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1. Introduction

This two-part collection of articles on ‘time-keeping and decision-making in living
cells” covers various examples of the mechanisms by which cells and organisms
receive and integrate signals from many sources, figure out how the organism
should respond and then elicit the appropriate response. Unlike digital computers,
these information-processing systems (IPS) are autonomous, analogue and mas-
sively parallel, and their responses are remarkably successful in supporting the
survival, growth, repair and reproduction of living organisms. Molecular, cellular
and organismal biologists, in collaboration with mathematical and computational
biologists, have made remarkable progress in understanding how living IPS work.
Some of these recent successes are reviewed in this collection.

Part I focused on time-keeping, in particular on mechanisms of biological
oscillators, on synchronization of intercommunicating oscillators and on entrain-
ment to external driving rhythms, with particular emphasis on circadian
rhythms. Jimenez et al. [1] provided a valuable survey of entrainment among bio-
logical oscillators, focusing on the circadian clock, the cell cycle, cardiac
pacemaker cells, glycolytic oscillations and inflammatory responses. Goldbeter
& Yan [2] presented a masterly review of multi-rhythmicity (two or more simul-
taneously stable oscillatory states) and multi-synchronization (two or more
simultaneously stable modes of synchronization), with examples drawn from
cyclic AMP signalling, circadian rhythms and cell cycle oscillations. Burckard
et al. [3] provided new results on the synchronization of peripheral circadian
clocks by intercellular communication between two cells or in small clusters of
cells. And Jeong et al. [4] investigated the role of multiple modes of transcriptional
repression in generating many of these rhythms.

Part II focuses on decision-making in cell differentiation, development
and cell cycle progression. Saez et al. [5] use ideas from dynamical systems
theory to turn Waddington’s ‘landscape’ metaphor of cell fate decisions
into quantitative and predictive models that can shed light on the underlying
biology (figure 1a). For instance, they identify just two distinct ways for a cell
to choose between alternate fates: the ‘binary choice’ landscape and the
‘binary flip’ landscape. They go on to study three-attractor landscapes
and beyond, and to consider how to incorporate experimental data with
dynamics. Robert et al. [6] investigate potential sources of heterogeneity
required to induce cell differentiation in early mammalian embryos, using
a multi-cellular model of Nanog-Gata6-Fgf4 interactions (figure 1b). They
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Figure 1. Cell fate decisions. (a) From Waddington’s landscape to Waddington dynamics; from Séez et al. [5]. Flow lines, which are not necessarily perpendicular to
the potential contour lines, describe cell differentiation dynamics. (b) Multi-cellular model for cell specification in an early mammalian embryo into epiblast (expres-
sing Nanog) and primitive endoderm (expressing Gata6); from Robert et al. [6]. Each cell synthesizes Fgf4 at a rate proportional to its level of Nanog. In response to
the average level of Fgf4 in its neighbourhood, each cell upregulates Gata6 and downregulates Nanog. (c) A 16-cell germline cyst in Drosophila melanogaster; from
Diegmiller et al. [7]. The oocyte (green ball) is supported by nurse cells (grey balls), which connect to the oocyte by intercellular bridges (red lines). (d) The protein
interaction network controlling progression through the eukaryotic cell cycle; from Tyson & Novak [8]. MPF = M-phase promoting factor (a (DK); APC/C = anaphase
promoting complex; Wee1 and Gwl are protein kinases, (dc25 and B55 are protein phosphatases; ENSA is a stoichiometric inhibitor. (¢) A linear framework graph for
an enzyme-catalysed reaction; from Nam et al. [9]. The phosphatase F removes a phosphate group from S, via the complexes Ys =F : S; and Yg =F : Sy, to release
the unphosphorylated form S,. The edges represent the biochemical reactions and the labels denote the reaction rates. In principle, all reactions are reversible,
although, in a living cell, the reaction Yg — Y5 is much slower than Y; — Y. All figures used by permission of the authors and the publisher.

