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Introduction

Motivation

In recent years, the general interest in microbiome research has strongly increased. This is mainly
due to key findings suggesting a strong impact of microbial communities on the health of their
human hosts. For example, the human gut harbors a massive number of mostly beneficial
bacteria for which researchers have only gained prelimary insights about their key functions and
high diversity so far. Yet, the cellular and molecular interplay of microorganisms with their
host has already become apparent and many current research efforts focus on investigating
associations between microbial dysbiosis and certain disease states. Along with a beneficial
role of microbes, many bacteria and viruses can have harmful effects on their hosts and this
pathogenic potential is of utmost interest. For public health, a robust and fast detection of
pathogenic bacteria or viruses is critical: reducing the time for diagnosis and treatment of a
severe infection can drastically lower the potential risk of further transmission and mortality for
the affected patients. The detection of newly emerging and reoccurring pathogens requires
diagnostic assays to cover a broad spectrum for various potentially disease-causing agents.
However, handling global challenges such as the current SARS-CoV-2 pandemics does not only
require a fast detection, but also powerful methods to investigate biomolecules of pathogens for
an in-depth understanding at the functional level. For example, the SARS-CoV-2 spike protein
had been identified as a key target for eliciting neutralizing antibodies and it is essential to
investigate its role for the immune response.
In the past, high-throughput genome sequencing technologies have revealed both the immense
variety of pathogens and the complexity of microbial communities. Reaching beyond the genetic
potential that is addressed by metagenomics, the technique of metaproteomics as the mass
spectrometry-based analysis of microbial communities enables investigating the metabolic and
cellular pathways in which microbial enzymes are key players. In addition, proteomics itself
has reached a mature stage where it cannot only be used in a research context, but also
for diagnostics as it had been demonstrated with newly emerging SARS-CoV-2 applications.
Recently, more powerful bioanalytical instrumentation and advances in machine learning provide
exciting prospects for MS-based metaproteomics. However, the increasing quality and quantity of
data from large-scale proteomics experiments demand the development of new robust algorithms
and special-purpose software. Next to shotgun approaches, upcoming targeted proteomics
approaches and data-independent acquisition can overcome intrinsic problems concerning
sensitivity and specificity but require adapted developments of computational methods to
unleash their full potential. Finally, a holistic view on biological processes through omics-based
analyses can only be achieved by workflows that not only regard multiple omics levels separately
but link and integrate multi-omics data to create an added value for the experimentalists.
Overall, the technological advances in instrumentation and experimental setups have lead to
new opportunities of analysis depth and speed, but the risk is high that data analysis and
interpretation lag behind the fast progress in data acquisition. It therefore remains a general
challenge to handle the large amounts of data from high-throughput experiments and to achieve
a fast and reliable outcome.



During my studies, I could identify the following specific challenges:

• Algorithmic protocols and software for processing and analyzing metaproteomics data
require robustness, user-friendliness, interoperability, and sustainability to be transferable
into clinical and industrial applications.

• Research and diagnostic applications lack special-purpose methods such as reliable
bioinformatic methods for detecting and characterizing viral pathogens.

• Workflows for integrating host and microbiome data from multiple omics levels
(metagenomics, metatranscriptomics, and metaproteomics) are needed for a meaningful
biological interpretation.

• Individual developments bare the potential risk of unintended, approach-based biases:
comprehensive surveys and independent benchmarking studies on bioinformatics methods
are therefore essential to evaluate the outcome of respective workflows.

Objectives and scope of the work

With the above mentioned challenges in mind, this habilitation thesis aims at revealing the
various potentials offered by meta-omics technlogy and corresponding bioinformatics methods
to process, analyze and interpret data derived from experiments on microbial and microbiome
samples. During my work at the Robert Koch Institute I put a particular emphasis on developing
computational methods for detecting and characterizing bacterial and viral pathogens as well
as for integrating host and microbiome data at three different meta-omics levels. In
addition, I contributed to both biology-focused experimental and data-oriented bioinformatics
benchmarking studies. Finally, the focus of my work also broadened towards integrating
methods and data for multiple omics levels, including metagenomics, metatranscriptomics, and
metaproteomics.
The following sections give a synopsis of the major findings from my conducted research after
finishing my doctoral dissertation in 2016 [1]. According to §2.I.1.(c) of the Habilitationsordnung
the written habilitation thesis should be preceded by a detailed summary of published research
results. For this habilitation work, ten scientific articles were chosen that I had contributed
to with further co-authors since finishing my PhD. This habilitation thesis was written as a
result of three first-author, three middle-author, and four last-author journal articles [2–11]. All
original manuscripts have been deposited in the attachment of this work.
As stated in the title, the focus of my habilitation work was to establish a bioinformatics
environment by developing, evaluating and improving processing and analysis methods
for data from meta-omics technology with direct applications in microbiome research and
pathogen diagnostics. In close collaboration with renowned national and international scientific
co-workers, I conducted and steered projects for developing bioinformatic algorithms and
software for computational analysis of pathogen and microbiome samples at the taxonomic and
functional level. To adress the existing data-oriented challenges, representative scientific and
diagnostic applications using bacterial and viral data sources have been selected in this work.
The lack of special-purpose bioinformatics methods has been tackled by mainly concentrating
on the development of robust and user-friendly software for (i) metaproteomics [2, 6, 8, 9],
(ii) virus diagnostics [5, 7], and (iii) multi-omics integration of host and microbiome data
[10]. A further pillar of my research within this habilitation framework represent survey and
benchmarking investigations on evaluating bioinformatic methods for database-independent



de novo sequencing in proteomics [3, 4] as well as an international multi-lab benchmarking
study that aimed to evaluate existing algorithms for identification, quantification, and protein
grouping in metaproteomics [11].
In the following sections, the motivation and main results of each article are highlighted together
with a detailed statement describing my contribution with respect to the conceptual design
and project implementation. In addition, I had further contributed to several peer-reviewed
publications with middle and last authorships. These publications are not described in detail
in this work, but are listed and briefly summarized in a separate paragraph at the end of this
summary.
Finally, a step towards accomplishing this habilitation presents my continuous teaching of
bioinformatics and meta-omics lectures and courses each semester in the Department of
Mathematics and Computer Science at the FU Berlin since the summer term 2017.



Summary of research

MPA Portable Software for Analyzing Samples in Metaproteomics

Microbiome research has received an increased attention because of the key roles that microbial
communities have in the environment and in the human, animal, and plant host. It is
well studied that the human gut microbiome takes over crucial host-related functions, for
example, it is a critical component of digestion and nutrient update and can also resolve
an immune response following an infection [12]. The microbiome is that important because
microorganisms are essential to the niche system (e.g., a human host) in which they are
found. Common bioanalytical techniques such as 16S rRNA gene sequencing or whole
metagenome sequencing are very useful to study the taxonomic composition and the functional
potential of microbial communities. However, with their use one cannot assess the actual
functional profile of microbes under specific conditions or at a given point in time. To gain
insights from functionally active snapshots of microbial communities, metaproteomics, the
mass spectrometry-based analysis of proteins from multi-species samples was established [13].
Various studies using metaproteomics have been conducted to characterize microbiomes at
the protein level with respect to taxonomic composition and functional enzymes in relevant
metabolic pathways [14, 15]. At the computational side, however, the field still faces specific
challenges of data analysis and interpretation including (i) the more pronounced protein
inference issue, (ii) the risk of selection bias, and (iii) the inflated search space leading to
previously described issues of false discovery rate estimation. In general, existing bioinformatic
methods for proteomics had not been adapted to overcome these issues and tailored software
solutions for metaproteomics had been rare in general.
The first publication [2] describes the MetaProteomeAnalyzer (MPA) Portable software
as full-featured application that overcomes several limitations of the original server-based
application [16]. The software provides an end-to-end data processing workflow for
metaproteomics: its features include a fully customizable experiment and project setup system
with metadata annotations, loading and indexing of MS/MS spectra, protein sequence database
search with multiple search algorithms, peptide and protein identification, false discovery rate
estimation, protein grouping (using multiple user-defined grouping rules), taxonomic assignment
(using NCBI taxonomy) and functional analysis based on KEGG pathways. For running the
software, no specific computational expertise is required for installation and the prior dependence
on a relational database system has been resolved. Further, the integrated database search
algorithms have been updated to high-performance algorithms such as MS-GF+ and Comet. In
order to tackle the issues of the decreased identification yield in metaproteomics, two different
variants of a two-step search approach were added: a commonly used protein-based and a new
taxon-based iterative search. Finally, besides the existing graphical user interface, a command
line interface was added to run MPA on cluster environment supporting multi-threading for
task parallelization. Along with the presentation of the new features of the software, we
evaluated the developed methods using two experimental data sets derived from samples with
a known species composition. The first benchmarking data set was created by mixing the
five bacterial species Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Micrococcus



luteus, and Desulvofibrio vugaris. The second data set used for benchmarking was the
published lab-assembled mixture of nine microbial organisms (9MM) [17]. The results from
the benchmarking experiments indicate that combining multiple search algorithms significantly
increases the number of correct unique and correct taxon-specific peptides and, at the same
time, the number of incorrect hits could be reduced by using a taxon abundance threshold
of 5%. In addition, the two-step searching showed to be beneficial when combined with the
taxonomic filtering by increasing the number of correct taxonomic assignments while keeping
the number of incorrect assignments at a similarly low level compared to standard database
searching. Notably, it needs to be considered that the two-step searching the actual peptide
false discovery rate (FDR) is likely higher than the FDR threshold set for the second search
iteration.
The concept idea for the MPA Portable software arose from discussions with all authors,
particularly, Fabian Kohrs, Robert Heyer, Bernhard Renard, and me. Fabian set up and
conducted the web-lab experiments and provided the 5BCT benchmarking data set. I steered
the software project and wrote the code for the new features such as the implementation of the
two-step search approach as well as the command line interface with multi-threading support.
Data evaluation of the benchmarking analysis was carried out by me with valuable suggestions
from Bernhard. I wrote the manuscript with edits and suggestions from all authors.

Performance Evaluation of De Novo Sequencing Algorithms

In proteomics, searching tandem mass spectra against sequence databases presents the method
of choice for peptide and protein identification. However, this approach runs into problems when
sequence information is unavailable or when samples contain unexpected sequence variants,
as in the case of samples from non-model organisms or cancer cell types, respectively. The
method of de novo sequencing aims to overcome this problem by inferring amino acid sequences
directly from a tandem mass spectrum without mapping to any reference sequence. In the
past, de novo sequencing has been often been considered being slow and inaccurate compared
to gold-standard database searching and therefore was not applicable in high-throughput
proteomics studies. Recently, however, faster and more accurate de novo sequencing algorithms
have been proposed that claim to benefit specifically from higher-resolution data derived from
improved instrumentation in mass spectrometry.
In the second publication [3], we evaluated the performance of common de novo sequencing
algorithms in an independent benchmarking study. While the outcome of new developments is
often compared against competing algorithms, there is a lack of unbiased comparative studies
and benchmarking is often performed without any solid ground truth: to our knowledge, de
novo sequencing results had only been compared against peptide hits obtained from database
search algorithms so far. Notably, searching against sequence databases is an error-prone
process for which a suitable statistical error control such as FDR estimation needs to be
applied. In order to provide a ground truth for assessing the de novo sequencing performance
at the peptide level, we performed a simulation of tandem mass spectra by performing machine
learning-based peak intensity predictions. In this study, we evaluated the de novo sequencing
algorithms Novor [18], PepNovo+ [19] and PEAKS [20] using experimental high-resolution
data sets from different instruments and fragmentation modes. Across all evaluations, the
Novor algorithm showed the overall best performance concerning full length peptides and amino
acid recall, followed by the commercial competitor PEAKS. On experimental spectra, none of
the evaluated algorithms was highly accurate for delivering full-length peptide sequences. It



should also be noted that the analysis of the simulated spectrum data resulted in an accuracy
of over 80%, while gold standard database search algorithms failed to reach perfect accuracy.
The latter results indicate that reference-based searching and de novo sequencing are closer in
performance than it had been reported in previous studies. We could also demonstrate that
using short peptide tags of few amino acids based on the de novo sequence predictions resulted
in high accuracy values of over 90%. Finally, we also assessed the most common de novo
sequencing errors and the impact of lacking fragment ion and noise peaks on the performance
of the algorithms. The outcome was that peptides with long sequences, for example, caused by
multiple missed cleavages, presented a yet unresolvable challenge for the algorithms. Based on
the outcome of this benchmarking study, we could summarize that de novo sequencing has a
high potential when its tools are improved or utilized in downstream analyses.
For this project, I had the initial idea of evaluating existing de novo sequencing tools in
proteomics. This idea was refined in more depth in various fruitful discussions with Bernhard
Renard. Together, we then planned and designed the stucture of the benchmarking study.
Bernhard provided additional input concerning data simulations of MS/MS spectra and accuracy
assessments of de novo sequence predictions. I wrote the benchmarking code, conducted the
data processing as well as analysis and wrote the manuscript. Bernhard gave valuable advice
and edited the manuscript. Felix Hartkopf critically read the manuscript and provided useful
feedback.

Analyzing the current state of de novo sequencing in shotgun proteomics

In bottom-up proteomics, the gold standard is to search tandem mass spectra against in-silico
digested protein sequences, commonly provided by reference databases such as UniProtKB or
NCBI, to order to identify peptides and to infer proteins. However, this process is dependent
on the quality and disposability of suitable reference proteomes. Therefore, when such
proteomes are unavailable or incomplete (e.g. for samples from non-model organisms or
microbial communities), the database-driven approach becomes limited. In addition, single
amino acid variations or post-translationally modified proteins occurring in pathogenic or
clinical cancer samples are problematic because reference database often do not cover such
variabilities. While tailored protein sequence databases can be used, the increased search
space limits the discrimination power of database algorithms for peptide identification. Thus,
complementary approaches are required to overcome these specific challenges. Besides spectral
library searching, de novo sequencing remains an appealing technique that infers partial or
complete peptide sequences directly from tandem mass spectra.
The third publication [4] provides an overview on the current state of bioinformatic methods
and software tools for de novo sequencing in proteomics. In this article, we first describe the
algorithmic principles: many de novo sequencing algorithms use graph theory-based methods
by constructing a spectrum graph for each tandem mass spectrum. By doing so, peaks are
converted into nodes representing masses (i.e., m/z values) of partial peptides. When two
nodes have the same or similar mass difference of one or multiple amino acids, a directed edge is
applied. The best-scoring path over the spectrum graph is then used to find candidate peptide
sequences from a given mass spectrum. Second, we analyzed the literature starting from the
1980s until today focusing on methods and software tools for de novo sequencing, including
techniques based on dynamic programming, integer linear programming, divide-and-conquer,
hidden Markov models, machine learning, and deep learning. Besides full-sequence (i.e., from N-
to C-terminus) methods, we describe sequence tagging algorithms by which so-called sequence



tags can be obtained: these are partial peptide sequences that consist of few amino acids
surrounded by mass gaps. Third, we describe methods for sequence-to-protein mapping for
combining de novo sequencing with database-driven methods with the ultimate goal of protein
inference. Forth, we focus on use cases of de novo sequencing from previous studies such
as antibody sequencing, application on non-model organisms and cross-species identification,
venom-based studies, and carbohydrate analytics. Finally, we critically discuss shortcomings
of existing methods and highlight future potential of improvement of de novo sequencing
methods and software tools, eventually leading to a wider adoption of de novo sequencing in
the proteomics community.
The idea of analyzing the current state of de novo sequencing evolved in discussions with
Bernhard Renard and Marc Vaudel. I conducted the major part of the literature research with
assistance from Felix Hartkopf. Felix also helped in designing the figures and evaluating the
use cases and practical applications. I wrote the manuscript with edits and suggestions from all
authors. I also thank Tobias Loka and Robert Rentzsch for critical reading of the manuscript
and their valuable suggestions.

Peptide selection software for virus diagnostics based on targeted proteomics

Viruses are infectious agents that transmit biological information and replicate inside living
cells of host organisms. On order to replicate, viruses reprogram the function of host cells from
humans, animals, plants, and even bacteria to produce virus particles, also known as progeny
virions. Despite their tiny size and commonly simple structure, viral pathogens such as HIV,
Influenza, Ebola, Zika, and lately SARS-CoV-2 present serious health threats for millions of
individuals worldwide. Human viral pathogens are highly diverse with currently hundreds of
different pathogenic species and many more likely to be discovered in the future. For public
health, a sensitive, specific, and fast detection of pathogenic viruses is critical: reducing the time
for diagnosis and treatment of an infection can strongly decrease the potential risk of further
viral transmission and mortality for the affected patients. As an example, for SARS-CoV-2,
it is crucial to rapidly detect the virus in large cohorts of clinical samples to control the virus
spread by specific containment measures. While detecting SARS-CoV-2 variants allows to
identify attenuated or more infectious forms of the virus, specific viral mutations might undergo
existing molecular detection methodologies. In this context, mass spectrometry-based targeted
proteomics has recently emerged to a promising methodology for characterizing viral proteins
in biological samples with high sensitivity, quantitative accuracy, and reproducibility.
In the fourth publication [5], we describe the development of Purple (Picking unique relevant
peptides for viral experiments), a software for selecting target-specific peptides used in targeted
proteomics assays for virus diagnostics. Developing such assays involves various steps of peptide
candidate selection, peptide synthesis, and assay optimization. The peptide selection process
requires comparing candidate peptides against a large search space of background proteomes.
Equipped with a graphical user interface, Purple enables peptide candidate selection across
various taxonomic levels and automated filtering for background protein sequence information
with proteins that are not specific for the target virus proteome. In this process, candidate
peptide sequences are validated against a user-selected sequence database of virus proteomes.
In the publication, we provide practical use cases using sample data from different virus strains
and species. Our software facilitates performing the crucial step of taxa-specific peptide
selection and therefore can be used for pathogen screening and diagnostics.
The original work in preparation to the presented publication had been conducted by Johanna



Lechner in her master thesis (Institute of Bioinformatics at the Department of Computer
Science and Mathematics, FU Berlin) at RKI under my supervision. The concept, methodology
and formal analysis of a computational workflow for peptide selection was developed by me in
discussions with Johanna, Felix Hartkopf Bernhard Renard and Jörg Döllinger. The resources
were provided by Andreas Nitsche, Marica Grossegesse, Bernhard and Jörg. Johanna and Felix
prepared the original draft of the manuscript and editing was done by all authors. Felix also
helped in designing the figures and further data analysis visualizations.

Improving metaproteomics with automated sample comparison, metagenome
annotation and peptide indexing

The most severe challenges in metaproteomics originate from limitations of experimental
as well as computational protocols. At the experimental side, the sample preparation is
time-consuming and is also affected by sensitivity issues to sample impurities. While a typical
sample preparation workflow used in metaproteomics research currently takes up to one week,
the overall diagnostics workflow would require a much shorter timeframe for the complete
analysis to be employed in routine fashion. Another immanent problem in metaproteomics
workflows concerns computational aspects with the lack of well-established data analysis
methods and software tools for processing and interpretation of microbiome samples.
In the fifth publication [6], we describe the combination of a full-featured metaproteomics
workflow that covers both important experimental as well as computational requirements. The
aim of our work is to ensure overall time-efficiency, experimental simplicity, high-throughput
performance, reproducibility, and robustness. All these features are strongly required in
routine diagnostics protocols. Our newly developed workflow has the advantage of being
very time-efficient in the sense that the overall processing from sample preparation to data
analysis and visualization can be performed within 24 hours. The workflow features several
experimental improvements with respect to protein extract and in-gel digestion. Concerning
the bioinformatics part, important features are to compare results at the identification and
quantification level from different experiments and to automatically annotate metagenome
sequences with taxonomic and functional information. In addition, we developed a peptide index
that is used when processing protein databases, overcoming the Occams razor implementation
of peptide identification and protein inference algorithms tailored for single proteome use
cases. For metaproteomics, however, inferring a reduced number of proteins can be highly
disadvantageous because relevant information on potentially occurring species with homologous
sequences is consequently lost. The peptide index prevents this problem, by performing a
lookup step after the database search step that recovers all protein hits inferred from the
identified peptides. This strategy works in combination with a subsequent protein grouping step
to accurately represent homologous proteins across multiple species. This approach resulted
in an increase of reported proteins by a factor of up to 16, while the number of reported
metaproteins remained approximately the same or slightly decreased. Across all tested samples,
our new workflow resulted in at least two times as many protein identifications and significantly
more assigned taxa as well as annotated protein functions. These features were additionally
implemented into the MPA server version 3.0, increasing the usability of the software to analyze
and interpret metaproteome-based MS/MS data from microbial samples. It resulted in at
least two times as many protein identifications and significantly more assigned taxa as well as
annotated protein functions. This performance increase provides the basis for further steps to
establish metaproteomics in the routine analysis of technical and environmental samples and



points to directions of applying it into diagnostic settings.
The concept and further development of the bioinformatics workflow was steered by me
together with Robert Heyer. The software implementations were performed by Kay Schallert,
Roman Zoun, Sebastian Dorl, Robert, and me. The original draft of the manuscript was written
by Robert, Kay, Dirk Benndorf, Udo Reichl. I further assisted with editing and revising the
manuscript.

Iterative database searching for strain-level identification of pathogenic
samples

Acquiring strain-level knowledge is of utmost importance in any diagnostic setting, for example,
in infection outbreak scenarios from emerging viruses. However, it is also required in a
therapeutic context to infer virulence, i.e., the degree of damage caused by a microbe to
its host, and to identify the resistance phenotype of pathogens. While various proteomics
applications have emerged in the recent past, obtaining exact strain-level information from
pathogenic samples remains challenging because the exact sample origin is often unknown. In
this context, untargeted searches relying on large reference proteome databases are often biased
towards frequently described organisms, have limited taxonomic depth at the species level,
or contain closely related strains with very similar sequences. Moreover, extending databases
with strain-level information increases computational runtime, while it reduces statistical power
when the false discovery rate is estimated based on the target-decoy approach. One way to
overcome these problems is to constrain the search space upfront, but this is prone to selection
bias with potentially relevant strains remaining unidentified or being assigned to incorrect taxa
in the end.
In the sixth publication [7], we describe a bioinformatics workflow called TaxIt for strain-level
identification using tandem mass spectra from samples of unknown taxonomic background.
The aim is to address the increasing search space of untargeted strain-level sequence databases
using iterative searching. We adapted the general concept of multi-step procedures used
in database-driven peptide identification to a comprehensive strain-level search space that
is required for untargeted identification and taxonomic assignment. We apply two distinct
identification stages for both species- and strain-level classification in iterative fashion: the first
step performs an untargeted search aiming to select relevant species from an unknown sample.
Based on the identified species candidates, the second step focuses on a limited number of
adequate strain-level proteomes being automatically acquired from external database resources.
This way, we overcome the issue of immediately requiring an overly large search space of a
database containing all available strain-level proteomes at the same time. In addition, we
address ambiguous taxonomic assignment originating from similar proteomes with a newly
developed abundance weighting algorithm that increases the taxonomic assignment confidence.
For benchmarking, we apply our workflow on selected bacterial and viral samples. In contrast
to non-iterative strategies, we could show that TaxIt correctly identified all microbial strains
in each of the cases. In summary, our workflow provides an accurate strain-level classification
with increased identification confidence and reduced taxonomic ambiguity.
For this project, I participated in the workflow design and consulted for the individual
software modules. Together with Mathias Kuhring and Bernhard Renard, I helped with
drafting the original manuscript and assisted with editing and revising. Mathias performed the
implementation and evaluation of the workflow. Bernhard participated in the computational and
experimental design. Jörg Döllinger performed the experimental design and data acquisition.



Andreas Nitsche participated in the experimental design.

Combining established tools into a complete metaproteomics analysis workflow

Microbiome research has evolved to a highly relevant field with multiple applications in
microbiology, ecology, and medicine. The increased attention of microbiome studies is mainly
due to methodological and technological progress in omics domains. Complementary to
metagenomics and metatranscriptomics, metaproteomics gives insights into the functioning of
microbial communities and their interactions with the host at the protein level. For analyzing
data from microbiome samples using metaproteomics methods and software tools have been
developed. Two examples are UniPept [21] and MPA [16]: these tools fulfill different, yet
complementary purposes with Unipept assigning peptides to taxaonomies and MPA providing
a complete peptide identification and protein grouping.
In the seventh publication [8], we describe the implementation of a connection from MPA
to Unipept that allows identified peptides to be uploaded directly to Unipept. The identified
peptides can be also provided by PeptideShaker as another proteomics software that allows
false discovery rate filtering of peptides equally to MPA. To evaluate the developed combined
workflow, we reprocessed 45 spectrum files of data from a sample from a simplified model of
the human gut. This sample aims to cover the most known metabolic activities typically found
in the human gut. It consists of eight bacterial species covering the most dominant genera
Firmicutes, Bacteroidetes, and Proteobacteria in the human intestine. For data processing
and visualization, over 67,000 uniquely identified peptides were transferred via an export
routine automatically to Unipept. In Unipept, the taxonomies can be visualized using different
techniques either via a treeview, sunburst plot, treemap, or a hierarchical outline. In addition,
it provides a functional analysis feature by assigning peptides to Enzyme Commission or Gene
Ontology annotations. In conclusion, we provide the link of established metaproteome-based
identification workflows with a user-friendly visualization module for downstream analysis of
taxonomies and protein functions.
I supervised Tim van den Bossche during his research stay at the Robert Koch Institute
and during this time I steered the project while developing the idea of integrating multiple
metaproteomics tools together with Tim. Bart Mesuere and I helped Tim with the code
implementation for the integration of the existing tools MPA and Unipept. Bernhard Renard,
Lennart Martens, and I conceived and designed the experiments that were then performed by
Tim. Tim wrote the manuscript together with edits and suggestions from me and the co-authors.

Data analysis protocol covering an end-to-end metaproteomics workflow

Mass spectrometry-based microbiome research faces various high technological requirements
such as high throughput capability, large dynamic range, high sensitivity, and mass accuracy,
but it also depends on sophisticated data analysis methods. On the one hand, these methods
need to provide reliable peptide identification and protein inference similarly as for conventional
single-organism proteomics tools. On the other hand, metaproteome-focused sample analysis
requires much attention on adding meaningful protein annotations at the data analysis and
interpretation stage. Previously, with MPA [16] and Prophane [22], two software tools were
tailored towards metaproteomics data analysis. MPA supports peptide-spectrum matching
with multiple database search algorithms and optimized protein grouping strategies. Prophane



is a web-based application focusing on taxonomic and functional annotation using different
annotation resources and results visualization. These tools have been applied in various
scientific domains such as microbial community research, molecular ecology, and the study of
host-pathogen interactions.
In the eighth publication [9], we describe a tailored workflow that integrates MPA and Prophane
as two well-established software solutions developed for metaproteomics. The proposed protocol
provides the researcher with guidelines for the step-by-step data processing and data analysis
instructions for mass spectrometry-based microbiome samples. Besides describing peptide
identification, protein inference and taxonomic assignment, it focuses on functional analysis
aspects of integrating external databases such as UniProt, EggNOG, PFAM and CAZy. For
evaluating the whole workflow, we provide an exemplary analysis on two different samples. In
this evaluation, we assess the effect of different sample preparation methods and the influence
of protein databases. Furthermore, we evaluate the taxonomic and functional composition
of these samples using Sunburst plots and Sankey diagrams. Our protocol enables the user
to perform the complete data analysis process in metaproteomics, including protein database
creation, database search, protein grouping, taxonomic as well as functional annotation, and
finally, specific features for results visualization and interpretation. While novice users are
provided with a robust and user-friendly data analysis in a few hours, more advanced users
benefit from the adaptability and flexibility and adaptability of the workflow.
The development of the protocol was supervised by Stephan Fuchs, Bernhard Renard, and me.
Henning Schiebenhfer and Kay Schallert performed the implementation of the protocol and
conducted the data analyses together with the help of Stephan, Bernhard, and me. Bernhard,
Stephan designed the experiments that were then performed by Henning and Kay. Stephan and
Henning wrote the manuscript together with edits and suggestions from the other co-authors
and me.

