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Abstract
In this article, we propose that differences in COVID-19 mor-
bidity may be associated with transient receptor potential 
ankyrin 1 (TRPA1) and/or transient receptor potential vanil-
loid 1 (TRPV1) activation as well as desensitization. TRPA1 
and TRPV1 induce inflammation and play a key role in the 
physiology of almost all organs. They may augment sensory 
or vagal nerve discharges to evoke pain and several symp-
toms of COVID-19, including cough, nasal obstruction, vom-
iting, diarrhea, and, at least partly, sudden and severe loss of 
smell and taste. TRPA1 can be activated by reactive oxygen 
species and may therefore be up-regulated in COVID-19. 
TRPA1 and TRPV1 channels can be activated by pungent 
compounds including many nuclear factor (erythroid-de-
rived 2) (Nrf2)-interacting foods leading to channel desensi-
tization. Interactions between Nrf2-associated nutrients and 
TRPA1/TRPV1 may be partly responsible for the severity of 
some of the COVID-19 symptoms. The regulation by Nrf2 of 
TRPA1/TRPV1 is still unclear, but suggested from very limited 
clinical evidence. In COVID-19, it is proposed that rapid de-
sensitization of TRAP1/TRPV1 by some ingredients in foods 
could reduce symptom severity and provide new therapeu-
tic strategies. © 2021 S. Karger AG, Basel

Introduction

The transient receptor potential (TRP) vanilloid 1 
(TRPV1) and ankyrin 1 (TRPA1) are members of the 
TRP superfamily of structurally related, nonselective cat-
ion channels. TRPV1 and TRPA1 are frequently co-local-
ized in sensory neurons, and interact to modulate func-
tion. They co-localize with neuropeptides such as sub-
stance P, CGRP and the receptor for nerve growth factor, 
and have a low threshold for various inflammatory me-
diators such as bradykinins, histamines, and eicosanoids. 
They are also expressed in many non-neuronal cells such 
as vascular smooth muscle, monocytes, lymphocytes, ke-
ratinocytes, epithelial cells, and endothelium [1].

TRPA1, an excitatory ion channel originally associated 
with the receptor of mustard oil in sensory neurons [2], 
plays a pivotal role in detecting cysteine-reactive irritants 
and in augmenting sensory or vagal nerve discharges to 
evoke pain and cough. TRPA1 induces inflammation, 
plays a key role in the physiology of almost all organs [3], 
and exhibits the highest sensitivity of TRPs to oxidants. 
TRPA1 can be activated by cold, heat, pungent compounds, 
mechanical stimuli, endogenous signals of inflammation, 
and oxidative stress [4]. Its function is modulated by mul-
tiple factors, including Ca2+, trace metals, pH, reactive ox-
ygen species (ROS), nitrogen, and carbonyl species.

TRPV1, also known as the capsaicin receptor, has a 
major function in the detection and regulation of body 
temperature [5]. TRPV1 provides a sensation of heat and 
pain (nociception). In primary afferent sensory neurons, 
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it cooperates with TRPA1 to mediate the detection of 
noxious environmental stimuli [6]. It can also be activat-
ed by some endogenous lipid-derived molecules, PGE2, 
acidic solutions, pungent chemicals, food ingredients 
such as capsaicin, and toxins [7]. TRPV1 is a sensor of 
oxidative stress, but to a lesser extent than TRPA1.

COVID-19 morbidity cannot be appreciated across 
countries because there is no common method of assess-
ment. However, death rates may be a proxy for CO-
VID-19 severity. There have been large country varia-
tions in COVID-19 death rates [8, 9]. Some of the very 
low death rate settings, such as those of Eastern Asia, Cen-
tral Europe, the Balkans and Africa, have a common fea-
ture of eating large quantities of fermented vegetables 
[10] and, in some countries, spices. There appears to be 
an inverse correlation between spice consumption and 
CO VID-19 mortality [11], and the same countries are of-
ten those with a high consumption of fermented vegeta-
bles and spices [12, 13].

