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Abstract
A physico-mathematical model of open systems proposed in a previous paper
(Delle Site and Klein 2020 J. Math. Phys. 61 083102) can represent a guiding
reference in designing an accurate simulation scheme for an open molecular
system embedded in a reservoir of energy and particles. The derived equations
and the corresponding boundary conditions are obtained without assuming the
action of an external source of heat that assures thermodynamic consistency
of the open system with respect to a state of reference. However, in numeri-
cal schemes the temperature in the reservoir must be controlled by an external
heat bath otherwise thermodynamic consistency cannot be achieved. In this per-
spective, the question to address is whether the explicit addition of an external
heat bath in the theoretical model modifies the equations of the open system
and its boundary conditions. In this work we consider this aspect and explic-
itly describe the evolution of the reservoir employing the Bergmann–Lebowitz
statistical model of thermostat. It is shown that the resulting equations for the
open system itself are not affected by this change and an example of numerical
application is reviewed where the current result shows its conceptual relevance.
Finally, a list of pending mathematical and modelling problems is discussed
the solution of which would strengthen the mathematical rigour of the model
and offer new perspectives for the further development of a new multiscale
simulation scheme.
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1. Introduction

Complex molecular systems of high relevance in science and technology are, in the major-
ity, open systems embedded in a large thermodynamic environment which acts as a reser-
voir of energy and particles. In this work we define a system to be ‘open’ if it exchanges
energy and matter with the exterior, whereas a closed system can exchange only energy but
not matter. The necessity of extending the model of closed systems in physics, chemistry
and biology, was suggested over the years by a strong activity of theoretical and mathemat-
ical physicists who developed several theoretical models of open subsystems embedded in
a large thermodynamic reservoir of energy and particles [1–8]. Despite the availability of
theoretical models, the corresponding implementation in numerical schemes for performing
simulations of complex systems has not happened as expected. The mathematical abstraction
and complexity of the models has represented a significant obstacle for their practical imple-
mentation in computer simulation schemes. However, applied physicists, and researchers in
molecular simulation in particular, call for urgent progress in such a direction [9]. In fact,
molecular dynamics (MD) [10, 11], considered nowadays a powerful tool for studying com-
plex molecular systems [12], needs to overcome the restrictive principles of conservation of
energy and matter to access a much larger spectrum of physical situations [13, 14]. Related
progress of computational methods can only be driven by physico-mathematical models of
open systems that are systematically based on first principles as much as possible but not
restricted to ideal or abstract situations only. The success of such a project would assure
that simulations of open systems are characterised by an increasing physical accuracy and
reproducibility when treating realistic physical and chemical problems. In our previous work
[15] a first attempt was made to employ a physico-mathematical model that rationalises the
principles of an MD scheme whose main characteristic is the exchange of matter and energy
between different subregions of the simulation box. Specifically, the adaptive resolution sim-
ulation (AdResS) scheme [16, 17] (see also section 7.1) was qualitatively mapped onto the
Bergmann–Lebowitz (BL) model of open systems [1, 2] and this mapping helped identify-
ing numerical procedures for the calculation of time correlation functions consistent with the
physical principles of a system with variable number of particles [18]. The latest version of
the AdResS scheme (see reference [19]) has in turn led to the development of a physico-
mathematical model that derives boundary conditions at the interface between a molecular
simulation region and its adjacent reservoirs from first principles [20], thereby clearly identi-
fying the degrees of freedom available for the specification of the reservoirs’ characteristics.
Such systematically derived boundary conditions could, in perspective, guide the design of an
evolved variant of the AdResS scheme that could properly account for situations of nonequi-
librium [21] or reliably couple a region represented by molecular simulation with the fluctu-
ating hydrodynamic regime of its large-scale environment [22] in a self-consistent multiscale
simulation.

1.1. Aim of this work

In reference [20] (see also figure 1 for illustration) an open system Ω with n particles
was defined as a subsystem of a large Universe, U, containing N particles. Next, from the
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Figure 1. Pictorial illustration with corresponding formalism for the open system Ω,
which is a subsystem with n particles of a large system U (Universe) containing N
particles.

