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Abstract: With the advancement of microbiome research, the requirement to consider the intestinal
microbiome as the “last organ” of an animal emerged. Through the production of metabolites
and/or the stimulation of the host’s hormone and neurotransmitter synthesis, the gut microbiota can
potentially affect the host’s eating behavior both long and short-term. Based on current evidence, the
major mediators appear to be short-chain fatty acids (SCFA), peptide hormones such as peptide YY
(PYY) and glucagon-like peptide-1 (GLP-1), as well as the amino acid tryptophan with the associated
neurotransmitter serotonin, dopamine and γ-Aminobutyrate (GABA). The influence appears to
extend into central neuronal networks and the expression of taste receptors. An interconnection
of metabolic processes with mechanisms of taste sensation suggests that the gut microbiota may
even influence the sensations of their host. This review provides a summary of the current status
of microbiome research in farm animals with respect to general appetite regulation and microbiota-
related observations made on the influence on feed intake. This is briefly contrasted with the existing
findings from research with rodent models in order to identify future research needs. Increasing our
understanding of appetite regulation could improve the management of feed intake, feed frustration
and anorexia related to unhealthy conditions in farm animals.

Keywords: appetite; eating behavior; farm animals; feed intake; intestine; microbiome; neurotrans-
mitters; physiology; taste reception

1. Introduction

The field of microbiome research has evolved rapidly over the past few years and
now calls for a holistic view of microbe–host interaction based on the holobiont theory [1].
This review relies on the definitions of Berg et al. [1], according to which the microbiota is
the totality of living microorganisms in a certain ecosystem. While the term microbiome
encompasses the community of microorganisms and their genes, the entire spectrum
of molecules they produce, including their structural elements and metabolites. The
microbiota produces an incalculable variety of metabolites, of which the best known are
short-chain fatty acids (SCFA), branched-chain fatty acids, amino acids (AA) and biogenic
amines, among many others. Intestinal microbes are capable of initiating the synthesis of
incretins, hormones and neurotransmitters in their host [2]. This allows the microbiome
to act on the animal and contribute to its metabolism, thus influencing health, welfare,
productivity and certainly feed intake.

Some research on the influence of the microbiome on host nutrient intake was con-
ducted in the context of obesity, mainly in rodent models. Laboratory rodent models
provide the greatest possible standardization with respect to environmental factors that
potentially influence the microbiome compared to large animal models. Individual mecha-
nisms for how the microbiome influences eating behavior were identified in pigs [3]. It was
shown that pigs with different feeding efficiencies might vary in the microbial community
of their gastrointestinal tract (GIT). In this context, differences in voluntary feed intake were
identified to cause the differential feed efficiencies [4]. These exemplary observations from
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various studies on pigs demonstrate that in times of highly efficient animal production,
the microbiome of farm animals should also be considered in their feeding. Therefore,
the purpose of this review is to provide a summary of the current state of research on the
influence of the microbiome on the feed intake of farm animals.

2. Intestinal Microbiota in Farm Animals

Over millions of years of evolution, animals have developed the ability to host com-
plex and dynamic consortia of microbes during their life cycle [5]. Colonization of the
mammalian gut can begin as early as embryogenesis [6] and progresses to the formation
of a complex and dynamic microbial community after birth [7]. In contrast, in birds, the
first provision of feed initiates the simultaneous colonization of the microbiota in the differ-
ent segments of the GIT [8]. The composition of the GIT microbiota depends on species,
breed, age, nutrition, environment, rearing forms, stocking density, stress and especially
antibiotics [9]. For this reason, the microbial patterns of various livestock species shown
exemplarily in Table 1 should be considered with caution. The available literature on
farm animals can only represent what has been produced by domestication and artificial
rearing. It was proven that domesticated animals could not be compared to animals in
a completely natural environment without limitations. For instance, the major bacterial
families in domesticated pigs are Lactobacillus and Enterobacteriaceae, while wild Suidae
were shown to have a high abundance of Bifidobacterium [10]. In commercial chicken lines
for meat production, 36% of GIT microbiota species were affected by host genotype and
sex [11]. Among them, 15 species affected belonged to the Lactobacillus genus. Rearing
young chicken in a sanitized environment without contact with older conspecifics following
the industrial in–out procedure leads to profound different microbiota compared to chicks
kept with their adult hen for 24 h [12]. Moreover, in ducks, genotype affects Lachnospiracecae,
Bacteroidaceae and Desulfovibrionaceae in the ceca, while overfeeding affects other families
such as Clostridiaceae, Lactobacillaceae, Streptococcaceae and Enterococcaceae [13].

Table 1. Taxonomic profiles of major gut bacterial communities at the phylum level in farm animals.

