4.2 Anisol-h8, Anisol-d3 und Anisol-d8

Zunächst wird in Kapitel 4.2.1 auf den reinen elektronischen Übergang 4.2.2 wird (0-0-Übergang) kurz eingegangen. Im Kapitel die S₀-Zustand mit Hilfe der Ergebnisse Schwingungszuordnung im der quantenchemischen Rechnungen und der IR-Spektren⁸³ diskutiert. Eine Zuordnung der Signale im REMPI-Spektrum für den S₁-Zustand gestaltet sich schwieriger. Die Kraftkonstante im ersten elektronisch angeregten Zustand weicht von der im Grundzustand ab. Aus diesem Grunde ist ein direkter Vergleich der Frequenzen der Normalmoden im S₀-Zustand und im S₁-Zustand nicht möglich. Um dennoch eine fundierte Zuordnung zu erhalten, wurden neben den Anisolen C₆H₅OCH₃ (Anisolh8), auch die deuterierten Anisole C₆H₅OCD₃ (Anisol-d3) und C₆D₅OCD₃ (Anisold8) untersucht. Da jede einzelne Schwingung unterschiedlich stark durch die Deuterierung beeinflusst wird, erhält man für jede Normalmode einen charakteristischen Isotopeneinfluss.

4.2.1 Der 0-0-Übergang

Die rein elektronischen π - π *-Übergänge wurden in den REMPI-Spektren bei 36.394 ± 2 cm⁻¹ (Anisol-h8), 36.399 ± 2 cm⁻¹ (Anisol-d3) und 36.571 ± 2 cm⁻¹ (Anisol-d8) beobachtet. Balfour ²⁵ findet vergleichbare Werte: 36.384 (Anisol-h8), 36.389 (Anisol-d3) und 36.560 (Anisol-d8). Die gleichbleibende Differenz zwischen den Messungen kann auf eine unterschiedliche Kalibrierung der Spektren zurückgeführt werden.

Abbildung 4-3 zeigt schematisch die einzelnen elektronischen Übergänge und die relative Verschiebung der deuterierten Anisole im Vergleich zum Anisol-h8. Wie die Werte zeigen, wird der 0-0-Übergang durch den Isotopeneffekt beeinflusst. So berichteten schon Sponer und Teller ⁶⁷ von hypsochromen Verschiebungen, wenn leichte Isotope durch schwerere substituiert werden. Dies besagt, dass die Nullpunktsenergie im elektronischen Grundzustand stärker erniedrigt wird als im ersten elektronisch angeregten Zustand. Grund hierfür ist, dass in angeregten Zuständen in der elektronischen Eigenfunktion mehr Knoten vorliegen als im elektronischen Grundzustand. Dadurch kann man annehmen, dass auch der "durchschnittliche Wert der Kraftkonstante" erniedrigt wird.

Die Verschiebung des 0-0-Überganges von Anisol-h8 zu Anisol-d8 konnte zu $+177 \text{ cm}^{-1}$ bestimmt werden. Vergleichbare Werte für einen vollständigen H/D-Austausch zeigen auch Phenol-d6^{84, 85} (+ 173 cm⁻¹) und Benzol-d6⁸⁶ (+ 202 cm⁻¹).

Abbildung 4-3: Graphische Darstellung des reinen elektronischen Überganges (0-0-Übergang) für Anisol-h8 (blau), Anisold3 (grün) und Anisol-d8 (rot). Die Verschiebungen der Übergänge der deuterierten Anisole im Vergleich zum undeuterierten Anisol-h8 sind in Klammern angegeben.

4.2.2 Die vibronische Struktur im elektronischen Grundzustand $({}^{1}A_{1})$

Im Folgenden werden die einzelnen Schwingungen im elektronischen Grundzustand nach der Ordnung von Varsanyi⁸⁷ näher besprochen. Begonnen wird dabei mit den in-plane-Schwingungen (tangentiale und radiale Moden), gefolgt von den out-of-plane-Schwingungen. Zum Schluss werden die Schwingungen der Methoxygruppe besprochen. Die Frequenzen der Schwingungen wurden auch mit Hilfe von quantenchemischen Rechnungen (Gaussian 98⁸⁸) ermittelt. Es wurde mit der B3-LYP-Funktion mit dem 6-311G++(d,p) Basissatz gerechnet.

Die so erhaltenen Schwingungsfrequenzen wurden im Bereich bis 2000 cm⁻¹ mit dem Faktor 0,973 skaliert. Oberhalb wurde ein Skalierungsfaktor von 0,963 verwendet. Die so erhaltenen berechneten Frequenzen der Moden zeigen eine gute Übereinstimmung mit experimentellen Werten von Balfour⁸³. Lediglich bei der Zuordnung einzelner Signale ergeben sich einige Unterschiede, auf die im Folgenden verwiesen wird. Tabelle 4-2 zeigt den Vergleich zwischen den berechneten und den experimentellen Werten für Anisol-h8, Anisol-d3 und Anisold8 im elektronischen Grundzustand.

	Berechnete Werte ^{a)}			Experimentelle Werte ^{b)}				
		S ₀		S ₀				
	h8	d3	d8	h8	d3	d8		
A_1								
6a	543	523	510	553*	532*	522*		
12	981	977	941	997* [§]	989* [§]	958* [§]		
1	777	755	714	788* [§]	765* [§]	727* [§]		
18a	1015	1019	832	1022*	1029*	831		
9a	1165	1157	881	1169*	1166*	861		
7a	1248	1255	1202	1253*	1262*	1210*		
19a	1492	1490	1385	1497	1497	1421		
8a	1606	1607	1574	1588	1589	1561		
13	3063	3053	2250	3026 [§]	3035 [§]	2303 [§]		
2	3093	3093	2284	3092 [§]	3091 [§]			
20a	3089	3089	2275	3062 [§]	3068 [§]	2291 [§]		
A ₂								
16a	412	411	359	415	429	415		
10a	806	806	628	819	811	641		
17a	941	941	761		893 ?			
B ₁								
11	738	739	543	752	751	625		
4	669	669	616	690	687	556		
16b	502	502	430	511	514	440		
10b	203	158	156	209				
17b	867	866	739	880	881	753		
5	956	956	777	975 ?				
B ₂								
18b	250	228	221	260*	239*	235		
6b	610	609	585	618*	614*	597		
15	1147	1149	844	1151	1154	839		
9b	1075	1078	807	1073	1081	812		
3	1305	1304	1037	1292	1291	1018		
14	1330	1330	1312	1332	1325	1295		
19b	1449	1442	1340	1455	1457	1391		
8b	1542	1543	1513	1599	1601	1573		
7b	3070	3070	2260	3037 [§]	3040 [§]	2280 [§]		
20b	3101	3101	2289	3105 [§]	3103 [§]	2303 [§]		

A'						
COC bend	433	416	403			
O-CH ₃ stretch	1041	991	951	1039	1004	987
CH ₃ rocking	1138	905	904			
CH ₃ sym.def.	1437	1114	1113	1442	1114	1113
CH ₃ asym.def	1456	1053	1054	1452	1050	1049
CH ₃ sym,stretch	2903	2076	2076	2834	2071	2070
CH ₃ asym.stretch	3034	2242	2242	3004		
A''						
C-OCH ₃ tors.	90	83	81	81.5	77.5	
O-CH ₃ tors.	266	239	229			
CH ₃ rocking	1173	939	936	1180	955	896
CH ₃ asym.def.	1469	1058	1059	1469	1062	1062
CH ₃ asym.stretch	2964	2193	2193	2942	2255	2255

Tabelle 4-2: Berechnete und beobachtete Werte der Normalschwingungen für Anisol-h8, Anisol-d3 und Anisol-d8 für den elektronischen Grundzustand (S₀-Zustand) a) von uns berechnete Werte

b) Balfour ⁸³

*) Gasphase, alle anderen Werte beziehen sich auf das Lösungsspektrum
 §) die Zuordnung in ⁸³ wurde in Bezug auf unsere Zuordnung hin geändert

4.2.2.1 Tangentiale in-plane-Schwingungen

In monosubstituierten Benzolen gehören zu diesen Schwingungen die Kohlenstoff-Kohlenstoff-Streckschwingungen 8a, 8b, 19a, 19b und 14 und die Kohlenstoff-Wasserstoff in-plane-Biegeschwingungen 3, 15, 9a, 9b, 18a, 18b und die C-X-inplane-Biegeschwingungen.

Die quantenchemischen Rechnungen ergeben für die Schwingungen 8a und 8b 1606 cm⁻¹ und 1542 cm⁻¹. Ähnliche Werte gibt Matsumoto et. al. ²⁴ an (1612 cm⁻¹ und 1592 cm⁻¹). Balfour ordnet dagegen die Schwingung 8a zu 1588 cm⁻¹ und 8b zu 1599 cm⁻¹. Die hier getroffene Zuordnung wird durch Messungen von Fuson ⁸⁹ und Katrizky ^{90, 91} gestützt. Sie untersuchten 85 verschiedene monosubstituierte Benzole, wobei die Schwingung 8a beständig höher liegt als die Schwingung 8b.

Die Untersuchung der verschiedenen monosubstituierten Benzole zeigte auch, dass die Gerüstschwingungen 19a und 19b jeweils im Bereich von 1470 - 1515 cm⁻¹ und 1440 - 1470 cm⁻¹ angesiedelt sind. Dies wird durch die Rechnungen (1492 cm⁻¹ und 1449 cm⁻¹) und Balfour's Werte bestätigt.

In Benzol wird die Schwingung 14, hier oft als "Kekule Schwingung" bezeichnet, bei 1360 cm⁻¹ zugeordnet ⁸⁷. Für Anisol findet Balfour einen Peak bei 1332 cm⁻¹. Dies steht in guter Übereinstimmung mit dem berechneten Wert von 1340 cm⁻¹ und passt auch in den Frequenzbereich von 1300 – 1350 cm⁻¹ der für monosubstituierte Benzole angegeben wird.

Da die Schwingung 3 in Benzol Raman- und IR-inaktiv ist, konnte lediglich ein sehr schwacher Peak bei 1346 cm⁻¹ von Brodersen und Langseth ⁹² zugeordnet werden. Aufgrund dieser Intensitätsschwäche und der Tatsache, dass die Frequenz der Schwingung 3 bei den C-H-in-plane-Biegeschwingungen monosubstituierter Benzole am größten streut, ist eine Zuordnung im Anisol-Spektrum nicht leicht. Balfour gibt einen Wert von 1292 cm⁻¹ an, was mit dem berechneten Wert von 1305 cm⁻¹ jedoch gut übereinstimmt.

