖Γ(𝑘) ≤ 𝑐‖𝑣‖2 (4.41)

with a constant 𝑐 depending only on shape regularity 𝜎 of 𝒯 (𝑘) and the space dimension 𝑑. We now derive
a corresponding bound for the jump terms occurring in (4.40). As 𝒯 (𝑘) resolves the interface network Γ(𝑘)

according to (3.6), there are subsets ℰ(𝑘)
𝑙 ⊂ ℰ(𝑘) such that

Γ𝑙 =
⋃︁

𝐸∈ℰ(𝑘)
𝑙

𝐸, 𝑙 = 1, . . . , 𝑘.

Now let 𝐸 ⊂ 𝐺𝐸,1 ∩ 𝐺𝐸,2 ⊂ Γ𝑙 with 𝐺𝐸,𝑖 ∈ Ω(𝑘), 𝑖 = 1, 2, and we set 𝑣𝑖 = 𝑣|𝐺𝐸,𝑖
, 𝑖 = 1, 2. Then the

Cauchy–Schwarz inequality in R2 yields

‖[[𝑣 −Π𝒮𝑘
𝑣]]‖20,Γ𝑙

=
∑︁

𝐸∈ℰ(𝑘)
𝑙

ˆ
𝐸

[[𝑣 −Π𝒮𝑘
𝑣]]2 d𝐸 ≤ 2

∑︁
𝐸∈ℰ(𝑘)

𝑙

ˆ
𝐸

|𝑣1 −Π𝒮𝑘
𝑣1|2 + |𝑣2 −Π𝒮𝑘

𝑣2|2 d𝐸. (4.42)

The local approximation property (4.36) leads toˆ
𝐸

|𝑣𝑖 −Π𝒮𝑘
𝑣𝑖|2 d𝐸 ≤ 𝑐

∑︁
𝑝∈𝒩𝐸,𝑖

ℎ𝑘|𝑣𝑖|21,𝜔𝑝
, 𝑖 = 1, 2, (4.43)

with 𝒩𝐸,𝑖 = 𝐸 ∩ 𝒩 (𝑘)
𝐺𝐸,𝑖

denoting the vertices of 𝐸 located in 𝐺𝐸,𝑖, and a constant 𝑐 depending only on
shape regularity 𝜎 of 𝒯 (𝑘) and the space dimension 𝑑. After inserting this bound into (4.42), summation over
𝑙 = 1, . . . , 𝑘, and shape regularity of 𝒯 (𝑘) provide

𝑘∑︁
𝑙=1

(1 + c)𝑙𝐶𝑙‖[[𝑣 −Π𝒮𝑘
𝑣]]‖20,Γ𝑙

≤ 𝑐ℎ𝑘

(︃
𝑘∑︁

𝑙=1

(1 + c)𝑙𝐶𝑙

)︃
|𝑣|21,Ω∖Γ(𝑘)

with 𝑐 only depending on 𝜎 and 𝑑 and the assertion follows from (3.7). �
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Note that uniform stability of Π𝒮𝑘
, 𝑘 ∈ N, is obtained under the additional assumption (4.31).

Definition 4.22. For every 𝑘 ∈ N, we define the projection

Π𝑘 = Π𝒮𝑘
∘Πℋ𝑘

: ℋ → 𝒮𝑘. (4.44)

Theorem 4.23. Assume that the conditions (3.7), (4.24), (4.31) hold. Then the projections Π𝑘 : ℋ → 𝒮𝑘,
𝑘 ∈ N, defined in (4.44) have the approximation property

‖𝑣 −Π𝑘𝑣‖0 ≤ 𝑐ℎ𝑘‖𝑣‖ ∀𝑣 ∈ ℋ (4.45)

with a constant 𝑐 depending only on the space dimension 𝑑, shape regularity 𝛾 of Ω(𝑘), shape regularity 𝜎 of
𝒯 (𝑘), the constant 𝛿 in (3.7), the constant 𝐶Γ in (4.31), and the material constant c.

Proof. The assertion is an immediate consequence of the triangle inequality

‖𝑣 −Π𝑘𝑣‖0 ≤ ‖𝑣 −Πℋ𝑘
𝑣‖0 + ‖Πℋ𝑘

𝑣 −Π𝒮𝑘
(Πℋ𝑘

𝑣)‖0,

Theorem 4.13, Proposition 4.20, and Corollary 4.17. �

Uniform stability of the projections Π𝑘 is an immediate consequence of Corollary 4.17 and Proposition 4.21.

Theorem 4.24. Assume that the conditions (3.7), (4.24), (4.31) hold. Then the projections Π𝑘 : ℋ → 𝒮𝑘,
𝑘 ∈ N, defined in (4.44) are uniformly stable in the sense that

‖Π𝑘𝑣‖ ≤ 𝑐‖𝑣‖ ∀𝑣 ∈ ℋ (4.46)

holds with a constant 𝑐 depending only on the space dimension 𝑑, shape regularity 𝛾 of Ω(𝑘), shape regularity 𝜎
of 𝒯 (𝑘), the constant 𝛿 in (3.7), the constant 𝐶Γ in (4.31), and the material constant c.

5. Multiscale finite element discretization

For some fixed 𝑘 ∈ N, we now construct novel multiscale finite element spaces with the same dimension as
𝒮𝑘 that provide discretization errors of order ℎ𝑘. Utilizing the projection Π𝑘 : ℋ → 𝒮𝑘 defined in (4.44), we
can readily apply local orthogonal decomposition (LOD) as introduced by Målqvist and Peterseim [30] with
localization by subspace decomposition as suggested in Kornhuber et al. [28].

