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Abstract 

This doctoral thesis examines independent variables as explanatory drivers influencing urban 

growth, axis of urban expansion and the impact of current and future land use and land cover 

(LULC) and climate change on the landscape of the Harare Metropolitan Province. Monitoring 

urban growth trends and LULC changes utilised multispectral remote sensing data, geographic 

information system technologies and binomial logistic regression. The LULC maps used in the 

study were generated by implementing machine learning support vector machines (SVMs), a 

supervised classification technique on Landsat 5 Thematic Mapper and Landsat 8 Operational 

Land Imager satellite images. The moderate resolution satellite images were enhanced with soil 

adjusted vegetation index (SAVI), enhanced built-up bareness index (EBBI), and modified 

normalized water difference index (MNWDI) spectral indices to improve feature delineation 

during data training and other classification procedures. The transformation of croplands and 

green spaces was revealed to occur at alarming rates predominantly in the south, south east, 

south west and north west parts of the Harare Metropolitan Province. The predominant variables 

significant for urban expansion were distance to trunk and secondary roads. In addition, steep 

slopes were determined as a topographic characteristic limiting rapid construction 

developments in the north and north-eastern parts of the province. Further, the eruption and 

sprouting of informal settlements due to political connotations and demand for shelter resulting 

from increasing urban migration overwhelmed the city and government plans to provide decent 

shelter.  

The study also provides insights on the declining spatial soil loss rates between 1984 

and 2018 with localized high soil erosion risk within active build-up areas, croplands, areas 

along footpaths and paved road sides. The validation of the RUSLE model using field mapping 

and measurements of soil erosion phenomena in urban environment was successful. This 

provides confidence to apply the RUSLE model to predict future spatial soil loss and potential 

soil erosion risk in the Epworth district of the Harare Metropolitan Province. The application 

of Markov chain model coupled with cellular automata provided future LULC distribution 

patterns for 2034 and 2050 for Epworth district. This displayed accelerated LULC change 

through the conversion of croplands and green spaces to built-up area mainly for residential 

purposes. Further, similar trends of declining soil loss rates were predicted for future scenarios 

between 2034 and 2050; with high soil erosion risk predicted along drainage channels and 

downslope. Therefore, by virtue of rampant LULC changes in Epworth district, green spaces 

and croplands were modified to impervious surfaces due to the increasing population and 

predominant demand for shelter leading to setting up of informal settlements. This exacerbates 

concentrated runoff and overland flow, increasing soil erosion risk along drainage channels and 

sloping areas as a result of minimized infiltration capacity.  

In addition, trampling induced compaction on unpaved roads due to high traffic volumes 

and movements further contributes to accelerated overland flow. This facilitates the 

development of rills and ephemeral gullies on road sides and weak parts of the roads reducing 

mobility and access to properties. The encroachment of wetlands and river banks through the 

expansion of built-up areas and sand poaching activities does not only affect ecosystem 

functions but also impact negatively on livelihoods, nutrition and endangering lives due to the 

abandonment of disused pits. The study results show that spatiotemporal urban growth 

monitoring is fundamental in understanding urban growth patterns and revealing the more likely 

drivers influencing growth. Furthermore, mapping of soil erosion risk and estimating soil loss 

rates allow the application of the RUSLE method at a larger scale and to direct resources on 

areas potentially vulnerable to high soil erosion risk. The study results are highly valuable and 

highlight the need to promote reproducible documentation of data. Overall, this study provides 

insights that are imperative for authorities, land managers and policy makers to embrace for the 

advancement and attainment of sustainable smart cities as set by the UN agenda on Sustainable 
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Development Goals. As such the findings contribute to enhance our understanding of the 

implications of LULC and climate changes on the environment and human wellbeing. 
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Zusammenfassung 

Im Rahmen dieser Doktorarbeit werden unabhängige Variablen als erklärende Faktoren für das 

städtische Wachstum und die Achse der Stadterweiterung sowie die Auswirkungen der künftig 

zu erwartenden Landnutzung und -bedeckung ebenso wie des Klimawandels auf die Harare 

Metropolitan Province untersucht. Diese Untersuchungen basieren auf der Verwendung  

multispektraler Fernerkundungsdaten und dem Einsatz geographischer Informationssysteme 

und binomialer logistischer Regressionen. Die durchgeführten Analysen der Landnutzungs- 

und -bedeckungsveränderungen basiert auf einer überwachten Klassifizierung von 

Satellitenbildern des Landsat 5 Thematic Mapper und des Landsat 8 Operational Land Imager. 

Dazu wurden Methoden des maschinellen Lernens mit Hilfe von Support Vector Machines 

(SVMs) eingesetzt. Die Satellitenbilder mit mittlerer Auflösung wurden mit dem 

bodenangepassten Vegetationsindex (SAVI), dem verbesserten Index für die bebaute Fläche 

(EBBI) und dem modifizierten normalisierten Wasserdifferenzindex (MNWDI) transformiert, 

um die Klassifizierungsverfahren zu verbessern.  

Die Ergebnisse zeigen, dass die Umwandlung von Ackerland- und Grünlandflächen vor 

allem im Süden, Südosten, Südwesten und Nordwesten der Metropolregion Harare in Folge 

von Urbanisierungsprozessen stattfindet. Die in ihrem Einfluß auf die Stadterweiterung 

dominierenden Variablen sind die Entfernung zu Haupt- und Nebenstraßen. Steile Hänge 

schränken hingeben die bauliche städtische Entwicklung in den nördlichen und nordöstlichen 

Teilen der Metropolregion Harare ein. Die politisch bedingte Entstehung von informellen 

Siedlungen und der Bedarf an Behausungen infolge der zunehmenden Landflucht stellen die 

Pläne der Stadt und der Regierung zur Bereitstellung angemessener Unterkünfte vor große 

Herausforderungen. 

Die Studie zeigt außerdem, dass die Bodenverlustraten durch Bodenerosion zwischen 

1984 und 2018 in der Tendenz abgenommen haben. Nichtsdestotrotz gibt es lokal ein hohes 

Bodenerosionsrisiko vor allem in Baugebieten, auf Ackerflächen und entlang von Fußwegen 

und befestigen Straßen.  

Die Modellierung des Bodenerosionsrisikos erfolgte unter Einsatz der 

Bodenabtragsgleichung RUSLE. Zur Validierung der Ergebnisse wurden Feldkartierungen und 

Messungen von Bodenerosionsphänomenen im städtischen Umfeld durchgeführt. Hier zeigt 

sich eine deutliche Übereinstimmung der Modellierungs- und Kartierungsergebnisse. Die 

Anwendung des RUSLE-Modells zur Vorhersage zu erwartender räumlicher Bodenverluste 

und des potenziellen Bodenerosionsrisikos im Epworth-Bezirk in der Harare Metropolitan 

Province ist damit zuverlässig möglich. 

 Unter Anwendung von Markov-Ketten in Verbindung mit zellulären Automaten wurde 

das Muster der zukünftigen Verteilung von Landbedeckungs- und -nutzungklassen im Bezirk 

Epworth für die Jahre 2034 und 2050 simuliert. Es zeigt sich, dass der Wandel der 

Landbedeckung und -nutzung durch die Umwandlung von Ackerland und Grünflächen in 

bebautes Gebiet vornehmlich durch eine Zunahme der Wohnbebauung geprägt sein wird. Dies 

ist vornehmlich auf die wachsende Bevölkerung und den vorherrschenden Bedarf an 

Unterkünften zurückzuführen, die bereits zur Errichtung informeller Siedlungen geführt hat. 

Entsprechend dieser Landbedeckungs- und Landnutzungsszenarien wurden für die Jahre 

abnehmende Bodenverlustraten vorhergesagt, wobei auch weiterhin von einem hohen 

Bodenerosionsrisiko vor allem entlang von Entwässerungskanälen und am Hangfuß 

auszugehen ist.  
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Darüber hinaus trägt die durch Trittschäden hervorgerufene Verdichtung auf 

unbefestigten Straßen als Folge des hohen Verkehrsaufkommens zu einer Zunahme des 

konzentrierten Oberflächenabfluss bei. Dies begünstigt die Entstehung von ephemeren 

Abflussrinnen entlang von Straßenrändern, was den Verkehr und den Zugang zu Grundstücken 

einschränkt. Die Ausdehnung bebauter Gebiete und illegaler Sandabbau beeinträchtigt darüber 

hinaus nicht nur Feuchtgebiete und Flussufer und damit deren Ökosystemfunktionen, sondern 

wirkt sich auch negativ auf die Lebensgrundlagen und die Ernährungssicherung aus; 

aufgegebene Sandgruben stellen zudem ein Sicherheitsrisiko dar.  

Die Ergebnisse der Studie verdeutlichen, dass die raum-zeitliche Beobachtung des 

städtischen Wachstums von grundlegender Bedeutung für ein Verständnis der auf dieses 

städtische Wachstum Einfluß nehmenden Faktoren ist und damit für eine zuverlässige Prognose 

der zukünftigen Entwicklung. Die verwendeten Modellierungen des Bodenerosionsrisikos und 

die Schätzung der Bodenverlustraten mit der können im größeren Maßstab auch in anderen 

Gebieten eingesetzt werden. Zudem verdeutlicht die Studie die Notwendigkeit, eine 

reproduzierbare Dokumentation der Daten zu durchzuführen. Insgesamt liefert die Studie damit 

Erkenntnisse, die von Behörden, Landverwaltern und politischen Entscheidungsträgern für die 

Förderung und Verwirklichung nachhaltiger Stadtentwicklung im Sinne der UN-Agenda für 

nachhaltige Entwicklung berücksichtigt werden sollten. Somit tragen die Ergebnisse dazu bei, 

das Verständnis für die Auswirkungen von Landbedeckungs- und Landnutzungswandel und 

Klimaveränderungen auf die Umwelt und das menschliche Wohlergehen zu verbessern. 
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CHAPTER 1: INTRODUCTION 

 
1.1 Background 

Urban growth and expansion threaten environmental sustainability when occurring at alarming 

rates combined with improper planning and policy implementation. This is due to the notion 

that urban areas are unequivocally dominated by built-up areas resulting in Land Use and Land 

Cover (LULC) changes, which modify the landscape. Urban landscape conversions and 

transformations markedly are as a consequence of human induced activities resulting in high 

density of impervious surfaces (Xu et al., 2000). Understanding the dynamics of LULC changes 

through the analysis of spatial patterns of built-up areas, and their interactions with the 

ecosystem becomes significant for investigating independent drivers influencing urban 

expansion. 

The unprecedented population growth and imminent immigration have been primarily 

witnessed to impact on the increasing urbanization rates at global, regional and local levels 

(Mohan et al., 2011; UN HABITAT 2007; Yu et al., 2019; ZimStats 2012). In that respect, the 

World Urbanization Prospects indicated that in 2014, 54% of the worlds’ population lived in 

cities and it is projected to increase to 66% by 2050 with Asia and Africa having the fastest 

growing urbanization rates (UN 2014). This prompts the need for mapping and assessing trends 

of LULC changes in urban environments such as the Harare Metropolitan Province of 

Zimbabwe in order to develop policies and sustainable measures to curb environmental damage. 

To achieve such developments, remote sensing and GIS techniques are applied to unravel the 

spatiotemporal dynamics of LULC changes. In addition, the implementing of change detection 

analysis would promote better understanding and monitoring in change transitions in urban 

LULC. This is a post classification process of determining changes in the state of an object or 

phenomena between two or more dates using remote sensing data (Mukherjee 1987; Shalaby 

and Tateishi 2007; Singh 1989). Change detection of LULC is also an essential tool for 

decision-making and sustainable future urban planning.  

According to Hegazy and Kaloop (2015) urban development can either happen in 

radical direction following growth around built cities or in linear patterns along the highways. 

This provides the pattern and axis of urban growth particularly by showing growth influencing 

characters including road network for easy transportation of goods and population mobility. 

Growth near cities could be linked to reduced time and cost effectiveness when accessing work 

places within the city and efficient connectivity. However, in cases of unrestrained and 

uncoordinated urban built-up area growth especially informal settlements, built-up area pattern 
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becomes difficult to describe due to their mushrooming characteristics (Chirisa and Muhomba 

2013; Kamusoko et al., 2013). Retrospectively, the growth is neither supported with proper 

urban planning nor adequate infrastructure (Chirisa and Muhomba 2013; Kabantu et al. 2018). 

Henceforth, acquiring timely remote sensing data and the application of GIS techniques 

becomes significant to observe and analyse LULC changes.  

The rapid LULC changes in the Harare Metropolitan Province have adversely affected 

its ecosystem resulting in the alteration of the local microclimate conditions for example 

increasing land surface temperatures (LST) causing outdoor thermal discomfort (Mushore et 

al., 2017). Urban development is also linked with increases in human activities which in turn 

modify and transform natural lands (Mushore et al., 2017; Patley et al., 2018; Wania et al., 

2014). Such perturbations including construction, movements from both humans and vehicles; 

and the clearing of green spaces for urban agriculture potentially escalate soil erosion risk due 

to reduced vegetation cover, litter and leaf coverage which protect soil from direct rainfall 

impact and surface runoff (Asiedu 2018; Kabantu et al., 2018). Climate change is also widely 

expected to impact negatively through increases in extreme precipitation and temperature 

magnitudes which however varies with location (Pruski and Nearing 2002). This will lead to 

an increase in soil erosion risks affecting crop productivity and economies (Ferreira et al., 2016; 

Nearing et al., 2005). Rainfall induced erosion vary and the impact depends on the rainfall 

characteristics (duration, volume and intensity) (IPCC 2007; Nearing 2001), and other 

contributing factors including topography, vegetation cover and soil susceptibility (Borrelli et 

al., 2020; Hill and Schütt 2000; Renard et al., 1997).  

In this regard, spatial and quantitative soil erosion risk on exposure information is 

fundamental for developing and planning sustainable measures to reduce the impact of soil 

erosion on the landscape and to humankind (Prasannakumar et al., 2012; Alewell et al., 2019). 

Therefore, this study aims at assessing spatial soil erosion risk, estimate soil loss for Epworth 

district of the Harare Metropolitan Province, and further predicts future soil erosion risk and 

their likely impacts in response to climate and land use changes. The investigations potentially 

require exploring urbanization and hydrological impacts on the landscape, regardless of the 

developmental needs for economic growth, investments and betterment of livelihoods. This 

becomes imminent due to the negative impacts resulting from human activities burdening the 

environment through over exploitation of natural resources (Hegazy and Kaloop 2015).  

Sediments eroded from land surfaces during construction activities primarily in urban 

environments cause downstream significant problems including blocking water canals, 

compromising water quality (turbidity, deposition of pollutants) and siltation (Hogarth et al., 
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2004; Shikangalah et al., 2017). Overall, the investigation sought to shed light on independent 

variables as urban growth explanatory drivers, quantify built-up area growth rate and the 

associated impacts of LULC and climate change on the landscape which is significant in 

addressing issues of sustainable urban development as targeted by Sustainable Development 

Goals (SDGs). The United Nations SDG 11 brings to attention the mandate to make cities safe, 

resilient and sustainable whilst, SDG 6 aims on the provision of proper water supply and 

sanitation as a basic right by 2030; which however, could be exasperating to attain considering 

the sprouting rate of urban settlements that are significantly unplanned and unrestricted due to 

political and socioeconomic influence. 

 

1.2 Objectives 

The specific objectives were to: 

1. Determine and quantify independent variables as explanatory drivers influencing LULC 

change for the Harare Metropolitan province using multispectral remotely sensed data 

between 1984 and 2018. 

2. Assess and estimate soil erosion risk for Epworth district of the Harare Metropolitan 

province between 2000 and 2018 time slices applying the Revised Universal Soil Loss 

Equation (RUSLE) model. 

3. Predict future LULC distribution patterns for 2034 and 2050, and to assess climate 

change impacts on soil erosion risk for Epworth district of the Harare Metropolitan 

province for the same periods applying the RUSLE model based on representative 

concentration pathways (RCPs 4.5 & 8.5). 

Thus, by quantitative and qualitative assessment of the above-mentioned specific objectives the 

research wants to answer the following questions: 

1. Using multispectral remote sensing data, which independent drivers influence urban 

expansion and at what rate has LULC change occurred between: 1984-1990, 1990-2000, 

2000-2008 and 2008-2018? 

2. To what extent has estimated soil erosion risk and soil loss rate in 2000 and 2018 

occurred as impacted by LULC change due to urbanization processes? 

3. How does climate change affect the landscapes of an urbanizing district? 
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1.3 Thesis outline 

The thesis consists of seven chapters. Three of the chapters are peer-reviewed research articles 

published in international journals. It is worth noting that the content of the peer-reviewed 

journals has been retained, duplicated and with some overlaps in the content of this thesis. 

Chapters from publications contain an abstract, introduction, materials and methods, results, 

discussion and conclusion sections. The thesis has been structured as follows: (1) Introduction 

(2) State of the art (3) Study site description (4) Mapping built-up area and axis of urban 

expansion using multispectral remote sensing and statistical modelling using binary logistic 

regression (5) Modelling spatial soil erosion risk and potential erosion using the empirical 

RUSLE model (6) Predicting impacts of future land use land cover and climate change on urban 

landscape (7) Synthesis and conclusion. 

The introductory part of the thesis includes chapters’ one up-to three. Chapter one serves 

as an introduction outlining the background, objectives for the study and the thesis structure. 

Chapter 2 highlights pertinent works that relate to the issues under study and investigation. This 

is done to address the objectives indicated in chapter one of the thesis through reviewing 

empirical works by other scholars. In that regard, the state of the art will identify knowledge 

gaps and challenges of methods applied, and consequently the need to develop other approaches 

as panacea to improved urban growth monitoring for sustainable development in cities. Chapter 

3 serves to describe the research area by providing detailed information on the location, 

historical background and environmental characteristics. Descriptions beyond the borders of 

the Harare Metropolitan Province are also provided to enable better understanding of the entire 

country’s relatedness and or variations of the physiography, climate and other characteristics. 

The introductory chapters of this thesis do not include detailed explanations of the methods 

applied. This is due to the avoidance of duplication as the methods are explained exclusively in 

the frame of the respective papers. 

The analytical chapters, four to six are based on peer-reviewed papers and brief chapter 

synopsis has been provided. The main thrust for the chapters were to investigate trends of 

LULC, axis of urban expansion and further, to assess the influence of LULC and climate change 

on landscape sustainability through soil erosion risk assessments.  

Analytical chapters’ synopsis:  

Chapters 4, 5 and 6 are published under a CC-BY 4.0 licence: (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 
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Chapter 4: Dynamics of land use and land cover changes in Harare, Zimbabwe: A case study 

on the linkage between drivers and the axis of urban expansion, Marondedze A. K and Schütt 

B., 2019. Land, vol. 8 (10). Own contribution: 80%. 

In order to assess trends of LULC changes and their driving forces in urban environments, the 

study employs supervised classification of Landsat 5 Thematic Mapper (TM) and Landsat 8 

Operational Land Imager (OLI) satellite images using support vector machines (SVMs). The 

research further established the influence of independent variables as urban growth explanatory 

drivers using the binary logistic regression modelling. The supervised classification generated 

using machine learning SVMs algorithms was enhanced through the use of spectral indices to 

improve the delineation of major land-use classes in a heterogeneous urban built-up area 

namely enhanced built-up and bareness index (EBBI), modified normalized difference water 

index (MNDWI) and soil adjusted vegetation index (SAVI). The analysis of urban growth 

explanatory variables using the logistic regression considered slope and the proximity 

characters (distance to main roads, secondary roads, open water bodies, streams and the city 

centre). The multispectral remotely sensed data from 1984, 1990, 2000, 2008 and 2018 were 

analysed and alarming rates of built-up area expansion were observed at the expense of 

croplands and disturbed green spaces within Harare Metropolitan Province. For the years 1984, 

1990 and 2000 it was deducted that distance to the city centre, distance to roads (major and 

secondary) significantly influenced the expansion of urban built-up area. However, with the 

increasing extent of built-up area the influence of the distance to city centre as a driver 

decreased as the metropolitan expanded towards the peripheries encroaching peri-urban land 

area.  

 

Chapter 5: Assessment of soil erosion using the RUSLE model for the Epworth District of the 

Harare Metropolitan Province, Zimbabwe, Marondedze A. K and Schütt B., 2020. 

Sustainability, 12, 853. Own contribution: 90%. 

In this chapter, the study examines the impact of land use conversions through urbanization 

processes in Epworth district of the Harare Metropolitan as drivers of urban landscape 

fragmentation. To understand such trends LULC maps of 2000 and 2018 time slices were 

integrated to assess the impacts of LULC changes on potential erosion and soil erosion risk. In 

so doing, the RUSLE model was used to estimate potential erosion between 1984 and 2018 

making use of long-term average annual precipitation (1984-2018) and further, the estimation 

of soil erosion risk for 2000 and 2018. For the estimation of potential erosion, the crop cover 
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management (C) and support practice (P) factors were used as identity elements (C and P = 1) 

and for the mapping of spatial soil erosion risk all RUSLE factors were incorporated as 

independent elements: soil erodibility (k), slope length and steepness (LS), rainfall erosivity 

(R), crop cover management (C) and support practice (P) factors. The general study findings 

reveal that there was positive correlation between areas of high soil erosion risk with high slope 

length and steepness factor, regardless of the declining estimated soil erosion risk between 2000 

and 2018. The study analysis displayed that increasing impervious surfaces due to built-up area 

expansion and compaction as a result of traffic movement contributes to concentrated surface 

runoff and overland flow as observed primarily with deep incisions on the sides of paved roads 

and footpaths. The study introduced snap shot field measurements for the generation of spatial 

area damage map to facilitate the understanding and validation of the RUSLE model with in-

situ field data.  

 

Chapter 6: Predicting the Impact of Future Land Use and Climate Change on Potential Soil 

Erosion Risk in an Urban District of the Harare Metropolitan Province, Zimbabwe, 

Marondedze A. K and Schütt B., 2021. Remote Sensing, 13, 4360. Own Contribution: 90%. 

This chapter aims at predicting future urban landscape responses to changes in LULC and 

climate. An integrated approach of CA-Markov model for the prediction of future LULC 

changes and the estimation of future soil erosion risk were investigated for the years 2034 and 

2050 using the RUSLE model. The computation of rainfall erosivity factor employs model 

ensemble averages of 15 statistically downscaled global circulation models (GCMs) outcomes. 

The GCMs outcomes were retrieved from the NASA Exchange Global Daily Downscaled 

Projections (NEX-GDDP) at 0.25° by 0.25° spatial resolution under the representative 

concentration pathways (RCPs) 4.5 and 8.5 climate scenarios. For the assessment of climate 

variability, periods between 2019-2034 and 2035-2050 were applied to determine the rainfall 

erosivity factor for the prediction of future soil erosion risk. The predicted results showed that 

future LULC will occur at the expense of croplands and green spaces, with soil erosion risk 

predicted to decline over time for both climate scenarios. It is also argued that the observed 

long-term annual rainfall averages mask highly intensive and frequent interannual rainfall 

events, which massively increase soil erosion risk from bare and sparse shrublands.  
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Chapter 7: Modelling spatial landscape responses to urbanization and climate change applying 

remote sensing data: A synthesis 

The chapter provides a synthesis of the findings, conclusions drawn from the study and overall 

reviews that will be developed for publishing. In this chapter, recommendations for future 

studies are laid out considering study limitations of the present study and other research gaps 

identified in the state-of-the-art chapter. The thesis concludes by providing a list of references. 
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CHAPTER 2: STATE OF THE ART 

Chapter 2 presents advancement in the field through detailed mathematical models 

incorporating field data for the quantification of urban growth and impact on LULC and climate 

change on the urban landscape. Notably, chapter 2 elucidated the effectiveness and robustness 

of using machine-learning algorithms in improving satellite image classification and the 

significance of confusion matrix a post-classification technique in change detection analysis. 

The state-of-the-art chapter further sheds light on the impact of high-intensity precipitation 

events on soil erosion risk based on the projected increase in consecutive dry days with an 

overall decline on annual rainfall averages with regards to climate change responses.  

 
2.1 The complexity of urban LULC change, dependencies and interactions 

 
Urbanization is referred as an uneven spatiotemporal process involving the expansion of 

physical structures to the already existing compounded by surges in population, economic 

activities and immigration (Samson 2009). Due to lack of consensus definition on urbanization 

as a process various definitions exists but with little differences for example, Ghani and Kanbur 

(2013) describe urbanization as the assiduous involvement of human population in residential 

and industrial areas combined with their associated effects on the environment which extends 

to the adjacent rural landscape. While, (Zhang and He 2006) indicate that urbanization is 

associated with the conversion of land use for other purposes to meet population and economic 

growth demands. Unequivocally, several scholars concur on the principle that urban growth 

occurring at unprecedented rate attract challenges, which affect human-environment 

interactions. These encompass loss of vegetation, encroachment of fragile ecosystems such as 

wetlands causing ecosystem fragmentation, biodiversity loss and development of urban heat 

islands (microclimate environment) causing outdoor thermal discomfort in cities (As-syakur et 

al., 2012; Belal and Moghanm 2011; Jat et al., 2017; Melesse et al., 2007; Mushore et al., 2017; 

Opeyemi et al., 2019; Shikangalah et al., 2017; Zhang and He 2006; Zhang et al., 2014). 

Globally, urbanization rates are uneven with faster growth rates observed in developing 

countries (Bhatta 2010; UN 2014). The projected 2030 annual average urban growth rate 

estimates the highest trend for Sub-Saharan Africa at 3.6%, with 2.3% in East and North Africa, 

2.2% for East Asia and the Pacific, 2.7% in South Asia, 1.5% in USA and the least urbanization 

rates were predicted for Europe at 0.04% (UN 2014). Additionally, the projected urbanization 

rates from the beginning of the 21st century shown that almost 2.5 billion people will be added 

to urban cities by 2050 (UN 2014). Urban expansion could be a positive indicator of social, 
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economic and political growth contributing to the improvement of material conditions (Akhter 

and Noon 2016; Khosrokhani and Pradhan 2014; Meshesha et al., 2014). Studies have indicated 

that spatial areal extent of numerous urban metropolitan areas is expanding adjacent to rural 

landscapes and urban peripheries (Araya and Cabral 2010; Hugo 2016; Xu et al., 2000). Urban 

expansion inevitably drives environmental problems including climate change (Mushore et al., 

2017), rampant LULC changes resulting in the loss of agricultural land, downstream pollution, 

siltation, damage to roads and other infrastructure due to soil erosion processes (Melesse et al., 

2007; Shikangalah et al., 2017).  

Further, unplanned and unrestricted urban settlements accelerate LULC changes on 

urban landscapes accentuating environmental problems such as outdoor thermal discomfort and 

poor air quality (Jat et al., 2017; Mushore et al., 2017; Weeks et al., 2007), overexploitation of 

natural resources and modification of the landscape primarily by increasing impervious surfaces 

which accelerate overland flow, surface runoff and subsequent flooding (Hegazy and Kaloop 

2015; Owoeye and Popoola 2017; Sayemuzzaman and Jha 2014). Also, LULC changes have 

direct impacts including surafce sealing which accelerates surface runoff, as well alteration of 

the hydrological cycle resulting from the removal of vegetation altering evapotranspiration 

processes and the dislocation of soil particles and sediment discharge downstream 

compromising water quality due to raindrop impact on bare surfaces (Asiedu 2018; Jinren, and 

Yingkui 2003; McCool et al., 1987; Weng 2001).  

LULC change distribution varies in time and space (Pax-Lenney and Woodcock, 1997; 

Sinha and Kumar, 2013; Karamage et al., 2017) therefore, investigations on the drivers 

influencing landscape change are essential to curb environmental destruction. Accelerated 

LULC changes particularly in developing countries are characterized by urban sprawling, 

mushrooming informal settlements, invasion of urban agricultural land and encroachment of 

district boundaries to peri-urban land at the expense of the ecosystem (Akhter and Noon 2016; 

Hegazy and Kaloop 2015; Xu 2007). Soil erosion is among other negative impacts induced by 

urbanization processes, which however is affected by other intertwined factors including soil 

erodibility, rainfall erosivity, topographic characteristics, vegetation cover and management 

practices (Fournier, 1972; Wischmeier and Smith, 1978; Hill and Schütt, 2000; Cammeraat, 

2004; Morgan, 2005; Verheijen et al., 2009; Liu et al., 2015; Panagos et al., 2015; Borrelli et 

al., 2020).  

The LULC change dynamics have become major components of managing, evaluating 

and monitoring environmental changes. The transformation of LULC is driven by numerous 

factors which can be complex due to dependencies and interactions in space and time (Al-
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Hameedi et al., 2021; Zhai et al., 2021). For instance, the driving factors can be categorized as 

natural and human induced. The later considers political, social, economic and cultural 

activities while natural drivers such as site conditions (topography and soil conditions), floods 

and droughts can also be indirectly influenced by human activities (Mondal et al., 2015; 

Owoeye and Popoola 2017). As such, it is necessary to monitor and evaluate urban growth 

trends using geospatial technologies and remote sensing data to reduce deterioration of 

environmental quality and enhance sustainable urban development. According to the 

Brundtland report, sustainable development “...seeks to meet the needs and aspirations of the 

present without compromising the ability to meet those of the future” (Brundtland et al., 1987). 

Therefore, understanding drivers of LULC change and their impacts on the landscape of an 

urban area plays a pivotal role in the crafting and implementation of policies for effective future 

urban planning and management (Sinha et al., 2016; Xu et al., 2007; Yang et al., 2003).  

Several studies have highlighted the significance of using multi-temporal remote 

sensing data for urban growth monitoring processes through establishing LULC trends (Al-

Bilbisi 2019; As-syakur et al., 2012; Hegazy and Kaloop 2015; Kamusoko et al., 2013; 

Mushore et al., 2017; Yang et al., 2003). The remote sensing data provides historical and up-

to-date spatiotemporal data suitable for environmental management. Urban growth monitoring 

is enabled through the use of change detection analysis which identify changes between two or 

more dates in the same geographical area (Shalaby and Tateishi 2007; Sinha and Kumar 2013). 

Having numerous change detection methods that apply multi-date satellite remote sensing data, 

the commonly used methods include classification-based techniques (map to map comparison) 

involving the detection of detailed change trajectories and the spectrally based (image to image) 

which allows detection of binary change/no-change (Green et al., 1994; Lu et al., 2004).   

A change detection analysis highlights the expansion of built-up area at the expense of 

croplands, horticultural farms and the encroachment of administrative boundaries (Weng 2001). 

For Amman city in Jordan, spatial monitoring of urban expansion applied the multispectral 

remote sensing data and change detection analysis observing that between 1987-1997 urban 

growth increased by approximately 3.33% with other subsequent decades to 2017 having 

almost 2.04% growth rate (Al-Bilbisi 2019). This study reveals that urban growth 

predominantly took place along road networks and infrastructural development occurred at the 

expense of green spaces and other disturbed areas. Another study in Ujjain city, India utilized 

change detection criterion in Erdas Imagine software using moderate resolution Landsat 

imagery reports urban growth between 2005 and 2015 (Patley et al., 2018). Further, a change 

detection analysis between 1993 and 2001 in western Georgia using sub-pixel imperviousness 
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approach, a pixel-based change detection technique displays the abundance of urban monitoring 

and change detection techniques in remote sensing (Yang et al., 2003).  

Rainfall induced erosion in urban areas has been reported due to LULC changes which 

influence vegetation loss (Opeyemi et al., 2019; Shikangalah et al., 2017) and decreasing 

infiltration capacity resulting from construction activities, traffic and human movements 

causing compaction of the land area (Dams et al., 2013; USDA. NRCS 2000). The rainfall 

erosive power varies depending on its intensity, volume and duration; and soil physical 

properties (Asiedu 2018; Borrelli et al., 2020; Nearing 2001; Zhang et al., 2013). However, to 

understand the impact of rainfall as a function of its erosive power to overcome soil shear forces, 

displace and transport soil particles to the point of deposition soil erosion models integrate 

rainfall erosivity (Wischmeier and Smith, 1978; Asiedu, 2018; Wang et al., 2018).  

 

2.2 Urban growth theories  

The ultimate explanation and description of how cities were formed and evolved cannot be 

addressed by a single theory or factor. Multiple theories have been laid out to explore 

development and existence of cities. Von Thünen’s theory is among the first to explain the form 

and evolution of a city with an economic approach and the concept of a medieval village design 

(McDonagh 1997; von Thünen 1910). According to Burgess in 1923 (Park and Burgess 1967) 

a concentric ring approach was developed highlighting that cities expand from their original 

centers in a series of concentric zones. With the central business district (CBD) primarily for 

high rental fee uses such as department stores, financial institutions, theatres, office buildings 

(Park and Burgess 1967). Following the inner zone of high rental fees is the zone of transition 

proposed to constitute residences of low-income earning class mainly employed in the CBD 

with others linked to the activities of similar nature as those that occur in CBD. The transition 

zone exists as a function of low travelling and housing costs as well as poor buildings and 

packed structures (Park and Burgess 1967). The concentric zones move from the centric point 

“CBD” further apart attracting rising cost of living following increasing distances from the 

CBD indicating higher travelling and living costs. Such scenarios show social class structures 

between the low, medium and high-income earning members of the society. According to 

Burgess (1923) cities grew outwards to the peripheries in zones.   

An alternative to the concentric ring theory is the sector theory by Hoyt (1939), urban 

development is modelled like “pie slices” with its growth described as extending from the CBD 

to the outskirts as individual sectors/wedges. For such scenario representation, transportation 

routes connecting from the CBD influence the axis of growth and provide natural boundaries 
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to the individual sectors. The theory suggests that outward expansion follows site selection on 

vacant land considering topographical characteristics, connectivity and natural beauty by high 

income groups or social classes leaving previous residential areas for the lower classes to more 

scenic areas (Hoyt 1939).   

Additionally, the multiple nuclei theory by Harris and Ullman (1945), on urban land use 

development suggests that with the expansion of cities more additional business centers 

emanate primarily along major routes. These growing business centers alone become the nuclei 

and as a result harbor activities and business opportunities. Therefore, there are no concentric 

zones applied on multiple nuclei theories rather their development could be associated with 

poor connectivity to the CBD or increasing distance. As such, the Chicago school theories 

highlighted the market approach on residential areas and factors influencing urban development 

which in turn have an impact on LULC changes as these are continuous processes (Harris and 

Ullman 1945; Hoyt 1939; Park and Burgess 1967). 

Criticism against the “Classics of Urban Theory” and development of new theoretical 

ideologies brought about by other scholars  revealed that classical models addressed society 

questions and respectively nothing coherent on urban development (Harvey 1973; Castels 1978; 

McDowell 1983; Massey 1991; Black and Henderson 1999). However, Scott and Storper 

(2014) embrace the classical and new theoretical models highlighting that the assumptions of 

these models recognized that urban areas cannot be explicitly defined by theoretical frameworks 

rather they fundamentally consider agglomeration processes, land and human interactions in 

their developments. Overall, the urban theories or the “Classics of Urban Theory” notably 

shared urban development theories aiming at gaining a classical view and better understanding 

of the sociospatial segregation within a city. This can be linked to physical geography 

considering the influence of demographic growth and their socioeconomic impacts on the 

environment. This implies that city size will evolve over time in respect to population and 

economic growth (Black and Henderson 1999). The “Urban Land Nexus” theory by Scott and 

Storper (2014) also describes that cities group themselves into spatially extensive lattices 

characterized by processes which differentiate. In addition, cities have dynamic attributes with 

regards to social, political and economic phenomena. The Chicago school theories by Park and 

Burgess (1967), Harris and Ullman (1945), Hoyt (1939) prove that social clustering by class 

existed and their existence to date still subsist nevertheless the present research work 

investigates independent variables influencing urban growth, axis of expansion and their 

impacts on the landscape.  
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2.3 Remote sensing application in monitoring urban growth and landscape management 

2.3.1 Image classification and analysis 

The geographic information of urban systems can be timeously and accurately acquired through 

the use of remotely sensed data and geographic information systems (GIS) technology which 

allow data analysis, manipulation and storage including image classification processes for 

spectral analysis and characterization (As-syakur et al., 2012; Huang et al., 2002; Long and 

Srihar 2004; Patino and Duque 2013; Xu et al., 2007). Image classification is the procedure 

involving labelling and categorizing pixels based on spectral information into land cover classes 

either by applying supervised or unsupervised criterion (Long and Srihar 2004; Nooni et al., 

2014; Vapnik 1998). In summary, to generate thematic maps various applications can be 

integrated including machine learning algorithms for the classification of multi and 

hyperspectral satellite images (Melgani and Bruzzone 2004; Nemmour and Chibani 2006). In 

the current study, supervised image classification techniques were applied using Support Vector 

Machines (SVMs). A brief description of classification techniques is provided distinctly 

highlighting the differences between supervised and unsupervised classification. However, the 

research work integrated the machine learning algorithms due to their robustness as non-

parametric classifiers (Huang et al., 2002; Kamusoko et al., 2013; Knorn et al., 2009; Pal and 

Mather 2005). For example, the SVMs are statistical supervised classifiers based on machine 

learning theory (Vapnik 1998). The SVMs can be applied with minimum training areas to 

optimize the selection criteria of LULC classes by constructing hyperplanes in 

multidimensional spaces (Foody and Mathur 2004; Melgani and Bruzzone 2004) without 

requiring assumptions of data distribution which is a major limitation in remote sensing 

applications (Adelabu et al., 2015; Chemura and Mutanga 2017; Nooni et al., 2014). 

