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Abstract: A statistical, data-driven method is presented that quantifies influences between variables
of a dynamical system. The method is based on finding a suitable representation of points by fuzzy
affiliations with respect to landmark points using the Scalable Probabilistic Approximation algorithm.
This is followed by the construction of a linear mapping between these affiliations for different
variables and forward in time. This linear mapping, or matrix, can be directly interpreted in light of
unidirectional dependencies, and relevant properties of it are quantified. These quantifications, given
by the sum of singular values and the average row variance of the matrix, then serve as measures for
the influences between variables of the dynamics. The validity of the method is demonstrated with
theoretical results and on several numerical examples, covering deterministic, stochastic, and delayed
types of dynamics. Moreover, the method is applied to a non-classical example given by real-world
basketball player movement, which exhibits highly random movement and comes without a physical
intuition, contrary to many examples from, e.g., life sciences.

Keywords: dependency measures; influence detection; data-driven modelling; Scalable Probabilistic
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1. Introduction

Over the last few decades, detecting influences between variables of a dynamical
system from time series data has shed light on the interplay between quantities in various
fields, such as between genes [1,2], between wealth and transportation [3], between marine
populations [4], or within the Earth’s climate [5,6]. Such analyses can reveal the driving
forces behind complex phenomena and enable the understanding of connections that
otherwise would have been left uncovered. For example, recently, novel candidates for
cancer-causing genes have been detected by systematic dependency analyses using patient
data [7–9].

There exist various conceptually different numerical methods that aim to detect re-
lations between variables from data. For example, a prominent method is Convergent
Cross-Mapping (CCM) [10], introduced in 2012, which uses the delay-embedding theo-
rem of Takens [11]. Another method is Granger causality [12,13], which was first used
in economics in the 1960s and functions based on the intuition that if a variable X forces
Y, then values of X should help to predict Y. Much simpler than these methods is the
well-known Pearson correlation coefficient [14], introduced already in the 19th Century
and one of many methods that detect linear dependencies [15]. There exist many more,
such as the Mutual Information Criterion [16], the Heller–Gorfine test [17], Kendall’s τ [18],
the transfer entropy method [19], the Hilbert–Schmidt independence criterion [20], or the
Kernel Granger test [21].
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Recently, in [22], a summarising library comprising a broad range of statistical meth-
ods was presented together with many examples. This illustrates the large number of
already existing statistical techniques to detect influences between variables of a dynamical
system. However, as also pointed out in [22], such methods have different strengths and
shortcomings, making them well-suited for different scenarios while ill-suited for others.
For example, CCM requires data coming from dynamics on an attracting manifold and
suffers when the data are subject to stochastic effects. Granger causality needs an accurate
model formulation for the dynamics, which can be difficult to find. Pearson’s correlation
coefficient requires statistical assumptions on the data, which are often not met. The authors
of [22] therefore suggest to utilise many different methods on the same problem instead of
only a single one to optimally find and interpret relations between variables.

In this article, a practical method is presented that aims at complementing the weak-
nesses of related methods and enriching the range of existing techniques for the detection
of influences. It represents the data using probabilistic, or fuzzy , affiliations with respect
to landmark points and constructs a linear probabilistic model between the affiliations
of different variables and forward in time. This linear mapping then admits a direct and
intuitive interpretation in regard to the relationship between variables. The landmark
points are selected by a data-driven algorithm, and the model formulation is quite general,
so that only very little intuition of the dynamics is required. For the fuzzy affiliations and
the construction of the linear mapping, the recently introduced method Scalable Proba-
bilistic Approximation (SPA) [23,24] is used, whose capacity to locally approximate highly
nonlinear functions accurately was demonstrated in [23]. Then, the properties of this
mapping are computed, which serve as the dependency measures. The intuition, which is
further elaborated on in the article, now is as follows: if one variable has little influence
on another, the columns of the linear mapping should be similar to each other, while if a
variable has a strong influence, the columns should be very different. This is quantified
using two measures, which extract quantities of the matrix, one inspired by linear algebra,
the other a more statistical one. The former computes the sum of singular values of the
matrix with the intuition that a matrix consisting of similar columns is close to a low-rank
matrix for which many singular values are zero [25]. The latter uses the statistical variance
to quantify the difference between the columns. It is shown that they are in line with the
above interpretation of the column-stochastic matrix, and the method is applied to several
examples to demonstrate its efficacy. Three examples are of a theoretical nature, where
built-in influences are reconstructed. One real-world example describes the detection of
influences between basketball players during a game.

This article is structured as follows: In Section 2, the SPA method is introduced,
including a mathematical formalisation of influences between variables in the context of
the SPA-induced model. In Section 3, the two dependency measures that quantify the
properties of the SPA model are introduced and connected with an intuitive perception of
the SPA model. In Section 4, the dependency measures are applied to examples.

To outline the structure of the method in advance, the three main steps that are pro-
posed to quantify influences between variables of a dynamical system are (also see Figure 1):

1. Representation of points by fuzzy affiliations with respect to landmark points.
2. Estimation of a particular linear mapping between fuzzy affiliations of two variables

and forward in time.
3. Computation of the properties of this matrix.
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Figure 1. Illustration of the three steps of the method presented in this article.

2. Scalable Probabilistic Approximation

Scalable Probabilistic Approximation (SPA) [23] is a versatile and low-cost method
that transforms points from a D-dimensional state space to K-dimensional probabilistic,
fuzzy, affiliations. If K is less than D, SPA serves as a dimension reduction method by
representing points as closely as possible. If K > D, SPA can be seen as a probabilistic, or
fuzzy, clustering method, which assigns data points to landmark points in D-dimensional
space depending on their closeness to them. For two different variables X and Y, SPA can
furthermore find an optimal linear mapping between the probabilistic representations.

The first step, the transformation to fuzzy affiliations, will be called SPA I, while the
construction of the mapping in these coordinates will be called SPA II.

2.1. Representation of the Data in Barycentric Coordinates

The mathematical formulation of SPA I is as follows: Let X = [X1, . . . , XT ] ∈ RD×T .
Then, solve

[Σ, Γ] = arg min ‖X− ΣΓ‖F

subject to Σ = [σ1, . . . , σK] ∈ RD×K, Γ = [γ1, . . . , γT ] ∈ RK×T ,

(γt)i ≥ 0,
K

∑
i=1

(γt)i = 1.

(SPA 1)

It was discussed in [26] that for K ≤ D, the representation of points in this way is the
orthogonal projection onto a convex polytope with vertices given by the columns of Σ. The
coordinates γ then specify the position of this projection with respect to the vertices of the
polytope and are called Barycentric Coordinates (BCs). A high entry in such a coordinate
then signals the closeness of the projected point to the vertex.

Remark 1. A similar representation of points has already been introduced in PCCA+ [27].

For K > D, however, in [23], the interpretation of a probabilistic clustering was
introduced. According to the authors, the entries of a K-dimensional coordinate of a point
denote the probabilities to be inside a certain box around a landmark point. One can
generalise this interpretation to fuzzy affiliations to these landmark points, again in the sense
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of closeness. A BC γ then denotes the distribution of affiliations to each landmark point,
and (SPA 1) can be solved without loss, i.e., so that

Xt = Σγt (1)

holds for all data points. Figure 2 shows the representation of a point in R2 with respect to
four landmark points.

Figure 2. Representation of a point X by barycentric coordinates γ1, . . . , γ4 with respect to the vertices
of a polytope σ1, . . . , σ4.

Remark 2. From now on, regardless of the relation between K and D, mostly the term BC will
be used instead of “fuzzy affiliations” for the γt to emphasise that they are new coordinates of the
data, which can always be mapped back to the original data as long as Equation (1) is fulfilled.
Note that while commonly in the literature, the term “barycentric coordinate” refers to coordinates
with respect to the vertices of a simplex (i.e., is (K− 1)-dimensional with K vertices, contrary to
the assumption K > D + 1), in various publications, e.g., [28], the term generalised barycentric
coordinates is used if the polytope is not a simplex. In any case, the term “generalised” will be
omitted and only “BC” will be written.

For K > D + 1 and given landmark points, the representation with barycentric coor-
dinates is generally not unique (while the set of points that can be represented by Σγ is a
convex polytope, some landmark points can even lie inside this polytope if K > D + 1).
Therefore, let us define the representation of a point X analogously to [26] in the follow-
ing way:

ρΣ(X, γ) := arg min
γ∗

‖γ− γ∗‖2

s.t. γ∗ = arg min
γ′

‖X− Σγ′‖2 with γ′•, γ∗• ≥ 0 and ‖γ′‖1, ‖γ∗‖1 = 1.
(2)

γ∗ should be selected among all barycentric coordinates that represent X without loss so
that it is closest to the reference coordinate γ.

