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Randomized benchmarking refers to a collection of protocols that in the past decade have become cen-
tral methods for characterizing quantum gates. These protocols aim at efficiently estimating the quality
of a set of quantum gates in a way that is resistant to state preparation and measurement errors. Over
the years many versions have been developed, however a comprehensive theoretical treatment of ran-
domized benchmarking has been missing. In this work, we develop a rigorous framework of randomized
benchmarking general enough to encompass virtually all known protocols as well as novel, more flexible
extensions. Overcoming previous limitations on error models and gate sets, this framework allows us, for
the first time, to formulate realistic conditions under which we can rigorously guarantee that the output of
any randomized benchmarking experiment is well described by a linear combination of matrix exponential
decays. We complement this with a detailed analysis of the fitting problem associated with randomized
benchmarking data. We introduce modern signal processing techniques to randomized benchmarking,
prove analytical sample complexity bounds, and numerically evaluate performance and limitations. In
order to reduce the resource demands of this fitting problem, we introduce novel, scalable postprocessing
techniques to isolate exponential decays, significantly improving the practical feasibility of a large set
of randomized benchmarking protocols. These postprocessing techniques overcome shortcomings in effi-
ciency of several previously proposed methods such as character benchmarking and linear-cross entropy
benchmarking. Finally, we discuss, in full generality, how and when randomized benchmarking decay
rates can be used to infer quality measures like the average fidelity. On the technical side, our work sub-
stantially extends the recently developed Fourier-theoretic perspective on randomized benchmarking by
making use of the perturbation theory of invariant subspaces, as well as ideas from signal processing.
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I. INTRODUCTION

In the last few years significant steps have been taken
towards the development of large-scale quantum com-
puters. A key part of the development of these quantum
computers are tools that provide diagnostics, certification,
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and benchmarking. Particularly for quantum operations,
stringent conditions have to be met to achieve fault tol-
erance. Motivated by this observation, in recent years a
significant body of work has been dedicated to the devel-
opment of tools for the certification and benchmarking of
quantum gates. A prominent role in this collection of tools
is taken by methods that can be collectively referred to
as randomized benchmarking (RB). These methods have
risen to prominence because they conform well to the
demands of realistic experimental settings. They estimate
the magnitude of an average error of a set of quantum gates
in a fashion that is robust to errors in state preparation and
measurement (SPAM) and moreover is, in many settings,
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efficient, in the sense that the resources required scale poly-
nomially with the number of qubits in the device. The
various versions of RB apply sequences of randomly cho-
sen quantum gates of varying length. Small errors are thus
amplified with the sequence length, and gate quality mea-
sures can be extracted from the dependence of the output
data on sequence length.

In RB protocols, group structures feature strongly, in
that the gate set considered is in almost all cases a sub-
set of a finite group. Such group structures not only make
it possible to efficiently make predictions for error-free
sequences and compute inverses, but they also provide the
means to analyze the error contribution after averaging.
Originally proposed for random unitary gates [1–3], RB
is now most prominently executed with gates from the so-
called Clifford group [4–6], a set of efficiently classically
simulatable quantum gates that take a key role specifi-
cally in fault-tolerant quantum computing [7]. It has also
been considered for other (subsets of) finite groups [8–15].
Moreover RB has been generalized to capture other fig-
ures of merit of gate sets, such as relative average gate
fidelities to specific anticipated target gates [4], fidelities
within a symmetry sector [9,10], or the unitarity [16].
Specifically recently, with challenges of realizing fault-
tolerant quantum computers in mind, emphasis has been
put on capturing losses, leakage, and crosstalk in a scheme
[17–19]. Also, data from RB—or rather suitably combin-
ing data from multiple such experiments—can be sufficient
to acquire full tomographic information about a quantum
gate [20–22]. This adds up to a wealth of RB protocols [23]
proposed over the previous years. Figure 2 summarizes (to
our knowledge) an up to date list of theoretical proposals
for RB procedures presently known.

A significant body of work moreover deals with the lim-
itations and precise preconditions of RB. The originally
rather stringent assumptions on noise being necessarily
identical across different quantum gates have over time
been relaxed for particular protocols in later work [24–26],
and the connection between the output of RB and opera-
tionally relevant quantities (such as average fidelity) has
been studied in some detail [26,27].

And yet, it seems fair to say that a comprehensive pic-
ture of RB schemes for the quantum technologies [28] has
been lacking so far. In particular, a theoretical framework
that is broad enough to formalize the required precon-
ditions ensuring the proper functioning of RB protocols
beyond case-by-case arguments for specific protocols. This
is unsatisfactory, as the development of higher-quality
quantum gates and currently relies heavily on a plethora
of tailor-made variants of RB. This motivates our cur-
rent effort at providing a clear rigorous underpinning for
RB and exploring its underlying mathematical structure,
putting all variants of RB on a common footing.

With this effort we aim to not only better understand
these protocols, but also to increase trust in them, making

it possible to reliably use them without a detailed under-
standing of their inner workings. This is a timely effort,
as procedures that fit within the RB framework, such as
linear-cross-entropy benchmarking [29] and the behavior
of noisy random circuits more generally, have been the
topic of significant attention recently [30–32], including
for the purpose of benchmarking [33]. Given how we iden-
tify linear-cross-entropy benchmarking as a randomized
benchmarking procedure, we relate our general framework
to this timely discussion.

At the same time our framework allows us to go sig-
nificantly beyond current protocols and establish a series
of novel theoretical results and benchmarking schemes,
addressing several shortcomings of the current state of the
art. Among others, these novel results include a rigorous
error bound for generator-style randomized benchmark-
ing, a formal equivalence between linear-cross-entropy
benchmarking and randomized benchmarking and a novel,
scalable method for isolating signals in RB experiments, an
absolute requirement if one wants to apply RB to nonstan-
dard gate sets. This latter method, which we call filtered
RB, is a significant conceptual improvement over standard
RB schemes, promising greater flexibility and applica-
bility. Notably, it also obviates the need for physically
implemented inversion gates in randomized benchmark-
ing experiments and the preparation of specific input states,
making its implementation significantly more straightfor-
ward. As such, this framework therefore also constitutes
a solid basis for developing new schemes of random-
ized benchmarking. Altogether these results substantially
advance the understanding of the possibilities and require-
ments of randomized benchmarking as a practical tool for
estimation and certification.

II. OVERVIEW OF RESULTS

In this work, we aim at developing a mathematically
comprehensive framework of randomized benchmarking
protocols, synthesizing, generalizing, and substantially
strengthening previous work. This paper covers a vari-
ety of different aspects of randomized benchmarking, from
general theorems on the validity of RB data, to a detailed
study of the classical postprocessing of data generated by
RB and an in-depth discussion of the connection between
the outputs of RB and average fidelity. As our work is
often quite technical, we formulate a series of “take-home”
messages at the end of this section, summarizing the key
takeaways of our work for experimental practice.

A. A general framework for randomized
benchmarking

We begin by providing a general framework that gen-
eralizes and covers (to the best of our knowledge) all RB
procedures currently present in the literature. This can also
be thought of as an attempt at a formal definition of RB
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protocols, and is largely an effort to organize and for-
malize knowledge already present in the RB literature.
RB protocols can be divided into two separate phases:
a data-collection phase, and a data-processing phase (see
Fig. 1).

(a) The data-collection phase corresponds to the part
of the protocol involving the actual quantum com-
puter and can be described as (1) the preparation of
a quantum state, (2) the application of a sequence
of random quantum operations, capped by (3) an
inversion operator mapping the state (ideally) to a
specified final state (usually the initial state), upon
which (4) a measurement is then performed.

(b) This process yields estimates of a success proba-
bility p(m) for different sequence lengths m, which
constitutes the input to the data-processing phase.
In this phase—which is completely classical—the
data p(m) is fitted to a functional model, generally a
linear combination of exponential decays. One can
consider the decay rates of these exponential decays
as direct measures of quality of the implementation,
or further relate it to operational quantities like the
average fidelity.

Starting with the data-collection phase, we write down a
general RB protocol (Algorithm 1). This protocol depends
on a number of input parameters, and by making particular
choices for these parameters we can obtain all RB proto-
cols currently in the literature. The key parameters are as
follows:

1. A group G, encoding the gates that are applied
during the RB protocol. A common choice for this
group is the multiqubit Clifford group Cq but many
other choices are possible.

2. A reference implementation φr assigning to each
element of the group G an ideal quantum operation
to be implemented. In the standard scenario this map
is a representation of the group G (denoted ω). In
general this map need not be a representation, but it
is in all known cases obtained from a representation
by some fixed mapping. The paradigmatic exam-
ple of such an implementation map is the standard
conjugation action g �→ UgρUg

†, which associates
a unitary action to every element g of the group.

3. A probability distribution ν encoding the proba-
bility with which gates are selected from G. In the
standard case this probability distribution is simply
the uniform distribution over the group. We also
consider the situation where this probability distri-
bution can vary throughout different steps of the
protocol.

4. An ending gate gend governing the total operation
performed in each RB sequence. Typically this is

FIG. 1. The basic structure of RB. The RB data-collection
phase iterates the following steps: after (1) the preparation of an
initial state ρ0, (2) a sequence of m random gates gi is applied, (3)
followed by the gate inverting the sequence ginv up to an end gate
gend and (4) a final POVM measurement. In the data-processing
phase the measurement data, for many random sequences and
different sequence lengths is postprocessed in a classical com-
puter to extract decay parameters quantifying the imperfections
in the implemented gates.

the identity, but other choices are relevant, and it can
even be chosen at random.

Different choices for these key parameters can be collected
into classes, yielding a typology of randomized bench-
marking procedures, an overview of which can be seen in
Fig. 2. This typology consists of three classes:

(a) Uniform RB, which is characterized by uniform
random sampling of operations and reference imple-
mentations that are representations.

(b) Interleaved RB, where the reference implementa-
tions involve the application of “interleaved” gates.

(c) Nonuniform RB, which is characterized by nonuni-
form random sampling of operations. This last class
comes with two subtypes: approximate RB, where
the sampling distribution is close to uniform, and
subset RB, where the sampling distribution is very
far from being uniform (for instance, taking only
nonzero values on a small set of generators).

These classes of RB procedures are motivated by the qual-
itatively different behavior of the associated output data
p(m), which we discuss in more detail later. They also par-
tially but not completely align with notions already present
in the literature. In particular, we see that the behavior of
this data is dictated by the group G and the reference repre-
sentation ω. We can always decompose this representation
ω into a direct sum of irreducible subrepresentations, i.e.,
ω = ⊕

λ∈� σ
⊕nλ
λ where the σλ are irreducible (and occur

with multiplicity nλ).
A key tenet of RB is that this decomposition decides the

functional form of the output data p(m) as a function of
sequence length m. More precisely, we expect behavior of
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FIG. 2. An overview of RB schemes, indicating how they fit within our typology (see Sec. V D) of RB schemes and what theorem
covers the behavior of their output data (see Sec. VI). An ∗ indicates that the protocol has a nontrivial postprocessing scheme, while
∗∗ indicates that the protocol in its original specification has no inversion gate. We discuss how this is equal to uniform RB (with
inversion) together with a postprocessing step in Sec. VIII.

the form

p(m) ≈
∑

λ∈�
Tr(AλM m

λ ), (1)

where Aλ, Mλ are nλ × nλ matrices encoding state prepa-
ration and measurement errors, and the quality of gate
implementation, respectively. This formalizes in a precise
way the general idea that RB data is well described by a
linear combination of exponential decays and allows for
the classical processing of RB output data, thus provid-
ing the connection between the data-collection and the
data-processing phases. Note, however, that if irreducible
subrepresentations appear with nontrivial multiplicities the
functional form of Eq. (1) includes matrix exponential
decays. These can have qualitatively different features than
scalar exponential decays, requiring a more sophisticated
data-processing approach. It is, for instance, possible for
these matrices to have complex eigenvalue pairs, which
will lead to damped-oscillation behavior in randomized
benchmarking data.

B. The functional form of randomized benchmarking
data

At the core of the RB literature is the promise that RB
output data has a very specific form, namely that of a linear

combination of (matrix) exponential decays [as expressed
in Eq. (1)], decaying with the length of the sequences of
random gates. Moreover, this linear combination is of a
specific structure, determined by the implemented gate set.
However, this functional form of the RB output data is
not guaranteed by the protocol itself, but is instead derived
from assumptions on the noisy implementation of the ran-
dom quantum operations. In early work this assumption
took the form of the gate-independent noise assumption.
Later, it was realized that this assumption is not satisfac-
tory [26] and it was subsequently generalized for standard
Clifford RB to the more general assumption that the noisy
implementations of gates are Markovian and time indepen-
dent, and moreover either that the gate-dependent variation
of the noise is upper bounded in the diamond norm (in the
work of Ref. [24]), or lower bounded in average fidelity
(in the work of Ref. [25]). Here, we provide a series of
theorems generalizing these works to (almost) all existing
RB protocols, justifying Eq. (1) in broad circumstances.
The theorems we prove make claims of different strength
for different classes of RB protocols, as per the typology
outlined in Fig. 2.

(a) We prove that the output data of uniform RB proto-
cols (as per the typology in Fig. 2) can be described
as a linear combination of exponentials, up to an
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exponentially small error, provided that the gate
implementations are Markovian, time independent,
and are on average close in diamond norm to an
ideal implementation that is a representation. This
closeness is independent of the particular RB pro-
tocol and independent of the underlying Hilbert-
space dimension. The complete statement is given
as Theorem 8 that can be summarized as follows.

Theorem 1: (Informal version of Theorem 8.) Consider
a RB experiment with sequence length m, with gates uni-
formly drawn from a group G and implemented through
a reference representationω(g) = ⊕

λ∈� σ
⊕nλ
λ (g). Denote

the corresponding noisy implementation on the quantum
computer as φ(g) (note that this assumes time independent
and Markovian noise). If we have

1
|G|

∑

g∈G

‖ω(g)− φ(g)‖	 ≤δ ≤ 1
9

, (2)

then the output data p(m) of the RB experiment obeys the
relation

∣∣∣p(m)−
∑

λ∈�
Tr(AλM m

λ )

∣∣∣ ≤ O(δm), (3)

with the error exponentially suppressed in m. Here Aλ and
Mλ are nλ × nλ matrices, with Mλ depending only on the
actual implementation φ.

The proof of this theorem relies on a combination of
techniques from earlier works: taking the matrix Fourier-
transform perspective introduced to RB in Ref. [25] and
combining it with the realization in Ref. [24] that the
diamond distance (averaged over random gates) is the
correct distance measure for the formulation of assump-
tions on noisy gate implementations. We also make heavy
use of the perturbation theory of invariant subspaces of
non-normal matrices [52,53]. We note that the specific
parameter 1/9 is an artifact of the proof techniques and
probably suboptimal.

(b) Building on Theorem 8, we prove multiple theorems
for nonuniform RB protocols. The first subtype,
approximate RB, is covered by Theorem 9, a direct
generalization of Theorem 8, and also features an
exponentially suppressed error. For the second sub-
type, subset RB, on the other hand, we can give only
a weaker statement, guaranteeing that the RB output
data is described by a linear combination of expo-
nentials up to constant error (in sequence length) as
long as the sequence length m is taken to be larger
than a mixing length mmix. This mixing length indi-
cates the moment where the m-fold convolution ν∗m

of the probability distribution ν, which governs the

sampling of random gates, becomes close to the uni-
form distribution and is a function of both the initial
distribution ν and the underlying group G. We can
summarize our result on subset RB as follows.

Theorem 2: (Informal version of Theorem 10). Consider
a RB experiment with sequence length m, with gates drawn
from a group G according to a probability distribution
ν and implemented through a reference representation
ω(g) = ⊕

λ∈� σ
⊕nλ
λ (g). Denote the corresponding (noisy)

actual implementation on the quantum computer as φ(g).
If we have, for some sequence length mmix that

∑

g∈G

ν(g) ‖ω(g)− φ(g)‖	 ≤ δ

mmix
, (4)

∑

g∈G

∣∣ν∗mmix(g)− 1
|G|

∣∣ ≤ δ′, (5)

and δ + δ′ ≤ 1/9, then the output data p(m) of the RB
experiment obeys the relation

∣∣∣p(m)−
∑

λ∈�
Tr(AλM

m−mmix
λ )

∣∣ ≤ O(δ + δ′), (6)

with the error bound independent of m. Here Aλ and
Mλ are nλ × nλ matrices, with Mλ depending only on the
actual implementation φ.

This theorem cannot guarantee an exponential error
bound, but still improves on the state of the art [14,15],
both in the generality of the assumptions made and the
size of the possible error. Note also the appearance of the
mmix

−1 term in the average diamond-norm deviation. This
can be read as the requirement that the generating gates are
of sufficiently high quality that any (composite) uniformly
randomly chosen gate will be close in diamond norm to its
ideal version. In this sense this requirement is of the same
stringency as Eq. (2).

(c) We discuss the behavior of interleaved RB proto-
cols, illustrating how standard interleaved RB, as
well as all but one nonstandard interleaved RB pro-
tocol, are covered by Theorem 8. We consider two
nonstandard interleaved RB protocols, namely cycle
benchmarking [13], which is covered by our theo-
rems in a nontrivial way and robust RB tomography
[50], which is not covered by our theorems. We
argue that this is not a weakness of our argument
but rather that the RB output data of this pro-
tocol behaves in a nonstandard manner, requiring
tailor-made analysis.

(d) In Sec. X, we provide a discussion of the cen-
tral assumption |G|−1∑

g∈G
‖ω(g)− φ(g)‖	 ≤ δ,

made on the behavior of noisy gates in the above
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theorems. We argue that this assumption is a natu-
ral one to make (Theorem 18) and moreover that it
cannot be replaced by a similar assumption involv-
ing the average fidelity without requiring the gate to
be exponentially close to perfect in the number of
qubits. This also answers an open question posed in
Ref. [25] in the negative.

The unifying conceptual theme of all of our theorems is the
fact that RB can be seen as a “power iteration in frequency
space.” The behavior of the output data is dictated by the
dominant eigenvalues of a fixed matrix that is obtained
from the Fourier transform [25] (in a specific sense defined
later) of the noisy implementation map φ. Taking powers
of this matrix results in the exponential suppression of all
but the largest eigenvalues.

Together, these results provide a rigorous justification
for the folkloric knowledge that RB protocols function
under broad experimental circumstances.

C. A framework for randomized benchmarking data
processing

The second phase of the RB protocol, the data-
processing phase, takes in RB output data, which is well
described by a linear combination of exponentials and out-
puts the decay rates associated with those exponentials. If
the data is well described by a single exponential decay
this can be done by off-the-shelf curve-fitting procedures,
but if the RB output data is of a more complex form
(such as a linear combination of several exponentials) a
more flexible approach is required. Here we provide a self-
contained discussion of modern signal-processing methods
for extracting decay parameters from data with a func-
tional form given by Eq. (1). We review signal-processing
algorithms, in particular the multiple signal classification
(MUSIC) and estimation of signal parameters via ratio-
nal invariance techniques (ESPRIT) algorithms, that are
at least, in principle, applicable to the most general form
of RB output data, even including matrix exponentials.
Beyond that, we discuss theoretical guarantees that were
derived for these algorithms and discuss their implications
for RB data processing. Building upon these guarantees,
we derive a sampling complexity statement that ensures
the recovery of decay rates with these algorithms under
measurements with finite statistics. We complement our
analytical discussion with numerical evaluations and simu-
lations that demonstrate the practical performance of these
algorithms. Importantly, our discussions detail the fun-
damental limitations of postprocessing RB output data
featuring many exponential decays.

D. A general postprocessing scheme for isolating
exponential decays

Even with modern methods, fitting multiple exponential
decays is a difficult affair, and in many scenarios one is

only interested in a subset of the decay parameters that
describe the output data of a particular RB experiment.
Because of this, several methods have been developed
to isolate particular exponential decays. Examples of this
include the class of uniform RB protocols without inver-
sion gates (indicated with a double asterisk “∗∗” in Fig. 2)
and a variety of other protocols that take linear combina-
tions of RB output data with different ending gates gend to
isolate particular exponential decays (indicated with a sin-
gle asterisk “∗”). In Sec. VIII, we give a novel class of
protocols called filtered RB that subsumes all these earlier
approaches. For simplicity, we consider only uniform RB,
but our results generalize to other types of RB.

This class of protocols is based on the realization that
RB output data (indexed by an ending gate gend) can be
seen as a vector in the group algebra of the group being
benchmarked. This allows for the design of filter functions
αλ : G → C, based on the matrix elements of irreducible
representations, that isolate exponential decays associated
with subrepresentations of the ideal implementation of the
gates in the group G. Using these filter functions we can
write down a general postprocessing scheme for the isola-
tion of exponential decays and prove that it works when
the assumptions of Theorem 8 are satisfied. We prove a
theorem of the following form.

Theorem 3: [Theorem 16 (informal)]. Let αλ : G → C be
the filter function associated with the irreducible represen-
tation σλ and let p(m, gend) be the output data associated
with a uniform RB experiment with ending gate gend, sat-
isfying the condition Eq. (2) with parameter δ. We have
that

kλ(m) := 1
|G|

∑

gend∈G

αλ(gend)p(m, gend) (7)

satisfies
∣∣kλ(m)− Tr(BλM m

λ )
∣∣ ≤ O(δm), (8)

with Mλ associated with the irreducible subrepresentation
σλ [as per Eq. (1)].

Beyond this theoretical result we note that this novel
class of protocols allows one (by a simple reparametriza-
tion) to eliminate the need for an explicitly implemented
inversion gate in RB, making the protocol significantly
simpler to implement in practice.

We also give a statistical analysis of this postprocessing
scheme. In particular, we prove that if the measurement
positive operator-valued measure (POVM) performed in
the RB experiment is (proportional to) a state 3-design,
the sample complexity of the complete benchmarking
procedure (data collection plus postprocessing) is asymp-
totically independent of the dimension of the underlying
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Hilbert space for arbitrary benchmarking groups. This is a
strong improvement on previous attempts at such a general
postprocessing procedure. Note that the 3-design condi-
tion appearing here plays a similar role in controlling the
variance in scalable estimation procedures such as shadow
estimation [54,55].

We stress, however, that the 3-design condition is a
sufficient condition and there are examples in the liter-
ature covered by this postprocessing scheme where this
condition is not met but the overall procedure is still
scalable. In particular, we discuss the recently proposed
linear-cross-entropy benchmarking procedure (XEB) [29]
in Sec. VIII C. We argue that the variant of XEB that
performs multiple random gate sequences is an example
of uniform RB (as per the typology) combined with an
instance of our general postprocessing scheme. Further-
more, we argue that the sample complexity of linear XEB
is asymptotically independent of the underlying Hilbert-
space dimension even though the POVM being measured
is not itself a 3-design.

E. Randomized benchmarking and average fidelity

RB has originally been designed to estimate the average
gate fidelity of a group of gates. Under the assumption of
gate-independent noise, it can be proven (as has already
been done in Ref. [1]) that the decay rates estimated in a
RB experiment correspond exactly to the average fidelity
of the noise associated to the gates. However, if this con-
dition is relaxed, the connection between these decay rates
and the average fidelity is less clear. Even more strongly, it
has been argued in Ref. [26] that due to a so-called gauge
freedom in the representation of the gate set, the entire
premise of a connection between RB decay rates and aver-
age fidelity may be suspect. This is because the choice of
the gauge does not influence the RB decay rates, but it does
affect the average gate fidelity. Indeed, it has been shown
that under some transformations the two quantities may
differ by orders of magnitude, even in the gate-dependent
noise case (where the previously proven connection can be
seen as a “natural” gauge choice).

Subsequently proposals have been made to reconnect
the average gate fidelity and RB decay rates in the con-
text of standard Clifford RB: a natural gauge called the
depolarizing gauge [25] and the noise-in-between-gates
framework. Both of these proposals provide an exact con-
nection between the decay rates of RB and the average
fidelity. However, several crucial questions of interpreta-
tion have still been left open, and in this work we aim to
address some of them, and sharpen others.

In Sec. IX B 2, we substantially generalize both pro-
posed connections between decay rates and average
fidelity to RB with arbitrary finite groups. What is more,
we argue that these two proposals are in fact equivalent.
Moreover, we present an explicit example of a completely

positive implementation map, which is not completely pos-
itive in the depolarizing gauge (or equivalently has non-
completely positive noise in-between gates). This implies
that both these interpretations of RB decay rates are not
fully satisfactory, because they cannot be guaranteed to
correspond to the average fidelity of a physical process.
That said, this does not mean that RB decay rates are not
useful figures of merit, as they can always be interpreted
as meaningful benchmarks in their own right.

Complementing this, following the approximate approach
of Ref. [27], we show that the problem of connecting RB
decay rates with the average gate fidelity can be (approx-
imately) reduced to the deviation between the dominant
(ideal) unperturbed eigenvectors and their (implemented)
perturbed version in Fourier space. We show that, as
long as this overlap is sufficiently close to 1, any gauge
choice that corresponds to a completely positive and trace-
preserving (CPT) channel will connect RB parameters to
the average gate fidelity. Hence we obtain, under pre-
cise conditions, an approximate version of the connection
between average fidelity and RB decay rates.

More formally, we leverage the Fourier-transform
framework introduced in Ref. [25] to derive the following
expression for the entanglement fidelity, which is linearly
related to the average fidelity, averaged over all elements
of the group as

Fe(φ,ω) = 1
d2

∑

λ∈�
dσλ fmax(σλ)αoverlap + αres, (9)

where fmax(σλ) is the RB decay parameter associated with
the irreducible subrepresentation σλ. In the Fourier frame-
work fλ,max corresponds to the largest eigenvalue of the
Fourier transform of the implementation map φ evalu-
ated at σλ. Furthermore, the parameter αoverlap encodes
the overlap between the (left and right) eigenvectors asso-
ciated with this largest eigenvalue, and the eigenvector
of the Fourier transform of the reference representation
ω evaluated at σλ. Finally, the term αres, the residuum,
encodes information about the subdominant eigenspaces of
the Fourier transform. The factors αoverlap,αres are gauge
dependent. We give bounds on the overlap and residuum
in terms of the deviation of φ from the reference ω and
discuss relevant scenarios where these terms contribute
only negligibly to the entanglement fidelity (and thus when
RB decay data corresponds approximately to an average
fidelity).