Supervised classification is a technique that uses different classifiers including the 

machine learning algorithms allowing the user to predetermine the output attributes by using 

small proportion of labelled input attributes during training (Awad and Khanna 2015; Berry et 

al., 2020; Hegazy and Kaloop 2015; MathWorks 2016; Melgani and Bruzzone 2004). Data 

training is the most fundamental stage for supervised classification and primarily dictates the 

classification accuracy (Foody and Mathur 2006). This results from the descriptive statistics of 

the training attributes selected from the image to characterize classes using algorithms 

following the application of expertise and prior knowledge of the area (Hegazy and Kaloop 

2015; Lary 2010; Vapnik 1998). Burges (1998) revealed that SVMs were effective in pattern 

recognition therefore showing their significance as statistical learning tools with improved 

classification accuracy (Vapnik 1999). Further, the performance of SVMs has been observed to 
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surpass other classifiers including Artificial Neural Network, Maximum Likelihood, 

Parallelepiped and the Minimum distance (Adelabu et al., 2015; Chemura and Mutanga 2017; 

Huang et al., 2002; Kamusoko et al., 2013; Mou et al., 2018; Mushore et al., 2017; Nooni et 

al., 2014), SVMs showed better classification accuracy over Random Forest (RF) machine 

learning algorithms in the differentiation of tree species in semi-arid areas of Botswana. 

Nevertheless, both machine-learning algorithms attained high classification accuracy of over 

85% with minimum training attributes. As such Foody and Mathur (2006) reiterate that the 

nature of the classier should determine the training paradigm and learning processes to ensure 

independency among classifiers. Additionally, machine learning algorithms have been deemed 

attractive and highly performing classifiers with regards to the applications involving nonlinear 

data and accuracy in articulating remote sensing challenges in many fields including agriculture 

or the detection of urban growth (Anselm et al., 2018; Dubeau et al., 2017; Nooni et al., 2014; 

Schubert et al., 2018).  

In contrast, unsupervised classification applies clustering processes by which 

algorithms identify and examine unknown pixels and further divide them into different classes 

according to their natural groupings to establish structure in datasets (Berry et al., 2020; 

Dougherty et al., 1995; Jain 2010). For unsupervised classification there is no predetermination 

of attributes rather the approach uses all variables as inputs in the analysis (Berry et al., 2020). 

Abbas et al. (2016) highlight that the complexity of applying prior knowledge on noisy images 

during supervised classification processes reduces attribute labelling accuracy. As such, Wang 

and Cheng (2010) support the notion of unsupervised classification involving automatic 

classification and cluster analysis. For example, the K-Means classifier develops clusters 

following the identification of arbitrary values representing the same properties based on 

spectral characterization and the assigning of pixels to clusters on proximal basis using the 

Euclidean distance (Abbas et al., 2016; Jain 2010; Kulkarni et al., 2020; Venkateswaran et al., 

2013). The K-Means algorithms were developed to allow minimum cluster size, merging and 

splitting clusters (Jain 2010). Examples of unsupervised classifiers include the Iterative Self-

Organizing Data Analysis Technique Algorithm (ISODATA) (Ball and Hall 1965), Forgy 

(Forgy 1965) and Fuzzy c-means (Dunn 1973) which are modifications of the K-Means 

algorithms with enhanced selection processes though they continue to integrate the clustering 

of attributes as their core principle.  
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2.3.2 Urban LULC feature delineation 

Urbanization will continue to be witnessed as a result of increasing population and economic 

development. Consequently, rapid changes to LULC make it essential and indispensable to 

understand urban growth trends. Urban areas mostly in developing countries are regarded as 

more heterogenous and hence more challenging for monitoring and assessing change dynamics 

(Sakieh et al., 2015). This is attributed to poor urban planning, construction using different 

roofing materials, size of built-up units and their distribution (Jat et al., 2017; Sakieh et al., 

2015). However, with the use of moderate to coarse spatial resolution satellite images the urban 

area landscape appears homogenous because different attributes of the land within a single grid 

cell are combined into one (Kadhim et al., 2016) and also high levels of spectral confusion 

resulting in misleading information (As-syakur et al., 2012). Following such scenarios, 

researchers have adopted various techniques of improving classification for better change 

detection analysis. For example, fusing Landsat 8 Operational Land Imager (OLI) NDVI at 30 

m resolution with MODIS NDVI at 250 m improved overall classification accuracy of urban 

environments by 4% in comparison to single temporal Landsat remote sensing data (Jin et al., 

2006).  

Urban landscape feature delineation can also be improved through the use of spectral 

indices and machine learning algorithms such as random forest (RF) and support vector 

machines (SVMs) (As-syakur et al., 2012; Nooni et al., 2014; Chemura and Mutanga, 2017). 

Spectral indices have been developed and are calculated for the extraction of features of interest 

during mapping either through strong absorption or reflection in different spectral bands of the 

multispectral imagery (Im and Jensen 2008; Xu 2008). As such, numerous remote sensing 

spectral indices assist urban built-up area mapping including the Normalized difference 

vegetation index (NDVI), Normalized difference build-up index (NDBI), Enhanced build-up 

and bareness index (EBBI), Modified normalized difference water Index (MNDWI), Soil 

adjusted vegetation index (SAVI) (Bannari et al., 1995; Huete 1988; Mwakapuja et al., 2013; 

Sinha et al., 2016; Xu 2007). Further, the use of high spatial resolution images such as 

IKONOS, Quickbird, GeoEye and Worldview satellite series with 5 m or better spatial 

resolution makes it ideal for delineating individual buildings and enabling enhanced change 

detection analysis (Hu and Weng 2013). However, the commercialization of these sensors is a 

major limiting factor for many studies due to high costs. Nevertheless, several studies have 

adopted moderate resolution (10–100 m) remote sensing data due to easy accessibility and its 

spatial coverage. This makes it suitable for regional and global studies; more so data 

requirements for urban monitoring and evaluation over long periods make use of historical 
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information which primarily is archived on the early established coarse to moderate satellite 

databases (Hegazy and Kaloop 2015; Mukherjee et al., 2018; Mushore et al., 2017; Weng 2012; 

Zhang et al., 2013).    

 

2.3.3 Factors influencing soil erosion  

 

The empirical, physical and conceptual models have been developed to qualitatively and 

quantitatively assess soil erosion processes and their methods vary depending on the objectives 

and availability of data (Wischmeier and Smith, 1978; Nearing, 1997; Smith, 1999; Merritt et 

al., 2003). Both empirical and physical models represent natural processes but empirical models 

provide a dynamic approach based on statistical relevance while physical models are based on 

describing each individual process of a system resulting into complex models that require input 

data with high spatial and temporal resolution (Jetten et al., 2003; Legesse et al., 2004; Merritt 

et al., 2003; Nearing 2001; de Vente and Poesen 2005). Conceptual models resoundingly are a 

combination of empirical and physical based models suitable for providing indications of 

qualitative and quantitative processes within a watershed (Beck 1987). Due to limited empirical 

work on the impacts of urbanization and climate change on the landscape primarily soil erosion 

risks in Sub-Saharan Africa, the current research integrated remote sensing and geo-

informatics. This approach is robust and cost effective for the estimation of current and future 

soil erosion risk as this is a desideratum for sustainable urban planning in the Harare 

Metropolitan province and for further research (Kabantu et al., 2018; Makinde and Oyebanji 

2018; Opeyemi et al., 2019; Renard et al., 1997; Shikangalah et al., 2017). 

Influence of Slope 

The topographic characteristics of a landscape are considered valuable for soil erosion 

assessment. In this regard, the slope length and slope angle factors (LS) are required for spatial 

mapping of soil erosion risk in the RUSLE model. The LS factor accounts for soil loss and 

sediment yield down slope resulting from the combined effects of length and steepness of a 

slope converging onto a given point (Prasannakumar et al., 2012). It has been determined that 

the sediment yield per unit area is proportional to the LS factor (Wischmeier and Smith, 1978). 

The S factor measures the effect of slope steepness and the L factor describes the impact of 

slope length (Wischmeier and Smith, 1978; Panagos et al., 2015). The slope length has been 

widely defined as the distance from the point of origin of overland flow to the point where 

either slope gradient decreases to allow deposition or where the flow reaches defined channels 
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(Wischmeier and Smith, 1978). The LS factor calculations were developed from the initial unit 

plot and field scale measurements proposed considering the effect of slope on sheet, rill and 

inter-rill erosion by water (Wischmeier and Smith, 1978) (Table 2.1). The RUSLE modelling 

approach introduced modifications to the LS factor generation extending it to one-dimensional 

hill slope scale implementing various equations based on slope gradients (Renard et al., 1997) 

with further advances considering complex topographic units by introducing contributing area 

and flow accumulation (Desmet and Govers 1996; Moore and Burch 1986).  

To obtain the LS factor, digital elevation model (DEM) is widely used for this approach 

(Kefi et al., 2011; Prasannakumar et al., 2012; Panagos et al., 2015; Phinzi and Ngetar, 2019). 

The DEMs in soil erosion modelling include the ASTER Global DEM on which its datasets are 

obtained by stereoscopic techniques (Toutin and Gray 2000) and the Shuttle Radar Topography 

Mission (SRTM) that is obtained by radar interferometry (Moura-Bueno et al., 2016) all 

available at 90 m and 30 m spatial resolutions (Phinzi and Ngetar 2019). The landscape 

morphology either in its natural or modified state enormously contributes to soil loss. According 

to Desmet and Govers (1996) plan-concaved areas are zones of high flow accumulation and 

potentially have high LS values compared to convex areas. As such there is high correlation 

between soil loss and concaved sloppy areas due to the cumulative concentration of overland 

flow and surface runoff (Haan et al., 1994; Kefi et al., 2011; Prasannakumar et al., 2012). The 

increase in slope length (L) and slope steepness (S) contribute to increased overland flow and 

increased erosion rates in the absence of vegetation and other soil erosion control practices 

(Renard et al., 1997; Karamage et al., 2017). That is, the steeper the slope of a landscape the 

higher the velocity of surface runoff and the longer the slope length the greater the amount of 

cumulative runoff corresponding to increased soil erosion (Desmet and Govers 1996; Moore 

and Burch 1986). Nevertheless, McCool et al. (1987) reiterate that soil loss is heavily linked to 

changes in slope steepness compared to changes in slope length. 
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Table 2.1 Commonly used equations for generating slope length and steepness (LS) factors. 

No. Equation Source 

1 
𝐿𝑆 =  (

𝜆

22.13
)

𝑚

(65.41 𝑠𝑖𝑛2 𝛽 + 4.56 sin 𝛽 + 0.065) 

 

where: λ is the the slope length (m),  

            m is the constant dependent on the value of slope, and  

            β is the downhill slope angle categorized as:  

           - 0.5 for slope angle greater than 2.86ᵒ,  

           - 0.4 for slopes between 1.72ᵒ and 2.86ᵒ,  

           - 0.3 for slopes between 0.57ᵒ and 1.72ᵒ,  

           - 0.2 for slopes less than 0.57ᵒ. 

Wischmeier 

and Smith 

(1978) 

2 
𝐿𝑆 =  (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑥 

𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒

22.13
)

0.4

𝑥 (
sin 𝑆𝑙𝑜𝑝𝑒

0.0896
)

1.3

 

where: 

Flow accumulation shows the contribution of an area accumulated         

upslope for a given cell,  

Cell size is the size of the grid cell, and the sin Slope is the slope 

degree value in the trigonometric function sin. 

Moore and 

Burch (1986) 

3 
𝐿𝑖𝑗 =  

(𝐴𝑖𝑗−𝑖𝑛 + 𝐷2)
𝑚+1

−  𝐴𝑖𝑗−𝑖𝑛
𝑚+1

𝐷𝑚+2𝑥 𝑋𝑖𝑗
𝑚 𝑥 22.13𝑚

 

where: 

Aij – in is the contributing area at the inlet of each grid cell (i, j) 

measured in m2,  

D is the grid cell size (m), Xij = sin aij + cos aij is the aspect direction 

of the grid cell (i, j),  

              m is related to the ratio β of the interill erosion given as: 

Desmet and 

Govers (1996) 

𝑚 =  
𝛽

𝛽 + 1
𝛽 =  

sin 𝜃
0.0896

[0.56 + 3 𝑥 (sin 𝜃)0.8]
 

 

where: θ is the slope in degrees.  

m value varies from 0 and 1. If the rill to interill ratio is near 0,  

m value approaches 0. 

4 
𝐿 =  (

𝜆

72.6
)

𝑚

 

𝑚 =  
𝛽

1 +  𝛽
 

𝛽 =  
(

sin 𝜃
0.0896

)

[3.0 𝑥 (sin 𝜃)0.8 +  0.56]
 

Renard et al. 

(1997) 

If slope < 9%:          𝑆 = 10.8 𝑥 sin 𝜃 + 0.03 

If slope ≥ 9%:          𝑆 = 16.8 𝑥 sin 𝜃 − 0.50 

But if slope < 15ft: 𝑆 = 3.0 𝑥 (sin 𝜃)0.8 + 0.56 

                                 λ is the the slope length (m) 

                                 θ is the angle of slope  

                                 m is slope dependent and classified as: 

                                 0.5 for slope > 2.86ᵒ,  

                                 0.4 for slopes between 1.72ᵒ and 2.86ᵒ,  

                                 0.3 for slopes between 0.57ᵒ and 1.72ᵒ,  

                                 0.2 for slopes less than 0.57ᵒ 
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5 
𝐿𝑆 =  (

𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑚 𝑥 𝐺𝑟𝑖𝑑 𝑠𝑖𝑧𝑒

22.13
)

0.4

𝑥 (
sin 𝑆𝑙𝑜𝑝𝑒  𝑥 0.1745

0.09
)

1.4

 

where: 

Flow accumulation represents the generated flow from each and 

every cell following the generation of flow direction of filled DEM,  

             Grid size is the length of cell side, and  

             sin (Slope) is the slope degree value in the function sin. 

Mitasova et al. 

(1996) 

6 
𝐿𝑆 =  

𝑋

22.1
 𝑚 (0.065 + 0.045𝑆 + 0.0065𝑆2) 

where: 

X represents the slope length (m),  

              S is the slope gradient (%) and m is the slope contingent variable. 

Bizuwerk et 

al. (2008) 

 

Influence of Rainfall  

Rainfall erosivity is the aggressiveness of rainfall to mobilise soil particles due to the effect of 

its kinetic energy resulting from drop size, duration and intensity (Lal 1990; Owusu 2012). The 

rainfall erosivity impact is purported to contribute almost 80% of soil loss (Renard and 

Freimund 1994). Stocking and Elwell (1976) state that high intensity rains are damaging when 

vegetation cover is poor. The widely applied rainfall erosivity index is the R factor formerly 

used in the empirical based Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 

1978) and the later Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). The 

R factor is given as the sum of individual storm EI values for long term averaged annual rainfall 

(> 20 years) in order to account for cyclical rainfall patterns and variations (Wischmeier and 

Smith, 1978; Renard and Freimund, 1994). The R factor for a given period is obtained by 

summing the product of total storm kinetic energy (E) (MJ ha-1) and the maximum amount of 

rainfall received within 30 consecutive minutes (I30) (Renard and Freimund 1994) computed 

using Equation (2.1): 

𝑅 =  
1

𝑛
∑ [∑ (𝐸)𝐾(𝐼30)𝑘

𝑚
𝑘=1 ]𝑗

𝑛
𝑗=1               (2.1) 

 

where R is the average annual rainfall erosivity (MJ mm ha-1 h-1 yr-1), E is the total storm kinetic 

energy (MJ ha-1), I30 is the maximum 30 min rainfall intensity (mm h-1), j is an index of the 

number of years used in obtaining the average rainfall, k is an index of the number of storms in 

each year, n is the number of years used to derive the average R, and m is number of storms in 

each year. 

Wischmeier & Smith (1978) state that total storm energy is a function of the intensities 

at which rainfall took place and its amount recorded at each time interval. Further, the kinetic 

energy of each rainfall unit depends on the sizes and terminal velocity of its raindrops 

(Wischmeier and Smith, 1978). This detailed data is provided by the pluviograph or autographic 



20 
 

rain gauge. However, due to the scarcity and unavailability of homogenous rainstorm data at 

most meteorological stations studies are adopting the use of mean monthly and annual rainfall 

data for the derivation of rainfall erosivity factor using estimation relations (Ferro et al., 1999; 

Merritt et al., 2004; Renard and Freimund 1994). The R factor estimation relations have been 

proposed to be predominantly location specific to reduce errors on the predicted soil loss rates, 

data scarcity and resources unavailability in carrying out spatial soil erosion modelling 

(Arnoldus 1977, 1980; Lo et al., 1985; Smithen and Schulze 1982). 

 

Influence of Soil type 

Soil erodibility is the susceptibility of the soil to erosion (Renard et al., 1997) and this is a 

function of its physical, chemical and pedologic characteristics including soil texture, structure, 

permeability, parent material, organic matter, stone coverage, bulk density, shear strength and 

other constituents (Wischmeier and Smith, 1978; Renard et al., 1997; Song, 2005). According 

to Morgan (2005), soil erodibility factor (K) is the mean annual soil loss per unit of rainfall 

erosivity in reference to a standard barren plot of fine tilth without conservation practices 

(Flangan and Nearing 1995; Renard et al., 1997). The erodibility of a soil driven by rainfall-

runoff processes will increase proportionally with increasing amount of fine silt and sand 

particles (Lal 1994; Woldemariam et al., 2018). Soils with high organic matter content are more 

resistive to erosional forces and facilitate percolation of rainfall compared to soils with low soil 

organic matter and unstable aggregates (Nyamangara et al., 2014; Stocking and Elwell 1976). 

Clay rich soils with heavy presence of organic materials and decomposing residues forming 

stable aggregrates have high resistive forces to soil detachment hence soil erodibility factor is 

near 0 while highly susceptible soils have values near 1 (Wischmeier and Smith, 1978; 

Karamage et al., 2017; Woldemariam et al., 2018). Mhangara et al. (2012) indicate that low 

percentage of silt content corresponds to low soil erodibility regardless of sand and clay 

proportions. Soils with low levels of organic matter containing very low percentages of clays 

are susceptible to severe soil erosion driven by rainfall-runoff (Lal 1985). Additionally, high 

organic matter contents facilitate soil particle aggregation and infiltration (Nyamangara et al., 

2014; Zakerinejad and Maerker 2015). Using the widely applied RUSLE model to map spatial 

soil erosion a combination of soil physical properties including soil texture, permeability, 

organic matter and structure were investigated to estimate the soils susceptibility to erosion 

process (Renard et al., 1997) following the Equation (2.2): 

 

K = 2.8 x 10-7 x (12 - OM) x M1.14 + 4.3 x 10-3 x (s - 2) + 3.3 x 10-3 x (p - 3)         (2.2) 
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where K is the soil erodibility factor; OM is the percentage of organic matter; s is the soil 

structure code ranging between 1 and 4 defined as: 1 is friable, 2 is polyhedral, 3 is medium to 

coarse polyhedral and 4 is solid; p is the soil permeability code categorized into 6-code values 

(1 for rapid movement, 2 from moderate to rapid, 3 for moderate, 4 from slow to moderate, 5 

for slow and 6 for very slow movement); M is the particle size parameter which is expressed 

as: 

M = (% silt + % very fine sand) x (100 - % clay)              (2.3) 

 

However, due to field data scarcity several alternative methods were designed for the estimation 

of soil erodibility applying available data for example Equation (2.4) generates K factor in the 

absence of soil structure and soil permeability (Sharpley and Williams, 1990).  

 

K =  F𝑐𝑠𝑎𝑛𝑑 ∗  F𝑠𝑖 –  𝑐𝑙 ∗  F𝑜𝑟𝑔𝑐 ∗  Fℎ𝑖𝑠𝑎𝑛𝑑 ∗  0.1317             (2.4) 

 

 where,  F𝑐𝑠𝑎𝑛𝑑 = [0.2 + 0.3 𝑒𝑥𝑝 (−0.0256𝑆𝐴𝑁 (1 −  
𝑆𝐼𝐿

100
))]          (2.4a) 

  

  F𝑠𝑖 –  𝑐𝑙 = [
𝑆𝐼𝐿

𝐶𝐿𝐴 + 𝑆𝐼𝐿
]

0.3

              (2.4b) 

 

  F𝑜𝑟𝑔𝑐 =  [1.0 −
0.25 𝐶

𝐶+exp(3.72−2.95𝐶)
]              (2.4c) 

 

  𝐹ℎ𝑖𝑠𝑎𝑛𝑑 =  [1.0 −  
0.70(1− 

𝑆𝐴𝑁

100
) 

(1− 
𝑆𝐴𝑁

100
)+exp[22.9 (1− 

𝑆𝐴𝑁

100
)− 5.51] 

]            (2.4d) 

 

where, K is soil erodibility factor (t ha h ha-1 MJ-1 mm-1), SAN is sand weight content (%), SIL 

is silt weight content (%) and CLA represents clay weight content (%), C is the organic carbon 

content. 

 

Influence of crop cover management factor (C) 

The influence of humankind on crop cover management practices illustrates the significance of 

anthropogenic activities on ecosystem management and sustainability. In general, the crop 

cover management practices can be related to the human-environment interactions highlighting 

that everything people do has direct effects on the environment, whilst everything that 
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continuously occurs in the environment reciprocate affects humankind (Salisbury et al., 2013). 

The crop cover management practices give an indication of the ratio of soil loss from land with 

specific vegetation cover to the corresponding soil loss under bare or tilled continuous fallow 

land (Wischmeier and Smith, 1978; Renard et al., 1997). The C factor ranges from 0 for non-

erodible areas with high percentage of plant cover to 1 which corresponds to high soil erosion 

risk due to minimum vegetation cover or bareness as a result of extensive tillage increasing 

exposure to soil erosion (Renard et al., 1997). The leaf cover protects the soil from direct 

raindrop impact by dissipating precipitation velocity minimizing its effects on bare soil surface 

(Koirala et al., 2019; Ranzi et al., 2012). Biomass assists percolation of water through the 

reduction of surface runoff and also it reduces soil displacement by direct rainfall on bare areas 

(Opeyemi et al., 2019; Simonneaux et al., 2015).  

Several methods exist for the calculation of C factor primarily making use of remotely 

sensed data and ground surveys for instance the USLE method (Wischmeier and Smith, 1978) 

derived the C factor based on empirical equations with measurements considering weighting of 

attributes including plant growth, ground cover, aerial cover and minimum drop height (Alena 

et al., 2013; Panagos et al., 2014). The C factor is also generated by applying the normalized 

difference vegetation index (NDVI) a vegetation growth index obtained by remote sensing into 

an exponential formula (Van der Knijff et al., 1999). The vegetation indices such as Normalized 

Difference Vegetation Index (NDVI) are applied to measure the biomass or vegetative vigor 

indicating differences in plant cover (Alexakis et al., 2013). The vegetation spectral properties 

apply the red (R) reflectance of the visible red bands which are Band 3 of ETM+ or Band 4 of 

OLI and the near-infrared (NIR) bands which are Band 4 of ETM+ and Band 5 of OLI sensors 

as shown on Equation (2.5) with values ranging between - 1 (non-vegetated) and + 1 (healthy 

vegetation) (Ahmed et al., 2013; Chen et al., 2006).  

 

   𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 −  𝑅) (𝑁𝐼𝑅 + 𝑅)⁄                               (2.5) 

 
This reveals the applicability of remote sensing on assessing C factor with other studies 

highlighting successes in its application (Equation 2.6) on similar terrain and climate conditions 

(Van der Knijff et al., 1999; Kouli et al., 2009; Prasannakumar et al., 2012). 

 

𝐶 =  𝑒𝑥𝑝 [−𝛼
𝑁𝐷𝑉𝐼

(𝛽−𝑁𝐷𝑉𝐼)
]                                                        (2.6) 

where α and β are unitless parameters that determine the shape of the curve relating to NDVI 

and C factor with values 2 and 1 substituted for α and β.  



23 
 

 

According to Durigon et al. (2014) for tropical regions C factor values can be generated 

following the Equation (2.7): 

𝐶𝑟 =  (
−𝑁𝐷𝑉𝐼+1

2
)                 (2.7)

  

where Cr is the denominated rescaled C factor. 

The rescaled C factor was generated to modify the C factor obtained by Van der Knijff et al. 

(1999) following the notion that the rescaled C factor was more suitable for tropical climate 

conditions. The variation resulted due to intense rainfall experienced under tropical climate 

conditions causing an overestimation of the C factor when applying Equation 2.6 by Van der 

Knijff et al. (1999) which has been calibrated using European conditions (Durigon et al., 2014). 

 

Influence of the support practices  

The support practice factor index P in soil erosion modelling approaches represent the soil 

conservation practices that are applied for water harvesting and to control soil erosion by water 

including among others terracing, contour ridges and strip cropping (Wischmeier and Smith, 

1978). The mechanical soil conservation practices reduce the amount and rate of soil erosion 

intrinsically by controlling rainfall-runoff processes such as runoff concentration, velocity, flow 

pattern and the hydraulic forces directed by runoff on soil surface (Renard et al., 1997; 

Prasannakumar et al., 2012; Panagos et al., 2015). The P factor values range between 0 and 1, 

where lower values closer to 0 reflect good conservation practices and increasing values closer 

to 1 show little to no conservation practices (Wischmeier and Smith, 1978; Renard et al., 1997). 

Expert knowledge can be used to generate P factor through the evaluation of farming activities 

either by field observations or analyzing classified images from remote sensing (Karydas et al., 

2009; Panagos et al., 2014; Strand et al., 2002). Literature based P factor of 1 is widely adopted 

if there are no support practices registered on the research area (Adornado et al., 2009; Panagos 

et al., 2014). A support practice factor of 0.25 under zoned tillage management practice has 

been observed to potentially reduce soil loss by 75% in comparison with conventional tillage 

which adopts a high P factor value of 1 (Benavidez et al., 2018). Panagos et al. (2015b) 

investigated the influence of contour farming, stone walls and grass margins as support 

management practices on reducing the impact of soil erosion risk at European scale. The study 

concludes that grass margins reduced soil erosion by 57%, stonewalls by 38% and about 3% 

reduction in soil erosion risk for contour farming practices. As such P factors are significant in 
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scenario and sensitivity analysis on assessing impacts of different support management 

practices (Benavidez et al., 2018). 

 

2.3.4 Impact of urban growth on soil erosion 

Urban built-up area growth and expansion is inevitable due to demographic growth necessitated 

by migration and increasing economic activities, and therefore, the need for shelter to the 

growing population (Kucsicsa and Grigorescu 2018; Sudhira et al., 2004; Xu et al., 2007). This 

drives environmental issues for example the conversion of LULC to settlements at the expense 

of vegetation, agricultural areas and encroachment of fragile ecosystems (e.g. water bodies and 

wetlands) (Ashiagbor et al., 2013; Dibaba et al., 2020; Hegazy and Kaloop 2015; Xu 2008). 

The modification of urban landscape through LULC changes results in increased impervious 

surfaces reducing soil infiltration capacity (Sinha et al., 2016; USDA. NRCS 2000; Xu et al., 

2007). Consequently, this contributes to increased soil erosion risk on vulnerable areas due to 

peak discharges which accentuate volume, duration and intensity of surface runoff including 

more frequent incidences of urban flooding (Weng 2001; Zhou et al., 2008) and decreases 

ground water recharge (Pappas et al., 2008; Rahaman et al., 2019). Additionally, such scenarios 

are culminated by blockage of water canals and culverts due to sediment deposition downslope. 

LULC changes combined with extended dry periods predominantly expose bare soil surfaces 

to direct raindrop impacts at the onset of wet season contributing to massive soil loss (Ligonja 

and Shrestha 2015; Shikangalah et al., 2017). Stocking and Elwell (1976) propose that soil 

erosion is a function of energy, resistive and protective forces. With energy forces affecting soil 

detachment and transportation while resistive forces refer to the ability to overcome stresses. 

Therefore, the need for plant cover to dissipate high energy raindrops before they reach the 

surface and the availability of biomass for protecting bare soil surfaces and facilitate infiltration 

(Borrelli et al., 2017; Simonneaux et al., 2015; Stocking and Elwell 1976).  

 

2.3.5 Assessment of climate change impacts on soil erosion  

Globally, extreme hydrological and temperature effects have been frequently observed due to 

climate change and global warming (Borrelli et al., 2020; Chen et al., 2020; Gupta and Kumar 

2017; Nearing et al., 2005). The increasing rainfall erosivity as a result of climate change 

follows an increase in the magnitude and frequency of extreme rainfall events which 

significantly exacerbate soil loss due to increased runoff and concentrated overland flow 

(Borrelli et al., 2020; Favis-Mortlock and Guerra 1999; Nearing 2001; Poesen et al., 2003; 

Simonneaux et al., 2015). The resulting effect can be displayed by the rainfall erosivity factor 
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(R) in the Revised Universal Soil Loss Equation (RUSLE) model (Renard et al., 1997). The R 

factor is highly ranked among influential parameters affecting soil erosion (Borrelli et al., 2020; 

Nearing 2001). Increasing impervious surface area as a result of built-up area expansion 

coupled with severe hydrological regime changes as influenced by climate change further 

facilitates severe surface runoff and concentrated overland flow (Li and Fang 2016; Segura et 

al., 2014). This generates sediments through soil erosion processes from sparse vegetated areas, 

bare land and other compacted areas (Opeyemi et al., 2019; Poesen et al., 2003; USDA. NRCS 

2000). Nearing et al. (2005) indicate that the response of disturbed soil or bare land to small 

increases in rainfall intensity shows a non-linear response. Additionally, soil erosion processes 

threaten water bodies through siltation, turbidity and contamination by various substances 

including pesticides, nutrients and other chemical substances (Kouli et al., 2009; Nyakatawa et 

al., 2001; Opeyemi et al., 2019). Other associated impacts of concentrated runoff in urban 

environments include inaccessibility to properties resulting from landscape fragmentation 

through formation of gullies, damage to infrastructure and utilities encompassing powerlines 

and railway lines (Chalise et al., 2019; Opeyemi et al., 2019; Posthumus et al., 2015; 

Shikangalah et al., 2017).  

Climate change effects are not only projected as intense across the globe but differ 

regionally with varying hydrological impacts on soil erosion (Chen et al., 2020; Hudson and 

Jones 2002; Pruski and Nearing 2002; Shongwe et al., 2009). The severity of climate change 

and influence vary with regions (Nearing et al., 2005), for example in the Mediterranean region 

the frequency of high-intensity rainfall events were projected to increase with however 

declining average annual precipitation until the end of 21st century (Chen et al., 2020; Stefanidis 

and Stathis 2018). Similarly, for Sub-Saharan Africa the integration of regional climate models 

(RCMs) project an increase in the consecutive dry days with intervals of high-intensity rainfall 

exacerbating soil loss on vulnerable surfaces especially during the onset of the wet season 

(Girmay et al., 2021; Hudson and Jones 2002; Ligonja and Shrestha 2015). Further, Shongwe 

et al. (2009) indicate that some parts of the Sub-Saharan Africa will experience early rainfall 

onset and cessation with oscillating hydrological regimes dictating a decline on the average 

annual precipitation over time. For instance, the global circulation models (GCMs) projections 

show declining average annual rainfall for central Mozambique, extended areas of Botswana, 

northern and southern parts of Zimbabwe until the end of 21st century (Shongwe et al., 2009). 

Henceforth, the effect of climate change on rates of soil erosion will vary due to hydrological 

changes (Girmay et al., 2021; Nearing 2001) and other factors including land use change 

(Borrelli et al., 2020) which are influenced by demographic changes, economic activities and 
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policy implementation. The continuous soil loss is attributed to runoff impacts emanating from 

the projected increase in frequency and intensity of extreme rainfall events, nevertheless these 

events are masked on the average annual precipitation (Zhang et al., 2012). Borrelli et al. (2020) 

indicate that soil loss is also a function of the reorganization of future land use influenced by 

humankind and/natural factors. 
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CHAPTER 3: STUDY SITE DESCRIPTION 

Chapter 3 describes the location, topography, pedolody and climate variability for the Harare 

Metropolitan Province and Zimbabwe at large. This sheds light on the aspects and attributes 

applied for the study works in following chapters of this thesis. The broad description further 

furnishes and display other attributes of areas adjacent and surrounding the research area 

including transitions and shifts that have occurred which will influence and contribute to the 

investigation findings.  

3.1 Settlement decription and history 

 
Harare Metropolitan Province is the capital city of Zimbabwe occupying an estimated area of 

940 km2 in total of the 390,757 km2 Zimbabwe’s area wide coverage. It is located between 

17˚49’39.79” south latitude and 31˚03’12.13” east longitude (Figure 3.1) comprising the Harare 

urban, Harare rural, Chitungwiza and Epworth districts. Harare urban district is the largest 

district constituting the city centre and characterized with a hive of economic, residential and 

industrial activities followed by Harare rural district as the second largest district located to the 

south of the Harare urban district. Harare rural district is comprised of farming plots, the 

international airport and the fast-developing residential areas. Bordering Harare rural and 

Chitungwiza districts is the Manyame River and along the channel network are manifestation 

hubs of illegal sand mining posing threats to water quality, aquatic biodiversity and the 

ecosystem as large pits are abandoned at sites without rehabilitation measures. Chitungwiza 

district is located south of the metropolitan province approximately 25 km from the Harare 

central business district (CBD). Further, Epworth district is located approximately 12 km east 

of the city centre and it is the fastest growing urban district of Zimbabwe with the highest 

informal settlements across the country characterized by overcrowdings, densification and 

mushrooming growth (Chirisa and Muhomba 2013).  
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Figure 3. 1 Location of the Harare Metropolitan Province composed of Harare urban, Harare rural, 

Epworth and Chitungwiza districts. Plate (a) Provincial boundaries of Zimbabwe and plate (b) Harare 

Metropolitan Province indicating major and secondary road networks for connectivity. 

The Harare Metropolitan Province experienced population increase from approximately 1.8 

million in 2002 to an estimated population of 2.1 million in 2012 (CSO 2004; ZimStats 2012). 

With Harare urban district constituting about 70% of the population in the province in 2012 

followed by 17% for Chitungwiza district, 8% for Epworth district and the least populated 

district being Harare rural hosting about 5% of the capital’s population (ZimStats 2012).  