Die Zuordnung der Schwingungen 9a, 9b, 18a und 18b beruht auf den in dieser Arbeit verwendeten quantenchemischen Rechnungen und auf den experimentellen Daten von Balfour⁸³. So ordnet er die Schwingung 9a zu einem Peak bei 1169 cm⁻¹ und Mode 18a zu 1022 cm⁻¹. Dies deckt sich mit dem berechneten Werten von 1165 cm⁻¹ und 1015 cm⁻¹. Für die Schwingung 15 gibt er einen Wert von 1073 cm⁻¹ an, für Mode 9b 1151 cm⁻¹ und für Mode 18b 260 cm⁻¹. Dies steht im Widerspruch zu den Rechnungen. Die Schwingungsbilder der Rechnungen zeigen, dass die Schwingung 15 bei 1147 cm⁻¹, die Schwingung 9b bei 1075 cm⁻¹ und die Schwingung 18b bei 250 cm⁻¹ erscheint. Abbildung 4-4 zeigt die entsprechenden Schwingungsbilder.

Abbildung 4-4: Schwingungsbilder der Moden 15, 9b und 18b mit den entsprechenden berechneten Schwingungsfrequenzen für den S₀-Zustand von Anisol-h8.

Die in dieser Arbeit vorgeschlagene abweichende Zuordnung soll kurz begründet werden: Die Frequenzen der C-X-in-plane-Biegeschwingungen liegen gewöhnlich niedriger als 500 cm⁻¹. Aus diesem Grund ist die Kopplung mit den in-plane-Gerüstschwingungen des Benzols nicht vorhanden oder nur sehr schwach

ausgeprägt. Dadurch kann man sie als separaten Typ von Schwingung behandeln. Abgeleitet ist die C-X-in-plane-Biegeschwingung von der C-H-in-plane-Biegeschwingung, in der das Kohlenstoffatom in ortho-Position des Kohlenstoffatoms, welches den Substituenten trägt, in entgegengesetzter Phase schwingt. Nach Scherer ⁹³ trifft dies auf die Moden 9b und 15 des Benzols zu. Diese Ansicht scheint aber eher willkürlich zu sein und deshalb folgen wir den Ergebnissen unserer Rechnung und kennzeichnen diese Schwingung als C-Xin-plane-Biegeschwingung 18b, so wie Balfour ⁸³ auch. Das Schwingungsbild von 18b zeigt auch, dass die O-CH₃-Gruppe mitschwingt. Dies bedeutet, dass die

Schwingung 18b mit der asymmetrischen in-plane Biegeschwingung der C-O-C-Gruppe koppelt.

4.2.2.2 Radiale in-plane-Schwingungen

Zu dieser Gruppe gehören die Gerüstschwingungen 1, 12, 6a, 6b und die C-X-Streckschwingungen bzw. C-H-Streckschwingungen 2, 7a, 7b, 20a, 20b und 13. Die totalsymmetrische Ringmode 1 wurde von Balfour zum Signal bei 997 cm⁻¹ und die X-sensitive Schwingung 12 dem Peak bei 788 cm⁻¹ zugeordnet. Matsumoto ²⁴ und die hier durchgeführten ab initio Rechnungen zeigen jedoch, dass das Signal bei 997 cm⁻¹ zur Mode 12 gehört und Schwingung 1 bei 788 cm⁻¹ anzutreffen ist. Abbildung 4-5 zeigt die entsprechenden Schwingungsbilder mit den berechneten Frequenzwerten sowie das Schwingungsbild der Mode 12 beim Benzol.

Abbildung 4-5: Schwingungsbilder der Moden 1 und 12 mit den entsprechenden berechneten Schwingungsfrequenzen für den S₀-Zustand von Anisol-h8 und Benzol⁹⁴.

Bei der Schwingung 6a ist bekannt, dass sie durch einen Substituenten stark beeinflusst wird. Für leichte Substituenten liegt das Frequenzintervall zwischen 300 und 530 cm⁻¹. Balfour gibt einen experimentellen Wert von 553 cm⁻¹ an, welcher in guter Übereinstimmung mit dem berechneten Wert von 543 cm⁻¹ liegt. Der etwas erhöhte Wert kann damit erklärt werden, dass die Kraftkonstante in der C-X-Bindung ein wenig erhöht wird aufgrund der Wechselwirkung des π -Systems mit dem entsprechenden einsamen 2p-Elektronenpaar des Sauerstoffatoms.

Die Frequenz der Schwingung 6b liegt im Vergleich zur vorherigen Schwingung höher und ist nicht so stark substituentenabhängig. Man findet sie meist im engen Frequenzintervall von 600 cm⁻¹ bis 630 cm⁻¹. Dies wird durch Balfour und dem Wert in Tabelle 4-2 (610 cm⁻¹) gestützt.

Für monosubstituierte Benzole erwartet man fünf C-H-Streckschwingungen und eine C-X-Streckschwingung. Für die letztere wird in der Literatur ⁸⁷ zwischen leichten (m < 20 a. u.) und schweren (m > 20 a. u.) Substituenten unterschieden. Bei leichten Substituenten koppelt die C-X-Streckschwingung so stark mit der Mode 1, dass unabhängig von der chemischen Natur des Substituenten die

geometrischen und mechanischen Eigenschaften den Wert der Frequenz beeinflussen. Das daraus resultierende breite Frequenzintervall für die C-X-Streckschwingung monosubstituierter Benzole liegt daher zwischen 1100 und 1300 cm⁻¹.

Bei schweren Substituenten (wie Anisol) findet eine andere Kopplung der C-X-Streckschwingung statt. In Abbildung 4-6 sind die Schwingungsbilder der Schwingungen 7a und 13 gezeigt, weil eine eindeutige Zuordnung der C-X-Schwingung zur Benzolmode 7a oder zur Benzolmode 13 nicht ohne Weiteres getroffen werden kann.

Abbildung 4-6: Schwingungsbilder der Moden 7a und 13 mit den berechneten Schwingungsfrequenzen für Anisol-h8 (oben) und den Schwingungsbildern für Benzol (unten) für den S₀-Zustand.

Für den Fall, dass bei der C-X-Schwingung das erste Atom des Substituenten X ein Kohlenstoffatom ist, errechnete Garg ⁹⁵ für die Schwingung 7a eine Frequenz von 1200 cm⁻¹. Für Anisol ordnete Balfour ⁸³ den Peak bei 1253 cm⁻¹ der Schwingung 7a zu. Matsumoto ²⁴ ordnet jedoch diesen Peak der Schwingung 13 und nicht der Schwingung 7a zu. Nach unseren Rechnungen (1248 cm⁻¹) und dem dazugehörigen Schwingungsbild handelt es sich aber eher um die Schwingung 7a. Festzuhalten ist, dass in aromatischen-aliphatischen Ethern, wie Anisol, die C_{Aromat}-O-Schwingung mit Schwingungen des Ringes (siehe Abbildung 4-6). Dies wird durch den Isotopeneffekt bestätigt. So sollte man nicht nur beim Wechsel von Anisol-h8 zu Anisol-d3, sondern auch beim Wechsel von Anisol-d3 zu Anisol-d8 eine Frequenzverschiebung beobachten können. Dies deckt sich sowohl mit Balfour's experimentellen Werten (Anisol-h8: 1253 cm⁻¹, Anisol-d3: 1262 cm⁻¹ und Anisol-d8: 1210 cm⁻¹) als auch mit dem theoretischen Werten von 1248 cm⁻¹ (Anisol-h8), 1255 cm⁻¹ (Anisol-d3) und 1202 cm⁻¹ (Anisol-d8).

Die verbleibenden fünf C-H-Streckschwingungen 2, 7b, 13, 20a und 20b erscheinen für monosubstituierte Benzole im Frequenzbereich von 3010 cm⁻¹ bis 3120 cm⁻¹. Dies wird durch unsere Rechungen (siehe Tabelle 4-2) bestätigt. Allerdings ergibt sich nach unseren Schwingungsbildern eine andere Zuordnung als die von Balfour. Um einen besseren Vergleich zwischen seinen und unseren Werten zu gewährleisten, wurde Balfour's Zuordnung in Tabelle 4-2 an unsere Zuordnung angeglichen.

4.2.2.3 Out-of-plane-Schwingungen

Zu diesen Schwingungen gehören zwei Gruppen: Die out-of-plane-Gerüstschwingungen 4, 16a und 16b und die C-H out-of-plane-Schwingungen 5, 10a, 10b, 11, 17a und 17b. Eine dieser C-H-Schwingungen stellt in monosubstituierten Benzolen gleichzeitig auch die C-X-out-of-plane-Schwingung dar.

Balfour beobachtet im IR-Spektrum von Anisol ein Signal bei 690 cm⁻¹, welches er zur Schwingung 4 zuordnet. Dies stimmt überein mit dem Wert in Tabelle 4-2 (669 cm⁻¹).

Bentley and Wolfarth ⁹⁶ finden in IR-Spektren von monosubstituierten Benzolen ein schwaches Signal mit nahezu konstanter Frequenz zwischen 400 cm⁻¹ und 410 cm⁻¹, welches zur Schwingung 16a gehört. Ein entsprechendes Signal wird für Anisol bei 415 cm⁻¹ gefunden, welches zu den berechneten Werten von uns (412 cm⁻¹) und Matsumoto ²⁴ (416 cm⁻¹) passt. Da der Übergang aufgrund der C_{2v}-Symmetrie symmetrieverboten ist, erscheint nur ein schwacher Peak im Spektrum. Die nahezu konstante Frequenz lässt sich damit erklären, dass der Substituent an dem Kohlenstoffatom sitzt, das im reinen Benzol keine Auslenkung zeigt. Abbildung 4-7 verdeutlicht den Sachverhalt.

Abbildung 4-7: Schwingungsbilder der Mode 16a mit den entsprechenden berechneten Schwingungsfrequenzen für Anisol-h8 und Benzol⁹⁴ im S₀-Zustand.

Der Frequenzbereich für die Schwingung 16b ist dagegen für monosubstituierte Benzole größer (418 – 560 cm⁻¹), da jetzt der Substituent an einem Kohlenstoffatom sitzt, das eine Amplitude zeigt, wie in Abbildung 4-8 zu sehen ist. Balfour gibt an, dass die Mode durch die Bande bei 511 cm⁻¹ repräsentiert wird. Dies stimmt mit unseren Rechungen (502 cm⁻¹) überein.

Abbildung 4-8: Schwingungsbilder der Mode 16b mit den entsprechenden berechneten Schwingungsfrequenzen für Anisol-h8 und Benzol⁹⁴ im S₀-Zustand.

Die C-H-out-of-plane-Schwingungen sind nach der Wilson-Notierung die Moden 5, 10a, 10b, 11, 17a und 17b. Leider existiert in der Literatur keine eindeutige Meinung darüber, welche dieser Schwingungen sich in monosubstituierten Benzolen in die C-X-out-of-plane-Schwingungen umwandelt. Festhalten kann man jedoch, dass diese Schwingung bei einer sehr niedrigen Frequenz erscheinen sollte. So gibt z. B. Stephenson ⁹⁷ die Schwingung 10b als die entsprechende C-X-out-of-plane-Schwingung an, die für monosubstituierte Benzole mit mehratomigen Substituenten im Frequenzintervall von 150 – 250 cm⁻¹ erscheint. Dies zeigt auch unsere Rechnung (203 cm⁻¹).