A common denominator in all clinical manifestations 
associated with COVID-19 appears to be the oxidative 
stress storm [14]. The intake of fermented vegetables is 
associated with activation of the nuclear factor (erythroid-
derived 2) (Nrf2)-like antioxidant transcription factor 
[10, 15, 16]. There are many Nrf2-interacting nutrients 
[17] (berberine, curcumin, epigallocatechin gallate, genis-
tein, quercetin, resveratrol, and sulforaphane) that act 
similarly to reduce insulin resistance, endothelial damage, 
lung injury, and cytokine storm (Bousquet et al. [10], sub-
mitted). It has been proposed that Nrf2-interacting foods 
and nutrients can re-balance insulin resistance and have a 
significant effect on COVID-19 severity [10, 18–20]. 
However, other mechanisms may also be involved as pun-
gent foods and spices interact through TRPA1 and TRPV1 
[21]. Activation of TRP channels (TRPV1, TRPV4, 
TRPM3, TRPM8, and TRPA1) enables cross talk between 
neurons, immune cells, and epithelial cells to regulate a 
wide range of inflammatory actions [22].

In this article, we examined whether (i) TRPA1 and/or 
TRPV1 may be associated with COVID-19 symptoms 
and morbidity; (ii) TRPA1 and/or TRPV1 may be in-
volved in COVID-19 risk factors (obesity and diabetes), 
lung injury, and endothelial damage; (iii) TRPV1 may be 
associated with TRAP1 in COVID-19; (iv) Nrf2, the most 
potent antioxidant system of the human body, may regu-
late TRPA1 and/or TRPV1; (v) Nrf2-interacting nutri-
ents act on TRPA1 and/or TRPV1; and (vi) the results of 
3 clinical cases treated with broccoli seed capsules (broc-
coli) containing glucoraphanin might be explained by 
TRPA1 and/or TRPV1.

TRPA1/TRPV1 and COVID-19

COVID-19 Symptoms
Several COVID-19 Symptoms Are Associated with 
TRPA1 and/or TRPV1
Cough is a major COVID-19 symptom [23], but is not 

necessarily associated with severity. The cough reflex is 
induced by the activation of airway sensory nerves and 
TRP ion channels related to the vanilloid (TRPV) family 
and TRPA1 [24–26]. TRPA1 is abundantly expressed on 
the innervations of the entire respiratory tract. These in-
clude the C-fibers of the trigeminal and vagal ganglia as 
well as nasal, tracheal, bronchial, and alveolar epithelial 
cells, bronchial smooth muscle cells and CD4+ T cells [27]. 
C-fibers largely “sense” the presence of potentially toxic 
inhaled irritants and toxicants. TRPA1 represents a gate-
way to airway irritation and reflex responses induced by 
inhaled oxidants [28], air pollutants, and tobacco smok-
ing [29]. Capsaicin has been largely used in cough provo-
cation tests related to airway mucosal TRPV1 receptors 
in sensory nerves, reacting to noxious stimuli [24]. Both 
TRPA1 and TRPV1 mediate cigarette smoke-induced 
damage of the bronchial and alveolar epithelial cells via 
modulation of oxidative stress, inflammation, and mito-
chondrial damage [30]. This suggests a complex regula-
tory role of TRAP1 and TRPV1 in acute and chronic air-
way inflammation [31].

Smell and taste disorders are very common in CO-
VID-19 [32–37]. TRPA1 and TRPV1 are among the TRP 
channels involved in nociception and are excited by pun-
gent odorous substances [38]. Associations have been ob-
served between TRPA1 genetic variants and increased 
sensitivity to thermal pain stimuli or increased olfactory 
sensitivity [39]. Capsaicin is also partly involved in smell 
and taste perception with sensory (olfactory) and sensi-
tive (trigeminal) perceptions coming together [40]. In ad-
dition, most odorants have sensitive (trigeminal) charac-
teristics, this being linked with nasal hyper-reactivity to 
strong odorants (sometimes identified as “hyperosmia” 
by patients with sino-nasal inflammation). The intranasal 
trigeminal system is a third chemical sense in addition to 
olfaction and gustation. In the nasal cavity, high levels of 
trigeminal receptor expression were found for TRPV1 
and TRPA1 [38]. The sensitivity of the intranasal trigem-
inal system to chemicals was found to be partly mediated 
by TRPA1 [41]. The mammalian taste system consists of 
taste buds found throughout the oral cavity. TRP chan-
nels are important in gustatory processing [42]. They are 
very sensitive to changes in temperature and are activated 
by many compounds found in plants, often used as spices 
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[43]. TRPA1 is mostly an acid-sensing and epithelial so-
dium channel [44], whereas TRVP1 is also sensitive to 
temperature and bitter taste [45].

Loss of appetite is common [46] and may be severe in 
COVID-19. It has been suggested that TRPA1 may play a 
role in food intake and satiety [47–50]. In animals, TRPA1 
activation increases appetite [51]. TRPV1 can have an im-
pact on appetite through control of appetite hormone lev-
els or modulation of gastrointestinal vagal afferent signal-
ling [52].