attribute the observed characteristics to cell-to-cell variability
in gene expression, most notably Nanog expression.
Diegmiller et al. [7] study the dynamics of cell division and
differentiation in small clusters of cells that make up germline
cysts, which ultimately mature into an oocyte and surround-
ing support cells (figure 1c). They propose a minimal cell
cycle oscillator model for generating the cell lineage tree
(CLT) of a cyst and discuss how CLTs of varying topologies
can arise. Such clonal clusters of connected cells are found
in almost all lineages of eukaryotes, and the cytoplasmic
bridges that connect such cells are thought to have played a
key role in the evolution of multi-cellularity. Tyson &
Novak [8] use mathematical models to study the roles of
time-keeping and decision-making during progression
through the eukaryotic cell cycle. Their models, based on
the well-known cyclin-dependent kinase (CDK) control
system (figure 1d), account for both clock-like CDK oscil-
lations during early embryonic cell divisions and switch-
like CDK-arrested states (checkpoints) during somatic cell
cycles. Lastly, Nam et al. [9] review a graph-based approach
to biochemical reaction dynamics, called ‘the linear framework’
(figure 1e). In this approach, the nonlinear kinetics of a network
of biochemical reactions is decomposed into a coupled set of
graphs, each of which has linear dynamics, and the steady
states of the network can be expressed as rational algebraic
functions of the parameters. The linear framework, which
encompasses systems both at thermodynamic equilibrium
and away from equilibrium, provides a sound theoretical

foundation for modelling the post-translational modifications
that underlie many biochemical mechanisms of time-keeping
and decision-making in living cells.

2. Decision-making in cell physiology
2.1. Early studies

Experimental and theoretical studies of decision-making by
bistable molecular circuits go back many years, at least to
the observations of Novick & Weiner [10] on the ‘all-or-
none’ behaviour of the lac operon (figure 2a) and later math-
ematical models by Griffith [11], Thomas [12] and Santillan &
Mackey [13]. In cell cycle studies, Solomon et al. [14] observed
an abrupt activation of CDK activity, which was later
attributed to bistability in a mathematical model of the
feedback control of CDK (figure 2b) [15], and bistable behav-
iour was demonstrated experimentally by Sha et al. [16]
and Pomerening et al. [17]. Nasmyth [18] proposed that—
quite generally—progression through the eukaryotic cell
cycle involves irreversible switching between two ‘self-
maintaining’ states: low CDK activity (G1 phase) and high
CDK activity (S-G2-M phases). The origin of this behaviour
is the mutual antagonism between CDKs and their ‘enemies’
(stoichiometric inhibitors and cyclin-degrading pathways;
figure 2c), as made clear later by mathematical modelling
[19]. Ferrell & Machleder [20] observed an ‘all-or-none’
maturation response of frog oocytes to progesterone
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Figure 2. Decision-making by bistable molecular circuits. (a) The Jac operon. The lac repressor blocks transcription of lactose-metabolizing proteins. If lactose is
present in the growth medium (and glucose is absent), lactose enters the cell and isomerizes to allolactose, which binds to and inactivates the repressor. This net-
positive feedback loop (+——) is the basis of ‘all-or-none” behaviour of the lac operon. (b) Mitotic entry. The activity of M-phase promoting factor (MPF) is inhibited
by Wee1 and activated by Cdc25. Cyclin synthesis drives the accumulation of MPF molecules, which abruptly switch from the inactive to active form. The switch
exhibits bistability, a consequence of the (——) and (++) feedback loops. (c) Control of progression through the eukaryotic cell cycle. CDKs, which drive DNA
synthesis and mitosis, are opposed by ‘antagonists,” including stoichiometric inhibitors and cyclin-degrading pathways. Mutual inhibition (——) creates a bistable
switch between a phase of low (DK activity (G1) and high activity (S-G2-M). The G1-to-S transition is triggered by ‘entry’ proteins that downregulate the antag-
onists, and the M-to-G1 transition by ‘exit’ proteins that downregulate (DK activity. (d) Oocyte maturation. In frog ovaries, progesterone stimulates a cohort of
immature oocytes into a state receptive to fertilization. Maturation is initiated by MAP kinase (MAPK) activation, which is a bistable response to progesterone
created by the positive feedback (+++) loop. (e) T-helper cell differentiation. The interactions of the transcription factors Thet and Gata3 (which control the
differentiation of T-helper 1 and T-helper 2 cells, respectively) constitute a MISA motif (mutual inhibition self-activation). The outcome of the interactions