Multi-omics pipeline for integrated host and microbiome analysis

Microbiome research has gained much attention lately driven by findings on impact of microbial
communities on the health in humans, animals, and plants. Common analysis techniques are
metagenomics, metatranscriptomics, and metaproteomics: taken separately, these methods can
already powerfully complement and support each other. Also, many bioinformatics solutions
have been developed for analyzing microbiomes based on the data of each of the methods
alone. So far, however, there is a lack of bioinformatic software to process and analyze data sets
from these individual techniques in an integrated manner. Currently, automated multi-omics
bioinformatic workflows are almost non-existent and do cover two different omics levels at
most. Further, existing workflows have been designed for human microbiome analyses and
commonly neglect non-model organisms. The latter is crucial because non-model organisms are
underrepresented in public repositories and therefore reference sequence data is rare, leading to
problems with respect to data processing and analysis across different omics levels. Finally, a
full integration across multiple omics levels is required to fully decipher the ongoing interactions
between host and microbiota.
The ninth publication [10] describes the development and evaluation of gNOMO, a
meta-omics pipeline that integrates the analysis levels metagenomics, metatranscriptomics,
and metaproteomics. While these meta-omics techniques are already powerful individually,
their combination allows investigating the interplay of microbial species with their host at both
taxonomic and functional level. Besides the integration of meta-omics tools, we developed



a specific workflow for generating tailored protein sequence databases directly from genomics
and transcriptomics data allowing the analysis of host data without any proteome reference.
The gNOMO pipeline makes use of the workflow management system Snakemake to ensure
both automation capability and reproducibility. We demonstrate the use of the pipeline using
experimental datasets from samples of Blattella germanica, the German cockroach. This
non-model organism resides ordinarily in human habitats and harbors a complex gut microbiome
and further symbionts. Focusing from a biological perspective, we show the capabilities of
gNOMO with its complete meta-omics data integration, different sample abundance analysis,
taxonomic and functional annotation as well as visualization features for results interpretation.
While gNOMO can be customized for processing and analyzing multiple meta-omics data
types for producing output visualizations, it was designed for using paired-end sequencing with
high-resolution mass spectrometry data from non-model organisms. gNOMO closes the gap
of lacking multi-omics pipelines for microbiome and host samples integrating and comparting
data at the genome, transcriptome, and proteome level.
For this project, based on the initial ideas of Maria Muñoz-Benavent I conceptualized the work
of developing a multi-omics pipeline at three different omics levels. Together with Maria, I
conceived and designed the experiments that were then performed by her under my guidance.
Maria and Felix Hartkopf implemented the workflow in Snakemake with assistance of Vitor Piro
and Tim van den Bossche. Maria and I wrote and revised the manuscript together with edits
and suggestions from Carlos Garćıa-Ferris, Amparo Latorre, and Bernhard Renard.

Multi-lab study of experimental and bioinformatic workflows in metaproteomics

It has been demonstrated in many studies that microbial communities are major drivers in
biogeochemical cycles and have a strong impact on natural environments, industrial processes
as well as the health and nutrition of both humans and important livestock animals. Common
techniques for analyzing microbial communities are metagenomics, metatranscriptomics, and
metaproteomics. While high-throughput genome sequencing technologies have revealed the
immense variety of microbes and the complexity of microbiomes, metaproteomic approaches
go beyond the mere genetic potential by investigating the functional protein level and thereby
the enzymatic and metabolic pathways of both microbiome and host. While the field of
metaproteomics has experienced a significant growth over the last decade, the use of different
proposed workflows comes with the natural risk of unintended, method-specific biases.
However, to bring metaproteome studies into real-world clinical or industrial applications, it
important establish quality-controlled and reproducible methods both at the experimental and
computational level. As the next step, it is therefore required to evaluate the most commonly
used workflows in a larger benchmarking study involving different laboratories from the field of
metaproteomics.
In the tenth publication [11], we describe the setup and outcome of the first international
multi-laboratory study in metaproteomics, referred to as the Critical Assessment
of MetaProteome Investigation (CAMPI). The study was conducted as a ring trial
community-based effort for which each participating laboratory had received two different
metaproteome samples: one sample with known composition from a simplified mock community
simulating the gut microbiome and another from with unknown species origin in the form
of a complex, natural stool sample. In the CAMPI study, we compare experimental and
computational workflows including all analysis steps ranging from sample preparation to the
bioinformatic analysis of peptide identification, protein and species inference and quantification.



We observed that meta-omics databases performed better than public reference databases
across both samples. More importantly, we found that the functional profiles obtained from
the diverse analyses were highly similar across workflows, while minor differences were observed
for the inferred community composition. We also found that these differences originated
primarily from the wet-lab protocols rather than from the bioinformatic pipelines. Our work
demonstrates the robustness of metaproteomics serving as a template for further studies in the
field by providing benchmarking data sets for developments to further increase the quality of
metaproteomics analysis.
The original call for experimental laboratories to participate in a benchmarking effort was
sent out by Dirk Benndorf and Nico Jehmlich as main organizers of the 3rd International
Metaproteomics Symposium. The seven participating labs designed their experiments
individually. At the symposium, the decision was made to reanalyze the acquired data with
different bioinformatics pipelines. After that I steered the study, conceptualizing the design
and refined further bioinformatics analysis steps. The data analyses were performed the first
authors Tim van den Bossche, Kay Schallert, Benoit Kunath and Stephanie Schäpe under my
supervision. Tim, Kay, Benoit, Stephanie and I wrote the manuscript together with edits and
suggestions from all co-authors, in particular from Jean Armengaud, Catherine Juste, Manuel
Kleiner, Lennart Martens, and Bernhard Renard.



Further published work

While the ten selected articles described above represent the main directions of my research in
the last five years after completing my PhD, I co-authored several further publications that are
briefly described in the following paragraph.
In one publication [23], we evaluated the impact of sequence database choice on the identification
rate in gut microbiome studies. While this work appeared in 2016 after the submission of
my doctoral thesis, I contributed mainly to the manuscript during my PhD studies. I also
contributed as a first author during my PhD to a book chapter [24] that describes user-friendly
tools for peptide identification using tandem mass spectrum sequencing. While working in
the Bioinformatics Unit at RKI, I contributed as a first author for a review article [25] on the
techniques, challenges and advances in compuational microbial community proteomics. Another
publication [26] that I co-authored in 2018 describes modular bioinformatics workflows integrated
in the Galaxy for proteomics platform (Galaxy-P). In this context, I participated in a contribution
workshop with a group of other software developers and expert users from the metaproteomics
research community. The publication describes the software tools that were selected, packaged
and deployed via the Galaxy-P platform. In 2019, I co-authored another publication [27]
reviewing the current state of bioinformatics at the interface of genomics and metaproteomics
by surveying methods for metaproteogenomic data analysis. In the same year, I contributed
to a book chapter [28] on the peptide-to-protein summarization step used for accurate protein
quantification in label-based proteomics. In 2020, I co-authored a study [29] that evaluated
several software tools in metaproteomics for analyzing microbiomes at the functional level
by measuring their combined proteome-level response to environmental perturbations. In this
survey, we evaluated the performance of tools that take the combined proteome-level response
of microbiome to environmental perturbation into account. The aim was to enable scientists
making informed decisions regarding software choice based on their research goals. Furthermore,
I contributed as last author to a perspective article [30] in the context of the recent SARS-CoV-2
pandemics. In this article, we discussed the potential of proteomics for detecting viral infections.
In this publication, we highlighted the challenges and the future potential of applying proteomics
in routine virus diagnostics. In the time following this publication, several research articles have
been published in which MS-based proteomics techniques were applied to SARS-CoV-2 samples.
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Abstract: Emerging virus diseases present a global threat to public health. To detect viral pathogens
in time-critical scenarios, accurate and fast diagnostic assays are required. Such assays can now be
established using mass spectrometry-based targeted proteomics, by which viral proteins can be rapidly
detected from complex samples down to the strain-level with high sensitivity and reproducibility.
Developing such targeted assays involves tedious steps of peptide candidate selection, peptide
synthesis, and assay optimization. Peptide selection requires extensive preprocessing by comparing
candidate peptides against a large search space of background proteins. Here we present Purple
(Picking unique relevant peptides for viral experiments), a software tool for selecting target-specific
peptide candidates directly from given proteome sequence data. It comes with an intuitive graphical
user interface, various parameter options and a threshold-based filtering strategy for homologous
sequences. Purple enables peptide candidate selection across various taxonomic levels and filtering
against backgrounds of varying complexity. Its functionality is demonstrated using data from different
virus species and strains. Our software enables to build taxon-specific targeted assays and paves the
way to time-efficient and robust viral diagnostics using targeted proteomics.

Keywords: virus proteomics; mass spectrometry; virus diagnostics; data analysis; targeted proteomics;
peptide selection; parallel reaction monitoring

1. Introduction

Virus infections present serious health threats to millions of individuals worldwide. For public
health, the accurate detection of pathogenic viruses is time-critical because reducing the time for
diagnosis and treatment lowers the risk of disease transmission and patient mortality. Fast and robust
diagnostic assays are therefore required to rapidly detect re-emerging and newly emerging viruses
(e.g., Influenza, Ebola, Zika, or Hepatitis C virus). These diagnostic methods need to cover a broad
spectrum of potentially disease-causing viral agents.

Classical diagnostic strategies for detecting viral infection can be divided into two different
categories: on the one hand, virus detection can be established by targeted methods, such as
agent-specific polymerase chain reaction (PCR) or immunological techniques. On the other hand,
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detection approaches exist that provide an open view, such as electron microscopy or next-generation
sequencing (NGS). Besides their unbiased view, the latter methods have the advantage of identifying
multiple pathogens in a single experimental run. Due to its specificity (hybridization and sequencing)
and sensitivity (qPCR), the detection of nucleic acids is the gold standard in diagnostics. Conversely,
the detection of viral proteins is used less frequently in diagnostic settings and is usually based on
interaction with affine binding molecules such as antibodies or aptamers. However, producing these
binding molecules is generally time-consuming and laborious, as is the validation of their specificity.

While in clinical microbiology the analysis of subproteomes (<12 kDa) using matrix assisted laser
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a standard
method for the identification of bacteria and fungi, no comparable proteomic approach exists in
virology for technical reasons [1]. In recent years, MS-based targeted proteomics has evolved into
a technique for detecting proteins in complex samples with high sensitivity, quantitative accuracy,
and reproducibility [2,3]. Targeted proteomics is commonly used to test hypotheses on a subset of
proteins of interest, in contrast to discovery shotgun proteomics. The latter provides global proteome
profiling of thousands of proteins in a sample, however, at the expense of sensitivity and reproducibility.
Unlike discovery methods, targeted methods of selected/multiple reaction monitoring (SRM/MRM) [4]
and parallel reaction monitoring (PRM) [5] nowadays allow for detecting and analyzing preselected
proteins and peptides in sensitive, specific, and time-efficient manner. Furthermore, the development
of targeted proteomics assays has become easier in the past few years, owing to the advances of
analytical methods, instrumental capabilities, and computational workflows [6].

Targeted MS-based proteomics assay development typically involves (i) peptide candidate
selection, (ii) peptide synthesis, and (iii) assay optimization. This procedure now enables the transfer of
a process highly similar to the design of multiplex PCRs to the proteome level for detecting pathogens.
While MS-based targeted assays have not been used for detecting viruses in any diagnostic setting yet,
promising findings could already be achieved for identifying and quantifying pathogenic bacterial
species. For example, targeted proteomics methods were successfully used in previous studies on
Streptococcus pyogenes [7] and Mycobacterium tuberculosis [8].

Although targeted proteomics has gained much popularity with many use cases in experimental
research by now, relatively few research-oriented algorithms and software tools have been developed
that support the user-defined selection of peptides for designing targeted SRM or PRM assays. In
this context, Skyline [9] is a powerful and widely used software for designing targeted proteomics
assays. Besides its wide applicability to different targeted methods and its intuitive use, it also has
some internal limitations: first, Skyline is dependent on the operating system Windows, and can
therefore not be used under a Linux cluster server environment, and second, it does perform only exact
string matching during the peptide selection process without considering any homologies between
related organisms. PeptidePicker [10] is a web-based workflow to select peptides by providing,
amongst further options, the protein accession number and was designed for human and mouse
proteomes. PeptideManager [11] is a tool developed to select peptide candidates as protein surrogates
from a defined proteome. It was optimized for the use case of xenografts, i.e., human tumors
orthotopically implanted into a different species. While this software allows for constructing a peptide
database from any species-specific proteome, sequence homologies, and multiple taxonomic levels are
disregarded. Picky [12]—a web-based method designer for targeted assays—only provides support
for human and mouse sequences, while it relies on synthetic peptide data from the human-focused
ProteomeTools project [13,14]. In the context of targeted metaproteomics, the Unique Peptide Finder
of the UniPept web application [15] was developed to select unique peptides for user-defined taxa.
Furthermore, various computational tools have been developed to predict proteotypic peptides for
targeted proteomics experiments [16–18]. These methods often make use of machine learning training
setups that incorporate the probability of observing a peptide in a standard proteomics analysis,
referred to as peptide detectability [19] or observability [20], and commonly involve physicochemical
properties of the proteins to select high-responding peptides [21]. To our best knowledge, however,
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no software tool is currently available to select taxon-specific peptides for targeted proteomics assays
that also accounts for sequence homologies between different species or strain proteomes. Effectively
considering homologies is crucial for accurate taxon-specific diagnostics, because proteins measured
in virus samples frequently have a high sequence similarity either in closely related strains or due to
highly conserved functional domains.

Here we present Purple (Picking unique relevant peptides for viral experiments),
a platform-independent software that returns a set of taxon-specific peptides, after the user has
specified the viral target (i.e., a particular virus species or genus), as candidates for targeted proteomics
experiments. Equipped with a user-friendly graphical user interface and a threshold-based filtering
strategy for homologous sequences, it simplifies the design of MS-based targeted proteomics assays
for the end user. Purple enables peptide candidate selection and considers background sequence
information, i.e., proteins that are not related to a specific virus target, at various taxonomic levels.
Thus, all peptide candidates are validated against a user-defined database of virus proteomes. While
the design of MS-based targeted assays requires further steps, our software greatly facilitates the
cumbersome, yet important task of peptide selection and thereby paves the way to time-efficient
and robust pathogen screening and viral diagnostics. Purple is open source software available at
https://gitlab.com/rki_bioinformatics/Purple.

2. Materials and Methods

2.1. Purple Workflow

Purple is implemented in Python (version 3.6) and makes use of additional Python libraries such
as tqdm (https://github.com/tqdm/tqdm) for process bar calculation and Biopython [22] to calculate the
molecular weight of peptides. Purple is available as portable standalone version that already includes
all required libraries or Purple can be installed using pip or conda, which are managing dependencies.
The workflow of Purple is depicted in an overview diagram (Figure 1). Purple requires the input of
protein sequence databases and a configuration file. The databases are automatically rearranged into
a target and a background database. The “exact matching” step is used to remove exact sequence
matches with the background from the target peptide set. The remaining target peptides are used to
detect and remove homologous peptides. A result file containing the final unique peptides is created
together with various intermediate result files. These are outputs of all Purple processing tasks, namely
(i) digested peptides, (ii) exact matching peptides, (iii) non-homologous matching peptides and (iv)
background shared peptides.
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Figure 1. Overview of the Purple workflow. A configuration file and a directory path to the location of
FASTA databases serve as input (blue). In the database preprocessing step, the databases are separated
into target and background (orange). Any target peptides exactly matching to the background database
are removed. In the homologous matching step, any target peptides that have similar sequences are
filtered out (orange). All intermediate and final results are exported automatically to a user-defined
output folder (green).

2.1.1. Preprocessing (Target Selection)

The selection of a target virus proteome is handled by input and preprocessing routines in Purple.
For target selection, protein sequence databases in FASTA format serve as main input and are required
to be provided in UniProt format. To select the database input, a directory needs to be specified by
the user and multiple FASTA files can be considered for the processing. Two options of database
specification are available in Purple: the first option is to explicitly define target species names as a list,
which leads to the merging of all provided input databases. Each protein entry that contains one of
the defined target species names in the protein header is considered as a target protein. The protein
sequences not matching the defined target species are used as background database. The second option
is to select a specific FASTA file in the database directory as target database. All remaining databases
in the directory are then automatically merged to a single background database. As the background
database may still consist of proteins originating from one of the target species, each protein in the
background database is checked once more: if a protein header matches any species in the specified
target database file, the protein entry is removed from further processing accordingly.

Both options result in two types of databases, namely a target and a background database. In the
following, each protein sequence in these databases is in silico-digested using the enzymatic rule of
trypsin with optional proline digestion. The in silico digest step results in multiple peptides for each
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protein entry, and peptide sequences beyond the user-defined length boundaries are filtered out. In
addition, preprocessing includes the option of removing protein fragments and also allows replacing
each isoleucine by leucine: this option was implemented because these amino acids share identical
molecular masses and are therefore commonly not distinguishable in mass spectrometry. When the
preprocessing is completed, both a target and a background database are provided for further analysis,
which in this stage consist of peptides instead of proteins.

2.1.2. Exact Matching

Exact matching presents the first actual processing step in Purple: here, each of the previously in
silico-digested target peptides is compared against the provided background database (see previous
paragraph). In this procedure, target and background peptides of identical length are compared and
only those target peptides that are not contained in the background are considered further; thus,
peptide sequences with one or more exact sequence matches in the background database are filtered out
at this stage, because they are not unique to the user-defined taxa of the target space. This procedure is
performed iteratively until all in silico-digested peptides have been evaluated. The remaining peptides
that have not been filtered out are stored as unique peptide candidates for further processing and are
exported as intermediate result of the exact matching step.

2.1.3. Homologous Matching

Homologous matching is performed subsequently to the exact matching step. The goal is
to evaluate each of the unique peptide candidates concerning its potential sequence consensus to
homologous proteins in the background. The rationale behind this approach is that the more similar a
target peptide is to the background, the less appropriate it is as candidate for a taxon-specific targeted
assay. To assess the similarity of each peptide to the background proteomes, a sequence background
consensus metric is introduced (see next paragraph). The target peptides that are discarded either
during the exact or the homologous matching step are exported as so-called “shared” peptides. Shared
peptides have either an exact sequence match with the background or have background consensus
value above a user-defined threshold. To keep track of all processed data, target peptides with a
background consensus below the threshold are exported as well.

2.1.4. Background Consensus Metric and Threshold Generation

Owing to mutational effects on conserved viral proteins, peptides can often be shared within a
virus genus or family with minor sequence variations between them. This is problematic for targeted
assays because such peptide candidates are not specific for species- or strain-level identification. To
remove such taxon-unspecific peptides from the final sequence set, the background consensus metric
f (A, B) is used in Purple as the essential part of the homologous matching. Basically, the background
consensus presents the Hamming distance of a target peptide A and background peptide B of the same
length in relation to the length of the peptide n (Equation (2)). An amino acid is shared if the same
amino acid (d(x, y)) is at the same position in A and B (Equation (1)).

d(x, y) =
{

1, i f x = y
0, i f x , y

(1)

In other words, the background consensus is the sum of shared amino acids at a specific position i
divided by the number of amino acids in both (target and background) peptides. Even though the
Hamming distance is a simple metric, it provides a proof-of-concept and validation of Purple, as
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adding more sophisticated methods should only slightly improve the homologous matching while
increasing the computational effort and complexity.

For A = {a1, a2, . . . , an} and B = A = {b1, b2, . . . , bn} and n = |A| = |B| :

f (A, B) =
∑n

i=1 d(ai,bi)

n , f or ai ∈ A and bi ∈ B
(2)

This metric is applied to each of the target peptides that are compared to all background peptides
of the same length. For each target peptide, the maximum consensus is stored when being below a
user-defined background consensus threshold. A target peptide with a high background consensus is
likely to originate from a homologous protein or common protein domain. Therefore, the consensus
metric evaluates the conservation of peptides in the target and background database. A low background
consensus marks target peptides that are unique in sequence in the target species. All peptides with a
high background consensus below the previously chosen threshold are exported into the final results
file and the remaining shared peptides are exported as part of the intermediate output. The results
are supplemented with the peptide weight, the number of occurrences in the target database, as well
as species and proteins names. This enables the user to conduct further analysis with the previously
retrieved unique peptides. The Purple documentation is available for a complete description of all
output files and more details about the data interpretation.

2.2. Graphical User Interface

A graphical user interface (GUI) was developed for using Purple (Figure 2). This interface allows
researchers with less expertise in handling bioinformatics methods on the command line to use Purple
in a efficient and user-friendly manner. The Purple GUI makes software configuration and execution
straightforward and complex tasks can be rapidly accomplished. Any parameter can be adjusted in
the GUI, and the background consensus threshold can be set by the user. Furthermore, the processing
status can be inspected in a logging panel and a file menu provides options for saving and loading
configuration files. Note that configuration files are optional in Purple and a default configuration
is provided; thus, only system-specific parameters must be set in the GUI. Using configuration files
makes each task reproducible and the GUI-integrated configuration file choice allows for switching
between multiple settings easily. Figure 3 shows the final output in the tab separated values (TSV)
format that can be further processed and visualized using common spreadsheet software.
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Figure 2. The graphical user interface of Purple. In the top file menu, configurations files can be loaded
and saved. The top menu also includes a link to the documentation and manual. The listed GitLab page
provides direct user support from the developers via an issue tracking system. The upper panel shows
default parameters and allows modifying the configuration settings and processing start. The lower
panel displays the current processing status with logging information on the current run, configuration,
and progress of the analysis.
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Figure 3. Graphical representation of the Purple output. The tabular TSV output of Purple can be
imported into various spreadsheet software tools. This exemplary table shows the peptide sequence, the
calculated theoretical mass weight (Da), the highest background consensus, and the number of peptide
occurrences in the target proteome. The species, protein name and full description of the associated
protein are stored in a list for further analysis. In addition, the number of proteins and FASTA entries
are listed separately, because they can diverge, e.g., when a protein has multiple sequence variants.

2.3. Data

2.3.1. Target Virus Databases

To evaluate the performance of Purple, selected target virus species from sequence databases
were used. This section provides an overview on the virus species used with respect to database
composition and further background information on the virus type. The virus species were selected
based on their relevance for current or upcoming diagnostic settings.

Arenaviruses

Arenaviruses are enveloped RNA viruses with an average diameter of 120 nanometers that
have a bisegmented negative-strand RNA genome. The Latin term “arena” refers to the grainy
ribosomal particles acquired from the virus-host cells that can be viewed in cross-section with electron
microscopy imaging. Arenaviridae is a virus family whose members are generally associated with
causing chronic infections in rodents and zoonotically acquired severe diseases, such as lymphocytic
choriomeningitis or hemorrhagic fever, in humans. In this work, nine disease-causing Old and New
World arenavirus species are taken as targets for evaluating the performance of Purple (Table 1). Besides
Lymphocytic choriomeningitis virus, strain members of which cause aseptic meningitis, encephalitis,
or meningoencephalitis, all listed arenaviruses are causative agents for viral hemorrhagic fever (VHF).



Viruses 2019, 11, 536 9 of 23

Table 1. Alphabetically ordered list of arenavirus species used for the performance benchmarking. The
reader is referred to [23] for further details on these arenaviruses.

Virus Species Abbreviation NW/OW 2 NW - Clade 3 No. Proteins No. Peptides 1

Chapare mammarenavirus CHAV NW B 4 252
Guanarito

mammarenavirus GTOV NW B 4 244

Junin mammarenavirus JUNV NW B 4 246
Lassa virus LASV OW - 4 242

Lujo mammarenavirus LUJV OW 4 - 4 250
Lymphocytic

choriomeningitis virus LCMV OW - 4 245

Machupo virus MACV NW B 4 237
Sabia mammarenavirus SABV NW B 4 248

Whitewater Arroyo
mammarenavirus WWAV NW A/rec 4 240

1 Number of in silico-digested peptide sequences, 2 New World (NW)/ Old World (OW), 3 New World clade 4 Based
on genome sequence clustering, Lujo mammaarenavirus shows its own cluster [23].

Cowpox virus

Cowpox virus (CPXV) is a large double-stranded DNA virus with a proteome of over
200 proteins [24] that belongs to the genus Orthopoxvirus (OPV) of the Poxviridae family. CPXV has
been described as the source of the first vaccine used by Edward Jenner, who was the first to scientifically
describe the vaccination process against the smallpox-causing variola virus. Recent findings based on
a conducted analysis on the smallpox vaccine gave evidence of the suspected role of horsepox (instead
of cowpox) in the origin of the vaccine [25,26]. Since the pathogenicity and zoonotic potential of CPXV
are investigated at the Robert Koch Institute, detailed data acquired from MS measurements were
available (see Section 2.3.3). For performance evaluations, CPXV is further beneficial because this virus
species has several close relatives. In addition to the cowpox strains Brighton Red and Grishak-90, four
very close relatives with high sequence similarity are given: a genome comparison performed with
BLAST [27] showed that variola virus, monkeypox virus, horsepox virus, and vaccinia virus share
sequence identities of up to 98% (Supplementary Table S1).

Vaccinia virus (VACV Copenhagen and VACV Western Reserve)

Vaccinia virus is a member of the Orthopoxvirus (OPV) genus [28] and has been used for
vaccination against smallpox since the 19th century. Due to the high sequence similarity of members of
the OPV genus, it is possible to provide cross-protection vaccination by one member of the OPV genus.
Hence, the classification can be an issue, because it can be challenging to find peptides to reliably
classify a species or a strain. In this work, we investigate whether it is possible to distinguish between
the two strains VACV Copenhagen and VACV Western Reserve by finding strain-specific peptides
using Purple. Similar to CPXV, experimental data was publically available (see Section 2.3.3).

2.3.2. Background Virus Databases

The target databases mentioned above are species-specific and therefore cannot represent all
available virus proteomes. From the target databases, Purple only yields to species-specific unique
peptides. To extend this space to all virus proteomes and subsequently be able to find unique
peptides in that relation, we added a database that consists of all reviewed virus proteins available
on UniProt/Swiss-Prot [29]. In contrast to the target databases, this database is used exclusively as
a background database. At the time of writing, UniProt/Swiss-Prot contains 16,846 reviewed viral
proteins, which results in 301,387 in silico-digested tryptic peptides. In this work, we evaluate Purple
with and without the use of the larger background database.
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2.3.3. Background Human Databases

To account for samples mixed with human proteins we added a human database to the background.
This database originates from UniProt/Swiss-Prot [29] and enables Purple to discard human peptides.
Subsequently, this reduces false positives in experiments using virus-infected human samples. The
database consists of 20,428 proteins and was used exclusively for the CPXV analysis in this work.

2.3.4. Experimental Data

The MS/MS datasets used for the benchmarking of Purple originate from a previous study
published by Doellinger et al. in 2015 [24] (PRIDE project accession: PXD003013). In this work, a subset
of the data available was used including three CPXV Brighton Red, three VACV Copenhagen, and
three VACV Western Reserve MS/MS raw files. These raw files were acquired by an LTQ Orbitrap in
data-dependent manner. Further experimental details are listed and described in the above-mentioned
publication. Subsequently, three CPXV Brighton Red raw files were converted into MGF files using
the MSConvert function of ProteoWizard [30] with the peak picking parameter of MS-level two and
with zero sampling removal activated. Table 2 shows the number of MS/MS spectra for each virus
strain (CPXV Brighton Red, VACV Copenhagen and VACV Western Reserve). For peptide and protein
identification, these spectra were searched against proteome databases using the MS-GF+ [31] (version
v20181015) database search engine. The database search was performed with eight threads, an activated
decoy search, a chosen precursor with mass tolerance of five ppm, optimized for Orbitrap instruments,
and trypsin was selected as digestion enzyme. The sequence databases used for protein identification
are described in detail in Section 2.3.1. The database searches produced mzid output files that were
converted into TSV files using the build-in MS-GF+ conversion tool. Afterwards, the results were
filtered by applying a 1% false discovery rate (FDR) threshold at the PSM-level.