Nasal obstruction alone is relatively common in CO-
VID-19. In 2 studies, nasal obstruction was frequently re-
ported, but not correlated with olfactory dysfunction [53, 
54]. In rhinitis, nasal itch is related to TRPV1 [55]. Pa-
tients suffering from rhinitis exhibit a decreased thresh-
old to the TRPA1 agonist allyl isothiocyanate (AITC). 
This correlates with symptoms and, in animals, is re-
solved after chemical destruction of the nasal sensory 
nerves [56–58]. Capsaicin was found to be an option for 
the treatment of nonallergic rhinitis [59].

Nausea, vomiting, and/or diarrhea are relatively com-
mon symptoms of COVID-19 [46]. TRPA1 is expressed 
in both dorsal root ganglions and nodose ganglion neu-
rons innervating the stomach, as well as in nerve fibers of 
the gastric wall. Gastric administration of garlic powder 
containing the TRPA1-agonist allicin induces specific 
epigastric symptoms and gastric relaxation in healthy 
subjects [60]. Capsaicin can induce gastroesophageal and 
abdominal pain, heartburn, bloating, and/or dyspepsia 
through TRPV1 [61–63].

COVID-19 is often associated with myalgia, back pain, 
widespread hyperalgesia, and headache [34, 64]. TRPA1 
and TRPV1 are involved in acute and chronic pain and in 
migraine [3, 65, 66]. They may also be partly involved in 
some of the COVID-19 symptoms. Some of the other 
COVID-19 symptoms, such as fever or fatigue, appear 
less likely to be associated with TRPA1 and/or TRPV1.

COVID-19 Risk Factors, TRPA1, and TRPV1
Obesity and, to a lesser extent, diabetes are risk factors 

for COVID-19 severity. The importance of TRPA1 on the 
metabolic syndrome, obesity, and diabetes is usually in-
direct using agonists that have multiple actions including 
TPRA1 and TPRV1. It is therefore difficult to differenti-
ate the 2 TPR channels. Animal models are of importance 
for a more precise assessment of the mechanisms [67, 68].

TRPV1 and TRPA1 have been associated with control 
of weight, pancreatic function, hormone secretion, ther-
mogenesis, and neuronal function. This suggests a poten-
tial therapeutic value of these channels in obesity and di-

abetes [69, 70]. Cinnamaldehyde (in cinnamon) may 
have an adjunct future potential role in the treatment of 
diabetes and its complications [12]. A garlic supplement 
plays a positive and sustained role in blood glucose, total 
cholesterol, and in high/low density lipoprotein regula-
tion in the management of diabetes [71]. However, these 
effects can be mediated by multiple pathways. As an ex-
ample, cinnamaldehyde exerts its effects through its ac-
tion on multiple signalling pathways [70], including TR-
PA1-ghrelin [72] and Nrf2.

Lung Injury
Acute respiratory distress syndrome is one of the ma-

jor causes of mortality associated with COVID-19. TRP 
ion channels are involved in lung injury. It has been pro-
posed that morbidity, severity of the disease, and underly-
ing physiological events leading to mortality are closely 
linked with the TRPV1-expressing neuronal system (af-
ferent/efferent neurons) in the lungs [73]. TRVP1 and 
TRPV4 are involved in pulmonary chemical injuries [74]. 
In mouse acute lung injury models, the bacterial endo-
toxin LPS involves both TRPV1 and TRPA1 [31, 73, 75]. 
Ventilator-induced lung injury contributes to mortality 
in patients with acute lung injury by increasing inflam-
mation. In a rat model of ventilator-induced lung injury, 
a TRPA1 inhibitor significantly reduced both inflamma-
tion in the lung tissues and the generation of ROS [76]. 
Unsaturated aldehydes generated during incomplete 
combustion – such as acrolein – are highly toxic for the 
lungs. TRPA1 protects against high-level acrolein-in-
duced toxicity in mice [77]. The simultaneous activations 
of TRPA1 and TRPV1 by their respective selective ago-
nists are far more effective than single agonists taken sep-
arately [78]. In a mouse model, liquiritin, a novel inhibi-
tor of TRPV1 and TRPA1, protects against LPS-induced 
acute lung injury [75]. TRPA1 may be involved in the 
development and progression of heart failure, myocar-
dial ischemia-reperfusion injury, myocardial fibrosis, 
and arrhythmia that may aggravate lung injury [79].