F. Nontechnical discussion

In this work, we develop a comprehensive theory of
randomized benchmarking. Our main motivation has been
our desire to give a mathematical framework for RB and
to classify known schemes. It should be clear, however,
that our work goes significantly beyond a mere classi-
fication of what is present in the literature. Since our
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work is in parts rather technical, in the following we
formulate a series of “take-home messages”: actionable
advice for experimentalists interested in using RB in the
laboratory and developing new protocols to suit their
needs.

1. RB gives exponential decays under broad
(Markovian) circumstances. Confirming experi-
mental intuition, and extending earlier results for
specific groups, our main result (Theorem 8) proves
that RB protocols behave (up to an exponentially
small correction factor) as expected whenever the
noise afflicting the gate set is Markovian and time
independent. Because the correction factor is so
small, any deviation from the prescribed functional
form can in fact be taken as evidence of non-
Markovian or time-dependent noise processes (as
suggested earlier by Ref. [24]). We do wish to
emphasize that the error term in Theorem 8 can
be quite significant for small sequence lengths.
Hence we recommend as a rule of thumb that RB
experiments should not include very short (m ≤
5) sequence lengths, especially when strong gate-
dependent (but Markovian) noise is suspected, as
this might bias the estimator for the decay rate.

2. RB is broadly resistant to deviations from uni-
form sampling. Similar to robustness against gate-
dependent Markovian noise, we prove (Theorem 9)
that RB gives correct results even when the group is
not being sampled exactly uniformly. This broadly
justifies the use of (generically applicable) Markov
chain techniques for sampling group elements [14],
overcoming a key technical hurdle in running RB
protocols with new groups.

3. The decay rates given by RB can be interpreted
as an average fidelity (but caveats apply). We
find that the decay rates of general RB experiments
can always be exactly associated to the average
fidelity of a fixed process, however, this process
need not be physical (i.e., it does not always corre-
spond to a completely positive and trace-preserving
map). Alternatively, we show that RB decay rates
can always be connected approximately to the aver-
age fidelity of a physical process, but the degree of
approximation is dependent upon external beliefs
about the underlying noise process. Hence, we
believe the interpretation of RB decay rates as an
average fidelity to be broadly valid, but subject to
technical caveats.

These three messages can be considered folklore knowl-
edge in the RB community, for which we provide
a rigorous underpinning. However, our work also
contains new conceptual developments, notably the
following.

1. Filtering scalably extends RB to a large class of
groups. As formalized in Sec. VII, a major prac-
tical hurdle to applying RB with arbitrary finite
groups, is that this generically requires the fitting
of output data to multiexponential decays. This is
a difficult problem both in theory and in practice
and it has so far contributed to the limited experi-
mental use of RB beyond a few groups (such as the
Clifford group). Our new procedure, which we call
filtering (or filtered RB), takes a major step towards
solving this problem by giving a generic procedure
for isolating exponential decays in a fully scalable
manner. This approach is discussed in great detail
in Sec. VIII, with the protocol given explicitly in
Algorithm Box 2. This procedure is guaranteed to
be scalable for all groups as long as the measure-
ment POVM forms a 3-design, but we believe that
it applies beyond that (see, in particular, the exam-
ple of linear cross-entropy benchmarking discussed
in Sec. VIII C).

2. Inversion gates are not required for RB. Another
key practical difficulty in performing randomized
benchmarking has been the necessity to compute
and implement a global inversion gate. However,
filtered RB has the bonus property that it does not
require the application of inverses. Instead a ran-
dom noisy gate sequence can be directly compared
to a perfect classical simulated version to extract the
same RB decay rates, making the quantum part of
the protocol significantly easier to implement. How-
ever, this simplicity is gained at a (constant) extra
sampling overhead, as the inversion gate in standard
RB also suppresses the sampling complexity [56].

With these new contributions, our framework serves
as a convenient basis to design new schemes that
come with rigorous performance bounds built in. We
expect this to facilitate and accelerate the develop-
ment of more sophisticated and tailor-made benchmark-
ing schemes as required by experimental practition-
ers. Steps in this direction have already been made
[57–59]. In particular, Ref. [58] explores the frame-
work put forth here for continuous groups of quantum
gates.

G. Structure of this work

In Sec. III, we discuss mathematical preliminaries: we
set the notation for the rest of the work and recall stan-
dard notions from representation theory. This section can
be skipped by experienced readers.

In Sec. IV, we discuss implementation maps: linear
maps from finite groups to superoperators, a central con-
cept in our treatment of RB. We also give an introduc-
tion into matrix-valued Fourier theory and explicitly state
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several results from the perturbation theory of non-normal
matrices, which we use throughout the rest of the work.

In Sec. V, we give a general framework for RB, with
its two phases: the data-collection and data-processing
phases, and give a general protocol for the data-collection
phase. This protocol, which depends on a range of input
parameters, covers (the data-collection phase of) all known
versions of RB. We also discuss a typology of RB schemes,
dividing up the known protocols into a few generic classes.

In Sec. VI, we present a series of general theorems that
govern the behavior of the output data of a RB protocol.
We confirm the folklore knowledge that RB data is well
described by a linear combination of (matrix) exponentials,
under some general assumptions.

In Sec. VII, we discuss general procedures for extracting
decay parameters from RB output data. We discuss imple-
mentation and general limitations and prove a sampling
complexity statement for RB.

In Sec. VIII, we propose a general postprocessing
method for isolating exponential decays associated with
particular subrepresentations. We argue that this postpro-
cessing method covers many previously proposed proce-
dures. We also prove a sufficient condition under which
this postprocessing scheme is scalable for any RB proto-
col and analyze linear cross-entropy benchmarking as an
example.

In Sec. IX, we discuss the relation between the decay
rates generated by RB and the average fidelity, focusing in
particular on the gauge freedom in the presentation of the
underlying noise channels.

Finally, in Sec. X, we finally argue that the assumptions
made in Sec. VI are natural and in some sense necessary
for the correct behavior of RB.

III. PRELIMINARIES: QUANTUM CHANNELS
AND GROUP REPRESENTATIONS

In this section, we go over some of the basic mathe-
matical machinery needed to talk about randomized bench-
marking and prove our central theorems. We discuss quan-
tum channels and their matrix representations (Sec. III A),
and groups and group representations (Sec. III B). This is
fairly standard material, and beyond the setting of notation
it can be skipped by an experienced reader.

We begin by setting the stage and introducing some
basic notation used throughout our work. We denote com-
plex vector spaces by V or more explicitly by Cd. We
denote by Md the vector space of complex linear transfor-
mation of Cd and by Sd the space of linear transformations
of Md, often called superoperators. Here d is an integer
that in many cases can be thought of as being a power of
2 (d = 2q), however, all theorems are valid for general d
unless explicitly stated. We denote by TrV the partial trace
over a tensor factor V (of an implied tensor product space

V ⊗ W for some W). Finally we denote the complex con-
jugate by a bar (i.e., A is the entrywise complex conjugate
of A).

A. Quantum channels and the operator-matrix
representation

Unitary operations as they are generated by quantum
gates—in the focus of attention in this work—are quantum
channels. Formally, quantum channels are superoperators,
that is elements of Sd, that are trace preserving and com-
pletely positive. In order to represent quantum channels
(and elements of Sd more generally), we make use of the
operator matrix representation. Given a quantum chan-
nel E ∈ Sd, we can represent it as an element of Md2 by
choosing an orthonormal basis (with respect to the trace

or Hilbert-Schmidt inner product)
{
bj
}d2

j =1 for Md. Thus E
(abusing notation) is a d2 × d2 matrix with components

Ej ,k := Tr
[
b†

j E(bk)
]

. (10)

Analogously, (density) matrices ρ ∈ Md can be repre-
sented as vectors,

|ρ〉〉 =

⎛

⎜⎝

ρ1
ρ2
. . .

ρd2

⎞

⎟⎠ with ρk := Tr
[
b†

kρ
]

. (11)

Note that the action E(ρ) now corresponds to a matrix-
vector multiplication E |ρ〉〉 and the concatenation of two
channels E and E ′ into a matrix multiplication EE ′. We
can analogously write a (POVM element) matrix� ∈ Md
as a covector

〈〈�| = (
�1 �2 . . . �d2

)
with

�k := 〈〈�, bk〉〉 = Tr [�bk] . (12)

With this, the probability to obtain an outcome described
by the POVM element � when measuring ρ is p(�|ρ) =
〈〈�, ρ〉〉 = Tr[�ρ].

B. Representations of groups

At the heart of our discussion are notions of represen-
tations of groups. In this section, we hence recall some
basic facts about the representations of finite (and compact)
groups over complex vector spaces, with a focus on their
use in quantum computation. For a more in-depth treat-
ment of this topic we refer to Refs. [60,61]. In this work
we restrict our attention to finite groups keeping the nota-
tion more concise. Most results can be analogously stated
for continuous, compact groups and derived following
the same strategy. Reference [58] carefully discusses the
required modifications and gives explicit reformulations
for continuous compact groups.
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1. Representations

Let G be a finite group and consider the space Md of
linear transformations of Cd. A representation ω is a map
ω : G → Md that preserves the group multiplication, i.e.,

ω(g)ω(h) = ω(gh), ∀g, h ∈ G. (13)

We require the operators ω(g) to be unitary as well (for
finite groups this can always be done).

2. Reducible and irreducible representations

If there is a nontrivial subspace W of Cd such that for all
vectors w ∈ W we have

ω(g)w ∈ W, ∀g ∈ G, (14)

then the representation ω is called reducible. The restric-
tion of ω to the subspace W is also a representation, which
we call a subrepresentation of ω. If there are no nontrivial
subspaces W such that Eq. (14) holds the representation ω
is called irreducible. We generally reserve the letter σ to
denote irreducible representations.

Two representations ω,ω′ of a group G are called
equivalent if there exists an invertible linear map T such
that

Tω(g) = ω′(g)T, ∀g ∈ G. (15)

We denote this by ω � ω′. For finite groups G the set of
irreducible representations (up to the above equivalence)
is finite. We denote it by Irr(G).

3. Sums, products, and Maschke’s lemma

We make use of sums and products of representations.
Given representations ω,ω′, the maps

ω ⊕ ω′ : G → Md ⊕ Md′ : g �→ ω(g)⊕ ω′(g), (16)

ω ⊗ ω′ : G → Md ⊗ Md′ : g �→ ω(g)⊗ ω′(g), (17)

are again representations. They are, however, generally not
irreducible (even if ω and ω′ are). However, Maschke’s
lemma ensures that every representation ω of a group
can be uniquely written as a direct sum of irreducible
representations, that is

ω(g) �
⊕

λ∈�
σλ(g)⊕nλ , ∀g ∈ G, (18)

where the index set� is a subset of the set Irr(G) and nλ is
an integer denoting the number of copies (or multiplicity)
of σλ present in ω.

4. Characters

Characters are a central object in representation theory,
given by the trace of a representation.
Definition 4: (Character of a representation). The char-
acter χω of a representation ω of a group G is defined
as

χω(g) = Tr[ω(g)]. (19)

One of the most important properties for characters of
irreducible representations is the following orthogonality
relation.

Proposition 5: (Orthogonality formula). Let χλ,χλ′ be the
characters of two irreducible representations σλ, σλ′ of a
group G. Then

1
|G|

∑

g∈G

χλ(g)χλ′(g) =
{

1 if σλ � σλ′

0 if σλ �� σλ′ .
(20)

5. Projections onto irreducible representation

Given a representation ω = ⊕
λ∈� σ

⊕nλ
λ on a vector

space Vω = ⊕
V⊕nλ
λ we can choose a basis

{
vλj | j ∈ 1, . . . ,

dλ
}

for each Vλ. Each vector v in Vω can thus be written as

a linear combination v = ∑
λ∈�

∑dλ
j =1 cλj v

λ
j . We can con-

versely identify the basis vector components of any vector
v by application of an appropriate projection Pλj , such that
Pλj v = cλj v

λ
j , where

Pλj = dλ
|G|

∑

g∈G

[
σλ(g)

]
j ,jω(g). (21)

Note that, in order to construct these projections, the
knowledge of the diagonal elements of the correspond-
ing irreducible representation σλ is required. However, it is
also possible to project any vector onto distinct irreducible
subspaces (up to multiplicity) by using only knowledge of
the character of a representation:

Pλ = dλ
|G|

∑

g∈G

χλ(g)ω(g). (22)

This last formula follows simply from the definition of the
character as χλ(g) = Tr[σλ(g)].

IV. FOURIER TRANSFORMS AND
PERTURBATION THEORY OF

IMPLEMENTATION MAPS

In this section, we review the concept of group imple-
mentation maps and their Fourier theory (Sec. IV B).

020357-10



GENERAL FRAMEWORK FOR RANDOMIZED BENCHMARKING PRX QUANTUM 3, 020357 (2022)

Mathematically this corresponds to noncommutative har-
monic analysis of matrix-valued functions. We also discuss
perturbation theory for non-normal matrices. This mate-
rial is somewhat less well known, so we spend more time
discussing these concepts.

A. Implementation maps

Given a group G, we can assign quantum circuits [ele-
ments of U(d)] to each group element, which gives rise to a
representation of the group. However, in practice, quantum
circuits will not be executed perfectly, but rather include
noise. This noise can be modeled by a quantum channel,
and we can thus envision assigning to each group element
a quantum channel modeling the real implementation of
that circuit. These quantum channels can be composed,
but this composition will not necessarily maintain group
structure and will thus in general not form a representa-
tion. However, we can define the more general concept of
an “implementation map” φ, which is a function from a
finite group G to the space of superoperators Sd,

φ : G → Sd, (23)

where we usually assume that φ(g) is a trace nonincreas-
ing quantum channel for all g. If we want to draw explicit
attention to this fact we call φ completely positive if and
only if φ(g) is completely positive for all g ∈ G. Finally,
note that if φ(g)φ(h) = φ(gh) for all g, h ∈ G then φ

would be a representation. We can think of the implemen-
tation map as being an abstract presentation of the noisy
implementation of the group elements, which depends on
the noise processes in the quantum computer but also
on other choices such as the compilation of circuits into
elementary gates.

B. Fourier transforms of implementation maps

When considering an implementation map one can ask
precisely when it is a representation, and failing that, if
it is close to a representation (in some reasonable way).
To answer this question we need to introduce some math-
ematical machinery. This machinery was first introduced
into the theory of randomized benchmarking by Ref. [25],
based on work by Gowers and Hatami [62], which is
itself a partial review of older mathematical work. In this
section, we consider general maps φ from a group G to a
space of d × d matrices Md. Thinking of Sd as a matrix
space, our notion of implementation map can be seen to be
a special case of these maps. Given a map φ we define its
Fourier transform F(φ) as

F(φ)[σλ] = 1
|G|

∑

g∈G

σλ(g)⊗ φ(g) (24)

for all λ ∈ Irr(G). So the Fourier transform F(φ) is a func-
tion from the set Irr(G) of irreducible representations of G

to a set of matrices. This definition has all the properties
of a Fourier transform. Firstly, it has an inverse transform,
which maps F(φ) back to φ, given by

F−1[F(φ)
]
(g) =

∑

λ∈Irr(G)

dλ TrVλ

{
F(φ)[σλ]σλ(g−1)⊗ 1

}

(25)

for all g ∈ G and where dλ is the dimension of Vλ, the
space on which the representation σλ acts.

Secondly, it has the correct behavior with respect to con-
volutions of implementation maps: the Fourier transform
of a convolution corresponds to a product of Fourier trans-
forms. Recalling the definition of a convolution of two
implementation maps φ,φ′

φ ∗ φ′(g) = 1
|G|

∑

g′∈G

φ(gg′−1)φ′(g′) (26)

we can easily see the following:

F(φ ∗ φ′)[σλ] = 1
|G|

∑

g,g′∈G

σλ(g)⊗ φ(gg′−1)φ′(g′)

= 1
|G|

∑

g,g′∈G

σλ(gg′)⊗ φ(g)φ′(g′)

= F(φ)[σλ]F(φ′)[σλ] (27)

for all λ ∈ Irr(G). Another useful property is the Parseval
identity

1
|G|

∑

g∈G

Tr
[
φ(g)†φ′(g)

]

=
∑

λ∈Irr(G)

dλ Tr{F(φ)[σλ]†F(φ′)[σλ]}. (28)

Finally, we note that the Fourier transform (evaluated at
an irreducible representation) of a representation is an
orthogonal projector with its rank given by the multiplic-
ity of that irreducible representation. To see this, consider
a representation ω = ⊕

λ∈� σ
⊕nλ
λ . We have that

{F(ω)[σλ′]}2 = 1
|G|2

∑

g,g′∈G

σλ′(gg′)⊗ ω(gg′)

= |G|
|G|2

∑

g∈G

σλ′(g)⊗ ω(g) = F(ω)[σλ′]

(29)

for all λ′ ∈ Irr(G). Moreover for λ′ ∈ � we have

Tr{F(ω)[σλ′]} = 1
|G|

∑

g∈G

χσλ′ (g)χω(g) = nλ′ (30)

by the character orthogonality formula.
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1. Fourier operators

We also give another, useful way to think about the
matrix Fourier transform, namely in terms of what we call
Fourier operators.

Note that the set of maps φ → Sd can be seen as a
vector space under pointwise addition (of the superoper-
ators). We can further lift this vector space to an algebra
by considering the convolution operator ∗ [as defined in
Eq. (26)] on the functions in the vector space. We can con-
struct a faithful (i.e., injective) matrix representation of this
algebra as

F(φ) = 1
|G|

∑

g∈G

⊕

λ∈Irr(G)

σ λ(g)⊗ φ(g)

= 1
|G|

∑

g∈G

ωG(g)⊗ φ(g), (31)

with ωG = ⊕
λ∈Irr(G) σλ. This is just the Fourier transform

of φ gathered in a direct sum [note that Irr(G), and hence
the sum, is finite for any finite group]. By the Peter-Weyl
theorem for finite groups one can equally well think of
ωG(g) as an element of the group algebra C[G] associ-
ated with G, we do not use this point of view explicitly.
We call F(φ) the Fourier operator of φ. From the prop-
erties of the Fourier transform we immediately see that
F(φ)F(φ′) = F(φ ∗ φ′). It is useful to equip the algebra
of Fourier operators with several norms, based on the dia-
mond norm ‖·‖	 for Sd (in principle, this construction will
work for any norm on Sd). We define

‖F(φ)‖max = max
g∈G

∥∥∥TrVωG

[
DωG

ωG(g−1)⊗ 1F(φ)
]∥∥∥

	

= max
g∈G

‖φ(g)‖	 , (32)

‖F(φ)‖m = 1
|G|

∑

g∈G

∥∥∥TrVωG

[
DωG

ωG(g−1)⊗ 1F(φ)
]∥∥∥

	

= 1
|G|

∑

g∈G

‖φ(g)‖	 , (33)

where Dω′ = ⊕
λ∈Irr(G) dλ1λ collects the relevant dimen-

sional factors and where the second equality follows from
the properties of the Fourier transform. These norms are
bona fide matrix norms on the algebra of Fourier operators,
notably they are submultiplicative, viz.,

∥∥F(φ)F(φ′)
∥∥

max = ∥∥F(φ ∗ φ′)
∥∥

max = max
g∈G

∥∥φ ∗ φ′(g)
∥∥

	

≤ max
g∈G

1
|G|

∑

ĝ∈G

∥∥φ(gĝ−1)
∥∥

	
∥∥φ′(ĝ)

∥∥
	

≤ max
g,ĝ∈G

‖φ(g)‖	
∥∥φ′(ĝ)

∥∥
	

= ‖F(φ)‖max

∥∥F(φ′)
∥∥

max (34)

and similarly for ‖·‖m. We also have an identity involving
both norms
∥∥F(φ)F(φ′)

∥∥
max = ∥∥F(φ ∗ φ′)

∥∥
max = max

g∈G

∥∥φ ∗ φ′(g)
∥∥

	

(35)

≤ max
g∈G

1
|G|

∑

ĝ∈G

∥∥φ(gĝ−1)
∥∥

	
∥∥φ′(ĝ)

∥∥
	

= ‖F(φ)‖max

∥∥F(φ′)
∥∥

m , (36)

which will be helpful later.

C. Perturbation theory

In this section, we gather some technical tools from
matrix perturbation theory that are essential to many of the
proofs in this paper. Our sources for this section are the
standard books of Stewart and Sun [53] and Kato [52]. For
the rest of this section, we assume that ‖·‖ denotes a sub-
multiplicative matrix norm on Md, i.e., ‖AB‖ ≤ ‖A‖ ‖B‖
for all A, B ∈ Md.

Let A ∈ Md be a complex Hermitian matrix. Assume
that there exists a unitary matrix X = [X1, X2] such that
the columns of X1 and X2 span invariant subspaces of A,
that is

[X1, X2]†A[X1, X2] =
(

A1 0
0 A2

)
, (37)

with A1 = X1
†AX1 and A2 = X2

†AX2. We call this a spec-
tral resolution of A. We can think of A1, A2 as the matrix
A restricted to subspaces of Cd spanned by the columns
of X1, X2, respectively, and furthermore we assume that
the eigenvalues of A1 are all distinct from the ones of
A2: the subspaces are then said to be simple. These sub-
spaces are invariant under the action of A in the sense that
AX1 = X1A1 and are hence called invariant subspaces. It
turns out that spectral resolutions, and invariant subspaces
more generally, are stable against (small) perturbations.
That is, given a perturbation matrix E (not necessarily Her-
mitian) we can find matrices R = [R1, R2] and L = [L1, L2]
such that L† = R−1 and

[L1, L2]†(A + E)[R1, R2] =
(

A′
1 0

0 A′
2

)
(38)

for some A′
1, A′

2 and the matrices R, L are close to X in a
well-specified sense. This is what one would expect from a
perturbation theorem. It, however, holds only if the pertur-
bation E is small with respect to the difference between
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A1 and A2. This difference is made quantitative by the
so-called separation function:

sep(A1, A2) = min
Z �=0

‖A1Z − ZA2‖∥∥X1ZX2
†
∥∥ . (39)

This separation function has some rather nice properties.
Firstly, it is symmetric in its arguments:

sep(A1, A2) = sep(A2, A1). (40)

Secondly, it is stable against perturbations, i.e., given a
perturbation A + E of A we have

|sep(A1 + E1, A2 + E2)− sep(A1, A2)| ≤ ‖E1‖ + ‖E2‖ .
(41)

With this function we can state the following theorem,
which can be derived from Theorem 2.8 in Ref. [53,
p. 238].

Theorem 6: (Reference [53]). Let A be a complex Hermi-
tian matrix with spectral resolution diag(A1, A2) induced
by a unitary X = [X1, X2]. Also, let ‖·‖ be a matrix norm.
Now let E be a complex matrix. If E has the properties

∥∥X1
†EX2

∥∥ ∥∥X2
†EX1

∥∥
[
sep(A1, A2)− ∥∥X1

†EX1
∥∥− ∥∥X2

†EX2
∥∥ ]2

<
1
4

, (42)

∥∥X1
†EX2

∥∥ ∥∥X2
†EX1

∥∥+ ∥∥X1
†EX2

∥∥ ∥∥X1
†EX2

∥∥
[
sep(A1, A2)− ∥∥X1

†EX1
∥∥− ∥∥X2

†EX2
∥∥ ]2

<
1
2

(43)

then there exist matrices P1, P2 such that

‖P1‖ ≤
∥∥X2

†EX1
∥∥

sep(A1, A2)− ∥∥X1
†EX1

∥∥− ∥∥X2
†EX2

∥∥ , (44)

‖P2‖ ≤
∥∥X2

†EX1
∥∥

sep(A1, A2)− ∥∥X1
†EX1 + X1

†EX2P1
∥∥− ∥∥X2

†EX2 − P1X1
†EX2

∥∥ (45)

and

[L1, L2]†(A + E)[R1, R2] =
(

A′
1 0

0 A′
2

)
, (46)

with

[R1, R2] = [X1, X2]
(
1 0
P1 I

)(
1 P2
0 I

)
, (47)

[L1, L2]† =
(
1 −P2
0 I

)(
1 0

−P1 I

)
[X1, X2]†, (48)

and A′
1 = A1 + X1

†EX1 − X2
†EX1P1 and A′

2 = A2 + X2
†

EX2 − P1X1
†EX2. Equivalently, we have

A + E = R1A′
1L1

† + R2A′
2L2

†. (49)

Proof. From the first property in Eq. (42), and Theorem
2.8 in Ref. [53] we conclude the existence of a matrix P1
such that

‖P1‖ ≤
∥∥X2

†EX1
∥∥

sep(A1, A2)− ∥∥X2
†EX2

∥∥− ∥∥X1
†EX1

∥∥ , (50)

and
(

1 0
−P1 I

)
[X1, X2]†(A + E)[X1, X2]

(
1 0

P1 I

)

=
(

A′
1 E12

0 A′
2

)
, (51)

with E12 = X1
†EX2 and A′

1 = A1 + X1
†EX1 − X2

†EX1P1
and A′

2 = A2 + X2
†EX2 − P1X1

†EX2. Now considering the

above as a perturbation of A′ =
(

A′
1 0

0 A′
2

)
we can apply

Theorem 2.8 from Ref. [53] again so long as

sep(A′
2, A′

1) > 0. (52)

Using the stability and symmetry of the sep function a
necessary condition for the above is

sep(A1, A2)− ∥∥X1
†EX1 + X1

†EX2P
∥∥

− ∥∥X1
†EX1 − PX1

†EX2
∥∥ > 0, (53)

which by submultiplicativity and the norm bound on P1
is true if the second property in Eq. (42) holds. Hence
Theorem 2.8 in Ref. [53] provides for the existence of a
P2 with norm bound

020357-13



J. HELSEN et al. PRX QUANTUM 3, 020357 (2022)

‖P2‖ ≤
∥∥X2

†EX1
∥∥

sep(A1, A2)− ∥∥X2
†EX2 + X1

†EX2P1
∥∥− ∥∥X2

†EX2 − P1X1
†EX2

∥∥ (54)

and the property that

[L1, L2]†(A + E)[R1, R2] =
(

A′
1 0

0 A′
2

)
, (55)

with

[R1, R2] = [X1, X2]
(
1 0
P1 I

)(
1 P2
0 I

)
, (56)

[L1, L2]† =
(
1 −P2
0 I

)(
1 0

−P1 I

)
[X1, X2]†. (57)

�
We note that in Eq. (42) the first property implies the

second if
∥∥X1

†EX2
∥∥ ≤ ∥∥X2

†EX1
∥∥.