Liouville equation of the Universe the degrees of freedom in U\Ω were integrated out, leading
to a Liouville-type system of equations which defines a hierarchy of n-particle phase space dis-
tribution functions for the open system. However in numerical schemes an external thermostat
is required to enforce thermodynamic consistency and thermal stability to the simulation, thus
the current theoretical model would not match the conditions of a numerical scheme. For this
reason, the aim of this work is to close the gap between the numerical implementation and the
theoretical model by analyzing the effect of the introduction of an external thermostat acting
in U\Ω on the equations of fn in Ω. The majority of heat baths/thermostats used in molecular
simulation are, however, build upon empirical schemes aiming at numerical efficiency first.
They all introduce an ad hoc alteration of the particle dynamics to impose a desired average
temperature for particles in a given region (see e.g. reference [23]). The empirical character of
numerical thermostats is such that it is difficult to cast them in the explicit mathematical form of
a heat source acting on the system of interest which can be explicitly introduced in the Liouville
equation. For this reason, for the mathematical derivation, we have chosen a popular model of
heat bath suitable for the Liouville equation, that is the BL model [1, 2]. This model is general
enough to express in a clear mathematical form the effective action of a numerical thermostat
on a region of space and thus it represents an appropriate choice for the theoretical derivations.
Thus, in this paper, we will adapt the BL thermostat to the hierarchical open systems model
for the U\Ω region and extend the idea to more reservoirs for treating situations with a thermal
gradient. The paper is organised as follows: we first describe the essential characteristics of the
physico-mathematical model of open system of references [20, 24]. Next the basic principles
of the BL model for a heat source/bath are introduced and their inclusion into the equations of
an open system of references [20, 24] are shown. The result of such an inclusion is the main
formal result of this work: we show that the form of the equations is not altered by the addition
of the thermal bath. We introduce the AdResS method and clarify the conceptual relevance of
the current results for numerical applications by reviewing a simulation study where the ther-
mostat plays a major role. Finally a list of mathematical open problems of the current model
and of its potential evolution is discussed before a short summary with conclusions.
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2. Liouville equations: from a large system of N particles to an open
subsystem of n particles

This section recalls the basic information, required in the present context, of the model pre-
sented in reference [20]. Figure 1 pictorially represents the idea of partitioning a large system
of N particles, named Universe, into a subsystem, Ω, that occupies a prescribed subdomain
of U and is home to a time dependent number n(t) of particles, and its (particle and energy)
reservoir, U\Ω = Ωc with N − n(t) particles. The aim is to derive the Liouville equations for
the probability in phase space of the particles in Ω by integrating out the degrees of freedom of
particles in Ωc from the Liouville equations of U. In this context, the Universe is characterised
by its Hamiltonian:

HN =

N∑
i=1

�p2
i

2M
+ Vtot(qN), (1)

where �pi is the momentum of the ith particle, M is the mass of an individual particle, while
the interaction potential between particles i and j in positions �qi and �q j is given by: Vtot(qN) =∑N

i=1

∑N
j=1, j�=i

1
2 V(�q j − �qi) and its probability density in phase-space

FN : R+ × (U × R
3)N → R (t, XN) �→ FN(t, XN), (2)

with ∫
SN

FN dXN = 1, (3)

where XN ∈ SN = (U × R
3)N subsumes the position and momentum variables of the N

particles. With these basic ingredients the corresponding Liouville equation reads:

∂FN

∂t
= −

N∑
i=1

[
∇�qi · (�viFN) +∇�pi ·

(
−∇qiVtot(qN)FN

)]
, (4)

where �vi = �pi/Mi is the ith particle’s velocity. The subsystem Ω, when it is (momentarily)
occupied by n particles, is characterised by the Hamiltonian:

Hn =
n∑

i=1

�p2
i

2M
+

n∑
i=1

n∑
j�=i

1
2

V(�qj − �qi) (�qi,�qj ∈ Ω), (5)

and probability density:

fn : R+ × Sn → R; (t, Xn) �→ fn(t, Xn) for (n = 0, . . . , N)

fn(t, Xn) =

(
N
n

) ∫
(Sc)N−n

FN(t, Xn,ΞN
n ) dΞN

n (6)

ΞN
n ≡ [Ξn+1, . . . . .ΞN] where Ξi = (�qi,�pi) ∈ SN−n

c ,

(See the definitions of Sn and SN−n
c in figure 1.) Importantly, for fixed time the tuple ( fn)N

n=0
of n-particle functions is a probability density on the direct sum ⊕N

n=0(Sn → R) of individually
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un-normalised functions of n arguments that inherits its normalization condition from that for
the Universe stated in (3), so that

N∑
n=0

∫
Ωn

∫
(R3)n

fn(t, (q, p)) dp dq = 1. (7)

As anticipated above, the aim is to integrate equation (4) w.r.t. the variables of SN−n
c and to

derive from the equation for FN(t, XN) a set of N + 1 Liouville-type equations for the n-state
probability density, fn(t, Xn), in Ω. The details of the integration procedure can be found in
references [20, 24], here we report the final result:

∂ fn

∂t
+

n∑
i=1

(
∇�qi · (�vi fn) +∇�pi ·

(
�Fi fn

))
= Ψn +Φn+1

n , (8)

where

�Fi = −
N∑

j=1; j�=i

∇�qiV(�qi − �q j), Ψn = −
n∑

i=1

∇�pi ·
(
�Fav(�qi) fn(t, Xi−1, Xi, Xn−i

i )
)