(there are four possible stable steady states) is controlled by the cytokines interferon-gamma and interleukin-4.

treatment, which they attributed to bistability in the MAP
kinase signalling pathway (figure 2d). Yates et al. [21] and
later van den Ham & de Boer [22] studied the phenotypic
polarization of helper T cells with nonlinear differential
equations based on the regulatory properties of master tran-
scription factors (mutual inhibition and self-activation
(MISA); figure 2e). van den Ham & de Boer found up to
four stable steady states: naive cell (both factors off), Thl
cell (Tbet on), Th2 cell (Gata3 on) and dual-expressing cell
(both factors on). The same motif was introduced by
Huang ef al. [23] to model the differentiation of blood cell
progenitors into erythroid and myeloid cell lineages. Chikar-
mane ef al. [24] modelled the differentiation of embryonic
stem cells in terms of two basic transcription factors
(Oct4-Sox2 dimer and Nanog) that mutually activate each
other, creating a bistable switch with the transcription
factors being either oN or off. Perkins & Swain [25] and
Balazsi et al. [26] have reviewed optimal decision-making in
noisy environments.

The common themes of these early studies are that (i) cells
make decisions by flipping between coexisting stable steady
states (bistability or multi-stability) and (ii) multiple stable
steady states are generated by biochemical reaction networks
with mutual inhibition and/or self-activation [27]. We see
these themes repeated over and over again in more recent
developments, with interesting twists.

2.2. Bistability and multi-stability in models of stem
cell differentiation

The differentiation of pluripotent embryonic stem cells and
of blood cell progenitors has long fascinated mathematical
biologists (e.g. an early review by Laurent & Kellersohn [28]).

MISA motifs are hallmarks of the study by Chickarmane &
Peterson [29] on the differentiation of stem cell, trophoecto-
derm and endoderm lineages; figure 3a. They found that, as
the signal is varied, the control system may exhibit four differ-
ent steady states: trophoectoderm, endoderm, stem cell and
‘differentiated’ stem cell. Later, Chickarmane et al. [30] used a
similar model to study the role that stochastic noise in gene
expression plays in the differentiation process, concluding
that Nanog heterogeneity is the deciding factor in stem cell
fate. In the meantime, in a study of Nanog expression in
mouse embryonic stem cells, Kalmar et al. [31] observed two
populations of cells: HN cells (high Nanog, relatively stable)
and LN cells (low Nanog, relatively unstable but more likely
to differentiate). To account for their observations, they pro-
posed a model of noise-driven excitability (figure 3b; an
activator—inhibitor motif rather than a MISA motif).

Mutual inhibition between mRNA and microRNA has
been proposed by Tian et al. [32] as a mechanism for bistable
switches in cell fate decisions (figure 3c). They applied this
idea to the epithelial-to-mesenchymal transition (EMT) in
embryonic development [33] with a mathematical model
based on two bistable switches (figure 3d) controlling the
expression of the transcription factors Snail and Zeb. At
low TGFp (the inducer of EMT), Snail and Zeb are turned
off, and the cell is expressing epithelial genes. At intermediate
TGFB, Snail and Zeb are turned on partially, and the cell is
not secreting TGFpB (partial EMT state). At higher levels of
(paracrine) TGFB, the cell turns on Snail and Zeb fully and
starts secreting TGFB, which locks the cell in the mesenchy-
mal state by autocrine signalling, even if the external TGFp
signal drops substantially.

