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Abstract

Motivation: Nanopore sequencers allow targeted sequencing of interesting nucleotide sequences by rejecting other
sequences from individual pores. This feature facilitates the enrichment of low-abundant sequences by depleting
overrepresented ones in-silico. Existing tools for adaptive sampling either apply signal alignment, which cannot
handle human-sized reference sequences, or apply read mapping in sequence space relying on fast graphical proc-
essing units (GPU) base callers for real-time read rejection. Using nanopore long-read mapping tools is also not opti-
mal when mapping shorter reads as usually analyzed in adaptive sampling applications.

Results: Here, we present a new approach for nanopore adaptive sampling that combines fast CPU and GPU base
calling with read classification based on Interleaved Bloom Filters. ReadBouncer improves the potential enrichment
of low abundance sequences by its high read classification sensitivity and specificity, outperforming existing tools
in the field. It robustly removes even reads belonging to large reference sequences while running on commodity
hardware without GPUs, making adaptive sampling accessible for in-field researchers. Readbouncer also provides a
user-friendly interface and installer files for end-users without a bioinformatics background.

Availability and implementation: The Cþþ source code is available at https://gitlab.com/dacs-hpi/readbouncer.

Contact: jens-uwe.ulrich@hpi.de or bernhard.renard@hpi.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the last decade, the invention of nanopore sequencing instru-
ments has democratized DNA sequencing in various aspects
(Leggett and Clark, 2017; Mikheyev and Tin, 2014). For example,
the small MinION devices of Oxford Nanopore Technologies
(ONT) provide the possibility to sequence a sample at the place of
its origin, without the need to ship the sample to a laboratory
(Runtuwene et al., 2019; Sim and Chapman, 2019). This point-of-
care sequencing ability makes nanopore sequencing attractive for
applications such as pathogen detection in a clinical setting and in
the field (Mongan et al., 2020; Quick et al., 2016). It also can short-
en the time to detect pathogens or antimicrobial resistance (AMR)
genes when using it for point-of-care testing.

While the size of the device and the easier and faster sample
preparation are clear advantages, nanopore sequencing still lags the
base quality of sequencing-by-synthesis instruments. However, re-
cent improvements in base-calling algorithms showed per read ac-
curacy exceeding 90% (Rang et al., 2018; Wick et al., 2019). ONT
even claims to boost per read accuracy up to 99% with their latest
R10.4 pore version (https://nanoporetech.com/accuracy). Another
exciting feature of ONT’s instruments is sequencing DNA molecules
in a targeted fashion. Oxford Nanopore provides an Application
Programming Interface (API) that enables receiving electrical cur-
rents, measured while the molecule transverses the pore (Loose
et al., 2016). These signals can be translated into sequence space

and analyzed in real-time. An uninteresting DNA molecule located
in a pore can be ejected by sending an ‘unblock’ message back to the
control software. This message leads the sequencer to reverse the
voltage across the pore, causing the molecule to exit the pore in the
reverse direction. The primary requirement for such a live depletion
system is that the software making ejection decisions can keep up
with the sequencing speed for up to 512 nanopores that concurrent-
ly sequence DNA molecules on a MinION sequencer.

Two recent publications describe the implementation of such
systems for specific settings. Payne et al. combined Oxford
Nanopore’s Guppy base caller (Wick et al., 2019) with the mini-
map2 read aligner (Li, 2018) in their Readfish workflow to make
ejection decisions after mapping the reads to a reference genome in
real-time. Kovaka et al. (2021) skipped the base-calling step and per-
formed ejection decisions directly on nanopore current signals.
While the latter is designed to run on a general-purpose CPU, it can-
not handle large human size reference genomes. In contrast,
Readfish can handle larger references but needs additional software
like DeepNano-blitz (Bo�za et al., 2020) or Oxford Nanopore’s
Guppy graphical processing units (GPU) basecaller for real-time
base calling.

Furthermore, the usage of minimap2 (Li, 2018) for read classifi-
cation is not optimal. In their study, Payne et al. showed that only
83% of target reads were correctly classified for rejection after 0.8 s
of sequencing. Marquet et al. (2022) observed the same issue when
they tried to deplete all human host reads from vaginal samples with
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ONT’s adaptive sampling option. Using the depletion method sup-
ported by MinKNOW, 25% of human reads could not accurately
be rejected by the software, wasting many resources on sequencing
uninteresting reads. Further, missed mappings to repetitive regions
of the reference genome can lead to delayed classifications when lon-
ger parts of the DNA molecule must be sequenced to make a rejec-
tion decision. Both lower sensitivity and classification delay will
cause decreased enrichment of clinically relevant sequences of un-
detected pathogens or antibiotic resistance markers.

This study introduces ReadBouncer as a new tool for nanopore
adaptive sampling that combines state-of-the-art base-calling soft-
ware with the DREAM index (Dadi et al., 2018; Piro et al., 2020).
Readbouncer facilitates both GPU base-calling with ONTs Guppy
as well as CPU base-calling with DeepNano-blitz (Bo�za et al.,
2020). Its Interleaved Bloom Filter (IBF) data structure allows for
fast querying of hashed k-mers on large sequence datasets resulting
in an improved read classification strategy. Within an integrated
workflow, Readbouncer uses IBFs to classify base-called DNA frag-
ments for ejection and finally communicates the decision to the
sequencing control software.

We first investigate our read classification approach by compar-
ing it to other software tools used for read classification in a nano-
pore adaptive sampling context. ReadBouncer shows the best
accuracy, recall, F1-Score and Matthews correlation coefficient
(MCC) among all tools on a simulated and a real-world dataset,
while having almost the same precision and specificity as the best
competitor. Furthermore, our tool also has the smallest reference se-
quence index size and peak memory usage.