Let 𝒱𝑘 = ker Π𝑘 ⊂ ℋ denote the kernel of Π𝑘 and 𝒞𝑘 : ℋ → 𝒱𝑘 the orthogonal projection of ℋ onto 𝒱𝑘 with
respect to the scalar product 𝑎(·, ·) in ℋ. Then the multiscale finite element space

𝒲𝑘 = {𝑣 − 𝒞𝑘𝑣 | 𝑣 ∈ ℋ} = {𝑣 − 𝒞𝑘𝑣 | 𝑣 ∈ 𝒮𝑘} = span
{︁

(𝐼 − 𝒞𝑘)𝜆(𝑘)
𝑝 | 𝑝 ∈ 𝒩𝑘

}︁
(5.1)

is isomorphic to 𝒮𝑘. We consider the multiscale discretization

𝑢𝑘 ∈ 𝒲𝑘 : 𝑎(𝑢𝑘, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝒲𝑘. (5.2)

The following error analysis is due to Peterseim [35] and Målqvist and Peterseim [30] (see also [28]).

Theorem 5.1. The unique solution 𝑢𝑘 of the discrete problem (5.2) is given by

𝑢𝑘 = (𝐼 − 𝒞𝑘)Π𝑘𝑢. (5.3)

The discretization error has the representation 𝑢− 𝑢𝑘 = 𝒞𝑘𝑢 and the error estimate

‖𝑢− 𝑢𝑘‖ ≤ 𝐶ℎ𝑘‖𝑓‖0 (5.4)

holds under the conditions (3.7), (4.24), (4.31) with 𝐶 depending only on the constant occurring in the approx-
imation property (4.45) stated in Theorem 4.23 and the ellipticity constant a from (2.18).
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Proof. As 𝑢−Π𝑘𝑢 is contained in the kernel of Π𝑘, we have

𝑢− 𝑢𝑘 = (𝐼 − 𝒞𝑘)𝑢− (𝐼 − 𝒞𝑘)Π𝑘𝑢 + 𝒞𝑘𝑢 = 𝒞𝑘𝑢. (5.5)

By definition (5.1), the functions in 𝒲𝑘 are 𝑎-orthogonal to the functions in the range of 𝒞𝑘 and thus to
𝑢− 𝑢𝑘 = 𝒞𝑘𝑢. Hence, 𝑢𝑘 solves (5.2) and uniqueness follows from ellipticity (2.18).

The following estimate is a consequence of ellipticity (2.18), the representation (5.5), the 𝑎-orthogonality of
𝒞𝑘 mapping to the kernel of Π𝑘, and the Cauchy–Schwarz inequality

a‖𝑢− 𝑢𝑘‖2 ≤ ‖𝒞𝑘𝑢‖2𝑎 = 𝑎(𝑢, 𝒞𝑘𝑢−Π𝑘𝒞𝑘𝑢) = (𝑓, 𝒞𝑘𝑢−Π𝑘𝒞𝑘𝑢) ≤ ‖𝑓‖0‖𝒞𝑘𝑢−Π𝑘𝒞𝑘𝑢‖0.

Now the desired error estimate follows from the approximation property (4.45) of Π𝑘 as stated in
Theorem 4.23. �

We emphasize that the discretization error estimate (5.4) comes without any further regularity assumptions
on the exact solution 𝑢.

In spite of these desired properties, the space 𝒲𝑘 is problematic, because its multiscale basis functions
(𝐼 −𝒞𝑘)𝜆(𝑘)

𝑝 , 𝑝 ∈ 𝒩𝑘, in general have global support. We therefore consider (intentionally local) approximations
𝒞(𝜈)

𝑘 : ℋ → ℋ, 𝜈 ∈ N, of 𝒞𝑘 giving rise to the approximate subspaces

𝒲(𝜈)
𝑘 = span

{︁(︁
𝐼 − 𝒞(𝜈)

𝑘

)︁
𝜆(𝑘)

𝑝 | 𝑝 ∈ 𝒩𝑘

}︁
and corresponding Galerkin discretizations

𝑢
(𝜈)
𝑘 ∈ 𝒲(𝜈)

𝑘 : 𝑎
(︁
𝑢

(𝜈)
𝑘 , 𝑣

)︁
= (𝑓, 𝑣) ∀𝑣 ∈ 𝒲(𝜈)

𝑘 . (5.6)

The following discretization error estimate is taken from Kornhuber et al. [28].

Theorem 5.2. Assume that the approximations 𝒞(𝜈)
𝑘 : ℋ → ℋ, 𝜈 ∈ N, of 𝒞𝑘 are convergent in the sense that⃦⃦⃦

𝒞𝑘𝑣 − 𝒞(𝜈)
𝑘 𝑣

⃦⃦⃦
𝑎
≤ 𝑞𝜈‖𝒞𝑘𝑣‖𝑎, 𝜈 ∈ N, (5.7)

holds for all 𝑣 ∈ ℋ with some convergence rate 𝑞 < 1. Then we have the discretization error estimate⃦⃦⃦
𝑢− 𝑢

(𝜈)
𝑘

⃦⃦⃦
≤ (1 + 𝑞𝜈)

√
A√
a
‖𝑢− 𝑢𝑘‖+ 𝑞𝜈

√
A√
a
‖𝑢−Π𝑘𝑢‖, 𝜈 ∈ N. (5.8)

Proof. Exploiting
(︁
𝐼 − 𝒞(𝜈)

𝑘

)︁
Π𝑘𝑢 ∈ 𝒲(𝜈)

𝑘 and (5.3), we obtain⃦⃦⃦
𝑢− 𝑢

(𝜈)
𝑘

⃦⃦⃦
𝑎
≤
⃦⃦⃦
𝑢−

(︁
𝐼 − 𝒞(𝜈)

𝑘

)︁
Π𝑘𝑢

⃦⃦⃦
𝑎

=
⃦⃦⃦

(𝑢− 𝑢𝑘)−
(︁
𝒞𝑘Π𝑘𝑢− 𝒞(𝜈)

𝑘 Π𝑘𝑢
)︁⃦⃦⃦

𝑎
.

