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Introduction

The female endocrine system consists of several physiological components which interact
to control the functioning of the reproductive system. Various organs and substances con-
stitute to a complex network which generates a periodic development of hormones and
tissues, the female hormonal cycle. The exact mechanisms behind the cycle, however, are
not yet fully explored. Mathematical modeling can elucidate the complex relationships
within endocrine networks on an individual subject level. On one hand, it contributes to
a better understanding of the biological mechanisms behind the hormonal cycle. On the
other hand, its predictive abilities, in terms of performing long-term simulations or simu-
lating external influences, can assist with research and application in drug testing, and in
the development of new therapeutic strategies.

This work joins a line of research on modeling the female hormonal cycle that started
about 15 years ago with the development of dynamical models for both the ovarian and
pituitary hormone production in humans by Selgrade and Schlosser [SS99, SS00]. These
models were merged by Harris Clark [CSS03] to the first fully-coupled feedback model for
the cycle on the whole-organism level, which was later enhanced by Pasteur [Pas08] and
analyzed with respect to certain dynamical characteristics [MS11]. Reinecke and Deufl-
hard took this model as a basis for a more elaborate model to simulate stochastic pulse
patterns of the gonadotropin-releasing hormone (GnRH) and detailed reaction kinetics in
the ovaries [RD07]. The model found attention in animal sciences, where mathematical
approaches are not widely spread out [WTPB+11]. Since bovine fertility has been subject
of extensive research, and since the functioning of the hormonal cycle is similar in humans
and cows, modeling concepts were transferred to develop a model for the bovine estrous
cycle. Both a new version of the model for the human menstrual cycle as well as the model
for the bovine estrous cycle are a subject of this thesis.

In both humans and cows, the hormonal cycle is a result of a large feedback loop of reg-
ulations. In this thesis, as in previous work, these mechanisms are modelled as a closed
system which allows to analyze how the physiological components in different parts of
the whole body function together. No external stimuli are needed for the periodic behav-
ior which results only from the developed dynamics and the parameterization of the model.

At such a high abstraction level as the whole organism, the biological knowledge comprised
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Introduction

in a model usually consists of only qualitative information. In particular, regulative mech-
anisms, i.e. stimulation or inhibition between substances, are frequently available from
literature. The interest of model applicants, however, often lies rather in quantitative out-
put, when concentration profiles should be predicted, or model simulations have to be fitted
to measurements. One approach to generate quantitive output from qualitative biological
concepts, which has been used for models on the hormonal cycle in the past, is to trans-
late these via Hill functions into a set of ordinary differential equations (ODEs). Each of
the ODEs then represents the time dependent change of an involved substance, and the
model is thus a system of often highly nonlinear ODEs. A variety of established tools from
numerical analysis can be used for the simulation, parameter identification, and analysis
of the model dynamics.

Sometimes, however, it might be useful to take a step back and see the bigger picture, the
regulatory concepts behind the model. If one concentrates on the simulation of qualitative
behavior, where the interaction of components does not continuously depend on the value
of the variables, discrete models offer a variety of possibilities. Whether one takes as input
quantitative details or only qualitive information, given the output as a set of consecutive
events always leads to a finite state space that can be explored more systematically. In
this thesis, an new approach to model the hormonal cycle with a discrete model is presented.

Outline

After a short overview of numerical modeling techniques that are useful for modeling the
hormonal cycle, this thesis describes the development of a numerical model for the bovine
estrous cycle, and in comparison to this presents a new version of the numerical model for
the human menstrual cycle. It describes the use of several analysis techniques to investi-
gate the continuous dynamics, as well as the derivation of a discrete model for the bovine
estrous cycle.

Chapter 1 begins with the description of existing numerical models on the hormonal cycle,
and then presents the numerical modeling concepts that are used in this thesis. The estab-
lished algorithms that are applied are described. The simulation of the system does not
cause any difficulties, while the inverse problem arising from the high number of unknown
parameters is rather difficult and is discussed in detail.

In Chapter 2, the development of an ODE model for the bovine estrous cycle is described
in detail. The model describes growth and decay of the follicles (Foll) and corpus lu-
teum in the ovaries, together with the development of the key hormones in other parts
of the organism that regulate and result from these processes. Biological background and
modeling concepts will be presented that lead to a system of 15 ODEs with 60 unknown
parameters. This model is then validated with results from synchronization studies, where
administratrion of prostaglandin F2α (PGF2α ) leads to a restart of the cycle and thus to
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a synchronization of the estrus of multiple individuals. A new ODE model for follicular
development is presented that accounts for new observations from measurements.

Chapter 3 presents a new version of a differential equation model for the human menstrual
cycle, based on previous work. Special emphasis is put on the comparison with the bovine
model. The new human model incorporates processes that take place on a cellular level,
in particular a detailed GnRH receptor model, in order to simulate GnRH agonist and
antagonist treatments. The model consists of 33 ODEs and 114 parameters. Differences
to the ODE model for the bovine estrous cycle are described in detail. A need for a similar
modeling approach for follicular waves as in the estrous cycle is discussed.

Chapter 4 applies continuous analysis tools to the model of the bovine estrous cycle, and
important characteristics of the model are presented and discussed. In particular, the Flo-
quet multipliers of the system are calculated. Moreover, the difference in the number of
follicular waves depending on the parameter configuration are explored with the help of
spectral analysis. A model reduction technique taking into account the qualitative struc-
ture of the network is presented that reduces the system from 15 ODEs and 60 unknown
parameters to 10 ODEs and 38 parameters.

In contrast to the advancing level of detail in Chapter 3, Chapter 5 takes a step in the
opposite direction, and investigates the regulatory concepts behind the cycle. A piecewise-
linear model is presented as a first discrete modeling approach. Parameter constraints
necessary for periodic solutions are derived which are also valid for the ODE model. Since
the state space is too large to analyze in a straightforward manner, a purely discrete model
of the bovine estrous cycle, derived from the Jacobian of the ODE model with respect
to the variables, is presented. Herein, state variables as well as the time variable take
only discrete values. In the finite state space, global stability can be analyzed. Specific
reduction techniques are developed that lead to smaller models that can be validated with
qualitative knowledge. In particular, relations to the simulation of the ODE model are
discussed, and certain dynamics of the ODE model can be reproduced with the derived
core models.
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Chapter 1

Numerical Modeling Tools for
Endocrinological Networks

Endocrinological networks regulate the functioning of the mammalian hormonal cycle. A
complex system of substances and chemical mechanisms generates the periodic develop-
ment of hormones and tissues within the cycle. In higher primates, where menstruation
occurs, the term menstrual cycle is used, while in other mammals, where the endometrium
plays a more important role for the functioning of the cycle, the term estrous cycle is used.
Throughout this thesis, the notation menstrual cycle will always refer to the human, and
estrous cycle will usually refer to the bovine hormonal cycle. Note that the often read word
estrus refers to a certain phase of the estrous cycle right before ovulation. Among species,
the involved mechanisms as well as the duration of the cycle vary, but many endocrine
functions are identical among mammals.

Numerical modeling is a quantitative approach to describe these mechanisms in a system
that, usually with the help of computer simulations, can reproduce and predict time courses
of the involved substances. In contrast to pure qualitative models, numerical models take
into account numerical values from the underlying biology, such as chemical reaction rates
or concentration thresholds for certain regulations. This enables a quantitative interpre-
tation of simulation results, which can be compared to - and in future ideally replace - in
vivo experiments.

In this chapter, an overview of existing numerical models of endocrine mechanisms is given,
followed by a presentation of the modeling concepts used in this thesis, and an explanation
of the applied numerical routines.
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Chapter 1. Numerical Modeling Tools

1.1 Existing Models on Endocrinological Mechanisms

Modeling of the entire female hormonal cycle is still at its beginnings. In the past decades,
several mathematical models have been developed for parts of the hormonal interplay in
the menstrual cycle. Particular endocrine mechanisms behind certain observations have
been reproduced by computer simulations, but also the interplay of different developments
in the whole body have become of interest to modelers. In animal sciences, mathematical
models in general have received relatively little attention, but this is currently changing.
A selection of mathematical models on the mammalian and, in particular, the human hor-
monal cycle will briefly be described in the following.

1.1.1 Models on the Menstrual Cycle

Much work has been done on developing mathematical models for certain aspects of the
human menstrual cycle, e.g. the modeling of follicular selection [CMTC02] and the GnRH
pulses [CF07]. These models are built on a cellular level and provide a possible extension
for a whole-body-model in the future. Until now, however, only parts of the cycle are
taken for studies, and the various feedback loops resulting from certain mechanisms are
not considered.

In [ZWG03], a model for the surge of the luteinizing hormone (LH) is developed, that
reproduces pulse patterns on a small time scale. It is assumed that there exist two oscil-
lators, in the hypothalamus and the pituitary, that are both influenced by estradiol (E2).
These two oscillators interact to generate pulses of LH. Model simulations match data for
LH serum concentrations over a time span of a whole cycle. However, there is no feedback
of LH on the rest of the cycle, and the oscillators are forced by external frequencies.

In contrast to this, the model developed in [RPP+03] incorporates the feedback occurring
between GnRH, LH, the follicle-stimulating hormone (FSH), E2, and progesterone (P4)
for certain phases of the cycle. It includes a GnRH pulse pattern that results in rapid
oscillatory behavior of the other substances. The model distinguishes between early follic-
ular stages and mid-luteal stages, which describe the direct influence of the gonadotropins
LH and FSH on the ovarian substances P4 and E2. The oscillations are results of a large
feedback loop and do not need external stimuli. This model is capable of reproducing
measured 24 h records of estradiol and LH pulse profiles. However, it does not investigate
developments on a larger time scale as several cycles. Moreover, processes in the ovarian
tissues are not modeled explicitly, but treated as black boxes.

A model describing the production of the steroid hormones P4, E2, and inhibin (Inh) by the
ovaries has been presented in [SS99]. In this model, nine ODEs describe the development
of follicular and luteal stages that represent different capacities to synthesize hormones.
The development of the stages is regulated by explicit time dependent functions for LH
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1.1. Existing Models on Endocrinological Mechanisms

and FSH. Algebraic equations for the development of the steroid hormones are derived as
linear combinations of the ovarian stages. In [SS00], a four-dimensional ODE model for
the synthesis and release of FSH and LH as function of E2, P4, and Inh is presented. In
[Har01], these two models of the ovarian function and of the hypothalamic-gonadal axis
were merged together, and a closed feedback loop was presented. Processes in the two
main compartments pituitary and ovaries were coupled such that they now influence each
other. This approach considers the cycle on a whole-organism level, taking into account the
most important feedback mechanisms. This model oscillates without external stimuli, and
the periodic behavior results from the interplay of the developed mechanisms. It consists
of 13 differential equations, of which 2 are delay differential equations, plus 3 algebraic
equations, and 45 parameters.

This work of Harris [Har01] also investigates multiple stable solutions of the merged ODE
model. It is observed that there exist different limit cycles which correspond to different
pathological situations. In particular, a certain limit cycle can be interpreted as the PCO
syndrome. Pasteur [Pas08] enhances this model towards the study of multiple inhibin influ-
ences. Margolskee [MS13] extends this model by incorporating the anti mullerian hormone
(AMH). Long-term simulations with the latter model show the decrease of cyclicity for a
healthy woman over the time span from 20 years to 55 years.

In [Rei09], the model of Harris is taken as a basis for a more elaborate model, a system
of 50 delay differential equations and 208 parameters. Mechanisms among steroids in the
ovaries and a more detailed description of GnRH are included, and simulations for the
administration of hormonal contraceptives are performed successfully. More details of this
model will be presented and discussed in Chapter 3.

1.1.2 Models on the Estrous Cycle

There are several studies that deal with certain parts of the estrous cycle. Soboleva
([SPP+00]) develops a mathematical model for follicular selection in cattle and sheep.
Apart from mathematical modelers, there are also experimentalists who look at the course
of several hormone concentrations in different physiological compartments throughout the
cycle [Per04, MFD+13], and aim at relating experimental data in a non-mechanistic way.

For bovine, apart from the reproductive system, there exist several mathematical models
that deal with nutrition and digestion. As pioneering for mathematical modeling in animal
sciences can the work of Baldwin [Bal95] be considered, who presented an elaborate model
for bovine nutrition, as well as Dijkstra ([DNBF92]), who developed a model of the rumen
function. In [MS07], a dynamic model is developed with several subsystems of differential
equations for metabolisms in different parts of the bovine body. Integrating nutritional
and reproductive models to improve reproductive efficiency in dairy cattle is one scientific
research goal for the future.

7



Chapter 1. Numerical Modeling Tools

A similar approach on modeling the bovine estrous cycle, as presented in this thesis, has
been taken by [POK+12]. It builds upon the work of Schlosser and Selgrade, and develops
a model for the estrous cycle that, in contrast to this thesis, contains different follicular
stages. In fact, modeling this part of the estrous cycle is one of the most critical factors,
as will be discussed in Section 2.4.

1.2 Modeling Concepts

In this thesis, ordinary differential equations (ODEs) are chosen for modeling the hormonal
cycles numerically. Each ODE in such a system describes the time-dependent change of
an involved substance. The right hand sides are built from the chemical mechanisms and
regulations among each other. The number of substances one aims to include in the model
constitutes the minimum number of variables and thus the minimum dimension of the ODE
system that is developed. But initially, before producing a system of ODEs, a qualitative
representation of the model has to be derived.

The first step in building a model for a biological phenomenon is to draw a rough flowchart
of the biological concepts one aims to reflect. This flowchart will be updated throughout
the modeling process. Although it seems to be a preliminary step, deriving a flowchart
is probably one of the most challenging tasks in modeling. Usually, this highly interdis-
ciplinary task is performed by mathematicians and biologists, who together need to take
many decisions to find a formal description of the complex phenomenons. The level of
detail needs to be decided on, such that the model on the one hand stays close to reality
in order to be reliable. On the other hand, reducing the number of included mechanisms
is desirable not only due to computational costs but also for reasons of clarity. Multiple
choices need to be made about what is important and what is negligible for the moment.
In other words, the key mechanisms of a highly complex biological system need to be iden-
tified that build up a realistic and reliable abstraction level.

In this thesis, a compartmental approach is chosen for the modeling of endocrinological
networks on the whole-organism level, in order to reduce complexity. Physiologically based
compartments, i.e. parts of the organism that play an important role in the regulation of
the cycle, are depicted. For the menstrual cycle, these are the hypothalamus, the pituitary,
and the ovaries. For the estrous cycle, additionally, the uterus plays a role. The compart-
ments are connected by the blood stream, which constitutes another compartment. Each
substance that is decided to be a key substance and thus part of the model occurs in at
least one physiological compartment. However, some of the substances occur in two physi-
ological compartments. In the latter case, two variables are defined for this substance, each
for its evolution in a separate compartment. If a substance occurs only in one physiological
compartment, only one variable in the system of ODEs is needed to describe its evolution.
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Figure 1.1: Rough flowchart of the model for the human menstrual cycle. This
first step in the modeling procedure is the basis for more elaborate flowcharts
that will be described in detail in the corresponding chapters. Source: [DRm10]



Chapter 1. Numerical Modeling Tools

Throughout the modeling process, the decisions on the flowchart are usually revised, mech-
anisms are added or deleted. In Figure 1.1, the mechanisms behind the model for the human
menstrual cycle are depicted in a first draft. The relevant more elaborate flowcharts for
the models in this thesis will be presented in the corresponding chapters. For the bovine
model, the derivation of the flowchart will be described in detail in Section 2.1. The final
flowchart of the human model is mainly based on previous work [RmD+12], as will be
described in Section 3.2. Finally, every variable will be represented by a vertex, and the
relations between the variables will be represented by edges between the corresponding
vertices. The flowchart thus illustrates the considered mechanisms between the depicted
substances, and hence represents the qualitative description of the model.

Having developed a flowchart of the variables and their relations, several techniques are
helpful to translate this information into a corresponding system of differential equations.
Essentially, only a few mathematical concepts are necessary to derive a set of ODEs that
describes the model that is, until here, derived only in graphical notation. These concepts
will be described in the following.

Biochemical Reaction Systems

When processes on the molecular level, e.g. receptor binding mechanisms or biochemi-
cal reactions, should be incorporated into the model, this can be done via a quantitative
approach, which takes into account specific chemical reaction rates. The translation of bio-
chemical reaction systems to ordinary differential equations has been described in [DB02].

Ideally, a quantitative model of a biological phenomenon would consist of only biochem-
ical reactions. However, many mechanisms in the mammalian organism are only partly
explored, the level of detail of a model is thus limited by the available information. As a
consequence, the question arises, on which level of detail the whole model should be built.
Both the benefit for the modeling question and the computational costs have to be consid-
ered. For models that include mechanisms on the whole-organism level, many details can
be neglected, as they still comprise several unknowns or are simply too complex for the
modeling purpose.

The endocrinological models treated in this thesis have a very high abstraction level. In
the model of the bovine estrous cycle, there was no interest to go into the molecular
level of detail, thus biochemical reaction systems are not yet used in the present bovine
model. However, the level of detail can be adjusted according to the application, as has
been performed with the human model GynCycle that will be presented in Chapter 3.
In GynCycle, reactions that take place on the single-cell level are an important part of
the model. The model is able to reproduce experimental results after the administration
of substances that are known to have different receptor binding mechanisms. These re-
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1.2. Modeling Concepts

ceptor binding mechanisms are implemented in the model as will be explained in Chapter 3.

The basic idea when modeling biochemical reaction systems is the law of mass action
kinetics, which states that the rate of the reaction is proportional to the product of reactant
concentrations. A simple reaction

A k→ B,

where a substance B is produced from a substance A, with a reaction rate constant k ≥ 0,
translates to the two ODEs

d

dt
yA = −k · yA,

d

dt
yB = +k · yA,

where yA and yB are quantities, e.g. concentrations or number of molecules, of the sub-
stances A and B, respectively.

A typical reversible receptor binding mechanism, where a ligand binds to its receptor
forming a complex, follows the same principle: The reaction scheme

L + Rec
k1−⇀↽−
k2

(L-Rec)

translates to ODEs for the corresponding quantities

y′L = k2 · yL-Rec − k1 · yL · yRec,
y′Rec = k2 · yL-Rec − k1 · yL · yRec,

y′(L-Rec) = k1 · yL · yRec − k2 · y(L-Rec).

These concepts are used in a variety of mathematical models of biological phenomena.
They represent a modeling approach close to biological reality. Often, reaction rate con-
stants k can be estimated from experiments, and the number of unknown constants in the
model can thus be reduced. Also, there exist multiple databases, e.g. the KEGG database
[Dat06], that collect knowledge on molecular interactions and reaction networks. Using
these databases, new models can be built based on existing models, which allows to up-
grade a model at low cost if needed.

In this thesis, it is always assumed that there are enough molecules of the reactants,
ligands and receptors, such that the law of mass action kinetics holds and the reaction rate
is linearly dependent on the substrate concentrations. If only few molecules are present,
a possibility to model the reaction is via Michaelis-Menten kinetics, where the reaction
rate sigmoidally depends on the present concentrations. This leads to another important
modeling concept, considering that the reactants act as threshold-dependent regulators of
the reaction. If one even includes the binding affinity of the molecules, the “speed” of the
reaction can be incorporated in a model via the Hill equation

y(L-Rec)
yRec + y(L-Rec)

=
ynL

T n0.5 + ynL
,

11



Chapter 1. Numerical Modeling Tools

where T0.5 is the concentration when half of the receptors are bound. The idea of the Hill
equation, introduced by A.V. Hill in 1910 [Wei97], therefore provides a possibility to in-
clude regulatory functions with different “speeds” into a model. This leads to an important
modeling concept.

Hill Functions

Developing the right hand sides of the ODEs is often not as straightforward as above.
Often, quantitative biological mechanisms are unknown, whereas information about qual-
itative regulation between substances is available. In other cases, the exact biological
information is more specific than necessary, and can be abbreviated.

In both cases, qualitative regulations, i.e. stimulations or inhibitions between the involved
substances, can be included into a model via Hill functions. Hill functions represent black
boxes that might reflect a variety of biochemical reactions. They allow one to translate
regulatory information into differential equations. The regulatory information, a discon-
tinuous switch, is written as a continuous function, such that it can be included in the
right hand side of an ODE.

An unscaled Hill function is a sigmoidal function between zero and one, which switches at
a specified threshold from one level to the other with a specified steepness. Stimulatory
Hill functions are used for positive effects and are defined as

h+(yS(t);T, n) :=
yS(t)n

T n + yS(t)n
.

yS(t) represents the effector, T the threshold for change of behavior, and n controls the
steepness of the curve. Inhibitory Hill functions are used for the decelerated effects and
are defined as

h−(yS(t);T, n) :=
T n

T n + yS(t)n
.

Here, the value of the Hill function has its maximum at the lowest value of the initiating
substrate S(t), and switches to zero if this substrate passes the threshold T .

In general, the steepness coefficient n has an unknown value which reflects the speed, or
smoothness, of the regulation. It could be estimated by parameter estimation, but results
are usually highly dependent on other parameters. Thus, in this thesis, these values are
fixed in the parameter estimation procedure. Usually, the steepness coefficient n = 2 is
chosen, but, when appropriate, n = 1, 5, or 10 is set to capture slower or steeper effects.

Whenever a Hill function is used, it is provided with another parameter m, which controls
the height of the switch. This parameter serves as maximum stimulatory respectively
inhibitory effect. For abbreviation of notation, the scaled Hill functions are introduced as

12



1.2. Modeling Concepts

T
SHtL

m

H+HSHtL,T,nL

n=10

n=5

n=2

n=1

Figure 1.2: Scaled positive Hill functions with different steepness coefficients.
A higher coefficient n leads to a steeper switch of the regulation.

H+
S1,S2(yS1(t)) := mS2

S1 · h+(yS1(t);T
S2
S1 , n

S2
S1),

H−S1,S2(yS1(t)) := mS2
S1 · h−(yS1(t);T

S2
S1 , n

S2
S1).

S1 denotes the initiating substance, and S2 the substance that is being regulated by the
Hill function, i.e. the substance where the Hill function occurs in the corresponding right
hand side in the ODE system.

The described Hill functions regulate the mechanisms between two substances. In par-
ticular, a substance regulates the course of another substance, and a corresponding Hill
function thus appears on the right hand side of the ODE system. The exact regulations
are specified in the following.

Production-Clearance and Synthesis-Release Relationships

Recall that a physiologically-based compartmental approach has been chosen for the mod-
els in this thesis, i.e. some substances occur in one physiological compartment, and others
in two. In the latter case, two variables are needed to describe the evolution of the sub-
stance. In this thesis, the rate of change of a variable is usually the result of a positive and
a negative term, its production, synthesis, or release from another compartment, and its
clearance or release into another compartment.

Whenever a substance occurs only in one compartment, the following ODE is chosen,

d

dt
yS(t) = ProdS(t)− ClearS(t),

where ProdS(t) and ClearS(t) are nonnegative functions that need to be specified. Often,
they depend on other substances via Hill functions. In many cases, ClearS(t) is simply

13



Chapter 1. Numerical Modeling Tools

a linear term which depends only on a clearance rate constant and the current concen-
tration of S. This leads then to an exponential decay, which preserves the variable from
becoming negative. Whenever ClearS(t) is modeled as nonlinear, it still depends on the
current concentration of S. This guarantees that the solutions of all ODEs are nonnegative.

Whenever a substance occurs in two compartments, it is assumed that it is synthesized in a
source compartment, and fully released into a sink compartment, where it is cleared. The
release from one compartment to another, as well as the synthesis in the source location
are usually regulated by other substances via Hill functions. The change of a substance
yS(t) appearing in two compartments over time is modeled as

d

dt
ySSource

(t) = SynS(t)− RelS(t),

d

dt
ySSink

(t) = RelS(t)− ClearS(t),

where SynS(t) and RelS(t) are nonnegative functions. These functions often comprise Hill
functions via simple arithmetic operations. The function RelS(t) describes the amount of
the substance S that is transported from one compartment to another.

By this concept of variables in two compartments, in the human and the bovine model,
the substances GnRH, LH and FSH are modeled, which occur in the physiological com-
partments hypothalamus, pituitary, and blood. Analogously, it is also used for follicles and
corpus luteum in the bovine model, and for the transition of follicular stages in the human
model. More details will be given in Sections 2.2 and 3.2.

Thus, the time-dependent change of a substance is always the result of the difference of two
terms. Production, clearance, synthesis and release usually depend on other components.
To model these regulations as differentiable functions, Hill-functions are used as described
above.

The preceding concepts lead to a system of differential equations which possibly includes
delays. Especially in the beginning of a modeling processes, delays can be used to connect
different parts of the model and bridge arising gaps. Every delay stands for a lack of
knowledge in the model. There are some shortcomings in the usage of delays, therefore,
their avoidance is desirable.

Omitting Delay Differential Equations

In many biological models, delay differential equations (DDEs) are used to account for
intermediate steps as e.g. transport processes or possibly multiple reactions that occur
between the synthesis of a substance and its action. DDEs are of the form

dy(t)

dt
= f(y(t), y(t− τ)).
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1.2. Modeling Concepts

In [Rei09, BmR+11], several delay differential equations are used. As the precise numeri-
cal values for the delays are usually not known, they are treated as unknown parameters.
However, as the values of delays have a large impact on the cycle length and thus on the
residual, the delay is typically the most sensitive parameter. Numerical experiments sug-
gest that the large impact of the delay may not represent the possibly lower impact of the
multiple reactions that are comprised by the delay.

There exist elaborate algorithms for solving DDEs (e.g. RADAR [GH01]) that use dense
output methods, but the choice of solvers is larger in the case of ordinary differential equa-
tions. This and the distortion by the highly sensitive delays makes it desirable to omit
delays in a model.

Several techniques can be applied to transform systems of delay differential equations into
ODE systems without delay.

• Adjusting parameters: If the delay is not too large, an adjustment of parameters
values is often possible. For example, two ODEs could be rewritten as follows

y′i(t) = mi · yj(t−τ)
yj(t−τ)+Ti − ci · yi(t)

y′j(t) = mj · f(y)− cj · yj(t)

}
→

{
y′i(t) = mi · yj(t)

yj(t)+T̃i
− ci · yj(t)

y′j(t) = m̃j · f(y)− c̃j · yj(t)

The parameters mj, cj, and Ti can be adjusted according to their interpretation:

– In regulatory mechanisms, the thresholds of the Hill functions control the tim-
ing of certain events. Increasing the value of the threshold Ti implies a later
regulation in case of a rising regulating substance, and can therefore replace the
effect of a delay.

– The adaption of reaction rates mj and cj is another possibility to delay a certain
event. When lowering growth and clearance rate constants by the same linear
factor, the peak of the variable occurs at a later time.

• If adaption of parameters does not lead to the desired effects, introduction of delay
compartments can be pursued. This implies the integration of a new equation which
can be interpreted as the designated substance in an effect compartment. The idea
stems from non-physiological compartmental modeling in pharmacokinetics. The
same substance is regarded as being present in two compartments, of which one is the
downstream of the other. As a result, instead of having a delay for a certain substance,
this substance is transformed into another substance, which then accomplishes the
mechanism without delay.

Whenever delays are larger and cannot be omitted by the above described procedures,
mechanisms in a model need to be adjusted in order to obtain a system without delays.
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Chapter 1. Numerical Modeling Tools

Having derived a system of ordinary differential equations, this system can now be sim-
ulated and fitted to measurements with the help of established elaborate numerical algo-
rithms.

1.3 Numerical Algorithms

In this section, the numerical routines that have been used will be explained. Mainly two
algorithms are used for the development and simulation of an ODE model, a solver for the
system of differential equations, and a parameter identification algorithm.

1.3.1 Solver

As many biological models, the hormonal cycle models are highly nonlinear. Although the
ODEs without the capability of capturing drug administration in this thesis are not stiff,
the administration of drugs can lead to steep slopes, which immediately change the model
behavior. The system could become stiff, therefore, a solver for stiff differential equations
is used. This ensures an appropriate approximation of the solution in any case. During
model development, it is sometimes necessary to include delay differential equations to
incorporate black boxes. As long as delays are in the model, the solver RADAR5 [GH01],
especially designed for stiff delay differential equations, is used. As modeling improves,
these delay differential equations can often be replaced by ordinary differential equations,
as described in the previous section. A delay differential solver is no longer needed.

There exists a variety of solvers for stiff ordinary differential equations. For the simula-
tion of the hormonal cycle, the solver LIMEX is used. LIMEX is a Linearly IMplicit Euler
scheme with eXtrapolation, especially suited for stiff differential equations [ENOD99]. The
solver LIMEX includes an adaptive step size control, which uses an appropriate interpo-
lation scheme in order to compute solutions with prescribed accuracy at any designated
time points. This is often not possible with other ODE solvers [DRWD13].

1.3.2 Parameter Identification

A particular difficulty in modeling complex biological systems is the identification of un-
known parameters. At such a high abstraction level as the whole-organism, parameters
can often not be measured from experiments. Some parameters even do not have a unique
biochemical counterpart, e.g. a threshold of a Hill function in the biological context could
refer to a borderline level above which a certain reaction can take place. This value could
be influenced by one or more saturation concentrations of substances that have not been
modeled explicitly; a clearance rate might be the result of deactivation, internalization
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and elimination of a bound compound. The values of the model parameters may thus
represent the interplay of multiple biological processes. However, for other parameters,
measurements or information from literature can give at least starting values for further
identification.

What is measured often and is taken here as reference for model validation are time courses
of concentrations of substances in the blood. For the hormonal cycle, these often include
LH, FSH, progesterone and estradiol. These substances appear as variables in the models.
Parameters are thus determined by fitting the solution curves of the ODEs to measured
concentration profiles.

The numerical tools used for parameter identification have been described in detail in
[Deu11]. For a better comprehension, the Gauss-Newton algorithm and the sensitivity
analysis that are used here are described in the following. This Gauss-Newton algorithm,
implemented in [DRWD13], has the advantage that it only needs single shooting, as opposed
to multiple shooting in [Boc87, Boc81]. It thus requires less memory capacity. Although
multiple shooting has better convergence properties, this can be compensated for large
systems by applying the transformation p  exp(p̃) which is based on the Arrhenius
equation [DB02]. Moreover, in the case of stiff ODE systems, numerical difficulties that
might result from the choice of the intermediate steps in the multiple shooting case are
omitted.

Affine-covariant Gauss-Newton Method

Fitting a model simulation to measurements, i.e. identifying parameter values that re-
sult in the observed behavior, is an inverse problem. If it is known how the outcome of
a simulation should ideally look like, the underlying system needs to be found. In the
previous section, an n-dimensional autonomous system of ordinary differential equations
y′(t, p) = f(p, y(t, p)) has been derived, where p is a vector of unknown parameters that
need to be identified.

Now, assume that m measurements are given which the simulation y(t, p) should match.
The information of the measurements is written as a quadruple (tj, kj, zj, δzj), j = 1, . . . ,m,
where tj are the measurement time points, kj indicate the then measured substances,
1 ≤ kj ≤ n, and zj ∈ R the measured values for the substance ykj at time tj. δzj are
the corresponding measurement tolerances. Note that, often, at one time point, several
substances have measured, which leads to several tj’s being equal. Also, the measurements
for a particular substance usually consist of a series of measurements, and thus many of
the kj’s are equal.

The inverse problem is to find the values for p such that the solution of the system for the
components kj at the m measurement time points equals the corresponding measurements
values, i.e. ykj(tj, p) = zj, j = 1, . . . ,m. As equality is unlikely to be fulfilled, the differ-
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ence of the values is minimized, taking into account the measurement tolerances δzj. An
affine-invariant Gauss-Newton method as described in [Deu11] is used to solve this problem.

Briefly, the idea is to apply Newton’s method to a reformulation of the least squares
approach

‖F (p)‖22 :=
m∑
j=1

(
ykj(tj; p)− zj

δzj

)2

= min w.r.t. p

which is usually credited to Gauss. Since ‖F (p)‖22 = F (p)TF (p) is continuous, a necessary
condition for a minimum at p is that its derivative equals zero. It can be shown that
(F (p)TF (p))′ = 2F ′(p)TF (p). Thus, the root of G(p) := F ′(p)TF (p) is searched. This is
done with Newton’s method which is derived from Taylor expansion of G around a starting
guess p0, G(p) = G(p0) +G′(p0)(p− p0) + O(p− p0), as p tends to p0. Thus, the problem
becomes to find the root of G(p)+G′(p)∆p. Calculating G′(p) = F ′(p)TF ′(p)+F ′′(p)TF (p),
and assuming that the second derivative is omittable around the starting guess, the problem
is transferred to finding the root of F ′(p)TF ′(p)∆p+F ′(p)TF (p). This leads to the normal
equation for the linear problem ‖F ′(p)∆p + F (p)‖2 = min w.r.t. p, which has the formal
solution

∆p = −F ′(p)+F (p). (∗)

F ′(p)+ denotes the pseudo-inverse of the matrix F ′(p), which in case of m ≥ q and full
rank of F ′(p) can be calculated as F ′(p)+ = (F ′(p)TF ′(p))−1F ′(p), and in case of rank-
deficiency can be determined e.g. via QR decomposition and shortest Least Squares so-
lution as described in Algorithm 3.20 in [DB02]. In general, any decomposition A =
BC, B ∈ Rm×r C ∈ Rr×q with r = rank(A) < q ≤ m leads to the pseudo-inverse
A+ = CT (CCT )−1(BTB)BT ).

The term (∗) is called Gauss-Newton update, and is calculated in every iteration beginning
from a starting guess p(0). Step size correction factors and rank reduction techniques lead
to an adapted strategy. For simplicity, we describe the undamped update strategy first.
As long as the Gauss-Newton update is not too small, the algorithm calculates

p(k+1) = p(k) + ∆p(k) = p(k) − F ′(p(k))+F (p(k)).

In every iteration, during the calculation of F ′(p(k))+, a QR-decomposition of the Jacobian
F ′(p(k)) is performed via Householder transformations. This QR-decomposition stops if
the matrix R is almost singular, i.e. if δ · R11 < Rrr, δ reflecting the accuracy in F ′(pk).
As a side product, this also delivers the numerical rank r of the matrix F ′ at the current
parameter values p(k), which plays an important role in the identifiability of the parameters
that will referred to in the next subsection.

The ordinary Gauss-Newton update is set as ∆p(k) = −F ′(p(k))+F (p(k)). Before proceeding
to the next iteration step, a simplified Gauss-Newton update is also calculated with the
help of the current Jacobian, ∆p(k+1) = −F ′(p(k))+F (p(k+1)). Unless a maximum number
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of iterations is reached earlier, the algorithm terminates if this simplified update falls under
a specified tolerance. Since the update and thus this stopping criterion depends on the
rank of the Jacobian, potentially a rank-reduction is performed, which offers a possibility
to proceed to another iteration.