Remark 3. Note that the solution for the landmark points determined by SPA I is never unique if
K > 1 [23]. In order to solve (SPA 1), its objective function is iteratively minimised by separately
solving for Σ and Γ. For this, initial values are randomly drawn. Therefore, for K > D + 1, an
exact solution can be achieved by placing D + 1 points so that all data points lie inside their convex
hull (all convex combinations of them) while the remaining K− (D + 1) landmark points can be
chosen arbitrarily. As a consequence, the placement of landmark points depends strongly on the
randomly chosen initial values of the optimisation process. In simple cases, e.g., when the state space
of the data is one-dimensional, one could even manually place landmark points across an interval
containing the data and solve only for Γ.
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Remark 4. Note that with a fixed Σ, the computations of all columns of Γ are independent of each
other so that this step can easily be parallelised, making SPA a very efficient method for long time
series and justifying the term “Scalable”. Moreover, the time complexity of the full (SPA 1) problem
grows linearly with the number of data points [23], which is comparable to the K-means method [29],
while still giving a much more precise, for K ≥ D + 1 even lossless, representation of points.

Let now a dynamical system be given by

Xt = F(Xt−1). (3)

In this case, let us select γt−1 as the reference coordinate for the point Xt. Using that
Equation (1) holds for K > D, this gives

γt = ρΣ(Xt, γt−1) = ρΣ(F(Xt−1), γt−1) = ρΣ(F(Σγt−1), γt−1) =: v(γt−1). (4)

With this, γt solely depends on γt−1. This establishes a time-discrete dynamical system in
the barycentric coordinates. By choosing the reference coordinate as γt−1, it is asserted that
the steps taken are as short as possible.

2.2. Model Estimation between Two Variables

Assuming that data from two different variables X ∈ RD and Y ∈ RE is considered
and one strives to investigate the relationship between them, one can solve (SPA 1) for both
of them, finding landmark points denoted by the columns of ΣX ∈ RD×KX , ΣY ∈ RE×KY

and BCs γX
t and γY

t for t = 1, . . . , T and solve Equation (SPA 2), given by

Λ = arg min
Λ∗∈RK×K

‖[γY
1 | · · · |γY

T ]−Λ∗[γX
1 | · · · |γX

T ]‖F,

subject to Λ ≥ 0 and
K

∑
k=1

Λk,• = 1.
(SPA 2)

Λ is a column-stochastic matrix and, therefore, guarantees that BCs are mapped to BCs
again. It is an optimal linear mapping with this property that it connects X to Y on the level
of the BCs. One can easily transform back to the original state space by

Yt = ΣγY
t ≈ ΣΛγX

t . (5)

Since, by construction, the prediction must lie inside the polytope again, it is a weighted
linear interpolation with respect to the landmark points, similar as, e.g., in Kriging interpo-
lation [30]. Note that is was demonstrated in [23] that this linear mapping applied to the
BCs can accurately approximate functions of various complexity and is not restricted to
linear relationships.

Remark 5. In [23], a way to combine SPA I and SPA II into a single SPA I problem was shown.
The landmark points are then selected so that the training error of the SPA II problem can be set to 0.
In other words, optimal discretisations of the state spaces are determined where optimal means with
respect to the exactness of the ensuing (SPA 2) model.

Estimation of Dynamics

A special case of (SPA 2) is the estimation of dynamics, i.e., solving

Λ = arg min
Λ∗∈RK×K

‖[γX
2 | · · · |γX

T ]−Λ∗[γX
1 | · · · |γX

T−1]‖F,

subject to Λ ≥ 0 and
K

∑
k=1

Λk,• = 1.
(6)
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Λ is therefore a linear, column-stochastic approximation of the function v from Equation (4).
Such a matrix is typically used in so-called Markov State Models [31,32]. With Λ, one can
construct dynamics in the BCs with the possibility to transform back to the original state
space by multiplication with Σ, since

Xt = Σγt = Σv(γt−1) ≈ ΣΛγt−1. (7)

2.3. Forward Model Estimation between Two Processes

Given two dynamical systems:

Xt = F(Xt−1) ∈ RD and Yt = G(Yt−1) ∈ RE, (8)

let us now determine a column-stochastic matrix that propagates barycentric coordinates
from one variable to the other and forward in time. This mapping will be used to quantify
the effect of one variable on future states of the other.

With landmark points in ΣX ∈ RD×KX , ΣY ∈ RE×KY and BCs γX
t and γY

t for t = 1, . . . , T,
let us find a column-stochastic matrix ΛXY that fulfils

ΛXY = arg min
Λ∗∈RKY×KX

‖[γY
2 | · · · |γY

T ]−Λ∗[γX
1 | · · · |γX

T−1]‖F. (9)

ΛXY represents a model from Xt−1 to Yt on the level of the BCs and tries to predict subse-
quent values of Y using only X.

Now, let us assume that X in fact has a direct influence on Y, meaning that there exists
a function:

H(Yt−1, Xt−1) = Yt. (10)

Then, similar as when constructing the dynamical system in the BCs previously in Equation (4),
we can observe, using Equations (1) and (10),

γY
t = ρΣY (Yt, γY

t−1)

= ρΣY (H(Yt−1, Xt−1), γY
t−1)

= ρΣY (H(ΣXγX
t−1, ΣYγY

t−1), γY
t−1)

defined as =: w(γX
t−1, γY

t−1).

(11)

γY
t therefore directly depends on γX

t−1 and γY
t−1, while ΛXY attempts to predict γY

t using
only γX

t−1. Assuming that the approximation:

ΛXYγX
t−1 ≈ γY

t (12)

is close for each pair of γX
t−1, γY

t , one can assert

γY
t ≈ ΛXYγX

t−1 =
KX

∑
j=1

(ΛXY)|j(γ
X
t−1)j, (13)

where (ΛXY)|j is the jth column of ΛXY. A prediction for γY
t is therefore constructed using

a weighted average of the columns of ΛXY. The weights are the entries of γX
t−1.

Remark 6. Note that the same argumentation starting in Equation (9) holds if one chooses a time
shift of length τ > 0 and considers information of Xt−τ about Yt. If τ = 1, it will simply be written
ΛXY, but otherwise, Λ(τ)

XY.
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Remark 7. Since ΛXYγX
t−1 estimates γY

t using only γX
t−1, although it additionally depends on

γY
t−1, one can interpret ΛXY as an approximation to the conditional expectation of γY

t given γX
t−1,

i.e., assuming that γY
t−1 is distributed by a function µY,

ΛXYγ ≈ EµY [γ
Y
t |γX

t−1 = γ]. (14)

In Appendix A.1, this intuition is formalised further.
In the original SPA paper [23], the γt were interpreted as probabilities to “belong” to states

σ that describe a discretisation of the state space. Λ then uses the law of total probability and the
ij-entry denotes (ΛXY)ij = P[Yt = σY

i |Xt−1 = σX
j ]. Together with the combined solution of

the (SPA 1) and (SPA 2) problems outlined in Remark 5, the authors of [23] described their method
as finding an optimal discretisation of the state space to generate an exact model on the probabilities,
thereby satisfying desired physical conservation laws. In this light, SPA then directly competes with
the before-mentioned Markov State Models (MSMs) with the significant advantage that for MSMs
with equidistant discretisations, i.e., grids, the number of “grid boxes” increases exponentially with
the dimension and box size. This is further elaborated in Appendix A.3. While the probabilistic view
is a sensible interpretation of the objects involved in SPA, one is not restricted to it, and the view
taken in this article focuses on the exact point representations, which the barycentric coordinates
yield. However, also acknowledging the probabilistic view point, it should be possible to make the
arguments following in the next sections in a satisfying and intuitive way.

3. Quantification of Dependencies between Variables

In the following, two methods that quantify the strength of dependence of Yt on Xt−1
by directly computing the properties of ΛXY will be defined. The intuition can be illustrated
as follows: If a variable X is important for the future state of another variable, Y, then the
multiplication of ΛXY with γX

t−1 should give very different results depending on which
landmark point Xt−1 is close to, i.e., which weight in γX

t−1 is high. Since γY
t is composed by

a weighted average of the columns of ΛXY by Equation (13), this means that the columns of
ΛXY should be very different from each other. In turn, if X has no influence and carries no
information for future states of Y, the columns of ΛXY should be very similar to each other.
In Appendix A.1, it is shown that given the independence of γY

t from γX
t−1, all columns of

ΛXY should be given by the mean of the γY in the data. There, this is also connected to
conditional expectations and the intuition given in Equation (14).

