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The estimation of poverty and inequality indicators based on survey data is trivial as long as
the variable of interest (e.g., income or consumption) is measured on a metric scale. However,
estimation is not directly possible, using standard formulas, when the income variable is
grouped due to confidentiality constraints or in order to decrease item nonresponse. We
propose an iterative kernel density algorithm that generates metric pseudo samples from the
grouped variable for the estimation of indicators. The corresponding standard errors are
estimated by a non-parametric bootstrap that accounts for the additional uncertainty due to the
grouping. The algorithm enables the use of survey weights and household equivalence scales.
The proposed method is applied to the German Microcensus for estimating the regional
distribution of poverty and inequality in Germany.
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1. Introduction

In its Global Risks Report 2017, the World Economic Forum proclaims rising income and

wealth disparity as the number one trend in determining global developments, governing

the risks of, among others, profound social instability and unemployment (World

Economic Forum 2017). Also developed countries, as Germany, are facing an increase in

income inequality. Known for stable wages in the 1970s and 1980s (Abraham and

Houseman 1995), Germany has faced growing income inequality since its reunification in

1990 (Fuchs-Schiindeln et al. 2010). Yet, the question of how poverty and inequality is

defined and can accurately be measured or diagnosed in a society remains debatable, see,

for example Hagenaars and Vos (1988) and Lok-Dessallien (1999).

A common way to measure poverty and inequality is the estimation of indicators such as

the head count ratio, the poverty gap and the Gini coefficient. Since income information is

not easily accessible governments or statistical offices need to conduct surveys or censuses

to garner information about personal or household income.

One main difficulty is that, in most societies, income is considered a private topic. In the

survey literature, questions about the aspects of income are referred to as “sensitive
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question”, therefore item nonresponse is high for these questions. Moore and Welniak

(2000) also state that measurement error due to misreporting income is a known issue as bias

(usually underreporting) and random error is commonly observed. To counter this, many

surveys do not ask for the exact income of their citizens. They ask only for the income group

(band) a person or household belongs to, thereby creating a sense of anonymity

(Micklewright and Schnepf 2010). Collecting only the grouped information instead of

continuous data offers a higher degree of data privacy protection to survey respondents,

which lowers response burdens and thus leads to lower item nonresponse rates and higher

data quality. On the other hand, the so collected income data is not metric what (a) leads to

less information compared to collecting on a metric scale and (b) makes the use of standard

formulas for the estimation of poverty and inequality indicators impossible. This problem is

also being faced by the Federal Statistical Office of Germany (Destatis) since the German

Microcensus, the largest annually carried out household survey in Europe, only collects

grouped income data (Statistisches Bundesamt 2018b). Furthermore, there are also censuses

in other countries that only collect grouped data, for example, the censuses from New

Zealand (Statistics New Zealand 2013), Australia (Australian Bureau of Statistics 2011) and

Colombia (Departamento Administrativo Nacional De Estadlstica 2005). Hence, the aim of

this article is to provide statistical methodology which enables the direct estimation of

statistical indicators from grouped data.

In order to estimate statistical indicators from continuous income data a lot of literature

focuses on the parametric estimation of the unobserved distribution. There is a lot of

literature focusing on fitting the generalized beta type-II (GB2) distribution (McDonald

1984), its special cases and other distributions, for example, the Singh and Maddala

distribution (Singh and Maddala 1976), the Dagum distribution (Dagum 1977), the

Weibull distribution (Fréchet 1927) and the generalized gamma distribution (Stacy 1962).

Reed and Wu (2008), Kleiber (2008) and Chen (2017) are primarily focusing on the

estimation of statistical indicators from grouped data by fitting a parametric distributions

to the data. Walter et al. (2021) estimate linear and non-linear indicators for small areas by

a nested error regression model when the response variable is grouped.

Kakwani and Podder (2008) argue against the parametric estimation of the income

distributions from grouped data due to its lack of precision and present a method that can

be utilized to estimate the Lorenz curve directly from the grouped data in order to compute

inequality indicators. Another alternative to the parametric estimation is to use non-

parametric methods to model income instead. Although most authors do not directly

address the topic of grouped data, there is much literature about rounded data, which is

obtained from grouped data by substituting the groups with their centers. Hall (1982),

Scott and Sheather (1985), and Hall and Wand (1996) study the effects of rounded data on

non-parametric kernel density estimation (KDE). They find that censoring affects the bias

rather than the variance of the estimate. Additionally, Hall and Wand (1996) present

minimum grid sizes for KDE which are needed to achieve a given degree of accuracy. Grid

size corresponds to the amount of points and therefore to the amount of groups when the

group centers are used on which the density is estimated. Wang and Wertelecki (2013)

point out that standard KDE leads to increasingly spiky density estimates at rounded points

with a growing sample size. To overcome this issue, they propose a bootstrap-type kernel

density estimator and show in a simulation study that the estimator provides better
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accuracy than the standard KDE in the context of rounded data. Groß et al. (2017) melt the

principle of stochastic expectation-maximization algorithms (Nielsen 2000) with KDE to

propose a density estimation algorithm for rounded two-dimensional geo-coded data.

From a theoretical perspective, we propose a non-parametric KDE algorithm for

grouped data. The proposed method extends the ideas of Groß et al. (2017) from rounded

to grouped data. The KDE algorithm enables the estimation of poverty and inequality

indicators from grouped data under different censoring schemes and varying group widths

(instead of fixed rounding schemes as in Groß et al. 2017). For the estimation of the

standard errors of the statistical indicators we propose a non-parametric bootstrap. From

an applied perspective, the algorithm allows for the use of equivalence scales, for example,

the modified Organisation for Economic Co-operation and Development (OECD) scale, to

make income of households of different sizes comparable. Moreover, to obtain

representative results, survey or design weights can be used in the estimation process.

The article is structured as follows. In Section 2, the German Microcensus data set and

the estimation problem is presented. In Section 3, the KDE algorithm and the proposed

non-parametric bootstrap are introduced. In Section 4, the algorithm is then applied to the

German Microcensus for estimating the regional distribution of poverty and inequality in

Germany. In Section 5, the performance of the KDE algorithm and the bootstrap are

evaluated by using Monte Carlo simulation studies under different grouping schemes and

different theoretical distributions. A final discussion of the major results, their

implications, and an outlook is given in Section 6.

2. The German Microcensus

The German Microcensus is a survey that is conducted annually by the Federal Statistical

Office of Germany (Statistisches Bundesamt 2018a). The survey has a long history and was

first carried out in 1957 (Statistical Offices of the Federation and the Federal States 2016). The

Microcensus is designed as a single-stage cluster sample (Schimpl-Neimanns 2010). The

primary sampling units (clusters) are composed of neighboring buildings. From the drawn

clusters all households are samples. The clusters are arranged (stratified) by grouping buildings

into four different categories (based on size) and by regional characteristics (population size).

The sampling of the clusters is conducted as simple random sampling from strata. The post-

stratification weights used in the application account for nonresponse. The total sample size is

equal to 1% of the German population. This amounts to about 820,000 household members. It

is the largest annually conducted household survey in Europe (Statistisches Bundesamt

2018b). The aim of the Microcensus is to provide data on a regular short-term basis on regional

level in Germany. Topics covered by the survey are: demographic background, migration,

employment, education, poverty, and vocational training (Schwarz 2001). For most questions,

answering is compulsory by law, however, there are also questions that are answered on a

voluntary basis, such as questions about health status, health insurance, housing situation, and

retirement programs (Statistical Offices of the Federation and the Federal States 2016).

Researchers appreciate the Microcensus data set for very low nonresponse rates and high

data quality (Schwarz 2001). While low non-response rates are guaranteed by mandatory

responses for most questions, high data quality is achieved with face-to-face interviews.