The city of Harare, formerly Fort Salisbury was established around 1890 by the British 

settlers occupying the Kopje area of high relief for security purposes (Zinyama 1995). The 

growth of the newly founded city was aided by economic activities causing birth of dormitory 

high density suburbs such as Mbare established in 1907, Mabvuku 1952 and other residential 

areas developed in the southern and western parts of the city to accommodate the growing 

population particularly of the Africans (natives) as they provided labor to the British settlers 

(Zinyama 1995). The location and development of suburbs markedly gave a distinction on 

social class between the natives and British settlers. Suburbs located in the north and east parts 

of the city were characterized by spacious plot units, hilly and highly vegetated landscapes 

whilst small conjoined housing units occupied in the south-western African townships of Harare 

later became densely populated due to rural-urban migration (Cumming et al., 1993; Potts 2011; 

Zinyama 1995). 
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In 1986, the Epworth Local Board was developed following the handover of the Methodist 

mission church led settlement which was established in the late 1890s to the government of 

Zimbabwe (SDI 2009; Zinyama 1995). The Epworth settlement experienced soaring population 

during the late 1970s from rural to peri-urban migration during the epoch of the liberation 

struggle overwhelming the Methodist mission church administrative responsibilities (Zinyama 

1995). Regardless of the formalization of this dormitory satellite Epworth district is regarded 

as the fastest growing informal settlement in Zimbabwe (Chirisa and Muhomba 2013). Epworth 

district was approximated to have host 500 families in 1950 (Butcher 1986) and the counted 

population of about 114,047 in 2002 that further increased to 167,462 in 2012 (CSO 2004; 

ZimStats 2012).  

Chitungwiza district, a high-density residential suburb founded as a nuclei dormitory 

around 1970s to cater for the surge in urban population in the capital, is located south of the 

CBD and Manyame River (Zinyama 1995). The idea was to reduce population density in the 

city through outward expansion and allocation of residential units at the periphery where it 

would attract low housing costs regardless of the increasing distance and time to reach the CBD 

and industrial areas surrounding the city centre. The residential suburb sees large number of its 

population working and relying on services from the capital of Harare due to an imbalance 

between their industrial and commercial sector against population growth (Musemwa 2010). 

 

3.2 Terrain and hydrological characteristics 

The elevation of Zimbabwe ranges between 153 m and slightly above 2584 m a.s.l (Figure 3.2) 

with over 66% of the land area above 1000 m a.s.l lying on a plateau making Zimbabwe part of 

the Southern Africa Highveld (Lister 1987). Zimbabwe experiences very low altitude in the 

north along Zambezi river bordering Zimbabwe and Mozambique and in the south-eastern parts 

at the confluence of Runde and Save rivers. High-altitude areas between 1200-2000 m a.s.l 

extend from the northeast and the Eastern Highlands where the highest elevations occur at 

Inyangani mountains (> 2400 m a.s.l), also characterized by the plateau at such elevation and 

unique microclimate. Areas of high altitude spread from the north across the central to the south 

west parts of the country and the diagonally cross cutting high relief areas represent the Great 

Dyke mountains that extend to over 500 km across the country (Lister 1987).  

For Harare Metropolitan Province, the elevation ranges between 1333 m and 1609 m 

a.s.l and the province is characterized by undulating to slightly rolling terrain in the upland 

areas and across the entire south and southwest parts. High elevations predominantly occur in 
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the northern and eastern parts of the province, with steep sloping relief more in the northern 

suburbs and high relief land area on a plateau to the east (Figure 3.2). The northern suburbs are 

markedly occupied by the elites and classified as low-density suburbs as a result of large plot 

sizes, low population density and steep terrain.  

                    

Figure 3. 2 General elevation variations of Zimbabwe. Small plate (top left) shows elevation of 

Zimbabwe; (b) the elevation and major drainage of the Harare Metropolitan Province in the main plate. 

 

The Harare Metropolitan Province watershed embeds three micro-catchments of the Upper 

Manyame catchment in Zimbabwe (Figure 3.2). The micro-catchments include Manyame river, 

the mouth for Ruwa and Epworth drainage channels and downslope confluences with Nyatsime 

river, the Marimba which comprises of Anderson stream/Marimba river that drains from 

Marlborough suburb and from the University of Zimbabwe stream; and lastly, Mukuvisi river 

that headwaters from the east of the Harare province confluencing with several tributaries’ 

downslope to the west. These micro-catchments of the Upper Manyame catchment experiences 

between 700 mm and 1000 mm of rainfall annually (Tibugari et al., 2020) and are the 

headwaters of the Manyame river in Zimbabwe which drain into the Zambezi River basin 

(Rwasoka et al., 2011). The micro-catchments consist of the CH4 and CH5 hydrological 

subzones estimated to have a mean annual runoff of 126 mm and 135 mm and evaporation rates 

for both subzones are estimated above 1600 mm yr-1 (Mazvimavi et al., 2005). Gumindoga et 
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al. (2014) indicate that streamflow for Mukuvisi and Marimba sub-catchments increased 

regardless of land use changes between 1970 and 2006. The Marimba gauging station recorded 

increases in monthly average streamflow from 7.55 m3 in 1970 to 35.01 m3 in 2006 and the 

same increasing trend was recorded for Mukuvisi micro-catchment with a rise from 4.51 m3 in 

1970 to approximately 25.18 m3 in 2006 (Gumindoga et al., 2014).  

 

3.3 Soil and vegetation 

The distribution of soil types varies spatially. It is dictated mainly by the parent material and 

factors including climate, biotic, topography and time (Nyamapfene 1991). These factors also 

contribute to soil’s mineralogy, physical and chemical composition that influence its use and 

management. According to Nyamapfene (1991) soils of Zimbabwe are classified into four 

orders: Amorphic, Cacimorphic, Kaolinitic and Natric. Soil orders are divided into groups or 

families, the amorphic constitute lithosol and regosol; calcimorphic include vertisol and 

siallitic; kaolinitic has fersiallitic, paraferralitic and the orthoferrallitic and finally, the natric 

order constitutes only the sodic (Nyamapfene 1991; Thompson and Purves 1978). The 

fersiallistic and paraferrallitic soils of the kaolinitic order occur in Harare Metropolitan 

Province (Figure 3.3) (Nyamapfene 1991).  

 

   

Figure 3. 3 Soil map showing the distribution of the dominating soil types. In plate (a, Bottom Left) 

soil distribution for the entire Zimbabwe and plate (b, Top right) soil distribution across the Harare 

Metropolitan Province. Source: (Nyamapfene 1991). 
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The clayey fersiallitic soils are moderately leached soils that occur in contact zones 

predominantly to the north or upper parts of the Harare Metropolitan Province and 

paraferrallitic soils are highly leached soils distributed largely to the south with little proportion 

of the paraferrallitic soils occurring on the northeast of the Harare Metropolian Province (Figure 

3.3). The igneous and metamorphic mafic bedrocks form the parent material for the clay rich 

fersiallitic soils whilst paraferrallitic soils are predominantly coarse-grained sandy soils 

comprising proportions of inert clays derived from granites and the gneissic granites 

(Nyamapfene 1991; Thompson and Purves 1978). Both paraferrallitic and fersiallitic soil 

families are suitable for agricultural activities due to their mineralogy, however they require 

management practices according to crop requirements including lime amendments for the 

paraferrallitic soils (Nyamapfene 1992). 

Whitlow (1988) highlights that human activities in Zimbabwe have caused massive loss 

of natural vegetation and this corroborates with recent studies for the Harare Metropolitan 

Province (Kamusoko et al., 2013; Mushore et al., 2017; Wania et al., 2014). That is, expansion 

of built-up area as a result of population and economic activities on the rise attributes to the 

declining vegetation across the province including the densely vegetated northern suburbs 

(Mushore et al., 2017). For Harare Metropolitan Province, the dominant vegetation consists of 

shrubs and grass which continuously extend on open areas and the savanna woodlands 

predominantly constituting of the Brachsygestia spiciformis (musasa; igonde) and Julbernadia 

globiflora (munhodo; ishungu) with wide canopies overshadowing grasslands (Whitlow 1988). 

The spatial distribution or existence of the savanna woodlands in the Harare Metropolitan 

province follows high rainfall received and the occurrence of sandy soils of the kaolinitic order 

that has good drainage. Only remnants of the dominant savanna woodland across the province 

have thrived under harsh anthropogenic and different natural factors such that species diversity 

reference for the Harare’s vegetation has been conserved in protected areas for example in 

Mukuvisi woodlands, Catholic University of Zimbabwe, Cleveland woodland, Scientific and 

Industrial Research Development Centre (SIRDC) and the Zimbabwe Parks and Wildlife 

Management Authority (Mpindu 2018).  

 

3.4 Climate  

The climate of Zimbabwe is sub-tropical with four distinct seasons influenced primarily by the 

Intertropical Convergence Zone (ITCZ) and subtropical anticyclones (Brazier 2015; Manatsa 

and Mukwada 2012). The collision of warm moist air masses moving from the north and cool 
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air masses moving from the south contribute to the creation of Zimbabwe’s rainfall seasons 

(Brazier 2015). However, due to Zimbabwe’s complexity of climate and physiography the 

reliance on ITCZ and subtropical anticyclones have greatly influenced the spatial variability 

and coherence of rainfall across the country. This has been deemed reliable due to its non-

randomness approach on different time scales of the year (Manatsa and Mukwada 2012). As a 

result of distinct rainfall seasons Zimbabwe was divided into 5 agro-ecological zones/natural 

regions (NRs) based on the areas suitability to rainfed agriculture and the NRs were classified 

from 1 most suitable to 5 least suitable (Manatsa and Mukwada 2012; Vincent et al., 1960). 

The global climate change major shifts on climate variables temperature and precipitation have 

been observed to contribute and mimic the unprecedented impacts across the globe. This 

prompted the revision of agro-ecological zones for the third time in Zimbabwe following 

second revisions by the Agritex of Zimbabwe in 1984 which omitted the effects of climate 

change such that the newly revised agro-ecological zones of 2020 gave large reference to the 

first agro-ecological zones derived by Vincent and Thomas (1960).  

A major shift on both rainfall and temperature regimes were observed from 1982 to 

2017 against the pre-shift phase between 1951-1981 (Figure 3.4) (Manatsa et al., 2020). The 

cumulative sum technique (CUSUM) applied by Manatsa et al. (2020) led to the establishment 

of the shift year on rainfall patterns (amount and distribution) received in comparison to the 

pre-shift period between 1951-1981 (Figure 3.4). The revealed shift year on rainfall concurs 

with significant temperature changes observed from 1982 in relation to prior temperatures 

recorded between 1951-1981 against the shift between 1982-2017 applying the Regime Shift 

Detector (RSD) technique (Manatsa et al., 2020). Thus far, observed shifts on climate positively 

contributed to the redefining of Zimbabwe’s NRs from the years 1982-2017.  
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Figure 3. 4 Zimbabwe annual rainfall patterns evaluations from 1950 to 2017 based on the months 

October to March. (a) Total annual rainfall and (b) CUSUM based analysis highlighting total 

observation variations from the average of the same interval against time. Source: (Manatsa et al. 2020) 

 

The delineation of new agro-ecological zones (AEZs) reflects the extent and impacts of climate 

change on national climatology as observed by the increase in aridity on region 5, the increase 

in consecutive dry days, shrinking of rainfall season with almost 30 days across the country 

with the exception of the Eastern highlands experiencing rainfall season extension by 

approximately 15 days (Manatsa et al., 2020). The traditional climate seasons include: a cool–

dry season from mid-May to August; a hot–dry season from September to mid-November; a 

rain–wet season from mid-November to mid-March; and a post rainy season stretching from 
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mid-March to mid-May (Kamusoko et al., 2013; Mushore et al., 2017). During the cold–dry 

season, temperatures range from 7 ˚C to 20 ˚C, while during the hot–dry, season temperatures 

range from 13 ̊ C to 28 ̊ C. On average, the Eastern highlands receive above 1500 mm of rainfall 

annually while dry parts in the south and west of Zimbabwe receive mean annual rainfall less 

than 500 mm per annum now classified as AEZs Va & Vb formerly NR V the least suitable for 

rainfed agriculture (Figure 3.5).  

 

    

Figure 3. 5 The Agro-Ecological Zones of Zimbabwe. Source: (Manatsa et al., 2020) 

 
The Harare Metropolitan Province receives mean annual rainfall between 470 mm to 1350 mm. 

The observed data recorded at Harare Meteorology Services shows that mean monthly rainfall 

sharply increased from 32 mm in October to approximately 215 mm in January followed by a 

steady decline to almost 119 mm in March for the years 1984 to 2018. The post rainfall season 

and dry periods of the year markedly recorded declining mean monthly rainfall ranging from 

30 mm in April to relatively 2 mm between July and September. The long dry period therefore 

makes soils vulnerable to erosion processes especially from the early rainfall received at the 

beginning of wet season due to reduced vegetation cover and land preparation processes for 

urban agricultural practices. 
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Abstract  

With increasing population growth, the Harare Metropolitan Province has experienced 

accelerated land use and land cover (LULC) changes, influencing the city’s growth. This study 

aims t o assess spatiotemporal urban LULC changes, the axis, and patterns of growth as well 

as drivers influencing urban growth over the past three decades in the Harare Metropolitan 

Province. The analysis was based on remotely sensed Landsat Thematic Mapper and Operational 

Land Imager data from 1984–2018, GIS application, and binary logistic regression. Supervised 

image classification using support vector machines was performed on Landsat 5 TM and Landsat 

8 OLI data combined with the soil adjusted vegetation index, enhanced built-up and bareness 

index and modified difference water   index. Statistical modelling was performed using binary 

logistic regression to identify the influence of the slope and the distance proximity characters 

as independent variables on urban growth. The overall mapping accuracy for all time periods 

was over 85%. Built-up areas extended from 279.5 km2 (1984) to 445 km2 (2018) with high-

density residential areas growing dramatically from 51.2 km2 (1984) to 218.4 km2 (2018). 

The results suggest that urban growth was influenced mainly by the presence and density of 

road networks. 
 

Keywords: urban growth; built-up area; Harare Metropolitan Province; binary logistic regression; 

support vector machines 

 

4.1 Introduction 

Temporally and spatially, urbanization is an uneven process supporting residential expansion, 

including growth in population size of individuals living in urban areas and expansion of 

physical structures in an urban setup in addition to the previously existing structures (Alaci 

2019; Samson 2009). Urbanization is directly changing and affecting the environment, as it 

is made distinct by the increasing built-up and impervious areas at the expense of wetland 

areas and agricultural landscapes. Such actions result in the transformation of natural 

landscapes into agricultural landscapes (Adebowale and Kayode 2015). Consequently, this 

leads to environmental degradation through deterioration of vegetation and sealing, often 

resulting in increasing surface runoff, soil erosion, surface water contamination, and 

exploitation of natural habitats (Müller et al., 2013; Owoeye and Popoola 2017; Satterthwaite 

2008; Sayemuzzaman and Jha 2014). Muller et al. (2013) highlights that urbanization is one of 

the greatest factors contributing to biodiversity loss due to the expansion of industrial, residential 

and commercial business areas. 

The world’s population is projected to increase from 7.0 to 9.3 billion by 2050 (UN 

2012). Therefore, during that stipulated period urban areas worldwide are anticipated to absorb 

large numbers of the growing population. Urbanization is a continuous process, and 

megacities such as Delhi, India had a total increase in population of 47.02% within a decade 

between 1991 and 2001 (Mohan et al., 2011). For China, the urbanization growth rate tripled 
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from 17.9% to 57.4% between 1978 and 2016, and it is projected to reach 70% by 2035 (Yu 

et al., 2019). Although countries like Ethiopia are among the least urbanized countries in the 

world, high rates of in-migration to urban cities have been investigated and projected to reach 

42.1% of the total population by 2050 (UN HABITAT 2007). Up-to-date data and information 

regarding the trends and status of urban ecosystems are required to enable the development 

of sustainable strategies on improving livelihoods in urban settings. In particular, in sub-

Saharan Africa, up-to-date data and information on population are fundamental for 

developing ways to curb urban demographic transitions (Lohnert 2017).  It is estimated that 

sub-Saharan Africa’s urban population will rise by 60–70% by 2050, with most people 

occupying small cities due to the fact of cultural, socio-economic and political influences (AfDB 

2016; Lohnert 2017).  Although previous studies have indicated urban growth in terms of 

population size, studies on land use and land cover (LULC) changes and the key drivers of such 

changes remain scarce yet important.  

To further understand the relationship between urbanization and environmental alteration, 

LULC changes need to be assessed and evaluated to determine the extent and the rate at 

which human activities are contributing to shifts in the environment. The integration of 

remote sensing data to monitor the state and dynamics of the Earth’s surface provides 

reasonable results in a short space of time (Owoeye and Popoola 2017), compared to on-site 

surveying techniques (Malaviya et al., 2010; Punia and Singh 2012). Moderate resolution 

Landsat Thematic Mapper images (TM) are a standard tool used for urban mapping and 

change detection analysis and were used, for example in Minnesota, USA between 1986 and 

2002 for LULC changes (Yuan et al., 2005). Landsat images in combination with socio-

economic data have been used to determine the effects associated with development and land 

use shifts. For example, spatial dynamics of LULC changes were analyzed for the Nairobi urban 

area and showed that the built-up area quadrupled from 1.9% in 1976 to 8.6% of the total 

area in 2000 (Mundia and Aniya 2005). For Zimbabwe, Hove and Tirimboi (2011) indicated 

that on a national scale, vast numbers of people migrated to Harare from rural homes soon 

after independence in 1980. Wania et al. (2014) reported on the expansion of built-up areas 

of Harare using high-resolution SPOT images. 

Investigation of LULC change dynamics and classification in heterogeneous landscapes 

using moderate-resolution satellite imagery potentially has challenges due to the fact of 

spectral confusion    resulting in misleading informationn (Abdullah et al., 2019; As-syakur et 

al., 2012). Accurate observation of LULC changes by remote sensing is a vital component of 

promoting sustainability. Enhancement of land cover class delineation using remote sensing 
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indices and machine learning algorithms such as random forest (RF) and support vector 

machines (SVMs) have the relatively desirable characteristic of improving multispectral 

classification (Abdullah et al., 2019; As-syakur et al., 2012; Nooni et al., 2014). The 

effectiveness of mapping land-cover types using spectral indices is primarily the result of their 

ability to characterize relative features of interest over a wide range of the spectrum (Faridatul and 

Wu 2018). The Harare Metropolitan Province was chosen as a case study because of its vastly 

reported pressures due to the presence of high population and urbanization rates for this 

metropolitan area in the northern High Veldt of Southern Africa (Kamusoko et al., 2013; 

Wania et al., 2014). Harare Metropolitan Province, being the capital city of Zimbabwe, faces 

increasing population growth as do other metropolitan cities largely because they are 

associated with better livelihoods and as centres for economic activities, public services, and 

amenities (Hegazy and Kaloop 2015; Sinha et al., 2016). Among others, Chirisa and Muhomba 

(2013) revealed that Epworth, a Harare Metropolitan Province district, has approximately 70% 

of its inhabitants living on unauthorized, non-serviced land and thereby compounding the 

increased settlement and spread of the metropolitan area. Thus far, monitoring urban growth 

trends is an important tool for understanding previous trends and present growth patterns and 

potentially unravelling possible coming developments and their likely impacts (Moghadam and 

Helbich 2013). Identifying empirical drivers of urban structure change is based on past and 

current state of LULC changes for the Harare Metropolitan Province. The current study aimed 

to investigate the axis of change and expansion of the Harare Metropolitan Province. In view 

of the resource constraints in a developing country, freely available remote sensing data were 

applied to assess the direction of the urban expansion. Furthermore, the study sought to 

determine the explanatory drivers of the changes in LULC for the Harare Metropolitan 

Province. 

 

4.2 Materials and Methods 

4.2.1 Study area 

The study area lies between 17◦49’39.79” south latitude and 31◦03’12.13” east longitude and 

covers three districts of the Harare Metropolitan Province (Figure 4.1) (Kamusoko et al., 2013; 

Mushore et al., 2017). Harare is the capital city of Zimbabwe and experiences high urbanization 

rates from rural–urban shifts, driven by those in search of better livelihoods and employment 

(Potts 2011; Tibaijuka 2005). The bedrock in Harare Metropolitan Province are granites in the 

east and southwest and gabbro and dolerite in the north, while phyllite and metagreywacke 
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dominate the core centre of the Harare Metropolitan Province (Anderson et al., 1993; 

Kamusoko et al., 2013; Nyamapfene 1991). The relief is slightly rolling with locally U-shaped 

incised valleys. Bedrock is widely covered by several decimetre-thick saprolite which is 

characterized by cyclic surface erosion that exposes bedrock (Lister 1987). 

 

            

Figure 4. 1 Location of the Harare Metropolitan Province composed of the Harare urban, Harare rural, 

and Epworth districts. (a) Zimbabwe district boundaries highlighting the study area; (b) Harare 

Metropolitan Province study boundaries; (c) major roads marked in the Harare Metropolitan Province 

map indicating the major urbanization axis. 

 

The climate is sub-tropical with four seasons: a cool–dry season from mid-May to August; 

a hot–dry season from September to mid-November; a rain–wet season from mid-November 

to mid-March; and a post rainy season stretching from mid-March to mid-May (Kamusoko et 

al., 2013; Mushore et al., 2017). During the cold–dry season, temperatures range from 7 ◦C to 

20 ◦C, while during the hot–dry, season temperatures range from 13 ◦C to 28 ◦C. On average, the 

Harare Metropolitan Province receives annually 470 mm to 1350 mm of rainfall, most of it 

during rainy season (Kamusoko et al., 2013). In the Harare Metropolitan Province, the Harare 

urban district was estimated to have a population of 1,435,784 in 2002 and 1,485,231 in 2012; 

for the Harare rural district, a population of 23,023 in 2002 and 113,599 in 2012; and for the 

Epworth district, a total population of 114,047 in 2002 and 167,462 in 2012 (CSO 2004; 

ZimStats 2012). The total area of the Harare Province, in which the study area was embedded, 

extends over 940 km2 (Wania et al., 2014). 
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4.2.2 Data acquisition and pre-processing 

Cloud-free Landsat satellite images of 30 m × 30 m resolution were acquired from the United States 

Global Survey (USGS; www.earthexplorer.usgs.gov). These Landsat satellite images were 

selected because of their adequacy and availability for LULC classification, as indicated by 

multiple studies (among others, (Patley et al., 2018; Yuan et al., 2005)). Landsat 5 Thematic 

Mapper images were selected for the years 1984, 1990, 2000, 2008 and Landsat 8-OLI image 

for the year 2018 (Table 4.1). 

 

Table 4.1 The Data used for land use and land cover (LULC) classification and their date of acquisition. 

Sensor Number of 

Bands 

Path/Row Date of 

Acquisition 

Landsat 5 TM 7 172/072 22 June 1984 
Landsat 5 TM 7 172/072 23 June 1990 
Landsat 5 TM 7 172/072 30 August 2000 
Landsat 5 TM 7 172/072 11 August 2008 
Landsat 8 OLI 11 172/072 11 August 2018 

 

All satellite images were acquired for the cool–dry season with completely clear (0%) cloud-

free coverage. All satellite images were geometrically corrected using topographic sheets at 

1:50,000 and applying 20 ground control points collected using a handheld GPS (Garmin 

60Cx) at major road intersections. First-order polynomial transformation was used for the 

retrieved satellite image scenes and the obtained root mean square errors (RMSEs) were less than 

half the pixel dimensions. A projected vector map for Harare Province was used to clip the study 

area from the pre-processed images for classification and modelling. Images provided by the 

USGS were already corrected for radiometric distortions. Resampling was done using the 

nearest-neighbourhood technique in order to retain the original pixel values. The QGIS 3.4 

software was applied to further correct atmospheric distortions and conversion of digital 

numbers (DNs) to spectral reflectance through dark object subtraction (Chander et al., 2009). 

Prior conversion of DNs to reflectance urban indices were computed using RStoolbox, a 

package in R, and then further computation of vegetation indices. 

 

 

 

 

 

http://www.earthexplorer.usgs.gov/


42 
 

4.2.3 Field data collection and processing 

During field observations in December 2018, the LULC class structure (Table 4.2) was 

determined. Field data were collected, recording randomly 600 land cover sample points using 

a handheld GPS (Garmin 60Cx). The points were randomly split into two sets: 80% of the 

data for training and 20% of the data for accuracy assessment and validation (Mushore et al., 

2017). Polygons (regions of interest (ROIs)) were digitized and used for both LULC 

classification and accuracy assessment to improve classification and validation range (Chemura 

and Mutanga 2017). 

Table 4.2 Description of the study LULC classes. 

*CBD: central business district    *LMD: low to medium density   *HD: high density 

 

Statistical testing of spectral separability of the desired classes was verified using the 

transformed divergence separability index (TD) to ensure classification (Castillejo-González et 

al., 2014). Figure 4.2 documents the approach and flow path used in the study. Topographic 

maps, expert knowledge and auxiliary data were used to create ground truth areas of interest 

for Landsat images from 1984, 1990, 2000 and 2008 for classification and accuracy assessment. 

Field observations and ground control points (GCPs) were obtained for 2018 time slices. 

ID LULC Class Description 

1 CBD/Industries Industries and central business district defined with high 
fraction of impervious surfaces mainly buildings and little 

proportion of vegetation 

2 LMD residential Leafy and well established low and medium density suburbs 
surrounded with high vegetation 

3 HD residential High density residential areas with low vegetation cover or 
clustered settlements with areas undergoing developments 

and bare exposed land 
4 Irrigated cropland Cultivated land under irrigation schemes 

5 Rainfed cropland Cultivated land or land with crop residues after harvesting 

6 Vegetation All wooded areas, shrubs and bushes, riverine vegetation and 
grass covered areas 

7 Water Areas occupied by water, rivers, wetlands, reservoirs and 
dams 
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Figure 4. 2 Flow chart showing the determination of drivers and the axis of urban expansion for Harare 

Metropolitan Province. 

 

4.2.4. Land cover classification 

The LULC maps were created for the years 1984, 1990, 2000, 2008 and 2018 using supervised 

support vector machine (SVM) algorithms on 30 m band stacks for each image scene and an 

additional three layers applying different indices: enhanced built-up and bareness index (EBBI), 

modified normalized difference water index (MNDWI) and soil adjusted vegetation index 

(SAVI) for all stacks. These additional band stacks enhanced the mapping of the major urban 

LULC cover classes, namely, built-up, open water body and vegetation (Mwakapuja et al., 

2013; Sinha et al., 2016). Support vector machines correspond to machine learning 

classification methods which have a high ability to minimise misclassification errors by 

reducing the probability of misclassifying field data collected having an unknown probability 

distribution (Vapnik 1998). Each image was classified into seven classes that were determined 

by spectral characterization and field data substantiated training and accuracy assessment.  

An accuracy assessment was computed for the Kappa coefficient (Kc), overall accuracy 

(OA), producer’s accuracy (PA) and user’s accuracy (UA), applying “ground truth regions of 

interests” (Chemura and Mutanga 2017; Congalton 1991). Accuracy assessment is a 

probabilistic approach that computes the association between remotely sensed and referenced 

data. Post classification change detection matrices were cross tabulated in ENVI using five 
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interval steps: 1984–1990, 1990 2000, 2000–2008, 2008–2018 and 1984–2018. The post 

classification change detection method involved pixel-by-pixel change analysis highlighting 

spatio-temporal LULC changes and distribution. 

 

4.2.5 Computation of spectral indices 

Enhancing spectral signals of overbuilt areas, vegetation and water in remotely sensed data was 

done through computation of multiple spectral bands (Sinha et al., 2016). The enhanced built-

up and bareness index (EBBI), modified normalized difference water index (MNDWI) (Xu 

2006) and soil adjusted vegetation index (SAVI) were selected to improve the extraction of 

major land-use classes in a heterogeneous urban built-up area. The EBBI allows mapping of 

built-up and bare areas using a combination of near infrared (NIR), short wave infrared (SWIR) 

and thermal infrared (TIR) on which these bands were selected according to the contrast 

reflection and absorption in bare and built-up areas (As-syakur et al., 2012) using Equation 4.1. 

 

                                                    𝐸𝐵𝐵𝐼 =  
𝑆𝑊𝐼𝑅1−𝑁𝐼𝑅

10√𝑆𝑊𝐼𝑅1+𝑇𝐼𝑅𝑆1
                                   (4.1) 

The SAVI requires soil-brightness correction factor L, which varies from 0 for very high 

vegetation cover to 1 for very low vegetation cover; a 0.5 soil-brightness correction factor L 

was used because of its moderate (Huete 1988) following Equation 4.2. 

                                                   𝑆𝐴𝑉𝐼 =  
(𝑁𝐼𝑅+𝑅)

(𝑁𝐼𝑅+𝑅+𝐿)
𝑥 (1 + 𝐿)                                        (4.2) 

The MNDWI uses SWIR in enhancing open water extraction in a complex heterogeneous setup 

because of the high reflectance obtained in built-up areas to the spectral band. Henceforth, 

negative values for built up areas and positive values for water features makes the MNDWI 

suitable for discriminating built-up areas from water features (Sinha et al., 2016; Xu 2006). 

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁−𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅
                                                      (4.3) 

 

4.2.6 Binomial logistic regression 

A binomial logistic regression was applied to analyse the explanatory drivers of LULC changes. 

The form variable slope (˚) was used as a topographic factor, while the proximity characters 

factored in included distance to the main roads, distance to secondary roads, distance to open 

water bodies, distance to streams and distance from the city centre (Congalton 1991; 

Mwakapuja et al., 2013; Vapnik 1998). For the binomial regression, the growth variables 



45 
 

(dichotomous dependant) applied were raster layers with transformed cells from any LULC to 

built-up area between 1984 and 2018 (Figure A1). Proximity and topographic characters formed 

the basis of the independent variables (distance to the main roads, distance to secondary roads, 

distance to open water bodies, distance to streams and distance from the city centre). Distances 

were calculated using the Euclidean distance tool in ArcGIS 10.2 to determine the impact of 

urban expansion relating to the proximity of the selected features encompassing the road 

network for transportation and watercourses as environmental amenities.  

The cell values of the dependant variable (dichotomous raster layer) which had been 

changed from any other LULC class to an urban built-up area for all time steps (i.e., 1984–

1990, 1990–2000, 2000–2008, 2008–2018, 1984–2018) were set to be urban growth (=1), while 

all cells which did not change to an urban built-up area or had been an urban built-up area 

previously were set as non-urban growth (=0) using the raster calculator in ArcGIS 10.2. A total 

of 7000 stratified random sample points were created to extract cell values from the LULC 

maps of all time slices for regression analysis and available sets of data. A collection of 6139 

random sample points was assembled, and the remaining outliers were removed because they 

were scattered outside of the rasters. Extracted distance proximity parameter values were log-

transformed and, during computation, a 30 m value equivalent to cell length was added to all 

cells in order to counter undefined 0 logarithm for predictors applied in the regression analysis 

(Anselm et al., 2018). The statistical significance of p < 0.05 indicated that the relation between 

predictor and LULC change occurrences were not random, highlighting a statistical relation 

between the independent proximity variable and an urban built-up area. The evaluation of 

model performance was calculated using statistical measures of the discriminatory effect of the 

model, the area under the receiver–operating–characteristic (ROC) curve (AUC) and the 

percentage of correct predictions (PCPs) (Herron 1999; Pontius Jr and Batchu 2003; Pontius 

and Schneider 2001). 

Data for location characterization was retrieved from various sources. Open water and 

streams data were digitized from topographic maps (Herron 1999); trunk and secondary roads 

were extracted from OpenStreetMap data (OSM-Geofabric (Pontius and Schneider 2001)); and 

the digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) with a 

30 m resolution was accessed from United States Geological Survey website 

(https://earthexplorer.usgs.gov/). Each data set was normalized into ranges from 0–1 using the 

min–max linear transformation by applying the raster calculator (Map Algebra) in ArcGIS so 

that all input data used the same range (Pontius Jr and Batchu 2003). 
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4.3 Results 

4.3.1 Area extent and change of LULC 

The data revealed an increase in the high-density residential areas and, consequently, a decrease 

in the area covered by vegetation all over the Harare Metropolitan Province (Figure 4.3, Figure 

4.4, Table 4.3). In the year 1984, high-density residential areas covered 51.79 km2 (5.81%) of 

the total Harare Metropolitan Province, while, by the year 2018, it had more than quadrupled 

reaching 218.35 km2 covering almost a quarter of the Harare Metropolitan Province area. The 

data also showed a steady increase in central business department (CBD) or industrial areas 

from 3.7% in 1984 to 7.17% in 2018. In addition, coverage by low- to medium-density suburb 

areas steadily increased, covering 21.85% of the Harare Metropolitan Province in 1984 to 

29.48% in 2018. Apparently, in 1984, vegetation covered almost half of the area (448.67 km2) 

of the total Harare Metropolitan Province but decreased by nearly 50% to 223.45 km2 (25.08%) 

by the year 2018 (Figure 4.3, Figure 4.4, Table 4.3). 

        

*CBD: central business district *LMD: low to medium density *HD: high density. 

Figure 4. 3 Area sizes showing changes in the LULC classes in the Harare Metropolitan Province.          
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Figure 4. 4 Land use land cover in the Harare Metropolitan Province for the years 1984, 1990, 2000, 

2008 and 2018. 

 
The spread of croplands (combined irrigated and rain-fed croplands) decreased from a coverage 

of 17.89% of the Harare Metropolitan Province in 1984 to 13.40% in 2018. The areas covered 

by water slightly increased from about 0.40% in 1984 to 0.53% in 2000; however, this coverage 

declined sharply to 0.31% in 2018. Between 1984 and 1990, high-density residential areas were 

spreading towards the west and northwest of the city (Figure 4.4). Yet, between 1990 and 2018, 

a spread of urbanized areas can be seen towards the south, southwest, and southeast of the 

Harare Metropolitan Province (Figure 4.4). In addition, low- to medium-density suburbs 

expanded towards the northeast of the Harare Metropolitan Province, increasing from 21.85% 

in 1984 to almost 30% of the area in 2018 (Figure 4.4; Table 4.3). 
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Table 4.3 Net change of the LULC by class area extent (km2) and percentage (%) of the Harare 

Metropolitan Province. 

*CBD: central business district   *LMD: low to medium density   *HD: high density. 

 

4.3.2. LULC classification accuracy 

For each time slice 1984, 1990, 2000, 2008 and 2018, each LULC class was compared to the 

reference data for classification accuracy assessment. The overall accuracy (OA) of the LULC 

classification varied for the different time slices between 85%–90% (1984: 90.1%, 1990: 

85.1%, 2000: 88.9%, 2008: 87.6%, 2018: 89.7%; Table 4.4). The high separability indices 

produced were due to the enhancing effects from the vegetation and enhanced built-up and 

bareness indices incorporated and displayed improved mapping accuracy. The transformed 

divergence separability index (TD) indicates that if values are greater than 1.9, separability 

among classes will be very high showing that classes are separable, while values smaller than 

1.0 are deemed not statistically separable for good classification (Chemura and Mutanga 2017). 

The highest misclassifications were recorded for the LULC classes, such as high-density 

residential areas (all time slices), irrigated cropland, and rain-fed cropland (1990), as indicated 

by the producer´s accuracy (Table 4.4, Table A1, Table A2). 

 

 

 

 

 

 

LULC Class          1984         1990          2000         2008         2018 

 Km2  %  Km2  %  km2  %  Km2  %  Km2  % 

CBD/Industries 32.95 3.70 36.27 4.07 52.98 5.95 54.27 6.09 63.88 7.17 

LMD 

residential 

194.72 21.85 233.02 26.15 241.53 27.11 252.48 28.33 262.74 29.48 

HD residential 51.79 5.81 61.13 6.86 84.61 9.49 121.96 13.69 218.35 24.50 

Irrigated  

cropland 

18.13 2.04 39.30 4.41 67.77 7.61 28.55 3.20 26.68 2.99 

Rainfed 

cropland 

141.26 15.85 115.74 12.99 79.34 8.90 85.42 9.59 93.26 10.47 

Vegetation  448.67 50.35 401.88 45.10 360.13 40.41 344.48 38.66 223.45 25.08 

Water  3.60 0.40 3.78 0.42 4.76 0.53 3.96 0.44 2.76 0.31 
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Table 4.4 Land use and land cover classification accuracies in percentages for the study period 1984–

2018. The accuracies include Kappa coefficient (Kc), overall accuracy (OA), producer’s accuracy (PA) 

and user’s accuracy (UA). 

