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Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

Budapest, Hungary

gerbner@renyi.hu

Tamás Mészáros†
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Abstract

Alon and Shikhelman [J. Comb. Theory, B. 121 (2016)] initiated the systematic
study of the following generalized Turán problem: for fixed graphs H and F and
an integer n, what is the maximum number of copies of H in an n-vertex F -free
graph?

An edge-colored graph is called rainbow if all its edges have different colors.
The rainbow Turán number of F is defined as the maximum number of edges in a
properly edge-colored graph on n vertices with no rainbow copy of F . The study of
rainbow Turán problems was initiated by Keevash, Mubayi, Sudakov and Verstraëte
[Comb. Probab. Comput. 16 (2007)].

Motivated by the above problems, we study the following problem: What is the
maximum number of copies of F in a properly edge-colored graph on n vertices
without a rainbow copy of F? We establish several results, including when F is a
path, cycle or tree.
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1 Introduction

This paper is concerned with variations of the Turán question in extremal graph theory.
In the classic setting, given a simple graph F , we are interested in determining the largest
possible number of edges in a simple graph G on n vertices without F as a subgraph.
This number is called the Turán number of F and is denoted by ex(n, F ). In short we
will say G is F -free. The prototypical result in the area is Mantel’s theorem from 1907
[34]. Mantel showed that if an n-vertex graph does not contain a triangle, it can have
at most ⌊n2

4
⌋ edges, and this bound is best possible as shown by the balanced complete

bipartite graph. Therefore, we have ex(n,K3) = ⌊n2

4
⌋. Turán [35] generalized this to all

cliques, and determined ex(n,Kk) for every k and n. A general result was proven by Erdős
and Simonovits [13] as a corollary to a theorem of Erdős and Stone [14]. They proved

that for any simple graph F we have ex(n, F ) =
!
1− 1

χ(F )−1

" #
n
2

$
+ o(n2), where χ(F )

is the chromatic number of F . If F is not bipartite, this theorem determines ex(n, F )
asymptotically. However, for bipartite graphs the Erdős-Stone-Simonovits theorem just
states that ex(n, F ) is of lower than quadratic order. A general classification of the order
of magnitude of bipartite Turán numbers is not known. For paths Erdős and Gallai [12]
showed that ex(n, Pk) ! 1

2
(k− 2)n, where Pk denotes the path on k vertices and equality

holds for the graph of disjoint copies of Kk−1. Erdős and Sós [10] conjectured that the
same should hold for any fixed tree on k vertices. A proof of this conjecture for k large
enough was announced by Ajtai, Komlós, Simonovits and Szemerédi. For even cycles
Erdős conjectured that ex(n,C2k) = Θ(n1+1/k). A corresponding upper bound was given
by Bondy and Simonovits [8], but so far a matching lower bound has only been found for
k = 2, 3, 5 ([5, 36]). For more results the interested reader may consult the comprehensive
survey on bipartite Turán problems by Füredi and Simonovits [16].

The classical Turán problem has a rich history in combinatorics and several variations
and generalizations of it have been studied. Two such variations are rainbow Turán prob-
lems and generalized Turán problems. In this paper we will study a natural generalization
of these two problems.

The rainbow Turán problem, introduced by Keevash, Mubayi, Sudakov, and Verstraëte
[30], is as follows. For a fixed graph F , determine the maximum number of edges in a
properly edge-colored graph on n vertices which does not contain a rainbow F , i.e., a copy
of F all of whose edges have different colors. This maximum is denoted by ex∗(n, F ) and
is called the rainbow Turán number of F . (We refer the reader to [30] for a discussion
on motivations and applications of this problem.) Observe that by definition we always
have ex∗(n, F ) " ex(n, F ). In relation with the Erdős-Stone-Simonovits theorem in [30]
it was shown that if χ(F ) " 3, then ex∗(n, F ) = (1 + o(1)) ex(n, F ). In the case of the
path Pk on k " 4 vertices it is known that k−1

2
n + O(1) ! ex∗(n, Pk) !

#
9k−4
7

$
n, where

the lower bound is due to Johnston and Rombach [29], while the upper bound was proven
by Ergemlidze, Győri and Methuku [9]. For general trees only some sporadic results are
known, for such results see, e.g., [28, 29]. In the case of even cycles Keevash, Mubayi,
Sudakov and Verstraëte showed a general lower bound of ex∗(n,C2k) = Ω(n1+1/k) and
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very recently O. Janzer [27] proved the matching upper bound ex∗(n,C2k) = O(n1+1/k).
Keevash, Mubayi, Sudakov and Verstraëte also showed that there exists a graph with
Ω(n log n) edges without a rainbow cycle of any length.

The generalized Turán problem asks the following. Given two graphs H and F , what
is the maximum possible number of copies of H in a graph on n vertices that does not
contain a copy of F? This maximum is called the generalized Turán number and is
denoted by ex(n,H, F ). Note that if H = K2 (an edge), we recover the classical Turán
problem.

The first results concerning this function are due to Zykov [37], Erdős [11] and Bol-
lobás [6] who determined ex(n,Kr, Kk) for every value of n, r and k. Later Bollobás
and Győri [7] proved that ex(n,C3, C5) = Θ

#
n3/2

$
. Győri and Li [24] gave bounds on

ex(n,C3, C2ℓ+1). Another well-known result is due to Grzesik [22] and independently
to Hatami, Hladký, Král’, Norine and Razborov [25], who determined ex(n,C5, C3) ex-
actly. Recently, the systematic study of ex(n,H, F ) was initiated by Alon and Shikhel-
man [3], and this problem has attracted the interest of a number of researchers; see e.g.,
[2, 15, 17, 18, 20, 31, 32, 33].

Here we consider a natural generalization of the above two problems and introduce a
new variant of the Turán problem. Given two graphs H and F , let ex(n,H, rainbow-F )
denote the maximum possible number of copies of H in a properly edge-colored graph
on n vertices that does not contain a rainbow copy of F . Observe that, by definition,
we always have ex(n,H, rainbow-F ) " ex(n,H, F ). In this paper we focus on the case
when H = F . In other words, we consider the question: How many copies of F can
we have in a properly edge-colored graph on n vertices without having a rainbow copy
of F? Our motivation in studying this function comes from attempts to understand the
original rainbow Turán problem. To determine ex∗(n, F ) it is important to separate the
problem from the classical problem of determining ex(n, F ). In order to do this, one needs
to examine properly edge-colored n-vertex graphs that contain more than ex(n, F ) edges
without a rainbow copy of F ; such graphs contain many copies of F but no rainbow copy
of F . It is then natural to understand how many copies of F can we take before we are
forced to have a rainbow copy of F . (See [21] and the discussion in Section 5 for the
connection to Ruzsa-Szemerédi-type problems and for further motivation.)