Host Gut Segment Phylum References

Firmicutes Bacteroidetes Actinobacteria Proteobacteria

Cattle Rumen 25–58% 38–75% <1% 0–5% [14]
Sheep Rumen 49% 47% <1% <1% [15]
Horse Cecum 30–50% 30–50% - 5% [16]
Rabbit Cecum 83% 6% <1% <1% [17]

Pig Colon 54% 42% <1% 2% [18]
Chicken Ceca 44–50% 23–46% 6% 1–16% [19]

Duck Ceca 34% 57% - 7% [13]

In general, the phyla Bacteroidetes, Firmicutes and Actinobacteria account for more
than 90% of all known microbiota species in animals GITs. The remaining proportion is
composed of Fusobacteria, Proteobacteria, Verrucomicrobia and Cyanobacteria [20–22]. The
ratio of Firmicutes-to-Bacteroidetes is basically considered an indicator of the composition
of the gut microbiome. Therefore, in human obesity research, a decreased Firmicutes-to-
Bacteroidetes ratio was directly related to weight loss, whereas an increase in the ratio
is associated with increased capacity for energy harvest from food [23]. The phyla Bac-
teroidetes and Firmicutes provide beneficial metabolites to the host from saccharolysis.
Firmicutes species degrade polysaccharides to produce mainly butyrate, whereby species
of Bacteroidetes break down complex carbohydrates to synthesize mainly propionate [24].
Other than fiber fermenters, proteolytic bacteria produce potentially beneficial but addi-
tionally harmful metabolites such as ammonia or hydrogen sulfide [25]. According to
their food base, the ratio of saccharolytic to proteolytic bacteria depends on the supply of
animals with dietary carbohydrates, including fiber and protein [26]. Ruminants are well
adapted to rations rich in crude fiber due to their forestomach system. The breakdown
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of complex carbohydrates occurs in the anterior part of the GIT with the help of the mi-
crobiota, making nutrients and bacterial metabolites readily available to the animal for
absorption in the intestine. In monogastric animals, crude fibers are not broken down in
the foregut. The main fermentation organ is the posterior part of the large intestine. In
pigs, complex carbohydrates can be digested exclusively and to a limited extent in the
cecum and colon by bacterial means [27]. In chickens, the digestive capacity for crude
fiber is even less pronounced since bacterial fermentation occurs almost exclusively in the
ceca [9]. In accordance with the dietary basis, ruminants harbor more saccharolytic phyla
than proteobacteria in relative proportion compared to monogastric animals (Table 1).

3. The Control of Feed Intake
3.1. Central and Peripheral Regulation

The mechanisms of hunger, satiation and satiety are highly complex processes con-
trolled by the interaction of humoral factors and the central nervous system, as described
in detail by Camilleri [28]. Briefly, the hypothalamus receives information from various pe-
ripheral (e.g., gastric distension, circulating nutrients and metabolites, hormones) but also
central functional systems. In addition, sensory factors (such as aroma and the appearance
of a ration, emotions and social variables) affect eating behavior. A key role in detecting and
integrating peripheral feedback signals about the nutritional and metabolic status plays
the arcuate nucleus (ARC), an aggregation of neurons in the mediobasal hypothalamus.
The ARC receives peripheral signals either directly after crossing the blood–brain barrier
(BBB) or indirectly via the afferent vagus and sympathetic nerves. The ARC contains two
functionally antagonistic populations of neurons. In the anorexigenic neuronal popula-
tion, cocaine- and amphetamine-regulated transcript (CART) and pro-opiomelanocortin
(POMC) are coexpressed. Both can reduce appetite by releasing various anorexic signals
in the brain, most notably α-melanocyte-stimulating hormone (α-MSH). By coexpress-
ing the potent orexigens neuropeptide Y (NPY) and agouti-related peptide (AgRP), the
orexigenic neuronal population increases appetite while inhibiting the anorexigenic-acting
POMC-expressing neurons [29].

Peripheral signaling occurs via hormones secreted from endocrine cells in the GIT,
such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and
ghrelin [29]. During the pre-absorptive phase, PYY, GLP-1 and CCK are secreted upon
sensing nutrients such as glucose and AA by different receptors along the GIT. These
acute satiety-inducing signals contribute to controlling meal size via the homeostatic and
hedonic systems in the brain. Antagonistically, the stomach-derived ghrelin is a powerful
stimulator of appetite whose secretion is decreased in response to food intake [25]. Numer-
ous commensal and pathogenic bacteria synthetize peptides that are strikingly similar to
leptin, ghrelin, PYY and NPY [30] and potentially affect the central regulation of appetite
by triggering the respective neurons. Furthermore, stimulation of the aforementioned
peripheral signaling pathways by microbial metabolites is a method of intervention of
intestinal bacteria on the host that has been explored in rudimentary form so far. From
rodent models, it is known that SCFA stimulates the secretion of GLP-1 and PYY [31,32]. In
pigs, ileal infusions of the SCFAs, i.e., acetate, propionate and butyrate, increased the secre-
tion of PYY [33] or plasma CCK levels [34]. During the post-absorptive phase, important
peripheral feedback signals are released from the pancreas, such as insulin, glucagon and
pancreatic peptide. The anabolic hormone insulin suppresses appetite and food intake via
several central mechanisms, including insulin receptor-dependent induction of CART and
α-MSH and decreasing expression of the orexigens NPY and AgRP. Together with insulin,
another peripheral feedback signal originating from white adipose tissues, leptin acts as a
long-term feedback signal in the hypothalamus to reduce appetite and food intake [25,29].
In the gut, microbial-derived SCFA stimulates leptin secretion [35]. Moreover, oral adminis-
tration of a mix of SCFA caused an increase in plasma concentration of leptin in pigs [36].
Leptin crosses the BBB via a transport mechanism linked to the leptin receptor. In the ARC,
leptin inhibits hunger signals such as NPY and AgRP but also stimulates POMC, which
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leads to the formation of the satiety signal α-MSH. Synergistic effects between leptin and
CCK in the control of food intake were described by Voigt and Fink [37].