Convergence (5.7) together with identity (5.3) provides⃦⃦⃦
𝒞𝑘Π𝑘𝑢− 𝒞(𝜈)

𝑘 Π𝑘𝑢
⃦⃦⃦

𝑎
≤ 𝑞𝜈‖𝒞𝑘Π𝑘𝑢‖𝑎 ≤ 𝑞𝜈(‖𝑢− 𝑢𝑘‖𝑎 + ‖𝑢−Π𝑘𝑢‖𝑎).

Now the assertion follows from the triangle inequality and the norm equivalence (2.18). �

We now concentrate on the construction of convergent local approximations 𝒞(𝜈)
𝑘 : ℋ → ℋ, 𝜈 ∈ N, by local

subspace correction. Here, we make heavy use of the fact that the kernel 𝒱𝑘 of Π𝑘 is high-frequency. Locality
(4.21), (4.33) of the projection Π𝑘 = Π𝒮𝑘

∘Πℋ𝑘
motivates the direct splitting

𝒱𝑘 =
∑︁

𝐺∈Ω(𝑘)

𝒱𝐺 (5.9)



NUMERICAL HOMOGENIZATION OF FRACTAL INTERFACE PROBLEMS 1473

into the subspaces
𝒱𝐺 = {(𝐼 −Π𝑘)𝑣|𝐺 | 𝑣 ∈ ℋ} ⊂ 𝒱𝑘, 𝐺 ∈ Ω(𝑘).

Here, 𝑣|𝐺 is defined by 𝑣|𝐺(𝑥) = 𝑣(𝑥) for 𝑥 ∈ 𝐺 and 𝑣|𝐺(𝑥) = 0 otherwise. Note that the linear mapping
ℋ ∋ 𝑣 → 𝑣|𝐺 ∈ ℋ is uniformly bounded in ℋ for all 𝐺 ∈ Ω(𝑘) and each fixed 𝑘 ∈ N as a consequence of the trace
Lemma 4.10 and the continuous embedding of ℋ into 𝐿2(Ω). The subspaces 𝒱𝐺 are closed, because convergence
of a sequence (𝑣𝑖)𝑖∈N ⊂ 𝒱𝐺 ⊂ 𝒱𝑘 to some 𝑣 ∈ ℋ implies 𝑣 ∈ 𝒱𝑘, i.e., Π𝑘𝑣 = 0, as 𝒱𝑘 is closed, 𝑣 = 𝑣|𝐺, as
supp 𝑣𝑖 ⊂ 𝐺 for all 𝑖 ∈ N, and therefore 𝑣 = (𝐼 −Π𝑘)𝑣|𝐺 ∈ 𝒱𝐺. Utilizing the splitting (5.9), each 𝑣 ∈ 𝒱𝑘 can be
uniquely decomposed into its local components

𝑣𝐺 = (𝐼 −Π𝑘)𝑣|𝐺 ∈ 𝒱𝐺, 𝐺 ∈ Ω(𝑘). (5.10)

The following lemma is the main result of this section.

Lemma 5.3. The splitting (5.9) is stable in the sense that for each 𝑣 ∈ 𝒱𝑘 the decomposition (5.10) satisfies∑︁
𝐺∈Ω(𝑘)

‖𝑣𝐺‖2𝑎 ≤ 𝐾1‖𝑣‖2𝑎 (5.11)

with a constant 𝐾1 depending only on the constants appearing in Theorems 4.23, 4.24, and the ellipticity
constants a, A from (2.18).

Assume that for all 𝑘 ∈ N and each 𝐺 in Ω(𝑘) the number of neighboring cells of 𝐺 from Ω(𝑘) is uniformly
bounded by 𝑐𝑁 ∈ R. Then the splitting (5.9) is bounded in the sense that the decomposition (5.10) satisfies

‖𝑣‖2𝑎 ≤ 𝐾2

∑︁
𝐺∈Ω(𝑘)

‖𝑣𝐺‖2𝑎 (5.12)

with a constant 𝐾2 depending only on 𝑐𝑁 .

Proof. Boundedness (5.12) with a constant 𝐾2 depending only on the maximal number of neighbors of each cell
𝐺 is a direct consequence of the Cauchy–Schwarz inequality.