We also compare ReadBouncer with Readfish and ONT’s
MinKNOW software using a playback run of a whole human
genome sequencing experiment to evaluate its adaptive sampling
performance. In this comparison, we demonstrate that ReadBouncer
outperforms the other tools in a targeted sequencing experiment.
ReadBouncer results consistently show more sequenced bases for
target references and significantly shorter mean read length of off-
target or rejected nanopore reads. These results indicate that
ReadBouncer can make faster and more reliable rejection decisions
than Readfish and MinKNOW. ReadBouncer’s source code and
installer files for Windows and Linux are freely available as a Git
repository (https://gitlab.com/dacs-hpi/readbouncer) under GNU
General Public License 3 (GPL-3.0).

2 Materials and methods

2.1 Read classification
With the current nanopore sequencing speed of 450 nucleotides per
second, an adaptive sampling approach ideally makes ejection deci-
sions within 2 s after sequencing of a DNA molecule has started.
This requires fast base calling and rapid and reliable classification of
read fragments smaller than 500 nucleotides. Readfish (Payne et al.,
2021) uses the long-read alignment tool minimap2 (Li, 2018) for
this purpose. Although being fast and accurate for long error-prone
nanopore reads, the alignment approach poses some challenges
when working with short error-prone fragments of less than 500
nucleotides. For optimal enrichment of low abundance genomic
regions, we need to make reliable rejection decisions as fast as pos-
sible. Payne et al. showed in their study that it takes about 360
nucleotides for minimap2 to align 90% of those reads correctly.
That means, if we want to get higher enrichment, we need to im-
prove the classification sensitivity for the same read length.
Mappings are also hard to use when there is no good quality refer-
ence sequence available for an organism that is the depletion target
such as non-model organisms. In such scenarios, one would try to
use the reference sequence of a closely related species for read classi-
fication. Mapping reads to the reference of a closely related species
would fail to find numerous reads that we would aim to eject from
the pore.

All these findings motivated us to seek a different, fast classifica-
tion strategy. To our knowledge, the fastest current sequence com-
parison algorithms use k-mer-based approaches, where a DNA

sequence is divided into small overlapping substrings of size k. One
approach, known as MinHash (Broder, 1997; Ondov et al., 2016),
computes a hash value for every k-mer of a sequence and stores the
smallest hash values within a data structure called a sketch. The
same procedure is applied to the second sequence, and the number
of hash values present in both sketches gives an accurate approxima-
tion of the identity between the two sequences. Although this works
well for sequences of similar size, it fails for sequence containment
tests, where one sequence is much smaller than the other one, which
is the case when we want to check if a nanopore read is part of a
reference genome.

A better approach for testing if the set of k-mers of a reference
genome contains the k-mers of a read is using Bloom Filters (Bloom,
1970; Koslicki and Zabeti, 2019). A Bloom Filter simply is a bitvec-
tor of size n and a set of h independent hash functions. To insert a
k-mer into a Bloom Filter, the bit positions that correspond to the h
hash values of the k-mer are set to 1, and a k-mer is considered pre-
sent in the Bloom Filter if all h positions return a 1 during the look-
up phase. In our case, we would insert all k-mers of a reference
genome into the Bloom Filter and lookup for the k-mers of a nano-
pore read in that Bloom Filter.

The biggest problem of k-mer-based approaches is choosing the
correct parameter value for k, which is always a tradeoff between
sensitivity and specificity in the presence of sequencing errors.
Larger values for k will result in more specific read classification
results but will also fail to find many reads from the reference gen-
ome when the number of sequencing errors is high. When trying to
classify nanopore reads with error rates of about 10%, the value for
k will hardly become bigger than 13. The number of different
k-mers of size 13 is combinatorially defined by 413 ¼ 67; 108; 864,
which is much too small when working with human-sized genomes
that compose about 3 billion k-mers of size 13. To overcome this
issue, we divide the reference genome into overlapping fragments of
size m and construct a separate Bloom Filter for each fragment.
However, querying one read against each of the Bloom Filters separ-
ately reduces the performance of the Bloom Filter approach. Thus,
we decided to use IBF as proposed by Dadi et al. (2018) to index the
reference genomes.

An IBF combines several Bloom Filters (bins) in one single bit-
vector. The IBF can be divided into several subvectors, each having
the size of the number of bins. Since one bin in the IBF corresponds
to one fragment of the reference sequence, the size of each subvector
corresponds to the number of fragments. In Figure 1, for example,
we divided the reference sequence into three overlapping fragments,
each corresponding to one bin of the IBF. Thus, each subvector in
the IBF consists of 3 bits. The ith bit of every subvector belongs to
the Bloom Filter bin of fragment Fi. When inserting a k-mer from
fragment Fi into the IBF, we compute all h hash values, which point
us to the corresponding subvectors SVj and then simply set the ith
bit of this subvector to 1.

When querying a read p against the IBF in order to check if it
maps to any of the fragments, every k-mer of that read is matched
against the IBF. That means we first retrieve the h subvectors SVj

and apply a logical AND to them, resulting in the required binning
bitvector indicating the membership of the k-mers in the bins. The
example in Figure 2 visualizes this process. Here, the read consists
of four 7-mers, for which we have to calculate the three hash values
that point us to the corresponding subvectors SVj, as can be seen in
particular for the 7-mer CAGGATT. A logical AND of these three
subvectors gives us the binning bitvector for that 7-mer. In our
example, the binning vector 010 for CAGGATT tells us that this
7-mer only matches fragment F2. Applying this procedure to every
7-mer of the read gives us four binning bit vectors. Finally, we only
need to sum up the 1-bits in the binning vectors for every fragment,
which gives us the number of matching 7-mers of the read for every
fragment. Thus, instead of computing h hash values for every Bloom
Filter separately, we only need to compute the h hash values once,
which poses a significant reduction in computing time to investigate
the membership of a k-mer in every Bloom Filter. This method ena-
bles us to quickly count the number of matching k-mers between the
reference genome and a specific nanopore read. The challenge is to
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define a threshold value for the number of matching k-mers required
to accept a certain nanopore read as a match against a fragment and
thus as a match with the reference genome. In our example in
Figure 2, we consider the read matching fragment F2 because three
of the four 7-mers match with that fragment. In general, the best
threshold value depends on the length of the nanopore read and the
expected sequencing error rate. We will describe our method for
determining this value in the next section.

