
J.S
tat.

M
ech.

(2022)
083101

PAPER: Quantum statistical physics, condensed matter, integrable systems

Local and non-local properties
of the entanglement Hamiltonian
for two disjoint intervals

Viktor Eisler1, Erik Tonni2 and Ingo Peschel3

1 Institut für Theoretische Physik, Technische Universität Graz,
Petersgasse 16, A-8010 Graz, Austria

2 SISSA and INFN Sezione di Trieste, Via Bonomea 265,
I-34136 Trieste, Italy

3 Fachbereich Physik, Freie Universität Berlin,
Arnimallee 14, D-14195 Berlin, Germany

E-mail: viktor.eisler@tugraz.at

Received 25 April 2022
Accepted for publication 6 July 2022 
Published 10 August 2022

Online at stacks.iop.org/JSTAT/2022/083101
https://doi.org/10.1088/1742-5468/ac8151

Abstract. We consider free-fermion chains in the ground state and the entan-
glement Hamiltonian for a subsystem consisting of two separated intervals. In
this case, one has a peculiar long-range hopping between the intervals in addi-
tion to the well-known and dominant short-range hopping. We show how the
continuum expressions can be recovered from the lattice results for general filling
and arbitrary intervals. We also discuss the closely related case of a single inter-
val located at a certain distance from the end of a semi-infinite chain and the
continuum limit for this problem. Finally, we show that for the double interval
in the continuum a commuting operator exists which can be used to find the
eigenstates.
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1. Introduction

In entanglement studies, one divides a quantum system into two parts and determines
how they are coupled in the chosen state. This information is encoded in the reduced
density matrix ρ of one of the subsystems or, writing ρ = exp(−H)/Z, in the operator
H. The latter has therefore been called the entanglement Hamiltonian, while in quantum
field theory the name modular Hamiltonian is often used [1–4]. Its form depends on the
quantum state in question as well as on the type of partition but also shows certain
universal features and it has been the topic of various studies in recent years. For a
review, see [5].
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In one dimension, which we consider here, there are two standard partitions: a divi-
sion of a chain (or line) into two halves or into a segment (or interval) and the remainder.
In both cases, there is a simple analytical result for H if the chain is infinite and one is
dealing with a continuous critical system in its ground state. Then

H = 2π

∫
A

dxβ(x)T00(x), (1)

where the integration runs over the subsystem A, T 00(x) is the energy density in the
physical Hamiltonian and β(x) is a weight function. For a half-infinite subsystem occupy-
ing the region x > 0, it varies linearly, β(x) = x, while for critical systems and an interval
between x = a and x = b, it is given by the parabola β(x) = (x− a)(b− x)/(b− a). The
first result is due to Bisognano and Wichmann [1, 2] and the second one can be obtained
from it by a conformal mapping, see [3, 6–8]. This expression has two characteristic fea-
tures: H contains only local terms as the physical Hamiltonian and it is inhomogeneous.
More precisely, the terms are large in the interior of the subsystem and small near its
boundary where the factor β(x) vanishes linearly.

For discrete systems, the situation is somewhat more complicated. For free fermions
on a lattice, one finds for the interval a dominant nearest-neighbour hopping in H
which does not quite vary parabolically, but also hopping to more distant neighbours
with smaller amplitudes [10, 11]. Thus the entanglement Hamiltonian is not strictly
local. However, it has been shown numerically [12] and also analytically [13] that in the
continuum limit one recovers the conformal result for β(x) by properly including the
longer-range terms. For free massless bosons in the form of coupled harmonic oscillators,
the same was found through a numerical approach [14], and a similar analysis was carried
out in higher dimensions for a spherical domain [15].

An intriguing new feature appears if the subsystem consists of two (or more) dis-
joint intervals. This was discovered by Casini and Huerta in a study of massless Dirac
fermions, i.e. free fermions in the continuum [16], and later investigated further in
[12, 18–21]. One then finds a peculiar long-range coupling between each point in one
interval and one single partner in the other interval. Mathematically, it results from
the form of the eigenfunctions of the correlation kernel from which one can construct
the entanglement Hamiltonian. They show spatial oscillations exp(ipw(x)) in a variable
w(x) which depends logarithmically on x, and as a result a function δ′(w(x)− w(y))
appears in the expression for H which gives contributions not only for y = x but also
for a point y = xc located in the other interval. The locus of the coupled points is a
hyperbola in the (x, y) plane while the amplitude of the coupling varies with x and is

given by a function β̃ (x) resembling the β(x) for the local terms.
The situation on the lattice is again more complicated. To some extent, it was studied

in [12] for slightly off-critical systems. Here we will investigate it in more detail and
strictly for the critical case. In H one then finds hopping between a site and many
others in the other interval. In the Hamiltonian matrix, this corresponds to characteristic
regions of elements which are larger than those in the surrounding and do not scale with
the size of the intervals. The shape of the regions is reminiscent of the hyperbolae in the
continuum. We show that, in analogy with the short-range hopping, a continuum limit
can be taken in which they combine and give the continuum result for β̃ (x). This is
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done first for a half-filled system and symmetric intervals and then generalized to other
fillings and unequal intervals.

We also treat a geometry which corresponds to some extent to one-half of the
symmetric double interval, namely a single interval located at some distance from the
boundary of a half-infinite chain. Its continuum version for Dirac fermions was studied
recently in [22], and it turned out that a long-range coupling also exists there, but now
inside the single interval. On the lattice, this is a certain drawback since now the usual
longer-range terms and the new ones appear in the same region of the entanglement
Hamiltonian matrix. Nevertheless, we were able to separate them by a proper choice of
the summations in the continuum limit. Thus we could reobtain the continuum weight
factor β̃ (x) also in this case, although only for half filling.

Finally, we consider an aspect which plays a considerable role in the treatment of
single intervals in free-fermion chains. Namely, a simple operator exists in a number of
cases which commutes with the correlation matrix (or kernel) and thus has the same
eigenfunctions, see [23–26]. For the hopping model, this operator first led to the logarith-
mic oscillations of these functions [27] and later to analytical expressions for the matrix
elements in H [11]. Here we show that such an operator also exists in the continuum
case for both a single and a double interval. In the first case, it is a simple first-order
differential operator, and in the second case it contains an additional difference term. A
similar operator can also be found for an interval on the half-line.

The layout of the paper is as follows. In section 2 we describe the setting and the
models and give some known results for the double interval. In section 3 we consider the
hopping model and present numerical results for the matrix elements in H for rather
large intervals, obtained as usual from high-precision diagonalizations of the reduced
correlation matrix. In section 4 we describe the continuum limit for the non-local terms in
H and compare with the continuum result. In section 5, after presenting some numerical
results, we do the same for a single interval in a half-infinite hopping chain. In section 6,
we present the commuting operator. Finally, in section 7, we sum up our findings and
give some outlook. In two appendices we construct the eigenfunctions of the commuting
differential operator and derive its form for the interval on the half-line.

2. Setting

We describe here the two situations for which we consider the entanglement Hamiltonian.

