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Spices to Control COVID-19 Symptoms: 
Yes, but Not Only…
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Abstract
There are large country variations in COVID-19 death rates 
that may be partly explained by diet. Many countries with 
low COVID-19 death rates have a common feature of eating 
large quantities of fermented vegetables such as cabbage 
and, in some continents, various spices. Fermented vegeta-
bles and spices are agonists of the antioxidant transcription 
factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and 
spices are transient receptor potential ankyrin 1 and vanillin 
1 (TRPA1/V1) agonists. These mechanisms may explain many 
COVID-19 symptoms and severity. It appears that there is a 
synergy between Nrf2 and TRPA1/V1 foods that may explain 
the role of diet in COVID-19. One of the mechanisms of CO-
VID-19 appears to be an oxygen species (ROS)-mediated 
process in synergy with TRP channels, modulated by Nrf2 
pathways. Spicy foods are likely to desensitize TRP channels 
and act in synergy with exogenous antioxidants that activate 
the Nrf2 pathway. © 2020 S. Karger AG, Basel

Introduction

Like most diseases, COVID-19 prevalence, severity, 
and mortality exhibit large geographical variations 
which frequently remain unexplained. The COVID-19 

epidemic is multifactorial, and factors like climate, pop-
ulation density, social distancing, age, phenotype, obe-
sity, prevalence of noncommunicable diseases, and 
possibly genetic background are associated with in-
creased incidence and mortality [1]. Diet represents 
only one of the possible moderating factors of the CO-
VID-19 epidemic [2, 3].

Although there are many pitfalls in analyzing death 
rates for COVID-19 [3], death rates during the Spring 
pandemic were low or very low in Central European 
countries, Eastern Asian countries, many sub-Saharan 
African countries, the Middle East, India, and Pakistan as 
well as in Australia and New Zealand. This geographical 
pattern is very unlikely to be totally due to reporting dif-
ferences between countries. Some very low death rate set-
tings (but not in Australia or New Zealand) have a com-
mon feature of eating large quantities of fermented veg-
etables such as cabbage [2–4] and, in some continents, 
various spices [5]. The recent COVID-19 outbreak in Eu-
rope and the USA does not appear to exist in many Asian 
or African countries.

Among the spices with a beneficial effect on human 
health, allicin, capsaicin, curcumin, gingerol, mustard oil, 
piperine, and quercetin glucosides are the major ones [6]. 
Most of them have an antioxidant activity through differ-
ent mechanisms including the direct or indirect activa-
tion of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 
[7], and all are TRP (transient receptor potential) ago-
nists. However, spices may interact with SARS-CoV-2 by 
other mechanisms [8].

Three phases of COVID-19 have been described: (i) a 
viral infection lasting for 1–2 weeks; (ii) a second phase 
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characterized by an intertwined cytokine and oxidative 
stress storm, independent of infection; and (iii) a recovery 
phase that may last for some months. Spices may interact 
differently during these 3 phases.

COVID-19: From Oxidative Stress to TRPs

Oxidative Stress
A common denominator in all conditions associated 

with COVID-19 appears to be the impaired redox ho-
meostasis, responsible for the accumulation of reactive 
oxygen species (ROS) [9]. Among many others, 2 impor-
tant mechanisms can be involved [7, 10].

The angiotensin-converting enzyme 2 (ACE2) recep-
tor is part of the dual system – the renin-angiotensin-
system – consisting of an ACE-Angiotensin-II-AT1R axis 
and an ACE-2-Angiotensin-(1–7)-Mas axis. SARS-
CoV-2 binds to ACE2 and its receptor, and ACE2 down-

regulation enhances the AT1R axis [11] leading to oxida-
tive stress generation [12]. As a result, this is associated 
with insulin resistance as well as with lung and endothe-
lial damage and cytokine storm, 3 severe outcomes of 
COVID-19 [13–15] (shown in Fig. 1).

When SARS-CoV-2 enters the cell, it triggers endo-
plasmic reticulum (ER) stress responses associated with 
increased oxidative stress and unfolded protein response 
(UPR) [16, 17]. As for other viral infections, ER stress 
and sustained UPR signalling may be major contributors 
to the pathogenesis of COVID-19 [18, 19] (shown in 
Fig. 1).