2.2 Optimal bitvector size
In a first step, ReadBouncer produces overlapping fragments of the
given reference sequences, e.g. 100 000 nucleotide long fragments
with an overlap of 500 base pairs. Each of those fragments repre-
sents a single bin in the IBF. The constituting k-mers of each frag-
ment are hashed using three different hash functions, and the bits of
the corresponding index positions in the IBF are set to one (Fig. 1).
Then, ReadBouncer automatically calculates the optimal IBF size in
bits (BitsIBF) based on the following equations.

BitsIBF ¼ nfrag � BitsSBF; (1)

where nfrag is defined as the number of fragments with maximum
size F and BitsSBF as a single Bloom filter size for a single fragment.

Let maxkmer be the maximum number of k-mers for a fragment of
size F, and k-mer size k be defined as

maxkmer ¼ F � kþ 1: (2)

To calculate the optimal size for the IBF, we use the formula for
finding the false positive (FP) rate in an IBF as proposed by Dadi
et al. (2018)

p ¼ 1� 1� 1

BitsSBF

� �h�maxkmer

 !h

: (3)

Then the optimal size of a single Bloom filter can be calculated
by resolving the formula for BitsSBF:

BitsSBF ¼
&

�1

ð1� rÞ
1

h�maxkmer � 1

’
; (4)

where r ¼ p
1
h, h is the number of used hash functions and p a prede-

fined FP rate. ReadBouncer implicitly uses three hash functions and
a maximum FP rate of 0.01 to minimize the number of false matches
between the query sequence and a single bin of the IBF.

2.3 Minimum number of k-mer matches
During the read classification step, the k-mers of every read are
hashed with the same three hash functions, and the number of
matching k-mers for every bin is calculated as visualized in Figure 2.
We accept a read as part of the reference sequence if the number of
matching k-mers is greater than or equal to a given threshold t for at
least one bin. We calculate the threshold using the expected sequenc-
ing error rate e and the definition of a ð1� aÞ confidence interval of
the number of erroneous k-mers as recently provided by (Blanca
et al., 2022). They first defined the expected number of erroneous
k-mers as follows:

E½Nerr� ¼ L� q: (5)

For a given read r with length len(r) and k-mer length k, we de-
note the number of k-mers of read r as L ¼ lenðrÞ � kþ 1, and q is
defined by ð1� ð1� eÞkÞ. In a second step, they show that the vari-
ance for the number of erroneous k-mers can be calculated by

VarðNerrÞ ¼ Lð1� qÞ q 2kþ 2

e
� 1

� �
� 2k

� �
þkðk� 1Þð1� qÞ2

þ2ð1� qÞ
e2

ð1þ ðk� 1Þð1� qÞÞe� qÞ:
�

(6)

Finally, they define the ð1� aÞ confidence interval by:

E½Nerr�6za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNerrÞ

p
; (7)

with za ¼ /�1ð1� a
2 Þ, where we denote /�1 as the inverse of the cu-

mulative distribution function of the standard Gaussian distribution.
Based on the calculation of the confidence interval for the number
of erroneous k-mers, we define our threshold for the minimum num-
ber of matching k-mers for read r as:

min½Nmatch� ¼ L� ðE½Nerr� þ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNerrÞ

p
Þ: (8)

We classify a read as a match if the number of matching
k-mers is bigger or equal to min½Nmatch� for at least one bin in the
IBF. ReadBouncer per default calculates this threshold for a
95%-confidence-interval, an expected sequencing error rate of
10%, and k-mer length 13. However, these values as well as the
fragment size are adjustable via configuration parameters of the
command line or graphical user interface (GUI).

2.4 Workflow
The workflow of our tool consists of two consecutive parts. First,
we build one or more indexes of the given reference sequence

Fig. 1. Example of an IBF construction. In the first step, we subdivide the reference

sequence into three overlapping fragments. Then, for each k-mer of the differently

colored fragments, all three hash values have to be calculated. The resulting hash

values determine the subvector SVj in which the corresponding bit is set to 1. For ex-

ample, the second hash function for k-mer CAGGATT from fragment F3 returns k.

Hence, we set the third bit of subvector SVk to 1. In this way, the three Bloom

Filters for the three fragments are combined in an interleaved fashion. Since we have

three fragments in our example, the length of every subvector is three, and the

length of the IBF is 3x, where x is the defined length for every Bloom Filter of the

three fragments

Fig. 2. Finding the correct fragment for a given read p. For each k-mer of read p, we

calculate the three hash values using the same hash functions as for the IBF construc-

tion. We use the resulting hash values to find the corresponding subvectors of the

IBF. The sub bitvectors are combined with a bitwise AND to a binning bitvector.