2.1. Continuum results

The case of one-dimensional Dirac fermions with zero mass has been treated repeatedly
in the past. One then is dealing with right- and left-moving particles described by field
operators ψR(x) and ψL(x) and the Hamiltonian can be written

Ĥ =

∫
dxT00(x), (2)

with the energy density T 00(x) given by

T00(x) ≡
i

2
:
[(

ψ†
R(∂xψR)− (∂xψ

†
R)ψR

)
(x)−

(
ψ†
L(∂xψL)− (∂xψ

†
L)ψL

)
(x)

]
: . (3)
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In the ground state, all levels with negative energy are occupied and the correlation
function for the right-movers is

CR(x, y) = 〈ψ†
R(x)ψR(y)〉 =

∫ 0

−∞

dq

2π
exp(−iq(x− y) + qε) =

1

2
δ(x− y) +

i

2π(x− y)
, (4)

and similarly for the left-movers.
The entanglement Hamiltonian can then be obtained from the eigenfunctions of

these integral kernels [17] as sketched below for the discrete case. For a double interval
A = A1 ∪A2 consisting of two disjoint intervals A1 = (a1, b1) and A2 = (a2, b2), it was
found in [16] that

H = Hloc +Hbi−loc, (5)

with the local term as in (1) and the bi-local term given by

Hbi−loc = 2π

∫
A

dxβ̃ (x)Tbi−loc(x, xc), (6)

where T bi−loc is the following operator

Tbi−loc(x, y) ≡
i

2

{
:
[
ψ†
R(x)ψR(y)− ψ†

R(y)ψR(x)
]
: − :

[
ψ†
L(x)ψL(y)− ψ†

L(y)ψL(x)
]
:
}
. (7)

The conjugate point xc in (6) is defined in terms of x as

xc ≡
(b1b2 − a1a2)x+ (b1 + b2)a1a2 − (a1 + a2)b1b2

(b1 + b2 − a1 − a2)x+ a1a2 − b1b2
= x0 −

R2

x− x0
, (8)

where

x0 ≡
b1b2 − a1a2

b1 − a1 + b2 − a2
, R2 ≡ (b1 − a1)(b2 − a2)(b2 − a1)(a2 − b1)

(b1 − a1 + b2 − a2)2
, (9)

and lies in A2 if x is in A1 and vice versa. It has a simple geometrical meaning, namely
xc is the reflection of x on a circle with radius R around x0 plus a reflection with respect
to x0 ∈ (b1, a2).

In order to write down the weight functions β(x) and β̃ (x) occurring in the local
term (1) and in the bi-local term (6), respectively, it is convenient to use the function

w(x) = ln

[
−(x− a1)(x− a2)

(x− b1)(x− b2)

]
, (10)

which occurs in the solution of the eigenvalue problem and has the property
w(xc) = w(x), which actually defines xc. In terms of (10) one has

β(x) =
1

w′(x)
, β̃ (x) =

β(xc)

x− xc

. (11)
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In the special case of the symmetric configuration A1 = (−b,−a),A2 = (a, b), where
b > a > 0, all formulae simplify. Then x0 = 0 and R2 = ab, the conjugate point becomes
xc = −x̃ where x̃ = ab/x and the functions in (11) are

β(x) =
(b2 − x2)(x2 − a2)

2(b− a)(ab+ x2)
, (12)

and

β̃ (x) =
ab

x(ab+ x2)
β(x). (13)

Note that β(x) is related to the corresponding quantities for the single intervals A1 and
A2 via 1/β = 1/β1 + 1/β2. In the following, we will compare the lattice results to these
expressions and in the course of this also show graphs of them.

2.2. Lattice model

On the lattice, we will study an infinite fermionic hopping chain with Hamiltonian

Ĥ = −
∑
n

t(c†ncn+1 + c†n+1cn) + μ
∑
n

c†ncn, (14)

with fermionic creation/annihilation operators c†n and cn and chemical potential μ. Set-
ting t = 1/2 and μ = cos qF, the ground state is a Fermi sea with occupied momenta
q ∈ [−qF, qF]. Similarly to the continuum case, we consider two disjoint segments A1 and
A2 containing N 1 and N 2 lattice sites, respectively, and separated by a distance of D
sites. The entanglement Hamiltonian for the combined subsystem A = A1 ∪ A2 is then
a quadratic expression in the fermionic operators [9, 10]

H =
∑
i,j∈A

Hi,jc
†
i cj, (15)

where the matrix H is given by

Hi,j =

N1+N2∑
k=1

φk(i)εkφk(j), εk = ln
1− ζk
ζk

, (16)

via the eigenvalues ζk and eigenvectors φk(i) of the reduced correlation matrix CA. This

is composed of matrix elements Ci,j = 〈c†i cj〉 given explicitly by

Ci,j =
sin[qF(i− j)]

π(i− j)
, (17)

with indices restricted to i, j ∈ A. Due to the two subintervals, CA and H have a block
structure, which for the latter can be represented as
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(18)

The diagonal blocks H (1) and H (2) describe hopping within the corresponding seg-
ment, whereas the off-diagonal ones contain long-range hopping terms between the two

segments and satisfy H
(2,1)
i,j = H

(1,2)
j,i .

In the following, we present the results of numerical calculations of H for rather
large subsystems with values of N 1 and N 2 up to 160. As is well known, this requires
an extreme accuracy in the diagonalization procedure and amounts to working with up
to several hundreds of decimal places in Mathematica.

3. Entanglement Hamiltonian on the lattice

To get a first impression of the detailed structure of H, we visualize its matrix elements
using color coded plots in figure 1. For simplicity, we consider a half-filled chain and
equal intervals of sizeN 1 = N 2 = 100 separated by a distance 21, 51 and 101 respectively.
On the left-hand side of figure 1, a 2D-plot of the full matrix H is shown, where each
dot corresponds to a matrix element and its magnitude is encoded by a color scale
shown by the bars. The various blocks in (18) are separated by grey lines. As expected,
the dominant (large negative) entries correspond to nearest-neighbour hopping in the
diagonal blocks. These are accompanied by subdominant matrix elements corresponding
to long-range hopping within each segment, reminiscent to the structure observed for
the single interval case [11].

The novel feature is the structure in the off-diagonal blocks, which was visible in refer-
ence [12] but not further studied there. According to the continuum results of section 2.1,
the off-diagonal block should contain only single hopping terms between the conjugate
sites, which lie on a hyperbola as indicated by the dashed black lines in figure 1. On the
lattice one obtains a more complicated structure, however, one can still recognize the
location of the hyperbolae from the color-coded plots. To better visualize the structure
of the off-diagonal block, we also give 3D-plots on the right of figure 1, showing the
absolute values of the matrix elements. Here the hyperbolic shape is even more evident,
one has, however, an additional structure along the antidiagonal as the distance between
the segments decreases. For large distances the hyperbola moves towards the diagonal
and the structure becomes increasingly more peaked with decreasing amplitude.

One should emphasise that the dominant amplitudes in the diagonal blocks are
two orders of magnitude larger than those in the off-diagonal ones. Furthermore, the
former show an extensive scaling with N , as one would expect from the local weight
function (12), which has a dimension of length. In contrast, the matrix elements in
the off-diagonal block do not scale with N , as the corresponding bi-local weight (13) is

dimensionless. However, in order to recover the functions β(x) and β̃ (x) from the lattice
data, one needs some further considerations. Indeed, it was already argued in [12] that
the longer-range hopping terms on the lattice should be included properly to recover
the local weight function. Moreover, for a single interval the continuum limit can even

https://doi.org/10.1088/1742-5468/ac8151 7
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Figure 1. (Left) Visualization of the matrix elements in H for equal intervals of
size N = 100 and separations 21, 51, 101, from top to bottom, with the color code
representing the amplitudes. The four blocks in (18) are separated by grey lines,
and the black dashed lines in the off-diagonal blocks indicate the hyperbolae xc(x)
in (8). (Right) 3D plots of the off-diagonal block H (1,2), with the absolute values of
the matrix elements shown. The color coding differs from that on the left.
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be carried out analytically, recovering the CFT expression [13]. In the following we shall
demonstrate how the continuum limit works for the double interval, both for the local
as well as bi-local weights.