, (9)

with

�Fav(�qi) = −
∫
Sc

∇�qiV(�qi − �q j) f ◦2(X j|Xi)dX j, (10)

representing the mean field force exerted by the outer particles onto the ith inner particle. Here
f ◦2(Xout|Xin) is the conditional distribution for joint appearances of an outer particle given the
state of an inner one. This quantity is either assumed to be known or can be modelled. Finally

Φn+1
n = (n + 1)

∫
∂Ω

∫

(
→
pi ·

→
n)>0

(→
v i ·

→
n
) (

fn+1

(
t, Xn, (

→
qi,

→
pi)

)
− f n (t, Xn) f 1

◦
(→

qi,−
→
pi

))
d3 pi dσi,

(11)
implements the knowledge that the Liouville equation for FN is an advection equation in the
state space of the Universe, so that the theory of characteristics must be used when monitoring
which information can leave and enter the subdomain Ω (for details, see reference [20]). In
equation (11) f1

◦ (�qi,−�pi) represents the modeler’s assumption for the one particle distribution
of the reservoir at the interface boundary ∂Ω.

3. Multiple reservoirs
An interesting and instructive special case of the model presented in the previous section con-
cerns the case of a subsystem Ω interfaced with two (or more) disjoint reservoirs, each kept
at a different thermodynamic condition, that is, at different temperature and average particle
density. Such a scenario, illustrated in figure 2, is relevant for cases of subsystems of a large
complex system where the (natural or artificial) environment creates a thermal gradient acting
on the subsystem of interest and induces thermophoresis [25, 26]. In this context, the derivation
of Liouville-like equations for the probability density of the particles in Ω from the Liouville
equation of U proceeds as in the previous section, except that now we can be more specific: the
integration over the degrees of freedom ofΩc now separates into the integration over the subdo-
mains Ω1

c and Ω2
c , which individually are assumed to feature spatially homogeneous statistics
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Figure 2. Pictorial illustration with corresponding formalism for the open system Ω
interfaced with two disjoint reservoirs of particles at different temperatures. Here U =
Ω1

c ∪ Ω ∪Ω2
c , that is Ωc = Ω1

c ∪ Ω2
c , ∂Ω = ∂Ω1 ∪ ∂Ω2. T1 and T2 are the temperatures

of particles in Ω1
c and Ω2

c , kept constant by external thermostats/sources of heat acting
over each thermostat separately. T(x) is the temperature in Ω as a function of the position
generated by the difference in temperature of the two reservoirs.

enforced by external heat baths. The detailed derivation is presented in reference [24], whereas
here we report only the final results:

∂ fn

∂t
+

n∑
i=1

(
∇�qi · (�vi fn) +∇�pi ·

(
�Fi fn

))
=

∑
k=1,2

(
Ψn,k +Φn+1

n,k

)
, (12)

where k ∈ {1, 2} labels the reservoirs and

Ψn,k = −
n∑

i=1

∇�pi ·
(
�Fk

av(�qi) fn(t, Xi−1, Xi, Xn−i
i )

)

Φn+1
n,k = (n + 1)

∫

∂Ωk

∫
(�pi ·�n)>0

(�vi ·�n)
(

fn+1 (t, Xn, (�qi,�pi))− fn (t, Xn) f ◦,k
1 (�qi,−�pi)

)
d3 pi dσi.

(13)

Of course this time the modeller needs separate assumptions for the statistics of both reservoirs
at the interfaces ∂Ωk (i.e., models for f ◦,k

1 (�qi,−�pi), and f ◦,k
2 (Xout|Xin)) for k ∈ {1, 2} since the

reservoirs are conditioned independently. The procedure can be straightforwardly extended to
an arbitrary number of m disjoint reservoirs 1, 2, 3 . . .m, interfaced with Ω:

∂ fn

∂t
+

n∑
i=1

(
∇�qi · (�vi fn) +∇�pi ·

(
�Fi fn

))
=

m∑
k=1

Ψn,k +Φn+1
n,k . (14)

Such a formal derivation is rather general and does not imply a specific choice of the func-
tions f ◦,k

1 , f ◦,k
2 , they can represent very general behaviour of the outside world, including

discontinuous or continuous variation of their properties along the surface of Ω.