For all set bits in the binning vectors of the k-mers, we increment the counter of the

corresponding bin in a counting vector. Bins whose counter is greater than or equal

to a given threshold t are considered to contain the read p. In this example, we show

the calculation of the binning bitvector for the 7-mer CAGGATT. Using the same

three hash functions as for the IBF construction in Figure 1, we get the subvectors

SV2, SVk and SVx. We combine these three subvectors via logical AND to get the

binning bitvector. The same procedure is applied to the other three 7-mers, and with

the resulting four binning bitvectors, we can calculate the number of matching

7-mers of read p with each fragment. If at least three 7-mers match against one frag-

ment, we accept the read as a match with the reference sequence
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dataset, which can be used as target or depletion filters. These
indexes can be used directly in the second part of the workflow or
stored on the computer hard disk for later usage. The construction
of this index, for which we apply IBFs, is explained in further detail
in Section 2.1. The second part of our tool is the live-depletion or
target-enrichment task (Supplementary Fig. S2). Here, ReadBouncer
initially loads the indexes and waits for the nanopore device to start
sequencing. Immediately after sequencing has begun, the sequencer
streams raw electrical currents for every single molecule from every
single sequencing pore of the flow cell to our integrated Read-Until
client. Oxford Nanopore provides this functionality via an API of its
MinKNOW control software (https://github.com/nanoporetech/min
know_api), which allows our Read-Until client to receive the raw
data while the molecule traverses through the pore. The client is
implemented in Cþþ and communicates with the MinKNOW con-
trol software via gRPC remote procedure calls (https://github.com/
grpc/grpc).

Received raw signal data get pushed onto a base-calling queue,
and a separate thread takes raw signals of each read from the queue
and sends it to the chosen base-calling algorithm, which translates
the electrical currents into a nucleotide string. The user can choose
GPU base-calling with ONT’s Guppy basecaller for which we inte-
grated a guppy client that communicates with a guppy basecall ser-
ver. In addition, we integrated DeepNano-blitz (Bo�za et al., 2020)
for the base-calling step, which is fast enough to perform the base-
calling in real-time, even on CPUs.

Base called reads get pushed to the classification queue if the
read length is bigger than or equal to 200 nucleotides, and another
thread takes each read from that queue and passes it to the classifi-
cation framework. Otherwise, the thread marks this read as ‘pend-
ing’ and waits for the following data chunk to be base called and
concatenates the base called sequences of the read until the min-
imum read length has been reached. The minimum read length of
200 nucleotides ensures higher confidence in the classification of the
reads. In practice, this read length requirement will lead to most
reads having about 360 nucleotides length, which corresponds to
two data chunks sent by the MinKNOW software. The read classifi-
cation thread then queries the read sequence against the loaded IBF
indexes as described in more detail in Section 2.1. Based on the clas-
sification, reads can either be marked for a rejection or continue fur-
ther sequencing. If a read was not classified for rejection on a first
try, we mark it as once_seen and wait for further sequencing data to
try further classification attempts of that read. After the read has
reached a maximum read length of 1500 bp we stop trying to make
ejection decisions and mark the read for continued sequencing as
usual. Reads that have been classified for rejection or continued
sequencing are finally pushed to the response queue and no further
data chunks of that read are sent by the control software.

The last thread takes the classified reads from the response
queue, and our Read-Until client sends response messages back to
the MinKNOW control software for each read. The client sends an
unblock message for reads that could be matched to the IBF, telling
the sequencer to eject the corresponding DNA molecule. A stop_fur-
ther_data message is sent to the control software for reads that were
not classified for rejection. This message tells MinKNOW to
continue sequencing the corresponding DNA molecule and send no
additional chunks of data for that read.

3 Results

In this study, we show how adaptive sampling benefits from our
improved read classification approach. Therefore, we designed
experiments that specifically focus on the evaluation of this ap-
proach when applied to both adaptive sampling strategies, depletion
and targeted sequencing. In a first step, we compare ReadBouncer to
minimap2 (Li, 2018), which is used for classification by Readfish,
and the pan-genomics matching tool SPUMONI (Ahmed et al.,
2021), which is proposed as an alternative to minimap2 in targeted
nanopore sequencing pipelines. Here, we assess all three tools on
simulated and real reads from a recently published microbial mock
community (Nicholls et al., 2019). In a second experiment, we

compare ReadBouncer with Readfish in an adaptive sampling set-
ting using the playback feature offered by Oxford Nanopore’s
MinKNOW software to replay an already completed sequencing
run. We assess both tools by targeting chromosomes 21 and 22 in a
human whole genome sequencing run, looking at their ability to cor-
rectly filter out all other human nanopore reads. Here, we do not
compare against SPUMONI because there exists no adaptive
sampling pipeline integrating SPUMONI for read classification.

We perform all experiments for classification performance as-
sessment on a laptop with a 2.8 GHz Intel Core i7-7700HQ CPU
and 16 GB of memory with an Ubuntu 20.04 OS installed. For the
classification evaluation, we run each tool with a single thread for
runtime comparisons and record the wall clock time and peak
resident set size (RSS) reported by the individual tools or GNU
time 1.7.

3.1 Evaluating read classification
3.1.1 Experimental setup

During a nanopore targeted sequencing experiment with ONT’s
ReadUntil functionality, the sequencing device transmits electrical
current data via the MinKNOW control software to ReadBouncer.
This data is received as chunks, representing a maximum of 0.4 or
0.8 s of sequencing, depending on the MinKNOW configuration.
Since a DNA molecule translocates through the pore at a speed of
about 450 bases per second, 0.4 s of sequencing represents about
180 bases of data. In the following experiments, we mimic the situ-
ation where a chunk represents 0.4 s of sequencing data received
and base called immediately by an adaptive sampling tool. Since we
aim to make rejection decisions as early as possible while still being
able to classify most of the reads correctly, we want to assess the
classification accuracy of the 3 tools after two chunks of data, which
correspond to 360 nucleotides or 0.8 s of sequencing. In this section,
we assume that base-calling has already been performed. For a fair
comparison, we set up all experiments in such a way that all three
tools, minimap2, SPUMONI and ReadBouncer, attempt to classify
reads based on the 360 bases long read prefix. In practice, all reads,
both simulated and real reads, were cut to only the first 360 bases.
ReadBouncer then hashes all k-mers of these 360 bases and
compares the hash values to a prebuilt IBF of the depletion target
references to make classification decisions.