The affine-invariant Gauss-Newton method has been implemented in the code NLSCON
(Nonlinear Least-Squares problems with CONstraints) [NW00]. Several adaptive controls
regarding the step size and rank reduction of the Jacobian are included in this algorithm,
which proceeds as follows: First, the parameters are scaled such that are all in the same
range. This is possible because the algorithm is invariant under scaling in the full rank
case. Then, the least squares functional is calculated for the starting guess p(0) of the
parameters. Since in the convergent phase, the simplified GN update is always smaller
than the ordinary GN-update, it is checked throughout the algorithm whether it holds

‖∆p(k+1)‖2 < ‖∆p(k)‖2.

If this monotonicity test fails, the update ∆p(k) is damped based on a theoretical pre-
diction. For details see [Deu11]. If the automatically determined damping factor is too
small, a rank reduction of the Jacobian is performed, until the monotonicity test holds true.

Sometimes, model and data do not fit together and the GN-algorithm fails to converge. In
order to obtain convergence to an existing solution, Theorem 4.7 in [Deu11] gives sufficient
conditions. Besides starting with a good initial guess p(0), amongst others the Jacobian
must satisfy a certain Lipschitz condition. Additionally, the compatibility of the current
parameterization of the model to the data needs to be fulfilled. This can be measured by

κ(p(k)) =
|∆pk|
|∆pk−1|

.

As k →∞, κ(p(k)) approaches the asymptotic convergence rate κ(p∗) of the Gauss-Newton
algorithm. κ(p∗) can be interpreted as incompatibility factor. If κ(p∗) < 1, the problem
is called adequate. The Gauss-Newton algorithm converges locally linearly for adequate
problems and locally quadratically for compatible nonlinear least-squares problems, i.e. if
κ(p∗) = 0, to a solution that is unique within the subspace of identifiable parameters
[Deu11].

The described Gauss-Newton method monitors the rank of the Jacobian throughout the
iterations and thus splits the parameter space into one part which can be identified by the
given data, and another part which cannot. If the rank of the Jacobian is maximal and the
algorithm still fails to converge, even after trying multiple p(0), the model equations need
to be improved. In the rank-deficient case, inclusion of more data can possibly enlarge
the set of estimatable parameters. During the development of the models in this thesis,
parameter identification has been used as a tool throughout the iterative process of suc-
cessive model extension, reduction and refinement. Some parameters could be identified
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in smaller sub-models, but became unidentifiable after being embedded into a larger model.

As long as not all unknown parameters can be identified from given data, a choice needs
to be made which parameters to vary in the identification procedure. Typically, multiple
parameters are set fixed, and hence the dimension of the inverse problem is possibly much
lower than the actual number of unknown parameters. Sensitivities and subconditions can
be consulted to decide which parameters to keep fixed and which to determine in the next
identification run.

Sensitivities and Subconditions

During a run of NLSCON, sensitivities and subconditions are calculated. Here, we use these
calculations to derive two real-valued numbers for each parameter: the column norms of
the sensitivity matrix (belonging to a parameter) and the subcondition of a parameter.

A change of value of a parameter with a high sensitivity (a large corresponding column
norm) has - locally - a larger impact on the solution of an ODE model than a parameter
that is less sensitive. Therefore, it is convenient to concentrate on the most sensitive pa-
rameters first, i.e. the parameters associated with a high column norm of the sensitivity
matrix and to leave out the insensitive parameters as they - locally - do not influence the
simulation much.

The subcondition of a parameter is the subcondition of the matrix that would be the sen-
sitivity matrix if a certain reduced problem which will be explained later in this section
would be considered. It provides information about identifiability of the reduced parameter
set. By ordering the matrix R during the QR-decomposition of the Jacobian - derived from
the current parameterization - an order for the inclusion of parameters into the reduced
set of parameters to be identified is suggested.

One has to keep in mind that both the sensitivity analysis and the calculation of the sub-
conditions is performed with a current set of parameters values, and thus does not provide
reliable information for a different set of values. Therefore, the most meaningful informa-
tion for the final model would actually be after the successful identification run. An a
posteriori sensitivity analysis can nevertheless be consulted before the next run, assuming
that sensitivities do not differ greatly in a set of parameter values close to the current
one. Treating the absolute numbers of the sensitivity analysis with caution, a sensitivity
analysis nevertheless gives insight into parameter dependencies, and can thus help explore
the structure of the model.

In the following, the calculations, as performed in NLSCON, and the resulting derivation
of the two numbers consulted for the decision which parameters to identify are described.
Both calculations are based on the sensitivity matrix.
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The sensitivity matrix of the ODE system with respect to the parameters is described via
the Jacobian J(t) = d

dp
y(t, p = p̃). Since y is not known explicitly, this matrix is obtained

by numerically solving the variational equation

d

dt
J(t) = fy(ỹ, p̃) · J(t) + fp(ỹ, p̃), J(0) = 0,

where fy = δf
δy

and fp = δf
δp

are preferably computed analytically by symbolic differenti-
ation, or can be obtained by numerical differentiation. It is also possible to approximate
J(t) via numerical differentiation, calculating (y(t, p̃ + δp̃) − y(t, p̃))/δp̃, δp̃ being a small
step size. However, the solver LIMEX used in this thesis efficiently solves the variational
equation in every step [SMEN04].

Evaluating J(t) at specified time points of interest ti, e.g. measurement time points, and
scaling the entries of the matrix to make the values comparable, potentially making use of
specified thresholds ϑj and ϑyi , leads to the sensitivity matrix

S :=

 J̃(t1)
...

J̃(tm)

 , J̃ij(tk) := Jij(tk) ·
max{|pj|, ϑj}

maxi(max{|yi|, ϑyi})
.

Each entry of the matrix S represents the sensitivity of one solution component with re-
spect to one parameter at a specified time point. To obtain comparable values for the
decision about inclusion in the identification, the 2-norms of each column of S are taken.
These column norms represent the sensitivities of all measured components at all measured
time points with respect to one parameter. Column norms as used during the modeling
procedure are displayed in Figure 1.3. Parameters that are associated with a low column
norm are likely to play a minor role at the measured time points, and are thus candidates
to keep fixed in the next identification run.

The other value that gives a suggestion about inclusion of parameters in the identification
procedure is the subcondition of the parameters that is derived from the subconditions of
reduced sensitivity matrices. These terms are closely related to the numerical rank of the
sensitivity matrix.

Due to the column pivoting during the QR-decomposition of S via a permutation matrix
P , S = QRP , the upper triangular matrix R is sorted such that the absolute values of the
diagonal entries are in descending order, |R11| ≥ |R22| ≥ . . . ≥ |Rnn|.

Recall that the numerical rank r of S is defined via the inequality |Rr+1,r+1| < δ|R11| ≤
|Rrr|, where δ reflects the accuracy in S. The numerical rank gives the number of pa-
rameters that can be identified from the given data: If a diagonal entry of R would be
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Figure 1.3: Column norms of a sensitivity matrix, as presented in [BmR+10].
A high column norm indicates a parameter that plays an important role for the
measured substances at all measurement time points, a low value corresponds
to a parameter that does not influence the solution much at these time points.

numerically zero, this would lead to linear dependencies in the columns of S. The param-
eters associated with these columns in S would have the same influence on the solution.
Therefore, these parameters would not be identifiable simultaneously.

As each column of R corresponds to a column of S and thus to a particular parameter, the
sorting of R implicitly states which parameters are among the r most identifiable param-
eters.

Instead of only looking at the rank and the sorting of R, one can go further and calculate the
subcondition of S to decide which parameters to identify in a next run. The subcondition of
a matrix S, as defined in [Deu11], results from its QR-decomposition with column pivoting.
For Rnn 6= 0, it is defined as the ratio of the smallest and the largest entry of the diagonal
of R,

sc(S) :=
|R11|
|Rnn|

.

For Rnn = 0, sc(S) :=∞ which is equivalent to S being singular. Note that, by construc-
tion, it always holds sc(S) ≥ 1.

The numerical rank and the subcondition are closely related. If δsc(S) ≥ 1, then the
inequality δ|R11| < |Rnn| is violated. It follows that the numerical rank of S is smaller
than the number of unknown parameters n. On the other hand, if the numerical rank r of
S is smaller than n, then |R11|

|Rnn| ≥
1
δ
. The relation δsc(S) ≥ 1 is thus equivalent to the rank

of the S being not full.

In order to define subconditions for parameters, a reduced sensitivity matrix is introduced
that would be the sensitivity matrix if only the first i parameters, according to the sorting
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of R, were to identify,

S|i :=


S11 . . . S1i
... . . . ...
... . . . ...

Sm1 . . . Smi

 = Q


R11 . . . R1i

0
. . . ...

... 0 Rii

0 . . . 0

 .
The subcondition of a parameter pi is now defined as the subcondition of the reduced
sensitivity matrix,

sc(pi) := sc(S|i) =
|R11|
|Rii|

.

Then, the numerical rank of S being r is equivalent to sc(S|r) ≤ 1
δ
< sc(S|r+1).

If the subcondition of a parameter is small (close to 1), the sensitivity matrix of the reduced
problem is well-scaled, i.e. the orders of magnitude are not too different, and there are no
linear dependencies in the columns of S. The further away the subcondition is from 1

δ
, the

easier the handling of the inverse problem becomes.
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Figure 1.4: Subconditions of all parameters of a model, as presented in
[BmR+10]. Given the Jacobian for the current parameterization, the subcon-
dition numbers for the parameters give a hint to identifiability of parameter
sets.

Subconditions of parameters, as used during the modeling procedure, are displayed in Fig-
ure 1.4. The leftmost parameter is associated with the smallest diagonal value of R. The
sorting of the parameters according to the entries of R, i.e. according to growing subcon-
dition, suggests in which order to include the parameters into the identification run.

The predictability of parameter values decreases with increasing subcondition. Typically,
a kink in the subcondition figure occurs when the numerical rank of S has been reached. It
therefore indicates that the following parameters cannot be identified from the given data,
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at least not simultaneously with the previous parameters.

After the parameters suggested by the subconditions have been identified, the procedure is
repeated with the remaining parameters. Setting some of the parameters from the preced-
ing run as fixed usually leads to a different sorting of the remaining ones and completely
different subconditions. For the decision about which parameters to set fixed in the fol-
lowing run, sensitivities can be consulted. However, as these values only provide local
information, the decision is not definitive, and can be varied in the following runs to en-
large the set of parameters included in the identification procedure.
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Chapter 2

Modeling of the Bovine Estrous Cycle

Bovine fertility is the subject of extensive research in animal sciences, especially because,
concurrent with increased milk yield, fertility of dairy cows has declined during the last
decades. Subfertility has negative implications for dairy farm profitability, sustainability
of animal production and animal welfare, as it takes more time and effort to get cows to be
pregnant. The decline in fertility is manifested in alterations in hormone patterns, reduced
expression of estrous behavior, and lower conception rates. However, the mechanisms by
which selection for higher milk yield can result in poorer fertility are not fully explored.
A mathematical model of the bovine estrous cycle can help to increase the understanding
of the complex interplay of factors involved in the reproductive cycle. In this chapter, the
concepts presented in Section 1.2 are used to derive an ODE model of the bovine estrous
cycle (BovCycle).

Although the endocrine and physiologic regulation of the bovine estrous cycle has been
studied extensively, mathematical models of cycle regulation are scarce and of limited
scope, e.g. [MRKB09] and [SPP+00]. A number of models have been developed for other
ruminant species, especially ewes, e.g. [CMTC02] and [HKM98], but these models also do
not contain all the key players that are required to simulate follicle development and the
accompanying hormone levels throughout consecutive cycles.

The model presented in this thesis has been inspired by a model of the human menstrual
cycle [Rei09]. The endocrine mechanisms that regulate the bovine estrous cycle and the
human menstrual cycle are very similar. In both species, the interplay of various organs
and substances results in the periodic hormonal changes and tissue development. In suc-
cessive periods, the female is preparing for reproduction by producing a fertilizable oocyte.
During the reproductive life time in healthy individuals, if fertilization does not take place,
the oocyte undergoes atresia, and the periodic hormonal interplay continues as before.

In both humans and cows, the female endocrine system consists of several glands and reg-
ulates the periodic changes of multiple substances necessary for reproduction. In every
cycle, hormones are secreted from the hypothalamic-pituitary-gonadal axis into the blood-
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stream, where they distribute and influence several functions in the body. Their most
important task in reproduction is to regulate processes in the ovaries, where follicles and
corpus luteum develop. These produce steroids that are released into the blood and from
therein regulate the processes in the hypothalamic-pituitary-gonadal axis. The hormonal
cycle is thus a result of a large feedback loop, whose self-regulation is a complex interplay of
multiple components. In order to model the cycle as one closed system that generates the
cyclic hormonal changes without external stimuli, and to analyze how the multiple compo-
nents in different parts of the body function together, a whole-organism approach is chosen.

Figure 2.1: A modelers view on a cow, the underlying mechanisms are to be
explored

With a closed model of the hormonal interactions, it is expected to learn more about the
functioning of the bovine estrous cycle as a result of the interplay of various substances in
different parts of the body. Apart from the investigation of the interplay of the involved
substances, a computer model of the estrous cycle can also be used to perform in silico tri-
als. Drug treatments can be simulated at low cost, and the effect of long term therapeutic
strategies can be accessed at low risk. Finally, model simulations allow to investigate the
course of substances for which experimental data is not available.

As the models of the bovine and the human cycle in this thesis are very similar, another
motivation for developing a model of the reproductive cycle for the bovine was to transfer
results to the model of the human menstrual cycle. At the beginning of this work, it was
expected to have an easier access to experimental data relating to the bovine estrous cycle,
but this turned out to be not as simple. However, a model for the bovine estrous cycle
that describes the key features has been developed. A variety of possibilities exploiting
the characteristics of this model have been applied, that could also be used to understand
more about the dynamics in the human menstrual cycle. The development of the bovine
cycle model will be described in this chapter.
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2.1 Biological Background

Though discrete and numerical models lead to different output information, in this the-
sis the input information for both model types is similar, since the numerical models are
mainly based on regulatory, i.e. qualitative, information. As described in Section 1.2, de-
riving a flowchart is the first and most essential step.

Independent of the decision on the model type (e.g. discrete or continuous), which leads
to different output information, the decision on the level of detail of the model is crucial.
One has to find reliable abstraction levels that display the most important mechanisms.
In order to analyze the dynamic relations between the system components, rather than
only focusing on individual parts, it should be incorporated how the multiple components
function together to generate periodic solutions. In case of the hormonal cycle, components
in many different parts of the body are involved. Therefore, in order to see the cycle as one
closed system that generates the cyclic changes without external stimuli, a whole-body-
approach is convenient. To include a preferably large amount of biological information from
literature, a physiologically-based pharmacokinetic approach, in which the components, re-
spectively variables, refer to substances in different physiological compartments, is suitable.

Before designing a model on the whole-organism level it is important to decide on the
physiological compartments to be considered. For this it is crucial to decide on the key
substances that have to be included in the model. Starting from scratch, the first step is
to study the substances for which measurements are available, and that are known to play
a role in the hormonal cycle. Typically, in bovine and in humans, among the measured
substances are P4, E2, LH, and FSH. The least thing one wants to capture in the model is a
relation between the measured substances. However, several other substances are known to
be involved in their regulation. Initially, all available information about biological mech-
anisms behind the regulation of the measured substances is represented in a diagram.
Subsequently, more substances and regulations are added to the diagram, which consist of
nodes that represent substances, and arcs, which represent the interactions between the
substances. This graphical representation of the considered variables and their interaction
is called network, thus a system whose underlying structure is mathematically a graph.
As the measured substances occur in ovaries, blood and pituitary, these compartments are
the first ones included in a first sketch. It will turn out when considering the mechanisms
that drive the production, synthesis, release, or clearance of these four substances, the hy-
pothalamus as well as the uterus will become important. Besides GnRH, the follicles and
the corpus luteum, five more substances will be introduced in the mentioned physiological
compartments.

On one hand, the model becomes more flexible when integrating more mechanisms and
substances into the model. One the other hand, one wants to answer the modeling ques-
tion with the least possible computational costs, thus dispensable information regarding
the modeling objective is left out in the model. Of course, the choice of the included com-
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2.1. Biological Background

partments and substances is still depending on the modeler. An extensive literature search
needs to be performed, and among the most difficult tasks is to decide which information
not to include.

For the model of the bovine estrous cycle, orientation in the existing human models
([Har01, Rei09]) is also helpful. Therein, processes are included that take place in several
parts of the organisms, the different compartments. Namely, these are the hypothalamus,
the pituitary, the ovaries, and the blood stream, which also connects the other compart-
ments. As in bovine, in [Har01] the gonadotropins are synthesized in the pituitary and
released into the blood, from where they influence follicular development, ovulation, and
luteal development in the ovaries. In the ovarian compartment, the steroid hormones E2,
P4, and Inh are produced, released into the blood stream, from where they influence the
processes in the hypothalamus and the pituitary.

In Figure 2.2, a first sketch of the model for the bovine estrous cycle is illustrated. It
comprises a schematic representation of the compartments in the model, and is based on
the biological knowledge described in the following. A detailed flowchart, together with
the mathematical formulas for a continuous model, is derived in the subsequent section.

2.1.1 Processes in the Ovaries and the Uterus

A normal bovine estrous cycle includes two or three wave-like patterns of follicle develop-
ment, in which a cohort of follicles start to grow [For94]. Each follicular wave is initiated
by an increase of follicle stimulating hormone (FSH) release from the anterior pituitary
[GBBK02]. In the first one or two waves, a dominant follicle deviates from the cohort
of growing follicles that subsequently does not ovulate, but undergoes regression under
influence of progesterone produced by the corpus luteum.

The corpus luteum (CL) develops within 2-3 days after ovulation, starting the synthesis
and release of progesterone (P4), which maintains the readiness of the endometrium for
receiving the embryo. In absence of a conceptus, the CL will regress at day 17-18 of the
cycle [MSS09, TR91]. If the CL reaches a certain size, it continues to grow without further
stimulation by LH [SJO01].

Dominant follicles secrete increasing amounts of inhibin (Inh) which, released into pe-
ripheral blood, suppresses FSH synthesis and thus reduces FSH release[GBB+01]. Hence,
the growth of subordinate follicles is suppressed. Ovulation or regression of the dom-
inant follicle eliminates this suppression, allowing the onset of the next follicular wave
[BGF+01, GBB+01].

The growing follicles also produce estradiol (E2), which is released into peripheral blood.
E2 affects LH synthesis and release [GKHP+07] and FSH release [BBKG02, LPRC05].
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When the CL is regressed under influence of PGF2α from the uterus, the concentration of
progesterone decreases [NJS+00]. The dominant follicle present at that moment develops
and matures, and ovulation can then take place, triggered by a peak of the luteinizing
hormone. Once an oocyte is successfully ovulated, the remains of the follicle form a new
P4-producing CL. If conception has failed, the CL regresses, P4 levels decrease, and the
cycle restarts (reviewed in [BVBW10]).

Substances Involved in Luteolysis

Pulsatile PGF2α release from the uterus induces CL regression. The rise of P4 early in the
cycle initiates a series of events or mechanisms that eventually lead to the rise of PGF2α,
followed by a decline of PGF2α a few days later. P4 first prevents a too early release
of PGF2α pulses, but simultaneously stimulates synthesis of enzymes required for PGF2α

production.

Among the regulators of PGF2α are also oxytocin (OT), and E2 [SLM+91]. In the later
luteal phase, changed expression of P4 and OT receptors results in a gradual decrease in
the suppression of PGF2α [SGF+09], leading to an OT induced pulsatile release of PGF2α

[AGF+09, Poy95].

The mechanisms involved in luteolysis are complex, a more detailed description will be
given with the detailed presentation of the modeled mechanisms in Section 2.2.

2.1.2 Processes in the Hypothalamus and the Pituitary

The processes in hypothalamus, pituitary gland, and gonads are influenced by the steroid
hormones E2, Inh, and P4, which are produced in the ovaries and released into the blood.

Elevated E2 levels increase the secretion of the gonadotropin releasing hormone (GnRH),
which triggers the LH surge and thereby induces ovulation. Pulsatile signaling of GnRH
regulates LH and FSH secretion [PM05]. Since GnRH induces the LH surge, it indirectly
induces ovulation [TK84]. The GnRH pulse generator is located in the hypothalamus and
is modulated by P4 and E2 [Goo88]. During the luteal phase, both P4 and E2 suppress
the activity of the GnRH pulse generator. During pro-estrus however, elevated E2 lev-
els change estrogen receptor signaling, which induces a GnRH surge [GKHP+07, Goo88].
GnRH is released into the portal circulation of the pituitary and binds to GnRH receptors
of the anterior pituitary [VWB+97].

The LH surge at the day before ovulation induces ovulation of the ovulatory follicle and
formation of the CL. The LH surge shuts down E2 and Inh production capacity of the
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ovulatory follicle [CTK+75, WIR+04]. High P4 levels suppress the release of LH via the
inhibition of the GnRH pulse generator [BKC+96]. Additionally, high P4 levels decrease
pituitary sensitivity to E2, thereby increasing the amount of E2 required to induce the
LH surge necessary for ovulation [Goo88]. Ovulation can take place because the inhibiting
effect of P4 on the surge of luteinizing hormone (LH) is removed [ML95]. Peak LH lev-
els are about five times as high as basal levels or higher [BGF+01, EH73, KW82, DBTW86].

FSH synthesis is inhibited by Inh [BBKG02]. P4 and E2 modulate FSH release via effects
on the anterior pituitary and on the GnRH pulse generator in the hypothalamus. Peak
FSH serum levels are about three times higher than basal levels [BGF+01, EKWF97].

2.2 Numerical Model

From the first scheme of the relations between the substances in different physiological
compartments, depicted in Figure 2.2, a mathematical model is derived. Detailed regula-
tions as well as ODE formulations of these mechanisms are described in the following.1

In the figures in this section, green arrows mark stimulatory effects, stump red arrows rep-
resent inhibitory effects, and dashed arrows indicate transformations. Each box represents
one ODE, and ‘∗’ marks a degraded substance.

2.2.1 The ODEs for GnRH, FSH, and LH

GnRH stimulates LH release, resulting in an LH surge concurrent with the GnRH surge.
GnRH synthesis is taken constant as long as the amount of GnRH in the hypothalamus is
below a threshold. On the one hand, GnRH release is inhibited when P4 levels are above
a threshold and when both P4 and E2 levels are above a threshold. On the other hand,
GnRH release is stimulated when P4 levels are low and E2 reaches a threshold, resulting in
a surge of GnRH. GnRH concentration in the pituitary depends on GnRH amount released
from the hypothalamus, and is further increased by high E2 levels. This represents that
E2 up-regulates the expression of GnRH receptors in the pituitary, which means that the
sensitivity of the pituitary for GnRH increases [Goo88, VWB+97].

The mechanisms regulating GnRH in the model are illustrated in Figure 2.3. In the
system of ODEs, the amount of GnRH in the hypothalamus is a result of synthesis in the

1Note that the notation in comparison to [mPHR12] has changed. Here, the variables, i.e. the solutions
of the ODE system, are denoted as ySubstance, for a better comparison to the corresponding discrete
variables xSubstance in Chapter 5.
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Estradiol

Progesterone

GnRH Hypothalamus GnRH Pituitary

Figure 2.3: Mechanisms regulating GnRH in the bovine model. GnRH is trans-
ported, i.e. released, from the hypothalamus to the pituitary (marked with a
black dashed arrow). P4 inhibits GnRH release, itself and together with E2
(marked with a red stump arrow). E2 also exerts a positive effect (marked with
a green arrow) on GnRH in the pituitary due to its stimulatory effect on GnRH
receptors.

hypothalamus and release into the pituitary,

d

dt
yGh(t) = SynG(t)− RelG(t). (B1)

GnRH synthesis depends on its current level in the hypothalamus. If this level approaches a
specified threshold, synthesis decreases until zero. This effect is modeled as logistic growth,

SynG(t) = cG,1 ·
(

1− yGh(t)

Gmax
Hypo

)
. (1)

As long as GnRH in the hypothalamus is far below its maximum, the factor 1− yGh(t)
Gmax

Hypo
has

only a small impact.

The release of GnRH from the hypothalamus to the pituitary is dependent on its current
level in the hypothalamus. Furthermore, E2 inhibits GnRH release during the luteal phase,
i.e. if P4 and E2 are high at the same time, which is comprised in the function

H−P4&E2,G
(yP4(t), yE2(t)) =

mP4&E2

(
h−(yP4(t);T

G,1
P4 , 2) + h−(yE2(t), T

G,1
E2 , 2)− h−(yP4(t);T

G,1
P4 , 2)h−(yE2(t);T

G,1
E2 , 2)

)
= mP4&E2

(
1− h+(yP4(t);T

G,1
P4 , 2)h+(yE2(t);T

G,1
E2 , 2)

)
.

This function inhibits GnRH release only if both substrates are above their threshold.
Additionally, the release of GnRH is inhibited by P4 only,

RelG(t) =
(
H−P4&E2,G(yP4(t), yE2(t)) +H−P4,G(yP4(t))

)
· yGh(t). (1)

Changes in GnRH amount in the pituitary are dependent on the released amount from the
hypothalamus, but also on the presence of E2. E2 increases the number of GnRH receptors
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in the pituitary. This effect is included in the equation as a positive Hill function. GnRH
clearance from pituitary portal blood is proportional to the GnRH level in the pituitary,
i.e. GnRH clearance is represented by cG,2 · yG(t), in which cG,2 is a constant,

d

dt
yG(t) = RelG(t) ·H+

E2,G(yE2(t))− cG,2 · yG(t). (B2)

Inhibin

Estradiol

Progesterone

GnRH Pituitary

FSH Pituitary FSH Blood

Figure 2.4: Mechanisms regulating FSH. FSH synthesis in the pituitary is in-
hibited by inhibin, and its release from the pituitary into the blood is regulated
by P4, E2, and GnRH.

FSH is synthesized in the pituitary and released into the blood,

d

dt
yFSHp(t) = SynFSH(t)− RelFSH(t). (B3)

The FSH synthesis rate in the pituitary is dependent on Inh. The former delay of inhibin
on FSH in the model [BmR+11], as also used in the model of [Har01], could be omitted by
adjusting the threshold in the corresponding Hill function. FSH is synthesized when the
Inh level is low, i.e. high Inh levels inhibit FSH synthesis, which is included as a negative
Hill function,

SynFSH(t) = H−Inh,FSH(yInh(t)).

Besides a basal FSH release from the pituitary to the blood, the release is also stimulated
by P4 and GnRH, and inhibited by E2,

RelFSH(t) =
(
bFSH +H+

P4,FSH(yP4(t)) +H−E2,FSH(yE2(t) +H+
G,FSH(yG(t)

)
· yFSHp(t).

Concluding, FSH serum level is a result of the difference between the released amount from
the pituitary and clearance in the blood,

d

dt
yFSH(t) = RelFSH(t)− cFSH · yFSH(t), (B4)

where cFSH is the FSH clearance rate constant.
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Figure 2.5: Mechanisms regulating LH

As depicted in Figure 2.5, LH synthesis is stimulated by E2 and inhibited by P4. Besides
a small basal LH release, there is a surge of LH when GnRH in the pituitary reaches a
threshold. Like FSH, the LH serum level depends on synthesis in the pituitary, release into
the blood and clearance thereof,

d

dt
yLHp(t) = SynLH(t)− RelLH(t). (B5)

LH synthesis in the pituitary is stimulated by E2 and inhibited by P4,

SynLH(t) = H+
E2,LH(yE2(t)) +H−P4,LH(yP4(t))

We assume a low constant basal LH release bLH from the pituitary into the blood. On top
of that, LH release is stimulated by GnRH,

RelLH(t) =
(
bLH +H+

G,LH(yG(t))
)
· yLHp(t).

Summarizing, LH in the blood is obtained as

d

dt
yLH(t) = RelLH(t)− cLH · yLH(t), (B6)

where cLH is the LH clearance rate constant.

2.2.2 The ODEs for Follicles and Corpus Luteum, and for the
Hormones E2, Inh, and P4

The ovaries contain a pool of small follicles with immature oocytes. Under the influence
of FSH, a cohort of 8-41 growing follicles emerge [AJSM08]. Approximately two days after
cohort recruitment, one follicle is selected to become the dominant follicle, and continues
to grow [BG98]. This deviation of the dominant follicle is associated with increased FSH
and LH receptor binding, activating the enzymes that catalyze steroidogenesis, resulting in
increased E2 production and higher E2 serum levels [BG98]. Small follicles of an emerging
cohort of follicles release each very small amounts of E2 and Inh per follicle, and taken
together this amount is not negligible. Furthermore, there is always a medium-size or large
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follicle present [IMA+00, Wis87, WIR+04], which results in a basal hormone production
throughout the cycle. Different follicles are recruited, grow, and regress in each wave. How-
ever, total E2 and Inh production capacity is modeled as a continuous function throughout
subsequent waves and cycles, representing the total amount of hormone production of the
follicles present at any moment. The capacity of follicles to produce E2 and Inh is denoted
as follicular function in the rest of this work.

The dominant follicle expresses more FSH receptors, and it can therefore continue to
grow even when FSH serum levels are low [BBKG02]. In the model, the emergence of
a follicular wave is induced when FSH exceeds a threshold which becomes lower when
follicles become larger, representing that larger follicles are more sensitive to FSH. Follicle
regression is promoted by high P4 levels and by the LH surge, the stimulus for ovulation.
The differential equation for follicular function yFoll is

d

dt
yFoll(t) = H̃+

FSH,Foll
(
yFSH(t)

)
−
(
H+

P4,Foll(yP4(t)) +H+
LH,Foll(yLH(t))

)
· yFoll(t) (B7)

where

H̃+
FSH,Foll (yFSH(t)) := mFoll

FSH · h+
(
yFSH(t), TFoll

FSH · h+
(
yFoll(t), T

Foll
Foll , n

Foll
Foll

)
, nFollFSH

)
.

LH Blood

delay =
4.5 days

Corpus LuteumFollicles

*

(a) Former mechanisms as in
[BmR+11]

LH Blood

Follicles Corpus Luteum

(b) Advanced mechanisms

Figure 2.6: An example of how parts of the model changed throughout the
model development. The regulation of ovulation formerly needed a delay, and
Foll and CL size were independent of each other. Since it is known that remain-
ings of the ruptured follicle transform to the rising CL [RKF+01], the ovulatory
follicle now directly transforms into the CL.

The development of the corpus luteum is induced by the LH surge. During the first mod-
eling approaches [BmR+11], a delay was incorporated in the effect of LH on the CL, to
account for the time required for the process of transition from follicle to CL [NJS+00] and
the shift from E2 to P4 production [DBTW86, DB85]. LH, as the initiator of ovulation,
was responsible for decay of the dominant follicle, and at the same time the initiator of
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the rise of the CL 4.5 days after the LH peak. A delay differential equation was needed to
model this effect. The atretic follicles disappeared from the system, and the CL emerged
independently of the size of the just ovulated dominant follicle. However, it is known that
thecal and granulosa cells of the ruptured follicle transform to small and large luteal cells
which form the rising CL ([RKF+01]). Therefore, to make the model more realistic and to
be able to account for different sizes of the dominant follicle ([RIR10]), the involved mech-
anisms were changed. The ovulatory follicle now directly influences the initiation of CL
growth, and no further delay differential equation is needed. The old and new mechanisms
are illustrated in Figure 2.6.

Progesterone

FSH Blood

IOF

Corpus Luteum

Follicles

LH Blood

*

*

Figure 2.7: Mechanisms regulating the processes in the ovaries

In each cycle a new CL develops, but CL development is modeled as a continuous function
of P4 producing tissue, denoted as CL function in this work. The differential equation
describing CL function is

d

dt
yCL(t) = SF ·H+

LH,CL

(
yLH(t)

)
· yFoll(t)

+H+
CL,CL

(
yCL(t)

)
−H+

IOF,CL

(
yIOF(t)

)
· yCL(t). (B8)

In the model, the part of the follicles decaying due to LH, i.e. the ovulated follicle, is now
preserved in the system, forming the rising CL. The scaling factor SF is included to keep
the relative levels of the substances between 0 and 1. Further growth of the CL is mod-
eled by a self-growth, i.e. a positive influence of the CL on its own size from a certain size on.

Having derived the ODEs for the tissues in the ovaries, the production of the hormones
produced by these tissues can be modeled. These hormones are the steroids estradiol (E2)
and progesterone (P4), and inhibin (Inh).
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E2 serum levels are higher in ovulatory than in non-ovulatory waves [BGF+01, EH73] and
reach peak levels around estrus [BGF+01, EH73, EKWF97, GEBP81, KDWF76, Wis87].
This suggests that the preovulatory follicle has the largest capacity to produce and release
E2, although its maximum size is not significantly different from the maximum size of
non-ovulatory dominant follicles. Considering the results in [Aco07, AOK+00], where a
better vascularity of the ovulatory follicle is reported, it is reasonable that the ovulatory
follicle can secrete more E2 than non-ovulatory follicles and, consequently, E2 serum levels
are highest at estrus. In the model, the rate of E2 production and release to the blood is
directly dependent on follicular function.

Inhibin exists in two different forms, inhibin A and inhibin B, but only inhibin A is consid-
ered in the bovine model, as it is the predominant form in bovine follicular fluid [BBKG02].
Compared to basal Inh serum levels, peak levels are almost doubled in non-ovulatory waves
and increase further in ovulatory waves [PRGM03]. In the model, Inh production rate is,
as E2, directly dependent on follicular function.

Inhibin

Corpus Luteum

Estradiol

Progesterone

Follicles

Figure 2.8: Mechanisms regulating the production of the hormones E2, Inh, and
P4. These substances are directly dependent on follicular and CL function. The
green arrows describe the positive effect of the Foll and CL level on hormone
production.

The CL is the main source of progesterone (P4). Serum P4 concentration is near to
zero around estrus and high during the luteal phase [AMG92, DMT+86, EH73, KKW+95,
SEM69]. A high correlation between CL diameter and P4 output was reported in [PCK+91,
SKBR88, WIR+04].

In Figure 2.8, the production of the hormones estradiol, inhibin, and progesterone, is illus-
trated. The production of substances do not comprise regulations in form of Hill functions,
but can be modeled directly. Since it is known that P4 production of the CL is not ab-
solutely proportional to the CL size ([KBG90]), P4 production is modeled to be lower at
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start of CL growth compared to later luteal stages. It is assumed that production of P4
depends on the surface size and thus quadratically on CL. Also, a quadratic relationship
between the follicles and E2, as well as between the follicles and Inh, is assumed.