4. The essence of the BL model of thermal bath

The detailed description of the BL model can be found in the original papers of references
[1, 2] here we report the key feature of the model required for the current discussion. The BL
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model describes a close system of particles in contact with an ideal infinite reservoir at given
temperature acting as a source/sink of energy/heat. It can be extended also to open systems
with a source/sink of particles (as treated by us in reference [15]), however in the current
context such an extension is not needed. For the case of a reservoir that acts as heat bath,
the physical principle of the BL model states that the interaction between the system and the
bath is impulsive (stochastic) and involves a discrete transition of the system in phase-space
from a state, X, to a state X′. From the formal point of view, a transition from a state X to a
state X′ is governed by a contingent probability K(X′, X)dX′ dt where the kernel K(X′, X) is a
time-independent stochastic function. K(X′, X) expresses the probability per unit time that the
system at X makes a transition to X′N due to the interaction system–bath. The total interaction
between the system and the bath writes:

∫
dX′[K(X, X′)F(X′, t) − K(X′, X)F(X, t)]. It follows

that the general equation of time evolution of the probability density F(X, t), is:

∂F(X, t)
∂t

= −{F(X, t), H(X)}+
∫

dX′[K(X, X′)F(X′, t) − K(X′, X)F(X, t)]. (15)

If direct microreversibility of the dynamics is assumed, then one has that:

K(X, X′)F(X′, t) − K(X′, X)F(X, t) = 0; ∀X, X′, t. (16)

However, for a stationary distribution, Bergmann and Lebowitz in references [1, 2] state that it
is sufficient to satisfy a less restrictive condition, without assuming direct microreversibility:

∫
dX′[K(X, X′)F(X′, t) − K(X′, X)F(X, t)] = 0. (17)

The condition above is more appropriate for our case because direct microreversibility cannot
be assumed in presence of a reservoir of particles where the microscopic degrees of freedom are
either integrated out (theoretical model) or are fictitious (numerical scheme). In the presence or
several, m, distinct baths the total action on the system corresponds to the sum of the individual
action of each bath, i.e.:

∂F(X, t)
∂t

= −{F(X, t), H(X)}+
m∑

i=1

∫
dX′[Ki(X, X′)F(X′, t) − Ki(X′, X)F(X, t)]. (18)

It must be reported that, in our knowledge, do not exist explicit expressions of K(X, X′) that
can be used in numerical applications. This model aims at defining universal conditions that a
reservoir must fulfil but it does not prescribe a straightforward receipt for applications, as we
have discussed also in the previous sections. In next section we will adapt the scheme above to
define the heat bath acting only on the particles in Ωc but not (directly) acting on the particles
in Ω.

5. BL-like thermostat for Ωc

The thermostat acting on the region Ωc continuously supplies/removes energy to/from Ωc, i.e.
the reservoir of Ω, but should not act directly on Ω. Below we will model the action of the
thermostat in Ωc through the stochastic kernel of BL that mimics the interaction of a system
with an ideal infinite reservoir of energy. The Liouville equation for the Universe in presence
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of a generic thermostat reads:

∂FN

∂t
+

N∑
i=1

[
∇�ri · (�piFN) +∇�pi ·

(
−∇ri Vtot(qN)FN

)]
= I(t, XN), (19)

where:

I(t, XN) =
∫
SN

{
K(XN , (XN)′)FN(t, (XN)′) − K((XN)′, XN)FN(t, XN)

}
d(XN)′, (20)

for the case in which the model of thermostat given by BL is chosen.
In the following to avoid the heavy formalism of adding a parenthesis for labelling the

prime, let us define: (XN)′ ≡ YN; (Xn)′ ≡ Yn; (ΞN
n )′ ≡ ΓN

n . If we now proceed with the integra-
tion w.r.t. the variables of SN−n

c for equation (19), as done in the passage from equation (4) to
equation (8), we obtain:

∂ fn

∂t
+

n∑
i=1

(
∇�qi · (�vi fn) +∇�pi ·

(
�Fi fn

))
= Ψn +Φn+1

n +

∫
SN−n

c

I(t, XN)dΞN
n . (21)

We will show that
∫

SN−n
c

I(t, XN)dΞN
n = 0; ∀t; ∀Xn ∈ Sn if we choose the form of thermostat of

equation (20).
In fact, the key characteristics of the applied thermostat is that it must act only on the vari-

ables of the reservoir, that is on the variables of Sc, leaving the other variables untouched. This
means that the transitions allowed in phase space due to the interaction with the thermostat are
all those for which X ≡ Y ∀ X, Y ∈ S, that is (�qi,�pi) ≡ ((�q)′i, (�p)′i), ∀�qi,�pi, (�q)′i, (�p)′i ∈ S

Let us rewrite
∫

SN−n
c

I(t, XN)dΞN
n as:

∫
SN−n

c

I(t, XN)dΞN
n =

(
N
n

)∫
SN−n

c

∫
SN−n

c

∫
Sn

{
K(XN , YN)FN(t, YN)

− K(YN , XN)FN(t, XN)
}

dYn dΓN
n dΞN

n , (22)

that is, we have partitioned the total integral I(t, XN) into the domain Sn and its complementary
SN−n

c , with Yn ∈ Sn and as before ΓN
n ∈ SN−n

c . The integrand in the inner part of the rhs of (22)
can be rewritten, according to the above rules for the thermostat acting only on the variables
of Sc, as:

K(XN , YN)FN(t, YN) − K(YN , XN)FN(t, Xn)

= K(Xn;ΞN
n , Xn;ΓN

n )FN(t, Xn,ΓN
n ) − K(Xn;ΓN

n , Xn;ΞN
n )FN(t, Xn,ΞN

n ), (23)

that is we have operated the partitioning of the variables of SN in the variables of Sn and SN−n
c

inside the kernel and inside FN , with the additional condition that the variables in Sn are left
unchanged by the action of the thermostat, i.e. Xn ≡ Yn. Finally, if we rewrite the integral (22)
exchanging the integration order between dYn and dΞN

n , taking into account that dYn ≡ dXn,
one obtains:∫

SN−n
c

I(t, XN)dΞN
n =

(
N
n

)∫
Sn

∫
SN−n

c

∫
SN−n

c

{
K(Xn;ΞN

n , Xn;ΓN
n )

× FN(t, Xn,ΓN
n ) − K(Xn;ΓN

n , Xn;ΞN
n )× FN(t, Xn,ΞN

n )
}

dΓN
n dΞN

n dXn.

(24)
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The internal integrals are symmetric in ΞN
n and ΓN

n and thus the double internal integration
leads to:
∫

SN−n
c

∫
SN−n

c

{
K(Xn;ΞN

n , Xn;ΓN
n )FN(t, Xn,ΓN

n )

− K(Xn;ΓN
n , Xn;ΞN

n )FN(t, Xn,ΞN
n )
}

dΓN
n dΞN

n = 0; ∀t, ∀Xn ∈ Sn. (25)

The result above tells us something relevant about the model of reference [20], that is,
the effect of the thermalization of Ωc on the particles of Ω remains to be expressed by the
modeller’s assumption regarding f1

◦ (�qi,−�pi) and f ◦2(Xout|Xin) at the interface boundary ∂Ω.
Then, if the particles in Ωc are assumed to be thermalized at a given temperature T, f1

◦ (�qi,−�pi)
and f ◦2(Xout|Xin) must be consistent with this choice. In particular, the probability that a particle
in ∂Ω has a certain momentum must be consistent with a probability distribution of momenta
at the wished temperature.

6. Differently thermostatted disjoint regions of Ωc

Let us consider for simplicity the case of two reservoirs. One needs to show that the condition:∫
SN−n

c
I(t, XN)dΞN

n = 0; ∀t; ∀Xn ∈ Sn still holds. In this case the model implies the introduction

of K1(XN , YN) and K2(XN , YN) which act separately in two disjoint regions interfaced with
Ω. The introduction of separate kernel also implies that, analogously to the case of a single
reservoir, the thermal state of the two different regions enters in the model trough the modeller
choice at ∂Ω1 of f1

◦ (�qi,−�pi) and f ◦,1
2 (Xout|Xin) and of f2

◦ (�qi,−�pi), f ◦,2
2 (Xout|Xin) at ∂Ω2, i.e. their

choice must be compatible with temperature T1 and T2 respectively. With the partitioning of
space into the subsystem Ω and the two reservoir regions Ω1

c and Ω2
c one can write:

∫
SN−n

c

I(t, XN)dΞN
n =

∫
SN−n

c,1

I1(t, XN)dΞN
n +

∫
SN−n

c,2

I2(t, XN)dΞN
n , (26)

with Sc ≡ Sc,1 ∪ Sc,2 and Sc,1 ≡ (Ω1
c) × R

3 and analogously for Sc,2, with the definition:

I1(t, XN) =
∫

SN−n
c,1

∫
Sn

{
K1(XN , YN)FN(t, YN)− K1(YN , XN)FN(t, XN)

}
dYn dΓN

n dΞN
n , (27)

analogously for I2(t, XN). Here K1
(
XN , YN

)
, K1

(
YN , XN

)
acts on the variables,

(�qi,�pi), ((�qi)′, (�p)′) ∈ Sc,1, and analogously, K2

(
XN , YN

)
, K2

(
YN , XN

)
acts on the variables

(�qi,�pi), ((�qi)′, (�p)′) ∈ Sc,2. It follows:

∫
SN−n

c

I(t, XN)dΞN
n =

∑
i=1,2

∫
SN−n

c,i

∫
SN−n

c,i

∫
Sn

{
Ki(XN , YN)FN(t, YN)

− Ki(YN , XN)FN(t, XN)
}

dYn dΓN
n dΞN

n , (28)

as for the case of a single reservoir, each term of the sum is equivalent the integral
of equation (22). Thus each term separately leads to the expression equivalent to that
of equation (25), that is to integrals that are symmetric in ΞN

n and ΓN
n and thus to∫

SN−n
c,i

Ii(t, XN)dΞN
n = 0.
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Figure 3. Pictorial illustration of the AdResS set up and the equivalence of its space
partitioning with the space partitioning of the physico-mathematical model of reference
[20] and section 7.1: AT ≡ Ω; Δ ≡ ∂Ω; TR ≡ Ωc. In AT ∪Δ molecules are treated at
atomistic resolution, while in TR the molecules become non-interacting point-particles
(tracers). Molecules can freely move in space and across the different regions.