While eigenvalues and invariant subspaces are stable
under small perturbations (as discussed above), that is,
they are holomorphic functions with respect to analytic
perturbations, the same is not true for eigenvectors. This
is due to the fact that a vector basis spanning a multidi-
mensional eigenspace is not uniquely determined, and thus
the eigenvectors of the perturbed eigenspace may be com-
pletely different from the unperturbed basis. However, if an
unperturbed eigenvalue a1 is simple, the related eigenvec-
tor x1 is unique (up to a scalar factor), and it is thus stable.
We can make this more explicit by specializing Theorem
6 to simple invariant subspaces of dimension one. Let us
again consider a Hermitian matrix A and adopt a unitary
basis transformation X = [x1, X2] so that

[x1, X2]†A[x1, X2] =
(

a1 0
0 A2

)
, (58)

where A2 ∈ Md−1. In this specific setting, the separation
function becomes [63]

sep(a1, A2) = ∥∥(a11 − A2)
−1
∥∥−1

. (59)

From Theorem 6, we then have the following.

Corollary 7: (Perturbation of a 1-dim simple subspace).
The left and right perturbed eigenvectors originated from
x1 are

r1 ≈ x1 + X2 (a11 − A2)
−1 X †

2 Ex1 and


†
1 ≈ x†

1 + x†
1EX2 (a11 − A2)

−1 X †
2 , (60)

where we neglect terms O(‖E‖2).

Finally, to analyze perturbations of eigenvalues, we
make use of the Bauer-Fike Theorem [53, Theorem 1.6]:
let A be diagonalizable such that S−1AS = diag[(aj )j ] and
let E be an arbitrary operator of the same dimension. Then,
for any eigenvalue ã of A + E, the bound

|ã − aj | ≤ ‖S‖‖S−1‖‖E‖ (61)

is satisfied for some eigenvalue aj in any vector-induced
norm. This implies that, if A is Hermitian, then

|ã − aj | ≤ ‖E‖. (62)

V. THE RANDOMIZED BENCHMARKING
PROTOCOL

The name randomized benchmarking is conventionally
given to a class of methods that assess the quality of a set
of quantum gates. These methods are probabilistic, and can
be seen as constructing an estimator for a quantity that cap-
tures some notion of gate quality. In this section, we make
an attempt at defining randomized benchmarking. By this
we mean that we attempt to organize and make explicit
various ideas that have been present in the literature. We
begin (in Sec. V A) by dividing RB into two parts: a data-
collection phase and a data-processing phase. These corre-
spond roughly to the parts of RB performed on a quantum
computer and on a classical computer, respectively. Within
this division we focus first on the data-collection phase. In
Secs. V B and V C, we give a general protocol for the data-
collection phase of RB. This general protocol depends on
a number of input parameters, and we can obtain every
known RB protocol from a choice of these input param-
eters. We complement this protocol with a classification
of RB protocols into a few types in Sec. V D. This clas-
sification, which pertains only to the data-collection phase
of RB is largely a formalization of knowledge implicit in
the literature but we see that it is a useful organizing tool
when proving theorems about the data generated by RB.
This data we discuss in Sec. V E.

We note that the output of RB data is assumed to be of
a very particular form, namely that of a linear combina-
tion of (matrix) exponential decays. However, this form is
incumbent upon assumptions on the quantum computer on
which (the data-collection phase of) RB is implemented.
We discuss what assumptions have been made before in the
literature and propose our own set of assumptions, which
we justify later in the text.
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A. The data-collection and data-processing phases

RB is composed of two major parts, a data-collection
phase and a data-processing phase. The data-collection
phase consists of what one typically thinks of as RB: one
randomly selects a sequence of quantum gates and applies
them to a quantum state together with a global inverse, and
measures the resulting state. Averaging over many ran-
dom choices of these gates one obtains RB output data
that depends on the length of the random sequence in a
controlled way. This vague description can be made more
precise in many different ways and we provide a general
framework for this procedure in the next few subsections.

The data-processing phase, on the other hand, consists
of what one then does with the data given by a RB exper-
iment. This can be as simple as fitting the data to an
exponential decay, but in many cases also involves more
sophisticated processing techniques. The key feature of the
RB protocol that allows for a structured approach to data
processing is the fact that the RB output data has a very
controlled form. We discuss this form in Sec. V E after
more formally discussing the data-collection phase of RB.

B. Input parameters

The data-collection phase of a RB procedure is charac-
terized by a set of input parameters. These input param-
eters fully define a protocol (which we write down in
Sec. V C) that can be executed on a quantum computer,
yielding probabilistic data that can then be interpreted.
Below is a list of all input parameters to RB, together
with an explanation and examples of choices for these
parameters that correspond to versions of RB present in
the literature.

1. A gate-set/group: A finite set of unitaries (quantum
gates) on Cd. In (almost) all RB protocols this gate
set is also a finite subgroup G ⊂ U(d) of the uni-
tary group. In a large section of the RB literature
the group considered is the q-qubit Clifford group
Cq, but a range of other choices (such as the Pauli
group Pq [13], the real Clifford group [35] or the
CNOT-dihedral group [37,38]) are possible. Choos-
ing a group fixes what gates RB assesses the quality
of and partially determines the structure of the out-
put data. In generator-style RB [14,15] this group is
defined implicitly by the set of generators.

2. A reference implementation and representation:
A map φr from the gate-set/group G to the d-
dimensional superoperators that specifies how the
gates in G should be implemented in the quantum
computer. This map takes into account aspects of
the specific RB protocol but also how gates are com-
posed of elementary gates and other implementation
details. In uniform RB the map φr is a representation
of the group G on Sd. The prototypical example is

the action on the space of Hermitian matrices ρ by
conjugation, i.e., φr(g)(ρ) = ω(g)(ρ) = UgρUg

†.
In general, however, the reference implementation
φr is not a representation, though we see that for
any known RB procedure the reference implementa-
tion can be written as φr(g) = Aω(g)B, where A,B
are (unitary) quantum channels. We refer to ω as the
reference representation.

3. An ending gate: A group element gend that dictates
the global action of a RB sequence. For most pro-
posals this gate is simply the identity, but in other
proposals nontrivial choices for gend (such as choos-
ing it uniformly at random [13,37,39,45]) play an
essential role in data-processing schemes. This end-
ing gate also allows us to include RB schemes that
do not involve an inversion gate [16,19,42,64]. We
emphasize that it is not necessary to implement this
gate physically, but rather it arises from compilation.

4. A set of sequence lengths: A set of integers M

denoting the length of the random sequences of
gates implemented in a RB experiment. We denote
elements of this set by m and the largest element of
this set by M .

5. An input state: A state ρ0 that is prepared at the
beginning of a RB experiment. This state will typ-
ically be a pure state (such as the |0, . . . , 0 〉 state
vector), but is chosen mixed in some versions of
RB [56].

6. An output POVM: A POVM that is measured
at the end of a RB experiment. We denote this
POVM as {�i}i∈I with some index set I . In many
cases this is a two-component POVM, but some
RB procedures explicitly call for more complex
measurements (such as a computational basis mea-
surement [29]).

7. A set of sampling distributions: A set of probabil-
ity distributions νi for i ∈ {1, . . . , M } over the group
G that govern the random sampling of group ele-
ments in RB. We often consider the scenario where
all these probability distributions are the same, in
which case we drop the subscript i and just write ν
for the probability distribution. Moreover, in almost
all instances in the literature this distribution is uni-
form, i.e., ν(g) = 1/|G|, and unless stated explicitly
we always assume this to be the case.

C. The data-collection protocol

Given the input parameters discussed above we can
write down a formal procedure for the data-collection
phase of RB. It has as output an estimator p̂(i, m) of a
probability p(i, m) for each POVM element �i for i ∈ I
and each sequence length m ∈ M.

Note that the probabilities p(i, m) depend in a nontrivial
manner on the initial state ρ0, the POVM {�i}i∈I and the
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ending gate gend. We, however, suppress this dependence
unless it is explicitly necessary to refer to it.

D. A typology of randomized benchmarking protocols

Given protocol Algorithm 1, different choices of the
parameters discussed in Sec. V B give rise to different
RB procedures. More strongly, (the data-collection phases
of) all variants of RB currently in the literature can be
expressed by choosing these input parameters correctly.
Surveying the literature we can distinguish three major
types that are differentiated by their reference implemen-
tations and sampling distributions. The output data associ-
ated with these classes of protocols has varying behavior
and we treat each class separately in Sec. VI. All protocols
included in these classes can be found in Fig. 2 (here we
give only illustrative examples).

1. Uniform randomized benchmarking: This is the
basic type of RB. It is characterized by the fact
that the probability distributions νi are the uni-
form distribution for all i ∈ {1, . . . , mmax}, and that
the reference implementation map φr is exactly a
representation ω, usually the standard action by
conjugation given by ω(g) = φr(g)(ρ) = UgρUg

†

for unitaries Ug (other choices have been made in
Refs. [42,65]). Randomized benchmarking propos-
als of this type are mainly distinguished by what
group G they consider as a gate set (at least when
it comes to the data-collection phase, different pro-
posals in this class might have radically different
data-processing procedures). Protocols of this type

include the original RB proposals [1,66] and many
others.

2. Nonuniform randomized benchmarking: The
defining feature of this class is that the sampling
distributions νi are not the uniform distribution.
It comes in two flavors, which we discuss sepa-
rately:

(a) Subset RB: Here, the distributions νi are far
from uniform (and typically only have support
on a small subset of the group G). Examples
from the literature are Refs. [14,15,39,67].

(b) Approximate RB: Here the νi are close to
uniform. This latter class will turn out to be
essentially the same as uniform RB. This class
has been discussed in Ref. [14] and also arises
in the original “NIST” RB proposal [5] (as per
the analysis of Ref. [51]).

In all works of this type so far the reference imple-
mentations are representations (akin to uniform
RB).

3. Interleaved randomized benchmarking: This
class of RB protocol is characterized by the addition
of an extra “interleaving gate” in the RB proce-
dure. This is a class that is somewhat idiosyncratic,
having one standard subtype and a collection of
“nonstandard” protocols:

(a) Standard interleaved randomized bench-
marking: In this class the interleaving gate is
an element of the benchmarked group G. In this

Algorithm 1. RB (data-collection phase)
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case we find that it is most useful to interpret
interleaved RB as uniform RB, with the ref-
erence implementation a representation ω, but
with the probability distributions νi uniform for
even i and peaked on a single group element (the
interleaving gate) for odd i. We consider this
in more detail in Sec. VI C. The paradigmatic
example is Ref. [4], but nearly all uniform RB
protocols have an interleaved version.

(b) Nonstandard interleaved randomized bench-
marking: These protocols are characterized by
the addition of interleaving gates that are not
part of the group G as well as nonuniform sam-
pling distributions. We discuss these protocols
on a more case-by-case basis in Sec. VI C.

1. Protocols without inversion gates

A number of RB protocols have been developed that
do not feature an inversion gate ginv. These protocols are
indicated with ∗∗ in Fig. 2. While not immediately obvi-
ous, these protocols are actually covered by the general
procedure written down in Algorithm 1. We can think of
these protocols as choosing the ending gate gend at random
for each experimental run and averaging over the results.
Because of the invariance of uniform group averages this
is equivalent to not including an inversion gate and end-
ing the protocol on a random group element. In Sec. VIII
we see that protocols without inversion gate can be seen as
a special case of a general postprocessing scheme for RB
data.

E. Output data

There is a folkloric notion that the output data of RB has
an exponential dependence on the sequence length, with
the rate of decay dependent only on the implementation φ
of the gates in G. This was first established to be true for
uniform RB (in our typology) with the unitary and Clifford
groups, where, under certain assumptions (see Sec. V F) on
the quantum computer implementing operations, one can
prove that p(i, m) = Af m + B, where f depends only on
the implementation map φ and A, B are constants depend-
ing on SPAM. However, if the group G was not the Clifford
group it was found that the RB output data did not fol-
low a single exponential decay but rather was of the form
p(i, m) = ∑

λ Aλf m
λ with the decay constants fλ depend-

ing only on the implementation of the quantum operations
and associated with the irreducible subrepresentations of
the reference representation ω.

However, this functional form is only valid if the refer-
ence representation ω has no multiplicities (no irreducible
subrepresentation occurs more than once), and hence does
not describe all possible RB experiments. In this paper
we argue that for a general reference representation of the
form ω = ⊕

λ∈� σ
⊕nλ
λ for � ⊂ Irr(G) RB data takes the

form

p(i, m) ≈
∑

λ∈�
Tr(AλM m

λ ), (63)

where Mλ is an nλ × nλ real matrix that depends only on
the implementation φ and Aλ is an nλ × nλ matrix encoding
SPAM behavior. Note that the matrices Mλ are not required
to be normal, or even diagonalizable. This means that
p(i, m) can appear to be strikingly nonexponential (at least
if m is fairly small) unless ω is known to be multiplicity-
free. We discuss this in greater detail in Sec. VII when we
discuss general fitting procedures.

F. Assumptions

The functional form of RB output data given in Eq. (63)
does not immediately follow from the specification of the
protocol in Algorithm 1. Rather it must be derived based
on assumptions on the behavior of the operations being
performed inside the quantum computer. Here we give a
run down of assumptions that are made throughout the lit-
erature, and which we make in order to derive Eq. (63).
The assumptions we make are not the most general pos-
sible that still lead to Eq. (63), but we attempt to strike a
balance between generality and operational motivation. In
the list we point out where assumptions can be generalized
and refer to work where this is done (for some versions of
RB).

(a) State preparation and measurement consistency:
We assume that the initial state ρ0 and the mea-
surement POVM {�i}i∈I are always prepared in
the same manner, independently of the gates being
implemented. Slightly stronger, we assume the exis-
tence of quantum channels ESP and EM such that
the implemented initial state is given by ESP(ρ0)

and the elements of the implemented measurement
POVM are given by EM (�i). This assumption is
made throughout the RB literature.

(b) Markovianity and time independence: We assume
that the implementation of a gate g ∈ G is always
the same, independently of when it is performed in
the RB protocol and independently of its context
(the gates being performed before and after). This
assumption leads to the concept of an implementa-
tion map φ : G → Sd which assigns to each group
element g a completely positive superoperator φ(g)
modeling the actual implementation of the gate.

(i) This assumption is not always justified, as
the implementation of a gate can in principle
depend on, e.g., the gates being implemented
before it or the amount of time elapsed in
the protocol. It can also depend on external
uncontrolled variables (either deterministic or
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random). In Ref. [68], a model of time depen-
dence has been considered and in Refs. [69–71]
the effect of gate correlations and certain uncon-
trolled variables such as quasistatic noise were
investigated. In all of these scenarios, however,
the exponential behavior of Eq. (63) breaks
down. It might be possible to derive assump-
tions beyond the setting of Markovian time
independence that lead to output data of the
correct form, but we do not pursue this here.

(c) Closeness to reference implementation: In order
to derive Eq. (63) we must make additional assump-
tions on the implementation map φ. We assume
that

1
|G|

∑

g∈G

‖φr(g)− φ(g)‖	 ≤δ, (64)

for sufficiently small δ > 0. The appearance of the
diamond distance might strike one as overly pes-
simistic, however, we show that it is in fact required
in Sec. IX. It is also not the most general possi-
ble assumption that still guarantees Eq. (63) (see
below), but it has the advantage of making reference
only to physical quantities and being operationally
interpretable.

(i) In early works on RB the standard assumption
was that of gate-independent noise. This means
the implementation map φ is of the form φ(g) =
Aφr(g) for all g with some fixed quantum
channel A. This is not a very realistic assump-
tion and several attempts were made to replace
it with a weaker assumption. In Ref. [66] it
has been proposed to consider a perturbation
φ(g) = Aφr(g)+ Agφr(g). In Ref. [26], how-
ever, this analysis was shown to not be strong
enough to actually justify behavior of the form
Eq. (63). Here, an analysis of uniform Clifford
randomized benchmarking as a power iteration
of a matrix was proposed (see also early work
in this direction by Ref. [41]), justifying the
exponential decay model (but with nonoptimal
correction). Subsequently, in Ref. [24] Eq. (63)
was derived (with an exponentially small cor-
rection) for uniform RB with the multiqubit
Clifford group under the assumption that there
exist superoperators R,L such that

1
|G|

∑

g∈G

‖φ(g)− Rω(g)L‖	 ≤δ (65)

for small enough δ. This assumption is quite
general, but has as its main drawback that the

operators R,L are not guaranteed to be com-
pletely positive, complicating the interpretation
of this assumption as being a belief on physical
quantities. Finally, Ref. [25] derives (introduc-
ing the Fourier analysis also used here) Eq. (63)
(up to an exponentially small correction) for
uniform RB with the multiqubit Clifford group
under an assumption on the fidelity of the imple-
mentation map φ with respect to its reference
implementation,

1
|G|

∑

g∈G

F[ω(g),φ(g)] ≥ 1 − δ. (66)

This assumption has the advantage of making
reference to physical objects only, but suffers
from the drawback that δ must grow inversely
proportional to the underlying Hilbert-space
dimension for the argument in Ref. [25] to hold.
We discuss this further in Sec. X.

VI. THE RANDOMIZED BENCHMARKING
FITTING MODEL

In this section, we prove a general theorem about the
behavior of RB output data, i.e., the probabilities p(i, m)
associated with a RB experiment with its input param-
eters specified as in Sec. V B and described in protocol
Algorithm 1. We argue that for a broad variety of choices
for reference implementations and probability distribu-
tions this data is well described by a linear combination
of exponential (matrix) decays [as in Eq. (63)], as long
as the physical implementation φ is close to its ideal
version: the reference implementation φr. By close we
mean that the diamond distance between reference and
ideal implementations, averaged over the group, has to be
bounded as

1
|G|

∑

g∈G

‖φr(g)− φ(g)‖	 ≤δ. (67)

One can think of the above equation as a relatively weak
initial belief one must hold about one’s quantum computer
(instantiated in φ) before one can trust the outcome of RB.

For the rest of the work we adopt the transfer-matrix
framework (discussed in Sec. III) for describing the action
of superoperators. We also explicitly write implementa-
tion noise on the initial state ρ0 and output POVM {�i}i∈I
through quantum channels ESP (state preparation) and EM
(measurement). This is notationally somewhat clumsy,
but it makes explicit one of the assumptions underlying
RB, namely that SPAM noise is independent of sequence
length.

The theorems we present in this section are generaliza-
tions of the theorems given in Ref. [24], encompassing
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almost all known RB procedures, but the techniques used
are based on the cleaner conceptual framework of matrix-
valued Fourier transforms provided by Ref. [25], which we
reviewed in Sec. IV B. The central observation of Ref. [25]
is that the data-collection phase of uniform RB can be seen
as evaluating m-fold convolutions of the implementation
map φ. This observation generalizes beyond uniform RB
to arbitrary implementation maps, and, in particular, we
see that

p(i, m) =
∑

g1,...,gm∈G

〈〈EM (�i)|ν(g1) . . . νm(gm)

× φ(gend g−1
1 . . . g−1

m )φ(gm) · · ·φ(g1)|ESP(ρ0)〉〉
(68)

can be rewritten, using the invariance of the uniform sum
over G under changes of variables, as

p(i, m) =
∑

g1,...,gm∈G

〈〈EM (�i)|φ(gend g−1
m )νm(gmg−1

m−1)

× φ(gmg−1
m−1) · · · ν1(g1)φ(g1)|ESP(ρ0)〉〉 (69)

= 〈〈EM (�i)|
(
φ ∗ (νmφ) ∗ · · · ∗ (ν1φ)

)
(gend)|

× ESP(ρ0)〉〉 (70)

where we use the definition of convolution of imple-
mentation maps given in Eq. (26) and where (νiφ)(g) =
νi(g)φ(g). We see that often the convolution product map
φ ∗ (νmφ) ∗ · · · ∗ (ν1φ) can be written exactly as an m-fold
convolution φ′∗m (for some φ′ that is not necessarily the
same as φ).

We begin in Sec. VI A with discussing the case of uni-
form RB (as per the RB typology in Sec. V D). This is
the easiest case, but the results derived there will go a
long way in analyzing the other two types (nonuniform and
interleaved RB).

A. Uniform randomized benchmarking

Here we discuss the behavior of RB output data given
by a uniform RB scheme (as defined in Sec. V D). We
prove that this data behaves as expected (i.e., a controlled
linear combination of exponential decays), as long as the
implementation map φ is close enough to its reference
implementation φr. As we saw in Sec. V B, for uniform
RB protocols this reference implementation is exactly a
representation, which we denote by ω. We can always
decompose ω into a direct sum of irreducible representa-
tions. We write this as ω = ⊕

λ∈� σ
⊕nλ
λ with� some index

set and σλ irreducible subrepresentations appearing with
multiplicity nλ. As discussed in Sec. V, we expect the RB
output data to be approximately well described by a linear

combination of the form

p(i, m) ≈
∑

λ∈�
Tr(AλM m

λ ), (71)

where Mλ is an nλ × nλ matrix depending only on the
actual implementation φ. In particular, Mλ is given by the
projection of the Fourier mode F(φ)[σλ] onto the subspace
associated with its nλ largest (in absolute value) eigen-
values. This is the content of Theorem 8. The essential
idea in Theorem 8 is the fact that convolutions corre-
spond to matrix multiplication in Fourier space, together
with a careful use of the subspace perturbation techniques
discussed in Sec. III.

Theorem 8: (Output data of uniform randomized bench-
marking). Let p(i, m) be the outcome probability associ-
ated with a uniform RB experiment with group G, initial
state ρ0, reference representation ω = ⊕

λ∈� σ
⊕nλ
λ , and

ending gate gend, for a specific sequence length m ∈ M

and POVM element �i in the POVM {�i}i (as described
in protocol Algorithm 1). Let φ be the implementation map
describing the actually implemented operations. More-
over, assume that there exists a δ > 0 such that

1
|G|

∑

g∈G

‖ω(g)− φ(g)‖	 ≤ δ ≤ 1/9. (72)

The RB output probability p(i, m) is well approximated as

|p(i, m)−
∑

λ∈�
Tr(AλM m

λ )| ≤ 8
(
δ

[
1 + 2δ

1 − 5δ

])m

,

(73)

where Mλ, Aλ are nλ × nλ real matrices and Mλ depends
only on the implementation φ.