Table 2. This table shows the number of spectra from each sample replicate for CPXV Brighton Red,
VACV Copenhagen, and VACV Western Reserve virus species/strains.

Species/Strain No. Spectra in
Replicate 1

No. Spectra in
Replicate 2

No. Spectra in
Replicate 3

No. Total
Spectra

CPXV Brighton Red 19,396 19,352 18,920 57,668
VACV Copenhagen 19,740 19,265 19,170 58,175

VACV Western Reserve 19,421 19,453 19,076 57,950

3. Results

We here present three different use cases to illustrate the possibilities of targeted proteomics
using Purple in viral diagnostic settings. The first analysis focuses on the species-level resolution
for arenaviruses, the second evaluates the taxonomic classification using cowpox data from shotgun
proteomics measurements, and the third tests the capabilities of strain-level differentiation using
experimental data from two closely related vaccinia virus strains.

3.1. Analysis of Species-Level Resolution using Nine Arenavirus Species

In the first analysis, we aimed to evaluate the species-level resolution of our diagnostic approach
using sequence data from the Arenaviridae family. For this purpose, we investigated the resolution
of Purple by evaluating different viral species as target organisms against a proteome background
of similar species and viruses in general. We used nine arenavirus species (MACV, JUNV, SABV,
CHAV, GTOV, LASV, LCMV, WWAV, and LUJV; see Table 1) with proteomes containing four proteins,
namely (1) RNA-directed RNA polymerase L, (2) nucleoprotein N, (3) pre-glycoprotein polyprotein
GP complex and (4) RING finger protein Z. As background proteomes, we added all reviewed virus
proteins available on UniProt/Swiss-Prot to remove frequently occurring peptides (e.g., from conserved
sequences of functional domains). The removal of target peptides from similar virus proteomes intends
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to eliminate false positive detections (i.e., to increase the specificity). Since the protein sequences differ
strongly between the arenavirus species, we expected to retrieve sufficient unique peptides for each
species that serve as candidates for designing a targeted assay. For a benchmarking, we examined the
relative amount of taxon-specific target peptides for each of the arenavirus species using both exact and
homologous matching mode (Tables 3 and 4). The homologous matching was performed to evaluate
the impact of sequence homologies for the arenaviruses and between these and all other virus species.

Table 3. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes. The second column provides the number of nonspecific peptides, i.e., the ones
being shared with the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

MACV 237 119 178 118
SABV 248 127 191 121
LUJV 250 24 241 226
CHAV 252 121 197 131
GTOV 244 75 205 169
JUNV 246 123 187 123
LASV 242 35 227 207
LCMV 245 31 232 214
WWAV 240 31 226 209

Table 4. This table shows the number of taxon-specific peptides from nine arenavirus species after
(i) in silico digest, (ii) exact matching, and (iii) homologous matching (80% background consensus
threshold). Each target species was compared against the background of eight remaining arenavirus
species proteomes and additionally against all reviewed virus proteomes (from UniProt/Swiss-Prot).
The second column provides the number of nonspecific peptides, i.e., the ones being shared with
the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

MACV 237 143 162 94
SABV 248 144 183 104
LUJV 250 52 229 198
CHAV 252 137 190 115
GTOV 244 118 189 126
JUNV 246 139 171 107
LASV 242 126 171 116
LCMV 245 110 187 135
WWAV 240 130 181 110

First, we investigated the ratios of taxon-specific unique peptides and in silico-digested peptides
with a background database consisting of the four arenavirus proteins, as mentioned above. The exact
matching yielded to taxon-specific peptide ratios between 75.1% (MACV) and 96.4% (LUJV) (Figure 4).
This can be explained by the high sequence diversity between the nine arenavirus species: when
generating multiple sequence alignments (MSA) of these species for their four proteins, overall, a low
consensus of the sequences was found (Supplementary Data S1–S4). When applying a background
consensus threshold of 80%, significantly fewer taxon-specific peptides were obtained with relative
numbers between 48.8% and 90.4% for SABV and LUJV, respectively (Figure 4). Overall, the mean
decrease in the ratio of all species is 16.6% and the strongest ratio decrease can be found for MACV
(25.3%), SABV (28.2%), CHAV (26.2%), and JUNV (26.0%). These four species are all New World
arenaviruses and part of the clade B (see Table 2). The close relationship of these four virus species (as
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shown in the phylogenetic tree in Figure 5) causes high numbers of shared peptides which explains the
decline in taxon-specific peptides. The Old World arenavirus LUJV shows the highest taxon-specific
peptide ratio after homologous matching (90.4%) and even after homologous analysis against all
virus proteomes (79.2%). This illustrates that LUJV has the lowest sequence similarity with the other
arenaviruses. The low similarity can be explained by the isolated geographical distribution of LUJV in
Southern Africa [32]. In 2008, an outbreak of LUJV led to a high case fatality rate of 80% (4/5 cases), and
a follow-up analysis of its genome confirmed that LUJV is a novel virus species being only distantly
related to known arenaviruses and groups genetically closer to Old World viruses not associated with
VHF [33].
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Figure 4. Relative amount of taxon-specific target peptides from nine arenavirus species proteomes.
The ratio of unique to in silico-digested peptides is shown for exact (lighter colors) and homologous
(darker colors) matching mode with a background consensus threshold of 80%. Orange bars show
the results for the database consisting of four virus proteins for each arenavirus species. Purple bars
indicate results that were generated when adding protein sequences from all reviewed virus proteomes
(from UniProt/Swiss-Prot) as additional background.

Next, we assessed the protein sequence coverage on the basis of Purple-selected unique peptides
for all four arenavirus proteins (RNA-directed RNA polymerase L; Nucleoprotein N; Pre-glycoprotein
polyprotein GP complex GLYC; RING finger protein Z). We evaluated two different backgrounds here:
(i) a small background with the arenavirus proteomes (containing the four proteins) of the remaining
eight non-target species and (ii) a large background containing all arenavirus proteomes combined
with all reviewed virus proteomes from UniProt/Swiss-Prot (see Section 2.3.2).

The analysis of the protein sequence coverage shows that L, GLYC and Z are relatively well
covered by the taxon-specific peptides across all nine species for the small background (Figure 6).
Nucleoprotein NCAP has the highest variability in protein coverage with an interquartile range (IQR)
of 35.22% on the small background, suggesting that NCAP is the best-conserved protein among the
considered arenavirus species. When taking a closer look at the results of the larger background
analysis with all reviewed virus proteins, it can be found that the coverage decreases for all four
proteins. The NCAP protein shows the lowest median in protein coverage (20.18%). This shows
that NCAP has the lowest sequence consensus of taxon-specific peptides with other virus proteomes,
indicating that it is the best-conserved of the four proteins. Indeed, the other three proteins (L, GLYC,
and Z) have above 40% sequence coverage, thus more taxon-specific peptides can be obtained from
these proteins. This analysis shows that, depending on the use case, it may make sense to investigate
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individual proteins instead of whole proteomes. For example, proteins with low sequence coverage
based on taxon-specific peptides may be excluded.
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Figure 5. Phylogenetic tree of the pre-glycoprotein polyprotein GP complex (GLYC) of nine arenaviruses.
The Whitewater strain is the only New World clade A/rec arenavirus (green). Lujo (LUJV), Lassa
(LASV), and Lymphocytic choriomeningitis (LCV) are geographical Old World arenaviruses (red).
Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Chapare (CHAV), and Sabia (SABV) are members
of the New World arenaviruses clade B (blue). The neighbor-joining tree without distance corrections
was created using CLUSTAL Omega [34] for the multiple sequence alignment and the tree visualization
software FigTree (http://tree.bio.ed.ac.uk/software/figtree/).
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Figure 6. Protein sequence coverage of taxon-specific peptides selected by Purple on proteins for nine
arenavirus species proteomes. The four proteins of the arenavirus proteomes are RNA-directed RNA
polymerase L (L), nucleoprotein N (NCAP), pre-glycoprotein polyprotein GP complex (GLYC), and
RING finger protein Z (Z). The coverage of selected peptides is displayed for homologous matching
when applying a background consensus threshold of 80%.
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3.2. Evaluating Species-Level Classification Based on Detected Peptides from Viral Shotgun
Proteomics Measurements

To evaluate the peptide selection method in Purple on experimental data, we used representative
MS/MS datasets derived from human cowpox virus (CPXV) samples. The main goal was to test
whether peptides identified in a typical shotgun proteomics experiment can be used for differentiating
viruses at the species level. We also aimed for estimating the expected accuracy gain for taxonomic
classification when using a targeted proteomics assay on the basis of peptides suggested by Purple.

In a pre-analysis, we performed a Purple run using CPXV as target proteome to select
species-specific peptides. For the peptide selection process, 18 reviewed (from UniProt/Swiss-Prot) and
208 unreviewed (from UniProt/TrEMBL) CPXV-specific protein sequences were used as target database,
which is part of the PRIDE project (see Section 2.3.4). We used this combined database consisting
of reviewed and unreviewed protein sequences because the available reviewed protein sequences
for the Brighton Red strain yielded to a very limited number of peptide identifications during the
database search (Supplementary Table S2). All available virus proteomes (a total of 16,846 sequences)
and all reviewed human proteins were taken as background. These proteomes were obtained from
UniProt/Swiss-Prot (see Section 2.3 for database details).

The Purple run resulted in 1509 in silico-digested peptides after exact matching and 885 peptides
after homologous matching (using a background consensus threshold of 80%). The distribution of the
homologous background consensus shows a normal distribution below 50% (Supplementary Figure S2).
3986 peptides were discarded, because they were shared with other (i.e., non-CPXV) viral proteomes or
the human proteome. The remaining 885 CPXV-specific peptides have a mean background consensus
of 53.9%, which means that on average around half of the amino acids of each peptide are equal to
residues of peptides in the background.

Next, we searched experimental MS/MS spectra from CPXV samples using the search algorithm
MS-GF+ [31] against a CPXV and human sequence database for peptide identification (see Section 2.3).
In this analysis, CPXV datasets from MS measurements of three technical replicates, each with ~19,000
MS/MS spectra, were evaluated. The database search resulted in 4028, 4125, and 3967 identified
peptides per sample replicate with sequence duplicates removed. More than twice the amount of
CPXV peptides were identified as human peptides in this sample before applying a FDR filtering.
After applying an FDR threshold of 1%, 1067, 1028, and 1004 CPXV peptides were identified (Table 5).
Subsequently, the identified peptides (below 1% FDR threshold) were compared against the set of
taxon-specific CPXV peptides suggested by Purple using both exact and homologous matching mode.
Between 83 and 94 peptides selected by Purple were detected in the MS/MS experiments (without
applying any FDR threshold). When filtered by 1% FDR, the peptides decreased to numbers between
78 and 84. Consequently, this analysis demonstrates that it would be possible to reliably identify CPXV
for these three sample replicates.
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Table 5. This table shows the number of peptides from the cowpox virus (CPXV) Brighton Red strain
after (i) database search with duplicates removed (CPXV); (ii) database search with duplicates removed
(human); (iii) intersection of peptides obtained from Purple and peptide identifications from database
search; (iv) database search, duplicates removed and filtered by 1% FDR threshold; and (iiv) intersection
of peptides suggested by Purple and peptide identifications from FDR-filtered database search. The
CPXV Brighton Red strain was compared against the background of all reviewed virus proteomes and
the reviewed human proteome. In addition, the second column specifies the sample replicate data that
was used for the database search.

Strain Replicate No. Database
Search (CPXV)

No. Database
Search

(HUMAN)

No.
Intersection

No. Database
Search Filtered

No.
Intersection

Filtered

Brighton Red 1 4028 10319 94 1067 84
Brighton Red 2 4125 10286 83 1028 78
Brighton Red 3 3967 10068 92 1004 84

When considering the results of all three replicates, it can be observed that 61 CPXV-specific
peptides were detected without any applied FDR threshold (Figure 7A). Filtered by 1% FDR, 56 peptides
across all replicates can be used to specifically identify the species within the sample as a member of
CPXV (Figure 7B).
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without applying any false discovery rate (FDR) threshold (A) and filtered by 1% FDR (B).

When examining the peptides shared by the target and background proteomes, it can be found
that the Cowpox virus shares ~3000 peptide sequences per strain with the Vaccinia virus strains and
Variola virus strains (Figure 8). Other Orthopoxviruses were found as well, although the number of
peptides is low, due to fewer proteins of these strains in the background database. The CPXV Brighton
Red strain-specific peptides are small in number because most matches originate from the Cowpox
virus species proteome without giving any details about a particular strain. Around 500 peptides were
shared with the human proteome and were consequently discarded.
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3.3. Comparison of Strain vs. Strain and Strain vs. All Virus Level Resolution

Next, we conducted a performance evaluation using two different, yet highly similar Vaccinia
virus strains, namely VACV Copenhagen and VACV Western Reserve. The objective was to test
whether Purple can retrieve strain-specific peptides that are then used in the targeted proteomics
assay for accurate taxonomic classification. In this analysis, the target database contained sequences
from one of the two VACV virus strains (either Copenhagen or Western reserve). Consequently, the
background database contained the remaining VACV strain and all reviewed virus proteins available
on UniProt. This procedure was repeated with the remaining VACV strains as target. The goal was to
find strain-specific peptides to accurately detect the virus strain. We used a background consensus
threshold of 80% to filter out homologous peptides. Afterwards, experimental data (see Section 2.3.3)
was used to validate the results and to show if the selected strain-specific peptides are found in the
acquired tandem mass spectrometry (MS/MS) data. For peptide identification, we used the software
MS-GF+ [31] with an 1% FDR threshold (see Section 2.3.3).
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In the case of VACV Copenhagen, Purple discarded 3848 peptides because a perfect sequence
match was present in the background with a peptide of another strain or virus (Table 6). Equally,
3971 VACV Western Reserve peptides are marked as shared with the background and discarded. After
exact matching, 498 and 341 strain-specific peptides could be obtained for VACV Copenhagen and
VACV Western Reserve, respectively. The homologous matching removed additional 157 (VACV
Copenhagen) and 172 (VACV Western Reserve) peptides from the set of unique peptides. The remaining
352 (VACV Copenhagen) and 169 (VACV Western Reserve) peptides can be used to uniquely identify
the strain in a mixture of all reviewed virus proteins available on UniProt/Swiss-Prot.

Table 6. This table shows the number of taxon-specific peptides from the VACV Copenhagen and
VACV Western Reserve strain after (i) in silico digest, (ii) exact matching, and (iii) homologous matching
(80% background consensus threshold). Each target strain was compared against the background of the
other strain and all reviewed virus proteomes. The second column provides the number of nonspecific
peptides, i.e., the ones being shared with the background.

Species No. Digested
Peptides

No. Background
Shared

No. Exact
Matching

No. Homologous
Matching

Copenhagen 4200 3848 498 352
Western Reserve 4140 3971 341 169

In addition, we categorized the shared peptides by virus species to check for close relationships
in the background. For VACV Copenhagen, it can be observed that most peptide matches are found
in the Vaccinia species (Figure 9), owing to a high protein sequence similarity of involved Vaccinia
strains. Other contributing species are Camelpox virus, Cowpox virus, Monkeypox virus, Rabbitpox
virus, and Ectromelia virus. All these viruses are, as expected, members of the orthopoxvirus genus.
Similar findings could be observed for the results of the VACV Western Reserve strain (Supplementary
Figure S1). Note here that Figure 9 shows the number of peptides and if a species is underrepresented
in the databases, it will affect the outcome concerning the number of peptides that contribute to the
shared peptides.

To evaluate the detectability of taxon-specific peptides for the given DDA experiments, we
performed database searches for peptide identification using three different technical replicates of
VACV Copenhagen. Without any FDR cut-off, we could identify between 60 and 66 strain-specific
peptides selected by Purple (Table 7). However, when filtered by an FDR of 1% the number of peptides
decreased drastically and only one or two taxon-specific peptides were confirmed in the shotgun
proteomics data. It was possible to identify Replicate 1 and 2 as VACV Copenhagen by using the
peptide sequence ILFWPYIEDELR. The number of peptides can be increased by switching to a targeted
proteomics approach and by considering PTMs or by an improved homologous matching. The three
technical replicates of the VACV Western Reserve strain resulted in fewer peptides in the intersection
with the database search results (between 32 and 42), but when filtered by 1% FDR, the number of
peptides was increased up to 11-fold (with nine to 11 peptides) in comparison to the VACV Copenhagen
replicates. Six peptides were detected, and their sequences were identical among all three replicates.
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Table 7. This table shows the number of peptides from VACV Copenhagen and VACV Western Reserve
strain after (i) database search with duplicates removed; (ii) intersection of peptides obtained by Purple
and database search; (iii) database search, duplicates removed and filtering by FDR; and (iv) intersection
of peptides obtained by Purple and filtered database search. Each target strain was compared against
the background of the other strain and all reviewed virus proteomes. The second column specifies the
replicate data that was used for the database search.

Strain Replicate No. Database
Search

No.
Intersection

No. Database
Search Filtered

No. Intersection
Filtered

Copenhagen 1 3585 66 825 2
Copenhagen 2 3507 62 800 1
Copenhagen 3 3525 60 828 1

Western
Reserve 1 3636 35 841 9

Western
Reserve 2 3736 42 800 11

Western
Reserve 3 3507 32 809 9

In conclusion, we were able to identify every strain in each sample with an applied FDR of 1%.
For VACV Western Reserve, the number of peptides was higher than for the VACV Copenhagen
strain. The number of detectable peptides could be increased by improving scoring and filtering or by
switching from shotgun to targeted proteomics methods or by considering PTMs.

Figure 10 reveals a normal distributed homologous consensus in the interval from 10% to 50%.
This is caused by random matches with background peptides and these peptides should be unique
for the strain. We could not observe a distinct distribution above 50%. This could be improved by
moving from identity to a similarity-based matching, as this would differentiate peptides with the
same amount of matching consensus residuals.
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4. Discussion

The main goal of our developed Purple software is to provide taxon-specific peptides for a
targeted proteomics assay. These targeted assays can be used in a diagnostic setting to identify a virus
species/strain or even a whole virus family in a sample in sensitive and time-efficient manner. In this
work, we validated the software in three different benchmarking experiments.

Purple enabled us to retrieve taxon-specific peptides to distinguish between arenavirus species
proteomes that are very similar in their sequences (see Section 3.1). Accordingly, we observed a
comparable decrease in the ratio of unique to in silico-digested peptides for New and Old World
arenaviruses based on differences between their proteomes (Figure 4). This effect could also be
recognized also on the clade level for the New World viruses.

The data analysis of CPXV (see Section 3.2) resulted in 56 taxon-specific peptides (Figure 7).
These peptides were present in each MS/MS sample replicate and can be used to uniquely identify
CPXV in a mixed biological sample, although its proteome is very similar to other Orthopoxvirus
species and strains (Figure 8). By changing to a Brighton Red strain-specific target database, a reliable
determination of the strain would be possible as well. This underlines that Purple relies on a correct
and complete database to yield to the best possible results. Missing or incorrectly assigned protein
sequences could result in incorrect selected unique peptides or discarded ones. Furthermore, although
many spectra in the shotgun proteomics experiment were assigned to human peptides, this does not
present a limitation for the targeted proteomics approach, because unique virus peptides selected by
Purple can be detected using a targeted (e.g., PRM-based) assay in specific and sensitive manner; for
example, in a recently published study [35], a PRM-based assay was used to identify dengue virus
species directly from clinical serum samples. Nevertheless, to validate the resulting set of peptides, it
would be recommended to test them on other CPXV samples and to check if the peptides are detectable
in these samples likewise. In addition, the selected background database might be incomplete, e.g.,
when proteome references were missed to be included for the Purple analysis. In this case, it is
useful to validate Purple-selected peptides using secondary tools such as Unipept [36] for resolving
the taxonomic origin of any tryptic peptide based on the complete UniProt database. Furthermore,
false negatives may result from issues during sample preparation or poor instrument performance.
Therefore, these parameters need to be controlled in diagnostic PRM assays, e.g., by using internal
standards and running further quality control samples.

It can be crucial in virus infection scenarios to accurately distinguish between specific strains. To
cover these cases, we examined the strain-level resolution of our tool using data of VACV Copenhagen
and VACV Western Reserve strains (see Section 3.3). Purple was able to find a reliable amount of
strain-specific peptides (Table 7). The intersection between the Purple-selected peptides and the
peptide identification from the database search showed that it is possible to detect these peptides. In
general, strain-level identification was possible even for an applied FDR threshold of 1%, however, it
became apparent that the shotgun proteomics approach becomes limited due to the spurious numbers
of identified peptides. The number of peptides could be increased by adjusting the FDR filtering or by
using a targeted proteomics approach with higher sensitivity.

In comparison to other tools, Purple offers several advantages, such as cross-platform compatibility
on multiple operating systems. Purple allows a homology-based analysis of multiple proteome
databases at once and produces an aggregated and summarized export on various levels. In
addition, Purple is not limited to specific organisms, but can be used with general UniProt databases,
also including eukaryotic and bacterial databases. High sequence similarity between strains and
horizontal gene transfer may complicate taxon-specific classification for bacterial samples. However,
Purple could help to overcome complications and can be helpful for creating targeted assays for
bacterial detection as well. The graphical user interface and compatibility with all UniProt databases
enables researchers without bioinformatics background to find taxon-specific peptides in an easy and
straightforward manner.
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A potential improvement to the software would be to move from a sequence identity-based metric
based on the Hamming distance to similarity-based matching for the homologous matching mode. In
this case, amino acid substitutions are not weighted equally, for example by using a PAM or BLOSUM
matrix [37]. This similarity-based metric might allow a more accurate homologous matching in Purple.
For example, an approach based on a structural alignment as introduced by Ogata et al. [38] might be
useful. Further potential improvements with useful features in Purple include adding plots for better
data exploration and a tabular view for inspecting the results (that are currently exportable as text files
to spreadsheet software).

In summary, the most promising application of Purple is to select taxon-specific peptides for
creating tailored SRM or PRM assays with high sensitivity and specificity. This application will allow
for new time- and cost-efficient diagnostic methods in healthcare and further biological applications.
It could even be used to identify multiple organisms in a single sample in the context of targeted
metaproteomics [39].

Purple is available for download on our GitLab website (https://gitlab.com/rki_bioinformatics),
by using the Python package manager pip (https://pypi.org/project/purple-bio/) or via the Bioconda
channel (https://anaconda.org/bioconda/purple-bio) [40]. The software is available as graphical user
interface version, Python package and command line version for Windows, Linux, and MacOS. In
addition, user support, tutorials, and the documentation manual can be found on the GitLab webpages.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/6/536/s1,
Table S1: Genome sequence similarities of cowpox virus; Table S2: Number of peptides from CPXV Brighton
Red strain processing; Figure S1: Number of shared peptides by species for VACV Western Reserve; Figure S2:
Histogram and density plot of homologous consensus—CPXV; Data S1: MSA of the pre-glycoprotein polyprotein
GP complex (GPC gene); Data S2: MSA of nucleocapsid protein (N gene); Data S3: MSA of RNA-directed RNA
polymerase L (L gene); Data S4: MSA of RING finger protein Z (Z gene).
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A Robust and Universal
Metaproteomics Workflow for
Research Studies and Routine
Diagnostics Within 24 h Using Phenol
Extraction, FASP Digest, and the
MetaProteomeAnalyzer
Robert Heyer1†, Kay Schallert1†, Anja Büdel1, Roman Zoun2, Sebastian Dorl3,
Alexander Behne4, Fabian Kohrs1, Sebastian Püttker1, Corina Siewert5, Thilo Muth6,
Gunter Saake2, Udo Reichl1,5 and Dirk Benndorf1,5*

1 Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany, 2 Database Research Group,
Otto von Guericke University Magdeburg, Magdeburg, Germany, 3 Bioinformatics Research Group, University of Applied
Sciences Upper Austria, Hagenberg, Austria, 4 glyXera GmbH, Magdeburg, Germany, 5 Bioprocess Engineering, Max Planck
Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany, 6 Bioinformatics Unit (MF 1),
Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany

The investigation of microbial proteins by mass spectrometry (metaproteomics) is
a key technology for simultaneously assessing the taxonomic composition and the
functionality of microbial communities in medical, environmental, and biotechnological
applications. We present an improved metaproteomics workflow using an updated
sample preparation and a new version of the MetaProteomeAnalyzer software for data
analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed
to aim at fast analysis of a broad range of different samples in less than 24 h. The
improved workflow generated at least two times as many protein identifications than
our previous workflow, and a drastic increase of taxonomic and functional annotations.
Improvements of all aspects of the workflow, particularly the speed, are first steps
toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical
and environmental samples. The MetaProteomeAnalyzer is provided to the scientific
community as a central remote server solution at www.mpa.ovgu.de.

Keywords: bioinformatics, software, sample preparation, environmental proteomics, microbial communities,
mass spectrometry, gut microbiome

INTRODUCTION

The metabolism of microbial communities is determined by the proteome, the total set of proteins
of the microbial cells, including enzymes for growth and maintenance. The expression of proteins
depends on the environmental conditions, community composition, and the metabolic activity
of the individual microorganisms (Wasinger et al., 1995). Metaproteomics, the identification

Abbreviations: BGP, biogas plant; de.NBI, German Network for Bioinformatics Infrastructure; DTT, dithiothreitol; FASP,
filter aided sample prep; Hgut, human gut; IAA, iodoacetamide; LC-MS/MS, liquid chromatography tandem mass
spectrometer; MPA, MetaProteomeAnalyzer; MPAv1, MetaProteomeAnalyzer version 1.0.5; MPAv2, MetaProteomeAnalyzer
version 2.12; MS, mass spectrometry/mass spectrometer; PCoA, principal coordinates analysis; RT, room temperature; SOP,
standard operation procedure; TFA, trifluoroacetic acid; WWTP, wastewater treatment plant.
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of microbial proteins using MS (Wilmes and Bond, 2006), is
crucial to understand microbial communities. Due to the rapid
development of MS, the number of conducted metaproteomics
studies has increased over the last years. Microbiomes from the
human gut (Kolmeder et al., 2012; Xiong et al., 2015; Zhang
et al., 2018a), rumen (Deusch et al., 2017), soil (Bastida and
Jehmlich, 2016; Keiblinger et al., 2016), or BGPs (Heyer et al.,
2016; Hagen et al., 2017) were measured. Metaproteomics aims
at deeper insights into microbiomes by analyzing taxonomic
and functional composition of complex microbial communities
in diverse environments and technical applications. Based on
metaproteome data the state of microbial communities can
be linked with certain environmental conditions or process
parameters. However, metaproteomics also has the potential to
serve as a tool for diagnostics in clinical settings or routine
process monitoring (Heyer et al., 2017). For example, proteins
of the microbial community in the human gut or in a BGP may
represent valuable markers for diseases or process disturbances
in BGP, respectively. Such routine application of metaproteomics
is not common yet, due to two major challenges (i) sample
preparation due to high complexity and contamination of
samples, and (ii) data analysis due to the required computational
effort for large datasets, missing corresponding annotated protein
sequence databases, and protein inference causing ambiguity of
protein annotation.