The early work of Yates et al. [21], Huang et al. [23] and
van den Ham & de Boer [22] was followed up by Huang
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Figure 3. Differentiation of stem cells. (a) The differentiation of stem cells into trophectoderm or endoderm is controlled by two interacting MISA motifs. The
outcome (one of four possible stable steady states) is determined by the strength of the input signal and, of course, the strengths of the interactions within
the network. (b) A simplified view of the network in (a). Nanog activates Oct4 indirectly by inhibiting Gata6. Oct4, at high concentration, inhibits Nanog indirectly
by activating Gataé. This ‘activator—inhibitor'’ motif has a single, stable, excitable steady state of high Nanog activity. Random fluctuations may kick the cell off the
steady state and into a transient region of low Nanog activity, when the cell is prone to differentiate into primitive endoderm. The signal is LIF (leukaemia inhibiting
factor). (¢) Mutual inhibition between snail mRNA and its antisense microRNA (miR-34). The double-negative feedback loop generates bistability, controlled by the
signal from transforming growth factor-beta (TGFp). (d) A model of the EMT. EMT is controlled by two transcription factors, Snail and Zeb, which both exhibit
bistable responses to TGF( because their synthesis is controlled by microRNAs (miR34 and miR200) as in (c).

[34] and Hong et al. [35-37], who used MISA motif models to
understand in more detail the differentiation of CD4+ T cells
into multiple lineages and into hybrid cells expressing mul-
tiple cytokines.

2.3. Multi-cell/multi-scale modelling

Up to this point, we have attributed cell differentiation to bist-
ability and multi-stability at the single-cell level, based on
MISA motifs in the underlying control circuits. In a fascinating
paper, Stanoev et al. [38] recently proposed a conceptually
different dynamical mechanism in which cell types emerge
and are maintained collectively by cell-cell communication
as a novel inhomogeneous state of the coupled system. They
showed how spatial patterns of cell differentiation (inhomo-
geneous steady states) arise in a population of cells as cell
number increases. Robust proportions of differentiated cells
emerge spontaneously and recover reliably after perturbations.

De Mot et al. [39] proposed a multi-cellular model for the
differentiation of the inner cell mass into epiblast and primi-
tive endoderm based on tristability in the Nanog-Gata6-Fgf4
network (figure 1b). The model was later extended to account
for cell division [40]. Saiz et al. [41] proposed a related model
that further highlights the role of Fgf4 signalling between
cells in the cell fate decision and in the embryo’s response
to perturbations in lineage composition.

An important aspect of embryonic development is the
coupling of mechanics to gene expression in the context
of cellular tissue that is increasing in cell number due to
division. Extending their model of Cdx2/Oct4 and Nanog/
Gata3 interactions (figure 3a) to include mechanical forces
and cell division, Krupinski et al. [42] have attacked this pro-
blem in the context of pattern formation in the mammalian
blastocyst. Their multi-cell/ multi-scale approach is a power-
ful tool to model how cells move within the embryo
in response to mechanical forces and how cell positions

influence cell fates (the formation of trophectoderm and
of endoderm).

Macklin ef al. [43] presented a multi-scale model of solid
tumour growth, which illustrated the potential of mathemat-
ical modelling to understand complex interactions of cell
proliferation, extracellular matrix degradation, angiogenesis
and nutrient availability on the ability of solid tumours to
expand. Populations of budding yeast cells growing on
sucrose were studied by Dai ef al. [44]. The population was
maintained by daily dilution with fresh medium. Because
sucrose is hydrolysed to glucose and fructose externally, the
cells benefit from neighbours (called the Allee effect in popu-
lation biology), and if the daily dilution factor is too large, the
population undergoes a catastrophic collapse from a stable
population density to extinction. The ‘tipping point’ is a
saddle-node bifurcation, and close to this point the popu-
lation should become more vulnerable to fluctuations (loss
of resilience), which they demonstrated experimentally. In
bacterial biofilms, a different type of vulnerability arises
from a conflict between interior and peripheral cells. Periph-
eral cells protect interior cells from chemical attack but, at the
same time, starve interior cells of nutrients. Liu et al. [45]
showed that biofilm cells resolve this conflict by periodically
halting growth to increase nutrient availability to interior
cells. The oscillations, observed period 2-3 h, arise by Hopf
bifurcations in the mathematical model.