Proof. Note from Eq. (69) with νi the uniform probability
distribution for all i ∈ {1, . . . , m} that

p(i, m) = 〈〈EM (�i)|(φ ∗ φ∗m)(gend)|ESP(ρ0)〉〉. (74)

Inserting the Fourier transform of φ, we get

p(i, m) =
∑

λ∈Irr(G)

dλ〈〈EM (�i)

× | TrVλ{F(φ)m+1[σλ]σλ(gend
−1)⊗ 1}|ESP(ρ0)〉〉

(75)

= 〈〈EM (�i)| TrVωG

⎡

⎣
[

1
|G|

∑

g∈G

ωG(g)⊗ φ(g)
]m+1

× [DGωG(gend
−1)] ⊗ 1

⎤

⎦ |ESP(ρ0)〉〉, (76)
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where ωG(g) = ⊕λ∈Irr(G)σλ(g) is the direct sum of all
irreducible representations of G and DG = ⊕λ∈Irr(G)dλ1λ
accounts for the dimensional factor in the inverse Fourier
transform. Now we can consider the Fourier operator F(φ)
[as defined in Eq. (31)] associated with φ as a perturbation
of its ideal version F(ω). From our discussion of Fourier
transforms and Fourier operators we know that F(ω) =
1/|G|∑g∈G

⊕
λ∈� σλ(g)⊗ ω(g) is an orthogonal projec-

tion, with rank given by the number of irreducible subrep-
resentations of ω (Rk[F(ω)] = ∑

λ∈� nλ). Recall also that
there is a natural matrix norm ‖·‖m on the space of Fourier
operators and that

‖F(φ − ω)‖m

= 1
|G|

∑

g∈G

∥∥∥TrVωG

[
F(φ − ω)DGωG(g−1)⊗ 1

]∥∥∥
	

= 1
|G|

∑

g∈G

‖φ(g)− ω(g)‖	 . (77)

The plan is now to use the perturbation theorem (Theorem
6) to split the above into dominant and subdominant invari-
ant subspaces. To do this note that F(ω) is a projector
so we trivially get a spectral resolution with X1 = F(ω),
X2 = 1 − F(ω) with F(ω) acting as the identity on the
column and row space of X1 and as the zero operator on
the column and row space of X2. Thinking of F(φ − ω)

as a perturbation to F(ω) we need to ensure the condi-
tions in Eq. (42) are satisfied with respect to the norm
‖·‖m. Using the submultiplicativity of this norm and the
fact that ‖X1‖m = 1 by construction together with the tri-
angle inequality, we get the following sufficient condition
for the applicability of Theorem 6:

∥∥X1
†F(φ − ω)X2

∥∥
m

∥∥X2
†F(φ − ω)X1

∥∥
m

[sep(1, 0)− ∥∥X1
†F(φ − ω)X1

∥∥
m − ∥∥X2

†F(φ − ω)X2
∥∥

m]2

≤ [2 ‖F(φ − ω)‖m]2

[1 − 5 ‖F(φ − ω)‖m]2 <
1
4

(78)

where we also use that sep(1, 0) = 1, which is easy to see
from the definition of sep (see Sec. IV C). Working out, we
see that the above is satisfied if Eq. (72) is true, which it is
by assumption. Hence we can use Theorem 6 to conclude
the existence of operators R = [R1, R2], L = [L1, L2] with
L† = R−1 and P1 such that

F(φ) = R1
[
X1

†F(ω)X1 + X1
†F(φ − ω)(X1 + X2P1)

]
L1

†

+R2
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ − ω)X2
]
L2

†.
(79)

Using the fact that L† = R−1 (and thus that L2
†R1 =

L1
†R2 = 0) we can now write p(m, gend,�) as a sum of

two terms corresponding to the above spectral resolution:

p(i, m) = 〈〈EM (�i)| TrVωG
[DGωG(gend

−1)⊗ 1]F(φ)
{
R1
[
X1

†F(ω)X1 + X1
†F(φ − ω)(X1 + X2P1)

]
L1

†}m|ESP(ρ0)〉〉
+ 〈〈EM (�i)| TrVωG

[DGωG(gend
−1)⊗ 1]

{
R2
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ − ω)X2
]m+1L2

†}|ESP(ρ0)〉〉.
(80)

We consider both of these terms separately. We deal first with the second term. Note that, using the definitions of R, L
from Theorem 6, we have

(2) ≤
∥∥∥TrVωG

{
[DGωG(gend

−1)⊗ 1]R2
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ − ω)X2
]m+1L2

†}
∥∥∥

	
(81)

≤ ∥∥(X2 + X1P2 + X2P1P2)
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ − ω)X2
]m
(X2 − P1X1)

†
∥∥

max , (82)

which is just a statement about the max norm of a Fourier operator. Note that X2
†F(ω)X2 = 0 by construction so the

above depends only on F(φ − ω). Now using the max-mean norm inequality in Eq. (35) several times and the fact that
X2 = 1 − X1, we can upper bound this as

(2) ≤ ∥∥(X2 + X1P2 + X2P1P2)(X2 − P1X1)
†F(φ − ω)X2(X2 − P1X1)

∥∥
max

∥∥[F(φ − ω)X2(X2 − P1X1)
†]m
∥∥

m (83)

≤ 2
[ ‖F(φ − ω)‖max (1 + ‖P2‖m)(1 + ‖P1‖m)+ ‖P1‖2

m ‖P2‖m (3 + ‖P1‖m)
]

[‖F(φ − ω)‖m (1 + ‖P1‖m)]
m . (84)

Now we use from Theorem 6, the upper bounds on

‖P1‖m ≤
∥∥X2

†F(φ − ω)X1
∥∥

m

1 − ∥∥X1
†F(φ − ω)X1

∥∥
m − ∥∥X1

†F(φ − ω)X1
∥∥

m

≤ 2 ‖F(φ − ω)‖m

1 − 5 ‖F(φ − ω)‖m
≤ 2δ

1 − 5δ
(85)
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and

‖P2‖m ≤ 2 ‖F(φ − ω)‖m

1−5 ‖F(φ−ω)‖m −2 ‖P1‖m

∥∥X1
†F(φ−ω)X2

∥∥

(86)

≤ 2 ‖F(φ − ω)‖m

1 − 5 ‖F(φ − ω)‖m − 8‖F(φ−ω)‖2
m

1−5‖F(φ−ω)‖m

(87)

≤ 2δ(1 − 5δ)
1 − 8δ2 (88)

≤ δ

1 − δ
, (89)

where we exploit the assumption δ ≤ 1/9 in the last line.
Inserting these bounds into the main expression we get

(2) ≤ 4
([

1 + 2δ
1 − 5δ

][
1 + δ

1 − δ

]

+
[

2δ
1 − 5δ

]2[
δ

1 − δ2

][
3 + 2δ

1 − 5δ

])

×
(
δ

[
1 + 2δ

1 − 5δ

])m

(90)

≤ 115
16

(
δ

[
1 + 2δ

1 − 5δ

])m

(91)

≤ 8
(
δ

[
1 + 2δ

1 − 5δ

])m

, (92)

where we use that ‖F(φ − ω)‖max ≤ 2 and δ ≤ 1/9. Next
we consider the first term in Eq. (80). For this term we
desire an exact expression. We begin by noting that both
F(ω) and F(φ) are block diagonal with respect to the
decomposition of ωG into irreducible representations. This
implies that the matrices R, L are block diagonal with
respect to this decomposition as well, and that, more-
over, we can take the matrices P1, P2 to be block diagonal
with the blocks labeled by the irreducible subrepresenta-
tions present in ω = ⊕

λ∈� σ
⊕nλ
λ . Writing P = ⊕λ∈�Pλ,

and similarly for other operators we can write the first term

of Eq. (80) as

(1) =
∑

λ∈�
dσλ〈〈EM (�i)| TrVσλ

{[σλ(gend
−1)⊗ 1]

× F(φ)[σλ]Rλ1
[
(X λ

1 )
†F(φ)[σλ](X λ

1 + X λ
2 Pλ1)

]mLλ1
†}

× |ESP(ρ0)〉〉, (93)

wshere we also use that F(ω)X2 = 0 by construction. To
continue further we need to pick a convenient basis to
express X λ

1 , Rλ1.
For this note that we can specify rank-1 Fourier oper-

ators in L(VωG
)⊗ Sd by specifying pairs of superopera-

tors A,B and looking at Fourier operators of the form
F(AωB). It is useful to think of the Fourier operator F(ω)
as a vectorization operation on A,B. We can express X1 =
F(ω) in this way by considering the operators F(P j

λωP
j
λ)

where P j
λ is the (superoperator) projector onto the j th

copy of the representation σλ in ω = ⊕
λ∈� σ

⊕nλ
λ . Note

that these operators are rank-one orthogonal projectors and
moreover that

nλ∑

jλ=1

F(P jλ
λ ωP

jλ
λ ) =

nλ∑

jλ=1

= F(σ⊕nλ
λ ) = X λ

1 (94)

holds true. Now noting that (X λ
1 + X λ

2 Pλ1) = Rλ1 is a rank
nλ matrix with X λ

1 Rλ1 = X λ
1 , we can similarly find nλ

superoperators Rjλ
λ (jλ ∈ 1, . . . , nλ) such that

Rλ1 =
nλ∑

jλ=1

F(Rjλ
λ ωP

jλ
λ ), (95)

where F(P jλ
λ ωR

jλ
λ ) is again of rank one (but no longer

orthogonal). Note that X λ
1 Rλ1 = X λ

1 gives rise to the orthog-
onality property

F(P jλ
λ ωP

jλ
λ )F(R

j ′
λ
λ ωP

j ′
λ
λ ) = δjλ,j ′

λ
F(P jλ

λ ωP
jλ
λ ). (96)

Using these resolutions of X λ
1 , Rλ1 and the orthogonality

property we can express the first term in Eq. (80) further
as

(1) =
∑

λ∈�

nλ∑

j 1
λ ,...,j 2m

λ =1

dσλ〈〈EM (�i)| TrVσλ

[
[σλ(gend

−1)⊗ 1]F(φ)[σλ]Rλ1 (97)

× {
F(P j 1

λ
λ ωP

j 1
λ
λ )F(φ)[σλ]F(R

j 2
λ
λ ωP

j 2
λ
λ ) · · ·F(φ)[σλ]F(R

j 2m
λ
λ ωP j 2m

λ
λ )

}
Lλ1

†
]
|ESP(ρ0)〉〉 (98)

=
∑

λ∈�

nλ∑

j 1
λ ,j 2m
λ =1

dσλ〈〈EM (�i)| TrVσλ

[
[σλ(gend

−1)⊗ 1]F(φ)[σλ]Rλ1F(P jλ
λ ωP

j ′
λ
λ )L

λ
1

†
]
|ESP(ρ0)〉〉[M m

λ ]jλ,j 2m
λ

(99)
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with

[Mλ]jλ,j ′
λ

= Tr
(

F(P jλ
λ ωP

jλ
λ )F(φ)F(R

j ′
λ
λ ωP

j ′
λ
λ )
)

= Tr
(

F(φ)F(Rjλ
λ ωP

j ′
λ
λ )
)

, (100)

by the fact that F(P jλ
λ ωP

jλ
λ ), F(Rjλ

λ ωP
jλ
λ ) are of rank one.

Now writing

[Aλ]jλ,jλ = dσλ〈〈EM (�i)| TrVσλ

[
[σλ(gend

−1)⊗ 1]F(φ)

× [σλ]Rλ1F(P jλ
λ ωP

jλ
λ )L

λ
1

†
]
|ESP(ρ0)〉〉 (101)

we can combine the two terms in Eq. (80) to get

∣∣∣∣p(i, m)−
∑

λ∈�
Tr(AλM m

λ )

∣∣∣∣ ≤ 8
(
δ

[
1 + 2δ

1 − 5δ

])m

.

(102)

�

B. Randomized benchmarking with nonuniform
sampling

Several works [5,14,15,39,51] discuss adaptations of
RB where the elements of the group are no longer sam-
pled exactly at random, but are instead sampled according
to (1) a distribution close to uniform [5,14,51] (which we
call “approximate RB” in Sec. V B, following Ref. [14]),
or (2) a distribution that only has support on a small subset
of the group; group generators in the case of Ref. [14] (see
also early work on the Clifford group by Ref. [67]), sub-
group cosets in the case of Ref. [39], and constant depth
circuits (layers) in the case of Ref. [15]. In Sec. V B, we
call these approaches “subset RB.”

We begin by treating the case of approximate RB. This
corresponds to performing RB as described in protocol
Algorithm 1 but instead of sampling group elements from
the group G uniformly at random one samples group
elements according to some prescribed probability distri-
butions νi : G → [0, 1] (with i indicating the time at which
the gate is applied). In Ref. [14] it has been argued that
as long as the distributions νi are all close to the uni-
form distribution in the l1 norm, then the output data of
approximate RB is close to the output data of exact RB.

As a corollary of Theorem 8 we obtain a similar result.
Our result is somewhat less general than the one given in
Theorem 17 of Ref. [14]. In particular, we assume that all
distributions νi are equal to a fixed distribution ν. In return
for this restriction we are able to make a much stronger
statement on the behavior of the RB output data. Moreover,
our approach does not require the gate-independent noise

assumption [replacing it with the more general diamond-
norm assumption of Eq. (72)]. We have the following
statement.

Theorem 9: (Randomized benchmarking data with
nonuniform sampling). Let ν be a probability distribution
on G and pν(i, m) be the outcome probability associated
with a nonuniform RB experiment with implementation
map φ and reference representation ω(g) = ⊕

λ∈� σ
⊕nλ
λ .

Moreover, assume that there exists δ, δ′ > 0 such that

1
|G|

∑

g∈G

‖ω(g)− φ(g)‖	 ≤ δ, (103)

∑

g∈G

|ν(g)− 1
|G| | ≤ δ′, (104)

with δ + δ′ ≤ 1/9. Now pν(i, m) is well approximated as

|pν(i, m)−
∑

λ∈�
Tr[Aλ(M ν

λ )
m]|

≤ 8
(
(δ + δ′)

[
1 + 2(δ + δ′)

1 − 5(δ + δ′)

])m

, (105)

where M ν
λ , Aλ are nλ × nλ real matrices, M ν

λ depends on
the implementation φ and the measure ν.

Proof. Consider the map φν : G → Sd : g → |G|ν(g)
φ(g). Note that we can think of nonuniform RB as being
uniform RB with this (not trace preserving but still com-
pletely positive) implementation map. In particular, we
have

pν(i, gend, m) = 〈〈EM (�i)|(φ ∗ φ∗m
ν )(gend)|ESP(ρ0)〉〉,

(106)

which is just Eq. (74) but with the “effective imple-
mentation” φν . From the assumptions of the theorem we
have

1
|G|

∑

g∈G

‖ω(g)− φν(g)‖	

≤ 1
|G|

∑

g∈G

‖ω(g)− φ(g)‖	 +
∑

g∈G

|ν(g)− 1
|G| | ≤ 1

9
.

(107)

Hence, the proof of Theorem 8 immediately applies to
pν(i, gend, m), yielding Eq. (105). �

We note that in the case of NIST RB [51] the prob-
ability distribution over (a subgroup of) the single-qubit
Clifford group is not strictly speaking close enough to uni-
form to apply the above theorem. This can be easily solved
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by blocking a few gate applications together, defining a
new effective implementation map φ′ = (νφ) ∗ (νφ) · · · ∗
(νφ), which is close enough to uniformly distributed to
apply Theorem 9.

The above approach fails utterly when applied to sub-
set RB. In this scenario the distribution ν only has support
on a small subset A of G and consequently

∑
g∈G

|ν(g)−
1/|G|| ≈ 1 in many cases. This is not necessarily a weak-
ness of Theorem 8 but rather a statement of the fact
that strong deviations from exponential behavior can be
observed if one does not give the distribution ν time
to converge to the uniform distribution through repeated
convolution. This was already noted more or less explic-
itly in previous papers on subset RB. There are two
approaches to solving this problem. The first, followed in
Refs. [14,15,39,67] is to restrict the set of sequence lengths
M at which RB data is gathered to m ≥ mmix where mmix
is related to the mixing time of the distribution ν. Note
that in the direct RB proposal [15], this convergence time
is instead enforced directly by applying a uniformly ran-
dom gate before applying nonuniformly sampled gates.
The second approach is to take this deviation from uniform
RB behavior at face value [13] and draw conclusions from
the RB output directly. We believe this latter approach is
more accurately classified as an interleaved benchmarking
scheme and we discuss it there.

With regards to the first approach we can make a state-
ment akin to Theorem 8 about subset RB procedures by
making the (natural) assumption that upon equilibration
of the distribution ν the quality of the total gates has not
degraded too much. Intuitively, this means that the gates
that have high weight in the initial distribution are of high
enough quality to generate (by composition) good-quality
implementations of all gates in the group. Concretely, we
have the following theorem.

Theorem 10: (Subset randomized benchmarking). Let ν
be a probability distribution on G and pν(i, m) be the
outcome probability associated with a nonuniform RB
experiment with implementation map φ and reference rep-
resentation ω(g) = ⊕

λ∈� σ
⊕nλ
λ . Moreover, assume that

there exists an integer mmix and real numbers δ, δ′ > 0
such that

∑

g∈G

|ν∗mmix(g)− 1
|G| | ≤ δ′, (108)

∑

g∈G

ν(g) ‖ω(g)− φ(g)‖	 ≤ δ

mmix
(109)

with δ + δ′ ≤ 1/9. Now pν(i, m) is well approximated as

|pν(i, m)−
∑

λ∈�
Tr(AλM

m−mmix
λ )| ≤ ε (110)

with Mλ the projection onto the nλ-dimensional dominant
invariant subspace of F(νφ)[σλ] and where

ε ≤ 2δ′′
([

1 + 2δ′′

1 − 5δ′′

][
1 + δ′′

1 − δ′′

]

+
[

2δ′′

1 − 5δ′′

]2[
δ′′

1 − δ′′

][
3 + 2δ′′

1 − 5δ′′

])
≤ 4δ′′

(111)

with δ′′ = δ + δ′.

Note that this theorem is qualitatively less strong than
Theorem 8. In particular, we cannot guarantee that the
distance between the output data of subset RB and the
exponential decays associated with the irreducible subrep-
resentations of the reference representation closes expo-
nentially fast with increasing sequence length. However,
our bound on this distance is stronger than previous rigor-
ous statements (Theorem 20 in Ref. [14]) and works under
weaker assumptions. The distance bound given in Ref. [39]
(Theorem 3) does close exponentially but the proof relies
critically on the fact that ν is uniformly nonzero on a
(large) subgroup coset in G, and thus applies only to a
far more restricted situation. Note also that it does not
directly apply to the approach taken in Ref. [15]. However,
we believe that with very minor alterations the reasoning
below can be made to fit.

Proof. Consider again the map φν : G → Sd : g → |G|
ν(g)φ(g). We have

pν(i, m) = 〈〈EM (�i)|(φ ∗ φ∗m
ν )(gend)|ESP(ρ0)〉〉. (112)

We now establish a bound on the quality of φ∗mmix
ν , namely

we show that

1
|G|

∑

g∈G

∥∥φ∗mmix
ν (g)− ω(g)

∥∥
	 ≤ δ + δ′ ≤ 1

9
. (113)

This can be seen as follows:

1
|G|

∑

g∈G

∥∥φ∗mmix
ν (g)− ω(g)

∥∥
	

≤ 1
|G|

∑

g∈G

∥∥ω∗mmix
ν (g)− ω(g)

∥∥
	

+ 1
|G|

∑

g∈G

∥∥φ∗mmix
ν − ω∗mmix

ν

∥∥
	 (114)

with ων(g) = |G|ν(g)ω(g). Writing out the convolution in
the first term and changing variables, we get
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1
|G|

∑

g∈G

∥∥ω∗mmix
ν (g)− ω(g)

∥∥
	 = 1

|G|
∑

g∈G

∥∥∥∥∥∥

∑

g1,...gmmix−1∈G

|G|ν(gg−1
mmix−1) . . . ν(g1)ω(gg−1

mmix−1) · · ·ω(g1)− ω(g)

∥∥∥∥∥∥
	

(115)

≤ 1
|G|

∑

g∈G

∣∣∣∣
∑

g1,...gmmix−1

|G|ν(gg−1
mmix−1) . . . ν(g1)− 1

∣∣∣∣ ‖ω(g)‖	 (116)

=
∑

g∈G

∣∣∣∣
1

|G| − ν∗mmix(g)
∣∣∣∣ (117)

for the first term and

1
|G|

∑

g∈G

∥∥φ∗mmix
ν − ω∗mmix

ν

∥∥
	 = 1

|G|
∑

g∈G

∥∥∥∥∥∥

mmix∑

j =1

φ∗(mmix−j )
ν ∗ (φν − ων) ∗ ω∗(j −1)

ν (g)

∥∥∥∥∥∥
	

(118)

≤ mmix

∑

g∈G

ν(g) ‖φ(g)− ω(g)‖	 , (119)

where we use the telescoping series identity Am − Bm = ∑m
j =1 Am−j (A − B)Bj −1, which holds for any elements A, B of

an associative algebra (such as the implementation maps with convolution), the submultiplicativity of the diamond norm,
and the fact that ‖φ(g)‖	 = ‖ω(g)‖	 = 1 for all g ∈ G. Together with the theorem assumptions, this yields Eq. (113).
Now as in Theorem 8, we can write the RB output data as

pν(i, m) = 〈〈EM (�i)| TrVωG

(
DG[ωG(gend

−1)⊗ 1]F(φ)F(φν)m
′
F(φ∗mmix

ν )

)
|ESP(ρ0)〉〉, (120)

where m′ = m − mmix. We can again consider F(φ∗mmix
ν ) as a perturbation of F(ω). Since F(ω) is a projector, the operator

F(φ∗mmix
ν ) will resolve into a dominant and subdominant invariant subspace (as in Theorem 8). We have

p(i, m) = 〈〈EM (�i)| TrVωG

(
DG[ωG(gend

−1)⊗ 1]
{

F(φ)F(φν)m−mmixR1
[
X1

†F(ω)X1

+ (X1
† − P1X2

†)F(φ∗mmix
ν − ω)X1

]
L1

†
})

|ESP(ρ0)〉〉

+ 〈〈EM (�i)| TrVωG

(
DG[ωG(gend

−1)⊗ 1]
{

F(φ)F(φν)m−mmixR2
[
X2

†F(ω)X2

+ (X2
† − P1X1

†)F(φ∗mmix
ν − ω)X2

]
L2

†
})

|ESP(ρ0)〉〉. (121)

Now note that F(φ∗mmix
ν ) and F(φν) commute, and hence share invariant subspaces. This means we can write the first term

in Eq. (121) as

(1) =
∑

λ∈�
Tr
(
AλM

m−mmix
λ ). (122)

Finally, we can bound the second term in Eq. (121) as

| (2) | ≤ ∥∥F(φ)F(φν)m−mmixR2
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ∗mmix
ν − ω)X2

]
L2

†
∥∥

max (123)

≤ ∥∥R2
[
X2

†F(ω)X2 + (X2
† − P1X1

†)F(φ∗mmix
ν − ω)X2

]
L2

†
∥∥

m

∥∥F(φν)m−mmix−1
∥∥

m ‖F(φ)‖max (124)
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using the max-mean inequality of the norms on Fourier operators. Note now that

∥∥F(φν)m−mmix−1
∥∥

m ≤
⎡

⎣
∑

g∈G

ν(g) ‖φ(g)‖	

⎤

⎦
m−mmix−1

≤ 1, (125)

where we use that ν is a probability distribution and that ‖φ‖	 ≤ 1. Moreover, we have that ‖F(φ)‖max ≤ 1. Using this
and the reasoning from Theorem 8 we can thus bound the second term as

| (2) | ≤ 2
∥∥F(φ∗mmix

ν − ω)
∥∥

m

([
1 + 2δ′′

1 − 5δ′′

][
1 + δ′′

1 − δ′′

]
+
[

2δ′′

1 − 5δ′′

]2[
δ′′

1 − δ′′

][
3 + 2δ′′

1 − 5δ′′

])
(126)

with δ′′ = δ + δ′. Inserting the assumption that ‖F(φ∗mmix

− ω)‖m ≤ δ′′ we obtain the statement of the theorem. �

C. Interleaved randomized benchmarking

As discussed in Sec. V D, a common variant of RB is
interleaved randomized benchmarking (IRB). IRB is per-
formed like uniform RB, as formulated in Algorithm 1,
but the reference implementation is not a representation.
Instead a fixed operation C is being interleaved between
the application of randomly selected group elements. The
outcome of this experiment is then compared to the same
RB experiment without the interleaving gate to infer the
quality of the interleaved gate C. The literature splits into
two sections, standard interleaved RB [4,48] and nonstan-
dard interleaved RB [9,47]. We emphasize here that we
discuss the so-called “interleaved step” of the interleaved
RB protocol, and do not interpret the resulting decay rate
(for a thorough discussion of the relationship of interleaved
RB decay rates and their interpretation see Ref. [72]).

1. Standard interleaved randomized benchmarking

In the standard protocol the interleaved operation C is
applied after every randomly selected gate and is also a part
of the group G. Hence at the end of a random sequence, the
inversion step can be performed inside the group. An IRB
output data is thus of the form

pIRB(i, gend, m)

= 1
|G|m

∑

g1,...,gm∈G

〈〈EM (�i)|φ[gend(g1C . . . gmC)−1]

× φ(C)φ(gm) · · ·φ(C)φ(g1)|ESP(ρ0)〉〉 (127)

for a POVM element �i, an ending gate gend, a sequence
length m, an implementation map φ, and an initial state ρ0.
It is interesting to interpret this procedure in the light of
the protocol given in Sec. V C. Namely we can think of
defining a probability distribution νC over G, that takes the
value 1 for g = C and 0 for all other group elements. With

this probability distribution, we can reconsider the above
as a RB experiment according to the protocol written in
Algorithm 1, we have

pIRB(i, gend, m)

= p(i, gend, 2m) =
∑

g1,...,g2m∈G

〈〈EM (�i)|

× φ[gend(g1g2 . . . gm)
−1]νC(g2m)φ(g2m)

× μ(g2m−1)φ(g2m−1) · · · νC(g2)φ(g2)μ(g1)φ(g1)

× |ESP(ρ0)〉〉, (128)

where μ is the uniform distribution on G. Hence, we can
think of standard IRB as being a RB experiment with a
particular choice of sampling distributions. In this picture,
it becomes trivial to extend Theorem 8 to standard inter-
leaved RB by considering the map φC = (νCφ) ∗ φ. By the
standard change of variables we can see

pIRB(i, gend, m) = 〈〈EM (�i)|φ ∗ φ∗m
C (gend)|ESP(ρ0)〉〉

(129)

and hence interleaved RB is just uniform RB with the
implementation map φC. If φ(C) is close enough to its
reference representation element ω(C) the assumption
Eq. (72) is reasonable for φC as well. Hence, Theorem 8
holds equally well for interleaved RB.

Nonstandard interleaved RB protocols [9,13,47,50]
depart from the above framework by including interleaved
gates that are not part of the group G, (the Pauli group
in the case of Ref. [13] and the Clifford group in the case
of Ref. [47]) and sampling from the group in a nonuni-
form manner. These are somewhat idiosyncratic so we treat
them separately. We see that the protocols of Refs. [9,47]
are covered by Theorem 8, while the protocols of Ref. [13]
and Ref. [50] are not covered. We expect that it is possible
to make guarantees on the output data of these protocols
with suitable adaptations to Theorem 8 but we do not
pursue this here.
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2. Interleaved T-gate randomized benchmarking

In Ref. [47] the quality of a T gate (with ideal imple-
mentation T ), with an associated noisy implementation T̃
is assessed by estimating the following quantity

pT(m) = 1
|Pq|m|Cq|m

∑

p1,...pm∈Pq
g1,...gm∈Cq

〈〈EM (�i)|

× φ{[gmt(pm) . . . g1t(p1)]−1}φ(gm)T̃ φ(pm)T̃
× · · ·φ(g1)T̃ φ(p1)T̃ |ESP(ρ0)〉〉 (130)

with Cq the q-qubit Clifford group, Pq ⊂ Cq the Pauli
group, and φ : C → Sd an implementation of the Clif-
ford group (and the Pauli group) and t(p) : Pq → Cq is
an injective map mapping Pauli elements p to TpT†.
Because T is in the third level of the Clifford hierar-
chy we have TpT† ∈ Cq for all p ∈ Pq making the above
well defined. By defining the map φT(g) : Cq → Sd : g �→
νT(g)T †φ[t−1(g)]T with

νT(g) = |Cq|
|Pq| I [g ∈ Im(t)] (131)

a probability distribution on Cq taking nonzero value only
on the image of the map t [strictly speaking t−1(g) is not
defined for g �∈ Im(t), but νT is zero there anyway]. With
these definitions we can rewrite the output probability as

pT(m) = 〈〈EM (�i)|[φ ∗ (φ ∗ φT)
∗m](e)|ESP(ρ0)〉〉. (132)

Hence, Theorem 8 generalizes to pT(m) as long as Eq. (72)
is satisfied for the convoluted map φ ∗ φT. In the ideal case
of φ = ω (the reference representation) and T = T we see
that φ ∗ φT(g) = ω(g). Hence this is a reasonable assump-
tion to make, and Theorem 8 thus covers the protocol
presented in Ref. [47].