In the extreme case that the columns are actually equal to each other, ΛXY would be
a rank-1 matrix. If the columns are not equal, but similar, ΛXY is at least close to a rank-1
matrix. One should therefore be able to deduce from the similarity of the columns of ΛXY
if X could have an influence on Y. This is the main idea behind the dependency measures
proposed in this section. The intuition is similar to the notion of the predictability of a
stochastic model introduced in [33].

Remark 8. Note that if there is an intermediate variable Z that is forced by X and forces Y while X
does not directly force Y, then it is generally difficult to distinguish between the direct and indirect
influences. In Section 4.2, an example for such a case is investigated.

3.1. The Dependency Measures

Now, the two measures are introduced that will be used for the quantification of de-
pendencies between variables. Note that these are not “measures” in the true mathematical
sense, but the term is rather used as synonymous with “quantifications”.

3.1.1. Schatten-1 Norm

For the first measure, let us consider the Singular Value Decomposition (SVD) [34] of
a matrix Λ, given by Λ = USVT ∈ RKY×KX . S ∈ RKY×KX is a matrix that is only nonzero
in the entries (i, i) for i = 1, . . . , min(KX , KY), which are denoted by s1, . . . , smin(KX ,KY)

≥ 0.
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U ∈ RKY×KY and V ∈ RKX×KX fulfil certain orthogonality properties and consist of columns
ui, vi. One can thus write Λ as

Λ =
r

∑
i=1

uivT
i si (15)

A classic linear algebra result asserts that rank(Λ) = #{si > 0}. As a consequence, if some
of the si are close to 0, then Equation (24) means that only a small perturbation is sufficient
to make Λ a matrix of lower rank. Therefore, the sum of singular values, the so-called
Schatten-1 norm [35], will be used as a continuous measure of the rank and, thus, of the
difference in the rows of Λ.

Definition 1 (Schatten-1 norm). Let the SVD of a matrix Λ ∈ RKY×KX be given by Λ = USVT

with singular values s1, . . . , smin(KX ,KY)
. Then, the Schatten-1 norm of Λ is defined as

‖Λ‖1 :=
min(KX ,KY)

∑
i=1

si. (16)

3.1.2. Average Row Variance

As the second dependency measure, the difference of the columns of a matrix Λ
is directly quantified using the mean statistical variance per row. Therefore, every row
is considered, and the variance between its entries is computed, thereby comparing the
columns with respect to this particular row. Then, the mean of these variances is taken
across all rows.

Definition 2 (Average row variance). For a matrix Λ ∈ RKY×KX , let Λ̄i− denote the mean of
the ith row of Λ. Let

νi :=
1

KX − 1

KX

∑
j=1

(Λij − Λ̄i−)
2

be the statistical variance of the entries of the ith row. Then, the average row variance is defined as

ν(Λ) :=
1

KY

KY

∑
i=1

νi. (17)

The calculated values for ‖ · ‖1 and ν will be stored in tables, respectively, matrices of
the form

M‖·‖1
=

(
‖ΛXX‖1 ‖ΛXY‖1
‖ΛYX‖1 ‖ΛYY‖1

)
, Mv =

(
ν(ΛXX) ν(ΛXY)
ν(ΛYX) ν(ΛYY)

)
. (18)

Then, for each of these matrices, the property M−MT should be interesting for us, be-
cause they contain the differences between dependency measures, stating how strongly X
depends on Y compared to Y depending on X. Let us therefore define the following:

Definition 3 (Relative difference between dependencies). Let M be one of the matrices from
Equation (18). The relative difference between dependencies in both directions is defined as

δ(M)ij =
Mij −Mji

max(Mij, Mji)
. (19)

Remark 9. In Appendix A.3, it is explained how this method differs from linear correlations,
Granger causality, and the same approach using boxes instead of fuzzy affiliations.

When using the dependency measures to analyse which of two variables more strongly
depends on the other, it is unclear at this point whether the dimension of the variables
and the number of landmark points affects the outcome of the analysis. Hence, for all
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numerical examples in the next section, pairs of variables that have the same dimension
are considered, and the same number of landmark points for them is used, i.e., it holds
KX = KY in each example to make the comparison as fair as possible. In this light, the
following theoretical results on the Schatten-1 norm and the average row variance are
directly helpful.

3.2. Maximisers and Minimisers of the Dependency Measures

About ‖ · ‖1 and ν, one can prove properties that validate why they represent sensible
measures for the strengths of dependency between two processes. For this, let us make the
following definition.

Definition 4 (Permutation matrix). As a permutation matrix, a matrix A ∈ {0, 1}n×n is defined
with the property that every row and column contains exactly one 1.

Then, one can prove the following results on the maximisers and minimisers of the
Schatten-1 norm and average row variance (half of them only for KY ≥ KX or KY = KX),
whose proofs can be found in Appendix A.2.

Proposition 1 (Maximal Schatten-1 norm, KY ≥ KX). Let Λ ∈ RKY×KX with KY ≥ KX . Then,
the Schatten-1 norm of Λ obtains the maximal value KX if deletion of KY − KX rows of Λ yields a
KX × KX permutation matrix.

Proposition 2 (Minimal Schatten-1 norm). The Schatten-1 norm of a column stochastic
(KY × KX)-matrix A is minimal if and only if Aij ≡ 1

n , and its minimal value is equal to 1.

For the average row variance, the following results can be derived:

Proposition 3 (Maximal average row variance, KY = KX). The average row variance of a
column-stochastic (KY × KX)-matrix Λ with KY = KX obtains the maximal value 1

KY
if it is a

KX × KX permutation matrix.

It seems likely that for KY > KX , the maximisers of the Schatten-1 norm from Proposi-
tion 1 also maximise the average row variance with maximal value 1

KY
.

Proposition 4 (Minimal average row variance). The average row variance of a column-stochastic
(KY × KX)-matrix Λ obtains the minimal value 0 if and only if all columns are equal to each other.

In order to analyse the dependencies between two variables for which one uses
different numbers of landmarks, i.e., KX 6= KY, it would be desirable if similar results as
above could be inferred for the case KY < KX so that one could make valid interpretations
of both ΛXY and ΛYX. However, it was more difficult to prove them, so that only the
following conjectures are made for the case KY < KX :

Conjecture 1 (Maximal Schatten-1 norm, KY < KX). The Schatten-1 norm of a column-
stochastic (KY × KX)-matrix Λ with KY < KX is maximal if and only if Λ contains a KY × KY
permutation matrix and the matrix of the remaining KX − KY columns can be extended by KY
columns to a permutation matrix.

Conjecture 2 (Maximal average row variance, KY < KX). The average row variance of a
column-stochastic (KY × KX)-matrix Λ with KY < KX is maximal if and only if Λ contains an
KY × KY permutation matrix and the matrix of the remaining KX − KY columns can be extended
by KY columns to a permutation matrix.



AppliedMath 2022, 2 293

In summary, the maximising and minimising matrices of ‖ · ‖ and ν are identical and
are of the following forms:

Maximal:


0 1 0
0 0 1
1 0 0
0 0 0

, Minimal:


1
n . . . 1

n
...

...
1
n . . . 1

n

. (20)

These results show that the two dependency measures ‖ · ‖1 and ν fulfil important intuitions:
they are minimal, when information about Xt−1 gives us no information about Yt because,
in this case, all columns of Λ should be identical and even equal to each other. Maximal
dependence is detected if the information about Xt−1 is maximally influential on Yt. This
happens when Λ is, respectively can be reduced or extended to, a permutation matrix. This
is illustrated in Figure 3.

Figure 3. Illustration of the intuition behind the dependency measures. If the distribution of Y is
independent of X, the matrix ΛXY will have similar columns (left). If the distribution of Y is strongly
dependent on X, the columns of Y will be very different from each other.

4. Numerical Examples

Now, the two dependency measures are demonstrated on examples of dynamical
systems with the aim to cover different structures and properties. In order to assess
their efficacy, unidirectional dependencies are explicitly installed in the formulation of
the dynamics, and it is investigated whether these are detected. For the usage of the SPA
method, the Matlab code provided at https://github.com/SusanneGerber/SPA (accessed
14 August 2019) was used. For two examples, the results are briefly compared with those
of Convergent Cross-Mapping (CCM) for which a Matlab implementation provided in [36]
was used.