7. Application to molecular simulation

In this section we first introduce the AdResS technique and then we review an application
regarding an open system in a thermal gradient. In the example the reservoirs play a key role
and the results of the current paper assure conceptual/physical consistency to the numerical
results.

7.1. AdResS: a molecular simulation technique that mimics an open system in contact with a
reservoir of energy and particles

AdResS, is a scheme of MD that allows to treat molecules at different resolution according
to their position in space. As a matter of fact the region of high resolution, that is the region
of major interest, is equivalent to an open system embedded in a large reservoir of molecules
at low resolution. Further progress has brought AdResS to be closer to the theoretical idea
of an open subsystem of molecules embedded in a mean-field reservoir. In fact, in its current
incarnation, the particles in the low resolution region have been reduced to the very essen-
tial representation, i.e. non interacting point-like particles (tracers) regulated by a mean-field
[19] (see also figure 3). Specifically, the simulation box is partitioned in AT region, where
molecules have atomistic resolution and where the observation of physical properties takes
place; Δ regions, interfaced on both sides of the AT region, where molecules still have atom-
istic representation, and finally a particle reservoir region, TR, where molecules are represented
by non-interacting point-particles. The Δ region, despite the atomistic resolution, is artificial
and it is only needed to design proper boundary conditions for AT. In fact in Δ an external one-
particle force, called thermodynamic force, imposes constraints on the molecular density so
that the resulting density in Δ is compatible with the target molecular density of the AT region.
The thermodynamic force has been derived by first principles of thermodynamic and statistical
mechanics to assure that calculated physical quantities in the AT region are equivalent to the
corresponding quantities in a simulation of reference where the whole box is at atomistic reso-
lution [26, 28]. In addition an external thermostat fixes the temperature in Δ ∪ TR at a wished
value. The definition of the thermodynamic force and of the thermostat in Δ is, in an effective

10
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Figure 4. Pictorial illustration of the AdResS set up for simulating a thermal gradient,
ΔT = T1 − T2, acting in the open (fully atomistic) region AT . At each AT/Δ+ TR
interface a different thermodynamic force, Fi(x, Ti) with i = 1, 2, is calculated following
the indications of the theoretical model of references [20, 24].

way, the numerical equivalent of the boundary conditions derived for a subsystem in reference
[20]. A set up with a spherical AT region where Δ represents its external surface, while the
rest of the box represent the TR region, is also used often in AdResS simulations; it represents
a straightforward technical extension of the scheme of figure 3. It must be underlined that the
tracer particles do not play any explicit role in the physical model and in the simulation results.
They are required for technical reasons so that the numerical algorithm that dynamically feeds
the molecular region with particles (or adsorbs particles, if in excess) is implemented in an effi-
cient manner. The resulting numerical scheme has been shown to deliver highly efficient and
accurate simulations of large systems with very complex molecular structures, e.g., hydrated
biomembranes [29], to name one relevant example.

7.2. Open system in a thermal gradient

In references [21, 24] the AdResS approach was employed to study an open system in a thermal
gradient, as illustrated in figure 4.

The boundary conditions at the two different interfaces between the AT and the (two distinct)
Δ regions were derived following the results shown in section 6. Specifically, at each interface
(separately) the one particle density is enforced to be as if the open system was in equilibrium
with each single reservoir, as suggested by equation (12). In the terminology of AdResS this
implies the definition of two different thermodynamic forces, one acting at the AT/Δ inter-
face on the left and one acting at the AT/Δ interface on the right, as illustrated in figure 4.
In addition, the imposition of a thermal gradient in the AT region requires also the use of dis-
tinct thermostats that keep the two disjoint reservoirs at the respective target temperature. With
this set up the simulation results were highly satisfactory and an example is reported here in
figure 5.