Für die restlichen Schwingungen gibt Stephenson ⁹⁷ die folgenden Frequenzmittelpunkte an: 982 cm⁻¹ (5), 962 cm⁻¹ (7a), 908 cm⁻¹ (17b), 837 cm⁻¹ (10a) und 751 cm⁻¹ (11). Diese Sequenz ist äquivalent mit unseren Rechungen (Tabelle 4-2) und den experimentellen Werten von Balfour. Jedoch findet Balfour keinen Peak für die Schwingung 17a, da die Schwingung in der C_{2v}-Symmetrie verboten ist.

4.2.2.4 Schwingungen der Methoxygruppe

Die folgenden Schwingungen können als eigenständige Schwingungen betrachtet werden, wenn man Anisol als einen aromatischen-aliphatischen Ether betrachtet, wobei zahlreiche Schwingungen mit dem C_{Aromat} -O- $C_{Aliphat}$ -Gerüst verbunden sind. Dazu gehören die symmetrische and antisymmetrische Streckschwingung, die symmetrische und antisymmetrische in-plane-Biegeschwingung, die symmetrischen und antisymmetrischen out-of-plane-Schwingungen und die O- $C_{Aliphat}$ -Torsionsschwingung. Dabei wird man vermutlich diese Moden nicht in ihren reinen Formen vorfinden, da sie an die Moden des Aromatenskeletts koppeln werden. Auf der anderen Seite werden die Schwingungen der Methylgruppe stark durch den Rest des Moleküls beeinflusst werden.

So ist z. B. die C_{Aromat}-O-Streckschwingung mit der Schwingung 7a gekoppelt und wurde bei der Besprechung der Mode 7a behandelt (siehe 4.2.2.2). Das Schwingungsbild (Abbildung 4-6) zeigt, dass neben der Kopplung mit der Mode 7a auch eine Kopplung mit der asymmetrischen Deformationsschwingung der Methylgruppe stattfindet. Die Zuordnung der Schwingung zum Peak bei 1253 cm⁻¹ deckt sich mit dem berechneten Wert (1248 cm⁻¹) und erscheint sinnvoll.

Die C-O-C-Biegeschwingung erwartet man für Ether bei 440 cm⁻¹. Balfour konnte der Schwingung jedoch kein Signal zuordnen. Nach unseren Rechnungen erscheint die Schwingung bei 433 cm⁻¹. Die C-OCH₃-Torsionsschwingung findet Balfour im IR-Spektrum bei 81,5 cm⁻¹. Der berechnete Wert beträgt 90 cm⁻¹. Auch für die O-CH₃-Torsionsschwingung konnte Balfour kein Signal ausfindig machen. Nach den Berechnungen erscheint diese Schwingung bei 266 cm⁻¹, was plausibel erscheint. Die einzelnen C-H-in-plane-Biegeschwingungen out-of-planeund Biegeschwingungen der Methylgruppe erwartet man in einem Frequenzbereich, in dem einige Moden des Aromaten lokalisiert sind. Gemäß meinen Schwingungsbildern erscheint es uns jedoch möglich, eine plausible Zuordnung geben zu können (siehe Tabelle 4-2). Wie die Schwingungsbilder zeigen, existiert praktisch keine Kopplung dieser aliphatischen Moden mit den in-plane- und out-ofplane-C-H-Schwingungen des aromatischen Ringes. Abbildung 4-9 verdeutlicht dies exemplarisch an der asymmetrischen CH₃-Deformationsschwingung (a').

Abbildung 4-9: Schwingungsbild der asymmetrischen CH₃-Deformationsschwingung A' für Anisol-h8 im S₀-Zustand.

Die C-H-Streckschwingungen der Methylgruppe sind dagegen einfach zu identifizieren, da sie in einem hohen, wenig "besetzten" Frequenzbereich um 3000 cm⁻¹ erscheinen. Die Ergebnisse unserer Rechungen bekräftigen Balfour's getroffene Zuordnung dieser Schwingungen (siehe Tabelle 4-2).

4.2.3 Die vibronische Struktur im ersten elektronisch angeregten Zustand (¹B₂)

Die vibronische Struktur von Anisol im ersten angeregten Zustand weicht beträchtlich von der im elektronischen Grundzustand ab, wie im Folgenden näher gezeigt wird. Daher ist es auch nicht verwunderlich, dass zur Zeit nach unserem Wissen keine Arbeit existiert, in der von einer vollständigen Zuordnung aller Normalschwingungen des Anisols im ersten angeregten Zustand berichtet wird. In der vorliegenden Arbeit wird versucht, eine aussagekräftige Zuordnung aller Normalmoden im S₁-Zustand zu geben.

Zur Lösung des Problems wurden quantenchemische Rechungen, der Isotopeneffekt und ein Vergleich von Frequenzen der korrespondierenden Schwingungen anderer einfachsubstituierter Benzole herangezogen. Für Schwingungen des Benzols und seiner Derivate existieren jedoch im elektronisch angeregten Zustand wesentlich weniger Daten als für den elektronischen Grundzustand. Dadurch ist ein Vergleich der Anisolschwingungen mit den entsprechenden Schwingungen und deren Zuordnung anderer monosubsituierter Benzole nur bedingt möglich. Schließlich unterstützen die im Spektrum beobachtbaren Obertöne, Kombinationsschwingungen und Progressionen die getroffene Zuordnung.

Wie bei der Besprechung der Schwingungen im elektronischen Grundzustand, wird hier auch dem Schema von Varsanyi gefolgt. Wie oben bereits erwähnt, kann man für die Zuordnung der Schwingungen im REMPI-Spektrum auch berechnete Frequenzen aus den quantenchemischen Rechnungen verwenden. Dabei wurde die Configuration Interaction Singles (CIS) Methode benutzt mit dem 6-31G(d,p) Basissatz ⁹⁸, wobei alle berechneten Frequenzen für den angeregten Zustand mit dem Faktor 0,9 skaliert wurden. Da bei Verwendung der kommerziell erhältlichen Standardprozeduren ^{88, 99-102} die Rechungen nicht so präzise sind wie für den

elektronischen Grundzustand, können sie lediglich als erste Orientierung dienen. In diesem Zusammenhang sind besonders die Schwingungsbilder bei der Zuordnung von Schwingungen im angeregten Zustand hilfreich. Wesentliche Hilfe bei der Zuordnung kommt dem Isotopeneffekt zu. Wir nahmen aus diesem Grunde REMPI-Spektren (Abbildung 4-10 bis Abbildung 4-12) von C₆H₅OCD₃ (Anisold3, "grünes Spektrum") und C₆D₅OCD₃ (Anisol-d8, "rotes Spektrum") auf. Der Vergleich dieser Spektren mit dem REMPI-Spektrum des reinen Anisols (Anisolh8, "blaues Spektrum") liefert wertvolle Informationen, welche die Zuordnung unterstützen. Tabelle 4-3 zeigt die skalierten Werte aus den quantenchemischen Rechnungen und die experimentellen Werte aus den REMPI-Spektren für Anisolh8, Anisol-d3 und Anisol-d8 für den ersten elektronisch angeregten Zustand. Zum Vergleich wurde das reine Benzol, Phenol, Toluol, Halogenbenzole, Anilin und Benzonitril gewählt (Besprechung siehe Kapitel 4.2.5). Besonders Phenol ist von großem Wert, da es bis auf die Methylgruppe nahezu identisch mit Anisol ist und die beiden Moleküle einander am ähnlichsten sind.

	Ber	echnete W	erte	Experimentelle Werte			
		S_1		S ₁			
	h8	d3	d8	h8	d3	d8	
A ₁							
	400	40.5	471	501	405	170	
6a	498	485	4/1	501	495	4/6	
12	947	945	908	937	939	914	
1	757	738	694	759	744	694	
18a	964	963	799	954	956	798	
9a	1135	1136	836	948	952	841	
7a	1290	1297	1197	1288	1284	1177	
19a	1466	1442	1354	1517	1484	1332	
8a	1571	1568	1526	1571	1572	1536	
13	3021	3021	2230	3049			
2	3064	3074	2274	3099			
20a	3048	3048	2253	3084			
A ₂							
16a	182	181	158	170	148	139 ?	
10a	512	511	401	508	505	444	

17a	655	655	540	667 ?	646 ?	571?
B ₁						
11	(25	(25	500	(21	502.9	502
11	625	625	500	621	593 !	523
4	524	523	413	516	516	461
160	360	360	308	367	365	315
106	164	131	127	150	135 ?	129 ?
17b	711	710	635	704	703	624
5	838	838	703	750		700 ?
B ₂						
1.01	247	225	210	250	221	224
180	247	512	219	239	231 510	224
6D	520	513	496	527	519	498
15	1092	1102	811	943	945	837
96	1004	1011	785	994	994	778
3	1343	1342	1031	1126	1109?	1015
14	1642	1642	1637	1636	1637	1615
19b	1419	1420	1274	1479	1470	1296
8b	1247	1240	1223	1271	1272	1229
7b	3038	3038	2237	3076		
20b	3074	3064	2266	3107		
A						
COC bend	416	403	391	427	416	400
O-CH ₃ stretch	1044	986	972	1016	983	976
CH ₃ rocking	1149	887	887	1152	907	904
CH ₃ sym.def.	1428	1127	1124	1415	1139	1137
CH ₃ asym.def	1464	1059	1059	1443	1055	1053
CH ₃ sym,stretch	2878	2063	2063	2967		
CH ₃ asym.stretch	2984	2216	2216	2990		
A"						
C-OCH ₃ tors.	83	77	74	88	80 ?	79 ?
O-CH ₃ tors	225	200	189	236	204	197
CH ₂ rocking	1179	935	931	1179	944	944
CH ₂ asym def	1476	1066	1066	1455	1067?	1063
CH ₂ asym stretch	2945	2187	2187	2979		
city asym.streten	2773	2107	2107			

Tabelle 4-3:Berechnete und beobachtete Werte der Normalschwingungen für Anisol-h8,
Anisol-d3 und Anisol-d8 für den ersten elektronisch angeregten Zustand
(S1-Zustand). Die Werte ergeben sich aus einer CIS/6-31g(d,p)-Rechnung
und wurden mit 0,9 skaliert.

Abbildung 4-10: REMPI-Spektren von Anisol-h8 (blau), Anisol-d3 (grün) und Anisol-d8 (rot) im Bereich von 550 cm⁻¹ bis zum jeweiligen 0-0-Übergang.