*CBD: central business district   *LMD: low to medium density   *HD: high density 

 

4.3.3 Binomial logistic regression 

The value of the area under the receiver–operating–characteristic (ROC) curve (AUC) shows 

the discriminatory effect of the model and statistically validates the predictive urban growth 

drivers’ behaviour (Pontius and Schneider 2001). The predictive effect of the AUC ranges from 

0.5 to 1, where 0.5 shows a completely random relationship and 1 shows that the model has a 

perfect discriminatory effect. The true positive rate (TPR) is the proportion of cells which are 

correctly classified and the false positive rate (FPR) is the proportion of incorrectly classified 

cells by the real urban growth occurrences (Anselm et al., 2018; Pontius and Schneider 2001). 

The percentage of correct predictions (PCPs) shows the percentage of correctly predicted points 

from the total number of available points (Herron 1999; Schubert et al., 2018). The PCPs range 

from 0 to 1, where values greater than 0.5 (50%) indicate that the model predicts the outcome 

better than PCP closer to 0 (Herron 1999).  

Between 1984 and 1990, the AUC amounted to 0.679 (Figure 4.5) and, according to the 

regression coefficients, a significant influence from the nearest distance to major and secondary 

roads was only revealed among all other test predictors. The p-values for the predictors distance 

to the city centre, distance to the stream, distance to open water, and for variable slope were not 

significant (p > 0.05), suggesting that they had no influence on the growth and spread of the 

urban built-up area. Between 1990 and 2000, the model reveals that the distance to major and 

secondary roads and the city centre were significant variables (p < 0.05) influencing the urban 

built-up area expansion with a discriminatory AUC value of 0.669 (Figure 4.5). Between 2000 

 

LULC Class  

         1984          1990           2000          2008          2018 

PA UA PA UA PA UA PA UA PA UA 

CBD/Industries 94.7 93.7 99.2 93.7 96.7 90.3 96.4 96.4 96.6 95.3 

LMD residential 89.4 90.2 81.9 87.3 87.4 92.4 84.5 75.5 84.1 84.6 

HD residential 82.2 85.0 77.7 93.3 83.4 89.9 79.8 83.5 92.9 92.5 

Irrigated 

cropland 

87.6 95.1 78.4 91.9 76.2 82.3 93.0 87.4 84.4 83.3 

Rainfed cropland 84.1 87.2 67.4 80.5 85.6 79.0 90.9 79.6 86.8 88.7 

Vegetation 93.4 90.1 92.9 71.1 90.2 82.4 79.1 91.8 88.9 88.9 

Water 89.3 96.9 98.4 100 97.3 99.5 98.9 99.8 99.2 100 

OA        90.1         85.1          88.9          87.6        89.7 

KC          0.87           0.82            0.86            0.85          0.87 
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and 2008, the predictors nearest distance to major and secondary roads, distance to the city 

centre and distance to open water and slope were significant (p < 0.05) in the binomial logistic 

regression model showing that they had influence on urban built-up area expansion with an 

overall AUC value of 0.683 (Figure 4.5). 

                       

Figure 4. 5 Receiver–operating–characteristic (ROC) curves conveying binomial logistic regression 

analyses results for Harare Metropolitan Province growth from 1984 to 2018. TPRs: true positive rates; 

TNRs: true negative rates; AUC: area under the curve; PCPs: percentage of correct predictions. 

 

Distance to the nearest roads, distance to the nearest streams, open water and slope were 

statistically significant as predictors of the urban built-up area expansion and spread (p < 0.05) 

between 2008 and 2018, with an AUC value of 0.696 (Figure 4.5). The nearest distance to the 

city centre predictor was not significant (p > 0.05). From 1984 to 2018, distance to the nearest 

major and secondary roads, streams, open water and slope were significant predictors to explain 

the urban built-up area expansion with an AUC value of 0.79 (Figure 4.5). The influence of the 

distance to the city centre as a predictor for urban built-up area expansion decreased due to the 

increasing outward expansion and spread of the Harare Metropolitan Province towards its 

peripheries. 
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4.4 Discussion 

Urbanization has modified the Harare Metropolitan Province through the expansion of built-up 

areas at the expense of vegetation, cropland and water bodies (Figures 4.3 and 4.4). Similarly, 

urbanization processes investigated in Daqahlia, a city in Egypt, depicted that the built-up area 

expanded from 4.2% of the area under investigation in 1985 to 36.3% in 2010, while areas used 

as cropland shrank by 30.7% and areas covered by water decreased by 0.45% (Hegazy and 

Kaloop 2015). An increase of 219.5% in LULC change, mainly attributed to land development 

at the expense of cropland, fallow land, water, shrub and bare land, was revealed in the Shanghai 

metropolis between 1997 and 2008 showing the impact of land use change and population 

growth in urban areas (Zhang et al., 2013). Akure city in the southwest of Nigeria experienced 

a similar loss of areas covered by vegetation and water bodies as the Harare Metropolitan 

Province due to the fact of built-up area expansion, from 5.1% in 1986 to 53.41% in 2014 for 

the total area under investigation (Owoeye and Popoola 2017).  

In the current study, a SVM classification method was applied because it potentially 

produces better accuracy in a confusion matrix compared to other neural networks, maximum 

likelihood and decision trees when mapping LULC (Schubert et al., 2018; Zhang et al., 2013). 

However, possible sources of error in the calculations may have emerged from geometric 

rectification, accuracy in digitizing topographic maps and combining different data sources. 

The spectral differences and characteristics between Landsat 5 TM and Landsat 8 OLI sensors 

may have affected the accuracy of the thematic maps (Chemura and Mutanga 2017). Despite 

these potential discrepancies, the classification and results obtained in the current study have 

relatively high accuracy considering urban area spectral heterogeneity characteristics and 

spectral confusion from land cover classes, and the results agree with other published scientific 

studies carried out at the national and regional level (Hegazy and Kaloop 2015; Kamusoko et 

al., 2013; Owoeye and Popoola 2017; Sinha et al., 2016). The use of hyper-spectral data and 

aggregation of urban built-up areas have been observed to improve and enhance the analysis of 

remote sensing data in urban areas (Herold et al., 2003; Schubert et al., 2018). The utilization 

of additional built-up, water and vegetation remote sensing indices bands on the Landsat 

imagery scenes provide a substantial improvement in the mapping of an urban area using 

moderate-resolution imagery (As-syakur et al., 2012; Huete 1988; Xu 2006). However, 

misclassifications and reduction of areas covered by water bodies (water class) might have 

resulted from the increasing density of water hyacinths along the streams due to the fact of 

contaminated sewage effluents deposited in the water ecosystem (Herold et al., 2004; Kucsicsa 

and Grigorescu 2018). This is directly linked to the inflow of effluents from industries; sewage 
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disposal (punctual sources) and urban agriculture (diffuse sources). Consequently, alteration of 

water bodies as aquatic weeds scattering on the surfaces potentially influences classification 

(Table 4.4). 

The current study looked at the axis of urban development and the drivers posing LULC 

changes. This study revealed that the distance to the nearest major and secondary roads have a 

large impact on urban expansion and development. The binary logistic regressions highlight 

that built-up area development occurred predominantly along the major roads and in dense road 

network areas (i.e., secondary roads), due to the high connectivity and easy access to transport 

facilities. Hegazy and Kaloop (2015) reiterate that urban growth follows development along 

highways or already established cities as a result of population growth and socioeconomic 

factors. Nevertheless, high-density residential areas are expanding towards the periphery of the 

south, southeast, southwest and northwest of Harare Metropolitan Province. For comparison, 

the results of modelling the distance characters in Bucharest were in line with the findings of 

the current study; major and secondary roads impact positively on urban growth and expansion 

of built-up areas (Kucsicsa and Grigorescu 2018). For Bucharest, however, independent 

variables such as distance to lakes and rivers were not significant, while for the Harare 

Metropolitan Province, these variables have significant influence, as revealed by the binomial 

regression analysis between 2008 and 2018. Henceforth, the exclusion of the core city of 

Bucharest from the Bucharest Metropolitan area could have reduced the ability of the model to 

detect some independent characters. Still the geographic location of the study areas, 

socioeconomic structure and population sizes are highly different. 

The current study reveals that zones of urban area or built-up area expansion were 

associated with relatively gentle undulating slopes which can be attributed to low housing costs, 

cheap land acquired through housing schemes and informal urban settlements (Wania et al. 

2014). The southwest part of the Harare Metropolitan Province was the main direction of urban 

spread between 1984 and 1990 (Figure A1). This was associated with the expansion from first 

old Harare high-density suburbs that were designated during the colonial period such as 

Highfields, Mufakose and Rugare, among others (Cumming et al., 1993). These areas are 

associated with high-density road networks, low costs and economic residential units compared 

to the low and medium density residential areas. Between 1990 and 2000, expansion of the 

Harare Metropolitan Province dominated much in the southwest, west and southeast (Figure 

4.4, Figure A1). This expansion can be attributed to urban sprawling and rampant informal 

settling due to the presence of socio-economic factors in the eastern direction, that is, the 

Epworth suburbs and Dzivarasekwa extension introduced in 1991 (Araya and Cabral 2010; 
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Zinyama 1995). Between 2000 and 2008, significant expansion of built-up areas was directed 

towards the south and northwest direction (Figure 4.4, Figure A1) regardless of “Operation 

Murambatsvina” (Restore Order), a clean-up campaign that was carried out in June 2005 and 

left Harare with dismal identifiable illegal, urban built-up structures (Tibaijuka 2005). 

The expansion of Harare Metropolitan Province between 2008 and 2018 was dominant 

in the southern direction, and the city was expanding towards its peripheries (Figure 4.4, Figure 

A1). The far continued expansion towards the southeast resulted from unplanned urban 

development because of population pressure (Chirisa and Muhomba 2013). Bureaucracy and 

rigid and stringent procedures relating to construction plans approval by local authorities posed 

a hindrance towards sustainable urban growth (Chirisa 2014; Kamete 2007; Toriro 2007). Fast 

urban built-up area growth was observed on the southeast parts of Harare (Wania et al., 2014) 

resulting in marginalized urban residents. These marginalized urban residents are residing in 

poorly serviced areas which are of relatively low cost due to the shunning absence of proper 

water and sewer reticulation systems. This unplanned development accompanied with poor 

sanitary conditions resulted in increased chances of severe health issues (Douglas 1983; Turral 

et al., 2011). 

The northeast of Harare Metropolitan Province is composed of low-density residential 

suburbs and is characterized by medium gradient hills covered by high-vegetation density 

compared to high-density residential suburbs (Figure 4.4) (Anderson et al., 1993; Cumming et 

al., 1993). Due to the stratification of Harare, high income earners were pronounced to occupy 

these vegetation-enriched suburbs (Zinyama 1995). Construction on these landscapes is costly 

resulting in the variable “slope” as a significant driver for urban-built up area growth since the 

larger proportion of Harare residents occupied flat to gentle undulating landscapes in the south 

and other parts of Harare (Figure 4.4). Urban built-up area expansion towards the high-density 

residential area in the northwest direction follows the establishment of housing schemes such 

as the University of Zimbabwe’s Association of University project and Hatcliffe Consortium 

development (Chirisa 2014; Tibaijuka 2005). The Hatcliffe Consortium development was a 

government initiative on Operation “Garikai/Hlalani kuhle” projects meant to provide housing 

units towards the “Operation Murambatsvina” victims (Tibaijuka 2005). On the other hand, 

high population density on the northwest suburbs of Harare coincides with increasing urban 

built-up area expansion (Mushore et al., 2017; Wania et al., 2014). 

The geometry of road network reveals an influence on the spatial distribution and spread 

of urban built-up area as characterized by the regression models capturing the changes between 

1984 and 2018 (Figure 4.5). This indicates a linear pattern on the built-up areas and the road 
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network systems, contributing to the rapid spreading of informal settlements within the road 

spheres. Easy access to transportation network systems paves the way for a linear and grid 

distribution pattern of built-up areas in urban cities such as the Harare Metropolitan Province. 

The urban population increased faster than anticipated, resulting in accelerated rates of informal 

settlements and the erratic provision of decent housing by the Zimbabwean Government 

(Chirisa and Muhomba 2013; Government of Zimbabwe (GoZ) 1991; Toriro 2007). Increased 

unrestrained built-up area expansion and spread in the south and east of the Harare Metropolitan 

Province reveals largely urban sprawl (Chirisa and Muhomba 2013; Kamusoko et al., 2013). 

Thus, these increasing rates of informal settlements within the metropolitan area have 

negatively impacted water resources. Thereby, driving the “distance to the nearest streams and 

open water” variables as influential characters of the urban built-up area expansion. This has 

also been attributed to the invasion of the Harare Metropolitan Province’s ecosystem with urban 

construction activities (Chirisa 2014; Kamusoko et al., 2013; ZimStats 2012). The outward 

spreading of built-up areas was not evenly distributed. It concentrated largely in the south and 

southeast parts of the Harare Metropolitan Province, where fairly flat landscapes occur. This 

contributes to cheap residential construction costs (Wania et al., 2014) compared to the strongly 

rolling, sloppy landscape in the northeastern suburbs of the Harare Metropolitan Province 

(Figure 4.4, Figure A1) (Anderson et al., 1993). 

Without negating population growth rate as a driving force for urban growth, there is a 

correlation between urban expansion and population growth rate as substantiated by previous 

Harare Metropolitan Province population statistics (Moghadam and Helbich 2013). The Harare 

Metropolitan Province population is estimated to have increased from approximately 830,000 

in 1982 (Chirisa and Muhomba 2013) to 2,098,199 in 2012 (Moghadam and Helbich 2013). 

This huge growth of urban population posed large threats to water bodies (open water and 

streams) thereby making water resources vulnerable. Consequently, urban sprawl and 

unplanned rampant settling in the Harare Metropolitan Province concurred with the 

deterioration of water bodies since 2000. Overall, this study indicates that the popularity of 

water resources as amenities for land estates declined due to urban growth, which has led to the 

degradation of water resources through various human activities. 

4.5 Conclusion 

This study investigated the influence of independent variables as urban growth explanatory 

characters using binary logistic regression. The LULC classification accuracy of the Harare 

Metropolitan Province was improved through the use of remote sensing indices for spectral 
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separability considering the heterogeneity of an urban area. There are fundamental changes 

observed in the urban built-up area expansion and spread over the past three decades as 

evidenced by the shrinking of vegetation, cropland and water classes. This burdens the 

environment due to the increased demand for land by processes such as unplanned urban sprawl 

and informal settlements. However, there is need for a multi-disciplinary approach including 

land suitability analysis in order to curb the deterioration of these scarce and fragile resources. 

Models indicate that growth has been driven by the distance to nearest major roads, secondary 

roads, streams, open water courses and slope. For the phase between 1984 and 2000, binary 

logistic regressions show that distance to the city centre and distance to the nearest secondary 

roads and major roads were significant variables for urban built-up area expansion and spread. 

We observed a decreasing influence of the distance to the city centre as a predictor for urban 

built-up area expansion with increasing outward urban spread towards its peripheries. The 

findings revealed that fast urban growth and built-up area expansion were concentrated largely 

in the low-lying southern parts of the Harare Metropolitan Region and were occupied by high-

density suburbs compared to the slow development in the strongly rolling, sloppy landscapes 

in the northeast of Harare Metropolitan Province with low-density suburbs. Overall, the model 

indicates that a road network has greater impact on the development of urban built-up area due 

to the accessibility of a transport network for connectivity and showing potential areas for future 

development. 

Moreover, the research findings provide a guiding approach for town planners and 

policy makers to respond and pay attention to Harare Metropolitan Province landscapes which 

are profoundly deteriorating and, furthermore, the need to conserve the remaining amenities to 

maintain ecosystem balance. 
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4.7 Link with other chapters 

Chapter 4 displayed high urban LULC overall classification accuracy above 80% on moderate 

resolution Landsat satellite data. This was achieved through: (a) enhancing feature delineation 

by combining multi-spectral data with specific spectral indices (EBBI, MNDWI and SAVI), 

(b) testing of separability tendency using the transformed divergence separability index (TD) 

which indicates if classes are statistically separable for good classification and (c) finally, the 

generation of LULC classes applying the machine learning Support Vector Machines. The next 

chapters will apply LULC maps of high accuracy generated in Chapter 4 to further assess the 

landscape and geomorphology impacts associated with rampant urban expansion and climate 

change. Further, future predictions of LULC changes and the likely possible responses of the 

landscape to land use and climate changes will also be based on supervised classification 

performed in chapter 4 using mapping approaches deemed reliable in Chapter 2.  
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Abstract 

Urban development without adequate soil erosion control measures is becoming a major 

environmental concern in developing urban areas across Africa. These environmental 

disturbances encompass rampart land use and land cover changes (LULC) due to a high 

population growth rate and increased economic activities. To understand the influence of 

accelerated LULC changes and urban expansion as major drivers in landscape degradation in 

the Epworth district of the Harare Metropolitan Province, the RUSLE model was employed. 

This considers land use, soil, climate and topography as input parameters in the assessment of 

the extent and impact of these drivers on soil erosion. The Revised Universal Soil Loss Equation 

(RUSLE) was used to predict the potential erosion between 1984 and 2018 and soil erosion risk 

for the years 2000 and 2018. The mean rate of the predicted potential soil erosion was 13.2 t 

ha-1 yr-1 (1984–2018); areas especially vulnerable to erosion were predicted for foot slope areas 

with direct tributaries to the major streams and steep sloping zones. The average soil erosion 

risk was estimated at 1.31 t ha-1 yr-1 for the year 2000 and 1.12 t ha-1 yr-1 for 2018. While the 

overall potential soil loss decreased between 2000 and 2018, the potential soil loss was observed 

to increase tremendously in residential areas, which doubled in extent between 2000 and 2018. 

The findings reveal that about 40% of the Epworth district was threatened by unsustainable soil 

loss resulting from increased soil erosion risk within the built-up areas.  
 

Keywords: land use change; urbanization; LULC; RUSLE. 

 

5.1 Introduction 

Urbanization is a continuous process that has boldly accelerated with population increase, 

expansion and spread of built-up structures in a designated urban area (Alaci 2019). 

Urbanization in Africa has been growing at alarming rates with an anticipated annual growth 

rate of approximately 3.9% (African Development Bank 2005). Population growth and 

increasing economic activities have been linked to aggravate Land Use and Land Cover 

(LULC) changes (Lambin et al., 2001; Khosrokhani and Pradhan 2014; Meshesha et al., 2014). 

As such, urban development inevitably involves construction and sealing activities that alter 

natural landscapes (McCool et al., 1987) resulting in an increase in impervious surfaces, which 

replace natural vegetation and reduce the capacity for water infiltration.  

This in-turn results in surface runoff that substantially threatens soil loss in vulnerable 

landscapes through erosion processes (Jinren, and Yingkui 2003). While multiple studies on 

urbanization processes focus on the social and planning aspect and the assessment of the effects 

of urbanization processes on the (quasi-) natural environment, in the presented study we assess 

the effects of urbanization on surface processes by water in the strongly urbanizing area of 

Harare in tropical Africa; as case study we selected the 35 km2 largest growing informal urban 

district of the Harare Metropolitan Province, which showed urbanization processes in the sense 

of surface-sealing of 18 km2 since the year 2000 (Chirisa and Muhomba 2013; Marondedze and 

Schütt 2019). Due to the unprecedented growing rates of urban-built up area in Harare 
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Metropolitan Province (Chirisa 2014; Kamusoko et al., 2013; Marondedze and Schütt 2019), 

there is profound need for mapping potential erosion, and estimating potential soil erosion risk. 

Soil erosion by water is a naturally occurring process, which is accelerated by human 

interference and activities including agriculture, deforestation, urban expansion and potentially 

climate change (Borrelli et al., 2020; Karydas et al., 2009; McHugh et al., 2002; Ozsahin et al., 

2018). It is a continuous process that involves the bodily detachment, transport and deposition 

of particles originating from soils and weathered bedrock (Lahlaoi et al., 2015; Lal 2001). This 

resultant effect of overland flow and surface runoff has degrading effects on soil resources and 

affects agriculture and infrastructure (Pimentel et al., 1995; Rahman et al., 2009). The 

mechanisms involved in soil erosion by water underly a spatio-temporal variability and they 

are affected by factors such as rainfall, soil characteristics, ground cover and terrain (Moore 

and Burch 1986). In regions with seasonal rainfall dynamics, vegetation is sparsely distributed 

during dry season, making surfaces vulnerable to high raindrop energy impacts at the onset of 

wet season (Moore 1979; Ferreira and Panagopoulos 2014; Shikangalah et al., 2017; Chalise et 

al., 2019). Accelerated soil erosion is also reported especially on rainfed agriculture during the 

pre-monsoon due to high intensity rainfall events occurring concurrently with high wind speeds 

(Atreya et al., 2006; Chalise and Kumar 2020). 

The spatial heterogeneity and dynamic mechanisms of soil erosion can be attributed to on-

site and off-site effects that trigger landscape degradation (Le Roux and Sumner 2012; Pimentel 

et al., 1995). On-site soil erosion impacts encompass soil sealing and reduced crop productivity 

(Zhou and Wu 2008). Furthermore, change of soil structure emanating from the loss of topsoil 

and soil aggregates due to high rainfall erosivity and low infiltration rates severely perturb the 

sustainability of agricultural systems (Chalise et al., 2019; Samanta et al., 2016). Off-site 

damages effect widespread damages such as clogging of canals and drainage systems, siltation 

of reservoirs and destruction of roads thereby impeding transportation of goods and 

accessibility to properties (Le Roux and Sumner 2012; Opeyemi et al., 2019; Shikangalah et 

al., 2017). Construction activities such as grading and use of heavy machinery on steep and 

lengthy slope are reported as major sources of sediment loss due to their effect in accentuating 

erosion potential (USDA. NRCS 2000). Long-term LULC changes negatively impact river 

systems through the alteration of channel flow, soil deposition processes, soil textural 

organization and habitat loss (Bruijnzeel 1990; Chalise and Kumar 2020). Henceforth, the need 

is to assess the spatial distribution and extent of soil erosion in the rapidly transforming Epworth 

district of the Harare Metropolitan Province.  
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Globally, almost 84% of land loss results from soil erosion processes (Opeyemi et al., 

2019). The estimated mean rates of soil erosion across the world range between 12 and 15 t ha-

1 yr -1 (Ashiagbor et al., 2013). In Africa, it is estimated that 19% of the total reservoirs are 

under siltation threat due to soil erosion by water (Ashiagbor et al., 2013). About 494 million 

hectares of land in Africa are subjected to different types of degradation with degradation 

influenced by water estimated at 227 million ha (FAO and ITPS 2015). A countrywide annual 

soil loss of 1.5 * 109 t was predicted for Ethiopia, with cultivated lands recording the highest 

soil loss rate at 42 t ha-1 yr -1 (Hurni 1988). Soil erosion rates in Ethiopia’s cultivated lands and 

highlands have been highly influenced by increasing demographic pressure, climate change, 

terrain and depletion of vegetative cover (Food and Agriculture Organization 1986; Legesse et 

al., 2004). Only a few studies focus on an assessment of soil erosion risk in urbanized areas. 

For Kinshasa/DR Kongo, approximately 4.3% of the total urban area was predicted under high-

risk of soil erosion with over 15 t ha-1 yr -1 annual average loss (Kabantu et al., 2018). A study 

on Kuala Lumpar/Malaysia Metropolitan city shows that approximately 38.1% of the city area 

was above the soil loss tolerable rates (> 1 t ha-1 yr -1) due to high soil erodibility and steep 

slopes in some parts of the city (Khosrokhani and Pradhan 2014). At all, urban flooding falls 

among other problems associated with water induced urban soil erosion. This further aggravates 

risks on downstream water quality from overflowing sewers and street solids transported in 

concentrated urban runoff (Nhapi 2009). 

A wide range of empirical, conceptual and physical models have been developed to 

estimate soil loss risks and these models vary in complexity, data requirements, processes 

considered and calibration (Merritt et al., 2003; Ranzi et al., 2012). These models include, 

among others, the statistical model of the Universal Soil Loss Equation (Wischmeier and Smith, 

1978) and its derivatives the Revised Universal Soil Loss Equation (Renard et al., 1997), the 

Soil and Water Assessment Tool (Arnold et al., 1998) or the Water Erosion Prediction Project 

(Laflen et al., 1991). In general, model selection is particularly dependent on the availability of 

data, attributes of a working area and intended use (Ranzi et al. 2012; Renard et al. 1997). 

However, (Shikangalah et al., 2017) point out that the complexity of urban land use makes 

standard soil erosion recording and sampling techniques difficult to apply.  

The suitability of satellite remote sensing and Geographic Information Systems (GIS) 

applications to extract, delineate and manipulate land characteristics, and their integration with 

the Revised Universal Soil Loss Equation (RUSLE), makes them fundamental tools for spatial 

soil erosion estimation (Wang et al., 2003; Lu et al., 2004; Li et al., 2011; Chalise et al., 2018). 

The RUSLE model is widely used and has been validated over decades, in addition to the fact 
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that its limitations have been well documented (Renard et al., 1997; Shamshad et al., 2008). 

Various studies on the prediction and assessment of soil erosion rates using RUSLE have been 

reported for Africa, with much attention to highlands and river watersheds (Igbokwe et al., 

2008; Okereke et al., 2012; Woldemariam et al., 2018). However, there is paucity in research 

on mapping potential erosion and soil erosion risk modelling in urban built-up areas (Kabantu 

et al., 2018; Opeyemi et al., 2019; Shikangalah et al., 2017). The advances in urban 

development and soil erosion management have shown that land managers and policy makers 

consider the spatial distribution of soil erosion risk more than actual soil loss values 

(Khosrokhani and Pradhan 2014).  

The objectives of this paper are: (a) to model the spatial distribution of the soil erosion risk 

and potential erosion for Epworth district over different time slices: 2000 and 2018 in order to 

assess the dynamics of soil erosion over time in heterogenous urban landscapes; (b) to assess 

the influence of rampart land use and land cover changes on soil erosion risk in the Epworth 

district through the analysis of temporal soil erosion estimations between 2000 and 2018. The 

temporal investigation makes use of the RUSLE model for estimating quantitative and spatial 

data on potential erosion and soil erosion risk in the Epworth district of the Harare Metropolitan 

province (Aiello et al., 2015) in order to enhance and support soil conservation planning 

(Renard et al., 1997). The study implements field observations, direct erosion feature 

registration and quantification towards establishing comparison and validation tools for 

Epworth district soil erosion models (Cerri et al., 2001). Overall, our study results aim to 

provide scientific advice towards the sustainability of urban growth. 

 

 

5.2 Materials and Methods  

5.2.1 Study area  

Harare Metropolitan Province is the capital city of Zimbabwe (Figure 5.1), located between 

17°40'-18°00ˈ S and 30°55ˈ-31°15ˈ E. Harare Metropolitan Province is situated in the 

headwater areas of the Mukuvisi, Marimba and Manyame rivers, which supply Lake Chivero, 

a reservoir that supplies Harare with water (Nhapi 2009). The Harare Metropolitan Province is 

composed of four districts: Harare urban, Harare rural, Chitungwiza and Epworth. Epworth 

district is located about 12 km southeast of the central business district (Figure 5.1). Epworth 

district has been purposively selected as a study site because it is the largest informal settlement 

across urban districts in Zimbabwe (Chirisa and Muhomba 2013). Epworth counted 
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approximately 500 families in 1950 (Butcher 1986) while in 2012 the district had an estimated 

total population of 167,462 (ZimStats 2012). 

 

Figure 5. 1 Location of the Harare Metropolitan Province composed of the Harare urban, Harare rural, 

Epworth and Chitungwiza districts. (a) Zimbabwe district boundaries depicting the Harare Metropolitan 

Province; (b) districts of Harare Metropolitan Province; (c) Epworth district showing areas of recorded 

current soil erosion damages. 

 
Settlement activities such as urban agriculture, construction, illegal sand mining, brick molding 

and effluent discharge from industries pose water quality threats to the Lake Chivero drainage 

basin (Chirisa and Muhomba 2013; Hove and Tirimboi 2011). Epworth district is largely 

dominated by high-density residential areas. These are characterized by overcrowdings and 

concentrated housing residential structures due to densification; only little vegetation occurs 

across the settlements (Chirisa and Muhomba 2013).  

The general topography of Epworth district is characterized by undulating and slightly 

rolling terrain in the upland areas, being part of the southern Africa Highveld. Elevations range 

from 1455 m to 1556 m a.s.l. For Epworth district, clayey Fersiallistic soils (moderately leached 

soils of the kaolinitic order) occur in contact zones and Paraferrallitic soils (comprises of highly 

leached soils) are widely distributed across the entire district (Nyamapfene 1991; Thompson 

and Purves 1978). The sub-tropical climate of Harare Metropolitan Province is dominated by 

four distinct seasons: the cool-dry season (mid-May to August), hot-dry season (September to 
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mid-November), rain-wet season (mid-November to mid-March) and the post rainy season 

(mid-March to mid-May) (Kamusoko et al., 2013). Harare Metropolitan Province receives 470–

1350 mm of precipitation annually; rainfall predominantly occurs during the four months of 

rainy season. Average temperatures range from 7 °C to 20 °C during dry periods and from 13 

°C to 28 °C in hot-dry periods (Kamusoko et al., 2013). 

 
 
5.2.2 Soil erosion modelling 

Parameter estimation for Soil erosion risk assessment using RUSLE 

 
The RUSLE model is simple and the mostly used computerized version of the Universal Soil 

Loss Equation (USLE), a statistical model developed to estimate the annual soil loss per unit 

area based on erosion factors (Renard et al., 1997; Zhou et al., 2008). The RUSLE model has 

been widely implemented for the prediction of average annual soil losses caused by sheet and 

rill erosion and to display the spatial distribution of potential erosion risk (Cerri et al., 2001; 

Zhou et al., 2008; Prasannakumar et al., 2012; Al-Abadi et al., 2016; Karamage et al., 2017; 

Shikangalah et al., 2017; Tundu et al., 2018). The application of the RUSLE model for soil 

erosion risk considers the rainfall erosivity factor (R), soil erodibility factor (K), slope length 

and steepness factor (LS), land cover and management factor (C) and the support practice factor 

(P) (Renard et al., 1997). In the current study, the RUSLE model was adapted for mapping 

potential erosion using C and P factors as identity elements (C and P = 1) and for the spatial 

distribution of soil erosion risk. 

According to (Renard et al., 1997), the Revised Universal Soil Loss Equation (RUSLE) 

states that: 

 𝐴 = 𝐾 𝑥 𝑅 𝑥 𝐿𝑆 𝑥 𝐶 𝑥 𝑃                   (5.1) 

 

where: A is the annual average of soil erosion rate factor (t ha-1 yr-1); R is the rainfall erosivity 

factor (MJ mm ha-1 h-1 yr-1); K is the soil erodibility factor (t h MJ-1 mm-1); LS is the 

dimensionless slope length and steepness factor; C is the dimensionless crop management factor 

(ranging between 0 and 1) and P is the dimensionless conservation support practice factor 

(ranging between 0 and 1). The calculation of the potential erosion is based on the same formula 

while adjusting factors C and P to one (Khosrokhani and Pradhan, 2014; Karamage et al., 2017). 

Spatial analyses in the study were performed using ArcGIS 10.2 software to assess the 

dynamics of soil erosion over time in the heterogenous urban landscapes for the years 2000, 

2018 and the overall, 1984-2018 long-term rainfall data were used for rainfall erosivity factor 

computation (Figure 5.2). The LS factor RUSLE geospatial input factor was computed using a 
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hydrology module (LS-factor field base) in SAGA GIS (Panagos et al. 2015a). The acquired 

geospatial input parameters for the RUSLE model (Table 5.1) were used to produce thematic 

maps for the estimation of potential erosion and soil erosion risk generated within every cell 

grid (Farhan and Nawaiseh 2015; Mati et al., 2000; Millward and Mersey 1999). For data 

harmonization, we resampled all data sources to determine 30 m x 30 m grid cell size using 

nearest neighborhood technique so as to retain original pixel value before carrying out grid cell 

calculations. This was performed to enhance data compatibility from varying data sources used 

for modelling (Ai et al., 2013).  

 

Figure 5. 2 Flowchart for modelling potential erosion and soil erosion risk in Epworth district. LULC: 

Land Use and Land Cover, ISRIC: International Soil Reference Information Centre. 
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Table 5.1 Principal data used for soil erosion modelling showing the resolution and the source. 

Data type Resolution Source 

K Factor 250 m Global Soil map and attributes in raster (TIF format) (International 

Soil Reference and Information Centre (ISRIC) World Soil 

Information) 2019) “SoilGrids”  

R Factor - Average monthly rainfall data from the Zimbabwe Department of 

Meteorological Services (Harare) database. 

LS Factor 30 m Digital Elevation Model (DEM) (USGS (United States Geologic 

Service) 2018)  
C Factor 30 m Obtained by assigning weighted C factor values to the LULC maps 

adopted from Marondedze and Schütt, 2019 

P Factor 30 m The value of 1 was assigned to all-over the study area. 

   

 

Rainfall erosivity factor (R) 

Rainfall erosivity factor (R) describes the ability of rainfall to trigger soil erosion (Stocking and 

Elwell 1976; Lal 1990; Farhan and Nawaiseh 2015). The RUSLE model makes use of this 

erosivity factor (R [MJ mm ha-1 h-1 yr-1]) in integrating the effects of raindrop impact, rainfall 

duration and resulting runoff rates, which are coupled with the amount and the energy within 

each recorded rainfall pattern (Farhan and Nawaiseh 2015; Renard et al., 1997). Rainfall 

erosivity was calculated using mean annual rainfall data collected from three gauging stations 

in Harare Metropolitan Province (Harare Belvedere, Harare airport and Harare Kutsaga; Table 

5.2) following Equation 5.2 (Merritt et al., 2003; Tundu et al., 2018):    

𝑅 = 38.5 + 0.35 𝑥 𝑀            (5.2) 

where R = Rainfall erosivity factor, M = Mean annual rainfall. 

Table 5.2 Location of gauging stations and mean annual precipitation for the study periods. 

Rain stations Coordinates Mean annual precipitation (mm) 

1984–2000 2000–2018 1984–2018 

Belvedere 17° 50ˈ S, 31° 01ˈ E 880.2 851.1 865.7 

Airport 17° 55ˈ S, 31° 06ˈ E 834.3 774.2 804.3 

Kutsaga 17° 55ˈ S, 31° 08ˈ E 804.6 792.8 798.7 

 
 
To analyze possibly changing rainfall erosivity since 1984, annual rainfall averages were 

calculated for the time steps: 1984–2000, 2000–2018 and overarching, 1984–2018. The mean 

annual precipitation data were interpolated over entire district by applying the inverse distance 

weighting (IDW) interpolation technique and converted to rainfall erosivity by applying 

Equation (5.2). 
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Soil erodibility factor (k) 

The responsive effect of a particular soil in a given location to the erosive power of rainfall and 

runoff impacts is referred to as the soil erodibility factor (K) (Lal 2001; Alexakis et al., 2013). 

Soil erodibility is regarded as a function of the soil texture, organic matter content, soil structure 

and the degree of permeability (Yang and Zhang 2011; Ranzi et al., 2012). Soils being highly 

susceptible to erosion have soil erodibility values close to 1, whereas corresponding values 

close to 0 indicate a resistive nature of the soil (Farhan et al., 2013; Woldemariam et al., 2018). 

In the current study, information on soil structure and profile permeability was not available. 