TRPA1/TRPV1 and Nrf2

TPRA1/TRPV1 Are Sensory Receptors for Multiple 
Products of Oxidative Stress
Oxidative stress, characterized by an imbalance be-

tween oxidants and antioxidants in favour of oxidants, 
leads to the disruption of redox signalling and physiolog-
ical function. Redox signalling-induced changes are per-
formed by ROS and reactive nitrogen species (RNS) [80]. 
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ROS is a collective term that includes superoxide (O2
∙−), 

hydrogen peroxide (H2O2), hydroxyl radical (OH∙), sin-
glet oxygen (1O2), peroxyl radical (LOO∙), alkoxyl radical 
(LO∙), lipid hydroperoxide (LOOH), hypochlorous acid 
(HOCl), and ozone (O3), among others [81].

TRPA1 also functions as a sensor, activated by ROS 
and modulated by the occurrence of intracellular changes 
in oxygen levels. Multiple agents produced during oxida-
tive stress can activate TRPA1 expressed in sensory neu-
rons [82]. Besides ROS, TRPA1 channels are also acti-
vated by RNS, including nitric oxide (NO) [83]. Although 
many studies have been performed, the relevance of 
TRPA1 activation for cell signalling in oxidative stress is 
still unclear [84]. In the upper and lower airways, TRPA1, 
found in vagal sensory endings responsive to hypoxic 
conditions, may serve as a rapid alarm system during ab-
normal oxidative conditions [84].

The potential links between TRPA1 and TRPV1 with 
ROS production has been proposed in chronic diseases. In 
endothelial cells, TRPV1 stimulation activates endothelial 
NO synthase (eNOS) [85] and NO production, leading to 
smooth muscle relaxation and vasodilation, and concom-
itant protection of endothelial cells from leukocyte adhe-
sion. On vascular smooth muscle cells, capsaicin reduces 
the accumulation of lipids and cholesterol uptake in a 
Ca2+-, calcineurin- and protein kinase A-dependent man-
ner, via increased expression of ATP-binding cassette 
transporter A1 and reduced expression of LDL-related 
protein 1 [86]. In in vivo models, dietary capsaicin treat-
ment improves atherosclerosis by reducing the inflamma-
tory events that cause atherosclerotic plaque formation. 
Since oral capsaicin treatment cannot cause the increase 
in blood levels of capsaicin needed to act directly on car-
diac or intravascular TRPV1 receptors, a remote activa-
tion should be suggested, which likely involves TRPV1 re-
ceptors localized on the capsaicin-sensitive sensory nerve 
terminals [87]. Indeed, experimental evidence proposes 
the protective roles of cardiac capsaicin-sensitive afferents 
and sensory TRPV1 receptors in myocardial protection 
through the release of sensory neuropeptides [88]. The 
chronic administration of systemic capsaicin induces sen-
sory desensitization [89], leading to a model of Heart Fail-
ure with preserved Ejection Fraction (HFpEF). Mechanis-
tically, this phenotype is due to reduced basal cardiac NO, 
superoxide, and peroxynitrite (ONOO−) formation, with 
impairment of the filling properties of the heart. The pro-
tective roles of the capsaicin-sensitive nerves and TRPV1 
receptors on cardiac function are suggested.

Oxidative stress in the airways occurring through in-
flammatory mechanisms or following the inhalation of 

noxious agents causes cellular dysfunction. Oxidative 
stress activates vagal sensory C-fibers, initiating nerve ac-
tion potentials that lead centrally to unpleasant sensa-
tions (e.g., cough, dyspnea, and chest-tightness) and to 
the stimulation/modulation of reflexes (e.g., cough, bron-
choconstriction, respiratory rate, inspiratory drive). 
There is a key role for TRPA1, although TRPV1 may also 
play a role [83, 90].

Nuclear factor (erythroid-derived 2)
Nrf2 is the major regulator of cellular resistance to ox-

idants. Nrf2 is mainly regulated by the Kelch-like ECH-
associated protein 1. Nrf2 activation, through constitu-
tive mechanisms, is carried out by electrophilic com-
pounds and oxidative stress, where some cysteine residues 
in Kelch-like ECH-associated protein 1 are oxidized. This 
results in a decrease in Nrf2 ubiquitination and an in-
crease in its nuclear translocation and activation. In the 
nucleus, Nrf2 induces a variety of genes involved in the 
antioxidant defence [91].