Nrf2 is the most potent antioxidant in humans [20, 21] 
and can downregulate the oxidative stress from the AT1R 
axis as well as in the ER [7, 22]. In particular, the upregu-
lation of Nrf2 signalling inhibits the overproduction of 
IL-6, proinflammatory cytokines, and chemokines. It also 
limits the activation of nuclear factor-kappa b (NFĸB). 
Other transcription factors involved in oxidative stress 

Fig. 1. Interactions between foods and COVID-19. ←, enzymatic activity; ACE, angiotensin-converting enzyme; 
Ang, angiotensin; AT1R, ACE-angiotensin-II-AT1R axis; Mas, ACE-2-angiotensin-(1–7)-Mas axis; Nrf2, nuclear 
factor erythroid 2 p45-related factor; TMPRSS2, transmembrane serine protease 2; TRPA1, transient receptor 
potential ankyrin 1; TRPV1, transient receptor potential vanillin 1; ER, endoplasmic reticulum.
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are activator protein 1 and NFĸB. There is an amplifica-
tion loop in oxidative stress. Excess ROS induces inflam-
matory cell recruitment under the effect of IL-6, IL-8, and 
TNF-α, the activation of which generates more ROS(O2

−) 
produced in the mitochondria and ER.

Transient Receptor Potential
The TRP vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) 

are members of the TRP superfamily of structurally-relat-
ed, nonselective cation channels. TRPV1 and TRPA1 are 
frequently colocalized in sensory neurons and interact to 
modulate function. They are also expressed in many non-
neuronal cells such as vascular smooth muscle, mono-
cytes, lymphocytes, keratinocytes, epithelial cells, and en-
dothelium [23].

TRPA1 induces inflammation, plays a key role in the 
physiology of almost all organs [24], and exhibits the 
highest sensitivity of TRPs to oxidants. TRPA1 can be ac-
tivated by cold, heat, pungent compounds, mechanical 
stimuli, endogenous signals of inflammation, and oxida-
tive stress [25].

TRPV1, also known as the capsaicin receptor, has a 
major function in the detection and regulation of body 
temperature [26]. It can be activated by some endogenous 
lipid-derived molecules, acidic solutions, pungent chem-
icals, food ingredients such as capsaicin, and toxins [27]. 
TRPV1 is a sensor of oxidative stress, but to a lesser extent 
than TRPA1.

TRPA1 and TRPV1 augment sensory or vagal nerve dis-
charges to evoke several symptoms of COVID-19, includ-
ing cough, nasal obstruction, pain, vomiting, diarrhea, and, 
at least partly, sudden and severe loss of smell and taste [24]. 
The modulation by Nrf2 of TRPA1/V1 is still unclear but 
suggested from very limited clinical evidence.

Foods Interacting with Nrf2 and TRPs

Natural compounds derived from plants, vegetables, 
and fungi and micronutrients or physical exercise can 
activate Nrf2 [28, 29]. Many foods have antioxidant 
properties, and many mechanisms may be involved. 
However, the activation of Nrf2 may be of primary im-
portance [7, 30, 31]. Differences in COVID-19 death 
rates among countries may partly be associated with 
Nrf2 and Nrf2-interacting nutrients like spices and raw 
or fermented vegetables that could reduce COVID-19 se-
verity [2–4] (shown in Table 1). Nrf2-interacting foods 
and nutrients may rebalance oxidative stress and have a 
significant effect on COVID-19 severity [4, 32–34]. On 
the other hand, many Nrf2 medications were found to be 
toxic as the balance between oxidant/antioxidant is dif-
ficult to obtain.

TRPA1 and TRPV1 can be activated by pungent com-
pounds including many, but not all, Nrf2-interacting nu-
trients [24]. Spices and aromatic herbs have potent anti-
bacterial and antiviral activities [35–37]. Spices can also 
interact with many other mechanisms in COVID-19 in-
cluding the entry of SARS-CoV-2 into the cell and au-
tophagy processes [7, 38].

Clinical Data Supporting the Hypothesis

A few patients have been studied in order to assess 
their response to foods. Seven COVID-19 patients re-
ceived either broccoli and paracetamol (submitted, avail-
able online) [39] or broccoli with TRPA1/V1 and 
paracetamol during the first 2 phases of the infection. It 
was consistently found that these nutrients reduced 
cough, gastrointestinal symptoms, and nasal symptoms 
very rapidly (within minutes). Fatigue was usually large-
ly improved 1 h after ingestion. Loss of smell and taste 
were mostly unchanged. Pain and headache were incon-
stantly improved. The effect of the nutrients ranged from 
4 to 8 h, after which patients had a reoccurrence of symp-
toms.

