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PREAMBLE

In this work, the model of rate-and-state friction, which can be viewed
as central to the numerical simulation of earthquakes, is considered
from a mathematical point of view.

First, a framework is presented through which a general class of such
friction laws can be understood and analysed. A prototypical viscoelastic
problem of earthquake rupture is then formulated, both in strong and
in variational form.
Analysis of this problem is difficult, since the incorporation of rate-and-
state friction leads to a coupling of variables. In a time-discrete setting,
nonetheless, results on existence, uniqueness, and continuous parameter
dependence of solutions can be obtained.
The principal idea is to reformulate the variable interdependence as
a fixed point problem and to prove convergence for a corresponding
iteration. With that in mind, next, a numerical algorithm is proposed
that resolves the coupling through a fixed point iteration. Since it puts
a state-of-the-art solver and adaptive time stepping to use, it is not
only stable but also fast.
Its applicability to problems of interest is demonstrated in the penulti-
mate chapter, which focuses on simulations of megathrust earthquakes
that form at the base of a subduction zone.

The main assumptions made throughout this work are summarised and
discussed in the last chapter.
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1
FRICTION : AN INTRODUCTION

Friction is a macroscopic description of microscopic forces that resist
relative motion of touching surfaces. For lack of a better understanding,
in physics, friction is usually assumed to obey a few conditions of
empirical nature. Two of the main ingredients, known as Amontons’
laws, can be stated as follows: The force of friction is

• independent of the apparent area of contact and

• directly proportional to the applied load.

The first assumption tells us that friction can be viewed as a local
process that acts at every point on the contact surface. We can thus
quantify its effect at any such point by means of a scalar |σt|.1 In
addition, this quantity is proportional to the normal stress |σn| by the
second assumption, so that we have

|σt| = µ|σn| (1)

with an unknown scalar µ, referred to as the coefficient of friction.2
Any scalar friction model built atop Amontons’ laws, therefore, need
only provide a way to compute µ.

1.1 rate-and-state friction

Rate-and-state friction assumes that µ is a function of the sliding velocity
or slip rate V and a memory or state variable α, which is to say

µ = µ(V, α).

This condition is complemented by an evolution equation of the form

α̇ = α̇(V, α).

The state variable α should be thought of here not as a physical quan-
tity but rather as an automaton, which continually consumes velocity
information and produces new information, based on a digest of past
velocities. The dependence of µ on α is thus another, indirect form of
velocity dependence.

1 The expressions σt and σn are properly introduced in the next chapter.
2 In Coulomb’s friction law, the normal load dependence is taken to apply to the
friction bound rather than the actual force, hence one obtains |σt| ≤ µ|σn| in this
case.
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2 friction: an introduction

αα̇
V α

Figure 1.1: The state variable as an automaton.

1.2 the laws of dieterich and ruina

For a side-by-side comparison of a few popular laws and the historical
background, see [11].

The two oldest yet most commonly used rate-and-state friction laws
can be stated as follows.3

The ageing law (also known as slowness law)

µ = µ∗ + a log V

V∗
+ bα, α̇ = V∗e−α − V

L
(2)

and the slip law

µ = µ∗ + a log V

V∗
+ bα, α̇ = −V

L

(
log V

V∗
+ α

)
. (3)

When presented in this form, both laws use the same expression for µ,
so that their respective state variables α can be identified. This is also
why their names are often used to refer to the state evolution equations
only.

1.2.1 Interpretation

Both laws contain three non-dimensional parameters a, b, and µ∗ as
well as a velocity V∗ and a length L. The role of these parameters is best
explained by means of an experiment with a single degree of freedom,
illustrated in figure 1.2: We prescribe the velocity V , let α evolve in
accordance with either (2) or (3) — our observations will apply to both
laws — and pay special attention to the trajectory of µ.
To that end, let V be constant at V1 > 0 and assume the system to be
in steady state, i.e. α = αss(V1) := log(V∗/V1), which means

µ = µss(V1) := µ∗ + (a− b) log(V1/V∗).

Now force an instantaneous acceleration to V2 > V1 and keep the
new velocity fixed. This triggers a direct increase in µ of magnitude
a log(V2/V1). In addition, over time, the state α evolves towards αss(V2),
which leads to a decrease in µ of magnitude b log(V2/V1). The parameters
a and b thus act as weights for both effects. The overall change of µ is
given by

µss(V2)− µss(V1) = (a− b) log(V2/V1).

3 In the literature, these laws are usually stated in terms of the state variable θ =
eαL/V∗.
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Figure 1.2: Response of the friction coefficient to a jump in velocity. Simulation
with the ageing law.

Whether this quantity is positive or negative depends on the sign of the
constant a− b, see also remark 1.1.
A look at the state evolution laws reveals that L/V acts as a time
scale: the smaller the length L, the more quickly the state evolves; the
length L thus bears traits of a regularisation parameter. The parameter
µ∗, finally, is the steady state coefficient of friction corresponding to
the arbitrarily chosen velocity V∗ and defined through the relation
µss(V∗) = µ∗.

Remark 1.1 (Rate-weakening and -strengthening). In the context of
friction, material can be called rate-weakening or rate-strengthening.
In the former case, an increase in sliding velocity weakens it further,
leading to a smaller friction coefficient and thus an even greater sliding
velocity; in the latter case, it shows the opposite behaviour.
In a simple law of the form

µ = µ(V ),

the velocity dependence of µ would have to be negative, were it to model
rate-weakening — a property which is known to lead to mathematical
issues and physical absurdities, see [14].
Through its two types of velocity dependence, rate-and-state friction
circumvents this issue: The direct effect is required to be monotone but
the state effect is not. As a result, the immediate response to velocity
increases is always positive, yet the overall response after a finite amount
of time can very well be negative.
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1.2.2 Issues

In their original, above-stated form, the laws of Dieterich and Ruina
employ the term log(V/V∗), which becomes arbitrarily negative for
velocities V close to zero; consequently, we have

µ(V, α)→ −∞ whenever V → 0

for fixed α. These laws are thus unphysical for sufficiently small V , since
they predict a negative coefficient of friction; for V = 0, moreover, they
are not even mathematically sound. If we introduce the sign-change
velocity

Vα = V∗ exp
(
−µ∗ + bα

a

)
,

this issue becomes even clearer, since now µ can be written as

µ(V, α) = a log V

Vα
, (4)

so that Vα denotes the velocity at which the coefficient of friction
vanishes. In the literature, this shortcoming of the Dieterich–Ruina
laws has been addressed by means of regularisation, see [14]. To be
precise, the logarithm on the right-hand side of (4) is replaced by the
nonnegative function z 7→ asinh(z/2), yielding the regularised law

µr(V, α) = a asinh
(
V

2Vα

)
. (5)

A different approach, which has been pursued in [13] is to trust the
original law as much as possible, and only modify it whenever it predicts
a negative coefficient of friction. The requirement of monotonicity then
leads to the truncated law

µt(V, α) = a log+ V

Vα
with log+ z =

{
log z if z ≥ 1
0 otherwise.

(6)

Both formulations differ so little, however, that the distinction is irrele-
vant in practice.
It should be noted that rate-and-state friction laws generally do not
specify how V should be interpreted — or more generally, how α should
evolve — if two bodies undergoing rate-and-state friction suddenly
lose contact. This issue originates in the lack of a consistent physical
interpretation of the state variable α.

1.3 a general framework

In this section, a general formulation of rate-and-state friction is pro-
posed which covers the Dieterich–Ruina laws as special cases.
More technical assumptions will be required and introduced in later
sections.
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A rate-and-state friction law shall be given by two functions

µ : (V, α) 7→ µ(V, α),
α̇ : (V, α) 7→ α̇(V, α)

defined for nonnegative V and arbitrary α, which meet the following
criteria.

(A1) The function µ is not only nonnegative but also nondecreasing
in its first argument and satisfies µ(0, · ) = 0.

(A2) The function µ is uniformly Lipschitz in its second argument. In
other words, we have

|µ(V, α)− µ(V, β)| ≤ Lµ|α− β|

for any α, β, and V .

(A3) The function α̇ is nonincreasing and continuous in its second
argument.

As intended, this framework contains the examples from the previous
section.

Proposition 1.2. Consider the ageing law (2) or the slip law (3),
either regularised as per (5) or truncated as per (6). Then each of the
four resulting laws satisfies assumptions (A1) to (A3).

Proof. That µr and µt satisfy the assumptions (A1) and (A3) is obvious.
To show that µr satisfies assumption (A2), it suffices to prove

|µr(V, α)− µr(V, β)| =
∣∣∣∣∣asinh

(
V

2Vα

)
− asinh

(
V

2Vβ

)∣∣∣∣∣ ≤
∣∣∣∣log Vβ

Vα

∣∣∣∣
for any α, β, and V ≥ 0, since the right-hand side equals b/a · |α− β|.
For V = 0, this is immediate; for V > 0, it becomes clear once we prove
the more general claim

|asinh(x)− asinh(y)| ≤ |log x− log y|

for x, y > 0. Without loss of generality, assume x ≥ y, so that we need
to show

asinh(x)− asinh(y) ≤ log x− log y.

From the logarithmic representation of the asinh function, we obtain
that this is equivalent to

log x+
√
x2 + 1

y +
√
y2 + 1

≤ log x
y

and thus
y
√
x2 + 1 ≤ x

√
y2 + 1
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which is obviously true. For µt, we proceed analogously and prove

|µt(V, α)− µt(V, β)| =
∣∣∣∣∣log+ V

Vα
− log+ V

Vβ

∣∣∣∣∣ ≤
∣∣∣∣log Vβ

Vα

∣∣∣∣.
Again, this is trivially true if V = 0. For V > 0, we have∣∣∣∣∣log+ V

Vα
− log+ V

Vβ

∣∣∣∣∣ =
∣∣∣∣∣max

{
log V

Vα
, 0
}
−max

{
log V

Vβ
, 0
}∣∣∣∣∣

≤
∣∣∣∣∣log

(
V

Vα

)
− log

(
V

Vβ

)∣∣∣∣∣
and thus the claim.