We use the software’s default settings for the SPUMONI ap-
proach, which means splitting the prefix into substrings of 90
nucleotides each for further read classification. SPUMONI also
needs a prebuild index of the references but has to include the re-
verse complement of the depletion target references. SPUMONI
matches the substrings against this positive index and a null index,
consisting of the reverse sequences of the positive index. Finally,
classification decisions are made by using a Kolmogorov-Smirnov
test.

For the minimap2-based approach, we evaluate two different
parameter settings. First, we mimic the read classification of
Readfish by using the mappy Python interface (https://pypi.org/pro
ject/mappy/) for minimap2. Here, we align the read prefixes with
the map-ont settings, which are the same settings used by Readfish
and correspond to k-mer size of 15. Since the choice of the k-mer
size has an impact on the classification performance, we also aligned
the read prefixes using a k-mer size of 13 in a second experiment to
ensure a fair comparison with ReadBouncer.

To evaluate the three tools, reads correctly classified as belong-
ing to the depletion target are considered true positives (TP), while
reads falsely classified for depletion are called FP. Consistently,
reads that are correctly not classified as depletion target are consid-
ered true negatives (TN), and reads belonging to the depletion target
but not classified for depletion are called false negatives (FN). We
calculate the classification accuracy, precision, recall, specificity and
F1-score for all three approaches based on those considerations.
Since we assume an imbalanced number of sequenced reads between
depletion and enrichment targets, we also report the MCC in every
experiment.
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3.1.2 Simulated mock community

In the first dataset, we consider simulated ONT-like reads derived
from the identical genomes of the ZymoBIOMICS High Molecular
Weight DNA Mock Microbial community (ZymoMC) (Nicholls
et al., 2019). This mock community consists of seven bacterial spe-
cies—Enterococcus faecalis, Listeria monocytogenes, Bacillus subti-
lis, Salmonella enterica, Escherichia coli, Staphylococcus aureus and
Pseudomonas aeruginosa—as well as Saccharomyces cerevisiae. We
use PBSIM2 (Ono et al., 2021) to simulate Oxford-Nanopore-like
reads (R9.4 pores) from Zymo Mock Community references at vary-
ing levels of mean read accuracy: 80%, 85%, 90%, 95% and 98%.
Furthermore, we simulated proportions of reads from each genome
in such a way to mimic a scenario where only 2.16% of reads origin-
ate from S.cerevisiae (Supplementary Fig. S3). The goal here is to en-
rich S.cerevisiae sequences by correctly classifying bacterial reads,
which we would aim to eject from the pores in a real nanopore
sequencing run. This can be considered as a depletion-only experi-
ment, where a priori only the depletion references are known, but
not the enrichment targets. Therefore, we build an index of the
seven bacterial reference genomes and query all bacterial and yeast
reads against the index. Consistent with our definition in Section
3.1.1, we consider correctly classified bacterial reads TP, while yeast
reads found in the index are considered FP. In addition, we define
bacterial reads that are missed to be found by a tool in the index as
FN, and yeast reads that are not found in the index are considered
TN.

On all read accuracy levels, ReadBouncer consistently demon-
strates best accuracy, recall, precision, F1-scores and MCC
(Supplementary Table S5). Figure 3 visualizes recall and specificity
for the three tools across various read accuracies. It can be observed
that recall improves with increasing read accuracy for all three tools
while specificity stays almost unchanged. On all read accuracy lev-
els, ReadBouncer demonstrates slightly but consistently better recall
(sensitivity) than SPUMONI, while both tools outperform mini-
map2. Minimap2 is the only tool that shows 100% specificity, but
ReadBouncer comes close to 100% as well. SPUMONI lags a bit be-
hind the specificity scores of the other two tools. It can be seen that
ReadBouncer is the best performing tool for this read classification
task. It combines high recall (sensitivity) with high specificity. The
other two tools either have high recall but lower specificity or high
specificity but lower recall scores.

3.1.3 Real mock community

Next, we applied our method to real nanopore reads from a Zymo
Mock Community (NCBI BioProject PRJNA742838). After sample
preparation, we sequenced the mock sample on a MinION flowcell
(FLO-MIN106) with v. R9.4.1 pores (Supplementary Section S1).
Obtained Fast5 files were base called with DeepNano-blitz using a
recurrent neural network size of 48. For better comparison with
minimap2, we first build a separately obtained minimap2 mapping
as a gold standard. Therefore, we filter out all reads shorter than
2000 base pairs and trim the first 360 nucleotides from each read
since we use these bases for later classification. Then, we mapped

the trimmed reads with standard ONT settings to the ZymoMC ref-
erence genomes and only reads with a mapping quality score bigger
or equal to 30 are considered confidently mapped. From these
mapped reads, the trimmed 360 nucleotide long prefixes are used
for the read classification by the three tools again. Proportions of
reads from each genome are similar to the simulated experiment
with 2.27% of reads from S.cerevisiae (Supplementary Fig. S4). In
this experiment, we also measure the peak RSS and index size in
GigaByte and the throughput for each of the tools in reads classified
per second.

Results in Table 1 show that ReadBouncer achieves better accur-
acy, recall and F1-score than SPUMONI and minimap2, which both
have similar results for those three measures. Minimap2 has slightly
better precision and specificity than ReadBouncer. While
SPUMONI has almost the same precision as ReadBouncer and mini-
map2, it shows significantly less specificity. These results are consist-
ent with those for the simulated datasets in section Simulated Mock
Community and show that ReadBouncer outperforms the other
tools on read classification for short nanopore reads.