Let 𝐺 ∈ Ω(𝑘)
∞ and 𝑣 ∈ 𝒱𝑘. Then Π𝑘𝑣|𝐺 = Π𝒮𝑘

∘ Πℋ𝑘
𝑣|𝐺 = Π𝒮𝑘

𝑣|𝐺 by the definition (4.21) of Πℋ𝑘
. Utilizing

local boundedness (4.41) and the approximation property (4.43) of Π𝒮𝑘
together with the geometric condition

(4.31), this leads to

‖𝑣𝐺‖2 = |𝑣 −Π𝒮𝑘
𝑣|21,𝐺 +

𝑘∑︁
𝑗=1

(1 + c)𝑗𝐶𝑗‖𝑣 −Π𝒮𝑘
𝑣‖20,Γ𝑗∩𝜕𝐺 ≤ 𝑐|𝑣|21,𝐺 (5.13)

with a constant 𝑐 depending only on the shape regularity 𝜎, the space dimension 𝑑, and the constant 𝐶Γ from
(4.31).

Now assume 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)
∞ . By a density argument, it is sufficient to consider 𝑣 ∈ 𝒱𝑘 ∩ ℋ𝐾 with arbitrary

𝐾 > 𝑘. Exploiting the locality of Π𝑘, i.e., (𝐼 −Π𝑘)(𝑣|𝐺) = ((𝐼 −Π𝑘)𝑣)|𝐺, we have

‖𝑣𝐺‖2 = |𝑣 −Π𝑘𝑣|21,𝐺∖Γ(𝐾) +
𝑘∑︁

𝑗=1

(1 + c)𝑗𝐶𝑗‖𝑣 −Π𝑘𝑣‖20,Γ𝑗∩𝜕𝐺 +
𝐾∑︁

𝑗=𝑘+1

(1 + c)𝑗𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺. (5.14)

As a consequence of the Cauchy–Schwarz inequality, Lemma 4.12 and the local boundedness (4.41) of Π𝒮𝑘
, we

have
|𝑣 −Π𝑘𝑣|21,𝐺∖Γ(𝐾) ≤ 𝐶|𝑣|21,𝐺∖Γ(𝐾) (5.15)
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with a constant 𝐶 depending only on the space dimension 𝑑 and shape regularity 𝜎 of 𝒯 (𝑘). After utilizing the
trace Lemma 4.10, we apply (5.15), (4.27), the geometric condition (4.31), and (3.7) to obtain

𝑘∑︁
𝑗=1

(1 + c)𝑗𝐶𝑗‖𝑣 −Π𝑘𝑣‖20,Γ𝑗∩𝜕𝐺 ≤ 𝐶 ′

⎛⎝ℎ−2
𝑘 ‖𝑣 −Π𝑘𝑣‖20,𝐺 + |𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠
with 𝐶 ′ additionally depending on the material constant c, the constant 𝛿 in (3.7), and the constant 𝐶Γ appearing
in (4.31). Now we insert the above estimates in (5.14) to obtain

‖𝑣𝐺‖2 ≤ 𝐶 ′′

⎛⎝ℎ−2
𝑘 ‖𝑣 −Π𝑘𝑣‖20,𝐺 + |𝑣|21,𝐺∖Γ(𝐾) +

𝐾∑︁
𝑗=𝑘+1

(1 + c)𝑗𝐶𝑗‖[[𝑣]]‖20,Γ𝑗∩𝐺

⎞⎠ (5.16)

where 𝐶 ′′ = max{𝐶, 𝐶 ′ + 1}. Summation of (5.13) for 𝐺 ∈ Ω(𝑘)
∞ and (5.16) for 𝐺 ∈ Ω(𝑘)∖Ω(𝑘)

∞ finally leads to∑︁
𝐺∈Ω(𝑘)

‖𝑣𝐺‖2 ≤ 𝐶 ′′
(︁
ℎ−2

𝑘 ‖𝑣 −Π𝑘𝑣‖20 + ‖𝑣‖2
)︁
.

Now the approximation property stated in Theorem 4.23 together with the norm equivalence (2.18) concludes
the proof. �

Let 𝑃𝐺 : ℋ → 𝒱𝐺, 𝐺 ∈ Ω(𝑘), denote the 𝑎-orthogonal Ritz projections defined by

𝑃𝐺𝑤 ∈ 𝒱𝐺 : 𝑎(𝑃𝐺𝑤, 𝑣) = 𝑎(𝑤, 𝑣) ∀𝑣 ∈ 𝒱𝐺 (5.17)

for 𝑤 ∈ ℋ and
𝑇 =

∑︁
𝐺∈Ω(𝑘)

𝑃𝐺

the resulting preconditioner. Lemma 5.3 implies (see, e.g., [27], Lem. 3.1, [47], Thm. 4.1 or [49], Thm. 8.1)

1/𝐾1𝑎(𝑣, 𝑣) ≤ 𝑎(𝑇𝑣, 𝑣) ≤ 𝐾2𝑎(𝑣, 𝑣) ∀𝑣 ∈ 𝒱𝑘. (5.18)

As 𝑇 is self-adjoint with respect to 𝑎(·, ·), this provides the bound 𝜅 ≤ 𝐾1𝐾2 of the condition number 𝜅 =
‖𝑇‖𝑎

⃦⃦
𝑇−1

⃦⃦
𝑎

of 𝑇 restricted to 𝒱𝑘. We consider the straightforward damped Richardson iteration

𝒞(𝜈+1)
𝑘 = 𝒞(𝜈)

𝑘 + 𝜔𝑇 (𝐼 − 𝒞(𝜈)
𝑘 ), 𝒞(0)

𝑘 = 0, (5.19)

with a suitable damping factor 𝜔. Note that 𝒞(𝜈)
𝑘 𝑣 ∈ 𝒱𝑘, 𝜈 ∈ N, holds for any 𝑣 ∈ ℋ. Now convergence of (5.19)

follows by well-known arguments.