3. Individual gate benchmarking

Individual RB, as proposed in Ref. [9], is an interleaved
RB protocol characterized by uniform probability distri-
butions and, interestingly, a reference implementation φr
that is not a representation. Rather, the reference imple-
mentation is of the form φr(g) = Uω(g) where ω(g) is the
standard action by conjugation, i.e., ω(g)(ρ) = UgρUg

†,
and U(ρ) = UρU† is a fixed unitary gate (that is not a part
of the group G). Moreover, U is assumed to commute with
the representation ω(g). The output RB data p(i, m) associ-
ated with this procedure is of the form, Eq. (74), however,
the central assumption [Eq. (72)] of Theorem 8 is gener-
ally far from satisfied (unless U is the identity). However,

we can make the alternative assumption that

1
|G|

∑

g∈G

∥∥Uω(g)− Ũφ(g)
∥∥

	 ≤δ, (133)

where Ũ is the noisy implementation of the unitary U and φ
is the implementation of the reference representation ω(g).
This is a reasonable assumption to make since

1
|G|

∑

g∈G

∥∥Uω(g)− Ũφ(g)
∥∥

	

≤ 1
|G|

∑

g∈G

‖Uω(g)− Uφ(g)‖	 + ∥∥Uφ(g)− Ũφ(g)
∥∥

	

(134)

≤ ∥∥U − Ũ
∥∥

	 + 1
|G|

∑

g∈G

‖ω(g)− φ(g)‖	 (135)

so as long as the implementation of the interleaving
unitary U is of sufficient quality Eq. (133) is reason-
able. Furthermore we note that due to the commutation
assumption [ω(g),U ] = 0 the Fourier operator F(Uω) has
the same dominant invariant subspace as F(ω) [since
F(Uω) = 1G ⊗ UF(ω) = F(ω)1G ⊗ U ]. Hence the proof
of Theorem 8 goes through for individual gate bench-
marking as well, replacing the assumption Eq. (72) with
Eq. (133).

4. Cycle benchmarking

Cycle benchmarking [13] is a recently developed RB
protocol that can also be subsumed under the framework
of Theorem 8, albeit after some nontrivial considerations
we discuss in this section.

The data-collection phase of cycle benchmarking can
be seen as interleaved RB over the Pauli group with
the interleaving gate C being a (non-Pauli) Clifford gate.
In particular, cycle benchmarking implements sequences
C, gm, . . . , C, g1 where g is drawn uniformly at random
from the Pauli group Pq and C is a Clifford gate.

A key aspect of cycle benchmarking is the cycle length,
i.e., an integer c such that Cc = e (note that for any Clifford
gate such a cycle length exists). In cycle benchmarking the
number of random Pauli elements implemented is always
a multiple of the cycle length. Writing φ(g) for the noisy
implementation of the standard conjugation representation
of the Pauli group, and C̃ for the noisy implementation of
the Clifford gate C we can define the cycle implementation
map (on the Pauli group):

φc(g) = 1
|Pq|c−1

∑

g1,...,gc∈Pq
Cgc···Cg1=g

C̃φ(gc) . . . C̃φ(g1). (136)

020357-26



GENERAL FRAMEWORK FOR RANDOMIZED BENCHMARKING PRX QUANTUM 3, 020357 (2022)

Note that because the Clifford group contains the Pauli
group the equation Cgc · · · Cg1 = g makes sense. Now
because of the cycle property

Cgc · · · Cg1 = (C−(c−1)gcC(c−1)) · · · C−1g2Cg1 = g′
c · · · g′

1
(137)

since C−1gC is always a Pauli element. Hence the equation
has exactly |P(c−1)

1 | solutions. Furthermore, we have that

1
|Pq|

∑

g∈Pq

φc(g) = 1
|Pq|c

∑

g∈Pq

∑

g1,...,gc∈Pq
Cgc···Cg1=g

C̃φ(gc) · · · C̃φ(g1)

= 1
|Pq|c

∑

g′
1,...,g′

c∈Pq

C̃φ(g′
c) · · · C̃φ(g′

1)

(138)

and thus that

1
|Pq|mc

∑

g1,1,...gm,c∈Pq

C̃φ(gmc) · · · C̃φ(g1) = φ∗m
c (e), (139)

which means cycle benchmarking can be framed as RB
with the implementation map φc. Moreover, since in the
limit of perfect gates we have, if Cgc · · · Cg1 = g, that

Cω(gc) · · · Cω(g1) = ω(g) (140)

we can reasonably make the assumption that φc is close
to its reference implementation [i.e., Eq. (72)]. Hence
the behavior of cycle benchmarking data is covered by
Theorem 8. What is less clear is how to interpret the result-
ing exponential decays (especially in terms of the imple-
mentations φ and C̃). This requires a more sophisticated
analysis, which is done in Ref. [13].

5. Robust benchmarking tomography

In robust benchmarking tomography [50] one uses a RB
protocol as a subroutine to extract tomographic informa-
tion from a superoperator (not necessarily a unitary) E .
This is done by estimating the probability

p(i, m) = 1
|G|m

∑

g1,...,gm∈G

〈〈EM (�i)|φ[g′(g1 . . . gm)
−1]

× Eφ(g′gm) · · · Eφ(g′g1)|ESP(ρ0)〉〉, (141)

where g′ is a fixed element of the group G and φ is
the implementation of a reference representation ω [the
goal is to estimate correlations between ω(g′) and E]. We
can consider this as an interleaved RB scheme with ref-
erence implementation φtom(g) = ω(g′g) (thinking of E
as a noisy implementation of the identity gate). However,

this reference implementation is not close to a represen-
tation (unless g′ = e), which means that Theorem 8 does
not apply. This is not an artifact of the proof technique
but rather a reflection of the fact that robust benchmarking
tomography features extremely rapid exponential decays.
In the gate-independent noise case the decay rate is set by
the average fidelity F[ω(g′), E], which can be very small.
In the language of matrix Fourier theory this means that the
dominant eigenvalues of the Fourier operator F(φtom) will
be small even in the ideal case. Hence, we do not expect
an assumption of the form, Eq. (72), to be strong enough
to guarantee exponential behavior of the RB output data in
this scenario.

VII. DATA PROCESSING AND SAMPLE
COMPLEXITY

As discussed before the randomized benchmarking pro-
tocol can be divided into data collection and postprocess-
ing phases. The data-collection protocol is summarized in
Algorithm 1. The outputs of the data-collection phase are
mean estimators p̂(i, m, gend) that estimate the average over
all sequences of length m according to the measures νi
and the quantum-measurement statistics, simultaneously.
The main theorems of the data-collection phase (Theo-
rems 8–10) state that the expectation value, again both
over the measurement statistics and the random sequences,
is well-approximated by a linear combination of (matrix)
exponentials in m.

The figures of merit that RB experiments report are the
decay parameters associated with the linear combination
of (matrix) exponentials. Extracting these decay param-
eters is the objective of the data-processing phase that
is the focus of the current section. For gate-independent
noise and reference representations without multiplicities
the decay parameters can be directly connected to the
average gate fidelity of the noise. In the more general
case, the interpretation of the decay parameters in terms
of other operational measures of quality can be more com-
plicated. We consider the connection between the decay
parameters and the average gate-set fidelity in Sec. IX.
Here we want to take a more pragmatic approach for the
postprocessing phase. The deviation of the decay param-
eters from unity can directly be regarded as a measure of
quality that captures the deviation of the actually imple-
mented gates from an ideal implementation. In principle,
the set of decay parameters itself provides a refined image
of the quality of the implementation, as compared to the
average gate fidelity. This motivates us to limit the post-
processing phase to the extraction of the decay parameters.
The estimation of other measures of quality from the
decay parameters is then left to an optional subsequent
processing phase.

In the simplest RB setting (e.g., uniform RB with
the Clifford group), featuring a single noise-affected
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representation, the data-processing phase involves only
fitting a single exponential decay curve. The analysis
of RB data arising in more general settings, however,
requires a considerably more flexible approach for the data
processing.

Extracting multiple decay coefficients, or poles, from
a discrete series of data points is a well-studied problem
in signal processing that arises in many different disci-
plines. For this reason, this section includes a review of
modern approaches to this fitting problem that not only
have been generalized to the fitting of matrix exponentials
but also come with theoretical performance guarantees and
bounds. The pole-finding algorithms we review (MUSIC
and ESPRIT) come with multiple merits: (1) they are easily
and efficiently implementable, (2) they are flexible enough
to in principle analyze any RB signal of the general form,
Eq. (63), (3) they come with in-built denoising and super-
resolution capabilities, (4) they feature theoretical bounds
that can (4a) inform the design of experimental parame-
ters, and (4b)—very importantly—can be used to identify
parameter regimes where distinguishing the different decay
parameters becomes infeasible in practice.

Following this review we combine analytical guaran-
tees and numerical simulations to evaluate the performance
of these algorithmic approaches for the processing of RB
data. In particular, we discuss the effect of the configu-
ration of the decay parameters, such as their number and
spacings, on the overall number of required measurements
and the maximal sequence length in the experiment. We
thereby provide theoretical guiding principles for design-
ing RB experiments and explicitly work out limitations
where the experimental precision required in order to
separate multiple decays become impractical.

These fundamental limitations in analyzing RB data
have previously motivated a variety of more resource-
intensive data-gathering protocols that take further data
from which one can isolate different decay curves in the
classical postprocessing phase. We turn our attention to
devising a novel general method for isolating matrix expo-
nentials in Sec. VIII. We begin by a detailed description of
the data-processing problem.

A. The randomized benchmarking data-processing
phase

The theorems on the data-collection phase, morally
summarized by Eq. (63), state that in expectation RB out-
put data is well-approximated by a linear combination of
(matrix) exponentials in m. Every matrix Mλ ∈ Cnλ×nλ in
the expansion is associated with an irreducible represen-
tation λ of the reference representation ω and nλ is the
multiplicity of σλ in the decomposition of ω. From the
collected data, a RB protocol subsequently extracts decay
parameters that describe the exponential decay. The decay
parameters associated with a matrix Mλ are its eigenvalues

spec (Mλ) = {z(λ)i }nλ
i=1. If Mλ is diagonalizable, then

Tr(AλM m
λ ) =

nλ∑

i

a(λ)i (z(λ)i )m (142)

with coefficients a(λ)i depending on the overlap of Aλ with
the eigenspaces. More generally, let Mλ = S−1JS be the
Jordan normal decomposition of Mλ with Jordan blocks
J = diag(J1, J2, . . .), Ji ∈ Rμi×μi and {z(λ)i } being the cor-
responding eigenvalues. For m ≥ μi, the j th diagonal of
the mth power of the ith Jordan block contains the entry(m

j

)
zm−j

i . Therefore, the matrix exponential takes the form

Tr(AλM m
λ ) =

∑

i

∑

j ∈[μi]

a(λ,j )
i

(
m
j

)
(z(λ)i )m−j (143)

with real coefficients a(λ,j )
i . Note that

(m
j

)
are falling poly-

nomials in m. Thus, the function space of Tr(AλM m
λ ) is in

general spanned by exponential function parametrized by
the eigenvalues modulated by falling polynomials.

With the pole-finding techniques, which we discuss in
the next section, one can extract the set of all poles

Q =
⋃

λ∈�
{z(λ)i |i ∈ [nλ]} (144)

from RB output data. Thus, the general postprocessing
task of RB is the following: given a data-series p̂(m)
that is approximately described by linear combinations
of polynomial modulated decays, extract the set Q of all
poles.

Loosely speaking, estimating Q is typically possible,
provided that the coefficients of all representations are suf-
ficiently large and the poles are sufficiently spaced. In
the remainder of this section, we assess this statement
quantitatively using analytical and numerical methods.

In practice, one might operate under additional assump-
tions and does not need to extract all poles individually.
For example, if one expects multiple poles in the data
series that are all more or less aligned, the data-processing
problem becomes equivalent to extracting a single pole.
The general form of the data-processing task, however,
stays the same, namely extracting the poles in the data
series. Without additional assumptions or postprocessing,
the resulting poles are unlabeled, in the sense that one does
not know which pole is associated with which irreducible
presentation. This issue is addressed when we turn our
attention to techniques that filter the RB data for specific
representations in Sec. VIII.
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B. Data-processing algorithms and guarantees

1. Fitting single decays

Many proposals for RB derive a data model that is well
approximated by a single decay curve. This is, for example,
the case when the group is a unitary 2-design, the refer-
ence representation ω is the adjoint representation and the
actual implementation is close to being trace-preserving
[24]. The adjoint representation of a unitary 2-group acts
irreducible on the space of traceless matrices and yields a
single dominant decay curve.

A single dominant decay parameter can be extracted
using nonlinear least-squares fitting algorithms such as
Levenberg-Marquardt, see, e.g., Ref. [73, Chapter 3.2]. In
Ref. [56] it has been shown that in RB for the Clifford
group the variance of the data points is expected to strongly
vary with the sequence length m. This observed het-
eroskedasticity motivates us to use iteratively reweighted
variants of least-squares fitting algorithms.

Reference [74] analyzes a simplified fitting procedure
that estimates the decay parameter from the ratio of the
data for two sufficiently separated sequence lengths. In the
regime of high fidelity, it establishes a multiplicative error
in the deviation of the decay parameter from an efficient
number of samples. Relatedly, Ref. [45] gives an estima-
tion scheme for a RB procedure that estimates, in paral-
lel, multiple single exponential decays with multiplicative
accuracy. This scheme makes use of postprocessing tech-
niques to guarantee the “single-exponential” shape of the
data. We discuss this more in Sec. VIII.

2. Fitting multiple decay with pole-finding algorithms:
MUSIC and ESPRIT

Algorithms for simultaneously identifying multiple
poles (frequencies and decay parameters) from a discrete
series of data points date back to at least the work of
Prony [75]. A zoo of modern algorithmic approaches has
been developed in the context of direction-of-angle estima-
tion in array signaling. In principle, these techniques can
extract poles that are closer together than the grid spacing
defined by the finite sampling rate, a phenomenon dubbed
superresolution. The theoretical framework to derive guar-
antees for these algorithms that go beyond a perturbative
analysis of special noise models or very simple configura-
tions, was only developed recently [76,77], first focusing
on convex optimization.

Here, we analyze the performance of the MUSIC
algorithm [78] and the ESPRIT [79] algorithm on RB data.
Performance guarantees for these two subspace algorithms
were derived in Refs. [80–83] for the multiplicity-free
case. Furthermore, the ESPRIT algorithm was extended
to polynomially modulated exponentials of the type we
encounter in RB data with multiplicities in Refs. [84,85].
We summarize the required modification in Sec. VII B 5.

For the sake of clarity, we now start reviewing the algo-
rithms for identifying multiple poles without polynomial
modulation. This corresponds to the case of RB with a
multiplicity-free reference representation. For the rest of
this section we denote the output data as ym instead of
p̂(m), in keeping with the signal-processing literature. We
also assume equidistant spacing of the available sequence
lengths m. As we point out in Sec. VII B 5, this require-
ment can be relaxed by running a low-rank completion
algorithm on incomplete data and thereby infer equidis-
tantly spaced data ym. When clear from the context, we
write the data series simply as a vector y, dropping the
explicit dependence on m.

The strategy of both algorithms, MUSIC and ESPRIT,
is to identify the range of the subspaces associated with
the dominant singular values of the Hankel matrix of the
data series {ym}m. The crucial observation is that from this
subspace the poles can be extracted. Let y ∈ RM be the
RB data with M the maximal sequence length. The Hankel
matrix for 1 ≤ L < M is given by

HankelL(y) =

⎛

⎜⎜⎝

y0 y1 · · · yM−L
y1 y2 · · · yM−L+1
...

...
. . .

...
yL yL+1 · · · yM

⎞

⎟⎟⎠ . (145)

We denote the Vandermonde matrix of size n × M for
poles z = (z1, . . . , zn) by

WM (z) = WM (z1, . . . , zn) =

⎛

⎜⎜⎜⎝

1 z1 z2
1 . . . zM−1

1
1 z2 z2

2 . . . zM−1
2

...
...

...
...

...
1 zn z2

n . . . zM−1
n

⎞

⎟⎟⎟⎠ .

(146)

If n = 1, and thus z ∈ C we refer to WM (z) as the Vander-
monde vector of length M and pole z.

With this notation, the data vector y, without noise, is
in the range of WM (z)T. Furthermore, cyclically shifting
the entries of y amounts to multiplication of the summands
with the respective poles. In effect, the Hankel matrix has
a Vandermonde decomposition

HankelL(y) = WT
L(z)diag(a)WM−L(z)+ HankelL(α),

(147)

where we denote by α the deviation of y from an ideal
linear combination of exponentials due to the perturbative
error ε(m) and finite statistics and where a is the vector of
prefactors given in Eq. (143).

To identify the signal subspace and distinguish it from
the noise subspace, the MUSIC and ESPRIT algorithms
employ a singular value decomposition (SVD) of the Han-
kel matrix, HankelL(y) = U�VT. In the absence of noise
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and perturbation, i.e., α = 0, HankelL(y) has n nonvanish-
ing singular values and the corresponding singular vectors
form an orthonormal basis of the signal space span WT

M (z).
Let Usignal be the matrix consisting of the singular vec-
tors of the nontrivial singular values as columns and let
Unoise be the matrix consisting of an orthonormal basis
of the complement. It is convenient to define associated
noise space (Pnoise) and signal space (Psignal) projectors as
Pnoise = UnoiseU†

noise and Psignal = UsignalU
†
signal. In the pres-

ence of noise, analogously choosing the singular vectors of
the n largest singular values yields an estimate of the signal
space.

From the noise-space projector Pnoise = UnoiseU†
noise, the

MUSIC algorithm defines the inverse noise-space correla-
tion function R−1

noise : C → R,

R−1
noise(z) = ‖WL(z)‖2

‖PnoiseWL(z)‖2
. (148)

The poles z can then be identified as the peaks of R−1
noise(z).

These can be found by a continuous scan of the values of
R−1

noise(z), which can be done numerically.
A slightly different approach that avoids the continuous

search for poles is taken by the ESPRIT algorithm. The
ESPRIT algorithm exploits a so-called “rotational invari-
ance” property. To this end, let W↓

L(z) and W↑
L(z) be the

submatrices of the Vandermonde matrix WT
L(z) that omit

the last and first column, respectively. These submatrices
are related via

W↓
L(z) = W↑

L(z)diag(z). (149)

This rotational invariance property is inherited by Usignal.
In consequence, let H↓ and H↑ be the submatrix of the
Hankel matrix H that omits the last and first rows, respec-
tively. Then, in the noiseless case, a solution matrix � of
the equation

H↓ = H↑� (150)

has nonzero eigenvalues z, which are the poles contained
in the data. It is given explicitly by the pseudoinverse
of H↑ applied to H↓. Again noisy signals can be con-
siderably denoised by projecting H↑ to the signal space
before inversion. Altogether we find the algorithmic strat-
egy of ESPRIT to be (i) calculate the SVD of the Hankel
matrix of y and determine Psignal = UsignalU

†
signal, (ii) cal-

culate � = (PsignalH↑)+H↓, and (iii) determine z as the
eigenvalues of �.

3. Performance guarantees

Nonperturbative analysis of the performance of MUSIC
has been conducted in Refs. [80,82]. Therein, the follow-
ing bound for the deviation of the noise-correlation func-
tion Rnoise(z) from the ideal noiseless counterpart Rsignal(z)

[defined similarly to Eq. (148) but using Psignal] has been
derived for poles z of unit absolute value (sinusoids).

The argument, however, holds verbatim for all z ∈ Cn.

Theorem 11: (Noise-correlation function bound [82],
Proposition 4.2). Let E = HankelL(α) denote the Hankel
matrix of the perturbation and noise of the signal vector y.
Let εmin be the smallest singular value of the Hankel matrix
of the noise-free signal. Suppose L ≥ n, M − L + 1 ≥ n
and 2 ‖E‖∞ < εmin. Then,

|Rnoise(z)− Rsignal(z)| ≤ 2 ‖E‖∞
εmin

(151)

for all z ∈ C.

We observe that the bound on Rnoise(z) is proportional to
the spectral norm of the noise in the signal but in addi-
tion is decorated by a noise-enhancing factor inversely
proportional to the smallest singular value εmin of the Han-
kel matrix. The bound on Rnoise(z) can thus not be directly
translated into a bound on the precision in recovering the
poles z without further assumptions, see Ref. [80, Theorem
4] in this context. Nonetheless, the peaks of R−1

noise(z) are
typically very sharp, and the bound on Rnoise(z) indicates a
regime where one can typically expect MUSIC to accu-
rately work. For the ESPRIT algorithm, similar bounds
can be found in Refs. [81,83]. The bounds for ESPRIT
additionally involve the minimum singular value of the
truncation (as defined above) of the Hankel matrix.

4. Conditioning of Vandermonde matrices

The performance guarantees for MUSIC (and ESPRIT)
show a noise enhancement inversely proportional to the
minimum singular value εmin of the Hankel matrix of the
ideal signal. The minimum singular value εmin in turn can
be regarded as a measure for the conditioning of the Van-
dermonde matrices into which the Hankel matrix decom-
poses. This conditioning depends on the system parameters
and on the configuration of poles. Given expected val-
ues for the poles and the maximal sequence length, it is
straightforward to calculate the minimum singular value
numerically. This can provide valuable information in the
design of RB experiments.

More systematically, it is informative to understand the
scaling behavior of the conditioning of the Vandermonde
matrices with the help of theoretical bounds. One such
bound that allows us to study its asymptotic behavior is
briefly reviewed in this section. A lot of work has been
devoted to study the often surprisingly favorable condi-
tioning of Vandermonde matrices for poles on the unit
circle, which describe sinusoidal oscillations, see, e.g.,
Ref. [83] and references therein for a discussion of the
phenomenon of superresolution.
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In the context of RB, we are conversely interested in
poles that are on the real line. A more general characteri-
zation of the conditioning of Vandermonde matrices with
poles inside the unit circle (allowing for decays beyond
oscillations) has been studied in Ref. [86]. The condition-
ing obviously depends on the set of poles z and the size
M of the Vandermonde matrix. To state the result given in
Ref. [86] we define several quantities. To the set of poles
z = (z1, . . . , zn), we associate ž := maxj |zj |, ẑ := minj |zj |
and z̈ := minj �=k |zj − zk|. Furthermore, let us define

QM (z) = [WM (z)W
†
M (z)]

−1/2. (152)

Note that WM (z)W
†
M (z) is the frame operator of the frame

defined by the rows of the Vandermonde matrix and
QM (z) is the orthogonalizing matrix arising in symmetric
orthogonalization. With the help of QM (z), we define the
matrix

FM (z) := QM (z) diag(z)Q−1
M (z), (153)

which will play a prominent role for analyzing the Van-
dermonde conditioning. In particular, its departure from
normality as measured by D2[FM (z)] = ‖FM (z)‖2

F − ‖z‖2
2

will appear.
In Ref. [86] a bound is derived for the 2-norm condition

number κ2(WM ) = ‖WM‖∞
∥∥W+

M

∥∥
∞ through the bound-

ing of the Frobenius norm condition number κF(WM ) =
‖WM‖2

∥∥W+
M

∥∥
2. Here X + denotes the (Moore-Penrose)

pseudoinverse of a matrix X . The condition number of
a linear map A gives a worst-case bound on the relative
reconstruction error in 2 norm induced by an additive
error in 2 norm for a linear inverse problem. But here we
are more concerned with how it enters into the accuracy of
identifying poles in the MUSIC and ESPRIT algorithms.
For the analysis of the MUSIC and ESPRIT algorithm, we
want to upper bound the minimum singular value ε−1

min. By
means of the Vandermonde decomposition (147) and the
submultiplicativity of the spectral norm, we have ε−1

min ≤∥∥W+
M−L

∥∥
∞
∥∥W+

L

∥∥
∞ ẑ−1. Since ‖WM‖∞ ≥ 1, we conclude

that

ε−1
min ≤ κ2(WM−L)κ2(WL)ẑ−1. (154)

For the condition number the following bound holds.

Theorem 12: (Conditioning of Vandermonde matrices
[86], Theorem 6). For M > n ≥ 2, for a Vandermonde
matrix WM (z), it holds that

ε1[FM (z)]
ž

≤ κ2[WM (z)] ≤ 1
2

(
ρ +

√
ρ2 − 4

)
(155)

with

ρ = n
[

1 + D2[FM (z)]
(n − 1)z̈2

] n−1
2
∥∥φL(ž)

∥∥
2∥∥φL(ẑ)
∥∥
2

− n + 2. (156)

Most interesting in our context is the asymptotic scaling
in the limit of large maximal sequence length M , for poles
inside the unit disc |zi| < 1 for all i. In this limit, the above
bounds become tight and the following holds true.

Lemma 13: (Asymptotics of condition number [86],
Lemma 8). Let z = (z1, . . . , zn) ∈ Cn with |zi| < 1 for all
i ∈ [n]. Define C(z) ∈ Cn×n as the matrix with entries

Ci,j (z) = 1
1 − ziz̄j

. (157)

Then,

lim
M→∞

κ2[WM (z)] =
√
κ2[C(z)]. (158)

Later in this section we use this bound to perform
numerical investigations of the resolving power of the
MUSIC and ESPRIT algorithms and to give a sampling
complexity bound for general RB.