2
CONTINUUM MECHANICS

This introduction to continuum mechanics follows [9] rather closely.

Consider a block that slides along the surface of a rigid foundation, over
a time interval [0, T ]. The block at time zero can then be assumed to
be representable through a bounded Lipschitz domain Ω ⊂ Rd.
At any later time t, points originally located at a position x ∈ Ω will
occupy a typically different position y(t,x), giving rise to the motion y.
To describe the change in shape that the block undergoes, we need to
differentiate this field of motion in space. Through y, we have access to
two different coordinate systems: one relative to the reference configu-
ration and one relative to the current configuration, which undergoes
the same motion as Ω. Depending on the situation, it could be more
convenient to work with one or the other and in a general setting, it
would make a difference with respect to which of the two derivatives
are taken.
Not in this work, however. As is often done, we make the assumption
of infinitesimal deformation; a change of variables between the two
coordinate systems must now involve a Jacobian of approximately unity,
making them close to indiscernible. To be precise, we write u for the
displacement, i.e. u(x) = y(x) − x for any x ∈ Ω, and assume the
displacement gradient ∇u to be infinitesimally small in comparison to
unity.
In this setting, higher-order terms in ∇u are naturally neglected, too,
which means that we can identify the nonlinear strain tensor given by

1
2
(
∇u+ (∇u)T + (∇u)T∇u

)
in terms of u, with the linearised strain tensor ε, which satisfies

ε(u) = 1
2
(
∇u+ (∇u)T

)
,

an assumption that by itself is referred to as infinitesimal strain.

2.1 stress and strain

The strain tensor plays an important role in elasticity. It allows us to
split any motion into two components: a rigid motion consisting of
rotation and translation, which does not produce strain, and another
component, which does. Intuitively then, it is clear that strain should
correspond to stress, and as a matter of fact, the assumption of elasticity
allows us to convert strains into stresses and vice versa seamlessly; but
what is stress exactly?

7



8 continuum mechanics

Let x be an interior point of Ω. Now cut Ω in two by means of a smooth
surface containing x. Along this surface, where the two halves of Ω
are in contact, each half exerts a force on the other; normalised with
respect to the the area of the surface this gives rise to the stress field
s and thus in particular a stress vector s(x) at x. By Newton’s third
law, the stress must change sign when we change perspective from one
half to the other. Even more is true, though: The Euler-Cauchy stress
principle asserts that s(x) depends only on the choice of the separating
surface (and thus the two halves of Ω) through its outer unit normal
n(x) at x, and that it does so in a linear fashion; in other words, there
is a tensor σ(x) that satisfies s = σn. This tensor is referred to as the
stress tensor.
With all the necessary notation available, now, Hooke’s law of linear
elasticity can be stated as

σ = Bε,

where B is the elasticity tensor of the material in question. The Kelvin–
Voigt model for viscoelasticity, similarly, takes the simple form

σ = Aε̇+ Bε

with an additional viscosity tensor A.

2.2 friction

An extension of the stress tensor σ to the closure of the domain Ω
allows us to obtain the surface traction t on ∂Ω from the outer unit
normal1 n via t = σn.
Now fix a point x on the boundary ∂Ω where the body is in contact with
the foundation and decompose the traction t(x) into a scalar normal
component (the normal stress) σn = t ·n as well as a vectorial tangential
component (the shear stress) σt = t− σnn. This allows us to postulate
the scalar friction law

|σt| = µ|σn|+ C,

which is slightly more general than (1) since it contains a constant
C ≥ 0 representing cohesion.
In this manner, we can constrain the magnitude of σt, but we also need
to prescribe its direction: First, we require bilateral contact between
body and foundation, which is to say u̇ · n = 0, allowing x to move
tangentially only. As the second step, then, in analogy with Coulomb’s
friction law, we assume that frictional forces resist motion directly, so
that

−|u̇|σt = |σt|u̇.

1 Since we assume Ω to be a Lipschitz domain, the outer normals exist almost every-
where on ∂Ω.
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The model of rate-and-state friction from section 1.3 can now be under-
stood as

−σt = µ(|u̇|, α)|σn|+ C

|u̇| u̇ for u̇ 6= 0 and

|σt| ≤ C for u̇ = 0.

Remark 2.1. The normal stress σn generally depends on the displace-
ment u — a source of great mathematical difficulties in the treatment
of friction. Since the rate-and-state laws under consideration here have
been derived in the setting of constant normal stress, however, and
cannot be applied to different regimes, we need to assume a constant
normal stress here as well. Once it is constant, it is known.
To simplify the analysis and notation some more, both the normal
stress and any parameters that µ might contain are taken to be uniform
in space, too. A discussion of the consequences can be found in the
chapter 6.

2.3 conservation laws

According to Newton’s laws of motion, in a closed system, at least
two (vectorial) quantities should be conserved: Linear momentum and
angular momentum.
If the system is not closed, linear momentum does not remain constant
but changes at a rate equal to the sum of external forces. If we write ρ
for the density field of Ω, and assume it to be constant in time, then
the change of linear momentum ρu̇ over time equals ρü. By the above,
this vector must balance with the surface forces (or equivalently, by the
divergence theorem, the internal flux) and the body force b. We thus
obtain the central equation

∇ · σ + b = ρü.

Balance of angular momentum, additionally, implies that the tensor σ
is symmetric.

2.4 the strong problem

Viscoelastic problems with bilateral contact and friction (in subdifferential
form) are discussed in Section 13.4 of [9].

We can now combine the insights from the previous sections to obtain a
system of equations that govern the motion of a sliding block. Consider
again a viscoelastic body (represented by the bounded Lipschitz domain
Ω) in bilateral contact with a rigid foundation and subject to rate-and-
state friction in the sense of section 1.3.
I will assume the boundary Γ := ∂Ω to consist of three disjoint parts,
namely the Neumann boundary ΓN , the Dirichlet boundary ΓD, and the
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contact boundary ΓC , on which friction occurs. A typical such situation
is depicted in figure 2.1.

ΓNΓN Ω
ΓC

ΓD

Figure 2.1: The prototypical sliding block.

If the state field α on ΓC were known throughout the whole time interval
of interest I := [0, T ], then determining the motion that Ω undergoes
would be tantamount to solving the following problem.

Problem 2.1. Find a displacement field u ∈ C2(I, C2(Ω̄)) satisfying

σ = Aε(u̇) + Bε(u) in Ω× I (7)
∇ · σ + b = ρü in Ω× I, (8)

and subject to the boundary conditions

u̇ = 0 on ΓD × I (9)
t = 0 on ΓN × I (10)

u̇ · n = 0 on ΓC × I (11)

−σt = µ(|u̇|, α)|σn|+ C

|u̇| u̇ for u̇ 6= 0

|σt| ≤ C for u̇ = 0

 on ΓC × I (12)

as well as initial conditions on u and u̇.

In general, however, the state field will not be known. Conversely, if we
knew the displacement field u throughout the entire time interval I,
we could solve the following family of ordinary differential equations to
obtain α.

Problem 2.2. Find a state field α ∈ C1(I, C(ΓC)) which satisfies

α̇ = α̇(|u̇|, α) on ΓC × I.

as well as an initial condition.

But since we usually know neither u nor α, our task has to be sum-
marised as this:

Problem 2.3. Find a pair (u, α) such that u solves problem 2.1 with
respect to the state field α and α solves problem 2.2 with respect to the
velocity field u̇.
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2.5 the weak problem

For an introduction to variational inequalities, see Chapter 6 of [8].

In what follows, we will derive a weak formulation of problem 2.1.
Assuming a sufficiently smooth solution, we can test (8) at a fixed point
in time with functions v from the space

V = {v ∈ H1(Ω)d : v = 0 on ΓD, v · n = 0 on ΓC}

and apply integration by parts to find∫
Ω
ρü · v +

∫
Ω
σ : ∇v =

∫
Γ
t · v +

∫
Ω
b · v ∀v ∈ V. (13)

Since σ is symmetric, the term ∇v in (13) can be replaced with its
symmetrisation ε(v); using (7) we then obtain∫

Ω
ρü · v +

∫
Ω

Aε(u̇) : ε(v) +
∫

Ω
Bε(u) : ε(v) =

∫
Γ
t · v +

∫
Ω
b · v

for any v ∈ V. This variational equation can also be phrased more
abstractly once we introduce the right operators and functionals; indeed,
with

` : V → R, v 7→
∫

Ω
b · v

M : V∗ → V∗, 〈v, · 〉 7→ 〈ρv, · 〉

C : V → V∗, v 7→
∫

Ω
Aε(v) : ε( · )

K : V → V∗, v 7→
∫

Ω
Bε(v) : ε( · )

it takes the form

Mü+ Cu̇+Ku =
∫

Γ
(t, · ) + `. (14)

The unknown t still occurs here because we have not yet taken any
boundary conditions into account: By (10), it vanishes on ΓN , and on
ΓD our test functions are identically zero by (9). What remains to be
done, then, is to put the friction law (12) into a form that can be used
in this context.