4.1. Low-Dimensional and Deterministic: The Hénon System

The first example is the classical Hénon system [37]. It describes a two-dimensional
dynamical system on an attracting set, meaning that all trajectories converge to a specific
set of points. Its equations read

https://github.com/SusanneGerber/SPA
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Xt = 1− aX2
t−1 + Yt

Yt = bXt−1.
(21)

For the—typically used—values of a = 1.4, b = 0.3, this makes X largely autonomous,
while Y is merely a scaled copy of the previous value of X. Hence, Y should depend more
strongly on the previous value of X than vice versa. Please find an image of a trajectory of
this dynamical system in Appendix A.4.

Dependency Analysis

For the dependency analysis, it is investigated whether the higher dependence of Y
on X can be reproduced by the dependency measures. A time shift τ of one time step is
chosen for the analysis. Note that for K > D + 1, the (SPA 1) solution is not unique in
both σi and γt. As explained before in Remark 3, the solution can depend on the randomly
chosen initial values of the optimisation process. Therefore, 20 different solutions for
KX, KY = 2, . . . , 10 of length 2000 time steps are computed, the dependency analysis is
performed, and the mean over the dependency results is taken for each value of KX, KY.
The starting values γX

0 , γY
0 of the trajectories with respect to the landmarks are for both

variables always chosen as positive only for the two landmarks directly above and below
the initial points X0, Y0. The result of the analysis is shown in Figure 4.

It can be observed that, consistently, the stronger influence of X on Y is reconstructed
since, for all values of KX, KY, the green graph corresponding to the direction X to Y
lies above the purple one corresponding to the other direction. Surprisingly, the relative
difference decreases for increasing values for KX, KY for both measures in this example.
Note that with increasing dimension of the Λ matrix, the sum of singular values should
naturally increase in magnitude. This is not the case for the average row variance for which
one divides by the number of columns and rows. It is, however, surprising that for only
two landmarks, the difference is that pronounced by ν compared to a higher number of
landmarks. Overall, this example gives a satisfying result for the dependency measures
since both were able to detect the higher influence of X.

It was checked whether the results were consistent for different (SPA 1) solutions:
only in 3 out of 180 cases (9 values for KX , KY and 20 repetitions for each), Y was assigned
a higher influence than X by the average row variance, while this did not happen with
the Schatten-1 norm. It was also checked whether using equidistant landmarks instead
of (SPA 1) solutions, a similar result could be produced. In fact, this led to more strongly
emphasised differences and the relative difference being very stable over the number of
landmarks (see Appendix A.4). This can be interpreted as an even better result. However,
for systems in higher dimensions, this approach entails the problem that the number of
landmarks would scale exponentially with the dimension, thereby potentially making it
infeasible. This is also discussed in Appendix A.3.
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Figure 4. Result of the dependency analysis on the Hénon system. The higher influence of X on Y is
reconstructed, as can be seen by the green graphs lying above the purple ones. The relative difference
surprisingly decreases with increasing number of landmarks.

4.2. Low-Dimensional and Stochastic: Continuous Movement by Stochastic Diffusions

This model describes a continuous evolution of processes A, B, C along solutions of
a Stochastic Differential Equation (SDE) [38] where C acts autonomously and A and B
hierarchically depend on each other. In short:

4.2.1. The Dynamics

The SDE is given by

dCt = G(Ct) dt + σC dWCt

dBt = (αH(Bt)− 10(Bt − Ct)) dt + σB Id dWBt

dAt = (αH(At)− 5(At − Bt)− 5(At − Ct)) dt + σA Id dWAt

(22)

where

G(x) =
(

0
−10(x3

2 − x2)

)
, H(x) =

(
−(x3

1 − x1)
−1

)
(23)

and Id is the identity matrix.
The choice of the function G ensures a metastable behaviour of C between regions

around the values −1 and 1 in the x2-coordinate, meaning that it remains around one
of the values for some time and, due to the randomness in the SDE, at some point in
time, suddenly moves towards the other value. In the x1-direction, the movement of C is
determined by noise with covariance matrix σC. The movements of the other processes
are partly governed by the function H, which gives a metastable behaviour in the x1-
coordinates, and by a difference function between themselves and C, respectively (Figure 5
for σA = σB = 0.01). The movement of A depends equally on its difference from C as
on its difference from B. Since diffusion processes are attracted to low values of their
governing potential, this urges B to move into the direction of C. Furthermore, it urges A
into the directions of both C and B. The parameter α therefore governs how autonomous
the processes A and B are.
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Figure 5. Realisation of the system described by Equation (22). A in blue, B in orange, C in yellow.
One can see the metastable behaviour in the x2–coordinate in C, which the other processes emulate.
Parameters: α = 5, σC = diag((0.01, 0.05)), σB = σA = 0.01.

Realisations of the processes are created with the Euler–Maruyama scheme [39] with
a time step of size ∆t = 0.1 for 1000 time steps. The parameters were set to α = 5 and
σC = diag((0.01, 0.05)). For the noise in the evolution of A and B, multiple different values
σB = σA = 0.01, 0.2, 0.5 and 1 were used.

4.2.2. Dependency Analysis

For SPA I, again, KX = KY = 10 was used. Contrary to the previous example, here,
the dependencies of the time-differences ∆A, ∆B, ∆C between time steps were computed,
meaning that instead of Λ(∆t)

XY , Λ(∆t)
∆X∆Y for A, B, C = X, Y was computed. It was also

attempted to reconstruct the dependencies using the process values instead of the time-
differences, but, while one could still reconstruct directions of influences, this came with
a lower emphasis in the quantitative results. This presumably is the case since the SDE
governs not the next state, but rather, the next time-differenced value of each process,
making the time-differences a better choice here.

For different values for the noise variances σA, σB, 50 realisations each of the SDE
Equation (22) were created with the same initial conditions, and the analysis was performed
for each. The SPA I solution was always computed anew, so that these solutions were
generally different from each other, to test the robustness of the method with regard to the
SPA I solution.

The results of the dependency analysis well reflected the hierarchical dependencies
between the three processes. An exemplary result is given in Equations (24) and (25). The
statistics of the overall analysis are given in Table 1. It shows that, in the vast majority of
the realisations, the less influential out of two variables was correctly measured as such.
The average row variance ν gives more clear results with the minimal relative difference at
least 0.19 for large noise, but generally around 0.4. For the Schatten-1 norm, the relative
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differences were mostly around 0.2. Note that the results were not strongly influenced by
the strength of noise, which loosens the strict dependence of A and B on C, except for the
dependencies between A and C for σA = σB = 1 for which often A was falsely measured
to have the stronger influence between the two.

It was also checked whether the Pearson correlation coefficient was able to detect
the directional influences between the variables. It turned out that for σA, σB = 0.01, the
time-differences between the variables were highly correlated according to the imposed
hierarchy, e.g., ∆At+∆t was highly correlated with ∆Bt, but for σA, σB ≥ 0.2, mostly corre-
lation coefficients below 0.1 could be observed, indicating that the correlation coefficient
was not well suited to discover directional dependencies for these dynamics, while the
dependency measures could do so. CCM did not manage to correctly identify the direction
of dependencies in most realisations of the SDE. By construction, the strengths of CCM
rather lied in the domain of deterministic dynamics on an attracting manifold (since it uses
the delay-embedding theorem of Takens [11]), but it is less suited for stochastic dynamics,
such as this SDE.

M‖·‖1
:

From ↓ to→ ∆At+∆t ∆Bt+∆t ∆Ct+∆t
∆At 5.51 3.86 3.46
∆Bt 5.29 4.11 2.94
∆Ct 4.51 7.72 4.26

⇒ δ(M‖·‖1
) =

 0 −0.27 −0.23
0.27 0 −0.61
0.23 0.61 0

 (24)

Mν :

From ↓ to→ ∆At+∆t ∆Bt+∆t ∆Ct+∆t
∆At 0.039 0.021 0.018
∆Bt 0.046 0.024 0.016
∆Ct 0.039 0.065 0.026

⇒ δ(Mν) =

 0 −0.54 −0.53
0.54 0 −0.75
0.53 0.75 0

 (25)

Table 1. Results of the dependency analysis for the diffusion processes in Equation (22). The third
and fifth columns denote the average relative difference between the first variable (in the first row A)
and the second variable (in the first row B) in the Schatten-1 norm and the average row variance. It
is always negative, meaning that the first variable (with lower influence) was on average correctly
measured as less influential than the second variable. The fourth and sixth columns denote the
relative number of occurrences when one variable was falsely identified as more influential, e.g., A as
more influential than B.