Interactions between Nrf2 and TRPA1
It is possible that Nrf2 may play a major role in the 

modulation of TRPA1 by ROS. However, there are few 
studies assessing the interactions between Nrf2 and 
TRPA1, and their results are sometimes conflicting. Spe-
cific signalling pathways of lung ischemia-reperfusion in-
jury impair Nrf2-antioxidant response and activate oxi-
dative stress in the brainstem, thereby leading to the am-
plification of TRPA1, most likely via ROS [92]. Polysulfides 
(H2Sn) occur in the brain, activate TRPA1, and facilitate 
the translocation of Nrf2 [93]. TRPA1 knockdown exac-
erbates the infiltration of activated macrophages, renal 
inflammation, and renal injury in mice after ischemic re-
perfusion injury [94]. In different animal models, neuro-
protection has been observed and associated with the ac-
tivation of the Nrf2 pathway via antioxidative signalling 
pathways [95–98]. A neuronal redox-sensing Ca2+-influx 
channel, overexpressed in human cancer, upregulates 
Ca2+-dependent anti-apoptotic pathways to promote 
ROS resistance. Nrf2 directly controls TRPA1 expression, 
thus providing an orthogonal mechanism for protection 
against oxidative stress, together with canonical ROS-
neutralizing mechanisms [99].

Interactions between Nrf2 and TRPV1
There are few studies assessing the interactions be-

tween Nrf2 and TRPV1, and their results are sometimes 
conflicting. Capsaicin induces the production of ROS, 
which can induce Nrf2 activation and the induction of 
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heme oxidase-1 expression [100]. TRPV1 activation in-
duces calcium influx associated with an increasing ex-
pression of Nrf2-responsive antioxidant enzymes [101]. 
Ultraviolet irradiation causes cellular oxidative stress, 
stimulates 12-lipoxygenase and the product 12-hydroxye-
icosatetraenoic acid, and then activates TRPV1. A Ca2+ 
influx via TRPV1 is responsible for UVB irradiation-in-
duced Nrf2 degradation [102].

Activation and Desensitization of TRPA1 and TRPV1

Neurotropism of SARS-CoV-2
Coronaviruses are neurotropic. The expression of ACE2 

in human neurons supports the neuro-invasive potential of 
SARS-CoV-2 [103–105]. In a human induced pluripotent 
stem cell-derived BrainSphere model, ACE2 was detected 
and SARS-CoV-2 was found to replicate [106]. In an ani-
mal study assessing olfactory damage, ACE2 and the pro-
tease TMPRSS2 were expressed in the sustentacular cells of 
the olfactory epithelium, but much less in most of the olfac-
tory receptor neurons [107]. These results propose a dual 
model: direct viral invasion or a bystander injury after the 
infection of epithelial/endothelial cells [108].

Many Nrf2-Interacting Nutrients Are TRPA1 and 
TRPV1 Agonists
TRP channels are polymodal channels and most of the 

superfamily members can be activated by a multitude of 
stimuli [109]. Several Nrf2-interacting nutrients are di-
rect TRPA1 activators [21, 110]. These include: (i) allyl 
isothiocyanates (AITC: pungent components of mustard, 
horseradish, and wasabi [2]), (ii) cinnamaldehyde from 
cinnamon [70], (iii) allicin, an organosulfur compound 
from garlic [111], (iv) green tea polyphenols [112, 113], 
and (v) 3 glucosinolates from Sisymbrium officinale (iso-
propylisothiocyanate and 2-buthylisothiocyanate) or 
Moringa oleifera (4-[(α-l-rhamnosyloxy) benzyl] isothio-
cyanate) [114, 115]. Sulforaphane, an AITC and the most 
potent natural Nrf2 activator, does not appear to interact 
with TRPA1. The plant polyphenol resveratrol [116] may 
have an agonist or antagonist effect [117]. An indirect 
agonist effect [118] was found via the N-methyl-D-aspar-
tate receptor in vivo [119]. TRPA1 may serve as a down-
stream target of pro-nociceptive ion channels such as N-
methyl-D-aspartate receptors [120] (Table 1).

Many TRPV1 agonists also interact with Nrf2 and/or 
TRPA1. TRPV1 is a sensor stimulated by several spices 
including capsaicin (red pepper), piperine (black pep-
per), gingerol, and zingerone (ginger), pungent com-

pounds from onion and garlic, eugenol (clove), and cam-
phor. TRPV1 is also activated by AITC, present in mus-
tard, horseradish, and wasabi [121], and by 
resiniferatoxin, a toxin of tropical Euphorbia plants [122].