The first challenge is the time-consuming sample preparation
workflow and its sensitivity to sample impurities (Heyer
et al., 2015). Common metaproteomics workflows comprise
of protein extraction and purification, tryptic digestion of
proteins into peptides, and measurement by LC-MS/MS. The
amount of extracted proteins is measured by different assays,
and the complexity of protein extracts is often reduced by
fractionation using sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) (Heyer et al., 2015; Wenzel
et al., 2018) or two dimensional chromatography (Erickson
et al., 2012; Kleiner et al., 2017). In consequence, the total
workflow for sample preparation can take up to 1 week,
but routine diagnostics should not exceed 24 h for complete
analysis. Therefore, we choose to sacrifice fractionation, since
monitoring of the main microbial processes and highly
abundant marker proteins do not require such a high coverage
of the metaproteome. Different protocols exist for protein
extraction and protein purification (Keiblinger et al., 2012;
Zhang et al., 2018b), depending on the sample type. Samples
from microbial communities from fresh water or the ocean
are almost free of impurities, and proteins can be extracted
easily (Colatriano and Walsh, 2015). In contrast, soil and BGP
samples contain high amounts of humic substances (Heyer
et al., 2015; Keiblinger et al., 2016), which require specialized
extraction methods such as phenol extraction (Heyer et al.,
2013) or trichloroacetic acid precipitation (Chourey et al., 2010).
Adaptation of the workflow for each sample type is time
consuming and not feasible for routine application, therefore,
we choose phenol extraction in this study, since it provides
robust protein recovery from different sample types (Benndorf
et al., 2007, 2009; Keiblinger et al., 2012; Heyer et al., 2013;
Püttker et al., 2015).

The second challenge concerns the data analysis. Proteins
are commonly identified by comparing experimental peptide
spectra against theoretical spectra derived from protein sequence
databases (Mann and Wilm, 1994). Subsequently, identified
proteins are assigned by taxonomy and function. However,
three issues specific to metaproteomics hamper and delay
bioinformatics evaluation (Muth et al., 2013). First, the amount
of acquired data is huge due to the high complexity of
microbial communities, which results in enormous demands
regarding computing resources. Modern LC-MS/MS instruments
produce tens of thousands high-resolution spectra per hour. This
enables in-depth analysis of the metaproteome but increases the
computational load significantly. Second, protein identification
can be difficult due to the lack of suitable protein or metagenome
databases. Third, the interpretation of taxonomic and functional
results is difficult due to the problem of protein inference
(Nesvizhskii and Aebersold, 2005) from conserved sequences in
homologous proteins.

To tackle these issues, the MPA was developed as an
intuitive open-source software platform for metaproteomics
data analysis and interpretation (Muth et al., 2015a). Among
other features, it supports the handling of protein inference
by grouping proteins into protein groups (called metaproteins
hereafter). The generation of metaproteins is a strategy that
was developed specifically for the metaproteomics field. The
latest implementation of the MPA (version 3.0.0) also allows
for easy comparison of results from different experiments
and provides supplementary annotation functions for protein
entries from metagenome sequences (regarding taxonomies or
protein functions).

In this paper, a complete metaproteomics workflow is
described where all processing steps from sample preparation
to visualization are performed within 24 h, referred to as
“new workflow” hereafter. The objectives of our new protocols
were speed, simplicity, high throughput, reproducibility, and
robustness to establish metaproteomics as routine application
in applied research and diagnostics. This new workflow was
applicable to various types of samples and drastically decreased
overall processing time from at least 3 days to only 1 day. The
aim of the presented workflow was not to provide discovery
oriented, in-depth analysis of microbial communities. Instead, it
constituted an important milestone toward routine monitoring
of biotechnological processes and analysis of clinical samples,
since such routine analyses should not exceed a 24 h time
period or require complicated adaptations of the laboratory
procedures. In order to achieve this goal, phenol extraction
was optimized compared to previous studies (Heyer et al.,
2013), in-gel digestion was replaced by FASP digestion (new
sample preparation)(Wisniewski et al., 2009), and the MPA
software (Muth et al., 2015a) was continuously updated (current
MPA version 3.0.0).

MATERIALS AND METHODS

For an overview, refer to the complete workflow steps A1-
A6, B1-B8, and X1-X3 in Figure 1. For a more detailed
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FIGURE 1 | Comparison of new (A1–A6) and old workflow (B1–B8) for metaproteomics sample preparation and analysis. In addition, methods for quality control are
shown (X1–X3). The time shown represents the shortest possible time in which a single sample can be processed. Under reasonable circumstances five samples
can be done in less than 24 h (or 15 samples within 48 h) using the new workflow limited by the number of available mass spectrometer. Similarly, at least 3 days are
required for multiple samples using the old workflow.

descriptions and chemicals please consider the SOPs listed as
Supplementary Data Sheet S1.

Improvements of the Laboratory
Workflow
In order to reduce the time required for the phenol extraction
protocol, dispensable washing steps with organic solvents were
removed and incubation times were reduced. Protein purification
by SDS-PAGE (Kohrs et al., 2014) and subsequent in-gel-
digestion into peptides were the most time-consuming steps
of old workflows, and were replaced with the FASP protocol
(Wisniewski et al., 2009). The FASP protocol replaced these steps,
allowing for direct digestion and simultaneous purification of
the protein extract on the FASP filter (Wisniewski et al., 2009).
In contrast to previous applications of the FASP protocol to
environmental samples (Tanca et al., 2014; Brum et al., 2016),
several steps of the FASP digestion were optimized. In particular,
trypsin incubation time was reduced from the previous 12 h
(overnight) to only 2 h (Supplementary Table S1). Furthermore,

re-buffering of peptide extracts by time-consuming lyophilisation
was omitted. Instead, extracts after FASP digestion were injected
directly into the LC-MS/MS system after acidification.

Improvements of the
MetaProteomeAnalyzer Software
An updated version of the MPA software was developed (see
Figures 2, 3). It not only improved the existing features but also
added new functionalities (Muth et al., 2015a). The MPA offered a
complete workflow from peak lists exported by the MS-software
to protein database searching, and result analysis, visualization
and export. A major feature of the MPA was the grouping of
proteins into metaproteins based on shared peptides or sequence
similarity. The provided manual (Supplementary Table S2) gives
an in-depth description of the new version of the MPA software.
Video tutorials, the download and other material are available
on the MPA website1. All analyses for this manuscript were

1www.mpa.ovgu.de
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FIGURE 2 | MetaProteomeAnalyzer. Workflow of the MetaProteomeAnalyzer software including improvements and additions to the first MetaProteomeAnalyzer
version (Muth et al., 2015a). Improvements were highlighted in red.

FIGURE 3 | Visualizations of MetaProteomeAnalyzer using data from NewWF_BGP_3_B. (A) The taxonomy results view of the protein tables hierarchically orders
proteins by taxonomy allowing for easy selection and filtering of specific taxonomies. (B) Pie Chart with spectral counts of the biological process ontology of the
Phylum Euryarchaeota selected through the taxonomy view. (C) Interactive chord diagram visualizing the relationship between taxonomy (rank = family) and
functional ontology (UniProt keywords for Biological Process) (Zoun et al., 2017). Biological processes for Methanosarcinaceae, as an example, are highlighted.
(D) KEGG pathway map for central carbon metabolisms (KEGG map 01200) highlighting enzymes identified with the MPA.

carried out with MPAv2.2.12. Meanwhile the version number was
updated to number 3.0.0, which contains only minor changes.

Memory and speed constraints were reduced by improving
the existing implementation of the algorithms and the database
queries. Metagenome databases can now be uploaded by
the user, providing a more user-friendly and efficient access.
Further improvements include an update of internal parser
routines, and the retrieval of protein meta-information using
UniProtJAPI (Patient et al., 2008) for obtaining complete protein
databases during upload. Additionally, the database search
engines X!Tandem (Craig and Beavis, 2004) and OMSSA (Geer
et al., 2004) were supplemented with a peptide database lookup.
Furthermore, an integrated protein BLAST allowed the user to
link unannotated protein sequences with UniProt metadata. The
new MPA version now includes a sample comparison function
that allows for a quantitative comparison of metaproteins,

taxonomies, and protein ontologies across a multitude of
samples. The newly implemented cord diagram tool visualizes
taxonomy-function-relationships (Zoun et al., 2017).

Sampling
For this study, a total of nine samples were taken: three BGP
samples (BGP_1–3), three human gut samples (Hgut_1–3), a
soil sample, a compost sample and one WWTP sample. Samples
were stored directly at −20◦C. For subsequent phenol extraction,
samples were defrosted and weighed. For processing of the
WWTP sample, sludge flakes were centrifuged (10 min, 4◦C,
10,000 g) before weighing and discarding of the supernatant.

Phenol Extraction (A1, B1)
For phenol extraction (Supplementary Data Sheet S1), 2 g
sample, 5 g silica beads (0.5 mm), 2 mL 2 M sucrose solution, and
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FIGURE 4 | Comparison of protein extraction of human gut samples of new and old workflow. For protein separation a 12% SDS-PAGE with 1 mm gel thickness
was carried out and stained with colloidal coomassie. Proteins were extract by the old workflow (A) and new workflow (B). Peptide electrophoresis (C) was carried
out after FASP digest according to Schägger (2006) using a 10 and a 16% acrylamide gel. (STD) molecular weight standard; (Hgut 1–3) 100 µg of human fecal
sample 1–3 resp. 90 µg for peptide electrophoresis Quality and purity of protein extracts was examined by SDS-PAGE (Supplementary Presentation S1).
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3.5 mL phenol solution (10 g phenol dissolved in 1 mL ultrapure
water) were added to a 15 mL reaction tube. Subsequently,
the falcon was transferred into a ball mill (FastPrep-96, MP
Biomedicals, Eschwege, Germany) and shaken for 5 min (A1)
resp. 30 min (B1) at RT and 1,800 rpm. After centrifugation
(10 min, RT, 10,000 g), the upper phenol phase was collected
into a new 15 mL reaction tube and washed with the same
volume of 1 M sucrose solution for 10 min at RT and 120 rpm
on a shaker/ball mill. Finally, the sample was centrifuged again
(10 min, RT, 10,000 g), and proteins were precipitated by
ammonium acetate in methanol precipitation.

Ammonium Acetate in Methanol
Precipitation (A2, B2)
Addition of the fourfold volume of ice-cold 100 mM ammonium
acetate in methanol for 20 min (A2) resp. 60 min (B2) at −20◦C
precipitated proteins in the phenol phase. Afterward, the sample
was centrifuged (10 min, 4◦C, 10,000 g), and the supernatant was
discarded. This precipitation step was repeated once.

Further Washing Steps (B3)
In order to remove remaining impurities, the precipitated
protein pellet was washed four times with a threefold volume
of ice-cold 80% acetone, 70% ethanol, 80% acetone, and
70% ethanol. Between the washing steps, the sample was
incubated at −20◦C, centrifuged (10 min, RT, 10,000 g) and the
supernatant was discarded.

Dissolution of the Sample in Urea
(A3, B4)
Finally, the protein pellet was dried at 60◦C for 15 min and
dissolved in 1 mL urea buffer (7 M urea, 2 M thiourea, 1% DTT).
After 10 min shaking in a ball mill at (RT, 1,800 rpm), non-
dissolved particles were removed by centrifugation (10 min, 4◦C,
10,000 g). Protein extracts were stored at −20◦C for later use.

Protein Quantification Using Amido
Black Assay (X1)
For quantification of protein concentration (Supplementary
Data Sheet S1) 50 µL of the sample were precipitated
with 300 µL amido black staining solution. Afterward, the
sample was centrifuged (5 min, RT, 16,400 g) and the
supernatant was discarded. Two washing steps with 10%
acetic acid in methanol and two centrifugation steps (5 min,
RT, 16,400 g) removed unbound dye. Finally, the pellet was
dissolved in 1 mL 0.1 M sodium hydroxide and absorption
was measured at wavelength 615 nm using a photometer
(Spectrophotometer Genesys 10S UV-Vis, Thermo Scientific,
Waltham, United States).

SDS-PAGE (B5, X2)
For SDS-PAGE (Supplementary Data Sheet S1), 100 µg protein
extract was diluted with the same volume of ultrapure water
and precipitated by the same volume of ice-cold 100% acetone.
After incubation at −20◦C overnight, samples were centrifuged
(30 min, 4◦C, 16,400 g), the supernatant was discarded, and the

pellet was dried. Subsequently, the protein pellet was dissolved in
20 µL SDS sample buffer, the sample was centrifuged (30 min,
4◦C, 16,400 g), and the supernatant was loaded on the SDS-
PAGE. In parallel to sample preparation, a 1 mm SDS-PAGE
gel was prepared using a 12% separation and a 4% stacking
gel. Subsequently, SDS-PAGE gels were inserted into the SDS-
PAGE chamber (Mini-Protean Tetra System, BioRad, Hercules,
United States), and the samples were loaded. Finally, 10 mA
current was applied until proteins entered the separation gels,
then 20 mA until the end of the gel. For subsequent in-gel
digestion, the electrophoresis was stopped after the dye front
entered into the separation gel for 5 mm. For visualization,
proteins were incubated for 1 h in fixation solution (40%
ethanol, 10% acetic acid) and then stained with Coomassie
staining solution.

Peptide Electrophoresis (X3)
Peptide electrophoresis (Supplementary Data Sheet S1) was
conducted in a standard electrophoresis chamber (Mini-Protean
Tetra System, BioRad, Hercules, United States) (Schägger, 2006).
In brief, 90 µg peptides were precipitated with acetone, diluted in
10 µL sample buffer, and incubated in a thermomixer for 60 min
at 37◦C and 1,400 rpm. Afterward, samples were centrifuged
(10 min, 4◦C, 16,400 g) and the supernatant was loaded on the
gel. The gel comprised a 4% stacking gel as well as a 10% and
a 16% separation gel. For separation, a voltage of 30 V was
applied until the running front entered the 10% separation gel
and increased subsequently to 90 V until it reached the end of the
gel. Protein staining with Coomassie was carried out analogously
to the staining of SDS-PAGEs, but the fixation solution contained
methanol instead of ethanol.

FASP Digestion (A4)
For the FASP digestion (Supplementary Data Sheet S1), 100 µg
protein extract in 200 µL urea buffer were loaded onto the
FASP filter (Pall Nanosep 10K Omega, MWCO 10 kDa) and
centrifuged (10–20 min, RT, 10,000). Note: Soil and human
fecal samples required longer centrifugation times until all liquid
passed through the FASP filter (about 20 min). Reduction and
alkylation of proteins were carried out by addition of 100 µL
DTT (20 min, 56◦C, 300 rpm) and 100 µL IAA (20 min, RT,
300 rpm, in the dark). After each of these steps the liquid
was removed by centrifugation (5 min, RT, 10,000 g) and the
flow through was discarded. Subsequently, the proteins were
washed once for 2 min with 100 µL 8 M urea, three times
with 100 µL 50 mM ammonium bicarbonate, and centrifuged
afterward (5 min, RT, 10,000 g). After removal of the flow
through, trypsin was added onto the FASP filter (2 h, 37◦C,
300 rpm) in an enzyme to protein ratio of approximately 1–
100. Subsequently, the sample was centrifuged (5 min, RT,
10,000 g). Remaining peptides were rinsed through the filter
by addition of 50 µL 50 mM ammonium bicarbonate and
50 µL ultrapure water (Millipore Q-POD Merck, Darmstadt,
Germany) followed by another centrifugation step (5 min, RT,
10,000 g). Finally, 30 µL were acidified by addition of 3 µL
0.5% TFA, centrifuged (10 min, 4◦C, 10,000 g), and transferred
into an HPLC vial.
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In-Gel Digestion (B6)
The single protein fraction after early stopping SDS-PAGE was
cut into cubes of approx. 1 mm side length and transferred into
a 2 mL reaction tube. For removal of the Coomassie dye, the gel
cubes were incubated in 900 µL washing solution (50% methanol,
45% ultrapure water, 5% acetic acid) twice, once overnight and
once the next day for 1 h in a shaker (RT, 150 rpm). After a
further washing step with 900 µL acetonitrile (10 min, RT, 150
rpm), gel cubes were dried in a vacuum centrifuge (Digital Series
SpeedVac SPD121P, Thermo Scientific, Waltham, United States).
Reduction and alkylation of proteins were carried out by addition
of 900 µL DTT (30 min, RT, 150 rpm) and 900 µL IAA (30 min,
RT, 150 rpm, in the dark). After each of these steps, gel cubes
were incubated in 900 µL acetonitrile (10 min, RT, 150 rpm).
Subsequently, the gel cubes were washed with 50 mM ammonium
bicarbonate (10 min, RT, 150 rpm) and acetonitrile (10 min, RT,
150 rpm). For tryptic digestion of proteins, 200 µL trypsin buffer
(enzyme to substrate ratio: 1:100) was added over night (37◦C,
150 rpm). The next day, the supernatant was collected into a new
2 mL reaction tube. Remaining peptides were washed out of the
gel by incubation in extraction buffer 1 (90% ultrapure water,
10% formic acid; 30 min, RT, 150 rpm) and extraction buffer
2 (50% ultrapure water, 49% ACN, 1% TFA; 30 min, RT, 150
rpm). Both extracts were collected in a new reaction tube. Finally,
the peptide solution was dried in the vacuum centrifuge and
stored at −20◦C. For LC-MS/MS measurements, dried peptides
were dissolved in 300 µl solvent A (98% ultrapure water, 2%
acetonitrile, 0.05% TFA), centrifuged (30 min, 4◦C, 13,000 g) and
transferred into a HPLC-vial.

LC-MS/MS Measurements (A5, B7)
Peptides were analyzed by LC-MS/MS using an UltiMate
3000 RSLCnano splitless liquid chromatography system coupled
online to an Orbitrap EliteTM Hybrid Ion Trap-Orbitrap MS/MS
(MS) (both from Thermo Fisher Scientific, Bremen, Germany).
After injection, peptides were loaded isocratically on a trap
column (Dionex Acclaim, nano trap column, 100 µm i.d. × 2 cm,
PepMap100 C18, 5 µm, 100 Å, nanoViper) with a flow rate of
7 µL/min chromatographic liquid phase A (98% ultrapure water,
2% acetonitrile, 0.05% TFA) for desalting and concentration.

Chromatographic separation was performed on a Dionex
Acclaim PepMap C18 RSLC nano reversed phase column (2 µm
particle size, 100 Å pore size, 75 µm inner diameter, and 250 mm
length) at 40◦C column temperature. A flow rate of 250 nL/min
was applied using a binary A/B-solvent gradient (solvent A: 98%
ultrapure water, 2% acetonitrile, 0.1% formic acid; solvent B:
80% acetonitrile, 10% ultrapure water, 10% trifluorethanol, 0.1%
formic acid). 5 µl sample were injected. Separation started with
4% B for 5 min, continued with a linear increase to 55% B
within 120 min, followed by a column wash with 90% B for
5 min, and re-equilibration with 4% B for 25 min. For mass
spectrometry acquisition, a data-dependent MS/MS method was
chosen. For the conducted measurements the MS was operated
in positive ion mode and precursor ions were acquired in the
orbital trap of the hybrid MS at a resolution of 30,000 and
an m/z range of 350–2,000. Subsequently, fragment ion scans

were produced in the linear ion trap of the hybrid MS with
mass range and a scan rate at “normal” parameter settings
for the top 20 most intense precursors selected for collision-
induced dissociation.

Protein Identification Using the MPA (A7)
Orbitrap EliteTM Hybrid Ion Trap-Orbitrap MS/MS
measurements raw data files (raw file format) were processed
by the Proteome Discoverer Software 1.4 (version 1.4.1.14,
Thermo Fisher Scientific, Bremen, Germany), and converted
into the Mascot Generic File format (mgf). Subsequently, mgf
files were uploaded into the MPA software in the new version
2.12 and the release version 1.0.5 that was published previously
(Muth et al., 2015a).

Three different types of software were used for peptide
spectral matching: X!Tandem (Craig and Beavis, 2004), OMSSA
(Geer et al., 2004) and MASCOT (version 2.5, Matrix Science,
London, England) (Perkins et al., 1999). The MASCOT search
was managed by the ProteinScape software (Bruker Daltonics,
Bremen, Deutschland, (version 4.0.3 315) (Chamrad et al., 2007).
All protein database searches used the following parameters:
enzyme trypsin, one missed cleavage, monoisotopic mass,
carbamidomethylation (cysteine) as fixed modification, oxidation
(methionine) as variable modifications, ±10 ppm precursor
and ± 0.5 Da MS/MS fragment tolerance, 113C and +2/+3
charged peptide ions. The Mascot search results (dat file format)
were uploaded to the MPA software (only version 2.12). The
MPA was designed to do the ensemble search (multiple search
engines). Results were combined by uniquely identifying spectra
and peptides throughout data processing. Therefore, spectra
and peptides were not duplicated when multiple search engines
reported the same match. In the rare case that two different
peptides were found for a single spectrum both results were
written into the database. This is not accurate with respect
to spectral counting for quantification but kept as much
information as possible.

Four protein databases – one for each sample type – were used
for protein database searches (Table 1). These databases were
created by combining UniProtKB/SwissProt (release November
2017) with an appropriate metagenome. Peptides found by
X!Tandem and OMSSA searches were associated with all proteins
containing them using a dedicated peptide database generated
from the four protein databases prior to searches (peptide
database lookup).

A false discovery rate (FDR) was applied at the PSM level.
With the exception of soil and compost samples, an FDR of 1%
was applied to all other samples. The old laboratory workflow
did not report any proteins for soil and compost if the FDR
was set to 1%. Therefore, the FDR of 5% was chosen for
soil samples to allow for a fair comparison between the old
and new workflows. In MPA version 2.12, identified proteins
without taxonomic and functional classification were annotated
with UniProtKB metadata by using protein BLAST [NCBI-Blast-
version 2.6.0 (Altschul et al., 1990; Camacho et al., 2009)] against
the UniProtKB/SwissProt database using an e-value cutoff of
10−4. Subsequently, all protein BLAST proposals with the best
identity were merged and used to annotate a protein.
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TABLE 1 | Source and size of protein sequence databases.

Database Protein sequences Source/Reference Used for samples

Biogas + SwissProt 2,349,714 Schluter et al., 2008; Rademacher et al., 2012; Hanreich et al., 2013; Stolze et al., 2016 BGP

Human Gut + SwissProt 6,159,039 Qin et al., 2010 https://www.ebi.ac.uk/metagenomics/studies/ERP000108 Hgut

Soil + SwissProt 684,487 JGI sequencing project; https://gold.jgi.doe.gov/study?id=Gs0085736 Soil compost

WWTP + SwissProt 2,243,839 Albertsen et al., 2012 WWTP

SwissProt 556,196 SwissProt downloaded in November 2017 www.uniprot.org

Proteins were grouped into metaproteins using the shared
peptide rule. The shared peptide rule adds a protein to the
metaprotein if it has at least one distinct peptide in common
with any other protein that belongs to this metaprotein. This
did not require that all proteins of a metaprotein shared the
same peptide. Metaproteins generated in this way were given a
merged annotation. The taxonomy and UniRef Cluster of the
metaprotein is set as the common ancestor of its proteins, while
functional keywords and KEGG orthologies are compiled into
non-redundant lists.

Several statistics for each sample were collected using the MPA
software (Supplementary Table S3) and the metaproteins as well
as metaprotein taxonomies were exported as comma separated
value files (version 2.12 and version 1.0.5) (Supplementary
Table S4). The sample comparison feature of MPA version
2.12 was used to generate metaproteins among all 54 samples
and the resulting table was exported for later analysis. For
quantification the spectral counts were taken. Finally, all MS
data were submitted to PRIDE (Vizcaino et al., 2016) with the
accession number PXD010550.

Biostatistics Evaluation
The data collected through the MPA software (Supplementary
Table S4) were used to calculate the average number of identified
spectra, peptides, proteins, and metaproteins. Metaproteins
were split into known and unknown proteins depending
on the existence of metadata beyond the protein sequence
(i.e., taxonomy). The taxonomy distribution was calculated by
counting the occurrence of specific taxonomies at all taxonomic
ranks (Supplementary Table S5). The results of the comparison
function were exported as a single csv file (Supplementary Table
S6), and principle coordinate analysis (PCoA) was carried out
using PAST3 (version 3.20).

RESULTS

The evaluation of the new workflow was divided into two
steps: (i) improvements of the laboratory workflow and (ii)
improvements of the bioinformatic workflow.

Improvements of the Laboratory
Workflow
Validation of Protein Extraction
Phenol extraction from 2 g sample material resulted in between
0.55 and 10.94 mg protein per sample (Supplementary Table
S7). To obtain sufficient protein for soil samples, pooling of

seven extracts was required. Protein concentrations of previous
and new sample preparations were similar (see Supplementary
Table S7). Observed variation in protein amounts between
sample types indicated that protein quantification of new samples
should be performed to guarantee equal protein loading for
FASP digestion and MS. For samples with limited availability,
less raw material could be extracted because for protein
quantification, FASP digestion and mass spectrometry, about
100 µg protein are required.

The old and the new sample preparation protocols resulted
in a similar band pattern for every given sample, suggesting
successful protein extraction in all cases (Figure 4). However,
different intensities of the lanes indicated differences in
the purity and quantity of the protein extracts. Protein
extracts from human feces, WWTP and soil showed higher
intensities than protein extracts from the BGP and compost
(Supplementary Presentation S1). Peptide electrophoresis
after FASP digestion yielded complete proteolysis of proteins
and showed comparable intensities of peptides for most
samples, indicating successful FASP digestion. Furthermore,
performing peptide electrophoresis post-FASP digestion could
enable researchers to identify problems that might occur during
the digestion step. For example, the peptide electrophoresis of
sample Hgut 3B showed protein bands at molecular weight
of more than 10 kDa indicating incomplete digestion. The
increase of the trypsin to protein ratio should be considered for
samples of this type.

Validation of Protein Identification
Comparative LC-MS/MS measurements resulted in more
identified spectra for the new extraction workflow (Figure 5B).
For some soil samples extracted with the old workflow, no
proteins with FDR 1% were identified. To allow comparison of
search results of both workflows, an FDR of 5% was applied for
all soil samples although this strategy is questionable regarding
the correctness of identifications. The significant increase
for BGP, Hgut and soil was related to a higher percentage
of identified spectra from accumulated spectra indicating a
higher quality of extraction of the new workflow (Figure 5
and Supplementary Table S8). No significant increase was
observed for WWTP. In addition, higher numbers of spectra
were measured (Figure 5A). Probably, the FASP workflow was
more efficient or removed more contaminants allowing the
measurement of more and qualitatively better spectra. Numerous
washing steps before digestion removed low molecular weight
contaminants more efficiently. Furthermore, high molecular
weight contaminants remained in the retentate while collecting
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FIGURE 5 | Increase of (A) measured spectra and (B) identified spectra using the new workflow of sample preparation compared against the old workflow. The data
was analyzed with MPA v2. The four types of samples from BGP, human gut, soil, and compost, and WWTP show significant differences regarding spectral counts
for old and new workflow (p-values of t-test are shown in the figure). Similar results were obtained for identified peptides, percentage of identified spectra or identified
metaproteins (Supplementary Table S8). P-values: ∗p = 0.05, ∗∗p = 0.01, ∗∗∗p = 0.001, ∗∗∗∗p = 0.0001.

the peptides in the filtrate. Skipping lyophilization after FASP
and direct injection of acidified eluate had no negative impact on
the number of identified spectra (Supplementary Data Sheet S2
and Supplementary Table S8). Peptide and metaprotein counts
followed the same trend as identified spectra. Furthermore, this
increase in identifications was independent of the MPA version
used (see Supplementary Table S8).