σA, σB Variables Average δ(M‖·‖1
) Incorrect Average δ(Mν) Incorrect

0.01
A, B −0.21 0.12 −0.36 0.2
A, C −0.22 0.08 −0.56 0.08
B, C −0.46 0 −0.83 0.00

0.2
A, B −0.2 0.06 −0.4 0.1
A, C −0.17 0.16 −0.51 0.14
B, C −0.36 0 −0.76 0

0.5
A, B −0.2 0 −0.4 0.02
A, C −0.12 0.14 −0.43 0.12
B, C −0.30 0.02 −0.71 0.04

1
A, B −0.25 0.02 −0.65 0
A, C −0.04 0.28 −0.19 0.30
B, C −0.22 0.08 −0.62 0.02

4.3. Higher-Dimensional, Stochastic, and Delayed: Multidimensional Autoregressive Processes

In order to demonstrate that influence can be detected for processes whose evolution
depends not only on present, but on past terms, as well, realisations of multidimensional
linear Autoregressive processes (AR) [40,41] were simulated in which some variables were
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coupled with others. An n-dimensional linear AR(p) process is a dynamical system of the
form

Xt =
p

∑
i=1

φiXt−1 + εt (26)

where φi ∈ Rn×n and εt is a stochastic term, which was set to be normally distributed with
mean 0 and (positive semi-definite) covariance matrix C ∈ Rn×n.

4.3.1. The Dynamics

Let us now consider AR(p) processes of the form(
Xt
Yt

)
=

q

∑
i=1

(
φXX

i φYX
i

0 φYY
i

)(
Xt−i
Yt−i

)
+ εt. (27)

Specifically, let X and Y be variables in R4. Thus, φXX
i , φYX

i and φYY
i are matrices in R4×4.

Through the structure of the coefficient matrices, it was imposed that X is influenced by
Y, but not vice versa. p = 3 was set, and φi were constructed randomly by drawing for
each entry a normally distributed value with mean 0 and variance σi, where σ1 = 0.1,
σ2 = 0.05, σ3 = 0.03. This should lead to the coefficients gradually decreasing in magnitude
for increasing time lag, so that the most recent process values should have the most
influence on future ones. εt is normally distributed with mean 0 and covariance matrix
0.01Id (where Id is the identity matrix). Then, a realisation of length T = 1000 was created
for such a process. This procedure was executed 50 times and the dependency analysis
performed on each realisation.

4.3.2. Dependency Analysis

KX = KY = 10 was chosen again, and Λ(τ)
XY and Λ(τ)

YX were computed for τ = 1, 3, 10, 50
to investigate how the dependence between the processes evolve with increasing time
shift (contrary to the previous example, the process values and not the time differences
were used).

One can see in Table 2 that the stronger influence of Y on X is recovered for τ = 1
and τ = 3. For τ = 1, the relative differences were stronger, which is in line with the fact
that the AR coefficients φ3 were selected to be smaller in magnitude than for φ1, so that Xt
should be more strongly influenced by Yt−1 than by Yt−3. Moreover, not only the relative
differences were smaller for τ = 3, but also, the average absolute number of the measures,
again correctly indicating a smaller cross-influence with bigger time shift. For τ ≥ 10, only
negligible differences can be seen. This is consistent with the construction of the processes
that include a direct influence up to τ = 3.

Again, it was checked if the Pearson correlation coefficient or CCM could recover the
unidirectional dependencies, but this gave negative results: the correlation coefficient was
again below 0.1 for most realisations and did not indicate significantly stronger correlation
in either direction. CCM indicated only very weak and no directional influence between
the variables. By construction, the Granger causality method should perform very well
here since the way the dynamics are defined in Equation (27) is perfectly in line with the
assumptions of the Granger method. This, of course, cannot be expected for dynamics with
an unknown model formulation, such as in the following real-world example.
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Table 2. Results for dependency measures of X on Y and vice versa for 50 realisations of processes
of the form of Equation (27). The third and fifth columns represent the average absolute value of
the Schatten-1 norm and average row variance. They decrease with increasing time lag τ, which
is consistent with the reconstruction. The fourth and sixth columns denote the average relative
differences, which for τ = 1, 3 correctly indicate that Y is more influential on X than vice versa, while
for τ = 10, 50, this is no longer the case, which again is consistent with the construction.

τ Direction Average ‖ · ‖1 Average δ(M‖·‖1
) Average ν · 102 Average δ(Mν)

1 Xt−1 → Yt 1.94 −0.19 1.67 −0.58
Yt−1 → Xt 2.43 0.19 4.40 0.58

3 Xt−3 → Yt 1.88 −0.15 1.43 −0.49
Yt−3 → Xt 2.22 0.15 3.20 0.49

10 Xt−10 → Yt 1.82 −0.02 1.27 −0.06
Yt−10 → Xt 1.86 0.02 1.38 0.06

50 Xt−50 → Yt 1.86 0.01 1.39 0.02
Yt−50 → Xt 1.86 −0.01 1.36 −0.02

4.4. Real-World Example: Basketball Player Movement

The dependency measures will now be applied to the movement of basketball players
during a game and quantify influences between players in the same manner as in the
previous examples. For this, player tracking data captured by the SportVU technology
(Stats LLC, Chicago, IL, USA) and publicly provided by Neil Johnson [42] from a game
of the 2015/16 NBA season between the Dallas Mavericks and the Cleveland Cavaliers,
played on 12 January 2016 in Dallas, were used. The data contain the x- and y-coordinates
of each player on the court in 25 time frames per second for most of the 48 min of play. The
ball data sometimes seem out of sync with the positions of the players and are not always
available; therefore, they were not used in the analysis. The positions were measured in the
units feet (ft). Using the same data, although from other games, there are several scientific
publications, e.g., [43,44], that focused on different problems than this article does.

In basketball, each team has five players on court at all times. Typically, all five players
attack or defend simultaneously so that all ten players are in one half of the court for several
seconds, around 10 to 20 s, before moving into the other half. The basketball court has a
rectangular shape with a width (x axis) of 94 ft and a length (y axis) of 50 ft. Let us install a
coordinate system whose origin is at the mid-point of both axes. If a player is sitting on the
bench and not actively participating in the game, the coordinate (−48.5,−27.5) is assigned
to him/her, which is slightly outside of the court, but these time frames were excluded
from the analysis.

Figure 6 shows the distribution of the positions of Cleveland player LeBron James
depending on whether he is attacking or defending and his position on the court over time
during the first half of play. One can see that during the attack, James can mostly be found
around the three-point-line and, occasionally, closer to the basket, including often at the
edge of the small rectangular area around the basket. On defence, he is typically positioned
slightly to the left or right of the basket.

Applying the Dependency Analysis to the Basketball Data

The dependency analysis on player coordinate data during the first half of the game is
now performed, considering only the ten players in the starting lineups of the teams. For
the representation of each two-dimensional position of a player, instead of solving (SPA 1),
landmark points are chosen in advance, and (SPA 1) is solved only for Γ, i.e., solely the
barycentric coordinates of player coordinates with respect to the landmark points were
computed. For the clarity of both visualisation and numerical computations, only the
absolute value of the x-coordinates were considered, meaning that the coordinates are
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reflected along the half-court line. For this reason, only the right half of the court has to be
taken into account, and the following landmark points were used:

Σ =

[
48.5 48.5 0 0 20 20 40
−27.5 27.5 −27.5 27.5 15 −15 0

]
(28)

so that KX = KY = 7. The landmark points are depicted in Figure 7.

Figure 6. (Left) Distribution of positions of LeBron James during the first half of the game between
the Cleveland Cavaliers and the Dallas Mavericks on 12 January 2016 depending on whether he is in
his own team’s (defending) or the opponents’ half (attacking). The visualisation was derived using
Kernel Density Estimation [45]. (Right) x– and y–coordinates over time, measured in ft.

Figure 7. Landmark points chosen with respect to which the barycentric coordinates of the player
coordinates are computed.
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To measure dependencies between each two players, those points in time during the
game were used at which both players were on the court, and Λ(τ)

XY was computed for each
pair of players X, Y. The time lag was chosen to be τ = 1 s, so that the influence of the
position of a player X for the position of a player Y one second later was investigated.