Abbildung 4-11: REMPI-Spektren von Anisol-h8 (blau), Anisol-d3 (grün) und Anisol-d8 (rot) im Bereich von 1060 cm⁻¹ bis 490 cm⁻¹ relativ zum jeweiligen 0-0-Übergang.

Abbildung 4-12: REMPI-Spektren von Anisol-h8 (blau), Anisol-d3 (grün) und Anisol-d8 (rot) im Bereich von 1760 cm⁻¹ bis 990 cm⁻¹ relativ zum jeweiligen 0-0-Übergang.

4.2.3.1 Tangentiale in-plane-Schwingungen

Die Diskussion beginnt mit den Kohlenstoff-Kohlenstoff-Streckschwingungen 8a, 8b, 19a, 19b und 14. Nach meinen Rechnungen erwartet man die Schwingung 8a bei 1571 cm⁻¹. Dieser Wert liegt 35 cm⁻¹ niedriger als die berechnete Frequenz im elektronischen Grundzustand. Der experimentelle Wert stimmt dabei mit dem berechneten Wert überein. Im REMPI-Spektrum von Anisol-h8 erscheint ein Peak bei 1571 cm⁻¹, welcher 17 cm⁻¹ niedriger liegt als der experimentelle Wert für den Grundzustand (Balfour ⁸³ :1588 cm⁻¹). Im REMPI-Spektrum von Anisol-d3 beobachtet man ein Signal bei 1572 cm⁻¹ und im Spektrum von Anisol-d8 einen Peak bei 1536 cm⁻¹. Damit ergibt sich eine Isotopenverschiebung von +1 cm⁻¹

(Anisol-d3 zu Anisol-h8) und -35 cm⁻¹ (Anisol-d8 zu Anisol-h8). Diese sind nahezu identisch mit denen für den elektronischen Grundzustand (+1 cm⁻¹ und -27 cm⁻¹).

Für die Schwingung 8b ergeben die Rechnungen eine starke Abnahme der Frequenz um 295 cm⁻¹ von 1542 cm⁻¹ im S₀-Zustand auf 1247 cm⁻¹ im S₁-Zustand. Diese starke Absenkung wird durch Matsumoto's Berechnungen ²⁴ gestützt. Im REMPI-Spektrum findet man ein Signal bei 1271 cm⁻¹, welches der Schwingung zugeordnet werden kann. Diese Zuordnung ist jedoch als vorläufig zu betrachten. Der Grund für die getroffene Zuordnung ist, dass im Spektrum von Anisol-d3 ein Peak bei 1272 cm⁻¹ und im Spektrum von Anisol-d8 ein Signal bei 1229 cm⁻¹ erscheint. Diese Signale zeigen damit eine vergleichbare Isotopenverschiebung wie im Grundzustand. Es kann jedoch nicht ausgeschlossen werden, dass die Mode 8b im Spektrum von Anisol-h8 zum Peak bei 1288 cm⁻¹ gehört. Diese Zuordnung wird allerdings durch die Spektren der deuterierten Anisole nicht gestützt.

Nach den quantenchemischen Rechnungen ergeben sich für die Schwingung 19a in Anisol-h8 die Frequenz 1466 cm⁻¹, in Anisol-d3 die Frequenz 1442 cm⁻¹ und ein Wert von 1354 cm⁻¹ für Anisol-d8. Diese Werte liegen damit nur 2 % tiefer als die berechneten Frequenzen für den S₀-Zustand und scheinen die von Balfour ²⁵ vorgeschlagene Zuordnung zu stützen. Er gibt für die Schwingung 19a im S₁-Zustand folgende Werte an: 1451 cm⁻¹ (Anisol-h8), 1463 cm⁻¹ (Anisol-d3) und 1333 cm⁻¹ (Anisol-d8). Dennoch folgen wir dieser Zuordnung nicht und ordnen stattdessen ein sehr starkes Signal bei 1517 cm⁻¹ im REMPI-Spektrum von Anisol-h8 der Mode 19a zu. Die große Intensität des Signals kann durch Fermi-Resonanz mit dem ersten Oberton der Mode 1 (759 cm⁻¹) erklärt werden. Der leichte Anstieg der Frequenz im Vergleich zum S₀-Zustand (1497 cm⁻¹) kann mit der geänderten elektronischen Struktur im S₁-Zustand erklärt werden. Wie bereits erwähnt, konnte experimentell gezeigt werden ⁷⁷, dass im ersten elektronisch angeregten Zustand der aromatische Ring alternierende Bindungslängen aufweist, was einer olefinischen Struktur entspricht (siehe Kapitel 4.1). Nach einer allgemeinen Regel liegen die Frequenzen von olefinischen Gerüstschwingungen höher als die für aromatische Bindungen⁶⁵.

Im REMPI-Spektrum von Anisol-d3 wird die Schwingung 19a dem Signal bei 1484 cm⁻¹ zugeordnet. Auch hier ist das Signal aufgrund von Fermi-Resonanz mit dem ersten Oberton der Schwingung 1 (744 cm⁻¹) verstärkt. In Anisol-d8 wird die Schwingung dem starken Signal bei 1332 cm⁻¹ zugeordnet. Das Vorkommen der leichten Isotopenverschiebung in Bezug auf Anisol-h8 zeigt, dass die Schwingung 19a auch einen Anteil einer Schwingung vom Substituenten beinhaltet. Dies wird durch die Schwingungsbilder bestätigt. So zeigt Abbildung 4-13, dass bei der Schwingung 19a in Anisol-h8 auch die symmetrische Biegeschwingung der Methylgruppe involviert ist, welche in Anisol-d3 nicht zu sehen ist. In Anisol-d8 ist stattdessen ein Beitrag der C-O-C-in-plane-Biegeschwingung zu erkennen.

Abbildung 4-13: Schwingungsbilder der Schwingung 19a im S₁-Zustand für Anisol-h8, Anisol-d3 und Anisol-d8 mit den dazugehörigen experimentellen Frequenzen.

Für die Schwingung 19b existieren keine Daten in der Literatur für den angeregten Zustand. Laut Rechnung erscheint die Schwingung bei 1419 cm⁻¹ für Anisol-h8, bei 1420 cm⁻¹ für Anisol-d3 und bei 1274 cm⁻¹ für Anisol-d8. Die REMPI-Spektren

zeigen Signale bei 1479 cm⁻¹ für Anisol-h8 und 1470 cm⁻¹ für Anisol-d3. Da nur eine sehr geringe Isotopenverschiebung beobachtet wird, bekräftigt dies, dass die Schwingung vorzugsweise im aromatischen Ring lokalisiert ist. Für Anisol-d8 kann man den entsprechenden Peak bei 1296 cm⁻¹ vorläufig der Schwingung 19b zuordnen.

Schwingung 14 ist von besonderem Interesse, da diese Schwingung in Benzol die "Kekule" Schwingung ist, die eine ungewöhnlich hohe Absenkung der Frequenz von 261 cm⁻¹ beim Wechsel vom Grundzustand (¹A₁) in den angeregten Zustand (¹B_{2u}) zeigt. Dieser Effekt, der ebenfalls bei aromatischen Systemen mit einer geringeren Symmetrie auftritt, wird auch in der Literatur ¹⁰³ beschrieben. Nach den Rechnungen ergibt sich beim Wechsel vom S₀-Zustand in den S₁-Zustand eine Frequenzverschiebung in Höhe von 312 cm⁻¹. Dieser Wert stimmt in etwa mit dem Wert für Benzol überein. Die berechneten Wellenzahlen sind 1642 cm⁻¹ für Anisol-h8, 1642 cm⁻¹ für Anisol-d3 und 1637 cm⁻¹ für Anisol-d8.

In den REMPI-Spektren findet man schwache Signale bei 1636 cm⁻¹ (Anisol-h8), 1637 cm⁻¹ (Anisol-d3) und 1615 cm⁻¹ (Anisol-d8). Die Schwingungsbilder (Abbildung 4-14) zeigen, dass keine Kopplung mit der Methoxygruppe stattfindet. In Übereinstimmung damit findet man auch keine Isotopenverschiebung zwischen Anisol-h8 und Anisol-d3. Damit scheint die frühere Zuordnung der Schwingung 14 bei 1177 cm⁻¹ (Anisol-h8) und bei 1175 cm⁻¹ (Anisol-d3) von Balfour offensichtlich falsch zu sein.

Abbildung 4-14: Schwingungsbilder der "Kekule"-Mode 14 für den angeregten Zustand von Anisol-h8, Anisol-d3 und Benzol⁹⁴ mit den dazugehörigen Frequenzen.

Zur Gruppe der tangentialen in-plane Schwingungen gehören auch die C-X-inplane-Biegeschwingungen. Die Frequenzen dieser Moden liegen im S₁-Zustand genau wie im elektronischen Grundzustand gewöhnlich tiefer als 500 cm⁻¹. Aus diesem Grund koppeln diese Schwingungen entweder gar nicht oder nur sehr schwach mit den in-plane-Gerüstschwingungen des aromatischen Ringes. Daher kann man sie, wie in Kapitel 4.2.2.1 geschehen, als separaten Typ von Schwingungen betrachten. Die Einstufung dieser Schwingungen kann man von den C-H-in-plane-Biegeschwingungen des Benzols ableiten. Ich folge daher der Argumentation von Kovner $^{104-107}$, der die C-X-in-plane-Moden von der Schwingung 15 und der Schwingung 9b im Fall monosubstituierter Benzole ableitet.

Im Folgenden wird dabei nur auf die Schwingung 9b nach Kovner eingegangen. Stephenson ¹⁰⁸ studierte eine ganze Serie von monosubstituierten Benzolen und gibt für die Mode 9b ein Frequenzintervall von 200 – 400 cm⁻¹ im elektronischen Grundzustand an. Bei meinen Rechnungen liegt die Frequenz der entsprechenden Schwingung bei 247 cm⁻¹ für den S₁-Zustand, welcher im REMPI-Spektrum von Anisol-h8 dem Signal bei 259 cm⁻¹ zugeordnet wird. Die entsprechenden berechneten Werte für Anisol-d3 und Anisol-d8 sind 225 cm⁻¹ und 219 cm⁻¹. Die experimentellen Werte sind 231 cm⁻¹ und 224 cm⁻¹. Wie bereits im Kapitel 4.2.2.1 beschrieben, wird in dieser Arbeit die Meinung vertreten, die Schwingungsbilder belegten, dass es sich bei der Schwingung eher um die Mode 18b handelt als um die Schwingung 9b. Damit korrespondiert man allerdings nicht mit der Mehrheit der Veröffentlichungen (siehe Kapitel 4.2.5). Dennoch existieren Meinungen, die ebenfalls diese Schwingung als Mode 18b deklarieren. So ordnet sowohl Bist ⁸⁵ als auch Schumm ¹⁰⁹ im Phenol die Schwingung um 400 cm⁻¹ der Mode 18b zu. Und auch Balfour ⁸³ ordnet im Grundzustand von Anisol die Schwingung um 260 cm⁻¹ der Mode 18b zu.