Theorem 5.4. Assume that for all 𝑘 ∈ N and each 𝐺 ∈ Ω(𝑘) the number of neighboring cells of 𝐺 from Ω(𝑘) is
uniformly bounded by 𝑐𝑁 ∈ R. Then the approximations 𝒞(𝜈)

𝑘 , 𝜈 ∈ N, of 𝒞𝑘 defined in (5.19) are convergent for
𝜔 < 2/𝐾2 in the sense of (5.7), and we have the convergence rate 𝑞 = (𝐾1𝐾2 − 1)/(𝐾1𝐾2 + 1) for the optimal
damping factor 𝜔 = 2/(1/𝐾1 + 𝐾2) with 𝐾1, 𝐾2 depending only on the constants appearing in Theorems 4.23,
4.24, the geometric constant 𝐶0 in (2.8), 𝑐𝑁 , and the ellipticity constants a, A from (2.18).

More sophisticated iterative schemes with better convergence rates are discussed, e.g., in Kornhuber et al.
[28].

Utilizing Theorems 5.1 and 5.2, the desired discretization error estimate⃦⃦⃦
𝑢− 𝑢

(𝜈)
𝑘

⃦⃦⃦
= 𝒪(ℎ𝑘)
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is obtained by choosing 𝜈 ∈ N such that the stopping criterion 𝑞𝜈 A
a ‖𝑢−Π𝑘𝑢‖ = 𝒪(ℎ𝑘) is fulfilled.

Note that the support of the first iterate
(︁
𝐼 − 𝒞(1)

𝑘

)︁
𝜆

(𝑘)
𝑝 = (𝐼 − 𝜔𝑇 )𝜆(𝑘)

𝑝 is contained in 𝐺, if 𝑝 is located

in 𝐺 and contained in 𝐺 ∪ 𝐺′, if 𝑝 ∈ 𝐺 ∩ Γ𝑘 ∩ 𝐺′ so that the support grows at most by one layer of cells. By
the same argument, the support of the approximate multiscale basis functions (𝐼 − 𝒞(𝜈)

𝑘 )𝜆(𝑘)
𝑝 = (𝐼 − 𝜔𝑇 )𝜈𝜆

(𝑘)
𝑝 ,

𝑝 ∈ 𝒩𝑘, spreads at most by one layer of cells in each iteration step and therefore depends logarithmically on
the prescribed accuracy of order ℎ𝑘.

The construction of 𝒲(𝜈)
𝑘 requires the successive solution of local problems (5.17) in the infinite dimensional

function spaces 𝒱𝐺. In order to derive a computationally feasible analogue of the multiscale finite element
discretization (5.6), we start from a typically very large, maybe computationally inaccessible finite element
space 𝒮 associated with a very strong refinement 𝒯 of 𝒯 (𝑘) that resolves all fine scale features of the multiscale
interface problem as necessary to provide the desired accuracy of order ℎ𝑘. Proceeding literally as above with
ℋ replaced by 𝒮, we obtain discrete versions of Theorems 5.1, 5.2, and 5.4, where the iteration (5.19) takes the
form of a damped block Jacobi iteration.

6. Iterative subspace correction

We now consider the construction and convergence analysis of subspace correction methods for the frac-
tal interface problem (2.14) together with computationally feasible discrete versions for 𝑘-scale finite element
approximations (3.8). Their convergence rates neither depend on the scales 𝑘 ∈ N nor on the mesh size ℎ𝑘.

The starting point is the two-level splitting

ℋ = 𝒱0 +
∑︁

𝐺∈Ω(𝑘)

𝒱𝐺 (6.1)

with 𝒱0 = 𝒮ℓ for some fixed ℓ ≥ 1, some fixed 𝑘 > ℓ, and

𝒱𝐺 = {𝑣|𝐺 | 𝑣 ∈ ℋ}, 𝐺 ∈ Ω(𝑘).

In particular, each 𝑣 ∈ ℋ can be decomposed into its local components

𝑣ℓ = Πℓ𝑣 ∈ 𝒮ℓ, 𝑣𝐺 = (𝑣 −Πℓ𝑣)|𝐺 ∈ 𝒱𝐺, 𝐺 ∈ Ω(𝑘),

which is useful for proving stability

‖𝑣ℓ‖2𝑎 +
∑︁

𝐺∈Ω(𝑘)

‖𝑣𝐺‖2𝑎 ≤ 𝐾 ′
1‖𝑣‖𝑎 ∀𝑣 ∈ ℋ (6.2)

of the splitting (6.1). Indeed, utilizing the stability and approximation properties of the projections Πℓ : ℋ → 𝒮ℓ,
stability and boundedness of the splitting (6.1) with corresponding constants 𝐾 ′

1 and 𝐾 ′
2 follows by similar

arguments as in the proof of Lemma 5.3.
Therefore, the corresponding preconditioner

𝑇 = 𝑃0 +
∑︁

𝐺∈Ω(𝑘)

𝑃𝐺

with Ritz projections 𝑃0 : ℋ → 𝒱0 and 𝑃𝐺 : ℋ → 𝒱𝐺, 𝐺 ∈ Ω(𝑘), respectively, admits the bound 𝜅 ≤ 𝐾1𝐾2 of
the condition number 𝜅 of 𝑇 : ℋ → ℋ. This property directly entails corresponding bounds for the convergence
rates of preconditioned linear and nonlinear iterative schemes like Richardson or conjugate gradient methods.