However, in the original theoretical model of references [20, 24] the description of a sharp
thermal gradient, equivalent to that of the numerical study, is possible only under a restric-
tive approximation. In fact in absence of any external source that provides/removes heat, the
different parts of U\Ω connected via Ω would exchange particles and energy until even-
tually a state of equilibrium across the entire Universe U were reached. Thus one needs
the restrictive physical approximation that the reservoirs are large enough to approximately
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Figure 5. Particle density across the AdResS simulation box under different thermal
gradients (continuous line) compared with a full atomistic simulation of reference (dot-
ted line). The agreement in the AT region (i.e. region of interest) is very satisfactory
and shows that the AdResS technique, with boundary conditions designed following the
formal results of reference [20], is a reliable numerical approach for the simulation of
an open system embedded in a reservoir of particle and energy, in and out of equilib-
rium. The quantities plotted are in Lennard-Jones units. [24] John Wiley & Sons. © 2021
The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH. CC
BY-NC-ND 4.0.

maintain their fixed uniform temperatures over short time intervals of observation. Obvi-
ously there is an inconsistency between the theoretical model and the numerical implemen-
tation because, as a matter of fact, the reservoirs of the numerical model are finite (not much
larger than the AT region) and there is no restriction on the time of observation in the sim-
ulation study. The results of the current paper solve this problem and thus legitimize the
design of the boundary conditions in AdResS according to the equations of the theoreti-
cal model. In addition, it must be underlined that despite the fact that the BL kernel can-
not be explicitly used in numerical applications, the results of AdResS, with boundary con-
ditions taken from the theoretical model, are found to be highly satisfactory with several
numerical thermostats. In particular the Andersen [30] thermostat, used in the application
shown in this section, and the Langevin [31] thermostat, recently used in several AdResS
applications for biophysical systems [32]. Such thermostats are very different in their prac-
tical realization, however they both fulfil the BL conditions in a practical, albeit different,
manner.

8. Open mathematical problems and further modelling perspectives

In this section we list a series of mathematical and modelling pending problems related to
the model of open systems. The solution of such questions would allow for a substantial step
forward in the rigorous mathematical formalization of the model; this in turn will allow a
further development of the numerical approach with the possibility of simulating a broader
spectrum of physical and chemical systems.
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8.1. Limit N →∞; Ωc →∞ at finite Ω

In our view the most relevant mathematical problem with important consequences for the appli-
cations, is the limit to N →∞; Ωc →∞ at fixedΩ, that is, an infinite reservoir for a finite open
system. While it is not a major problem to properly define FN(XN , t) for a finite N, it may turn
to be not trivial to define its corresponding limit for N →∞ in this context and derive, in such
a limit, a corresponding hierarchy of equations for fn(Xn, t). The problem has a similarity with
the Boltzmann–Grad limit [33] for the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy [34]. However, although the hierarchy of equations in references [20, 24] looks sim-
ilar to the BBGKY hierarchy, there is a substantial difference: in the BBGKY approach for a
system of N particles the Liouville equation is derived for a subsets of n particles with proba-
bility distribution function defined as the N − n-marginalised probability distribution function
of the total system, but without the partitioning of space in Ω and Ωc. Thus the hierarchy of
equations in references [20, 24] is different in form and meaning from the BBGKY hierar-
chy; the modelling hypothesis and mathematical analysis of the ∂Ω boundary is crucial for the
model of references [20, 24] and for its corresponding numerical implementation while such an
aspect is not present in the BBGKY approach. Nevertheless the limit N →∞ implies similar
challenges and thus existing results [35] for the Boltzmann–Grad limit may be used for the cur-
rent problem. The limit N →∞ would be crucial for deriving equations that allow for the cou-
pling ofΩ to a hydrodynamic regime and thus suggest conditions at the interface ∂Ω so that the
large scale information of Ωc, with the macroscopic conditions and corresponding fluctuations,
are passed onto Ω. The derived boundary conditions will then lead to a numerical approach for
accurate multiscale simulations linking the molecular scale of Ω to the hydrodynamic scale
of Ωc.

8.2. Modelling beyond f◦
(
�qi,−�pi

)
at ∂Ω

The key result of references [20, 24] is the derivation of the terms: Ψn and Φn+1
n . These terms,

in turn, lie on the modeller choice of a reasonable approximation for the particle probability
distribution of the reservoir in ∂Ω, that is f ◦ (�qi,−�pi). The strong assumption is that the inter-
action potential is short-ranged so that corresponding particle–particle long-range correlations
between particles in Ω and particles in Ωc can be neglected. In molecular simulations one has
electrostatic interactions and thus the short-range approximation is in principle not suitable.
However simulations have often proven, a posteriori, that a strong charge screening effect may
take place even for systems where the electrostatic interactions on the long range were thought
to be crucial [36]. Nevertheless a more involved design of f ◦ (�qi,−�pi) and f ◦2(Xout|Xin) where
a rigorously derived effective range of interaction, due to e.g. screening effects, is considered
would make the theoretical model closer to the reality of simulated systems. Furthermore,
as underlined in reference [24], it is worth exploring the possibility of extending f ◦ (�qi,−�pi)
from a single-particle distribution, to two-,three-. . . . s-particle distribution at ∂Ω that depend
explicitly on the particle number n of the open system. Such an extension would account for the
effects ofΩ onΩc because long-range interactions imply that particles in Ω do influence a size-
able number of particles in Ωc. In turn, such an influence generates a response of the reservoir
on the system, thus the mathematical analysis and corresponding modelling of such a process
is very relevant for the correct description of the physics in Ω. The extension of f ◦ (�qi,−�pi)
to many-particle function will transform the terms Ψn and Φn+1