While the POMC/CART and NPY/AgRP neurons are often considered “first or-
der” in the pathways of hunger and satiety, the major long-term positioners located in
the hypothalamus are the mechanistic target of rapamycin (mTOR) and the adenosine
monophosphate-activated protein kinase (AMPK). Both are directly involved in the long-
term metabolic control of food intake that displays nutritional status, energy expenditure
and body composition [38]. In the fed state, insulin and available nutrients (including AA)
activate mTOR, which stimulates protein synthesis and inhibits autophagy. In the long-
term, leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling
blunts leptin’s anorectic effect [38]. In contrast to mTOR, AMPK activity is increased during
nutrient deficiency and inhibited by leptin and nutrient signals. Thus, AMPK and mTOR
have overlapping and reciprocal functions and interact with the respective orexigenic or
anorexigenic neurons [38].

Signals from the gut microbiome can potentially reach the CNS by several mech-
anisms: (1) direct activation of the vagus nerve or transmission of neurotransmitters;
(2) production or induction of metabolites that pass the intestinal barrier, enter the blood-
stream and may pass the blood–brain barrier to interfere with neurological function; and
(3) microbial-associated molecular patterns (MAMPs, e.g., LPS) and metabolites produced
by the microbiota may signal the immune system.

3.2. Neurotransmission and Reward Mediation

Food consumption beyond the coverage of nutrient requirements is caused by the
rewarding nature of food as a stimulus to eat. The reward circuitry is complex due to
the interaction of seven signaling systems (i.e., the opioid, dopaminergic, cannabinoid,
GABAergic, serotoninergic, noradrenergic and neurotensin systems) as reviewed by Stan-
ley et al. [39]. Some of the modulators, such as opioids or dopamine, stimulate a preferential
appetite for palatable substances such as sugar or fat [40]. In contrast, stimulation of the
serotoninergic system in the ARC causes an anorectic response even in the presence of
palatable food since serotonin inhibits the orexigenic peptides (NPY/AgRP) and stimulates
the anorexigenic (POMC, α-MSH) in response to peripheral signals such as CCK, ghrelin
and leptin reaching hypothalamus via vagal afferents [37]. Homeostatic and hedonic mech-
anisms regulating food or feed intake are not independent, and while non-homeostatic
eating is frequently attributed to the neurotransmitter dopamine, serotonin is largely seen
as a neurotransmitter within the homeostatic system. Although enterochromaffin cells of
the GIT are responsible for over 95% of the body’s serotonin production, the gut microbiota
is understood to affect the host GIT serotonergic system [2]. For instance, spore-forming
Clostridium perfringens can upregulate the expression of colonic tryptophan hydroxylase
1, boosting serotonin biosynthesis from tryptophan in the gut [41]. Further, the major
bacterial metabolites such as SCFA directly induce serotonin production from enterochro-
maffin cells [41] and stimulate the release not only into the lumen of the gut but also into
the vasculature. Besides serotonin, gut bacteria produce other neurotransmitters. Many
transient and persistent inhabitants of the gut, including Escherichia coli, Bacillus cereus,
Bacillus mycoides, Bacillus subtilis, Proteus vulgaris, Serratia marcescens and Staphylococcus
aureus have been shown to produce dopamine [30]. B. subtilis appears to secrete both
dopamine and norepinephrine into their environment, where it interacts with mammalian
cells. Bifidobacterium spp. [42], Escherichia spp. [43] and Lactobacillus spp. were demon-
strated to synthesize γ-Aminobutyrate (GABA) [44]. In pigs, GABA is assumed to be an
orexigenic neurotransmitter [45]. Microbe-derived neurotransmitters are thought to serve
host-microbe crosstalk (Figure 1).
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The rewarding nature of food further includes the hedonic aspect. Food hedonics
emerge from the confluence of energetic, cognitive and sensory signals. More commonly,
however, hedonic value is singularly ascribed to a food’s taste, a multimodal perception aris-
ing from the central integration of taste, retronasal olfaction and oral somatosensation [46].
Most non-primate mammals, including humans, share the five primary taste sensations
defined as sweet, umami, salty, sour and bitter [47]. Sweet taste identifies carbohydrates as
an indicator of energy supply, umami recognizes AA representing dietary protein, salty
indicates proper dietary electrolyte balance and sour and bitter identify potentially noxious
and/or poisonous chemicals [47]. Taste chemosensing cells are epithelial cells allocated in
taste buds along the oral cavity and the GIT. Pigs and cows count approximately 20,000 taste
buds and therefore have nearly four times as many taste buds as humans [47]. In chickens
and ducks, less than 500 taste buds were detected, and the sweet taste receptor as known
from other species is missing [48]. Bitter, sweet and umami taste receptors belong to the
superfamily of guanine-coupled nucleotide-binding protein-coupled receptors (GPCRs),
class C, which was divided into two families: T1R and T2R, of which the first plays a
substantial role for umami and sweet taste and can be additionally triggered by serotonin
and the second for bitter taste sensation [49]. Apart from classical taste receptors, other
GPCRs class C receptors for umami compounds were identified in taste cells [29]. The main
substance eliciting umami taste is L-glutamate, which is widely present in food and, as such,
represents protein, peptides and AA. Taste preferences may be influenced by altered taste
receptor expression. Previously, it is known that there is genetic variation in taste percep-
tion due to natural allelic variations and common polymorphisms of taste receptors [50]. In
murine enteroendocrine cell lines, SCFA enhanced the expression and activity of the umami
taste receptors TASR1 and TASR3, thus altering the sensitivity of gut cells to bioactive
nutrients [51]. In rainbow trout, bacterial, viral and parasitic infections were shown to
alter the expression of T1R receptor genes infection [52]. In human, a positive correlation
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between taste sensitivity and some bacterial phyla of the oral cavity were found and it
was assumed that taste responsiveness is affected by oral bacteria lining the tongue [53].
The potential influence of the microbiome on the expression of taste receptors and taste
sensations should be considered, especially in livestock production. Opportunities from
this newly discovered research field would be especially interesting from an animal welfare
perspective but also economic targets as feed efficiency in farm animals.