There is a substantial overlap of electrophilic ligands 
between TRPA1 and Nrf2 [21]. However, not all Nrf2-
interacting nutrients are activators of TRPA1. For exam-
ple, mustard oil does not interact with Nrf2, whereas sul-
foraphane does not interact with TRPA1 or TRPV1.

Desensitization of TRP
The pungent effects of chili and other spices are rap-

idly reduced by high or repeated doses [21]. This was first 
described for capsaicin, an active component of chili pep-
pers [165]. Desensitization of TRPV1 underlies the para-
doxical analgesic effect of capsaicin. The TRPV1 recep-
tors begin a refractory state, commonly termed as desen-
sitization, that leads to the inhibition of receptor function 
[21]. The acute desensitization of TRVP1 accounts for 
most of the reduction in responsiveness occurring within 
the first few (∼20) seconds after the vanilloids are admin-
istered to the cell for the first time. Several signalling path-
ways including calcineurin, calmodulin, or the decrease 
of phosphatidylinositol 4,5-bisphosphate [166] are in-
volved in TRPV1 desensitization. Oxidative stress de-
creases phosphatidylinositol 4,5-bisphosphate [167], and 
receptor desensitization may possibly be obtained at low-
er doses of agonists in COVID-19. Another form of de-
sensitization is “tachyphylaxis,” which is a reduction in 
the response to repeated applications of vanilloid [168].

TRPA1 is desensitized by homologous (mustard oil; a 
TRPA1 agonist) or heterologous (capsaicin; a TRPV1 ag-
onist) agonists via Ca2+-independent and Ca2+-depen-
dent pathways in the sensory neurons [169]. There is a 
heterologous desensitization of TRPA1 via a TRPV1 
pathway [170, 171]. Resveratrol or AITC act as activators 
and desensitizers of TRPA1 channels [153]. High con-
centrations of para-benzoquinone caused rapid activa-
tion of TRAP1 followed by fast decline in a cysteine-de-
pendent desensitization mechanism [172]. The contrac-
tile effect of TRAP1 in isolated mouse intestine can be 
induced by AITC. Repeated doses induce desensitization 
[173]. The electrophilic fatty acid NO2-OA acts on TRP 
channels to initially depolarize and induce firing in sen-
sory neurons followed by desensitization and suppres-
sion of firing [174]. NO2-OA attenuates intracellular ox-
idative stress through Nrf2 and suppression of NADPH 
oxidase [175].

Although data are sometimes conflicting, interactions 
between TRPA1 and TRPV1 can modulate receptor de-
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sensitization. Using patch-clamp electrophysiology, the 
co-expression and interaction of TRPA1 with TRPV1 
proved to be the most critical for the differential sensitiza-
tion of sensory neurons for pain [176]. On the other hand, 
the selective TRPA1 agonist (AITC) resulted in the resto-
ration of sensitivity to capsaicin TRPV1 channels (resen-
sitization TRPV1 channels) [177]. The attenuation of ex-
perimental colitis by capsazepine (capsaicin-induced de-
nervation CPZ) is attributed to its antagonistic action on 
TRPV1. It exerts its anti-inflammatory effects via pro-
found desensitization of TRPA1 [178].

Nicotine activates TRAP1 [179] and TRPV1 [180]. 
The prevalence of smoking among hospitalized CO-
VID-19 patients is low [181]. Although many different 
mechanisms are proposed, the desensitization of TRPA1/
TRPV1 by nicotine may be one possibility. If this were the 
case, it would show that TRPA1/TRPV1 may be involved 
in severe COVID-19.

Sensory receptors like TRPA1 or TRPV1 may serve as 
gate-keepers in optimizing spice intake, thereby avoiding 
over-exposure and exemplifying the sensory and meta-
bolic interactions of spicy nutraceuticals. In this scenario, 

Table 1. Examples of Nrf2-, TRPA1-, and TRPV1-interacting nutrients

Foods Nrf2 TRPA1 TRPV1

Allicin Garlic, leak, onion [123] [123]

Berberine European barberry, goldenseal, goldthread, Oregon grape,  
phellodendron, goldenseal, poppy, and tree turmeric

[124] [125]

Capsaicin Red pepper [100, 126] [127] [128]

Cinnamaldehyde Cinnamon [129] [70] [130]

Curcumin Turmeric [131, 132] [133] [133]

Epigallocatechin gallate Green tea, apple skin, plums, onions, hazelnuts, pecans, and 
carob powder

[131] [113] [134]

Genistein Soy-based foods including tofu, tempeh, and miso [131] [135] [136]