Another important aspect is the amount of main memory a tool
needs to hold the reference index needed for read classification.
Using the seven bacterial reference genomes of the Zymo Mock
Community as depletion target (reference index), ReadBouncer
shows the smallest maximum memory consumption measured as
Peak RSS. It only needs 0.099 GigaBytes (GB) of main memory, in
contrast to 0.251 GB consumed by minimap2 with k-mer size 13.
Furthermore, ReadBouncer has the smallest index file size (0.047
GB) of all three tools. In addition to the smallest memory footprint,
ReadBouncer also achieves the highest classification throughput.
We can classify 5967 reads per second with our approach compared
to 5632 reads per second by minimap2 (k-mer size 15) and 1102
reads per second achieved by SPUMONI. These results show that
ReadBouncer can correctly classify more reads and is computation-
ally more efficient than other state-of-the-art tools used for nano-
pore adaptive sampling.

3.2 Adaptive sampling evaluation
In our live experiment, we assess our read classification based on
IBFs in a targeted adaptive sampling setup. For this purpose, we
downloaded a bulk Fast5 file of a human whole-genome sequencing
experiment provided via the Github page of Readfish (https://
github.com/LooseLab/readfish). Such a bulk Fast5 file (Payne et al.,
2019) allows the playback of the whole sequencing run for testing if
the ReadUntil functionality is working correctly. Oxford
Nanopore’s MinKNOW software simulates an already finished
sequencing run without the need for a physical sequencing device
when performing a playback run. Compared to the original sequenc-
ing run, read signals are reported at the same time point after start-
ing the run. Unblocking a read does not cause MinKNOW to finish
sending signals for that read during a playback run. It just breaks
the read when receiving an unblock message for the read and creates
a new read identifier but continues to send signals of the same ori-
ginal read. Here, we compare ReadBouncer and Readfish using both

(a) (b)

Fig. 3. Visualization of (a) recall and (b) specificity with varying simulated read accuracies for ReadBouncer, minimap2 and SPUMONI
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real-time GPU base-calling with ONT’s Guppy basecaller and real-
time CPU base-calling with DeepNano-blitz. While ReadBouncer
integrates DeepNano, we had to use a special git branch of Readfish
(https://github.com/LooseLab/readfish/tree/caller_refactor) to facili-
tate CPU base calling. In all experiments, ReadBouncer and
Readfish were run on a separate Ubuntu 18.04 Laptop with 16 GB
RAM and Intel Core i7 while GPU live base calling and the playback
were performed on an NVIDIA Jetson AGX Xavier. In addition, we
compared the results with two MinKNOW adaptive sampling
experiments, one using MinKNOW’s target and the other using
MinKNOW’s deplete method. Both experiments were performed on
the NVIDIA Jetson AGX Xavier, too.

In our experiments, we do a playback of a complete human gen-
ome sequencing run with the goal to enrich for chromosomes 21
and 22 of the human genome and deplete all other human reads
from that run. This setup not only mimics a targeted sequencing ap-
proach but also corresponds to the application of sequencing a clin-
ical human blood sample where up to 99% of the reads are human
reads that we would want to deplete in order to enrich the number
of reads from a pathogenic microbe. We perform playback runs for
60 min on ONT’s MinKNOW control software version 4.3.3. To
ensure that the vast majority of the sequenced reads are of human
origin, we first perform a playback run without adaptive sampling.
Reads were base called with Guppy 5.0.14 and mapped with mini-
map2 to the human Telomere-to-Telomere Consortium (‘T2T’)
CHM13 v1.1 reference assembly (Nurk et al., 2022). From the
resulting reads passing the in-built quality filtering of MinKNOW,
99.66% could be mapped to the human reference genome. For the
comparison of the tools in an adaptive sampling setting, we first ad-
just the break_reads_after_seconds parameter within MinKNOW to
0.4 s as recommended by the Readfish authors. Since MinKNOW
sends data as chunks, this parameter sets the size of one chunk to a
maximum of 180 nucleotides. Both tools, ReadBouncer and
Readfish, can concatenate the data chunks and perform classifica-
tion after the receipt of every chunk. For integrated CPU base calling
with DeepNano-blitz we used a neural network size of 48 for both
tools. For real-time GPU base calling on the NVIDIA Jetson AGX
Xavier we used the fast base-calling mode of Guppy 5.0.14 for
ReadBouncer and Readfish.

For the evaluation of both tools, we repeat the same playback
run for 60 min. In the experiment with CPU base calling, we ran
ReadBouncer with default parameters (fragment size ¼ 100; 000
and kmer size ¼ 13) using three base calling threads and three
read classification threads, respectively. The same setting was
applied to Readfish with three CPU base calling threads and mini-
map2 using three threads per default. Since Guppy ensures a
higher raw read accuracy, we ran ReadBouncer with

fragment size ¼ 200; 000; kmer size ¼ 15 and error rate ¼ 0:05
in the GPU base calling experiment. In all experiments, we used
chromosomes 21 and 22 as target filter and all other chromo-
somes as depletion filter in ReadBouncer. Our settings within the
Readfish configuration file correspond to the example TOML file
in the github repository (https://github.com/LooseLab/readfish/
blob/master/examples/human_chr_selection.toml) and aim to tar-
get chromosomes 21 and 22 as well, while unblocking all reads
that do not map to the targets. For MinKNOW target we used
chromosomes 21 and 22 as reference and for MinKNOW deplete
all other chromosomes as reference sequence. Before starting the
adaptive sampling experiments, we had to build index files for all
three tools. For Readfish and MinKNOW, we created minimap2
index files, which took 103 s on an Intel Core i7 with one thread
and peak RSS of 11.68 GB. Building ReadBouncer index files
took 478 s on the same system, but needed only 8.62 GB peak
RSS. After finishing the playback run, the resulting Fast5 files
were basecalled in high accuracy mode with Guppy 5.0.14. All
reads in the resulting fastq files were mapped to the human gen-
ome reference and mapping statistics were calculated with
Readfish’s summary script. Using a playback run allows a fair
comparison of the different approaches since the same sequencing
data come from MinKNOW during the same amount of time.
Thus, we expect a similar number of on-target reads and on-
target bases across all experiments. On the other hand, we expect
different numbers of rejected reads while retaining similar num-
ber of bases for those reads due to the different lengths of rejected
reads caused by different unblock time points. The reason is
MinKNOW just splitting a sequenced read into two segments
when receiving an unblock message for that read. Thus, the ear-
lier we reject an off-target read, the shorter the read length and
the more off-target reads are seen.