Although the Microcensus is valued by many researchers, analyzing the data properly is
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problematic when the research focuses on income. This is due to the fact that both personal

and household income are only observed as an grouped variable. Furthermore, the

censoring scheme and the number of groups has changed over time, which makes the

longitudinal analyses even more complicated (Boehle 2015). Some researchers even say

that because of the grouping of the income variable, the Microcensus is unsuitable for valid

research on the topic of income (Stauder and Huning 2004). Therefore, estimation of

poverty and inequality indicators is regularly based on alternative surveys, for example, the

Socio-Economic Panel (SOEP) or the Income, Receipts, Expenditure survey. In contrast to

the Microcensus, participation is voluntary and participants are asked for their exact

income (not grouped), which enables the estimation of poverty and inequality indicators

using standard formulas. However, the sample sizes of these surveys are smaller leading to

higher uncertainty of the estimates compared to the Microcensus.

The data used in this article comes from the Scientific-Use-File (SUF) from 2012, a 70%

sample of the German Microcensus (Statistisches Bundesamt 2017). The variable of

interest is the monthly household income. All estimation results in the article are based on

the monthly income. As previously mentioned, the variable household income is grouped

to 24 groups. The distribution is visualized in Figure 1. It is notable that the group width

increases with increasing income. While the lowest group has a width of 150 euro the

second last group has a width of 8,000 euro. That implies that the distribution is actually

highly right skewed which is not clear at the first glance when looking at Figure 1.

However, plotting the distribution as histogram or as density plot would also come with

caveats because of the grouping of the data and the open-ended upper interval. We

therefore choose barplots for presenting the grouped income data in this paper. After data

cleaning, we are left with a sample size of nGermany ¼ 454852. Since interests also lie in

the spatial distribution of poverty and inequality the statistical indicators are estimated for

each federal state separately and at the national level.

The sample size for each federal state and its location is given in Table 10 and Figure 8

in the Appendix, Section 7. The sample sizes are very large for each federal state even for

Bremen, the state with the smallest sample size nBremen ¼ 3356:
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Fig. 1. Distribution of the grouped household income from the German microcensus data set. Numbers are

given in euro.
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In Section 4 we show that the proposed KDE algorithm enables the estimation of

statistical indicator from grouped German Microcensus data. This allows researchers and

practitioners to use the German Microcensus for the further and more in-depth

investigation of poverty and inequality in Germany.

3. Methodology

In Subsection 3.1, we propose a novel KDE algorithm to generate metric pseudo samples

from the observed grouped data. By using the pseudo samples, statistical indicators can be

estimated applying standard formulas. The non-parametric bootstrap for the variance

estimation of the statistical indicators is introduced in Subsection 3.2. Finally, the

incorporation of survey weights and the use of household equivalence scales are discussed

in Subsection 3.3.

3.1. Kernel Density Estimation from Grouped Data

Kernel density estimation is one of the most established non-parametric density estimation

techniques in the literature and was first introduced by Rosenblatt (1956) and Parzen

(1962). It is applied to estimate a continuous density from a random variable with density

f (x) directly from its independent and identically distributed observations without making

any prior assumptions about its distributional family. Let X ¼ fX1;X2; : : :;Xn} denote a

sample of size n. For i ¼ 1; : : :; n the KDE is defined as

f̂hðxÞ2
1

nh

Xn

i¼1

k
x 2 Xi

h

� �
; ð1Þ

where k(·) is a kernel function and the bandwidth is denoted by h . 0: Selection methods

for the bandwidth are widely discussed in the literature with the two main categories being

plug-in and cross-validation (Jones et al. 1996; Loader 1999; Henderson and Parmeter

2015). The basic idea of the first is to minimize the asymptotic mean integrated squared

error whilst substituting the unknown density in the optimization with a pilot estimate,

whereas the second method is a more data-driven approach, for example, utilizing leave-

one-out cross-validation.

In the KDE (1), it is assumed that observations are taken directly from the continuous

distribution that is to be estimated. Often, however, collecting continuous data is not

possible due to various restrictions in practice, such as, for example, confidentiality

concerns. In these situations we are left with grouped data, where only the grouped

information is observed. Thus, only the lower AK21 and upper AK group bounds ðAK�1;AKÞ

of Xi are observed and its continuous value remains unknown. The continuous scale is

divided into nK groups. The variable Kð1 # K # nKÞ indicates which of the groups an

observation of Xi falls into. Note that applying KDE (1) to the group midpoints of the

grouped data falsely allocates too much probability mass to the midpoints and too little to

the unobserved Xi. This leads to spiky estimates, unless the bandwidth is chosen to be very

large (Wang and Wertelecki 2013). Increasing the bandwidth cannot be considered as a

solution to this problem because this causes additional loss of information about the

underlying true distribution.
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We aim to estimate the unknown density f (x) from which the sample X is drawn only

based on the observed group information K. From Bayes’ theorem it follows that the

conditional distribution of X given K is:

pðXjKÞ / pðKjXÞpðXÞ;

where p(KjX) is defined as a product of Dirac distributions pðKjXÞ ¼
Qn

i¼1pðKijXiÞ with

pðKijXiÞ ¼
1

0

if AK21 # Xi # AK ;

otherwise;

(

for i ¼ 1; : : :; n:Using this formulation pseudo samples of the unknown Xi are drawn from

the estimated density that enable the estimation of any statistical indicator. Since pðXÞ ¼Qn
i¼1f ðXiÞ is initially unknown, an initializing estimate f̂hðxÞ that is based on the group

midpoints, serves as a proxy. After that, the pseudo samples drawn from p(XjK) are used

to re-estimate p(X). The following section focuses on the exact implementation of the

proposed algorithm and discusses similarities to the EM algorithm by Dempster et al.

(1977) and the stochastic EM (SEM) algorithm by Celeux and Diebolt (1985) and Celeux

et al. (1996).

3.1.1. Estimation and Computational Details

To fit the model pseudosamples of Xi are drawn from the conditional distribution

pðXijKiÞ / IðAK21 # Xi # AKÞ f ðXiÞ;

where I(·) denotes the indicator function. The conditional distribution of Xi given Ki is the

product of a uniform distribution and density f (x). As f (x) is unknown it is replaced by

f̂hðxÞ, an estimate that is obtained by the prior defined kernel density estimator. Hence, Xi is

iteratively drawn from the known group ðAK –1;AKÞ with the current density estimate f̂hðxÞ

used as sampling weight. The steps of the iterative algorithm are described below.

Step 1: Use the midpoints of the groups as pseudo ~Xi for the unknown Xi. Obtain a pilot

estimate of f̂hðxÞ, by applying KDE with a gaussian kernel. Choose a sufficiently

large bandwidth h, such that no rounding spikes occur. We propose to use

double the width of the widest finite interval.

Step 2: Evaluate f̂hðxÞ on an equal-spaced fine grid G ¼ {g1; : : :; gj} with j grid points

g1; : : :; gj: The width of the grid is denoted by dg. It is given by,

dg ¼
A0 2 AnK

�� ��
j 2 1

;

and the grid is defined as,

G ¼ {g1 ¼ A0;g2 ¼ A0 þ dg;g3 ¼ A0 þ 2dg; : : :; gj21 ¼ A0 þ ðj 2 2Þdg; gj ¼ AnK
}:

Step 3: Sample from p(X jK) by drawing a pseudo sample ~Xi randomly from {GK ¼

gjjgj [ ðAK –1;AKÞ} with weights f̂hð ~XiÞ for K ¼ 1; : : :; nK : The sample size

within each group is given by the number of observations within each group.

Step 4: Estimate any statistical indicator of interest Î using the pseudo ~Xi.
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Step 5: Recompute f̂hðxÞ with bandwidth h computed by the plug-in estimator (or any

other method of choice), using the pseudo samples ~Xi obtained in iteration Step 3

Step 6: Repeat Steps 2–5, with BðKDEÞ burn-in and SðKDEÞ additional iterations.

Step 7: Discard the BðKDEÞ burn-in iterations and estimate the final Î by averaging the Î

obtained during the SðKDEÞ iteration steps.

The KDE algorithm estimates the distribution of a grouped variable by only using the

group information. An algorithm that is widely used for models that depend on latent

variables (in our case the unobserved grouped X) is the EM algorithm (Dempster et al.