Gingerol Ginger [137] [138] [139]

Lactobacillus Fermented foods [140] [141]

Mustard oil Mustard seeds [142]

N-acetyl cysteine [143] [144] [145]

NO [146] [147] [147]

Piperine Black and long pepper [148] [149] [150]

Quercetin Fruits (cranberries, lingonberries, black plums), vegetables 
(broccoli, capers, kale, red onion, radish, sorel, watercress), 
leaves (fennel), seeds, and grains

[131] [151] [152]

Resveratrol Skin of grapes, blueberries, raspberries, mulberries, and peanuts [131] [116, 153] [117]

Selenium [154] [155] [156]

Sulforaphane  
(from glucoraphanin)

Cruciferous vegetables such as broccoli, Brussels sprouts, and 
cabbages

[131]

Vitamin C [157] [158]

Vitamin D [159] [160]

Wasabi Japanese horseradish [161] [162] [162]

Zinc [154, 157] [163] [164]

TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; Nrf2, nuclear factor (erythroid-
derived 2); NO, nitric oxide.
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desensitization might be an attempt to maintain an opti-
mal intake of pungent compounds in spite of priming the 
metabolizing enzymes and a substantial higher and/or 
faster inactivation by metabolic clearance [21]. We pro-
pose that electrophilic ligands may activate and desensi-
tize TRPA1 or TRPV1.

TRPA1-TRPV1 and Acetaminophen
Paracetamol (acetaminophen) has TRPA1-indepen-

dent antipyretic effects [182] and TRPA1-dependent ef-
fects on pain [183]. The electrophilic metabolites N-ace-
tyl-p-benzoquinone imine (NAPQI, hepatotoxic metab-
olite) and p-benzoquinone, but not paracetamol itself, 
activate TRPA1 [82]. They also activate and sensitize 
TRPV1 by interacting with intracellular cysteines [184, 
185]. NAPQI also directly activates Nrf2 [186], and ben-
zoquinone desensitizes TRPA1 [172].

The physiological and toxicological responses of 
paracetamol form a continuum coordinated by the Wnt 
and Nrf2 pathways. Therapeutic doses produce reactive 
ROS and NAPQI in the cytoplasm but result in little per-
manent damage [187]. At high doses, paracetamol can 
induce oxidative stress-mediated hepatotoxicity which is 
reduced by enhancing the Nrf2 pathway [188–190].

Conclusions: Hypothetic Interactions of Nrf2,  
TRPA1/TRPV1, and COVID-19

A common denominator in symptoms associated with 
COVID-19 appears to be the impaired redox homeostasis 
responsible for ROS accumulation [191]. Several mecha-
nisms have been proposed involving, among others, the 
renin-angiotensin-aldosterone system [10] and/or endo-

Fig. 1. Interactions between TRPs and oxidative stress in CO-
VID-19 (modified from [10, 110]). SARS-CoV-2 binds to the cell 
through ACE2 that is downregulated. Angiotensin I is transformed 
in angiotensin II AT1R pathways, inducing oxidative stress. When 
SARS-CoV-2 enters the cell, it induces an endoplasmic reticulum 
stress response, inducing an oxidative stress among other path-
ways. The oxidative stress is inhibited by many antioxidants, but 

Nrf2 is the most potent one. The oxidative stress senses TRPA1 
and, to a lesser extent, TRPV1. The activated TRPs are prone to be 
hyper-activated by various natural stimuli. Foods can activate Nrf2 
and desensitize TRPs. TRPA1, transient receptor potential ankyrin 
1; TRPV1, transient receptor potential vanilloid 1; Nrf2, nuclear 
factor (erythroid-derived 2).
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plasmic reticulum stress [192]. It has, however, never 
been proposed that TRPA1/TRPV1 may be involved in 
COVID-19 (Fig. 1).

Antioxidants inducing Nrf2 activation have been pro-
posed to treat COVID-19 [10, 18–20]. Antioxidants may 
be of interest, but their clinical benefits are unlikely to be 
seen in minutes, and the effect may not be optimal. In 3 
clinical cases of proven COVID-19, capsules of broccoli 
seeds containing glucoraphanin and paracetamol were 
found to induce a rapid improvement (minutes) of some 
symptoms such as cough (submitted, published online 
[193]). Double-blind, placebo-controlled induced cough 
challenges in 1 patient showed a reduction of cough with-
in 10 minutes.