The equations for P4, E2, and Inh do not contain any Hill functions,

d

dt
yP4(t) = cP4CL · yCL(t)2 − cP4 · yP4(t), (B9)

d

dt
yE2(t) = cE2Foll · yFoll(t)2 − cE2 · yE2(t), (B10)

d

dt
yInh(t) = cInhFoll · yFoll(t)2 − cInh · yInh(t). (B11)

The parameters cP4, cE2 and cInh denote the respective clearance rate constants.

2.2.3 The ODEs for Oxytocin, Enzymes, Intra-Ovarian Factors,
and PGF2α

In [BmR+11], the rise of PGF2α triggering the decay of the CL was modeled as a black box,
depending with large delays on P4 only. In [BRm+11], this was improved as enzymes were
introduced that stimulate PGF2α , and the model became more robust. These enzymes
required for the production and release of PGF2α are stimulated by P4 [SLM+91, SGF+09].
The ODE for the development of the enzymes is now

d

dt
yEnz(t) = H+

P4,Enz

(
yP4(t)

)
− cEnz · yEnz(t). (B12)

In [BRm+11], the enzymes were the only predecessors of PGF2α . However, simulating the
administration of PGF2α it turned out that the modeling of luteolysis still had some deficits.
It is known that after the administration of PGF2α the responsive CL decays immediately
[HH74]. In the original model, the CL did not decay fast enough after administration of
PGFsyn, and neither after rise of the regular PGF2α . But since P4 levels, which fall with
the CL, should stay on a high level for the duration of the first two follicular waves, the CL
needed to decay later. That means the initiator of luteolysis, PGF2α , needed to appear
a couple of days later compared to the original model. To account for this effect, the
mechanisms that lead to a rise in PGF2α were modeled more precisely. The development
of the model regarding luteolysis is illustrated in Figure 2.9.

Instead of leaving only the enzymes (Enz) being responsible for PGF2α levels as in [BRm+11],
OT is introduced as another initiator of PGF2α [KSM+99]. E2 stimulates OT synthesis
in the granulosa cells [VF93] and within this the effect of OT on PGF2α [AGBF96]. It is
assumed that OT production quadratically depends on CL size, and that it is cleared with
constant rate cOT. The equation for the rise and fall of OT is now

d

dt
yOT(t) = H+

E2,OT

(
yE2(t)

)
· yCL(t)2 − cOT · yOT(t). (B13)

38



2.2. NUMERICAL MODEL 39

Progesterone

delay =
17 days12 days

delay =

Corpus Luteum

αPGF2  

* *
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Figure 2.9: Changes in the mechanisms involved in luteolysis. In (a), P4 was
driving luteolysis with large time delays. In (b), enzymes were responsible for
the rise of PGF2α . In the advanced model, oxytocin and inter-ovarian factors
were added to the drivers of luteolysis.
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OT together with Enz are now responsible for the rise of PGF2α . The functionH+
E2,OT(yE2(t))

represents a stimulatory effect if the levels of Enz and OT are both high. With the constant
clearance rate cPGF, the equation for PGF2α becomes

d

dt
yPGF(t) = H+

Enz&OT,PGF

(
yEnz(t), yOT(t)

)
− cPGF · yPGF(t). (B14)

In former models, PGF2α triggered luteolysis directly, independent of estrous stage. How-
ever, it is known that the CL is not sensitive to the action of PGF2α at early luteal stage.
Therefore, the action of PGF2α on the CL is remodeled. According to [SFDO08], the direct
action of PGF2α on the CL is mediated by local factors: endothelin-1-system, cytokines,
and nitric oxide. The expression of these inter-ovarian substances is upregulated by PGF2α

, and strictly depends on the stage of the CL. A new component to the model is introduced,
and named inter-ovarian factors (IOF). IOF is stimulated by PGF2α only if the CL has
reached a certain size, and cleared with the constant rate cIOF,

d

dt
yIOF(t) = H+

PGF&CL,IOF

(
yPGF(t), yCL(t)

)
− cIOF · yIOF(t). (B15)

The rise of the inter-ovarian factors now induces luteolysis.

The complete model for the bovine estrous cycle can be found in Table A.4 in the Ap-
pendix. The list of identified parameter values is provided in Table A.5, and the initial
values in Table A.6.

The model of the bovine estrous cycle is dimensionless in the sense of [LS88], i.e. the numer-
ical values of the components are independent of the standard of measurement. Simulated
hormone levels and ovarian components have been scaled to be between 0 and 1 by divid-
ing the equation by its maximum output level. Once measurement data is available, the
functions can be scaled to the corresponding quantities by scaling the involved parameters.
This can be done because, until now, none of the parameters has a fixed value verified by
experiments. The simulated dimensionless output functions are referred to as relative level.

2.2.4 Sensitivity Analysis and Parameter Identification

Parameter estimation is performed with an affin-covariant Gauss-Newton method as de-
scribed in Chapter 3. To get good initial values, several feedback mechanisms are neglected
at first, and the model is successively built with the help of Gaussian input curves.

To get good experimental data for parameter estimation is difficult. In figure 2.11, data
profiles for the most important hormones are depicted. Based on this, artificial measure-
ment points are created.
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Figure 2.10: Flowchart for the model of the bovine estrous cycle. A green arrow
marks a stimulatory effect, a red stump arrow an inhibitory influence. A black
dashed arrow means a transition, and ‘∗’ marks a degraded substance.



42 CHAPTER 2. BOVINE MODEL

Figure 2.11: Typical qualitative profiles as published in e.g. [Per04]. The upper
figure shows the development of three follicular waves together with the growth
and regression of the corpus luteum during one estrous cycle. The lower figure
demonstrates the changes in concentrations of different hormones that regulate
the cycle. Depicted are FSH (solid line), P4 (dashed line), E2 (diamond line),
LH (dashed dotted line, rise around day 20), and PGF2α (dotted line, rise around
day 16). Ovulation is caused by the LH peak and occurs around day 21.
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Figure 2.12: Simulations with BovCycle together with artificial data points,
created based on profiles published in literature.
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Obtaining Initial Values for the Parameter Estimation

Many of the parameters are not measurable, sometimes the range of values is known, and
some are completely unknown. Estimating all model parameters simultaneously under
those circumstances is impossible. For local convergence of the Gauss-Newton algorithm,
it is crucial to start the identification routine with a good initial guess for the parameters.
For this, the closed feedback loop of mechanisms is cut up, and the time courses of the
substances are fitted.

Following [Har01], as a first step input curves are defined that describe the development for
the plasma hormones E2, P4 and Inh over time. Composition of these input curves is based
on published data for endocrine profiles of cows with a normal estrous cycle, see for example
[Per04], depicted in Figure 2.11. As input curves, sums of Gaussian functions are taken,
where height, width, and time point of the peak are identified with the Gauss-Newton
algorithm, using artificial data points.

yE2(t) = p1 + p2 · e
−(t+p3)

2

p4 + p5 · e
−(t+p6)2

p7 + p8 · e
−(t−p9)2

p10 + p11 · e
−(t+p12)

2

p13 ,

yP4(t) = p14 + p15 · e
−(t−p16)

2

p17 + p18 · e
−(t+p19)

2

p20 ,

Inh(t) = p21 + p22 · e
−(t+p23)

2

p24 + p25 · e
−(t+p26)

2

p27 + p28 · e
−(t−p29)

2

p30 + p31 · e
−(t+p32)

2

pg33 .

These Gaussian functions with the identified parameters p1-p33 then are used to identify
the parameters involved in the regulation of the other hormones, by fitting the simulation
curves to measurements reported in literature. Step by step, more parameters are identi-
fied, until the input curves are replaced by the corresponding ODE formulations. The set
of then 60 parameter values for the parameters are used in the Gauss-Newton algorithm
as starting values for identifying all parameters simultaneously. These first steps are visu-
alized in Figure 2.13.

Figure 2.13: The first steps in generating successively good initial guesses for
parameter optimization and enlarging the set of estimated parameters.
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Afterwards, the profiles of follicular function, PGF2α and CL function are fitted to be in
line with empirical knowledge. Finally, the input curves for P4, E2, and Inh are replaced
by their original ODE description to obtain a closed network, and the number of estimated
parameters increases.

Parameter estimation is done subsequently while generating the components of the model
and enlarging the set of parameters. A parameter value obtained by the optimization
procedure can be overwritten throughout the modeling process; the previous value then
serves as starting value for the optimization procedure in the next modeling step. The
final set of parameters leads to simulation results that are, together with the artificial
data, illustrated in Figure 2.12.

2.3 Simulation and Model Validation

Validation of the model consists of investigation how adequately the model simulations
match given information. Experimental data required for model validation would for ex-
ample consist of measured hormonal concentrations of healthy, untreated, individual cows
at different stages of estrous cycle. Unfortunately, measurements published in literature
are rare and do often not meet the requirements for validation; observed time scales are
often too small or too coarse, or too few substances are measured. Only recently, data-
derived profiles for LH, FSH, E2, and P4 were published in [MFD+13] which are useful for
validating the model with respect to the course of the reproductive hormones in healthy
cows.

Another possibility to validate the model is to check the correctness of the model for a
specific scenario where the system answer is known.

2.3.1 Administration of PGF2α

An example of a scenario where the response of the estrous cycle is known are synchroniza-
tion protocols ([SDS+08]) with prostaglandin F2α (PGF2α ). Simulation of this scenario
with the model will serve as its validation in the following. In veterinary medicine, PGF2α

and its analogues are administered to cows mainly to make use of their luteolytic action,
e.g. in estrus synchronization protocols. It is known that the sudden rise of this substance
at certain stages of the estrous cycle results in an immediate decay of the responsive CL,
and an immediate fall of progesterone levels in plasma.

PGF2α is responsible for the onset of luteolysis in the cow. With luteolysis the luteal phase
of the cycle ends and a new estrous can take place. PGF2α induces functional luteolysis by
reducing progesterone production followed by structural luteolysis with tissue degeneration
and cell death [MCL99, SFDO08]. PGF2α is synthesized in the endometrium and released in
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2.3. Simulation and Model Validation

pulses, regulated by E2, P4 and OT during the estrous cycle [SLM+91, AGBF96, XLSG98].
In veterinary medicine, administration of synthetical analogues of PGF2α (e.g. Cloprostenol,
Luprostiol, Tiaprost) or original PGF2α (e.g. Dinoprost) is used for various purposes in the
cow such as induction of estrous or synchronization protocols. The effect of the treatment
depends on the stage of estrous cycle which determines the responsiveness of the CL on
the luteolytic action of PGF2α [SFDO08]. At midluteal stage of the estrous cycle admin-
istration of PGF2α leads to luteolysis within a few hours. This results in a decrease of
P4 concentration, increase of E2, a peak of the Luteinizing Hormone (LH) and ovulation
[SSW84].
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(a) PGF2α administration in early luteal phase
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Figure 2.14: Simulation results with the advanced model for Foll, CL, and LH,
and total PGF2α after administration of PGFsyn on different stages of the cycle.
A high peak of Foll indicates ovulation. In (a) it is shown that there is no
response if ovulation has occurred only four days before administration, in (b)
it can be observed that giving PGFsyn ten days after ovulation leads to a decay
in CL, an LH peak and ovulation within five days after administration.

It is known that PGF2α and its analogues have a very short half-life [SLHS75, Kro03].
Therefore, an additional component was needed in the model that falls rapidly. Analogues
of PGF2α , denoted PGFsyn in the following, have an up to three times higher biological
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activity than original PGF2α [Kro03]. Even low doses of PGFsyn caused a peak in PGF2α

that exceeded the natural level [GAP+09]. Due to this high potency of PGFsyn , parame-
ters were identified that lead to a three times higher relative level of PGFsyn compared to
normal PGF2α levels. The effect of the synthetical analogue is modeled by summing the
level of PGFsyn to the normal PGF2α level.

To model the rise of PGFsyn in the system, a function is taken which is zero before dosing
time (tD ), and has a sharp left-skewed peak with maximum shortly after tD. This leads
to a slight delay in the effect of the injection. As suggested in [Rei09], based on techniques
described in [KV98], the probability density function of the Gamma-distribution is chosen
with fixed shape parameter α = 2, and inverse scale parameter β leading to a left-skewed
curve which has its maximum at t = 1

β
. The change of concentration of synthetic PGF2α

is calculated as

d

dt
yPGF(t) = D · β2 · tmod(t) · exp (−β · tmod(t))− cPGFsyn · yPGF(t).

The parameter D represents the amount of administered drug scaled to obtain the desig-
nated height of the relative level of PGFsyn. The parameter cPGFsyn denotes the clearance
rate constant of PGFsyn. The modified time function tmod is given as

tmod(t) = max(0, t− tD).

The rise of PGFsyn is large right after dosing time and approaches zero quickly thereafter,
leading to a rapid decay of the function yPGF(t).

In Figure 2.14 it can be observe that virtual administration of PGF2α in the early luteal
stage does not lead to a decay of the CL, while at later time points of the cycle it results in
an immediate decay of the responsive CL, an LH peak, and ovulation during the following
follicular wave.

Figure 2.15 shows the simulation results for the follicles of six different cows during virtual
administration of PGF2α . At the day of first administration (day zero), when the cows
are each in a different stage of their estrous cycle, the high peaks of the curves denoting
the time points of ovulation. In (a), a single dose of PGF2α is given, which impacts the
cycle of at least two cows (cow3 and cow4). In (b), a second dose is given seven days after
the first dosage, now influencing the cycle of two other cows (cow1 and cow2). In (c), the
second dose is given 14 days after the first dose, now influencing four cows (cow3, cow4,
cow5 and cow6).

In a study performed at the institute of animal reproduction, faculty of veterinary medicine
of Freie Universität Berlin, a single dose of 5 mg PGF2α has been injected to seven cows,
and plasma progesterone concentrations have been measured before and after the adminis-
tration. In particular, blood has been collected every morning (8:00h) and evening (17:00h)
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Figure 2.15: Simulation results for the follicles of six different cows during vir-
tual administration of PGF2α . Day zero denotes the day of first administration.
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Figure 2.16: Simulation of a single dose of PGF2α and its impact on other
components of the model. Parameters have been fitted such that the simulated
P4 levels match the given experimental P4 data. With the set of identified
parameters, we can investigate the course of the other model components. In
particular, we can observe that ovulation occurs six days after injection.



2.4. Improved Modeling of Follicular Development

before the injection, every four hours after the injection, and twice a day after ovulation
(detected by ultrasound).

Parameters have been identified so that the simulated P4 level matches the given data.
Note that, here, simulated concentrations instead of relative levels for progesterone are
observed. Certain parameter units therefore have to be adapted adequately. In Figure
2.16(a) an example of measured P4 concentrations for one of the examined cows is shown,
together with the simulated P4 concentration. Ovulation has been detected by ultrasound
a couple of days after the PG injection. This is well captured in the simulation. Not
only does this approve the model of the bovine estrous cycle, the simulation also provides
insight about the development of substrates that are not measured after a single PGF2α

injection. For example, in Figure 2.16(c) a GnRH peak after administration of PGF2α can
be observed, which can be understood as an increase in pulse frequency and is in the scope
of expected observations.

2.4 Improved Modeling of Follicular Development
In bovine, development of follicles to ovulatory or near-ovulatory size occurs throughout
the entire cycle, see [For94]. Two or three times per cycle, a cohort of primordial follicles
start to grow and mature. In non-ovulatory waves, all follicles undergo atresia one after
another. At which point a new cohort of follicles emerge is not clear. In BovCycle, where
follicles are incorporated as follicular capacity, a new wave does not start until the previous
one decayed. There is, however, evidence that a next wave already starts to grow when
the previous one is still high.

In several other models on the hormonal cycle ([Har01, POK+12]), follicles are modeled as
masses that pass through discrete stages of maturation. In the bovine model in this thesis,
only one differential equation describes the follicular development, interpreted as follicu-
lar capacity to produce the hormones estradiol and inhibin. Simulation with the model
lead to several distinct follicular waves per cycle. This is in line with data profiles from
[PCK+91]. In contrast to this, more recent measurements for follicular size rather show
an overlapping of the different waves ([CLEB12]). A next wave already starts to develop
when the preceding one is not yet decayed. This motivates to modify the model towards
the ability to simulate overlapping waves.

A dataset is available 1 that includes, amongst others, daily ultrasound measurements of
the follicular diameters in 31 cows. Follicular waves can be clearly visible from the data.
In every cow, several follicular waves start to grow within one cycle, mostly while other
waves is still high. Examples of these follicular measurements are depicted in Figure 2.17.

1The dataset was kindly provided by Stephen Butler, Animal & Grassland Research and Innovation
Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
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Consideration of only the total follicle size would not lead to conclusions regarding wave
patterns, as the development of the sum of all follicular measurements over time does not
significantly oscillate.

In [Boe12], parameters were fitted to a large dataset of measurements for cows. It turned
out though that the model was not capable of reflecting all of the data, in particular, the
measurements for follicular development. The added up follicular measurements do not
match the corresponding simulation output of BovCycle, which has a distinct wave-like
pattern. When adding up the waves in the dataset, they smooth out. Thus, here, an ap-
proach to modify this part of the model is presented. This modification especially captures
the measurements for overlapping follicular waves.

Figure 2.17: Examples of measurements for follicular diameter (mm) of two
individual cows. Time units are days. When the dominant follicle of the first
follicular wave is high, the next wave starts to rise.

In the new approach, a periodic solution should be obtained for each different follicular
wave, which starts to decay as soon as another wave starts to emerge. As the solutions
for the different waves should interact, the use of more than one ODE is an obvious possi-
bility. This way, each wave is represented by an extra ODE. To begin with, a three wave
pattern is modeled. As a new wave grows, the old wave decays, which is interpreted here
as a predator-prey relationship, also named Lotka-Volterra approach. This approach origi-
nally consist of two ODEs which interact competitively, as for example described in [LS88].

The ODEs for a two-dimensional Lotka-Volterra approach are of the form

d

dt
ypredator(t) = k̃1 · ypredator − k̃2 · ypredator · yprey,

d

dt
yprey(t) = k̃3 · ypredator · yprey − k̃4 · yprey.
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This can be extended to a three-dimensional system. Another ODE is coupled to the
previous ones,

d

dt
yWave1(t) = k1 · yWave1 · yWave3 − k2 · yWave1 · yWave2,

d

dt
yWave2(t) = k3 · yWave1 · yWave2 − k4 · yWave2 · yWave3,

d

dt
yWave3(t) = k5 · yWave2 · yWave3 − k6 · yWave1 · yWave3.

Linking this to the rest of the model is obtained by using the model output of FSH, LH,
and P4. The same mechanisms as for follicular production capacity are now used for every
follicular wave. In particular, FSH stimulates the growth of the follicular waves, and P4
and LH stimulate follicular decay. Recall that the ODE describing follicular capacity was

d

dt
yFoll(t) = mFoll

FSH · h+
(
yFSH(t), TFoll

FSH · h+
(
yFoll(t), T

Foll
Foll , n

Foll
Foll

)
, nFollFSH

)
−
(
H+

P4,Foll(yP4(t)) +H+
LH,Foll(yLH(t))

)
· yFoll(t)

Follicular function had a positive self-influence on itself, included as growing FSH sensi-
tivity as follicles rise. In the new approach, the follicular waves are interacting with each
other, and another follicular self-influence is not incorporated. Instead, FSH is directly
stimulating each emerging wave. This is incorporated by multiplying a stimulatory Hill
function to the growth term of each wave.

In the new approach, the influence of P4 and LH is modeled as before, i.e. by multiplying
positive Hill functions to the decay of each follicular wave.

The corresponding Hill functions are

H+
FSH,Foll(yFSH(t)) = mFoll

FSH
yFSH(t)2

(TFoll
FSH)2 + yFSH(t)2

,

H+
P4,Foll(yP4(t)) = mFoll

P4
yP4(t)

2

(TFoll
P4 )2 + yP4(t)2

,

H+
LH,Foll(yLH(t)) = mFoll

LH
yLH(t)2

(T FollLH )2 + yLH(t)2
.

These Hill functions are now multiplied to the growth and decay rates of the follicular
waves. The ODEs for the three follicular waves become
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d

dt
yWave1(t) = H+

FSH,Foll

(
yFSH(t)

)
· k1 · yWave1 · yWave3

−
(
H+

P4,Foll

(
yP4(t)

)
+H+

LH,Foll

(
yLH(t)

))
· k2 · yWave1 · yWave2

d

dt
yWave2(t) = H+

FSH,Foll

(
yFSH(t)

)
· k3 · yWave1 · yWave2

−
(
H+

P4,Foll

(
yP4(t)

)
+H+

LH,Foll

(
yLH(t)

))
· k4 · yWave2 · yWave3

d

dt
yWave3(t) = H+

FSH,Foll

(
yFSH(t)

)
· k5 · yWave2 · yWave3

−
(
H+

P4,Foll

(
yP4(t)

)
+H+

LH,Foll

(
yLH(t)

))
· k6 · yWave1 · yWave3

In this way, the system of three overlapping waves is regulated by the ODE model for the
bovine cycle, described in equations (B1)-(B15). For the time being, the influence of the
follicular waves on the rest of the system, in particular on yE2 and yInh, is not implemented
yet.

The following parameters have been used to obtain the simulation results in Figure 2.18,

No. Symbol Value Unit

pfw1 k1 1.186 1/([t][Foll])
pfw2 k2 1 1/([t][Foll])
pfw3 k3 1.056 1/([t][Foll])
pfw4 k4 1 1/([t][Foll])
pfw5 k5 0.9622 1/([t][Foll])
pfw6 k6 1 1/([t][Foll])
pfw7 TFoll

FSH 0.03 [FSH]
pfw8 mFoll

P4 1.17 [-]
pfw9 TFoll

P4 0.1 [P4]
pfw10 mFoll

LH 0.298 [-]
pfw11 TFoll

LH 0.02 [LH]

Prospectively, when coupling this approach to the rest of the model to fit data for the
other hormones as well, different parameter values will be identified. In particular, the
parameters k2, k4, and k6 could have different values, as the follicular waves will probably
have different decay rates.

The presented approach still needs to be coupled to the rest of the model in the way that
yE2 and yInh will become directly dependent on the follicular waves. With the presented
approach, the amplitude of the sum of the follicular waves is not always sufficiently large
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Figure 2.18: Simulation of overlapping follicular waves, influenced by FSH, LH,
and P4.

for a qualitative interpretation. A possibility to make a qualitative difference of follicular
function throughout the cycle would be to provide the waves with different maturation
levels. Also, to validate a coupling of the follicular waves to E2 and Inh, detailed measure-
ments for E2 and Inh will be necessary. This remodeling of the processes in the ovaries
could be a task for the future, because the modeling of ovarian tissues is still raw in Bov-
Cycle. Also, the CL would then need to become directly dependent on the last follicular
wave which leads to ovulation.

The next step to include more biological details into the model would be to explicitly
model follicular tissue as composed of thecal and granulosa cells. These cells have dif-
ferent properties regarding steroid production. After ovulation, they transform to small
and large luteal cells, respectively, which also have different production capacities [Goo88].
With these steps, the production of E2, Inh and P4 in the model could also become more
detailed.
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Chapter 3

Comparison with a Model for the
Human Menstrual Cycle

In this chapter, a model that integrates the dynamics of the major substances involved
in the menstrual cycle will be presented and compared to the bovine model (BovCycle).
The human model, denoted as GynCycle similarly describes the development of several
hormones, receptors, and follicular and luteal tissues throughout the cycle in a system of
ordinary differential equations.

The physiologic and endocrine mechanisms that regulate the human menstrual cycle and
the bovine estrous cycle are similar. In both humans and cows, the female endocrine sys-
tem consists of several glands and regulates the periodic changes of multiple substances
necessary for reproduction. In every cycle, GnRH released from the hypothalamus regu-
lates the secretion of the hormones LH and FSH from the pituitary into the bloodstream,
where they distribute and influence several functions in the body. They regulate processes
in the ovaries, where follicles and corpus luteum develop. These produce steroids that
are released into the blood and from therein regulate the processes in the hypothalamic-
pituitary-gonadal axis.

Unlike in bovine, in humans the uterus does not play a role for the functioning of the cycle.
Even in the absence of the uterus, cyclicity can proceed [MCL99]. Luteolysis, the decay of
the corpus luteum, thus happens in a different way than in bovine. The hormone PGF2α ,
released in pulses from the uterus, is not needed for CL regression in humans.

Two different patterns of follicle development are identified in mammals. In humans (and
rats and pigs), the development of follicles to ovulatory size occurs only during the fol-
licular phase, which denotes the time span between luteolysis and ovulation. In contrast,
in cattle (and sheep and horses), development of follicles to ovulatory or near-ovulatory
size occurs throughout the cycle [For94]. The hormonal cycle of the human has a longer
follicular phase, compared to the cycle of cows (and pigs, sheep and horses) ([Joh07]). In
contrast, the luteal phase, which denotes the time span between ovulation and luteolysis, is
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about 14 days in human ([Joh07]) and 17-18 days in bovine ([MSS09, TR91]). An average
human menstrual cycle is about 28 days long ([Joh07]), while an average bovine cycle lasts
about 21 days ([AJSM08]).

3.1 Model Background

In contrast to BovCycle, the model for the human menstrual cycle presented in this thesis
is chosen not to be dimensionless. Since measurements are available from experimental
studies, variables and thus parameters have been provided with physical units.

The here presented model of the human menstrual cycle is an enhancement of the model in
[Rei09], which will be called Reinecke model in the following. The Reinecke model is based
on models by Selgrade, Schlosser, and Harris ([SS99, Har01]), which will here be called the
Selgrade model. As these models, in order to analyze the dynamic relations between the
system components, it is incorporated how the multiple components function together to
generate periodic solutions. Along the presentation of the model, the special emphasis in
this chapter is on the differences to the bovine model.

The Reinecke model consists of 50 differential equations, three of them delay differential
equations, and 201 parameters. The model describes the large feedback loop that captures
the main hormonal developments within the monthly cycle in females. The feedback loop
includes processes in hypothalamus, pituitary, and ovaries, connected by the blood stream.
GnRH (gonadotropin releasing hormone) is generated in the hypothalamus, from where it
is released in pulses into the pituitary. In the pituitary, the gonadotropins LH (luteiniz-
ing hormone) and FSH (follicle stimulating hormone) are synthesized, controlled by the
hormones estradiol (E2), progesterone (P4), inhibin A and inhibin B. The latter four ones
belong to the hormones that are often measured in blood. The release of the gonadotropins
into the blood stream is additionally controlled by the GnRH pulses. Several publications
also assume a pulse like pattern of LH and FSH, but this is not considered in the Reinecke
model and will not be in this work. Once the gonadotropins LH and FSH, which complete
the group of often measured substances in plasma, are in the blood, they control processes
in the ovaries. In particular, they regulate the development of the folliculogenesis and luteal
development. As in the preceding models of Selgrade, Schlosser, and Harris, a model was
chosen for the follicles that considers several successive follicular stages that transform into
one another. The follicles and luteal tissue produce steroids in the ovaries. These steroids
transform into the already introduced hormones estradiol, progesterone, inhibin A, and
inhibin B, which regulate synthesis and release of GnRH and the gonadotropins along
the hypothalamic-pituitary-axis. A rough overview of this large feedback system is already
illustrated in Figure 1.1 in Chapter 1, detailed representations will be given in the following.

For the model in this thesis, several adjustments to the Reinecke model have been made

55



Chapter 3. Comparison with a Human Model

that will be presented here. The two major changes regard the steroidogenesis in the
ovaries, and the GnRH pulse generation in the hypothalamus. Both parts of the Reinecke
model have been considered as too detailed for the moment. However, they still could be
reintegrated if necessary, depending on the interest of model applicants.

Steroid hormones are generated from cholesterol in the thecal and granulosa cells in the
follicles, as well as in the luteal cells after ovulation ([JL06]). This process, called steroido-
genesis, is catalyzed by several enzymes that are activated in the follicular and luteal cells.
The enzyme activation and the biosynthesis of steroid hormones in the ovaries have been
modeled in detail in [Rei09]. The underlying reactions are known quite precisely from the
KEGG database ([Dat06]). This large database is an approach to bundle knowledge from
a large amount of experiments in a coherent way, and provides a great tool for modelers.
Information from this database can be considered as validated. However, steroidogenesis
is only a small element within the hormonal cycle. It describes in detail the production of
the often measured steroid hormones estradiol, progesterone, and inhibin. In the Reinecke
model, the activation of the enzymes, i.e. the model part before steroidogenesis, is not yet
validated and potentially imprecise. It is thus the critical factor with regard to reliability
and preciseness of the model. For this reason, the whole steroidogenesis is replaced by a
simpler model part for the production of the steroid hormones.

In the Reinecke model, the integration of the information from the KEGG database is
performed with the help of linear combinations of the different follicular and luteal stages.
In contrast, in [SS99, Har01], linear combinations of these stages directly describe the de-
velopment of the steroid hormones. In both the Reinecke and the Selgrade model, the
coefficients within the linear combinations, i.e. the hormone production or enzyme acti-
vation rates, are not known from literature, but have in both cases been identified by
parameter identification algorithms, using measurements for the steroid hormones. The
numerical values for these coefficients, interpreted as production rates, stand for a black
box, since several chemical reactions are not considered. In comparison with the Selgrade
model, the Reinecke model reduces the black box of the ovarian hormone production.
However, certain black box aspects are still present in the Reinecke model, and a similar
number of coefficients is only estimated from algorithms. In this work, steroidogenesis was
not a focus, and therefore an approach based on [SS99, Har01] is chosen.

The gonadotropin releasing hormone (GnRH) controls the release of the gonadotropins LH
and FSH from the pituitary into the blood. It is known that a pulse-like pattern is crucial
for the functioning of GnRH, and elaborate models exist to model GnRH pulse generation
([CF07, TAS+07]). In the Reinecke model, a stochastic pulse generator is implemented
in a sophisticated way. Pulses of stochastic GnRH masses are generated according to a
known frequency, which leads to a pulsatile GnRH concentration that changes on a time
scale of minutes. However, the gonadotropins LH and FSH, the only direct successors of
GnRH, have not been implemented in a pulse-like manner. In contrary, in the model these
substances only respond to average levels of GnRH in the pituitary, such that the pulse-like
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pattern of GnRH is not necessary. Although it is known that pulses of GnRH are required
in reality, taking into account the high abstraction level of the model, an elaborate pulse
model does not lead to great benefit for the rest of the model. Instead, it significantly
increases the simulation time. Considered as an overapproximation for the moment, the
modeling approach of stochastic GnRH pulses is omitted. Instead, only pulse frequency
and amount of released GnRH are computed. In the future, implementing LH and FSH
also in pulses, and integrating them into the whole-body feedback loop, could require the
reimplementation of an elaborate GnRH pulse generator.

Model development and extension largely depend on the application and the interest of
users. Crucial for the model development is the availability of experimental data. In
[RmD+12], the purpose was to develop a model for GnRH receptor binding that can
capture the responses after agonist and antagonist treatment. GnRH receptor binding
mechanisms, as well as similar LH and FSH receptor mechanisms were included. Also,
the development of follicular and luteal stages were modified. The resulting model from
[RmD+12] will be described in the next Section.

3.2 Numerical Model

The above described considerations led to a new model of the female menstrual cycle that
will be described in the following. The model consists of 33 ODEs and 114 unknown pa-
rameters. Also, an extension of the model, a pharmacokinetic submodel, will be presented.
The aim of the pharmacokinetic submodel is to capture effects that are observed after the
administration of GnRH agonists and antagonists. 1

While GnRH agonists act just like natural GnRH itself, GnRH antagonists compete with
natural GnRH for receptor binding without having a direct effect on the gonadotropins.
Agonists have an initial stimulating action, followed by a prolonged suppression effect on
the receptors (called desensitization), while antagonists only suppress the effect of natu-
ral GnRH. Agonists are used for treatment of cancer and endometriosis, and antagonists
mainly in in vitro fertilization treatments. In order to be able to simulate both agonist and
antagonist treatments, developing a detailed model for the GnRH receptor mechanisms is
crucial. This leads to a deeper level of detail in comparison with the BovCycle. It is as-
sumed that the main interaction of the agonists and antagonists with the rest of the model
occurs by binding to the free, unbound GnRH receptors. Before binding to the receptors,
however, the agonists and antagonists are processed through the body as will be explained
in the following.

1Note that the notation in comparison to [RmD+12] has changed. Here, in line with the notation in
Chapter 2, the variables, i.e., the solutions of the ODE system, are denoted as ySubstance.
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3.2. Numerical Model

3.2.1 A Pharmacokinetic Submodel for Drug Administration

Administration of substances or drugs can be modeled via a classical pharmacokinetic com-
partment model, as for example described in [DGS02]. Depending on the development of
the drug in the blood after dosing, a certain number of compartments are assumed which
the drug passes through. These compartments do not necessarily have a direct physiolog-
ical interpretation, but are used as black boxes that potentially comprise several organs
or tissues. If the measured amount of the drug decreases in two phases, a distribution
phase and an elimination phase, two non-physiological compartments are assumed for the
drug to pass through before reaching the blood. If no such phases can be identified, one
compartment is chosen to be sufficient for the drug before it reaches the blood.

For the human model GynCycle, data for the GnRH antagonist Cetrorelix is available that
suggests the use of a two-compartment model, thus, additionally to a dosing compartment,
the use of a central and a peripheral compartment. In the model, the drug is administered
directly into a dosing compartment, from where it is transported into a central compart-
ment. The drug in the central compartment binds to free GnRH receptors. A certain
rate of the drug is always reaching a peripheral compartment, and from there transported
back into the central compartment. Regarding the data of the GnRH agonist Nafarelin,
the decrease of drug concentration occurs in only one phase, such that a one-compartment
approach is sufficient.

The amount of antagonist in the dosing compartment is denoted as AntD, in the central
compartment as AntC, and in the peripheral compartment as AntP. Likewise, AgoD denotes
the amount of agonist in the dosing compartment, and AgoC its amount in the central
compartment. The reaction scheme for the two-compartment pharmacokinetik (PK) model
for the dosing of the antagonist is

AntD
kAnt
A−−⇀ AntC

kAnt
CP−−⇀↽−−
kAnt
PC

AntP , AntC
clAnt,C−−−−⇀ ∗,

and the reaction scheme via a one-compartment PK model for the agonist is

AgoD
kAgo
A−−⇀ AgoC

kAgo,C
cl−−−−⇀ ∗.

The ∗ represents a component without feedback to the rest of the system, which is neglected
during the simulation. At the time points of dosing, the drug is administered directly into
the dosing compartment, from where it is absorbed linearly into the central compartment.
From the central compartment, the drug binds reversibly to free, active GnRH receptors
(denoted RG), building a ligand-receptor complex (denoted (Ago-RG) and (Ant-RG)),

AgoC + RG
kAgo

on−−⇀↽−−
kAgo

off

(Ago-RG), AntC + RG
kAnt

on−−⇀↽−−
kAnt

off

(Ant-RG).