Note that, as mentioned, basketball games are frequently interrupted for various rea-
son such as fouls or time-outs. This was taken into account by defining an event as the part
of play between interruptions and denoting the number of events considered by L. Then,
the training data were constructed in the form of multiple short time series, i.e., by storing
coordinates from the kth event, of length Tk seconds, as ΓX

k = [γX
k,1, . . . , γX

k,Tk−τ ], ΓY
k =

[γY
k,1+τ , . . . , γY

k,Tk
], and for ΛXY minimising ‖[ΓY

1 , . . . , ΓY
L ] − Λ[ΓX

1 , . . . , ΓX
L ]‖F (vice versa

for ΛYX).
Furthermore, it was distinguished between which team was attacking since the deci-

sions of players should be strongly influenced by whether they are attacking or defending.
Let us therefore define three different scenarios:

Dallas attacking: ⇔ at least nine players in Cleveland’s half

Cleveland attacking: ⇔ at least nine players in Dallas’ half

Transition: ⇔ otherwise

The analysis on the transition phase is omitted since play is typically rather unstructured
during this phase.

The full results of the dependency analysis are, for the sake of visual clarity, shown
only in Appendix A.5. Here, in the main text, selected parts are shown, restricted to the
average row variance. One can make the following observations:

• As Tables 3 and 4 show, according to the dependency measures, with either team
attacking, offensive players seem to have the strong, often the strongest, influence
on their direct opponent, i.e., the opposing player playing the same position (Point
Guards (PGs) Williams and Irving; Shooting Guards (SGs) Matthews and Smith; Small
Forwards (SFs) Parsons and James; Power Forwards (PFs) Nowitzki and Love). Excep-
tions are Centres (Cs) Pachulia and Thompson. This is intuitive, since in basketball,
often times, each offensive player has one direct opponent that follows him.

• One can also see that, typically, the defending Point Guards and Shooting Guards seem
to be more strongly influenced by multiple opposing players than the Power Forwards
and Centres. The reason for this could be that PFs and Cs usually are more steadily
positioned around the basket, while the Guards are more encouraged to actively chase
opposing attackers.
One can see that when Dallas attack, they have a much stronger influence on Cleveland
than vice versa, according to the average row variance. The Schatten-1 norm does
not strongly emphasise that. When Cleveland attack, the cumulated dependencies
are very similar to each other. This can be checked using the full results’ data in
Appendix A.5. Table 5 also indicates this, as it shows that the relative differences are
mostly positive for Dallas’ players when Dallas attack.

• When Cleveland attack, Thompson has large positive relative differences over most
other players, except for Pachulia (Table 6). This could be explained by the fact that
Thompson plays below the basket, giving him a lower position radius, and his position
is less dependent on spontaneous or set-up moves by his teammates. Pachulia is his
direct opponent from whom he might try to separate himself so that his position is in
fact influenced by Pachulia.

• One can check if the players of the depending team orient themselves at the posi-
tions of the attacking players. To see this, let us sum over all dependency values
between players from opposing teams, i.e., compute ∑X in team 1,Y in team 2 MXY for
both dependency measures (see Table 7).

Due to inherent randomness in a sport such as basketball, one must be cautious not to
overstate these results. This example is meant to showcase how the method presented in
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this article can be applied to a complex real-world example. The obtained results, however,
seem plausible for the explained reasons. In the future, it would be interesting to see if the
method could be tailored more specifically to the basketball context and be used to actually
find so-far hidden structures of play.

Table 3. Dallas attacking: average row variance multiplied by 100 for ΛXY for X from attacking
players (Dallas) and Y from defending players (Cleveland).

From ↓ to→ Irving (PG) Smith (SG) James (SF) Love (PF) Thompson (C)

Williams (PG) 2.73 1.15 1.1 0.48 0.75
Matthews (SG) 0.56 2.49 1.04 0.86 0.27

Parsons (SF) 1.25 1.83 2.45 0.57 1.21
Nowitzki (PF) 1.35 0.83 1.01 1.29 0.97
Pachulia (C) 1.2 1.77 1.21 1.09 1.02

Table 4. Cleveland attacking: average row variance multiplied by 100 for ΛXY for X from attacking
players (Cleveland) and Y from defending players (Dallas).

From ↓ to→ Williams (PG) Matthews (SG) Parsons (SF) Nowitzki (PF) Pachulia (C)

Irving (PG) 2.48 1.05 0.9 1.53 0.35
Smith (SG) 0.67 1.8 0.84 0.43 0.33
James (SF) 1.16 0.29 1.29 0.81 0.38
Love (PF) 0.63 0.79 0.74 1.02 0.24

Thompson (C) 1.01 1.56 1.2 1.49 1.04

Table 5. Dallas attacking: relative differences of average row variance for ΛXY for X from attacking
players (Dallas) and Y from defending players (Cleveland).

From ↓ to→ Irving (PG) Smith (SG) James (SF) Love (PF) Thompson (C)

Williams (PG) 0.11 0.17 −0.27 −0.42 −0.47
Matthews (SG) −0.08 0.4 0.29 −0.38 −0.46

Parsons (SF) −0.12 0.34 0.1 −0.28 −0.37
Nowitzki (PF) 0.82 0.59 0.72 0.26 0.3
Pachulia (C) 0.55 0.62 0.57 0.16 0.21

Table 6. Cleveland attacking: relative differences in the average row variance for ΛXY for X from
attacking players (Cleveland) and Y from defending players (Dallas).

From ↓ to→ Williams (PG) Matthews (SG) Parsons (SF) Nowitzki (PF) Pachulia (C)

Irving (PG) −0.08 −0.18 −0.31 −0.21 −0.46
Smith (SG) −0.36 −0.15 −0.03 −0.16 −0.55
James (SF) 0.02 −0.55 −0.3 0.07 −0.27
Love (PF) 0.47 0.61 0.17 −0.43 −0.37

Thompson (C) 0.69 0.61 0.38 0.5 0.13

Table 7. Cumulated sum over the dependency measures considering only one team attacking, the
other defending.

Attacking Team Measure X in DAL, Y in CLE X in CLE, Y in DAL

Dallas ‖ · ‖1 54.4 52.2
Dallas ν 0.30 0.25

Cleveland ‖ · ‖1 51.4 51.3
Cleveland ν 0.25 0.24



AppliedMath 2022, 2 303

5. Conclusions

In this article, a data-driven method for the quantification of influences between vari-
ables of a dynamical system was presented. The method deploys the low-cost discretisation
algorithm Scalable Probabilistic Approximation (SPA), which represents the data points
using fuzzy affiliations, respectively barycentric coordinates with respect to a convex poly-
tope, and estimates a linear mapping between these representations of two variables and
forward in time. Two dependency measures were introduced that compute the properties
of the mapping and admit a suitable interpretation.

Clearly, many methods for the same aim already exist. However, most of them are
suited for specific scenarios and impose assumptions on the relations or the dynamics,
which are not always fulfilled. Hence, this method should be a helpful and directly
applicable extension to the landscape of already existing methods for the detection of
influences.

The advantages of the method lie in the following: it is purely data-driven and, due to
the very general structure of the SPA model, requires almost no intuition about the relation
between variables and the underlying dynamics. This is in contrast to a method such as
Granger causality, which imposes a specific autoregressive model between the dynamics.
Furthermore, the presented method is almost parameter-free, since only the numbers of
landmark points KX and KY for the representation of points and the time lag τ have to
be specified. Additionally, the dependency measures, the Schatten-1 norm and average
row variance, are straightforward to compute from the linear mapping and offer direct
interpretation. The capacity of the method to reconstruct influences was demonstrated on
multiple examples, including stochastic and memory-exhibiting dynamics.