Therefore, the K factor was estimated using the ISRIC (International Soil Reference 

Information Centre)-World Soil Information data (Hengl et al., 2017), following the equation 

by (Sharpley and Williams, 1990). 

 

Topographic factor (LS) 

The LS factor summarizes the effects of topography on soil erosion and combines the influence 

of slope length and slope angle on soil loss; while the S-factor measures the effect of slope 

steepness, the L-factor defines the impact of slope length. The slope length L is defined as the 

distance between the upslope starting point of a slope segment to the downslope point where 

deposition begins (Ashiagbor et al., 2013; Panagos et al., 2015). Increasing slope length and 

steepness per unit area results in increased runoff and flow velocity and consequently in 

increased soil loss exposure (Wischmeier and Smith, 1978; Desmet and Govers, 1996; Alexakis 

et al., 2013). The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) 

with a spatial resolution of 30 m was used for the LS factor computation applying SAGA 

software 2.3/Hydrology module (Desmet and Govers 1996; Panagos et al., 2015a). For data 

pre-processing, fill sink algorithm was employed using the spill elevation method for filling 

sinks on the DEM (Wang and Liu 2006). Multiple flow direction tool (MFD) incorporated in 

the Hydrology module was applied to the DEM to assign flow directions and flow accumulation 

(Freeman 1991; Tarboton 1997). 

 

Land cover and management factor (C) 

The Land cover and management factor C’s pivotal role is to capture differences in soil loss in 

vegetated areas by dissipating raindrop impact on the soil surface compared to bare areas 

(Renard et al., 1997; Lee 2004; Kheir et al., 2008). The C factor decreases from 1 to 0 depending 

on vegetation cover and cropping management systems implemented to mitigate soil erosion 

(Desmet and Govers 1996; Ranzi et al., 2012). In order to determine the C factor, land use maps 



67 
 

generated from the supervised classification of satellite images were adapted for use 

(Marondedze and Schütt 2019). The C factor values for each land use are a result of weighted 

average of the soil loss ratio deduced from a reference plot (bare) with a C factor of 1 (Panagos 

et al., 2015; Renard et al., 1997). Henceforth, the C factor values of each land use type were 

evaluated from literature (Singh and Phadke 2006; Leh et al., 2013; Khosrokhani and Pradhan 

2014; Asiedu 2018); weighting of the data was performed following field observations and the 

biophysical characteristics per sampling plot (canopy cover, prior land uses, and surface cover) 

(Renard et al., 1997; Panagos et al., 2014). The weighted C factor evaluation considered plant 

growth, height and the extent of canopy cover in-situ (Alena et al., 2013; Panagos et al., 2014), 

in relation to bare and sealed area. Further, previous urban farming practices and residues of 

the plant material influence were majorly factored in during surface cover subfactor assessment 

per sampling plot. For croplands the C factor was estimated by averaging the values of 

predominant crops within the study area’s croplands (Ochoa-Cueva et al., 2015). The 

availability of remote sensing data, especially the supervised classification maps, appropriately 

aided the evaluation of spatial variability of the C factor (Panagos et al., 2014). Overall, the 

weighted C factors were estimated as a result of multiplying the scaled percentages of the 

evaluated C subfactors (Table 5.3), reviewed RUSLE C factors according to the literature 

(Singh and Phadke 2006; Leh et al., 2013; Asiedu 2018) and the ratio of sealed area proportion 

(Marondedze and Schütt 2019) in relation to the reference plot (bare). 

Table 5.3 C factor values and relative proportion of LULC classes for 1984, 2000 and 2018. 

   Land area (%) 

Land use class Weighted C 

factor value 

1984 2000 2018 

CBD/ Industrial areas 0.017 0.1 0.4 0.5 

LMD (Less concentrated) 0.066 2.8 15.5 31.5 

HD (Concentrated) 0.083 16.6 38 52.6 

Irrigated cropland 0.166 1 7 0.4 

Rainfed cropland 0.239 17.9 17 9.1 

Green spaces 0.03 61.5 22 5.9 

Water 0 0.1 0.1 0.04 

*CBD: Central Business District  *LMD: Low-Medium Density *HD: High Density 

 

Support practice factor (P)   

The Support practice factor P expresses the effects of surface management practices that are 

applied to reduce soil loss through erosion processes (Opeyemi et al., 2019; Renard et al., 

1997). These practices include among others terracing, strip cropping and contour ploughing 

(Renard et al., 1997). The P factor value ranges between 0 and 1, where 0 shows the highest 
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effectiveness of the conservation practice and 1 indicates that there are no support practices or 

measures implemented (Renard et al., 1997; Adornado et al., 2009). In this study, a P factor of 

1 has been all-over applied due to the area wide absence of support or management practices.  

 

5.2.3 Mapping and surveying soil erosion dynamics 

The complexity of the setup of urban built-up areas and the distribution of the different land 

use require soil erosion field survey mapping to receive reference data (Shikangalah et al., 

2017). In this regard, a simple snap-shot sampling procedure was implemented during the field 

survey in December 2019 to estimate the spatial extent of eroded areas on plots 40 m x 80 m in 

size (Shikangalah et al., 2017). In total, 49 sites were randomly surveyed, covering varying land 

use. Mapping of spatial soil erosion assessment was geocoded using a hand-held GPS (Garmin 

60Cx); parallel on-site soil erosion features were measured, considering the erosion features 

(inter-rills and rills) individually calculating their area and volumes (Cerri et al., 2001; Bewket 

and Sterk 2003). Rills were defined as linear erosion channels not more than 0.5 m deep and 

with a cross-sectional area < 929 cm2 to make them distinct from ephemeral gullies and deep 

incised gully features (Imeson and Kwaad 1980; Poesen et al., 2003).  

Overall, total percentages of disturbed surface area data were registered for the sample 

plots in the Epworth district to estimate the spatial extent of perturbed regions of the district. 

The spatial extent of eroded areas was estimated as percentage per plot (Shikangalah et al., 

2017) and classified into five severity classes. Mapping results are displayed in a positional 

diagram map. 

 
 

5.3 Results 

5.3.1 Factors controlling soil erosion 

The rainfall erosivity factor map for Harare’s Epworth district depicts very small variations 

over the study periods between 1984 and 2018 (Figure 5.3). The annual area wide R factor 

averaged 329 MJ mm ha-1 h-1 yr-1 between 1984 and 2000 (std = 0.55, n=16), 315 MJ mm ha-1 

h-1 yr-1 between 2000 and 2018 (std = 0.27, n=18) (Figure A2). As for both observation periods, 

the R factor did not vary significantly (α > 0.05), the area wide averaged R factor for the time 

period 1984–2018 with 322 MJ mm ha-1 h-1 yr-1 (std = 0.38, n=34) was applied (Figure 5.3).  
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Figure 5. 3 Input factor maps for modelling potential soil erosion for the Epworth district. (a) shows 

the overall rainfall erosivity factor between 1984 and 2018; (b) topographic factor (LS) and (c) soil 

erodibility factor (K). 

 
Soils in the Epworth district upland’s areas are dominated by sandy to clayey loams and sandy 

loam along the alluvial plains; also, at sloping positions sandy loam soils frequently appear. 

Correspondingly, K factor values vary in the Epworth district between 0.06 and 0.09 t h MJ-1 

mm-1 and are highest along the slopes flanking the valleys while they are lowest in the plateau 

area. Relief in the Epworth district is due to its location at the northern extension of the Highveld 

slightly rolling. Slopes at the plateau vary between 0.74° and 2.0°, while along the valley flanks 

they increase in steepness up to 4.6°. Correspondingly, the values of the topographic factor (LS) 

are highest along the valley flanks, increasing from the headwater areas moving downstream of 
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the Epworth district (Figure 5.3). Overall, the topographic factor values range from 0 in the 

plateau areas to 21.74 in steep areas.  

The land cover management factor weighted values are based on field observations and 

satellite images on LULC analysis (Table 5.1, Table 5.4, Figure 5.4). Data for the LULC 

changes from 1984-2000 and 2000-2018 were adapted from (Marondedze and Schütt 2019).  

 

 

Figure 5. 4 LULC maps for the Epworth district over the years (a) 2000; (b) 2018 and crop management 

factor maps for the years (c) 2000; (d) 2018. 
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Table 5.4 Description of study area LULC classes. 

ID Land Use and Land 

Cover class 

Description 

1 CBD/Industries Industries and central business district defined with high 

fraction of impervious surfaces mainly buildings and little 

proportion of vegetation  

2 LMD residential (less 

concentrated) 

Leafy and well established low and medium density suburbs 

surrounded with high vegetation  

3 HD residential 

(concentrated) 

High density residential areas with low vegetation cover or 

clustered settlements with areas undergoing developments and 

bare exposed land 

4 Irrigated cropland Cultivated land under irrigation schemes 

5 Rainfed cropland Cultivated land or land with crop residues after harvesting  

6 Green spaces All wooded areas, shrubs and bushes, riverine vegetation and 

grass covered areas 

7 Water Areas occupied by water, rivers, wetlands, reservoirs and dams 

*CBD: Central Business District *LMD: Low-Medium Density *HD: High Density 

5.3.2 Potential erosion risk analysis 

The potential erosion risk map was derived from the application of the “natural” RUSLE factors 

for soil characters, rainfall erosivity and topography (K, R and LS) for the Epworth district. 

Resulting data are classified into five potential erosion risk classes showing how erosion varies 

in the Epworth district (Figure A3). The potential erosion risk map indicates the vulnerability 

of the landscape independent from vegetation cover and crop management. The findings reveal 

that very high to extreme erosion risk areas occur in areas of steep slopes (Figure A3); the only 

spatially slight variations of R and K factors cause a strong control of potential erosion risk by 

topographic factors’ LS. Due to the general orientation of the drainage network to the south and 

downstream with increasing inclination of the slopes along the valley flanks, the areas with 

high erosion risk expand from the north to south. Very high to extreme erosion risk areas are 

also observed in the eastern parts of the Epworth district resulting from locally occurring steep 

slopes towards the middle course of the Jacha river and tributaries. In contrast, low to moderate 

potential erosion risk areas occur in the plateau areas of the Highveld. Extreme potential erosion 

risk zones occur in the immediate vicinity of streams and at steep slopes. The area wide average 

potential erosion risk rate in the Epworth district was 13.2 t ha-1 yr-1 since 1984, referring to the 

precipitation data 1984–2018 (Figure A3, Table 5.5).  
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Table 5.5 Potential erosion risk classes with erosion rate and area covered proportion. 

Soil erosion risk Soil loss  

(t ha-1 yr-1) 

1984–2018 

Area (km2) Area (%) 

Low 0 - 1 0.5 1.4 

Moderate 1 - 2 2.3 6.6 

High 2 - 5 0.4 1.1 

Very high 5 - 10 11.3 32.3 

Extreme >10 20.5  58.6  

 
 
5.3.3 Soil erosion risk 

The estimated soil erosion risk maps were generated for 2000 and 2018. The estimated soil 

erosion risk averaged 1.31 t ha-1 yr-1 in 2000 and 1.12 t ha-1 yr-1 in 2018; with highest total soil 

loss rate for the Epworth district amounting to 92.79 t ha-1 yr-1 in 2000. The spatial patterns of 

the estimated soil erosion risk indicate areas with high soil erosion loss predominantly along 

the river courses (Figure 5.5). Correspondingly, areas of high soil erosion risk can also be found 

in the southwestern and southeastern parts of the Epworth district with highest soil erosion risk 

close to the river courses.  
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Figure 5. 5 Spatial distribution of soil erosion risk. (a) 2000; (b) 2018 and (c) shows the spatial extent 

soil erosion damage in percentages based on field mapping in December 2019 for selected plots (plot 

size measured 40 m x 80 m; in total 49 sites were randomly surveyed, covering varying land use). 

 

The soil erosion damage map shows plot-wise surface area damages in the Epworth district 

calculated from the soil erosion feature dimensions, expressed in percentages of the total surface 

area for each plot (Figure 5.5). According to this soil erosion damage map, the southeastern and 

southwestern plots of the Epworth district experience higher soil erosion compared to the other 

areas investigated. The spatial extent of the soil eroded area ranges from 0% to 1.4% for the 

surveyed plots in the Epworth district. The magnitude of soil erosion observed during field 

mapping in 2019 indicated that slope, high proportion of sealed and impervious surfaces 

attributed to increased soil erosion damages in the Epworth district (Figure 5.6).  
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Figure 5. 6 The extent of soil erosion observed in Epworth district. The extent of soil erosion 

observed in Epworth district. (a) paved roadside erosion feature; (b) erosion occurring in an unpaved 

road. 

 

The estimated soil erosion risk for the year 2000 highlights that 56.3% of the Epworth district 

was exposed to low soil erosion risk and 25.9% to moderate soil erosion risk, while 15% of the 

Epworth district was exposed to high, and 2.8% to very high and extreme soil erosion (Figure 

5.5, Table 5.6). For 2018 modelling of soil erosion risk displays a slight decline of risk of 

exposure with 59.5% of the area being exposed to low soil erosion risk and 29.3% to moderate 

soil erosion risk; the spatial extent of areas exposed to high soil erosion risk declined to 10% 

and areas exposed to very high to extreme soil erosion risk covered 1.2% of the Epworth district 

(Table 5.6).  

Table 5.6 Estimated soil erosion risk in Epworth district for 2000 and 2018. 

Soil loss  

(t ha-1 yr-1) 

 Soil erosion 

risk 

2000 2018 

 Area (km2) Area (%) Area (km2) Area (%) 

0–1  Low 19.6 56.3 20.7 59.5 

1–2  Moderate 9.0 25.9 10.2 29.3 

2–5  High 5.2 15.0 3.5 10.0 

5–10  Very high 0.9 2.5 0.4 1.1 

>10  Extreme 0.1 0.3 0.04 0.1 
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5.3.4 Magnitude of soil erosion in Epworth district 

A spatial extent of about 765 m2 was eroded with an average area of 31 m2 affected by soil 

erosion as calculated from the 49 randomly selected sample plots in Epworth district during the 

field survey in 2019 (Table 5.7). The soil erosion damage measured approximately 0.5% of the 

total area mapped (15.7 ha). The occurrence of soil erosion features varied in the surveyed plots 

corresponding to vegetation cover, slope characteristics and human activities.  

Table 5.7 The extent of soil erosion in Epworth district summarized for 2019 field survey. 

 Spatial Eroded Area (m2) 

Number of mapped sites 49 

Total extent of erosion 765 

Mean 31 

Standard Deviation 10.5 

Standard Mean Error 1.5 

 

Model validation was done using the empirical RUSLE model data in comparison with on-site 

field measurements. The results showed good RUSLE model performance as there was 

satisfactory moderate positive correlation between field measurements and model results for 

sample areas (r = 0.76 and R2 = 0.581, p <0.05) (Figure 5.7). This provides confidence in the 

application of the model for sustainable land use planning and decision-making processes.  

 

Figure 5. 7 Evaluation of soil erosion modelling and field measurements. 
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5.3.5 Land use and soil loss analysis  

The results show that about 50,408 tons of soil were estimated to be lost under 2000 LULC 

conditions, while an estimated total soil loss of 42,934 tons was calculated for 2018 (Table 5.8). 

For the industrial areas of Epworth district, approximately 40 tons of soil loss were estimated 

for 2000, while an increase of up to 47 tons of soil loss was estimated for the same land use 

type for 2018. For 2000, for the land use type “less concentrated residential area” (15.5% of the 

Epworth district in 2000) 6218 tons of soil loss were estimated while, for the land use type 

“concentrated residential areas” (38% of the Epworth district in 2000) about 14,018 tons total 

soil loss were estimated. An increase in soil erosion risk for less concentrated and concentrated 

residential areas were estimated to amount 12,203 tons for the “less concentrated residential 

areas “(31.5% of the Epworth district in 2018) and 19,858 tons for the “concentrated residential 

areas” (52.6% of the Epworth district in 2018). A decline in the estimated soil loss was observed 

for land use types either of agricultural use or covered by green spaces (undifferentiated) 

between 2000 and 2018, decreasing proportional to the reduction of the areas of these land use 

types (Table 5.8).  

 

Table 5.8 Estimated soil loss for the different LULC classes in Epworth district based on the assessment 

of soil erosion risk and LULC analysis for the years 2000 and 2018. 

LULC class. 

2000 2018 
Soil loss 

(tons) 
Area(km2) Percentage 

(%) 
Soil loss 

(tons) 
Area(km2) Percentage 

(%) 

CBD/Industrial area 40 
 

0.12 
 

0.4 
 

47 
 

0.19 
 

0.5 

LMD (less 
concentrated) 

6218 
 

5.41 
 

15.5 
 

12,203 
 

10.96 
 

31.5 

HD (concentrated) 14,018 13.17 
 

38 19,858 
 

18.32 
 

52.6 

Irrigated cropland 6970 2.45 
 

7 733 
 

0.13 
 

0.38 

Rainfed cropland 19,228 5.85 
 

17 9239 
 

3.16 
 

9.1 

Green spaces 3934 7.78 
 

22 854 
 

2.06 
 

5.9 

Water 0 0.05 
 

0.1 0 0.01 0.04 

Total 50,408 34.83 
 

100 42,934 34.83 
 

100 

*CBD: Central Business District   *LMD: Low-Medium Density    *HD: High Density 
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5.4 Discussion 

For the tropics, studies reported average soil loss rates of 5 t ha-1 yr-1 (Bamutaze 2015; Lufafa 

et al., 2003), while (Morgan 2009) highlights that a soil loss limit of 11 t ha-1 yr-1 may be 

accepted as reasonable mean annual loss due to soil erosion. However, (Hudson 1981) argues 

that for sensitive and fragile land areas average soil loss tolerance of 2 t ha-1 yr-1 could be 

recommended. In contrast, considering the slow rate of soil formation and spatio-temporal 

effects of soil loss on water quality and productivity, tolerance limits for soil erosion loss are 

set for the tropics at 1 t ha-1 yr-1 (Khosrokhani and Pradhan, 2014; Karamage et al., 2017; 

Abdulkareem et al., 2019). The occurrence of soil loss exceeding 1 t ha-1 yr-1 was considered 

as the critical rate for the Epworth district due to the low rate of soil formation as typical for the 

tropics (Khosrokhani and Pradhan 2014). This agrees with the recommendation of 

(Abdulkareem et al., 2019) that the rate of soil loss through soil erosion should be relatively 

balanced with the soil formation rate to minimize excessive environmental damage. As such, 

average soil loss rates exceeding the suggested 1 t ha-1 yr-1 are classified as unsustainable to 

continue supporting land use (Verheijen et al., 2009; Jones et al., 2013).  

The empirical RUSLE model implemented in this study was applied to predict potential 

erosion risk and soil erosion risk for the Epworth district of the Harare Metropolitan Province 

(Figures A3 and Figure 5.5). The calculation of the potential erosion risk is based on the 

assumption that there is no land use and no land management as well as no support practice; 

potential erosion is understood as the erosion processes only controlled by physical factors. 

Consequently, potential erosion risk depicts areas vulnerable to erosion even without 

considering land use (Karamage et al., 2017). For the Epworth district the potential erosion risk 

was averaged at 13.2 t ha-1 yr-1 between 1984 and 2018, significantly exceeding the soil loss 

tolerance limit of 1 t ha-1 yr-1 for the tropics (Khosrokhani and Pradhan 2014; Abdulkareem et 

al., 2019).  

Estimated soil losses due to soil erosion risk averages amounted to 1.31 t ha-1 yr-1 and 1.12 

t ha-1 yr-1 in the years 2000 and 2018, respectively. Correspondingly, the revealed soil loss due 

to soil erosion risk for Epworth district was slightly above the recommended tolerable limits of 

1 t ha-1 yr-1 (Khosrokhani and Pradhan, 2014; Karamage et al., 2017; Abdulkareem et al., 2019). 

Considering the proposed range of tolerable maximum annual soil loss in tropical regions, it 

can be deduced that the mean estimated soil loss during all study periods slightly causes 

irreversible soil erosion. The occurrence of high potential erosion risk compared to low soil 

erosion risk is due to the assumption that for the calculation of potential erosion risk, the factors 

land cover and management (C) and support practice (P) are not considered, and consequently, 
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these factors are mathematically handled as identity elements in order to assess the impact of 

RUSLE “natural factors” on the study area. In the application of the RUSLE this corresponds 

to dealing with C and P factors as bare ground (Khosrokhani and Pradhan 2014). Such 

conditions earmark the impact of soil erosion on cleared land area and also reveal the 

significance of vegetation cover in dissipating raindrop energy impact on the bare ground. 

Nevertheless, such scenarios merely occur in urban areas as a result of built-up densification 

and spread of impervious surfaces unless croplands and disturbed green spaces exist at larger 

scale.  

The decrease of soil loss due soil erosion risk for the Epworth district calculated for the 

period 2000–2018 probably resulted from the expansion of built-up areas at the expense of 

green spaces and cropland areas and thus with sealing the underground impeding surface 

exposure to erosion (De Meyer et al., 2011; Meshesha et al., 2014). However, soil disturbance 

has been triggered by human activities in the district due to high population pressure and 

demand for shelter (Cantón et al., 2011; Shuster et al., 2005). This contributes to increased soil 

loss within the urban built-up areas compared to the previous years (Table 5.8). The 

replacement of green spaces with impervious surfaces causes a reduction in surface area for 

water infiltration (Dams et al. 2013; Phil-Eze 2010), causing increased overland flow either by 

sheet flow or by concentrated surface runoff. This substantially threatens soil loss through 

erosion where the overland flow reaches areas where soils are exposed to the surface making 

them highly vulnerable landscapes with mostly bare grounds (Jinren, and Yingkui 2003; 

Meshesha et al., 2014).  

Construction activities create artificial slopes and reduce vegetation canopy cover exposing 

soil surfaces to raindrop impact thereby exacerbating rates of soil detachment and transportation 

during rainstorm events (Opeyemi et al., 2019). Beyond, construction activities repeated earth 

movements affect the stability of the soil structure and increase soil erodibility (Lal 1990; Jim 

1993) and soil compaction resulting in the reduction of infiltration capacity and increase surface 

runoff generation (Jim 1993; Dams et al., 2013). Therefore, continued LULC changes 

dominated by the expansion of built-up areas largely perpetuate soil loss within the built-up 

areas (De Meyer et al., 2011). To ensure that soil erosion risk thresholds remain sustainable, 

land suitability analysis should be considered to enhance land use allocation and proper land 

servicing require to be implemented by responsible authorities in order to meet competing 

demands for land. The findings of this study highlight that zones with high potential erosion 

risk and soil erosion risk correspond to zones of strong relief and high slope lengths (high LS 

factors).  
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The weighted C factor values derived based on the biophysical properties observed and 

measured in the field (Wischmeier and Smith, 1978; Panagos et al., 2015). The approach 

integrated LULC maps derived from satellite images. However, there are limitations on the use 

of LULC data resulting from misclassifications, heterogeneity and spatial distribution of 

vegetation densities across the entire district. The resulting approach anticipates that the same 

LULC class poses the same land cover and management factor C value (Lu et al., 2004; Ma et 

al., 2003; Panagos et al., 2014; Vrieling 2006). However, uncertainties and limitations 

influencing the results could have also emanated from omitting other biophysical characteristics 

during estimations of the C factor including surface roughness and below-ground biomass 

(Wischmeier and Smith, 1978; Panagos et al., 2015; Teng et al., 2018). 

An analysis of the relationship between LULC and estimated soil erosion risk was 

performed by overlaying LULC and soil erosion risk maps for the time slices 2000 and 2018 

(Table 5.8). This relationship has been observed as a useful tool monitoring patterns of LULC 

change against soil erosion risk (Abdulkareem et al., 2019; Khosrokhani and Pradhan 2014); 

the analysis reveal spatial patterns and changes for each LULC class majorly as influenced by 

human activities in relation to soil erosion risk. Soil erosion risk was extremely high in rain fed 

croplands in the year 2000, highlighting their vulnerability to water induced erosion. This might 

have been propelled by leaving little to no crop residues as soil cover on the fields, exposing 

bare soil to rainfall at the onset of rainy season (Ferreira and Panagopoulos 2014; Giang et al., 

2017; Chalise et al., 2019). In addition, pre-season land preparation exposes fine tilled land to 

raindrop impact, exacerbating soil loss due to reduced surface and ground cover in dissipating 

and scattering raindrop energy (Smith et al., 1987), while concurrently ploughing increases 

surface roughness and pore volume, both fostering infiltration (Nyamangara et al., 2014; Jakab 

et al., 2017).  

The estimated soil loss in areas covered by green spaces initially was predicted to be high 

considering the vegetation’s ability to intercept raindrop impacts (Panagos et al., 2015a). 

However, it has to be clearly differentiated what character the vegetation cover has and whether 

the area is disturbed or undisturbed by human impact. Especially areas with sparse disturbed 

green spaces are exposed to erosion processes by the first rains coming after a dry period due 

to the hydrophobic character of dried out soils while parallel the soil stabilization by roots is 

insufficient (Ferreira and Panagopoulos 2014; Shikangalah et al., 2017); footpaths spreading 

across areas increase soil sealing along the paths and thus foster generation of concentrated 

runoff (Chalise et al., 2019; Jakab et al., 2017). Other local human activities including 

harvesting of firewood for domestic use, burning of bricks during their processing and fencing 
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of gardens have negative impacts on vegetation cover. The more intense land use gets, 

especially transferring fallow land covered by sparse green spaces into built-up areas, the higher 

the soil erosion risk in this area, which is highly affected by the increasing areas characterized 

by sealed and impervious surfaces (McCool et al., 1989). Soil erosion risk investigations on the 

Epworth district show that, despite the decreasing of the overall estimated soil loss from 50,408 

tons to 42,934 tons between 2000 and 2018, the expansion of urban built-up areas at the expense 

of croplands and green spaces has locally increased soil loss risk. 

The expansion and spread of residential areas have been linked with increases in soil 

erosion risk within areas of intense human activities (Table 5.8). The relationship between 

LULC and soil erosion risk analysis reveals that in concentrated residential areas in 2000 about 

14,018 tons of estimated soil loss occurred, while about 19,858 tons of estimated soil loss 

occurred in 2018. The estimated increase of soil loss in concentrated residential areas 

corresponds to the massive growth of built-up areas and the coinciding increase of impervious 

surfaces (Gumindoga et al., 2014). The observed changes in built-up areas are significantly 

attributed to population growth in the Epworth district. The population was estimated to have 

increased from approximately 114,067 in 1992 to about 167,462 in 2012 (ZimStats 2012). The 

resulting reduced infiltration rates contributing to high rates of surface runoff (Braud et al. 

2013), result in soil damage down the slope and parallel to roads (Dams et al., 2013). The 

increase in estimated soil loss in the residential areas of the Epworth district are comparable 

with those in Kinshasa/DRC, where it is observed that highest soil erosion risk rates spatially 

correlate with steep slopes along river flanks and increasing density of informal settlements 

(Kabantu et al., 2018). Estimated soil loss in less concentrated residential areas increased from 

6218 tons in 2000 to approximately 12,203 tons in 2018. This corresponds to a doubling in size 

of the land use class “less concentrated residential areas” in the Epworth district from 15.5% in 

2000 to 31.5% in 2018 (Table 5.8). The increase in soil loss for less concentrated residential 

areas may have resulted from the registered decrease in green spaces (Table 5.8). This is 

possibly attributed to high population pressure and demand for shelter, hence propelling 

landowners to informally construct shacks on their backyards to curtail housing demand. These 

activities inevitably occur at the expense of green spaces and ground cover resulting from 

clearing of land for construction (Lee and Pradhan 2006; McCool et al., 1987).  

Steep areas have high potential erosion risk as well as estimated soil erosion risk, especially 

on the flanks of the streams (Evans 2002; Kamuju 2016). This corresponds to the high loading 

of slope steepness in the RUSLE model (Assouline and Ben-Hur 2006; Koirala et al., 2019). 

The combination of slope inclination with slope length contributes to the cumulative effect of 
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increasing surface flow with increasing the drainage basin resulting in increased soil erosion 

risk (Kabantu et al., 2018; Opeyemi et al., 2019). For the Epworth district, wall around 

homesteads and industrial areas most likely acted as physical barriers for surface runoff, 

reducing slope length and affecting flow velocity and flow direction of surface runoff.  

The spatial pattern of current soil erosion damage as documented in a diagram map is based 

of field survey in December 2019 (Figures 5.5 and 5.6). The field measurements data serve as 

a validation tool for the estimated soil erosion risk modelling for the Epworth district. The plot-

based field measurements recorded reflect the extent of erosion prevalent within the mapped 

area. The RUSLE model is presumed to predict the amount of soil moved on the field (Alewell 

et al., 2015; Trirnble and Crosson 2000); henceforth, the spatial damage data from the field 

measurements represented the proportions of soil moved. These mapped sites of the spatial 

extent damage map spatially concur with soil loss estimated using the RUSLE model. This, 

however, improves the model evaluation despite the lack of sheet erosion assessment. Even 

though, (Auerswald et al., 2006; Lazzari et al., 2015) reiterated that empirical modelling 

requires long-term field measurements and the analysis of sedimentation rates for validation 

purposes. The utilization of point-like plot-based data from field surveys for validation 

improves the evaluation of the model outputs and its understanding (Cerri et al., 2001; 

Montgomery 2007; Seutloali et al., 2017). Validation of soil erosion risk modelling by 

comparison with outcomes of current damage mapping was further coupled with an analysis of 

the relationship between LULC and estimated soil erosion risk (Prasannakumar et al., 2012; 

Abdulkareem et al., 2019).  

A total area of 765 m2 was subjected to soil erosion in 2019 recorded for the 49 randomly 

selected sampling plots covering an area of 15.7 ha in the Epworth district. The randomized 

locations of the plot measurements indicate that eroded areas occurred in high frequency in the 

southwestern and southeastern parts of the Epworth district. Evidently, the spatial extent soil 

erosion damage in the diagram map indicates altogether low percentages of disturbance with a 

range of 0%–1.4% damaged area in the surveyed plots. However, during the field survey, the 

observed damage resulting from soil erosion (Figure 5.6) appears to be greater in extent and 

magnitude than the depicted damage illustrated on the soil erosion damage map (Figure 5.5). 

In comparison to the maps displaying the soil erosion risk based on the application of the 

RUSLE model, the spatial extent of soil erosion damage has been observed to spatially concur 

majorly in the southwestern and southeastern parts of the district where LS factor is presumably 

high. Areas of high surface damage could be identified in the southeast of the district and were 

predominantly observed in croplands and areas undergoing construction.  
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The field survey positively contributes to the study through the identification and 

registration of areas vulnerable to soil erosion (Figure 5.5), which therefore lessens the burden 

of the resource strained land managers and local boards in developing conservation strategies 

direct on hotspots rather than concentrating on the entire district (McDowell and Srinivasan 

2009; Meshesha et al., 2014). Areas of high soil erosion risk which occur in zones with high 

topographic (LS) factors can be confirmed by strong surface damages (Figure 5.5). 

Nevertheless, the exclusion of sheet erosion recording and quantification during conducting 

damage mapping reduces the usability of the soil erosion damage map for the validation of the 

soil erosion risk mapping applying the RUSLE model (van Dijk et al., 2005); this is because 

sheet erosion has a major contribution to erosion damage and is included in the RUSLE model 

(Asiedu 2018; Tundu et al., 2018; Koirala et al., 2019). However, the conclusions were drawn 

on the basis of field observations due to the heterogeneity of the urban set-up and the 

widespread nature of impervious surfaces. 

The modelling findings reveal that topographic characteristics (LS factor) significantly 

influence potential erosion and soil erosion risk in the Epworth district, which concurs with the 

findings by (Shikangalah et al., 2017) that model-based distribution patterns of soil erosion risk 

in the area of Windhoek, Namibia were mainly defined basing on the spatial structure of slope. 

The high soil erosion risk observed on sloppy areas in Epworth district corresponds to areas 

with convex to straight profile curvature and to the occurrence of ridges (Hill and Schütt 2000; 

Pickup and Chewings 1988). Furthermore, along the channel flanks modelled soil erosion risk 

was in general high, predominantly controlled by relief (Evans 2002). Due to the southward 

drainage of the stream network in Epworth district and thus, southward increasing incision of 

the streams, increased soil erosion risk along the river flanks can be predominantly observed 

and also on the southeast areas (Figure 5.5). In contrast, the analysis of the effects of LULC 

change on soil erosion pointed out that increasing distribution of built-up areas as a result of 

high population pressure and demand for shelter substantially propels soil erosion risk within 

residential areas.  

 
 

5.5 Conclusion 

Soil erosion is a global environmental concern impacting negatively on agricultural 

productivity, accessibility to properties and also posing flooding risk in urban areas. The 

empirical RUSLE model was implemented to assess vulnerable areas and the computation of 

soil erosion risk through the integration of GIS and remote sensing techniques. The quantitative 

assessment of average annual soil loss for the Epworth district using the RUSLE model 
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considers climate, soil, land use and topographic datasets as input parameters. Areas with high 

soil erosion risk were found to spatially correlate with topographic characteristics, especially 

slope length and slope steepness. The unrestricted LULC changes resulting from rampart 

informal settlements growth have accentuated soil erosion risk in the Epworth district. The 

analysis of LULC and estimated soil erosion risk improves the understanding of the spatial 

distribution patterns of soil loss for the different land uses in the years 2000 and 2018. The 

predicted soil erosion loss in the Epworth district amounted to 50,408 tons in 2000 while, 

42,934 tons were estimated for 2018. Thus, the findings reveal that estimated soil erosion risk 

in total decreased over the study period (2000–2018). This is attributed to the reduction of 

croplands and areas covered by green spaces at the expense of built-up areas. Soil loss 

massively increased in the residential areas from 20,236 tons in 2000 to 32,061 tons 2018, 

regardless of the concentration of built-up areas (concentrated and less concentrated residential 

areas); in total the area covered by residential areas almost doubled between 2000 and 2018. 

Increasing impervious surfaces, sealed areas and avoidance of paved areas during high traffic 

flow have been observed as contributing factors towards increased generation of surface runoff 

and hereby affected soil erosion risk in the growing residential areas of the Epworth district.  