4. Species-Specific Considerations
4.1. Monogastric Farm Animals
4.1.1. Poultry

In poultry, the gut microbiota has already been shown to have effects on neurologi-
cal processes such as anxiety and memory, as well as on the serotonergic system [54–56].
Nevertheless, poultry is less considered in research on the effects of the gut microbiome
on eating behavior. Due to the short transit time, the colon is considered less important
for microbe–host interactions [57]. In chickens and birds in common, the ceca are the site
of the greatest intestinal fermentation [58,59]. Moreover, the crop contains a considerable
amount of of microorganisms. This thin-walled, enlarged portion of the digestive tract
of poultry, which serves to store food prior to digestion, contains primarily Firmicutes
and Proteobacteria (~78% and ~16%, respectively) [8] but also significant amounts of lacto-
bacilli [60]. Since efficient fermentation is correlated with a higher yield of nutrients for
the host [61], some data are available on the association of cecal and fecal microbiota and
feed efficiency in chicken. Bacteria belonging to Bacteroides [62], Clostridium [63], Ruminococ-
cus [63,64], Faecalibacterium [63] and Lactobacillus [64,65] have been positively associated
with feed efficiency in chickens, while bacteria belonging to Enterobacteriaceae [57], but
more recently Lactobacillus [63] were also described to affect feed efficiency negatively.
As the two directions of Lactobacillus’ impact indicate, the findings for microbial patterns
associated with high feed efficiency are inconsistent. This may be due to the sanitary
measures in modern commercial hatcheries having an unwanted side effect of causing
highly specific bacterial colonization of chicken’s intestines [66]. Other sources of variation
are the dietary composition, the chicken line used and the encountered environmental
microbes [63,64,67,68]. Further, Siegerstetter et al. [57] reported an association between the
Lactobacillus genus and two Lactobacillus crispatus taxa and a high feed intake exclusively for
female chickens. In general, there is a large impact of breeding on microbial colonization
with an emphasis on Lactobacillus species [11]. In chickens, quantitative trait loci for the
presence of bacteria such as Lactobacillus and L. crispatus colocalize with those for feeding
behavior [69]. This colocalization suggests an influence of these indigenous bacteria on
eating behavior, but this influence still needs to be strengthened by experiments with
standardized intestinal microbiota inoculation and/or fewer influencing factors from the
environment. However, the dietary addition of Lactobacillus strains clearly increases feed
intake in chickens [67,68]. A possible mode of action might be the ability of Lactobacillus
strains to synthesize GABA [44] since the release of GABA has been indicated to mediate
the orexigenic effects of the hypothalamic NPY/AgRP signaling pathway [70].

The comparatively small amount of taste receptors and the absence of the previously
known receptors for sweet taste suggest a lesser influence of flavor on feed intake in poultry.
Even though chickens are seemingly insensitive to sweetness, dietary stevioside supplemen-
tation promoted feed intake through alteration of intestinal microbiota composition and
the regulation of neuroactive pathways [71]. The authors concluded that stevioside might
regulate the eating behavior through functional mechanisms other than its high-potency
sweetness, such as decreased serotonin synthesis, enhancement of hypothalamic dopamine
receptors and NPY signaling.

These few findings suggest that the gut microbiota influences eating behavior in
poultry and justify the call for further research in this previously understudied group of
farm animals.
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4.1.2. Pigs

For pigs, there is also limited evidence on the mode of action of the microbiota–host
interplay regarding eating behavior. As described in poultry, different feeding efficiencies
have been associated with variations in the GIT microbial community. Herewith the
different feed efficiencies were caused by differences in voluntary feed intake [4]. In pigs,
the cecum [4,72] and the colon [26,27] are considered the main microbial fermentation sites.
McCormack et al. [73] reported that gut microbes associated with a leaner but healthier
host (e.g., Christensenellaceae, Oscillibacter and Cellulosilyticum) were enriched in pigs with
a low residual feed intake, a marker for higher feed efficiency. In the study of Metzler-
Zebeli et al. [4], a higher abundance of Campylobacter in cecal mucosa was associated with
the pig group of low residual feed intake, whereas Escherichia, Shigella, Ruminobacter and
Veillonella were associated with pigs assigned to the high feed intake group.

According to Fleming et al. [3], individual mechanisms for how the microbiome
influences eating behavior in pigs were identified to be colonic SCFA production, as well
as peripheral concentrations of butyrate and serotonin. In pigs, ileal infusions of SCFAs
(i.e., acetate, butyrate and propionate) increased the secretion of PYY [33] or plasma CCK
levels [34]. The peptide hormone CCK was shown to induce satiety in pigs, as demonstrated
in a feed motivation test [74]. Another mechanism for termination of feed intake is the
SCFA-induced increase in plasma leptin concentrations, as shown by Jiao et al. [36].