Subdifferential boundary conditions

If we were given subdifferential inclusions of the form

− σt ∈ ∂ψ( · ,x)(u̇(x)) (15)

or equivalently

ψ(v,x) ≥ ψ(u̇(x),x)− σt(v − u̇(x)) ∀v ∈ Rd
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for x ∈ ΓC with a family of convex functions ψ( · ,x), then we could
test them simultaneously with traces2 of functions in V to get3∫

ΓC
ψ(v,x) dx ≥

∫
ΓC
ψ(u̇,x) dx−

∫
ΓC
σt · (v − u̇) ∀v ∈ V

or equivalently

−
∫

ΓC
(σt, · ) ∈ ∂j(u̇) with j : V → R, v 7→

∫
ΓC
ψ(v,x) dx.

This type of boundary condition thus, too, has a weak form that can
serve to complete our problem: It would then read

` ∈Mü+ Cu̇+Ku+ ∂j(u̇).

This leaves us with the task of formulating (12) as a subdifferential
inclusion, which is not difficult given the parallels to Tresca’s thoroughly
investigated friction law: As is easily checked, we can choose

ψ(u̇,x) = µ̄(|u̇|, α(x))|σn|+ C|u̇| (16)

with
µ̄(V, α) =

∫ V

0
µ(r, α) dr

in the terminology of (15). That ψ is convex in its first argument is
a consequence of assumption (A1); for non-zero velocities, moreover,
the equivalence of (12) and (15) follows immediately from the chain
rule. For vanishing u̇, note that the condition µ(0, · ) = 0 makes any
directional derivative of µ̄(| · |,x) at zero vanish.
In summary, our weak formulation of problem 2.1 reads

Problem 2.4. Find u : I → V such that almost everywhere in I, we
have u̇ ∈ V, ü ∈ V∗, and

` ∈Mü+ Cu̇+Ku+ ∂j( · , α)(u̇),

with
j(v, α) =

∫
ΓC
µ̄(|v|, α)|σn|+ C|v| ∀v ∈ V

By incorporating this weak formulation in the coupled problem 2.3, we
obtain the weak coupled problem

Problem 2.5. Find a pair (u, α) such that u solves problem 2.4 with
respect to the state field α and α solves problem 2.2 with respect to the
velocity field u̇.

2 Traces are not marked as such here or in the following sections.
3 Integrals over non-integrable quantities are to be understood as positively infinite
here.
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2.6 detour: equivalence of both problems

By construction, any strong solution of problem 2.1 is also a weak
solution of problem 2.4. The converse, however, does not hold, because
a solution to problem 2.4 will generally not be sufficiently regular: We
do not require Ω to be smooth or convex and the boundary data on ΓC
can be quite unpleasant.
Under potentially rather restrictive circumstances, the solution u and
its time derivatives may be smooth nonetheless.4 If so, we can revert the
weakening process: By definition of the subdifferential, for u to solve
problem 2.4 is to satisfy∫

Ω
ρü · (v− u̇) +

∫
Ω

Aε(u̇) : ε(v− u̇) +
∫

Ω
Bε(u) : ε(v− u̇) + j(v, α)

≥ j(u̇, α) +
∫

Ω
b · (v − u̇) ∀v ∈ V. (17)

If we choose v as u̇+w with arbitrary w ∈ C∞c (Ω) then this tells us∫
Ω
ρü ·w +

∫
Ω

Aε(u̇) : ε(w) +
∫

Ω
Bε(u) : ε(w) ≥

∫
Ω
b ·w,

so that we recover our original differential equation

∇ · [Aε(u̇) + Bε(u)] + b = ρü in Ω. (18)

We have already seen in the previous section that a solution to this
equation satisfies∫

Ω
ρü · v +

∫
Ω

Aε(u̇) : ε(v) +
∫

Ω
Bε(u) : ε(v)

=
∫

ΓN
t · v +

∫
ΓC
σt · v +

∫
Ω
b · v ∀v ∈ V;

this fact now allows us to extract a weak formulation of the non-essential
boundary conditions from (17): We find∫

ΓN
t · (v − u̇) +

∫
ΓC
σt · (v − u̇) + j(v, α) ≥ j(u̇, α) ∀v ∈ V. (19)

To separate the conditions on ΓN and ΓC , we resort to an argument of
density, namely proposition B.1: Since the surface traction t is square-
integrable by assumption, (19) guarantees t = 0 on ΓN . This leaves us
with ∫

ΓC
σt · (v − u̇) + j(v, α) ≥ j(u̇, α) (20)

for any v ∈ V. If we could establish that (20) holds also for arbitrary
v ∈ L2(ΓC) now, then this would certainly imply

−σt ∈ ∂
[
µ̄(|u̇|, α)|σn|+ C|u̇|] almost everywhere in ΓC

as desired. Indeed, with a bit of work, the following can be shown.
4 The question when this is the case will not be answered here.
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Proposition 2.2. Let v ∈ L2(ΓC)d and α ∈ X be such that j(v, α) is
finite. Then we can find functions vn ∈ V that satisfy

vn → v in L2(ΓC)d and j(vn, α)→ j(v, α).

Proof. Step by step, we prove the following.5

• Without loss of generality, the function v can be assumed to lie
in L∞(ΓC).

• We can find a sequence of functions vn ∈ γC(V) with

‖vn‖L∞(ΓC) ≤ ‖v‖L∞(ΓC) (21)

and vn → v in L2(ΓC) as n→∞.

• Such sequences satisfy j(vn, α)→ j(v, α).

Consider the family of truncation maps Tk on Rd defined by

Tk(w) =


k
|w|w if |w| ≥ k
w otherwise

for k > 0. By superposing Tk on v we get essentially bounded functions
which converge to v in the sense of L2(ΓC) as k →∞. Moreover, since
µ̄ is nondecreasing, we have

j(Tk(v), α)→ j(v, α)

as a consequence of proposition B.10. Because it, therefore, suffices to
approximate Tk(v) for arbitrary k > 0, we may assume without loss of
generality that v was truncated at the level k to begin with.
To construct approximations vn of v now which satisfy (21), we find
approximations that do not and truncate them.
Proposition B.1 gives us a sequence of functions wn ∈ γC(V) with
wn → v in L2(ΓC)d; their truncations vn = Tk(wn) again lie in γC(V)
by proposition B.9 and also clearly satisfy

vn = Tk(wn)→ Tk(v) = v in L2(ΓC) as n→∞

since Tk is Lipschitz. Our claim thus follows once we prove

j(Tk(wn), α)→ j(Tk(v), α) as n→∞,

for which continuity of j(Tk( · ), α) as an operator from L2(ΓC) to L1(ΓC)
is clearly sufficient. The right tool is of course proposition B.12, it only
remains to be shown that j(w, α) is finite for every w ∈ L∞(ΓC). But

5 The key ideas for this proof have been kindly contributed by Donat Wegner.
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this is a straightforward consequence of the assumptions (A1) and (A2):
Observe only

j(w, α) =
∫

ΓC
µ̄(|w|, α)|σn|+ C|w|

≤
∫

ΓC
µ̄(W,α)|σn|+ CW with W := ‖w‖L∞(ΓC)

≤
∫

ΓC
[µ̄(W, 0) + LµW |α|]|σn|+ CW <∞.

Now there is nothing left to show.





3
TIME DISCRETISATION AND ANALYS IS

Assume now that the time interval [0, T ] is partitioned into N subinter-
vals, i.e.

[0, T ] =
N⋃
i=1

[ti−1, ti]

with 0 = t0 < · · · < tN = T and τi = ti − ti−1 for 1 ≤ i ≤ N . In what
follows, we will derive a time-discrete approximation of problem 2.5,
i.e. a sequence of problems with corresponding solutions αn and un or
u̇n, meant to approximate the time-continuous solution to the original
problem at time tn (if it exists).
Since the scheme will be of single-step type, so that any time step uses
information from its immediate predecessor only, it is fully described
by the transition from arbitrary initial data to a solution at time t1.
Consequently, we can focus on this case without any loss of generality
and write τ in place of τ1.
Recall that problem 2.2 and problem 2.4 can be written as

α̇ = α̇(|u̇|, α) on ΓC (22)

and
` ∈Mü+ Cu̇+Ku+ ∂j( · , α)(u̇), (23)

respectively. To derive a time-discrete formulation, we follow a few
simple steps.

• Require (23) to be satisfied (only) at time t1, yielding

`1 ∈Mü1 + Cu̇1 +Ku1 + ∂j( · , α1)(u̇1), (24)

• Approximate u̇ on the time interval (0, t1] through the constant
velocity u̇λ = λu̇0 + (1− λ)u̇1 with a fixed λ ∈ [0, 1], so that we
have

α̇ = α̇(|u̇λ|, α). (25)

• Apply a time stepping scheme to express ü1 and u1 in terms of
u̇1, which gives

`1,0 ∈ Zu̇1 + ∂j( · , α1)(u̇1) (26)

with
Z = λM

τ
M+ C + τ

λK
K

and positive scalars λM, λK. The term `1,0 here consists of `1 and
forces arising from the previous time step.

17
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Table 3.1: A selection of time stepping schemes.

Backward Euler scheme
canonical presentation u1 = u0 + τ u̇1, u̇1 = u̇0 + τ ü1
reformulation u1 = u0 + τ u̇1, ü1 = u̇1−u̇0

τ

resulting parameters λK = 1, λM = 1

Newmark-β scheme with β ∈ [0, 1/2]
canonical presentationa u1 = u0 + τ u̇0 + τ2

2 ü2β
u̇1 = u̇0 + τ ü1+ü0

2

reformulationb u1 = u0 + τ u̇2β + τ2

2 (1− 4β)ü0
ü1 = 2 u̇1−u̇0

τ − ü0

resulting parameters λK = 1
2β , λM = 2

a with ü2β := (1− 2β)ü0 + 2βü1.
b with u̇2β := (1− 2β)u̇0 + 2βu̇1.