For qualitative evaluation of the new workflow, taxonomy
and function were assigned to identified metaproteins of a BGP
1A to C (using the advanced feature of MPAv2.12). Although
some function were detected with the old workflow only, the
new workflow showed a higher coverage of metabolic pathways
in KEGG map 1200 (Figure 6 and Supplementary Table S10).
The Krona plots of both samples showed minor differences

in the taxonomy profile only (Supplementary Table S10). The
abundances of orders varied about 1% between old and new
workflow. Some minor orders were not shown either for the
new or the old workflow due to limitations of this visualization.
For further validation of the new laboratory workflow, pairwise
Pearson correlation coefficients (Supplementary Table S6) based
on the abundance of metaproteins and the percentage of identical
metaproteins (Figure 7) for all pairs of samples and workflow
were calculated. Both figures showed the same trends: (i)
replicates of one sample were most similar (more than 90%
identical metaproteins, Pearson coefficients higher than 0.9),
(ii) different groups of samples were clearly separated (less
than 70% identical metaproteins, Pearson coefficients lower than
0.7), (iii) identical samples prepared with the old and the new
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FIGURE 6 | Amount of shared metaproteins between the old and new workflow. The upper triangular matrix shows the amount of shared metaproteins of the
different BGP samples using the new workflow. The lower triangular matrix shows the amount of shared metaproteins of the different BGP samples using the old
workflow. The diagonal shows the amount of shared metaproteins of the same sample analyzed by the old and the new workflow. For the calculation of the amount
of shared metaproteins, the number of shared metaproteins was divided by the smaller number of metaproteins from both samples. For this analysis only
metaproteins were considered which had in at least one sample a spectral count of 4. MP, metaprotein.

workflow showed also high similarity (more than 90% identical
metaproteins, Pearson coefficients higher than 0.8), and (iv)
sample groups with overall lower number of metaproteins (soil,
WWTP) show heterogeneous results. These values are in the
range of the observed reproducibility (70% identical proteins)
of technically replicated LC-MS runs for protein identification
(Tabb et al., 2010). For further validation of the reproducibility,
spectral counts of identified metaproteins were compared
between the two replicates of sample NewWF BGP_1. The
scatterplot showed a good correlation between both replicates
(Figure 8 and Supplementary Table S14). No changes in
abundances (more than twofold) were detected for metaprotein
present with at least 10 spectral counts in one of the replicates. In
contrast the comparison of the samples NewWF_BGP_1_A and
NewWF_BGP_2_A showed 116 metaproteines (present with at
least 10 spectral counts in one of the replicates) with more than
twofold changes in abundance that could be related to differences
in the microbial community of both samples.

Improvements of the Bioinformatic
Workflow
BLAST of Metagenomes for Better Protein Annotation
The upgraded MPA integrates a convenient fully automated
protein BLAST for user defined metagenomes. It gives the user

the choice to use multiple BLAST hits and to combine them into
a single entry, if they have the same e-value, sequence identity or
bit score. A common entry uses the common ancestor taxonomy,
chooses the common UniRef clusters and combines different
ontologies, EC-numbers, KO-numbers between BLAST hits.

The protein databases used for protein identification
consisted of UniProtKB/SwissProt combined with an appropriate
metagenome for the four sample types (Schluter et al., 2008;
Qin et al., 2010; Albertsen et al., 2012; Rademacher et al., 2012;
Hanreich et al., 2013). MPAv1 did not support the integrated
BLAST resulting in lower numbers of annotated proteins. For
the BGP, and Hgut, the portion of annotated proteins was
doubled applying the integrated BLAST of MPAv2 (Figure 9 and
Supplementary Table S11). For soil, and WWTP, the increase
was not significant. The increase of annotated proteins was
also reflected in the increase in the number of assigned KO
numbers allowing better reconstruction of metabolic pathways
or cellular functions. The low increase for soil and compost
was related to the small size of soil metagenome supplementing
UniProtKB/SwissProt.

Effect of Peptide Database Lookup for Metaprotein
Generation
The new MPA version creates an index peptide database (since
version 1.12) for uploaded protein databases (FASTA format).
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FIGURE 7 | Amount of shared metaproteins between the old and new workflow. KEGG map for the carbon metabolism showing enzymes in the sample BGP_1
(three technical replicates combined, analyzed with MPAv2.12). The map is colored to highlight differences between functional annotation, where blue are KO
numbers exclusively found in the analysis with old workflow, red are KO numbers exclusively found in the analysis with the new workflow and green are KO numbers
found with both. The maps are also hosted on: http://www.mpa.ovgu.de/review/kegg_carbonmetabolism_BGP_1.png.

After database searches are finished, a lookup in this peptide
index collects all proteins that contain the identified peptides.
This strategy works in conjunction with the metaprotein
generation, which aims to accurately represent homologous
proteins across multiple species.

The result of using the peptide database lookup in the
new MPA version was an increase of reported proteins
by a factor of up to 16, while the number of reported
metaproteins remained approximately the same or slightly
decreased (Figure 10 and Supplementary Tables S12, S13).
This was in line with expectations: since no new PSMs

were added, the number of identified metaproteins should
remained equal.

The integration of a peptide database lookup increased
the ambiguity of metaprotein annotations, in particular the
taxonomy. If more proteins were grouped together into a
single metaprotein, the taxonomic specificity decreased applying
shared peptides for metaprotein calculation and the lowest
common ancestor for taxonomic assignment (Muth et al.,
2015a; for further options regarding metaprotein generation see
Supplementary Table S2). This negative effect was counteracted
by increased number of protein annotations from BLAST
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FIGURE 8 | (A) Reproducibility using replicated samples. The spectral counts of the metaproteins from the sample NewWF_BGP_1_A were plotted against the
spectral counts of the metaproteins from the sample NewWF_BGP_1_B. The points in the blue or the orange area are at least doubled in the corresponding sample.
(B) Differences between samples. The spectral counts of the metaproteins from the sample NewWF_BGP_1_A were plotted against the spectral counts of the
metaproteins from the sample NewWF_BGP_2_A. The points in the blue or the orange area are at least decreased (blue) or increased (orange) twofold.

(Figure 9) providing taxonomic annotations of previously non-
annotated metaproteins.

Compare Function for Fast Quantitative Analysis of
Multiple Datasets
Another feature of the new MPA is the sample comparison
function, which allows a quantitative comparison between
metaproteins, peptides, taxonomies, and functional ontologies
for large number of samples (highest number so far: 200).
A comparison between multiple samples at the protein or peptide
level is straightforward, since the protein accession or peptide
sequence serve as unique identifiers. This is more complicated
for metaproteins, taxonomies and functional ontologies, because
these more abstract groupings are highly variable and dependent
on the underlying data. For instance, using the shared peptide
rule for metaprotein generation, a metaprotein will only be
created if one peptide belongs to two proteins. If this shared

peptide is absent in sample A, but present in sample B, sample A
will contain two metaproteins and sample B will contain only one
metaprotein, distorting a quantitative comparison. Therefore,
the new sample comparison function of the MPA performs the
metaprotein generation over any number of samples, enabling
an accurate comparison of different experiments (for details
regarding metaprotein generation see Supplementary Table S2).

To demonstrate its functionality, we compared all 54
samples on the metaprotein level using the spectral count
of a metaprotein as quantitative measure. The comparison
table of MPAv2 (Supplementary Table S6) was exported as
a comma separated value file and used as direct input for
a PCoA (Figure 11). A clear separation between the human
fecal samples, the BGP samples and the soil, compost and
WWTP samples was visible. The quality of grouping the technical
replicates seemed to depend on the sample types. On the one
hand, the observed scattering of replicates was related to the
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FIGURE 9 | Improved protein annotation via BLAST using MPAv2 in comparison to MPAv1. (A) Increase of annotated spectra. (B) Identified KO-numbers.
Significance values calculated by Student’s t-test for differences between the old and the new workflow are shown above the plots. The comparison was carried out
with data obtained with the new laboratory workflow. The samples BGP, human gut, soil, and compost, and WWTP as well as their averages (black line) are shown
separately. For further detail see Supplementary Table S15. P-values: ∗p = 0.05, ∗∗p = 0.01, ∗∗∗p = 0.001, ∗∗∗∗p = 0.0001.

quality of data. WWTP and soil samples with low numbers
of identifications showed a higher scattering than BGP and
human gut samples. The higher scattering in PCoA was also
related to higher distances in the clustering (Figure 12). On the
other hand, the scattering of samples with high quality (human
gut, BGP) visualized the error of replicates (low distances in
the clustering).

Chord Diagrams for Visualization of the Relation
Between Taxonomy and Function
One major question in microbiome research is how taxonomy
is linked to function. Metaproteome data contains both levels
of information. The previously published tool for connecting
both levels into a single interactive figure (Zoun et al., 2017) is
supported by a special export function of MPAv2 (Figure 13). The

interactive figure can be adapted to the requirements by simply
switching on and off certain taxonomies and functions allowing
fast visualization of taxonomy-function-relationships according
to user requirements (Figure 13 and Supplementary Table
S10). This new export supplemented other valuable visualizations
available for MPA users internally (pie charts) and externally
(KEGG maps, Krona plot).

DISCUSSION

In this study, we proposed and evaluated a new robust and
fast workflow for metaproteomics of microbial community
samples for routine application. The advantages over the
previous workflow (Heyer et al., 2013; Muth et al., 2015a)
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FIGURE 10 | Impact of peptide database lookup on reported proteins (A) and metaproteins (B) for MPAv1 and MPAv2.The comparison was carried out with data
obtained with the new laboratory workflow. The bars represent the accumulated number of proteins/metaproteins for each sample group.

FIGURE 11 | Grouping of samples using PCoA. Principle coordinate analysis of all samples extracted with the previous (square) and the new (dots) workflow using
the Past 3 tool and the Bray–Curtis distance as parameter. For analysis, all metaproteins that represented at least one percent of the identified spectra in at least one
sample were considered. The samples comprise the three BGP samples 1–3 (aqua, cornflower blue, teal), the three human fecal samples 1–3 (light pink, purple,
red), the WWTP samples (navy), the soil sample (brown) and the compost sample (dark green).

included performance improvements in both sample preparation
and bioinformatics data processing. The objectives of our
new protocols were speed, simplicity, high throughput,
reproducibility, and robustness.

Advantages of the New Laboratory
Workflow
The new laboratory workflow combined phenol extraction
(Heyer et al., 2013), FASP (Wisniewski et al., 2009) and LC-
MS/MS measurement (Link et al., 1999). Phenol extraction

combined with cell lysis in a ball mill was previously applied to
numerous environmental samples (Jia et al., 2017; Thorn et al.,
2018; Heyer et al., 2019). For simplicity and robustness, the new
workflow omitted sophisticated and time-consuming enrichment
of biomass from environmental matrices by centrifugation or
filtration (Xiong et al., 2015). Furthermore, fractionation, which
was frequently applied in sample preparation (Hinzke et al.,
2019), was sacrificed for speed of the final workflow. The final
workflow enabled an investigation with a throughput of up to
5 samples in only 24 h, only limited by the throughput of the
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FIGURE 12 | Separation of samples in cluster tree. Cluster analysis of all samples extracted with the previous and the new workflow using Matlab and the “cityblock”
distance and the “average” linkage as parameter was carried out. For analysis, all metaproteins that represented at least one percent of the identified spectra in at
least one sample were considered. The samples comprise the three BGP samples, the three human fecal samples 1–3, the WWTP samples, the soil sample, and
the compost sample.

MS. The throughput could be improved even further by parallel
sample preparation in micro titer plates (Switzar et al., 2013), or
the use of more mass spectrometers.

The evaluation of the new workflow confirmed that FASP
digestion increased the number of identifications by at least
a factor of two in comparison to the well-established in gel
digestion protocol (Shevchenko et al., 2006). The most probable
explanation for this large difference was a decreased efficiency of
trypsin in in-gel digestion, because proteins inside the gel matrix
were partially inaccessible to trypsin or the recovery of peptides
from the gel matrix was poor (Leon et al., 2013). Furthermore,
FASP was considered to remove contaminations: (i) low
molecular weight contaminations were removed by filtrations
before digestion and (ii) high molecular weight contaminations
remained in the retentate after digestion. However, the number
of identifications was heavily dependent on the sample type. First,
a literature comparison (Supplementary Table S9) confirmed
that soil metaproteome studies (Keiblinger et al., 2012; Bagnoud
et al., 2016; Bastida et al., 2016; Thorn et al., 2018) identified
less proteins and peptides than studies of Hgut (Tanca et al.,
2016; Brown et al., 2018; Zhang et al., 2018a; Rechenberger et al.,
2019) and BGP (Bize et al., 2015; Hagen et al., 2017; Joyce et al.,
2018). Second, it became obvious that sacrificing the fractionation
before or after (Hinzke et al., 2019) tryptic digestion resulted
in lower number of identifications. Considering the speed for
measuring the samples without fractionation, the number of
identified proteins was still competitive in most cases, for BGPs
even better. Despite the increased efficiency achieved with the
new FASP protocol, the number of identifications was still
influenced strongly by the sample type. Poor protein abundance
could be overcome by collecting higher sample volumes and

pooling of multiple extracts of the same sample. When a
higher metaproteome coverage is required to derive meaningful
results for more scientific projects, supplementary fractionation
techniques such as isoelectric focusing (Kohrs et al., 2014) or ion
exchange chromatography (Erickson et al., 2012; Kleiner et al.,
2017) could be applied. However, these solutions would come
at the expense of throughput. Since low protein abundance and
poor extraction from sample matrices might occur with any new
sample, the recommended strategy for new samples is to control
the quality of extraction and digestion using SDS-PAGE and
peptide electrophoresis beforehand.

The reproducibility of the workflow was demonstrated by
high numbers of identical metaproteins and high Pearson
correlation coefficients for replicated samples or for sample
types. Considering the number of identical metaproteins, the
reproducibility cannot exceed the limits of replicated LC-MS/MS
measurements for protein identification (Tabb et al., 2010).
High reproducibility was confirmed further by similar spectral
counts for identified metaproteins of two technical replicates
of a BGP sample, whereas the quantitative comparison of two
different BGP samples revealed numerous metaproteins with
different abundance.

Robustness of the workflow was related to repeated
assignment of replicates to each other using statistical data
analysis. Grouping of replicates and separation of different
sample types was observed by PCoA and clustering. Therefore,
single replicates appeared to be sufficient for future studies.
The specificity of the workflow should enable the separation of
different samples as shown for BGP and Hgut (different patients).
For soil and WWTP, reproducibility and robustness were lower
due to low numbers of identified metaproteins. These results
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FIGURE 13 | Chord-diagram visualizing the taxonomy-function-relationships for samples BGP 1A–C. Data was exported from MPA. All taxonomies except bacterial
and archaeal orders were removed in the diagram (chord diagram for a Hgut sample is found in Supplementary Table S10).

indicated that at least several hundred metaproteins are required
for statistical data analysis.

Advantages of the New MPA
Another focus of this study was the improvement of the
bioinformatics workflow by further development of the MPA
software. Several tools for metaproteomics are available and
provide valuable problem-specific solutions (e.g., Prophane,
iMetaLab 1.0, UniPept) (Schneider et al., 2011; Cheng et al., 2017;
Mesuere et al., 2018). None of these tools, however, offers the user
a full workflow beginning with MS data and ending with protein
reports and visualizations. Major advantages of the previous MPA
were the dynamic metaprotein generation and the flexibility in
taxonomic as well as functional filtering.

In contrast to the recently published MPA Portable (Muth
et al., 2018), which fits well into a research context, where
data science experts and computing resources are more easily
available, the MPA 2.12 enables users with little or no background

in computer science to conduct metaproteomics experiments
with ease. While both options – local deployment or central
solution – are available to users, central solutions (Cheng et al.,
2017; Afgan et al., 2018; Liao et al., 2018) can keep up with
the ever increasing data generated by high-throughput MS and
the associated computational demands for broad application in
routine analyses.

The newly implemented peptide database lookup and the
integrated protein BLAST doubled the number of metaproteins
annotated on the taxonomic and functional level. Together with
the previously implemented metaprotein generation, the MPA
now provides a unique workflow of functions that are available
separately by other tools, e.g., Unipept or Prophane. The unique
workflow within a single software speeds up the data analysis
by omitting the file-based transfer of data between different
tools. For further improvement, binned metagenomes containing
taxonomic and functional data of high quality (Junemann et al.,
2017) could be used. Assignment of metaproteins to genome
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bins would allow a more specific reconstruction of metabolic
pathways based on additional information from the context of
the genome bin. Furthermore, the concatenation of metagenomes
from a similar sample and UniProtKB/SwissProt could improve
the identification rate even more (Heyer et al., 2016). In addition,
metapeptide databases based on raw metagenomes have been
shown to increase protein identification too (May et al., 2016).
The issue of correct selection of databases requires attention of
users but is discussed elsewhere (Muth et al., 2015b; Timmins-
Schiffman et al., 2017; Schiebenhoefer et al., 2019).

Building on these strengths, the new quantitative comparison
function provides an overall metaprotein generation unifying
single datasets for final export into other software. The exported
CSV-files allowed a fast subsequent analysis of multiple sample
data with Excel, MatLab, Past3 or R. The simple and fast
combination of multiple datasets by MPA is a precondition
for quantitative and statistical analysis of data from high-
throughput-studies. It needs to be mentioned that due to the
application of multiple search engines more than one peptide
could be assigned to a spectrum. Due to high mass accuracy
of precursor spectra with orbitrap instruments this ambiguity
is a very rare event. Therefore, it was decided to keep both
results when developing the first version of MPA. The minor
risk of failures in counting should be considered for diagnostic
applications. We strongly suggest the validation of potential
markers peptides and quantification based on multiple peptides.

In addition, the chord diagram is a smart interactive tool
visualizing the relation between taxonomy and functions that
could be used for primary exploration of data or for preparing
interactive visualization of data for publications.

Steps Toward the Application of
Metaproteomics in Applied Research
and Diagnostics
The new metaproteomic workflow was substantially improved
regarding speed, throughput and simplicity. Reproducibility, and
robustness were shown by statistical analysis of the provided data.
In contrast to these strengths, its resolution was limited due to
sacrificing additional fractionation steps in sample preparation.
However, it could be easily upgraded for fundamental science by
adding fractionation on the peptide level (e.g., MudPIT; Schirmer
et al., 2003), at the expense of speed. Next steps for its application
in applied research and diagnostics are: (i) validation using more
samples, (ii) further exploration of its strengths and limitations,
and (iii) approval of its sensitivity and specificity in real projects
from researchers in biotechnology and medicine.

Related to the exploration of strengths and limitations, the
depth of data required for valuable data analysis needs to be
considered. Instead of deep exploration of microbiomes by
achieving as many identifications as possible, proteotyping of
microbial communities (Heyer et al., 2016; Kohrs et al., 2017)
aims to detect single marker proteins or process (disease) specific
protein signatures. It is questionable, whether metaproteins are
the preferred level of data. Metaproteins contain a high level of
information (taxonomy and function), but merging peptides of
multiple proteins could hinder correlations with patient/process

data. Therefore, single peptides should also be correlated to the
state of the samples. Based on such results, multiple reaction
monitoring (Yao et al., 2013) could be applied as a more specific
and more quantitative approach for diagnostic applications.
Furthermore, the specificity of selected marker peptides needs
to be crosschecked by bioinformatic analysis (e.g., the tryptic
peptide analysis of Unipept 4.0; Mesuere et al., 2018)2. However,
Unipept is based on UniProt database and does probably not
contain all peptides detected in the samples.

The main dilemma is that further development and validation
of the workflow for diagnosis requires its extensive application
producing comprehensive datasets for subsequent correlation
to patient/process data, but in comparison to conventional
diagnostic tools the effort still appears to be very high at
this stage. The samples analyzed in this paper exemplify
potential applications. In order to justify further comprehensive
studies, selected results are discussed referring to recent
literature. Omitting extensive sample preparation enabled
also the detection of “contaminating” non-microbial proteins
from host (Lehmann et al., 2019) or from feed (Heyer et al.,
2015) that could be valuable for understanding disease or
technical processes. For instance, the disease marker calprotectin
is commonly monitored in stool samples through ELISA
to discriminate between inflammatory bowel syndrome
and inflammatory bowel disease (Caccaro et al., 2012).
Calprotectin was easily found using our metaproteomics
workflow alongside many other potential disease markers
of human and microbial origin (Supplementary Table S6;
Lehmann et al., 2019). Whereas ELISA is restricted to a single
protein and relies on antibodies that may bind unspecifically,
metaproteomics can detect a multitude of protein alterations
for disease specific pattern recognition and thus enable a
more comprehensive and robust diagnosis. This will be
particularly useful if the impact of the microbiome on certain
diseases such as diabetes, several autoimmune diseases,
obesity and depression is better understood and microbial
marker proteins for these diseases are known. For BGP, the
supporting effect of annotating hits from non-annotated
metagenome data by BLAST was obvious. Key enzymes for
all major pathways of anaerobic digestion were detected.
The abundance of methyl-coenzyme M reductase has been
identified previously as a predictive biomarker for performance
of BGP (Munk et al., 2012). Whereas the suggested RT-PCR
assay focussed only on a single function, metaproteome
data provides additional data that discriminated between the
acetoclastic and hydrogentrophic pathways of methanogenesis
(Heyer et al., 2016, 2019).

CONCLUSION

In conclusion, the new metaproteomics workflow presented in
this study combines robust and fast sample preparation with
improved data processing in a single standardized workflow.
The evaluation of the workflow showed a significant increase

2https://unipept.ugent.be/
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in quality and quantity of generated results compared to our
previously reported workflows. Performance and processing
time provide a basis for establishing metaproteome based
diagnostics in clinical settings and routine analysis of technical
and environmental samples in the future. Further steps to explore
the potential of the workflow are necessary and should be a major
focus of future research.
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Received January 31, 2020; Revised June 19, 2020; Editorial Decision July 08, 2020; Accepted August 03, 2020

ABSTRACT

The study of bacterial symbioses has grown expo-
nentially in the recent past. However, existing bioin-
formatic workflows of microbiome data analysis do
commonly not integrate multiple meta-omics levels
and are mainly geared toward human microbiomes.
Microbiota are better understood when analyzed in
their biological context; that is together with their
host or environment. Nevertheless, this is a limita-
tion when studying non-model organisms mainly due
to the lack of well-annotated sequence references.
Here, we present gNOMO, a bioinformatic pipeline
that is specifically designed to process and analyze
non-model organism samples of up to three meta-
omics levels: metagenomics, metatranscriptomics
and metaproteomics in an integrative manner. The
pipeline has been developed using the workflow
management framework Snakemake in order to ob-
tain an automated and reproducible pipeline. Using
experimental datasets of the German cockroach Blat-
tella germanica, a non-model organism with very
complex gut microbiome, we show the capabilities
of gNOMO with regard to meta-omics data integra-
tion, expression ratio comparison, taxonomic and
functional analysis as well as intuitive output visu-
alization. In conclusion, gNOMO is a bioinformatic
pipeline that can easily be configured, for integrating

and analyzing multiple meta-omics data types and
for producing output visualizations, specifically de-
signed for integrating paired-end sequencing data
with mass spectrometry from non-model organisms.

INTRODUCTION

Symbiosis is a widespread relationship present in all groups
of organisms but intensely developed between animals and
bacteria that benefit from each other in order to survive.
Consequently, both acquire an evolutionary advantage in
comparison to individuals lacking this relationship. Two
different types of symbiosis can be distinguished: ectosym-
biosis, in which bacteria are attached to the surface of the
host, and endosymbiosis, which usually is a mutualistic re-
lationship, where bacteria live intracellularly in the host and
are transmitted vertically (1,2). To understand these evo-
lutionary relationships host and symbionts are best stud-
ied together. In mutualistic symbiosis, the eukaryotes pro-
vide a safe environment for endosymbiotic bacteria that live
in close interaction with the host. In return, the endosym-
bionts provide nutrients and metabolites (such as essential
amino acids or vitamins) to the host that cannot be ob-
tained in any other way. For example, it has been estimated
that around 15% of insect species maintain endosymbiotic
associations with bacteria that supply the host with the nu-
trients that are lacking in their diets (3) On the other hand,
most insects possess a gut microbiome that affects the phys-
iology of the host by, for example, contributing to metabolic
and nutritional needs, and the immune system development
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(4). Recently, many studies have been performed in humans
to study the gut microbiota (5), but non-model organisms
require further investigations to better understand this spe-
cific type of symbiosis. In this context, cockroaches are a
suitable model, because they have two symbiotic systems,
i.e. an endosymbiont (Blattabacterium cuenoti) in the fat
body and a rich and complex gut microbiota (6,7). The Ger-
man cockroach Blattella germanica is a hemimetabolous in-
sect (it has an incomplete metamorphosis) with three devel-
opmental stages. Regarding its symbionts, genome analysis
demonstrated that the endosymbiont Blattabacterium con-
tributes to the nitrogen (N) recycling and the synthesis of
essential amino acids (8), but the function of the gut micro-
biota in cockroaches still has to be elucidated. It has been
shown that the gut microbiome of cockroaches shows much
overlap with the one in humans probably reflecting a similar
omnivorous diet (6,9–10).

Recently, research interests in microbial communities
have been strongly increased due to findings on the im-
pact of the microbiome on human health (11,12). Micro-
biome studies often employ meta-omics techniques such as
metagenomics (13) that aims to analyze the genetic ma-
terial from all members in a microbial community sam-
ple. Despite many advantages, metagenomics still presents
a static gene-centric approach that cannot assess tempo-
ral dynamics and functional activities of complex microbial
populations (14). To gain insights into the dynamic func-
tional repertoire of microbial communities, further tech-
niques such as metatranscriptomics and metaproteomics
have been established in recent years (15,16). Beyond the
genome level, these meta-omics analysis approaches allow
studying complex microbial systems and their host inter-
actions at the gene expression level (transcripts and pro-
teins, respectively). Used separately, metagenomics, meta-
transcriptomics and metaproteomics are already powerful
because they complement and mutually support each other.
However, the bioinformatics analysis still faces various spe-
cific challenges that concern, for example, the identification
of genes and proteins, the construction of multi-organism
databases, the database selection process influencing the
taxonomic and functional assignment (17), and the use of
different sample extraction or data analysis protocols mak-
ing the results comparison difficult (18). Finally, the lack
of properly annotated reference genomes and proteomes is
also a typical overseen issue in this context (19). These chal-
lenges must be overcome to design optimized and standard-
ized meta-omics pipelines for analysing microbiome data.

In the past, powerful tailored bioinformatic solutions
have been developed for the individual meta-omics anal-
ysis levels (13,15–16). However, the true strength unfolds
when these analysis techniques are integrated (20,21). As
a holistic approach, a complete meta-omics integration can
extend the capabilities of microbiome and host-related stud-
ies in various ways. Most importantly, integrating multiple
meta-omics levels allows to expand the possibilities of bi-
ological interpretation and to investigate biological path-
ways from a more comprehensive perspective. Compared to
single-omics strategies, an integrative approach provides a
deeper and more thorough understanding of how the key
players of microbial communities regulate underlying path-
way mechanisms (22).

While the integration of meta-omics has been described
in previous studies (23), its potential has not been fully
exploited so far. In particular, the data analysis is chal-
lenging, because studies often present customized in-house
workflows that cannot be fully automated or are not re-
producible. In general, automated multi-omics analysis
pipelines are rare and limited to few meta-omics levels (24)
and are not tailored for host and microbiome analyses of
non-model organisms.

Here, we present gNOMO, a meta-omics software
pipeline that allows integrating three different levels of
omics analyses, derived from metagenomics, metatranscrip-
tomics and metaproteomics experiments. It provides two
different, optionally iterative operating modes: (i) each of
the three omics levels can be analyzed separately and inde-
pendently of each other and subsequently, (ii) up to three
omics layers can be analyzed in a fully integrated fashion.
The workflow of gNOMO starts from raw data to essential
processing steps and finally provides output visualizations
for taxonomic classification, functional metabolic path-
way profiling and differential sample analysis. The integra-
tion of metagenomics, metatranscriptomics and metapro-
teomics data is possible due to the production of a tai-
lored proteogenomic database, which optimizes the identi-
fication and quantification of peptides in metaproteomics
data (25,26). As microbiota needs to be analyzed in its con-
text, the host is also studied together with the microbiome.
Host data can be analyzed without a reference database,
which allows to study non-model organisms, and proteins
of the host are also identified with a tailored host database
obtained from genomics and transcriptomic sequences. The
pipeline has been implemented using the Python-based
Snakemake (27) framework to perform fully automated and
reproducible multi-omics analyses of host and microbiome
samples. So far, gNOMO has been developed and optimized
for data from non-model organism samples, but it is fully ex-
ecutable on generic sample types, for example, from human
or mouse microbiomes. With gNOMO, we aim to fill the gap
of barely existing multi-omics pipelines for microbial com-
munity samples being able to compare and integrate data at
the genome, transcriptome and proteome level.