Die Zuordnung der C-H-in-plane-Biegeschwingungen 18a, 9a, 9b, 15 und 3 zu Signalen in den REMPI-Spektren der Anisole gestaltet sich nicht einfach, weil nach den Modelrechnungen einige dieser Schwingungen in einem sehr engen und intensitätsstarken Bereich zwischen 930 cm⁻¹ und 960 cm⁻¹ liegen könnten. Den entsprechenden Bereich im REMPI-Spektrum von Anisol-h8 zeigt Abbildung 4-15.

Abbildung 4-15:REMPI-Spektrum von Anisol-h8 im Bereich von 990 cm⁻¹ bis 920 cm⁻¹.

Die quantenchemischen Rechnungen ergeben für die einzelnen Schwingungen für Anisol-h8 die nachfolgenden Werte: 964 cm⁻¹ (18a), 1135 cm⁻¹ (9a), 1004 cm⁻¹ (9b), 1092 cm⁻¹ (15) und 1343 cm⁻¹ (3). Im REMPI-Spektrum wurden den einzelnen Moden folgende Werte zugeordnet: 954 cm⁻¹ (18a), 948 cm⁻¹ (9a), 994 cm⁻¹ (9b), 943 cm⁻¹ (15) und 1126 cm⁻¹ (3). Argumente für diese getroffene Zuordnung folgen aus dem Vergleich mit den aufgenommenen Spektren von Anisol-d3 und Anisol-d8 sowie von Phenol ¹⁰⁹. Die Schwingungsbilder der beiden deuterierten Anisole zeigen deutlich die aromatischen in-plane- C-H-Schwingungen ohne jeglichen Einfluss anderer Normalmoden. Dies zeigt exemplarisch die Abbildung 4-16 anhand der Schwingungen 18a und 9a.

Abbildung 4-16: Schwingungsbilder der Moden 18a und 9a von Anisol-h8 für den S₁-Zustand mit den experimentellen Werten.

Aus diesem Grunde sollte man keine größere Isotopenverschiebung beim Wechsel von Anisol-h8 zu Anisol-d3 feststellen. Dies wird sowohl durch die Rechnungen als auch durch die hier getroffene Zuordnung im Experiment bestätigt. Für Anisol-d3 erhält man folgende berechnete Werte: 963 cm⁻¹ (18a), 1136 cm⁻¹ (9a), 1011 cm⁻¹ (9b), 1102 cm⁻¹ (15) und 1342 cm⁻¹ (3). Die folgenden Frequenzen wurden aus den

REMPI-Spektren für Anisol-d3 ermittelt: 956 cm⁻¹ (18a), 952 cm⁻¹ (9a), 994 cm⁻¹ (9b), 945 cm⁻¹ (15) und 1109 cm⁻¹ (3). Die daraus resultierende Übereinstimmung der experimentellen Werte von Anisol-h8 und Anisol-d3 ist zufriedenstellend.

Für die Frequenzen dieser Schwingungen erwartet man aufgrund des Isotopeneffektes für Anisol-d8 in Bezug auf Anisol-h8 und Anisol-d3 starke Verschiebungen zu kleineren Werten hin. Dies bestätigen sowohl die Rechnungen als auch die im Spektrum beobachteten Frequenzen. Die folgenden Werte wurden gefunden: 799 cm⁻¹ (berechnet) und 798 cm⁻¹ (experimentell) für 18a, 785 cm⁻¹ (berechnet) und 778 cm⁻¹ (exp.) für 9b, 836 cm⁻¹ (berechnet) und 841 cm⁻¹ (exp.) für 9a, 811 cm⁻¹ (berechnet) und 837 cm⁻¹ (exp.) für 15 und 1031 cm⁻¹ (berechnet) und 1015 cm⁻¹ (exp.) für die Schwingung 3. Dabei zeigt das Schwingungsbild von der Mode 3 einen kleinen Beitrag der asymmetrischen CH₃-Biegeschwingung.

Wie Abbildung 4-15 für Anisol-h8 zeigt, sieht man in dem engen Frequenzbereich zwischen 930 cm⁻¹ und 960 cm⁻¹ vier intensitätsstarke Signale und eine signifikante Schulter. Es ist daher sinnvoll anzunehmen, dass zu dieser Struktur im REMPI-Spektrum die gerade besprochenen Schwingungen beitragen. Die genaue Zuordnung eines einzelnen Signals zu einer spezifischen Mode gestaltet sich jedoch schwierig. Bist ¹¹⁰ ordnet im S_1 -Zustand von Phenol das Signal bei 962 cm⁻¹ der Mode 15, das Signal bei 958 cm⁻¹ der Mode 18a und das bei 975 cm⁻¹ der Mode 9a zu. Diese Zuordnung wird auch von Schumm¹⁰⁹ für Phenol berichtet. Die Frequenzen der aromatischen in-plane-Schwingungen von Phenol und Anisol sollten in der gleichen Größenordnung liegen, wie auch Tabelle 4-5 zeigt. Daher erscheint es sinnvoll, dass zwei der intensiven Signale in dem besprochenen Frequenzbereich zu den Schwingungen 15 und 9a zugeordnet werden. Auf der anderen Seite zeigen die Berechnungen von Schumm folgende Werte: 1013 cm⁻¹ für die Mode 15 und 1216 cm⁻¹ für die Mode 9a. Die Diskrepanz zwischen den kalkulierten Werten und den beobachteten Werten wurde dabei durch ungewöhnlich niedrige Skalierungsfaktoren ausgeglichen, welche vermutlich durch eine außergewöhnliche Anharmonizität dieser Schwingungen im S₁-Zustand hervorgerufen wird.

Es wird in dieser Arbeit der Zuordnung für Phenol zugestimmt und in Analogie dazu die Mode 9a dem Signal bei 948 cm⁻¹, die Mode 15 dem Signal bei 943 cm⁻¹ und die Schwingung 18a dem Signal bei 954 cm⁻¹ im REMPI-Spektrum von Anisol-h8 zugeordnet. Die Schulter bei 958 cm⁻¹ scheint nicht aus einer Normalschwingung hervorzugehen, Obertöne da man weder noch Kombinationsschwingungen beobachtet, die eindeutig von dieser Frequenz herkommen. Eine mögliche Erklärung für das Auftauchen dieser Schulter könnte sein. dass aufgrund der Rotation um die C_{Aromat}-O-Bindung ein Potentialdoppelminimum existiert. welches einer Aufspaltung der zu Schwingungsmode 18a führt.

In den REMPI-Spektren der Isotopologen erkennt man die entsprechenden Signale für die Schwingungen 15, 9a und 18a bei den erwarteten Frequenzen. Das vierte Signal dieser Bande wird der Schwingung 12 zugeordnet, die weiter unten (Kapitel 4.2.3.2) diskutiert wird.

Die so getroffene Zuordnung wird durch die im Spektrum zu sehenden Kombinationsschwingungen bekräftigt. Dies soll anhand der Kombinationsschwingungen dieser vier Schwingungen jeweils mit den Moden 1 und 19a aufgezeigt werden. Ebenso bestätigen die Obertöne die getroffene Zuordnung, was anhand der ersten Obertöne dieser vier Schwingungen und den Kombinationsschwingungen untereinander gezeigt werden soll. So stellt Abbildung 4-17 die Signale der Kombinationsschwingungen zwischen der Mode 1 und den vier oben besprochenen Schwingungen dar. Man erkennt vier intensitätsstarke Signale, deren Frequenzen mit den berechneten Frequenzen der Kombinationsschwingungen gut übereinstimmen (berechnet/beobachtet: 1696/1696, 1702/1700, 1707/1707, 1713/1713) (siehe auch Tabelle 4-4).

Abbildung 4-17: REMPI-Spektrum von Anisol-h8 im Bereich von 1740 cm⁻¹ bis 1650 cm⁻¹.

Abbildung 4-18: REMPI-Spektrum von Anisol-h8 im Bereich von 2480 cm⁻¹ bis 2430 cm⁻¹.

Abbildung 4-18 zeigt den Frequenzbereich des REMPI-Spektrums von Anisol-h8, in dem die Kombinationsschwingungen mit der Mode 19a zu sehen sind. Auch hier erkennt man vier Signale, die eindeutig mit den berechneten Frequenzen für die Kombinationsschwingungen zwischen der Schwingung 19a mit den Moden 12, 15, 9a und 18a übereinstimmen (berechnet/beobachtet: 2454/2452, 2460/2459, 2465/2464 und 2471/2470) (siehe auch Tabelle 4-4).

Abbildung 4-19: REMPI-Spektrum von Anisol-h8 im Bereich von 1930 cm⁻¹ bis 1830 cm⁻¹.

Als weitere Bestätigung zeigt Abbildung 4-19 die Signale der ersten Obertöne der vier Schwingungen und der Kombinationsschwingungen dieser Moden untereinander.

Auch hier stimmen die beobachteten Werte mit den berechneten Werten gut überein^{*} (berechnet/beobachtet: 1874/1875, 1880/1880, 1885/1885, 1891/1891, 1892/1894, 1897/1897, 1902/1902, 1908/1906).

Die hier betrachteten Kombinationsschwingungen stammen von Normalmoden (1, 19a, 12, 18a und 9a) mit A₁-Symmetrie. Lediglich die Normalschwingung 15 besitzt B₂-Symmetrie. Normalerweise sollten nur Normalmoden mit der gleichen Symmetrie miteinander intensitätsstarke Kombinationsschwingungen bilden können. Da die Mode 15, genauso wie die 5 anderen Moden, in der gleichen Ebene schwingen, kann auch hier eine Kopplung der Schwingungen stattfinden.

Die hier getroffene Zuordnung der vier Normalschwingungen steht auch in Übereinstimmung mit der Zuordnung von Phenol. Jedoch sollte man die Diskussion um diesen schmalen (930 cm⁻¹ bis 960 cm⁻¹) und sehr intensitätsstarken Bereich des REMPI-Spektrums nicht als abgeschlossen ansehen. Zurzeit gibt es jedoch keine weiteren Argumente aus den experimentellen Daten, die die gegebene Zuordnung weiter bestätigen oder widerlegen.

^{*} Eine detaillierte Beschreibung der Obertöne, Kombinationsschwingungen und wie man die zu erwartenden Werte berechnet, wird in Kapitel 4.2.4 gegeben.

4.2.3.2 Radiale in-plane-Schwingungen

Zu dieser Gruppe gehören die Schwingungen 1, 12, 6a, 6b, die C-X-Streckschwingungsmoden sowie die C-H-Streckschwingungsmoden 2, 7a, 7b, 13, 20a und 20b.