1977). In the EM algorithm the expectation of XjK is obtained analytically. However, in

the context of kernel density estimation this does not work, that is, producing biased, spiky

density estimates, because all values inside a group would be concentrated at one point, the

expectation. In a SEM algorithm, the analytical E-step from the EM algorithm is replaced

by the drawing of pseudo samples (Celeux and Diebolt 1985; Celeux et al. 1996). In case

of the KDE algorithm, it is drawn from the distribution of pðXjKÞ: Hence, the proposed

KDE algorithm has similarities to a SEM algorithm. In its common form, the EM and SEM

algorithm are used for maximum likelihood (ML) estimation with unobserved data.

McLachlan and Krishnan (2008) proposed a generalization of the SEM algorithm that can

be used with surrogates for the M-step, that is, the maximization of the expected likelihood

given the distribution of the unknown true values X. In the KDE algorithm the

minimization of the asymptotic mean integrated squared error given the pseudo samples is

used as such a surrogate by applying kernel density estimation with plug-in bandwidth on

the pseudosamples. To assess convergence of the algorithm, one can do this visually as

demonstrated in Figure 2 or by using convergence criteria used in the MCMC literature as

the SEM algorithm is a Markov Chain (Nielsen 2000).

We would like to mention that there are various approaches described in the survival

analysis literature to estimate the hazard or survival function from interval-censored data

using an EM algorithm or smoothing techniques (Betensky et al. 1999; Braun et al. 2005; Li

et al. 1997; Pan 2000). However, these papers focus on interval-censored data (overlapping

intervals) and not on grouped data. When using interval-censored data the problem of spiky

density estimates (Groß and Rendtel 2016) is less relevant because of the much higher

number of intervals. Nevertheless, using the proposed KDE algorithm in these situations,

instead of an EM algorithm could have an positive effect on the estimation results.

3.2. Variance Estimation

This section introduces a method for the variance estimation of the statistical indicators

that are estimated by the KDE algorithm. A common way to estimate the variance, if X is

observed on a continuous scale, is linearization. Taylor linearization (Tepping 1968;

Woodruff 1971; Wolter 1985; Tille 2001) is a well- known and commonly applied method

for the estimation of variance for non-linear indicators, such as ratios or correlations.

However, the method cannot be applied for the variance estimation of all non-linear

indicators. For the variance estimation of mathematically more complex indicators, for

example, the Gini coefficient, Deville (1999) introduced the generalized linearization

method. The generalized linearization method is also used by Eurostat for the variance

estimation of complex indicators (Osier 2009). Nevertheless, linearization cannot be
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applied when the variable of interest is observed as an grouped variable (Lenau and

Münnich 2016). To still produce variance estimates, resampling methods, such as

bootstrapping can be applied as an alternative. In the following, a non-parametric

bootstrap introduced by Efron (1979) and Shao and Tu (1995) is used for the variance

estimation of the indicators estimated by the KDE algorithm. Also, any confidence interval

can be estimated by using the quantiles from the bootstrap results. The non-parametric

bootstrap is based on the assumption that the drawn sample is representative of the

population. Therefore, the empirical distribution function F̂ is a non-parametric estimate

of the population distribution F. The desired poverty indicator of interest Î, is the empirical

estimate of the true parameter. The bootstrap standard errors are calculated as follows:

Step 1: Draw with replacement a bootstrap sample of the grouped XðbÞi of size n from

the sample data set.

Step 2: Apply the KDE algorithm to the bootstrap grouped sample XðbÞi for the

estimation of any indicator Î ðbÞ of interest.

Iterate Steps 1-2; b ¼ 1; : : :;B times and estimate the standard error

seðÎÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB

b¼1
ðÎ ðbÞ 2 �I ðbÞÞ2

B

s

with �I ¼
1

B

XB

b¼1
Î ðbÞ:

Please note that the proposed bootstrap does not account for complex survey design.

However, survey weights can be included into step 2 of the above procedure as described

in the following subsection. For complex designs there exist different approaches in the

literature. For an overview we refer to Mashreghi et al. (2016).

3.3. Using Survey Weights and Household Equivalence Scales in the Estimation Process

In the following we assume a superpopulation model (Dorfman and Valliant 2005) and

thus our sample is assumed to be drawn from an infinite population. We emphasize here,

that a kernel density estimate on a given sample X is not necessarily an unbiased estimate

of the population density as the sampling design may over- or undersample certain parts of

the population. However, it can be useful to recover a sample population density. The

KDE algorithm and the bootstrap can be extended to enable the estimation of weighted

statistical indicators and its standard errors from grouped data and to allow for the usages

of household equivalence scales.

In order to estimate weighted indicators the KDE algorithm draws, as described before,

pseudo samples from the conditional distribution of pðXijKiÞ: However, differently then

stated in Subsection 3.1, pseudo ~Xi are drawn together with its corresponding survey

weight wi, for i ¼ 1; : : :; n: Hence, a sample of ( ~Xi, wi) is obtained in each of the

BðKDEÞ þ SðKDEÞ iteration steps of the KDE algorithm. Using the ~Xi one is actually

estimating the so-called sample density function as described in Pfeffermann and

Sverchkov (1999). To get a point estimate for population measures one can weight the

sample observations by the inverse sample selection probabilities, that is, survey weights

wi (Pfeffermann et al. 1998). Thus, by using this formulation of the KDE algorithm any

weighted statistical indicator Î can be estimated in step 4, based on ( ~Xi, wi). The final

weighted indicator Î is then computed by averaging the obtained S(KDE) estimates.
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Regarding the estimation of the variance the bootstrap described in Subsection 3.2 needs

to be adjusted. In step 2 of the bootstrap algorithm the weighted statistical indicator has to

be estimated by the KDE algorithm taking the survey weights from the bootstrap sample

into account. Whenever there is not much variation in the survey weights this naive non-

parametric bootstrap provides reasonable results (Alfons and Templ 2013). However, in

cases with large variation in the survey weights a calibrated bootstrap might be preferable.

Moreover, when complex survey designs are present as in the German Microcensus

example (cf. beginning of Section 2), the proposed bootstrapping method is not optimal.

Nevertheless, other bootstrapping methods accounting for sampling designs should be

straightforward to implement. We refer to for example, Field and Welsh (2007) for

bootstrapping on clustered data. An alternative to the proposed scheme for incorporation

of survey weights would be to apply the weights when estimating the kernel density as in

Buskirk and Lohr (2005). The results in our application were virtually the same.

When working with household income the size of the household (in terms of people

belonging to the household) needs to be considered for reasonable inference. To make

household income comparable between households of different sizes, household

equivalence scales, for example, the OECD scale can be used to estimate equivalised

household income. The household incomes need to be equivalised prior to the application

of the KDE algorithm. Therefore each household’s group bounds are divided by its

corresponding equivalence scale weight. For instance, a household within grouped (1,000;

2,000] with a OECD weight of 2 has equivalence group bounds of (500; 1,000]. This

procedure can lead to overlapping group bounds (interval-censored data). A

straightforward generalization to the proposed algorithm is necessary by defining lower

and upper bounds AK2
and Akþ separately for each K replacing the bounds AK –1 and AK.

Thus, overlapping of the groups does not impede the use of the KDE algorithm since it

simply draws from each unique group with a sample size equal to the number of

observation (households) within each group. Using survey weights in the KDE algorithm

after the estimation of the equivalised income is possible as described above.

4. Estimating Poverty and Inequality Indicators Using German Microcensus Data

In this section poverty and inequality indicators are estimated at the federal state level in

Germany using grouped household income data from the German Microcensus we

described in Section 2. Before applying the KDE algorithm to the grouped data we make

income of households of different sizes comparable to each other. The distribution of the

OECD household size is given in Table 1. The median household has a size of 1.5 and the

largest household a size of 12.2. The KDE algorithm is applied to the equivalised grouped

household income data as described in Subsection 3.3. Furthermore, for representative

results the survey weights are used for the estimation of weighted statistical indicators as

described in Section 3.3. The distribution of the survey weights is shown in Table 2 with

Table 1. Distributions of the OECD household size.

Min. Q.25 Median Mean Q.75 Max.

1.0 1.5 1.5 1.7 2.1 12.2
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50% of the survey weights having a value between 151.6 and 182.5. Since there is not

much variation in the survey weights the standard errors of the statistical indicators are

estimated with the non-parametric bootstrap as described in Subsection 3.2. The number

of bootstrap samples is set to 100. This number gives stable results as shown in the

simulation study in Section 5.