In order to describe a sequential subspace correction method induced by the splitting (6.1), we introduce a
numbering {𝐺1, . . . , 𝐺𝑚} = Ω(𝑘) of the cells and of the corresponding subspaces 𝒱𝑖 = 𝒱𝐺𝑖 and Ritz projections
𝑃𝑖 = 𝑃𝒱𝑖

, 𝑖 = 1, . . . ,𝑚. We now consider the linear iteration

𝑤0 = 𝑢(𝜈), 𝑤𝑖+1 = 𝑤𝑖 + 𝑃𝑚−𝑖(𝑢− 𝑤𝑖), 𝑖 = 0, . . . ,𝑚, 𝑢(𝜈+1) = 𝑤𝑚+1, (6.3)
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for 𝜈 = 0, 1, . . . with arbitrary given iterate 𝑢(0) ∈ ℋ. Stability (6.2) of the decomposition and a Cauchy–
Schwarz-type inequality as stated in the following lemma are the two classical conditions for convergence esti-
mates of sequential subspace correction methods such as (6.3) (see, e.g., [47], Sect. 4.1 and [49], Sect. 5).

Lemma 6.1. Assume that for all 𝑘 ∈ N and each 𝐺 in Ω(𝑘) the number of neighboring cells of 𝐺 from Ω(𝑘) is
uniformly bounded by 𝑐𝑁 ∈ R. Then the Cauchy–Schwarz-type inequality

𝑚∑︁
𝑖,𝑗=0

𝑎(𝑣𝑖, 𝑤𝑗) ≤ 𝐾3

(︃
𝑚∑︁

𝑖=0

𝑎(𝑣𝑖, 𝑣𝑖)

)︃1/2
⎛⎝ 𝑚∑︁

𝑗=0

𝑎(𝑤𝑗 , 𝑤𝑗)

⎞⎠1/2

holds for all 𝑣𝑖 ∈ 𝒱𝑖, 𝑤𝑗 ∈ 𝒱𝑗, 𝑖, 𝑗 = 0, . . . ,𝑚, with a constant 𝐾3 depending only on 𝑐𝑁 .

Proof. For some fixed 𝐺 ∈ Ω(𝑘), we introduce the local scalar product

𝑎𝐺(𝑣, 𝑤) =
ˆ

𝐺∖Γ
𝐴∇𝑣 · ∇𝑤 d𝑥 + 1

2

𝑘∑︁
𝑗=1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗∩𝜕𝐺

𝐵[[𝑣]][[𝑤]] dΓ𝑗

+
∞∑︁

𝑗=𝑘+1

(1 + c)𝑗
𝐶𝑗

ˆ
Γ𝑗∩𝐺

𝐵[[𝑣]][[𝑤]] dΓ𝑗 , 𝑣, 𝑤 ∈ ℋ,

with the property ∑︁
𝐺∈Ω(𝑘)

𝑎𝐺(𝑣, 𝑤) = 𝑎(𝑣, 𝑤), 𝑣, 𝑤 ∈ ℋ. (6.4)

As the common support of 𝑣𝑖 ∈ 𝒱𝑖 and 𝑤𝑗 ∈ 𝒱𝑗 is contained in 𝐺𝑖 ∩𝐺𝑗 for 𝑖, 𝑗 = 1, . . . ,𝑚, the Cauchy–Schwarz
inequality and Gershgorin’s theorem lead to

𝑚∑︁
𝑖,𝑗=0

𝑎𝐺(𝑣𝑖, 𝑤𝑗) ≤ (𝑐𝐺 + 1)

(︃
𝑚∑︁

𝑖=0

𝑎𝐺(𝑣𝑖, 𝑣𝑖)

)︃1/2
⎛⎝ 𝑚∑︁

𝑗=0

𝑎𝐺(𝑤𝑗 , 𝑤𝑗)

⎞⎠1/2

with 𝑐𝐺 denoting the number of neighboring cells of 𝐺 from Ω(𝑘). After summation over 𝐺 ∈ Ω(𝑘), the Cauchy–
Schwarz inequality in R𝑚+1 together with (6.4) complete the proof. �

The following convergence result is based on the error propagation

𝑢− 𝑢(𝜈+1) = (𝐼 − 𝑃0) · · · (𝐼 − 𝑃𝑚)
(︁
𝑢− 𝑢(𝜈)

)︁
. (6.5)

Its proof can be taken literally, e.g., from Theorem 5.2 of [27].

Theorem 6.2. Assume that for all 𝑘 ∈ N and each 𝐺 in Ω(𝑘) the number of neighboring cells of 𝐺 from Ω(𝑘)

is uniformly bounded by 𝑐𝑁 ∈ R. Then the iterative scheme (6.3) is convergent with respect to the energy norm,
and ⃦⃦⃦

𝑢− 𝑢(𝜈+1)
⃦⃦⃦

𝑎
≤
(︁

1− 1
𝐾1𝐾2

3

)︁⃦⃦⃦
𝑢− 𝑢(𝜈)

⃦⃦⃦
𝑎

holds for any initial iterate 𝑢(0) ∈ ℋ with 𝐾1, 𝐾3 depending only on the constants appearing in Theo-
rems 4.23, 4.24, the geometric constant 𝐶0 in (2.8), 𝑐𝑁 and the ellipticity constants a, A from (2.18).