Bei der Mode 1 handelt es sich um die totalsymmetrische Gerüstschwingung. Sie wurde von Sponer ¹¹¹ in dem $B_{2u} \leftarrow A_{1g}$ Bandensystem von Benzol im angeregten Zustand der Frequenz von 920 cm⁻¹ zugeordnet. Nach den Rechnungen erwartet man die Schwingung bei 757 cm⁻¹ für Anisol-h8, bei 738 cm⁻¹ für Anisol-d3 und bei 694 cm⁻¹ für Anisol-d8. Das Auftreten des Isotopeneffektes zwischen Anisol-h8 und Anisol-d3 weist auf einen Beitrag des Substituenten zu dieser Schwingung hin, was das entsprechende Schwingungsbild bestätigt. Abbildung 4-20 zeigt, dass eine schwache Kopplung der Mode 1 mit der asymmetrischen Biegeschwingung der Methylgruppe stattfindet.

Abbildung 4-20: Schwingungsbild der Mode 1 im angeregten Zustand von Anisol-h8.

In den REMPI-Spektren beobachtet man starke Signale bei 759 cm⁻¹ (Anisol-h8), 744 cm⁻¹ (Anisol-d3) und 694 cm⁻¹ (Anisol-d8), welche in guter Übereinstimmung mit den berechneten Werten liegen.

Für die Schwingung 12 ergeben die Rechungen folgende Werte: 947 cm⁻¹ (Anisolh8), 945 cm⁻¹ (Anisol-d3) und 908 cm⁻¹ (Anisol-d8). Die Werte zeigen, dass die Mode 12 im aromatischen Ring lokalisiert ist und mit keiner Mode des Substituenten koppelt, was auch das Schwingungsbild in Abbildung 4-21 zeigt.

Abbildung 4-21: Schwingungsbilder der Mode 12 für Anisol-h8 im angeregten Zustand und für Benzol⁹⁴ im Grundzustand mit den dazugehörigen Schwingungsfrequenzen.

Die entsprechenden experimentellen Werte für die Isotopologen werden den intensitätsstarken Signalen bei 937 cm⁻¹, 939 cm⁻¹ und 914 cm⁻¹ zugeordnet. Diese Resultate lassen vermuten, dass das von Sponer beobachtete Signal bei 920 cm⁻¹ für die $B_{2u} \leftarrow A_{1g}$ Bande im Benzol nicht der Schwingung 1 zuzuordnen ist, sondern eher zur Mode 12 gehört, was auch die Schwingungsbilder in Abbildung 4-21 bekräftigen.

Aus diesem Grunde wird der Argumentation von Varsanyi¹¹² gefolgt und die frühere Zuordnung von Balfour⁸³ für diese beiden Moden ausgewechselt. Auch Pradhan et. al.¹¹³ ordnet für den S₁-Zustand von Anisol die Schwingung 1 dem Peak bei 757 cm⁻¹ und die Schwingung 12 dem Signal bei 934 cm⁻¹ zu. Beim Vergleich der signifikanten Schwingungen unterschiedlich monosubstituierter Benzole (siehe Kapitel 4.2.5) wird daher in dieser Arbeit konsequenter Weise die Zuordnung dieser beiden Schwingungen abgeändert, so dass die Frequenz der Mode 1 immer niedriger liegt als die Frequenz der Schwingung 12.

Die Schwingungsbilder der beiden Moden 6a und 6b zeigen auffallende Beiträge der COC-Biegeschwingung und der asymmetrischen Biegeschwingung der Methylgruppe, wie Abbildung 4-22 illustriert.

Abbildung 4-22: Schwingungsbilder der Moden 6a und 6b für den angeregten Zustand von Anisol-h8 mit den berechneten Frequenzen.

-112-

Die Ergebnisse der quantenchemischen Rechnungen stimmen sehr gut mit den experimentellen Beobachtungen überein. Für die Schwingung 6a lauten die berechneten Werte: 498 cm⁻¹ (Anisol-h8), 485 cm⁻¹ (Anisol-d3) und 471 cm⁻¹ (Anisol-d8). Die entsprechenden experimentellen Werte liegen bei 501 cm⁻¹, 495 cm⁻¹ und 476 cm⁻¹. Für die Mode 6b lauten die Werte: 520 cm⁻¹ (Anisol-h8), 513 cm⁻¹ (Anisol-d3) und 496 cm⁻¹ (Anisol-d8). Die beobachteten Frequenzen sind entsprechend 527 cm⁻¹, 519 cm⁻¹ und 498 cm⁻¹.

Unter den radialen in-plane-Schwingungen erwartet man auch die C-X-Streckmoden, welche im Fall von Anisol die C_6H_5 -OCH₃-Streckschwingungen sind. Anisol kann dabei als ein aromatisch-aliphatischer Ether betrachtet werden. Für derartige Moleküle sind die COC-Streckmoden im Grundzustand gut bekannt. So identifiziert Stephenson ⁹⁷ eine Bande bei 1040 cm⁻¹ als die Frequenz der C_{Methyl}-O-Streckschwingung in Anisol. Green ¹¹⁴ ordnet das Signal bei 1176 cm⁻¹ der O-C_{Aromat}-Streckschwingung von Anisol zu. Für diese Schwingungen im S₁-Zustand werden gemäß den Rechnungen für die niedrigere Frequenz die Werte 1044 cm⁻¹ (Anisol-h8), 986 cm⁻¹ (Anisol-d3) und 972 cm⁻¹ (Anisol-d8) und für die höhere Frequenz die Werte 1290 cm⁻¹, 1297 cm⁻¹ und 1197 cm⁻¹ vorgeschlagen. Die Schwingungsbilder zeigen dabei, dass die C-X-Schwingung stark mit der C-H-Streckschwingung 7a des aromatischen Ringes koppelts so wie im S₀-Zustand (siehe Abbildung 4-6). Es wird daher die niedrigere Frequenz der COC-Mode (siehe Kapitel 4.2.3.4) und die höhere Frequenz der C-X-Radialschwingung zugeordnet. Diese ist hier gleichbedeutend mit der Schwingung 7a.

Im REMPI-Spektrum beobachtet man schwache Signale bei 1016 cm⁻¹ (Anisol-h8), 983 cm⁻¹ (Anisol-d3) und 976 cm⁻¹ (Anisol-d8) welche mit den berechneten Werten korrelieren, so dass man diese Signale vorläufig der O-CH₃-Streckschwingung zuordnen kann. Für die C-X-Streckschwingung mit den höheren Frequenzen findet man im Spektrum drei relativ intensive Signale bei 1288 cm⁻¹ (Anisol-h8), 1284 cm⁻¹ (Anisol-d3) und 1177 cm⁻¹ (Anisol-d8). Dabei muss beachtet werden, dass jeweils nah neben dem Signal ein weiteres Signal mit vergleichbarer Intensität erscheint, welches der Mode 8b zugeordnet wird. Daher kann man nicht ganz ausschließen, dass bei der Zuordnung die Schwingungen 8b und 7a vertauscht werden müssen.

Im aromatischen Ring existieren sechs C-H-Streckschwingungen. Eine von ihnen, die Mode 7a, wurde bereits als C-X-Schwingung klassifiziert. Die restlichen aromatischen C-H-Streckschwingungen sind die Moden 2, 7b, 13, 20a und 20b. Für den S₁-Zustand erhält man nach meinen Rechnungen folgende Frequenzen für diese Schwingungen: 3064 cm⁻¹ (2), 3038 cm⁻¹ (7b), 3021 cm⁻¹ (13), 3048 cm⁻¹ (20a) und 3074 cm⁻¹ (20b). Matsumoto ²⁴ gibt vergleichbare Werte an. Die in dieser Arbeit berechneten Frequenzen im S₁-Zustand liegen dabei mit 15 - 53 cm⁻¹ niedriger als im S₀-Zustand. Diese Differenzen sind beträchtlich kleiner als bei den anderen diskutierten Schwingungen. Wie erwartet bestätigen die Schwingungsbilder und die berechteten Schwingungsfrequenzen von Anisol-d3 und Anisol-d8, dass diese C-H-Streckschwingungen komplett im aromatischen Ring lokalisiert sind. Eine Isotopenverschiebung stellt man daher lediglich für Anisol-d8 fest, wo diese Schwingungen im Bereich von 2230 cm⁻¹ bis 2274 cm⁻¹ angesiedelt sind.

Die Frequenzen der C-H-Streckschwingungen wurden nur für Anisol-h8 gemessen. Abbildung 4-23 zeigt den entsprechenden Frequenzbereich. Folgende experimentelle Werte wurden gefunden: 3049 cm^{-1} (13), 3076 cm^{-1} (7b), 3084 cm^{-1} (20a), 3099 cm^{-1} (2) und 3107 cm^{-1} (20b).

Abbildung 4-23: REMPI-Spektrum von Anisol-h8 im Bereich von 3115 cm⁻¹ bis 3045 cm⁻¹.

4.2.3.3 Out-of-plane-Schwingungen

Zu dieser Gruppe gehören unter anderem die Schwingungen 4, 16a und 16b. Im S_0 -Zustand erscheinen in den IR-Spektren von monosubstituierten Benzolen gewöhnlich zwei intensitätsstarke Signale zwischen 700 cm⁻¹ und 800 cm⁻¹. Varsanyi ⁸⁷ diskutiert in seinem Buch lange darüber, welches dieser Signale Mode 4 repräsentiert. In den Rechnungen findet man in Übereinstimmung mit Matsumoto ²⁴ für die Schwingung 4 eine Frequenz von 669 cm⁻¹ für den S₀-Zustand und einen Wert von 524 cm⁻¹ für den S₁-Zustand. Ein entsprechendes Signal im

REMPI-Spektrum von Anisol-h8 findet man bei 516 cm⁻¹. In Anisol-d3 wird das entsprechende Signal ebenfalls bei 516 cm⁻¹ beobachtet, im Spektrum von Anisold8 bei 461 cm⁻¹.