The time stepping scheme is intentionally left unspecified at this
point for the purpose of generality. A few options as well as the
resulting values of λM and λK are provided in table 3.1.

In this manner, we obtain a coupled problem which is partly discrete.
If we can establish that each subproblem has a unique solution for
arbitrary data, we can also define corresponding solution operators
R : α1 7→ u̇1 and S : u̇1 7→ α1. To solve the coupled problem is then to
find a pair (u̇1, α1) such that Rα1 = u̇1 and Su̇1 = α1, which means
that α1 is a fixed point of S ◦R or equivalently that u̇1 is a fixed point
of R ◦ S, as illustrated in figure 3.1.

u̇1α1

S

R

Figure 3.1: The fixed point problem for R ◦ S or S ◦R.

Whether such a fixed point exists is not immediately clear; there could
also be more than just one. As is well known, Banach’s fixed point
theorem guarantees the existence of exactly one fixed point and provides
a means to compute it. Since it can only be applied in rather restrictive
circumstances, however, in this chapter, Schauder’s non-constructive
fixed point theorem, too, is used to prove existence of solutions.

3.1 function spaces

In problem 2.4, we have already specified that the solution u should
satisfy u̇ ∈ V. In a time-discrete setting then, naturally, we look for a
solution u̇1 in the very same space. This approach will be justified by
showing that it yields a unique solution. Before we can do that, however,
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we need to find an appropriate space X for the state field α1, so that
we can define solution operators

S : V → X and R : X → V. (27)

Not only does X need to be small enough for R to be well-defined and
continuous, it should also be large enough to serve as a target space for
S.
In what follows, the space X will be chosen as L2(ΓC) for simplicity.
The keen reader will notice, however, that it plays two separate roles:
One that could be filled by a larger space and another which would also
admit smaller spaces; both in accordance with proposition B.3.

3.2 solution operators

As outlined above, our time discretisation procedure yields two problems,
one for the velocity u̇1 and one for the state α1. We first investigate the
former, which can be stated as follows.

Problem 3.1. Assuming b ∈ L2(Ω)d, α1 ∈ X , and u0, u̇0, ü0 ∈ V,
find u̇1 ∈ V such that (26) is satisfied. The terms u1 and ü1 can then
be computed from u̇1.

Since Z is a positive symmetric operator by construction and j is convex,
by proposition B.7 this task is equivalent to the minimisation problem

u̇1 = arg min
v

J1(v, α1)

with

J1 :

V × X → R
(v, α1) 7→ 1

2〈Zv,v〉+ j(v, α1)− `1,0(v).
Moreover, we have the following result.

Proposition 3.1. Problem 3.1 has a unique solution for arbitrary
α1 ∈ X .

Proof. By proposition B.8, we need only show the following properties
of J1( · , α1).

• The bilinear form v 7→ 〈Zv,v〉 is continuous and coercive.

• The convex nonlinearity j( · , α1) is proper and lower semicontinu-
ous.

The function j( · , α1) is clearly proper since it vanishes at zero, so that
we only need to check lower semicontinuity. But since the functions
µ̄(| · |, α1(x)) are continuous and nonnegative this immediately follows
from proposition B.11.
Continuity of the bilinear form is also straightforward if we assume
B, A, and ρ to be constant in space. For coercivity on V we can use
Korn’s inequality: If ΓD has non-zero measure then both K and C are
V-coercive, see proposition B.2.
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As a consequence, we can indeed define a solution operator R : X → V.

Proposition 3.2. The operator

R : X → V, α 7→ u̇1 = arg min
v

J1(v, α)

is well-defined and Lipschitz.

Proof. Let α, α̂ ∈ X be arbitrary and write v = R(α), v̂ = R(α̂). By
definition, this means

〈Zv,w − v〉+ j(w, α) ≥ j(v, α) + `1,0(w − v),
〈Zv̂, ŵ − v̂〉+ j(ŵ, α̂) ≥ j(v̂, α̂) + `1,0(ŵ − v̂)

for any w, ŵ ∈ V; in particular, these inequalities hold for the choice
w = v̂, ŵ = v. After adding one to the other, we obtain

j(v̂, α) + j(v, α̂)− j(v, α)− j(v̂, α̂) ≥ 〈Z(v̂ − v), v̂ − v〉
≥ LZ‖v̂ − v‖2V

for a constant LZ > 0 by coercivity of Z. This upper bound can in turn
be bounded by means of assumption (A2), specifically

j(v̂, α)− j(v, α) + j(v, α̂)− j(v̂, α̂)

= |σn|
∫

ΓC

∫ |v̂|
|v|

µ(r, α)− µ(r, α̂) dr

≤ |σn|
∫

ΓC
Lµ|α− α̂| · |v − v̂|.

We conclude

LZ‖v̂ − v‖2V ≤ Lµ|σn|‖α− α̂‖X ‖γC‖‖v − v̂‖V ,

where ‖γC‖ denotes the operator norm of the trace map γC : V → X d;
the overall Lipschitz constant of R is given by

LR := Lµ|σn|‖γC‖
LZ

.

This completes the first half of the analysis of our discretisation pro-
cedure. Now on to the problem of solving (25), first pointwise. Since
u̇λ is constant in time, this is an autonomous differential equation, and
by assumption (A3) even a gradient flow, see appendix C. We can thus
define flow maps Φ|u̇λ|t for any t ≥ 0 that allow us to phrase our problem
as

Problem 3.2. Given α0 ∈ X and u̇0, u̇1 ∈ V, compute α1 = Φ|u̇λ|τ α0.
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Formally, to define the solution operator S is now as simple as setting

S : w 7→ Φ|wλ|τ α0.

It remains to be shown, however, that S is well-defined as a map from
V to X . For this purpose, it is convenient to view S as a composition of
four suboperators. In order of application, they are:

u̇1∈V

u̇λ∈V

u̇λ∈X d|u̇λ|∈X

α1∈X

1. The map v 7→ (1− λ)u̇0 + λv.

2. The trace map γC : V → X d.
3. The superposition operator corre-
sponding to the Euclidean norm.

4. A superposition operator F induced
by the map (x, V ) 7→ ΦV

τ α0(x).

Of these operators, the first three are known to be well-defined and
Lipschitz, only the superposition operator F : X → X requires further
attention.1
If we assume that the function α(V, · ) has exactly one zero, denoted
by αss(V ), then assumption (A3) tells us

min{α, αss(V )} ≤ ΦV
t α ≤ max{α, αss(V )}

and in particular
|ΦV
t α| ≤ |α|+ |αss(V )| (28)

for any t > 0. To obtain a pointwise bound on F , it would thus suffice to
bound αss(V ) in terms of the velocity V . For large velocities, this works
quite well; the steady state αss(V ) will generally not remain bounded
as V approaches zero, however, and possibly even cease to exist. This
serves as the motivation for a two-part assumption on α̇.

(A4) For any positive velocity V , the function α̇(V, · ) has exactly one
zero, denoted by αss(V ), which satisfies

|αss(V )| ∈ O(V ) as V →∞. (29)

Moreover, there is a real-valued function η that satisfies

|α̇(V, α)| ≤ η(W ) (30)

whenever V ≤W and α̇(V, α) · α ≥ 0.

The second half of assumption (A4) may seem a bit technical at first
but the underlying idea is quite simple: Since we are only interested
in advancing the time by a finite amount, if we had an α-independent
bound on α̇(V, α) we could make use of the estimate

|ΦV
t α| ≤ |α|+ tmax

s≤t
|α̇(V,ΦV

s α)|.

1 Even though ΦVτ is only defined for V ≥ 0, we can treat F as an operator on the
whole space X by extending it appropriately.



22 time discretisation and analysis

Typically, no such bound exists and α can evolve arbitrarily quickly
even if V remains fixed. The problematic cases turn out to be harmless,
however, since they have α evolve towards zero, which is to say

α̇(V, α) · α ≤ 0.

The following lemma formalises these observations.

Lemma 3.3. Assumption (A4) implies that F is well-defined and
continuous when combined with assumption (A3).

Proof. In the following, we will show that (30) implies

|ΦV
t α| ≤ |α|+ tη(W ) for V ≤W ,

thereby giving us a pointwise bound for small velocities; in combination
with (28) and (29), this is clearly sufficient for F to map into X , since
it gives us a bound of the form

|ΦV
t α| ≤ C(t)[1 + V/V∗].

Continuity is then a consequence of proposition B.12. Let W , therefore,
be an arbitrary velocity that satisfies V ≤W . By assumption (A3), this
implies

|ΦV
t α| ≤ |α|+ t|α̇(V, α)| ≤ |α|+ tη(W )

as long as we have
α̇(V, α) · α ≥ 0. (31)

If (31) is not satisfied, two cases can occur: Either the trajectory of α
crosses the zero-line at a point s ∈ [0, t], so that condition (30) applies
to the flow starting at time s and we find

|ΦV
t α| ≤ (t− s)|α̇(V,ΦV

s α)| ≤ (t− s)η(W ).

Or the trajectory does not cross the zero-line before time t, so that we
even have

|ΦV
t α| ≤ |α|.

Next we will show that this assumption covers the laws from section 1.2.

Proposition 3.4. Both the ageing law (2) and the slip law (3) satisfy
assumption (A4).

Proof. Since the laws in question share the property

αss(V ) = log(V∗/V ),

the requirement (29) is clearly met. For the ageing law, furthermore,
we have

|α̇(V, α)| ≤
{
V∗/L whenever α, α̇(V, α) ≥ 0,
V/L whenever α, α̇(V, α) ≤ 0;
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u̇1∈V

u̇λ∈V

u̇λ∈X d|u̇λ|∈X

α1∈X

(Lipschitz)

γC (Lipschitz)

(Lipschitz)

F (continuous)

R (Lipschitz)

Figure 3.2: Details of the fixed point problem for R ◦ S or S ◦R.

similarly, the slip law is easily seen to satisfy

|α̇(V, α)| ≤ V

L
log V

V∗

whenever α̇(V, α) · α ≥ 0. Since these upper bounds are continuous
functions of V , we can construct a nondecreasing bound η from the
suprema on each interval [0,W ].