2.4. Cell cycle modelling: checkpoints, variability and
travelling waves

Cell cycle modelling has moved in several directions over the
past decade. Regarding mammalian cell cycle regulation,
Gérard & Goldbeter [46,47] presented a limit-cycle model of
the CDK control system and assessed its merits. Weis et al.
[48] confronted a published bistable switch model of CDK
controls [49,50] with novel quantitative data on cyclin A2
and cyclin Bl accumulation, which suggested some
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modifications to the published model. Heldt et al. [51] pre-
sented a model of light-responsive size control of DNA
replication in Chlamydomonas, to explain the unusual ‘mul-
tiple-fission” mode of cell division in this green alga. Li
et al. [52] presented an elaborate, stochastic, spatio-temporal
model of the asymmetric cell division cycle of Caulobacter
crescentus, an alphaproteobacterium. Deterministic modelling
of the budding yeast cell cycle has become more comprehen-
sive. Palumbo et al. [53] presented a detailed model of the
G1-S transition, based on multi-site phosphorylation of
WHhib, an inhibitor of transcription of cyclin genes. Kraikivski
et al. [54] presented a model of the budding yeast cell cycle
(from start to finish) that tracks the dynamics of approxi-
mately 60 molecular species by a set of differential-algebraic
equations. The model was fitted to the observed phenotypes
of 263 mutant strains of budding yeast with 98% success (six
strains could not be correctly simulated). Stochastic model-
ling has also progressed; the latest model by Barik et al.
[55], which follows the expression of 17 genes (mMRNAs and
proteins) by Gillespie’s stochastic simulation algorithm, pro-
vides excellent quantitative fit to observed measurements of
cell cycle variability in wild-type cells and approximately
20 mutant strains. In particular, the model accounts for ‘par-
tial viability’ of some mutant strains, which is a property that
cannot be explained by a deterministic model. Other recent
papers have explored the roles of checkpoints in the cell
cycle, for example, the DNA damage checkpoint [56-58],
the spindle assembly checkpoint [59], mitotic entry and exit
[60] and the restriction point [61]. Comprehensive Boolean
(discrete logical) models of the budding yeast cell cycle
have also been proposed, starting with Fauré et al. [62] and
pursued subsequently by Miinzner et al. [63] at a ‘genome
scale” and by Howell et al. [64] to incorporate spatial effects
into a logical model of mitotic exit.

Because the activation of MPF (a cyclin-CDK dimer) is a bis-
table switch (figure 2b), Novak & Tyson [65] predicted that
‘trigger’ waves of MPF activation would propagate in syncytial
(i.e. multi-nucleate) tissues at a speed of 10-100 pm min™".
Twenty years later, these waves were observed definitively
by Chang & Ferrell [66] in frog egg extracts supplemented
with sperm nuclei. The waves travelled at approximately

50 pm min~".

2.5. Synthetic requlatory circuits
The age of synthetic genetic regulatory networks was inaugu-
rated by the ground-breaking papers of Gardner et al. [67]—
the genetic toggle switch, and Elowitz & Leibler [68]—the
repressilator. Stricker et al. [69] created the first robust,
tunable, synthetic gene oscillator, based on an activator—
inhibitor motif (like figure 3b), in E. coli cells. Tigges et al.
[70] created a tunable synthetic oscillator in a mammalian
cell with a transcriptional control circuit encoding both posi-
tive and time-delayed negative feedback loops. Danino et al.
[71] showed that a population of oscillating cells could be
synchronized by global intercellular coupling, which was
introduced by cloning the Vibrio quorum sensing machinery
into their oscillating E. coli strain. Zhang et al. [72] designed
and implemented a synthetic NF-xB oscillator in budding
yeast cells, based on RelA (a nuclear factor kB protein) and
IxBa (an inhibitor of RelA).

Matsuda et al. [73] studied ‘cell-type bifurcation” of
Chinese hamster ovary cells that were engineered with a

basic transcriptional repression circuit based on Delta-Notch
signalling between cells supplemented with an intracellular
self-activation circuit whereby Notch induces expression of
Lfng (Lunatic Fringe) and Lfng activates Notch. The popu-
lation consisted of a mixture of Delta-expressing cells (low
Notch and Lfng) and Lfng-expressing cells (low Delta and
high Notch).