Stimulation of the serotoninergic system in the ARC was shown to cause an anorectic
response even in the presence of palate delights [37]. Thus far, it has been assumed that
serotonin content in the porcine brain depends strongly on the uptake of tryptophan
across the BBB, with implications on feed intake [75,76]. In pigs fed low protein diets, gut
microbes produced notable amounts (0.3–2.0 g/d) of leucine, valine and isoleucine (further
summarized as BCAA); and phenylalanine and lysine [77], thus contributing by 10% to
the coverage of the estimated requirement of in pigs first-limiting lysine. The microbial
synthesis of BCAAs has a higher proportion relative to the other AAs [78]. The BCAA
leucine, but also the non-essential AA glutamine, are the most abundant constituents of
plant and animal proteins and are produced in remarkable amounts by gut bacteria [79].
Besides their role in protein synthesis, these AAs individually activate the mTOR-signaling
pathway to promote protein synthesis [80]. Since other AAs can activate mTOR exclusively
insulin-depended, especially leucine seems to have a derived evolutionary function as
an anabolic signal [81]. Glutamine amplifies glucose-stimulated insulin secretion, and
with insulin, it can activate the mTOR pathway [82]. The activation of the hypothalamic
mTOR signaling pathway induces an anorectic response [38]. Further, circulating leucine
mediates the uptake of all large neutral AAs across the BBB [76] and also cerebral serotonin
synthesis [75,83]. A primary leucine excess can thus lead to a secondary deficiency of
valine [84] or tryptophan [76]. Pigs are capable of sensing AA imbalances, which in
turn leads to a reduction in feed intake [84,85]. In the classical behavioral test for AA
deficiency, pigs detect and reject a diet lacking an essential AA within 20 min following the
onset of feeding [86]. This effect is autonomous from olfactory, taste or other peripheral
systems [87]. The anterior piriform cortex (APC) is the behaviorally relevant chemosensor
for essential AA depletion, projecting to neural circuits that control feeding [88]. Imbalances
of circulating AA cause a decrease in the concentrations of a limiting essential AA in the
APC. Initiation of mRNA translation occurs when AAs are acylated (=charged) to transfer
ribonucleic acid (tRNA) by their cognate aminoacyl-tRNA synthetases. In the presence of
essential AA deficiency, the cognate tRNA remains deacylated (=uncharged). Thus, AA
deficiency leads to an accumulation of uncharged tRNA in the APC. The following cellular
adaptation to AA deficiency is characterized by a decrease in global protein synthesis
complemented by increased transcription of genes related to AA synthesis [88,89]. If the
recognized deficiency and the subsequent neuronal signals cannot be responded to with a
compensatory feed selection, the remaining AAs are metabolized and thus lost for protein
biosynthesis [88]. In conventional pig farming, this natural reaction cannot be implemented
due to stringent feeding practices and can thus have a reducing effect on feed intake.
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Gietzen and Rogers [90] reported that degradation of protein in the brain begins within
2 h after deficiency detection of a single indispensable AA. Therefore, this mechanism
exists to prevent negative effects on the brain caused by AA deficiency. mTOR is not
involved in sensing AA deficiency [89]. However, contributing to the production of the
two pointer AAs, leucine and glutamine, the gut microbiota can potentially affect the host’s
AA homeostasis, resulting in adaptations in eating behavior.

To date, no experimental studies have been published that have investigated a relation-
ship between changes in the gut microbiota and the expression of the sense of taste in pigs.
One study suggests modulation of the olfactory receptor OR51E1 by the gut microbiome
and factors that affect the complexity of the microbiota [91]. For taste receptors so far, it has
been shown that maternal antibiotic administration leads to an upregulation of the TAS1R1
gene for the umami taste receptor TAS1TR in the stomach of suckling piglets [92]. However,
there is no evidence that increased expression of TAS1R1 could affect piglet appetite. It is
more likely that this change in gene expression serves the host for the recognition of com-
pounds produced by microorganisms present in the passing gastric bolus of the mother’s
milk. The detection of umami taste is generally associated with the presence of glutamic
acid. Glutamic acid could be evolutionarily considered as a marker molecule to sense
the degree of protein digestion in the stomach [93]. The presence of the T1R1 and T1R3
genes in non-taste tissues of pigs suggests that the taste receptors may be involved in the
chemosensory function of organs participating in several digestive, metabolic and behav-
ioral processes. For this reason, there is a fundamental need for research on taste receptors
in pigs and, more specifically, on the influence of the microbiota on these chemosensors.