Let us introduce some basic notation that is used throughout this paper. For positive
integers k and ℓ, let Pk denote a path on k vertices, and let Cℓ denote a cycle on l vertices.
A star is a tree which consists of a vertex that is adjacent to all the other vertices. Let
Sp denote the star with p leaves (i.e., a vertex adjacent to p other vertices). A tree is
called a double star if its longest path has four vertices, or equivalently, if it is not a star
and there is an edge uv such that every vertex is adjacent to u or v. If u is adjacent to p
leaves and v is adjacent to r leaves, we denote this graph by Sp,r and we call both u and
v the centers. Note that S1,1 is just the path P4.

In the proofs we will often use the following operation to construct extremal examples.
Given a graph G and a vertex v, we delete v from G and replace it by new vertices
v1, . . . , vb, each of them connected to the neighbors of v. To refer to this operation we will
simply say that we replace v by b copies of itself. Usually, we will mostly be interested
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in the order of magnitude of the function ex(n,H, rainbow-H). So when applying this
operation (typically to some small graph G), we will not specify the exact value of b, but
we will only write b = Θ(n). By this we will always mean that we choose b to be cn for
some appropriate constant c, such that the resulting graph still has at most n vertices.

Main results

First we determine the order of magnitude of the function ex(n, Pk, rainbow-Pk) for all k.

Theorem 1. If k " 5, then

ex(n, Pk, rainbow-Pk) = Θ(n⌊
k
2⌋).

For k ∈ {2, 3} note that we have ex(n, P2, rainbow-P2) = ex(n, P3, rainbow-P3) = 0
and for k = 4 we will show in Proposition 6 that ex(n, P4, rainbow-P4) = Θ(n).

Our next result is for cycles.

Theorem 2. If k, ℓ " 2, then

ex(n,C2k+1, rainbow-C2k+1) = Θ(n2k−1)

and
Ω(nk−1) = ex(n,C2k, rainbow-C2k) = O(nk).

Moreover, if k ∕= ℓ, then

ex(n,C2ℓ, rainbow-C2k) = Θ(nℓ).

Our final result is about trees. For a tree T , any rainbow-T -free graph G can have
at most a linear number of edges: Indeed a graph with sufficiently large (but constant)
minimum degree contains a rainbow copy of T . Therefore, by a theorem proved in [1], the
maximum possible number of copies of T in G is at most O(nα(T )), where α(T ) is the size
of a maximum independent set in T . This proves that ex(n, T, rainbow-T ) = O(nα(T ))
for any tree T . We show that this is close to the truth. Moreover, this implies that
ex(n, T, rainbow-T ) grows fast with the number of vertices of T .

Theorem 3. Let T be a tree with ℓ " 3 leaves and let T ′ be the tree resulting from the
removal of all leaves from T .

(i) If T ′ is a single vertex, i.e., T is a star, then ex(n, T, rainbow-T ) = 0.

(ii) If T ′ is a single edge, i.e., T is a double star, then ex(n, T, rainbow-T ) = Θ(n).

(iii) If T ′ is a star on at least 3 vertices, then ex(n, T, rainbow-T ) = Θ(nℓ−d+1) where d
is the minimum integer such that T ′ has a leaf adjacent to d leaves in T .

(iv) If T ′ is not a star, then Ω(nα(T )−2) = ex(n, T, rainbow-T ) = O(nα(T )).
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We remark that part (iv) of Theorem 3 cannot be improved in the following sense:
α(T ), α(T )− 1 and α(T )− 2 are all possible exponents of n. Indeed, α(T ) and α(T )− 1
occur when T is a path (Theorem 1) and we give a construction (Proposition 16) in
Section 4 that shows α(T ) − 2 is also possible. Note that part (i) of Theorem 3 is
immediate as a properly edge-colored star is necessarily rainbow. The remaining parts
are proved in Propositions 13, 14 and 15 in Section 4.

Outline of the paper. This paper is organized as follows. In Section 2 we prove some
general bounds on the function ex(n, F, rainbow-F ). Then, in Section 3 we prove our main
results Theorem 1 and Theorem 2 (resolving the problem for paths and odd cycles among
other results). In Section 4, we prove Theorem 3 about trees, along with corresponding
results about some special types of forests. Finally, we make some concluding remarks
and present open problems in Section 5.

2 General bounds

Using the graph removal lemma, we show that for any graph H, the number of copies of
H in a rainbow-H-free graph is at most o(n|V (H)|−1). More precisely:

Proposition 4. For any graph H on k vertices, we have

(i) ex(n,H, rainbow-H) = O(ex∗(n,H)nk−3),

(ii) ex(n,H, rainbow-H) = o(nk−1).

Proof. Let G be a properly colored, rainbow-H-free graph on n vertices. To prove (i), let
us pick an arbitrary edge of G; there are at most ex∗(n,H) ways to do this. Then we pick
another edge of the same color; there are less than n/2 ways to do this. Next we pick
k − 4 additional vertices; there are O(nk−4) ways to do this. Now note that there are at
most |V (H)|! copies of H on each set of |V (H)| vertices picked this way. This way we
counted every copy of H at least once, as every copy of H must contain two edges of the
same color. This proves (i).

Now let us prove (ii). Observe that (i) immediately gives the upper bound O(nk−1),
as ex∗(n,H) = O(n2). As G contains o(nk) copies of H, by the graph removal lemma
there is a set E0 of o(n2) edges such that every copy of H in G contains an edge of E0.

We know that every copy of H in G contains two edges of the same color, say eH and
e′H .

First let us count those copies of H where the edge of E0 in H shares its color with
another edge of H. In this case we can repeat the argument for (i). There are o(n2) ways
to pick an edge e of E0 and less than n/2 ways to pick an edge e′ of the same color as
e. The remaining k − 4 vertices can be picked arbitrarily in O(nk−4) ways and in any
set of |V (H)| vertices that we picked, we have at most |V (H)|! copies of H. So the total
number of such copies of H is o(nk−1).

Let us now count those copies of H where the edge of E0 in H is disjoint from two
edges eH , e

′
H of H having the same color. Then these three edges span six vertices. There
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are o(n2) ways to pick the edge of E0, O(n2) ways to pick eH , O(n) ways to pick e′H (as
it has the same color as eH) and O(nk−6) ways to pick the remaining vertices. So in total
there are o(nk−1) such copies of H.