We emphasize that the two-level iteration (6.3) is just a simple illustrative example for a subspace correction
method that can be analyzed using the projection operators suggested in Section 4. More efficient methods can
be constructed in a similar way. For example, a symmetric variant of (6.3) that can be accelerated by conjugate
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gradients, is obtained by augmenting each iteration step by additional corrections 𝑃𝑖(𝑢 − 𝑤𝑚+1+𝑖) taken in
reverse order 𝑖 = 1, . . . ,𝑚. For detailed investigations, we refer to Podlesny [37].

The linear iteration (6.3) takes place in ℋ and thus requires the successive evaluation of Ritz projections
𝑃𝑖 to infinite dimensional subspaces 𝒱𝑖 ⊂ ℋ, 𝑖 = 1, . . . ,𝑚. However, replacing ℋ by a finite element space 𝒮𝐾

with some 𝐾 ≥ 𝑘 > ℓ, the above considerations and convergence results literally translate to corresponding
subspace correction methods for the finite element discretization (3.8) with respect to 𝒮𝐾 . In particular, the
discrete analogue of (6.3) leads to a two-grid iteration with block Gauß–Seidel smoother on the fine grid 𝒯 (𝑘)

that is globally converging with convergence rate independent of the level 𝐾 and corresponding mesh size ℎ𝐾

of the discrete solution space 𝒮𝐾 .

7. Numerical experiments

In our two numerical experiments, we consider the finite element discretization (3.8) of the fractal interface
problem (2.14) with 𝑘 = 𝐾 = 1, . . . ,𝐾max, Ω = (0, 1)2 ⊂ R2, c = 1, the identity matrix 𝐴 = 𝐼 ∈ R𝑑×𝑑, 𝐵 = 1
and two different kinds of fractal interface networks.

In order to illustrate the theoretical findings of Section 6, we consider the discrete analogue of the linear
iteration (6.3) in function space, i.e., the two-grid method with block Gauß–Seidel smoother as induced by the
two-level splitting

𝒮𝑘 = 𝒮ℓ +
∑︁

𝐺∈Ω(𝑘)

𝒱𝐺, 𝒱𝐺 = {𝑣|𝐺 | 𝑣 ∈ 𝒮𝑘} = 𝒮𝑘(𝐺)

with coarse space 𝒮ℓ = 𝒮1. The fine grid level 𝑘 = 𝐾 is selected to coincide with the level of the underlying
discrete solution space 𝒮𝐾 . We always use the initial iterate 𝑢(0) = 𝑢𝒮1 , i.e., the finite element approximation
on the coarse grid 𝒯 (1).

In light of the hierarchical lower bound⃦⃦
𝑢𝒮𝐾+1 − 𝑢𝒮𝐾

⃦⃦
≤ ‖𝑢− 𝑢𝒮𝐾

‖

of the discretization error, the algebraic error is reduced up to discretization accuracy once the computationally
feasible criterion ⃦⃦⃦

𝑢𝒮𝐾
− 𝑢

(𝜈)
𝒮𝐾

⃦⃦⃦
≤
⃦⃦
𝑢𝒮𝐾+1 − 𝑢𝒮𝐾

⃦⃦
(7.1)

is fulfilled. We will use (7.1) (after precomputing 𝑢𝒮𝐾
and 𝑢𝒮𝐾+1 up to machine accuracy) to determine the

minimal number of iteration steps as required to reduce the algebraic error below discretization accuracy. Of
course, more efficient local a posteriori error estimators, both for the iterative and the discretization error,
should be applied in practical computations.

7.1. Highly localized interface network

In our first numerical experiment, we consider the highly localized fractal interface network as depicted in
Figure 1. In this case, we have 𝑑𝑘 =

√
2 4−𝑘, 𝐶𝑘 = 2𝑘, and 𝑟𝑘 = 21−𝑘. Hence, conditions (2.5), (2.8) hold true

and the conditions (4.24), (4.31) are satisfied for c = 1.
Starting with the triangulation 𝒯 (1) as obtained by two uniform regular refinements of the partition 𝒯 (0)

consisting of two congruent triangles, the triangulation 𝒯 (𝑘) results from two uniform regular refinement steps
applied to 𝒯 (𝑘−1) for 𝑘 = 2, 3, . . . . We have ℎ𝑘 =

√
2 4−𝑘 so that (3.7) holds with 𝛿 = 1. For all 𝑘 ∈ N

and each 𝐺 in Ω(𝑘), the number of neighboring cells of 𝐺 from Ω(𝑘) is uniformly bounded by 𝑐𝑁 = 6. As a
consequence, the conditions for uniform stability and approximation property of the projections Π𝑘, 𝑘 ∈ N, as
stated in Theorem 4.23 and Theorem 4.24, respectively, and for the uniform convergence result in Theorem 6.2
are satisfied in this case.
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Table 1. Highly localized interface network: Error reduction factors and geometric mean 𝜌𝐾

of two-level subspace correction method.

𝜈 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5

1 0.208 0.247 0.252 0.252
2 0.221 0.259 0.263 0.263
3 0.223 0.261 0.265 0.265
4 0.224 0.261 0.266 0.266
5 0.224 0.261 0.266 0.266
6 0.224 0.261 0.266 0.266
7 0.224 0.261 0.266 0.266
8 0.224 0.261 0.266 0.266
9 0.224 0.261 0.266 0.266
𝜌𝐾 0.222 0.259 0.264 0.264

Table 1 displays the error reduction factors

𝜌
(𝜈)
𝐾 =

⃦⃦⃦
𝑢𝒮𝐾

− 𝑢
(𝜈)
𝒮𝐾

⃦⃦⃦
⃦⃦⃦
𝑢𝒮𝐾

− 𝑢
(𝜈−1)
𝒮𝐾

⃦⃦⃦ , 𝜈 = 1, . . . , 9,

together with their geometric mean 𝜌𝐾 for the levels 𝐾 = 1, . . . ,𝐾max = 5. We observe that the error reduction
factors nicely converge to the convergence rates on each level 𝐾 and appear to saturate at 0.266 with increasing
𝐾. According to the criterion (7.1) the discretization accuracy is already reached after 3 steps.