The following statistical indicators, which are frequently used by statistical institutes in

Germany to measure poverty and inequality, are estimated based on ð ~Xi;wiÞ. Where ~Xi is

the metric pseudo data generated by the KDE algorithm and wi is the observed

corresponding survey weight. The weighted mean and the weighted quantiles (10%, 25%,

50%, 75%, 90%) are given by

ÎMean ¼

Xn

i¼1
wi

~XiXn

i¼1
wi

; ð2Þ

ÎQð pÞ
¼

1

2
~Xi þ ~Xiþ1

� �
if
Xi

j¼1
wj ¼ p

Xn

j¼1
wj;

~Xiþ1 if
Xi

j¼1
wj # p

Xn

j¼1
wj #

Xiþ1

j¼1
wj;

8
>><

>>:
ð3Þ

where p denotes the quantile p [ ð0; 1Þ: The weighted poverty measures head count ratio

(HCR) and poverty gap (PGap) (Foster et al. 1984) are given by

ÎHCR ¼
1Xn

i¼1
wi

Xn

i¼1

wiI ~Xi # z
� �

; ð4Þ

ÎPGap ¼
1Xn

i¼1
wi

Xn

i¼1

wi

z 2 ~Xi

z

� �
I ~Xi # z
� �

; ð5Þ

where I(·) denotes the indicator function. The HCR and PGap include a threshold z that is

known as the poverty line. For the application a regional relative poverty line, defined as

60% of the median of the equivalised grouped household income is chosen. This

corresponds to the EU definition (Eurostat 2014). The HCR is a measure of the percentage

of observations (individuals or households) below the poverty line, whereas the PGap

measures the average distance of those observations from the poverty line. Inequality is

commonly measured by the Gini coefficient (Gini 1912) and the quintile share ratio

(QSR). The weighted indicators are estimated by

ÎGini ¼
2
Xn

i¼1
wixi

Xi

j¼1
wj

� 	
2
Xn

i¼1
w2

i
~Xi

Xn

i¼1
wi

Xn

i¼1
wi

~Xi

2 1

2

4

3

5; ð6Þ

Table 2. Distributions of the extrapolations factors.

Q.10 Q.25 Median Mean Q.75 Q.90

139.8 151.6 166.0 168.7 182.5 199.0
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ÎQSR ¼

Xn

i¼1
I Xi $ Q̂0:8

� �
wi

~XiXn

i¼1
I Xi # Q̂0:2

� �
wi

~Xi

: ð7Þ

The range of the Gini coefficient lies between 0 and 1. The higher its value, the higher

the inequality. If the Gini coefficient is equal to 0 there is perfect equality in the data,

whereas a Gini coefficient of 1 indicates perfect inequality. The QSR is the ratio of

observations richer than 20% of the richest observations to the 20% of the poorest

observations. Higher values of the QSR indicate higher inequality.

The KDE algorithm is applied with B(KDE) ¼ 80 burn-in iterations and S(KDE) ¼ 400

additional iteration. The number of BðKDEÞ and SðKDEÞ is sufficiently large as is seen in the

convergence plot in Figure 2. Both indicators have converged after 480 iterations. While

indicators that are dependent on the whole distribution converge more slowly (for

example, the Gini coefficient), indicators that depend only on the unknown distribution of

the data within one group (for example, the HCR) converge faster. Also, all other

indicators are graphically checked for convergence. The number of grid points is set to

j ¼ 4,000. Simulation results in Section 5 show that choosing this number leads to reliable

estimates when working with income type data.

Furthermore, the KDE algorithm cannot handle open-ended groups. Lower bounds equal

to -1 or upper bounds equal to þ1 have to be replaced by a finite number. The chosen value

affects the performance of the KDE algorithm. However, not all poverty and inequality

indicators depend on the outer groups. Indicators that depend on the outer groups are

indicators that depend, by their definition, on the whole distribution for example, the mean

or the Gini coefficient. These indicators are always influenced by the way in which open-

ended groups are handled, whereas other indicators, such as the median, are only affected if

they fall into one of the open-ended outer groups. In the application we replace þ1 of the

upper group with a value of three times the value of the upper groups lower bound. Hence,

the upper bound of the upper income group of the German Microcensus (18,000, þ 1) is

replaced with the value of 18,000 * 3 ¼ 54,000, resulting in the group (18,000; 54,000]

which is then used in the estimation process by the KDE algorithm. In an application the

practitioner should choose the group bounds for open-ended groups with regard to content

and to the censoring scheme. However, our experiences running several simulations (see

Section 5) indicate that a value of three times the value of the lower bound serves as a good

proxy when working with grouped income data. A further hybrid possibility that requires
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Fig. 2. Convergence of the KDE algorithm for the Gini coefficient and the HCR.
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parametric assumptions about the underlying distribution would be to model open-ended

groups with a parametric distribution. We did not consider that approach because we want to

stick with a –flexible– purely non-parametric algorithm.

All estimated indicators are presented in Figure 3 and 4 and the exact values and the

estimated standard errors are given in Appendix (Section 7) in Table 11. The indicator that

is frequently used by the European Union to describe poverty is the HCR, while inequality

is most frequently measured by the Gini and the QSR. At the national level the HCR

¼ 0.15, the Gini ¼ 0.29 and the QSR ¼ 4.31. To put these numbers in perspective we can

compare Germany to other countries from the European Union. According to OECD data,

the country with the highest estimated Gini coefficient in the European Union is Lithuania

with a Gini of 0.38 and the country with the lowest Gini coefficient is Slovak Republic

with an estimated Gini coefficient of 0.24 (OECD 2018). This leaves Germany with an

average Gini coefficient. Regarding the estimated QSR the same holds true. The country

with the highest QSR is Lithuania with a QSR of 7.5 and the country with the lowest QSR

is Slovenia with 3.6, leaving Germany with an average QSR (OECD 2018). The estimated

HCR is slightly lower then the European Union average, which was 16.8 in 2012 (Eurostat

2018). Hence, based on the estimated indicators Germany shows average strength of

poverty and inequality compared to other countries from the European Union.

Owing to the large sample size, reliable estimates for smaller geographical areas

(federal state level) can be produced to evaluate the regional distribution of poverty and

inequality in Germany in detail. The quantiles and the mean indicate that the East

(formerly German Democratic Republic, GDR) is poorer than the West. This result is

commonly known in Germany and is not very surprising. Nevertheless, Brandenburg and

Berlin have higher incomes than the rest of East Germany (Mecklenburg-Vorpommern,

Saxony, Saxony-Anhalt and Thuringia) due to the economically growing city Berlin.

However, there are also federal states in the West with comparable low incomes. For

instance Bremen, shows low income for the 10% and 25% quantile in comparison to the

rest of West Germany, while for the higher quantiles Bremen shows similar results to the

rest of West Germany. The poorest states with a median of 1,211.29 euro and 1,247.05

euro are Mecklenburg-Vorpommern and Saxony-Anhalt and the richest ones with a

median of 1,580.43 euro and 1,580.35 euro are Baden-Wurttemberg and Bavaria. For the

estimation of the HCR and PGap, a regional poverty line (defined as 60% of the median) is

used. The HCR indicates that in the East fewer people live under the regional poverty line

than in the West. Also, the people living under the poverty line live closer to it in the East,

as shown by the PGap. When looking at the QSR and the Gini coefficient, the East-West

trend is less striving. Nevertheless, the states in the East have lesser income inequality. The

most unequal states with a Gini coefficient of 0.32 and 0.31 are Hamburg and Bremen and

the most equal ones with a Gini coefficient of 0.25 and 0.25 are Saxony and Thuringia. The

estimated standard errors of the indicators on state areas are quite small. Therefore,

estimating indicators for smaller geographical areas would also be desirable, in order to

get an even closer look at the geographical distribution of poverty and inequality.

However, the PUF does not include regional identifiers below the federal state level.