Die beiden Moden 16a und 16b sind von der entarteten Mode 16 im Benzol abgeleitet. Diese Schwingung ist für das Verständnis der Schwingungsstruktur von Benzol von großem Interesse 111, 115 . Sponer und Wollmann 116 ordnen im Schwingungsspektrum von Chlorbenzol bei 200 cm⁻¹ die Mode 16a zu. Für Anisol-h8 ergeben die durchgeführten Rechnungen einen Wert von 182 cm⁻¹, welcher mit dem schwachen Signal im REMPI-Spektrum bei 170 cm⁻¹ angemessen übereinstimmt. Die Intensität ist vermutlich deshalb so gering, weil dieser Übergang symmetrieverboten ist. Da der Übergang des ersten Obertones (16a²) mit der Symmetrie A1 erlaubt ist, findet man dafür im Spektrum ein wesentlich intensitätsstärkeres Signal bei 339 cm⁻¹. Im Vergleich zum S₀-Zustand wird die Frequenz im S₁-Zustand um mehr als 50 % reduziert. Diese starke Absenkung und die schwache Intensität der Signale im S₁-Zustand scheinen charakteristisch zu sein für Moden mit der Symmetrie A2. Dieses Verhalten wird auch bei anderen monosubstituierten Benzolen gefunden, wie z. B. Chlorbenzol. Die Frequenzen der totalsymmetrischen Schwingungen sind dagegen nur um bis zu 8 % (außer 7a mit 16 %) im S_1 -Zustand verringert im Vergleich zum S_0 -Zustand. In den Spektren von Anisol-d3 und Anisol-d8 erscheinen die Peaks für die Mode 16a ebenfalls sehr schwach bei 148 cm⁻¹ und 139 cm⁻¹. Die entsprechenden Obertöne sind dagegen wieder deutlich zu beobachten bei 303 cm⁻¹ (Anisol-d3) und 278 cm⁻¹ (Anisol-d8).

Die Zuordnung der Schwingung 16b ist dagegen einfacher. Nach den Rechnungen erscheint die Mode 16b bei der Frequenz 360 cm⁻¹, welche zu dem markanten Peak im REMPI-Spektrum bei 367 cm⁻¹ für Anisol-h8 passt. Die Spektren von Anisol-d3 und Anisol-d8 zeigen das entsprechende Signal bei 365 cm⁻¹ und 315 cm⁻¹.

Bei der Diskussion der C-X-out-of-plane-Schwingung taucht wieder das Problem auf (siehe auch Kapitel 4.2.2.3), dass in der Literatur nicht eindeutig klar ist, welche der C-H-out-of-plane-Moden (5, 10a, 10b, 11, 17a, 17b) sich in die C-X-out-ofplane-Schwingung umwandelt. Einigkeit besteht jedoch darüber, dass die Schwingung mit dem C-X-Charakter bei einer niedrigeren Frequenz erscheint als die C-H-out-of-plane-Moden. Stephenson ⁹⁷ deutet ein Frequenzintervall von 150 – 250 cm⁻¹ für die entsprechende Schwingung 10b im S₀-Zustand an. Die Modelrechnungen von Matsumoto ²⁴ ergeben für die Schwingung 10b im S₁-Zustand den Wert von 164 cm⁻¹, welcher mit dem berechneten Wert identisch ist. Im REMPI-Spektrum von Anisol-h8 erscheint ein sehr schwacher Peak bei 150 cm⁻¹, der gut mit dem berechneten Wert zusammen passt. Der erste Oberton (10b²) ist wiederum klar im Spektrum zu sehen bei 301 cm⁻¹ (Anisol-h8), 271 cm⁻¹ (Anisol-d3) und 258 cm⁻¹ (Anisol-d8). Auch Roth ¹¹⁷ sieht im S₁-Spektrum von Phenol deutlich den ersten Oberton von 10b (324 cm⁻¹) und nur einen intensitätsschwachen Peak bei 162 cm⁻¹.

Damit verbleiben für die C-H-out-of-plane-Schwingungen die Moden 5, 10a, 11, 17a und 17b. Im REMPI-Spektrum erscheinen sie nur als schwache Signale, da sie in der C_{2v} -Gruppe zur Symmetrie A_2 und B_1 gehören. Für die Zuordnung dieser Schwingungen werden die Ergebnisse der quantenchemischen Rechnungen für alle drei Anisole benutzt. Nach den Schwingungsbildern findet keine Wechselwirkung des Substituenten mit den C-H-Schwingungen statt. Diese Tatsache bekräftigt, dass sich keine Isotopenverschiebung zwischen Anisol-h8 und Anisol-d3 weder durch die berechneten Frequenzen noch durch die beobachteten Signale ergibt. Abbildung 4-24 zeigt exemplarisch die Schwingungsbilder von der Schwingung 10a für den angeregten Zustand von Anisol-h8 und Anisol-d3.

Abbildung 4-24: Schwingungsbilder der Mode 10a für den angeregten Zustand von Anisol-h8 und Anisol-d3 mit den berechneten Werten.

Die kalkulierten Werte für diese Schwingungen im ersten angeregten Zustandes für Anisol-h8 lauten: 838 cm⁻¹ (5), 625 cm⁻¹ (11), 512 cm⁻¹ (10a), 655 cm⁻¹ (17a) und 711 cm⁻¹ (17b). Für Anisol-d3 ergeben sich die gleichen Werte (maximale Abweichung \pm 1 cm⁻¹). Die berechneten Werte für Anisol-d8 sind: 703 cm⁻¹ (5), 500 cm⁻¹ (11), 401 cm⁻¹ (10a), 540 cm⁻¹ (17a) und 635 cm⁻¹ (17b). Im REMPI-Spektrum von Anisol-h8 findet man schwache Signale bei 508 cm⁻¹ (10a), 704 cm⁻¹ (17b), 667 cm⁻¹ (17a) und 621 cm⁻¹ (11). Bei 750 cm⁻¹ befindet sich eine Schulter, welche der Schwingung 5 zugeordnet werden kann. Ein entsprechendes Signal konnte im Anisol-d3-Spektrum nicht gefunden werden. Für Anisol-d8 findet man ein Signal bei 700 cm⁻¹, welches der Schwingung 5 zugeordnet wird.

4.2.3.4 Schwingungen der Methoxygruppe

Zu dieser Gruppe gehören die Schwingungen des C-O-C-Strukturelements und die Moden der Methylgruppe, welche nicht mit den Schwingungen des aromatischen Ringes koppeln sollten. Die Symmetrieeigenschaften dieser Moden können nicht zur C_{2v} -Gruppe gezählt werden. Man benutzt zur Symmetriebeschreibung üblicherweise die reduzierte Symmetrie Cs mit den Symmetrierassen (irreduzible Darstellung) A' und A''.

Die C-X-Streckschwingung des Substituenten mit dem aromatischen Ring wurde bereits früher besprochen (siehe Kapitel 4.2.3.2).

Die Torsionsmode entspricht infolge der gehinderten Rotation der OCH₃-Gruppe um die C_{Aromat}-O-Achse der kleinsten Schwingungsfrequenz. Nach den Rechungen lautet die entsprechende Frequenz für Anisol-h8 83 cm⁻¹. Diese wird im REMPI-Spektrum dem schwachen Signal bei 88 cm⁻¹ zugeordnet. Die größere Frequenz im Vergleich zum beobachteten Wert im S₀-Zustand (81,5 cm⁻¹) kann mit dem gestiegenen π -Charakter erklärt werden, der die Bindung im S₁-Zustand starrer werden lässt.

Die restlichen Moden beziehen sich auf die O-CH₃-Bindung im Anisol als aromatisch-aliphatischen Ether. Die Berechnungen der O-CH₃-Torsionsschwingung lauten: 225 cm⁻¹ (Anisol-h8), 200 cm⁻¹ (Anisol-d3) und 189 cm⁻¹ (Anisol-d8). Die entsprechenden Signale im REMPI-Spektrum erscheinen schwach bei: 236 cm⁻¹, 204 cm⁻¹ und 197 cm⁻¹.

Für die C-X-out-of-plane-Biegeschwingung ergeben die Rechungen folgende Frequenzen: 416 cm⁻¹, 403 cm⁻¹ und 391 cm⁻¹. Die dazugehörigen beobachteten Werte lauten 427 cm⁻¹, 416 cm⁻¹ und 400 cm⁻¹. Die O-CH₃-Streckschwingung erwartet man für Anisol-h8 bei einer Frequenz von 1044 cm⁻¹. Das Schwingungsbild in Abbildung 4-25 zeigt, dass diese Schwingung vermutlich mit der Mode 9b des aromatischen Ringes koppelt. Im REMPI-Spektrum von Anisol-h8 erscheint ein Signal bei 1016 cm⁻¹, welches wir vorläufig dieser Mode zuordnen. Die berechneten Werte für Anisol-d3 und Anisol-d8 sind 986 cm⁻¹ und 972 cm⁻¹ mit den entsprechenden beobachteten Werten von 983 cm⁻¹ und 976 cm⁻¹.

Abbildung 4-25: Schwingungsbild der O-CH₃-Streckschwingung und der Mode 9b für Anisol-h8 und Benzol⁹⁴ im S₁-Zustand mit den berechneten Frequenzen.

4.2.3.5 Schwingungen der Methylgruppe

Die Normalmoden der Methylgruppe sind gut dokumentiert. Sie sind als Kippschwingungen, out-of-plane- und in-plane-Biegeschwingungen und den unterschiedlichen C-H-Streckschwingungen klassifiziert. Wie bereits erwähnt, koppeln diese Schwingungen gewöhnlich nicht mit denen des aromatischen Ringes. Dies wird sowohl durch die berechneten Schwingungsbilder als auch durch die Isotopenverschiebung in den REMPI-Spektren bestätigt (siehe Abbildungen 4-10 bis 4-12). So findet lediglich eine Verschiebung der Frequenzen beim Wechsel von Anisol-h8 zu Anisol-d3 statt und nicht beim Wechsel von Anisol-d3 zu Anisol-d8 (siehe Tabelle 4-3 und Abbildungen 4-10 bis 4-12).

In der Literatur sind nur wenige Daten für die Frequenzen dieser Schwingungen in Anisol bekannt. Balfour⁸³ veröffentlichte derartige Daten für den elektronischen Grundzustand von Anisol. Jedoch existieren keine vergleichbaren Daten für den ersten elektronisch angeregten Zustand. Man darf vermuten, dass die CH₃-Kippschwingungen in beiden Zuständen nicht sehr unterschiedlich sind, da das Kraftfeld dieser Schwingungen im S₀-Zustand und im S₁-Zustand ähnlich sein sollte. Dies zeigen zumindest die Rechnungen. Die berechneten Frequenzen für die CH₃-Kippschwingungen sind 1138 cm⁻¹ (A') und 1173 cm⁻¹ (A'') im S₀-Zustand und 1149 cm⁻¹ (A') und 1179 cm⁻¹ (A'') im S₁-Zustand. Balfour ordnet im S₀-Zustand ein Signal bei 1180 cm⁻¹ der CH₃-Mode mit A'' Symmetrie zu. Für die entsprechende Mode mit A' Symmetrie findet er kein Signal. Im REMPI-Spektrum von Anisol-h8 findet sich ein schwaches Signal bei 1179 cm⁻¹, welches der A" Kippschwingung zugeordnet wird und ein weiteres schwaches Signal bei 1152 cm⁻¹, welches zurzeit zur A' Kippmode zugeteilt wird . Dies wird durch die Isotopenverschiebung bestätigt. Für die CH₃-Kippschwingung (A'') gibt Balfour für den Grundzustand von Anisol-d3 einen Wert von 955 cm⁻¹ an und 896 cm⁻¹ für Anisol-d8. Sowohl im REMPI-Spektrum von Anisol-d3 als auch von Anisol-d8 beobachtet man jeweils ein schwaches Signal bei 944 cm⁻¹, welches zum gegenwärtigen Zeitpunkt der Kippschwingung (A'') zugeordnet wird. Dies wird gestützt durch die Tatsache, dass die Isotopenverschiebung im Grundzustand und im angeregten Zustand ähnlich ist (S₀: 1173 (h8), 939 (d3) und 936 (d8); S₁: 1179 (h8), 944 (d3) und 944 (d8)). In der gleichen Weise argumentieren wir auch mit der A' Kippschwingung. Das Signal bei 1152 cm⁻¹ im Spektrum von Anisol-h8 korreliert mit dem Signal bei 907 cm⁻¹ im Spektrum von Anisol-d3 und 904 cm⁻¹ im Spektrum von Anisol-d8 (S₀ (berechnet): 1138 (h8), 905 (d3) und 904 (d8)). Dabei zeigen die Werte beim Wechsel von Anisol-d3 zu Anisol-d8 nahezu keine Verschiebung, was diese Zuordnung stützt.