The results of all six experiments can be seen in Table 2. Our
first observation is that the results for our target chromosomes 21
and 22 are similar for all experiments but the MinKNOW deplete
experiment. Here, the number of on-target reads is much higher
while showing the smallest mean and median read lengths caused by
a high number of false rejection decisions. These results suggest that
MinKNOW deplete is not suitable for targeting single chromosomes
of the human genome in an adaptive sampling experiment. On the
other hand, MinKNOW target shows similar results for chromo-
somes 21 and 22 when compared to ReadBouncer and Readfish.
However, the mean read length of 3629 bp measured for unblocked
reads is much higher than those in the ReadBouncer and Readfish
experiments, which shows that MinKNOW target spends too much
time sequencing off-target reads. These experiments show that

Table 1. Comparing ReadBouncer, SPUMONI and minimap2 across various metrics on a real Zymo Mock Community dataset consisting of

seven bacterial species and S.cerevisiae

Tool ReadBouncer (k¼ 13) SPUMONI minimap2 (k¼ 15) minimap2 (k¼ 13)

Accuracy 94.50 90.96 89.33 92.33

Precision 99.99 99.89 100.00 99.99

Recall 94.38 90.85 89.08 92.15

Specificity 99.73 95.87 99.95 99.95

F1-Score 97.10 95.16 94.23 95.91

MCC 0.52 0.41 0.39 0.45

Peak RSS (GB) 0.099 0.163 0.272 0.251

Index Size (GB) 0.047 0.153 0.097 0.090

Throughput (reads per sec) 5967 1102 5632 5306

Note: Reads from a nanopore sequencing run are mapped to the eight organisms to generate ground truth. We use only the first 360 nucleotides for classifica-

tion from those confidently mapped reads to mimic unblock decision-making after 0.8 s of sequencing the individual read. All reads are mapped against the seven

bacterial reference sequences to filter out only the bacterial reads. At the same time, we want to keep as much S.cerevisiae reads, which corresponds to an enrich-

ment of that organism in an enrichment/depletion experiment. Consistent with the simulated data, ReadBouncer can classify a higher percentage of bacterial reads

while having slightly less precision and specificity than minimap2. Our approach also is the computationally most effective one, with the lowest memory footprint

and highest classification throughput. Bold values represent the best metrics value achieved over all tools, e.g. ReadBouncer (k¼13) shows highest accuracy, F1-

Score, recall but also the smallest memory footprint (Peak RSS and index size).
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ReadBouncer and Readfish outperform the two MinKNOW adap-
tive sampling strategies.

Comparing ReadBouncer with Readfish, when both tools use the
same basecaller, ReadBouncer shows better results regarding median
read lengths and the number of bases sequenced. We also see that
the choice of the base calling tool has a significant impact on the
outcome of the adaptive sampling experiment. Using Guppy GPU
base calling for both tools, ReadBouncer and Readfish result in
much shorter read lengths for non-target (unblocked) reads.
Interestingly, we observe that unblocked reads from the
ReadBouncer playback runs have shorter mean and median read
lengths than those from the Readfish playback runs. This is also
shown in the length distribution plots of unblocked reads for play-
back runs with Guppy base calling presented in Figure 4.

4 Discussion

The idea of adaptive sampling is to selectively sequence individual
DNA molecules on nanopore sequencing devices using in-silico
methods. This study presents a new tool for adaptive sampling that
improves read classification by combining IBFs with k-mer matching
statistics. ReadBouncer shows a higher read classification sensitivity
than other state-of-the-art classification tools for adaptive sampling
while retaining a high specificity. Our tool also improves classifica-
tion performance and memory usage compared to the other tools.
We could observe shorter read lengths of non-target reads in differ-
ent playback experiments when using ReadBouncer instead of
Readfish. In a real experiment, this could mean that ReadBouncer
investigates more DNA molecules in the same amount of sequencing
time. We developed our tool as an easy-to-install software applica-
tion with a graphical user interface on Linux and Windows operat-
ing systems. In addition, ReadBouncer supports fast CPU base-
calling, providing even small sequencing facilities or in-field
researchers that typically only have access to low-cost hardware the
possibility to use the adaptive sampling feature of the MinION
sequencer.

The key benefit of our new tool is the improved read classifica-
tion. We neither use signal nor sequence space mapping algorithms
for read classification compared to other adaptive sampling tools.
Instead, our IBF approach uses k-mer counting in Bloom Filters for

sequence containment testing, resulting in smaller index files and
fewer memory requirements. However, the improved sensitivity
comes at the cost of decreased classification speed with increasing
reference database size due to our approach of fragmenting the ref-
erence genome sequences and using one bin of the IBF per fragment.
The fragmentation approach ensures a high classification specificity
for nanopore reads with high error rates of approximately 10–15%
as observed by the CPU basecaller DeepNano-blitz (Bo�za et al.,
2020). This error rate forces us to use small k-mer sizes such as 13,
which entails the need for smaller fragment sizes down to 100 000
nucleotides to avoid too many FP matches. Using real-time GPU
base-calling with single raw read accuracies of about 94% allows
increasing the k-mer size to 15 and fragment size to 200 000, reduc-
ing the number of bins in the IBF by 50%. In the future, we expect
to use even fewer fragments per genome and consequentially im-
prove the classification speed for larger genomes as Oxford
Nanopore is steadily improving its per-read accuracy. This could
also enable the usage of our IBF approach for real-time metagenom-
ics classification of nanopore reads or the construction of pan-
genomics indexes that store all different haplotypes of a pathogen in