A series of cough-induced challenges were carried out 
on one of the patients during the recovery phase. Eight 
double-blind, placebo-controlled challenges showed that 
broccoli was effective in reducing cough within 10 min 
(submitted, available online) [39]. Forty-nine open-label 
induced cough challenges were subsequently carried out 
on the same patient. Nutrients with various Nrf2 and 
TRPA1/V1 agonist activity were used: broccoli (potent 
Nrf2 agonist and mild TRPA1 activity), berberine (Nrf2 

Table 1. Examples of Nrf2, TRPA1, and TRPV1 interacting spices

Foods Nrf2 TRPA1 TRPV1

Allicin Garlic, leek, onion [59] [59]
Capsaicin Red pepper [60, 61] [62] [63]
Cinnamaldehyde Cinnamon [64] [65] [66]
Curcumin Turmeric [67, 68] [69] [69]
Gingerol Ginger [70] [71] [72]
Mustard oil Mustard seeds [73]
Piperine Black and long pepper [74] [75] [76]
Wasabi Japanese horseradish [77] [78] [78]

Nrf2, nuclear factor (erythroid-derived 2)-like 2; TRPA1, tran-
sient receptor potential ankyrin 1; TRPV1, transient receptor po-
tential vanillin 1.
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only), black pepper, curcumin, ginger, green tea, resve-
ratrol, and zinc (potent TRPA1 agonists and variable 
Nrf2 agonists) as well as red pepper (potent TRPV1 ago-
nist and Nrf2 agonist). Berberine and zinc were not ef-
fective. All of the other nutrients except resveratrol were 
rapidly effective (1–10 min). The effect of TRPA1/V1 ag-
onists disappeared in 1–4 h. Broccoli induced a longer 
duration of action (5–7 h). The duration of the effect in-
creased to around 10 h when low doses of TRPA1/V1 
agonists were added to low-dose broccoli. Paracetamol 
low dose (its metabolites, N-acetyl-p-benzoquinone im-
ine and p-benzoquinone, but not paracetamol itself, are 
TRPA1/TRPV1 agonists [40]) increases the duration of 
action of the TRPA1/V1-broccoli combinations to over 
14 h.

The results of the challenges suggest a rapid short-last-
ing TRPA1/V1 desensitization (papers submitted and 
available online [39, 41]): (i) the clinical effect found in 
challenges carried out with curcumin and black pepper, 
ginger, or green tea (all TRPA1 agonists) and capsaicin 
(TRPV1 agonist) was extremely rapid; (ii) the duration of 
action of the compounds was relatively short; (iii) short-
lasting and mild episodes of cough were observed during 
the challenges, suggesting a resensitization-desensitiza-
tion of receptors; and (iv) gastroesophageal symptoms 
were experienced when cough reoccurred at the end of 
the challenges with red and black pepper.

The results of the clinical studies presented herein can-
not be taken as formal evidence. However, they have con-
tributed to developing a proof of concept for the hypoth-
esis that combined Nrf2-TRPA1/V1 foods may be benefi-
cial for some COVID-19 symptoms and that there is a 
synergy between Nrf2 and TRPA1/V1 agonists. Before 
any conclusion can be drawn and these treatments rec-
ommended for COVID-19, the data warrant confirma-
tion. In particular, the benefits of the foods need to be 
assessed in more severe and/or hospitalized patients 
through large and properly designed studies with a dou-
ble-blind, placebo-controlled design. These immediate 
effects cannot be related to the blockage of the virus entry 
into the cells or to autophagy [7].

Spices in COVID-19 Control: Yes, but…

In COVID-19, a rapid desensitization of TRAP1/V1 
by spices is likely to reduce disease severity. However, 
Nrf2 agonists expand the duration of action of spices. 
Very high doses of spices regularly consumed in Asian or 
sub-Saharan countries could reduce COVID-19 infection 

and/or severity. However, in Western countries, except 
possibly in Hungary, most people usually eat less spicy 
foods, and doses ingested elsewhere cannot be given rap-
idly due to side effects (mostly gastrointestinal intoler-
ance). In these countries, it would be advantageous to 
combine Nrf2-TRP agonists.

In countries where large amounts of spices are eaten, 
the consumption of fermented vegetables is also high. 
This is the case for cassava in Africa or many fermented 
vegetables in Asia. Different types of fermented foods are 
widely consumed in Eastern Asian countries. Among 
them, kimchi is the most popular Korean traditional 
food. Kimchi is prepared by fermenting baechu cabbage 
with other cruciferous vegetables containing precursors 
of sulforaphane, the most active natural activator of Nrf2 
[42]. Subingredients such as garlic, ginger, leaf mustard, 
and red pepper powder are TRPA1/V1 potent agonists 
[43]. During fermentation, lactic acid bacteria produce 
biologically active peptides with antioxidant activity [44–
49] and Nrf2 interaction [50]. In such countries, it is pos-
sible that another form of TRP desensitization, “tachy-
phylaxis,” may be important. This is the reduction or dis-
appearance in the response to repeated applications of 
agonists [51–53].

Nrf2-TRPA1/V1 agonists may have some relevance 
for the treatment of persistent cough following viral in-
fections [54–56], both in nonallergic rhinitis [57, 58], and 
also possibly in some symptoms of the common cold. We 
do however urgently need to go from empiricism to sci-
ence with appropriate mechanistic and clinical studies.
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