Other hypotheses can also be proposed. TRPA1/
TRPV1 are involved in several common COVID-19 
symptoms. TRPA1 more than TRPV1 can be activated by 

ROS and may therefore be upregulated in COVID-19. 
Reducing ROS by Nrf2 will most likely reduce TRPA1 
hyperreactivity, thereby reducing TRPA1 activation by 
exogenous or endogenous agents. However, such a mech-
anism is likely to take time and cannot be involved in very 
rapid-onset clinical benefits. It may take an hour or more 
to find this synergy.

The activation of TRPA1/TRPV1 by exogenous agents 
can lead to a rapid dose-dependent desensitization that 
may be effective within minutes and for up to a few hours, 
suggesting a symptomatic improvement. This rapid-on-
set mechanism may be sustained by antioxidants or other 
products. This proposal seems to be substantiated by pre-
liminary clinical studies, but these observations need to 
be confirmed through formal studies. Double-blind, open 
labelled induced cough challenges in 1 patient showed a 
reduction of cough within 2 minutes with TRPA1/V1 ag-

Fig. 2. Induced cough challenges with Nrf2, TRPA1 and/or TRPV1 
agonists (from [194]). In the same patients, open-labelled induced 
cough challenges were carried out before dosing with an agonist 
before challenge (−5 min), and after 1, 2, 5, 8, 10, 15, 30, 25, 30, 45, 
and 60 minutes and every hour until the cough score was ≥7. The 
cough challenge was validated in a double-blind, placebo-con-
trolled study [193]. Berberine (Nrf2) was ineffective. Red pepper 
20 mg (Nrf2 low + TRPV1 high) or curcumin 100 mg + black pep-
per 16 mg (Nrf2 low + TRPA1 high + TRPV1 low) were effective 
within 1–2 minutes, and their effect persisted for up to 3 hours. 

Broccoli 300 mg (Nrf2 high + TRPA1 low) was effective within 10 
minutes and its effect persisted for up to 6 hours. Broccoli 150 mg 
+ curcumin 50 mg + black pepper 6 mg were effective for up to 9 
hours. Broccoli 150 mg + curcumin 50 mg + black pepper 6 mg + 
paracetamol 250 mg (paracetamol metabolites: TRPA1 + TRPV1) 
were effective for up to 16 hours. These results suggest a very fast 
TRPA1-TRPV1 desensitization and a cross talk with Nrf2 to in-
crease the duration of the effect. TRPA1, transient receptor poten-
tial ankyrin 1; TRPV1, transient receptor potential vanilloid 1; 
Nrf2, nuclear factor (erythroid-derived 2).
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onists (green tea, curcumin, ginger, and red pepper) and 
suggested a synergy with Nrf2 (broccoli) for an increased 
duration of the effect (Fig. 2, submitted, available online 
[194]).

Another form of TRP desensitization is “tachyphylax-
is,” which is a reduction or the disappearance in the re-
sponse to repeated applications of agonists [168, 195, 
196]. In Asian or Sub-Saharan countries, large amounts 
of spices are regularly eaten and it is likely that TRPA1/
TRPV1 receptors are permanently desensitized or may 
have been reduced in numbers, allowing people to eat 
large amounts without side effects. In this model, Nrf2 
and antioxidants may play an important additive role in 
reducing ROS. It is therefore possible that TRPA1/V1 
tachyphylaxis may reduce the severity of COVID-19 
symptoms, and even possibly reduce infection by SARS-
CoV-2. The long-term consumption of kimchi, which 
contains pungent nutrients and fermented cabbage, could 
be a prototype.

The results of these limited clinical studies cannot be 
taken as formal evidence. However, they have contributed 
to developing a proof-of-concept for the hypothesis that 
combined Nrf2-TRPA1 foods may be beneficial for some 
COVID-19 symptoms and that there is a synergy between 
Nrf2 and TRPA1 agonists. Before any conclusion can be 
drawn and these treatments recommended for CO-
VID-19, the data warrant confirmation. In particular, the 
benefits of the foods need to be assessed in more severe 
and/or hospitalized patients, through large studies em-
ploying a double-blind, placebo-controlled design.

There are several unknown issues. The first is the in-
terplay between TRPA1 and TRPV1 in desensitization. 
The second is the regulation of these channels by oxida-
tive stress and the synergistic role of Nrf2. TRVP1 desen-
sitization by capsaicin patches may be of benefit for CO-
VID-19. It may also be of interest to combine Nrf2-potent 
agonists such as broccoli. However, again, these hypoth-
eses cannot be used in practice before obtaining the re-
sults of mechanistic studies and formal clinical trials.
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