4.2. Ruminant Farm Animals

Plant biomass, which is indigestible for monogastric animals, can be converted into
digestible food by ruminants since their main fermentation organ is located in the anterior
part of the GIT [94]. For this reason, previous studies in ruminants focused on the rumen,
as energy production and nutrient supply to the host are considered a function of microbial
fermentation in it [95]. It should be noted, however, that the functional and metabolic
performances of the individual segments of the GIT are different and, in terms of the
holobiont theory, contribute collectively to the health and nutritional status of the animal.
The differences between each segment are reflected in their respective bacterial populations,
which together may have an impact on host nutrition and energy balance [95,96]. In a
study by Myer et al. [95], the majority of the ruminal bacteria of beef cattle belonged to the
Bacteroidetes genus Prevotella, with the majority of the lower GIT taxa belonging to the
Firmicutes genera Butyrivibrio and Ruminococcus. Rumen microbiota also includes large
proportions of protozoa, archaea and fungi, which are essential to the rumen and host
function [97]. Previously, the main mechanism for regulating feed intake in cattle was
thought to be mechanical via rumen filling [98]. However, even in ruminants, recent studies
indicate that microorganisms in the rumen may also contribute to the regulation of feed
intake. Accordingly, cows with higher residual feed intake were associated with a greater
ruminal relative abundance of Ruminococcus gauvreauii spp., while cows with lower feed
intake had a greater ruminal relative abundance of Howardella [96]. Whereby Ruminococcus
gauvreauii spp. is considered to be a fibrolytic bacterium, thus contributing to a higher
fermentation rate of dietary fiber in the rumen and allowing a faster turnover of ruminal
digesta and feed consumption in ruminants. In contrast, Howardella is a ureolytic bacterium
that could promote rumen urea recycling in cows with lower feed intake to compensate for
lower protein supply, thus increasing the efficiency of nutrient utilization. A less diverse
but higher specialized rumen microbiome was proposed to promote the energy acquisition
of Holstein Friesian milking cows, thereby improving their feed efficiency [94]. Other
studies also showed that higher feed efficiency in ruminants is associated with the lower
richness of the microbiome gene content and microbial taxa [97,99,100]. The apparent
specialization of the microbial community in each of these microbiome groups resulted in
better energy and carbon supply to the animal while reducing methane excretion. From
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this, the authors concluded that the more efficient microbiomes were less complex but
more specialized to meet the energy needs of the host. However, this hypothesis is not
clearly resolved in the literature, as it is refuted by other studies [101–103] that found no
differences in microbial diversity between animals with high or low residual feed intake.
On the other hand, the idea of a more efficient microbiota was supported by the finding
of higher concentrations of SCFAs in rumen fluid [94], which can provide more than 70%
of the energy requirements of ruminants after absorption [104]. Although the absorption
characteristics of the rumen differ from mucosal surface-lined regions of the GIT, the
transport of many molecules from the rumen, including SCFAs produced by intraruminal
microbial fermentation, is well documented [105,106]. Because SCFAs play an important
role in bovine energy homeostasis, they can be expected to act as effectors in regulating
feed intake as described with other species.

Specific microbial genera may play important roles in the fermentative and cellulolytic
capacity of the rumen based on their putative functions, and with this, they may contribute
to the observed association between microbial community and feed efficiency. For instance,
Leucobacter spp. holds genes that encode glycoside hydrolases and carbohydrate-binding
modules targeting the breakdown of starch and oligosaccharides [99,100]. The butyrate
producer Butyrivibrio can also ferment a variety of sugars, affecting the energy pool of
enterocytes, of which butyrate is known to be a primary metabolic fuel [101,102]. High
abundances of Butyrivibrio in ruminal fluids of dairy cows were associated with high
residual feed intake [103]. The association of Butyrivibrio in jejunal samples of steers was
contradictory and showed high feed efficiency due to lower feed intake and high daily
gains [95]. Dialister is associated with hyposalivation [107], which may alter the buffering
capacity of the rumen and fluid turnover as well as low methane emission. This is further
supported by their association with a less stable pH in the rumen and higher abundancy in
low methane emitters [108].

Changes in feeding behavior induced by the microbiota–host interaction are suspected
in ruminants suffering from acidosis, which occurs with diets based on concentrates and
insufficient fiber supply. The technique of rumen liquor transplantation can counteract
acidosis and modify eating behavior [109]. Although pain relief or anti-inflammation may
partially explain the effects on feed intake, the veterinary practice of liquor transplantation
suggests that the rumen microbiota influences appetite in pathological conditions such
as acidosis. Accordingly, in states of subacute acidosis in cows, ruminal microbiota is
modified while feed intake, as well as the duration of rumination, are reduced [110]. The
probiotic yeast Saccharomyces cerevisiae has a protective effect against acidosis-associated
physiological changes, such as lowering rumen pH and changes in SCFA [111,112], and it
has also been shown to produce behavioral changes, such as reducing the intervals between
meals and a tendency to ruminate longer [113]. However, in healthy cattle, one of the
main findings of Monteiro et al. [96] was that the composition of the rumen microbiome
was dependent on feed intake and not vice versa. Furthermore, there were no significant
associations between feed efficiency phenotypes and microbial communities in the cecum
and colon at the phylum level [95].

In ruminants, in particular, the current lack of studies on microbial endocrinology,
the physiological significance of microbially produced neurochemicals [114], and the de-
pendence of taste receptor expression imply a strong need for research on regulatory
mechanisms and studies beyond feed efficiency.

4.3. Rodent Models

The vast majority of knowledge on the regulatory mechanisms of microbial influence
on food/feed intake to date was obtained from studies in rodent models. Transferability to
monogastric livestock should be given but still needs to be confirmed by concrete studies.
The extent to which transferability could be extended to ruminants remains to be elucidated.

In order to highlight the gap in knowledge on farm animals, the current status of
research on rodent models was briefly summarized here. First, a rat model revealed that
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the microbiome affects the permeability of the gut barrier and the BBB and therefore
influences the interaction between gut microbiota and the host’s brain unless the vagus
nerve is involved [115]. Gut inoculation of mice with Campylobacter jejuni resulted in direct
activation in the vagal sensory ganglia and the primary sensory relay nucleus for the vagus
nerve, the nucleus tractus solitarii (NTS) [116]. The complex NTS contains a number of
(sub)nuclei to which primary visceroafferent fibers of the facial nerve, the glossopharyngeal
nerve and the vagal nerve project, and also in the upper section special nuclei of the sense
of taste. The spatial proximity of the signal arrival from the intestine and the sense of
taste allows the assumption that the interconnection of both signaling pathways could
take place in order to establish corresponding behaviors, e.g., to learn taste preferences.
Therefore, the NTS seems to be well adapted to the coordination of interoceptive feedback
signals transmitted by the vagus nerve from the gut to the brain and from the brain to the
periphery, thus acting as an excellent hub for microbiota–gut–brain signaling [2].