Next we count those copies of H where uv is an edge of E0 in H and eH = uw, e′H = xy
are of the same color and these three edges span five different vertices. We can pick uv
in o(n2) ways, xy in O(n2) ways, but then uw can be picked in at most one way. The
remaining vertices can be picked in O(nk−5) ways, so the total number of such copies of
H is o(nk−1).

Finally, we count those copies of H where uv is an edge of E0 in H and e = uw,
e′ = vx are of the same color and these three edges span four different vertices. Then
we can pick uv in o(n2) ways, uw in O(n) ways, but then vx can be picked in at most
one way. The remaining k − 4 vertices can then be picked in O(nk−4) ways, so the total
number of such copies of H is again o(nk−1).

In all four cases we obtained o(nk−1) copies of H, which finishes the proof of (ii).

It would be interesting to determine if there is a graph H for which the upper bound
in Proposition 4 (ii) is sharp. In some special cases, it can be improved. Indeed, for
example, we will see later that for k odd, we have ex(n,Ck, rainbow-Ck) = Θ(nk−2).

3 Paths and Cycles

We begin with a basic lemma that we will use in the proofs of Theorem 1 and 2.

Lemma 5. Let U be a set of vertices, A be a set of colors, v1, . . . , vk be vertices such that
for each 1 ! i ! k − 1, vi and vi+1 have at least |U | + 2|A| + 6k − 9 common neighbors.
Then there is a rainbow path v1u1v2u2 · · · vk−1uk−1vk that does not use any color in A and
ui ∕∈ U for each 1 ! i ! k.

Proof. We prove that for every 1 ! j ! k, there is a rainbow path v1u1v2u2 · · · vj−1uj−1vj
that does not use any color in A, ui ∕∈ U and ui ∕= vi′ for any 1 ! i ! j−1 and 1 ! i′ ! k.
We use induction on j; the statement is trivial for j = 1. Assume we could find such a
path P (j). Then we want to find a vertex x connected to both vj and vj+1 such that
x ∕∈ U , x is not in P (j), x is not any vi′ and the colors of xvj and xvj+1 are not on the edges
of P (j), nor in A. The number of forbidden vertices is at most |U |+ 2k− 2 (including vj
and vj+1). The number of forbidden colors is at most |A|+2k− 4. Each of those colors is
on at most one edge incident to vj and at most one edge incident to vj+1, thus it forbids
at most two additional vertices. Thus there are at most |U | + 2|A| + 6k − 10 forbidden
vertices, hence we can find a common neighbor of vj and vj+1 that is not forbidden.

Now we are ready to prove Theorem 1, which we restate here for convenience.

Theorem 1. If k " 5, then ex(n, Pk, rainbow-Pk) = Θ(n⌊
k
2⌋).

Proof. For the lower bound, we have to construct a graph G with Ω(n⌊
k
2⌋) copies of Pk

and give a proper edge coloring of G such that it is rainbow-Pk-free.
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Let U1, U2, . . . , Uk be disjoint sets of vertices of G defined as follows. Let Ui =
{ui,1, ui,2, . . . , ui,b} for i = 1, 3 and i = 2j for all j " 2 where b = Θ(n) is chosen as large
as possible so that we still have at most n vertices. For i = 2 and i = 2j +1 for all j " 2,
simply let Ui = {ui}.

Observe that sets of linear size and sets of size 1 alternate, with one exception, where
large sets follow each other. But, as we will see, the important part is between u2 and u5.

The edges of G and the colors of the edges are defined as follows. Let every vertex of
U1 and U3 be adjacent to u2 such that the edge u2u3,i gets color i for each 1 ! i ! b. Let
u3,i be adjacent to u4,i for each 1 ! i ! b such that all theses edges get color b+ 1. Next,
let all the vertices of U4 be adjacent to u5 such that the edge u4,iu5 gets color i for each
1 ! i ! b. Moreover, for each i with i " 5, let all of the vertices in Ui be adjacent to
Ui+1. We extend the coloring already given to an arbitrary proper coloring. It is easy to
see that any copy of Pk in G contains either the edges u3,iu4,i and u3,ju4,j for some i ∕= j,
or the edges u2u3,i and u4,iu5 for some i, which have the same color by definition. Thus

G is rainbow-Pk-free and it is easy to see that it contains at least b⌊
k
2⌋ = Ω(n⌊

k
2⌋) copies

of Pk, as desired.

Now we prove the upper bound. Let G be a properly edge colored rainbow-Pk-free
graph. Let us recall first that as it is rainbow-Pk-free, G has O(n) edges. A pair of vertices
u, v is called a thin pair if they have at most 3k − 4 common neighbors and a fat pair
otherwise.

We claim that there is no k-path v1v2 · · · vk where v2i and v2i+2 form a fat pair for
every i. Indeed, such a k-path would imply the existence of a rainbow-k-path as follows.
When k is even, applying Lemma 5 to fixed vertices v2, v4, . . . , vk and U = {v1}, A =
{color of the edge v1v2} gives a rainbow-k-path. When k is odd, applying Lemma 5 to
fixed vertices v2, v4, . . . , vk−1 and U = {v1, vk}, A = {colors of the edges v1v2, vk−1vk}
gives a rainbow path of length (k − 1) ending in vertex vk−1. The vertex vk−1 has degree
at least 3k − 4, so we can extend to a rainbow path of length k.

Thus all the k-paths v1v2 · · · vk have the property that v2i and v2i+2 form a thin
pair for some 1 ! i ! (k − 2)/2. There are O(n) ways to choose each of the edges
v1v2, v3v4, . . . , v2i−1v2i and each of the edges v2i+2v2i+3, v2i+4v2i+5, . . . , v2lv2l+1, where 2l+1
is k or k− 1 depending on whether k is even or odd. When k is even, there are n further
ways to choose vk. Finally, there are at most 6k − 4 ways to choose v2i+1. Altogether
there are O(n⌊k/2⌋) k-paths where v2i and v2i+2 form a thin pair. As there are constant
many ways to choose i, this finishes the proof.

It is easy to see that ex(n, P3, rainbow-P3) = ex(n, P2, rainbow-P2) = 0. We determine
ex(n, P4, rainbow-P4) exactly. In fact we will completely characterize the graphs that have
a proper edge-coloring without a rainbow P4.

Proposition 6. A graph G has a proper edge-coloring without a rainbow P4 if and only
if each connected component of G is either a star, or a path, or an even cycle, or has at
most four vertices. Consequently, ex(n, P4, rainbow-P4) = 12⌊n/4⌋.
Proof. First we give a proper edge-coloring of G without a rainbow P4 if its components
are as listed. The paths and even cycles are colored with two colors, thus they cannot

the electronic journal of combinatorics 29(2) (2022), #P2.44 7



contain a rainbow P4. Stars do not contain any P4, so any proper edge coloring is good.
Finally, note that the proper edge-coloring of K4 with 3 colors does not contain a rainbow
P4, so any graph with at most four vertices also has a coloring with the same property.