The soil erosion damage map generated from the field measurements served as a validation 

tool for the study as it revealed areas vulnerable to soil erosion within the Epworth district that 

concur with the results of the application of soil erosion risk models. The area affected by soil 

erosion in the surveyed plots showed damages of 0%–1.4% in the spatial extent of the mapped 

plot area. Therefore, field mapping data have been observed as necessary in ascertaining and 

improving an understanding of quantitative soil erosion modelling. Model validation 

demonstrated that the RUSLE model performance was good due to positive correlation between 

field measurements and model results basing on sample areas (r = 0.76, R2 = 0.58, p < 0.05). It 

can be concluded that the spread of urban built-up areas without implementation of sound 

conservation practices, such as proper land suitability analysis and the construction of runoff 

drainage canals, will increase soil erosion damage by water. Although, the research has 

predicted potential erosion risk and soil erosion risk, it is important to outline that there are 

uncertainties with the modelled data provided by the RUSLE model arising from the lack of 

site-specific parameterization. Limited studies on water-induced soil erosion for urban areas 

within the region reduce options for data comparison. However, the computed soil erosion risk 

maps may assist environmental managers and land and policymakers on planning mitigatory 

measures for the study area. 
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5.7 Link with other chapters 

Chapter 5 mapped the spatial distribution of soil erosion risk and estimated soil loss rates for 

the years 2000 and 2018 for Epworth district of the Harare Metropolitan Province applying the 

empirical RUSLE model. The work on this chapter embraced the machine learning SVMs 

supervised classification maps for the estimation of soil loss and risk assessment over two time 

periods to evaluate the spatial extent due to land use changes and climate variability. The study 

also mapped potential soil erosion risk making crop cover management and support practices 

independent elements in order to assess the impact of vegetation and land management on the 

landscape. However, the study only mapped past and current soil erosion risk allowing the 

introduction of Chapter 6, which demonstrated the likely future impacts of urbanization and 

climate change on the urban environment. 
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Abstract 

Monitoring urban area expansion through multispectral remotely sensed data and other 

geomatics techniques is fundamental for sustainable urban planning. Forecasting of future land 

use and land cover (LULC) change for the years 2034 and 2050 was performed using the 

Cellular Automata Markov model for the current fast-growing Epworth district of the Harare 

Metropolitan Province, Zimbabwe. The stochastic CA–Markov modelling procedure validation 

yielded kappa statistics above 80%, ascertaining good agreement. The spatial distribution of 

the LULC classes CBD/Industrial area, water and irrigated croplands as projected for 2034 and 

2050 show slight notable changes. For projected scenarios in 2034 and 2050, low–medium-

density residential areas are predicted to increase from 11.1 km2 to 12.3 km2 between 2018 and 

2050. Similarly, high-density residential areas are predicted to increase from 18.6 km2 to 22.4 

km2 between 2018 and 2050. Assessment of the effects of future climate change on potential 

soil erosion risk for Epworth district were undertaken by applying the representative 

concentration pathways (RCP4.5 and RCP8.5) climate scenarios, and model ensemble averages 

from multiple general circulation models (GCMs) were used to derive the rainfall erosivity 

factor for the RUSLE model. Average soil loss rates for both climate scenarios, RCP4.5 and 

RCP8.5, were predicted to be high in 2034 due to the large spatial area extent of croplands and 

disturbed green spaces exposed to soil erosion processes, therefore increasing potential soil 

erosion risk, with RCP4.5 having more impact than RCP8.5 due to a higher applied rainfall 

erosivity. For 2050, the predicted wide area average soil loss rates declined for both climate 

scenarios RCP4.5 and RCP8.5, following the predicted decline in rainfall erosivity and 

vulnerable areas that are erodible. Overall, high potential soil erosion risk was predicted along 

the flanks of the drainage network for both RCP4.5 and RCP8.5 climate scenarios in 2050. 
 

Keywords: land use and land cover (LULC); Cellular Automata Markov model; representative 

concentration pathways; climate scenarios 

 

6.1 Introduction 

Soil erosion by water has become a global threat undermining environmental sustainability 

(Borrelli et al., 2020). This is attributed to various controlling factors related to Land Use and 

Land Cover (LULC) changes influenced by population growth, rising economic activities, 

unsustainable agricultural practices and climate change (Mondal et al., 2015; Karydas et al., 

2009). LULC change has been reviewed as one of the main driving forces of global 

environmental change, making it an important factor to assess at different spatio-temporal 

levels (Islam et al., 2018; Lambin 1997). The LULC changes at both local and global levels are 

dynamic processes (Mondal et al., 2015) and their drivers correspond to complex systems with 

dependent characteristics and interactions having a wide array of implications for the future 

ecological balance and environmental sustainability. Urbanization, as one among the major 

drivers of LULC change, depends on population growth, migration and desires to change the 

current state of the Earth. These actions could be for the betterment of livelihoods and in turn 

could be detrimental to the environment and humankind (Brueckner and Helsley 2011; Jat et 
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al., 2017). The resulting ramifications include the modification of the landscape due to the 

sprawling of unplanned urban built-up areas, development of urban heat islands and over-

exploitation of natural resources as direct impacts, and collateral land degradation, climate 

change, soil erosion and siltation (Hegazy and Kaloop 2015; Jat et al., 2017; Mushore et al., 

2017). 

The United Nation’s World Urbanization Prospects reveal that the global urban 

population increased from about 30% in 1950 to approximately 54% in 2014, with almost 2.5 

billion urban dwellers expected by 2050 (UN 2014). For India, approximately 50% of the 

population have been projected to be living in cities by 2050 as a result of rural–urban migration 

due to increased economic activities in the urban areas, which have become a strong pulling 

factor (UN 2012). Rapid urbanization in Africa has been reported due to population growth and 

it has been projected to almost triple by 2030 (UN 2012). However, according to information 

from the World Economic Forum, in 2020 56.2% of the global population already lived in cities 

(World Economic Forum 2020), with highly variable rates between regions, ranging from 

81.2% urban dwellers in Latin America and the Caribbean to 43.5% in Africa (UN. Population 

Division 2020). Breaking these data down to Zimbabwe, about a quarter of the country’s 

population lives in urban areas. Focusing on the case study of Epworth district, being part of 

the Harare Metropolitan Province, approximately 47% of the population increase was registered 

between 1992 and 2012 (ZimStats 2012), with a triplication of built-up areas from about 19.5% 

in 1984 to 61.3% in 2018 (Marondedze and Schütt 2019). Such trends in urban population 

growth directly impact the ecosystem of the urbanizing area, including the peri-urban area. This 

earmarks a gap which requires monitoring of the impacts driven by rampant LULC changes 

through urban expansion on the ecosystem as a basis to implement a proper spatial policy to 

enable effective decision-making processes (Aburas et al., 2016; Myers 2011). This implies a 

rich understanding of the trends of urban expansion and development, and it requires the 

integration of spatially differentiated data, applying geomatics to quantify and predict future 

spatial distributions (Pontius 2000; Sudhira et al., 2004). By the case study of the Epworth 

district in the Harare Metropolitan Province, it will be demonstrated that future land use models 

provide a valuable basis for foresight spatial planning to ensure environmental sustainability. 

The LULC changes occurring at unprecedented levels threaten multiple ecological 

processes such as surface runoff, soil erosion, siltation and agricultural non-point source 

pollution, resulting in landscape degradation, habitat loss and inaccessibility to properties 

(Chalise et al., 2019; Shikangalah et al., 2017). Focusing on sub-Saharan metropolitan areas, 

the example of the Harare Metropolitan Province documents a rapid transformation of urban 
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agricultural land and shrub lands to built-up areas and other sealed settlement areas over the 

past decades (Kamusoko et al., 2013; Mushore et al., 2017). For example, Epworth district, as 

part of the Harare Metropolitan Province, has witnessed an increase in built-up areas linked 

with high soil erosion risk due to increased impervious surfaces and construction activities 

which facilitate surface runoff (Marondedze and Schütt 2020). This results in accelerated soil 

loss in sensitive areas mostly within active built-up areas. The radical LULC changes in this 

area also include the loss of water bodies due to siltation resulting from sand mining and brick 

moulding along the river banks; encroachment of wetlands by construction activities; and 

grading of unpaved roads which later facilitate accelerated surface runoff due to compaction 

(USDA. NRCS 2000). 

Furthermore, climate change is reiterated to be heavily associated with locally 

increasing rainfall intensity, frequency and extent, resulting in increasing rainfall erosivity 

(Pruski and Nearing 2002). The Fifth Assessment Report (AR5) of the IPCC 

(Intergovernmental Panel on Climate Change) highlights that global mean precipitation and 

surface temperatures have significantly changed with reference to observed changes between 

1850 and 1900, and these changes are likely to continue to be experienced in the 21st century 

(IPCC 2014). Several studies point out that accelerated soil erosion by water due to climate 

change accentuates processes that alter soil physiochemical and biological properties (Gupta 

and Kumar 2017; Li and Fang 2016; Segura et al., 2014). This entails the need to curb soil 

erosion through minimizing the removal of vegetation cover, improving surface roughness to 

facilitate infiltration capacity and reducing rainfall-runoff processes (Simonneaux et al., 2015). 

Climate change also inevitably triggers a shift in land use, forcing the adoption of new 

management practices and planting new crops in order to mitigate detrimental impacts (Feng et 

al., 2010; Routschek et al., 2014). 

The sketched interrelations between LULC change and climate change and its possible 

environmental impacts emphasize the need to investigate future potential impacts of LULC 

change and climate change on potential soil erosion risks caused by water. For the coming 

decades, for wider areas, the increasing intensity of the hydrological cycle is projected by 

multiple global circulation models (GCMs), pronouncing more intense rainfall events that 

directly influence rainfall erosivity (IPCC 2014). We want to investigate these interrelations 

using the example of Epworth district, a fast-growing urban area of the Harare Metropolitan 

Province. Soil erosion by water has been repeatedly investigated in different regions of 

Zimbabwe, focusing on either catchments or arable areas (Makwara and Gamira 2012; Tundu 

et al., 2018; Whitlow 1988). There is limited knowledge regarding estimated future soil loss 
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rates and potential soil erosion risk in Zimbabwe as impacted by future climate change and land 

use changes, knowledge indispensable for future policy decision-making processes. The current 

study examines the potential future effects of land use change as well as of climate change on 

soil erosion risk. Overall, climate change scenarios as provided by the IPCC (2014) and 

forecasts of LULC change were applied for the assessment of future potential soil erosion risk 

for the years 2034 and 2050. 

 

6.1.1 Modelling land use changes in urban areas 

Multiple studies on future soil erosion focus mainly on the dynamics of climate variables such 

as temperature and rainfall (Mullan et al., 2012; Routschek et al., 2014), while land use changes 

are rarely considered regardless of the high awareness of processes such as population growth, 

immigration and urbanization occurring at alarming rates. There is a wide range of spatial 

models able to simulate and predict land use changes based on the application of remote sensing 

techniques (Herold et al., 2003; Tang et al., 2007). The spatial transition model and statistical 

description model are the two major models widely used for the assessment and monitoring of 

land use changes (Herold et al., 2003; Hegazy and Kaloop 2015; Tang and Di 2019). 

Furthermore, the Markov chain model is widely applied to simulate urban growth due to its 

capability of quantifying land use changes, their trends and their dimensions (Ahmed and 

Ahmed 2012; Halmy et al., 2015; Hashem and Balakrishnan 2015; Kamusoko et al., 2013; 

Mushore et al., 2017; Sang et al., 2011). Markov chain models correspond to stochastic 

processes (Balzter 2000) that summarize changes by developing a transition probability matrix 

of land use change, indicating that the probability of a system being in one state at a given time 

can be determined if the state at an earlier period is known (Ahmed and Ahmed 2012; Yang et 

al., 2014). The Cellular Automata (CA) are simple and flexible dynamic spatial systems able 

to integrate complex urban systems in order to simulate future urban growth patterns (Clarke et 

al., 1997; Fitawok et al., 2020; White and Engelen 1993). The CA are based on the supposition 

that land use change for any given location (grid cell) can be explained by its present state and 

the transformations in its neighbouring cells (Koomen and Beurden 2011). Therefore, the 

inability of the Markov chain model to simulate spatial changes over time is superseded by 

integrating it into the CA to enhance the spatial predictive accuracy of the urban land use 

dynamics (Aburas et al., 2017; Alsharif and Pradhan 2014; Fitawok et al., 2020; Sibanda and 

Ahmed 2020; Wang et al., 2019). 

Previous studies have adopted simulation models that apply GIS and remote sensing 

techniques for land use change modelling and monitoring of dynamic urban growth patterns 
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(Aburas et al., 2017; Ahmed and Ahmed 2012; Clarke et al., 1997). In the case of Harare 

Metropolitan Province, due to the dynamic nature of urban growth, some parts of its districts 

were simulated using the CA–Markov model in order to predict the impact of urban land use 

change on future microclimate (Mushore et al., 2017), while Sibanda and Ahmed (2020) 

predicted the future LULC and their impacts on wetland areas in the Shashe sub-catchment of 

Zimbabwe. According to Mushore et al. (2017), accelerated urban growth without the 

conservation of green spaces and adherence to mitigation policies contribute to locally 

increasing microclimate temperatures, causing thermal discomfort in urban areas. The CA–

Markov model was also applied to project future LULC scenarios for Arasbaran biosphere 

reserve in Iran (Parsa et al., 2016). Future LULC distribution patterns were also simulated with 

high accuracy using the CA–Markov model for Jordan’s Irbid governorate, with built-up areas 

predicted to increase from about 19.5% to approximately 64.6% between 2015 and 2050 

(Khawaldah et al., 2020). Due to the plausible outcomes, recommendations indicate that the 

CA–Markov model is an effective tool in monitoring and assessing future land use patterns for 

policy and decision-making processes (Ahmed and Ahmed 2012; Alsharif and Pradhan 2014; 

Sibanda and Ahmed 2020; Wang et al., 2019). 

 

6.1.2 Climate change emission scenarios 

The establishment of the Representative Concentration Pathways (RCPs) as future climate 

change mitigation scenarios followed a response call on the effectiveness of climate policy 

inclusion in future climate change modelling and research (IPCC 2014; Moss et al., 2010; van 

Vuuren et al., 2011). The RCPs illustrate how the future climate may evolve, considering a 

range of variables which encompass socio-economic changes, technological advancement, 

energy, greenhouse gas emissions and land use changes (IPCC 2014). Most precipitation 

projections from GCMs have been widely used on land surface processes for the assessment of 

climate change impacts and adaptation (Borrelli et al., 2020; Panagos et al., 2017; Vrieling 

2006). However, uncertainties in GCMs primarily exist on biases of raw outputs, resulting in 

either over or underestimation of climate variables due to erroneous assumptions in the model’s 

development (Nasrollahi et al., 2015; Räisänen 2007). As such, many studies have embarked 

on the use of multi-modelling techniques to minimize the uncertainty of future predictions in 

order to obtain plausible future projections (Ahmadalipour et al., 2017; Chemura et al., 2021; 

Demirel and Moradkhani 2016; Murphy et al., 2004; Najafi and Moradkhani 2016). 

The climate change emission scenarios approximate radiative forcing levels of 

greenhouse gas concentrations, aerosols, and tropospheric ozone precursors by 2100 (van 
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Vuuren et al., 2011). The RCP8.5 scenario is characterized by increasing levels of greenhouse 

gas concentrations (Riahi et al., 2007). Further, the RCP8.5 is a highly energy-intensive 

scenario attributed to high population growth and a lower rate of technology development; this 

is a scenario with little to no climate policy, making it possible to represent all future climatic 

possibilities (IPCC 2014; van Vuuren et al., 2011). For the RCP4.5 scenario, historical 

emissions and land cover information are integrated in order to follow a cost-effective pathway 

through stabilization of anthropogenic components to reach the target radiative forcing (Moss 

et al., 2010; Thomson et al., 2011). The RCP4.5 considers technological advances such as 

combining bioenergy production with CO2 capture and geologic storage to enhance more 

energy production with negative carbon emissions (Luckow et al., 2010; Thomson et al., 2011). 

 

6.2 Materials and Methods 

6.2.1 Study area 

The Harare Metropolitan Province is the capital city of Zimbabwe, with Epworth district 

17°40’–18°00’ S, 30°55’–31°15’ E located approximately 12 km southeast of the Central 

Business District (CBD) (Figure 6.1). Epworth district is a high-density residential suburb of 

Harare Metropolitan Province and the smallest in terms of area-wide coverage among the four 

districts which comprise the Harare Metropolitan Province, occupying an estimated area of 35 

km2; the area is characterized by the densification of built-up structures and overcrowdings 

(Chirisa and Muhomba 2013) and an above-average increase in informal urban development in 

comparison to other urban districts in Zimbabwe (Potts 2011; Tibaijuka 2005). There has been 

rampant population growth and mushrooming urban built-up structures due to rural–urban 

migration which dates back to the pre-and post-independence phase (1980) in search of better 

livelihoods, employment and a hive of economic activities in the capital city (Butcher 1986; 

Tibaijuka 2005; ZimStats 2012). Since then, Epworth district has grown from about 500 

families recorded in 1950, to a total population of approximately 114,047 in 2002, to a total 

population of 167,462 in 2012 (Butcher 1986; CSO 2004; ZimStats 2012). 



92 
 

    

Figure 6. 1 Study site—Epworth district of the Harare Metropolitan Province. (a) Zimbabwe provincial 

boundaries including the Harare Metropolitan Province. (b) Elevation and district boundaries of the 

Harare Metropolitan Province. (c) Epworth district with hydrological network, retrieved from OSM data 

(OSM-Geofabric). 

 
The Harare Metropolitan area is located on the Highveld at an elevation between 1455 m and 

1556 m a.s.l., with a general topography characterized by undulating to slightly rolling terrain 

in the plateau areas. Annual precipitation in Harare Metropolitan Province varies between 470 

mm and 1350 mm, falling mainly during the four months of the rainy season between mid-

November to mid-March. Daily temperature ranges between 13 °C and 28 °C during the hot-

dry season (September to mid-November) and low temperature averages between 7 °C and 20 

°C are experienced during the cool-dry season (mid-May to August) (Kamusoko et al., 2013). 

Dominating soil types in Epworth district are the widely spread Paraferrallitic soils (coarse 

grained) covering the high-altitude areas and clayey Fersiallistic soils developed predominantly 

from dolerite in the central plateau (Nyamapfene 1991). Both soil types are largely influenced 

by nutrient loss through moderately to strongly occurring leaching processes (Nyamapfene 

1991; Thompson and Purves 1978). 

 

6.2.2 Urban land use change modelling using CA–Markov 

The CA–Markov analysis was adopted to predict land use future scenarios. The CA–Markov 

model is embedded into the IDRISI software (Clarks Lab), an image processing software useful 

for improved digital image display and spatial analysis (Eastman 2009). The Markov chain 

analysis describes the probability of LULC changes from one state to another at given times t1 

and t2 by developing a transition probability (Araya and Cabral 2010; Eastman 2000; Koomen 
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and Beurden 2011). The Markov chain model simulates land use changes and generates a 

transition probability matrix, which indicates the probability of each LULC to change from one 

state to another, and this is obtained by cross tabulation of the earlier and later LULC maps. 

The proportional changes become the transition probability, indicating that each land use class 

will change to other categories using Equation (2). The conditional suitability maps are 

produced and display the probability that each land use category might be found at each pixel, 

with values standardized between 0 and 255 (Hashem and Balakrishnan 2015; Kumar et al., 

2014; Mushore et al., 2017; Subedi et al., 2013; Ye and Bai 2008). The transition probability 

of converting the current state of a system to another state in the next time step is determined 

using the mathematical expression Equation (6.1) (Guan et al., 2008; Kumar et al., 2014): 

P= (Pij) = |

𝑃11 𝑃12 … 𝑃1𝑛

𝑃21 𝑃22 … 𝑃2𝑛… .
𝑃 𝑛1

… .
𝑃 𝑛2

… .
𝑃 𝑛𝑚

|    (6.1) 

where Pij is the probability from state i to state j and Pn is the state probability of any time. 

Equation (1) must satisfy the following conditions: 

∑ 𝑃𝑖𝑗

𝑛

𝑗=1
= 1  (i, j = 1, 2,3………, n)    (6.2) 

0 ≤ Pij ≤ 1 (i, j = 1, 2,3………, n)    

  
(6.3) 

These steps are performed to obtain the Markov chain model’s primary matrix and the matrix 

of the transition probability (Pij). The Markov prediction model is expressed as: 

P(n) = P (n - 1)    𝑃𝑖𝑗 = 𝑃(0)𝑃𝑖𝑗
𝑛         (6.4) 

where Pn refers to the state probability of any time and P(0) stands for the primary matrix. High 

transitions have probabilities near 1, while low transitions attract probabilities near 0 (Hamad 

et al., 2018; Kumar et al., 2014). 

 
The Markov chain probabilities of change represent all multi-directional LULC changes 

between land use classes (Ye and Bai 2008). The Markov chains were selected as a result of 

their simplicity, robustness and capability in mapping LULC transitions in complex urban areas 

(Mushore et al., 2017; Subedi et al., 2013). Despite forecasting transition probabilities per land 

use category and their growth trends, the major limitation of the Markov chain model is its 

inability to simulate the spatial distribution of each land use category’s occurrence (Eastman 

2000; Hashem and Balakrishnan 2015; Ye and Bai 2008). Due to the heterogeneity of urban 
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systems and structures, historical information is essential for a better understanding and 

interpretation of simulated future spatial trends (Sudhira et al., 2004). The subsequent 

limitations of the Markov chains can be addressed by combining their outputs with other models 

that have open structures, including the Cellular Automata (CA), Multi-Layer Perceptron 

(MLP) and the Stochastic Choice (Eastman 2009; Hamad et al., 2018). In the present study, we 

integrated the CA into the Markov chain approach to address the spatiality limitations of the 

Markov chain model and the probable spatial transitions occurring in the study area over the 

given time (Ahmed and Ahmed 2012; Fitawok et al., 2020; Parsa et al., 2016; Subedi et al., 

2013). 

The CA have high spatial resolution and computational efficiency, enabling the 

prediction of future urban growth trends based on the supposition that the state of each cell at 

the present time depends on the previous state of cells within the neighbourhood (Clarke et al., 

1997; Santé et al., 2010; White and Engelen 1993). Thus, the CA models are based on four 

major attributes, which include the cell, the state, the neighbourhood, and the transition rule 

(Fitawok et al., 2020; Jafari et al., 2016). The cell element of the CA signifies spatial shapes 

and sizes on the ground, while real characteristics of the area (land use) at a discrete time, 

represented as grid cells, show the state (Fitawok et al., 2020; Jafari et al., 2016; White and 

Engelen 1993). The neighbourhood cells are the immediate adjacent cells that form the kernel, 

and the transition rules theoretically code for the transformation from one cell state to another 

state resulting from the changes in neighbouring cells at a discrete time and state (Fitawok et 

al., 2020; Tang and Di 2019). Despite being a powerful and simple tool in modelling urban 

growth patterns, the CA models have a limited capability for quantifying aspects, and the 

simulation processes do not include urban growth driving forces (Aburas et al., 2017; Alsharif 

and Pradhan 2014). 

The CA–Markov modules embedded in the IDRISI GIS software were used to simulate 

LULC distribution patterns for the year 2018 and to predict future LULC for the years 2034 

and 2050. Primarily, the simulation phase of the 2018 LULC scenarios applied the Markov 

chain to generate a transition probability matrix, and transition suitability images between 1990 

and 2008 using the LULC maps of the same period were generated using support vector 

machines (SVMs) by Marondedze and Schütt (2019). A proportional error of 15% was set 

during the modelling of the transition probability matrix (Eastman 2009). The Markov chain 

analysis outputs from 1990 and 2008 formed the basis of input parameters for the probable 

simulation of LULC spatial characteristics and their occurrence in the CA for the prediction of 

LULC patterns for 2018 (Figure 6.2). The contiguity filter specified the spatial characteristics 
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applied by the CA modelling approach (Ahmed and Ahmed 2012; Eastman 2009). For this 

study, a contiguity filter of 5*5 pixels was applied to define the kernel due to higher spatial 

characterization when applied to determine the occurrence or position of the simulated LULC 

category compared to 3*3 or 7*7 (Mondal et al., 2020, 2012). 

        

Figure 6. 2 Conceptual framework for the prediction of future LULC and soil erosion risk for Epworth 

district. LULC: land use and land cover. RCPs: representative concentration pathways, GCMs: global 

circulation models. 

 
The spatiality characteristics in the CA approach were developed in a spatially explicit 

weighting that enabled the transformation of single and random grid cells in areas closer to the 

existing and widely spread land use (Parsa et al., 2016; Zubair 2006). This is further simplified 

by assuming that a pixel that is near one specific land cover class is more likely to be 

transformed to that category than pixels farther apart (Araya and Cabral 2010). This assumption 

was used to initially test the predictive capability of the CA–Markov model set of the LULC 

distribution patterns for 2018. The cross validation of the 2018 simulated LULC patterns was 

performed applying the LULC patterns as provided by a support vector machines (SVMs) 

supervised classification map (Marondedze and Schütt 2019). Finally, the CA–Markov 

techniques were applied between the LULC patterns of 2000 and 2018 for the prediction of 

future LULC distribution patterns for 2034, whilst the LULC distribution patterns of 1984 and 

2018 were applied for the future prediction of 2050 LULC patterns. A 5*5 contiguity filter was 

applied for the prediction of future LULC patterns for the years 2034 and 2050. 
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6.2.3 CA–Markov chain validation 
 

The simulated LULC distribution patterns for 2018 were compared with the SVMs classified 

map for the same year to test the level of agreement. A two-phase validation approach was 

performed, which includes visual inspection and quantitative evaluation (Mushore et al., 2017; 

Sayemuzzaman and Jha 2014). Visual inspection allowed close comparison and the agreement 

assessment between the simulated 2018 LULC map and the SVMs supervised classification 

LULC map. The kappa index of agreement (KIA) was used to assess the prediction accuracy 

for the 2018 actual map and the simulated LULC maps (Ahmed et al., 2013; Parsa et al., 2016; 

Sayemuzzaman and Jha 2014). In general, kappa is referred to as a member of a family of 

indices with the properties (a) kappa = 1, when the level of agreement is perfect, and (b) kappa 

= 0, when the observed agreement is equal to the expected proportion due to chance (Pontius 

2000). Considering the model validity and performance in predicting LULC patterns for 2018, 

the LULC patterns for 2000–2018 and 1984–2018 were used in the prediction of 2034 and 2050 

LULC spatial trends in the CA–Markov model. This introduces kappa indices to assess the 

performance and agreement of the model: the traditional kappa, which measures a simulation’s 

ability to attain perfect classification, that is, the closer to 1 the values are, the higher the level 

of agreement (Kstandard); the improved general kappa statistic, which is described as kappa for 

no ability (Kno); followed by the sophisticated kappa statistics (Kquantity and Klocation) used for 

distinguishing placement accuracies in both the quantity and location (Ahmed et al., 2013; 

Parsa et al., 2016). The Kno denotes the proportion classified correctly relative to the expected 

proportion classified correctly by a simulation without the ability to accurately specify quantity 

or location (Ahmed et al., 2013; Pontius 2000). 

 

6.2.4 Predicting future soil erosion risk 
 

The empirical RUSLE model was used to predict the spatially differentiated risk of long-term 

average annual soil loss. The selection of the empirical RUSLE model to assess future potential 

soil erosion risk considered the availability of data, robustness, complexity of the landscape and 

calibration (Merritt et al., 2003; Ranzi et al., 2012). The RUSLE model is widely used and a 

powerful tool to quantitatively assess spatial interactions of land use, topographic 

characteristics, climate, and soil characters in order to predict the spatial distribution of soil 

erosion (Renard et al., 1997; Feng et al., 2010; Prasannakumar et al., 2012; Karamage et al., 

2017; Tundu et al., 2018). The wide use of the empirical RUSLE model is based on its 

simplicity and easy accessibility of data compared to complex physical models (Borrelli et al., 
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2020; Smith 1999). Unlike other physical and process-based soil erosion models, the stochastic 

RUSLE model does not address soil deposition but mainly displays areas of sheet and rill 

erosion processes (Smith 1999), allowing land managers to direct limited resources for 

landscape management (Meshesha et al., 2014). The estimation of spatial soil erosion risk by 

the RUSLE model makes use of the factors soil erodibility (K), rainfall erosivity (R), slope 

length and steepness (LS), land cover and management (C) and the support practices (P) 

(Renard et al., 1997). The RUSLE model calculates the risk of long-term average annual soil 

loss rates by multiplying the different factors following Equation 6.5: 

𝐴 = 𝐾 ∗  𝑅 ∗  𝐶 ∗  𝐿𝑆 ∗  𝑃                                                             (6.5)                                                                              

where A: annual average soil loss (t ha−1 yr−1), R: rainfall erosivity factor (MJ mm ha−1 h−1 

yr−1), K: soil erodibility factor (t ha h ha−1 MJ−1 mm−1), C: cover-management factor 

(dimensionless), LS: slope length and slope steepness factor (dimensionless) and P: support 

practices factor (dimensionless). 

The RUSLE factors harmonized at 30 × 30 m spatial resolution for the compatibility of 

data from different sources (Ai et al., 2013) are multiplied to predict the soil erosion risk for 

the district using raster calculator in ArcGIS® 10.2. The computation of the RUSLE model 

integrates remote sensing and GIS techniques to analyse factors and geostatistics for the 

graphical interpretation (Ferreira et al., 2016; Renard et al., 1997). 

 
Soil erodibility factor (K). The soil erodibility factor (K) represents the susceptibility of the 

soil to detachment due to rainfall erosivity (R) (Renard et al., 1997). The soil erodibility factor 

varies corresponding to soil properties such as soil texture, type and size of aggregates, shear 

strength, soil structure, infiltration capacity, bulk density, soil depth, organic matter and other 

chemical constituents (Wischmeier and Smith, 1978; Renard et al., 1997). Based on the RUSLE 

model, the estimated K-factor values range between 0 and 1, indicating the degree of soils’ 

susceptibility to erosion (Renard et al., 1997). Thus, soils being highly susceptible to erosion 

have soil erodibility values near 1, whereas the corresponding values close to 0 designate the 

resistive ability of a particular soil to erosion processes (Woldemariam et al., 2018). For this 

research, available data for the computation of the K factor were retrieved from ISRIC 

(International Soil Reference Information Centre), available at 250 m spatial resolution (Hengl 

et al., 2017). The estimation of the K factor was performed using the equation by Sharpley and 

Williams (1990), which excludes soil structure and profile permeability due to the 

unavailability of experimental based information. 
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Slope length and slope steepness factor (LS). The RUSLE model considers the effects of 

topography on soil erosion, including slope length (L) and slope steepness (S). The Shuttle 

Radar Topography Mission (SRTM) digital elevation model (DEM) with a spatial resolution of 

30 × 30 m (https://earthexplorer.usgs.gov/SRTM1Arc; accessed on 19 September 2020) was 

used for the computation of the LS factor using the Hydrology module (field-based), embedded 

in SAGA 2.3 software (Desmet and Govers 1996; Panagos et al., 2015a). 

 

Land cover and management factor (C) and support practice factor (P). The land cover 

and management factor of the RUSLE model represents the effects of vegetation cover on soil 

erosion rates (Renard et al., 1997). The C factor ranges from 0 for high-density vegetation to 1 

for barren land; bare land is frequently used as the reference land use for C factor calibration 

(Kefi et al., 2011; Panagos et al., 2015b). The vegetation cover plays a vital role in dissipating 

raindrop energy before reaching the surface, thereby reducing the harsh effects posed by 

raindrop impact on the soil surface (Ferreira et al., 2016; Kefi et al., 2011). The C factor values 

in Table 6.1 result from the weighted field-based observations, and additional biophysical 

characterizations were adopted (Marondedze and Schütt 2020). The support practice factor (P) 

was assigned to be 1, corresponding to the lack of support practice all over the study area 

(Marondedze and Schütt 2020). 

Table 6.1 The weighted C factor values. 

 

 

 

 

Rainfall erosivity factor (R) estimation: The R factor describes the soil loss potential 

triggered by rainfall (Stocking and Elwell, 1976; Wischmeier and Smith, 1978; Renard et al., 

1997). As such, the analysis of the spatial distribution of rainfall erosivity was computed 

following the empirical relations developed by El-Swaify et al., (1987) Equation 6.6, as cited 

(Tundu et al., 2018; Merritt et al., 2004), 

 

 

Land Use Class Weighted C Factors 

CBD/industrial areas 0.017 

LMD (less concentrated residential area) 0.066 

HD (concentrated residential area) 0.083 

Irrigated cropland 0.166 

Rainfed cropland 0.239 

Green spaces 0.03 

Water 0 

https://earthexplorer.usgs.gov/SRTM1Arc


99 
 

 

𝑅 = 38.5 + 0.35 𝑥 𝑀                   (6.6) 

 

where R = rainfall erosivity factor (MJ mm ha−1 h−1 yr−1), and M = mean annual rainfall. 

The further analysis highlights the likely potential effects of climate change on the R 

factor. The representative concentration pathway (RCP) 4.5 and 8.5 climate scenarios projected 

by multiple general circulation models (GCMs) were selected for the assessment of future 

climate change, primarily variations in precipitation magnitudes on soil erosion risk 

(downloaded from https://earthobservatory.nasa.gov/images/86027/; accessed on 02 October 

2020). These climate change scenarios constitute a set of greenhouse gas concentration and 

emission pathways to facilitate decision and policy makers in the crafting of sustainable climate 

policies due to their plausibility (Thomson et al., 2011; van Vuuren et al., 2011). To predict 

future rainfall erosivity, future RCP 4.5 and 8.5 climate scenarios proposed by the 

Intergovernmental Panel on Climate Change (IPCC 2014) were applied (Table 6.2). Annual 

rainfall, as required for Equation 6.6, was the sum of mean monthly rainfall data retrieved from 

the NASA Exchange Global Daily Downscaled Projections (NEX-GDDP), as listed in Table 

6.2, which was statistically downscaled to a 0.25° by 0.25° spatial resolution (Ahmadalipour et 

al., 2017; Thrasher et al., 2012). The NEX-GDDP general circulation models grid point data 

locations do not match with the Harare Meteorological gauging points, as the spatial coverage 

of station data is not uniform; to cope with the varying spatial resolutions, annual averages were 

interpolated using the inverse distance-weighted methods (Mondal et al., 2015). 

 

 

 

  

 

 

 

 

 

 

 

 

 

https://earthobservatory.nasa.gov/images/86027/
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Table 6.2 Global circulation models (GCMs) used for data retrieval. 

Global Circulation 

Model 
Source Original Resolution 

  (Lat × Lon) ° 

ACCESS1-0 
Commonwealth Scientific and Industrial Research 

Organization/Bureau of Meteorology, Australia 
1.875 × 1.25 

BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University, China 
2.8 × 2.8 

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8 × 2.8 

CCSM4 National Centre for Atmospheric Research, United States 1.25 × 0.94 

CNRM-BGC National Centre for Meteorological Research, France 1.4 × 1.4 

GFDL-ESM2G 
NOAA/Geophysical Fluid Dynamics Laboratory, United 

States 
2.5 × 2.0 

GFDL-ESM2M 
NOAA/Geophysical Fluid Dynamics Laboratory, United 

States 
2.5 × 2.0 

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France 2.5 × 1.25 

MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

2.8 × 2.8 

MIROC-ESM-CHEM 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

2.8 × 2.8 

MIROC5 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and Technology, 

Japan 

1.4 × 1.4 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.9 × 1.9 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.9 × 1.9 

MRI-CGCM3 Meteorological Research Institute, Japan 1.1 × 1.1 

NorESMI-M Norwegian Climate Center, Norway 2.5 × 1.9 

General circulation models’ performance was assessed, comparing their average annual rainfall 

data as provided per grid cell between 1980 and 2005 with the observed data from Harare 

gauging stations. This evaluation was processed by applying the interpolated GCMs average 

rainfall data from six available grid points within the Harare Metropolitan Province in parallel 

with observed average precipitation from the Harare Meteorological stations (Table 6.3) using 

the standard statistical metrics (Sardari et al., 2019). The evaluation of the GCMs performance 

was assessed using the standard metrics to outweigh GCMs that are not representative: the 

coefficient of determination (R2), relative root mean square error (rRMSE) (%), correlation 

coefficient (r), and index of agreement (d) (Bsaibes et al., 2009; Chen et al., 2011; Chemura et 

al., 2021). With values ranging between 0 and 1, the lower the values of the rRMSE, the better 

the model’s performance, while the higher the value for R2, the better the goodness of fit of the 

model (Bsaibes et al., 2009; Chen et al., 2011, 2013). For the index of agreement (d), the closer 

values are to 1, the better they document the increasing goodness of the fit of the model, 
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ascertaining that there is good agreement between the simulated and observed annual 

precipitation (Araya et al., 2015; Chemura et al., 2021; Willmott 1982). 

Table 6.3 Location of Harare Metropolitan Province gauging stations. 

Rain Stations Coordinates Altitude (m.a.s.l) 
Mean Annual Precipitation (mm) 

1980–2005 

Kutsaga 17° 55′ S, 31° 08′ E 1488 825.3 

Belvedere 17° 50′ S, 31° 01′ E 1474 862.6 

Airport 17° 55′ S, 31° 06′ E 1502 798.2 
 

Separate runs of the GCMs ensemble averages from 2019 to 2034 and 2035 to 2050 were used 

for the assessment of climate variability and its impact on future soil erosion risk under RCP4.5 

and RCP8.5 climate scenarios. Estimations of future climate change scenarios from single 

GCMs relay limited information required for the direct calculation of the R factor (Nearing 

2001; Zhang 2007). Therefore, the application of multi-GCM ensemble averages decreases 

individual model errors and provides more robust predictions for future climate change 

(Räisänen 2007; Sperna Weiland et al., 2012; Vrochidou et al., 2013; Demirel and Moradkhani 

2016; Chemura et al., 2021). Accordingly, empirical relations were used between monthly and 

annual precipitation in order to analyse GCM outputs relative to R factor changes (Nearing 

2001). Thus, long-term model ensemble averages were analysed for trends in rainfall erosivity 

factor (R) using suitable empirical relations (Ferro et al., 1999; Renard et al., 1997; Zhang 

2007). 