To summarise, for a rate-and-state friction law that satisfies assump-
tions (A1) to (A4), our time-discrete coupled problem can be stated as
follows.

Problem 3.3. Find a pair (u̇1, α1) such that u̇1 solves problem 3.1
with respect to the state field α1 and α1 solves problem 3.2 with respect
to the velocity field u̇1.
Equivalently, find a fixed point of either R◦S or S◦R whose suboperators
are shown in figure 3.2.

3.3 existence and uniqueness of solutions

If the operator R ◦ S is a contraction on V, then by proposition B.5,
problem 3.3 must have a unique solution.
We have learnt from proposition 3.2 that R is Lipschitz with the constant
LR; in the presence of viscosity, furthermore, the constant LZ and thus
LR can be chosen independently of τ ; what we need to investigate further
is F : In order for R ◦ S to have an arbitrarily small Lipschitz constant
for small enough τ , it suffices for F to have this property. To that
end, we make the following assumption, which renders assumption (A4)
unnecessary.

(A5) The function α̇ is uniformly Lipschitz in its second argument; in
other words, we have

|α̇(V, α)− α̇(W,α)| ≤ Lα̇|V −W |

for any α and V , W ≥ 0.
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Proposition 3.5. Any law that meets assumptions (A3) and (A5) also
satisfies

|ΦV
t α− ΦW

t α| ≤ tLα̇|V −W | (32)
for any t > 0. In particular, for any α0 ∈ X , the operator F correspond-
ing to such a law is Lipschitz with respect to the constant tLα̇.

Proof. Let V and W be two different velocities and observe that we
can find a nonpositive function κ that satisfies

d
dt(Φ

V
t α− ΦW

t α)

= α̇(V,ΦV
t α)− α̇(W,ΦV

t α) + α̇(W,ΦV
t α)− α̇(W,ΦW

t α)

= α̇(V,ΦV
t α)− α̇(W,ΦV

t α) + κ(t)
(
ΦV
t α− ΦW

t

)
≤ Lα̇|V −W |+ κ(t)

(
ΦV
t α− ΦW

t

)
by virtue of assumption (A3). The claim is now a consequence of
proposition B.4.

The ageing law (2) clearly satisfies assumption (A5).
Let us also take a look at the dependence of u̇1 and α1 on the initial
conditions. By assumption (A3), the flow Φt is nonexpansive for any
t ≥ 0, the operator S is thus nonexpansive with respect to the initial
datum α0. Similarly, if we consider two sets of initial data for problem 3.1
with corresponding right-hand sides `1,0 and ˜̀1,0 as well as solution
operators R and R̃, then an easy calculation shows

‖Rα− R̃α‖ ≤ ‖`1,0 −
˜̀1,0‖

LZ
.

In other words, the operator R is Lipschitz with respect to its initial
conditions. This Lipschitz dependence carries over from R and S to the
fixed point of their composition and thus to the solution of problem 3.3.
To see that this is so,2 we write

lim
n→∞(R ◦ S)nv and lim

n→∞(R̃ ◦ S)nv with arbitrary v ∈ V

for the two solutions corresponding to the aforementioned initial data
and pass to the limit in the upper bounds∥∥∥(R ◦ S)nv − (R̃ ◦ S)nv

∥∥∥
=
∥∥∥∥∥
n−1∑
k=0

[(R ◦ S)n−k − (R ◦ S)n−k−1 ◦ (R̃ ◦ S)][(R̃ ◦ S)kv]
∥∥∥∥∥

≤
n−1∑
k=0

(LRLS)n−k−1
∥∥∥[(R ◦ S)− (R̃ ◦ S)][(R̃ ◦ S)kv]

∥∥∥
≤

n−1∑
k=0

(LRLS)n−k−1 ‖`1,0 − ˜̀1,0‖
LZ

.

2 The following calculation only varies the initial data for the operator R, not S. The
case of variable α0 is completely analogous.
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In summary, we have shown the following in this section.

Proposition 3.6. In the presence of viscosity, if a rate-and-state law
satisfies assumptions (A1) to (A3) and (A5), then there is a time step
size τmax > 0, such that problem 3.3 has a unique solution for any time
steps size τ ≤ τmax. In such cases, moreover, the dependence of the
solution (u̇1, α1) on the initial data is Lipschitz and the term (R ◦ S)nv
converges to u̇1 as n→∞, regardless of the choice of v ∈ V.
It should be noted τmax does not depend on the initial data of prob-
lem 3.3; in other words, the corresponding statements can also be made
for the next time step, without changing τmax.

3.4 existence in a more general setting

Unfortunately, the operator F corresponding to the slip law (3) is
not Lipschitz. This prompts us to leave the world of contractions and
consider different fixed point sources. Indeed, since the trace map
γC : V → X d is compact by proposition B.3, so is R ◦S. What separates
us from an application of Schauder’s fixed point theorem is knowledge
of a bounded convex set in V which is invariant under R ◦ S.
In this section, therefore, we will show that for any law that meets
assumptions (A1) to (A3) as well as a strengthening of assumption (A4),
the operator R ◦ S maps sufficiently large balls in V into themselves.
A sufficient strengthening is the following, which is clearly satisfied by
both the ageing law (2) and the slip law (3).

(A6) For any positive velocity V , the function α̇(V, · ) has exactly one
zero, denoted by αss(V ), which satisfies

|αss(V )| ∈ O(
√
V ) as V →∞.

Moreover, there is a real-valued function η that satisfies

|α̇(V, α)| ≤ η(W ) (33)

whenever V ≤W and α̇(V, α) · α ≥ 0.

By the argument already employed in the proof of lemma 3.3, this gives
us a bound of the form

|ΦV
t α| ≤ |α|+ C(t)(1 +

√
V/V∗).

The task is now to turn this knowledge about pointwise growth into a
bound on the growth of ‖FV ‖ as ‖V ‖ → ∞ in X .
Proposition 3.7. Under assumptions (A3) and (A6), the operator F
satisfies

‖FV ‖X ∈ O(
√
‖V ‖X ) as ‖V ‖X →∞ in X .

In particular, under the additional assumptions (A1) and (A2), the
operator R ◦ S is a self-map on sufficiently large balls in V.
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Proof. Note that we have

‖
√
V/V∗‖X =

(∫
ΓC
V/V∗

)1/2
≤ C(ΓC)‖V/V∗‖1/2X

and thus

‖ΦV
t α0‖X ≤ ‖α0‖X + C(t)

(
‖1‖X + C(ΓC)‖V/V∗‖1/2X

)
.

Since the other suboperators of S are Lipschitz and so is R, it follows
that R ◦ S has the same asymptotic growth as F .

Corollary 3.8. For any law that satisfies assumptions (A1) to (A3)
and (A6), problem 3.3 has a (potentially non-unique) solution.

Proof. This is a consequence of proposition B.6.

While we do learn only about existence from this result, it is quite
general: Not only does it cover the slip law (3), it also works in the
purely elastic case, i.e. in the absence of viscosity, and does not make
any assumptions on the time step size τ .



4
SPATIAL DISCRETISATION

Assume now that the domain Ω is covered by a conforming grid G. Write
(λi)1≤i≤K for the nodal basis as well as S ⊂ V for the space of linear
finite element functions on G which satisfy the boundary conditions (9)
and (11). To obtain a fully discrete approximation of problem 3.3, we
take the following steps.

• Repose problem 3.1 over the space S. This has us find a coefficient
vector

¯
u̇ in the space

S̄ =
{

¯
v ∈ RK×d :

∑
i

λi
¯
vi ∈ S

}

such that the discrete functional
¯
J( · , α1) given by

¯
J(

¯
v, α1) = J1

(∑
i

λi
¯
vi, α1

)
= 1

2
∑
i,k

〈Z̄ i,k
¯
vk,

¯
vi〉 −

∑
i

〈
¯
bi,

¯
vi〉

+
∫

ΓC
µ̄

(∣∣∣∑
i

λi
¯
vi
∣∣∣, α1

)
|σn|+ C

∣∣∣∑
i

λi
¯
vi
∣∣∣

with

Z̄ i,kj,l = 〈Z(λk
¯
el), λi

¯
ej〉,

¯
bij = `1,0(λi

¯
ej), and

¯
eij = δij

is minimised.1

• Require the condition α1 = Φ|u̇λ|τ α0 from problem 3.2 to hold only
at points xj which correspond to a grid node on the boundary
ΓC , and admit only solutions from the space γC(S) ⊂ X , leaving
us with following task.
Problem 4.1. Find

¯
α ∈ RK such that

¯
αj = α(xj) =

Φ|u̇λ(xj)|
τ α0(xj) if xj ∈ ΓC ,

0 otherwise.
(34)

Note that we assume the initial data u̇0 and α0 to have well-
defined point values here. This is certainly justified in the special
case u̇0 ∈ S, α0 ∈ γC(S); in the general case, we need to use an
approximation.

1 The discrete quantities introduced here are time step specific, even though they are
not explicitly labelled as such.
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• Apply mass lumping to the nonlinear part of
¯
J to obtain the

discrete approximation ˜
¯
J given by

˜
¯
J(

¯
v,

¯
α) =

∑
i

(
1
2
∑
k

〈Z̄ i,k
¯
vk,

¯
vi〉 − 〈

¯
bi,

¯
vi〉+ ψi(

¯
vi,

¯
αi)
)
,

with
ψi(

¯
vi,

¯
αi) =

[
µ̄(|

¯
vi|,

¯
αi)|σn|+ C|

¯
vi|] ∫

ΓC
λi.