The application demonstrates how the KDE algorithm enables the estimation of poverty

and inequality indicators from grouped data. The precise estimates obtained by the KDE

algorithm enable statisticians and statistical offices to report a variety of poverty and
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Fig. 3. Regional distribution of different statistical indicators in Germany.
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inequality indicators using the most valuable data source in Germany, the German

Microcensus. The regional estimates will help to identify regions with lower income and

higher inequality to target political activities more accurately for those in need.

5. Simulation Results

This section presents model-based simulation results in order to evaluate the performance

of the KDE algorithm in the context of estimating poverty and inequality from grouped

income data. The code of the simulation study, as well as the simulated data used in the

simulation study are available as online supplementary material. Due to the high

computational complexity of the simulation study the code needs to run in a parallel

computing environment, for example a high performance cluster. Additionally, the KDE
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(a) Regional distribution of the HCR.
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Fig. 4. Regional distribution of different statistical indicators in Germany.
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algorithm is also included in the open source R package smicd (Walter 2021). This enables

practitioners to easily apply the KDE algorithm to the estimation of poverty and inequality

indicators on a local R environment.

The simulation study is set up with the following specifications. From a theoretical

distribution M ¼ 500 samples of simulated monthly income data are generated. The samples

are grouped. The sample size for each sample is n ¼ 10,000. The KDE algorithm is evaluated

for large samples because grouped income data is common for surveys (like the German

Microcensus) and for censuses which, in general, have very large sample sizes. From the

simulated grouped income data different poverty and inequality indicators are estimated: the

mean, the quantiles (10%, 25%, 50%, 75%, 90%), the HCR, the PGap, the Gini coefficient and

the QSR. The formulas are given in Equations (2) – (7). In the simulation study sampling

weights are not included, because the scope of the study is to evaluate the performance of the

KDE algorithm. Therefore, wi ¼ 1 for i ¼ 1; : : : ; 10; 000 in the simulation study.

The indicators are estimated by the proposed KDE algorithm. The number of burn-in

iterations of the algorithm is set to BðKDEÞ ¼ 80; the number of additional iterations

SðKDEÞ ¼ 400: Our experiences running several simulations show that 480 iterations are

usually enough to ensure convergence. Nevertheless, we check the convergence plots from

randomly chosen simulation runs to assure that the indicators in the presented simulations

converge. The number of grid points is set to j ¼ 4; 000: In general, a higher number of

grid points leads to more precise estimation results, because the number of grid points

determines how many unique values the pseudo samples of the grouped variable can

consist of. However, the estimation time increases with the increasing number of grid

points. The presented poverty and inequality indicators are not only estimated by the KDE

algorithm (KDE). For comparison, the indicators are also estimated by linear

interpolation. This method is used by the Federal Statistical Office of Germany for the

estimation of poverty and inequality indicators from the grouped income variable of the

German Microcensus (Information und Technik (NRW) 2009). This approach gives the

same results as assuming a uniform distribution within the income classes (Uni).

Furthermore, the statistical indicators are estimated by using the midpoints (Mid) of the

groups as a proxy for the unobserved values within the income group. The estimated

indicators of the continuous un-grouped data (True) are treated as a benchmark because

they are not affected by the censoring.

Furthermore, we included a parametric estimation approach based on the GB2

distribution (Para). This methods works by replacing the kernel density estimate in step 1

and 5 of the algorithm by a parametric ML- estimate using the pseudo samples assuming a

GB2 distribution. We expect the method to work well for our simulation scenarios,

because we use the GB2 distribution and special cases of it for generating the data in the

simulation study. The results of the parametric estimator are discussed in Subsection 5.4.

The results of a generic estimator Î, for example the KDE alg. or Uni, for a generic

indicator I, for example the HCR and the Gini, are evaluated by the relative bias (rB),

rBðÎÞ ¼
1

M

XM

m¼1

Îm 2 I

I

� �
£ 100;

and the empirical standard errors (se.emp),
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se:empðÎÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

m¼1

Îm 2 �I
� �2

vuut ;

with

�I ¼
1

M

XM

m¼1

Îm;

where the true value I is calculated from the theoretical distribution. The proposed non-

parametric bootstrap for the estimation of the standard errors is evaluated by comparing the

average over the 500 simulation runs of the estimated standard errors to the average over the

500 simulation runs of the empirical standard errors. The bootstrap is run with B ¼ 100.

This number shows it is sufficient to obtain valid approximations of the standard errors.

As mentioned before, the KDE algorithm cannot be applied to open-ended groups. We

therefore replace the upper open-ended group bound by a value of three times its lower

bound, as described in Section 4. The replacement value used for open-ended upper group

also has an impact on the performance of the methods Uni and Mid. For these two methods

we also replace the open-ended upper bound by three times its lower bound. We expect the

impact of the replacement of the upper bound for the method Uni and Mid to be more sever

then for the KDE algorithm. Adding distributional assumptions for the open-ended

interval could improve these traditional methods. For the KDE algorithm the above

described replacement rule gives very good results in our simulation study.

The simulation study is divided into four subsections. In Subsection 5.1, the influence of

different numbers of groups on the performance of the KDE algorithm is evaluated. In

Subsection 5.2, different underlying distributions are evaluated and, in Subsection 5.3, the

effect of equal versus ascending group width is studied. In Subsection 5.4 the results of the

KDE algorithm are compared with a parametric approach and in Subsection 5.5 the main

results are summarized.

5.1. Different Grouping Scenarios

In this section, the influence of the number of groups on the performance of the KDE algorithm

is studied. As theoretical distribution the four-parameter GB2 distribution that is often used to

model income is used. Its parameters are specified such that the GB2 distribution well

approximates the empirical German income distribution (Graf and Nedyalkova 2014). The

chosen parameters are given in Table 5. The drawn samples are grouped using three different

censoring scenarios. In Scenario 1, the data is divided into 24 groups as in the German

Microcensus (Statistisches Bundesamt 2017) that is used in the application in Section 4. The

group widths are chosen such that the frequencies within each group of the theoretical

distribution match the frequencies within each group in the empirical distribution of the

grouped household income in the German Microcensus. This is visualized in Figure 5 in the

left panel. The middle and the right panel show the GB2 distribution divided into 16 groups

(Scenario 2) and eight groups (Scenario 3). The performance of the algorithm with the lower

number of classes is studied because surveys and censuses from other countries censor the

Journal of Official Statistics614



income variable to fewer than 24 groups. For example, in the census from New Zealand the

income variable is divided into 16 groups (Statistics New Zealand 2013), in the Australian

census the data is divided into 12 groups (Australian Bureau of Statistics 2011), and in the

Colombian census the income variable is divided into only nine groups (Departamento

Administrativo Nacional De Estadlstica 2005).

The results of the point estimates are given in Table 3. Using the continuous un-grouped

data for the estimation of the poverty and inequality indicators leads to unbiased results.

This is not surprising as the sample size (n ¼ 10,000) is very large. Using only the group

information, the KDE algorithm outperforms the other approaches (Mid and Uni) in all

three scenarios. The out-performance is especially stronger for indicators that rely on the

whole shape of the distribution (Gini coefficient, mean), for the more extreme quantiles

(10% quantile and 90 % quantile), and for indicators that rely on more extreme quantiles

(QSR). As the number of groups decreases, the performance of the KDE algorithm

worsens. Nevertheless, the bias is still under 1% for all indicators, except for the QSR,

PGap and the Gini coefficient. The QSR shows a bias of -1.1%, the PGap a bias of 2.3%,

and the Gini coefficient shows a bias of -1.9% in the eight-group scenario. The estimated

indicators using the other approaches (Mid and Uni) exhibit far larger biases as the number

of groups decreases. For example, in the eight-group scenario the PGap has a bias of 22%

and 20% and the Gini coefficient of 14% and 24% for the estimation approaches Uni and

Mid, respectively.

The precision of the KDE algorithm, measured by the empirical standard error (se.emp),

is for all three scenarios close to the estimation results using the un-grouped data. This is

the case because the estimated indicators rely on the metric pseudo samples from the KDE

algorithm. However, the pseudo samples can – in rare circumstances – include very

extreme values that lead to a higher variance when statistical indicators are estimated that

rely on the whole distribution. This is, for example, the case for the mean in the 24-group

scenario. The KDE algorithm almost loses no precision for a lower number of groups. The

methods Uni and Mid lead to less precise estimation results, especially with fewer groups.