Next let G be a graph with a proper coloring of its edges without a rainbow P4, and
let us study the components of G. If a component does not contain P4, it is a star or
a triangle. If a component contains a P4, say abcd and there is a fourth edge spanned
by these four vertices, we obtain either a C4 or a triangle with a hanging edge. It is
easy to check that no edge can go out to a fifth vertex in either case without creating
a rainbow P4. Therefore, we may assume that there is no fourth edge spanned by a, b, c
and d. Then it is again easy to see that neither b nor c can be connected to a fifth vertex
without creating a rainbow P4, so if there is another edge, it creates a P5. Now suppose
we discovered already a Pk for k " 5. The only further edge that can go between vertices
of the path without creating a rainbow P4 has to go between the endpoints, and so it
creates a cycle. Finally, in the same way as before, any edge going to a new vertex from
the path must extend the path, in which case we can continue with a Pk+1.

Hence the component is either a path, or contains a cycle. It is easy to see that a
proper coloring of an odd cycle contains a rainbow P4, while an edge added to an even
cycle of length at least 6 also creates a rainbow P4 in any proper coloring. This shows that
if the component is not a path, it must be an even cycle, finishing the characterization.

To finish the proof, note that Ck contains k copies, Pk contains k − 3 copies, K4

contains 12 copies, and a star contains no copies of P4. Therefore; the number of copies of
P4 is maximized if we take ⌊n/4⌋ disjoint copies of K4 (and a few isolated vertices).

Below we determine the order of magnitude for odd cycles. We restate the correspond-
ing part of Theorem 2 for convenience. Note that obviously ex(n,C3, rainbow-C3) = 0.

Theorem 2 (odd cycles). If k " 2, then ex(n,C2k+1, rainbow-C2k+1) = Θ(n2k−1).

Proof. For the lower bound, replace each vertex of a C2k+1 with linearly many vertices.
We pick two non-adjacent edges of the cycle and for each of these two edges, we introduce
a matching between the sets corresponding to the endpoints of the edge. For each other
edge, we connect all the vertices between the sets corresponding to its endpoints. Let us
color all the edges in the two matchings by the same color and extend this arbitrarily to a
proper coloring. Then any rainbow subgraph completely avoids one of the two matchings,
hence it is bipartite, and therefore is not a rainbow C2k+1. The number of copies of C2k+1

is clearly Ω(n2k−1). Indeed, one has to pick a vertex from each of the classes, except one
of the classes incident to the first matching and one of the classes incident to the second
matching. There are Ω(n2k−1) ways to pick these vertices and there is a unique C2k+1

containing them.
For the upper bound we proceed somewhat similarly to Theorem 1. Again, we use

thin pairs: this time a pair u, v is thin if they have at most 6k − 2 common neighbors.
Let us consider a (2k + 1)-cycle C = v1v2 · · · v2k+1v1.

First we claim that for any i, one of the pairs (vi, vi+2), (vi+2vi+4), . . . , (vi+2k−2, vi+2k) is
thin (where addition in the subscripts is modulo 2k+1). Assume otherwise, and without
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loss of generality let the assumption be false for i = 1. Then we apply Lemma 5 with
fixed vertices v1, v3, . . . , v2k+1, A containing the color on v2k+1v1 and U = ∅. This way we
obtain a rainbow path from v1 to v2k+1, with the additional property that the colors on
the edges of this path are different from the color on v2k+1v1. This path together with
the edge v2k+1v1 forms a rainbow C2k+1; a contradiction. Thus one of the pairs is thin
for i = 1; without loss of generality it is v1v3. Now applying the above claim with i = 3,
we obtain another thin pair. If it is v2k+1, v2, then we can apply the above claim again,
with i = 2, to find a third thin pair. Anyways, this way at the end we find two thin
pairs vi, vi+2 and vj, vj+2 in C, such that their clockwise order is vi, vi+2, vj, vj+2 (note
that i+ 2 = j or j + 2 = i is possible).

Now consider the following two ways of counting (2k + 1)-cycles. Either pick two
disjoint thin pairs in O(n4) ways and 2k − 5 other vertices in O(n2k−5) ways, or pick two
thin pairs sharing a vertex in O(n3) ways and 2k − 4 other vertices in O(n2k−4) ways.
Then order them in a 2k−1-cycle so that vertices in a thin pair are adjacent. This can be
done in constantly many ways. Finally we have in both cases constant many choices to
put a common neighbor between the vertices of the thin pairs. Clearly every (2k+1)-cycle
is counted at least once in one of the two ways and both cases give O(n2k−1) copies of
C2k+1, finishing the proof.

Let us continue with even cycles. The following theorem was proved in [17].

Theorem 7 (Gerbner, Győri, Methuku, Vizer; [17]). If k ∕= ℓ, then ex(n,C2ℓ, C2k) =
Θ(nℓ).

We will prove a generalization of this theorem in the rainbow setting. We follow the
proof of Theorem 7 given in [17], which is based on the proof of the so-called reduction
lemma of Győri and Lemons [23]. In [17] the authors also prove a stronger asymptotic
bound than that in Theorem 7 for the case when ℓ = 2. Here we will only determine the
order of magnitude in this case, which helps to avoid some difficulties. During the proof
we establish some properties of graphs with a proper edge-coloring without a rainbow-C2k,
and use these properties to obtain the upper bound O(nℓ) on the number of copies of C2ℓ.

Now we are ready to prove Theorem 2 for even cycles. We restate it here for conve-
nience.

Theorem 2 (even cycles). If k " 2, then

Ω(nk−1) = ex(n,C2k, rainbow-C2k) = O(nk).

Moreover, if k ∕= ℓ, then

ex(n,C2ℓ, rainbow-C2k) = Θ(nℓ).

Proof. For k ∕= ℓ, the lower bound follows from Theorem 7. The lower bound Ω(n)
for ex(n,C4, rainbow-C4) is trivial: we can take ⌊n/4⌋ vertex-disjoint copies of C4 and
color each with two colors properly. The following construction provides the lower bound
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Ω(nk−1) for ex(n,C2k, rainbow-C2k) in case k " 3. First we take a blow-up of a copy
v1v2 · · · v2kv1 of C2k where we replace each of the vertices v3, v6, v8, v10, . . . , v2k−2, v2k with
classes of size about n/(k−1) so that the resulting graph has n vertices. We then color the
edges v1v2 and v4v5 with the same color and extend this arbitrarily to a proper coloring.
It is easy to see that every copy of C2k contains these distinguished edges, thus it is not
rainbow and there are Ω(nk−1) copies of C2k in this graph.