Problem 4.2. Find
¯
u̇ ∈ S̄ that minimises ˜

¯
J( · ,

¯
α).

The fully discrete coupled problem is thus

Problem 4.3. Find a pair (
¯
u̇,

¯
α) ∈ S̄ × RK such that

¯
u̇ solves prob-

lem 4.2 and
¯
α solves problem 4.1.

As is easily checked, the results on existence and uniqueness of solutions
for the spatially continuous problem 3.3 from the previous section carry
over to the fully discrete setting. We know that there has to be a solution
and that — at least if we use the ageing law and sufficiently small a
time step — the coupling can be resolved through a simple fixed point
iteration. What we have yet to answer is how the discrete problems 4.1
and 4.2 can be handled.

Problem 4.1 is certainly not an issue: In many situations, the solution
can be computed analytically, e.g. for the ageing law (2) or the slip
law (3). If this were not the case, a time stepping scheme could be used;
the gradient flow structure implies that the backward Euler scheme
would be well-behaved, for example.
To solve problem 4.2, we can use methods of convex minimisation. Let
us first take a look at the block Gauß-Seidel scheme, i.e. successive
minimisation at each grid node. While generally too slow to serve as
the sole solver of a reasonably-sized problem, this method continues
to be useful due to its extensibility: A block problem need not be
solved accurately as long as enough descent is guaranteed; in addition,
the scheme can be interspersed with iterations of another (potentially
considerably faster but not necessarily convergent) energy-decreasing
method, without putting convergence in jeopardy.
This observation, which is central to the idea behind so-called mono-
tone multigrid methods, is employed here, too, through TNNMG, the
truncated nonsmooth Newton multigrid method; see [6]
The application is straightforward and not central to this work, however,
so that it is for the most part not discussed. One detail that does deserve
attention is the approximate solution of block problems arising from
successive nodewise minimisation of ˜

¯
J : At each node m, we need to find

arg min
∆

¯
v∈S̄m

˜
¯
J(

¯
v + ∆

¯
v,

¯
α) with S̄m = {

¯
w ∈ S̄ :

¯
wi = 0 if i 6= m}
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with given
¯
v. In terms of the correction ∆

¯
v, that is tantamount to

minimising

˜
¯
J(

¯
v + ∆

¯
v,

¯
α) = 1

2
∑
i,k

〈Z̄ i,k(
¯
v + ∆

¯
v)k, (

¯
v + ∆

¯
v)i〉

−
∑
i

〈
¯
bi, (

¯
v + ∆

¯
v)i〉+

∑
i

ψi((
¯
v + ∆

¯
v)i,

¯
αi)

or equivalently

˜
¯
Jm(∆

¯
vm) = 1

2〈Z̄
m,m∆

¯
vm,∆

¯
vm〉 − 〈

¯
rm,∆

¯
vm〉+ ψm(

¯
vm + ∆

¯
vm,

¯
αm)

with
¯
rm =

¯
bm −∑i Z̄ i,m¯

vi.
While these problems are very low-dimensional, they are still nonsmooth:
The Euclidean norm not differentiable at the origin, and µ( · , α) is not
required to be continuous. In order to solve them within a reasonable
time-frame, we need to put their structure to use.
Following [7], we compute the largest eigenvalue σm of Z̄m,m and
consider the model

¯
Im given by

¯
Im(∆

¯
vm) = σm

2 |∆¯
vm|2 − 〈

¯
rm,∆

¯
vm〉+ ψm(

¯
vm + ∆

¯
vm,

¯
αm)

= σm

2 |¯v
m + ∆

¯
vm|2 − 〈˜

¯
rm,

¯
vm + ∆

¯
vm〉

+ ψm(
¯
vm + ∆

¯
vm,

¯
αm) + const.

with ˜
¯
rm =

¯
rm + σm

¯
vm. Let us record some of its properties, most of

which are easily verified.

• The model is first-order accurate, which is to say ˜
¯
Jm(0) =

¯
Im(0)

and ∂ ˜
¯
Jm(0) = ∂

¯
Im(0). Moreover, we have ˜

¯
Jm ≤

¯
Im, so that the

model dominates ˜
¯
Jm.

• Consequently, whenever ∆
¯
vm is a descent direction of

¯
Im, then it

also generates descent for ˜
¯
Jm, since then

˜
¯
Jm(∆

¯
vm) ≤

¯
Im(∆

¯
vm) <

¯
Im(0) = ˜

¯
Jm(0).

• The model has a unique minimiser, which is the solution of a
one-dimensional problem. Indeed, since the subdifferential of the
function ψm( · ,

¯
αm) at any point ω is made up exclusively of

multiples of ω, the minimiser of the function

ω 7→ σm

2 |ω|
2 − 〈˜

¯
rm,ω〉+ ψm(ω,

¯
αm)

must be a multiple of ˜
¯
rm.

• Finally, the descent generated by the minimiser of
¯
Im is significant

for ˜
¯
Jm in that even an inexact Gauß-Seidel iteration that minimises

¯
Im instead of ˜

¯
Jm converges (to the solution of problem 4.2).
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At each node, this strategy thus requires no more than the solution
of a problem in one dimension.2 Such problems can be solved through
bisection.

2 Since each block
¯
Zm,m is only two- or three-dimensional, its eigenvalues are easily

found.



5
APPLICATIONS

In their recent works [15, 16], Rosenau et al. report on laboratory
experiments for an analogue subduction zone model.1 Their setup
consists of an inclined, primarily granular wedge that is positioned on
top of a conveyor plate; figure 5.1 shows a sketch.
Over the course of the experiment, the wedge is pushed against a rigid
back and thus compressed, leading to observable slip instabilities at its
base, which resemble so-called megathrust earthquakes.

x1

x2x3

Figure 5.1: Experimental setup. Not shown are the glass sides (front and rear)
and the rigid backstop (right).

This analogue model is from a numerical point of view pleasanter than
a real subduction zone, primarily for two reasons: The wedge is rather
thin so that it can be treated as essentially two-dimensional, and the
temporal scale separation between stress build-up and stress release is
less pronounced.
If we apply our numerical model and algorithm to this setting, we obtain
problems which can be solved in a single-threaded environment within a
reasonable time frame; a three-dimensional real-world scale problem, in
contrast, would require a parallel solver and access to a supercomputer.

The following sections are thus dedicated to results from simulations
based on the analogue model. These results can unfortunately not be
expected to agree with the laboratory measurements exactly since the
experimental setup violates some of the assumptions of our model: most
prominently, the wedge undergoes finite, plastic deformation and at
least near its shallow end, the normal stress cannot be expected to stay
constant. Despite these concerns, the agreement between experiment
and simulation turns out to be satisfactory.

1 In analogue modelling, laboratory experiments for real-world phenomena are carried
out with materials whose behaviour on the laboratory scale is found to be analogous
to that of real-world materials on the real-world scale.
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5.1 problem description

The wedge measures 10 cm in depth, 1m in length and 27 cm in height.
Since its top and rightmost face are perfectly horizontal and vertical,
respectively, this gives it a dipping angle of approximately 15°.
Its lower 6 cm are made up of a viscous fluid; further up the base, a
block of rate-weakening material serves as the seismogenic zone. This
block is 4 cm thick, measures 20 cm along the base, and ends 35 cm from
the shallow end, or trench, measured along the surface. The remaining
material is homogeneous and strongly rate-strengthening.
The conveyor plate, finally, is operated at a constant speed, correspond-
ing to the tectonic plate convergence velocity in nature.

5.2 mathematical modelling

Naturally, we are interested in the velocity field of the wedge, which
can be assumed to undergo rate-and-state friction. Since the state field
is not known, this leaves us with a problem of essentially the same type
as problem 2.3.
To see that this is so, let us first choose another frame of reference.
We want a rigid foundation that is completely static; clearly, then, we
should view the problem from the conveyor plate’s perspective shown
in figure 5.2: From this point of view, it is the backstop that moves at
a prescribed pace and the slip rate that occurs in the rate-and-state
formulation is simply the velocity relative to this frame.

ΓC

ΓN ΓD

weak

x̃1

x̃3

Figure 5.2: Rotated and simplified, two-dimensional computational domain.

Since the wedge is homogeneous in the direction of x2, and also rather
thin, it is not unreasonable to neglect variations in the corresponding
coordinate and use a two-dimensional model.
As a final step, we need to assume the rate-weakening region to be of
infinitesimal height, so that it has an effect on the values of a and b
only.2

Whenever possible, we should choose the parameters in the numerical
calculation close to the experiment. Most are known, to an order of
magnitude at least; some that we have little knowledge about are the

2 The agreement between both problems is still not perfect: On ΓD, here, we prescribe
the velocity in direction x̃1 only. Some of the parameters are also heterogeneous that
were previously assumed uniform in space. These differences are only of technical
nature, however.



5.2 mathematical modelling 33

elastic and viscous properties of the material which makes up most
of the wedge. The bulk modulus has been determined to be of the
order of 0.1MPa but neither Poisson’s ratio nor the viscosity have
been investigated. Preliminary sensitivity studies suggest a choice of
equivalent parameters given in table 5.1.

Table 5.1: Material parameters.