For some of the estimated quantiles the empirical standard error of the Mid approach is 0.

This is due to the fact that the Mid approach estimates the indicators on the midpoints of

the groups. This leads to only 24, 16 or eight unique values, respectively. With a sample

size of (n ¼ 10,000) the estimated quantiles are likely to fall on the same midpoint for each

of the 500 Monte Carlo iterations.
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Fig. 5. GB2 distribution divided into 24 (left), 16 (middle) and eight groups (right).
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Table 3. Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Measure Method GB2: 24 groups

rB True 0.053 0.036 0.008 -0.003 0.017 0.023 -0.087 -0.005 -0.163 -0.005
KDE -0.102 -0.059 -0.033 -0.045 0.121 0.002 -0.141 0.720 0.181 -0.036

Uni -0.366 -0.086 0.065 0.080 0.171 1.104 1.087 3.751 2.628 3.374
Mid -4.654 0.003 -0.313 1.501 1.848 2.218 -11.962 35.517 1.529 6.161
Para -0.078 -0.038 -0.03 -0.046 0.109 0.052 -0.128 0.531 0.013 -0.203

se.emp True 87.600 72.172 71.259 109.180 222.019 95.973 0.00322 0.0492 0.00105 0.00280
KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.00316 0.0668 0.00107 0.00415

Uni 96.181 69.987 70.633 119.183 240.357 111.912 0.00317 0.0596 0.00109 0.00347
Mid 83.717 0.000 0.000 738.583 1092.148 137.517 0.00306 0.3512 0.00107 0.00463
Para 83.555 67.637 69.221 111.531 222.439 93.430 0.00301 0.0483 0.00107 0.00265

GB2: 16 groups

rB True -0.007 0.012 0.022 0.021 0.014 -0.020 -0.030 -0.077 0.109 -0.102
KDE 0.323 -0.021 0.260 0.190 -0.051 -0.018 0.478 0.699 0.034 -0.401

Uni -0.991 -1.832 0.823 3.492 3.543 1.154 4.522 5.113 7.699 3.691
Mid -14.210 -8.097 -1.200 3.499 3.098 1.536 -12.619 92.185 6.194 0.835
Para 0.326 0.107 0.132 0.052 0.037 0.034 0.324 0.764 -0.425 -0.264

se.emp True 90.029 72.505 78.428 113.178 232.863 101.242 0.00337 0.0484 0.00111 0.00272
KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.00327 0.0489 0.00110 0.00268

Uni 120.142 84.036 81.005 131.425 248.381 110.794 0.00336 0.0552 0.00115 0.00307
Mid 221.137 0.000 0.000 0.000 0.000 121.311 0.00311 0.3210 0.00113 0.00384
Para 87.649 71.521 77.137 113.925 215.498 102.116 0.00322 0.0490 0.00112 0.0027
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Table 3. Continued

GB2: 8 groups

rB True 0.076 0.006 -0.016 0.021 0.017 -0.006 -0.103 -0.051 -0.131 -0.037
KDE 0.106 -0.173 0.252 0.145 -0.141 -0.685 0.119 -1.151 2.329 -1.871

Uni -0.980 -1.850 0.820 3.519 3.587 4.190 4.323 17.586 21.758 13.522
Mid -13.972 -8.012 -1.155 3.582 3.092 10.187 -12.555 164.261 20.273 24.256
Para 0.087 -0.022 0.08 0.048 -0.057 -0.358 -0.188 -0.908 -0.61 -1.25

se.emp True 92.276 75.720 71.976 111.044 240.443 100.286 0.00346 0.0505 0.00109 0.00288
KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.00338 0.0714 0.00119 0.00443

Uni 120.998 86.888 73.876 128.360 253.586 132.150 0.00346 0.0752 0.00135 0.00374
Mid 220.916 0.000 0.000 0.000 0.000 183.278 0.00321 0.4810 0.00131 0.00511
Para 87.805 72.731 72.891 109.482 217.465 96.147 0.00330 0.0479 0.00116 0.00255
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In Table 4, the proposed bootstrap for the estimation of the standard errors is evaluated

for the three different censoring scenarios. The standard errors estimated by the non-

parametric bootstrap (se.est) offer a good approximation of the empirical standard errors

(se.emp). This underlines the reliability of the proposed bootstrap method.

5.2. Different Theoretical Distributions

While the previous section evaluates the performance of the KDE algorithm using

different censoring schemes, this section focuses on the evaluation of the performance

using different theoretical distributions. According to several authors, among others

McDonald (1984), McDonald and Xu (1995) and Bandourian et al. (2002), the GB2

distribution is well-suited for modelling income and it is superior to other parametric

distributions. Nevertheless, two special cases of the GB2 distribution are used – in

addition to the GB2 scenario discussed in Subsection 5.1 – for evaluations in order to

illustrate the flexibility of the KDE algorithm: the Dagum (Dagum 1977) distribution and

the Singh-Maddala (Singh and Maddala 1976) distribution. The choice of parameters

follows Bandourian et al. (2002) (see Table 5) in order to closely approximate empirical

income distributions. In Bandourian et al. (2002) it is shown that the Dagum and Singh-

Maddala distribution specified with the parameters given in Table 5 have approximated

the German income distribution well in the past. The data is divided into eight groups and

the group width is chosen such that the relative frequency within each group is similar to

the eight-group GB2 scenario from the previous section (see Figure 5 and 6). The eight-

group scenario is chosen to evaluate the KDE algorithm under extreme scenarios. By

keeping the relative frequencies equal within each group the effect of different

distributions (GB2, Dagum, and Singh-Maddala) on the estimation results is isolatedly

evaluated.

The estimation results of the point estimates are given in Table 6 (Dagum and Singh-

Maddala) and Table 3 (GB2). As expected, using the un-grouped data (True) leads to

unbiased estimation results. Also, the KDE algorithm that only uses the group information

yields unbiased results for all indicators under the different scenarios. Hence, the

performance of the KDE algorithm is not impaired by the underlying theoretical

distribution. The benchmark methods (Uni and Mid) give biased estimation results,

especially for indicators that depend on the whole distribution. For example, the QSR has a

bias of 16.5% (Uni) and 210% (Mid) for the Dagum scenario and 18.5% (Uni) and 200%

(Mid) for the Singh-Maddala scenario. Regarding the precision, the conclusions from the

previous section are transferable.

As given in Table 7, the estimated standard errors offer a good approximation of the

empirical standard errors for the different scenarios.

5.3. Equal and Ascending Group Width

While the German Microcensus (Statistisches Bundesamt 2017), the Australian

(Australian Bureau of Statistics 2011), the Colombian (Departamento Administrativo

Nacional De Estadı́stica 2005), and the census from New Zealand (Statistics New Zealand

2013) use ascending class width, previous research shows that the performance of

alternative estimation methods depends on the group width (Lenau and Münnich 2016).
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Table 4. Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Measure Method GB2: 24 groups

se.emp KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.00316 0.0668 0.00107 0.00415
se.est 84.945 71.525 72.437 110.804 234.200 120.855 0.00318 0.0675 0.00107 0.00419

GB2: 16 groups

se.emp KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.00327 0.0489 0.0011 0.00268
se.est 87.972 70.564 68.708 110.969 224.122 96.000 0.00323 0.0503 0.0011 0.00278

GB2: 8 groups

se.emp KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.00338 0.0714 0.00119 0.00443
se.est 85.036 71.131 68.217 109.751 229.160 132.415 0.00323 0.0762 0.00117 0.0048
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More precisely, performance depends on whether the data is grouped to equal width or

ascending width. Therefore, the GB2 distribution from Table 5 is now grouped to eight

groups with equal group width (except the last group, which has an open-ended upper

group bound). In all previous simulation scenarios ascending group width is used. Figure 7

shows the grouped GB2 distribution. The theoretical distribution is kept fixed in order to

evaluate the influence of the censoring on the performance.

The results of the point estimates are given in Table 8. As before, using the un-grouped

data leads to unbiased estimates. The estimates obtained by the KDE algorithm are

unbiased except for the QSR, PGap, and Gini coefficient. These estimates exhibit a small

Table 5. Specified parameters for the theoretical distributions.