Sekine et al. [74] have engineered a reaction—diffusion pat-
terning network in human embryonic kidney cells using the
Nodal-Lefty signalling system, which satisfies—in prin-
ciple—the requirements of Turing pattern formation: Nodal
activates the production of both Nodal and Lefty, Lefty inhi-
bits the activity of Nodal, and the diffusion range of Lefty
(the inhibitor) is approximately 3.5 times longer than Nodal
(the activator). Nonetheless, the authors propose that the pat-
terns they observe are not Turing patterns but ‘solitary
localized structures’ caused by an excitable or bistable reac-
tion—diffusion system with a rapidly diffusing inhibitor. In
this mechanism, Nodal foci are formed by short-range self-
activation and further propagation of Nodal activation is
stopped by long-range inhibition.

The potential for synthetic decision-making has been
greatly expanded by two publications. Gordley et al. [75]
showed how slow-acting, synthetic bistable switches (in
yeast cells) can be selectively tuned by fast-acting, synthetic
phospho-regulons. Zhu et al. [76] introduced ‘MultiFate” tech-
nology for creating synthetic circuits that support controllable
and expandable multi-stability in mammalian cells. MultiFate
circuits are created from synthetic zinc-finger transcription
factors that enable homodimer-dependent self-activation
and heterodimer-dependent cross-inhibition. The MultiFate-
2 circuit is the MISA motif introduced in figure 2e; it readily
generates bistability and tristability in a controllable fashion.
MultiFate-3 cells can generate up to seven stable steady states.

2.6. Pattern formation in bistable systems
Shortly after fertilization, the C. elegans zygote establishes an
anterior—posterior gradient of PAR proteins in the cell cortex.
In modelling this phenomenon, Goehring et al. [77] found
that passive advection of PAR proteins by transient actomyo-
sin-driven flow in the cell cortex can serve as a mechanical
trigger for the formation of a persistent spatial pattern in a
reaction—diffusion system exhibiting bistability. Bistability
in their model is generated by mutually antagonistic
interactions between ‘anterior’ and ‘posterior’ PAR proteins.
All above-ground plant tissues originate from stem cell
divisions in shoot apical meristems (SAM). Stem cells, in
the central zone of SAM, express the transcription factor
WUSCHELL, which upregulates its own inhibitors, encoded
by CLAVATA genes. Spontaneous emergence of a central zone
is often modelled by a Turing mechanism, for example [78],
but Battogtokh [79] has shown that pattern formation in a bis-
table system gives a better description of the nucleation and
confinement of the stem cell domain. His proposal for SAM
patterning closely resembles patterning in the Nodal-Lefty
system developed by Sekine et al. [74].

2.7. Programmed cell death

Apoptosis is an interesting cell fate decision whereby, in
response to severe stress, a cell commits ‘suicide’. Crucially,
this decision, once made, must be irreversible, and a one-
way bistable switch is ideally suited to this end. Following

¥200Z207 TL Smo{ awuaul  ssi/jeulnol/b10-buiysijgndanosiedos H



Downloaded from https://royal societypublishing.org/ on 11 August 2022

on early models of irreversible apoptosis in mammalian cells
[80-83], Ziraldo & Ma [84] presented a mathematical model
of the apoptotic switch in the fruit fly and discussed the
role of feedback topology on the reversibility or irreversibility
of the switch. Autophagy (self-feeding) is another interesting
cellular stress response, whereby a cell breaks down its own
macromolecules to obtain energy and raw materials for survi-
val purposes. By design, autophagy is reversible, so that the
cell can recover if the stress is removed soon enough. If the
stress is too intense, autophagy (which can be lethal if
taken too far) is usually coordinated with the intrinsic apop-
totic death pathway. Kapuy et al. [85] have modelled this
crosstalk between apoptosis and autophagy and the positive
feedback loop that makes the apoptosis switch irreversible.

3. Conclusion

Altogether, the studies reviewed in Parts I and II of this
Special Issue have contributed greatly to our understanding of
the molecular mechanisms underlying biological information

processing, giving us a deeper appreciation of the—often
non-intuitive—dynamical interplay of biochemical switches
and clocks and the life-sustaining processes that they sup-
port. The progress resulting from the development, analysis
and application of mathematical models has revolutionized
our interpretation of experimental observations and renewed
our vision of future possibilities in health science and
biotechnology.
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