Parameter Unit Simulation Experiment

Gravitational acceleration m/s 9.81 9.81
Bulk modulus MPa 0.05 0.10
Poisson’s ratio 0.3 unknown
Viscosity, upper region kPa s 1 unknown
Viscosity, lower region kPa s 10 10
Mass density ρ, upper region kg/m3 900 900
Mass density ρ, lower region kg/m3 1000 1000
Cohesion C Pa 10 10

Friction



L µm 25 unknown
V∗ µm/s 50 50
µ∗ 0.7 variablea

a, unstable 0.002 unknownb

a, stable 0.025 unknownc

b− a, unstable 0.012 0.015
b− a, stable −0.020 variabled

Conveyor plate velocity µm/s 50 50
Experiment duration T s 1800 1000
a From 0.7 in the bulk to 0.8 in the seismogenic zone.
b Known upper bound: 0.002 (Rosenau, personal communication).
c Order of magnitude: 0.010 to 0.020 (Rosenau, personal communication).
d Order of magnitude: −0.020 to −0.010.

At time zero, the body is static and its displacement is governed by
gravitational forces alone, which is to say

Ku(0) = `(0).

In deviation from the experiment, so as not to introduce any unnecessary
instability into the system, it seems reasonable to start from the uniform
velocity field u̇(0) = 0, followed by a quick but smooth transition to
the regime of constant shearing, or loading. To that end, I have chosen
to let the Dirichlet condition on ΓD in direction of x̃1 equal the plate
convergence velocity only up to a factor of ζ(10t/T ) for t ≤ T/10, where
the function ζ provides a smooth zero-to-one transition and is given by

ζ(s) = 1− cos(π · s)
2

for s ∈ [0, 1].
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(b) Vertical surface displacement relative to a time average.

Figure 5.3: Basal slip rate and surface displacement. Simulation based on the
ageing law.
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Figure 5.4: Basal slip rate and surface displacement. Simulation based on the
slip law.
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5.3 results

In both experiment and simulation, the wedge undergoes a quasistatic
loading phase, followed by a sequence of seismic cycles. Each cycle
consists of a seismic slip event, which is preceded by a comparatively
long phase of interseismic stress build-up and followed by a post-seismic
phase, during which afterslip occurs.3
These observations can be made in simulations based on either the
ageing law (2) or the slip law (3). Let us first consider the former.
Numerical details can be found in appendix A, it suffices to note here
that the resolution has been found high enough both in time and space
for numerical errors not to play a role.
In figure 5.3a, we see the spatiotemporal evolution of the basal sliding
velocity over the course of a few seismic cycles as well as a zoom into a
coseismic phase.
We can clearly see how rupture nucleates in the interior of this region.
The sliding velocity grows exponentially here, until it peaks and de-
creases even more quickly than it rose. In the neighbouring regions,
meanwhile, velocities see moderate growth, increase only after a time
delay, and decrease so slowly thereafter, that nonneglible slip can be
observed even when the seismogenic zone has long settled; this is the
aforementioned afterslip.
Figure 5.3b show the same time-frame from a different perspective:
During the interseismic period, material sticks to the conveyor plate,
is transported towards and piled up against the backstop, and only
in the coseismic period returned to its origin; hence we see an abrupt
alternation of subsidence and uplift along the surface of the wedge.
Figures 5.4a and 5.4b show the corresponding contours over a similar
time-frame for a simulation based on the slip law. The differences
are purely quantitative: basal sliding accelerates more quickly and
decelerates less quickly; the surface sees subsidence and uplift in exactly
the same manner, only at a slightly lower intensity.

5.4 comparison of simulation and experiment

Of the many quantities that can be used to describe the dynamics of
the wedge, only a few can be measured accurately. With a monitoring
frequency of 10Hz in the experiment, the coseismic phase, which spans
roughly a tenth of a second in the simulation, is only covered by one or
two measurements. We thus cannot hope to compare rates of slip, for
example.
The following three quantities, in contrast, can be measured, and are
properly resolved by the simulation.

3 Afterslip involves only relatively low velocities and has not been observed in the
experiment due to limits in the resolution.
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• Rupture width: The diameter of the region in which seismic
velocities are reached (over the course of a single event).

• Peak slip: The maximum trenchward displacement at the base,
which occurs at seismic velocities (over the course of a single
event).

• Time of recurrence: The duration of time between the respective
onsets of two consecutive events.

In their definition it is already assumed that we know what a seismic
event is. The term shall mean here a contiguous time interval during
which seismic velocities are attained at the base; a velocity, moreover,
shall be called seismic if lies at least 1mm/s above the plate convergence
velocity.

100.5 101 101.5

recurrence time [s]
0 0.1 0.2 0.3 0.4

rupture width [m]
10−1.5 10−1 10−0.5

experiment

ageing law

slip law

peak slip [mm]

Figure 5.5: Some of the main quantities that describe earthquake rupture.

With these definitions in place, we can compare statistical data from
experiment and simulation, based on 50 events which have been observed
in the laboratory and approximately twice as many simulated events
(102 with the ageing law, 106 with the slip law). Figure 5.5 shows the
aforementioned quantities side-by-side, in box plot form.4
Apart from a few events that occur as the wedge passes through a
transition period from stable loading to unstable sliding, there is no
variability in the simulation — we see the same seismic cycle over
and over again. The experimentally observed events, too, show little
variation in frequency and magnitude, however.
Simulated and observed events have approximately the same frequence;
their rupture widths differ by a slightly larger margin but the crucial
feature of exceeding the seismogenic width and thus oversaturating
the seismogenic zone is common to both settings. Peak slip differs
considerably between simulation and experiment, unfortunately, but by
less than an order of magnitude.

4 A dataset is represented by a (potentially rather thin) box with whiskers. The three
vertical lines of any box each correspond to a quartile: the centre line indicates the
median; the left (right) line indicates the point above (below) which 75 percent of
the data can be found.
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(b) Simulation based on the slip law.

Figure 5.6: Number of fixed point iterations in relation to the adaptive time
step size over the course of a few seismic cycles.

Given the discrepancies in material properties and parameter uncertain-
ties, better agreement cannot be expected.

5.5 stability of the algorithm

If the velocity field u̇ and the state field α vary rapidly in time, then
they also exhibit a strong interdependence; in practice this means that
for a given time step size, time-discrete problems with greater variation
require a greater number of fixed point iterations.
This effect is compensated, however, by adaptive time stepping: In
figure 5.6 we see how the number of fixed point iterations remains
perfectly stable and almost constant in simulations with either the
ageing law (2) or the slip law (3), through an appropriate resolution of
the coseismic phase.
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5.6 outlook

The preceding sections illustrate the capabilities of the framework and
algorithm presented throughout this work.

Where to go from here?

We could aim for better agreement of simulation and experiment in
order to validate one through the other. A different geometry that is
more compatible with our mathematical framework would serve this
purpose; an extension of the simulation to plastic materials would, too.
It should also be mentioned that more complicated forms of rate-and-
state friction than presented here have been proposed in which normal
stress variations, as they can be expected to occur near the trench, are
explicitly allowed and influence the state evolution.
First tests with three-dimensional domains or real-world scale parame-
ters have been conducted and show promising results: The fixed point
approach continues to work reliably also under these circumstances. The
ability to handle such problems thus appears to hinge on the ability to
solve large spatial problems quickly; work in this direction would, e.g.,
enable us to study spatial rupture patterns as they emerge in subduction
zones of greater thickness.
Finally, it would be desirable to learn more about rate-and-state friction
in a time-continuous setting.





6
DISCUSS ION OF ASSUMPTIONS

To turn a geophysical problem into a (tractable) mathematical problem,
in the previous sections, I have made a few assumptions which are
restrictive but indispensable. In addition, I have found it helpful to
make a few more assumptions that are not strictly necessary or could
be greatly weakened, but only at the cost of a more laborious and
distracting notation.
In this chapter, therefore, each assumption is briefly discussed. In order
of appearance, the following simplifications have been made:

• The elasticity and viscosity tensors B and A are uniform.1 Guar-
antees that K and C are elliptic and bounded. Easily extended to
tensors which vary in space, as long as their norm and ellipticity
can be uniformly bounded.

• Infinitesimal deformation. While usually a very strong assumption
which leads to a linear theory, it fits very well with problems of
seismicity.

• Bilateral contact. Both µ and α depend on the sliding velocity,
which necessitates permanent contact.

• The normal stress σn is time-invariant (and thus known). Already
made in the derivation of the laws by Dieterich and Ruina. Rea-
sonable, e.g., if the body in question is covered by layers of heavy
material.

• The normal stress σn is uniform. Can be allowed to vary in space,
as long as it stays essentially bounded.

• The friction parameters a, b, V∗, L, µ∗ are uniform. Purely for
notational convenience. Easily extended to the case of functions
on ΓC which are uniformly bounded from above and away from
zero.

• The density ρ is uniform. Guarantees thatM is well-defined. The
density could also vary in space, as long as multiplication with ρ
maps H1(Ω) into itself. In order to allow for less regular ρ, one
needs to assume regularity of ü.

• Homogeneous boundary conditions. Purely for ease of presentation.

1 In what follows, a variable is called uniform if it does not vary in space.

41





A
NUMERICAL DETAILS

The numerical results from chapter 5 have been obtained from a com-
puter code that is based on the DUNE framework, see also [2].

a.1 the grid

To construct a mesh on the domain Ω shown in figure 5.2 which resolves
the seismogenic zone but not regions that can be assumed to have little
effect on the sliding behaviour, starting from a single triangle, cells are
repeatedly refined until they no longer exceed a prescribed maximum
diameter m. For any cell, this diameter is given in terms of the distance
d to the seismogenic region, the desired diameter mSZ in the seismogenic
zone itself, a characteristic length l, which is equal to the width of the
wedge, and a growth factor s via

m =
(
d

ls
+ 1

)
·mSZ.