n in nonlinear functions of fn

and thus account for the description of non-linear coupling effects. It must be underlined that
the particle-based exchange of information between the open system and the reservoir at ∂Ω
is the actual novelty and conceptual advantage of the corresponding computational method
compared to other numerical methods. In molecular simulation, usually, open systems with
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varying number of particles are treated by introducing/removing particles from the simulation
box through a Monte Carlo move regulated by an a priori fixed chemical potential [10, 13].
The particle-based properties of the reservoir and the corresponding passage of information
between system and reservoir (and vice versa) at ∂Ω, through a proper dynamical exchange
of particles, are lost, thus providing only a partial description of the physical properties of an
open system embedded in a large environment [14].

8.3. Extension to systems with quantum, electronic, degrees of freedom

The mathematical model discussed so far, describes only classical particles/molecules, thus
the next natural step would be the inclusion of electronic degrees of freedom described at
quantum mechanical level. The explicit consideration of electronic degrees of freedom not
only requires different physical principles than the classical ones, but also, and above all,
implies the use of more complex mathematical quantities. From the mathematical point of
view, there exists a large amount of work which treats quantum/electronic degrees of free-
dom in open systems, however current available literature mostly focuses on simple systems.
For example the Lindblad master equation [37, 38], that is von Neumann equation for the
density matrix for open systems [18], is applied to ideal cases, but, so far, has not been
incorporated in any numerical scheme for treating electronic degrees of freedom in complex
molecular systems [39]. From the point of view of simulation, the difficulty of developing
efficient simulation schemes with rigorous mathematical models has led to the use of numer-
ical tools based on qualitative/empirical principles where often even basic physical accuracy
comes into question. The class of current MD approaches that treats open systems of molecules
with electronic degrees of freedom is called ‘adaptive quantum mechanics/classical mechanics’
(A-QM/MM) [40, 41]. The variation of number of molecules in an open system/subsystem
is mimicked by performing a series of simulations of a closed system, each with a differ-
ent number of molecules; static and dynamics properties of the subsystem are calculated by
averaging over the closed-system simulations. Ayers and Miranda-Quintana have derived a
rigorous result [42] which shows that, by applying the current A-QM/MM techniques, one
samples an artificial ensemble not compatible with any physically well founded statistical
ensemble, thus leading to artificial results (see also reference [43]). The consequence is that,
as discussed in reference [40], results of A-QM/MM calculations are not reliable. The con-
clusion is that the extension of the model of references [20, 24] to electronic degrees of
freedom is highly desirable, not only in the mathematical field, but, above all in the field of
simulation.

9. Conclusions

We have revised the derivation made in references [20, 24] regarding the Liouville-like hier-
archy of equations for the probability distribution in phase space of an open system with one
or more particle reservoirs. The contribution of this work concerns the explicit introduction of
thermal baths acting solely in the reservoir regions; to this aim the analytic form for the thermal
bath was taken from a popular model by Bergmann and Lebowitz and adapted to the current
model of open system. The results show that the explicit inclusion of the thermal baths does not
change the form of the equations and that the thermal condition of the reservoirs is expressed
through the modeller choice of the statistics of reservoir’s particles at the boundary of the open
system. Such a choice explicitly enters in the system–reservoir coupling term, Ψn +Φn+1

n , in
the Liouville-like equation for the probability density in phase space, fn(Xn, t), of the open
system Ω. This result is relevant to guide the modeller to make specific choices for the one-
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and two-particle distribution of the reservoir at the interface boundary ∂Ω, as required by the
model. The explicit introduction of the thermal bath allows the theoretical model to resemble
in a closer manner the numerical scheme employed in simulations and thus to explore the full
power of the abstract model in designing optimal numerical schemes. Finally we list a series
of mathematical and modelling pending problems whose solutions would push the mathemat-
ical model to a more rigorous framework and would allow the numerical simulation scheme to
tackle a broader class of physical and chemical problems. Beyond the technical relevance of
the current results, this work aim at showing a realistic case where the interplay between math-
ematical modelling and the development of a molecular simulation scheme led to relevant steps
forward in both fields. In perspective, the hope is that such a synergy may be enforced further
so that rigorous mathematics accompanied by impactful applications becomes the standard
routine in molecular simulation.
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