5. Extensions of the algorithms

a. Incomplete data or logarithmic grids. So far the pre-
sented algorithms and analysis relied on having an equidis-
tant grid of sequence length. It is well known that a
low-rank matrix can under fairly general assumptions be
completed from the knowledge of just a subset of their
entries [87]. Thus, given only data ym for values m on
an irregular subset regular grid, one can attempt at com-
pleting the Hankel matrix for the regular grid using a
low-rank matrix completion algorithm. This preprocessing
step can be combined with MUSIC or ESPRIT to arrive at
pole-finding algorithms that do not rely on complete data
from an equidistant grid [80]. In particular, we suspect
that for exponential decays a logarithmic grid can poten-
tially yield improved recovery similar to the multiplicative
error bounds for the fitting of single exponentials derived
in Ref. [74], but we leave formally verifying this to future
work.

b. Generalization of ESPRIT to matrix exponentials.
References [84,85] have generalized the ESPRIT algorithm
to signal spaces spanned by products of falling polynomials
and exponentials. This is exactly the signal model,
Eq. (143), that we encountered for RB output data,
when the reference representation has multiplicities.
The key insight in this generalization is that the
Hankel matrix of such signals admits a decompo-
sition analogous to the Vandermonde decomposition
(147) in terms of Pascal-Vandermonde matrices. These
Pascal-Vandermonde matrices feature the same rotational
invariance property underlying the ESPRIT algorithm.
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Thus, one can show that when applying the standard
ESPRIT algorithm to data of this form, the vector of
eigenvalues of the matrix � is still the vector of poles z
with the eigenvalues appearing in multiplicities according
to the maximal degree of the associated falling polyno-
mial. Hence, ESPRIT can be directly applied to estimate
matrix-exponential data series. Noise in the signal will
generically break the degeneracy of the eigenvalue spec-
trum, corresponding to the fact that a generic matrix has
nondegenerate eigenvalues. Searching for regular poly-
gons of poles allows for matching groups of perturbed
poles corresponding to the same unperturbed pole. We
refer to Refs. [84,85] for further details.

C. Randomized benchmarking sampling
complexity—estimation of the Hankel matrix

The performance bounds on the pole-finding algorithms,
such as Theorem 11, depend on the deviation of the Hankel
matrix from ideal data in spectral norm. In RB protocols
this error has two contributions:

1. The finite sampling statistics of the measurements,
which yields a statistical error of the mean estimator
p̂(m).

2. The perturbative error that comes from neglecting
subdominant eigenvalues, which is controlled by
our Theorems 8, 9, and 10.

For the finite sampling error, we provide the following
bound. To this end, we model the individual measurement
performed during the RB protocol by a random variable
Ŷm. To simplify the notation in the proof, we assume that
the number of different sequence lengths is even and use a
square Hankel matrix.

Lemma 14: (Statistical estimation). Let M be even and
L = M/2. For m ∈ [M ], let Ŷm be a random variable tak-
ing values in [0, 1] with Var[Ŷk] ≤ ε2. Furthermore, let
p̂(m) = 1/N

∑N
i=1 Ŷ(i)m the corresponding mean estimator

of N independent identically distributed (IID) copies Ŷ(i)m
of Ŷm. We denote with HankelL(p̂) the Hankel matrix of the
vector p̂ = [p̂(m)]m∈[M ] ∈ RM . Then,

∥∥HankelL(p̂)− EHankelL(p̂)
∥∥

∞ ≤ ε (159)

with probability 1 − δ provided that

N ≥ 4 max
{

Mε2

ε2 ,
2
3ε

}
log

M
δ

. (160)

Combining Lemma 14 with the performance bound for
MUSIC, Theorem 11, and Eq. (154) we can state the
following result for the overall sampling complexity of
random benchmarking experiments.

Corollary 15: (Sampling complexity). Let M be even and
L = M/2. And z = (zi)

n
i=1 be a set of poles. For m ∈ [M ]

let p̂(m) be the mean estimator of IID copies of random
variables with variance bounded by ε2. Choose ε̃, δ > 0,
provided that the total number of random trials is

Ntotal ≥ 8κ4
2 [WM/2(z)]ẑ−2 Mε2

ε̃2 log
M
δ

(161)

and

Ntotal ≥ 16
3
κ2

2 [WM/2(z)]ẑ−1 1
ε̃

log
M
δ

(162)

for the noise-space correlation function (148) defined by
the MUSIC algorithm with input data p̂ it holds that
|Rnoise(z′)− Rsignal(z′)| ≤ ε̃ with probability δ.

We state this bound in terms of the condition number
of the Vandermonde matrix, which allows us to make ana-
lytic claims about the behavior of the sampling complexity
in various regimes. However, one can state an equivalent
bound in terms of the smallest singular value, which will
often be significantly smaller. It is, however, difficult to
work with analytically.

For the application of Corollary 15 to RB data pro-
cessing, one has to additionally control the perturbative
error appearing in Theorems 8, 10, and 9. The perturba-
tive error ε per RB data point, see, e.g., Eq. (73), yields an
additive error in the noise correlation function of order of
Mẑ−1κ2

2 [WM/2(z)]ε. The scaling with Mε originate from
the spectral norm of the Hankel matrix and the factor of
z−1κ2

2 [WM/2(z)] captures the noise enhancement.
Lemma 14 follows from the matrix Bernstein bound

[88,89] that requires us to control the spectral norm and
matrix variance statistics in order to provide a tail bound
for sums of matrices. We follow the same strategy as
presented in Ref. [88] for Toeplitz matrices.

Proof of Lemma 14. With the help of the L × L exchange
matrix

Ji,j =
{

1 j = L − i + 1
0 else

(163)

and the L × L (noncyclic) shift matrix X that has ones its
first upper off-diagonal and zeros everywhere else we can
write

HankelL(p̂) =
L−1∑

k=−L+1

p̂kX kJ , (164)

where we identify the elements of p cyclically. We define

S(i)k := 1
N
(Ŷ(i)k − E[Ŷ(i)k ])X kJ (165)
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such that HankelL(p̂)− EHankelL(P̂) = ∑N
i=1
∑L−1

k=−L+1 Sk

is the sum of the random matrices S(i)k . Since

‖X ‖∞ = ‖J‖∞ = 1 (166)

and Ŷk takes values in [0, 1], we have that

∥∥∥S(i)k

∥∥∥
∞

≤ 2/N (167)

for all i, k. For the matrix variance we calculate that

L−1∑

k=−L+1

E[S(i)k (S
(i)
k )

†] = 1
N 2

L−1∑

k=−L+1

Var[Ŷk]X kX −k

= 1
N 2

L−1∑

k=−L+1

Var[Ŷk]Pk, (168)

with Pk a diagonal projector having k ones on the diagonal
and zeros everywhere else. One finds the same structure
for

∑L−1
k=−L+1 E[(S(i)k )

†S(i)k ] analogously. By the assump-
tion of the lemma Var[Ŷk] ≤ ε2. Therefore, matrix variance
statistics is dominated as

max

{∥∥∥∥∥

N∑

i=1

L−1∑

k=−L+1

E(SkS†
k)

∥∥∥∥∥
∞

,

∥∥∥∥∥

N∑

i=1

L−1∑

k=−L+1

E(Sk
†Sk)

∥∥∥∥∥
∞

}

≤ Mε2

N
. (169)

The matrix Bernstein inequality [88] yields

P

[∥∥∥∥∥

N∑

i=1

L−1∑

k=−L+1

Sk

∥∥∥∥∥
∞

≥ ε

]

≤ M exp
(

− min
{
ε2N

4Mε2 ,
3εN

8

})
. (170)

Requiring the right-hand side to be dominated by δ and
solving for N yields the lemma’s assertion. �

D. Vandermonde conditioning for randomized
benchmarking decays

The noise-enhancement factor in the performance guar-
antee for the tone-finding algorithms MUSIC and ESPRIT
is given by the inverse of the minimum singular value ε−1

min
of the Hankel matrix of the ideal, noise-free signal. This
minimum singular value, Eq. (154), is in turn controlled
by the minimal absolute value of the poles and the condi-
tioning of the Vandermonde matrix WL(z) associated with
the poles and the signal length. Here we numerically inves-
tigate this conditioning in various scenarios relevant to RB.
We express all data in terms of the dimension of the Han-
kel matrix L, which one can generally take as being about
half of the maximal sequence length M .

When the RB data model is described by many poles
that are close in value the noise enhancement due to
bad conditioning can be the limiting factor rendering the
extraction of poles infeasible.

Increasing the sequence length improves the condition-
ing of WL(z), see Fig. 3. But Theorem 12 shows that the
condition number of WL(z) is even in the asymptotic limit
W∞(z) for large L bounded away from zero. Thus, increas-
ing the length of observed RB series only improves the
conditioning up to a certain point.

FIG. 3. The condition number
of the Vandermonde matrix for
different Hankel matrix dimen-
sions (∝ RB sequence length) for
three different sets of poles. The
dashed lines indicate the asymp-
totic expression of Lemma 13.
Note that the minimum for the
green line is due to the scaling of
the maximal eigenvalue of WM−L.
We observe (not depicted here)
that the minimum singular value
of the Hankel matrix, as appearing
in Theorem 11, is monotonically
increasing in L for all three sets of
poles.
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FIG. 4. Here we show the dependency of the conditioning number of the Vandermonde matrix on the spacing of two poles z0, z1,
for infinite sequence length. We see that the conditioning depends drastically on the distance between the two poles, but not on the
absolute location of the poles on the real line. The orange line at 102 is added for the purpose of comparison.

The explicit expressions of the upper and lower bounds
on the condition number in Theorem 12 have a rather com-
plicated dependency on the geometrical constellation of
the poles. One can argue that for RB data with poles on
the real line there are roughly speaking two effects coming
into play: (1) the spacing of the poles and (2) the number
of poles.

To illustrate the dependency on the spacing of the poles,
we numerically evaluate the κ2[W∞(z)] for different pairs
of poles as they might appear in RB data. The result is
shown in Fig. 4. The first pole is chosen to deviate from 1
by a value r ∈ {10−2, 10−3, 10−4}, the second pole is cho-
sen at different values around the first one. We observe
that as both poles move together the condition number
diverges. Importantly, the size of the interval in which the
condition number grows over a certain threshold scales
with r. Correspondingly, we expect that poles closer to 1
can be still resolved with a smaller spacing compared to
poles that deviate considerably from 1.

Secondly, even if the poles are spaced such that the
ratio of the departure from normality and the minimum
spacing are fixed the upper bound in Theorem 12 exhibits
an exponential dependency on the number of poles. We
numerically evaluate this dependency for different families
of poles that each defines a set of poles for every

cardinality, see Table I. These families include linearly
spaced poles within the interval (α, 1) and the pole fam-
ilies Fa(n) = (zi = 1 − 10−i/a | i ∈ [n]) for positive real
a. For example, F1(n) = (.9, .99, .999, . . .), which can be
regarded as featuring exponentially spaced “infidelities”.

Figure 5 depicts the dependency of κ2[W∞(z)] on the
number of poles n for different families. We find that due
to a typically exponential dependency, the conditioning
indicates that the reconstruction of multiple poles becomes
demanding for already small numbers n.

Note that the conditioning is significantly improved if
the poles are not exclusively on the real line but also have
nonvanishing imaginary parts. Such pole sets, for example,
arise in the RB variant of Ref. [9] focusing on individual
gates.

E. Performance evaluation

After collecting evidence that the reconstruction of mul-
tiple poles quickly becomes a demanding task. We here
show that for moderate configurations (i.e., not too many
poles, not too close together) the ESPRIT algorithm is
suitable for the postprocessing of RB data. To this end,
we implement the ESPRIT algorithm in Python. For a
fixed set of poles the ideal data series (constructed from

TABLE I. Examples of pole families for different numbers of poles n.

n 2 4 6

Lin. α = .9 (0.9, 0.95) (0.9, 0.925, 0.95, 0.975) (0.9, 0.9167, 0.9333, 0.95, 0.9667, 0.9833)
Lin. α = .5 (0.5, 0.75) (0.5, 0.625, 0.75, 0.875) (0.5, 0.5833, 0.6667, 0.75, 0.8333, 0.9167)
F1 (.9, .99) (.9, .99, .999, .9999) (.9, .99, .999, .9999, .99999, .999999)
F2 (0.9, 0.9684) (0.9, 0.9684, 0.99, 0.9968) (0.9, 0.9684, 0.99, 0.9968, 0.999, 0.9997)
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FIG. 5. The dependency of the
condition number in the limit of
infinite sequence length on the
number of poles for different fam-
ilies of poles. These families are
defined in Table I.

the poles and a fixed identical prefactor) is made noisy
by randomly sampling binomial distributions. This simu-
lates the random noise due to finite statistics for a certain
number of samples per sequence length. Subsequently, the
set of poles is reconstructed from the noisy data using
the ESPRIT algorithms. We compare the reconstructed set
of poles with the ideal set of poles using the symmetric
Hausdorff distance. Let z ∈ Cn and z′ ∈ Cn′

dH (z, z′) = max{ddH (z′; z), ddH (z; z′)},
ddH (z, z′) = max

k∈[n]
min

k′∈[n′]
|zk − z′

k′ |. (171)

Figure 6 displays the mean Hausdorff distance for a dif-
ferent number of samples. Each data point is averaged
over 100 repetitions. Figure 7 depicts the mean Hausdorff
distance for different numbers of samples and maximal

FIG. 6. Mean Hausdorff distance between the real set of poles and the reconstructed set of poles (via ESPRIT) for different families
of poles (as defined in Table I) and Hankel dimension L (∝ maximal RB sequence length M ) versus the number of samples used per
expectation value estimation. Each data point is averaged over 100 repetitions. For all families we see that the reconstruction essentially
fails until a sampling threshold is reached, after this threshold the accuracy of the estimation increases rapidly with increased number of
samples. This threshold increases strongly with the number of poles in the family across all families and also depends on the maximal
sequence length. This latter dependence is mediated by the actual locations of the poles in the complex plane, which is as expected.
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FIG. 7. Mean Hausdorff distance of the reconstruction (via
ESPRIT) for poles z = F2(4) = (0.9, 0.968, 0.99, 0.997) for dif-
ferent number of samples and Hankel dimension L (∝ maxi-
mal RB sequence length M ). Each data point is averaged over
100 repetitions. We see again that reconstruction essentially
fails, until a threshold is reached both in the number of sam-
ples and in maximal sequence length after which the accuracy
of reconstruction increases with increasing number of samples
and in L.

sequence lengths. In both of these plots we note a threshold
effect where the reconstruction of the poles essentially fails
until a threshold of samples and maximal sequence length
is reached, after which reconstruction accuracy increases
with increasing number of samples. This phenomenon is
observed for different families of poles and the location
of the threshold depends strongly on the number of poles
in the signal. It is interesting to note in Fig. 7 that the
minimal number of samples needed for reconstruction is
dependent on the maximal sequence length. Since increas-
ing the maximal sequence length has an implicit sampling
cost, this points to a nontrivial optimization problem in
allocating resources. We leave further investigation of the
optimal point for a family of poles for further research.
The conclusion from these numerical investigations is that
the RB decay-rate recovery problem is feasible using mod-
ern methods when the number of poles is small but rapidly
becomes impractical as the number of poles grows.

VIII. ISOLATING MATRIX EXPONENTIALS
ASSOCIATED WITH A REPRESENTATION

We have seen in Sec. VI that for uniform randomized
benchmarking the output data is well described by a lin-
ear combination of (matrix) exponential decays associated
with irreducible subrepresentations of a reference repre-
sentation. The decay rates can, in principle, be extracted
by the methods described in Sec. VII. However, two issues
crop up here: (1) the sample complexity of extraction is
strongly dependent on the number of decays present in the

RB output data, limiting RB to groups with reference rep-
resentations containing at most a few irreducible subrep-
resentations, and (2) upon successful extraction of decay
constants, it is not clear a priori how they are related to the
different irreducible subrepresentations present, making it
hard to relate the decay constants to the average fidelity.

A data-processing technique that addresses this prob-
lem was proposed in various papers (marked with a ∗ in
Fig. 2) such as the dihedral benchmarking scheme [37]
for the single-qubit dihedral group, the character bench-
marking scheme [39], which works for general groups
(with some technical constraints on the reference represen-
tation) and the Pauli channel tomography scheme [45] and
cycle benchmarking [13] for the Pauli group (in Ref. [45]
multiple decays are actually estimated in parallel). The
unifying theme in all of these procedures is that one esti-
mates RB output data p(i, m, gend) for different ending
gates gend ∈ G, and then correlates the resulting vector
of signals [p(i, m, gend)]gend with a scalar function fλ(gend)

(which can be thought of as a dual vector) that depends
on an irreducible subrepresentation σλ of the reference
representation ω.

In this section we take this idea and generalize it as
far as possible. In particular, we propose a postprocessing
method that, for any group G and reference representation
ω, takes in RB output data p(i, m, gend) (for all gend ∈ G)
and an irreducible subrepresentation σλ of the reference
representation ω, and outputs postprocessed data kλ(m)
that depends only on the (matrix) exponential decay asso-
ciated with σλ. We state theorems for uniform RB, but the
discussion below generalizes to the other types of RB.

We note that all examples of RB schemes without inver-
sion gates (marked with a ∗∗ in Fig. 2) can be seen as
special cases of the procedure given below, where the out-
put data [p(i, m, gend)]gend is simply averaged over gend. We
would also like to note that the procedure defined here
obviates the need for explicitly implementing the inversion
gate (as it can be simply absorbed by redefining gend). This
makes the protocol more experimentally practical.

A. The postprocessing procedure

We begin by defining filter functions αλ (associated with
a representation σλ)

αλ : G × I → C : g, i �→ 〈〈�i|Pλω(g)|ρ0〉〉, (172)

where Pλ : Sd → Sd is the projection onto the subrepre-
sentation σ⊕nλ

λ of the reference representation ω. This is
(up to normalization) the matrix element of the subrepre-
sentation σ⊕nλ

λ corresponding to the vectors |ρ0〉〉 and 〈〈�i|.
From the RB data and the above matrix element function
we can now compute the following quantity we call the
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λ-filtered RB output data:

kλ(m) = 1
|G|

∑

gend∈G

∑

i∈I

N−1
λ αλ(i, gend)p(i, m, gend), (173)

where the normalization constant is given by

Nλ = 1
|G|

∑

g∈G

∑

i∈I

αλ(g, i)〈〈�i|ω(g)|ρ0〉〉. (174)

One can think of this quantity as measuring the presence of
the subrepresentation σλ in the data p(i, gend, m). We make
this more precise in the following theorem.

Theorem 16: (Measuring subrepresentations in the data).
Let G be a finite group and ω : G → Sd a reference rep-
resentation of G with decomposition ω = ⊕

λ′∈� σ
⊕nλ′
λ′ .

Moreover, let φ be an implementation of ω for which
Theorem 8 holds. For a fixed λ ∈ � consider the λ-filtered
data kλ(m) as defined in Eq. (173). As a function of m we
now have that

|kλ(m)− Tr(BλM m
λ )| ≤ 8K

(
δ

[
1 + 2δ

1 − 5δ

])m

, (175)

where Bλ is an nλ × nλ matrix encoding SPAM terms, Mλ

is given by the projection onto the subspace associated
with the nλ largest eigenvalues of F(φ)[σλ] (as given in
Theorem 8), and K is some constant independent of m.

Proof. We know from Theorem 8 that

|p(i, m, gend)−
∑

λ′∈�
Tr(Aλ′M m

λ′ )| ≤ 8
(
δ

[
1 + 2δ

1 − 5δ

])m

,

(176)

with Aλ′ given in Eq. (101). From the definition of kλ(m),
we can thus compute

kλ(m) = 1
|G|

∑

gend∈G

∑

i∈I

N−1
λ αλ(i, gend)

∑

λ′∈�
Tr(Aλ′M m

λ′ )

(177)

+ 1
|G|

∑

gend∈G

∑

i∈I

N−1
λ αλ(i, gend)

×
(

p(i, gend, m)−
∑

λ′∈�
Tr(Aλ′M m

λ′ )

)
. (178)

Considering only the first term, and inserting the definition
of αλ(i, gend) we are interested in the SPAM operator
quantity

Bλ,λ′ = 1
|G|

∑

gend∈G

∑

i∈I

〈〈�i|Pλω(gend)|ρ0〉〉Aλ′ (179)

for λ′ ∈ �. From the proof of Theorem 8 [Eq. (101)], we
can recover an expression for the nλ′ × nλ′ matrix Aλ′ :

[Aλ′]j ,j ′ = dσλ′ 〈〈EM (�i)| TrVσ
λ′

×
[
[σλ′(gend

−1)⊗ 1]Rλ
′

1 F(P j
λ′ωP j ′

λ′ )Lλ
′

1
†
]

× |ESP(ρ0)〉〉, (180)

where P j
λ′ is the projector onto the j ’th copy of σλ′

in the reference representation ω and Rλ
′
, Lλ

′
1 encode

the deviation of φ from ω (their precise shape is not
relevant for our argument). By linearity, we can now
consider

[Bλ,λ′]j ,j ′ (181)

=
∑

i∈I

dσλ′ 〈〈�i ⊗ EM (�i)| 1
|G|

∑

gend∈G

[Pλω(gend
−1)] ⊗ TrVσ

λ′

[
[σλ′(gend

−1)⊗ 1]Rλ
′

1 F(P j
λ′ωP j ′

λ′ )Lλ
′

1
†
]
|ρ0 ⊗ ESP(ρ0)〉〉

(182)

=
∑

i∈I

dσλ′ 〈〈�i ⊗ EM (�i)| TrVσ
λ′

[
δλ,λ′[F(ω)[σλ] ⊗ 1]1 ⊗ [Rλ

′
1 F(P j

λ′ωP j ′
λ′ )Lλ

′
1

†]
]
|ρ0 ⊗ ESP(ρ0)〉〉, (183)

where we use that

1
|G|

∑

gend∈G

Pλω(gend)⊗ σλ′(gend) = 1
|G|

∑

gend∈G

σ
⊕nλ
λ (gend)⊗ σλ′(gend) = δλ,λ′F(ω)[σλ′], (184)
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which is the Fourier transform analog of the orthogonality
of characters of irreducible representations. Hence Bλ,λ′ =
δλ,λ′Bλ,λ′ := Bλ.

Plugging this back into the expression for kλ we get

kλ(m) = Tr(BλM m
λ )+ 1

|G|
∑

gend∈G

∑

i∈I

N−1
λ αλ(i, gend)

×
(
∑

λ′∈�
Tr[A(�i, gend)λ′M m

λ′ ] − p(i, gend, m)

)
.

(185)

We can thus upper bound the difference kλ(m)−
Tr(BλMλ) by considering the magnitude of the dif-
ference term. Note that we know from Theorem 8
that {∑λ′∈� Tr[A(�, gend)λ′M m

λ′ ] − p(i, m gend)} ≤ O(δm).
It follows that there exists a K such that

∣∣∣∣
1

|G|
∑

gend∈G

∑

i∈I

N−1
λ αλ(i, gend)

×
(
∑

λ′∈�
Tr[A(�, gend)λ′M m

λ′ ] − p(i, m, gend)

) ∣∣∣∣

≤ 8K
(
δ

[
1 + 2δ

1 − 5δ

])m

. (186)

�
Hence, the λ-filtered output data has essentially the same

behavior as regular RB data, except that only the Fourier
mode associated with σλ is included in the signal. One can
think of the λ filter function αλ as placing a δ-peak fil-
ter function centered on the “frequency” σλ. Note that by
linearity we get essentially the same result if one defines
a filter function associated with nonirreducible representa-
tions (via a direct sum of irreducible representations). This
can be thought of as placing a frequency comb on the RB
data. Finally, it is interesting to explicitly write down the
form of the SPAM matrix Bλ in the limit of no SPAM and

perfect gates. In the case of a multiplicity-free reference
representation ω we have

Bλ = N−1
λ

∑

i∈I

〈〈�⊗2
i |F(ω)[σλ]|ρ⊗2

0 〉〉, (187)

which emphasizes the importance of the normalization
constant (on which more later), but also the importance of
choosing ρ and {�i}i∈I such that Bλ is nonzero.

B. Statistical estimation

When computing the filtered output data kλ(m) in the
previous section we assumed we had access to the RB out-
put data p(i, gend, m) for all i ∈ I and gend ∈ G. This is not
realistic since both the size of the POVM {�i}i∈I and the
size of the group |G| can be exponential in the number of
qubits. In practice, we need to construct a statistical esti-
mator k̂λ for kλ, and argue that k̂λ is a good approximation
for a reasonable number of samples. This we do in this
section.

Note that the normalization factor Nλ is essential in
lower bounding the magnitude of the filtered function kλ
(i.e., making sure that the number kλ is not too small).
However, this normalization factor can be proportional to
the Hilbert-space dimension d, making it tricky to set up an
estimator for kλ that has a sampling complexity that does
not grow with d (which would make sampling practically
impossible for more than a few qubits). This is the task
we turn to now. We can construct an estimator for kλ(m)
essentially directly from its definition.