In the future, it could be worthwhile to find rules for the optimal number of landmark
points and their exact positions with respect to the data. Plus, it seems important to
investigate how dependencies between variables with differing numbers of landmark
points can be compared with the presented dependency measures. Moreover, one could
determine additional properties of the matrix ΛXY next to the two presented ones. It should
also be investigated why in some of the presented examples, the average row variance gave
a clearer reconstruction of influences than the Schatten-1 norm and how the latter can be
improved. In addition, it should be worthwhile to use the combined solution of the (SPA 1)
and (SPA 2) problems as done in [23] and observe whether this improves the performance.
Furthermore, constructing a nonlinear SPA model consisting of the multiplication of a
linear mapping with a nonlinear function, as done in [26], could give an improved model
accuracy and, therefore, a more reliable quantification of influences. Lastly, since in this
article, variables were always expressed using a higher number of landmark points, it
should be interesting to investigate whether for high-dimensional variables, projecting
them to a low-dimensional representation using SPA and performing the same dependency
analysis is still sensible. This could be of practical help to shed light on the interplay
between variables in high dimensions.
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Appendix A

Appendix A.1. The Dependency Measures in Light of Conditional Expectations

Assume that X does not contain any information for future states of Λ, then the
entries of γX

t−1 should have no influence in the composition of the approximation of γY
t

by ΛXYγX
t−1. Thus, the columns of ΛXY are identical, i.e., (ΛXY)|1 = . . . (ΛXY)|KX

=: λ. It
then holds that

ΛXYγX ≡ (ΛXY)|1 = . . . (ΛXY)|KX
=: λ (A1)

regardless of γX, since ΛXY is column-stochastic and each barycentric coordinate is a
stochastic vector.

From classical theory on statistics [46], λ should be equal to the mean of the time series
γY

2 , . . . , γY
T in the limit of infinite data:

Proposition A1. Let two time series of length T of barycentric coordinates by given by γY
1 , . . . , γY

T
and γX

1 , . . . , γX
T . Assume that

min
Λ∗∈RKY×KX

‖[γY
2 | · · · |γY

T ]−Λ[γX
1 | · · · |γX

T−1]‖F = min
λ∗∈RKY

‖[γY
2 | · · · |γY

T ]− [λ∗, . . . , λ∗]‖F

Then,

lim
T→∞

ΛXY = lim
T→∞

[
1
T

T

∑
i=1

γY
i . . .

1
T

T

∑
i=1

γY
i ].

Proof. The minimiser of ‖[γY
2 | · · · |γY

T ]− [λ∗, . . . , λ∗]‖F is given by the mean λ∗ = 1
T

T
∑

i=1
γY

i

for T → ∞. By the assumption of the proposition, the product of ΛXYγX
t should therefore be

equal to λ∗ for each t. By Equation (A1), this is achieved by choosing ΛXY = [λ∗, . . . , λ∗].

This is consistent with the intuition that if γY
t is independent of γX

t−1, this means that

EµY [γ
Y
t |γX

t−1] = EµY [γ
Y
t ]. (A2)

Therefore, each column of ΛXY should be an approximation of EµY [γ
Y
t ]. This is naturally

given by the statistical mean along a time series.

Appendix A.2. Proofs of Propositions on the Dependency Measures

In this section, n is written for KY and m for KX to improve the visual clarity.

Lemma A1. The maximal Schatten-1 norm of a column-stochastic (n×m)-matrix is m.

Proof. Since ‖ · ‖1 is a norm, the triangle inequality holds and yields

‖A + B‖1 ≤ ‖A‖1 + ‖B‖1.

Let there be a finite number of matrices Ais that A = ∑
i

Ai. It then holds that

‖A‖1 ≤∑
i
‖Ai‖1.

Note that A can be written as A =
n
∑

i=1

m
∑

j=1
Ãij, where

(Ãij)kl

{
Aij (k, l) = (i, j)
0 else
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A matrix with only one nonzero entry a has only one nonzero singular value that is equal
to a. This means that ‖Ãij‖1 = Aij. Furthermore, since A is column-stochastic, it holds that
∑n

i=1 Aij = 1. Thus,

‖A‖1 ≤
n

∑
i=1

m

∑
j=1
‖Ãij‖ =

n

∑
i=1

m

∑
j=1

Aij = m.

Proposition A2. The Schatten-1 norm of a column-stochastic (n× m)-matrix A with n ≥ m
obtains the maximal value m if deletion of n−m rows of A yields an m×m permutation matrix
(this is Proposition 1).

Proof. Let A be of the form described in the proposition. Then, by the deletion of n−m
rows, one can derive a permutation matrix P. For those matrices, it holds that

PPT = Id.

Thus, the singular values of P, which are the square roots of the eigenvalues of PPT , are
given by the square roots of the eigenvalues of the m×m identity matrix. These are given
by σ1 = · · · = σm = 1. Thus, ‖P‖1 = m.

All deleted rows must be identical to the zero-vector of length m, since the column
sums of A have to be equal to 1 and the column sums of P are already equal to 1. Therefore,
the singular values of P are equal to the singular values of A, and their sum is equal to m
because the sum of singular values of a matrix cannot shrink by adding zero rows. This
is because

AAT =

(
P
0

)(
PT 0

)
=

(
PPT 0

0 0

)
,

whose eigenvalues are the eigenvalues of PPT , i.e., the singular values of P, and additional
zeros. Thus, the sum of singular values does not change. Since m is the maximal value for
‖A‖1 by Lemma A1, it holds that ‖A‖1 = ‖P‖1 = m.

Proposition A3. The Schatten-1 norm of a column-stochastic (n×m)-matrix A is minimal if

and only if Aij ≡ 1
n and in this case is equal to

√
m
n (this is Proposition 2).

Proof. If all entries of A are given by 1
n , then

(AAT)ij =
m
n2 for all i, j = 1, . . . , n. (A3)

Then, AAT has exactly one nonzero eigenvalue, since it is a rank-1 matrix. This is equal to
m
n (corresponding to the eigenvector (1, . . . , 1)T), since

AAT

1
...
1

 =
m
n2

1 . . . 1
...

...
1 . . . 1


1

...
1

 =
m
n2

n
...
n

 =
m
n

1
...
1

.

Singular values of a matrix A are square roots of the eigenvalues of AAT . The square root

of the eigenvalue above, which is the only positive singular value, is then
√

m
n . This yields

‖A‖1 =

√
m
n
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The reason there cannot be a column-stochastic matrix B with ‖B‖1 <
√

m
n is the following:

It holds that

‖B‖1 ≥ ‖B‖2 where ‖B‖2 :=

√√√√min(n,m)

∑
i=1

σ2
i is the Schatten-2-norm.

because it is well-known that the standard 1-norm of a Euclidean vector is bigger or equal to
its 2-norm so that ‖(σ1, . . . , σmin(n,m))‖1 ≥ ‖(σ1, . . . , σmin(n,m))‖2. For the Schatten-2 norm,
it holds that

‖B‖2 = ‖B‖F :=

√√√√ n

∑
i=1

m

∑
j=1

B2
ij, (A4)

which, by a classic linear algebra result, is the Frobenius norm of B. Note that, if Bij =
1
n for

all i, j, then

‖B‖2 = ‖B‖F =

√√√√ n

∑
i=1

m

∑
j=1

1
n2 =

√
nm
n2 =

√
m
n

. (A5)

Assume that there exists a Bij <
1
n , e.g., Bij =

1
n − δ. Then, since

n
∑

i=1

m
∑

j=1
Bij = 1, there also

exists Bkj >
1
n . Immediately, this increases the sum over the squared entries of B, simply

because (a + δ)2 + (a− δ)2 = 2a2 + 2δ2 > 2a2 for δ > 0. Therefore, ‖B‖F is minimal only
for the choice given above. As a consequence, ‖B‖2 is minimal in this case, as well, and
thus, this is the only minimiser of ‖B‖1.

Proposition A4. The average row variance of a column-stochastic (n×m)-matrix A with n = m
is maximal and equal to 1

m if it is a permutation matrix (this is Proposition 3).

Proof. For the case KY = KX, i.e., n = m, this is straightforward: the variance of a row
that contains only values between 0 and 1 is maximised if exactly one value is 1 and all
other entries are 0. Each column, due to its being stochastic, can only have one 1. For
n ≥ m, one therefore has to distribute the ones into different rows and columns, matching
the statement of the proposition. The maximal value is hence equal to the variance of an
m-dimensional unit vector. Since the mean of this vector is equal to 1

m , the variance is

1
m− 1

((1− 1
m
)2 +

m−1

∑
i=1

1
m2 ) =

1
m− 1

((
m− 1

m
)2 +

m−1

∑
i=1

1
m2 )

=
1

m− 1
(

m2 − 2m + 1
m2 +

m− 1
m2 )

=
1

m− 1
m2 −m

m2

=
1
m

.

(A6)

Proposition A5. The average row variance of a column-stochastic matrix A obtains the minimal
value 0 if and only if all columns are equal to each other (this is Proposition 4).