4. Continuum limit

The continuum limit provides a relation between the entanglement Hamiltonian on the
lattice and the one obtained for the Dirac fermion theory. It amounts to introduce a
lattice spacing s→ 0 and consider the thermodynamic limitNσ →∞ such thatNσs = 
σ
is fixed, with σ = 1, 2. Due to the block structure (18) for the double interval, one
should distinguish between the diagonal and off-diagonal blocks of the entanglement
Hamiltonian. As expected, the former one shall reproduce the local kinetic term (1),
whereas the latter one corresponds to the bi-local contribution (6).

We first consider the diagonal blocks and proceed similarly as in the case of a single
interval [13]. Namely, we rewrite the entanglement Hamiltonian as an inhomogeneous
long-range hopping model

H(σ) = −
∑
i∈Aσ

t0(i)c
†
i ci −

∑
i∈Aσ

∑
r�1

tr(i+ r/2)
(
c†i ci+r + c†i+rci

)
, (19)

where the hopping amplitude satisfies

tr(i+ r/2) =

{
−H

(σ)
i,i+r i, i+ r ∈ Aσ,

0 otherwise.
(20)

Note that the argument of the rth neighbour amplitude corresponds to the midpoint of
the sites involved and we assume it to vary slowly in the variable i. We then introduce the
continuous coordinate x = is, and apply the usual substitution for the fermion operators

ci →
√
s
(
eiqFxψR(x) + e−iqFxψL(x)

)
, (21)

thus rewriting them in terms of right- and left-moving fields. The phase factors are
needed to account for the quick oscillations on the lattice. In turn, the substitution
(21) amounts to linearizing the dispersion and shifting the Fermi points to q = 0, thus
reproducing the relativistic dispersion.

Carrying out the continuum limit is then rather straightforward. Substituting (21)
into (19), Taylor expanding the fields as well as the hopping amplitude tr(i+ r/2)→
tr(x) + rst′r(x)/2 to first order in s, and dropping oscillatory terms, one arrives at the
following expression [13]

H(σ) →
∫
Aσ

dx[v(x)T00(x)− μ(x)N(x)], (22)

where T 00(x) is given by (3) and N(x) is the number operator

N(x) = ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x), (23)
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while the functions μ(x) and v(x) are defined as

v(x) ≡ 2s

∞∑
r=1

r sin(rqFs)tr(x), μ(x) ≡ t0(x) + 2

∞∑
r=1

cos(rqFs)tr(x). (24)

The result (22) is an inhomogeneous Dirac theory with velocity parameter v(x) and a
chemical potential μ(x). Hence, contrary to naive expectations, the Fermi velocity in the
continuum does not simply correspond to the nearest-neighbour hopping on the lattice,
but is rather modified by the presence of long-range hopping. Furthermore, in order to
get a finite result for the velocity v(x), the hopping terms tr(x) should scale with the
size Nσ of the segment, which is indeed the case as pointed out in section 3. In contrast
to the single interval case [11], however, we have no analytical results on tr(x) and the
sums in (24) must be evaluated numerically. In particular, to recover the local piece
Hloc = H(1) +H(2) one needs to find v(x) = 2πβ(x) and μ(x) = 0.

Let us now consider the off-diagonal blocks in (18). Using the symmetry of the
matrix, one could define the corresponding piece of the entanglement Hamiltonian as

H(1,2) =
1

2

∑
i∈A1
j∈A2

H
(1,2)
i,j

(
c†i cj + c†jci

)
. (25)

We would like to reproduce the bi-local term (6) by an appropriate continuum limit, we
thus fix is = x and look for the contributions around the conjugate site js ≈ xc. Since
the matrix elements in the off-diagonal block do not scale with the segment size, it is
enough to keep the zeroth-order term in the expansion of the fields. This is given by

c†i cj + c†jci → s
[
eiqFs(j−i)ψ†

R(x)ψR(xc) + e−iqFs(j−i)ψ†
L(x)ψL(xc)

+eiqFs(j+i)ψ†
L(x)ψR(xc) + e−iqFs(j+i)ψ†

R(x)ψL(xc) + h.c.
]
. (26)

Note that in the above expression each term has an oscillatory factor with a large
argument. In fact, it is not clear a priori , which one of these terms provides a proper
continuum limit, i.e. a smooth function of i. Since for the infinite chain the left- and
right-moving fermions are not supposed to mix, we will consider the exponentials with
the j − i factors and will provide further justification later. The bi-local piece of the
entanglement Hamiltonian then reads

H(1,2) →
∫
A1

dx
[
S(x)Tbi−loc(x, xc) + C(x)T̃ bi−loc(x, xc)

]
, (27)

where T bi−loc(x, xc) is the operator defined in (7) and

T̃ bi−loc(x, xc) =
1

2

[
ψ†
R(x)ψR(xc) + ψ†

L(x)ψL(xc) + h.c.
]
. (28)

The corresponding weight functions with xi = is are given by

S(xi) =
∑
j∈A2

sin[qFs(j − i)]H
(1,2)
i,j , C(xi) =

∑
j∈A2

cos[qFs(j − i)]H
(1,2)
i,j . (29)
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The same procedure can be carried out for the piece H(2,1) with indices i and j in (25)
interchanged. The continuum limit is the same as (27) with the integral running over
A2, and the sums in (29) running over A1.

4.1. Equal intervals at half filling

We start with the simplest case of equal intervals N 1 = N 2 = N at half filling
qFs = π/2, setting A2 = [d+ 1, d+N ] and A1 = [−(d+N),−(d+ 1)] such that the dis-
tance between the intervals is 2d+ 1. The coordinates of the endpoints in the continuum
description must be chosen as a = ds and b = (d+N)s, such that b− a = 
. Due to
particle–hole symmetry, H has a checkerboard structure with Hi,i+2p = 0, which imme-
diately yields μ(x) = 0, whereas v(x) has to be determined numerically. Due to the
extensive scaling of the diagonal blocks, it is useful to introduce the rescaled hopping

hi−p,i+p+1 = −Hi−p,i+p+1/N = t2p+1(i)/N. (30)

Using this in (24) with xi = is and fixing the scale as Ns = 
 = 1, the velocity reads

v(xi) = 2

P∑
p=0

(−1)p(2p+ 1)hi−p,i+p+1, (31)

where we introduced a cutoff P < N/2. Note that for a fixed i ∈ [d+ 1, d+N − 1] the
sums are carried out perpendicular to the main diagonal of the matrix.

The convergence of v(xi) as a function of the cutoff is shown in figure 2 for N = 80
and d = 10, 20. The case P = 0 is simply the scaled nearest-neighbour hopping and one
observes that as the distance between the segments becomes smaller, it deviates more
and more from the continuum limit prediction 2πβ(i/N), shown by the red lines. Indeed,
the data for P = 0 lies well above the red line with its maximum shifted towards the
center of the chain, and a good overlap is found only close to the boundaries. Increasing
the value of P one finds a slow convergence towards the continuum limit and already
for P = 10 one has an almost perfect overlap.