 

6.3 Results 

6.3.1 Land use land cover changes 

The LULC maps (1990–2008, 2000–2018 and 1984–2018) generated by supervised 

classification applying SVMs (Marondedze and Schütt 2019) were used to simulate LULC 

distribution patterns for 2018; simultaneously, they were used as the reference for the 

simulation accuracy and to forecast future land use for 2034 and 2050 (Figure 6.3). The adopted 

supervised classification maps of the years 1984–2018 (Marondedze and Schütt 2019) show 

seven distinct classes (Table 6.4). The overall classification of each LULC map for 1984, 1990, 

2000, 2008 and 2018 was estimated to be 90.1, 85.1, 88.9, 87.6 and 89.7%, respectively. The 

overall Kappa coefficient values produced were 0.87, 0.82, 0.86, 0.85 and 0.87 (Marondedze 

and Schütt 2019). The data reveal that spatial LULC patterns will significantly change during 

the forecasted periods, indicating that the expansion of the built-up areas will be at the expense 
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of green spaces and croplands (Figure 6.3). The built-up areas will continue to grow towards 

the peripheries and into the southward direction of the Epworth district (Figure 6.3). 

       

Figure 6. 3 LULC maps for Epworth district. (a) actual 2018 supervised classification (Marondedze and 

Schütt 2019), (b) simulated 2018, (c) projected 2034 and (d) projected 2050. CBD: central business 

department, LMD: low–medium density, HD: high density. 

Table 6.4 Description of LULC classes for the study.  

LULC Class Description 

CBD/industries 
Industries and central business district defined with high fraction of 
impervious surfaces, mainly buildings, and a low proportion of 
vegetation  

LMD residential 
Leafy and well-established low- and medium-density suburbs 
surrounded by high vegetation  

HD residential 
High-density residential areas with low vegetation cover or clustered 
settlements with areas undergoing developments and bare exposed 
land 

Irrigated cropland Cultivated land under irrigation schemes 

Rainfed cropland Cultivated land or land with crop residues after harvesting  

Vegetation 
All wooded areas, shrubs and bushes, riverine vegetation and grass-
covered areas 

Water Areas occupied by water, rivers, wetlands, reservoirs and dams 
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Comparison of LULC areas for 2018, resulting from the supervised classification applying 

SVMs, with 2018 simulated LULC classes shows that the LULC classes CBD/industrial, 

croplands, green spaces and water (Figure 6.3a and b) fit reasonably when comparing each 

class category, while slight differences between mapped and simulated distribution patterns 

occur for low–medium density and high-density residential areas (Figure 6.4). To summarize, 

for the period 2018 to 2050, the LULC class of CBD/industrial areas are estimated to remain 

stable, with an area expansion of +/−0.5–0.6% (Table 6.5). The spatial distribution of the 

LULC classes CBD/industrial area, water and irrigated croplands as projected for 2034 and 

2050 widely correspond to those as mapped for 2018 (Figure 6.4). For both projected scenarios 

2034 and 2050, the low–medium residential areas are predicted to increase slightly from 11.1 

km2 to approximately 11.9 km2 between 2018 and 2034 and up to 12.3 km2 in scenario 2050. 

Similarly, high-density residential areas are predicted to increase from 18.6 km2 to 20.3 km2 

between 2018 and 2034, and to reach 22.4 km2 in 2050 (Figure 6.4). 

       

Figure 6. 4 The spatial area extent of different LULC classes for Epworth district. CBD: central business 

department, LMD: low–medium density, HD: high density. 

 

Low–medium-density residential areas (LMD) are predicted to increase in coverage from 

31.5% to 34.8% between 2018 and 2050, while high-density (HD) residential areas are 

predicted to increase in coverage from 52.6% to 63.3% between 2018 and 2050 (Table 6.5). 

During the period 2018–2050, the spatial distribution of croplands is predicted to decrease 
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from 9.5% to 1.1% of the total Epworth district area, while green spaces will shrink from 5.8% 

to 0.1%, largely due to the spatial expansion of built-up areas. 

Table 6.5 Relative proportions of LULC classes by area extent (km2) and percentage (%) for the adapted 

2018 and the projected 2034 and 2050. 

LULC Class 
2018  2034  2050  

Km2 % Km2 % Km2 % 

CBD/industrial 0.2 0.5 0.2 0.6 0.2 0.6 

LMD residential 11.1 31.5 11.9 33.7 12.3 34.8 

HD residential 18.6 52.6 20.3 57.3 22.4 63.3 

Irrigated cropland 0.1 0.4 0.1 0.2 0.1 0.1 

Rainfed cropland 3.2 9.1 1.6 4.6 0.3 1.0 

Green spaces 2.1 5.8 1.2 3.5 0.1 0.1 

Water 0.01 0.04 0.01 0.03 0.01 0.03 

                *CBD: central business department *LMD: low–medium density *HD: high density 

 

The summary of the probability matrix for major LULC conversions that occurred in Epworth 

district between 1990 and 2008 is documented in Table 6.6. The probability of change for 

CBD/industrial areas to remain CBD/industrial areas between 1990 and 2008 was 96.5%, 

displaying that built-up areas widely remained stable and will remain stable (Table 6.6). In 

contrast, irrigated croplands had a probability of change of 19.1%, that is, to remain irrigated 

cropland between 1990 and 2008, while the probability of change of irrigated cropland to 

rainfed cropland was 7.3% and to high-density residential areas was 47.2%. For green spaces, 

the probability to remain as green spaces between 1990 and 2008 was as low as 18.3%, while 

the probability of the change of green spaces to low–medium-density residential areas was 

18.5%, to high-density residential areas was 40.8% and to croplands was 13.9% (Table 6.6). 

Table 6.6 Markov chain transition probability matrix from LULC maps between 1990 and 2008. 

Changing from: Probability of changing to other land use class by 2008: Total 

1990 CBD/Industrial LMD HD Irrigated 

cropland 

Rainfed 

cropland 

Green 

spaces 

Water   

CBD/Industrial 0.9650 0.0183 0.0129 0.0033 0.0000 0.0005 0.0000 1.000 

LMD residential 0.0062 0.9716 0.0150 0.0051 0.0000 0.0005 0.0016 1.000 

HD residential 0.0071 0.0138 0.9712 0.0027 0.0052 0.0000 0.0000 1.000 

Irrigated 

cropland 

0.0708 0.1630 0.4721 0.1910 0.0725 0.0273 0.0033 1.000 

Rainfed 

cropland 

0.0416 0.2110 0.4357 0.0574 0.2041 0.0502 0.0000 1.000 

Green spaces 0.0850 0.1848 0.4080 0.0412 0.0976 0.1834 0.0000 1.000 

Water 0.0295 0.0838 0.0521 0.1121 0.0000 0.0213 0.7012 1.000 

*CBD: central business department     *LMD: low–medium density    *HD: high density 
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The Markov chain transition probability matrix computed LULC maps between 2000 and 2018 

for the prediction of 2034 future LULC distribution patterns (Table 6.7), which indicates that 

in 2018 the built-up area classes have a probability of more than 95% to remain as built-up 

areas in the future, documenting a stable distribution at least until 2034. For the irrigated 

croplands, a probability of 10.1% is indicated to remain as irrigated croplands until 2034, while 

at the same time 24.1% of the irrigated croplands have a probability to be converted into low–

medium-density residential areas, and even 40.4% of the irrigated croplands underly a 

probability to be converted into high-density residential areas until 2034. For rainfed cropland, 

a probability of 33% is indicated to remain as rainfed cropland until 2034, while there is a 

42.8% probability that rainfed cropland will be converted into high-density residential areas. 

There is a probability of 14.1% that rainfed cropland will be converted into low–medium-

density residential areas by 2034, while at the same time there is an 8.3% probability that the 

rainfed croplands will be converted into green spaces. Similarly, green spaces have a probability 

of 24.7% to remain as green spaces until 2034, while for the same period, green spaces have a 

30.6% probability to be converted into high-density residential areas, and a 16.1% probability 

to be converted into low–medium-density residential areas. 

Table 6.7 Markov chain transition probability matrix from LULC maps between 2000 and 2018. 

Changing From: Probability of Changing to Another Land use Class by 2018: Total 

2000 CBD/Industrial LMD HD 
Irrigated 

Cropland 

Rainfed 

Cropland 

Green 

Spaces 
Water  

CBD/industrial 0.9523 0.0109 0.0186 0.0081 0.0043 0.0058 0.0000 1.000 

LMD residential 0.0000 0.9507 0.0212 0.0164 0.0000 0.0102 0.0015 1.000 

HD residential 0.0064 0.0185 0.9694 0.0000 0.0057 0.0000 0.0041 1.000 

Irrigated cropland 0.0500 0.2405 0.4036 0.1011 0.1310 0.0697 0.0033 1.000 

Rainfed cropland 0.0000 0.1405 0.4282 0.0183 0.3297 0.0833 0.0000 1.000 

Green spaces 0.0370 0.1606 0.3062 0.0641 0.1852 0.2469 0.0000 1.000 

Water 0.0026 0.1332 0.1071 0.1290 0.0000 0.0000 0.6281 1.000 

*CBD: central business department    *LMD: low–medium density     *HD: high density 

 

Based on the period 1984–2018, the transition probability matrix for the prediction of 2050 

LULC distribution patterns was calculated (Table 6.8). The results indicate that built-up areas 

have probabilities higher than 90% to remain as built-up areas until 2050. In contrast, irrigated 

croplands have only a probability of 15% to remain as irrigated croplands until 2050, while 

they simultaneously have a probability of 41% to be transformed into high-density residential 

areas and a 21.4% probability to be transformed into low–medium-density residential areas. 

The rainfed croplands have a probability of 22.3% to remain as rainfed cropland until 2050; 

simultaneously, a 5.1% probability occurs that rainfed cropland will be transformed into 
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irrigated croplands, a 5.3% probability occurs that rainfed cropland will be transformed into 

green spaces and a 42.5% probability occurs that rainfed cropland will be transformed into high-

density residential areas. 

Table 6.8 Markov chain transition probability matrix from LULC maps between 1984 and 2018. 

Changing From: Probability of Changing to Another Land use Class by 2018: Total 

1984 CBD/Industrial LMD HD 
Irrigated 

Cropland 

Rainfed 

Cropland 

Green 

Spaces 
Water   

CBD/industrial 0.9240 0.0308 0.0404 0.0000 0.0017 0.0031 0.0000 1.000 

LMD residential 0.0000 0.9467 0.0251 0.0162 0.0000 0.0103 0.0017 1.000 

HD residential 0.0064 0.0191 0.9621 0.0041 0.0060 0.0000 0.0023 1.000 

Irrigated 

cropland 
0.0612 0.2140 0.4104 0.1501 0.1268 0.0363 0.0012 1.000 

Rainfed cropland 0.0640 0.1813 0.4251 0.0534 0.2229 0.0513 0.0002 1.000 

Green spaces 0.0454 0.2102 0.4305 0.0313 0.0904 0.1922 0.0000 1.000 

Water 0.0142 0.0965 0.1013 0.1199 0.0500 0.0000 0.6181 1.000 

*CBD: central business department    *LMD: low–medium density    *HD: high density 

 

6.3.2 Validation of CA–Markov model 

A two-stage model validation approach was performed, including the visual inspection and 

quantitative assessment. The visual inspection shows that there is close agreement between the 

2018 LULC distribution patterns derived from the support vector machines supervised 

classification (actual) and the 2018 LULC patterns simulated using the CA–Markov model 

(Figure 6.3). The computed kappa statistics recorded a kappa for a no ability Kno of 0.8893, a 

kappa for quantity accuracy KlocationStrata of 0.8943, a traditional kappa Kstandard of 0.9044 and a 

kappa for location accuracy Klocation of 0.925. To summarize, the kappa index of agreement 

values indicates that there is good agreement between the actual and simulated 2018 LULC 

maps. Therefore, the model can be applied with a high confidence in its reliability to forecast 

LULC maps for 2034 and 2050 (Table 6.9). 

Table 6.9 Kappa indices computed between the actual and simulated 2018 LULC maps. 

K Indices 2018 

Kno 0.8893 

Klocation 0.9251 

Kstandard 0.9044 

Klocationstrata 0.8943 

 

6.3.3 Future climate data analysis 

The predicted meteorological data, as provided by the global circulation model ensemble, show 

slightly diverging data in terms of precipitation regimes by the different climate scenarios for 
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the observation period 2019–2050. Comparing annual rainfall predictions as provided by the 

RCP8.5 climate scenario and RCP4.5 climate scenario (Figure 6.5) indicates similar trends with 

varying magnitude. In climate scenario RCP4.5, the predicted annual rainfall oscillates with an 

overall decrease until 2050; the maximum predicted annual precipitation reaches around 950 

mm in the years 2022, 2025, 2029 and 2031 and then decreases, reaching 855 mm in 2041 and 

around 785 mm in 2045 and 2050 (Figure 6.5). Underlying the same overall decline in 

precipitation, the minimum annual precipitation as predicted by climate scenario RCP4.5 varies 

between 814 mm in 2027 and 770–780 mm in 2034 and 2046. In climate scenario RCP8.5, the 

predicted annual rainfall also oscillates but does not show a distinct decrease during the 

forecasted period until 2050, as shown by the outcomes of RCP8.5. Maximum predicted annual 

precipitation varies between 800 and 900 mm and minimum predicted annual precipitation 

varies between 705 and 740 mm. The years of maximum predicted annual precipitation in 

RCP4.5 and RCP8.5 widely concur, but offsets can also be repeatedly observed (Figure 6.5). 

 

Figure 6. 5 Annual rainfall variations for Epworth district, 2019–2050, based on GCM ensemble climate 

scenarios RCP4.5 and RCP8.5. 

6.3.4 Model performance evaluation 

The performance evaluation carried out for each of the 15 statistically downscaled global 

circulation models’ outcomes with in situ historical observations from the Harare gauging 

stations varied, as displayed in Table 6.10. The global circulation model performance 

evaluations show that fourteen GCMs (ACCESS1-0, BNU-ESM, CanESM2, CNRM-BGC, 

GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR and 
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NorESM1-M, CCSM4, IPSL-CM5A-LR, MIROC-ESM-CHEM) have sufficient performance 

when evaluated against observations (d > 0.7, r > 0.7 and R2 > 0.5). The least successful 

performance in terms of accuracy when evaluating historical observations and global 

circulation models’ average precipitation data was observed for MRI-CGCM3 (R2 < 0.5), but 

the results show that the model has a strong positive correlation (r > 0.7) with a high index of 

agreement (d > 0.7), and an rRMSE below 20% (Table 6.10). As such, there is confidence to 

apply the GCM data for future soil erosion risk estimation for Epworth district (Table 6.10). 

Table 6.10 The GCMs’ performance evaluation against the observed precipitation dataset from 1980 to 

2005. 

GCM RRMSE (%) d r R2 

ACCESS1-0 15.64 0.84 0.77 0.60 

BNU-ESM 16.36 0.79 0.78 0.62 

CanESM2 16.49 0.80 0.78 0.61 

CCSM4 18.70 0.75 0.71 0.51 

CNRM-BGC 16.34 0.85 0.78 0.61 

GFDL-ESM2G 17.65 0.82 0.79 0.61 

GFDL-ESM2M 17.73 0.80 0.79 0.62 

IPSL-CM5A-LR 17.43 0.77 0.71 0.51 

MIROC-ESM 18.69 0.78 0.78 0.61 

MIROC-ESM-CHEM 17.82 0.77 0.71 0.55 

MIROC5 15.38 0.80 0.79 0.64 

MPI-ESM-LR 16.55 0.80 0.77 0.60 

MPI-ESM-MR 16.43 0.81 0.78 0.61 

MRI-CGCM3 18.10 0.75 0.69 0.47 

NorESMI-M 14.45 0.87 0.79 0.63 

 

6.3.5. RUSLE model factor maps 

To be able to later assess the impact of future climate change on the future long-term potential 

soil erosion risk for Epworth district, the analysis of future predicted precipitation was split into 

two-time intervals, 2019–2034 and 2035–2050. Applying the RCP4.5 climate scenario between 

2019 and 2034, annual rainfall averages 886 mm, and for the time interval 2035–2050, annual 

rainfall averages 839 mm; applying the RCP8.5 climate scenario between 2019 and 2034, 

annual rainfall averages 827 mm, and for the time interval 2035–2050 annual rainfall averages 

799 mm. For the time period 2019–2034, rainfall erosivity factor (R) values, as derived from 

RCP4.5 model ensemble, are on average between 333 and 338 MJ mm ha−1 h−1 yr−1 and 

significantly exceed the values of the R factor based on the RCP8.5 model ensemble of 318–

324 MJ mm ha−1 h−1 yr−1 (Figure 6.6). For the period 2035–2050, the R factor calculated on the 

basis of the RCP4.5 climate scenario varies between 321 and 328 MJ mm ha−1 h−1 yr−1, again 

exceeding the R factor derived from the RCP8.5 model ensemble, which varies between 313 
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and 318 MJ mm ha−1 h−1 yr−1. The variation in the R factor values dictates the temporal variation 

in annual rainfall for different climate scenarios. High R factor values were recorded from the 

RCP4.5 model ensemble averages for both future periods considered, the highest R factor being 

predicted for the period 2019–2034. 

    

Figure 6. 6 The rainfall erosivity factors (R) for Epworth district. (Top right) 2019–2034 (RCP4.5); 

(Top left) 2019–2034 (RCP8.5); (Bottom right) 2035–2050 (RCP4.5); and (Bottom left) 2035–2050 

(RCP8.5). 

 
The soil texture in Epworth district corresponds largely to sand, sandy loam and clayey loam; 

only along the alluvial plains do predominantly sandy loams occur. Correspondingly, soil 

erodibility factor values (K) range between 0.06 and 0.09 (Figure 6.7b). The topography of 

Epworth district is undulating to gently rolling, with steep sloping areas along the river banks 

and at the intersections of tributary channels into the major receiving streams. Related 

topographic factor values (LS) range from 0 in the plateau areas up to approximately 22 on the 

steep sloping areas (Figure 6.7a). The width of the weighted land cover and management factor 

values (C) range between 0 and 0.239, with different distribution patterns in 2034 and 2050 

(Figure 6.7c and d). Major differences in land cover and management relate to shifts in land use 

over time, as predicted by the CA–Markov model (Figure 6.3). Due to the lack of support 

practices in the study area, the support practice factor values (P) are set as 1. 
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Figure 6. 7 The RUSLE input factors for modelling potential soil erosion risk for Epworth district. (a) 

Topographic factor (LS); (b) soil erodibility factor (K); (c) the crop cover and management factor (C) 

for 2034; (d) the crop cover and management factor (C) for 2050. 

 
6.3.6 Potential soil erosion risk 

Potential soil erosion risk mapping was performed independently for the years 2034 and 2050 

as selected time slices, considering the two climate scenarios RCP4.5 and RCP8.5. The 

predicted average soil erosion risk, applying precipitation data as provided by RCP4.5 for the 

period 2019–2034, totals 1.2 t ha−1 yr−1 for 2034 and 1.1 t ha−1 yr−1 for the period 2035–2050. 

Applying the R factor based on the annual precipitation data, as provided by climate scenario 

RCP8.5, the predicted average potential soil erosion risk amounts to 1.1 t ha−1 yr−1 in 2034 and 

1.0 t ha−1 yr−1 in 2050. The estimated soil loss rate for the climate scenario RCP4.5 in 2034 

varies between 0 and 69.3 t ha−1 yr−1 and 0 and 48.9 t ha−1 yr−1 in 2050. Applying the R factor 

based on the annual precipitation data, as provided by climate scenario RCP8.5, soil loss rates 

ranged between 0 and 62.4 t ha−1 yr−1 in 2034 and 0 and 42.3 t ha−1 yr−1 in 2050. Future potential 

soil erosion risk predictions for climate scenarios RCP4.5 and RCP8.5 were significantly 

different (p < 0.05) for each time interval, 2034 and 2050, highlighting that the presented 
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changes can be attributed to various predicted factors, including land use and rainfall erosivity 

changes. 

High potential soil erosion risk areas are predicted for the south-eastern periphery of 

Epworth district and along the tributaries, as well moving downwards in the south direction 

along the stream, as depicted in Figure 6.8. The predicted spatial patterns of potential soil 

erosion risk applying annual precipitation data, as provided by the RCP4.5 and RCP8.5 climate 

scenarios for the time slices 2034 and 2050, reveal in all cases high potential soil erosion risk 

along the flanks of the major rivers and along the flanks of steep tributaries (Figure 6.8). The 

displayed potential soil erosion risk maps in Figure 6.8 reveal that the predicted decrease in the 

R factor in the long term, corresponding to decrease in annual rainfall averages, reduces soil 

erosion processes, which simultaneously is on the rise in some localized parts of the district, 

and this is purportedly triggered by land use changes. Environmental characters, predominantly 

topography and soil properties (Figure 6.7), control the overall vulnerability of the area to soil 

erosion, finally displayed as potential soil erosion risk, including rainfall and land use. 

The area-wide potential soil erosion risk predicted for the year 2034, applying R factors 

derived from the RCP4.5 climate scenario, indicates that 62.0% of the Epworth district will be 

exposed to low potential soil erosion risk and 27.9% to moderate potential soil erosion risk, 

while 8.1% will be exposed to high potential soil erosion risk and 2.0% to very high and extreme 

potential soil erosion risk (Table 6.11). The predicted results evidently show that there is an 

extensive distribution of areas of low potential soil erosion risk across the district, while high 

potential soil erosion risk is predicted predominantly along the channel networks. Applying R 

factors from the same climate scenario, RCP4.5, for the year 2050, approximately 74.3% of the 

entire district will be exposed to low potential soil erosion risk, 14.7% will be exposed to 

moderate potential soil erosion risk, 5.6% will be exposed to high potential soil erosion risk and 

5.4% to very high and extreme potential soil erosion risk. The area-wide proportion of low 

potential soil erosion risk extended extensively across the entire district in 2050, attributed to 

the decline in the average rainfall erosivity in climate scenario RCP4.5. Applying R factors 

based on the RCP8.5 climate scenario in the year 2034, about 66.7% of the Epworth district is 

predicted to be exposed to low potential soil erosion risk, 24.6% to moderate potential soil 

erosion risk, 7.4% to high potential soil erosion risk and 1.3% to very high and extreme potential 

soil erosion risk (Table 6.11). Furthermore, for the year 2050, based on RCP8.5 climate 

scenario, the predicted area of Epworth district exposed to low potential soil erosion risk will 

be 77.7%, 14.1% will be exposed to moderate potential soil erosion risk, 4.6% to high potential 

soil erosion risk and 3.6% of the entire district will be exposed to very high and extreme 
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potential soil erosion risk (Table 6.11). Applying climate scenario RCP8.5, similar to the 

application of climate scenario RCP4.5, high-intensity potential soil erosion is predicted 

predominantly along channel networks and predominates in the southern area of Epworth 

district (Figure 6.8). 

                        

Figure 6. 8 Predicted spatio-temporal potential soil erosion risk for Epworth district. (a) Potential soil 

erosion risk for 2034 applying R factors based on RCP4.5; (b) potential soil erosion risk for 2034 

applying R factors based on RCP8.5; (c) potential soil erosion risk for 2050 applying R factors based on 

RCP4.5; and (d) potential soil erosion risk for 2050 applying R factors based on RCP8.5. 
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Table 6.11 Predicted proportion of the spatial area of Epworth district exposed to potential soil erosion 

risk. 

Soil Loss 

(t ha−1 yr−1) 

Soil erosion 

Risk 

Area (%) in 

2018 
Area (%) in 2034 Area (%) in 2050 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

0–1 Low 59.5 62.0 66.7 74.3 77.7 

1–2 Moderate 29.3 27.9 24.6 14.7 14.1 

2–5 High 10.0 8.1 7.4 5.6 4.6 

5–10 Very high 1.1 1.6 1.1 3.5 2.3 

>10 Extreme 0.1 0.4 0.2 1.9 1.3 

 

The average area-wide potential soil erosion risk in Epworth district predicted for the time slices 

2034 and 2050 shows extended areas exposed to low potential soil erosion rates between 0 and 

1 t ha−1 yr−1, considering annual precipitation as provided by the RCP8.5 climate scenario. In 

contrast, the average area-wide potential soil erosion risk predicted for the time slices 2034 and 

2050, considering annual precipitation as provided by RCP4.5 climate scenario, distinctively 

exposes a smaller area to low soil loss rates between 0 and 1 t ha−1 yr−1 compared to the 

respective predictions applying climate scenario RCP8.5. In relation to the study on the present-

day soil erosion risk in Epworth district (Marondedze and Schütt 2020), the current area 

exposed to low soil erosion risk amounts to 59.5%; thus, it is predicted to distinctly increase in 

the future (Table 6.11). In contrast, currently 10% of the Epworth district is exposed to high 

soil erosion risk and up to 1.2% is exposed to very high and extreme soil erosion risk (Table 

6.11). Correspondingly, it is expected that in the future, the areas in Epworth district exposed 

to high potential soil erosion risk with soil loss rates between 2 and 5 t ha−1 yr−1 will markedly 

decrease, and most likely will even halve by 2050.  

Furthermore, areas exposed to very high to extreme potential soil erosion risk with soil 

loss rates of more than 5 t ha−1 yr−1 will massively increase under future changes in land use 

and climate, while in 2034, under the RCP8.5 climate scenario, areas exposed to very high 

potential soil erosion risk will be widely stable compared to 2018 area coverage. By 2050, the 

spread of this category will double and might even triple when applying R-factors from the 

RCP4.5 climate scenario (Table 6.11). This development is even more distinctive when 

focusing on areas exposed to extreme potential soil erosion risk compared to the present-day 

situation until 2034, where areas exposed to extreme potential soil erosion risk will steadily 

increase by doubling the area extent when applying R-factors resulting from the RCP8.5 climate 

scenario, and up to 4 times the area extent when applying R-factors resulting from the RCP4.5 

climate scenario. In 2050, areas exposed to extreme potential soil erosion risk will have 

increased by more than tenfold, independent of whether applying R-factors resulting from the 
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RCP8.5 or RCP4.5 climate scenario. However, the total area exposed to extreme potential soil 

erosion risk remains small and predominantly will occur along the river banks (Table 6.11). 

 

6.4 Discussion 

The predicted CA–Markov model results reveal an increase in the spatio-temporal pattern of 

built-up area, with built-up area expected to cover over 95% in 2050 from an approximated 

total of 84.5% in 2018 (Figure 6.3, Table 6.5). The forecasted results indicate that green spaces 

and croplands will continue to decline at the expense of built-up area (Table 6.5). Thus, the 

transition probability matrices for different periods reveal the probability of each class (n) in 

the LULC maps changing in the next distinct period (tn+1) in respect of the surrounding cells 

(Kamusoko et al., 2013; Subedi et al., 2013). These predictions of built-up area growth at the 

expense of green spaces and croplands in the Harare Metropolitan Province concur with the 

conversion rates predicted by Mushore et al. (2017) using CA–Markov model analysis. The 

same analysis agrees with the predicted urban growth and the development of Irbid’s 

governorate of Jordan, with projected built-up area growth amounting to almost 65% in total 

area from an estimated 14.5% between 2015 and 2050, at the expense of vegetation and 

farmlands (Khawaldah et al., 2020). Therefore, such developments indicate the core principle 

of the CA models, which stipulates that the present state of development is a continuation of 

historical changes induced by the neighbourhood interactions (Ahmed and Ahmed 2012; 

Koomen and Beurden 2011; Subedi et al., 2013). This predicted expansion pattern is a result of 

the neighbourhood effect, which exhibits that the converted land use is next or close to the 

existing dominant land use, and predominantly built-up area exists for this scenario (Fitawok 

et al., 2020; Koomen and Beurden 2011; Tang and Di 2019). 

The predicted loss of green spaces and croplands may result in the detrimental loss of 

urban agricultural land and areas of aesthetic value to the ecosystem, which provide 

environmental protection. With the escalating socioeconomic woes and poverty in the city 

(Chirisa and Muhomba 2013), the loss of urban agricultural land to urban development will 

leave many poorly resourced Epworth residents with detrimental food insecurities, threatening 

their livelihoods since many survive on market gardening and other urban farming activities 

(Tawodzera 2011; UNDP 1996). The loss of green spaces also results in the reduction in 

vegetation cover and biomass which dissipates rainfall, reducing its direct impacts on the soil 

surface and facilitating percolation (Ferreira et al., 2016). Further, with the current economic 

meltdown and population growth, the surge of urban built-up area predicted by the CA–Markov 

model can be justified; the Epworth district will be no exception in terms of absorbing more 
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inhabitants from other spheres of the Harare Metropolitan Province. This push could be 

exacerbated by unaffordable rental charges and cost of living in other affluent suburbs of the 

Harare Metropolitan Province, resulting in further densification and overcrowding in Epworth 

district. However, due to excessive demand for shelter and anticipated population growth, the 

conversion of croplands and green spaces to a built-up area will intensify impervious surfaces 

across the district (Marondedze and Schütt 2019; Wania et al., 2014).  

The GCM ensembles were used to quantify the hydrological impacts of climate change 

under different climate scenarios, RCP4.5 and RCP8.5, to obtain reliable projections 

(Hagemann et al., 2009; Murphy et al., 2004; Räisänen 2007; Sperna Weiland et al., 2012). 

Based on statistical metrics, the evaluation of the performance showed that fourteen GCMs 

(Table 6.10) have sufficient performance when evaluated with observations from Harare 

Metropolitan gauging stations (d > 0.7, r > 0.7 and R2 > 0.5), with the exception of MRI-

CGCM3, observed to have the lowest determination coefficient of 0.47. This may suggest that 

the general circulation model could have other specific years that were not properly simulated 

(Chemura et al., 2021); however, the analysis shows that most GCMs displayed good 

simulation. Above all, the GCMs have an rRMSE below 20%, which is reasonably acceptable 

(Arumugam et al., 2020; Chen et al., 2011, 2013). Further, coarse grid resolutions from GCMs 

make it difficult to match, with few in situ observations which are not uniformly distributed 

attributed to increases in spatial variation and uncertainty to clearly define local precipitation 

characteristics, therefore increasing the simulation bias (Hudson and Jones 2002; Pinto et al., 

2016; Shongwe and Oldenborgh 2011). 

For the RUSLE model, potential soil erosion risk maps were produced using the 

geostatistical ArcGIS package (raster calculator) to multiply the RUSLE factor maps (Figures 

6.6 and 6.7). The predicted potential soil erosion risk averaged at 1.2 t ha−1 yr−1 in 2034 and 1.1 

t ha−1 yr−1 in 2050 for the RCP4.5 climate scenario, while 1.1 t ha−1 yr−1 and 1.0 t ha−1 yr−1 were 

the predicted averages for 2034 and 2050 for the RCP8.5 climate scenario. Meanwhile, studies 

on the influence of land use change or the impact of soil erosion risk on crop productivity 

indicated that a tolerable soil loss rate at 1 t ha−1 yr−1 was sustainable for the tropics (Kouli et 

al., 2009; Khosrokhani and Pradhan, 2014; Karamage et al., 2017; Abdulkareem et al., 2019). 

Based on the slow rate of soil formation across the tropics, including Europe and America (<1 

t ha−1 yr−1) (Jones et al., 2003; Verheijen et al., 2009; Karamage et al., 2017; Abdulkareem et 

al., 2019), the sustainable soil loss tolerance at 1 t ha−1 yr−1 was considered across the entire 

Epworth district. The resulting arguments around the proposed 10 t ha−1 yr−1 as the estimated 

soil erosion tolerance threshold for tropical ecosystems showed that it was highly 
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overestimated, considering threats to the landscape and impacts on crop productivity likely to 

occur at such a high risk threshold (Morgan 2005). Furthermore, other studies indicated that 

average soil loss rates of 5 t ha−1 yr−1 may be sustainable soil loss rates in the tropics (Bamutaze 

2015; Lufafa et al., 2003). Nevertheless, an estimated 1 t ha−1 yr−1 soil loss threshold subsisted 

for the current study and the predicted area-wide averages were unsustainable in that they 

slightly surpassed the recommended soil loss threshold, except for the RCP8.5 climate scenario 

in 2050. However, the slight notable deviation from the 1 t ha−1 yr−1 sustainable threshold can 

be justified as the averages fall within the applicable tolerable range of c.a 1.4 t ha−1 yr−1 

proposed for some parts of the tropics, including America and Europe (Verheijen et al., 2009). 

Thus, the estimated soil loss tolerance threshold was used to describe a sustainable soil loss rate 

(Alewell et al., 2015). 

The integrated average annual precipitation between 2019 and 2034, based on the 

climate scenario RCP4.5 results, shows high average annual soil loss rates ranging between 0 

and 69.3 t ha−1 yr−1 and 0 and 62.4 t ha−1 yr−1 for the RCP8.5 climate scenario in 2034. In 

contrast, applying average annual precipitation between 2035 and 2050, the R factor-based 

values show a decline in soil loss rates for the year 2050 in both climate scenarios ranging 

between 0 and 48.9 t ha−1 yr−1 for RCP4.5 and 0 and 42.3 t ha−1 yr−1 for RCP8.5. However, 

these results show a continuous declining trend of soil loss rates when compared with the 

baseline period that applied the R factor based on the average annual precipitation data derived 

from in situ observations between 1984 and 2000 for Epworth district, estimating high soil 

erosion risk with average annual soil loss rates between 0 and 92.8 t ha−1 yr−1 in 2000 

(Marondedze and Schütt 2020). In summary, the soil loss rates for both the RCP4.5 and RCP8.5 

climate scenarios are observed to be decreasing in spatial coverage over the years 2034 and 

2050. Regardless of the high rainfall erosivity predicted between 2019 and 2034 in comparison 

with soil loss rates estimated for the year 2000 (Marondedze and Schütt 2020), it is revealed 

that land use changes, including the shrinking of croplands and disturbed shrublands, 

predominantly reduce the soil loss impact due to increases in impervious surfaces across the 

Epworth district. 

The increasing potential soil erosion risk predicted for Epworth district along the 

channel networks has been attributed to the steep slopes along the streams in combination with 

massive impervious surfaces, resulting in the accumulation of overland flow (Braud et al., 

2013). Correspondingly, high topographic factor values appear on valley flanks (Figure 6.7), 

exposing surfaces to severe runoff and flooding resulting from the increased slope inclination 

and reduced infiltration capacity (Dams et al., 2013; Le Roux and Sumner 2012). Displayed 
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soil loss rates exceeding 1 t ha−1 yr−1 for Epworth district will be considered unsustainable 

(Verheijen et al., 2009; Karamage et al., 2017), and therefore, the need for sound policy 

implementation to avoid detrimental environmental damage. Such estimates, as indicated in 

Table 6.11, reveal that a larger proportion of the study area will be exposed to tolerable soil loss 

rates (Khosrokhani and Pradhan, 2014; Karamage et al., 2017; Abdulkareem et al., 2019). 

Nevertheless, there is a predicted increase in soil erosion risk in vulnerable areas, mainly 

downslope and low-lying areas along the flanks of the channel networks (Braud et al., 2013; 

Marondedze and Schütt 2020; Opeyemi et al., 2019). 

The study results predict that soil loss rates vary with precipitation and land use changes 

for all the climate scenarios. The results suggest that the soil erosion response with regard to 

climate change could be complex, as it varies with time and on a climate scenario basis (Pruski 

and Nearing 2002). Consequently, the proportion of area exposed to high potential soil erosion 

risk with average soil loss rates between 2 and 5 t ha−1 yr−1 will markedly decline and most 

likely will even halve by 2050, as opposed to the doubling and triplicating proportional areas 

exposed to very high and extreme potential soil erosion risk for both climate scenarios in 2050. 