Distribution Parameter

a b p q

GB2 7.481 16351 0.4 0.468
Dagum 4.413 94075 0.337 –
Singh-Maddala 1.771 500000 25.12 –

0.0

0.1

0.2

0.3

(1
,9

47
1]

(9
47

1,
21

26
6]

(2
12

66
,4

35
60

]

(4
35

60
,7

51
10

]

(7
51

10
,1

06
32

8]

(1
06

32
8,

13
54

83
]

(1
35

48
3,

16
53

77
]

(1
65

37
7,

In
f)

Income Interval

F
re

q
u
en

cy

Income Distribution Dagum

0.0

0.1

0.2

0.3

(1
,1

18
31

]

(1
18

31
,2

38
97

]

(2
38

97
,4

69
38

]

(4
69

38
,8

34
72

]

(8
34

72
,1

20
47

8]

(1
20

47
8,

15
02

07
]

(1
50

20
7,

17
49

56
]

(1
74

95
6,

In
f)

Income Interval

F
re

q
u
en

cy

Income Distribution Singh−Maddala
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Table 6. Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Measure Method Dagum: 8 groups

rB True 0.041 -0.014 0.020 0.003 0.005 0.015 0.032 0.072 0.036 0.028
KDE 0.192 0.088 -0.146 0.225 0.038 -0.396 -0.126 -0.770 -0.084 -0.851

Uni -0.977 -1.719 0.675 3.150 2.883 5.454 2.579 16.532 4.163 9.840
Mid -23.304 -12.787 -2.552 3.227 2.420 12.042 29.23 209.641 -2.171 16.251
Para 0.169 0.061 -0.229 0.075 0.127 -0.243 -0.08 -0.42 -0.222 -0.486

se.emp True 399.449 437.44 455.249 584.052 988.153 442.182 0.00433 0.1276 0.0022 0.0028
KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.00412 0.1349 0.00222 0.00315

Uni 459.406 461.163 456.904 645.016 1052.903 613.491 0.00422 0.1706 0.00216 0.00374
Mid 0 0 0 0 0 826.842 0.00457 1.0238 0.00208 0.00506
Para 380.622 404.966 440.349 555.477 936.435 451.409 0.00394 0.1268 0.00218 0.00269

Singh-Maddala: 8 groups

rB True -0.070 0.001 0.035 0.014 -0.015 0.003 0.023 0.017 0.041 -0.006
KDE 0.270 0.014 0.042 -0.039 -0.031 0.093 -0.039 0.714 0.085 0.213

Uni -1.031 -1.21 1.652 2.963 2.039 6.269 1.800 18.504 4.321 11.024
Mid -21.083 -11.797 -1.789 3.039 1.636 12.618 27.516 199.584 -1.651 17.009
Para 0.117 0.251 0.207 -0.353 -0.201 0.318 -0.406 1.123 -0.21 0.537

se.emp True 416.957 486.609 555.653 731.369 1049.186 443.818 0.00449 0.0994 0.00205 0.00213
KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.00422 0.1056 0.00211 0.00239

Uni 467.696 502.097 547.127 784.601 1072.791 598.248 0.00444 0.1451 0.00209 0.00334
Mid 784.213 0 0 0 0 784.707 0.00481 0.9298 0.00199 0.00443
Para 397.6629 429.378 537.419 673.410 935.624 460.042 0.00405 0.1038 0.00207 0.00233
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Table 7. Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Measure Method Dagum: 8 groups

se.emp KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.00412 0.135 0.00222 0.00315
se.est 385.340 420.523 445.765 573.573 953.225 468.896 0.00409 0.134 0.00221 0.00317

Singh-Maddala: 8 groups

se.emp KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.00422 0.106 0.00211 0.00239
se.est 386.539 430.594 523.137 691.090 983.671 460.726 0.00405 0.110 0.00211 0.00245
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Table 8. Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Quality
Measure

Estimation
Method

GB2: 8 groups (equally sized)

rB True 0.079 0.035 0.013 -0.026 -0.092 -0.024 -0.127 -0.144 -0.248 -0.110
KDE -0.005 -0.422 0.238 -0.066 0.050 -0.840 0.290 -1.706 1.370 -2.181

Uni -7.074 -2.388 0.909 0.560 1.704 4.648 7.351 21.365 30.052 16.251
Mid -14.151 4.640 11.598 10.730 3.174 12.498 19.720 73.226 28.594 30.467
Para 0.012 -0.091 0.072 -0.032 -0.013 -0.566 0.324 -1.332 -0.325 -1.66

se.emp True 88.841 75.061 72.038 111.139 233.943 95.398 0.00334 0.0513 0.00107 0.00292
KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.00337 0.0756 0.00114 0.00484

Uni 116.469 70.955 88.391 156.503 260.393 130.810 0.00349 0.0763 0.00130 0.00364
Mid 0 0 0 544.426 0 180.793 0.00367 0.2806 0.00117 0.00481
Para 81.864 74.955 72.680 111.250 213.929 89.753 0.00324 0.0470 0.00114 0.00254
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Table 9. Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini

Measure Method GB2: 8 groups (equally sized)

se.emp KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.00337 0.0756 0.00114 0.00484
se.est 84.456 67.507 75.134 108.778 224.587 138.326 0.00326 0.0794 0.00114 0.00506
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bias of -1.7%, 1.4% and -2.2%. However, the results are comparable to the estimation

results from the GB2 scenario with eight groups with ascending group width. Hence, the

KDE algorithm does not seem to be affected by the censoring scheme. The benchmark

indicators Uni and Mid show, as before, large biases especially for indicators that rely on

the whole shape of the distribution. With regard to precision, the results and interpretation

are the same as before. The proposed bootstrap also gives valid results with equal-sized

groups (see Table 9).

5.4. Parametric Comparison

Comparable to the KDE algorithm the parametric approach gives almost unbiased results

for all of the investigated scenarios (Table 3, 6, 8). For the very extreme scenarios, with only

eight groups, the parametric SEM-algorithm even slightly outperforms the non-parametric

KDE algorithm. However, in the simulation study the data is generated based on a GB2

distribution and special cases of it. If the true data generating process is different from a GB2

distribution the parametric approach will give biased results. However, for the non-

parametric KDE- algorithm we do not expect a sharp decrease in performance. Hence, due

to its flexibility and unbiasedness the KDE algorithm remains preferable for applications.

5.5. Conclusion and Final Remarks

The simulation results show that the proposed KDE algorithm outperforms currently used

approaches by statistical offices (Uni and Mid) in terms of bias in the investigated

scenarios. The KDE algorithm gives almost unbiased results under different censoring

schemes and for different underlying theoretical distributions. The relative bias increases

slightly whenever the number of groups decreases. However, also in extreme censoring

scenarios (with only eight groups), the results are precise. The relative bias is under 1% for

almost all indicators. The KDE algorithm shows comparable results in terms of precision

to the direct estimation of the indicators from the continuous un-grouped data.

Additionally, it is superior to other commonly used approaches (Mid and Uni) that show

worse precision for most indicators. Due to its easy usage, its ability to adapt to different

underlying theoretical distributions and different censoring schemes and its precision

practitioners should prefer the KDE algorithm to the other approaches (Uni and Mid).

6. Discussion, Limitations and Future Research

In numerous surveys and censuses for example, the German Microcensus or the Australian

census, the variable household or personal income is not observed on a continuous scale,

but is rather divided into specific groups. This is due to confidentiality constraints or to

reduce item non-response. Estimating poverty and inequality indicators from these kinds

of data requires more sophisticated statistical methods. As an estimation method we

propose a new iterative KDE algorithm that enables the precise estimation of statistical

indicators from grouped data. The proposed KDE algorithm has similarities to SEM

algorithms that are commonly used for the estimation of models that depend on latent

unobserved variables (in our case the grouped income). However, instead of maximizing

the likelihood as is common for SEM algorithms, the asymptotic mean integrated squared
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error of the KDE is minimized. For the estimation of the standard errors of the statistical

indicators a non-parametric bootstrap is proposed. The KDE algorithm and the bootstrap

work for different censoring scenarios and different underlying true distributions. The

methodology is available in the R package smicd from the Comprehensive R Archive

Network (Walter 2021). Our simulation results demonstrate that the estimated poverty and

inequality indicators outperform other estimation techniques (linear interpolation or the

use of the midpoints of the groups) in terms of bias. Also, the standard errors of the

estimates are close to the standard errors from the estimates that were obtained with the

un-grouped data, supporting the precision of the algorithm. Furthermore, the KDE

algorithm has the advantage of adapting to different grouped theoretical distributions.