It is easy to see that the mean of this estimator is equal
to the λ-filtered output data kλ(m). However, this does
not mean that the associated estimation procedure is effi-
cient. A priori the variance of the estimator could scale
with Hilbert-space dimension d, since the magnitude of
the filter function N 1

λαλ does so in general. We cannot
prove that this estimator is efficient for all groups G and
POVMs {�i}i∈I . We can, however, make some partial
statements. In particular, we can prove that the estimator
is efficient as long as the POVM {�i}i∈I is generated by a

Algorithm 1

k̂λ(m) =
1
L

L∑

l=1

N−1
λ αλ(i, gendl)fi(gendl) (188)

Algorithm 2. An estimator for kλ(m)
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3-design. This is a restrictive condition, but not impossi-
ble to fulfill. We discuss how to implement such a POVM
after stating and proving the following theorem, which
essentially states that under the 3-design condition, the
variance of the estimator k̂λ(m) does not scale with the
Hilbert-space dimension d. This means that the sampling
resources required by the protocol do not depend on the
number of qubits in the system, making the postprocessing
step scalable (at least with respect to sampling). We note
that this theorem gives an extremely crude bound on the
variance, and the actual variance is liable to be substan-
tially smaller. For simplicity, we assume that there is no
SPAM or gate noise, but the conclusions made here easily
generalize.

Theorem 17: (Efficient estimators). Consider a uniform
RB experiment of sequence length m, with group G, refer-
ence representation ω, measurement POVM {�i}i∈I , and
initial state ρ0, and further assume that the POVM {�i}i∈I
is an (exact) 3-design, that is�i = d/|I ||χi〉〈χi| with states
|χi 〉 and 1/I

∑
i∈I |χi〉〈χi|⊗3 = ∫

dψ |ψ〉〈ψ |⊗3. Then for
all λ ∈ � the variance of the estimator k̂λ(m) is asymp-

totically independent of the Hilbert-space dimension d.

Proof. First we calculate the effect of the 3-design condi-
tion on the normalization factor of the correlation function
α(i, ·), by direct calculation we have

Nλ = 1
|G|

∑

g∈G

∑

i∈I

αλ(i, g)〈〈�i|ω(g)|ρ0〉〉, (189)

= d2

|I |
1

|G|
∑

g∈G

∫
dψ〈〈ψ⊗2|ω(g)⊗2Pλ ⊗ 1|ρ⊗2

0 〉〉,

(190)

= d2

|I |
[

1
d2 − 1

Tr[ρ0Pλ(ρ0)] + Tr[Pλ(ρ0)] Tr(ρ0)

d2

]
,

(191)

= 1
|I |
[

d2

d2 − 1
Tr[ρ0Pλ(ρ0)] + Tr[Pλ(ρ0)]

]
, (192)

where we use the fact that the Haar measure is invariant under unitary action to absorb the ω(g) dependence, as well
as a standard formula for the second moment of a Haar average over the unitary group, see, e.g., Ref. [55, Proposition
37] or Ref. [54] [and that Tr(ρ0) = 1]. We can now calculate the variance. We denote by k̂λ(m, gend) the estimator of∑

i∈I N−1
λ α(i, gend)p(i, m, gend) for a fixed gend ∈ G. By the law of total variation we can write

V[k̂λ(m)] = 1
|G|

∑

gend∈G

V
[
k̂λ(m, gend)

]+ VG

[
∑

i∈I

α(i, gend)p(i, m, gend)

]
(193)

≤ 1
|G|

∑

gend∈G

∑

i∈I

N−2
λ α(i, gend)

2p(i, m, gend)+ 1
|G|

∑

gend∈G

[
∑

i∈I

N−1
λ α(i, gend)p(i, m, gend)

]2

, (194)

by dropping the negative terms in the variances. We begin with calculating the second term. For this note that for all
gend ∈ G (again using the invariance of the Haar measure):

∑

i∈I

N−1
λ α(i, gend)p(i, m, gend) = I

[
d2

d2 − 1
Tr[ρ0Pλ(ρ0)] + Tr[Pλ(ρ0)]

]−1

(195)

×
∫

dψ
d2

I
〈〈ψ⊗2|{ω(g)⊗ [EMφ

∗m(gend)ESP]}(Pλ ⊗ 1
)|ρ⊗2

0 〉〉 (196)

=
[

d
d2 − 1

Tr
{
ρ0
[
PλEMφ

∗m(gend)ESP
]
(ρ0)

}+ Tr
[
Pλ(ρ0)

]]
(197)

×
[

d2

d2 − 1
Tr[ρ0Pλ(ρ0)] + Tr[Pλ(ρ0)]

]−1

, (198)

where we use the expression for p(i, m, gend) from Eq. (69). Note that this expression is asymptotically independent of the
Hilbert-space dimension (depending only on how well the initial state overlaps with the projector Pλ). Next we discuss
the first term, given by
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1
|G|

∑

gend∈G

∑

i∈I

N−2
λ α(i, gend)

2p(i, m, gend) (199)

= N−2
λ

d3

|I |2
1

|G|
∑

gend∈G

∫
dψ〈〈ψ⊗3|{ω(gend)

⊗2 ⊗ [EMφ
∗m(gend)ESP]}(P⊗2

λ ⊗ 1
)|ρ⊗3

0 〉〉 (200)

= N−2
λ

d3

|I |2
∫

dψ〈〈ψ⊗3|{P⊗2
λ ⊗ [EMφ

∗m(e)ESP]}|ρ⊗3
0 〉〉. (201)

Here appears a third moment of a Haar average, which can be evaluated using Weingarten calculus (see, for instance, Eqs.
S35 and S36 in Ref. [54], Ref. [55] or Ref. [90] more generally). In this particular instance, we get

∫
dψ 〈ψ |Pλ(ρ0) |ψ 〉〈ψ |Pλ(ρ0) |ψ 〉〈ψ | [EMφ

∗m(e)ESP
]
(ρ0) |ψ 〉 (202)

= Tr
[
Pλ(ρ0)|2t

]+ 2 Tr{Pλ(ρ0)|2t
[
EMφ

∗m(e)ESP
]
(ρ0)}

(d + 2)(d + 1)d
(203)

+ Tr
[
Pλ(ρ0)] Tr{Pλ(ρ0)|t

[
EMφ

∗m(e)ESP
]
(ρ0)}

d2(d + 1)
+ Tr

[
Pλ(ρ0)

]2

d3 , (204)

where A|t = A − Tr(A)1 for matrices A. By isolating a common d−3 factor and plugging back in, we get

1
|G|

∑

gend∈G

∑

i∈I

N−2
λ α(i, g)2p(i, m, gend) (205)

=
[

2 Tr
[
Pλ(ρ0)|2t

]
Tr{Pλ(ρ0)|2t

[
EMφ

∗m(e)ESP
]
(ρ0)

}

(d + 2)(d + 1)d−2 (206)

+ Tr
[
Pλ(ρ0)

]
Tr{Pλ(ρ0)|t

[
EMφ

∗m(e)ESP
]
(ρ0)}

d−1(d + 1)
+ Tr

[
Pλ(ρ0)

]2
]

(207)

×
[

d2

d2 − 1
Tr[ρ0Pλ(ρ0)] + Tr[Pλ(ρ0)]

]−2

, (208)

which is again asymptotically independent of the Hilbert-
space dimension. �

Measurement POVMs that are proportional to 3-designs
are not very common. However, when considering a sys-
tem of q qubits it is possible to construct one by consid-
ering computational basis measurements conjugated by a
random element of the q-qubit Clifford group Cq. That is,
we consider the POVM

{�x,C} = { 1
|Cq|C |x 〉〈x |C† ‖ x ∈ {0, 1}q, C ∈ Cq}.

(209)

It is easy to see that this is a POVM

∑

C∈Cq

∑

x∈{0,1}q

1
|Cq|C |x 〉〈x |C† = 1

|Cq|
∑

C∈Cq

CC† = I (210)

and it is also proportional to a 3-design, because the mul-
tiqubit Clifford group is a unitary 3-design [91,92], and
hence every orbit {C |x 〉〈x | C†}C∈Cq is a state 3-design (and
thus so is the union over x).

We emphasize that the 3-design condition is only a suf-
ficient condition for a controlled variance of the estimator
for the filtered output data, which works for any group G

and subrepresentation σλ. For particular choices of G and
σλ the estimator k̂λ(m) might be efficient for other choices
of the POVM {�i}i∈I . It is, for instance, easy to see that
the variance will also be controlled if the degree dλ of
the irrep σλ is small. This follows from the fact that the
normalization factor Nλ can be written as

Nλ = 1
dλ

∑

i∈I

Tr[�iPλ(�i)] Tr[ρ0Pλ(ρ0)] (211)

020357-40



GENERAL FRAMEWORK FOR RANDOMIZED BENCHMARKING PRX QUANTUM 3, 020357 (2022)

so assuming the POVM {�i}i∈I and the initial state ρ0
can be chosen to have sufficient (larger than 1/d) overlap
with the subrepresentation σλ the magnitude of the inverse
normalization factor N−1

λ , and hence the size of the sup-
port of the probability distribution {N−1

λ α(i, gend)}p(i,m,gend)

is controlled by 1/dλ. Hence, if dλ is small, the estimator
k̂λ(m) is efficient. This follows because it is constructed
by sampling from a [O(1) in d] bounded random variable.
Examples of this behavior have been noted in the literature
[37,39,45].

Alternatively, there are situations where the dimension
of the representation σλ scales with the total Hilbert-
space dimension d but the estimator k̂λ(m) is still efficient
because the group G under consideration is sufficiently
randomizing (roughly, it spans its own 3-design due to
the randomization over the ending gate gend). An exam-
ple of this is the recently introduced linear-cross-entropy
benchmarking procedure, which we discuss in the next
section.

Finally, we would like to add that if one reuses the same
experimental data p(m, gend) to estimate kλ(m) for differ-
ent λ, the resulting estimates for kλ(m) (and consequently
the associated decay rates) will be correlated. This must be
taken into account when performing joint statistical infer-
ences on estimates for several Mλ. This can of course be
remedied by gathering new data for each representation
label λ.

C. Example: linear cross-entropy benchmarking

Recently, Ref. [29] has introduced a RB-like protocol
referred to as linear-cross-entropy benchmarking, in short
XEB. We see in this section that this protocol falls into
the framework of the benchmarking schemes introduced
here. In fact, it can be seen as uniform RB with G the
full unitary group, together with a postprocessing scheme
that is a special case of the above filtering scheme. Let
φ : U(2q) → Sd be an implementation map of the uni-
tary group, also let {�x}x∈{0,1}n be the computational basis
POVM, and ρ0 = |0〉〈0|. The linear cross-entropy fidelity
is now given by

FXEB = d
∫

Haar
dU

∑

x∈{0,1}q

|〈x |U |0 〉|2〈〈�x|EMφ(U)ESP|ρ0〉〉

(212)

with EM , ESP being the usual SPAM error channels. Setting
α(x, U) = |〈x |U |0 〉|2 = 〈〈�x|ω(U)|ρ0〉〉 we see that FXEB
can be interpreted as a RB experiment of sequence length
“0” with gend = U together with postprocessing by corre-
lation with the adjoint representation ω(U) = U · U†. Note
that the dimensional factor almost precisely serves as the

correct normalization factor for α(x, U), since

∫
dU
∑

x

| 〈x |U |0 〉|4 = 2d
d + 1

. (213)

We can extend this interpretation by considering the linear
cross entropy of a sequence of m random unitaries (this is
done implicitly in Ref. [29]). This gives

FXEB,m = d
∫

Haar
dU1 . . .Um

∑

x∈{0,1}q

|〈x |Um · · · U1 |0 〉|2

× 〈〈�x|EMφ(U1 · · · Um)ESP|ρ0〉〉. (214)

Using the invariance of the Haar measure and the linearity
of the trace and the tensor product we can rewrite this as

FXEB,m = d
∫

Haar
dUm

∑

x∈{0,1}q

|〈x |Um |0 〉|2

× 〈〈�x|EMφ
∗m(Um)ESP|ρ0〉〉 (215)

= d
∫

Haar
dUm

∑

x∈{0,1}q

|〈x |Um |0 〉|2p(x, Um, m)

(216)

with p(x, Um, m) the output probability of a regular RB
experiment. Now noting that ω(U) decomposes into the
trivial representation (on the space {a|1〉〉 | a ∈ C}) and the
adjoint representation [on the space { |A〉〉 | Tr(A) = 0}] we
apply Theorem 8 to the above to get

FXEB,m = Atrsm
tr + Aadjf m

adj (217)

up to a correction exponentially small in m, where str (fadj)
is the largest eigenvalue of the Fourier transform of φ
evaluated at the trivial (adjoint) representation. Recall that
str = 1 if φ(U) is trace preserving for all U, and that we
can moreover interpret fadj as affinely related to the average
fidelity (certainly in the gate-independent noise setting).
Hence, through Theorem 8 and our general postprocessing
scheme the linear-cross-entropy benchmarking procedure
inherits both the stability and interpretation of uniform RB.

It is notable that the estimator k̂λ(m), which in this case
estimates the linear cross entropy fidelity FXEB,m is actu-
ally efficient, in the sense of Theorem 17. We can sketch an
argument for this by directly estimating the variance of the
estimator. For this argument we assume gate-independent
noise [i.e., φ(U) = Aω(U) for some completely positive
A]. Following Theorem 17, we have
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V[k̂λ(m)] ≤ d2
∑

x∈{0,1}q

∫

Haar
dU|〈x |U |0 〉|4〈〈�x|EMφ

∗m(U)ESP|ρ0〉〉 (218)

+ d2
∫

Haar
dU

⎡

⎣
∑

x∈{0,1}q

|〈x |U |0 〉|2〈〈�x|EMφ
∗m(U)ESP|ρ0〉〉

⎤

⎦
2

(219)

≤ d3 max
x∈{0,1}q

∫

Haar
dU|〈x |U |0 〉|4〈〈�x|EMφ

∗m(U)ESP|ρ0〉〉 (220)

+ d4 max
x,x′∈{0,1}q

∫

Haar
dU|〈x |U |0 〉|2|〈x′ ∣∣U |0 〉|2 (221)

× 〈〈�x|EMφ
∗m(U)ESP|ρ0〉〉〈〈�x′ |EMφ

∗m(U)ESP|ρ0〉〉. (222)

Using the gate-independent noise assumption and the fact
hat ω(U)(ρ) = UρU†, the rhs is a Haar integral of a
degree-3 homogeneous polynomial in the entries of U, U,
and the second term is a Haar integral of a degree-4 homo-
geneous polynomial. The asymptotic behavior of such
integrals (in the limit of large d) is well known [90] and
evaluates to O(d−3) and O(d−4), respectively. Hence, the
overall variance is O(1) in d. One could fill in the exact
constants by evaluating the Haar integrals (like we did in
Theorem 17), but we do not pursue this here.

IX. RANDOMIZED BENCHMARKING AND
AVERAGE FIDELITY

To date, we have treated the information extracted from
RB procedures, and in particular the decay rates, as fig-
ures of merit in their own right, without establishing a
direct connection to other well-known quantities such as
the average gate fidelity. Indeed, this latter object is often
portrayed as the conclusive result of an RB protocol.

In this section, we provide a series of arguments to vali-
date the interpretation of the RB parameters as standalone
information, by showing that connecting RB decays to the
average gate fidelity presents complications that are hard to
overcome. The underlying reason for this incompatibility
is due to the gauge-dependent nature of the average gate
fidelity (as argued in Ref. [26]) that cannot be established
nor controlled under RB. More precisely, in Sec. IX A
we provide an explicit example showing that adopting a
gauge to match the average gate fidelity gives rise to a
channel that is not physical. In Sec. IX B, we substanti-
ate our argument with an analysis of the expression of
the entanglement fidelity—a quantity closely related to the
average fidelity—in terms of RB decay parameters and the
adopted gauge. Observing this expression we conclude that
RB parameters and fidelity can be linked only if there is
a close overlap between the dominant eigenvector of the
ideal operator and the dominant, gauge-dependent left and

right eigenvectors of its implemented version; the criti-
cal point is that ascertaining whether this requirement is
met is not possible with a RB procedure. We want to
highlight that this intricacy in connecting RB to other
well-established quantities does not mean RB protocols are
inherently flawed, but only that the information they pro-
vide have to be regarded independently, with decay rates
as the defining quantities to characterize the accuracy of
experimentally implemented sets of gates.

A. The depolarizing gauge and in-between noise
average fidelity

In an attempt to resolve the apparent disconnect between
fidelity and RB decay parameters in the gate-dependent
noise setting, in Refs. [24] and [25] proposals have been
made for the precise connection between RB decay rates
and average fidelity. In Ref. [24], it has been noted that the
output data of Clifford RB could be exactly fitted to a sin-
gle exponential whose decay rates are exactly interpreted
as the average fidelity of the “noise in between gates,” a
manifestly gauge invariant quantity. Similarly in Ref. [25],
it has been argued that the decay of Clifford RB can be
regarded as the average fidelity of the implementation with
regard to a particular gauge choice, namely the one in
which the average implementation inverted with the ref-
erence representation is precisely a depolarizing channel.
We show here that (1) both of these statements can be gen-
eralized to RB with arbitrary groups, (2) both statements in
fact say the exact same thing, and (3) both interpretations
suffer from the same problem, namely that the channel of
which the average fidelity is measured by RB is not neces-
sarily a completely positive (CP) map (i.e., physical), even
if the implementation map φ is.

In Ref. [24], the RB decay rate is interpreted as mea-
suring the fidelity of “the noise in between gates.” (A
general version of) this construction goes as follows. For
an implementation φ of a group G, close to some reference
representation ω = ⊕

λ∈� σλ we can pick the dominant
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eigenvectors vec(Rλ) of the Fourier transform F(φ) eval-
uated at the irreducible subrepresentation σλ ⊂ ω (for now
assuming no multiplicities, this easily generalizes). We can
devectorize these eigenvectors and sum them up to create
a superoperator R with the property

1
|G|

∑

g∈G

φ(g)Rω(g)† = Rdep, (223)

where dep is the generalized depolarizing channel dep =∑
λ∈� fλPλ with fλ the eigenvalue corresponding to Rλ.

Without loss of generality we can assume that R is invert-
ible (as a matrix). Note also that for any φ we can write
φ(g) = Rω(g)L(g), where L(g) is some implementation
map (not necessarily completely positive).

With this parametrization the noise between two gates
g, g′ (which in this parametrization only depends on g) is
given by L(g)R. The entanglement fidelity with regards to
the identity averaged over all g ∈ G of this map is

1
|G|

∑

g∈G

Favg[L(g)R,1]

= 1
|G|

∑

g∈G

Favg[R−1Rω(g)L(g)Rω(g)†,1]

= Favg(dep,1), (224)

where we use the linearity and unitary invariance of the
average fidelity. Note that Favg(dep,1) = 1/d2 − 1

∑
λ∈�

fλdλ − 1 is precisely the average fidelity one would obtain
by plugging the RB decay rates fλ into Eq. (242).

On the other hand, Ref. [25] connects the RB decay rates
to the average fidelity of the implementation map φ in a
particular gauge, that is a particular choice of invertible
superoperators such that

1
|G|

∑

g∈G

Favg[S−1φ(g)S,ω(g)] = Favg(dep,1). (225)

This map φdep = S−1φS is called the depolarizing gauge.
According to Ref. [25] the correct interpretation of the RB
decay rates is that they measure the fidelity of the imple-
mentation map φ in the depolarizing gauge with respect to
the reference implementation ω. It turns out that the correct
choice for S is precisely the operator R mentioned above,
which can be easily seen by explicit computation

1
|G|

∑

g∈G

Favg[R−1φ(g)R,ω(g)]

= Favg

⎛

⎝R−1 1
|G|

∑

g∈G

φ(g)Rω(g)†,1

⎞

⎠

= Favg
(
R−1Rdep,1

)
. (226)

We can connect the above two interpretations by inserting
the parametrization φ(g) = Rω(g)L(g) into the expres-
sion for φdep as

φdep(g) = R−1Rω(g)L(g)R = ω(g)L(g)R. (227)

Hence, the depolarizing gauge is precisely the gauge in
which each superoperator φdep(g) is viewed as the ideal
superoperator ω(g) preceded by the noise in between gates
L(g)R (in the sense of Ref. [24]). Hence, these two inter-
pretations of the RB decay rates as corresponding to an
average fidelity of “something” neatly map to each other.

A central open question in both the above constructions
is whether the noise in between gates, or equivalently the
noise in the implementation in the depolarizing gauge, can
always be chosen to be a completely positive implemen-
tation map. This is essential if we want to consider these
interpretations as actual descriptions of reality. Here we
answer this question in the negative by giving an exam-
ple (an adaptation of a construction given in Ref. [26])
of a pointwise CP implementation map φ where the noise
in between gates (the implementation in the depolarizing
gauge) is not completely positive. Let G be the single-
qubit Clifford group, and consider, in the Pauli basis, the
following superoperators:

T(γ ) =

⎛

⎜⎝

1 0 0 0
0

√
γ 0 0

0 0
√
γ 0

1 − γ 0 0 γ

⎞

⎟⎠ ,

M1(α) =

⎛

⎜⎝

1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠ ,

M2(α) =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 α−1

⎞

⎟⎠ . (228)

From these we can construct the implementation φ(g) =
T(γ )M1(α)ω(g)M2(α), with ω(g)(ρ) = UgρUg

† the stan-
dard reference representation. It is easy to see that
the transformation to the depolarizing gauge is given
by M2(α)φ(g)M2(α)

−1 = M2(α)T(γ )M1(α)ω(g). Equiv-
alently, the noise in between gates is given by
M2(α)T(γ )M1(α). The claim is now that there exists pairs
α, γ such that φ(g) is completely positive for all g ∈ G

but M2(α)T(γ )M1(α) is not. An easy pathological example
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can be obtained by setting γ = 0. In this case we have

φ(g) =

⎛

⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎠ ,

M2(α)T(1)M1(α) =

⎛

⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
α−1 0 0 0

⎞

⎟⎠ . (229)

Hence, for all α < 1 the maps φ(g) are CP while the
map M2(α)T(0)M1(α) is not (this can be verified by using
the complete positivity conditions for qubit channels from
Ref. [93]). For γ < 1 one can always construct interval
conditions on α such that the same holds. Hence, the
interpretations [24,25] both suffer from a problem, namely
that in order to imagine RB as “measuring the average
fidelity” of some object, this object has to be chosen in
a way that is not necessarily physical. This possibility was
already indicated by both papers, but no explicit example
was given. It is unclear how to resolve this problem: one
could, for instance, try to find natural conditions on φ such
that the noise in between gates, or equivalently the imple-
mentation in the depolarizing gauge, is always completely
positive. Alternatively one could adopt the framework of
Ref. [27] where one relaxes the problem by asking for

a positive-gauged implementation map that has a fidelity
approximately given by the RB decay rates (with approx-
imate meaning small relative to 1 − fλ). This can be done
for Clifford RB on a single qubit [27] but generalizing to
higher dimensions seems difficult (although some work in
this direction has been done [94]).

B. Connecting average fidelity and randomized
benchmarking decay rates

In the previous subsection we showed that the depolar-
izing gauge does not always give rise to a CP implemen-
tation map, and hence, cannot be connected in all cases to
the average fidelity of a physical process. Here we want
to investigate the link between fidelity and the RB decay
parameters under a general gauge choice S. We do this
using the tools of perturbation theory we have used earlier
to establish Theorem 8.

1. The randomized benchmarking measurement
outcome

Let us consider a special case of Theorem 8 correspond-
ing to reference representations ω that are multiplicity-free
(for simplicity), and making the gauge freedom S explicit.
In this situation, we can write the Fourier operator F(ω)
as a direct sum of rank-1 orthogonal projections, since
from Eqs. (29) and (30) it follows that for each unitary
irreducible representation σλ of G

F(π)[σλ] =

⎧
⎪⎨

⎪⎩

|z(σλ)〉〈z(σλ) | rank-1 orthogonal projection if π and σλ are equivalent irreducible representations,

0 otherwise.
(230)

Furthermore, we also assume that the Fourier transform F(σλ) is a diagonalizable operator. Since the set of diagonalizable
matrices is dense [95], it is always possible to find such a diagonalizable matrix at arbitrary proximity of any given
operator. We can thus write the Fourier transform of the implementation map on the irreducible representation appearing
in the decomposition of ω as the perturbation Ê(σλ) := F(SφS−1 − ω)[σλ] of the rank-1 operator F(ω)[σλ],

F(SφS−1)[σλ] = F(ω)[σλ] + F(SφS−1 − ω)[σλ] (231)

= F(ω)[σλ] + Ê(σλ) (232)

= fmax(σλ) |rmax(σλ)〉〈max(σλ) | +
dλ−1∑

jλ=1

fjλ(σλ) |rjλ(σλ)〉
〈
jλ(σλ)

∣∣ , (233)

where fmax(σλ) is the largest eigenvalue of F(SφS−1)[σλ] and
{
fjλ
}dλ−1

jλ=1 are the other eigenvalues. The sets of left and right
eigenvectors form a biorthogonal system, that is, 〈max(σλ)|rmax(σλ)〉 = 〈

jλ(σλ)
∣∣rjλ(σλ)

〉 = 1 and
〈
max(σλ)

∣∣rjλ(σλ)
〉 =〈

jλ(σλ)
∣∣rmax(σλ)

〉 = 〈
jλ(σλ)

∣∣rkλ(σλ)
〉 = 0, for jλ �= kλ. The important remark that we should make here is that this basis

of eigenvectors reflects the gauge transformation SφS−1.
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In this scenario, we can thus write Eq. (75) in the proof of Theorem 8 for gend = 1

p(i, m) =
∑

λ∈Irr(G)

dλ〈〈EM (�i)| TrVλ{F(SφS−1)m+1[σλ][σλ(1)⊗ 1]}|ESP(ρ0)〉〉 (234)

=
∑

λ∈�

{
dλ[fmax(σλ)]m+1〈〈EM (�i)| TrVλ

[ |rmax(σλ)〉〈max(σλ) |
]|ESP(ρ0)〉〉 (235)

+
∑

jλ

dλ[fjλ(σλ)]
m+1〈〈EM (�i)| TrVλ

[ |rjλ(σλ)〉
〈
jλ(σλ)

∣∣ ]|ESP(ρ0)〉〉
}

(236)

+
∑

γ /∈�
dγ 〈〈EM (�i)| TrVσγ {F(SφS−1)m+1[σγ ][σγ (1)⊗ 1]}|ESP(ρ0)〉〉. (237)

By Eq. (62), it follows that fmax(σλ) for each σλ in the
irreducible decomposition of ω is lower bounded by 1 −
‖Ê(σλ)‖2, while the subdominant eigenvalues, correspond
to perturbations of the kernel of F(ω)[σλ], are upper
bounded by ‖Ê(σλ)‖2. Moreover, by Theorem 18 pre-
sented in Sec. X, the eigenvalues in those subspaces not
related to irreducible representations appearing in decom-
position are again dominated by ‖Ê(σλ)‖2. Hence, we can
choose m large enough such that f m

max(λ) � f m
jλ (σλ) for all

fjλ(σλ) and for each irreducible representations σλ occur-
ring in the decomposition of ω, and such that the leakage
of the perturbation in nonoccurring irreducible subspaces
is suppressed.