In the above examples the ratio r = d/N between the distance and segment size is
large enough to ensure a very good convergence already for moderate N . The situation
becomes more complicated for small ratios r, as shown in figure 3. Here the velocity
v(xi) is calculated using the maximal cutoff P = N/2− 1 for various d and N , keeping
their ratio fixed. One finds that for r = 1/20 already N = 80 is sufficient to converge
the data, whereas for r = 1/40 the data set N = 160 still shows some visible deviations.
Obviously, this is because the number of sites 2d+ 1 = 9 between the segments is still
too small to ensure a reasonable continuum limit. Nevertheless, figure 3 convincingly
demonstrates that the limit is approached smoothly for N →∞.

Finally, we consider the bi-local scaling functions in (29). Note that here the range
of the lattice variable is i ∈ [d+ 1, d+N ] and we chose a = ds and b = (d+N)s for
the boundaries in the continuum case. Since the weight function must vanish exactly
at x = b, it is useful to slightly shift the discretized coordinates xi = (i− 1/2)s to get a
better overlap with the continuum results. At half filling the function C(xi) = 0 vanishes
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Figure 2. Convergence of the velocity parameter (31) in the continuum limit of
the entanglement Hamiltonian for a double interval with N = 80 and d = 10, 20.
The red solid line shows the function 2πβ(i/N) from (12) setting a = d/N and
b = 1 + d/N . Note that the figures always show the right segment.

Figure 3. Convergence of v(xi) for a fixed ratio r = d/N and increasing values of N ,
plotted against (i− d)/N . The red solid lines show the weight function 2πβ(r + y)
in (12) as a function of y, setting a = r and b = 1 + r.

identically, while S(xi) simplifies to

S(xi) =
∑
j∈A1

(−1)(j−i−1)/2Hi,j, xi ∈ (a, b). (32)

In contrast to the local term, this definition involves an alternating row-wise sum of the
matrix elements. The result is shown in figure 4 for increasing segment sizes N and fixed
ratios r = 1/5 and r = 1/10. In both cases one obtains a very good convergence towards

the bi-local weight 2πβ̃(x), shown by the red lines. This function is more concentrated
near the left end of the segment than 2πβ(x) due to the factor 1/x in (13), and the
effect increases for smaller distances. Note that the relation S(−xi) = −S(xi) follows by
symmetry arguments. One should also remark that keeping the terms in (26) with i+ j
would lead to another sum that is simply related to (32) by (−1)iS(xi). Obviously, this
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Figure 4. Bi-local weight function S(xi) at half filling for increasing segment sizes
N and two different ratios r = d/N , shown against the variable xi − r. The red
lines show the continuum result 2πβ̃(x) for comparison.

is an alternating expression which vanishes in the continuum limit, thus justifying our
choice of dropping these terms.

4.2. Arbitrary filling

We now move to the case of arbitrary filling, choosing equal intervals for simplicity. For
a single interval one can actually show analytically, that the continuum limit leads to
exactly the same expressions as in the half-filled case [13]. This proof uses the analytical
expressions for tr(x), which are nonzero for both even and odd r [11], to evaluate the
sums in (24). In the present case, where the sums are carried out numerically, this
leads to some complications as the hopping profiles (20) on the lattice are associated to
integer and half-integer sites for even and odd r, respectively. Thus, analogously to the
odd sums as in (31) for the half-filled case, one could define an even sum, albeit with
coordinates assigned as xi = (i− 1/2)s. The even and odd sums can then be added by
summing the ith term of the odd sequence with the average of the ith and (i+ 1)th
terms of the even sequence. Alternatively, one could also define the row-wise sums with
xi = (i− 1/2)s

v(xi) =
∑
j∈A2

sin[qFs(j − i)](j − i)hi,j , μ(xi) = −
∑
j∈A2

cos[qFs(j − i)]Hi,j , (33)

which also give only corrections of order s2 that vanish in the continuum limit. Note
that the factor of two as compared to (24) is now missing, since the sums run over an
entire row of the matrix and not only in the upper diagonal part.

We observed that the row-wise sums yield a smoother convergence towards the
expected weight functions. This is essentially due to the large oscillations as a func-
tion of i in the even/odd diagonal sums, which do not cancel perfectly when following
the averaging process described above. The row-wise sums (33) are shown in the top
panel of figure 5 for 1/3 filling (corresponding to qFs = π/3) for a ratio r = 1/8 and
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Figure 5. (Top) Velocity v(xi) (left) and chemical potential μ(xi) (right) from (33)
at 1/3 filling with a ratio r = 1/8. The red solid line shows the result 2πβ(x).
(Bottom) Bi-local weight functions S(xi) (left) and C(xi) (right) from (29). The red
solid line shows the result 2πβ̃(x).

increasing N . For v(xi) on the left-hand side, the convergence towards 2πβ(x) is excel-
lent already for the moderate segment sizes used. The chemical potential on the right
shows a much slower convergence towards zero. However, this is a result of rather non-
trivial cancellations in the sums (33), since the definition of μ(xi) involves the unscaled
Hi,j. We also show the results for the bi-local weight functions (29), given by row-wise
sums for generic fillings, in the bottom panel of figure 5. The comparison of S(xi) against

2πβ̃(x) shows a very good agreement, with only tiny deviations visible around the max-
imum. Similarly to μ(xi), the bi-local weight C(xi) defined with the cosine function goes
towards zero as it should.

4.3. Unequal intervals

As a final example, we discuss the case of unequal intervals in a half-filled
chain. Due to translational invariance, one can make the choice A1 = [1,N1] and
A2 = [N1 +D + 1,N1 +D +N2] for the intervals of size N 1 and N 2, separated by D
sites. The matrix plot in figure 6 shows that the main features are similar to the symmet-
ric case, and the hyperbola xc(x) can again be recognized. However, the fine structure in
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Figure 6. Matrix elements in H for the case of unequal segments with N 1 = 80,
N 2 = 120 and D = 21 (left) and 51 (right).

the off-diagonal block differs from the one in figure 1, with a curved structure appearing
also along the antidiagonal.

Clearly, there are now two scales in the problem and by taking the continuum limit
one has to fix Nσs = 
σ, with the boundary coordinates given by a1 = 0, b1 = N 1s,
a2 = (N 1 +D)s and b2 = (N 1 +N 2 +D)s. Furthermore, the diagonal blocks also scale
with the corresponding segment size and the densities can be introduced as

h
(σ)
i−p,i+p+1 = −H

(σ)
i−p,i+p+1/Nσ. (34)

However, the quantities β(x)/
σ and β̃ (x) are dimensionless and scale invariant, i.e. they
remain unchanged under a rescaling of each length in the functions. This property can
be used to fix either the length scale 
1 = 1 for the left interval or 
2 = 1 for the right
one, leading to the definition

v(xσ,i) = 2

P∑
p=0

(−1)p(2p+ 1)h
(σ)
i−p,i+p+1, xσ,i = i/Nσ. (35)

The parameters of the corresponding β(x) function must be scaled accordingly, and can
be shown to depend only on the two ratios ν = N 1/N 2 and r = D/N 2. In particular,
for the right interval one has a1 = 0, b1 = ν, a2 = ν + r and b2 = ν + r + 1, whereas the
parameters for the left interval read a1 = 0, b1 = 1, a2 = 1 + r/ν and b2 = 1 + (1 + r)/ν.
The same arguments apply also for the bi-local weight, which is defined analogously to
(32), with arguments xσ,i = (i− 1/2)/Nσ.