59



Chapter 3. Comparison with a Human Model

It is assumed that only a part of the drug in the central compartment is available for protein
binding. Thus, the amount of agonist (and accordingly antagonist) that is reaching the
central compartment from the dosing compartment is multiplied with the fraction unbound
in plasma, fAgou and fAntu , respectively, known from literature for the administered drug.
The amount of drug in every compartment is described in an ODE, which leads to the
ODEs:

d

dt
yAnt,D(t) = −kAntA · yAnt,D(t) (PK1)

d

dt
yAnt,C(t) = kAntA · yAnt,D(t) · fAntu − kAnt,Ccl · yAnt,C(t)

− kAntCP · yAnt,C(t) + kAntPC · yAnt,P(t)

− kAnton · yRG(t) · yAnt,C(t) + kAntoff · y(Ant-RG)(t) (PK2)
d

dt
yAnt,P(t) = kAntCP · yAnt,C(t)− kAntPC · yAnt,P(t) (PK3)

d

dt
yAgo,D(t) = −kAgoA · yAgo,D(t) (PK4)

d

dt
yAgo,C(t) = kAgoA · yAgo,D(t) · fAgou − kAgo,Ccl · yAgo,C(t)

− kAgoon · yRG(t) · yAgo,C(t) + kAgooff · y(Ago-RG)(t) (PK5)

With these ODEs, drug administration can be simulated by adding the dosing amount to
yAgo,D or yAnt,D, respectively. For identification of the unknown parameters that occur in
the ODEs (PK1)-(PK5), a possibility to get good starting values is to first fit the uncoupled
equations (PK1)-(PK5) to measured agonist and antagonist concentrations. Afterwards,
after connecting the above equations to the rest of the model, parameters need to be reesti-
mated with the help of measurements for other substances, that are taken after the dosing
time.

3.2.2 GnRH and its Receptor Binding Mechanisms

The coupling of the PK submodel to the rest of the model occurs via reaction-rate equa-
tions, as described in Section 1.2. The drug in the central compartment reversibly binds
to free, active GnRH receptors. A model of these mechanisms thus requires an elabo-
rate receptor model for GnRH. This implies a new level of detail that has not yet been
considered in BovCycle. The receptor binding mechanisms take place on a cellular level,
the coupling to the rest of the model on a whole-organism level needs to be done accurately.

Before going into the cellular level, an ODE for the amount of GnRH in the pituitary,
representing unbound GnRH proteins, is derived.
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3.2. Numerical Model

Elaborate models for GnRH pulsatility are available, but as in the BovCycle, such detailed
mechanisms are not considered for the moment. As GnRH pulses act on a much smaller
time scale than the rest of the model, including them would significantly increase the
simulation time without great benefit. However, for humans there exists more knowledge
on GnRH pulse frequency and pulse sizes. As in bovine, GnRH is synthesized in the
hypothalamus and released in pulses into the pituitary. GnRH in the hypothalamus is not
explicitly modeled with an ODE as in the bovine model. Instead, two continuous functions
are derived: The function freq : t→ R represents the pulse frequency and another function
mass : t→ R accounts for the amount of released GnRH mass. Both functions are defined
via the mechanisms of E2 and P4 on GnRH which are derived as follows: GnRH frequency
is inhibited by P4 and stimulated by E2 [CBB02, SJO72, Hal09]. While the GnRH pulse
mass is inhibited at low E2 concentrations [EDGK94], it is assumed that E2 is stimulatory
at high concentrations, when it induces the GnRH surge [CM10]. This leads to the following
functions freq and mass ,

freq(t) = H−P4,freq(yP4(t)) · (1 +H+
E2,freq(yE2(t))),

mass(t) = H+
E2,mass(yE2(t)).

These functions represent an average pulse behavior that changes on a time scale of days.
Together, they account for the release of GnRH into the pituitary: The rate of unbound
GnRH reaching the pituitary is kG ·mass(t) · freq(t).
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Figure 3.2: GnRH receptor mechanisms with coupled PK model for GnRH
agonist and antagonist administration

GnRH receptor binding is described via the following mechanisms: In the pituitary, the
GnRH receptors available for binding, denoted RG, are assumed to be on the cell surface.
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A pool of inactive GnRH receptors RG∗ is assumed to be inside the cell, not available for
binding. Deactivation of active receptors, i.e. internalization into the cell, and recycling
of inactive receptors to become active, occurs permanently with rates kRGinter and kRGrecy , re-
spectively. The amount of GnRH released from the hypothalamus binds via a reversible
reaction to its free receptors on the cell surface, forming an active GnRH-receptor-complex
(G-RG), which also lies on the cell surface. As the free receptors, the bound complex is
also permanently inactivated and activated, with rates k(G-RG)

act and k
(G-RG)
inact , respectively.

Inside the cell, a certain amount of the inactive complex (G-RG)* is degraded, another
part irreversibly dissociates into the cell, forming new inactive GnRH receptors, RG∗, in
the pool. Apart from the mentioned recycling to become active, inactive receptors degrade
with rate kRGdegr . New inactive receptors are not only formed from the mentioned internal-
ization of RG, but are also permanently synthesized in the cell with rate kRGsyn .

The model is a reduced version of the EGFR system as presented in [KKKH09], merging
the there supposed three components for the ligand-receptor-complex inside the cell, the
degraded ligand-receptor-complex and the degraded ligand (here: GnRH) into one term in
our model: the degradation of the GnRH-receptor-complex.

The above described reaction scheme is:

G + RG
kGon−−⇀↽−−
kGoff

(G-RG) , G
kGdegr−−⇀ ∗ ,

(G-RG)
k
(G-RG)
act−−−−⇀↽−−−−
k
(G-RG)
inact

(G-RG)* , (G-RG)*
k
(G-RG)
degr−−−−⇀ ∗ ,

RG
kRG

recy−−−⇀↽−−−
kRG

inter

RG∗ , RG∗
kRG

degr−−⇀↽−−
kRG

syn

∗ ,

(G-RG)*
k
(G-RG)
diss−−−−⇀ RG∗ .
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The corresponding differential equations are:

d

dt
yG(t) = kG ·mass(t) · freq(t)− kGon · yG(t) · yRG(t)

+ kGoff · y(G-RG)(t)− kGdegr · yG(t) (H1)
d

dt
yRG(t) = kGoff · y(G-RG)(t)− kGon · yG(t) · yRG(t)

− kRGinter · yRG(t) + kRGrecy · yRG*(t) (H2)
d

dt
yRG*(t) = k

(G-RG)
diss · y(G-RG)*(t) + kRGinter · yRG(t)− kRGrecy · yRG*(t)

+ kRGsyn − kRGdegr · yRG*(t) (H3)
d

dt
y(G-RG)(t) = kGon · yG(t) · yRG(t)− kGoff · y(G-RG)(t)

− k(G-RG)
inact · y(G-RG)(t) + k

(G-RG)
act · y(G-RG)*(t) (H4)

d

dt
y(G-RG)*(t) = k

(G-RG)
inact · y(G-RG)(t)− k(G-RG)

act · y(G-RG)*(t)

− kRGdegr · y(G-RG)* − kRGdiss · yRG*(t) (H5)

Having derived a detailed GnRH receptor binding scheme, the agonist and antagonist
mechanisms can now be coupled to the model. Both substances bind via a reversible reac-
tion to the free GnRH receptors on the cell surface, RG, and form a complex, (Ago-RG) or
(Ant-RG), respectively. The difference between agonists and antagonists is in the function
of the bound complex:

• The bound antagonists (Ant-RG) have no effect on the rest of the model, they only
block the free GnRH receptors and partly degrade. In the model, no difference is
made concerning the activeness of the complex.

• In contrast, the bound agonists (Ago-RG) act in the same way on the on the rest of
the model as the GnRH-Receptor complex itself. Also, the receptor mechanisms are
chosen to be the same as for GnRH. This means that there is a permanent inacti-
vation and activation between the complex on the inside and on the surface of the
cell with the rates k(Ago-RG)

act and k(Ago-RG)
inact , respectively. As with (G-RG)*, a certain

amount of the inactive complex (Ago-RG)* is degraded, and another part dissociates
to form new inactive GnRH receptors, RG∗, in the pool.
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The reaction scheme is:

AntC + RG
kAnt

on−−⇀↽−−
kAnt

off

(Ant-RG) , (Ant-RG)
kAnt

degr−−⇀ ∗ ,

AgoC + RG
kAgo

on−−⇀↽−−
kAgo

off

(Ago-RG) ,

(Ago-RG)
k
(G-RG)
act−−−−⇀↽−−−−
k
(G-RG)
inact

(Ago-RG)* , (Ago-RG)*
k
(Ago-RG)
degr−−−−−⇀ ∗ ,

(Ago-RG)*
k
(Ago-RG)
diss−−−−−⇀ RG∗ .

The development of the bound antagonist, as well as of the active and inactive agonist-
receptor complexes are thus calculated as:

d

dt
y(Ant-RG)(t) = kAnton · yRG(t) · yAnt,C(t)

− kAntoff · y(Ant-RG)(t)− kAntdegr · y(Ant-RG)(t) (PK6)
d

dt
y(Ago-RG)(t) = kAgoon · yRG(t) · yAgo,C(t)− kAgooff · y(Ago-RG)(t)

+ kAgoact · y(Ago-RG)*(t)− kAgoinact · y(Ago-RG)(t) (PK7)
d

dt
y(Ago-RG)*(t) = −kAgoact · y(Ago-RG)*(t) + kAgoinact · y(Ago-RG)(t)

− kAgodiss · y(Ago-RG)*(t)− kAgodegr · y(Ago-RG)*(t) (PK8)

The agonist and antagonist reversibly bind to free GnRH receptors on the cell surface,
and inactive GnRH receptors are formed from the agonist-receptor complex inside the cell.
Therefore, equations (H2) and (H3) have to be adjusted. They become

d

dt
yRG(t) = kGoff · y(G-RG)(t)− kGon · yG(t) · yRG(t)

− kRGinter · yRG(t) + kRGrecyyRG*(t)

− kAgoon · yAgo,C(t) · yRG(t) + kAgooff · y(Ago-RG)(t)

− kAgodegr · yAnt,C(t) · yRG(t) + kAntoff · y(Ant-RG)(t), (H2a)
d

dt
yRG*(t) = k

(G-RG)
diss · y(G-RG)*(t)− k(G-RG)

back yRG*(t)

+ kRGinter · yRG(t)− kRGrecyyRG*(t)

+ kRGsyn − kRGdegr · yRG*(t) + kAgodiss · y(Ago-RG)*(t). (H3a)

The effect of the agonist-receptor-complex is added to the effect GnRH-receptor complex
wherever it appears. In particular, the release of the gonadotropins RelLH, RelFSH, and the
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development of the corpus luteum are directly affected by GnRH agonist administration.
All other components of the system are indirectly influenced.

These GnRH mechanisms are validated with experimental data from agonist and antago-
nists studies as will be presented in the next section. The same GnRH mechanisms could
also be used for BovCycle, as soon as detailed GnRH mechanisms become interesting for
modelers.

3.2.3 The Gonadotropins LH and FSH

As GnRH, the gonadotropins LH and FSH also occur in a pulsatile manner, but pulsatility,
as e.g. modeled in [ZWG03], is not included in the model for the moment. Instead, average
levels of the gonadotropins are considered.

The development of LH and FSH is regulated by similar mechanisms as in the bovine
model. In the same manner as in BovCycle, LH and FSH in GynCycle occur in the two
compartments pituitary and blood. They are synthesized in the pituitary and released into
the blood. In the model, the ODEs describing their development over time are - also as
in BovCycle - specified via synthesis-release relationships as described in Section 1.2. In
contrast to BovCycle, receptor binding mechanisms are included for both LH and FSH in
the blood.

As in BovCycle, LH synthesis in the pituitary is stimulated by E2 and inhibited by P4
[SS99]. However, there are differences regarding the interaction of the P4 and E2 mecha-
nisms with each other, and that there is a constant LH synthesis assumed. The release of
LH from the pituitary into the blood is identical to the bovine model: LH release is mainly
stimulated by GnRH, i.e. by the active bound GnRH-receptor complex, and additionally,
if present, by the active bound agonist-receptor complex. Inspired by [HKM98], there is a
also small constant release rate of LH into the blood (bLHRel

). In contrast to the dimension-
less bovine model, a parameter Vblood is used here that corresponds to the blood volume.
From the blood, unbound LH is on the one hand cleared constantly with rate constant
clLH, and on the other hand binds to free LH receptors with rate constant kLHon . This leads
to the ODEs:
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SynLH(t) =
(
bLHSyn +H+

E2,LH(yE2(t)
)
·H−P4,LH(yP4(t))

RelLH(t) =
(
bLHRel +H+

(G-RG),LH

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLHp(t)

d

dt
yLHp(t) = SynLH(t)− RelLH(t) (H6)

d

dt
yLH(t) =

1

Vblood
· RelLH(t)−

(
kLHon · yRL(t) + clLH

)
· yLH(t) (H7)

FSH mechanisms in the human model differ from the ones in the cow model, though, in
both models, FSH synthesis is inhibited by inhibin and its release is stimulated by GnRH.
However, the human model GynCycle does not have additional influences of P4 and E2
on FSH release as the bovine model, and it takes into account GnRH influences on FSH
synthesis. Another difference between the two models comes from the modeling of inhibin.

In the human model in this thesis, in contrast to the bovine model, a difference is made
between inhibin A and inhibin B In BovCycle, only inhibin A is considered as it is the
predominant form in bovine follicular fluid. In the former models for the human menstrual
cycle, [Har01] and [Rei09], only one inhibin is included. Later, in [Pas08], a multiple in-
hibin model is presented. This serves as a basis for the modeling of inhibin in this thesis
which will be described further down. FSH synthesis (SynFSH) is inhibited by inhibin A
and B ([GIO+96, HHBC98, MCD+90, SJA+00]), and stimulated by low GnRH frequencies.

In [Pas08], the effects of both inhibin A and inhibin B are included with delays into the
FSH mechanism. The delay of inhibin A is 2.5 days, while the delay of inhibin B is only
1 day. These delays are free parameters in the model of [Pas08], and sensitivity analysis
therein shows a low sensitivity of the delay of inhibin B on the rest of the model. With
the help of techniques described in Section 1.2, the delay of inhibin B can be omitted. For
inhibin A, an effect compartment is introduced. Inhibin A in the effect compartment is
regarded as being the downstream of inhibin A produced in the ovaries. As a result, to
omit an explicit delay for a yIhA, it is transformed into yIhAe, which then goes into the
equation for FSH without delay. This accounts for the former explicitly modeled delayed
effect of inhibin A.

As in BovCycle, there is a small constant release rate of FSH into the blood (bFSH), but the
release is mainly stimulated by the GnRH-receptor complex and additionally - if present -
by the agonist-receptor complex. From the blood, unbound FSH is cleared constantly with
rate constant clFSH or binds to free FSH receptors with rate constant kFSHon . The ODEs for
FSH are thus:

66



3.2. Numerical Model

SynFSH(t) =
1

1 +
(
yIhAe(t)
TIhAe

)nIhAe
+
(
yIhB(t)
TIhB

)nIhB ·H
−
freq,P4(freq(t))

RelFSH(t) =
(
bFSHRel

+H+
(G-RG),FSH(y(G-RG)(t) + y(Ago-RG)(t))

)
· yFSHp(t)

d

dt
yFSHp(t) = SynFSH(t)− RelFSH(t) (H8)

d

dt
yFSH(t) =

1

Vblood
· RelFSH(t)−

(
kFSHon · yRF(t) + clFSH

)
· yFSH(t) (H9)

LH and FSH receptor binding mechanisms are assumed to be similar. The FSH receptor
recycling as modeled in [CMS+01] is taken and incorporated into the model for both
substances. The mechanisms are described by the chemical reaction kinetics

LH + RL
kLH

on−−⇀ (LH-RL) , FSH + RF
kFSH

on−−−⇀ (FSH-RF),

(LH-RL)
kLH

des−−⇀ RLdes , (FSH-RF)
kFSH

des−−−⇀ RFdes,

RLdes
kLH

recy−−⇀ RL , RFdes
kFSH

recy−−−⇀ RF.

The corresponding differential equations for LH and FSH receptor binding are:

d

dt
yRL(t) = kLHrecy · yRLdes(t)− kLHon · yLH(t) · yRL(t) (H10)

d

dt
y(LH-RL)(t) = kLHon · yLH(t) · yRL(t)− kLHdes · y(LH-RL)(t) (H11)

d

dt
yRLdes(t) = kLHdes · y(LH-RL)(t)− kLHrecy(t) · yRLdes(t) (H12)

d

dt
yRF(t) = kFSHrecy · yRFdes(t)− kFSHon · yFSH(t) · yRF(t) (H13)

d

dt
y(FSH-RF)(t) = kFSHon · yFSH(t) · yRF(t)− kFSHdes · y(FSH-RF)(t) (H14)

d

dt
yRFdes(t) = kFSHdes · y(FSH-RF)(t)− kFSHrecy · yRFdes(t) (H15)
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3.2.4 The Processes in the Ovaries: Follicular and Luteal Devel-
opment

The processes in the ovaries are modeled in a different approach than in the bovine model.
In BovCycle, follicular and luteal function are modeled each in one ODE. Thus, two ODEs
- representing the capacity of the follicles and the corpus luteum to produce ovarian hor-
mones - comprise all considered effects in the ovaries. A variety of other approaches have
been used in the past to model follicles and corpus luteum, as has been discussed in [Rei09].

In GynCycle, follicular and luteal functions are modeled in several discrete stages, each of
them described by a differential equation. This approach is adopted from [Rei09, Pas08].
Every stage has both its characteristic development and its hormone production. In the
first stage, follicular growth is initiated by bound FSH. Then, transition from one follicular
stage to the next is stimulated by bound LH and/or FSH.

With increasing size, stimulated by FSH, the follicles evolve LH-receptors on the granulosa
cells, thus becoming more sensitive to LH, which stimulates their decay. The LH receptors
disappear with the development of the corpus luteum. A new component ys(t) is intro-
duced that represents the LH sensitivity of the follicles,

d

dt
ys(t) = H+

FSH,s

(
y(FSH-RF)(t)

)
−H+

P4,s (yP4(t)) · ys(t). (H16)

All LH dependent transition rates between different follicular stages are now multiplied

with the LH sensitivity ys(t).

The corpus luteum starts to develop under the condition that there is an LH peak and the
follicles are already large enough for ovulation. Therefore an ovulatory follicle OvF only
develops when the preovulatory follicle PrF is large enough. To make the ovulatory scar
Sc1 independent from the size of the ovulatory follicle OvF, its growth only depends on
OvF via a Hill function. Furthermore, the transitions between different luteal stages are
stimulated by the GnRH-receptor complex and the agonist-receptor complex, respectively.
This modification became necessary to account for a truncated luteal phase after agonist
administration in the late luteal phase.

Summarizing, the equations for the twelve follicular and luteal stages are:
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d

dt
yAF1(t) = H+

FSH,AF1

(
y(FSH-RF)(t)

)
− kAF2AF1 · y(FSH-RF)(t) · yAF1(t) (H17)

d

dt
yAF2(t) = kAF2AF1 · y(FSH-RF)(t) · yAF1(t)− kAF3AF2 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF3
AF2

· ys(t) · yAF2(t) (H18)

d

dt
yAF3(t) = kAF3AF2 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF3
AF2

· ys(t) · yAF2(t)

+ kAF3AF3 · y(FSH-RF)(t) · yAF3(t) ·
(

1− yAF3(t)

AFmax

)
− kAF4AF3 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF4
AF3

· ys(t) · yAF3(t) (H19)

d

dt
yAF4(t) = kAF4AF3 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF4
AF3

· ys(t) · yAF3(t)

+ kAF4AF4 ·
(
y(LH-RL)(t)

SF(LH-RL)

)nAF4

· yAF4(t) ·
(

1− yAF4(t)

AFmax

)
− kPrFAF4 ·

(
y(LH-RL)(t)

SF(LH-RL)

)
· ys(t) · yAF4(t) (H20)

d

dt
yPrF(t) = kPrFAF4 ·

(
y(LH-RL)(t)

SF(LH-RL)

)
· ys(t) · yAF4(t)

− kPrFcl ·
(
y(LH-RL)(t)

SF(LH-RL)

)nOvF
PrF

· ys(t) · yPrF(t) (H21)

d

dt
yOvF(t) = kOvF ·

(
y(LH-RL)(t)

SF(LH-RL)

)nOvF
PrF

· ys(t) ·H+
PrF,OvF(yPrF(t))− kOvF

cl · yOvF(t) (H22)

d

dt
ySc1(t) = H+

OvF,Sc1 (yOvF(t))− kSc2Sc1 · ySc1(t) (H23)

d

dt
ySc2(t) = kSc2Sc1 · ySc1(t)− kLut1Sc2 · ySc2(t) (H24)

d

dt
yLut1(t) = kLut1Sc2 · ySc2(t)

− kLut2Lut1 ·
(

1 +H+
(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut1(t) (H25)

d

dt
yLut2(t) = kLut2Lut1 ·

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut1(t)

− kLut3Lut2 ·
(

1 +H+
(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut2(t) (H26)

d

dt
yLut3(t) = kLut3Lut2

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut2(t)

− kLut4Lut3 ·
(

1 +H+
(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut3(t) (H27)

d

dt
yLut4(t) = kLut4Lut3

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut3(t)

− kLut4cl ·
(

1 +H+
(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut4(t) (H28)
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On the basis of these equations, the production of the ovarian hormones can be modeled,
as will be described in the following.

3.2.5 Ovarian Hormones in the Blood

As in bovine, the ovarian hormones estradiol, progesterone, and inhibin A and B are pro-
duced by the follicles and the corpus luteum. In both the bovine and the human model,
linear dependencies hold between ovarian tissue and hormone concentration in the blood.
In bovine, a single equation for follicular production capacity leads to similar profiles for
estradiol and inhibin. Also, only one equation for luteal tissue in the bovine results in a
similar course of corpus luteum and progesterone. In both humans and cows, E2 is only
produced by the follicles, and P4 only by luteal tissue. However, inhibin in bovine is only
produced by the follicular tissue, but in humans by both follicles and corpus luteum. In
humans, the multiple stages of ovarian development allow for a more precise hormone pro-
duction calculation throughout the cycle.

In humans, the ability of the follicles to produce estradiol is stimulated by LH since LH
induces androgen synthesis. As described above, an effect compartment for inhibin A
is introduced in order to account for a delayed effect of this substance which has been
reported in [RPM+98, SS99], and to avoid delay differential equations. Instead of being
cleared, inhibin A is first transferred into another compartment. The ODEs for the ovarian
hormones are:

d

dt
yE2(t) = bE2 + kE2AF2 · yAF2(t) + kE2AF3 · yLH(t) · yAF3(t)

+ kE2AF4 · yAF4(t) + kE2PrF · yLH(t) · yPrF
+ kE2Lut1 · yLut1(t) + kE2Lut4 · yLut4(t)− kE2cl · yE2(t) (H29)

d

dt
yP4(t) = bP4 + kP4Lut4 · yLut4(t)− kP4cl · yP4(t) (H30)

d

dt
yIhA(t) = bIhA + kIhAPrF · yPrF(t) + kIhASc1 · ySc1(t) + kIhALut1 · yLut1(t) + kIhALut2 · yLut2(t)

+ kIhALut3 · yLut3(t) + kIhALut4 · yLut4(t)− kIhA · yIhA(t) (H31)
d

dt
yIhAe(t) = kIhA · yIhA(t)− kIhAecl · yIhAe(t) (H32)

d

dt
yIhB(t) = bIhB(t) + kIhBAF2 · yAF2(t) + kIhBSc2 · ySc2(t)− kIhBcl · yIhB(t) (H33)

The model for the human menstrual cycle consists of 33 ODEs and 114 unknown param-
eters. Identified parameter values and initial values can be found in the appendix. In
[RmD+12], more detailed simulation results can be found. A selection of the most impor-
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tant results will be presented in the following.

3.3 Simulation and Model Validation

The simulation of the above derived model for the human menstrual cycle leads to quasi-
periodic solutions for all 33 variables. The period, i.e. the cycle length, of the simulation
is 28 days. In figure 3.3, one cycle of the simulation of the four most often measured
hormones (LH, FSH, estradiol and progesterone) is depicted, together with measured data
of 12 healthy individuals, pulled from a Pfizer database. The simulation shows that the
model captures the average course of the four substances well, and is thus consistent with
experimental data.
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Figure 3.3: Simulation with GynCycle together with measurements from
healthy individuals. Time units are days.

In Figure 3.4, the effect of virtual single doses of 100µg GnRH Agonist is shown, together
with experimental data for LH from three individuals after single subcutaneous doses of
100µg GnRH Agonist Nafarelin at different times in the cycle. The administration of
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Nafarelin in the early follicular phase postpones ovulation. In the late follicular phase, ag-
onist administration triggers ovulation, the following cycles are shorter and return to their
original length within the next three cycles. Administered in the luteal phase, Nafarelin
shortens the luteal phase. These findings are in line with literature [MHM+85, FJO+02],
and thus emphasize the predictive ability of the model.
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Figure 3.4: Profiles of LH after administration of a single dose of 100µg GnRH
Agonist Nafarelin at different phases within the cycle (blue), together with
experimental data of a corresponding study (black dots), and the simulation for
LH without administration (dashed red)

In Figure 3.5, simulation results together with data from an experimental multiple dose
study with the GnRH agonist Nafarelin are shown. After an initial stimulatory phase,
LH levels are suppressed but acute responses to Nafarelin are maintained, whereas P4 is
suppressed constantly. This is in line with findings from [MBA+86].
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Figure 3.5: Profiles of LH and P4 during administration of multiple doses of
250µg GnRH Agonist Nafarelin

Simulation results from GnRH antagonist administration can be found in [RmD+12]. Sev-
eral studies with different dosing amounts and different dosing time points can be well
captured with the current model.

The model for the human menstrual cycle can be found in Table A.1 in the Appendix,
together with the list of parameter values (Table A.2) and initial values (Table A.3).

Summarizing, the modifications of the Reinecke model still lead to good results concerning
the data of healthy individuals. The elimination of time delays, as well as the omittment of
the detailed steroidogenesis in the ovaries and the no longer stochastic pulse pattern have
not lead to disadvantages regarding the simulation for healthy individuals. In addition,
the ability of the new model to capture the effects of GnRH agonist and antagonist is a
great advancement, and a step towards reliable predictions with the model of the human
menstrual cycle.

Of course, there are large differences between the simulations results with the human and
the bovine model. However, some similarities can be observed. The course of the four
most often measured hormones is depicted in Figure 3.6. One can observe that in both
BovCycle and GynCycle, the course of LH over the cycle has a peak-like shape, the peak
marks the time point of ovulation. P4 starts to grow shortly afterwards, but grows much
longer in bovine, having its maximum level shortly before luteolysis. E2 and FSH both
have several waves per cycle. As discussed in Chapter 2, adjustments to BovCycle need to
be made to make the curves less wave-like, and more smooth. Regarding the experimental
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Figure 3.6: Simulation with GynCycle together with simulation with BovCycle,
centered around the LH peak at day zero. The orange line shows the course of
the hormones as simulated with the human model, the blue dashed line shows
simulations with the bovine model.



3.4. Discussion of Follicular Waves

data, the model of the human menstrual cycle already captures the course of FSH and E2
well.

3.4 Discussion of Follicular Waves

In the model GynCycle, the existence of several follicular waves per cycle has not been
taken into consideration. There is, however, evidence, that also in humans, follicles grow
and decay in a wave-like pattern. This approach has been discussed in Chapter 2.4.

Follicular development consists of several successive stages of maturation that a cohort of
follicles passes through. In humans, as in the above presented model, it is often assumed
that this follicular development occurs exclusively between the decay of the corpus luteum
and ovulation, called the follicular phase. With ovulation, the follicular phase ends, and
the remainings of the follicle form the corpus luteum. During the luteal phase, follicular
growth is suppressed by progesterone, and it is commonly expected that the follicles do
not significantly start to grow during this phase.

Typical simulation results for follicles with GynCycle are depicted in Figure 3.7. One can
observe in the figure, that the follicles start to rise only once in every cycle.
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Figure 3.7: Simulation results with GynCycle for antral follicles and preovula-
tory follicles. Ovulation in the model takes place at day 0.

However, there is a lot of evidence that also in humans, follicular development occurs in
waves. In [For94] it is stated that follicular development occurs only in the follicular phase,
but that more recent studies rather suggest similar ovarian dynamics as in cows (and sheep
and cattle).

In [GGG+04], the ovarian dynamics between mares and women were compared and the
results indicated many similarities in their follicular function. [AP95] uses knowledge from
the follicular waves in bovine to study similar wave-patterns in humans. This is a promis-
ing approach also for the models presented in this thesis.
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Figure 3.8: Development of the diameter of the largest follicle of each wave (◦),
together with the number of follicles ≥ 5 mm (�) for women exhibiting (A) two
waves (n=34) and (B) three waves (n=16) during one interovulatory interval
(Source: [BAP03]).

In [BAP03], a clinical study with fifty healthy women was performed that investigated
the follicular phenomenon in women. The study showed an existence of several follicular
waves in all women. In particular, a large part of the patients had two waves, a smaller part
three waves per cycle. An example of the results is illustrated in Figure 3.8. These findings
suggest that the model for follicular waves developed in Section 2.4 may be useful for an
improved model of the human menstrual cycle, where waves of folliculogenesis replace the
currently used approach of successive follicular stages.

From the current point of view, a model for the human menstrual cycle that takes into
account different follicular wave patterns would be closer to reality. An improved model
that would map the experimental findings from [BAP03] would thus be promising to even
better capture the mechanisms behind the menstrual cycle, and thus would help to make
predictions with this model even more reliable.
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Chapter 4

Analysis of the Numerical Bovine Model

This chapter focuses on properties of the ODE model for the bovine estrous cycle. In
particular, it investigates the stability of the model via a standard Floquet-multiplier ap-
proach. Also, a new procedure is presented to detect different follicular wave patterns for
different parameterizations of this model. A method to calculate robustness regions for
parameters in which normal P4 profiles are obtained is performed. Finally, a reduction
technique is applied that uses the qualitative structure of the model to derive a smaller
model that generates the same output for some components.

The methods in this chapter are only applied to the bovine model, but could also be used
for the human model. Due to the similar structure of the human model, comparable results
are expected.

4.1 Stability

A well-known but nevertheless remarkable characteristic of biological and in particular
endocrinological systems is their stability. In most cases, even after large and long en-
vironmental changes, the functioning of the system comes back to original. The ability
to recover after illnesses, treatments or other perturbations of normal functioning is an
important characteristic to have in mind when modeling biological systems.

A numerical model is called stable, if small perturbations do not disturb the overall behav-
ior of the solution. In the continuous case with its infinite possible states, there are several
possibilities to explore the stability of the system.

A first hint for the stability of the model is depicted in Figure 4.1. Therein, a flow of
the two-dimensional phase space of estradiol versus progesterone is depicted. Initial values
for the two variables E2 and P4 are chosen along a grid in the phase space. The initial
values for the other variables in the models are kept fixed. Wherever the initial values
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Chapter 4. Analysis of the Numerical Bovine Model

Figure 4.1: A flow for the two-dimensional phase space of yE2 versus yP4, gen-
erated with XPPAUT [Erm]

for P4 and E2 are chosen, the simulation converges to the same limit cycle. This suggests
that even relatively large perturbations of the system do not disturb its long-term behavior.

The evolution of such perturbations of the initial values of a system of ODEs can be de-
scribed by the Wronskian matrix [Deu84]. It is obtained by solving a variational equation
calculated from the right hand side of the ODE system. This provides an analytical tool
to investigate model stability.

The Wronskian matrix is obtained as the solution of the variational equation

dW

dt
(t) = fy(y(t)) ·W (t), W (0) = Id,

for the ODE system y′ = f(y). Let T be the period length of the solution of the ODE
system, and let the solution be disturbed at time t = 0. The Wronskian W evaluated
at time t = T tells how this disturbance has impacted the solution after one period,
δyT = W (T ) · δy0. If the perturbation has become smaller, |δyT | < |δy0|, i.e. closer to the
real limit cycle, the system is locally stable.

Thus, with the columns of the Wronskian denoted as Wi(t),

W (T ) = [W1(T ),W2(T ), . . . ,Wn(T )],
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4.2. Follicular Wave Patterns

the Wronskian matrix is obtained by numerically solving the system
y′

W ′
1(T )
...

W ′
n(T )

 =


f(y)

fy(y(T ))
. . .

fy(y(T ))

 ·


1
W1(T )

...
Wn(T )

 . (*)

The eigenvalues of the Wronskian are called Floquet multipliers of the system. If the Flo-
quet multipliers are all in the unit circle, the system is stable, see e.g. [Deu84].

The nonzero entries of the Jacobian with respect to the variables, fy(y(T )), as well as the
Wronskian matrix of the system of the bovine estrous cycle can be found in the Appendix.

The numerically computed eigenvalues of the Wronskian matrix are calculated as

5.7839 · 10−1

−3.1083 · 10−1

−7.4904 · 10−3

−9.2361 · 10−4

1.0751 · 10−5

5.5680 · 10−7

−5.1326 · 10−10

1.1917 · 10−10

8.8229 · 10−14 + 6.9451 · 10−12i

8.8229 · 10−14 − 6.9451 · 10−12i

6.0748 · 10−12

−2.1544 · 10−12

2.8519 · 10−13

−1.2054 · 10−13

1.4909 · 10−27


All eigenvalues are within the unit circle, thus, the model for the bovine estrous cycle is
locally stable.

Note that the stability is only shown for the current set of parameters, and locally for a
subset of possible initial values. In Chapter 5, a parameter-independent discrete model for
the bovine estrous cycle is derived, and stability is investigated globally.

4.2 Follicular Wave Patterns
Ovulation takes place once in every cycle at the end of a follicular growth and matura-
tion process. In bovine, an estrous cycle includes several, normally two or three, wave-like
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patterns of follicle development [For94]. In each wave, several follicles from the pool of
primordial follicles start to grow and compete to become the dominant follicle. One after
another, they all undergo atresia. In the last wave, the dominant follicle does not undergo
atresia but continues to grow and ovulates. The number of follicular waves that occur per
cycle will be discussed and analyzed in this section.

There are several reasons to study the difference in hormone patterns between two- and
three-wave cows. For example, [BGK04] found that cows with two follicle waves during
the estrous cycle produce more milk than those with three waves. Another motivation to
study this difference is to investigate the relation of the number of waves and fertility.