For these values of m, we then retrieve the formula for
the power law in Eq. (63), but here with respect to 1-dim
parameters,

p(i, m) ≈
∑

λ∈�
[fmax(λ)]m+1ξ(S, σλ,�i, ρ0), (238)

where ξ(S, σλ,�i, ρ0) := dλ〈〈EM (�i)| TrVλ

[ |rmax(σλ)〉
〈max(σλ) |

]|ESP(ρ0)〉〉.

2. Average gate fidelity and entanglement fidelity

The first RB protocols based on the Clifford group [5,34]
linked a single decay parameter f to the average fidelity
of a quantum channel R, under the assumption of gate-
independent noise, i.e., φ(g) = Rω(g). The relation is
given by

Favg(R) = f + 1 − f
d

. (239)

This formula generalizes to uniform RB with an arbitrary
group G with reference representation ω = ⊕

λ∈� σ
⊕nλ
λ ,

again under the assumption of gate-independent noise.
However, it is more convenient to express it in terms of

the entanglement fidelity, defined as

Fe(R) := 〈〈�|(1 ⊗ R
)|�〉〉 = 1

d2 Tr(R), (240)

where the trace is taken over the superoperators, and
related to the average gate fidelity by

Favg(R) = dFe(R)+ 1
d + 1

. (241)

In particular, we have (first formally written down in
Ref. [14])

Favg(R) = 1
d2

∑

λ∈�
dλ Tr(Mλ) (242)

with Mλ again an nλ × nλ matrix.
The connection between the RB decay rates and the

fidelity has been challenged in Ref. [26], where it has been
argued that the average fidelity and the output of RB are
not related in a unique way. In doing so they introduced
the concept of gauge freedom into the RB literature.

In the context of RB, gauge freedom is the observation
that two implementation maps φ and φ′ give rise to the
same RB output data p(m) if they are related by a similarity
transformation S, i.e., φ′ = SφS−1. However, the average
fidelity of these implementation maps (relative to some
reference implementation) will generally differ. Note that
this an issue even with the assumption of gate-independent
noise, however, in this case there is a “canonical” choice
of gauge for which the RB decay rates and the fidelity are
related. In the gate-dependent noise scenario there is no
such obvious gauge choice. The rest of this section will be
concerned with this question.

The entanglement fidelity—averaged over G—can be
expressed in terms of Fourier transforms (as has first been
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noted in Ref. [25]). Indeed, we have

EgFe[SφS−1(g),ω(g)]

= EgFe[ω†(g)SφS−1(g)] (243)

= 1
d2 Eg Tr[ω†(g)SφS−1(g)] (244)

= 1
d2

∑

λ∈Irr(G)

dλ Tr
({F(ω)[σλ]}†F(SφS−1)[σλ]

)
,

(245)

where we use the second Parseval identity (28).
At this point we can again use of the property in

Eq. (230) for F(ω)[σλ] and the reformulation in Eq. (233)
for F(SφS−1)[σλ] and write

EgFe[SφS−1(g),ω(g)]

= 1
d2

∑

λ∈�
dλ Tr

[
|z(σλ)〉〈z(σλ) |

× [
fmax(σλ) |rmax(σλ)〉〈max(σλ) | (246)

+
∑

jλ

fjλ(σλ) |rjλ(σλ)〉
〈
jλ(σλ)

∣∣ ]
]

(247)

= 1
d2

∑

λ∈�
dσλ fmax(σλ) 〈z(σλ)|rmax(σλ)〉

× 〈max(σλ)|z(σλ)〉 + αres, (248)

where we define the residuum term

αres := 1
d2

∑

λ∈�
dσλ

∑

jλ

fjλ(σλ)
〈
z(σλ)

∣∣rjλ(σλ)
〉 〈
jλ(σλ)

∣∣z(σλ)
〉
.

(249)

This establishes a connection between the decay parame-
ters fmax(σλ) retrieved from Eq. (238) and the entanglement
fidelity as expressed in Eq. (248).

We observe that this connection is complicated by two
factors. Firstly, it depends on the gauge-dependent overlap
〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉 between the rank-1 pro-
jection and the perturbed dominant eigenvectors—a quan-
tity that we cannot retrieve from RB data—which might
deviate significantly from 1 depending on the gauge
choice. Secondly, the residuum αres may be large, consti-
tuting a non-negligible part of the entanglement fidelity.
The rest of the section is concerned with analyzing these
gauge-dependent connective factors.

We begin by deriving a bound on αres, showing that
this term is small, more precisely, of third order in the
gauge-dependent perturbation term Ê(σλ). For this, we
use Corollary 7, where in this specific case a1 = 1 and
A2 = 0(d2−1),(d2−1) and where

Qz(σλ) := X2X †
2 = 1 − |z(σλ)〉〈z(σλ) | (250)

is the orthogonal complement of the projection |z(σλ)〉
〈z(σλ) |. Then, the relations between unperturbed and per-
turbed dominant eigenvectors is given by

|rmax(σλ) 〉 = |z(σλ) 〉 + Qz(σλ)Ê(σλ) |z(σλ) 〉
+ O[‖Ê(σλ)‖2

2], (251)

〈max(σλ) | = 〈z(σλ) | + 〈z(σλ) | Ê(σλ)Qz(σλ)

+ O[‖Ê(σλ)‖2
2]. (252)

Furthermore, let us define the matrix

K̂(σλ) :=
∑

jλ

fjλ(σλ) |rjλ(σλ)〉
〈
jλ(σλ)

∣∣ , (253)

where we have

K̂(σλ) |rmax(σλ) 〉 = |0 〉 and 〈max(σλ) | K̂(σλ) = 〈0 | ,
(254)

and the bound on the 2-norm

‖K̂(σλ)‖2 = ‖F(SφS−1)[σλ] − fmax(σλ) |rmax(σλ)〉〈max(σλ) |‖2 (255)

= ‖|z(σλ)〉〈z(σλ) | + Ê(σλ)− fmax(σλ) |rmax(σλ)〉〈max(σλ) |‖2 (256)

= ‖|z(σλ)〉〈z(σλ) | + Ê(σλ)− fmax(σλ)
( |z(σλ)〉〈z(σλ) | + Qz(σλ)Ê(σλ) |z(σλ)〉〈z(σλ) | (257)

+ |z(σλ)〉〈z(σλ) | Ê(σλ)Qz(σλ) + Qz(σλ)Ê(σλ) |z(σλ)〉〈z(σλ) | Ê(σλ)Qz(σλ)
)‖2 (258)

≤ |1 − fmax(σλ)|‖|z(σλ)〉〈z(σλ) |‖2 + O[‖Ê(σλ)‖2] (259)

≤ O[‖Ê(σλ)‖2], (260)

where we use the fact that |1 − fmax(σλ)| ≤ ‖Ê(σλ)‖2.
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Now, inserting Eqs. (251)–(253) into Eq. (249) and using the Cauchy-Schwarz inequality, we obtain the following
bound on the residuum:

|αres| = 1
d2

∑

λ∈�
dσλ
∣∣ 〈max(σλ) |

[
1 − Ê(σλ)Qz(σλ) + O

]
[‖Ê(σλ)‖2

2]K̂(σλ)
[
1 − Qz(σλ)Ê(σλ)

+ O(‖Ê(σλ)‖2
2)
] |rmax(σλ) 〉

∣∣ (261)

≤ 1
d2

∑

λ∈�
dσλ
∣∣ 〈max(σλ) | Ê(σλ)Qz(σλ)K̂(σλ)Qz(σλ)Ê(σλ) |rmax(σλ) 〉

∣∣ (262)

+ 1
d2

∑

λ∈�
dσλO[‖Ê(σλ)‖3

2]‖K̂(σλ)‖2 ‖max(σλ)‖ ‖rmax(σλ)‖ + O[‖Ê(σλ)‖4
2] (263)

≤ 1
d2

∑

λ∈�
dσλO[‖Ê(σλ)‖3

2] ‖max(σλ)‖ ‖rmax(σλ)‖ + O[‖Ê(σλ)‖4
2]. (264)

This bound for αres has a significant implication: it means that the residuum will not cover the leading term in Eq. (248) if
the latter is �(‖Ê(σλ)‖2

2), for all gauge choices S that yield ‖max(σλ)‖ · ‖rmax(σλ)‖ smaller than 1/‖Ê(σλ)‖2.
Note that it is important to compare αres to the difference between 1 (the value of the entanglement fidelity of a perfect

implementation) and the dominant eigenvalues in Eq. (248). This distance is indeed what RB protocols are designed to
detect, and in order for the connection between fidelity and decay rates to be meaningful we require αres to be negligible
in comparison. To analyze this further, we first write

�max := 1
d2

∑

λ∈�
dσλ
∣∣1 − fmax(σλ) 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|

∣∣, (265)

and we calculate deviation of the absolute of the overlap from 1, which is remarkably only in second order in perturbation,

〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉 (266)

=
∣∣∣∣
( 〈z(σλ) |1 + Qz(σλ)Ê(σλ)+ O[‖Ê(σλ)‖2

2] |z(σλ) 〉
) ( 〈z(σλ) |1 + Ê(σλ)Qz(σλ) + O[‖Ê(σλ)‖2

2] |z(σλ) 〉
) ∣∣∣∣ (267)

≤
∣∣∣1 + O[‖Ê(σλ)‖2

2]
∣∣∣
2

(268)

≤ 1 + O[‖Ê(σλ)‖2
2]. (269)

This bound on the overlap, together with the one on the residuum, implies that the parameters fmax(σλ) obtained from the
fitting of the RB model in Eq. (238) yield a meaningful characterization of the fidelity on the condition when they are
�[‖Ê(σλ)‖2].

Having derived a bound on the residuum we can consider Eq. (248) in different regimes [always assuming small
perturbations, i.e., ‖Ê(σλ)‖2 � 1]. In the first regime we make the assumption

�[‖Ê(σλ)‖2
2] = |1 − fmax(σλ)| � ∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|, (270)

corresponding to the situation where the parameters {fmax(σλ)}λ∈� are more sensitive to the perturbation than the overlap of
the dominant eigenvectors. As we mentioned before, this is indeed the regime where RB provides a meaningful estimation
of the fidelity. Indeed, we have

�max ≥ 1
d2

∑

λ∈�
dσλ

{
|fmax(σλ)− 1| · |〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉| (271)

− ∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|
}

(272)
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≥ 1
d2

∑

λ∈�
dσλ

{
|fmax(σλ)− 1|

(
1 − O[‖Ê(σλ)‖2

2]
)

− ∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|
}

(273)

= 1
d2

∑

λ∈�
dσλ�[‖Ê(σλ)‖2

2] (274)

� |αres|. (275)

In a second regime we can assume the converse, namely that

|1 − fmax(σλ)| � ∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉| = �[‖Ê(σλ)‖2
2] (276)

holds true. This case is analogous, since we now have

�max ≥ 1
d2

∑

λ∈�
dσλ

{∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉| (277)

− |fmax(σλ)− 1| · |〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|
}

(278)

≥ 1
d2

∑

λ∈�
dσλ

{∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉| − |fmax(σλ)− 1|
(

1 + O[‖Ê(σλ)‖2
2]
)}

(279)

= 1
d2

∑

λ∈�
dσλ�[‖Ê(σλ)‖2

2] (280)

� |αres|. (281)

This situation is, however, problematic, since RB gives us
no information in this regime about a significant quantity:
the vector overlap 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉.

The last regime we consider is when |1 − fmax(σλ)| is
close to the deviation of the vector overlap from 1, that is,

|1 − fmax(σλ)| ≈ ∣∣1 − 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉|,
(282)

which is troublesome not only for the fact that we cannot
retrieve the overlap but also because in this case�max may
be of the same magnitude or smaller than |αres|. Indeed, in
this regime the residuum can then play a significant role in
the characterization of the average gate fidelity.

The conclusion we draw from this analysis is that the
overlap 〈z(σλ)|rmax(σλ)〉 〈max(σλ)|z(σλ)〉 is the key factor
to consider when relating RB decays to the fidelity. This
overlap must be sufficiently close to 1 under the adopted
gauge relative to the difference |1 − fmax(σλ)|.

Finally, we wish to relate {‖Ê(σλ)‖2}λ to a promise
on a physical quantity related to the perturbation of the
ideal gate implementation ω. We recall that Ê(σλ) =
F(SφS−1 − ω)[σλ] and consider that ‖·‖2 ≤ ‖·‖F such

that
∑

λ∈Irr(G)

dλ‖Ê(σλ)‖2
2 =

∑

λ∈Irr(G)

dλ‖F(SφS−1 − ω)[σλ]‖2
2

(283)

≤
∑

λ∈Irr(G)

dλ‖F(SφS−1 − ω)[σλ]‖2
F

(284)

= EG‖SφS−1(g)− ω(g)‖2
F , (285)

where we apply Parseval’s identity. Note, however, that the
lhs of this expression runs over all irreducible representa-
tions of G and not the only ones decomposing ω.

X. RANDOMIZED BENCHMARKING UNDER
DIAMOND NORM AND FIDELITY CONSTRAINTS

In Theorem 8, we have argued that randomized bench-
marking output data associated with an implementation of
a group G could be approximated as a sum of (matrix)
exponentials provided the implementation map φ was
close to a reference representation ω with respect to the
diamond norm (averaged over all group elements). Here
we argue that this is a natural condition to demand in the
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context of RB. In particular, we show that this condition is
stable, in the sense that it is impossible to be close [in the
sense of Eq. (72)] to two inequivalent representations at
once, and, moreover, we show that this requirement can-
not be replaced with a weaker one involving the average
fidelity, resolving an open question in Ref. [25].

A. Stability of representations under diamond norm

First, we prove that “closeness to a representation” is a
stable concept, that is, it is impossible to be close to two
representations at once (in a suitable sense).

Theorem 18: (Stability of representations). Let φ be an
implementation map of a group G taking values in Sd such
that

1
|G|

∑

g∈G

∥∥1 − φ(g)φ(g−1)
∥∥

	 ≤δ (286)

and let ω,ω′ be representations of G on Vn, Vn′
with embedding maps L : Vn → Vn,L′ : Vn′ → Vn′ and
R : Vn → Vn,R′ : Vn′ → Vn′ such that

1
|G|

∑

g∈G

‖φ(g)− Rω(g)L‖	 ≤ ε, (287)

1
|G|

∑

g∈G

∥∥φ(g)− R′ω′(g)L′∥∥
	 ≤ ε′. (288)

Moreover, assume that there exists K such that
‖Rω(g)L‖	 ≤ K ,

∥∥R′ω′(g)L′∥∥
	 ≤ K for all g ∈ G. If the

inequality K(ε + ε′)+ 3δ + 2ε + ε2 < 1 holds then the
representations ω,ω′ are equivalent on a subspace of
dimension at least d2.

Proof. Consider the map LR′ : Vn′ → Vn, as well as its
twirled version

T = 1
|G|

∑

g∈G

ω(g)LR′ω′(g)†. (289)

We would like to argue that T is a map of rank at least d2, as then we can decide the theorem by application of Schur’s
lemma. To do this, consider the distance to the identity of the natural pullback of T to Sd, namely RTL′. We can calculate

∥∥1 − RTL′∥∥
	 ≤

∥∥∥∥∥∥
1 − 1

|G|
∑

g∈G

Rω(g)LRω(g)†L

∥∥∥∥∥∥
	

+
∥∥∥∥∥∥

1
|G|

∑

g∈G

Rω(g)LRω(g)†L − RTL′

∥∥∥∥∥∥
	

(290)

≤ 1
|G|

∑

g∈G

∥∥1 − Rω(g)LRρ(g)†L
∥∥

	 + ∥∥Rω(g)LRω(g)†L − Rρ(g)LR′ω′(g)†L′∥∥
	 . (291)

We upper bound these two terms separately. For the first term, consider

1
|G|

∑

g∈G

∥∥1 − Rω(g)LRω(g)†L
∥∥

	 (292)

≤ 1
|G|

∑

g∈G

∥∥1 − φ(g)φ(g−1)
∥∥

	 + ∥∥1 − φ(g)Rω(g−1)L
∥∥

	

+ ∥∥1 − Rω(g)Lφ(g−1)
∥∥

	 + ∥∥[φ(g)− Rω(g)L
][
φ(g−1)− Rω(g−1)L

]∥∥
	 (293)

≤ δ + ε2 + 1
|G|

∑

g∈G

∥∥1 − φ(g)φ(g−1)
∥∥

	 + ∥∥φ(g)[φ(g−1)− Rω(g−1)L
]∥∥

	 (294)

+ ∥∥1 − φ(g)φ(g−1)
∥∥

	 + ∥∥[φ(g)− Rω(g)L
]
φ(g−1)

∥∥
	 (295)

≤ 3δ + 2ε + ε2, (296)

where we exploit the submultiplicativity of the diamond norm and the fact that ‖φ(g)‖	 = 1 for all g ∈ G. Similarly, for
the second term we get

020357-49



J. HELSEN et al. PRX QUANTUM 3, 020357 (2022)

1
|G|

∑

g∈G

∥∥Rω(g)LRω(g)†L − Rω(g)LR′ω′(g)†L′∥∥
	 = 1

|G|
∑

g∈G

∥∥Rω(g)L[Rω(g)†L − R′ω′(g)†L′]
∥∥

	 (297)

≤ 1
|G|

∑

g∈G

‖Rω(g)L‖	
∥∥Rω(g)†L − R′ω′(g)†L′∥∥

	 (298)

≤ K(ε + ε′). (299)

Combining all of this we get

∥∥1 − RTL′∥∥
	 ≤(K + ε)ε′ + 3δ + (2 + K)ε < 1, (300)

by the assumptions of the theorem. Now assume that T has
an image of dimension strictly less than d2. This means
there exists a Hermitian X ∈ Md such that RTL′(X ) = 0.
But this implies that

∥∥1 − RTL′∥∥
	 ≥

∥∥X − RTL′(X )
∥∥

1

‖X ‖1
= 1, (301)

which is a contradiction. Hence, the rank of T is at least d2.
Since T by construction commutes with the representations
ω,ω′ we can decide that there exists a representation ω′′ of
degree at least d2 which is a subrepresentation of both ω
and ω′ and moreover that both Rω′′L(g) and R′ω′′L′(g)
are of rank at least d2 for all g ∈ G. �

Next, we state a complementary theorem, saying that
closeness to a representation is a concept stable under
perturbations of the implementation. This is just a trivial
consequence of the triangle inequality.

Theorem 19: (Stability of the closeness to a representa-
tion). Let φ,φ′ be implementations of a group G on the
superoperators Sd such that

1
|G|

∑

g∈G

∥∥φ(g)− φ′(g)
∥∥

	 ≤δ (302)

and let ω be a representation of G on Vn with associated
maps L : Sd → Vn and R : Vn → Sd such that

1
|G|

∑

g∈G

‖φ(g)− Rω(g)L‖	 ≤ε (303)

then

1
|G|

∑

g∈G

∥∥Rω(g)L − φ′(g)
∥∥

	 ≤δ + ε. (304)

B. Randomized benchmarking under fidelity
constraints

In this subsection, we argue that the condition Eq. (72)
is in some sense necessary for the correct behavior of RB,
in the sense that it cannot be replaced with a natural weaker
condition. Given the worst-case nature of the diamond
norm Eq. (72) is rather restrictive, and one might wonder
if it is possible to replace this diamond-norm constraint
with a more congenial constraint based on the average
fidelity. That is, one can imagine replacing Eq. (72) with
a constraint of the form

1
|G|

∑

g∈G

Favg[φ(g),ω(g)] ≥ 1 − δ′ (305)

for some δ′ > 0. Indeed, this is the assumption made in
Ref. [25] to prove a version of Theorem 8 for the Clifford
group. Here, it has been noted that in order to guarantee
correct behavior the constant δ′ must be chosen inversely
proportional to the Hilbert-space dimension (δ′ ∼ 1/d). It
has been speculated that this dimensional scaling could
perhaps be an artifact of the proof techniques used.

We argue that this scaling is in fact real, by providing
an explicit family (inspired by example 8.1 in Ref. [96])
of examples of implementations φL (where L is an integer
independent of d) of a group G with

1
|G|

∑

g∈G

Favg[φ(g),ω(g)] ≥ 1 − 2L
d

(306)

relative to a reference implementation ω but with associ-
ated RB output data that is not even qualitatively of the
form Eq. (63). In fact, by choosing L large (but constant in
d) we can obtain almost arbitrary nonexponential behavior
in the RB output data associated with φL.
Example 1: Real scaling. Choose G to be the q-qubit
Clifford group with standard reference implementation
ω(g) = Ug · Ug

†. Now let �μ
L be a superoperator indexed

by an integer L and a real number 0 ≤ μ ≤ 1, defined by
its action on the basis matrices |i 〉〈j | as

�
μ
L ( |i 〉 〈j |) =

d∑

k=1

δi,j [SμL ]i,k |k 〉〈k | (307)
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with Sμ a d × d stochastic matrix of the form

[SμL ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ if i = j ≤ L − 1
1 if i = j ≥ L
1 − μ if i = j − 1 ≤ L
0 otherwise.

(308)

For convenience we write � for �μ
L in the following. It is

easy to see that � is a quantum channel and moreover that
if i, j ≤ L then �( |i 〉 〈j |) ∈ Span{ ∣∣i′ 〉 〈j ′ ∣∣ ‖ i′,′ j ≤ L}.

Consider now the following implementation map
defined by its action on X ∈ Md:

φ(g)(X ) = �(PLXPL)+ Ug(I − PL)X (I − PL)Ug
†,

(309)

where PL is the projection onto the space Span{ |i 〉 ‖ i ≤
L}. This map can be seen as checking whether a state is in
the support of PL (though a measurement) and then apply-
ing � or Ug depending on the outcome. We can calculate
the average fidelity Favg[φ(g),ω(g)] directly as

Favg[φ(g),ω(g)] =
∫

dψ Tr
[
φ(g)(|ψ〉〈ψ |)ω(g)†(|ψ〉〈ψ |)] (310)

=
∫

dψ Tr
[
Ug|ψ〉〈ψ |Ug

†�(PL|ψ〉〈ψ |PL)
]+

∫
dψ Tr

[|ψ〉〈ψ |(I − PL)|ψ〉〈ψ |(I − PL)
]

(311)

=
∫

dψ Tr
[
Ug|ψ〉〈ψ |Ug

†�(PL|ψ〉〈ψ |PL)
]+

∫
dψ[1 − 2 〈ψ |PL |ψ 〉+( 〈ψ |PL |ψ 〉)2] (312)

≤ 1 − 2
∫

dψ 〈ψ |PL |ψ 〉 (313)

≤ 1 − 2L
d

, (314)

where we make use of the fact that �(PL|ψ〉〈ψ |PL) ≥ 0,
since � is CP. Note that for constant L we can make
the fidelity arbitrarily high by choosing d = 2q large
enough. Now consider RB with input state ρ = |1〉〈1|
and measurement POVM {|1〉〈1| + |L〉〈L|,1 − |1〉〈1| −
|L〉〈L|} and implementation map φL as defined above. The
RB probability for the POVM element |1〉〈1| + |L〉〈L| is
going to be (setting gend = e and assuming no SPAM
errors)

p(|1〉〈1| + |L〉〈L|, m) = Tr[(|1〉〈1| + |L〉〈L|)φ∗m
L (|1〉〈1|)].

(315)

Note that since PL|1〉〈1| = |1〉〈1|PL we have that
φL(g)(|1〉〈1|) = (�

μ
L )

m(|1〉〈1|) for all g. From this it fol-
lows that

p(|1〉〈1| + |L〉〈L|, m) = Tr[(|1〉〈1| + |L〉〈L|)(�μ
L )

m(|1〉〈1|)]
= [SμL

m]1,L + [SμL
m]1,1. (316)

This data shows curious behavior. For small sequence
lengths we have p(|1〉〈1| + |L〉〈L|, m) ≈ μm, but with
increasing sequence length we observe wildly nonexpo-
nential behavior.

XI. CONCLUSIONS

In this work, we have introduced a comprehensive
theory of RB. As such, it goes beyond a mere classifi-
cation of known protocols (a task that we also hope to
achieve). But at the same time, it provides a deeper under-
standing, a more precise formulation and interpretation of
what the data acquired in RB means, actionable advice to
experimentalists and theoretical practitioners and a con-
ceptual platform from which new schemes can be derived.
Specifically, we show how RB gives rise to exponential
decays under broad classes of Markovian noise models,
show—importantly in practical contexts—in what sense
RB is robust to deviations from uniform sampling and
provides further evidence to the interpretation in terms
of average gate fidelities. Maybe most important for our
work to serve as a basis for substantial further develop-
ment of methods and protocols are new conceptual insights
into how inversion gates are—in contrast to common
belief—not required for RB and into how large classes
of groups in RB can become available by means of new
filtering techniques. This contributes to overcoming the
problem of isolating exponential decays in a fully scalable
manner. First steps into exploiting the insights established
here when devising new schemes have already been made
[57–59]. We hope that this work provides a starting point
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of a further rich class of new protocols of quantum certifi-
cation and benchmarking, providing stringent and rigorous
quality criteria, while respecting experimental needs and
desiderata.
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