MATERIALS AND METHODS

gNOMO is a pipeline that integrates multiple bioinfor-
matic methods and software tools to analyze metagenomics,
metatranscriptomics and metaproteomics data and to pro-
vide the results with an easily readable final output. One
of the main purposes of integrating such different kinds
of multi-omics data is to directly improve the analysis
of microbial populations and to investigate their function
in poorly characterized environments, such as non-model
organisms. At the genome and transcriptome level, our
pipeline includes both quality control and data preparation
steps, of which parameters can be adjusted depending on
the quality of the input data. In addition, gNOMO allows
to directly create a proteogenomic database from metage-
nomics and metatranscriptomics data. This important pro-
cessing step makes it possible to connect the metagenomics
and metatranscriptomics analysis to the protein identifica-
tion at the metaproteomics level. In particular, the proteoge-
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nomic database generation step leads to the full integration
of all three omics levels.

The complete gNOMO pipeline is built in Snakemake
(27), a management system for bioinformatic workflows,
that allows obtaining standardized and reproducible output
data. The input data and parameters of programs that are
used in Snakemake are defined by editing a single configu-
ration file. Further, the gNOMO pipeline including all de-
pendencies is available at the BioConda channel (28). Tools
added to BioConda provide a user-friendly installation be-
cause the required tools and libraries are easily incorporated
and automatically installed with the use of Snakemake en-
vironments. Due to the high computational needs of some
parts of the workflow, we recommend a system with at least
16 available cores and at least 200 GB RAM. The stor-
age requirements are data-dependent and were in our case
about 1 TB of free storage. The runtime highly depends on
the number of available cores because Snakemake is able
to parallelize non-dependent tasks and decreases the run-
time this way substantially. On a cluster node with 16 cores
and 200 GB RAM the analysis of the B. germanica micro-
biome took about 72 h. The runtime of gNOMO can vary
from run to run as it not only depends on CPU power but
network speeds used, for example, for database updates as
well. In addition, it should be stated that the Snakemake
workflow engine is compatible and scalable in cluster envi-
ronments (e.g. using the SLURM Workload Manager). The
gNOMO pipeline typically consists of five main steps (Fig-
ure 1): (i) pre-processing, (ii) metagenomics and metatran-
scriptomics data analysis, (iii) proteogenomic database cre-
ation, (iv) metaproteomics data analysis and (iv) data inte-
gration. In the following paragraphs, these individual steps
are described in more detail.

Pre-processing

The first step includes various pre-processing mechanisms
improving metagenomics and metatranscriptomics read
quality, including: (i) FastQC (29) for reviewing the quality
of the reads, (ii) PrinSeq (30) for cleaning and for trimming
the sequences, (iii) a second quality control with FastQC
and Fastq-join (31) for binning the pair-end reads. This bin-
ning step is included because our workflow is designed for
paired-end reads.

Metagenomic and metatranscriptomic analysis

In the metagenomic and metatranscriptomic analysis step,
the pre-processed paired-end sequences are analyzed using
pre-configured tools. These tools include (i) a genome map-
ping against the NCBI non-redundant (nr) database (ac-
cessed 5 July 2019) using Kaiju (32), (ii) an assembly us-
ing Ray, (iii) and protein prediction using both Prodigal
(33) for bacterial proteins and (iv) Augustus (34) for host
proteins. The contigs obtained through the genome assem-
bly are used to increase the accuracy of the protein predic-
tions. Bacterial proteins are predicted using Prodigal, a pro-
gram specifically designed to predict bacterial open reading
frames. Host proteins are predicted, with an engine (Augus-
tus, (34)), from the same samples as bacterial proteins, be-
cause our pipeline is designed to analyze mixtures of host

hindgut cells and bacterial cells. In this experiment, the vivi-
section process has been performed to ensure the only ac-
quisition of hindgut tissue, essential to properly integrate
bacterial data in its context, which is the hindgut of the host.
Functional annotation of these predicted proteins is per-
formed using EggNOG (version 1.0 accessed 5 June 2019)
(35) to obtain KEGG Orthology (KO) identifiers. An op-
tional step is included that requires the installation of In-
terProScan (36). This software is not implemented in Bio-
Conda but will be automatically installed locally with the
snakemake script and allows a TIGRFAM (37) functional
annotation. Details regarding the quality of the annotation
in metagenomics and metatranscriptomics are available in
the Supplementary Table S1.

Proteogenomic database generation

The output of the previous bacterial prediction from the
metagenomics and metatranscriptomics data is used to cre-
ate a proteogenomic database. This database includes bac-
terial and host proteins from metagenomics, metatranscrip-
tomics or both kinds of data. A database with both kinds of
information provides a comprehensive reference for peptide
and protein identification (see next paragraph). The pro-
teogenomic database obtained from the validation data has
been built with the sequences resulting from the bacterial
protein prediction performed with Prodigal. This database
(data of creation: 19 November 2019) contains 1 014 200 se-
quences, of which 850 455 are unique (i.e. occur only once
in the database).

Metaproteomic data analysis

For peptide and protein identification, MS-GF+ (38) is
used as database search engine, employing the custom pro-
teogenomic database as reference for peptide-to-spectrum
matching. Both taxonomic and functional annotations of
the peptides are performed with Unipept version 4.0 (39).
The output obtained from this step is a taxonomic annota-
tion at three different levels (phylum, family and genus) and
the Enzyme Commission (EC) number associated with each
peptide. To assess the performance of our tailored database,
we compared the peptide identification yield with a very
complete human gut microbial protein database: NIH Hu-
man Microbiome Project Gastrointestinal database (ac-
cessed 25 November 2019) (Supplementary Table S2). With
our tailored database we obtained four times more peptides
identified than using the NIH Gastrointestinal database.
The search parameters are available in the modifications file
for msgf plus (mods) and the config file. These results are
consistent with previous studies on the use of metagenomic
sequences for constructing proteogenomics databases (40).

Meta-omics data integration and visualization

The final step concerns the integration and visualization of
all three-level meta-omics data and results. The integration
of all three meta-omics data levels is performed in the fol-
lowing stages: (i) parallelized meta-omics analysis, (ii) pro-
teogenomic database construction and (iii) pathway visual-
ization.
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Figure 1. Workflow overview of the gNOMO pipeline. Each box represents a processing step in the pipeline. Box colors indicate the types of steps: input
(orange), processing step (blue), optional step (red) and output (green). A legend with the colors is also incorporated. In each step, the process is indicated
as well as the program used (in blue, red or green boxes), or which kind of input is required (in yellow boxes). Each blue, green and red box is marked
with a number in parentheses indicating to which pipeline step it belongs: (1) pre-processing, (2) metagenomic and metatranscriptomic data analysis, (3)
proteogenomics database construction, (4) metaproteomics data analysis, (5) final output visualizations based on the meta-omics integration.

First, both metagenomics and metatranscriptomics data
are analyzed in parallel, which allows a reliable integra-
tion of them. The taxonomic annotation of the microbiome
is visualized with KronaPlots (41). These plots show the
taxonomic distribution in each sample reads for metage-
nomics and metatranscriptomics data. To analyze this in-
formation further, linear discriminant analysis (LDA) effect
size (LEfSe) (42) is used that performs a statistical analy-
sis on the microbiome data. LEfSe identifies features most
likely to explain differences between conditions by cou-
pling standard statistical tests with additional tests encod-
ing biological consistency and effect relevance. The statis-
tics performed are Kruskal-Wallis rank-sum test on classes,
Wilcoxon rank-sum test among subclasses and LDA score
on relevant features. Taking account of the effect size is es-
sential to properly analyze microbiomes. The outcome of
the statistical analysis is depicted in a graph with up to two
levels of classification, and only the features with an LDA
score over 2 are shown. This allows visualizing different
conditions and different data within the same graph.

For the functional annotation, the representation of the
metabolic pathways is included using Pathview (43), which
allows pathway integration. The Pathview plots represent
the log2 ratio of the means of the different conditions
and data compared (i.e. 10d and 20d, metagenomic, meta-
transcriptomic and metaproteomic data, see below), after
a fold change normalization. These log2 ratios are cal-
culated for the proteins predicted from the contigs as-
sembled from each sample. The database used to iden-
tify the peptides in the metaproteomics data is based on
the protein prediction from the metagenomics and meta-
transcriptomics data. This proteogenomics approach cre-
ates a sample-specific protein database and therefore opti-

mizes the peptide and protein identification at the metapro-
teome level, and provides a full integration of three datasets:
metagenomics, metatranscriptomics and metaproteomics.
The log2 ratio of the means of the peptides identified are
then included in the Pathview visualization. When inte-
grating all three datasets (metagenomics, metatranscrip-
tomics and metaproteomics), the log2 ratios are compared
between pairs of datasets (transcripts/gene, protein/gene,
protein/transcript). Pathview shows these ratios as a color
gradient, indicating which dataset is over-represented in
the comparison. We can interpret if the transcriptional ac-
tivity is high (transcripts over-represented among genes),
or if the protein production is low (genes over-represented
among proteins). This R-based tool shows the differential
expression of the enzymes on graphs visualizing the selected
metabolic pathways. Pathview itself uses functional path-
way information from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (44).

Validation data

Blattella germanica population originated from a stable lab-
oratory population housed by Dr X. Bellés’ group at the
Institute of Evolutionary Biology (CSIC-UPF, Barcelona).
It was reared in chambers at the Institute for Integrative
Systems Biology (University of Valencia) at 25◦C, 60% hu-
midity and a photoperiod of 12L:12D. Cockroaches were
fed dog-food pellets (Teklad global 21% protein dog diet
2021C, Envigo, Madison, WI, USA) and water ad libitum.
Samples were taken at 10 days and 20 days after becoming
adults, conditions names 10d and 20d, respectively. Vivisec-
tions of CO2-anesthetized females were performed to ob-
tain the hindgut of each individual. DNA and RNA sam-

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/3/lqaa058/5881268 by guest on 23 January 2021



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3 5

ples were obtained from the same hindgut, with a total
of 12 samples (six replicates per condition). Protein sam-
ples were obtained from individuals of the same age and
population, with a total of eight samples (with four repli-
cates per condition). Hindgut was ground with a sterile
plastic pestle. DNA and RNA extraction of each hindgut
was performed using Nucleospin RNA XS and Nucleospin
DNA/RNA Buffer Set (Macherey-Nagel, France). Protein
extraction of each hindgut was performed solubilizing the
ground hindgut with lysis buffer (7 M urea, 2 M thiourea,
4% (w/v) CHAPS). Metagenomic sequencing using the Il-
lumina MiSeq (2 × 300 bp) technology was done at the FIS-
ABIO (Valencia, Spain). Metaproteomics shotgun sequenc-
ing was performed by the Proteomics Unit of the Servei
Central de Suport a la Investigació Experimental (SCSIE)
at the University of Valencia.

A small subset of human data has been also analyzed in
order to show the plasticity of the pipeline. The dataset con-
sisted of two samples of metagenomics and metaproteomics
data from the study of Tanca et al. (45). Both samples corre-
spond to faecal samples from healthy Sardinian individuals:
a female and a male.

RESULTS

To illustrate the outputs and analysis that can be ob-
tained from this pipeline, we used a complex gut microbiota
dataset from the non-model organism B. germanica, which
genome has been sequenced (without being fully annotated)
(46). This dataset consists of metagenomics, metatranscrip-
tomics and metaproteomics data of two different adult con-
ditions: 10d and 20d.

Comparison of metagenomics and metatranscriptomics/
metaproteomics datasets for one-condition sample (multi-
meta-omic approach)

Assessing bacterial composition from metagenomics and
metatranscriptomics data. The analysis of microbial com-
munity samples often raises the question of which bacteria
form a given population. To answer this question, we per-
formed two different types of analysis using gNOMO. First,
we processed and analyzed metagenomics data to investi-
gate the taxonomic composition of a given sample. Second,
we analyzed and compared samples of two different condi-
tions: 10d and 20d.

For the first analysis, the output was visualized using
a Krona plot that is produced for each metagenomics
and metatranscriptomics sample automatically within the
gNOMO pipeline. For the first-condition (10d) sample, we
observed that the main phyla present in this population
were Bacteroidetes, Firmicutes and Proteobacteria (Figure
2). After analyzing the taxonomic distribution differences
between the 10d and 20d samples, we observed no signifi-
cant abundance differences in a preliminary analysis (Sup-
plementary Tables S3 and 4). In this analysis, the relative
abundance of the main phyla and families was calculated
in relation to the mean abundance of the two conditions.
We observed that the four most abundant phyla distribu-
tions match our previous published studies based on 16S
gene sequencing, while others (e.g. Planctomycetes, Defer-

ribacteres and Actinobacteria) do not match exactly previ-
ous studies on this topic (10) (Supplementary Table S3).
We made similar observations regarding taxonomic abun-
dances at the family level (Supplementary Table S4). In gen-
eral, this can be explained by the difference concerning the
method and annotation between 16S rRNA gene sequenc-
ing analysis and metagenomics. 16S rRNA gene sequencing
focuses on bacterial data and can be useful in environmental
studies due to the lack of fully sequenced bacterial genomes
in these kinds of scenarios. In contrast, metagenomics of-
fers higher resolution, enabling a more specific taxonomic
classification of sequences as well as the detection of new
bacterial genes and genomes (47).

As described previously, our first analysis provided no
clearly visible abundance differences between the two con-
ditions, as we were expecting when studying such a stable
situation (both are adult individuals differing in 10 days of
development). However, we decided to validate this find-
ing by a more sensitive statistical approach. To investigate
this issue further, we used LEfSe (42) as a well-established
statistical method for comparing the taxonomic distribu-
tion at genus level between 10d and 20d conditions. LEfSe
has the advantage of recognizing the hierarchy of the tax-
onomic classification and accurately calculate statistically
significant differences (represented as LDA scores) between
different conditions.

Using LEfSe, we found, for example, that Fusobacterium
(Fusobacteriaceae family), was more abundant at 10 days
(LDA score > 3) in both metagenomics and metatran-
scriptomics data (Figure 3). The role of Fusobacterium on
cockroaches’ gut microbiome deserve a detailed study due
to these results and some interesting findings about this
groups’ role in other organisms: Fusobacterium has been
related to disease and stress situations in the human gut
microbiota (48), but is has also been related to the infants
gut microbiota (49). Conversely, an unidentified genus be-
longing to the family Ruminococcaceae, has been found
more abundant in 20d than 10d condition (LDA score >
3) in metagenomics data (Figure 3A), but no differences be-
tween conditions have been found in metatranscriptomics
data (Figure 3B). Various genera belonging to the family
Ruminococcaceae have been related to a healthy gut mi-
crobiota, like Ruminococcus and Faecalibacterium. These
have been linked to degradation of starch in the human
colon making it available for other bacteria in the gut (50),
and degradation of cellulose in herbivorous mammals (51).
These differences between 10d and 20d conditions could
suggest that, even if the population is very stable along
adult stages, it is being rearranged to its final composi-
tion. This rearrangement would imply a reduction in Fu-
sobacterium and an increase of Ruminococcaceae along time
(10d against 20d, Figure 3A). On the other hand, Pseu-
domonas genus and an unclassified genus belonging to the
family Pelagibacteraceae are more abundant only in meta-
transcriptomics analysis at 20d against 10d (Figure 3B).
Pelagibacteraceae has been described as a bacterial family
localized in marine and freshwater environments (52), but
has also been detected in the mouse gut microbiome (53)
Pseudomonas genus has been related to pathogenicity in an-
imals and plants, and is a commonly detected taxa in the gut
of cockroaches (54). These results suggest that these taxa
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Figure 2. KronaPlot of the taxonomic annotation of a metagenomics sample (condition 10d). Bacterial taxa distribution of metagenomics data, corre-
sponding to condition 10d. The bacterial taxa are classified by taxonomic hierarchy levels, from higher levels in the center of the chart (Kingdom Bacteria)
progressing outward until genus level.

increase their transcriptional activity but not their abun-
dance in the population along time. By the same reason the
unidentified genus of Ruminococcaceae reduce its transcrip-
tional activity (is over-represented at metagenomics level
but not at metatranscriptomics level in 20d sample). More
importantly, for the present work is the integration of this
level of comparison that allows detection of particular taxa
that differ significantly in their abundance in different con-
ditions.

Functional analysis from integrated metagenomics and meta-
transcriptomics data for one-condition sample. Next steps
concern the functional analysis of each microbiome dataset
and the qualitative and quantitative differences of assigned
functional annotations. To assess the level of transcriptional
activity of the population, we compare the metagenomics
data (gene pool) and the metatranscriptomics data (tran-
scripts) corresponding to the microbiota of the 10d con-
dition. Integrating metagenomics and metatranscriptomics
allows calculating transcript/gene ratios that indicate gene
transcriptional activation or repression. For this purpose,
we applied LEfSe based on the functional role (or sub-

role) assignment using TIGRFAM (Figure 4 and Supple-
mentary Table S5). We observed that energy metabolism
(both anaerobic and aerobic metabolisms) and protein pro-
duction are the most active metabolic pathways (Figure 4),
which indicates that the bacterial population is active.

Alternatively, a pathway analysis enables discovering dif-
ferences between states by using the Pathview R package.
An analysis with Pathview shows which specific metabolic
pathways (KEGG pathways) have statistically significant
correlations between sample types and/or conditions and
thereby complements the information provided by LEfSe.
In a Pathview graph, an increase of the gene activity in-
volved in a certain pathway can be observed. Our exemplary
analysis using Pathview here focuses on the tricarboxylic
acid cycle (TCA cycle) of the gut microbiota, comparing
again gene pool (metagenomics data) against transcripts
(metatranscriptomics data) (Figure 5). The TCA cycle con-
sists of a series of oxidative reactions to finally obtain energy
(adenosine triphosphate) from oxidative degradation of the
acetyl group, in the form of acetyl-CoA, to carbon dioxide.
The full cycle can be performed by bacteria in aerobic con-
ditions, but some autotrophic bacteria are also able to per-
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Figure 3. LEfSe graph of taxonomic annotation of metagenomics (top) and metatranscriptomics (bottom) data comparing the two conditions: 10d and
20d. Taxa with significant different distribution among the two conditions are identified. Only taxa with LDA scores over 2 are shown. Positive LDA scores
are assigned to the taxa over-represented in the condition 20d (green), and negative LDA scores to the taxa over-represented in the condition 10d (red).
Metagenomics data (A) and metatranscriptomics data (B) are represented.

form the reverse TCA cycle (rTCA), and even some anaero-
bic bacteria are able to carry out an incomplete TCA cycle,
defining the pan-metabolic capabilities for this pathway of
the gut microbiota.

We have found that most enzymes that take part in
the TCA cycle are over-represented at the transcript level.
This confirms our previous observations related to energy
metabolism (Figure 4). With both analysis methods and
their visualizations, we were able to study different levels of
complexity of the pan-metabolism of all bacterial popula-
tions. We observed that the microbiome actively produces
energy and proteins to grow and maintain a very complex
population. Beyond the use case shown above, depending
on the particular study, other pathways could be analyzed.

Meta-omics integration: comparing metagenomics, meta-
transcriptomics and metaproteomics data at the functional
pathway level

Each meta-omics level data provides unique information
in various ways, but their integration is crucial to gain a
complete overview of the metabolic capabilities of the stud-
ied bacterial populations. Metaproteomics data incorpora-
tion to the integrated analysis of microbiomes is essential
to have a realistic overview of the functional capabilities
of the bacterial populations. For this purpose, we analyzed
these meta-omics data together, as an example, focusing on

the N metabolism pathway, corresponding to the N cycle,
the set of reactions by which different inorganic N com-
pounds are transformed into ammonia, a biologically re-
duced form of N that can be mainly introduced into syn-
thesis of amino acids (glutamine and glutamate). We were
interested in this pathway due to previous findings related to
N metabolism of the host (B. germanica) and the endosym-
biont Blattabacterium. As explained previously, Blattabac-
terium participates in the N recycling from stored urates to
ammonia that can be used to synthesize glutamine and glu-
tamate, connecting with the amino acid biosynthesis path-
way (6). Here, the aim was to study N metabolism in the
host gut microbiome and then to assess if the bacterial pop-
ulation has the metabolic capability to produce a form of
usable N.

In this analysis, we investigated how variable or stable the
overall N metabolism is at the gene, transcript and protein
level along time (10d against 20d) in the investigated path-
way (Figure 6). While metagenomics and metatranscrip-
tomics show almost complete coverage of the N metabolism
pathways and very variable along time, only a few enzymes
were observed in the metaproteomics data and very stable
along time. These results suggest that while the gene pool
(the population) can be variable, the final transcripts and at
least the four detected proteins remain stable, which could
point in the direction of a functional redundancy at the pro-
tein level, as has been previously described for human gut
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Figure 4. LEfSe graph comparing metagenomics and metatranscriptomics data of TIGRFAM annotation (role and subrole levels) of condition 10d. Taxa
with significant different distribution among metagenomics and metatranscriptomics data are identified. Only taxa with LDA scores above 2 are shown.
Positive LDA scores are assigned to the functional categories over-represented in the metatranscriptomics data (RNA, green), and negative LDA scores to
the functional categories over-represented in metagenomics data (DNA, red).

microbiota (55). However, deeper coverage of the metapro-
teomics data would be necessary to confirm these findings.

Comparison of host and microbiome data

Microbiota metabolism and functions are better under-
stood when studied together with its host. gNOMO in-
cludes the analysis of the host data in parallel with its mi-
crobiome, so we can integrate and compare the metabolic
pathways of host and microbiome. In the case of B. ger-
manica, we have studied the N metabolism pathway that we
had analyzed before with the focus on the microbiota data
(Figure 6) integrating the host data (Figure 7). We have ob-
served which enzymes can be found in the bacterial popula-
tion data and which ones can be explained by the host data
(Figures 6 and 7).

We expected to find a maximum of four enzymes in the
host data, as in most eukaryotes only four enzymes of this
pathway are present, and we could detect those in the host
pathway. While these four enzymes were the only ones de-
tected in the host, its gut microbiome possesses most of the
enzymes present in the N metabolism pathway.

If we study these four enzymes present in the host data
in detail, it can be observed that all of them are over-
represented at 10d against 20d condition in metaproteomics
data, and in metagenomics and metatranscriptomics data,
they are almost undetectable (Figure 7). When looking

at the microbiome metatranscriptomics data, these pro-
teins have a stable abundance over the whole time (Fig-
ure 6). These findings could indicate that the production
of these proteins in the hindgut of the host is reduced
along time, but its production by the microbiome remains
stable.

After analyzing the bacterial and the host capabilities to-
gether regarding this metabolic pathway, we find that the
N metabolism corresponding to the N cycle is mostly per-
formed by the microbiome. These data show the importance
of the meta-omics integration, as different levels of cell func-
tion are represented, each of them with different implica-
tions. DNA (in metagenomics) is more stable and can rep-
resent the gene pool of a population, but it can be misun-
derstood as also dead bacteria and genes which are not ac-
tive are being represented with this methodology. RNA (in
metatranscriptomics) shows the levels of active transcrip-
tion, essential to understand the activity of a microbiome,
which can differ substantially from the gene pool, both in
bacterial and eukaryotic cells (Figures 6 and 7). The iden-
tified proteins for both microbial and host data, have been
decisive to conclude that the N cycle is active in the Ger-
man cockroaches’ hindgut due to its microbiome (Figure
6). This conclusion is reinforced by the host data, as it
has been proven that the host is not actively taking part
of the N cycle (Figure 7). The importance of these find-
ings should be analyzed in the future, including other path-
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Figure 5. KEGG Pathview graph of the TCA cycle metabolism route comparing metagenomics versus metatranscriptomics data of the microbiota of
10d and 20d conditions. Some nodes are split between two colors, indicating 10d (left) and 20d (right) conditions. Light blue (−1) depicts genes under-
represented in metagenomics (but over-represented in metatranscriptomics), while those marked in pink (1) depicts over-represented genes in metagenomics
(but under-represented in metatranscriptomics). In purple, values close to 0 in the ratio metatranscriptomics/metagenomics, indicating no differences in
frequency.

ways and improving the metaproteomics coverage of the
microbiota.

Human microbiome dataset

In order to evaluate the applicability of gNOMO to other
microbiome data, we performed an analysis on human mi-
crobiome data. In this analysis, we processed metagenomics
and metaproteomics data of two healthy Sardinian individ-
uals gut microbiota (45). The results of this exemplary anal-
ysis are included as two tables and two figures in the Sup-
plementary File.

The basic statistics of the metagenomics data used are
available in Supplementary Table S6. The output of the hu-
man dataset analysis includes the average taxonomic distri-
bution of the metagenomics data of these samples in Sup-
plementary Table S7. Our taxonomic identification at levels
of phylum and family corresponds with the ranges obtained
in the original study.

To exemplify the functional annotation output in the
human dataset, we have included two Pathview graphs
of the glycolysis/gluconeogenesis KEGG pathway. In
Supplementary Figure S1, the two chosen conditions
(male/female) are compared in both metagenomics and
metaproteomics data. In this figure, the metatranscrip-
tomics data possible spot in blank, which implies that the
pipeline works even with the lack of one of the meta-omics
data, and in general, the pipeline also works with all three
meta-omics levels (as shown in the previous text). It should
be noted that these exemplary data cannot be directly com-
pared to the results of the original study, as their authors
had not compared the microbiota between sexes. The re-
sults indicate an overall similar behavior of both bacterial
populations, but with punctual strong divergences between
individuals, which is in line with the results from the original
study.

Finally, the ratio between metagenomics and metapro-
teomics data are studied in both conditions. The results
show very different abundances between metagenomics and
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Figure 6. KEGG Pathview graph of the N metabolism route comparing metagenomics/metatranscriptomics/metaproteomics data of the microbiome at
10d and 20d. Some nodes are split between different colors, indicating metagenomics (left), metatranscriptomics (middle) and metaproteomics (right)
data. Light blue (−1) depicts genes/transcripts/proteins over-represented in 10d (but under-represented in 20d), while those marked in pink (1) depicts
genes/transcripts/proteins over-represented in 20d (but under-represented in 10d). In purple, values close to 0 in the ratio 10d/20d, indicating no differences
in frequency.

metaproteomics data, which indicates high or low transla-
tional activity, depending on the positive or negative value
of the ratio (Supplementary Figure S2). These findings also
confirm the results obtained from the Sardinian cohort
study.

DISCUSSION

The aim of our software design and implementation was to
provide a complete pipeline to analyze omics data from a
non-model host and its microbiome. Based on these require-
ments, we developed the gNOMO software that presents an
end-to-end workflow covering all the required data analy-

sis steps starting from the processing of raw omics data to
the final output visualization of the results. gNOMO per-
forms the analysis of up to three different meta-omics data:
metagenomics, metatranscriptomics and metaproteomics,
and their integration.

gNOMO is designed for paired-end sequencing of
metagenomics and metatranscriptomics data, the pipeline
includes a preprocessing and binning step designed for this
type of datasets. A tailored proteogenomic database is gen-
erated to perform a highly efficient database search for
protein identification in the metaproteomics data analysis
without a reference microbiome. To obtain this database
metagenomics and metatranscriptomics data are assembled
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Figure 7. KEGG Pathview graph of the N metabolism pathways comparing metagenomics/metatranscriptomics/metaproteomics data of the host between
10d and 20d conditions. Some nodes are split between different colors, indicating metagenomics (left), metatranscriptomics (middle) and metaproteomics
(right) data. Light blue (−1) depicts genes/transcripts/proteins over-represented in 10d (but under-represented in 20d), while those marked in pink (1)
depicts genes/transcripts/proteins over-represented in 20d (but under-represented in 10d). In pruple, values close to 0 in the ratio 10d/20d, indicating no
differences in frequency.

into contigs, which are then used to predict the proteins
present in the samples. Together with the microbiome data,
host data is obtained from the same samples and ana-
lyzed de novo in order to be able to analyze microbiota of
non-model organisms integrated with the host information.
Host databases can also be provided to analyze human or
other model organisms data.