This is linked with the increasing vulnerability to smaller proportional area occupied by sparse 

green spaces and bare areas along channel networks. Such increasing trends in potential soil 

erosion risks are primarily accelerated by concentrated overland flow resulting from reduced 

infiltration processes across the Epworth district (Dams et al., 2013; Meshesha et al., 2014; 

Phil-Eze 2010). This vulnerability and response to rainfall impact and runoff processes with 

regard to reduced spatial area exposed to direct soil displacement in 2050 underpins the effects 

of land use changes and sloping topography along the channel network (Renschler et al., 1999; 

Sardari et al., 2019). 

The decreasing rainfall erosivity for both scenarios over time concurs with the future 

analysis that incorporated regional climate models (RCMs) by Hudson and Jones (2002), in 

which they highlighted the likelihood of increasing consecutive dry days in southern Africa; 

however, with some increases in other parts of the region (Shongwe et al., 2009). Additionally, 

interannual high rainfall intensity impact is relatively expressed as this would be masked in 

annual rainfall averages due to low rain-day frequency (Shongwe et al., 2009). The contraction 

of the rainfall season was projected following the observed late onset and early rainfall cessation 

in sub-Saharan Africa, mostly in central Mozambique, large parts of Botswana and the northern 

and southern parts of Zimbabwe (Shongwe et al., 2009). Such responses to climate change tally 

with the predicted decline in overall soil erosion risk in 2050, which, however, still require more 

robust regional analysis on precipitation uncertainties to global climate change (Hudson and 



118 
 

Jones 2002; IPCC 2007; Shongwe et al., 2009). Nevertheless, the use of model ensemble 

averages could have limited the impact of other predicted extreme rainfall events (Murphy et 

al., 2004; Räisänen 2007; Sperna Weiland et al., 2012). Such changes and manipulations of 

rainfall intensities could negatively impact the final soil erosion prediction outcome (Boardman 

2006; Turnbull et al., 2013). Furthermore, the use of coarse grid resolutions and numerical 

methods reduces models’ data independency, and therefore increases the bias and uncertainty 

range of the outcomes (Räisänen 2007; Sperna Weiland et al., 2012; Vrochidou et al., 2013). 

The empirical RUSLE model is also limited only to the predictive capacity of sheet, inter-rill 

and rill soil erosion processes spanning over long periods, as it is not an event-based model, 

which also does not consider gullying erosion processes (Borrelli et al., 2020; Merritt et al., 

2003; Phinzi and Ngetar 2019; Renard et al., 1997; Shamshad et al., 2008). Other data-driven 

processes integrated in the empirical RUSLE technique increase the uncertainty of future soil 

erosion risk due to varying data sources applied without rigorous quantification of their 

uncertainties and propagation (Borrelli et al., 2020; Falk et al., 2010). 

Overall, high potential soil erosion risk displayed within the vicinity of Jacha river and 

tributaries extending from the north and southeast parts of the district draining southwards 

continue to increase, as predicted by the RUSLE model widely in 2050. This is attributed to the 

increasing sealed surface area and the sloping topography contributing to increased overland 

flow and surface runoff (Cantón et al., 2011; Dams et al., 2013). Taking into account human 

activities, previous studies reiterated that sand poaching activities along riverbanks are 

associated with heavy trucks ferrying sand to construction sites, contributing to high soil 

compaction on unpaved roads (Braud et al., 2013; Marondedze and Schütt 2020; USDA. NRCS 

2000), reducing the infiltration capacity, and hence increasing surface runoff processes. For 

Epworth district, activities such as sand poaching and extraction along the riverbanks will be 

inevitable due to the predicted built-up area expansion and due to the fact, that for many locals, 

informal activities provide employment for the sustenance of their livelihoods. Therefore, there 

is a need to implement sound policies and sustainable environmental management approaches 

in order to curb environmental damage and the future extinction of water bodies and their 

ecosystem services. Uncertainties exist in this study about policy amendments regarding the 

functionality of the Local Boards and Authorities in regulating developmental plans. This, in 

turn, will affect LULC changes in the Epworth district of the Harare Metropolitan Province. 

However, this was held constant in the prediction of future LULC distribution patterns for 

Epworth district. 
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6.5 Conclusions 

The study uses LULC distribution patterns between 1990 and 2008 to apply a Markov chain 

model, which allows the development of a transition probability matrix and suitability maps, 

and later defines the complex dynamic spatial patterns of urban area by the flexible Cellular 

Automatons. The validation of the simulated 2018 LULC distribution patterns and the actual 

2018 LULC map displayed strong spatial agreement, both quantitatively and through visual 

inspection. The strong agreement and consistency of the LULC spatial patterns from the cross 

validation displayed the reliability and usability of the CA–Markov model to predict 2034 and 

2050 future LULC distribution patterns for Epworth district. The predicted findings show a 

continuous increase in urban built-up area over the years 2034 and 2050 at the expense of 

croplands and perturbed green spaces, predominantly with the expansion of high-density 

residential areas towards Epworth district peripheries. 

Further, future potential soil erosion risk was predicted for the years 2034 and 2050 

using the RUSLE model, which integrated R factors based on the average annual precipitation 

between 2019 and 2034 and 2035 and 2050, as provided by climate scenarios RCP4.5 and 

RCP8.5. The goodness of fit measures highlighted that the general circulation models (GCMs) 

are useful for the assessment of future soil erosion risk, following the evaluation of GCMs 

performance with gauged observations, which showed a good performance, ascertaining their 

feasibility. As such, ensemble average outcomes from multiple GCMs under both the RCP4.5 

and RCP8.5 climate scenarios were incorporated in the regional statistical relations equation to 

derive the rainfall erosivity factor for use in the RUSLE model. 

Future trends in climate variability reveal that the projected high rainfall for the RCP4.5 

climate scenario between 2019 and 2050 compared to the RCP8.5 climate scenario will 

contribute to high-localized soil erosion risk in vulnerable areas, including perturbed green 

spaces, agricultural land and stream banks. High soil loss rates were predicted in 2034 for both 

climate scenarios RCP4.5 and RCP8.5, in comparison with low soil loss rates in 2050 for both 

climate scenarios, and this is largely attributable to the predicted dynamic land use changes 

resulting in the reduction in surface area exposed to soil erosion processes over time. The 

predicted results also indicate that average annual soil loss rates will approximately halve in 

2050 from an estimated 0–93 t ha−1 yr−1 in 2000, independent of whether the RCP4.5 or RCP8.5 

climate scenario is applied. Nevertheless, for 2050, increasing soil erosion risks have been 

predicted along the flanks of the drainage networks. 

Overall, this study highlights the application of the CA–Markov model in combination 

with the RUSLE model to derive useful simulations for predicting future LULC and soil erosion 
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risk. In addition, based on the stipulated IPCC policy recommendations from the Fifth 

Assessment Report (AR5), governments and policy makers need to implement sound climate 

policies in order to curtail and curb environmental degradation and landscape fragmentation at 

the local scale. 
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CHAPTER 7: MODELLING SPATIAL LANDSCAPE RESPONSES TO 

URBANIZATION AND CLIMATE CHANGE BY APPLYING REMOTE 

SENSING DATA- A SYNTHESIS  

 

7.1 Introduction 

Urbanization as a process involving the expansion of built-up areas due to increases in 

population and economic activities has both negative and positive impacts on the landscape and 

provision of ecosystem services. In the case of Harare Metropolitan Province, industrial areas 

have been located close to the central business district (CBD) and their growth entails the need 

for human resources. This becomes a bait for labour driving the need for shelter to house the 

growing population that is providing work force for developing and improving the economic 

status of the city. Unrestrained and unplanned urban growth negatively impacts urban 

landscapes. That is, development of informal structures haphazardly in an urban setting drives 

the erection of structures on fragile ecosystems, for instance on wetlands, hindering their 

ecosystem functions to supply and purify water and act as a habitat. Unrestrained creation of 

build-up areas in urban environments facilitates the unprecedented LULC changes and 

modification of the urban landscapes. Associated impacts include the development of an urban 

microclimate including urban heat islands, which causes outdoor thermal discomfort (Mushore 

et al., 2017). Also, widespread traffic and impervious surfaces facilitate concentrated runoff 

and increase trails of soil erosion on bare land areas and downslope sediment deposition. 

However, this varies with soil physical properties, vegetation cover, topographic steepness and 

other topographical landscape characteristics (Ashiagbor et al., 2013; Kabantu et al., 2018). 

The increase in surface sealing (impermeable) also contributes to reduced water infiltration 

capacity thereby minimizing ground water recharge and consequently, annihilating water 

supply to aquifers.  

In addition, population movements facilitate compaction along footpaths, roadsides 

parallel to paved roads and unpaved roads. This results from soaring traffic flows and triggers 

increases in soil erosion due to induced surface runoff and overland flow. Accelerated LULC 

changes due to increase in population dynamics are also associated with flash floods in urban 

areas. These flash floods result from the blockage of water channels and culverts by deposited 

sediments from upslope limiting the smooth flow of water on the installed drainage channels. 

Monitoring of urban growth through built-up areas mapping is important to reduce and mitigate 

environmental impacts. This enables urban planning through ideal policy formulation and 

implementation in order to safeguard the environment and raise awareness to the population. 
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However, there is little information or data paucity in Southern Africa, specifically in 

Zimbabwe, on urban landscape responses to rampant urban development and expansion. In the 

past, much focus has been given to rural landscapes and forest areas on soil erosion risk and 

soil loss (Makwara and Gamira 2012; Shikangalah et al., 2017; Tundu et al., 2018; Whitlow 

1988). 

The objective assessment of urban landscape responses to urbanization process by applying 

remote sensing data provides significant ways of spatiotemporal monitoring relevant for 

managing the environment. This curbs environmental degradation and extinction of 

biodiversity. However, there are challenges and limitations in the application of remote sensing 

techniques in urban built-up areas mapping, assessing and quantifying the extent of landscape 

damage and the prediction of future impacts. These challenges include the delineation of 

haphazard small housing units of different roofing materials using moderate resolution images 

due to spectral confusion (As-syakur et al., 2012; Kadhim et al., 2016). Further, spectral 

perplexity emanating from bare surfaces and rooftops limits classification accuracy, therefore, 

affecting modelling estimations of soil loss on the landscape. Secondly, the fact that the 

empirical soil erosion models applied are limited to address rill and inter-rill erosion processes 

negating gully erosion extents, pose a gap in addressing major threats to landscape as driven by 

urbanization process within active built-up areas and in secluded urban land areas. Thirdly, due 

to the mushrooming of urban settlements with minimum restraints as a consequence of political 

connotations and soaring population in cities the implementation of gazetted policies tends to 

be breached. All these aspects make it difficult to understand constant parameters for use in the 

prediction of future urban growth and expansion. However, the need to understand the current 

and future impacts of urbanization and climate change processes on urban landscapes is 

fundamental for the formulation and implementation of policies to enhance human-

environment interactions and curb environmental degradation.  

Therefore, this chapter provides a synopsis of the following objectives: 

1. Determine the explanatory drivers influencing LULC change and to assess the axis of 

expansion of the Harare Metropolitan province using multispectral remotely sensed data 

between 1984 and 2018. 

2. Assess and estimate spatial soil erosion risk and soil loss for Epworth district of the 

Harare Metropolitan province between 2000 and 2018 applying the RUSLE model. 
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3. Predict future LULC distribution patterns for the years 2034 and 2050, and to assess 

climate change impacts on soil erosion risk for Epworth district for the same periods 

applying the RUSLE model incorporating the predicted precipitation data outcomes 

from multiple GCMs. 

 

7.2 Mapping built-up areas using multispectral remote sensing data and statistical 

modelling using binary logistic regression – Executive summary of Paper 1 

Mapping of urban built-up areas using remote sensing techniques present challenges due to 

their heterogeneity and the complexity brought by spectral confusion (Jat et al. 2017; Sakieh et 

al. 2015). This is due to the varying reflectance of different rooftops produced from different 

materials and other land uses including bare areas, concrete and asphalt layered surfaces. 

However, developing LULC maps is important to monitor urban growth through quantification 

of the rate at which land use changes are occurring. In addition, urban monitoring assists urban 

planning managers and legislators in urban policy development to ensure sustainable urban 

development. The objective of this study is to assess independent variables influencing urban 

expansion and the axis of growth applying freely accessible Landsat 5 TM and 8 OLI data 

applying the machine learning support vector machines (SVMs) in developing LULC maps 

coupled with spectral indices to improve feature delineation. The overall outcome is that it is 

possible to improve feature delineation on moderate resolution Landsat imagery using spectral 

indices calculated for selected features in a complex heterogenous built-up area. Effectively, 

this has been observed by applying machine learning algorithms that performed supervised 

classification using training samples that underwent statistical testing for their separability 

using the transformed divergence separability Index (TDSI) (Chemura and Mutanga 2017). 

This improved the ability to achieve reliable classification accuracy for urban built-up areas to 

evaluate explanatory variables influencing urban growth applying the binary logistic regression. 

The current study confirmes the importance of the robust non-parametric support vector 

machines (SVMs) supervised classification aided by the separability testing of LULC classes 

which sheds light on the independency of each LULC attribute (Chemura and Mutanga 2017). 

The success of developing LULC maps with high overall accuracy (> 85%) is postulated to the 

application of spectral indices and SVMs for a complex urban-built up area. The generated 

LULC maps of high accuracy and the computed area statistics resulting from the robust machine 

learning aided classification and spectral indices improved the provision of urban growth rates 

and trends using change detection analysis. Further, the LULC maps were resampled to provide 

dichotomous raster layers applied to assess independent variables influencing axis of urban 
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expansion applying the binomial logistic regression modelling techniques. Due to the limited 

availability of independent variables for the analysis, topographic characteristics were 

considered such as slope variable and the proximity characteristics include distance to (1) the 

main roads, (2) secondary roads, (3) open water bodies, (4) streams and (5) the city centre. 

There is need to interrogate factors such as population distribution, gross domestic product 

(GDP) and other socio-economic related parameters to further understand urban growth drivers, 

their interrelations and associated impacts to the landscape. 

 

7.3 Modelling spatial soil erosion risk and potential erosion using the empirical RUSLE 

model – Executive summary of Paper 2  

Monitoring urban growth and development using remotely sensed data and geoinformatics 

technology is fundamental to attain sustainable cities and communities as enshrined in the 

United Nations SDGs (11) for 2030 and for the provision of clean water and sanitation (SDG 

6). As such, landscape responses to urbanization processes such as potential erosion and soil 

erosion were assessed for the years 2000 and 2018 for Epworth district of the Harare 

Metropolitan Province. Estimation of spatial extent of soil loss rates and potential areas at high 

soil erosion risk were performed applying the empirical RUSLE model. The RUSLE model is 

statistical based and considers various factors: soil erodibility (K), rainfall erosivity (R), slope 

length and steepness (LS), crop cover management (C) and support practices (P). The RUSLE 

model integrates long-term mean annual rainfall thereby making it rigorous, however, 

impossible to assess spatial distribution of soil loss or potential erosion risk based on events.  

The outcome of this study was that absolute soil loss rates were declining between 2000 

and 2018, with observed increases of localized soil erosion risk in active built-up areas and 

along the drainage channels. The study reveals that increasing sealed area due to high traffic 

volumes and impervious surfaces contributed to concentrated runoff causing steady increase on 

spatial soil erosion risks primarily along drainage networks and parallel to paved roads. Further, 

fluctuations and changes of soil erosion risk within active build-up areas resulted from artificial 

slope propagated by construction activities, overcrowding and intense LULC changes exposing 

surfaces to raindrop impacts and surface runoff.  

Weighted C factors were generated from literature-based data, field observations and 

biophysical characteristics evaluation of plant growth, height, canopy cover in relation to bare 

and sealed area in each sampling plot of 40 m x 80 m (Alena et al., 2013; Panagos et al., 2014; 

Renard et al., 1997). The study at hand also validates the generated RUSLE model estimates of 

spatial soil erosion risk distribution for 2018 applying the statistical metrics (Pearson’s 
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correlation and the coefficient of determination) to evaluate RUSLE model performance in 

relation to the field-based soil damage maps. Validation of the RUSLE model showed 

satisfactory model performance when weighted against the field-based soil damage for 2018 (p 

< 0.05, r = 0.76, r2 = 0.581); establishing the applicability of the RUSLE model in providing 

reasonably reliable potential soil loss and soil erosion risk estimates (Alewell et al., 2015; 

Montgomery 2007; Trirnble and Crosson 2000).  

The inability to assess gully erosion processes and sediment deposition when applying 

the RUSLE model limit the deterministic approach and the overall assessment of soil erosion 

extent in urban districts. However, the application of the RUSLE model facilitates the direct 

assignment of resources on areas potentially vulnerable to strong soil erosion processes. 

Assessment of rainfall-runoff and deposition processes on urban built-up landscape would be 

fundamental to mitigate the development of flash floods resulting from the blockage of water 

canals and culverts, siltation of the scarce water bodies which unequivocally leads to the 

destruction of properties, roads and utilities in urban areas. Overall, the generated soil erosion 

risk maps for 2000 and 2018 were used in the subsequent study for comparative analysis of the 

current and future predictions of soil erosion risk for Epworth district of the Harare 

Metropolitan Province. 

 

7.4 Predicting impacts of future LULC and climate change on urban landscape – 

Executive summary of Paper 3 

Forecasting future LULC change distribution patterns for Epworth district of the Harare 

Metropolitan Province was successfully performed applying LULC maps of high accuracy for 

the years 1984, 1990, 2000, 2008 and 2018 adapted from (Marondedze and Schütt 2019). The 

LULC maps were generated by applying the machine learning SVMs, a supervised 

classification technique on enhanced moderate resolution Landsat images for improved feature 

delineation by calculating specific spectral indices. The CA-Markov model was used to forecast 

2034 and 2050 LULC distribution patterns for Epworth district assuming the current urban 

development policies were constant. The validation of the simulated 2018 LULC against the 

actual 2018 LULC map generated using SVMs showed strong agreement of both “quantified 

and observed” data adding confidence for the application of CA-Markov models for future 

LULC predictions. This is because the Markov chain analysis generates transition probability 

matrices indicating the LULC changes from one state to another on discrete times coupled with 

the CA, which adds the spatial characteristics based on the neighbouring attributes as defined 

by the kernel. The predicted CA-Markov model results revealed an increase in the spatio-
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temporal pattern of built-up areas, with built-up areas expected to cover over 90% of Epworth 

district in 2050 from an approximated total of 84.5% in 2018. This increase in the built-up areas 

is at the expense of green spaces and croplands which were predicted to decline. The predicted 

developments indicate that the present state of development is a continuation of historical 

changes induced by the neighbourhood interactions (Ahmed and Ahmed 2012).  

In addition to predicting future LULC distribution patterns for 2034 and 2050, the likely 

landscape responses to climate change based on the representative concentration pathways 

(RCP4.5 and 8.5) climate scenarios were computed. Applying models’ ensemble mean 

precipitation outcomes from 15 statistically downscaled GCMs (Chapter 6) as climate variables 

into the spatial soil erosion modelling underscores the determination of assessing the influence 

of climate change on the urbanizing landscape. The RUSLE model approach was integrated to 

predict estimates of future soil erosion risk and soil loss in 2034 and 2050. This integrated the 

predicted future LULC distribution patterns for Epworth district to assign C factor values and 

also applying the rainfall erosivity factor (R) derived from RCP4.5 and RCP8.5 climate 

scenarios. The study results reveal that precipitation would decline between 2019 and 2050. 

The predicted low estimates of soil loss for the years 2034 and 2050 under RCP8.5 climate 

scenario is attributed to the applied low rainfall erosivity factors combined with reduced 

erodible surfaces due to land use changes. The applied RCP4.5 climate scenario also reveals 

declining rainfall erosivity due to steady decreases on overall annual mean precipitation, which 

is however higher compared to RCP8.5 climate scenario. Declining rainfall outcomes displayed 

from several GCMs for the study at hand corroborate with the projected outcomes for other 

parts of Zimbabwe and surrounding countries mainly central Mozambique and Botswana 

(Shongwe et al., 2009). The assessment of future landscape responses to climate change and 

urban development shows that soil loss rates vary with precipitation and land use changes for 

all the climate scenarios. These results suggest that soil erosion response with regards to climate 

change could be complex as it varies spatially and on climate scenario basis. For Epworth 

district, the RUSLE model predicted high soil erosion risk within the vicinity of the 

hydrological channels extending from the northern and southeastern parts of the district. Soil 

erosion risk increases were also predicted downslope in 2050 under both RCP4.5 and RCP8.5 

climate scenarios. This is attributed to the increasing sealed surface area and sloping topography 

contributing to increased overland flow and concentrated surface runoff (Cantón et al., 2011; 

Dams et al., 2013).  

It is important to mention that coarse resolution precipitation data outcomes from 

multiple GCMs could have increased bias and uncertainty on the overall spatial soil erosion 
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risk estimates with regards to area wide coverage of Epworth district which is relatively small. 

Further, the inability of the RUSLE model estimations to account for event-based soil loss rates 

and the masking of interannual high intensity precipitation into long-term mean annual rainfall 

reduce the direct expression of rainfall influence and impact on landscapes (Borrelli et al., 2017; 

Renard et al., 1997). Overall, the study at hand provides the basis for application of remote 

sensing in predicting future urban LULC distribution patterns and soil erosion risk assessments. 

This is significant for drafting sustainable urban planning policies and land management 

practices to curb further environmental damage and raising environmental awareness to the 

communities to mitigate future landscape fragmentation. 

 

7.5 Implications of urban development on the environment 

The application of remote sensing data in assessing current and future trends of urban growth 

is significant for sustainable urban planning to safeguard a healthy environment. As such, the 

adoption of these approaches and techniques for monitoring urban growth and impacts 

associated with the environment are indispensable. This is through the provision of estimates 

that are necessary to alert land managers, authorities and communities of the detrimental effects 

and threats posed to the environment and socio-economic state by human activities. The impacts 

on the landscape turns out to affect livelihoods for instance rampant LULC changes through 

expansion of built-up areas encroaching fragile ecosystems such as wetlands reduce market 

gardening activities and obliterate wetland ecosystem functions and services in the 

environment. The application of remote sensing data in predicting future LULC changes and 

associated climate change scenarios shed light on the likely possible impacts induced by 

accelerated urbanization on the environment that will directly or indirectly affect the well-being 

of communities. The continued increase in built-up areas at the expense of croplands, wetlands 

and green spaces will highly attract the emergency of flash floods following blockage of water 

canals with eroded sediments from exposed bare land and compacted surfaces (Dams et al., 

2013).  

Identification of main variables influencing urban growth and direction of expansion 

such as major and secondary roads is not only ideal for understanding urban growth dynamics 

but creates a gap for further research on land suitability analysis vis-à-vis environmental 

sustainability. The application of moderate resolution satellite remote sensing data and 

supervised machine learning algorithms displayed reasonable results suitable for the assessment 

of urban growth parameters and impacts of urban expansion on the environment. As such, it is 

possible to adopt high-resolution satellite images at a cost to improve estimates of landscape 
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responses to urban development and the development of near-real time urban growth statistics 

and trends as a monitoring tool and practice. That is, the monitoring of urban growth trends and 

assessment of landscape responses using multispectral remote sensing data has furnished 

Epworth district with estimates of the current and the likely future environmental impacts 

displaying that the processes are timely, cost-effective, spatially explicit and reproducible. Field 

assessments on the spatial extent of soil erosion damage revealed opportunities for the 

development and applicability of validation techniques for the empirical soil erosion models 

based on spatial extent soil erosion damage measurements and analysis. Ascertaining or 

validation procedures facilitate the understanding of empirical methods including the 

deterministic RUSLE model, which, however, has shortcomings such as the exclusion of gully 

and sheet erosion and the precise inter-rill soil erosion phenomena measurements. Soil erosion 

phenomena measurements could potentially provide the current state of soil erosion risk and 

estimates of soil loss in comparison with the ascertaining of study results based on reviewed 

estimates from other studies of the same climatic conditions.  

 

7.6 Conclusions 

The aim of this study at hand was to investigate independent variables influencing LULC 

changes by applying the binary logistic regression, a statistical modelling approach. Secondly, 

the study assesses landscape responses to LULC and climate change processes through the 

modelling of current and future spatial soil erosion risk using the empirical RUSLE model on 

multispectral remote sensing data. Based on the findings, the following conclusions are drawn: 

 

1. Moderate resolution Landsat 5 TM and 8 OLI data enhanced with spectral indices 

provide detailed information of the urban growth trend on heterogenous urban built-up 

areas through the application of machine learning support vector machines a supervised 

classification technique and change detection analysis. The modelling of independent 

variables influencing urban growth and axis of expansion using binary logistic 

regression revealed the potential of statistical modelling to identify independent 

variables influencing urban growth. This was successful regardless of the limited 

independent variables applied for the study due to data unavailability and omission of 

variables that auto correlates with growth and expansion of urban districts such as 

population density. The potential benefit of multispectral moderate resolution satellite 

images is their cost effectiveness, accessibility, ability to be enhanced by spectral 

indices, and the availability of historical/archived datasets for trend analysis. The 
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utilization of moderate resolution datasets is more valuable than the cost of 

environmental degradation without sound monitoring and future planning. Overall, 

rampant build-up area increases were observed at the expense of green spaces and 

croplands. Subsequently, major and secondary roads dominated as independent 

variables influencing the axis of urban expansion regardless of haphazard development 

in the southern and eastern parts of the Harare Metropolitan Province. 

 

2. Remote sensing data can be reliably used to estimate and map spatial soil erosion risk 

and soil loss rates on urban landscapes. The use of empirical RUSLE model to estimate 

soil erosion risk, soil loss rates and potential erosion on urban built landscape helps to 

inform land managers, local authorities and the society on areas threatened by soil 

erosion that require attention in order to direct resources on specific areas estimated to 

have high soil erosion risk. 

 

3. The CA-Markov model can be used for predicting future LULC changes for urban areas. 

In addition, the empirical RUSLE model can also be reliably used to estimate future soil 

erosion risk on the predicted urban areas, while incorporating the predicted rainfall 

erosivity factors driven from multiple GCMs in order to predict future climate change 

impacts on urban landscapes applying climate scenarios (RCP4.5 and 8.5). 

 

4. To enable sustainable urbanization, there is need for the integration of smart urban 

design policy on the government framework which embraces technology, innovation, 

educating societies and legislators on the extent to which their activities impact the 

environment. Further, fluctuations and shifting of rainfall patterns due to climate change 

were predicted and this requires holistic approaches from household to global level 

towards the mitigation of emissions and adapting to the prevailing conditions. As such, 

this heeds a call for policy and decision makers to align national climate policies and 

action plans with the Paris Agreement as agreed upon at the COP 26 global climate 

summit.  
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7.7 Outlook for future research 

Findings of the current research are conclusive within the scope of the study area; however, the 

study creates opportunities for further research and for array of disciplines. The following 

recommendations based on this study are laid out for future research: 

 

1. The techniques and results from this study are based on statistical and empirical models 

giving much emphasis on spectral features that are used to produce thematic maps. 

Further, future predictions performed predominantly relied on features derived from 

spectral characterization with little mechanistic understanding of the identified 

relationships. As such, more research is required on exploring urban growth drivers and 

parameters.  

 

2. The research focused on soil erosion modelling using empirical models. Therefore, it is 

important to understand how physical and conceptual models can perform on urban 

systems and to understand soil erosion processes through mechanical soil erosion 

demonstration on plots using treatments and controls to further validate the RUSLE 

model. The inclusion of gully formation, sheet erosion and deposition processes and 

extent of their impacts to urban environments should be considered on further research 

work to enable sustainable urban development with substantiated scientific information. 

 

3. Assuming that urban growth patterns predicted between 2034 and 2050 persists under 

current and assumed conditions, it entails dramatic conversion rates of green spaces and 

urban agricultural land at the expense of built-up areas. This conclusive prediction could 

be positive however, there is need to research on social and technical possibilities of 

developing the modelling procedures for better understanding of the causal mechanism. 

 

4. The study utilized moderate resolution Landsat 5 TM and 8 OLI remote sensing data 

for the classification of LULC maps and showed promising results. However, there is 

need to investigate using high-resolution satellite data such as GeoEye, WorldView and 

IKONOS in the spatial modelling of urban built-up areas for accurate monitoring of 

urban growth processes and effective sustainable future planning. 
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5. Future climate change impacts investigated for Epworth district on the landscape 

responses resemble minimum spatial variability that is due to the differences on spatial 

resolution of precipitation data against the areal extent of the study area. Consequently, 

it is important to understand the likely possible spatial soil erosion risks over large 

spatial areal extent of an urban setting and the inclusion of all climate scenarios 

including RCP2.6, 4.5, 6.0 and 8.5. Further, spatio-temporal potential erosion runs on 

regional scale applying RCPs climate scenarios is deemed necessary to enable future 

landscape sustainability. 

 

Overall, the findings in this cumulative doctoral thesis contribute to the understanding of the 

interrelationships between humans and their environment. The urban landscape responses to 

LULC and climate change have been explored applying remote sensing data and geoinformatics 

techniques. This was combined with field snapshot surveys to geo-reference and measure soil 

erosion phenomena to ascertain empirical methods and derive crop cover management factors. 

That is, the remote sensing offers great capabilities to accurately and timely monitor urban 

growth trends and their associated impacts on the landscape to enable environmental 

sustainability through the provision of scientific based information. 
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Appendix  

 

     

Figure A1. Raster layers for dependant variables for all time slices derived from change detection: 

1984-1990; 1990-2000; 2000-2008; 2008-2018 and 1984-2018 with urban built-up area growth (=1) 

and non-built-up area (=0). 
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Table A1. Confusion matrix and associated classification accuracies produced from Landsat 5 TM (1984, 1990, 2000 and 2008). These include kappa coefficient 

(Kc), overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA). 

 
 

1984 Landsat 5 TM    Reference Class  

 

C
la

ss
if

ie
d

 

Class CBD/Industries LMD HD Irrigated  

cropland 

Rainfed 

cropland 

Vegetation Water Total PA 

CBD/Industries 4012 182 81 0 3 2 2 4282 94.7 

LMD 92 9353 164 213 8 495 47 10372 89.4 

HD 98 105 2005 0 135 17 0 2360 82.2 

Irrigated cropland 0 108 2 2602 1 22 0 2735 87.6 

Rainfed cropland 19 37 165 7 5996 655 0 6879 84.1 

Vegetation 10 665 23 148 987 16765 11 18609 93.4 

Water 7 9 0 0 0 0 500 516 89.3 

Total 4238 10459 2440 2970 7130 17956 560 45753  

UA 93.7 90.2 85.0 95.1 87.2 90.1 96.9   

OA 90.1    Kc 0.87    

1990 Landsat 5 TM    Reference Class 

 

C
la

ss
if

ie
d

 

Class CBD/Industries LMD HD Irrigated  

cropland 

Rainfed 

cropland 

Vegetation Water Total PA 

CBD/Industries 1827 62 61 0 0 0 0 1950 99.2 

LMD 1 2335 127 137 0 64 10 2674 81.9 

HD 10 55 979 4 1 0 0 1049 77.7 

Irrigated cropland 0 45 40 1030 6 0 0 1121 78.4 

Rainfed cropland 2 56 45 29 964 102 0 1198 67.4 

Vegetation 2 299 8 114 459 2172 0 3054 92.6 

Water 0 0 0 0 0 0 601 601 98.4 

Total 1842 2852 1260 1314 1430 2338 611 11647  

UA 93.7 87.3 93.3 91.9 80.5 71.1 100   

OA 85.1    Kc 0.82    
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Table A1. Cont. 

 

2000 Landsat 5 TM    Reference Class 

    
   

   
   

   
   

   
C
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ss
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ie

d
 

Class CBD/Industries LMD HD Irrigated  

cropland 

Rainfed 

cropland 

Vegetation Water Total PA 

CBD/Industries 1946 113 85 1 8 3 0 2156 96.7 

LMD 10 3225 30 47 8 157 14 3491 87.4 

HD 50 34 1053 35 0 0 0 1172 83.4 

Irrigated cropland 0 70 53 596 0 5 0 724 76.2 

Rainfed cropland 5 24 38 93 602 0 0 762 85.6 

Vegetation 1 220 3 10 85 1520 6 1845 90.2 

Water 0 3 0 0 1 1 728 732 97.3 

Total 2012 3689 1262 782 703 1686 748   

UA 90.3 92.4 89.9 82.3 79.0 82.4 99.5   

OA 88.9    Kc 0.86    

2008 Landsat 5 TM    Reference Class 

   
   

   
   

   
   

   

   
   

   
   

   
   

  
C

la
ss

if
ie

d
 

Class CBD/Industries LMD HD Irrigated  

cropland 

Rainfed 

cropland 

Vegetation Water Total PA 

CBD/Industries 2217 21 61 0 0 0 0 2299 96.4 

LMD 15 1629 116 37 0 355 6 2158 84.5 

HD 37 76 746 12 15 8 0 894 79.8 

Irrigated cropland 0 87 2 647 0 4 0 740 93.0 

Rainfed cropland 6 11 3 0 666 151 0 837 90.9 

Vegetation 11 105 7 0 52 1961 1 2137 79.1 

Water 1 0 0 0 0 0 606 607 98.9 

Total 2287 1929 935 695 733 2479 613 9672  

UA 96.4 75.5 83.5 87.4 79.6 91.8 99.8   

OA 87.6    Kc 0.85    

*CBD: central business department    *LMD: low–medium density    *HD: high density 
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Table A2. Confusion matrix and associated classification accuracies produced from Landsat 8 OLI (2018). The accuracies include kappa (Kc), overall accuracy 

(OA), producer’s accuracy (PA) and user’s accuracy (UA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*CBD: central business department    *LMD: low–medium density    *HD: high density 

 

 

 

 

 

2018 Landsat 8 OLI    Reference Class  

 

C
la

ss
if

ie
d

 

Class CBD/Industries LMD HD Irrigated  

cropland 

Rainfed 

cropland 

Vegetation Water Total PA 

CBD/Industries 2492 63 60 0 1 0 0 2616 96.6 

LMD 23 2721 59 124 64 219 5 3215 84.1 

HD 43 86 1778 10 3 3 0 1923 92.9 

Irrigated cropland 1 134 3 806 0 24 0 968 84.4 

Rainfed cropland 18 7 11 15 1352 122 0 1525 86.8 

Vegetation 4 223 3 0 137 2942 0 3309 88.9 

Water 0 0 0 0 0 0 601 601 99.2 

Total 2581 3234 1914 955 1557 3310 606 14157  

UA 95.3 84.6 92.5 83.3 88.7 88.9 100   

OA 89.7    Kc 0.87    
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Figure A2. The rainfall erosivity factor map for Harare’s Epworth district over the study periods 

1984-2000 and 2000-2018. 

 

  

Figure A3. Potential erosion risk map for Epworth district generated for 2018 applying rainfall 

erosivity between 1984 and 2018. 



xvii 
 

Der Lebenslauf ist in der Onlineversion aus Datenschutzgründen nicht enthalten. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 
 

Der Lebenslauf ist in der Onlineversion aus Datenschutzgründen nicht enthalten. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 
 

Affidavit / Eidesstattliche Erklärung 

 

 

 

Hiermit erkläre ich, dass ich die Dissertation "The geography of contemporary urbanization 

and its effects on landscape sustainability in Harare Metropolitan Province" selbstständig 

angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet 

habe. 

Ich erkläre weiterhin, dass die Dissertation bisher nicht in dieser oder in anderer Form in einem 

anderen Prüfungsverfahren vorgelegen hat. 
 

 

 

Berlin, den     Andrew Kudzanayi Marondedze 

17.08.2022                                     

 
……………………….                                     ………………………………. 