The main influences of the microbiota on the rodent host are based on the effects of
SCFA [117]. The SCFA can increase the contractility of the colon in rats, as SCFAs exert
their effects on the entire gut, enhancing nutrient absorption by their action on blood
flow and accelerating transit through the colon [118]. Moreover, SCFAs can stimulate the
secretion of GLP-1 and PYY [31,32], and microbial-derived indole was also shown to induce
GLP-1 secretion [119]. Orexigenic ghrelin may be another link between the gut micro-
biome, gastrointestinal motility and appetite control, as variations in the gastrointestinal
microbiome have been shown to influence ghrelin expression [120]. Another mechanism
to affect host eating behavior is used by commensal E. coli via the caseinolytic protease B
(ClpB) heat shock protein, an antigen mimetic of α-MSH. Chronic intragastric delivery of
ClpB-expressing E. coli in mice stimulated the production of α-MSH-reactive antibodies
and decreased feed intake [121]. Additionally, peripheral α-MSH was shown to trigger
the release of PYY and GLP-1 from enteroendocrine L cells in the gut via activation of the
melanocortin 4 receptor [122]. This suggests that PYY and GLP-1 could mediate the effects
of bacterial ClpB on satiety.

Certain bacterial species such as Clostridium perfringens have pro-serotonin activity.
For instance, serotonin concentrations were significantly reduced in the cecum and colonic
lumen of germ-free mice [123]. Corresponding observations were also made for serotonin
concentrations in the blood [78] and hippocampus of germ-free rats [124]. Accordingly,
circulating levels of the precursor AA tryptophan appear to be dependent on microbial
colonization. Germ-free mice showed variations in blood levels of tryptophan, which was
compensated for after recolonization with cecal inocula from donor mice [125]. In another
study using germ-free mice colonized with gut microbiota from three wild species with dif-
ferent foraging strategies (carnivore/insectivore, omnivore and herbivore mice), microbial
colonization influenced the availability of tryptophan as well as isoleucine, phenylalanine
and tyrosine [126]. In the same study, plasma tryptophan availability was significantly
correlated with voluntary carbohydrate intake. In addition, germ-free rats had decreased
hypothalamic histamine concentrations [127]. Moreover, a comparison of the cerebral
metabolome of germ-free versus non-germ-free mice showed that 38 of the 196 metabolites
analyzed were significantly altered [128]. As such, the administration of specific bacteria
can result in altered metabolites of the central nervous system. Thus, Bifidobacterium infantis
was shown to be able to decrease the concentrations of 5-hydroxyindoleacetic acid (5-HIAA)
in the frontal cortex and of 3,4-dihydroxyphenylacetic acid (DOPAC) in the amygdaloid cor-
tex of rats [129]. Thus, gut bacteria affect central neurotransmission, as 5-HIAA is the major
metabolite of serotonin and DOPAC is a metabolite of the neurotransmitter dopamine. Fur-
thermore, gut bacteria were shown to deconjugate host-produced catecholamines via the
β-glucuronidase enzyme pathway and thus generate free luminal serotonin and increase
concentrations of catecholamines such as noradrenaline and dopamine in mice [130]. These
findings reveal that specific gut microbes affect the eating behavior of their hosts through
serotonergic signaling or could affect the dopaminergic mesolimbic rewards circuit, which
is highly involved in food reward and impulsive choice [37,131]. The oral administration of
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the probiotic strain L. acidophilus NCFM increased intestinal expression of cannabinoid and
opioid receptors in mice and rat intestines [132]. In mice, Lactobacillus rhamnosus regulated
central GABA receptor expression in a vagus nerve-dependent manner [133] and increased
central concentrations of neurotransmitter glutamate and its precursor glutamine in addi-
tion to N-acetyl aspartate and GABA [134]. The effect on central GABA might be mediated
by SCFA since intraperitoneal administration of labeled acetate was shown to cross the
BBB, resulting in labeling of the glutamate–glutamine and GABA neuroglial cycles. The
signaling cascade went beyond GABA by changing the expression of hypothalamic neu-
rons [135]. A commercially available probiotic consisting of lactobacilli and bifidobacteria
from eight different strains decreased the feed intake of mice, accompanied by increased
blood butyrate and GLP-1 levels. The finding that, in addition, the gene expression of
the hunger-inducing AgRP and NpY was significantly reduced, while the expression of
the satiety gene POMC was strongly upregulated, is further evidence that the intestinal
microbiota can modulate central mechanisms of feed intake in the hypothalamus [135,136].
Acute acetate administration reduced hypothalamic AMPK activity, thereby leading to
increased activity of acetyl-CoA carboxylase. This was shown to elevate malonyl-CoA,
which could stimulate the expression of POMC and CART and decrease NPY and AgRP,
leading to a reduction in feed intake [135]. As AMPK is the antagonist of mTOR, the
question arises of whether mTOR can also be affected by peripheral SCFA availability. Since
oral feeding of SCFAs activates mTOR in intestinal cells of mice, and intraperitoneal SCFA
administration affects the central regulation [137], it is likely that changes in peripheral
SCFA availability could activate central mTOR, with also implications for long-term control
of appetite.