Biological Evidence

The number of follicular waves per cycle differs between cows. According to [BGK04,
WIR+04], most cows have two or three waves, i.e. one or two anovulatory waves plus the
ovulatory wave in each cycle. Some cows may have only one or even four follicular waves
per cycle, and often the number of waves differs from cycle to cycle.

Figure 4.2: Follicular function with different parameterizations of the model.
Varying certain parameters, a simulation output with two, three, or four follic-
ular waves per cycle can be generated.

Two-wave cows, i.e. cows with usually two follicular waves per cycle, have a shorter cycle
than three-wave cows. Since in a long time span, a two-wave cow ovulates more often,
one can derive that, at a randomly chosen time point, a herd of two-wave cows probably
includes more cows that are at the stage around ovulation. Therefore, one could assume
that two-wave cows have higher fertility rates compared to three-wave cows. However,
reality is more complex. While some studies show no difference regarding fertility rates
[BGK04, CAŞD05], other studies report better fertility in three-wave cycles compared to
two-wave cycles [TTB+02], and it has been suggested that the older and larger ovulatory
follicles in cycles with two waves contain oocytes of less quality than cycles with three
waves [RB96].
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4.2. Follicular Wave Patterns

The reason for this could be as follows: The follicle that is dominant at the moment of CL
regression ovulates. Therefore, the number of follicular waves in a cycle is largely affected
by the interplay of follicle growth rate and the time point of CL regression. Thus, it is
influenced by the timing of two major rhythm drivers of the cycle, follicle growth under
control of FSH, and CL regression under control of PGF2α . When the CL is regressed at
the moment that a prolonged dominant follicle is present, the oocyte could be of inferior
quality [RB96].

The factors that regulate the number of waves in bovine are not fully explored, though
experimental effort has been made to search for endocrine mechanisms that could be re-
sponsible for controlling these factors. [WIR+04] did not find any difference in number of
waves between cows and heifers. Also, breed or age do not affect the number of waves per
cycle [AJSM08]. However, some findings on differences between two- and three-wave cows
have been reported. [JSMA09] observed that CL regression occurs 2.5 days earlier in two-
wave compared to three-wave cows. The onset of luteolysis thus might play an important
role. [BGK04] found that ovulatory follicles in two-wave cycles have a lower growth rate
compared to the ovulatory follicles in three-wave cycles. [PRGM03] observed that cows
with three-wave cycles had lower FSH and Inhibin blood concentrations at non-ovulatory
waves compared to two-wave cows. [MTA+06] found that immunization against Inhibin A
increased the number of waves per cycle. Summarizing, three biological mechanisms are
found that have been reported to influence the number of waves: the time of CL regression,
the growth rate of the follicles, and low Inhibin and FSH concentrations.

(a) Two-wave cycle (b) Three-wave cycle

Figure 4.3: Two-dimensional view on the phase space. By changing one param-
eter, a different rhythm of the limit cycle can be enforced

Ten parameters of the bovine model that can directly be associated with these described bi-
ological mechanisms have been tested for inducing a change in wave number in [BRm+11].
Their values are varied, sometimes in combination with each other, and for certain param-
eters, a change in wave number is obtained.
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Fourier Analysis to Explore Different Wave Patterns

A systematic approach to analyze how parameter changes lead to different wave patterns
can be taken with the help of Fourier analysis. Even without having biological evidence,
this allows to detect the responsible model parameters that control the type of periodicity
of the solution. The aim of the analysis described in the following is to calculate the num-
ber of waves per cycle while one parameter varies. All parameters are varied individually,
and the development of the wave number is shown. Later, two parameters are varied at a
time. Visual detection of changes in the number of waves may lead to new insights.

From the simulations it is clear that, in the bovine model, mainly two types of components
exist. The variables that are associated with luteal development, i.e. the corpus luteum
itself, progesterone, or the substances involved in luteolysis, peak once every cycle. The
variables that are associated with follicular development, i.e. the follicles and the hormones
produced by them, have several waves per cycle. For substances as GnRH, LH, or OT it is
not clear which one is more dominant, but they represent the bridge between the CL and
the follicles and play a role in the change of the model behavior regarding the number of
waves in the simulation. Decisive is that the number of waves per cycle can be counted by
comparing the one-peak variables with the several-wave variables.

For the following analysis, we take the variable describing the follicles, yFoll, as represen-
tative for the several-wave-variables, and yCL as representative for the one-peak variables.
In the following, the rhythm of a variable denotes the time interval between two maxima.
The rhythm of the one-peak variables is the cycle length, while the rhythm of the several-
wave-variables can be calculated through spectral analysis. To compare the two rhythms
via the calculation of their Fourier coefficients, first the precise cycle length is needed.

To obtain the precise cycle length, the code PERIOD, presented in [Deu84], is used. As
the algorithm used in PERIOD is sensitive to starting values, a good first approximation of
the cycle length is needed. A rough approximation by hand is not good enough. Thus, the
Fourier transformation of the simulation of the variable yCL is used for improvement. The
maximum coefficient of the Fourier transformation is then taken as the starting value for
the length of the period. With this starting value, PERIOD uses NLSCON to iteratively
optimize the initial values of the ODE system to obtain a precise periodic solution.

Knowing the true period length T and initial values of the system, a Fourier analysis is
now performed on the several-wave-variable yFoll,

yFoll(t) =
∑
k

ck exp(ikπt/T ).

This delivers the contribution of the most dominant, lowest frequent components of this
variable to the total value of yFoll, and therefore the contribution of the components that
have one, two, three, or four oscillations to the course of yFoll.
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4.2. Follicular Wave Patterns

This approach is performed with different parameter values. Possibly, the component hav-
ing the most dominant oscillation changes. For example, it changes from the two-wave
component having the highest contribution to the three-wave component being the most
dominant oscillation of yFoll, indicating a change from a two-wave to a three-wave cycle
pattern of the whole system. Two examples of such changes are depicted in Figure 4.4.
Varying one parameter at a time and performing the Fourier analysis simultaneously, leads
also to a varying period length.

(a) Variation of mFoll
FSH

(b) Variation of cFSH

Figure 4.4: The contribution of the first Fourier coefficients f1, f2, f3, and
f4 (the most dominant oscillations) to yFoll as function of single parameters.
A change of the order of the lines indicates a change in wave numbers in the
simulation in this parameter region.
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Table 4.1: Parameters and their regions controlling the number of waves per
cycle if one parameter is varied at a time. The fixed values of the remaining
parameters can be found in the Appendix.

par range one-wave range two-wave range three-wave range four-wave

cFSH . . 1.5 - 5.0 5.0 - 10.7
bFSH . . 0.55 - 1.7 1.7 - 24.0
mLH

E2 . 5.5 - 30.0 0 - 5.5 .
mFoll

FSH . 0.92 - 1.8 0.45 - 0.92 0.36 - 0.45
TPGF
Enz . . 0.91 - 1.8 1.8 - 2.8
TPGF
OT . . 0 - 2.4 2.4 - 7.7
cPGF . . 0 - 4.5 4.5 - 24.0
SF 0.58 - 5.0 0.3 - 0.51 0.15 - 0.3 0.045 - 0.15
mP4

CL . 5.0 - 15.7 1.62 - 5.0 0.72 - 1.62
cEnz . . 1.8 - 3.9 3.9 - 5.7
mOT

E2 . . 1.0 - 20.0 0.22 - 1.0
cOT . . 0 - 1.4 1.4 - 5.5

For all 60 parameters, this spectral analysis is performed and the results are visually
checked. For the value of porig identified in Chapter 2, the here investigated range of values
is [0.1 · porig, 10 · porig]. Within this range, for 12 parameters, there is a change in wave
numbers. These parameters, together with their investigated regions of interest, are de-
picted in Table 4.1. For the rest of the parameters, there is no change in the order of the
oscillatory components in the observed range of values.

In biology, one expects the number of waves to depend not necessarily on only a single pa-
rameter, but eventually on a combination of multiple parameter changes. Extension of the
above described analysis technique into higher dimensions, thus varying several parameters
at a time and investigating the order of the oscillation components of the simulation, is not
difficult. Visual evaluation of the results, however, needs more careful consideration be-
cause evaluation of all graphs even for only two dimensions would be too time-consuming.
Thus, a systematic approach has been chosen that takes into account sensitivities with
respect to the cycle length.

In the one-dimensional case, it has been observed that a change in the order of the oscil-
latory components comes along with an abrupt change in the cycle length at the value of
the parameter, which corresponds to a step-like shape of the period-length-curve. This is
reasonable, since this change of order results from the interplay between the wave variables
(e.g. follicles) and the peak-variable (e.g. PGF2α ).

A sensitivity analysis of the cycle length L with respect to the parameters, dL/dp, ob-
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Table 4.2: The 10 most sensitive parameters w.r.t the period

par upper bound lower bound change in period length

mCL
CL 0.03530 0.00035 -52.733803991115

TFSH
Inh 0.11800 0.00118 -24.257181177979
mFoll

Foll 0.22000 0.00220 -10.970023704650
mFoll

P4 1.10000 0.01100 -6.787401610235
mFoll

FSH 0.56200 0.00562 6.663947390851
mOvul

LH 0.20000 0.00200 -5.874556420251
T LH
P4 0.02690 0.00027 -4.207062858462
bFSH 0.94800 0.00948 -2.638375776888
mFSH

E2 0.39600 0.00396 -2.450479865804
TG,2
E2 0.64800 0.00648 2.411158103445

Table 4.3: Parameter combinations and their sensitivities w.r.t the period

sens. rank par1 par2 change in period length

1 mFoll
FSH mFoll

P4 0.0112112802
2 TFSH

Inh mFoll
P4 0.0103284892

3 mFoll
P4 cInhFoll 0.0103283604

4 bFSH mFoll
P4 0.0099673220

5 mFoll
Foll mFoll

P4 0.0098795470
6 mFoll

P4 mCL
CL 0.0093276451

7 cFSH mFoll
P4 0.0092558397

59 TFSH
Inh mFoll

FSH 0.0066074858
60 mFoll

FSH cInhFoll 0.0066073571
61 bFSH mFoll

FSH 0.0062463187
63 TFSH

Inh cInhFoll 0.0057245661
66 TFSH

Inh bFSH 0.0053635276
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tained through numerical differentiation, can give a hint to which parameters might lead
to a change in the order of the components. Since the cycle length is quite sensitive to
these parameters locally, their changes may lead to a step in the cycle length at some point.
The sensitivity of the cycle-length to the parameters is not a global information, but a hint
to which parameters to examine further. In the one-dimensional case, all parameters have
been evaluated visually, and the sensitivity analysis yields that of the 12 parameters that
can by themselves control the number of waves, 6 are among the eight most sensitive.

In the two-dimensional case it is therefore convenient, instead of visually checking all
60 · 59/2 = 1741 possible combinations, to restrict the examination to the most sensitive,
in order to find at least some combinations that lead to a change in the number of waves.
It is assumed that a parameter that is itself very sensitive is also sensitive in any combina-
tion. It can be observed that in the 58 most sensitive combinations, mFoll

P4 is always one of
the two parameters in the combination. To also check different parameter combinations,
besides the seven most sensitive combinations, also the five most sensitive combinations
without mFoll

P4 have been checked visually. The corresponding sensitivities with respect to
the period length are given in Table 4.3. Two examples of the development of the Fourier
fractions are illustrated in Figure 4.5. Among all 12 of the checked combinations, there is
a change in order of the most dominant fraction, thus a change of waves depending on the
values of the parameters.

Summarizing, for the 12 parameters depicted in Table 4.1, a change of the number of waves
per cycle can be obtained by changing the value of a single parameter. These 12 parame-
ters have been identified by visually checking the developments of the contributions of the
first four Fourier coefficients. The ranges for the parameter values that lead to a particular
wave pattern have been determined. Regarding the simultaneous change of two parame-
ter values, the sensitivity analysis with respect to the cycle length gives good suggestions
which parameter combinations can provoke a change in wave patterns.

In contrast to [BRm+11], which used biological knowledge to find parameters that regulate
the wave patterns, the here presented approach represents a more systematic approach that
finds such parameters based on mathematical properties of the simulation output. This
extends the previous findings in [BRm+11], and it gives a more reliable set of candidates
that experimental effort can be focused on.

As another systematic approach to analyze the model, parameter regions can be explored
with regard to other cycle characteristics. This will be the subject of the next section.
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(a) mFoll
FSH and mFoll

P4

(b) TFSH
Inh and bFSH

Figure 4.5: Two examples of the fraction of the first four Fourier coefficients (the
most dominant oscillations) to yFoll as a function of two parameters. A change
of the order of the lines indicates a change in wave numbers in the simulation
in this parameter region.
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4.3 Parameter Robustness Regions

In the ODE model for the bovine estrous cycle, several factors may perturb the periodic
behavior of a normal cycle. Such factors are likely the effect of simultaneous changes in
multiple parameters, which could be mapped to biological mechanisms in a real cow. In
this section, a method for parameter perturbation is presented that finds parameter con-
figurations which correspond to certain pathological situations. In particular, robustness
regions, in which a normal cycle takes place, are defined and with this method detected.
Due to the way they are defined, outside of the robustness regions, the occurrence of
cystic ovaries, coherent with atypical P4 levels, is suggested. In this section, the idea of
the procedure and the most important results are presented, for more details see [BAM+12].

Cystic ovaries, or persistent corpora lutea, are an important cause of reproductive failure in
dairy cows [Gar97]. They develop when the dominant follicle or the CL fails to regress and
maintains steroidogenesis. Several metabolic and endocrine factors are known to increase
the risk of the formation of cystic ovaries, but the exact pathogenesis is unclear. Detection
of parameter regions involved in the formation of cystic ovaries could help to understand
which biological mechanisms play a role.

Deduced from [DLW98], an estrous cycle is considered normal when P4 levels are lower
between 0.15 and 2.00 (on the relative scale) for 9-19 days in the luteal phase and below
0.15 for less than 12 days in the inter-luteal interval. This is illustrated in Figure 4.6.

Figure 4.6: Illustration of the normal luteal phase analyzed in the model. The
figure shows the P4 (progesterone) levels obtained with the initial parameteri-
zation (Source: [BAM+12]).
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For the determination of the robustness regions in the ODE model, a simulation of the
bovine estrous cycle is considered as normal if

• all parameters are positive,

• yP4 < 2,

• the length of the luteal phase length is 9-19 days (no delayed luteolysis),

• the inter-luteal interval has a maximum length of 12 days (no delayed ovulation).

In a certain region in the 60-dimensional space around the initial parameter values, the
system still shows fulfills the criteria for a normal cycle. This region is referred to as the
robustness region.

In [AMGV10], a method is developed to estimate parameter robustness regions for models
with oscillatory behavior. This method is especially designed to be efficient for systems
with a large number of parameters. The number of simulations scales linearly and not ex-
ponentially with the number of parameters. Using the criteria from above, this approach
was adjusted and applied to find an approximation of the robustness region for a normal
estrous cycle. The adjusted method is described in [BAM+12]. First, the gradient vector
representing the sensitivity of luteal phase length to changes in each parameter value is
calculated. This gradient vector represents the direction in which the luteal phase length
changes most. This vector is taken as the first direction in which the nominal parameter
set is perturbed. Next, the other perturbation directions are constructed such that they
are perpendicular to each other and also to the first perturbation direction.

Starting from the initial values of the 60 model parameters, denoted as nominal set k0, all
parameter values are perturbed along the perpendicular directions to detect where along
these directions the model behavior shows a qualitative transition. As the current model
contains 60 parameters, the nominal parameter set is perturbed in 60 positive and 60 neg-
ative directions. The perturbation along a certain direction is stopped when one of the
parameters approached zero, when P4 levels became too high, or when the P4 profiles met
the definition for delayed ovulation or delayed luteolysis.

An example of a lower dimensional robustness region is shown in Figure 4.7. A two-
dimensional robustness analysis is carried out in the plane spanned by these two most
sensitive parameters, mCL

CL, and mOT
P4 in the system. The cross section of the robustness

region within this plane is presented in Figure 4.7. This cross section, colored in gray, is
obtained by sampling the parameter space (mCL

CL, mOT
P4 ) meanwhile fixing the other param-

eters at their nominal value. For all points in the gray region the model predicts a normal
cycle. Obviously, the nominal parameter set k0 lies inside the robustness region.

After estimating the first two-dimensional robustness region, the analysis is continued such
that the following perturbations are each perpendicular to each other. All perturbations
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Figure 4.7: The cross section of the robustness region of the model in the 2-
dimensional (mCL

CL, mOT
P4 ) plane (gray area). The nominal parameter set k0 is

marked by ‘∗’. A normal cycle is obtained when (mCL
CL, mOT

P4 ) take values in
the gray area, keeping the other parameters fixed at nominal values (Source:
[BAM+12]).

are started from the nominal set k0, and all direction vectors are normalized. For each
perturbation direction, the maximal variations are calculated, both in positive and neg-
ative directions, in which the system still leads to a normal simulation, according to the
definition above.

Perturbation along two specific vectors was found to cause non-robustness of the system
immediately: for these directions, a very small perturbation in negative direction resulted
in delayed luteolysis, and in positive direction in delayed ovulation. In one direction, pa-
rameters mCL

CL, cP4CL, mOT
P4 , and TOT

P4 can be further perturbed than others. In the other
direction, parameters c1G and mCL

CL can be disturbed the most. This suggests that these
parameters strongly determine the occurrence of P4 patterns that are associated with de-
layed ovulation and delayed luteolysis.

The described method can help to generate hypotheses regarding the mechanisms and
predisposing factors involved in the development of cystic ovaries. The simulation results
suggest that mechanisms regulating CL functioning, luteolytic signals, and GnRH synthesis
are likely involved in the development of cystic ovaries. This represents another systematic
approach that could be used to focus experimental effort, or to indicate mechanisms for
further investigation.

4.4 Model Reduction
The last section of this chapter deals with the reduction of the bovine ODE model. Com-
bined with a method that explores the parameter space, structure-based reduction steps
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are performed. The bovine model of 15 odes and 60 parameters is reduced to a model of
10 odes and 38 parameters.

Nowadays, the simulation of large ODE systems usually does not present large difficul-
ties. However, model reduction can lead to interesting insights regarding the underlying
dynamics of the modeled phenomenon. Biological models are often based on a variety of
assumptions, and it is up to the modeler which mechanisms to include and which not.
Whether the mechanisms that constitute to the model are the right ones is validated with
the help of measurements, thus by checking the output of the model. Whether the chosen
mechanisms are unique, or whether there exist other mechanisms that lead to the same
model behavior, can usually not be proven. Model reduction techniques aim at finding
simpler models that result in the same validated model output. They can help to decide
which components are essential for the predictive power of the model.

A lot of model reduction techniques are based on quasi steady state assumptions. For mod-
els where all variables are periodic, such methods cannot be used. In [AGM12], a method
is proposed that reduces an ODE system based on its logical structure. After applying this
method, additional structure-based ideas are presented in this section.

The method in [AGM12] is based on the exploration of the admissible parameter region.
A certain model output is specified that needs to be captured by the model. More specif-
ically, time series for yLH, yFSH, yP4, yE2, and yInh, that are taken from the simulation of
BovCycle, need to be reproduced with a certain tolerance while varying the parameter
values. The admissible region is the subspace of the parameter space, in which this output
is only changed within certain tolerance ε. If the admissible region includes zero for some
parameters, these parameters are set to zero in the reduction procedure.

Let p denote the current vector of parameter values. Then, the admissible region is the set
of all parameter values p̃ = [p̃1, ..., p̃q] for which the distance of the two solutions is small,

1

n m nD

nD∑
l=1

n∑
j=1

m∑
i=1

(
ylj(ti, p̃)− ylj(ti, p)

ylj(ti)

)2

< ε

m being the number of time points, n the dimension of the unreduced ODE system, and
nD the number of different data sets that are available [AGM12].

To determine the admissible region for BovCycle, first single parameters are set to zero. It
is tested whether the simulation output can be obtained by adjusting the other parameters.
This is performed for all parameters, in the order suggested by the sensitivity analysis. It
turned out that, for 10 out of 60 parameters, the deviation at 50 time points of the specified
substances is about 3 % in average. These parameters are

• within the function H−P4&E2,G the parameters mG
P4&E2, TG

E2, TG
P4,
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• within H+
P4,FSH the parameters mFSH

P4 and TFSH
P4 ,

• within H+
G,FSH the parameters mFSH

G and TFSH
G ,

• within H+
E2,LH the parameters mLH

E2 and T LH
E2 , and

• within H+
P4,Enz the parameter TEnz

P4 .

This does not automatically lead to a reduction of equations as described in [Boe12]. In-
stead, the following steps can been taken.

Among the parameters that can be set to zero are thus some scaling factors for Hill func-
tions. It follows that the Hill functions H−P4&E2,G, H

+
P4,FSH, H

+
G,FSH, and H+

E2,LH can be
omitted in the model. With TEnz

P4 := 0, the function H+
P4,Enz can be replaced by its scaling

factor mEnz
P4 . All of the 10 parameters can thus be omitted.

Besides removing the above functions and parameters from the model, further reduction
can be performed by exploiting the structure of the model.

Most of the reduction can be obtained for substances that occur in two compartments
simultaneously, namely for GnRH, LH, and FSH. For GnRH, the compartments hypotha-
lamus and pituitary can be lumped, i.e. merged, together. This means that the processes
for this substance can be described in one ODE instead of two. For LH and FSH, the
compartments pituitary and blood can be lumped together, and the ODE describing their
development is interpreted as blood levels. The lumping has been performed by integrating
the first compartment into the second via multiplication and scaling. More precisely, the
ODEs are modified as follows,

d
dt
yi(t) = Syn i(t)− Rel i(t)

d
dt
yj(t) = Rel i(t)− cj · yj(t)

}
→
{

set d
dt
ỹj(t) := Syn i(t) · Rel i(t)− cj · yj(t),

delete yi and adapt growth rates.

Also, the threshold that restricts GnRH synthesis in the hypothalamus, Gmax
Hypo is never

reached in the simulation. Therefore, the term restricting GnRH synthesis can be omitted,
and SynG can be replaced by the constant synthesis rate cG,1. After lumping GnRH in
the hypothalamus and in the pituitary, the three parameters cG,1, mG

E2, and m
G,2
P4 can be

replaced by one parameter, namely their product, which is denoted as mG
P4,E2. The Hill

function H−P4&E2, G was already omitted above, thus it follows that yG can be modeled
with one ODE instead of two, and four parameters instead of ten,

d

dt
yG(t) = mG

P4,E2 · h−(yP4(t);T
G
P4, 2) · h+(yE2(t);T

G
E2, 5)− cG · yG(t).

After lumping FSH in the pituitary and in the blood, and omitting the Hill functions
H+

P4,FSH and H+
G,FSH as suggested above, leaves the product of H−E2,FSH and H−Inh,FSH as
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growth term for yFSH. The effect of the basal release parameter bFSH can be included
through scaling of the Hill functions. As yE2 and yInh have similar profiles, and the threshold
for the effect of yE2 is low compared to the threshold for yInh, H−E2,FSH can be omitted. In
total, one instead of two ODEs, and three instead of nine parameters are sufficient to
describe the development of FSH,

d

dt
yFSH(t) = mFSH

Inh · h−(yInh(t);TFSH
Inh , 5)− cFSH · yFSH(t).

Lumping LH in the pituitary and in the blood together saves another ODE. As suggested
above, the Hill functionH+

E2,LH is omitted. Also, the parameter for the basal LH release is so
low (bLH = 0.0141) that its effect does not play a significant role. Due to the multiplication
of synthesis and release term during lumping, the scaling factors of the Hill functions, mLH

P4
and mLH

G can be replaced by their product, mLH
G,P4. Thus four parameters could be deleted

from the model, and LH is described by

d

dt
yLH(t) = mLH

G,P4 · h−(yP4(t);T
LH
P4 , 2) · h+(yG(t);T LH

G , 2)− cLH · yLH(t).

Until here, via the described steps, the model for the bovine estrous cycle has been reduced
by three ODEs and 17 parameters.

The processes controlling the rise of PGF2α can be simplified, as the three involved variables
yEnz, yOT, and yPGF are only regulated by the two variables yP4 and yE2. Since the function
H+

P4,Enz was replaced by its scaling factor mEnz
P4 , the variable yEnz is constant. Therefore,

its occurrence in the right hand sides of other variables can be replaced by a parameter,
and the equation for yEnz can be deleted from the model. Also, yOT is just an upstream
of yPGF, thus it is possible to merge these substances as well. In total, two ODEs and six
parameters can be saved, and the ODE describing the development of PGF2α becomes

d

dt
yPGF(t) = h+(yE2(t);T

PGF
E2 , 2) · h+(yP4(t);T

PGF
P4 , 5)− cPGF · yPGF(t).

The rest of the model is not essentially changed. The Hill exponent for the influence of
yCL on yIOF is lowered from ten to five,

d

dt
yIOF(t) = mIOF

PGF,CL · h+PGF,IOF(yPGF(t);T IOF
PGF, 5) · h+CL,IOF(yCL(t);T IOF

CL , 5)− cIOF · yIOF(t),

the quadratic dependencies of the steroid hormones on the CL and the follicles is replaced
by a linear relationship,

d

dt
yP4(t) = kP4CL · yCL(t)− cP4 · yP4(t),

d

dt
yE2(t) = kE2Foll · yFoll(t)− cE2 · yE2(t),

d

dt
yInh(t) = kInhFoll · yFoll(t)− cInh · yInh(t),
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and the equation for the follicles is simplified to

d

dt
yFoll(t) = mFoll

FSH · h+(yFSH(t);TFoll
FSH, 2) · (1 + h+(yFoll(t);T

Foll
Foll , 2))

− (mFoll
P4 · h+(yP4(t);T

Foll
P4 , 5) +mOvul

LH · h+(yLH(t);TOvul
LH , 2) · yFoll(t).

The parameter TFoll
Foll is introduced as threshold above which there is a positive effect of

the follicles on themselves. This replaces the more complex formulation of a rising FSH
sensitivity of the larger follicles.

The only equation that is not changed in the reduced model is the ODE for the corpus
luteum, it stays

d

dt
yCL(t) = SF ·mOvul

LH · h+(yLH(t);TOvul
LH , 2) · yFoll(t)

+mCL
CL · h+(yCL(t);TCL

CL , 2)−mCL
IOF · h+(yIOF(t);TCL

IOF, 5) · yCL(t).

In total, the reduced system consists of 10 ODEs and only 38 parameters.

The flowchart for the reduced model is shown in Figure 4.8. In comparison with the
original flowchart in Figure 2.10, several substances and mechanisms have been omitted.
In particular, the changes compared to the model in Chapter 2 are

• the variables occurring in two compartments have been merged,

• GnRH synthesis is not restricted by a maximum level anymore,

• E2 has only one effect on GnRH,

• P4 also has only one effect on GnRH,

• there is no basal FSH,

• there is no direct influence of E2 on FSH, only via GnRH,

• there is no influence of P4 on FSH,

• there is no direct influence of E2 on LH, only via GnRH,

• there is no basal LH,

• the quadratic dependencies of Foll and CL on the steroid hormones P4, E2 and Inh
have been replaced by linear relationships,

• the variable for the enzymes has been omitted,
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Corpus Luteum

IOF

FSH Blood

LH Blood

Inhibin

αPGF2  

GnRH Pituitary

Follicles

Progesterone

Estradiol

*

*

Figure 4.8: Interaction graph of the reduced model. A green pointed arrow
marks a stimulatory effect, a red stump arrow an inhibitory influence. A black
dashed arrow means a transition, and ‘∗’ marks a degraded substance. The sub-
stances GnRH in the hypothalamus, LH in the pituitary, FSH in the pituitary,
Oxytocin, and the Enzymes could be omitted in the model.
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Figure 4.9: Simulation with the original and the reduced bovine model. The
blue dashed lines show the course of the hormones as simulated with the original
model of 15 ODEs, the orange solid lines show simulations with the reduced
model of 10 ODEs



4.4. Model Reduction

• the variable for oxytocin has been omitted.

In the Appendix, the reduced model for the bovine estrous cycle can be found in Table
A.7, together with a list of parameter values (Table A.8) and initial values (Table A.9),
that have been used for the simulation depicted in Figure 4.9.

Simulations with the reduced model for a normal cycle show no great difference to the
unreduced model for all components. For the variables yFSH, yLH, yP4, and yE2, simulations
of both the unreduced and the reduced model are depicted in Figure 4.9. It is remarkable
that the system of highly nonlinear ODEs could be reduced by 30% of the equations, and
36.7% of the parameters, while keeping the simulation output for the remaining variables
close to the original one.

However, a risk of model reduction is that some effects that can be captured with the
original model could no longer be reproduced. The reduced model for the bovine estrous
cycle is not able to equally well reproduce the results from the synchronization protocols
in Section 2.3. Hence, there are good reasons to use the unreduced model for further ap-
plications, but to keep in mind the reduced version for complementary investigations.

97



Chapter 5

Discrete Modeling of the Bovine
Estrous Cycle

Recall that the hormonal cycle is a result of a large feedback loop, whose self-regulation is
the result of the complex interactions between multiple components. In this chapter, the
regulatory concepts, which generate the periodic changes of the components, are used to
develop different discrete modeling approaches.

Quantitative information about numerical parameters, i.e. rate constants or thresholds,
is often not available, but information in literature about qualitative behavior is fre-
quent. Therefore, it is convenient to look at qualitative models to describe a biological
phenomenon. Already the models developed in the previous chapters are based on quali-
tative, i.e. regulatory, mechanisms. To get quantitative output and to fit the simulation to
measurements, differential equation models were chosen. The numerical parameter values
were estimated such that the model simulation best fits the given data points. Although
very detailed predictions can be made with these models about the development of certain
substances or rate constants, one has to keep in mind that the simulations are performed
with a model on a very high abstraction level. Many mechanisms have been left out in
the modeling process, and whether or not one has identified and mapped the entire key
mechanisms can only be assumed. Also, the identified numerical parameter values are not
necessarily unique. Another restriction of the ODE models is that the derived dynamical
properties only hold locally for the current set of parameters.

In this chapter, different discrete modeling approaches are used, one partly discrete and
another one discrete in both time and space. The dynamical behavior of both model types
is illustrated in the state transition graph (STG), which consists of all possible states of
the system, connected by their transitions. A simulation trajectory of a discrete model is
a sequence of states in the STG. Recognition of biological phenomena in the STG is often
possible, as we will see in the subsequent sections. How the simulation runs through the
states is defined differently in the different model types that will be treated in this chapter.
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5.1. Piecewise Affine Differential Equations

A particular question of interest regards the global stability of the bovine model with
respect to perturbations of variables. For the continuous model, local stability has been
investigated in Chapter 4. It has been observed numerically that even for large perturba-
tions of initial values, the simulation always converges to the same limit cycle. A proof
of local stability via the computation of the Floquet multipliers has been performed in
Section 4.1. Extending this local property to the global behavior of the model is not pos-
sible due to the continuous and thus infinitely large phase space. However, proving such
a dynamical property globally would be of great interest. In the discrete case, stability
can be analyzed via the state transition graph. The dynamical properties of this graph are
analyzed in Section 5.2. For a discrete counterpart of the reduced bovine model, stability
will be shown in Section 5.4.

In the continuous model, the range of the variables is an interval of real numbers, and
the simulation can thus take any value within this uncountable set. In this chapter, this
level of detail is not intended, and it is concentrated on the underlying mechanisms of the
qualitative periodic behavior. In a discrete model, the variable space is finite and can thus
be analyzed easier. It is possible to investigate the whole state space, which is difficult in
the continuous model. Besides a global stability analysis, this investigation includes the
search for other dynamical properties, e.g. alternative fixed points or attractors. As both
the discrete model and its continuous counterpart are based on the same principles it is
assumed that these properties also hold for the continuous model.

The continuous and the discrete models are based on the same principles, and all biological
information one puts into the models is the same. It is thus important to keep in mind that,
when deriving discrete models from the continuous one, no biological information is lost.
The models represent different possibilities to describe the same biological phenomenon.
The expectation is thus that results regarding the dynamical properties can be transferred
to each other.

This chapter focuses on the model of the bovine estrous cycle, but, of course, techniques
could be transferred to the human model. A piecewise-affine differential equation model is
derived as a first discretization step in Section 5.1. Qualitative simulation leads to a state
space that is still too large to explore, thus, a purely discrete model of the estrous cycle is
derived and analyzed in Section 5.2.

5.1 Piecewise Affine Differential Equations
Piecewise affine differential equations (PADE), often also referred to as piecewise-linear
models, have been well studied in mathematical biology [Jon02]. In PADE models, vari-
able behavior is described piecewise via ordinary differential equations, where regulations
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Chapter 5. Discrete Modeling of the Bovine Estrous Cycle

Table 5.1: Comparison of the different model types

ODE PADE discrete

variable notation yS XS xS
dynamics phase space in Rn domains in phase space expression level vector
regulations Hill functions step functions interactions
parameters kinetic parameters parameter ordering logical parameters

are incorporated as step functions. Whether a regulation of a variable on another is active
is threshold-dependent only.

A logical analysis for qualitative properties of quantitative biochemical networks has been
developed by Glass and Kauffmann [GK73]. [MPO95] extended their work and proposed
a class of piecewise differential equations to model these dynamics. The basic idea is
that the piecewise affine differential equations are only valid locally between thresholds.
The thresholds partition the phase space into domains, in which the model has different
dynamical behavior. In the notation of Snoussi [Sno89], the system of piecewise linear
differential equations is of the form

dXi(t)

dt
= Fi(X)− ciXi, i = 1, 2, ..., n,

where ci ∈ R∗+ and each Fi is a positive combination of sums and products of Heaviside
functions given for all X ∈ R by

S+(Xi, T
j
i ) =

{
1 if Xi ≥ T ji ,

0 if Xi < T ji .

where T ji are the thresholds for the activation of influences.

In each domain, the corresponding ODE reduces to an uncoupled, linear differential equa-
tion. For a qualitative simulation trajectory of a PADE model it is only decisive between
which thresholds T ji the variables Xi are, i.e. in which domains the variables are. The
simulation is then a sequence of domains, which here will be each represented by the sta-
tionary points of a variable Xi. The stationary points are calculated from the combinations
of growth and clearance rates that correspond to the linear coefficients in the function Fi
above. The procedure will be described in more detail in the following. The resulting finite
state graph can be analyzed with methods from discrete math and graph theory.

Recall that the ODE model BovCycle has been constructed based on qualitative informa-
tion, i.e. it mainly consists of regulatory mechanisms. Therefore, its transformation into a
PADE model is mostly straightforward, and the numerical parameter values identified in
Chapter 2 can be used. Hill functions in the ODE model are directly transformed into the
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5.1. Piecewise Affine Differential Equations

step functions Si.