The scaling functions of the local v(xσ,i) and bi-local S(xσ,i) weights are shown in
figure 7 for increasing segment sizes, keeping the ratios ν = 1/2 and r = 1/8 fixed. The
results for the right interval are shifted such that they also fall within the interval
(0, 1). As in the previous examples, one can see a very good convergence towards the
expected continuum result. The only sizable deviations occur for the shortest segments
considered, corresponding to a distance of only D = 5 lattice sites. It is straightforward
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Figure 7. Continuum limit for unequal intervals. Top panel: v(xσ,i) for the left and
right intervals, respectively, compared to 2πβ(x). Bottom panel: S(xσ,i) for the left
and right intervals, compared to 2πβ̃ (x). The data is shown for various segment
sizes, with the ratios N 1/N 2 = 1/2 and D/N 2 = 1/8 kept fixed.

to generalize the calculation to arbitrary fillings, where one obtains again a very good
agreement with the same weight functions.

5. Interval on the half-line

Another important example where the entanglement Hamiltonian takes the form (5)
corresponds to the bipartition of the half-line x � 0 where A = (a, b) is an interval in a
generic position.

5.1. Continuum results

For the massless Dirac field, the most general boundary condition ensuring the
global energy conservation corresponds to imposing the vanishing of the energy flow,
T 10(x = 0) = 0, through the boundary [28–30]. This boundary condition can be satis-
fied in two inequivalent ways, corresponding to a vector and an axial U(1) symmetry
[31]. Here we discuss only the former case, which corresponds to the following boundary
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condition on the fields

ψR(0) = eiαψL(0), (36)

with a scattering phase α ∈ [0, 2π). Thus, the boundary condition at x = 0 provides a
scale invariant coupling of the fields having different chirality.

The entanglement Hamiltonian of an interval A = (a, b) on the half-line x � 0 has
been found in [22] and it takes the form (5). In particular, the local term is still given
by (1) with the weight function (12) and the energy density T 00 defined in (3). Instead,
the bi-local term in (5) is

Hbi−loc = 2π

∫ b

a

dxβ̃ (x)Tbi−loc(x, x̃ ;α), (37)

where the weight function coincides with (13), but the bi-local operator is defined as

Tbi−loc(x, x̃ ;α) ≡
i

2
:
[
eiαψ†

R(x)ψL(x̃)− e−iαψ†
L(x)ψR(x̃) + h.c.

]
: , (38)

which depends on the phase occurring in the boundary condition (36), and x̃ = ab/x is
the point conjugate to x inside A. It is related to the conjugate point (8) for two disjoint
intervals in the symmetric configuration where (a1, b1) = (−b,−a) and (a2, b2) = (a, b).

5.2. Lattice results

Consider now the lattice model given by a semi-infinite fermionic hopping chain, whose
Hamiltonian is (14) with the sums over n restricted to n � 1, and the subsystem
A = [d+ 1, d+N ] made by N consecutive sites and separated by d sites from the bound-
ary of the chain. The open half-chain is the simplest realization of the Dirac theory with
a boundary, corresponding to the choice α = π. As suggested by the continuum results
above, the entanglement Hamiltonian should be very closely related to the case of the
symmetric double interval. We first derive the exact correspondence on the lattice level.

Let us consider the symmetric double interval on the infinite chain, composed of
A2 = [d+ 1, d+N ] and its reflection to negative sites A1 = [−d−N ,−d− 1], as in
section 4.1. The eigenvalues ζk and eigenvectors φk of the 2N × 2N reduced correlation
matrix with elements (17) then follow from the equations

Ci′,j ′φ
(1)
k (j ′) + Ci′,jφ

(2)
k (j) = ζkφ

(1)
k (i′),

Ci,j ′φ
(1)
k (j ′) + Ci,jφ

(2)
k (j) = ζkφ

(2)
k (i),

(39)

where i, j ∈ A2 and i′, j′ ∈ A1 and the kth eigenvector has been decomposed into two
vectors corresponding to amplitudes on the left/right interval, respectively:

φk =

(
φ
(1)
k

φ
(2)
k

)
. (40)

Due to the reflection symmetry of the geometry, the eigenvectors are either even or odd,

φ
(1)
k (−i) = ±φ

(2)
k (i). Using this property and introducing j ′ = −j, i′ = −i, the eigenvalue
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equation (39) can be decomposed into two sets

C±
i,jφ

(2)
k (j) = ζ±k φ

(2)
k (j), (41)

where the N ×N correlation matrices C± with elements i, j ∈ A2 are defined as

C±
i,j =

sin[qF(i− j)]

π(i− j)
± sin[qF(i+ j)]

π(i+ j)
. (42)

In fact, the piece containing i+ j originates from the terms Ci,−j and C−i,j in (39) after
making the above substitutions, whereas C−i,−j = Ci,j. Note that the above observations
are independent of the distance d.

Remarkably, the correlation matrices C± in (42) are nothing but the ones corre-
sponding to a half-chain with Dirichlet or Neumann boundary conditions. They can
be obtained by replacing the plane-wave basis of the infinite chain with appropriate
standing-wave bases as

C+
i,j =

2

π

∫ qF

0

cos(qi) cos(qj)dq, C−
i,j =

2

π

∫ qF

0

sin(qi) sin(qj)dq. (43)

Hence, the eigenvalue equation (41) simply tells us, that the even/odd eigenvectors
and corresponding eigenvalues of the double interval problem are, up to normalization,
identical to the ones for the half-chain with Dirichlet/Neumann boundary conditions.

The above observations can be used directly in the entanglement Hamiltonians H±

of the chains with corresponding boundary conditions. These are defined analogously to
(16) as

H±
i,j = 2

N∑
k=1

φ±
k (i)ε

±
k φ

±
k (j), i, j ∈ A2, (44)

such that they are composed of only the even/odd eigenvectors φ±
k of the double interval

problem, with the factor two resulting from the different normalization. Comparing now

to the block matrix (18), one can see immediately that H+
i,j +H−

i,j = 2H
(2)
i,j , as well as

H+
i,j −H−

i,j = 2H
(2,1)
i,−j . In other words, the entanglement Hamiltonians for the half-chain

with Dirichlet/Neumann boundary conditions can be written as

H±
i,j = H

(2)
i,j ±H

(2,1)
i,−j , (45)

in terms of the diagonal and off-diagonal blocks in the symmetric double interval.
In figure 8 we show H− corresponding to a block of N = 100 sites and for two

different values of the distance d from the boundary of the open semi-infinite chain, in
the special case of half filling. These plots should be compared to the middle and bottom
left panels of figure 1, displaying the symmetric double interval with the corresponding
d. One can immediately recognize that the matrix H− for the open half-chain is indeed
a kind of superposition of the diagonal and off-diagonal blocks for the double interval,
as dictated by (45). In particular, one can see that the hyperbola is now reflected and
appears at x̃ = ab/x, as shown by the black dashed lines in figure 8.

https://doi.org/10.1088/1742-5468/ac8151 18

https://doi.org/10.1088/1742-5468/ac8151


J.S
tat.

M
ech.