Therefore, it is applicable for the estimation of poverty and inequality indicators from

grouped income data. We demonstrate the usefulness by estimating regional poverty and

inequality indicators using German Microcensus data. To get representative results the

estimation is carried out by taking the OECD scale and the survey weights of the

Microcensus into account. The estimated regional indicators are plotted on maps that

visualize the magnitude of poverty and inequality in Germany. With the help of the KDE

algorithm statistical indicators can be precisely estimated from grouped data in order to

tackle the increasing problem of rising poverty and inequality in societies all over the

world.

In our article we did not focus on complex survey designs. As already mentioned in

Subsection 3.3 the algorithm could be altered such that survey weights are including into

the estimation of the density in each step of the KDE algorithm (Buskirk and Lohr 2005).

For the considered examples, we could not find any meaningful differences compared to

our proposed weighting method. However, for variance estimates this is a more serious

issue. We think that more research is needed here, especially in context of complex survey

designs. Some surveys also oversample certain parts of the population, for example, very

wealthy people to assure that ‘rare outcomes’ are include in the survey. In particular,

oversampling very wealthy people is done by the German Socio-Economic panel. Under

these settings it could be beneficial to examine the effects of the weighting method.

Deriving theoretical properties and generating empirical evidence for the KDE algorithm

under complex survey designs can be part of future research. In this article we have

empirically evaluated the naive bootstrap. However, theoretical deriving the efficiency of

the bootstrap or considering more complex bootstrap methods for specific sampling

designs could also be part of future work.

The algorithm can also be extended to situations in which every observation has its own

unique group bounds. This can lead to overlapping groups and to gaps between different

groups. However, this does not impede the use of the KDE algorithm, because a properly

adjusted KDE algorithm simply draws from the unique groups. Also, situations in which

only some observations are grouped and others are observed on a continuous scale can be

handled by the proposed KDE algorithm. In this scenario, the KDE algorithm only draws

pseudo samples for the grouped observations and the continuous observations stay

constant (since they are known) during the iterations of the KDE algorithm. Further

research will also focus on convergence criteria for the KDE algorithm that make the

manual choice of the number of iteration obsolete and on the derivation of analytic

standard error of the estimated statistical indicators.

Journal of Official Statistics626



7. Appendix

Table 10. Sample size for Germany and each of the 16 federal states.

State Sample size Number in map

Germany 454852
Schleswig-Holstein 15302 1
Hamburg 8630 2
Lower Saxony 45828 3
Bremen 3356 4
North Rhine-Westphalia 90778 5
Hesse 35730 6
Rhineland-Palatinate 21229 7
Baden-Württemberg 58685 8
Bavaria 75244 9
Saarland 5688 10
Berlin 19311 11
Brandenburg 15400 12
Mecklenburg-Vorpommern 8706 13
Saxony 24609 14
Saxony-Anhalt 13495 15
Thuringia 12861 16
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Table 11. Estimated statistical indicators for Germany and the 16 federal states. Standard errors are given in parentheses.

Quant0.1 Quant0.25 Median Quant0.75 Quant0.9 Mean HCR QSR PGap Gini

Germany 770.16 1040.23 1445.53 1998.96 2714.63 1675.88 0.15 4.31 0.03 0.29
(0.00) (3.28) (4.93) (2.59) (3.69) (1.85) (0.00) (0.01) (0.00) (0.00)

Schleswig-Holstein 794.21 1092.99 1512.96 2071.11 2743.79 1736.25 0.15 4.33 0.04 0.29
(6.04) (5.83) (7.39) (7.8) (20.01) (9.35) (0.00) (0.05) (0.00) (0.00)

Hamburg 765.68 1069.24 1540.2 2166.83 3002.79 1815.45 0.17 4.92 0.04 0.32
(7.16) (9.21) (10.47) (13.44) (29.75) (14.14) (0.00) (0.09) (0.00) (0.00)

Lower Saxony 770.08 1040.25 1445.04 1970.84 2603.04 1636.36 0.16 4.16 0.03 0.28
(4.1) (2.53) (5.44) (7.11) (13) (5.79) (0.00) (0.04) (0.00) (0.00)

Bremen 665.44 876.91 1328.23 1879.66 2564.1 1540.03 0.18 4.72 0.04 0.31
(10.82) (9.93) (16.76) (25.28) (47.95) (19.19) (0.01) (0.12) (0.00) (0.01)

North Rhine-Westphalia 756.85 1013.41 1418.5 1985.64 2674.27 1649.22 0.15 4.29 0.03 0.29
(0.72) (0.01) (3.01) (4.7) (9.05) (3.69) (0.00) (0.02) (0.00) (0.00)

Hesse 798.23 1094.75 1540.36 2149.61 2997.03 1825.06 0.16 4.66 0.03 0.31
(4.56) (4.88) (6.03) (7.49) (14.23) (7.54) (0.00) (0.04) (0.00) (0.00)

Rhineland-Palatinate 770.65 1067.23 1485.95 2052.43 2810.09 1720.3 0.15 4.49 0.04 0.3
(5.39) (5.36) (6.36) (8.97) (17.17) (8.4) (0.00) (0.06) (0.00) (0.00)

Baden-Wütrtemberg 837.76 1148.33 1580.43 2160.84 2900.98 1806.4 0.15 4.24 0.04 0.29
(2.23) (4.1) (4.08) (6.62) (10.5) (5.52) (0.00) (0.03) (0.00) (0.00)

Bavaria 841.94 1148.28 1580.35 2147.52 2944.04 1826.62 0.14 4.33 0.03 0.29
(5.37) (4.62) (4.99) (5.19) (8.81) (4.75) (0.00) (0.03) (0.00) (0.00)

Saarland 784.7 1035.41 1434.2 1938.86 2559.91 1615.95 0.14 3.98 0.03 0.27
(8.77) (9.73) (10.55) (14.7) (32.54) (13.4) (0.01) (0.07) (0.00) (0.00)

Berlin 730.96 912.14 1328.5 1867.05 2552.45 1547.47 0.15 4.15 0.02 0.29
(5.38) (5.19) (8.41) (11.2) (15.87) (8.77) (0.01) (0.05) (0.00) (0.00)

Brandenburg 716.8 979.24 1351.02 1823.73 2446.72 1528.25 0.14 4.1 0.03 0.28
(5.93) (6.78) (6.43) (10.03) (17.36) (8.08) (0.00) (0.05) (0.00) (0.00)
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Table 11. Continued

Quant0.1 Quant0.25 Median Quant0.75 Quant0.9 Mean HCR QSR PGap Gini

Mecklenburg-Vorpommern 671.3 895.52 1211.29 1629.61 2120.56 1355.61 0.13 3.74 0.03 0.26
(4.92) (5.77) (7.51) (9.78) (20.77) (11.96) (0.00) (0.08) (0.00) (0.01)

Saxony 709.57 945.88 1247.4 1622.64 2155.08 1383.2 0.12 3.52 0.02 0.25
(4.62) (4.00) (4.31 (5.48 (10.93 (5.09 (0.00) (0.03 (0.00) (0.00)

Saxony-Anhalt 675.7 928.47 1247.05 1643.78 2161.33 1382.23 0.14 3.78 0.03 0.26
(5.25) (5.85) (5.9) (7.68) (17.09) (6.24) (0.00) (0.05) (0.00) (0.00)

Thuringia 755.17 973.23 1283.8 1683.44 2226.4 1435.52 0.11 3.5 0.02 0.25
(5.32) (4.23) (5.50) (7.11) (16.00) (7.45) (0.00) (0.04) (0.00) (0.00)
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