Exposure of murine enteroendocrine cells or intestinal organoids to physiological
concentrations of SCFAs increased mRNA levels of the umami taste receptors TASR1 and
TASR3 [51]. Additionally, there is further evidence from rodent models that the gut micro-
biota can influence host taste perception and feed selection [30,138]. For example, rats that
were prone to increased saccharin consumption differed markedly in the composition of
their gut microbiota from rats that were less prone to saccharin consumption [139]. Germ-
free mice had altered taste receptors for fat on their tongues and in their intestines [140]
or showed increased sucrose intake and had greater numbers of sweet taste receptors
in the gastrointestinal tract compared to mice harboring a conventional microbiota [141].
Changes in taste receptor expression and activity have been reported to alter satiety and
food preferences [30]. As feedback to taste sensing, taste receptor cells express the anorex-
igenic hormones GLP-1, PYY and CCK, indicating a peripheral signaling pathway via
gastrointestinal hormone secretion, resulting in decreased appetite [142,143]. Accordingly,
PYY knockout mice have a decreased behavioral response to both fat- and bitter-tasting
compounds [144]. Further, serotonin release is also evoked by bitter, sweet and umami
taste stimuli [145,146]. Serotonin is considered the transmitter of most taste cells making
synapses with the gustatory nerve. Therefore, the overall view of the evidence available
today shows that serotonin appears to be the central neurotransmitter in the regulation of
food intake and, together with SCFA, represents the main manipulation mechanism of the
GIT microbiota on their host.

5. Discussion

According to the holobiont theory of Berg et al. [1], host and microbiota influence
each other in a reciprocal manner, which can ultimately lead to behavioral changes in
the host. First, the composition of bacteria in the gut depends on the host food base
and environmental factors such as stress and animal community. Second, bacteria in
the gut seem to have established mechanisms for influencing their hosts, of which the
most described are the SCFA; SCFA-mediated secretion of incretins; the metabolism of
tryptophan; and the neurotransmitters serotonin, dopamine and GABA. However, the
scientific community lacks knowledge on how and to which extent harmful metabolites
of microbial fermentation, such as ammonia and hydrogen sulfite, affect the host. Third,
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eating should imply both homeostasis (sensation of satiety) and hedonics (pleasure). Both
experiences are associated with processes that can be influenced by bacteria. The compiled
evidence clearly implies that the gut microbiota is an important determinant of host appetite
and metabolism. However, the majority of research has been focused on rodent models
in the context of human metabolic disorders. As such, less is known about the role of gut
microbiota on the modulation of appetite in farm animals. However, in poultry, pig, horse
and ruminants, some impact of the GIT microbiota on emotional, social and eating behavior
is also described [147]. Continuing research in order to gain a better understanding of
the mechanisms in how the GIT microbiota contributes to the modulation of appetite and
satiety could have significant consequences for practical animal nutrition. Presently, animal
nutrition is based on the estimation of nutrient requirements and the ability of feeds to
cover these needs. If we assume in the future that the gut microbiota also modulates
appetite and satiety, as has been shown in rodents, this could have major implications for
accounting for food preferences and intake in farm animals. However, germ-free rodents
are poorly suited as a model for farm animals, and it is a challenge to translate the results
to a diverse farm environment. A feasible approach would be to first examine whether
the findings obtained in rodents can be transferred to farm animals without (or with what)
limitations in order to define further concrete research needs in farm animals. As a future
perspective, dietary guidelines for farm animals could be concretized by considerations
of the bacterial impact on digestive signaling related to satiety and taste and the peptides
produced by bacteria that may be involved in the hypothalamic regulation of appetite.
Finally, uncovering the mechanisms by which the microbiome and host interact with each
other in terms of appetite regulation could help manage feed intake, homeostasis and
gluttony, as well as feed aversion and anorexia related to disease states in farm animals.

6. Conclusions

For animal production, feeding behavior and feed intake are essential. Therefore,
deeper knowledge is required on how to manipulate GIT microbiota to condition feed
intake regulation. Future research should include a focus on how and at which age or
(patho-) physiological condition a microbiota manipulation could be feasible and promising
in the long term for the animal. Even if we know that the pen community has more impact
than heritability or maternal transfer, the impact of early microbial establishment on a
further period in animal life needs further elucidation. Currently, the research in microbial
control of farm animal behavior is too fragmentary in order to draw concrete strategies
for the improvement of feed intake by manipulation of gut microbiota. However, for
certain cases, theoretical conclusions can be given. For instance, among farm animals,
weaned piglets are probably the most sensitive groups in terms of feed intake, depression
and consequences such as diarrhea. Targeted enrichment of the neonatal colon with such
microbes associated with high feed intake could represent such a strategy to facilitate
the weaning period. Whether this could then be implemented via maternal feeding with
probiotics or prebiotics or the supplementary feeding of the suckling piglets must be
scientifically verified regarding a sustainable modulation of the individual or at least the
groupwise microbial profile. Other starting points include the acidosis treatment in cattle
described under 4.2. Instead of rumen liquor transplantation, a targeted administration of
beneficial bacteria could also have a preventive effect in early states of acidosis. It would
also be conceivable to develop special antibiotic-associated feeds that counteract collateral
elimination of beneficial bacteria, similar to what is used in humans today. Ultimately,
there is also the question of whether farm animals should be fed in such a way that they
have a health-promoting microbiota or whether the microbiota should be manipulated
so that the animals eat more or utilize their feed better and grow faster. The answer to
this question will probably differ in the different regions of the world with regard to the
currently most important social challenges—be it the fight against hunger in some parts of
the world or the protection of the environment and animal welfare in regions where there
is nutrient oversaturation.
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