According to the formalism of Glass and Kauffmann, the parameters in a PADE model are
computed as fractions of growth and clearance rates, mi and ci. The number of parameters
for a variable Xi in the PADE model depends on the number of predecessors of Xi, i.e. the
number of regulating variables of Xi that are specified in the function Fi(X) defined above.
Depending on how many predecessors Xj of Xi are below or above their thresholds T ji for
their action on Xi, i.e. depending on whether this predecessor is on or off, the variable Xi

has different growth rates. For a PADE variable Xi, where the growth of the corresponding
ODE variable yi is regulated by the variables y1j , y2j etc. and the clearance rate constant is
ci in the ODE model, the parameters have the form m1

j/ci, m2
j/ci, (m1

j +m2
j)/ci, etc.

There are mechanisms regulating the growth term of a variable in the ODE model in
Chapter 2 that are not modeled via Hill functions, but instead with a direct proportional
relationship. This regulation is converted to the PADE model as if it were originally a Hill
function. As the simulations for all variables in the ODE model are on a relative scale,
i.e. all simulations are between zero and one, the maximum level is set to be one, and the
threshold as 0.5.

For example, the equation (B2) in the ODE model

d

dt
yG(t) =

(
mP4&E2

(
1− h+(yP4(t);T

G,1
P4 , 2)h+(yE2(t);T

G,1
E2 , 2)

)
+mG,2

P4 h
−(yP4(t);T

G,2
P4 , 2)

)
· yGh(t) ·mG

E2 · h+(yE2(t);T
G,2
E2 , 2)− cG,2 · yG(t)

transforms to the PADE formulation as follows
d

dt
XG(t) = mP4&E2m

G
E2 · (1− S+(XP4(t), T

G,1
P4 ) · S+(XGh(t), 0.5) · S+(XE2(t), T

G,1
E2 ))

+mG,2
P4 m

G
E2 · S−(XP4(t), T

G,2
P4 ) · S+(XGh(t), 0.5) · S+(XE2(t), T

G,1
E2 ))

− cG,2 ·XG(t).

XG has three incoming regulations, XGh, XP4 and XE2. It can grow with the rates
mP4&E2m

G
E2, m

G,2
P4 m

G
E2, and (mP4&E2m

G
E2 + mG,2

P4 m
G
E2). The clearance does not depend

on other variables, therefore, XG has three different stationary points, mP4&E2m
G
E2/cG,2,

mG,2
P4 m

G
E2/cG,2, and (mP4&E2m

G
E2 + mG,2

P4 m
G
E2)/cG,2. As GnRH acts in the model as a reg-

ulator of two other variables, it has two activation thresholds, TFSH
G and T LH

G . For the
qualitative simulation of the PADE model it is crucial to order thresholds and stationary
points. This can be done with the identified parameter values from the ODE model.

In the following, some more examples for the transformations from ODE to PADE models
are given. Equation (B4) for FSH

d

dt
yFSH(t) =

(
bFSH +H+

P4,FSH(yP4(t)) +H−E2,FSH(yE2(t) +H+
G,FSH(yG(t)

)
· yFSHp(t)− cFSH · yFSH(t)
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transforms to

d

dt
XFSH(t) = bFSH · S+(XFSHp(t), TFSHp)

+mFSH
P4 · S+(XP4(t), T

FSH
P4 ) · S+(XFSHp(t), TFSHp)

+mFSH
E2 · S−(XE2(t), T

FSH
E2 ) · S+(XFSHp(t), TFSHp)

+mFSH
G · S+(XG(t), TFSH

G ) · S+(XFSHp(t), TFSHp)

− cFSH ·XFSH(t)

with the seven stationary points bFSH
cFSH

, bFSH+mFSH
P4

cFSH
, bFSH+mFSH

E2
cFSH

, bFSH+mFSH
G

cFSH
, bFSH+mFSH

P4 +mFSH
E2

cFSH
,

bFSH+mFSH
P4 +mFSH

G
cFSH

, bFSH+mFSH
E2 +mFSH

G
cFSH

, bFSH+mFSH
P4 +mFSH

E2 +mFSH
G

cFSH
, and one activation threshold TFoll

FSH.

Equation (B6) in the ODE model

d

dt
yLH(t) =

(
bLH +mLH

G · h+(yG(t), T LH
G , nLHG )

)
· yLHp(t)− cLH · yLH(t)

transforms to the PADE formulation as follows

d

dt
XLH(t) = bLH · S+(XLHp, TLHp) +mLH

G · S+(XG, T
LH
G ) · S+(XLHp, TLHp)− cLH ·XLH(t).

The stationary points for XLH are bLH/cLH, (bLH + mLH
G )/cLH, and there is one activation

threshold TOvul
LH .

The equation (B7) for the follicles,

d

dt
yFoll(t) = mFoll

FSH · h+
(
yFSH(t), TFoll

FSH · h+(yFoll(t), T
Foll
Foll , n

Foll
Foll), n

Foll
FSH

)
−
(
mFoll

P4 · h+(yP4(t), T
Foll
P4 , n

Foll
P4 ) +mOvul

LH · h+(yLH(t), TOvul
LH , nOvul

LH )
)
· yFoll(t),

has been simplified and converted to

d

dt
XFoll(t) = 0.5 ·mFoll

FSH · S+(XFSH(t), TFoll
FSH)

+ 0.5 ·mFoll
FSH · S+(XFSH(t), TFoll

FSH) · S+(XFoll(t), T
Foll
Foll )

−
(
mFoll

P4 · S+(XP4(t), T
Foll
P4 ) +mFoll

LH · S+(XLH(t), TFoll
LH )

)
·XFoll(t).

The stationary points are are 0.5mFoll
FSH/m

Foll
P4 , 0.5mFoll

FSH/m
Foll
LH , 0.5mFoll

FSH/(m
Foll
LH + mFoll

P4 ),
mFoll

FSH/m
Foll
P4 , mFoll

FSH/m
Foll
LH , and mFoll

FSH/(m
Foll
LH + mFoll

P4 ), and the activation thresholds TFoll
Foll ,

TE2
Foll, and T Inh

Foll. Additionally, T̃Ovul
Foll = 0.5 is introduced for the regulation of XCL.
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5.1. Piecewise Affine Differential Equations

Similarly, the equation (B8) describing the development of the CL is in the ODE model

d

dt
yCL(t) = SF ·mCL

LH · h+(yLH(t), TCL
LH , n

CL
LH) · yFoll(t)

+mCL
CL · h+(yCL(t), TCL

CL , n
CL
CL)

−mCL
IOF · h+(yIOF(t), TCL

IOF, n
CL
IOF) · yCL(t),

converts in the PADE formulation to

d

dt
XCL(t) = SF ·mOvul

LH · S+(XLH(t), TOvul
LH ) · S+(XFoll(t), 0.5)

+mCL
CL · S+(XCL(t), TCL

CL )

−mCL
IOF · S+(XIOF(t), TCL

IOF) ·XCL(t),

with the stationary points SF ·mOvul
LH /mCL

IOF, mCL
CL/m

CL
IOF, (SF ·mOvul

LH +mCL
CL)/mCL

IOF, and the
activation thresholds TCL

CL , TP4
CL, T IOF

CL , and T̃OT
CL := 0.5.

The conversion for the rest of the variables is straightforward:

d

dt
XP4 = mP4

CL · S+(XCL(t), TP4
CL)− cP4 ·XP4(t)

d

dt
XE2 = mE2

Foll · S+(XFoll(t), T
E2
Foll)− cE2 ·XE2(t)

d

dt
XInh = mInh

Foll · S+(XFoll(t), T
Inh
Foll)− cInh ·XInh(t)

d

dt
XEnz = mEnz

P4 · S+(XP4(t), T
Enz
P4 )− cEnz ·XEnz(t)

d

dt
XIOF = mIOF

PGF · S+(XPGF(t), T IOF
PGF) · S+(XCL(t), T IOF

CL )− cIOF ·XIOF(t)

d

dt
XOT = mOT

E2 · S+(XE2(t), T
OT
E2 ) · S+(XCL(t), T̃OT

CL )− cOT ·XOT(t)

d

dt
XPGF = mPGF

OT · S+(XOT(t), TPGF
OT ) · S+(XEnz(t), T

PGF
Enz )− cPGF ·XPGF(t)

For the simulation, the thresholds for each variable need to be ordered. In the notation
of [Sno89], the mapping πi(j) gives the number of the position of the threshold T ji within
the ascending ordered thresholds of Xi. The interaction graph is defined as the directed
graph (X,E), which consists of nodes X = {X1 = XGnRHH, . . . , X15 = XPGF}, and edges
(i, j, wij) ∈ E. For specification of the edges, i indicates the activating substance, j the
substance that is being regulated and |wij| = πi(j). The sign of wij depends on whether
the interaction is stimulatory (+) or inhibitory (−).
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An circuit in the interaction graph is negative, if the number of negative, i.e. inhibitory,
edges is odd.

On the way during the translation of an ODE model into a PADE formulation, theoretical
results can be used to derive parameter constraints for the continuous model, which is
described in the following. Prerequisite for periodic behavior can be derived for simpler
PADE systems. The corresponding theorem has been stated in [Sno89].

Theorem ([Sno89]). Given an n-dimensional system of piecewise linear equations

dXi(t)

dt
= miS

αi(Xi−1, T
i
i−1)− ciXi, i = 1, 2, ...N,N > 1,

for which the interaction graph is a negative circuit mi, ci, Ti are strictly positive, αi ∈
{+,−} and indices are taken modulo N, then it holds: If for all i, mi/ci > T i+1

i , then, for
N ≥ 3, there is an asymptotically stable limit cycle.

A necessary condition for the parameters to result in a periodic solution is thus

mi

ci
> T ji ,

where mi are the coefficients of the step functions, ci the clearance constants, and T ji the
thresholds of the step functions where Xi is the source variable, and Xj the regulated
substance.

Transforming this theorem to more complex networks, where variables have more than one
predecessor and more than one successor, like the system of ODEs in BovCycle, would be of
great interest. Derived parameter constraints could be used in the parameter identification
algorithm for the continuous model. This way, the parameter space can be reduced by not
considering non-periodic solutions. Intuitively, in the more complex setting, a necessary
condition for periodic behavior is that, for all variables in a PADE model, the above in-
equality has to be fulfilled for at least one quotient and one activation threshold. Whenever
a variables has several predecessors, several quotients are associated with its development,
as explained above. Now, for every variable one claims that the maximum of the corre-
sponding quotients is larger or equal to the minimum of all its activation thresholds. Until
now, there is no proof of such a condition, thus the following results need to be taken with
caution. However, so far the constraints yield good results in practical computations.

The following inequalities are assumed to be necessary in order to have periodic behavior
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5.1. Piecewise Affine Differential Equations

in BovCycle

mP4&E2m
G
E2 +mG,2

P4 m
G
E2

cG,2
> min(TFSH

G , T LH
G )

bFSH +mFSH
P4 +mFSH

E2 +mFSH
G

cFSH
> TFoll

FSH

(bLH +mLH
G )

cLH
> TOvul

LH

max(
mFoll

FSH

mFoll
P4

,
mFoll

FSH

mFoll
LH

) > min(TFoll
Foll , T

E2
Foll, T

Inh
Foll, T̃

Ovul
Foll )

(SF ·mOvul
LH +mCL

CL)

mCL
IOF

> min(TCL
CL , T

P4
CL, T

IOF
CL , T̃OT

CL )

mP4
CL

cP4
> min(TG,1

P4 , T
G,2
P4 , T

FSH
P4 , T LH

P4 , T
Foll
P4 , T

Enz
P4 )

mE2
Foll

cE2
> min(TG,1

E2 , T
G,2
E2 , T

FSH
E2 , T LH

E2 , T
OT
E2 )

mInh
Foll

cInh
> TFSH

Inh

mEnz
P4

cEnz
> TPGF

Enz

mOT
E2

cOT
> TPGF

OT

mIOF
PGF&CL

cIOF
> TCL

IOF

mPGF
Enz&OT

cPGF
> TCL

PGF

The simulation of the PADE model for BovCycle is performed with the software Genetic
Network Analyzer (GNA) presented in [JGHP03]. This tool is based on a qualitative
simulation method, which uses qualitative relations in form of parameter inequalities, in
contrast to the specified numerical parameter values in quantitative simulation tools. In
order to obtain a PADE description in GNA for the bovine estrous cycle, the parameter
values of the validated ODE model are used to derive the parameter ordering, i.e. the
qualitative constraints in the PADE model, as described above. Besides the qualitative
simulation of a model, i.e. the derivation of the state transition graph, several analysis
tools are implemented in GNA, e.g. attractor search or model-checking for the automated
verification of dynamical properties.

For the implementation of the bovine model in GNA, basic degradation rates have to be
specified for the variables whose decay is regulated only by other substances, XFoll and
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XCL, in order to avoid the case of no degradation.

For the model of the bovine estrous cycle, simulations with the PADE model still lead
to a state graph that is too large to analyze in straightforward manner. However, PADE
models are in principle a practical tool to analyze systems based on regulatory networks. A
different discretization procedure which only considers regulatory information is presented
and focused on in the rest of this chapter.

5.2 A Purely Discrete Model

Purely discrete, i.e. discrete in time and state space, models for biological systems have
been used extensively [Jon02]. In [Tho73], a formalism has been developed that will be used
in the following. Roughly, a logical model consists of a regulatory graph, where substances
are depicted as nodes, and interactions between them are shown in arcs. The simulation
with a purely discrete model is a sequence of vectors representing discrete states of the
system.

In the ODE models treated in the previous chapters, interactions between biological sub-
stances were modeled as regulatory (stimulatory or inhibitory) mechanisms. As the action
of the substances is assumed to be threshold dependent, the substances can be modeled
as discrete variables as will be explained. Starting with the validated continuous model,
interactions between the variables are derived from the signs of the coefficients of the Ja-
cobian of the ODE model.

The simplest way to develop a discrete model is to use boolean formalization as in [Tho73],
where variables are considered to be either on or off. As soon as variables have more than
one influence on other variables, a multilevel logical approach is better suited, where vari-
ables can take more than two values. A formalism for such models has also been introduced
by Thomas [Tho91]. This framework has been used by several other researchers. In par-
ticular, a software called GINsim has been developed that is based on this formalism and
that will be used in this Chapter to analyze the bovine model developed in Chapter 2 and
3. Before going into the details of transferring a particular ODE model, the formalism for
multilevel logical models will be introduced.

According to [CRMT03], a regulatory graph consists of

• a finite set of elements X = {xS1 , . . . , xSn},

• a set of positive integers for each of the elements {m1, ...,mn}, representing the
maximum expression level of each element, i.e. the maximum possible value it can
take. The integer mi is thus the number of different actions the variable xSi

takes
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on other variables or itself. In the boolean case, the set {m1, ...,mn} would consist
of only ones,

• an influence graph (X, T ) consisting of vertices (variables) xSi
∈ X which are con-

nected by labeled arcs (interactions) Tij ∈ T . The label (A, q) that is assigned to
each arc specifies the interaction. A is an integer interval which indicates the val-
ues for which the source variable is functional, i.e. active, on this arc, and the sign
of interaction q indicating whether this influence is an activation/stimulation or an
inhibition.

Every interaction Tij ∈ T is described by a quadruple Tij = (xSi
, xSj

, A(Tij), q(Tij)),
i.e. by its source xSi

, its target xSj
, and its label (A(Tij), q(Tij)). The interval A(Tij) =

[amin(Tij), amax(Tij)], with amin > 0, amax(Tij ≤ mi, indicates the expression levels of xSi
on

this interaction. These expression levels could also be a set of disjoint intervals, if different
signs of the interaction are assumed depending on the value of the source variable. q(Tij)
denotes the sign of the interaction, i.e. whether it is inhibitory or stimulatory.

To explicitly describe the interactions, logical functions are used. Let Ij denote the set of
all incoming, thus all active, interactions into xSj

. A logical function Kj maps any subset
of incoming interactions I ⊂ Ij to an expression level of xSj

. The expression level Kj(I),
0 ≤ Kj(I) ≤ mj, is called logical parameter of the model. Kj(∅) can be greater than zero
if Ij contains inhibiting interactions, which lead to an increase of the expression level if
not functional.

A subset of the incoming interactions I of a variable is called admissible if it does not
contain interactions having the same source. Therefore, all information of an interaction
must be stored in the label, and different actions are described via the label consisting
eventually of several disjoint intervals. If Ij is not an admissible subset of the incoming
interactions for xSj

, then Kj(Ij) = 0. In the following, every state will be provided with
an admissible set of active interactions, thus, not-admissible sets will not play a role.

This formalism is now used to derive a discrete model of the bovine estrous cycle. The
state transition graph, which consists of all possible trajectories of the simulation, thus all
possible states connected by their transitions, follows directly from the regulatory graph.
For the bovine model, this will be presented in the following sections.

5.2.1 BovCycle in Discrete Time and Space

In this Section, the development of a purely discrete model for the bovine estrous cycle is
described in detail, followed by an analysis of the model with the software GINsim. The
continuous model developed in Chapter 2 is discretized using a multilevel logical formalism.
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Each real-valued variable ySi
, i = 1, ..., 15 of the ODE model is now represented by a

discrete counterpart xSi
, which is depicted as vertex in an influence graph. According to

the formalism of Thomas, the regulatory graph for BovCycle consists of the finite set of
elements

X = (xSi
)i=1,...,15

= (xGnRHH, xGnRH, xFSHP, xFSH, xLHP, xLH, xFol, xPGF, xCL, xP4, xE2, xInh, xEnz, xOT, xIOF),

a set of maximum expression levels (mi)i=1,...,15, and a label-oriented influence graph (X, T ).

The labels (A(Tij), q(Tij)) for the transitions Tij ⊂ T in the influence graph, in particular
the intervals A(Tij), mostly follow directly from the the maximum expression levels, which
will be derived in the next subsection. Prior to the maximum expression levels, the set
of interactions T = {Tij, Tij = (xSi

, xSj
)} is derived, together with the signs q(Tij) of the

interactions.

Thus, according to the preceding definition, the discrete version of BovCycle also requires

• an influence graph, consisting of variables and transitions,

• a maximum expression level for each variable,

• a label for each transition,

• a set of logical parameters specifying the interactions.

These parts of the model will be derived in the following.

Derivation of the Influence Graph

An influence graph is derived for the ODE system from its Jacobian matrix with respect
to the variables. According to the definition in [FS08] the influence graph associated to a
reaction model is the graph having as vertices the substances, and as edge-set the following
two kinds of edges: {

A activates B | δy
′
B

yA
> 0 in some point

}
{
A inhibits B | δy

′
B

yA
< 0 in some point

}
The signs of the Jacobian define the type of interaction between the two discrete vari-
ables xSi

an xSj
. This directly gives the values for the q(Tij), and indirectly the set

T = {Tij, q(Tij) 6= 0)}. The nonzero entries of the Jacobian matrix with respect to the
variables for the derived ODE system for the bovine cycle can be found in the Appendix.
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5.2. A Purely Discrete Model

Based on this matrix, the - not yet fully labeled - influence graph can be derived. Since the
ODE system is nonlinear, the entries in the Jacobian still depend on multiple variables.
Thus, several considerations have to be made in order to determine the signs of the matrix
entries. In BovCycle, all variables are normalized such they that take values on a relative
scale. Therefore, they are always between zero and one. In particular, all variables are
positive. The signs of the Jacobian can be calculated as will be described in the following.

Figure 5.1: Influence graph derived from the Jacobian, leaving out the negative
self-influences due to exponential decay

Most of the entries in the Jacobian JySi
,ySj

, i, j = 1, . . . , n, are zero, indicating no influence
between the two substances Si and Sj. If nonzero, the entries in the Jacobian of the bovine
model are mostly sums and products of either only positive or only negative terms, therefore
the translation to the discrete model is straightforward, as can be explained in an example.

The first column of the Jacobian, which represents the influence of GnRH in the hypotha-
lamus on other substances, only has nonzero entries in the first two lines. Transferring this
to the discrete formalism, yGnRHH only has two targets: itself and yGnRH .

J1,1 = JyGnRHH ,yGnRHH
=
−0.17

(
y2p4 + 0.082

) (
y2p4 + 2.3

)
y2e2 − 0.021

(
y2p4 + 0.12

) (
y2p4 + 0.12

)
(y2e2 + 0.0094)

(
y2p4 + 0.064

) (
y2p4 + 0.12

) .
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Chapter 5. Discrete Modeling of the Bovine Estrous Cycle

All summands of J1,1 have a negative sign, thus J1,1 < 0, and the self-influence of yGnRHH
is negative. In contrast,

J1,2 = JyGnRH,yGnRHH =
0.99y5E2

(
(0.37y2P4 + 0.031) y2E2 + 0.019 (y2P4 + 0.12)

2
)

(y2E2 + 0.0094) (y5E2 + 0.11) (y2P4 + 0.064) (y2P4 + 0.12)
,

only consists of summands with a positive sign, thus J1,1 > 0, and yGnRHH has an activating
effect on yGnRH. The rest of the matrix entries can be analyzed in the same way, as long
as all summands have the same sign.

In some cases however, a sum of positive and negative terms occurs in the Jacobian, which
requires a closer look. These entries are J1,10 (influence of yP4 on yGnRHH), J2,10 (influ-
ence of yP4 on yGnRH), J2,11 (influence of yE2 on yGnRH), J7,7 (self-influence of the follicles),
J9,9 (self-influence of the CL). For the first three of these, it can be numerically observed
that for any value of yP4 and yE2, the sign never changes. It holds J1,10 =

δy′GnRHH
δyP4

> 0,

J2,10 =
δy′GnRH
δyP4

< 0, and J2,11 =
δy′GnRH
δyE2

> 0 for all yP4, yE2 ∈ [0, 1].

The sign of the other two entries of the Jacobian with alternating summand signs, J7,7 =
JyFol,yFol and J9,9 = JyCL,yCL , changes depending on the values of the influencing variables.
Considering yP4, yLH, yFol, yFSH, yIOF, yCL ∈ [0, 1], it can be observed numerically that

J7,7 = − 1.1y5P4
y5P4 + 0.000032

− 3.5y2LH
y2LH + 0.029

+
0.0017yFoly

2
FSH

(y2Fol + 0.048)
3

(
y2FSH + 0.00076

(y2Fol+0.048)
2

)2 ∈ [−4.5, 68.53],

and

J9,9 = −
41.y5iof

y5IOF + 4.0
+

0.071yCL
y2CL + 0.010

− 0.071y3CL
(y2CL + 0.010)

2 ∈ [−8.2, 0.2303].

These two mechanisms, the self-influence of the follicles and the corpus luteum, can be
either positive or negative, depending on the values of the influencing substances.

The first two summands in J7,7 are in [−4.5, 0] and thus account for the negative effect in
the self-influence of the Follicles. The third summand is in [0, 68.53], and is thus responsi-
ble for the positive feedback. Whenever the third summand is larger than the sum of the
first two, there is a stimulatory effect.

In J9,9, the summand depending on yIOF is in [−8.2, 0], thus responsible for the negative
influence in CL, while the two summands depending on yCL only are in [0, 0.2302] and
account for the positive effect of CL on itself.

110



5.2. A Purely Discrete Model

Summarizing, the signs in the Jacobian are

sign(J) =



−−− 0 0 0 0 0 0 0 0 +++ +++ 0 0 0 0
+++ −−− 0 0 0 0 0 0 0 −−− +++ 0 0 0 0
0 −−− −−− 0 0 0 0 0 0 −−− +++ −−− 0 0 0
0 +++ +++ −−− 0 0 0 0 0 +++ −−− 0 0 0 0
0 −−− 0 0 −−− 0 0 0 0 −−− +++ 0 0 0 0
0 +++ 0 0 +++ −−− 0 0 0 0 0 0 0 0 0
0 0 0 +++ 0 −−− +/−+/−+/− 0 0 −−− 0 0 0 0 0
0 0 0 0 0 0 0 −−− 0 0 0 0 +++ +++ 0
0 0 0 0 0 +++ +++ 0 +/−+/−+/− 0 0 0 0 0 −−−
0 0 0 0 0 0 0 0 +++ −−− 0 0 0 0 0
0 0 0 0 0 0 +++ 0 0 0 −−− 0 0 0 0
0 0 0 0 0 0 +++ 0 0 0 0 −−− 0 0 0
0 0 0 0 0 0 0 0 0 +++ 0 0 −−− 0 0
0 0 0 0 0 0 0 0 +++ 0 +++ 0 0 −−− 0
0 0 0 0 0 0 0 +++ +++ 0 0 0 0 0 −−−


The diagonal part of this matrix consists of mostly negative signs, indicating a negative
self-influence of the corresponding variables. This is due to the assumed exponential decay
of each variable. In the discrete model, this effect can be included as a reset to zero in case
of no influence, which allows to leave out these negative self-destroyance properties. The
resulting interactions are displayed in Figure 5.1.

Derivation of Maximum Expression Levels and Labels

In many discrete modeling approaches, variables take as many discrete values as they have
influences on other variables. A variable with four successors has five possible values, indi-
cating the different levels of action. In the piecewise affine approach presented in Section
5.1, the change of a variable from one value to another follows from a piecewise defined
differential equation attached to this variable. In a purely discrete model, all changes occur
only due to the regulatory mechanisms. Here, it could occur that obtaining as many values
for a variable as it has successors is not straightforward to realize. If a variable has fewer
incoming regulations than required actions, a self-influence of this variable might become
necessary. For example, xE2 is influencing four other variables, but is itself only preceded
by xFol, which may have a different number of possible values. To make xE2 four-valued,
the influence of xFol would have to be remodeled. To avoid a jump from the expression level
xE2 = 0 to xE2 = 4, a possibility to get four different values is to include several positive
self-influences of xE2. However, at which values to start the self-stimulation and where to
include the influence of the follicles is not straightforward and not considered in this thesis.

To keep this difficulty as small as possible, and on the way simplify the discrete model, it
is desirable to have many variables binary valued. The number of values that a variable
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Chapter 5. Discrete Modeling of the Bovine Estrous Cycle

can take is decided individually as follows.

Most of the variables are assumed to be in an on or an off state. For example, when GnRH
is on, it promotes the release of the gonadotropins, when LH is on it promotes ovulation.
Every FSH wave corresponds to an on-state and promotes the growth of the follicles. For
variables with one target only, it is convenient to take a binary variable in the discrete
model, indicating whether the corresponding substance is active or not. Thus, for xGnRHH,
xLHP, xFSHP, xLH, xFSH, xOT, xEnz, xPGF, xIOF, and xInh binary valued variables are chosen.

The remaining variables having more than one target are xGnRH, xE2, xP4, xCL, and xFol.
In the continuous model, GnRH influences FSH release before it affects LH release in the
sense that the parameter that represents the threshold for the FSH stimulation is lower.
However, both the maximum stimulatory influence and the Hill exponent are higher in
the LH influence. Since it is not clear from literature which action of GnRH, LH or FSH
release, requires higher or lower GnRH levels, we assume that this is the same and take
xGnRH as binary.

xE2 has four successors in the influence graph. Arguing with the biological background,
the influence of estradiol on the three-wave appearing FSH release can be considered as
the same for all waves. Regarding the influence of estradiol on GnRH and LH, which peak
only once a cycle, this can interpreted as being due to P4. For these both successors, E2
and P4 are taking action together, and their effect is opposed. P4 is inhibitory whenever
there is a stimulatory effect of E2, such that the different profile of the peak-like hormones
and E2 does not require a certain E2 behavior to account for it, but can be achieved by the
combination of E2 and P4 influences. Regarding the E2 influence on OT, the argument is
similar: while OT is not automatically high when E2 is, it requires both E2 and a high CL
to react. Which of the successors reacts to which levels of estradiol is not clear, thus E2 is
taken as binary valued.

The variable xP4 even has five successors, but is nevertheless taken as binary valued in the
discrete model, due to the same reasons as xE2. Since it is not clear in which sequence the
successors of xP4 are affected by its value, the possibly different order is neglected, and it
is assumed that xP4 is either on or off.

For xCL and xFol, the order of influences cannot be neglected, since they themselves belong
to their successors. These two variables are the only ones in the model containing a positive
self-influence, which can only be achieved after having reached a non-off state. Therefore,
these two variables are taken as three-valued.

The preceding discussion can also be approached via the Jacobian matrix and its signs,
i.e. the influence graph. Whenever the sign of an entry of the Jacobian is always positive
or negative, respectively, the influencing variable is sufficient to be binary, as its action is
either off, or it is positive or negative, respectively.
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5.2. A Purely Discrete Model

The entry in the Jacobian for yCL is only depending on two variables, yIOF and yCL. One
can observe in a 3d-plot that depending on yCL, for any value of yIOF, the value of yCL is
first increasing, reaches its maximum shortly afterwards, and then declines due to the decay
term to its original low value. Therefore, we take yCL three valued, and assume a negative
self-influence for low values (yCL = 0), a positive effect for medium values (yCL = 0), and
a negative effect for high values (yCL = 0) which will only become active in presence of IOF.
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Figure 5.2: Development of the self-influence of the yFol and yCL in the ODE
model, depending on the current value. As the entries of the Jacobian are alter-
nating negative and positive for fixed values of the other influencing substances,
these two variables are chosen to be three-valued in the discrete model.

Summarizing, all variables in the discrete model except xCL and xFol are modeled as bi-
nary. Thus, the maximum expression levels are m1 = mGnRHH = 1, m2 = mGnRH = 1,
m3 = mFSHP = 1, m4 = mFSH = 1, m5 = mLHP = 1, m6 = mLH = 1, m7 = mFol = 2,
m8 = mPGF = 1, m9 = mCL = 2, m10 = mP4 = 1, m11 = mE2 = 1, m12 = mInh = 1,
m13 = mEnz = 1, m14 = mOT = 1, m15 = mIOF = 1.

The labels (A(Tij), q(Tij)) for the above derived influence graph are now straightforward
to determine. The signs of the interactions q(Tij) are already depicted in the influence
graph. As most of the variables are binary, the interval A(Tij) for which an interaction
can be functional is usually [1], as the influence a binary variable takes on its successors
is either on or off, and 0 does not activate an interaction. Thus, the maximum expression
levels are 1. For the non-binary variables xFoll and xCL, it has to be decided at which level
they act on their targets. It is assumed that the expression level xFoll = 1 is needed to
start further follicular growth, and that only at higher levels, xFoll = 2, the follicles become
functional and produce steroids. Thus A(T7,7) = [1], A(T7,11) = [2],A(T7,12) = [2]. Further,
it is assumed that xCL = 1 already activates progesterone production, while higher CL
levels are needed to activate variables involved in luteolysis, i.e. not until the level xCL = 2,
the CL impacts xOT and xIOF. It follows that A(T9,9) = [1], A(T9,10) = [1], A(T9,14) = [2],
A(T9,15) = [2].
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Chapter 5. Discrete Modeling of the Bovine Estrous Cycle

Interplay of the Mechanisms - Derivation of the Logical Parameters

For every substance xSj
, j = 1, ..., 15, the logical function Kj associates an integer Kj(I)

to any admissible subset I of Ij. These logical parameters Kj(I) will be derived in this
subsection.

For the variables with only one predecessor (xP4, xE2, xInh, and xEnz), i.e. only one incoming
arc, regulation is obvious and can be directly derived from the above signs of the Jacobian.
In contrast, whenever a variable has more than one predecessor, specifications need to be
made about how the incoming actions function together to regulate this variable. The right
hand sides of the corresponding ODEs are considered in order to derive the concurrence of
the regulations in the discrete model. In particular, one can decide whether the incoming
regulatory mechanisms are merged with AND or OR. The Hill functions in the right hand
sides of the ODEs can easily be used to derive the regulation of the corresponding discrete
variable. An increasing Hill function stands for activation, a decreasing Hill function for
inhibition. If a variable affects another variable directly and not via a Hill function, e.g. in
case of proportional release into another compartment, this effect is taken as an activation.

If only the rise and not the decay of a continuous variable is regulated by other variables,
the discrete interplay of these variables is straightforward: If the Hill functions or direct
effects are multiplied, in the discrete model this is translated to an AND-relation, while a
summation of effects is taken as an OR-relation.

The rise of the continuous counterparts for the variables xPGF, xOT, and xIOF is modeled
via products of two increasing Hill functions. Therefore, the incoming regulations in the
discrete model both need to be active to result in a stimulation of the variables. The
development of the variables xGnRH, xFSH, and xLH can be derived via the combination of
AND- and OR-relations, as the rise of the corresponding continuous variables is modeled
via sums and products of Hill functions or direct effects.

If both rise and decay of a variable are regulated by other substances, which is the case for
xGnRHH, xFSHP, xLHP, xFoll, and xCL, the interplay of the incoming mechanisms is not as
straightforward. For a start, examine only the binary variables xGnRHH, xFSHP, and xLHP.
A translation scheme from the numerical to the discrete model is derived in the following.

Recall that in an ODE model, Hill functions represent smooth switches. In the discrete
model, the switches are sharp. In the boolean case, one neglects the different maximum
levels of the Hill functions, and takes the switches as either on or off. This is represented
by variables which are either one or zero. Assume that an ODE has the form

y′(t) = a− b · y(t),
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5.2. A Purely Discrete Model

where a and b are either one or zero, representing the original Hill functions as being on
or off, respectively. Since the expression level of a discrete variable x is not explicitly
time-dependent, the value of y(t) as t→∞ is considered.

For b 6= 0, the solution of the above ODE

y(t) =
a

b
+ exp(−b · t) · Cy0

t→∞−→ a

b
,

where Cy0 is a constant. The limit of y(t) thus depends on the relation of the constants a
and b. For a = 0, y(t)→ 0.

For b = 0, the solution of the ODE

y(t) = a · t+ Cy0
t→∞−→

{
∞, a 6= 0

Cy0 , a = 0.

The four cases for the boolean variables a and b are considered to derive the value of y(t),
and subsequently the value of the corresponding discrete variable x. If a = 1 and b = 1,
y(t) → 1. If a = 0 and b = 1. y(t) → 0. For a = 1 and b = 0, y(t) → ∞, which in the
boolean case is set to ∞ =: 1. Finally, for a = 0 and b = 0, y(t) = Cy0 , which is set to
Cy0 := 0, assuming that the variable rather decays than growths.

The translation scheme is thus

y′C = H+(yA)−H+(yB) · yC  


xC = 1, if xA = 1 ∧ xB = 1

xC = 1, if xA = 1 ∧ xB = 0

xC = 0, if xA = 0 ∧ xB = 1

xC = 0, if xA = 0 ∧ xB = 0

The expression level of the variable xC is thus mainly controlled by the variables regulat-
ing the rise term. For GnRH, FSH, and FSH, the rise term thus controls the value of the
variable in the first compartment. The release term, in contrast, controls the substance in
the succeeding compartment.