The pipeline is developed using the modular Snakemake
framework that allows to incorporate software tools and li-
braries with different requirements. These tools are avail-
able at the BioConda channel and their installation is in-
corporated in the workflow. Snakemake makes use of pro-
gramming languages Python and Bash, which are com-

monly used in bioinformatics. Parameters can be specified
in the configuration file provided to Snakemake, so it can
be adapted to any kind of host or microbiome analyzed.
The use of Snakemake makes gNOMO fully automated, ef-
ficient and reproducible.

Previously published meta-omics workflows such as IMP
(24) incorporate two layers of meta-omics information by
integrating metagenomics and metatranscriptomics data.
Such workflows focus on the analysis of the microbiome
and often consider host information as contaminant reads:
thus, instead of providing a host data analysis, the host
genome is only used to remove the host information from
the microbiome data. To overcome this issue, gNOMO of-
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fers the possibility to analyze host data in parallel to mi-
crobiome data and both datasets can be studied simulta-
neously. gNOMO includes the analysis of metaproteomics
data and creates a tailored proteogenomic database to
achieve better and more efficient protein identification. The
incorporation of the metaproteomics data to the study of
the microbiome gives another dimension to the analysis of
the microbiome because the proteome provides the func-
tional profile and thereby gives insights on the actual inter-
action between microbial populations and their host.

The visualization output provided by gNOMO pipeline
includes krona charts for taxonomic distribution, and KO
categories are plotted using Pathview graphs. The func-
tional distribution represented with Pathview permits to in-
vestigate two different aspects: first, the completeness of
the metabolic pathways by visualizing each enzyme in the
route, and second, the differences in abundance of each
enzyme by comparing datasets (metagenomics, metatran-
scriptomics and metaproteomics) or conditions. This inte-
gration in gNOMO is highly useful, for example, when in-
formation regarding the presence and abundance of spe-
cific enzymes is needed. The integration is developed at
three different stages: the parallelization of the meta-omics
datasets, the integration of the functional annotation in
Pathview pathways, and the construction of a proteoge-
nomics database with metagenomics and metatranscrip-
tomics information to identify peptides and proteins from
the metaproteomics dataset.

With the study of a small human dataset, we can show
the plasticity and adaptation capability of the pipeline to
any type of dataset. The results obtained from this study
validate the results from the paper the exemplary dataset
was obtained from (45), which also proves that gNOMO is
a robust and reproducible workflow to work with.

In conclusion, gNOMO is a standardized and repro-
ducible bioinformatic pipeline designed to integrate and
analyze metagenomics, metatranscriptomics and metapro-
teomics microbiota data of non-model organisms. It incor-
porates preprocessing, binning, assembly steps, taxonomic
and functional annotations, and the production of a pro-
teogenomic database to improve the metaproteomics anal-
ysis. gNOMO also includes the analysis of both microbiota
and host data in parallel, which makes it a useful tool to
analyze the microbiome of non-model organisms, as it was
demonstrated using experimental data of the German cock-
roach B. germanica. In general, gNOMO can also be ap-
plied to data from human or other model organism sam-
ple types. Finally, gNOMO generates output and visualiza-
tion of multiple meta-omics results in a single automated
pipeline.

DATA AVAILABILITY

gNOMO is an open source software available in the
GitHub repository: https://gitlab.com/rki bioinformatics/
gnomo and https://gitlab.com/gaspilleura/gnomo.

The validation data have been deposited with Zenodo un-
der the accession number 3569690 (https://doi.org/10.5281/
zenodo.3569690), metagenomics and metatranscriptomics
data have been deposited with ENA under the accession
number PRJEB37860 (http://www.ebi.ac.uk/ena/data/view/

PRJEB37860) and metaproteomics data have been submit-
ted to PRIDE under the accession number (PXD018642).
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Supplementary Data are available at NARGAB Online.
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2. Moya,A., Peretó,J., Gil,R. and Latorre,A. (2008) Learning how to

live together: genomic insights into prokaryote–animal symbioses.
Nat. Rev. Genet., 9, 218–229.

3. Douglas,A.E. (2011) Lessons from studying insect symbioses. Cell
Host Microbe, 10, 359–367.

4. Moran,N.A., Ochman,H. and Hammer,T.J. (2019) Evolutionary and
ecological consequences of gut microbial communities. Annu. Rev.
Ecol. Evol. Syst., 50, 451–475.

5. Heintz-Buschart,A., May,P., Laczny,C.C., Lebrun,L.A., Bellora,C.,
Krishna,A., Wampach,L., Schneider,J.G., Hogan,A., de Beaufort,C.
et al. (2017) Integrated multi-omics of the human gut microbiome in
a case study of familial type 1 diabetes. Nat. Microbiol., 2, 16180.

6. Carrasco,P., Pérez-Cobas,A.E., van de Pol,C., Baixeras,J., Moya,A.
and Latorre,A. (2014) Succession of the gut microbiota in the
cockroach Blattella germanica. Int. Microbiol., 17, 99–109.
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Metaproteomics has matured into a powerful tool to assess functional interactions in

microbial communities. While many metaproteomic workflows are available, the impact of

method choice on results remains unclear. Here, we carry out a community-driven, multi-

laboratory comparison in metaproteomics: the critical assessment of metaproteome inves-

tigation study (CAMPI). Based on well-established workflows, we evaluate the effect of

sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a

simplified, laboratory-assembled human intestinal model and a human fecal sample. We

observe that variability at the peptide level is predominantly due to sample processing

workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level dif-

ferences largely disappear at the protein group level. While differences are observed for

predicted community composition, similar functional profiles are obtained across workflows.

CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a

template for multi-laboratory studies in metaproteomics, and provides publicly available data

sets for benchmarking future developments.
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M icrobial communities play a primary role in global
biogeochemical cycling and form complex interactions
that are crucial for the development and maintenance

of health in humans, animals, and plants. To fully understand
microbial communities and their interplay with their environ-
ment requires knowledge not only of the microorganisms
involved and their biodiversity, but also of their metabolic
functions at both the cellular and community level1. As proteins
constitute the key operational units performing these functions,
metaproteomics has emerged as the most relevant approach to
characterize the functional expression of a given microbiome2,3.
Metaproteomics corresponds to the large-scale characterization of
the entire set of proteins accumulated by all community members
at a given point in time, known as the metaproteome4. Since its
first introduction in 20045, mass spectrometry (MS)-based
metaproteomics has quickly emerged as a powerful tool to
functionally characterize a broad variety of microbial commu-
nities in situ. This allows a direct link to the phenotypes on a
molecular level and shows the adaptations of the microorganisms
to their specific environment6. Metaproteomics thus comple-
ments other meta-omic approaches such as metagenomics and
metatranscriptomics, as these only have the exploratory power to
assess the diversity and functional potential of microorganisms,
but cannot observe their actual phenotypes7.

In metaproteomics, proteins are commonly measured using the
shotgun proteomics approach. Here, the proteins are subse-
quently extracted, isolated, and digested into peptides, after which
these are separated and analyzed using liquid chromatography
coupled to tandem mass spectrometry (LC–MS/MS). The
obtained MS/MS spectra are then matched against in silico gen-
erated spectra derived from a protein sequence database, leading
to peptide spectrum matches (PSMs). Hereafter, the identified
peptides are used to infer the proteins present in the sample.
Proteins can then be annotated with taxa and functions, pro-
viding information on gene expression levels8.

Each of the aforementioned steps can potentially influence the
outcomes of a metaproteomic analysis and every step brings
specific benefits as well as challenges. As a result, multiple
workflows have been established. While such diversity brings
flexibility, it also complicates the comparison of results across
different experiments. Sample processing challenges include
protein recovery due to the presence of different matrices9, the
presence of different types of microorganisms with different
optimal lysis conditions10,11, and limited depth of analysis3 and
quantification12 due to an increased sample complexity. Envir-
onmental samples, such as feces or soil, are complex mixtures that
can contain microbial cells, host cells, plant-derived fibrous
materials, and other abiotic components. Therefore, the compo-
sition and abundance of these components must be considered
when choosing an appropriate method for cellular lysis and
protein extraction. Fortunately, the most commonly used meth-
ods nowadays are relatively robust, and generally provide a rea-
sonably representative extraction of proteins found in these
complex mixtures. However, because differences exist, methods
still need to be optimized for the specific samples and
projects13,14 Besides, apart from different sample processing
protocols, different mass spectrometers might also lead to a
variation in results.

Moreover, metaproteomics comes with many specific bioin-
formatic challenges8,15. First, the choice of an appropriate
sequence database is critical for peptide identification16,17.
Typically, large databases can strongly impact sensitivity and false
discovery rate (FDR) estimation18, while incomplete reference
databases can lead to missing or false positive identifications19,20.
Second, the protein inference problem21 is more pronounced in
metaproteomics due to many homologous proteins from closely

related organisms22. As a result, several dedicated bioinformatic
tools have been developed or extended for metaproteomic
analysis23–30. Despite these challenges, the added value of meta-
proteomics has already been demonstrated in numerous examples
from both the environmental and medical fields, providing
unprecedented insights into the functional activity of microbial
communities7,22,31–43.

Nevertheless, a lingering concern is the potential risk of
unintended, approach-based biases inherent in various meta-
proteomic workflows. This is important because reproducibility
is key to translate metaproteome studies into applications (e.g.,
clinical or industrial). Consequently, a comprehensive evaluation
of widely used workflows is required to assess their respective
outcomes. In the past, various reference data sets from
defined microbial community samples (i.e., for which the com-
parison of established workflows composition is known a priori)
have been used in individual benchmarking studies44–46. How-
ever, a ring trial with different laboratories involved has not yet
been performed in the field of metaproteomics.

To fill this gap, the 3rd International Metaproteomics Sym-
posium (December 2018, Leipzig, Germany) hosted a multi-
laboratory benchmarking study in the form of a community
challenge. Participating laboratories received two microbial
samples: a simplified mock community simulating the gut
microbiome (SIHUMIx) and a complex, natural stool sample
(fecal sample). Each group was allowed to use any preferred
sample preparation, analysis, and data evaluation pipeline.

Here, we describe the results of this community-driven study,
referred to as the Critical Assessment of MetaProteome Investi-
gation (CAMPI). We compare and discuss the employed work-
flows covering all analysis steps from sample preparation to the
bioinformatic identification and quantification. Moreover, we
compare the metaproteome results with sequencing read-based
analyses (metagenomics and metatranscriptomics). We found
that meta-omics databases performed better than public reference
databases across both samples. More importantly, even though
larger differences were observed in identified spectra and unique
peptide sequences, the different protein grouping strategies and
the functional annotations provided similar results across the
provided data sets from all laboratories. When minor differences
could be observed, these were largely due to differences in sample
processing methods and partially to bioinformatic pipelines.
Finally, for the taxonomic comparison, we found that overall
profiles were similar between read-based methods and proteomics
methods, with few exceptions. Apart from these immediate
conclusions, the CAMPI study also delivers highly valuable
benchmark data sets that can serve as a foundation for future
method development for metaproteomics.

Results
At the 3rd International Metaproteome Symposium in December
2018, individual laboratory outcomes of a collaborative, multi-
laboratory effort to compare metaproteomic workflows were
presented. In this study, metaproteomics data was acquired in
seven laboratories, using a variety of well-established platforms.
Figure 1 provides a general overview of the study design showing
(i) the provision of two types of samples (SIHUMIx and fecal) to
the study participants, (ii) the various experimental workflows of
biomolecule extraction and MS/MS acquisition, and (iii) the
bioinformatic processing steps from protein database generation
to database search identification and follow-up analyses (more
details in the “Methods” section, see Supplementary Data 1 for an
overview of all methods).

At the Symposium, the decision was made to re-analyze the
acquired data with different bioinformatics pipelines, to obtain a
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multi-laboratory effort in metaproteomics to independently
evaluate available methodological and computational approaches,
in line with similar community-driven benchmarking
studies47–50. In the first “Results” section, we analyzed 42 raw files
(21 for the SIHUMIx sample and 21 for the fecal sample) from 24
different workflow combinations with X!Tandem using
either public or in-house generated protein databases (see Fig. 1
for a general overview, and Fig. 2 for the results; see online
Methods section for the database construction). A more in-
depth comparison of sample preparations, bioinformatic pipe-
lines, and taxonomic and functional annotations using a sub-
selection of ten data sets is available after the first “Results”
section.

Complex sample processing workflows and sample-specific
meta-omic search databases lead to more identifications. In
order to study the effect of the different sample processing and
LC–MS/MS workflows on the identification outcome, we sear-
ched all submitted MS files using the widely used X!Tandem
search engine51. To investigate the influence of the chosen
database, we searched each file against a publicly available
reference database (SIHUMIx_REF and GUT_REF) and against a
multi-omic database (SIHUMIx_MO and GUT_MO). The
comparison of all CAMPI workflows is displayed in Fig. 2 (raw
data in Supplementary Data 2).

The results greatly differed between the samples and workflows
in terms of absolute numbers of acquired spectra, identified
spectra, and relative amount of identified spectra (identification
rates). For the SIHUMIx data set, the number of acquired spectra
varied between 47k to 260k, and identification rates varied
between 29.99% and 68.64% for SIHUMIx_REF and between
32.52% and 73.34% for SIHUMIx_MO. For the fecal data set,
between 44k and 223k spectra were acquired, with identification
rates between 11.99% and 34.79% for GUT_REF, and between
15.70% and 41.94% for GUT_MO.

The differences in acquired spectra show a clear relation to the
method used, as similar methods or replicates show highly similar
numbers of acquired spectra. As expected, more complex
methods with longer gradient lengths (S03 and S04: 260 min,
S05 and S06: 460 min, S08: 240 min, F01: 210 min, F02: 160 min),

fractionation (S11, F07: 4 fractions), and additional separation
methods such as MudPIT52 (F01: 4 fractions) or ion mobility
(PASEF)53 (S13, F09) led to up to eight times more identified
spectra, but at the cost of increased time and resources spent54

(see Supplementary Data 1 for a detailed description, and
Supplementary Data 2 for an overview of the samples). Notably,
identification rates were not necessarily correlated with the total
number of identifications. For example, between analyses S03 and
S05, which used a 260 and 460 min LC gradient length,
respectively, a higher absolute number of identified spectra was
found for the 460 min gradient, but also a lower identification
rate. As expected, if an MS instrument is provided with the ability
to acquire more spectra, it will do so. However, the gains in
spectral acquisition do not readily translate into gains in
identification. There is thus a potential for diminishing returns
when going for more complex methods. There is also a somewhat
consistent drop in the number of acquired spectra of around 10%
when comparing SIHUMIx samples with fecal samples for similar
workflows (e.g., S09-S10 with F05-F06, and S13 Reps 1-3 with
F09 Reps 1-3). However, occasionally this drop is much greater,
as for S11_Fract1-4 and F07_Fract1-4. The overall limited drop
might be attributed to the higher complexity of the fecal sample,
and corresponding ion suppression effects. The differences in
identification rate are likely to be derived from the choice of the
search database. The identification rates for the publicly available
databases were invariably lower, which is due to their larger and
less specific search space, consistent with literature16,18,20,44,55.
Here, these public reference databases (SIHUMIx_REF and
GUT_REF) contained 1.6 and 16 times, respectively, more
unique in silico digested peptides than the corresponding multi-
omic databases (SIHUMIx_MO and GUT_MO) (Supplementary
Data 3).

Overall, our results indicate that generating a sample-specific
meta-omic database can be advantageous for complex metapro-
teomics samples, such as the human gut microbiome, and even
more so for complex and poorly characterized samples such as
soil microbiota. The smaller meta-omic databases require less
computational resources (e.g., CPU and RAM) and tend to be
more accurate due to their tailored composition. However, for
their generation, meta-omic databases require additional experi-
mental and computational resources, and are often not as well
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assembled and/or annotated as reference databases. Because the
composition of SIHUMIx was known, the benefit of using a
tailored meta-omic database was limited and the analysis was
feasible with available reference proteomes. In contrast, the
community for the fecal sample was unknown, which represents
the typical scenario in metaproteomics.

For known reference samples (such as SIHUMIx), it is,
therefore, reasonable to simply use the reference database, while
the largely unknown fecal sample community is best analyzed
using a tailored meta-omic database. In the following sections, we

thus opted to use only the SIHUMIx_REF and GUT_MO search
databases for SIHUMIx and fecal data sets, respectively.

Different bioinformatic pipelines resulted in highly similar
peptide identifications. To investigate the effect of the bioin-
formatic pipelines on peptide identification, we compared the two
data sets with the most identified peptides (S11 and F07) (Fig. 3).
To ensure a robust and reliable comparison, we fixed the search
parameters for the four different bioinformatic pipelines
employed (see online Methods for details).

Fig. 2 Comparison of identification rates across all CAMPI workflows. On the left side, the bar charts show the number of identified spectra using the
reference (REF) database (orange), the number of identified spectra using the multi-omic (MO) database (dark blue) and total amount of measured
spectra (red). On the right side, the light blue bars represent the identification rate calculated as the percentage of spectra that yielded a peptide
identification at 1% FDR for both the REF database (orange) and the MO database (dark blue). The specific protocols can be found in Supplementary
Data 1. For database searching, X!Tandem was used as a single search engine. Source data is provided in Supplementary Data 2.
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For SIHUMIx, the majority of the identified peptides (54.2%)
were found by all four bioinformatic pipelines (Fig. 3A), while
this ratio dropped to 40% for the more complex fecal F07 sample
(Fig. 3B). As expected, this percentage increased to 73% and 55%,
respectively, when considering the peptides identified by at least
three out of four tools. Interestingly, 16% of the peptides were
uniquely identified by a single bioinformatic pipeline for the S11
data set (3138, 2670, 891, and 841 peptides for SearchGUI/
PeptideShaker, MaxQuant, Proteome Discoverer, and MPA,
respectively), while this was 27% for the F07 data set (6024,
1264, 819, and 332 peptides for the SearchGUI/PeptideShaker,
Proteome Discoverer, MPA and MaxQuant pipeline, respec-
tively). The number of search engines varies between pipelines,
with one for MaxQuant (Andromeda) and ProteomeDiscoverer
(SequestHT), two for MPA (X!Tandem, OMSSA), and four for
SearchGUI (X!Tandem, OMSSA, MS-GF+, and Comet). Further-
more, each algorithm uses its own score as a quality metric for
finding the best matching peptide for a spectrum. This score
varies between the search engines and can even result in different
peptide identifications for the same spectrum56.

Overall, the combination from multiple search engines as
performed by SearchGUI/PeptideShaker (four algorithms)
resulted in the highest number of identifications, which is in line
with the previous studies in proteomics and proteogenomics57,58.
This effect may be attributable to algorithms with more
sophisticated scoring methods (e.g., MS-GF+59 used in Search-
GUI, but not in MPA), which generally lead to more identifica-
tions overall. However, we do expect that novel search engines
based on machine learning algorithms can still boost the number
of peptide identifications in the field of metaproteomics60.

Additionally, we compared the pipelines in terms of peptide
features using the peptide lengths and the number of missed
cleavages (lower panels of Fig. 3A, B). While few outliers could be
observed (e.g., peptide length over 50 AA for MaxQuant and

missed cleavages over two for SearchGui/PeptideShaker and
ProteomeDiscoverer), the features were overall equally distributed
between pipelines. Most of the differences thus seemed to be
simply linked to the search engines used.

Because the SearchGUI/PeptideShaker combination provided
the most identifications, relatively few identifications were missed
by excluding the other three pipelines. We therefore preferred to
only use the results of the SearchGUI/PeptideShaker pipeline in
the following sections, which investigate the effect of different
sample processing workflows on downstream peptide identifica-
tions. These analyses are performed on ten representative data
sets that have been selected based on their type of fractionation
and MS instrument. These include six SIHUMIx, and four fecal
data sets (Supplementary Data 2).

Differences between laboratory workflows are mostly attribu-
table to low abundance proteins. After we ruled out bioinfor-
matic workflows as a source of significant difference between
samples, we investigated differences arising from different
laboratory workflows. We compared the overlap and uniqueness
of identifications at the level of peptides, protein subgroups, and
the 50% most abundant protein subgroups for the selected
laboratory workflows in Fig. 4. The figure shows how many
peptides and protein subgroups are uniquely identified by a single
laboratory workflow and how many are identified by all labora-
tory workflows.

At the peptide level (Fig. 4A, B), more complex workflows,
such as those with longer gradient length and fractionation,
identified the most peptides in general (as shown earlier in Fig. 2)
as well as the most workflow-specific peptides, thus limiting the
potential for overlap. The number of identified peptides shared
between all workflows was quite limited: only 3557 peptides (4.9%
of all identified peptides) in the SIHUMIx data sets, and 2186
peptides (3.4% of all identified peptides) in the fecal data set. At
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the protein subgroup level (Fig. 4C, D), the intersections of
protein subgroups shared across all workflows were 25.7% and
34.6% for the SIHUMIx and fecal data sets, respectively. These
percentages increased to 51.5% and 67.4% when we only
considered the 50% most abundant protein subgroups (Fig. 4E,
F). Large differences between laboratory workflows observed at
the peptide level were thus attenuated at the protein subgroup
level, and further reduced for the 50% most abundant protein
subgroups. This trend was also clearly visible when considering
all intersections, including partial agreement among some
samples (Supplementary Figs. 2 and 3). Of note is that the data
sets that only differed in a single laboratory method parameter,
such as LC gradient length (S03 and S05) or fractionation (F06
and F07), showed a much higher overlap. Also, the number of
protein subgroups identified uniquely in a single sample mostly
disappeared when only considering the 50% most abundant
subgroups. We investigated this further by analyzing the
agreement between samples at all top-N-% values (Supplemen-
tary Fig. 4). A clear trend emerged: the lower the agreement
between samples on a given subgroup, the lower the abundance of
this subgroup. Furthermore, subgroups that were identified with a
single peptide—and therefore usually at the lowest abundance—
track very closely with the subgroups identified in only a single

sample. Finally, when considering the actual spectral abundance
of subgroups, those subgroups that were found in all samples also
explained at least 77% of the identified spectra. It is therefore clear
that the low agreement between samples at the peptide level is
mostly attributable to the identification of low abundant proteins.
The complexity of the samples and the limited speed of mass
spectrometers in DDA mode led to stochasticity in precursor
selection at the low end of the dynamic range. Low abundant
protein subgroups with only one peptide thus behave more like
peptides, where stochastic selection causes large differences
between samples. It is worth noting that this issue is completely
avoided by only selecting the top 50% of protein subgroups.
Overall, it can be concluded that while different laboratory
workflows provide very different peptide identifications, the
protein subgroups are well preserved.

Because protein grouping plays such an important role in
translating peptide identifications into biologically meaningful
information, we decided to analyze two commonly used grouping
methods in more detail. Protein grouping is achieved using the
algorithms PAPPSO61 and MPA28 (Supplementary Note 3).
These two methods use different rules for protein inference:
PAPPSO uses Occam’s razor, and MPA uses anti-Occam’s
razor62. The first approach provides a minimum set of proteins
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that explains the presence of the detected peptides, while the
second approach keeps all proteins matched by at least one
peptide. Both PAPPSO and MPA can create two types of protein
groups: comprehensive groups based on at least one shared
peptide, and more specific subgroups based on a complete shared
peptide set. Subgroups were deemed more suitable for this
analysis, as comprehensive groups collated proteins that were too
heterogeneous leading to diverse protein functions within the
same group (Supplementary Data 4 and 5). This might not be the
case for smaller data sets, as a smaller data set also decreases the
chance for peptides that link highly dissimilar proteins together.
For the SIHUMIx samples, the two protein grouping methods
PAPPSO and MPA provided very similar numbers of both
protein groups (8802 and 8769) and subgroups (10,132 and
10,134), while substantial differences were found for the fecal
samples (protein groups: 10,063 and 9712; subgroups: 17,576 and
21,973, for PAPPSO and MPA, respectively) (Supplementary
Data 6). While cross-sample correlation (Supplementary Figs. 5
and 6) confirmed that the impact of bioinformatic pipelines on
the analysis here was negligible, little else could be learned from
this correlation analysis. To shed some light on these differences
between protein grouping methods, we analyzed the agreement
between samples for different grouping approaches (Supplemen-
tary Figs. 7 and 8). Notably, when applied to the fecal sample, the
protein groups resulted in an unusually high number of groups
that are unique to F10. However, it remains unclear which of
these approaches is better able to capture the actual composition
of the sample, or even if the performance of the approaches varies
for different types of samples. Because PAPPSO grouping
removes likely wrong identifications from homologs, it could be
more appropriate for single-organism proteomics or for taxono-
mically well-defined samples like SIHUMIx. In contrast, the
grouping from MPA could be more appropriate for complex,
unknown samples like the fecal sample (where shared peptides
become much more likely) as it retains all information for the
grouping (Supplementary Note 3). To conclude, both protein
grouping methods provide highly similar results for the SIHUMIx
sample, but diverge on the fecal sample, likely due to the
increased complexity of the protein inference task in the latter.

Comparison of meta-omic methods reveals differences between
peptide and protein-derived analysis of taxonomic community
composition. To determine if differences between sample pro-
cessing workflows have an effect on the overall biological con-
clusions, we quantitatively compared the identified taxa for each
selected sample from both data sets using spectral counts, and
this at the peptide, the protein subgroup, and the sequencing
read level.

We found different trends between the SIHUMIx and fecal
samples (Figs. 5 and 6). For SIHUMIx, the taxonomic distribu-
tions were relatively similar between the metagenomic read,
peptide, and protein group levels based on the principal
component analysis. Hierarchical clustering highlighted clusters
of samples, with the peptide and protein subgroup profiles for
samples S07 and S14 clustering with the read-based profile
(Fig. 5A and Supplementary Fig 9A, B). Interestingly, samples
with more complex sample processing methods (S03, S05, and
S08) did not show clustering between the peptide and the protein
subgroups level. While species were found to be similar between
methods overall, there were some notable differences (Fig. 5B).
All methods agreed that Bacteroides thetaiotaomicron was the
most abundant species, and found Escherichia coli at 10–13%
abundance. However, differences were found for Blautia
producta, which was barely found by the proteomics methods,
while found at around 5% abundance by metagenomics. It is

interesting to consider that this might be caused by the
construction of the reference database: at the moment of
construction, the UniprotKB reference proteome of Blautia
producta was not available, and multiple Blautia sp. proteomes
were therefore provided instead. When looking at the Unipept
results in detail, 15% of the peptides were associated with the
genus Blautia (Supplementary Data 7), which indicates that the
lower identification of Blautia producta at the peptide level is due
to difficulties in resolving Blautia at the species level, rather than
a lack of identified Blautia peptides during the metaproteomic
search. Additionally, Clostridium butyricum was not found by the
read-based method, while Clostridiales bacterium and Bacteroides
dorei were falsely found by the protein-centric method as these
are not present in the SIHUMIx sample. However, these last two
were both found at very low abundance. For completeness, the
comparisons of community composition for SIHUMIx at the
genus level were added in Supplementary Fig. 10.