7.2. Geologically inspired interface network

In our second numerical experiment, we consider an interface network mimicking a fractal crystalline struc-
ture. The triangulation 𝒯 (1) is obtained by four uniform regular refinement steps applied to the partition 𝒯 (0)

consisting of two congruent triangles, and the triangulation 𝒯 (𝑘+1) results from uniform regular refinement of
𝒯 (𝑘) for 𝑘 = 1, 2, . . . . The level-𝑘 interfaces are inductively constructed as follows.

Let 𝐺0 = Ω denote the initial cell with center 𝑐 = (0.5, 0.5)𝑇 and midpoints 𝑙, 𝑡, 𝑟, 𝑏 ∈ R2 of its left, top,
right, and bottom boundary. The level-1 interface Γ1, as shown in the left picture of Figure 2, then consists of
four connected paths of edges in ℰ(1) starting with 𝑙, 𝑡, 𝑟, 𝑏 and ending with 𝑐. These four paths must not self-
intersect and must meet in and only in 𝑐. With these constraints, the actual selection of edges is made randomly
with strong bias towards the straight line connecting the corresponding start and end points. Once Γ(1) = Γ1

is constructed, centers 𝑐𝑖 = (𝑐𝑖,1, 𝑐𝑖,2)𝑇 of the four resulting cells 𝐺𝑖 ∈ Ω(1), 𝑖 = 1, . . . , 4, are determined in a
similar way as described above. Each cell 𝐺𝑖 ∈ Ω(1) is either refined now or never. The decision about refinement
or 𝐺𝑖 ∈ Ω(1)

∞ is made randomly according to the probability 𝒫(min{𝑐𝑖,1, 𝑐𝑖,2}) with density 𝜌(𝜉) = 2(1 − 𝜉),
𝜉 ∈ (0, 1), i.e., with a linear bias towards the left and the lower boundary of Ω. In case of refinement, 𝐺𝑖 is
split into four subcells by four paths of edges in ℰ(2) starting with midpoints of its left, top, right, and bottom
boundary and ending with 𝑐𝑖 in analogy to the splitting of the initial cell 𝐺0. The union of all these paths
constitutes the level-2 interface Γ2. This procedure is repeated inductively to construct the interface networks
Γ𝑘, 𝑘 = 2, . . . , 6 (see Fig. 2).

Apparently, the resulting interface network does not satisfy the locality condition (4.31) and the other con-
ditions stated in Theorems 4.23, 4.24 that are finally sufficient for the convergence result in Theorem 6.2 are
also unclear.

Nevertheless, the error reduction factors as displayed Table 2 only moderately deteriorate in comparison with
the highly localized case and even seem to saturate with increasing level 𝐾. According to the criterion (7.1) the
discretization accuracy is already reached after 5 steps.
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Figure 2. Geologically inspired interface network in 𝑑 = 2 space dimensions: Γ(1) = Γ1 (red)
and Γ(𝑘) with Γ𝑘 (red) for 𝑘 = 3, 5, 6.

Table 2. Geologically inspired interface network: Error reduction factors and geometric mean
𝜌𝐾 of two-level subspace correction method.

𝜈 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5 𝐾 = 6

1 0.624 0.696 0.732 0.744 0.748
2 0.675 0.735 0.766 0.775 0.777
3 0.711 0.758 0.781 0.788 0.790
4 0.733 0.773 0.791 0.796 0.798
5 0.746 0.785 0.798 0.803 0.804
6 0.753 0.792 0.804 0.808 0.809
7 0.758 0.798 0.809 0.812 0.813
8 0.761 0.802 0.813 0.816 0.816
9 0.763 0.805 0.816 0.818 0.819
𝜌𝐾 0.723 0.771 0.790 0.795 0.797
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[18] I. Gruais and D. Polǐsevski, Heat transfer models for two-component media with interfacial jump. Applicable Anal. 96 (2017)
247–260.

[19] W. Hackbusch and S.A. Sauter, Composite finite elements for the approximation of pdes on domains with complicated micro-
structures. Numer. Math. 75 (1997) 447–472.

[20] M. Heida, Stochastic homogenization of heat transfer in polycrystals with nonlinear contact conductivities. Applicable Anal.
91 (2012) 1243–1264.

[21] M. Heida, R. Kornhuber and J. Podlesny, Fractal homogenization of multiscale interface problems. Multiscale Model. Simul.
18 (2020) 294–314.

[22] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media.
J. Comput. Phys. 134 (1997) 169–189.
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Akademiya Nauk. Seriya Matematicheskaya 70 (2006) 23–74.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Fractal interface problems
	Interface networks
	Fractal function spaces
	Fractal interface problem

	Finite-scale discretization
	Finite scales
	Finite elements on finite scales

	Projections
	Local Poincaré-type inequalities
	A trace lemma
	Projections on finite-scale spaces Hk
	Quasi-interpolation on finite element spaces Sk

	Multiscale finite element discretization
	Iterative subspace correction
	Numerical experiments
	Highly localized interface network
	Geologically inspired interface network

	References