A basal level Kj(∅) is defined for each variable xsj , representing the level it takes when
all incoming mechanisms are off. As an exponential decay with a constant decay rate is
included for many variables in the ODE model, the basal level of most of the variables is
set to zero. Exceptions are the variables that have a decreasing Hill function in the control
of their rise. For these variables, a constant growth term is assumed that is inhibited via
the Hill function. The variables only decay when the growth inhibiting substance is on.
When the inhibiting substance is off, the resulting variable rises, thus the basal level is set
to the maximum level. In the Bovine model, the variables with an inhibiting control on
their rise are xGnRHH, xFSHP, and xLHP. The basal level for these three variables is set to one.
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The growth term of yGnRH constitutes of a multiplication of several mechanisms, the GnRH
release, activation of GnRH, and of E2. Since the release is only on if xP4 = 0 ∧ xE2 = 1,
the only case where xGnRH = 1 is when xP4 = 0 ∧ xE2 = 1 ∧ xGnRHH = 1. The
basal value, i.e. the value that is obtained if none of the incoming regulations is active,
xP4 = 0 ∧ xE2 = 0 ∧ xGnRHH = 0, is thus xGnRH = 0.

The variable xLHP is regulated by xE2, xP4, and xGnRH. The right hand side of the ODE is
translated as

y′LHP =H+(yE2) +H−(yP4)−H+(yGnRH) · yLHP

 



xLHP = 1, if (xE2 = 1 ∨ xP4 = 0) ∧ xGnRH = 1

xLHP = 1, if (xE2 = 1 ∨ xP4 = 0) ∧ xGnRH = 0

xLHP = 0, if ¬(xE2 = 1 ∨ xP4 = 0)︸ ︷︷ ︸
xE2=0∧xP4=1

∧xGnRH = 1

xLHP = 0, if xE2 = 0 ∧ xP4 = 1 ∧ xGnRH = 0.

The only situations that lead to xLHP = 1 is thus when either xE2 = 1∧xP4 = 1∧xGnRH = 0
or xE2 = 1 ∧ xP4 = 0 ∧ xGnRH = 0. The basal value, i.e. the value that xLHP gets if
xE2 = 0 ∧ xP4 = 0 ∧ xGnRHH = 0, is thus xLHP = 1.

The interplay of the mechanisms that control xLH is straightforward, as its rise is only
controlled by xLHP and xGnRH. Due to the basal release, GnRH is not needed to switch on
xLH. The two cases xLHP = 1 ∧ xGnRH = 0 and xLHP = 1 ∧ xGnRH = 1 lead to xLH = 1, its
basal value is xLH = 0.

The variable yFSHP in the continuous model is derived from the interplay of xInh, xP4, xE2,
and xGnRH, and the right hand side of the ODE is translated as

y′FSP =H−(yInh)− (H+(yP4) +H−(yE2) + yGnRH)

 


xFSHP = 1, if xInh = 0 ∧ (xP4 = 1 ∨ xE2 = 0 ∨ xGnRH = 1)

xFSHP = 1, if xInh = 0 ∧ xP4 = 0 ∧ xE2 = 1 ∧ xGnRH = 0

xFSHP = 0, if xInh = 1 ∧ (xP4 = 1 ∨ xE2 = 0 ∨ xGnRH = 1)

xFSHP = 0, if xInh = 1 ∧ xP4 = 0 ∧ xE2 = 1 ∧ xGnRH = 0.

The basal value is thus K3(∅) = KFSHP(∅) = 1, which is obtained in the first of the above
cases. Furthermore, the variable xFSHP is activated whenever xInh is off.

Regulation of xFSH is again straightforward, its basal value is K4(∅) = KFSH(∅) = 0, and
it is activated if either only xFSHP is on (due to the basal release term), or if xFSHP =
1 ∧ xP4 = 1, xFSHP = 1 ∧ xGnRH = 1, or xFSHP = 1 ∧ xP4 = 1 ∧ xGnRH = 1. Its basal value
is thus xFSH = 0.
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xFol is getting activated by xFSH, and grows further to the expression level xFol = 2 even
without the help of xFSH (growing sensitivity of the follicles to FSH). This is in contrast to
the continuous model, where for any growth of the follicles, FSH is needed in eventually
very little amounts. The choice to neglect the need for FSH at a certain stage of follicular
development has been made to guarantee the development of the follicles to a final stage.
Only if the follicles have reached this final stage (xFol = 2), P4 can promote atresia, or LH
promotes ovulation, and thus its decay to xFol = 0. All combinations need to be specified
in the software, such that the overall interplay of the mechanisms is, written with logical
parameters:

I ⊂ IFol KFol(I)
xFSH = 1 1

xFSH = 1 ∧ xP4 = 1 1
xFSH = 1 ∧ xLH = 1 1
xFol = 1 ∧ xFSH = 1 2

xFol = 1 ∧ xFSH = 1 ∧ xP4 = 1 2
xFol = 1 ∧ xFSH = 1 ∧ xLH = 1 2

xFol = 1 2
xFol = 2 2

xFol = 2 ∧ xFSH = 1 2
xFol = 2 ∧ xFSH = 1 ∧ xP4 = 1 2
xFol = 2 ∧ xFSH = 1 ∧ xLH = 1 2

all other interactions 0

Note that in presence of FSH, both xP4 = 1 and xLH = 1 do not indicate the decay of the
follicles. Only if both active, xP4 = 1∧xLH = 1, the follicles decline even though xFSH = 1.

The variable xCL rises from zero at ovulation, thus if LH levels are high and follicles ready
for ovulation, xLH = 1∧ xFol = 2. It stays at the same expression level as long as xLH = 1,
in order to admit the decline of LH before any further self-growth. If solely xCL = 1, this
self-growth leads to a rise to xCL = 2. xIOF = 1 promotes the decay of xCL = 2 to zero.
The logical parameters leading to the different expression levels of xCL are thus
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I ⊂ ICL KCL(I)
xLH = 1 ∧ xFol = 2 1
xLH = 1 ∧ xCL = 1 1

xLH = 1 ∧ xCL = 1 ∧ xFol = 2 1
xCL = 1 2

xCL = 1 ∧ xFol = 2 2
xCL = 2 2

xCL = 2 ∧ xFol = 2 2
xCL = 2 ∧ xLH = 1 2

xCL = 2 ∧ xLH = 1 ∧ xFol = 2 2
all other interactions 0

This completes the derivation of the discrete model. Simulation of the model corresponds
to computing the state transition graph, which consists of all states, connected by all
possible transition between them. In the following, simulations are often started from a
particular initial state. The graph that is calculated with the simulation is thus a subgraph
of the STG, comprising all states and transitions that are reachable from the particular
initial state. This graph is called reachability graph

Different update strategies can be chosen for the simulation, e.g. asynchronous update,
where only one step after another is performed, leading to a change of one variable in
each step. Time is not explicitly included in the simulation. Even for small models, asyn-
chronous update eventually leads to a very complex STG. Note that the dynamics of the
discrete model with asynchronous update is non-deterministic in the way that, usually,
from the current state of the simulation, several transitions are possible.

Choosing a synchronous update implies the update of all possible changes based on the
current variable set within the next step. This usually omits several states and leads to
a smaller and thus better arranged STG. Another possibility to perform the update is to
define priority classes of variables that are updated before others. Within these priority
classes, synchronous or asynchronous update can be chosen. It is important to keep in
mind that the steady states are the same for all update strategies.

Validation of the Derived Discrete Model

To check whether the discrete model captures the right behavior, i.e. the behavior of the
numerical model, the output of the ODE simulation is translated to a sequence of discrete
stages, and the results are compared via model checking. Model checking is a technique to
verify certain properties of a finite system with the help of temporal logic. Typically, it
is tested whether a model (the finite system) can verify a logical formula (describing the
property). Here, it is tested whether the discrete model can run through the sequence of
states from the ODE simulation, provided that asynchronous update is chosen.
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5.2. A Purely Discrete Model

What is needed for the model checking procedure is a time series that potentially cor-
responds to an output of the above described model. The time series thus comprises a
sequence of states of 13 binary and two three-valued variables. To derive this sequence of
states, the output of the ODE model derived in Section 2 is used. For simplification, the
simulation with the parameterization for a two-wave cow is used. An approximation of the
continuous solution is thus available as a time series of real-valued variables.

For the translation of the real-valued time series into a binary and three-valued one, thresh-
olds are chosen for the continuous variables ySi

. With these thresholds, discrete values can
be derived for all continuous variables that depend on whether they are above or below
these values. For the binary variables, one thresholds is needed, while for the three-valued
variables, xFol and xCL, two thresholds are needed. In the following, these thresholds are
called translation thresholds. Thus, for the system of 15 ODEs, 17 thresholds are needed.

The parameters from the ODE model that represent biological thresholds are used. Fur-
thermore, translation thresholds are derived as follows:

• Whenever a substance acts on exactly one other substance via a Hill function, the
threshold of the Hill function is used as translation threshold.

• When a substance is influencing several others in the ODE model via Hill functions,
the mean value of the Hill thresholds is taken as translation threshold.

• When a substance is influencing other variables directly, not via Hill functions, the
mean of the numerical simulation for this substance is taken as translation threshold.

• Due to the smoothness of the switches in the numerical model, for the simulation of
the ODE model, the threshold does not need to be fully reached in order to already
have an impact the succeeding variable. Therefore, the mean of the threshold and
the numerical solution is calculated and taken as final translation threshold for the
real-valued variables.

The output of the continuous simulation, a time series of real-valued variables, can now be
compared with the thresholds to derive a time series of boolean or three-valued variables,
depending on whether the simulation is below or above the thresholds. After elimination
of double entries, this result can be compared to the state transition graph of the above
derived model.

With model checking, it can be tested whether it is possible for the discrete model to run
through the generated sequence of states. The software NuSMV has been used, which is
a symbolic model checker for the verification of finite state systems [CCGR00]. The result
is:
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Chapter 5. Discrete Modeling of the Bovine Estrous Cycle

For the discretized model, there is a
trajectory that runs through the spec-
ified time series derived from the ODE
model. This validates the above de-
rived discretization.

5.3 Analysis of the Discrete Dynamics

A remarkable property of the ODE system of the bovine estrous cycle is its stability with
respect to different starting values or perturbations of the variables, as well as its large
parameter range that results in the same limit cycle. For the continuous case, the proof
of local stability as in Section 4.1 cannot be extended to show global stability. For the
discrete model, however, such kind of behavior can be analyzed globally.

Stability for discrete event dynamical systems has been discussed in [Sob91]. Given a set
of states E, a state x of a discrete system is called E-stable, if all trajectories go through E
in a finite number of transitions, and then visit E infinitely often. A set of states is stable
if all elements are stable. Here, due to the chosen asynchronous update strategy, proving
stability for the derived model is not possible due to the multiple state transitions which
lead to several cycles in the STG. The simulation trajectory could stay in these cycles
for infinitely many steps, and does not necessarily go through other states. However, the
ability of the system to visit E in a finite number of transition can be analyzed.

The above derived model description for the bovine estrous cycle is implemented in GINsim,
described in [NBF+09]. GINsim is a simulation software for qualitative modeling and
analysis of regulatory models. It is based on the multilevel logical formalism introduced
in [Tho91], which was used above to derive the discrete model formulation. In GINsim,
besides the simulation with a regulatory model, i.e. the computation of its state transi-
tion graph, several analysis tools for the model dynamics are included: computation of
the strongly connected components (SCC) graph, i.e. the subgraph of states that are each
reachable from another, as well as path finding to search for particular state transitions.
With the simulation of a model, GINsim computes the number of steady states, which is
of great interest here.

Another tool that GINsim comprises is the investigation of circuit functionality, a property
derived from the structure of the regulatory concepts. After the calculation of the num-
ber of circuits in the model, the circuit functionality analysis provides information in the
interaction graph about whether these circuits are positive, negative, or functional. With
this information, the combination of interactions responsible for periodic behavior can be
found. Due to the high number of circuits in the bovine model, this analysis is omitted here.

GINsim has been used in a variety of work. [NBF+09] describes an introduction to logical
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modelling with GINsim. [ST+03] develops a model which describes the paths between
cells, taking into consideration a dozen molecular components. Depending on the initial
state, different steady states are reached. Disturbances are analyzed and a feedback circuit
analysis is performed. Such an analysis is also promising for the hormonal cycle models.

In [AJOK09], a four-variable model is analyzed with a logical approach, and logical bifurca-
tion diagrams are derived. It is shown that the essential dynamics of this small model can be
captured by the balance between positive and negative circuits of the regulatory network.
Different dynamical properties are associated with the different circuits, positive circuits
lead to multistationarity, and negative circuits result in homeostasis and oscillations. The
model is finally translated into an ODE model, preserving the dynamical properties. An
interesting - and possibly similar to BovCycle - property is that two oscillatory regimen
have been observed in this small model.

In Figure 5.3, the reachability graph computed with synchronous update for the bovine
model is depicted. Starting in a state that is part of the time series derived above, after a
certain number of steps, the simulation reaches a limit cycle. Examining the states in this
limit cycle, one can observe that some variables oscillate and some stay constant. This
implies that synchronous update does not capture the dynamics of the continuous model
for the bovine estrous cycle, where all variables are oscillatory.

Starting the simulation with asynchronous update from a particular initial state that is
taken from the automated time series derived in the previous subsection, namely from

x̂ = {xGnRHH = 0, xGnRH = 1, xFSHP = 1, xFSH = 1, xLHP = 1, xLH = 0, xFoll = 2,

xPGF = 0, xCL = 0, xP4 = 0, xE2 = 1, xInh = 1, xEnz = 0, xOT = 0, xIOF = 0},

leads to a reachability graph of 68864 nodes. If no initial state is specified, all possible
states are taken as starting point for the simulation, and the resulting STG consists of
73728 nodes. Note that the reachability graph for any initial state is always a subgraph of
the STG. An important result of the simulation is:

No fixed points are detected.

For all combinations of values for the variables, i.e. any disturbances of the variables, the
simulation thus never reaches a steady state.

The reachability graph for the initial state x̂ is too large to visualize, but computation
of the corresponding SCC graph gives more information about the dynamics. The SCC
graph for the reachability graph that is computed with GINsim starting from the initial
state above, consists of only one component. This means that within the 68864 nodes, all
nodes are reachable from another, and they are together an attractor of the model.
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Figure 5.3: Reachability graph calculated with synchronous update for
the discrete unreduced bovine model. Starting from the initial state x̂ =
{(xGnRHH, xGnRH, xFSHP, xFSH, xLHP, xLH, xFoll, xPGF, xCL, xP4, xE2, xInh, xEnz, xOT, xIOF) =
(0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0)}, a cyclical attractor is reached within sev-
eral steps. Some variables are oscillatory, but others stay constant throughout
this simulation trajectory.



5.3. Analysis of the Discrete Dynamics

The test whether there is another initial state that leads to another attractor can be per-
formed with NuSMV. For this, the state x̂ is taken, it is tested whether the computational
tree logic (CTL) formula AG(EF (x̂)) (all globally: exists finally: x̂) is fulfilled for all pos-
sible states. This is tested for all possible initial states. The answer is yes, i.e. starting
from every state, along any possible outgoing path, x̂ is reached. This implies that there
is exactly one attractor, and x̂ lies in this attractor.

Summarizing:

The time series calculated from the
simulation with the ODE model with a
two-wave parameterization lies in the
only attractor of the discrete model.

A Modified Version of the Model

Recall that cows have different number of follicular waves per cycle, as discussed in Section
4.2. It has been shown that the model from above is able to simulate the behavior of a
two-wave cow. For a three-wave cow, it is probable that the regulations in the model are
different during the first and the second follicular wave. Therefore, mechanisms need to be
adjusted. Recall that the model has to capture the effect that the second follicular wave,
as the first one, undergoes regression, and the ovulation then takes place in the third wave.
Looking at the simulation output for a three-wave cow of the continuous model, a difference
between the levels of the variables during the second and the third follicular wave is that
yEnz, and as consequence yPGF and yIOF are not yet high enough to cause luteolysis. Thus,
the corpus luteum still produces progesterone which represses the follicles. After luteolysis,
progesterone decreases and the dominant follicle can continue to grow until ovulation.

Translating the activation levels to the discrete model, it follows that xP4 has to perform
two different different actions, and thus gets two different action levels. As soon as it rises,
it suppresses xGnRH and xLH, but only after the first wave it starts to activate xEnz, which,
together with xOT and via xPGF and xIOF cause luteolysis after the second follicular wave.

The model from above is modified in two points: the variable xP4 is not binary anymore,
but instead three-valued. It is directly regulated by the three-valued xCL, and has the
described two action levels. Also, since the follicles only act when their level is xFoll = 2,
the intermediate step xFoll = 1 is not necessary, and in the modified version of the model
the variable is modeled as binary.

As with the former version of the model, to validate the discrete model, a time series is
generated from the output of the continuous model, now with the parameterization that
leads to a three-wave cow. The threshold TEnz

P4 is used as extra threshold for yP4 to get a
three-valued sequence of states for xP4. For the follicles, TFSH

Foll is used as only threshold to
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generate a sequence of states for the now binary variable xFoll. With NuSMV it is confirmed
that the new model version can generate the new time series.

Running the modified version of the model starting from a particular initial state leads to a
reachability graph of 70912 nodes, and its SCC graph again consists of only one component.
Thus, there is one attractor. If the initial state is not specified, the derived STG consists
of 73728 nodes, but the corresponding SCC graph consist of 1609 nodes, i.e. not all states
are reachable from another. The important result in both cases is:

The modified model has no fixed points
for any possible initial state.

As above, to test whether there is another attractor for any initial state, i.e. for any
perturbation of variables, a particular state from the derived time series is taken,

x̂mod = {xGnRHH = 0, xGnRH = 1, xFSHP = 0, xFSH = 0, xLHP = 1, xLH = 1, xFoll = 1,

xPGF = 0, xCL = 0, xP4 = 0, xE2 = 1, xInh = 1, xEnz = 0, xOT = 0, xIOF = 0}.

With NuSMV the CTL formula AG(EF (x̂mod)) (all globally: exists finally: x̂mod) is
checked. Again, the answer is yes. Thus, there is exactly one attractor, and x̂mod lies
in this attractor.

Summarizing:

The time series calculated from the
simulation with the ODE model with a
three-wave parameterization lies in the
unique attractor of the modified dis-
crete model.

Hence, the above derived discretization of BovCycle has been validated, in the sense that
the model is able to generate the appropriate sequence of states. Also, for all starting
values there is the same attractor, and the time series lies within this unique attractor.

Since the simulation with the discrete model is non-deterministic, it is not known whether
every possible trajectory necessarily runs through the specified sequence of states, and
whether it inevitably leads to a cyclical solution. However, as the generated sequence of
states is cyclical, i.e., oscillatory in all components, it is now known that the attractor
includes trajectories that are cyclical in all components.

Due to the non-deterministic simulation, a proof of global stability in the sense of [Sob91]
is not possible. However, the potential to show stable behavior is given, since for both
versions of the discrete model, no steady states are ever reached with the simulation. Also,
any perturbation of the simulation always ends up in the only attractor of the model. One
can conclude:
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5.4. Model Reduction

The system is designed for oscillatory
behavior. Also, any perturbation can
potentially find back to the observed
behavior.

To learn more about the model and the generated trajectories, the derived discrete model
is reduced to its core components to explore the STG even better.

5.4 Model Reduction

It could be possible that the stability of the cycle models might come from a certain cou-
pling of the underlying regulatory mechanisms. To better understand the oscillation of
the system, to look into the core structure of the model, reduction of the model dimension
can be performed. Specific model reduction techniques lead to a smaller model with less
variables which still displays the essential dynamical properties. In particular, the limit
cycles observed in the STG of a reduced model can be related to limit cycles in the original
STG, and the underlying key dynamics can be identified. The reduction procedure for the
discrete model is described in the following.

Most model reduction techniques are based on steady-state assumptions or mass conserva-
tion laws. Neither of these prerequisites are fulfilled in our models, thus these techniques
are not applicable here.

The STG of the above derived model for the bovine estrous cycle, calculated with asyn-
chronous update, is too large to visualize. Therefore, it seems reasonable to have a look at
a discrete version of the reduced ODE model derived in Section 4.4. This model consists
of 10 ODEs, and discretization happens according to the same principles as above. The
simulation is here started from the initial state x̂a = {xG = 1, xFSH = 1, xLH = 0, xFoll =
2, xPGF = 0, xCL = 0, xP4 = 0, xE2 = 1, xInh = 1, xIOF = 0}. The reachability graph for x̂a
with asynchronous update still has 2176 nodes, no stable states, and the SCC graph still
consists of one component. The SCC could either represent a cyclical attractor, or the
simulation could lead to chaotic behavior.

To make a next reduction step, the regulatory mechanisms of the graph are examined.
The variables that have only one predecessor are omitted, and the arcs are modified in
the way that the incoming arc is redirected to all successors of the eliminated variable.
For the bovine model, this leads to an elimination of xP4, xE2 and xInh. The new in-
fluence graph is depicted in Figure 5.4(b). The new reachability graph, starting from
x̂b = {xG = 1, xFSH = 1, xLH = 0, xFoll = 2, xPGF = 0, xCL = 0, xIOF = 0} contains 216
nodes, there are still no steady states, and its SCC graph has exactly one component.
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(a) Step 1: Discretization of reduced ODE model de-
rived in Section 4.4

(b) Step 2: Elimination of variables that
have only one incoming arc

(c) Step 3: Elimination of variables with
only one outgoing arc without direct feed-
back

(d) Step 4: Elimination of variables not in-
volved in any direct feedback

Figure 5.4: Influence graphs throughout the different steps of the discrete re-
duction



5.4. Model Reduction

The next reduction step eliminates xPGF, the only variable that has a single target with-
out direct feedback mechanism. The interplay of the predecessors of xPGF, xFol = 2 and
xCL = 1, is now redirected to its target, xIOF, see Figure 5.4(c). As xIOF is already in-
fluenced by xCL = 2, and an AND-relation was between xPGF and xCL = 2, xIOF is now
activated if xFol = 2∧xCL = 2. The resulting reachability graph with asynchronous update,
starting from x̂c = {xG = 1, xFSH = 1, xLH = 0, xFoll = 2, xPGF = 0, xCL = 0, xIOF = 0}
consists of 108 nodes, and there is still exactly one strongly connected component, which
implies that there is exactly one cyclical attractor.

Since 108 nodes are still difficult to interpret, another reduction step is performed. In
the continuous simulation, yGnRH and yLH have a similar pattern, thus merging the two
discrete counterparts is reasonable. In the discrete model, xGnRH is the only remaining
variable without direct feedback with any of its successors or predecessors. Therefore,
this variable is omitted. The regulation of xLH by xGnRH is now performed by the pre-
decessors of xGnRH, xFoll = 2 and xCL = 1. The only activating arc of xLH, xGnRH = 1
is replaced by the arc xFoll = 2. The other regulation that xGnRH performs, is the ac-
tivation of xFSH. However, since the basal level of xFSH is one, the variable also be-
comes one in case that none of the regulators are active, i.e. in case of xGnRH = 0.
Therefore it is evident that activation of xFSH by xGnRH is omittable. After this re-
duction step, the resulting reachability graph with asynchronous update, starting from
x̂d = {xFSH = 1, xLH = 0, xFoll = 2, xPGF = 0, xCL = 0, xPGF = 0} consists of 54 nodes,
no steady states, and its SCC graph contains exactly one component which consists of 10
different states, the cyclical attractor.

Having performed this reduction step, the reduced model now contains five variables. Paths
in the STG can now more easily be interpreted. Keeping in mind the simulation of the
ODE model, and looking at the 54 nodes within the reachability graph and its transitions,
certain similarities can be detected in the sequence of events or states. In contrast, certain
succession of states in the STG can be identified as not in line with the continuous simula-
tion. To get the discrete simulation more in line with the continuous one, priority classes
are defined in order to restrict the asynchronous simulation.

Priority classes are subsets of the variables assigned with a ranking. The simulation with
priority classes updates the variables in higher ranked priority class before the others, which
allows to force or to prevent certain transitions in the STG. Analysis of the asynchronous
STG and comparison with the continuous model output leads to the definition of three
priority classes:

1. xFoll, xCL

2. xLH

3. xFSH, xPGF
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The simulation with these priority classes, starting from (xFSH, xLH, xFoll, xCL, xPGF) =
(1, 1, 2, 0, 0) leads to a reachability graph with 27 nodes, which is visualized in Figure 5.5.
In the figure, each state corresponds to a value which the vector (xFSH, xLH, xFoll, xCL, xPGF)
takes. For example, the state (1, 1, 2, 0, 0) in the upper part of the figure corresponds to
the situation around ovulation: LH and FSH are at a high level, the Follicles are at their
highest level, i.e. ready for ovulation. The next step in the graph is the rise of the CL,
which in the graph corresponds to the state (1, 1, 2, 1, 0). In this manner, the state transi-
tion graph can be related to the known biological behavior. It can be observed that there
is one large limit cycle where different paths can be taken. At five states in the reachability
graph, two possibilities to pursue the simulation exist.

From the state (0, 1, 0, 1, 0), where FSH is high (xFSH = 1) in the beginning of the luteal
phase (xCL = 1), there are two ways to proceed. Either the CL first reaches higher levels
before the follicles start to grow, or first the follicles start growing. In the latter case,
there are again two ways to proceed further, either the follicles first continue to rise, or
the CL reaches higher levels before that. In all of the cases, after three transitions, both
the CL and the follicles have reached their maximum levels, the simulation is in the state
(0, 1, 2, 2, 0).

It can also be observed in the reachability graph that there are two subcycles. The one on
the left side in Figure 5.5 corresponds to the follicular waves, while the cycle on the right
side in the figure can not be observed in a normal, healthy cow. In the left cycle, at the
state (xFSH, xLH, xFoll, xCL, xIOF) = (0, 1, 2, 2, 0), either FSH decays followed by a decline
of the follicular wave, or PGF rises followed by luteolysis and ovulation. If the decline of
the follicles occurs, the simulation gets back to the point where FSH starts to rise again
(0, 1, 0, 2, 0), followed by a rise of the follicles to their maximum.

The right part of Figure 5.5 describes everything that happens between luteolysis and
ovulation. In a healthy cow, after the decay of the corpus luteum, PGF declines and LH
rises. This corresponds to the outer path of the figure. In the reachability graph, after
the rise of LH, there is the possibility that FSH and the follicles decay, and LH declines
again. Whether this corresponds to a pathological situation in reality, i.e. whenever LH
peaks happen without ovulation, still needs to be explored.

The described reduction steps can also be applied to the modified version of the discrete
model, where xP4 is three-valued, and xFoll binary. Recall that this model was derived
because it is expected that certain mechanisms differ from the first follicular wave to the
second. With this model, after the first step the reachability graph computed with asyn-
chronous update has 1952 nodes, after the second step 184, after the third 72, and after the
fourth reduction step 36 nodes. As above, in every reduced model the SCC of the reacha-
bility graph has one component. Thus, the reduced models are all capable to describe the
desired cyclical behavior for the bovine estrous cycle.
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Figure 5.5: Reachability graph calculated with priority classes from the
reduced model depicted Figure 5.4(d), starting from the initial state
(xFSH, xLH, xFoll, xCL, xIOF) = (1, 1, 2, 0, 0), which represents ovulation. On the
left part of the graph, follicular waves can be observed, and on the right the
state transitions between luteolysis and ovulation.
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Using the same priority classes as above, the modified version of the model leads to a
reachability graph that is very similar to the one from the original version that is depicted
in Figure 5.5. The expectation that the three-valued XP4 makes a difference in the simula-
tion of the wave patterns is not met. Instead, almost the same two subcycles are detected,
one representing the follicular waves, and one between luteolysis and ovulation.

A further reduction can simplify this model and the simulation even more. As xFSH in
the described models only influences xFoll, this variable can be eliminated and replaced by
a self-influence of Foll. Considering all variables as binary leads to the model and state
transition graph that are illustrated in Figure 5.6.

The sequence of events in the reachability graph in Figure 5.6 is as follows: Starting from
ovulation at the initial state {xLH = 1, xFoll = 1, xCL = 0, xPGF = 0}, there are two possibil-
ities to proceed, but both lead to a decay of the follicles and a rise of the CL within the next
two transitions. Next, LH levels fall, and the next follicular wave rises. While the CL is
still high, follicles can grow and directly undergo atresia for several times. This can be ob-
served in the direct transitions between the states {xLH = 0, xFoll = 0, xCL = 1, xPGF = 0}
and {xLH = 0, xFoll = 1, xCL = 1, xPGF = 0} at the lower part of Figure 5.6. While follicles
are high, the simulation can proceed when PGF is rising. This is followed by two events,
the decay of the CL and the decay of the follicles. The order of these two events is ex-
changeable. Now, only PGF levels are high, but they fall to zero in the next step. As all
variables are zero, the follicles start to grow again, followed by a rise of LH, and the next
ovulation.

Theoretically, a trajectory could rest in a subcycle forever. To avoid this and be able to
use each trajectory as a time series for a real cow, a modification of the modeling approach
is needed. For example, a memory effect might be included, or a probabilistic approach
could be chosen for the state transitions. This might be of interest for future modeling
questions.

One conclusion of this section is that also the reduced versions of the model are designed
for oscillatory behavior, and they each have only one attractor. This is a hint to global
stability. The system is able to compensate even large perturbations.

Moreover, as the reduced models still capture the essential dynamics of the bovine estrous
cycle, one can conclude that some of its key variables and mechanisms have been identified.
The variables are xLH, xFSH, xFoll, xCL, and xPGF. Among the key mechanisms are several
direct negative feedback loops, namely between xFSH and xFoll, xPGF and xCL, xLH and
xFoll, xLH and xCL, xFoll and xCL. It is expected that any larger model of the bovine estrous
cycle should map these core dynamics.

Derived as an additional representation for ODE models, the discrete counterparts con-
tribute to a better understanding of the system. The core variables and mechanisms of the
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(a) Influence graph

(b) State transition graph

Figure 5.6: Influence graph and reachability graph of a binary model for the
bovine estrous cycle, computed with asynchronous update, starting from the
initial state (xLH, xFoll, xCL, xPGF) = (1, 1, 0, 0). In the graph, the key events
of the bovine estrous cycle can be observed, and the order of the events (state
transitions) maps the order of the biological changes remarkably well. The
direct transitions corresponding to follicular waves can be observed in the lower
part of this graph, between the states (0, 0, 1, 0) and (0, 1, 1, 0).
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discrete model also represent the core relations in the continuous model. It is expected that
the dynamical results can be transferred to the continuous setting, and that also therein,
only one global attractor exists which the system reaches even after large perturbations.
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Conclusion

With this thesis, a detailed step towards reliable and predictive modeling of hormonal net-
works has been taken.

A contribution to the use of mathematical models in animal sciences has been made with
the development of a differential equation model for the bovine estrous cycle. For this, a
whole body approach was presented, where the interplay of mechanisms in different parts
of the organism results in estrus regulation. The developed fully coupled feedback model
was compared in detail with an existing differential equation model of the human men-
strual cycle.

To validate these two continuous models, simulations were compared with time courses of
measurements, and also the response of the systems to drug administration was studied.
Exemplarily for the bovine model, continuous analysis tools were applied to investigate
stability, cycle patterns, and robustness with respect to parameter perturbations. The
model was significantly reduced while still capturing the essential output.

Supplementary, to take a look at alternative modeling approaches, appropriate discrete
models were derived, exemplarily, for the bovine estrous cycle. In the discrete setting,
parameter constraints for the continuous model were calculated from a piecewise affine
version of the model, and stability was analyzed globally for a purely discrete model. In
addition, reduced models were presented that preserve the key dynamical characteristics.

The new models in this thesis improve the understanding of the biological mechanisms
behind the hormonal cycle. Their predictive ability has been shown via the simulation
of external influences, and their mapping of biological stability allows for advanced appli-
cations. Such models can assist research in drug development, and in the design of new
therapeutic strategies regarding fertility.
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Appendix

Here, after a list of used abbreviations and notations, the nonzero entries of the Jacobian
for BovCycle are given. Also the Wronskian matrix is provided. Afterwards, three ODE
models are provided, GynCycle, BovCycle, and a reduced version of BovCycle, together
with parameters and initial values.