For the upper bound, first we consider the case k = 2. Observe that every proper
coloring of K2,4 contains a rainbow C4, hence ex(n,C2ℓ, rainbow-C4) ! ex(n,C2ℓ, K2,4) =
O(nℓ) by a theorem of Gerbner and Palmer [19].

Let us assume now k > 2 and start with the case ℓ = 2. Let G be a graph on n vertices
and assume we are given a coloring of G without a rainbow-C2k. For two vertices u and v
let f(u, v) denote the number of common neighbors of u and v. We call a pair of vertices
(u, v) fat if f(u, v) " 6k and a copy of C4 is called fat if both opposite pairs in it are fat.
First observe that the number of non-fat copies of C4 is O(n2), as there are at most

#
n
2

$

non-fat pairs and each such pair is an opposite pair in at most
#
6k−1
2

$
copies of C4.

We claim that the number of fat copies of C4 is also O(n2). To see this, we go through
the fat copies of C4 one by one in an arbitrary order and pick an edge (from the four
edges of the C4); we always pick the edge which was picked the smallest number of times
before (in the case that there is more than one such edge we pick one of them arbitrarily).
When this procedure ends, every edge e has been picked a certain number of times. Let us
denote this number by m(e) and call it the multiplicity of e. Observe that

%
e∈E(G) m(e)

is equal to the number of fat copies of C4 in G. We will show that m(e) < 128k3 for each
edge e, thus the number of fat copies of C4 in G is at most 128k3 |E(G)| = O(n2).

Let us assume to the contrary that there is an edge e = ab with m(e) " 128k3. In this
case we will find a rainbow-C2k in G, which will lead to a contradiction that completes
the proof. More precisely, we are going to prove the following statement:

Claim 8. For every 2 ! t ! k there is a rainbow-C2t in G, that contains an edge et with

m(et) " 16(2k − t)3.

Proof. We proceed by induction on t. For the base step t = 2 let us take a fat copy abcda
of C4 containing e2 = e = ab. If the C4 is not rainbow, we use its fatness to find at least
6k − 2 other 2-paths between a and c. At most one of those can share a color with the
edges ab or bc, thus we can replace the subpath cda with another subpath to obtain a
rainbow copy of C4 containing e2.

Let us assume now that we have found a rainbow cycle C of length 2t, t ! k − 1,
containing an edge et = uv with multiplicity at least 16(2k− t)3. Let us consider the last
16t2 times et was picked. This way we find a set Ft of 16t

2 fat copies of C4 each containing
et and containing only edges with multiplicity at least 16(2k− t)3−16t2 " 16(2k− t−1)3.

At most 2
#
2t−2
2

$
< 4t2 of the copies of C4 in Ft have the other two of their vertices

(besides u and v) in C, as we have to pick two other vertices from C and there are at most
two 4-cycles containing the edge uv and two other given vertices. Thus, there are more
than 12t2 fat 4-cycles in Ft that contain a vertex not in V (C), let F ′

t be their set. Let A
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be the set of vertices not in V (C) that are neighbors of u in a 4-cycle in F ′
t, and B be

the set of vertices not in V (C) that are neighbors of v in a 4-cycle in F ′
t. We claim that

|A| or |B| is more than 2t. Indeed, suppose the contrary and look at the neighbours of u
in the 4-cycles in F ′

t. On the one hand, there are at most 2t of them in V (C). Each of
them appears in at most 2t of the 4-cycles in F ′

t, as the fourth vertices of these cycles are
all different and are in B. On the other hand, by assumption there are again at most 2t
neighbours of u outside V (C) (those in the set A). Each of them is in at most 2t 4-cycles
in F ′

t where the fourth vertex is in V (C) and, similarly as before, in at most 2t 4-cycles
in F ′

t where the fourth vertex is outside V (C). This shows that together there can be at
most 2t · 2t+ 2t · (2t+ 2t) = 12t2 cycles in F ′

t, a contradiction.
Without loss of generality let u be the vertex which has more than 2t neighbors in

4-cycles in Ft that are not in V (C). Among these more than 2t vertices, at least one of
them, call it y, has that the color on yu is not used in C. Also, recall that the multiplicity
of yu is at least 16(2k − t − 1)3. As the 4-cycles are fat, there are at least 6k common
neighbors of v and y and at least 4k of those are not in V (C). There are less than 2k colors
that are used in C and on the edge yu and each of those colors appears at most twice
on edges that connect y and v to the at least 4k selected common neighbors. Therefore,
there is a common neighbor x such that the colors of the edges vx and yx are neither in
C, nor on the edge yu. Then we can replace the edge uv in C with the edges uy, yx,
xv to obtain a rainbow cycle of length 2t + 2, which contains an edge (namely uy) with
multiplicity at least 16(2k − t− 1)3.

This finishes the proof of the case ℓ = 2. Now we consider the case when ℓ " 3. Note
that we have 1

2

%
a ∕=b, a,b∈V (G)

#
f(a,b)

2

$
= O(n2) as the left-hand side counts the number of

copies of C4.

Claim 9. For every a ∈ V (G) we have
%

b∈V (G)\{a} f(a, b) ! cn for some c = c(k).

Note that the left-hand side of the above inequality is the number of paths of length
3 starting at a.

Proof. Let N1(a) be the set of vertices adjacent to a and N2(a) be the set of vertices at
distance exactly 2 from a. Let E1 be the set of edges induced by N1(a) and E2 be the set
of edges uv with u ∈ N1(a) and v ∈ N2(a). Then clearly

%
b∈V (G)\{a} f(a, b) = 2|E1|+|E2|.

We claim that E1 ∪ E2 does not contain a copy of the 12k-ary tree with depth 4k.
Assume it does contain such a copy T and let x1 be the root of T . In what follows, we
will construct a particular path P on 4k vertices starting at x1. Let the next vertex be an
arbitrary child x2 of x1. At later points we always pick the next vertex xi+1 to be a child
of xi such that both the color of xixi+1 and the color of axi+1 (if existent) are different
from the colors of axj for every j ! i (if existent) and from the colors used on the path
earlier. As there are at most 8k forbidden colors, there are at most 8k children of xi that
we cannot pick because of the color of xixi+1 and at most 4k − 1 children of xi that we
cannot pick because of the color of axi+1 (as the color of axj is automatically avoided
here). Hence we always have a neighbor to pick and we can really obtain a desired path
P in this way. Observe that this path, together with the edges connecting some of its
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vertices to a is rainbow. If xi and xi+2k−2 are both in N1(a) for some i, then they, together
with the vertices of P between them and a form a rainbow C2k, a contradiction which
finishes the proof. If all the edges of P are in E2, then x1 and x2k−1 or x2 and x2k are
both in N1(a), and the previous case applies. Hence we may assume that the edge xixi+1

is in E1 for some i. Without loss of generality we also may assume i ! 2k. Then xi+2k−2

and xi+1+2k−2 both have to be in N2(a) (otherwise the earlier case applies), but then the
edge between them is not in E1 ∪ E2; a contradiction.