(2022)
083101

Local and non-local properties of the entanglement Hamiltonian for two disjoint intervals

Figure 8. Entanglement Hamiltonian matrix for a block of consecutive sites in the
semi-infinite chain with Dirichlet boundary conditions and at half filling. (Left)
(d,N ) = (25, 100). (Right) (d,N ) = (50, 100). The panels should be compared to
the middle and bottom panel on the left of figure 1.

The result (45) already makes it clear that the relation between the half-chain
problem and the double interval is completely analogous to the continuum case in
section 5.1. However, it remains to understand the difference between the bi-local
operators (38) and (7), by considering the continuum limit of H±. We first apply the
substitutions (21), where the left/right-moving fields are coupled via the boundary con-
dition (36) at x = 0. This coupling can be made explicit by writing the mode expansion
of the fields ψL(x) and ψR(x), where the parameter α enters as a relative phase between
the left/right propagating Fourier components. In our case here H+ and H− correspond
to the choice α = 0 and α = π, respectively. The change of the bi-local operator is due
to the fact that the corresponding matrix component in (45) is mirrored. As pointed out
already below (26), it is not a priori clear which phase factors give a proper continuum

limit in this expansion. Due to the appearance of H
(2,1)
i,−j , it is now clear that for the

half-chain one has to choose the terms with i+ j. This leads to the following expression

H±
bi−loc = ±

∫
A

dx
[
C(x)T (1)

bi−loc(x, x̃) + S(x)T (2)
bi−loc(x, x̃)

]
, (46)

where the operators are defined as

T
(1)
bi−loc(x, x̃) =

1

2

[
ψ†
R(x)ψL(x̃) + ψ†

L(x)ψR(x̃) + h.c.
]
, (47)

T
(2)
bi−loc(x, x̃) =

i

2

[
ψ†
R(x)ψL(x̃)− ψ†

L(x)ψR(x̃) + h.c.
]
, (48)

and the bi-local weights are given by

C(xi) =
∑
j∈A

cos[qFs(j + i)]H
(2,1)
i,−j , S(xi) = −

∑
j∈A

sin[qFs(j + i)]H
(2,1)
i,−j . (49)

https://doi.org/10.1088/1742-5468/ac8151 19

https://doi.org/10.1088/1742-5468/ac8151


J.S
tat.

M
ech.

(2022)
083101

Local and non-local properties of the entanglement Hamiltonian for two disjoint intervals

Interchanging j →−j, one clearly arrives at the same definition of the weights as in (29)

for the double interval. Hence, in the limit N →∞, one has S(xi)→ 2πβ̃(x) as well as
C(xi)→ 0, perfectly reproducing the result (37) and (38) for the boundary Dirac theory
with α = 0, π.

The case 0 < α < π can also be studied on the lattice by introducing a chemical
potential at the first site, i.e. adding the term μ1c

†
1c1 to the Hamiltonian with μ1 > 0.

The eigenvectors are then cosine functions with a phase shift

Φ(n) =

√
2

π
cos[qn+ δ(q)], tan δ(q) =

1 + 2μ1 cos q

2μ1 sin q
. (50)

The parameter of the continuum theory then corresponds to the relative phase at the
Fermi level, α = 2δ(qF). It is easy to see that the correlation matrix has the form

Cα
i,j =

sin[qF(i− j)]

π(i− j)
+

∫ qF

0

dq

π
cos[q(i+ j) + 2δ(q)], (51)

and the corresponding Hα can be evaluated numerically. However, in contrast to (45),
for generic α it is not clear how to separate the local and bi-local contributions that are
superimposed in the matrix Hα.

Here we propose such a method for the half-filled case. Inserting the full matrix into
the definition of the bi-local weights,

Cα(xi) =
∑
j∈A

cos
(π
2
(j + i)

)
Hα

i,j, Sα(xi) = −
∑
j∈A

sin
(π
2
(j + i)

)
Hα

i,j, (52)

the local contribution in Hα
i,j does not yield a proper continuum limit, since the sum

contains the phase factors with i+ j. Indeed, one can argue that this term has an
alternating form (−1)if(xi) with some smooth function f(xi). In order to get rid of this
unwanted contribution, we define

S̄α(xi) = Sα(xi)/2 + [Sα(xi−1) + Sα(xi+1)]/4, (53)

and similarly for C̄α(xi). In other words, we combine the terms i and i± 1, such that
the alternating piece cancels up to second order corrections in the lattice spacing. In
order to reproduce the continuum result, one expects

C̄α(xi)→−2π sin(α)β̃(x), S̄α(xi)→ 2π cos(α)β̃ (x), (54)

to hold. For a generic scattering phase α, the checkerboard structure of the matrix
Cα in (51) as well as of Hα is lost, and both of the sums in (52) are nonzero. This is
demonstrated in figure 9, where we show the results for α = π/3 by choosing the value of
μ1 accordingly. The matrix plot on the left is more blurred due to the presence of nonzero
elements Hα

i,j with even j − i, and on the right one can see a very good convergence
towards (54) for both bi-local weight factors. We note that the local weights can be
extracted analogously, inserting Hα into (33) and then defining the averages which now
kill the bi-local contributions. As expected, we find v̄α(xi)→ 2πβ(xi) and μ̄α(xi)→ 0
independently of α.
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Figure 9. (Left) Matrix plot for d = 25, N = 100 and α = π/3. (Right) Bi-local
weights from (53) for ratio r = d/N = 1/4 and α = π/3. The red and blue lines
show the expected continuum limit results in (54).

6. Commuting operators

In the following we consider the integral operators whose kernels are the correlation
functions restricted to a subsystem A and discuss differential operators that commute
with them.

6.1. Single interval

We consider a single interval A = (a, b) when the entire system is either on the line and
in its ground state, or on the circle and in its ground state, or on the line and in a
thermal state.

The integral operator associated with the correlation function G(x, y) restricted to
A is

IA[f](x) ≡
∫
A

dyG(x, y)f(y), (55)

and depends both on G(x, y) and on the spatial domain. Consider now the following
first-order differential operator

DA ≡ t(x)
d

dx
+

1

2
t′(x), (56)

with a function t(x) still to be determined and evaluate the action of the operators (55)
and (56) on a generic function f in the two possible orders, namely
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DAIA[f](x) =

∫
A

dy[DA,xG(x, y)]f(y)

=

∫
A

dy

[
t(x)

d

dx
G(x, y) +

1

2
t′(x)G(x, y)

]
f(y), (57)

and

IA[DAf](x) =

∫
A

dy

{
− d

dx
[G(x, y)t(y)] +

1

2
G(x, y)t′(y)

}
f(y)

= −
∫
A

dy[DA,yG(x, y)]f(y), (58)

with DA,x denoting the operator (56), while DA,y is (56) written in terms of the variable
y instead of x. In (58), an integration by parts has been performed with the assumption
that t(x) vanishes at the endpoints of A, i.e.

t(a) = t(b) = 0. (59)

One then sees that the operators (55) and (56) commute

[IA,DA] = 0, (60)

provided that

(DA,x +DA,y)G(x, y) = 0. (61)

Consider now the case of an infinite line with the system in its ground state. Then the
kernel is given by (4)

G(x, y) =
i

x− y
, (62)

and the condition (61) becomes explicitly

t(x)− t(y)

(x− y)2
− t′(x) + t′(y)

2(x− y)
= 0. (63)

This functional equation is satisfied by an arbitrary quadratic function t(x). The
boundary condition (59) then gives, up to a prefactor,

t(x) = (x− a)(b− x). (64)

For this choice of t(x), the differential operator (56) commutes with the integral kernel
and thus has the same eigenfunctions. We note that t(x) is proportional to the quantity
β(x) appearing in the entanglement Hamiltonian (1).