The resolution of the resulting grid decreases linearly in the distance
from the seismogenic zone. For s = 8 and mSZ = 2mm, it contains 6563
vertices of which 262 lie on ΓC ; the smallest cells have a diameter of
1.01mm, while the largest cell measures 64.74mm across.

a.2 tolerances

Apart from the grid resolution, three termination criteria control the
accuracy of the numerical scheme:

• Problem 4.2 is considered accurately solved when two consec-
utive iterates are sufficiently close to one another in the sense
of the energy norm induced by Z̄.1 The tolerance is chosen as
10−8 W1/2m−1/2.

• The coupling in problem 4.3 is considered resolved when two
consecutive state iterates differ only by 10−5 m1/2 in the L2(ΓC)
norm.

• A time step is considered fine enough if its state field differs from
the state field obtained with twice the resolution over the same
period by no more than 10−5 m1/2 in the L2(ΓC) norm.

1 The term energy refers to the mathematical concept here, whose units generally do
not correspond to physical energy.
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a.3 adaptive time stepping

The third criterion is used to determine an appropriate time step
adaptively as follows: Starting from the size of the previous time step,
a time step of twice the size is considered. If this step is considered
fine enough in the aforementioned sense, it is accepted, unless an even
coarser time step can be found in the same manner, which is also feasible.
If no coarsening can be carried out, the necessity to refine is considered,
starting from a time step of half the original size.
The remaining details of the time stepping procedure correspond to the
Newmark-β scheme (see table 3.1) with β = 1/4. The variable λ from
(25) is chosen as 0.5.



B
MISCELLANEOUS THEOREMS

Proposition B.1. Assume that the bounded domain Ω ⊂ Rd has a
Lipschitz boundary Γ, which is composed of two disjoint open subsets Γ1
and Γ2 as well as a connecting nullset. Then the space of functions

{v ∈ H1/2(Γ) : v = 0 on Γ2}

is dense in L2(Γ1).

Proof. See Lemma 1.4 in [10].

Proposition B.2 (Korn). Assume that the bounded domain Ω ⊂ Rd has
a Lipschitz boundary. If V is a space that satisfies H1

0 (Ω)d ⊂ V ⊂ H1(Ω)d
and does not contain any nontrivial translations or rotations, then this
implies ∫

Ω
‖ε(v)‖2 ≥ c

∫
Ω
‖∇v‖2 for every v ∈ V.

Proof. See Theorem 3.5 in [12].

Proposition B.3 (Rellich and Kondrachov). Assume that the bounded
domain Ω ⊂ Rd has a Lipschitz boundary Γ, which is composed of two
disjoint open subsets Γ1 and Γ2 as well as a connecting nullset. Then
we can define a trace operator

γ1 : H1(Ω)d → Lp(Γ1)

for certain choices of p ≥ 1: In two dimensions, any p is admissible,
whereas in three dimensions, this is only possible for p ≤ 4. Moreover,
the operator

γ1 : H1(Ω)d → Ls(Γ1)

with extended codomain is compact whenever s < p.

Proof. See [3].

Proposition B.4 (Gronwall). Let x : [0,∞) → R be a differentiable
function with x(0) = 0, whose derivative satisfies

ẋ ≤ a(t)x(t) + b for any t ∈ [0,∞),

where a ≤ 0 is an integrable function and b ≥ 0 is a constant. Then x
satisfies

x(t) ≤ x(0) + bt

for any t ∈ [0,∞).
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Proof. Set u(t) = x(t)− bt, so that we only need to prove u(t) ≤ 0, and
note

u̇(t) ≤ ax(t) ≤ ax(t)− abt = au(t). (35)

The claim now follows from the differential form of Gronwall’s lemma
or simply from the observation that (35) implies u̇ ≤ 0 whenever
u(t) = 0.

Proposition B.5 (Banach). Let X be a Banach space. If a map T on
X is strictly contractive, i.e. q-Lipschitz with a constant q < 1, then it
has a unique fixed point x∗ and for any x ∈ X we have

Tnx→ x∗ as n→∞.

Proof. See Theorem 1.62 in [9].

Proposition B.6 (Schauder). Let K be a closed convex subset of a
Banach space X. If T : X → X is continuous and maps K into itself,
such that T (K) is relatively compact in X, then T has a fixed point.

Proof. See Corollary 11.2 in [5].

Proposition B.7. Let V be a reflexive Banach space. If two convex,
proper, lower semicontinuous functions F1 and F2 on V are given, and
F1 is additionally Gâteaux-differentiable, then the following conditions
are equivalent.

• The vector w minimises F1 + F2 on V.

• We have
〈F ′1(w),v −w〉+ F2(v) ≥ F2(w)

for every w ∈ V.

Proof. See Proposition 2.2 in Chapter II of [4].

Proposition B.8. Let V be a real Hilbert space and consider the func-
tional J given by

J(v) = 1
2b(v,v) + j(v)− `(v)

over V, where b is a bounded V-elliptic symmetric bilinear form, ` is a
bounded linear functional, and j is a convex, proper, lower semicontinu-
ous nonlinearity. This functional then has a unique minimiser.

Proof. See Corollary 4.6 in [9].

Proposition B.9. Let v be an arbitrary H1 function on a domain Ω.
Then the function v+ given by

v+(x) = max(0,v(x)) for almost every x ∈ Ω

lies in H1(Ω) as well.
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Proof. See Corollary 2.1.8 in [19]. A more general theorem about trun-
cation of Sobolev functions can be found as Corollary 25.11 in [18].

Proposition B.10 (Levi). Let (Ω, µ,Σ) be a measure space. If a de-
creasing sequence of functions vk ∈ L1(Ω, µ) is given and v := infk∈N vk
lies in L1(Ω, µ), then vn converges to v in L1(Ω, µ).

Proof. See Theorem 11.1 in [17].

Proposition B.11 (Fatou). Let (Ω, µ,Σ) be a measure space. Then
for any sequence of nonnegative functions vk ∈ L1(Ω, µ), which may
take the value +∞, we have

lim inf
j→∞

∫
Ω
vj ≥

∫
Ω

lim inf
j→∞

vj.

In other words, the integral operator is lower semicontinuous.

Proof. See Theorem 9.1 in [17].

Proposition B.12 (Krasnosel’skii). Let (Ω, µ,Σ) be a σ-finite measure
space and f : Rd × Ω → R be such a map that f(w, · ) is measurable
and f( · ,x) is continuous for almost every x ∈ Ω and w ∈ Rd. If we,
furthermore, assume that the map

Ω 3 x 7→ f(w(x),x)

lies in Lp(Ω, µ) for every w ∈ Lq(Ω, µ) with 1 ≤ p, q < ∞, then the
w-dependence of this map is continuous.

Proof. See Theorem 3.7 in [1].





C
GRADIENT FLOWS IN ONE DIMENSION

Consider an ordinary differential equation of the form

ẋ = f(x) (36)

with a nonincreasing continuous function f : R→ R. We can then make
the following observations.

• Equation (36) is uniquely solvable on the whole time interval
[0,∞). Consequently, we can define a family of flow maps Φt that
map initial data to the solution after a given time t.

• If f has exactly one zero x∗, then Φtx converges monotonically to
x∗ as t→∞, for any x.

• The function t 7→ |f(Φtx)| is nonincreasing in t: If f(Φtx) is
positive, then Φtx grows, so that f(Φtx) shrinks, and vice versa.
Moreover, f(Φtx) can never change sign, since Φtx remains con-
stant from any point s with f(Φsx) = 0 on.

• Each flow-operator is nonexpansive, i.e.

|Φtx− Φty| ≤ |x− y|

holds for any x, y, and t > 0, since we have

d
dt(Φtx− Φty)2 = 2(Φtx− Φty)[f(Φtx)− f(Φty)] ≤ 0.
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ZUSAMMENFASSUNG

In der vorliegenden Arbeit wird das Modell geschwindigkeits- und zu-
standsabhänger Reibung, welches von zentraler Bedeutung für numeri-
sche Erbebensimulationen ist, von einem mathematischen Gesichtspunkt
untersucht.

Zunächst werden bekannte Gesetze in eine abstrakte Struktur einge-
ordnet, auf Grundlage derer sie oder vergleichbare Reibungsgesetze
verstanden und analysiert werden können. Innerhalb dieses Rahmens
wird dann ein viskoelastisches Problem formuliert, sowohl in starker als
auch in schwacher Form, das sich aus der Modellierung erdbebentypi-
schen Rutschens entlang einer Störungszone ergibt.
Eine Analyse gestaltet sich, aufgrund der Variablenkopplung, die das
untersuchte Reibungsmodell mit sich bringt, schwierig. Im Zeitdiskreten
lassen sich jedoch sowohl Aussagen über Existenz und Eindeutigigkeit
von Lösungen als auch über stetige Parameterabhängigkeit tätigen.
Die zugrundeliegende Idee dabei ist es, eine Variablenkopplung als
Fixpunktproblem aufzufassen und die Konvergenz einer zugehörigen Ite-
ration zu zeigen. Darauf basierend wird ein Algorithmus vorgeschlagen,
der das Problem mithilfe einer Fixpunktiteration entkoppelt. Durch
den Einsatz eines modernen Lösers und adaptiver Zeitschrittsteuerung
ergibt sich so ein Verfahren, das nicht nur stabil sondern auch schnell
ist.
Seine Anwendbarkeit auf relevante Probleme wird im Folgekapitel unter
Beweis gestellt, das sich auf die Simulation von Megathrust-Erdbeben
konzentriert, wie sie an der Sohle einer Subduktionszone auftreten.

Das letzte Kapitel schließlich fasst die Annahmen zusammen, die in den
vorgehenden Kapitel getroffen werden.
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Für die Verfassung der vorliegenden Arbeit wurden keine anderen als
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