Table 2. Comparison of ReadBouncer, Readfish and MinKNOW in a targeted sequencing experiment

ReadBouncer Readfish

Basecaller contig Reads Bases Mean Median Reads Bases Mean Median

DeepNano chr21 73 2 208 211 30 249 9025 73 2 118 199 29 016 9285

chr22 92 1 179 449 12 820 6262 91 1 177 699 12 942 5449

Others 122 745 136 441 510 1112 503 92 527 140 303 151 1516 1310

Guppy chr21 77 2 189 976 28 441 9442 71 2 126 553 29 951 9262

chr22 83 1 210 472 14 584 7663 88 1 178 629 13 394 6602

Others 154 684 140 636 076 907 479 140 267 133 484 295 952 877

MinKNOW target MinKNOW deplete

contig Reads Bases Mean Median Reads Bases Mean Median

chr21 77 2 099 268 27 263 9170 1425 2 285 420 1604 845

chr22 105 1 061 911 10 113 3368 468 1 219 518 2606 883

Others 38 656 140 284 944 3629 520 177 549 132 949 878 749 769

Note: Four 60 min playback runs of a whole human genome sequencing experiment were performed using either ReadBouncer or Readfish in combination

with either DeepNano CPU base calling or Guppy GPU base calling. The same experiment was repeated with MinKNOW’s adaptive sampling functionality in tar-

get and deplete mode. The goal of all experiments was to target chromosomes 21 and 22 while rejecting all other human reads. For chromosomes 21 and 22, high-

est mean and median read lengths across all experiments are highlighted in bold. For rejected reads, lowest mean and median read lengths across all experiments

are highlighted in bold. ReadBouncer and Readfish show consistently better results when using GPU base calling with ReadBouncer having shorter mean and me-

dian read lengths for non-target reads regardless of the used basecaller. ReadBouncer outperforms MinKNOW target by having longer read lengths for on-target

reads and shorter read lengths for off-target reads caused by a better read classification. MinKNOW deplete has the worst results of all tools indicated by high

numbers of on-target reads with short read lengths caused by lots of false unblock decisions for on-target reads.

(a)

(b)

Fig. 4. Read length distributions of unblocked reads when using (a) ReadBouncer or

(b) Readfish on a 60 min playback run of a whole human sequencing experiment

with real-time Guppy GPU base calling. ReadBouncer makes faster rejection deci-

sions than Readfish, which can be observed by shorter read lengths of unblocked

nanopore reads
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one IBF, with one haplotype per bin. To further increase perform-
ance, combining ReadBouncer and minimap2 could be worthwhile,
as the integration of different methods in related fields has demon-
strated (Piro et al., 2017).

A second key feature of ReadBouncer is its support for fast and
accurate real-time GPU base-calling with ONT’s Guppy and real-
time CPU base-calling with DeepNano-blitz. This study showed that
both approaches show reliable results for a whole human sequenc-
ing playback run with the application to target specific chromo-
somes while rejecting reads belonging to all other chromosomes.
Since there are some performance drawbacks of MinKNOW when
using a playback run, the measured read lengths of rejected reads
can deviate to a real experiment. Other users (https://github.com/sir
selim/jetson_nanopore_sequencing) reported much shorter
unblocked read lengths on real experiments performed on NVIDIA
Jetson AGX Xavier. To ensure reproducibility and fair comparison
between tools and to reduce the influence of potential artifacts, we
evaluated our tool here on a playback of a well-performed experi-
mental run rather than during run-time of the sequencer. Since a
playback run is data from a real sequencing experiment, we do not
expect any bias from this comparison but can guarantee a fair com-
parison between tools. We also do not expect any negative impact
on ReadBouncer’s classification approach’s improved sensitivity by
using a playback run.

We expect that ReadBouncer can also contribute to the field of
pathogen detection in non-model organisms. Metagenomics
sequencing of such samples easily consists of up to 99% host reads
that can be depleted with adaptive sampling resulting in an in-silico
enrichment of pathogenic reads as shown by other research groups
(Marquet et al., 2022; Martin et al., 2022). Here, our CPU-based
approach also makes access to adaptive sampling much easier for
researchers studying wild living animals in the field. With
Nanopores being successfully applied to peptide sequencing
(Brinkerhoff et al., 2021), we also see possible modifications of the
approach to be useful for targeted protein sequencing.

Another potential use case for adaptive sampling is the real-time
detection of antibiotic resistance and virulence genes. In their recent-
ly published study, Zhou et al. (2021) showed that direct nanopore
metagenomics sequencing of human blood samples could detect
pathogens in real-time but fails to detect antibiotic resistance genes.
They compared direct metagenomic sequencing approach to
MinION sequencing of blood culture samples. Using blood cultures,
they could deplete human reads to about 65% of all sequenced reads
in the corresponding sample, which was sufficient to identify more
than 80% of resistance genes after 2 hours of sequencing. We expect
that the number of sequenced human host reads can be depleted at a
similar rate by using adaptive sampling, which was already shown
by Marquet et al. This could reduce costs and decrease the time to
detect pathogens in human blood samples. In the future, a point-of-
care test for antibiotic resistance genes in human patient samples
that also avoids shipping the samples to a nearby laboratory could
decrease antibiotic drugs’ usage and help restrict the development of
antibiotic resistance that are a burden to many health care systems
all over the world. Besides further sample preparation and sequenc-
ing technology improvements, we encourage scientists to set up
proof-of-principle studies investigating the potential application of
adaptive sampling for real-time AMR gene detection.
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