With this result, one can easily obtain the solution for a system on a circle with
circumference L in its ground state. The kernel then is

G(x, y) =
i

sin[π(x− y)/L]
, (65)
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and one can check that the generalization of (64) to sine functions

t(x) = sin[π(x− a)/L] sin[π(b− x)/L], (66)

again satisfies (61). Finally, if the system is on a line but in a thermal state with inverse
temperature β, one has

G(x, y) =
i

sinh[π(x− y)/β]
, (67)

and (61) holds if one substitutes hyperbolic sine functions in (64)

t(x) = sinh[(x− a)/β] sinh[(b− x)/β]. (68)

The common eigenfunctions of IA and DA are easy to obtain from DA, since this is
a first-order differential operator. In all three cases one has

φs(x) = C
eisw(x)√
t(x)

, (69)

with eigenvalue is and w(x) given by

w(x) =

∫
dx

t(x)
. (70)

For t(x) given by (64), w(x) is proportional to ln[(x− a)/(b− x)] and the exponential
factor describes the logarithmic oscillations found previously in [12, 27].

6.2. Modular flow

It was noted above that the function t(x) in (64) is proportional to the weight factor
β(x) in the entanglement Hamiltonian. In fact, the whole operator DA of the previous
subsection also occurs in connection with H, namely in the analysis of the modular flow
of the chiral components of the massless Dirac field. This is their unitary evolution via
the (modular) Hamiltonian H according to

ψ(x, τ) ≡ e−iHτψ(x)eiHτ , (71)

where ψ(x) corresponds to the field operator at τ = 0 and we dropped the index R,L
at ψ(x).

The equation of motion then is

i∂τψ(x, τ) = [H,ψ(x, τ)], (72)

and inserting the expression for H given in (1) leads to the partial differential equation
[16, 22]

1

2π
∂τψ(x, τ) = ±DAψ(x, τ), (73)

where DA is given by (56) with t(x) ≡ β(x) and ± corresponds to the right and left
chirality, respectively. The expression on the right is the same as the one for finding the
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eigenfunctions φ(x) of the kernel of H which have to be the same as those of the corre-
lation kernel. Therefore, with the knowledge of H, one could have found the commuting
operator from (72). However, in analogy to other cases [23–27], where H is not known
in closed form, our aim in section 6.1 was to determine it directly from the correlation
function.

6.3. Two disjoint intervals

It is possible to extend the considerations of section 6.1 to the case where A is the union
of two disjoint intervals on the line. When the entire system is in its ground state, the
correlation kernel is again given by (62) and one has to find an operator which takes into
account the non-local effects. This is somewhat difficult to guess, but one can invoke the
equation of motion (72), since H is again known. In this way, one is lead to consider

D̃Af(x) ≡
(
t(x)

d

dx
+

1

2
t′(x)

)
f(x)− t̃(x)f(xc), (74)

where the first piece is the operator DA introduced in (56) and the second one is an
additional term where f is evaluated at xc, which is a function of x. For the moment,
we leave the functions t(x), t̃(x) and xc(x) open, except for the condition that t(x) must

now vanish at the endpoints of the two intervals. To obtain the commutator of D̃A and
IA, one only has to consider the additional term, which gives

D̃AIA[f](x)→
∫
A

dy
[
−t̃(x)G(xc, y)

]
f(y), (75)

and in reverse order

IA

[
D̃Af

]
(x)→

∫
A

dy

[
−G(x, yc)̃t(yc)

dyc
dy

]
f(y), (76)

where the integrand is the result of the change of integration variable y → yc (with yc(y)
defined analogously to xc(x)) and followed by a renaming of the integration variable. If
one now assumes that

t̃(xc)
dxc

dx
= −t̃(x), (77)

this simplifies to

IA

[
D̃Af

]
(x)→

∫
A

dy
[̃
t(y)G(x, yc)

]
f(y), (78)

which corresponds to (75) but with the action on y instead of x. Therefore, the additional
terms can be combined with the others and the condition for the vanishing of the
commutator is completely analogous to (61)(

D̃A,x + D̃A,y

)
G(x, y) = 0. (79)
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It then remains to show that this relation holds for

t(x) = β(x), t̃(x) = β̃ (x), (80)

where both quantities are given explicitly in (12) and (13) for a symmetric double
interval. Then t(x) vanishes correctly at the boundaries x = ±a,±b and with xc = −ab/x
one can verify easily that (77) holds. The expression (79) is more involved. The piece
containing the function t is explicitly

t(x)− t(y)

(x− y)2
− t′(x) + t′(y)

2(x− y)
=

(x2 − y2)

2(b− a)

ab(a+ b)2(ab− xy)

(x2 + ab)2(y2 + ab)2
, (81)

and does not vanish because t(x) is not a quadratic function here, but it turns out

that it is compensated exactly by the contributions from t̃. Thus D̃A, which might be
called a functional differential operator, commutes with the integral operator and can
be used again to find the common eigenfunctions. This is sketched in appendix A. The
commuting operator for the interval on the half-line is discussed in appendix B.

7. Discussion

We studied the entanglement Hamiltonian for two disjoint intervals in the hopping chain.
The diagonal part of the matrix, containing the hopping within each segment, has a sim-
ilar structure as for a single interval, with dominant nearest-neighbour terms. However,
their profile deviates increasingly from the expected weight function β(x) as the dis-
tance between the intervals becomes smaller. In complete analogy to the single interval
case, the continuum result could be obtained by considering a proper continuum limit
and including the longer-range hopping into the definition of the local Fermi velocity.
The hopping between the segments is expected to have some relation to a bi-local term
in the continuum model that couples only to a single conjugate point. On the lattice,
however, the landscape of the hopping amplitudes is again more involved, with a clear
ridge along the expected hyperbola but showing also some extra features, see figure 1.
Here, the continuum result for the bi-local weight was recovered by a proper row-wise
sum of the matrix elements multiplied by an oscillatory factor. Our numerical results
show perfect agreement for arbitrary values of the filling and of the segment sizes.

We also considered the problem of a single interval at some distance from the bound-
ary of a half-infinite chain. In the continuum, this setting is closely related to the case of
two symmetric intervals, and we find analogous relations for an open chain. Nontrivial
boundary conditions were implemented by a local chemical potential, and our contin-
uum limit perfectly reproduced the bi-local terms of the Dirac theory that depend on
the scattering phase.

The continuum limit obtained for the bi-local terms could be used in a number of
other situations. In particular, one could apply it directly to the so-called negativity
Hamiltonian [32], that is the analogous (albeit non-Hermitian) object related to the
partially time-reversed density matrix for two disjoint intervals [33]. The continuum
weight functions then follow by applying a partial transposition as in [34] to the double
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interval result. One could also study bi-local terms in the entanglement Hamiltonian of
inhomogeneous chains, the simplest example being the case of a defect [35]. For slowly
varying inhomogeneities, the continuum entanglement Hamiltonian for a single interval
can be obtained [36] via the curved-space CFT approach [37]. Recently it has been shown
that the continuum limit can be generalized to recover the local terms for the domain-
wall melting problem [38]. It would be interesting to check whether this treatment could
be extended to the bi-local terms in case of two intervals. Further examples where non-
local terms are expected even for a single interval include the case of finite temperature
and volume [39–41], systems with zero-modes [42, 43], finite mass [12, 44, 45] or systems
driven out of equilibrium [46].