Therefore, we have
&

f(a, b) = 2|E1|+ |E2| ! 2|E1 ∪ E2| ! 2 ex(n, T ) = O(n).

From now on we follow the proof from [17] more closely, as we have already dealt with
the difficulties arising from forbidding only rainbow copies of C2k.

Let us fix vertices v1, v2, . . . , vℓ and let g(v1, v2, . . . , vℓ) be the number of copies of C2ℓ in
G of the form u1v1u2v2 · · · uℓvℓu1 for some vertices u1, u2, . . . , uℓ. Clearly g(v1, v2, . . . , vℓ) !'ℓ

j=1 f(vj, vj+1) (where vℓ+1 = v1 in the product).
If we add up g(v1, v2, . . . , vℓ) for all possible ℓ-tuples v1, v2, . . . , vℓ of ℓ distinct vertices

in V (G), we count every C2ℓ exactly 4ℓ times. Therefore, the number of copies of C2ℓ is
at most

1

4ℓ

&

(v1,v2,...,vℓ)

ℓ(

j=1

f(vjvj+1) !
1

4ℓ

&

(v1,v2,...,vℓ)

f 2(v1, v2) + f 2(v2, v3)

2

ℓ(

j=3

f(vjvj+1). (1)

Fix two vertices u, v ∈ V (G) and let us examine what factor f 2(u, v) is multiplied
with in (1). It is easy to see that f 2(u, v) appears in (1) whenever u = v1, v = v2 or
u = v2, v = v1 or u = v2, v = v3 or u = v3, v = v2. Let us consider the case u = v1 and
v = v2, the other three cases are similar and give only an extra constant factor of 4. In
this case f 2(u, v) is multiplied with

1

8ℓ

)
ℓ−1(

j=3

f(vj, vj+1)

*
f(vℓ, u) =

1

8ℓ
f(u, vℓ)

ℓ−1(

j=3

f(vj, vj+1)

for all the choices of (ℓ− 2)-tuples v3, v4, . . . , vℓ of distinct vertices. We claim that

&

(v3,v4,...,vℓ)

1

8ℓ
f(u, vℓ)

ℓ−1(

j=3

f(vj, vj+1) !
cℓ−2nℓ−2

8ℓ
,

where c = c(k) is the constant from Claim 9. Indeed, we can rewrite the left-hand side
as

1

8ℓ

!

"
#

vℓ∈V (G)

f(u, vℓ)

!

"
#

vℓ−1∈V (G)

f(vℓ, vℓ−1) · · ·

!

"
#

v4∈V (G)

f(v5, v4)

!

"
#

v3∈V (G)

f(v4, v3)

$

%

$

% · · ·

$

%

$

% .

After repeatedly applying Claim 9 we arrive at the desired upper bound and this finishes
the proof (recall that

%
u,v∈V (G) f

2(u, v) = O(n2)).
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We do not know the order of magnitude of ex(n,C2k, rainbow-C2k) already for k = 2, 3,
but we can improve Theorem 2 slightly in these cases.

Proposition 10. We have ex(n,C4, rainbow-C4) = Ω(n3/2).

Proof. Let us take two isomorphic C4-free graphs G and G′ on ⌊n/2⌋ vertices each with
Ω(n3/2) edges. Connect every vertex v in G to its copy v′ in G′. Denote the resulting
graph by G0. Let us color these edges with color 1 and extend this to an arbitrary proper
coloring of the edges of G0. Every copy of C4 in G0 has to use vertices from both G and
G′, thus some edge vv′ of color 1. The neighbor of v in the C4 must be a vertex in G and
the neighbor of v′ must be a vertex in G′. They can only be connected by another edge
of color 1, thus the C4 is not rainbow. On the other hand, for every edge uv of G the
4-cycle uvv′u′u is in G0, thus there are Ω(n3/2) copies of C4 in G0.

Proposition 11. We have ex(n,C6, rainbow-C6) = O(n8/3).

Proof. Let G be a rainbow-C6-free graph and v1v2v3v4v5v6v1 be a 6-cycle in it. Note
that G has O(n4/3) edges. We call a pair of vertices fat if they have at least 14 common
neighbors, otherwise we call it thin. If both pairs (v1, v3) and (v3, v5) are fat, then we can
find a rainbow C6 of the form v1uv3u

′v5v6v1. Indeed, we can apply Lemma 5 for v1, v3, v5
with U = {v6} and A containing the color of v5v6 and v6v1. This way we find a rainbow
path v1uv3u

′v5 avoiding v6 and the colors in A, thus it forms a rainbow 6-cycle with the
edges v5v6 and v6v1. As a consequence we have that in every 6-cycle there are at most
two fat pairs among the pairs (vi, vi+2), and hence we can find two thin pairs of the form
(vi, vi+2), (vi+3, vi+5) (where addition in the indices is modulo 6).

Therefore, to count 6-cycles, we can do the following. First pick the edges vi+2vi+3

and vi+5vi in O(n8/3) ways. Then, as the pairs (vi, vi+2), (vi+3, vi+5) are thin, we are left
with only constant many ways to pick vi+1 and vi+4.

4 Trees and Forests

The aim of this section is to prove Theorem 3 and some additional results about forests.
Let us first prove the following proposition that is used later in this section.

Proposition 12. Let H be a graph that is neither a star nor a triangle and let c be the
number of connected components of H. Then ex(n,H, rainbow-H) = Ω(nc).

Proof. Let m be the largest edge chromatic number of a component of H. Let us consider
a graph G that contains linearly many vertex-disjoint copies of each component. Then G
obviously contains Ω(nc) copies of H. For each component H ′ of H, we color each copy
of it the same way: using colors from 1 to χ′(H ′). This way we properly color G with m
colors. Since H has more than m edges, this implies that there is no rainbow copy of H
in G, finishing the proof.

Next we will determine the order of magnitude for double stars, i.e., part (ii) of
Theorem 3.
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Proposition 13. If p, r " 1, then ex(n, Sp,r, rainbow-Sp,r) = Θ(n).