For the fecal data set, which was grouped at the family level,
relatively distinct assessments of community composition were
obtained from the read-based, peptide, and protein subgroup
levels (Fig. 6A). While the same families were identified, these had
different proportions across methods (Fig. 6B). Metatranscrip-
tomic information (Feces_MT) was available for the fecal sample
and RNA and DNA results were closely colocated, while proteins
and peptides were spread out from the read-based methods, but
also from each other (Fig. 6A). The difference between
metagenomics/metatranscriptomics and metaproteomics is not
surprising because these different methods highlight community
profiles from different angles. As already shown before,
metagenomics provides a good assessment of community
composition in terms of cell numbers for each species, while
metaproteomics reflects proteinaceous biomass for each species45.

Strikingly, for the fecal samples, the community composition as
quantified at the peptide level proved to be more similar to the
read-based than to the protein-based composition (Fig. 6A and
Supplementary Fig. 11A, B). This discrepancy is likely due to the
fundamental issue of protein inference. Indeed, in metaproteo-
mics, identification and quantification usually rely on discrimi-
native peptides. As the data sets get more complex, higher levels
of sequence homology for many proteins will be observed and
will lead to a much greater level of peptide degeneracy across
taxonomies63. Direct taxon inference from peptides thus likely
results in more stringent taxonomy filtering, due to the necessity
to rely only on taxon-specific peptides. In fact, the proportion of
unclassified peptides between the SIHUMIx and the fecal samples
went up from 24.2 to 73.4% due to the increased taxonomic
complexity of the fecal data set. In contrast, the proportion of
unclassified protein subgroups went down from 69.9% for
SIHUMIx to 9.5% for the fecal samples. This latter difference,
while large, is not that surprising because the fecal sample
considered protein subgroups at the family level, while the
SIHUMIx sample considered protein subgroups at the species
level and only considered SIHUMIx species, therefore greatly
limiting peptide-level degeneracy. For the fecal sample, proteins
within a subgroup are usually associated to the same family,
which explains the higher proportion of protein subgroups that
can be classified for the fecal samples.

Additionally, regarding quantification, protein grouping for the
fecal samples was done using MPA, which includes all peptides
(shared as well as unique), while peptide level quantification only
took into account taxon-specific peptides. Depending on the
sample and the method used, the taxonomic resolution will thus
vary. To better illustrate that, we compared the resolution across
omes and across protein grouping methods (Supplementary
Fig. 12A, B). We see that there is usually a drop of resolution
either at the species (SIHUMIx) or the genus (Fecal) level and
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that the PAPPSO grouping method has a higher resolution for
complex samples as already discussed in Supplementary Note 3.

Altogether, the degree of degeneracy at the peptide level
combined with the grouping method employed for the proteins
leads to a different amount of features used for each analysis and
thus to different composition profiles between peptide-centric
and protein-centric approaches.

Ultimately, due to the sequence homology issue, worse
taxonomic resolution will be available for larger, more complex
data sets as illustrated in the differences between the SIHUMIx
and the fecal data sets. A promising approach to tackle these
limitations can take advantage of shared rather than taxon-

specific peptides (and thus avoiding the previously mentioned
issues) to assess the biomass content of a given community63.
However, regardless of the chosen approach, it is clear that a
higher level of peptide coverage will be quite helpful for higher
resolution taxonomic annotation, and that metaproteomics will
therefore benefit from focusing on analysis depth at the
peptide level.

The functional profile is similar between different metapro-
teomics workflows. A major strength of metaproteomics is the
ability to provide functional information that reflects the
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Fig. 5 Comparisons of community composition for SIHUMIx at the species level. The upper panel shows PCA clustering of the results (A). Different
approaches and tools used for taxonomic annotation (MG - mOTU2, Peptides - Unipept, and Proteins - Prophane) are indicated in the label. Clusters
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Source data is provided as a Source Data file.
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phenotype of the analyzed sample. In order to investigate the
influence of post-processing steps on this functional information,
we compared functional community profiles on both the SIHU-
MIx and the fecal samples (Fig. 7). We observed that the func-
tional similarity between data sets acquired with different
workflows on each sample is extremely high, and this regardless
of the approach chosen. For the peptide-centric approach, we
compared the Gene Ontology (GO) terms (GO domain “biolo-
gical process”) provided by Unipept for each of the identified
peptides with MegaGO64, resulting in MegaGO similarities of
0.96 or higher. Notably, 95% of the identified peptides were
associated with at least one GO term. For the protein-centric
approach, the protein families (Pfam) annotations provided by

Prophane were compared, resulting in Pearson correlations of
0.98 or higher and Spearman correlations of 0.64 or higher. This
continues the trend already observed in Fig. 4: while peptide
identifications may differ greatly between samples, the underlying
biological meaning reflected by functional annotations are highly
similar across different analysis workflows. Moreover, while some
more elaborate data measurements yield unique peptides, these
peptides do not translate into more functional pathways being
identified (Supplementary Fig. 13) and usually correspond to very
low abundant proteins, identified with only one peptide (as
already shown in Supplementary Fig. 4).

In contrast, a comparison between the different omics domains
showed important differences in terms of functional profile.

Fig. 6 Comparisons of community composition for fecal data sets. The upper panel shows PCA clustering of the results (A). Different approaches and
tools used for taxonomic annotation (MG - mOTU2, Peptides - Unipept, and Proteins - Prophane) are indicated in the label. Clusters (k= 3) were
calculated using manhattan distance and are represented by blue, yellow, and green. Features not annotated at species level were considered unclassified
and discarded for PCA calculation. Unclassified features accounted for 73.4% and 9.5% of data for peptide and protein subgroup levels. The top 10
variables driving differences between samples are represented by black arrows. The lower panel details taxonomic profiles of each sample as bar plots (B).
Source data is provided as a Source Data file.
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Notably, metagenomics and metaproteomics are particularly
different from each other, while metatranscriptomics tends to
overlap better with metagenomics, highlighting once more the
need for integrated meta-omics approaches (Supplementary
Figs. 14–16)32.

Discussion
In this founding edition of CAMPI, we used both a simplified,
laboratory-assembled sample as well as a human fecal sample to
compare commonly used experimental methods and computa-
tional pipelines in metaproteomics at the peptide, protein sub-
group, taxonomic and functional level, informed by and
contrasted with metagenomics and metatranscriptomics. Our
findings demonstrate some differences in the taxonomic profiles
between peptide-centric metaproteomics, protein-centric meta-
proteomics, and read-based metagenomics, and metatran-
scriptomics. This fits well with previous findings that assessment
of microbial community structure via shotgun metagenomics and
metaproteomics differs in the information obtained. While
metagenomics has been shown to provide a good representation
of per species cell numbers in a community, metaproteomics has
been shown to provide a good representation of per species
biomass in a community45. When looking at different proteomics
approaches, differences tend to show up primarily at the finest
resolution, such as the sequences of the identified peptide
sequences. When considering information from the protein
subgroup level up, much of this variation disappears. Different
protocols tend to primarily display different levels of analytic

depth, which correlates with more extensive sample fractionation
and faster instruments. Moreover, differences between search
engines appear somewhat complementary, giving an advantage to
integrative, multi-search engine approaches using more sophis-
ticated scoring engines. Interestingly, there appears to be an
important contribution to any observed differences from the
sequence database used for identification. This is particularly
evident in the protein inference step, where peptide-level
degeneracy in the database becomes an important factor in the
outcome of protein grouping, as already shown and discussed
previously65,66. Overall, functional profiles of different pro-
teomics workflows were quite similar, which is a reassuring
characteristic due to the unique perspective provided by pro-
teomics on the functional level.

Besides the direct conclusions of CAMPI as summarized here,
another important outcome of this study is the availability of the
acquired data sets. Indeed, these can serve as benchmark data sets
for the field when developing novel algorithms and approaches
for data processing and interpretation (see “Data availability”
section). While it is recommended that researchers use well-
annotated matched metagenomes for optimal metaproteomics
analysis, not all study designs have metagenomics information
available. For such studies, iterative search approaches on publicly
available repositories are available25,67–70, some of which address
the issue of controlling the false discovery rate of identifications68.
Moreover, other platforms such as iMetaLab30 have been widely
used for human and mouse gut metaproteomics analysis. We
have not used the iterative search approaches or alternative
platforms for this study, although the availability of the data

Fig. 7 Functional similarity between SIHUMIx samples and fecal samples. The correlation matrices at the left show the Pearson correlation (upper
triangle) and Spearman correlation (bottom triangle) for the (A) SIHUMIx data sets and (C) fecal data sets, calculated using the Pfam annotations returned
by the protein-centric Prophane analysis. The correlation matrices at the right show the MegaGO similarity for the GO domain “biological process” for the
(B) SIHUMIx data sets and (D) fecal data sets, calculated based on the GO terms returned by peptide-centric Unipept analyses. Source data is provided as
a Source Data file.
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should encourage users to evaluate the performance of these
approaches.

This CAMPI study has highlighted that there is room for
future editions of CAMPI studies. Indeed, based on the issues
identified in this study, we can already define interesting future
research questions: what is the effect of data set complexity, and
how do other sample types such as marine sediments affect the
results; how is quantification affected by the workflow used, and
which quantification approach yields the most robust and accu-
rate results; how are taxonomic resolution, functional profiling,
and quantification affected by the dynamic range of the sample
composition; and what is the potential of data-independent
acquisition (DIA) and targeted approaches in metaproteomics
regarding reproducibility and analytical depth?

Obviously, relevant standardized samples will need to be
defined for these studies, and should moreover be produced in
sufficient amounts to allow their continued use by interested
researchers after the publication of these studies. These could take
the form of a defined synthetic community with exactly known
composition, including cell numbers and sizes, preferably sti-
mulated under different biological conditions. With such a
sample, we will be able to validate a variety of quantification
methods, but also investigate the effect of quantifying individual
proteins in relation to their background. Moreover, it remains a
question for now what the effect will be on the taxonomic reso-
lution or functional profile. Label-based approaches could also be
extremely valuable for the field as it has been shown that stable
isotope labeling as a spike-in reference can strongly improve
quantification accuracy71,72. On another technical level, we could
investigate the opportunities and challenges of the use of DIA on
metaproteomics samples. Potentially, there will be new, AI-driven
search engines that will enter the field of (meta)proteomics, which
also brings new opportunities for the field.

Of course, all these follow-up CAMPI studies will contribute
highly useful benchmark samples and data sets to the field as well,
thus creating a strong, positive feedback loop with the metapro-
teomics community. Future CAMPI editions will be launched by
the Metaproteomics Initiative (metaproteomics.org), a newly
founded community of metaproteomics researchers that aims,
among other things, to standardize and accelerate experimental
and bioinformatic methodologies in this field. This initiative can
combine forces with existing initiatives such as the ABRF iPRG
study group, who recently provided a metaproteomics data set to
be analyzed by the proteomics informatics community73. We
believe that such ongoing efforts will continue to advance the field
of metaproteomics, and make it more widely applicable. Meta-
proteomics will thus develop its full potential, and further
increase its relevance across the life sciences.

Methods
Ethics. Written informed consent was obtained from the subject enrolled in the
study. This study was approved by the ethics committee of the University Mag-
deburg (reference no. 99/10).

Sample description
Simplified human intestinal microbiota sample (SIHUMIx). A simplified human
intestinal microbiota (SIHUMIx) composed of eight species was constructed to
embody a majority of known metabolic activities typically found in the human gut
microbiome. The SIHUMIx sample contains the Firmicutes Anaerostipes caccae
DSMZ 14662, Clostridium butyricum DSMZ 10702, Erysipelatoclostridium ramo-
sum DSMZ 1402 and Lactobacillus plantarum DSMZ 20174, the Actinobacteria
Bifidobacterium longum NCC 2705, the Bacteroidetes Bacteroides thetaiotaomicron
DSM 2079, the Lachnospiraceae Blautia producta DSMZ 2950, and the Proteo-
bacteria Escherichia coli MG1655, covering the most dominant phyla in human
feces74. SIHUMIx was prepared as previously described, with an additional 24 h of
cultivation of one control bioreactor, to produce sufficient biomass to be sent out to
each participating laboratory74. Participants received 3.5 × 109 cells/ml of frozen
sample (−20 °C) in dry ice.

Human fecal microbiome sample. A natural human fecal microbiome sample was
procured from a 33-years-old omnivorous, non-smoking woman. The sample was
immediately homogenized, treated with RNA-later, aliquoted, frozen, and stored at
−20 °C until aliquots were sent to each participating laboratory.

Biomolecule extraction and nucleotide sequencing
DNA/RNA extraction, sequencing, and processing. DNA was extracted from both
SIHUMIx and the fecal samples. RNA could also be extracted from the fecal sample
but not SIHUMIx as only the former was treated with RNA-later.

Extracted DNA and RNA were sequenced with Illumina technology, and the
obtained sequencing reads subsequently co-assembled into contigs for further
bioinformatic processing. Details on the extractions, libraries preparations, and
sequencing can be found in Supplementary Note 1. Preprocessing of the sequenced
reads was performed as part of the Integrated Meta-omic Pipeline (IMP)75 and
included the trimming and quality filtering of the reads, the filtering of rRNA from
the metatranscriptomic data, and the removal of human reads after mapping
against the human genome version 38. Preprocessed RNA and DNA reads were co-
assembled using MEGAHIT v1.2.476 using minimum and maximum k-mer sizes of
25 and 99, respectively, and a k-step of 4. The resulting contigs were binned using
MetaBAT 2.12.177 and MaxBin 2.2.678 with default parameters and minimum
contig length of 2500 and 1500 bps, respectively. Bins were refined using DASTool
1.1.279 with default parameters and a score threshold of 0.5. Open reading frames
(ORFs) were called from all contigs provided to DASTool using Prodigal 2.6.380 as
part of the DASTool suite.

Protein extraction and processing. In total, eight different protein extraction pro-
tocols were applied and resulted in 24 different workflows when combined with
MS/MS acquisition strategies (Fig. 1). Key characteristics for each workflow can be
found in Supplementary Data 1. The most obvious workflow differences were
found in protein recovery, cleaning, and fractionation strategies. In a wide com-
parative approach, the protein extract was processed by either filter-aided sample
preparation (FASP)81 (workflows 1–3, 5, 7–9, 11, 12, 19–23 in Supplementary Data
1), in-gel (workflows 4, 6, 10, 13–18), or in-solution (workflows 21 and 24)
digestion. In most workflows, proteins were directly extracted from the raw
defrosted material (workflows 1–20, 22, 23). In one lab, however, microbial cells
were first enriched at the interface of a reverse iodixanol gradient (workflows 21,
24). In most approaches, cell lysis was based on mechanical cell disruption by bead
beating in a variety of chemical buffers (workflows 1–12, 19–23), or in water
(workflows 13–18). Apart from bead beating, ultrasonication in a chaotrope-
detergent-free buffer was employed to allow for further separation of cytosolic and
envelope-enriched microbiome fractions (workflows 21 and 24) and, in another
separate workflow, cryogenic grinding was employed for the simultaneous
extraction of DNA, RNA, and protein using the Qiagen Allprep kit (workflows 22,
23). Recovery of proteins from the lysis mixture was carried out either by solvent
extraction using a variety of solvents, with or without further washes (workflows
4–18, 22, 23), or by filter-aided methods (FASP) (workflows 1–3). All methods
included trypsin as the sole proteolytic enzyme for digestion of DTT (or DTE)-
reduced and iodoacetamide-alkylated proteins. Digestion was performed either on
filters (workflows 1–3, 5, 7–9, 11–12, 19–24), in-gel with or without fractionation
(workflows 6, 10, 13–18), or in-solution in the presence of a surfactant (workflows
21 and 24). Of note, the enzyme/substrate ratio varied from 1/50 to 1/10,000, with
digestion times from 2 to 16 h. Finally, peptides were recovered from the gel or
eluted from filters (FASP) using a salt solution (workflows 1–3, 5–21, 24). In some
protocols, peptides were desalted using different commercial devices (workflows 4,
21, and 24).

LC–MS/MS acquisition. Each laboratory used its own LC–MS/MS protocol with
the largest differences and similarities highlighted in the following and details
provided in Supplementary Data 1. For LC, all laboratories separated peptides
using reversed-phase chromatography with a linear gradient length ranging from
60 to 460 min. Furthermore, one group performed an additional separation using a
multidimensional protein identification technology (MudPIT) combining cation
exchange and reversed-phase separation in a single column prepared in-house82.

Six groups used an Orbitrap mass spectrometer (4× Q Exactive HF, 1× Q
Exactive Plus, 1× Fusion Lumos, ThermoFisher Scientific), while two groups
employed a timsTOF mass spectrometer (Bruker Daltonik). All participants used
data-dependent acquisition (DDA) with exclusion duration times ranging from 10
to 60 s. All MS proteomics data and X!Tandem results have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository83.

Bioinformatics
Generation of protein sequence databases. Two types of databases were used for
each sample; a catalog (reference) database and a database that was generated from
metagenomic and metatranscriptomic (when available) data sequenced from a
matching sample (meta-omic database). The catalog database for SIHUMIx con-
sisted of the combined reference proteomes of the strains extracted from UniProt
in July 201984 except for Blautia producta, for which the whole genus Blautia was
taken (SIHUMIx_REF). The IGC 9.9 database85 (available at http://meta.genomics.
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cn/meta/dataTools) was used as the catalog database for the fecal sample
(GUT_REF). Additionally, a meta-omic database from the assembled contigs was
produced for both samples using the open reading frame generated with Prodigal
(SIHUMIx_MO and GUT_MO).

The SIHUMIx database (SIHUMIx_REF) is composed of reference proteomes,
containing 29,557 proteins (13.2 MB). In comparison, the metagenomic assembly
for SIHUMIx (SIHUMIx_MO) produced 2719 contigs, with an average contig
length of 7.5 Kbp and the longest contigs being 468 Kbp, yielding 19,319 predicted
ORFs (6.1 MB).

For the fecal sample, the IGC reference catalog (GUT_REF) contains 9,879,896
protein sequences (2.6 GB). The co-assembly of DNA and RNA for the fecal
sample (GUT_MO) produced 247,518 contigs with an average length of 1.6 Kbp
and the longest contigs being 600 Kbp. The database GUT_MO yielded protein
sequences from 441,558 predicted ORFs (114.4 MB). All databases were
concatenated with a cRAP database of contaminants (https://thegpm.org/cRAP;
downloaded in July 2019) and the GUT databases were additionally concatenated
with the human UniProtKB Reference Proteome (downloaded in September 2019).

The four databases were in silico digested into tryptic peptides with an in-house
developed script, with two missed cleavages allowed, to compare their theoretical
search spaces. Additionally, all peptides identified with each database in the explorative
analysis, which was carried out using all data sets, were retrieved and compared.

For metaproteomic data analysis, the number of spectra, PSMs, and
identification rates (calculated by dividing the number of identified spectra by the
total number of acquired MS/MS spectra) were extracted for all data sets searched
against the selected databases (SIHUMIx_REF and GUT_MO) and compared.
Finally, a representative subset of data sets, based on the different methods, was
selected for further analysis (S03, S05, S07, S08, S11, S14 for SIHUMIx and F01,
F06, F07, and F08 for the fecal sample).

Data analysis using four different bioinformatic pipelines. All submitted MS/MS raw
files were first analyzed with a single commonly used database search method to
assess both the quality of the extraction and the MS/MS acquisition, as well as the
effect of the search database composition (reference proteomes vs. multi-omics).
For this, X!Tandem51 (Alanine, 2017.02.01) was used as a search engine with the
following parameters: specific trypsin digest with a maximum of two missed
cleavages; mass tolerances of 10.0 ppm for MS1 and 0.02 Da for MS2; fixed
modification: Carbamidomethylation of C (+57.021464 Da); variable modification:
Oxidation of M (+15.994915 Da); fixed modification during refinement procedure:
Carbamidomethylation of C (+57.021464 Da). Peptides were filtered on length
(between 6 and 50 amino acids), and charge state (+2, +3, and +4), and a
maximum valid expectation value (e-value) of 0.186.

The following database search engines were used for the pipeline comparison:
(i) MaxQuant87 (including the search engine Andromeda) (ii) Galaxy-P
workflows88,89 consisting of SearchGUI90,91 (using OMSSA92, X!Tandem51, MS-
GF+59, and Comet93) and PeptideShaker94 to merge the results, (iii)
MetaProteomeAnalyzer28 (server version 3.4, using X!Tandem and OMSSA), and
(iv) ProteomeDiscoverer 2.2 (using SequestHT, from ThermoFisher). The
identification settings for all search engines were the same as for the explorative
analysis mentioned above. Refinement searches were allowed if implemented in the
search engine (e.g., refinement search of X!Tandem), and the same for the
inclusion of post-processing tools (e.g., Percolator within ProteomeDiscoverer).

Protein inference. To allow protein group comparison, groups were created using
the combined peptide evidence of all compared samples. Two different protein
grouping methods were tested: MPA28 and PAPPSO61, and analyses were made on
protein groups and subgroups (Supplementary Note 3).

Assigning peptides to their correct protein can be a difficult task, notably due to
the protein inference issue3, i.e., the same peptide can be found in different
homologous proteins. This is particularly challenging in metaproteomics where the
diversity and number of homologous proteins are much higher compared to single-
species proteomics. To overcome this issue, most bioinformatic pipelines tend to
automatically group homologous protein sequences into protein groups. However,
each tool handles protein inference and protein groups in its own way, which
prevents a straightforward output comparison at the protein group level. In order
to allow robust comparison between approaches, the PSM output files of the four
bioinformatic pipelines were combined. The peptides were then assigned to protein
sequences in the FASTA file and the data was prepared for subsequent protein
grouping. Two approaches of protein grouping were used and evaluated in this
study: PAPPSO grouping61, which excludes proteins based on the rule of
maximum parsimony, and grouping from MPA28, which does not exclude
proteins. All data processing was done using a custom Java program except for
PAPPSO grouping for which data was exported and imported using the
appropriate XML format.

For both methods, protein groups were created using the loose rule “share at
least one peptide” (groups) and the strict rule “share a common set of peptides”
(subgroups), resulting in a total of four protein grouping analyses: (1) PAPPSO
groups, (2) MPA groups, (3) PAPPSO subgroups, and (4) MPA subgroups. Finally,
the resulting protein groups and subgroups were exported for further analysis
(Supplementary Note 3). These algorithms are also implemented in Pout2Prot95

for independent use.

Taxonomic and functional annotation. Annotations were performed at both the
peptide, protein, and the sequencing read level. Unipept was used for the peptide-
centric approach24,27,96. For the taxonomic annotation of the SIHUMIx data sets,
we used an advanced Unipept analysis that calculates the SIHUMIx-specific lowest
common ancestor (LCA) (i.e., it calculates the LCA specific for its search database
instead of the complete UniProtKB). Here, Unipept searched for the occurrence of
each peptide in all species present in NCBI. For each peptide separately, we
removed those species that cannot be present in the SIHUMIx sample (i.e., non-
SIHUMIx species and contaminating species in the cRAP database), after which we
calculated the SIHUMIx-specific LCA. This advanced taxonomic analysis using
Unipept is possible since the composition of the sample is known, and resulted in a
more accurate taxonomic annotation of the peptides. For more information and
examples of the advanced Unipept analysis (Supplementary Note 4). For the
taxonomic annotation of the fecal data sets with Unipept, the desktop96 and
CLI23,97 versions were used. In both analyses for SIHUMIx and the fecal data sets,
isoleucine (I) and leucine (L) were equated. The assigned taxonomies for each of
the peptides can be found in Supplementary Data 8 and 9.

For the functional analysis at the peptide level, we used the Unipept command
line option to extract the GO terms for each identified peptide per data set (below
1% FDR). The functional similarity of these sets of GO terms was calculated with
MegaGO64.

Prophane was used for the protein-centric approach98,99. For both the
functional and taxonomic annotations, a generic output format created by the in-
house developed protein grouping script and the protein database for a given
analysis were used. Within Prophane, the taxonomic annotation was performed
with DIAMOND blastp against the latest NCBI non-redundant (nr) database
(2019-09-30)100, while two functional annotation tasks where performed against
the eggNOG (database version 4.5.1)101 and Pfam-A (db version 32) databases102

using eggNOG-mapper103,104 and hmmscan105, respectively. Using eggNOG-
mapper, the e-value threshold was set to 0.0005 while we applied a gathering
threshold supported by Pfams (cut_ga parameter) when searching using hmmscan.
The result with the protein group identifiers from the previous analysis summary
can be found in Supplementary Data 10–12, and the assigned taxonomies for each
of the proteins can be found in Supplementary Data 13 and 14.

Metagenomic and metatranscriptomic reads were both taxonomically
annotated with the mOTUs profiler v 2.0106 with default parameters at the species
and family levels for SIHUMIx and the feces sample, respectively.

Quantification was based on read counts for metagenomic and
metatranscriptomics data, and on spectral counts for peptides and protein
subgroups. If two subgroups contained the same peptide, spectra would be counted
twice, distorting the abundance of these particular subgroups inside a measurement,
but preserving a consistent count for comparison with other samples. Comparisons
were performed with normalized values as described in detail below.

Comparison between omics domains—taxonomic resolution. Taxonomic annota-
tions from the Prophane protein group outputs were used for metaproteomics.
This method uses only identified proteins and assesses annotations based on the
LCA approach thus generating results for each protein at the best possible taxo-
nomic resolution

The mOTU2 profiler used for the metagenomic taxonomic annotation takes
advantage of marker genes for taxonomic annotation and thus annotates
everything at the OTU level. Since this approach does not allow comparison at each
taxonomic level, Kraken2107 was used to compare taxonomic resolution across
omics domains. Kraken2 was run on the sequencing reads with the
maxikraken2_1903 database and a confidence threshold set to 0.7.

Comparison between omics domains - functional comparison. Each sequence
database (SIHUMIx_REF, SIHUMIx_MO, and GUT_MO) was annotated with the
Mantis108 tool for consensus-driven protein annotation. For metaproteomics,
abundance from Prophane outputs and annotation from Mantis were used to
generate functional profiles. For metagenomics and metatranscriptomics, sequen-
cing reads were mapped against the assembly contigs using bowtie2109 and ORFs
abundance was calculated using featureCounts110 KEGG111 annotations were
retrieved from Mantis and used to compare functional profiles across omes.

Statistical analyses. Differences and overlap between search engines at the pep-
tide level and between approaches at the peptide level using presence/absence data
were visualized with UpSet plots with the UpSetR package112. For the peptides,
sequences were extracted (without modifications and with leucine (L) and iso-
leucine (I) treated equally and replaced by J) from each result file and a table,
indicating whether a peptide was found or not, was prepared (Supplementary
Note 4 and Supplementary Data 15 and 16). Similar tables and UpSet plots were
generated to visualize differences and overlap between sample preparations for the
peptides, the protein subgroups, and the top 50% protein subgroups. The top 50%
were first selected based on abundance data. The spectral counts were summed for
each subgroup across all selected samples and only the top 50% was kept for UpSet
plot comparison. Results from the taxonomic annotations for all approaches
(peptides, proteins, metagenomic and metatranscriptomic reads) were compared
and visualized using the PCA comparison feature of the R prcomp package. For the
comparison, abundance values (number of reads and spectral counts) were used
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and normalized into percentage. The taxonomic annotations were harmonized
across methods, unclassified values were filtered out and annotations with abun-
dance lower than 0.05% after filtering were grouped into “other”.

All correlation plots were calculated using both Pearson and Spearman
correlations with a p-value < 0.001. The correlations were calculated and plotted
using the corrplot R packages.

Hierarchical clusterings were calculated with the R function hclust using the
Manhattan distance and the Ward method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metaproteomic data sets generated and analyzed in the current study are available
via the PRIDE partner repository with the data set identifier PXD023217. Assemblies and
raw metagenomic and metatranscriptomic reads are available through the European
Nucleotide Archive under the study accession number PRJEB42466. Source data are
provided with this paper.

Code availability
All scripts and intermediary files are made available on github.com/metaproteomics/
CAMPI113.
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