List of used Abbreviations

GnRH Gonadotropin releasing hormone
LH Luteinizing Hormone
FSH Follicle stimulating hormone
E2 Estradiol
P4 Progesterone
Inh Inhibin
PGF2α Prostaglandin F2α
OT Oxytocin
CL Corpus luteum
Foll Follicular function
Enz Enzymes
IOF Intra-ovarian factors
Syn Synthesis
Rel Release
Hyp Hypothalamus
Pit Pituitary
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Appendix

The Jacobian for the model of the bovine estrous cycle
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0.99y5

E2((0.372y
2
P4+0.03)y2

E2+0.019(y2
P4+0.12)(y2

P4+0.12))
(y2

E2+0.0095)(y5
E2+0.11)(y2

P4+0.063)(y2
P4+0.12)

J(2,2) = −1.63

J(2,10) =
0.99y5

E2yGhyP4

(
− 0.24

(y2
P4+0.064)

2 − 0.5

(y2
P4+0.12)

2 + 0.0048

(y2
P4+0.123)

2
(y2

E2+0.0095)

)
y5
E2+0.114

J(2,11) =
y4
E2yGh(−0.038y2

P4(y
2
P4+0.064)y7

E2+(0.21y
2
P4+0.017)y4

E2+0.0066(y2
P4+0.086)(y2

P4+0.58)y2
E2+0.0001(y2

P4+0.12)(y2
P4+0.12))

(y2
E2+0.0095)

2
(y5

E2+0.11)
2
(y4

P4+0.186y2
P4+0.0078)

J(3,2) = − 0.087yFSHp
(yG+0.07)2

J(3,3) = − 0.293y2
P4

y2
P4+0.023

− 0.039
y2
E2+0.097

− 1.23yG
yG+0.07 − 0.95

J(3,10) = − 0.014yFSHpyP4

(y2
P4+0.023104)

2

J(3,11) = 0.077yE2yFSHp

(y2
E2+0.097344)

2

J(3,12) = − 0.00048y4
Inh

(y5
Inh+0.0000228776)

2

J(4,2) = 0.087yFSHp
(yG+0.0708)2

J(4,3) = 0.29y2
P4

y2
P4+0.023

+ 0.039
y2
E2+0.097

+ 1.23yG
yG+0.07 + 0.95

J(4,4) = −2.73

J(4,10) = 0.014yFSHpyP4

(y2
P4+0.023)

2

J(4,11) = − 0.077yE2yFSHp

(y2
E2+0.097)

2

J(5,2) = − 1.74y4
GyLHp

(y5
G+0.16)

2

J(5,5) = − 2.22y5
G

y5
G+0.16

− 0.014

J(5,10) = − 0.0039yP4

(y2
P4+0.00072)

2

J(5,11) = 0.044yE2

(y2
E2+0.059)

2

J(6,2) = 1.74y4
GyLHp

(y5
G+0.16)

2
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J(6,5) = 2.22y5
G

y5
G+0.16

+ 0.014

J(6,6) = −12

J(7,4) =
0.00086(y2

Foll+0.048)
2
yFSH

((y4
Foll+0.097y2

Foll+0.0023)y2
FSH+0.00076)

2

J(7,6) = − 0.2yFollyLH

(y2
LH+0.029241)

2

J(7,7) = − 1.1y5
P4

y5
P4+0.000032

− 3.49y2
LH

y2
LH+0.029

+
0.0017yFolly

2
FSH

(y2
Foll+0.048)

3

(
y2
FSH+ 0.00076

(y2
Foll+0.048)

2

)2

J(7,10) = − 0.00017yFolly
4
P4

(y5
P4+0.000032)

2

J(8,8) = −1.23

J(8,13) = 1611.83y4
Enzy

2
OT

(y5
Enz+5.98)

2
(y2

OT+1.18)

J(8,14) = 127.397y5
EnzyOT

(y5
Enz+5.98)(y2

OT+1.18)
2

J(9,6) = 0.04yFollyLH

(y2
LH+0.029241)

2

J(9,7) = 0.7y2
LH

y2
LH+0.029241

J(9,9) = − 41.39y5
IOF

y5
IOF+4.0075

+ 0.071yCL
y2
CL+0.01

− 0.071y3
CL

(y2
CL+0.01)

2

J(9,15) = − 829.35yCLy
4
IOF

(y5
IOF+4.0075)

2

J(10,9) = 4.5yCL

J(10,10) = −1.41

J(11,7) = 4.38yFoll

J(11,11) = −1.23

J(12,7) = 2.82yFoll

J(12,12) = −0.475

J(13,10) = 4.85y4
P4

(y5
P4+0.27)

2

J(13,13) = −2.98

J(14,9) = 3.18yCLy
2
E2

y2
E2+0.02

J(14,11) = 0.065y2
CLyE2

(y2
E2+0.02)

2

J(14,14) = −0.64
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J(15,8) = 536.22y10
CLy

4
PGF

(y10
CL+0.006)(y5

PGF+2.7)
2

J(15,9) = 2.4y9
CLy

5
PGF

(y10
CL+0.006)

2
(y5

PGF+2.7)

J(15,15) = −0.33

The Wronskian matrix of the ODE model for the bovine estrous cycle

W =



0.0027 0.0055 −0.0007 0.0000 0.0017 0.0030 −0.0056
−0.0189 −0.0347 −0.0589 −0.0662 −0.0320 −0.0432 −0.3401
−0.0037 −0.0046 −0.0089 −0.0093 −0.0024 −0.0031 −0.0587
−0.0066 −0.0069 −0.0205 −0.0212 −0.0044 −0.0052 −0.1364
−0.4576 −0.8704 0.4645 0.3866 −0.0476 −0.1947 2.6424
−0.0818 −0.1546 0.0321 0.0156 −0.0278 −0.0574 0.1786
−0.0065 −0.0101 −0.0165 −0.0182 −0.0071 −0.0096 −0.1022
−0.0000 0.0002 −0.0009 −0.0009 −0.0000 0.0000 −0.0060
0.0046 0.0110 −0.0074 −0.0060 0.0023 0.0050 −0.0502
0.0045 0.0096 −0.0019 −0.0007 0.0028 0.0051 −0.0146
−0.0169 −0.0313 −0.0273 −0.0324 −0.0185 −0.0268 −0.1590
−0.0038 −0.0073 −0.0261 −0.0285 −0.0126 −0.0162 −0.1486
0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000
0.0042 0.0120 −0.0129 −0.0113 0.0021 0.0053 −0.0875
−0.0007 0.0074 −0.0307 −0.0295 −0.0015 0.0011 −0.2050

0.0000 0.1802 −0.0339 0.0104 −0.0979 0.0000 0.0000 −0.0053
−0.0000 −4.7801 0.7586 −0.1438 1.5115 −0.0000 −0.0000 0.1425
−0.0000 −0.5153 0.0560 −0.0204 0.1260 −0.0000 −0.0000 0.0151
−0.0000 −1.0636 0.1080 −0.0398 0.2283 −0.0000 −0.0000 0.0312
0.0000 0.4587 −0.2404 −1.1965 6.1877 0.0000 0.0000 −0.0316
−0.0000 −3.0289 0.4531 −0.2752 1.9155 −0.0000 −0.0000 0.0876
−0.0000 −1.1962 0.1671 −0.0413 0.3512 −0.0000 −0.0000 0.0354
−0.0000 −0.0279 0.0017 −0.0006 0.0009 −0.0000 −0.0000 0.0008
0.0000 0.0881 −0.0386 0.0131 −0.1477 0.0000 0.0000 −0.0025
0.0000 0.2800 −0.0553 0.0171 −0.1642 0.0000 0.0000 −0.0082
−0.0000 −2.6904 0.4218 −0.0977 0.9313 −0.0000 −0.0000 0.0799
−0.0000 −1.9018 0.3094 −0.0473 0.5652 −0.0000 −0.0000 0.0569
0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000
0.0000 −0.0872 −0.0293 0.0082 −0.1402 0.0000 0.0000 0.0025
−0.0000 −0.9802 0.0622 −0.0235 0.0437 −0.0000 −0.0000 0.0282


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ODEs and parameters for GynCycle

Table A.1: The model of the human menstrual cycle. It consists of 33 ODEs
and 114 parameters.

freq(t) = H−
P4,freq(yP4(t)) · (1 +H+

E2,freq(yE2(t)))

mass(t) = H+
E2,mass(yE2(t))

d
dtyG(t) = kG ·mass(t) · freq(t)− kGon · yG(t) · yRG(t)

+kGoff · y(G-RG)(t)− kGdegr · yG(t) (H1)
d
dtyRG(t) = kGoff · y(G-RG)(t)− kGon · yG(t) · yRG(t)

−kRG
inter · yRG(t) + kRG

recy · yRG*(t) (H2)
d
dtyRG*(t) = k

(G-RG)
diss · y(G-RG)*(t) + kRG

inter · yRG(t)

−kRG
recy · yRG*(t) + kRG

syn − kRG
degr · yRG*(t) (H3)

d
dty(G-RG)(t) = kGon · yG(t) · yRG(t)− kGoff · y(G-RG)(t)

−k(G-RG)
inact · y(G-RG)(t) + k

(G-RG)
act · y(G-RG)*(t) (H4)

d
dty(G-RG)*(t) = k

(G-RG)
inact · y(G-RG)(t)− k

(G-RG)
act · y(G-RG)*(t)

−kRG
degr · y(G-RG)* − kRG

diss · yRG*(t) (H5)

SynLH(t) =
(
bLH
Syn +H+

E2,LH(yE2(t)
)
·H−

P4,LH(yP4(t))

RelLH(t) =
(
bLH
Rel +H+

(G-RG),LH

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLHp(t)

d
dtyLHp(t) = SynLH(t)− RelLH(t) (H6)
d
dtyLH(t) = 1

Vblood
· RelLH(t)−

(
kLH

on · yRL(t) + clLH
)
· yLH(t) (H7)

SynFSH(t) = 1

1+
(

yIhAe(t)
TIhAe

)nIhAe
+
(

yIhB(t)

TIhB

)nIhB ·H−
freq,P4(freq(t))

RelFSH(t) =
(
bFSHRel

+H+
(G-RG),FSH(y(G-RG)(t) + y(Ago-RG)(t))

)
· yFSHp(t)

d
dtyFSHp(t) = SynFSH(t)− RelFSH(t) (H8)
d
dtyFSH(t) = 1

Vblood
· RelFSH(t)−

(
kFSH

on · yRF(t) + clFSH
)
· yFSH(t) (H9)

d
dtyRL(t) = kLH

recy · yRLdes(t)− kLH
on · yLH(t) · yRL(t) (H10)

d
dty(LH-RL)(t) = kLH

on · yLH(t) · yRL(t)− kLH
des · y(LH-RL)(t) (H11)

d
dtyRLdes(t) = kLH

des · y(LH-RL)(t)− kLH
recy(t) · yRLdes(t) (H12)

d
dtyRF(t) = kFSH

recy · yRFdes(t)− kFSH
on · yFSH(t) · yRF(t) (H13)

d
dty(FSH-RF)(t) = kFSH

on · yFSH(t) · yRF(t)− kFSH
des · y(FSH-RF)(t) (H14)

d
dtyRFdes(t) = kFSH

des · y(FSH-RF)(t)− kFSH
recy · yRFdes(t) (H15)

d
dtys(t) = H+

FSH,s

(
y(FSH-RF)(t)

)
−H+

P4,s (yP4(t)) · ys(t) (H16)

Continued on next page...
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Table A.1 – continued from previous page

d
dtyAF1(t) = H+

FSH,AF1

(
y(FSH-RF)(t)

)
− kAF2

AF1 · y(FSH-RF)(t) · yAF1(t) (H17)

d
dtyAF2(t) = kAF2

AF1 · y(FSH-RF)(t) · yAF1(t)− kAF3
AF2 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF3
AF2
· ys(t) · yAF2(t) (H18)

d
dtyAF3(t) = kAF3

AF2 ·
(

y(LH-RL)(t)

SF(LH-RL)

)nAF3
AF2
· ys(t) · yAF2(t)

+kAF3
AF3 · y(FSH-RF)(t) · yAF3(t) ·

(
1− yAF3(t)

AFmax

)
−kAF4

AF3 ·
(

y(LH-RL)(t)

SF(LH-RL)

)nAF4
AF3
· ys(t) · yAF3(t) (H19)

d
dtyAF4(t) = kAF4

AF3 ·
(

y(LH-RL)(t)

SF(LH-RL)

)nAF4
AF3
· ys(t) · yAF3(t)

+kAF4
AF4 ·

(
y(LH-RL)(t)

SF(LH-RL)

)nAF4
· yAF4(t) ·

(
1− yAF4(t)

AFmax

)
−kPrF

AF4 ·
(

y(LH-RL)(t)

SF(LH-RL)

)
· ys(t) · yAF4(t) (H20)

d
dtyPrF(t) = kPrF

AF4 ·
(

y(LH-RL)(t)

SF(LH-RL)

)
· ys(t) · yAF4(t)

−kPrF
cl ·

(
y(LH-RL)(t)

SF(LH-RL)

)nOvF
PrF
· ys(t) · yPrF(t) (H21)

d
dtyOvF(t) = kOvF ·

(
y(LH-RL)(t)

SF(LH-RL)

)nOvF
PrF
· ys(t) ·H+

PrF,OvF(yPrF(t))− kOvF
cl · yOvF(t) (H22)

d
dtySc1(t) = H+

OvF,Sc1 (yOvF(t))− kSc2
Sc1 · ySc1(t) (H23)

d
dtySc2(t) = kSc2

Sc1 · ySc1(t)− kLut1
Sc2 · ySc2(t) (H24)

d
dtyLut1(t) = kLut1

Sc2 · ySc2(t)

−kLut2
Lut1 ·

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut1(t) (H25)

d
dtyLut2(t) = kLut2

Lut1 ·
(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut1(t)

−kLut3
Lut2 ·

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut2(t) (H26)

d
dtyLut3(t) = kLut3

Lut2

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut2(t)

−kLut4
Lut3 ·

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut3(t) (H27)

d
dtyLut4(t) = kLut4

Lut3

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut3(t)

−kLut4
cl ·

(
1 +H+

(G-RG),Lut

(
y(G-RG)(t) + y(Ago-RG)(t)

))
· yLut4(t) (H28)

d
dtyE2(t) = bE2 + kE2

AF2 · yAF2(t) + kE2
AF3 · yLH(t) · yAF3(t)

+kE2
AF4 · yAF4(t) + kE2

PrF · yLH(t) · yPrF

+kE2
Lut1 · yLut1(t) + kE2

Lut4 · yLut4(t)− kE2
cl · yE2(t) (H29)

d
dtyP4(t) = bP4 + kP4

Lut4 · yLut4(t)− kP4
cl · yP4(t) (H30)

d
dtyIhA(t) = bIhA + kIhA

PrF · yPrF(t) + kIhA
Sc1 · ySc1(t) + kIhA

Lut1 · yLut1(t) + kIhA
Lut2 · yLut2(t)

+kIhA
Lut3 · yLut3(t) + kIhA

Lut4 · yLut4(t)− kIhA · yIhA(t) (H31)
d
dtyIhAe(t) = kIhA · yIhA(t)− kIhAe

cl · yIhAe(t) (H32)
d
dtyIhB(t) = bIhB(t) + kIhB

AF2 · yAF2(t) + kIhB
Sc2 · ySc2(t)− kIhB

cl · yIhB(t) (H33)
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Table A.2: Parameter values for
the full human model(d=days).
(More details about the param-
eter identifiability can be found
in [RmD+12].

No. Symbol value unit

1∗ bLH
Syn 7309.92 IU/d

2 kLH
E2 7309.92 IU/d

3 TLH
E2 192.2 pg/mL

4 nLH
E2 10 –

5 TLH
P4 2.371 ng/mL

6 nLH
P4 1 –

7∗ bLH
Rel 0.00476 1/d

8∗ kLH
(G-RG) 0.1904 1/d

9 TLH
(G-RG) 0.0003 nmol/L

10 nLH
(G-RG) 5 –

11 Vblood 6.589 L

12 kLH
on 2.143 L/(d·IU)

13 kLH
cl 74.851 1/d

14 kLH
recy 68.949 1/d

15 kLH
des 183.36 1/d

16 TFSH
freq 12.8 1/d

17 nFSH
freq 5 –

18 kFSH
Inh 2.213e+4 IU/d

19 TInhA 95.81 IU/mL

20 TInhB 70 pg/mL

21 nInhA 5 –

22 nInhB 2 –

23 bFSH
Rel 0.057 1/d

24 kFSH
(G-RG) 0.272 1/d

25 TFSH
(G-RG) 0.0003 nmol/L

26 nFSH
(G-RG) 2 –

27 kFSH
on 3.529 L/(d·IU)

28 kFSH
cl 114.25 1/d

29 kFSH
recy 61.029 1/d

30 kFSH
des 138.3 1/d

31 T s
FSH 3 IU/L

Continued on next page...
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No. Symbol value unit

32 ns
FSH 5 –

33 T s
P4 1.235 ng/mL

34 ns
P4 5 –

35 ks 0.219 1/d

36 kscl 1.343 1/d

37 nAF1
(FSH-RF) 5 –

38 TAF1
(FSH-RF) 0.608 IU/L

39 kAF1 3.662 [PrA1]/d

40 kAF2
AF1 1.221 L/(d·IU)

41 SF(LH-RL) 2.726 IU/L

42 kAF3
AF2 4.882 1/d

43 nAF3
AF2 3.689 –

44 kAF3
AF3 0.122 L/(d·IU)

45 SeFmax 10 [SeF1]

46 kAF4
AF3 122.06 1/d

47 nAF4
AF3 5 –

48 kAF4
AF4 12.206 1/d

49 nAF4 2 –

50 kPrF
AF4 332.75 1/d

51 kPrF
cl 122.06 1/d

52 nOvF 6 –

53 kOvF 7.984 1/d

54 TOvF
PrF 3 [PrF]

55 nOvF
PrF 10 –

56 kOvF
cl 12.206 1/d

57 kSc1 1.208 1/d

58 TSc1
OvF 0.02 [OvF]

59 nSc1
OvF 10 –

60 kSc2
Sc1 1.221 1/d

61 kLut1
Sc2 0.958 1/d

62 kLut2
Lut1 0.925 1/d

63 kLut3
Lut2 0.7567 1/d

64 kLut4
Lut3 0.610 1/d

65 kLut4
cl 0.543 1/d

66 mLut
(G-RG) 20 –

67 TLut
(G-RG) 0.0008 nmol/L

68 nLut
(G-RG) 5 –

69 bE2 51.558 pg/mL
d

Continued on next page...
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Table A.2 – continued from previous page

No. Symbol value unit

70 kE2
AF2 2.0945 pg/mL

[AF2]·d

71 kE2
AF3 9.28 pg/mL

[AF3]·[LH]·d

72 kE2
AF4 6960.53 pg/mL

[AF4]·d

73 kE2
PrF 0.972 pg/mL

[PrF]·[LH]·d

74 kE2
Lut1 1713.71 pg/mL

[Lut1]·d

75 kE2
Lut4 8675.14 pg/mL

[Lut4]·d

76 kE2
cl 5.235 1/d

77 bP4 0.943 ng/mL
d

78 kP4
Lut4 761.64 ng/mL

[Lut4]·d

79 kP4
cl 5.13 1/d

80 bInhA 1.445 IU/mL
d

81 kInhA
PrF 2.285 IU/mL

[PrF]·d

82 kInhA
Sc1 60 pg/mL

[Sc1]·d

83 kInhA
Lut1 180 pg/mL

[Lut1]·d

84 kInhA
Lut2 28.211 IU/mL

[Lut2]·d

85 kInhA
Lut3 216.85 IU/mL

[Lut3]·d

86 kInhA
Lut4 114.25 IU/mL

[Lut4]·d

87 kInhA 4.287 1/d

88 kInhAe
cl 0.199 1/d

89 bInhB 89.493 pg/mL
d

90 kInhB
AF2 447.47 pg/mL

[AF2]·d

91 kInhB
Sc2 134240.2 pg/mL

[AF3]·d

92 kInhB
cl 172.45 1/d

93 f0 16 1/d

94 T freq
P4 1.2 ng/mL

95 nfreq
P4 2 –

96 mfreq
E2 1 –

97 T freq
E2 220 pg/mL

98 nfreq
E2 10 –

99 a0 5.593e-3 nmol

100 Tmass,1
E2 220 pg/mL

101 nmass,1
E2 2 –

102 Tmass,2
E2 9.6 pg/mL

103 nmass,2
E2 1 –

104 kGdegr 0.447 1/d

105 kGon 322.18 L
d·nmol

106 kGoff 644.35 1/d

107 k
(G-RG)*
degr 0.00895 1/d

Continued on next page...
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No. Symbol value unit

108 k
(G-RG)*
diss 32.218 1/d

109 kRG
inter 3.222 1/d

110 kRG
recy 32.218 1/d

111 kRG
degr 0.0895 1/d

112 k
(G-RG)
inact 32.218 1/d

113 k
(G-RG)
act 3.222 1/d

114 kRG
syn 8.949e-5 nmol

L·d

Table A.3: Initial values

No. component value unit

1 yLHp 3.141e+5 IU

2 yLH 3.487 IU/L

3 yRL 8.157 IU/L

4 y(LH-RL) 0.332 IU/L

5 yRLdes 0.882 IU/L

6 yFSHp 6.928e+4 IU

7 yFSH 6.286 IU/L

8 yRF 5.141 IU/L

9 y(FSH-RF) 1.030 IU/L

10 yRFdes 2.330 IU/L

11 ys 0.417 –

12 yAF1 2.811 uFoll

13 yAF2 27.64 uFoll

14 yAF3 0.801 uFoll

15 yAF4 6.345e-5 uFoll

16 yPrF 0.336 uFoll

17 yOvF 1.313e-16 uFoll

18 ySc1 1.433e-10 uFoll

19 ySc2 7.278e-8 uFoll

20 yLut1 1.293e-6 uFoll

21 yLut2 3.093e-5 uFoll

22 yLut3 4.853e-4 uFoll

23 yLut4 3.103e-3 uFoll

24 yE2 30.94 pg/mL

Continued on next page...
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Table A.3 – continued from previous page

No. component value unit

25 yP4 0.688 ng/mL

26 yIhA 0.637 IhA

27 yIhB 72.17 IhB

28 yIhAe 52.43 uIhA

29 yG 1.976e-2 nmol/L

30 yRG 9.121e-3 nmol/L

31 yRG* 9.893e-4 nmol/L

32 y(G-RG) 8.618e-5 nmol/L

33 y(G-RG)* 7.768e-5 nmol/L

34 yAgo,D 0 µg

35 yAgo,C 0 µg/L=ng/mL

36 y(Ago-RG) 0 nmol/L

37 y(Ago-RG)* 0 nmol/L

38 yAnt,D 0 µg

39 yAnt,C 0 µg/L=ng/mL

40 yAnt,P 0 µg/L=ng/mL

41 y(Ant-RG) 0 nmol/L
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ODEs and parameters for BovCycle

Table A.4: The ODE model of the bovine estrous cycle. It consists of 15 ODEs
and 45 parameters.

SynG(t) = cG,1 ·
(
1− yGh(t)

Gmax
Hypo

)
RelG(t) =

(
H−

P4&E2,G(yP4(t), yE2(t)) +H−
P4,G(yP4(t))

)
· yGh(t)

d
dtyGh(t) = SynG(t)− RelG(t) (B1)
d
dtyG(t) = RelG(t) ·H+

E2,G(yE2(t))− cG,2 · yG(t) (B2)

SynFSH(t) = H−
Inh,FSH(yInh(t))

RelFSH(t) =
(
bFSH +H+

P4,FSH(yP4(t)) +H−
E2,FSH(yE2(t)) +H+

G,FSH(yG(t))
)
· yFSHp(t)

d
dtyFSHp(t) = SynFSH(t)− RelFSH(t) (B3)
d
dtyFSH(t) = RelFSH(t)− cFSH · yFSH(t) (B4)

SynLH(t) = H+
E2,LH(yE2(t)) +H−

P4,LH(yP4(t))

RelLH(t) =
(
bLH +H+

G,LH(yG(t))
)
· yLHp(t)

d
dtyLHp(t) = SynLH(t)− RelLH(t) (B5)
d
dtyLH(t) = RelLH(t)− cLH · yLH(t), (B6)
d
dtyFoll(t) = H̃+FSH,Foll (yFSH(t))−

(
H+

P4,Foll(yP4(t)) +H+
LH,Foll(yLH(t))

)
· yFoll(t) (B7)

H̃+FSH,Foll (yFSH(t)) := mFoll
FSH · h+

(
yFSH(t), T

Foll
FSH · h+(yFoll(t), T

Foll
Foll , n

Foll
Foll), n

Foll
FSH

)
d
dtyCL(t) = SF ·H+

LH,CL(yLH(t)) · yFoll(t) +H+
CL,CL(yCL(t))−H+

IOF,CL(yIOF(t)) · yCL(t) (B8)
d
dtyP4(t) = cP4

CL · yCL(t)
2 − cP4 · yP4(t) (B9)

d
dtyE2(t) = cE2

Foll · yFoll(t)
2 − cE2 · yE2(t) (B10)

d
dtyInh(t) = cInh

Foll · yFoll(t)
2 − cInh · yInh(t) (B11)

d
dtyEnz(t) = H+

P4,Enz(yP4(t))− cEnz · yEnz(t) (B12)
d
dtyOT(t) = H+

E2,OT(yE2(t)) · yCL(t)
2 − cOT · yOT(t) (B13)

d
dtyPGF(t) = H+

Enz&OT,PGF(yEnz(t), yOT(t))− cPGF · yPGF(t) (B14)
d
dtyIOF(t) = H+

PGF&CL,IOF(yPGF(t), yCL(t))− cIOF · yIOF(t) (B15)
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Table A.5: Parameter values for
the original BovCycle. Hill ex-
ponents have been set fixed as
nG,2E2 = nFSHInh = nLHG = nFollP4 =
nPGF
Enz = nCLIOF = nEnzP4 = nIOF

PGF = 5,
nIOF
CL = 10, nFSHG = 1, and the rest

of the Hill exponents are set to 2.

No. Symbol Value Unit

1 Gmax
Hypo 16 [GnRHHypo]

2 cG,1 2.75 [GnRHHypo]

[t]

3 mP4&E2
2.05 1/[t]

4 TG,1
E2

0.0972 [E2]

5 TG,1
P4

0.35 [P4]

6 mG,2
P4

1.91 1/[t]

7 TG,2
P4

0.252 [P4]

8 mG,2
E2

0.99 [GnRHPit]
[GnRHHypo]

9 TG,2
E2

0.648 [E2]

10 cG,2 1.63 1/[t]

11 mFSH
Inh 4.21 [FSH]/[t]

12 TFSH
Inh 0.118 [Inh]

13 bFSH 0.948 1/[t]

14 mFSH
P4

0.293 1/[t]

15 TFSH
P4

0.152 [P4]

16 mFSH
E2

0.396 1/[t]

17 TFSH
E2

0.312 [E2]

18 mFSH
G 1.23 1/[t]

19 TFSH
G 0.0708 [GnRHPit]

20 cFSH 2.73 1/[t]

21 mLH
E2

0.376 [LH]/[t]

22 TLH
E2

0.243 [E2]

23 mLH
P4

2.71 [LH]/[t]

24 TLH
P4

0.0269 [P4]

25 bLH 0.0141 1/[t]

26 mLH
G 2.22 1/[t]

27 TLH
G 0.69 [GnRHPit]

28 cLH 12.0 1/[t]

29 mFoll
FSH 0.562 [Foll]/[t]

Continued on next column...

Table A.5 – continued from previous column

No. Symbol Value Unit

30 TFoll
FSH 0.57 [FSH]

31 TFSH
Foll 0.22 [Foll]

32 mFoll
P4

1.1 1/[t]

33 TFoll
P4

0.126 [P4]

34 mOvul
LH 3.49 1/[t]

35 TOvul
LH 0.171 [LH]

36 SF 0.2 [CL]/[t]

37 mCL
CL 0.0353 [CL]/[t]

38 TCL
CL 0.1 [CL]

39 mCL
IOF 41.39 1/[t]

40 TCL
IOF 1.32 [IOF]

41 cP4
CL 2.25 [P4]/[CL]2

[t]

42 cP4 1.41 1/[t]

43 cE2
Foll 2.19 [E2]/[Foll]2

[t]

44 cE2 1.23 1/[t]

45 cInh
Foll 1.41 [Inh]/[Foll]2

[t]

46 cInh 0.475 1/[t]

47 mEnz
P4 3.58 [Enz]/[t]

48 TEnz
P4 0.77 [P4]

49 cEnz 2.98 1/[t]

50 mOT
E2 1.59 [OT]/[CL]2

[t]

51 TOT
E2 0.143 [E2]

52 cOT 0.644 1/[t]

53 mIOF
PGF&CL 39.68 [IOF]/[t]

54 T IOF
PGF 1.22 [PGF]

55 T IOF
CL 0.6 [CL]

56 cIOF 0.298 1/[t]

57 mPGF
Enz&OT 53.91 [PGF]/[t]

58 TPGF
Enz 1.43 [Enz]

59 TPGF
OT 1.087 [OT]

60 cPGF 1.23 1/[t]

D 3.7 [PGF]

β 100 1/[t]

cPGFsyn 5.5 1/[t]

Table A.6: Initial values for the
full bovine model
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No. Symbol Value

1 yGh 0.667

2 yG 0.551

3 yFSHp 0.316

4 yFSH 0.395

5 yLHp 4.563

6 yLH 0.642

7 yFoll 0.796

8 yCL 0.0651

9 yP4 0.004

10 yE2 0.89

11 yInh 0.826

12 yEnz 0

13 yOT 0.183

14 yPGF 0.00506

15 yIOF 0.253
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ODEs and parameters for the reduced version of BovCycle

Table A.7: Reduced model for the bovine estrous cycle. It consists of 10 ODEs
and 38 parameters.

d
dtyG(t) = H−

P4,G (yP4(t)) ·H+
E2,G (yE2(t))− cG · yG(t) (BR1)

d
dtyFSH(t) = H−

Inh,FSH(yInh(t))− cFSH · yFSH(t) (BR2)
d
dtyLH(t) = H−

P4,LH(yP4(t)) ·H+
G,LH (yG(t))− cLH · yLH(t) (BR3)

d
dtyFoll(t) = H+

FSH,Foll (yFSH(t)) ·
(
1 +H+

Foll,Foll (yFoll(t))
)

−
(
H+

P4,Foll(yP4(t)) +H+
LH,Ovul(yLH(t))

)
· yFoll(t) (BR4)

d
dtyCL(t) = H+

LH,Ovul (yLH(t)) · yFoll(t) +H+
CL,CL (yCL(t))−H+

IOF,CL (yIOF(t)) · yCL(t) (BR5)
d
dtyP4(t) = kP4

CL · yCL(t)− cP4 · yP4(t) (BR6)
d
dtyE2(t) = kE2

Foll · yFoll(t)− cE2 · yE2(t) (BR7)
d
dtyInh(t) = kInh

Foll · yFoll(t)− cInh · yInh(t) (BR8)
d
dtyPGF(t) = H+

E2,PGF(yE2(t)) ·H+
P4,PGF − cPGF · yPGF(t) (BR9)

d
dtyIOF(t) = H+

PGF,IOF(yPGF(t)) ·H+
CL,IOF(yCL(t))− cIOF · yIOF(t) (BR10)
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Table A.8: Parameter values for
the reduced bovine model. Hill
exponents have been set fixed as
nGnRH
E2 = nFSHInh = nFollP4 = nCLIOF =
nPGF
P4 = nIOF

PGF = nIOF
CL = 5, the

rest of the Hill exponents are set
to 2.

No. Symbol Value Unit

1 mG
E2,P4 6.212 [GnRH]/[t]

2 TG
P4 0.274 [P4]

3 TG
E2 1.104 [E2]

4 clG 1.664 1/[t]

5 mFSH
Inh 1.207 [FSH]/[t]

6 TFSH
Inh 0.155 [Inh]

7 clFSH 0.761 1/[t]

8 mLH
G,P4 39.983 [LH]/[t]

9 TLH
P4 0.0547 [P4]

10 TLH
G 0.717 [GnRH]

11 clLH 12.253 1/[t]

12 mFoll
FSH 0.351 [Foll]/[t]

13 TFoll
FSH 0.669 [FSH]

14 mFoll
Foll 3.927 -

15 TFoll
Foll 0.277 [Foll]

16 mFoll
P4 1.075 1/[t]

17 TFoll
P4 0.126 [P4]

18 mFoll
LH 2.313 [1/[t]

19 TFoll
LH 0.555 [LH]

20 SFCL 0.253 [CL]

21 mCL
CL 0.0506 [CL]/[t]

22 TCL
CL 0.251 [CL]

23 mCL
IOF 10.25 1/[t]

24 TCL
IOF 1.087 [IOF]

25 kP4
CL 0.969 [P4]/[t]

26 clP4 0.725 1/[t]

27 kE2
Foll 1.402 [E2]/[t]

28 clE2 0.98 1/[t]

29 kInh
Foll 0.652 [Inh]/[t]

30 clInh 0.501 1/[t]

Continued on next column...

Table A.8 – continued from previous column

No. Symbol Value Unit

31 mPGF
E2 1.844 [PGF]/[t]

32 TPGF
E2 0.217 [E2]

33 TPGF
P4 0.979 [P4]

34 clPGF 0.484 1/[t]

35 mIOF
PGF,CL 17.527 [IOF]/[t]

36 T IOF
PGF 1.346 [PGF]

37 T IOF
CL 0.511 [CL]

38 clIOF 0.292 1/[t]

Table A.9: Initial values for the
reduced bovine model

No. Symbol Value

1 yG 0.0027

2 yFSH 0.5706

3 yLH 0.0000

4 yFoll 0.6131

5 yCL 0.0098

6 yP4 0.0504

7 yE2 0.3650

8 yInh 0.2603

9 yPGF 0.1418

10 yIOF 0.2630
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Zusammenfassung
Die vorliegenden Dissertation beschäftigt sich mit der mathematischen Modellierung von
endokrinologischen Netzwerken, die dem weiblichen Hormonzyklus zu Grunde liegen. Diese
Netzwerke bestehen aus einer Vielzahl von biologischen Mechanismen in unterschiedlichen
Teilen des Organismus. Ihr Zusammenspiel führt zu periodischen Veränderungen ver-
schiedener Substanzen, die für die Reproduktion notwendig sind.

In jedem Zyklus werden Hormone aus der Hypothalamus-Hypophysen-Gonaden-Achse in
die Blutbahn ausgeschüttet. So werden sie im ganzen Körper verteilt und steuern ver-
schiedene Prozesse. Ihre wichtigste Aufgabe für die Reproduktion ist die Regulierung von
Vorgängen in den Ovarien, wo sich Follikel und Gelbkörper entwickeln. Diese produzieren
Steroide, die ebenfalls ins Blut abgegeben werden. Von dort aus beeinflussen sie wiederum
die Prozesse in der Hypothalamus-Hypophysen-Gonaden-Achse. Aus dieser komplexen
Rückkopplung ensteht der Hormonzyklus.

Für die Modellierung dieser Vorgänge ist ein hohes Abstraktionslevel notwendig, welches
durch verschiedene Modellierungsansätze realisiert werden kann. In dieser Arbeit wur-
den einige dieser Ansätze realisiert. Erster Schritt bei allen Ansätzen ist die Darstellung
der wichtigsten beteiligten Mechnismen in einem Flussdiagramm. Dieses kann im nächsten
Schritt mit Hilfe von Hill-Funktionen als ein System von gewöhnlichen Differentialgleichun-
gen, als stückweise definiertes affines Modell, oder direkt als rein regulatorisches Modell
implementiert werden.

Mit Hilfe dieses Vorgehens wurde ein Differentialgleichungsmodell für den Hormonzyklus
von Kühen von Grund auf entwickelt. Dieses wurde mit einem weiterentwickelten Modell
des weiblichen Zyklus beim Menschen verglichen. Beide Modelle wurden validiert, indem
sowohl Simulationen mit Messwerten einzelner Substanzen verglichen, als auch externe Ein-
flüsse wie Medikamentengabe studiert wurden. Am Beispiel des Zyklus der Kuh wurden
kontinuiertliche Analyse-Verfahren benutzt, um Stabilität, follikulare Wellenmuster, und
Robustheit bezüglich Parameterstörungen zu untersuchen. Weiterhin wurde das Modell
für den Kuhzyklus erheblich reduziert, wobei die wichtigsten Simulationsergebnisse erhal-
ten blieben.

Um einen Blick auf alternative Modellansätze zu werfen, wurden entsprechende diskrete
Modelle abgeleitet, exemplarisch für das Modell des Kuhzyklus. Aus einer stückweise
affinen Version des Modells wurden Parameterbedingungen für das kontinuierliche Modell
berechnet. Die Stabilität wurde global für ein rein diskretes Modell analysiert. Darüber
hinaus wurden auch stark reduzierte diskrete Modelle hergeleitet, welche die wichtigsten
dynamischen Eigenschaften des ursprünglichen Modells beibehalten.