Proof. The lower bound on ex(n, Sp,r, rainbow-Sp,r) follows from Proposition 12.
For the upper bound, assume without loss of generality that p ! r and consider a

properly edge-colored graph G on n vertices without a rainbow copy of Sp,r. We want to
bound the number of copies of Sp,r in G.

We claim that if a vertex v has degree more than 2p + r in G, then it cannot be a
center of a copy of Sp,r. Indeed, if v is a center of some copy, then it has a neighbor u
which has at least p neighbors different from v. Let us choose a set A of size p out of these
neighbors of u arbitrarily. Then v has at least p+ r neighbors not in A and different from
u and at least r of them do not have any of the colors that appear on the edges between
u and vertices in A. Thus, those r vertices together with u, v and A form a rainbow copy
of Sp,r, which contradicts our assumption.

Now we are ready to count the copies of Sp,r in G. We can pick a center of it in at
most n ways. Then we can pick one of its neighbors to be the other center in at most
2p + r ways and there are at most

#
2p+r−1

r

$
and

#
2p+r−1

p

$
ways to pick the r and p other

neighbors of the centers, respectively. Thus, there are O(n) copies of Sp,r in G and this
finishes the proof.

We now prove consider the case when removing all leaves results in a tree, i.e., part (iii)
in Theorem 3.

Proposition 14. Let T be a tree with ℓ " 3 leaves and let T ′ be the tree resulting from
the removal of all leaves from T . If T ′ is a star on at least 3 vertices, then

ex(n, T, rainbow-T ) = Θ(nℓ−d+1)

where d is the minimum integer such that T ′ has a leaf adjacent to d leaves in T .

Proof. We begin with the lower bound. Let u be the center of T ′ and v be a leaf of
T ′ which is adjacent to the fewest number d of leaves in T . We replace v and its leaf
neighbors by new edges uvi and viwi,j for 1 ! i ! n/|V (T )| and 1 ! j ! d. We also
replace the leaves of T not incident to v by linearly many copies of themselves. Let H ′ be
the graph obtained this way. Pick an arbitrary edge uv′ of T ′ with v′ ∕= v, then uv′ is also
an edge of H ′. Color the edge uv′ and the edges viwi,1 for every i with the same color.
Then we extend this coloring arbitrarily to a proper coloring of H ′. Let T0 be a copy of
T in H ′ let and T ′

0 be the star obtained by deleting the leaves of T0. The center of T ′
0 is

u, as u is the only vertex of H ′ incident to at least two vertices of degree greater than 1.
Consider the non-leaf neighbors of u in T0. If vi and vj are both neighbors of u in T0, then
they both have at least d leaf neighbors in T0. In particular viwi,1 and vjwj,1 are both in
T0, thus T0 is not rainbow. Otherwise, the neighbors of u are its original neighbors and
one vi in T0. In particular, uv′ and viwi,1 are in T0, thus T0 is not rainbow. Thus, H ′

contains no rainbow-T .
We have linearly many choices for each leaf not adjacent to v of T in H ′ and lin-

early many choices for the vertex v, so H ′ contains Ω(nℓ−d+1) copies of T . Therefore,
ex(n, T, rainbow-T ) = Ω(nℓ−d+1).
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We now give the upper bound. Observe that for any embedding φ of T in G, at least
one of the vertices φ(w) for w ∈ V (T ′) \ {u} must have degree at most 2k (otherwise
we can find a rainbow embedding of T by modifying φ appropriately). So it suffices to
show that for any fixed w ∈ V (T ′) \ {u}, the number of embeddings φ of T in G with the
property that the degree of φ(w) is at most 2k is O(nℓ−d+1). But we can pick each of the
following edges in O(n) ways:

• φ(x)φ(y) for x ∈ V (T ′) \ {w} and y a leaf (note x = u is allowed),

• the edge φ(u)φ(w).

Once these edges are fixed, there are at most (2k)k = O(1) ways of picking the vertices
corresponding to neighbours of w, and then the embedding φ is completely determined.
It follows that there are at most O(nℓ−d+1) such embeddings, as claimed.

We conclude Theorem 3 with a proof of part (iv).

Proposition 15. Let T be a tree and let T ′ be the tree resulting from the removal of all
leaves from T . If T ′ is not a star, then

Ω(nα(T )−2) = ex(n, T, rainbow-T ) = O(nα(T )).

Proof. The upper bound was discussed in introduction, so we prove the lower bound. Let
L be the set of leaves in T , ℓ = |L| and T ′ be the tree we obtain by deleting the leaves
from T . First we show the bound ex(n, T, rainbow-T ) = Ω(nℓ). As T ′ is not a star, it has
two independent edges. Replace each leaf of T by linearly many copies of itself to obtain
a graph H, color the two independent edges by the same color, and extend this coloring
arbitrarily to a proper coloring. Clearly, there are no rainbow copies of T in H with this
coloring, and H contains Ω(nℓ) copies of T .

Now let us show that ex(n, T, rainbow-T ) = Ω(nα(T )−2). Let A be an independent
set in T of order α(T ). If α(T ) ! ℓ + 2, we are done. Otherwise, A contains at least
two non-leaf vertices u and v. Let us replace each vertex of A different from u and v
by linearly many copies of itself. Let H ′′ be the resulting graph and A′ be the resulting
independent set containing u, v and those vertices replacing the remaining vertices of A.
The graph H ′′ clearly contains Ω(nα(T )−2) copies of T . Let us pick edges uu′ and vv′ such
that u′ ∕= v′; this is possible since u and v are not leaves. Color uu′ and vv′ with the same
color and extend this coloring arbitrarily to a proper coloring of H ′.

Consider a copy T0 of T in H ′′. A copy T0 can contain at most α(T0) = α(T ) vertices
in the independent set A′, thus T0 must contain all the vertices in V (H ′′)\A′ = V (T )\A.
Consider a neighbor u′′ of u with u′′ ∕= u′. In T , the only path from u′ to u′′ is u′uu′′.
Then the same holds in H ′′, thus in T0. This implies that uu′ is in T0, and by symmetry
we also have vv′ in T0. Therefore, T0 is not rainbow which completes the proof.

Now let us show that there are trees T such that ex(n, T, rainbow-T ) = Θ(nα(T )−2).

Proposition 16. There is an infinite family of trees T such that ex(n, T, rainbow-T ) =
O(nα(T )−2).
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Proof. Consider the following tree T on k + 7 vertices. Fix a vertex u joined to three
vertices x1, x2, x3. Each xi has one neighbour yi apart from u, and each yi has at least
two leaf neighbors and the yi’s together have k total leaf neighbors. So the leaves and the
vertices x1, x2, x3 form a maximum independent set of size k + 3.