One can also ask, how well the exact lattice entanglement Hamiltonian can be
approximated by a simpler one that does not contain all the long-range hopping terms.
For single intervals, one can simply replace the nearest-neighbour hopping amplitudes
by the properly discretized weights β(xi), which gives a very accurate approximation of
the exact reduced density matrix [47]. The question then is how such an approximation

would work for two intervals and how to include the bi-local weights β̃ (xi). Studying
these aspects, e.g. by variational methods as in [48], could shed some light on the role
of these peculiar long-range couplings.

Somewhat related to this is the question of operators commuting with the correlation
kernel (or correlation matrix), which we also considered. In the continuum, a simple first-
order differential operator could be given for a single interval, whereas for the double
interval an additional long-range coupling appeared. It would be quite interesting to
know whether such a quantity also exists in the lattice problem.
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Appendix A. Eigenfunctions of D̃A

The commuting operator D̃A for the double interval is not a simple object and leads
to a functional differential equation for its eigenfunctions. We show here that these can
nevertheless be obtained with modest effort.

Using the single interval result φs(x) in (69), it is convenient to write them in the
form

φ±(x) = m±(x)φs(x) = m±(x)
C√
t(x)

eisw(x), (A.1)

where we anticipated that they will turn out to be doubly degenerate, i.e. φ±(x) both
belong to the eigenvalue is. In order to ensure orthogonality, one has the condition
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A

dxφ+(x)φ
∗
−(x) = 0. (A.2)

With t(x) > 0, this implies that m+(x)m−(x) must change sign on the two intervals,
and we shall assume m+(x) > 0 as well as m−(x) ∼ sign(x− x0). Using the conjugate
point, (A.2) can be written as an integral on A1 as∫

A1

dx

[
φ+(x)φ

∗
−(x) + φ+(xc)φ

∗
−(xc)

dxc

dx

]
= 0. (A.3)

This vanishes if

φ+(xc)

φ+(x)

φ∗
−(xc)

φ∗
−(x)

= −
(
dxc

dx

)−1

= −(x− x0)
2

R2
. (A.4)

Note that since w(x) = w(xc), the exponential factors cancel (see (A.1)). Owing to the
degeneracy of the eigenfunctions, there should be some freedom in factorizing the above
condition. A simple consistent choice turns out to be

φ+(xc)

φ+(x)
= 1,

φ∗
−(xc)

φ∗
−(x)

= −(x− x0)
2

R2
. (A.5)

Using the ansatz (A.1) in the differential equation, we obtain

t(x)m′
±(x)φs(x) = t̃(x)φ±(xc), (A.6)

which can be rewritten as

m′
±(x)

m±(x)
= c(x)

φ±(xc)

φ±(x)
, (A.7)

where we have introduced (for general disjoint intervals)

c(x) =
t̃(x)

t(x)
=

R2

(x− x0)[(x− x0)2 +R2]
. (A.8)

Let us first consider the eigenfunction φ+(x) and substitute the corresponding ratio
(A.5) into (A.7). The equation can then be integrated as

ln[m+(x)] =

∫
dxc(x) =

1

2
ln

[
(x− x0)

2

(x− x0)2 +R2

]
, (A.9)

such that one has

m+(x) =
|x− x0|√

(x− x0)2 +R2
. (A.10)

Using the property

t(xc)

t(x)
= −xc − x0

x− x0

=
R2

(x− x0)2
, (A.11)
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as well as w(xc) = w(x), it is easy to verify that the ratio indeed gives one

φ+(xc)

φ+(x)
=

m+(xc)

m+(x)

√
t(x)

t(xc)
= 1. (A.12)

Analogously, for the other ratio in (A.5) one can also easily integrate (A.7) with the
result

m−(x) =
sign(x− x0)R√
(x− x0)2 +R2

, (A.13)

where the sign function ensures that the ratio φ−(xc)/φ−(x) is indeed negative. The
functions m±(x) are the same ones as found in [16, 17, 19] after orthogonalization.

The choice made in (A.5) is the simplest one that leads to real-valued m±(x). One
can also see what happens if one assigns the ratios symmetrically

φ+(xc)

φ+(x)
= i

x− x0

R
,

φ∗
−(xc)

φ∗
−(x)

= i
x− x0

R
. (A.14)

Note that in order to have linearly independent solutions, we now need to work with
complex functions m±(x). Equation (A.7) can again be integrated and for x > x0 yields

ln[m+(x)] = i arctan
x− x0

R
. (A.15)

Using the identity

i arctan z =
1

2
ln

1 + iz

1− iz
= ln

1 + iz√
1 + z2

, (A.16)

one arrives at

m+(x) =
i|x− x0|+ sign(x− x0)R√

(x− x0)2 +R2
. (A.17)

This is clearly just a simple linear combination of the eigenfunctions found before.
It is easy to check that it satisfies m+(xc)/m+(x) = i sign(x− x0) as it should, and
m−(x) = m∗

+(x).

Appendix B. Commuting operator for the interval on the half-line

Following the discussion of section 6, we construct here a commuting operator
corresponding to the interval A = (a, b) on the half-line x � 0.

The non-vanishing two point functions for the free massless Dirac field on the half-
line can be organised in a 2× 2 matrix, which depends on the boundary condition
(see [22]). This correlation matrix leads us to consider the integral operator

IA[f ](x) ≡
∫ b

a

dy

(
G−(x, y) eiαG+(x, y)

−e−iαG+(x, y) −G−(x, y)

)(
f1(y)
f2(y)

)
, (B.1)
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where

G∓(x, y) ≡
i

x∓ y
, (B.2)

and α is the parameter entering in the boundary condition (36), with f (x) denoting
a vector whose components are two generic functions f1(x) and f2(x). Furthermore,
from the modular flow for this case studied in [22] we introduce the following vectorial
functional differential operator

DAf(x) ≡

⎛
⎜⎜⎝

(
t(x)

d

dx
+

1

2
t′(x)

)
f1(x)− eiαt̃(x)f2(x̃)

e−iαt̃(x)f1(x̃)−
(
t(x)

d

dx
+

1

2
t′(x)

)
f2(x)

⎞
⎟⎟⎠, (B.3)

in terms of the functions t(x), t̃(x) and x̃(x), to determine under the condition
t(a) = t(b) = 0.

From a computation similar to the one discussed in section 6.3 for two disjoint
intervals on the line, we find that the operators (B.1) and (B.3) commute provided that
x̃(x) = ab/x, that

t̃(x̃)
dx̃

dx
= −t̃(x), (B.4)

and[
t(x)

d

dx
+

1

2
t′(x) + t(y)

d

dy
+

1

2
t′(y)

]
G−(x, y) + t̃(x)G+(x̃, y)− t̃(y)G+(x, ỹ) = 0,

(B.5)

which is equivalent to (79) specialised to the case of two equal intervals on the line placed
symmetrically with respect to the origin. Thus, the operators (B.1) and (B.3) commute

when t(x) = β(x) and t̃(x) = β̃ (x) are the weight functions (12) and (13), respectively.
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