Proof. Trivially, if all columns in A are identical, then the average row variance of A is 0.
Since the variance is always non-negative by definition, this is the minimal value. If at
least two values differ in a column, then the average row variance immediately becomes
positive.
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Appendix A.3. Differences from Related Practices

Appendix A.3.1. Simple Linear Correlations

The presented measures might seem strongly related to the computation of the lin-
ear correlation:

C(X, Y) =
1

T − 1

T

∑
t=2

(Xt−1 − X̄)(Yt − Ȳ)T (A7)

(for τ = 1) where X̄, Ȳ are the componentwise averages. However, C can only detect
global linear patterns between X and Y. In contrast, points are transformed into a higher-
dimensional space by expressing them by barycentric coordinates with K > D. While
still a linear operator between the variables is determined, given by Λ(τ)

XY, this is a local
approximation of a potentially nonlinear function, denoted earlier by w. Furthermore,
upon perturbations to the function w, Λ(τ)

XY should react in a nonlinear way by construction

of the SPA II problem. The dependency measures then are nonlinear functions on Λ(τ)
XY.

In the examples that will follow, using linear correlations could generally not uncover
unidirectional dependencies, while the measures presented in this article were able to
do so.

Appendix A.3.2. Granger Causality

A prominent method to measure the influence of one variable on another is by em-
ploying the Granger causality framework [12,13]. It functions by determining two models
of the form

Yt = f (Xt−1, . . . , Xt−p, Yt−1, . . . , Yt−q)

Yt = g(Yt−1, . . . , Yt−q)
(A8)

from training data and using them to compute subsequent values of Yt on testing data that
were not used for training. The prediction errors of f and g are then compared. If f , which
uses the information of X, gives a significantly better prediction error, then it is deduced
that X influences Y.

Typical model forms for f and g are linear autoregressive models [40], which are
described in more detail in the next section. It was pointed out in [10] that using past terms
of X and Y can constrain the interpretability of the result, since if Y forces X, information
about Y is stored in past terms of X due to the delay-embedding theorem of Takens [11]
(please see [10] including its Supplement for details). Then, if Y can be predicted from past
terms of X, it actually is a sign that Y forces X, not vice versa. This makes the interpretation
of the Granger results more difficult. In [10], examples were shown where the Granger
causality method failed to detect influences between variables.

This effect does not occur when dispensing of the past terms and instead fitting models
Yt = f (Xt−1, Yt−1) and Yt = g(Yt−1). However, in systems that are highly stochastic or
chaotic, meaning that from similar initial conditions, diverging trajectories emerge, even an
accurate model can be prone to give weak prediction errors. In such cases, the prediction
error often times has limited meaning.

Furthermore, even if X influences Y, one has to select a suitable model family for f
and g, so that this actually shows. The selection of the model family can be a challenging
task of its own.

Nevertheless, Granger causality can be a strong tool for the detection of influences,
e.g., as shown for a Gene Regulatory Network in [1].

Appendix A.3.3. Discretisation by Boxes Instead of Landmark Points

Earlier, the similarity between the model constructed solving (SPA 2) and Markov
State Models (MSMs) was mentioned. In MSMs, one discretises the state space into boxes
and statistically estimates the transition probabilities of the state of a dynamical system
between the boxes, typically by considering the relative frequencies of transitions. One
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then obtains a column-stochastic transition matrix that contains these relative frequencies.
In the same manner, one could compute this matrix for the frequencies that a variable
Y is in a certain box at time t + τ given that a variable X is in a certain box at time t
and apply the dependency measures to this transition matrix to assess how meaningful
the information about a variable X is for the future value of Y. Fixing the edge length
of each box, the number of boxes increases exponentially with the dimension of points,
while one generally requires an appropriately fine discretisation of the state space to obtain
meaningful results, yielding a high number of boxes even for moderate dimensions of
the data. One then requires very long time series for a robust estimation of the transition
probabilities. The advantage in the SPA I representation of points is that one can derive a
column-stochastic matrix, but can maintain a lossless representation of points with K > D
as the only prerequisite.

Appendix A.4. Dependency Analysis Result for Equidistant Landmarks in the First Example
(Hénon System)

Figure A1. Two–dimensional attractor of the Hénon system from Equation (21).

Figure A2. Result of the dependency analysis on the Hénon system with equidistant landmarks
instead of (SPA 1) solutions. The higher influence of X on Y is reconstructed and pronounced more
strongly here as when using the (SPA 1) solutions. Furthermore, the relative difference does not
decrease with increasing number of landmarks.

Appendix A.5. Full Basketball Dependency Results

Order of players in all rows and columns: (Dallas) Williams, Matthews, Parsons,
Nowitzki, Pachulia, (Cleveland) Irving, Smith, James, Love, Thompson.
Dependencies from one player to himself are omitted; therefore, the zeros are placed on
the diagonals.
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Dallas attacking

M‖·‖1
=



0 2.31 2.47 1.76 1.7 2.94 2.29 2.27 1.83 1.9
2.3 0 2.09 1.71 2.05 1.9 2.78 2.07 2.04 1.55

2.63 2.35 0 1.76 2 2.23 2.52 2.77 1.85 2.13
2.05 1.96 1.79 0 1.76 2.05 2.02 1.99 2.17 1.94
2.14 2.49 2.2 1.57 0 2.27 2.47 2.2 2.18 2.08
2.84 1.92 2.33 1.51 1.82 0 2.25 2.23 1.96 1.99
2.13 2.48 2.22 1.66 1.88 2.08 0 2.39 2.29 1.75
2.42 1.99 2.71 1.58 1.8 2.55 2.02 0 2.13 1.87
2.1 2.32 1.97 2.03 2.07 2.37 2.72 2.09 0 1.73

2.31 1.77 2.59 1.85 1.96 2.52 2.22 2.38 1.78 0



Mν = 0.01 ·



0 1.51 1.71 0.52 0.49 2.73 1.15 1.1 0.48 0.75
1.37 0 0.87 0.53 1.24 0.56 2.49 1.04 0.86 0.27
1.89 1.43 0 0.66 0.86 1.25 1.83 2.45 0.57 1.21
0.89 0.79 0.41 0 0.57 1.35 0.83 1.01 1.29 0.97
1.13 1.74 1.1 0.27 0 1.2 1.77 1.21 1.09 1.02
2.42 0.6 1.41 0.24 0.54 0 1.08 1.23 0.69 0.76
0.96 1.5 1.21 0.34 0.68 0.85 0 1.57 1.27 0.62
1.51 0.74 2.22 0.29 0.52 1.67 0.84 0 1.38 0.57
0.83 1.37 0.79 0.96 0.92 1.38 2.55 1.06 0 0.56
1.41 0.51 1.92 0.68 0.81 1.95 1.13 1.69 0.49 0


Cleveland attacking

M‖·‖1
=



0 2.04 2.71 1.99 1.78 2.89 2.19 2.11 1.62 1.62
2.05 0 2.26 2.22 1.9 2.28 2.54 1.81 1.64 1.82
2.49 2.22 0 2.08 1.77 2.21 2.1 2.53 1.89 1.96
2.01 2.5 1.89 0 1.97 2.51 1.81 1.97 2.49 1.99
2.04 2.42 2 2 0 1.9 1.95 1.84 1.72 2.02
2.89 2.25 2.01 2.37 1.66 0 2.41 2.52 2.08 1.75
1.97 2.46 2.07 1.76 1.6 1.96 0 2.14 2.03 1.82
2.11 1.66 2.27 1.91 1.65 2.26 2.01 0 1.89 1.78
1.79 1.99 1.99 2.09 1.57 1.88 2.34 2.1 0 1.63
2.13 2.4 2.33 2.26 2.11 2.23 2.33 2.29 1.86 0



Mν = 0.01 ·



0 0.97 2.27 0.93 0.66 2.71 1.04 1.13 0.33 0.31
0.83 0 1.21 1.13 0.89 1.28 2.13 0.64 0.31 0.61
1.58 1.24 0 1.14 0.58 1.29 0.86 1.83 0.61 0.74
0.7 1.45 0.49 0 0.75 1.93 0.51 0.76 1.79 0.75

0.85 1.54 0.83 0.66 0 0.65 0.73 0.53 0.39 0.91
2.48 1.05 0.9 1.53 0.35 0 1.81 1.81 0.95 0.45
0.67 1.8 0.84 0.43 0.33 0.71 0 1.11 0.85 0.64
1.16 0.29 1.29 0.81 0.38 1.28 0.66 0 0.57 0.6
0.63 0.79 0.74 1.02 0.24 0.58 1.42 1.01 0 0.39
1.01 1.56 1.2 1.49 1.04 1.31 1.19 1.57 0.78 0


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