We claim that if G has no rainbow T then G contains O(nk+1) copies of T . First
observe that there can be no embedding φ of T in G such that d(φ(yi)) > 10k for each
i and φ(u),φ(yi) have more than 10k common neighbours for i = 1, 2. Indeed, we can
modify such an embedding φ on the xi (i = 1, 2) and the leaf edges to obtain a rainbow
embedding of T .

Therefore, we have one of the following two cases.

Case 1: The pairs φ(u),φ(y1) and φ(u),φ(y2) have at most 10k common neighbours.

We can pick each of the leaf edges (i.e., an edge incident to a leaf) and the edge
φ(u)φ(x3) in O(n) ways and then there are at most 100k2 ways to pick vertices φ(x1) and
φ(x2), giving O(nk+1) such copies.

Case 2: Some yi has d(φ(yi)) ! 10k.

We can pick each of the at most k− 2 leaf edges incident to yj for j ∕= i and the edges
φ(u)φ(xj) for j ∕= i and the edge xiyi in O(n) ways, and then there are O(1) ways to pick
the leaf edges incident to yi, giving O(nk+1) such copies.

In the remainder of this section we prove some sporadic results about special forests.

Proposition 17. If F is a forest consisting of two stars, then

ex(n, F, rainbow-F ) = Θ(n2).

Proof. The lower bound on ex(n, F, rainbow-F ) follows from Proposition 12.
For the upper bound let us denote the two stars in F by Sp and Sr, p ! r and let G

be a properly edge-colored graph on n vertices without a rainbow copy of F .
Suppose first that G contains a vertex v of degree more than 2p + r. We claim that

this vertex v has to be in every copy of Sp in G. Indeed, assume to the contrary that S
is a copy of Sp not containing v. Now at most p+ 1 neighbors of v are in S and at most
p vertices are connected to v using a color from S. Thus we can find r neighbors of v,
which together with v form a copy of Sr and with S this gives a rainbow copy of F in
G; a contradiction. So v is contained in every copy of Sp. However F itself contains two
disjoint copies of Sp which implies that G is actually F -free.

Therefore, we may assume that every vertex in G has degree at most 2p + r. Then,
when counting the number of copies of F in G, there are at most

#
n
2

$
ways to choose the

two centers for the stars and at most 2
#
2p+r
p

$#
2p+r
r

$
ways to choose the leaves afterwards.

Together this shows that the number of copies of F is indeed O(n2).

We remark that if F is made up of more stars we cannot hope for a bound that
depends only on the number of stars. To see this, let F consist of three components, two
of which are single edges and one that is a star Sr, r " 1. Let G be a graph with three
components, two of which are also only single edges and one that is a star Sn−5. Consider
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a proper edge-coloring of G where the two edge components have the same color. Then
G contains

#
n−5
r

$
copies of F , but no rainbow copy. However, if all the components of F

are single edges, we can obtain the following.

Proposition 18. Let Mk be a matching with k > 1 edges. Then

ex(n,Mk, rainbow-Mk) = Θ(nk).

Proof. The lower bound on ex(n,Mk, rainbow-Mk) follows from Proposition 12.
For the upper bound consider a properly edge-colored graph G on n vertices without

a rainbow copy of Mk. Then according to [28, Theorem 1] G has O(n) edges. To find a
copy of Mk we have to pick k edges which can be done in O(nk) ways.

5 Concluding remarks and open problems

In this paper we determined the order of magnitude of ex(n, F, rainbow-F ) for paths and
odd cycles and obtained bounds for even cycles and trees. Several interesting questions
remain open. Below we mention a few of them.

• Let Kr denote a clique on r vertices. On the one hand, Proposition 4, part (ii)
implies that ex(n,Kr, rainbow-Kr) = o(nr−1). On the other hand, it is easy to see
that ex(n,Kr, rainbow-Kr) = Ω(nr−2). Indeed, partition the n vertices into r parts
S1, S2, . . . , Sr of roughly the same size, and take a matching M1 between the parts
S1 and S2 and take another matching M2 between the parts S3 and S4 and the edges
of both M1 and M2 are colored with the same color. Between every other pair of
parts take a complete bipartite graph. It is easy to check that there are Ω(nr−2)
copies of Kr in this graph and in any copy of Kr we must have an edge of M1 and
an edge of M2, both of which are colored the same. So there is no rainbow copy
of Kr. A natural question is to determine the correct order of magnitude of this
function for r " 4.

Postscript. The question above was answered very recently by Gowers and Janzer
[21], who showed that the upper bound in Proposition 4 is close to the truth using
an interesting geometric construction (similar to a construction of Ruzsa and Sze-
merédi). More precisely, they showed that ex(n,Kr, rainbow-Kr) = Ω(nr−1−o(1)).
Furthermore, they also studied the asymmetric setting, and showed that for all
r > s " 4, we have ex(n,Kr, rainbow-Ks) = o(ns−1). (It is known that when r
is large enough compared to s, ex(n,Kr, rainbow-Ks) = 0; see Alon, Lefmann and
Rödl [4].) However, a matching lower bound is not known in many cases. The
simplest open case is when r = 6, s = 4. In this case they obtained a lower bound of
ex(n,K6, rainbow-K4) = Ω(n12/5−o(1)), while the upper bound is o(n3) as mentioned
above.

• What is the order of magnitude of ex(n,C2k, rainbow-C2k)? Theorem 2 proves
some bounds on this function. Proposition 10 and Proposition 11 provide improved
bounds in the case when k = 2, 3.
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Postscript. The question above was answered very recently by Janzer [26], who
showed that the lower bound in Theorem 2 is tight for k " 3 and the upper bound
for k = 2. In fact, the order of magnitude of ex(n,Cs, rainbow-Ct) was determined
for every s, t with s ∕= 3 just like that of ex(n, Pℓ, rainbow-C2k) for all k " 2 and
ℓ " 3.

• Theorem 3 shows that when T is a tree, then with the exception of stars and double
stars, ex(n, T, rainbow-T ) grows fast with the number of vertices of T . We suspect
that a similar phenomenon might be true for general graphs, with some small set
of exceptions. One such exception we have encountered was the disjoint union of
two stars. Another example is Tp, the triangle with p leaves attached to one of its
vertices. For this graph a simple case analysis shows that ex(n, Tp, rainbow-Tp) =
O(n).

• In this paper we introduced the function ex(n,H, rainbow-F ) and studied it when
H = F . It would be interesting to study the case when H and F are different
graphs.
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