Drei C-H-Deformationsschwingungen existieren für die CH₃ Gruppe. Die berechneten Frequenzen der Moden für den S₁-Zustand lauten: 1428 cm⁻¹ (sym. def. A'), 1464 cm⁻¹ (asym. def. A') und 1476 cm⁻¹ (asym. def. A''). Im S₀-Zustand ⁸³ sind die entsprechenden experimentellen Werte: 1442 cm⁻¹, 1452 cm⁻¹ ¹ und 1469 cm⁻¹. Auf den ersten Blick bestätigen die Werte die Annahme, dass das Kraftfeld dieser Schwingungen in den beiden elektronischen Zuständen vergleichbar ist. Dennoch scheint eine eindeutige Zuordnung in diesem Frequenzbereich nicht möglich zu sein, da man eine große Anzahl von Signalen mit geringer Intensität in diesem engen Bereich findet. Zu ihnen gehören die unterschiedlichen Schwingungen des aromatischen Ringes und die C-H-Deformationsmoden. Zusätzlich erwartet man eine beträchtliche Anzahl von Obertönen und Kombinationsschwingungen in diesem Frequenzbereich (siehe auch Tabelle 4-4).

Auch die Zuordnung der C-H-Deformationsschwingungen der deuterierten Anisole ist als vorläufig anzusehen. Zur Lokalisierung im REMPI-Spektrum werden die berechneten Werte für Anisol-h8 im S₁-Zustand und der beobachtete Isotopeneffekt dieser Schwingungen im Grundzustand benutzt. Danach ergeben sich die zu erwartenden Frequenzen für Anisol-d3 von 1103 cm⁻¹ (sym. def. A'), 1059 cm⁻¹ (asym. def. A') und 1067 cm⁻¹ (asym. def A'') und ähnliche Werte für Anisol-d8. Im REMPI-Spektrum von Anisol-d3 beobachtet man ein schwaches Signal bei 1139 cm⁻¹, welches der symmetrischen Deformationsschwingung (A') zugeordnet werden kann. Das Spektrum von Anisol-d8 zeigt Signale in der Nähe der berechneten Werte. So beobachtet man die symmetrische Deformationsschwingung (A') bei 1137 cm⁻¹ (erwartet bei 1094 cm⁻¹) und die asymmetrischen Deformationsmoden (A') bei 1053 cm⁻¹ (erwartet bei 1061 cm⁻¹) und A'' bei 1063 cm⁻¹ (erwartet bei 1069 cm⁻¹).

Auch die Frequenzen der C-H-Streckschwingungen der Methylgruppe im S_1 -Zustand erwartet man bei ähnlichen Werten wie für den S_0 -Zustand. Dies wird bestätigt beim Vergleich der berechneten und experimentellen Werte im S_1 -Zustand mit den Werten im S_0 -Zustand. Balfour ⁸³ gibt für den S_0 -Zustand eine Frequenz für die asymmetrische Streckschwingung (A') von 3004 cm⁻¹ an. Für den S_1 -Zustand lautet der berechnete Wert 2984 cm⁻¹ und der beobachtete Wert 2990 cm⁻¹. Für die beiden anderen C-H-Streckschwingungen ergeben sich vergleichbar gute Übereinstimmungen.

4.2.4 Obertöne und Kombinationsschwingungen

Eine erschöpfende Diskussion aller möglichen Obertöne und Kombinationsschwingungen für alle drei Anisole über den gesamten Frequenzbereich würde den Rahmen dieser Arbeit sprengen. Da sie aber die oben getroffene Zuordnung der Normalmoden stützen können, wird auf sie kurz näher Die hierbei auf eingegangen. Diskussion beschränkt sie die Kombinationsschwingungen und Obertöne, die aus Normalmoden mit A1- und B2-Symmetrie abgeleitet sind.

Im Bereich oberhalb von 1800 cm⁻¹ kann man eine reichhaltige Struktur aufgrund von Obertönen und Kombinationsschwingungen der Normalschwingungen erkennen. Mit Hilfe der Werte für die Normalmoden aus Tabelle 4-3 kann man die zu erwartenden Werte dieser Signale errechnen. In Tabelle 4-4 sind für alle drei Anisole die Obertöne und Kombinationsschwingungen der Normalmoden mit A₁- und B₂-Symmetrie zusammengestellt. Dabei stimmen die so berechneten Werte gut mit den experimentell beobachteten Werten überein. Diese Übereinstimmung bekräftigt daher die oben getroffene Zuordnung der 42 Normalmoden von Anisol-h8, Anisol-d3 und Anisol-d8.

Anisole-	-h8 S ₁	Anisole-d3 S ₁		Anisole	-d8 S ₁	Zuordnung
berechnet	beobachtet	berechnet	beobachtet	berechnet	beobachtet	
1002	1005	990	989	952	949	6a ²
1438	1439	1434	1430	1390	1389	6a +12
1260	1260	1239	1235	1170	1172	6a + 1
1455	1459	1451	1455	1274	1274	6a + 18a
1449	1448	1447	1446	1317	1317	6a + 9a
1789	1789	1779		1653	1649	6a + 7a
2018	2018	1979		1808		6a + 19a
2072	2071	2067		2012		6a + 8a

1874	1875	1878		1828		12 ²
1696	1696	1683	1679	1608	1606	12 + 1
1891	1894	1895		1712		12 + 18a
1885	1885	1891		1755		12 + 9a
2225	2227	2223		2091		12 + 7a
2454	2452	2423		2246		12 + 19a
2508	2508	2511		2450		12 + 8a
1518	1517	1488	1492	1388	1387	1 ²
1713	1713	1700	1697	1492	1494	1 + 18a
1707	1707	1696	1696	1535	1536	1 + 9a
2047	2044	2028		1871		1 + 7a
2276	2272	2228		2026		1 + 19a
2330	2330	2316		2230		1 + 8a
1908	1906	1912		1596	1596	18a ²
1902	1902	1908		1639	1638	18a + 9a
2242	2237	2240		1975		18a + 7a
2471	2470	2440		2130		18a + 19a
2525	2521	2528		2334		18a + 8a
1896	1897	1904		1682		9a ²
2236	2237	2236		2018		9a + 7a
2465	2464	2436		2173		9a + 19a
2519	2521	2524		2377		9a + 8a
2576	2578	2568		2354		7a ²
2805	2813	2768		2509		7a + 19a
2859	2859	2856		2713		7a + 8a
3034	3034	2968		2664		19a ²
3088	3088	3056		2868		19a + 8a
3142	3143	3144		3072		8a ²
518	518	462	460	448	448	18b ²
786	786	750	746	722	725	18b + 6b
1202	1203	1176	1176	1061	1060	18b + 15
1253	1255	1225	1226	1002	1003	18b + 9b
1385	1385	1340	1339	1239	1240	18b + 3
1895	1893	1868		1839		18b + 14
1738	1739	1701	1700	1520	1520	18b + 19b
1530	1528	1503	1506	1453	1455	18b + 8b

1054	1058	1038	1041	996	998	6b ²
1470	1469	1464	1462	1335	1334	6b + 15
1521	1525	1513	1513	1276	1274	6b + 9b
1653	1652	1628	1626	1513	1516	6b + 3
2163	2163	2156		2113		6b + 14
2006	2003	1989		1794		6b + 19b
1798	1796	1791		1727		6b + 8b
1886	1885	1890		1674		15 ²
1937	1937	1939		1615	1615	15 + 9b
2069	2071	2054		1852		15 + 3
2579	2578	2582		2452		15 + 14
2422	2422	2415		2133		15 + 19b
2214	2219	2217		2066		15 + 8b
1988	1982	1988		1556	1557	9b ²
2120	2118	2103		1793		9b + 3
2630	2632	2631		2393		9b + 14
2473	2473	2464		2074		9b + 19b
2265	2266	2266		2007		9b + 8b
2252	2252	2218		2030		3 ²
2762	2764	2746		2630		3 + 14
2605	2609	2579		2311		3 + 19b
2397	2398	2381		2244		3 + 8b
3272	3270	3274		3230		14 ²
3115	3112	3107		2911		14 + 19b
2907	2907	2909		2844		14 + 8b
2958	2959	2940		2592		19b ²
2750	2754	2742		2525		19b + 8b
2542	2537	2544		2458		8b ²

Tabelle 4-4: Obertöne und Kombinationsschwingungen der Normalmoden mit A1 und

B₂ Symmetrie für Anisol-h8, Anisol-d3 und Anisol-d8 im S₁-Zustand ---) liegt außerhalb des Messbereiches, da die Spektren der deuterierten

Anisole nur bis 1700 cm⁻¹ oberhalb des 0-0-Überganges gemessen wurden.

4.2.5 Vergleich mit anderen monosubstituierten Benzolen

Vom spektroskopischen Standpunkt aus erscheint es wünschenswert, die Frequenzen der Schwingungen im S_1 -Zustand von Anisol mit denen anderer monosubstituierter Benzole, speziell Phenol, zu vergleichen. Dies kann bei der Zuordnung der Signale zu den Normalmoden hilfreich sein.

Die Schwingungsfrequenzen für den S_0 -Zustand sind gut dokumentiert. Im Vergleich dazu existieren wesentlich weniger Daten in der Literatur für den S_1 -Zustand. Tabelle 4-5 zeigt die Frequenzen ausgewählter Schwingungen von einigen monosubstituierten Benzolen und von Benzol. Im Einzelnen sind dies: Phenol, Toluol, Fluorbenzol, Chlorbenzol, Anilin und Benzonitil. Eine detaillierte Interpretation gestaltet sich jedoch schwierig, da in der Literatur keine einheitliche Zuordnung der Frequenzen zu den Normalmoden existiert. Dies liegt zum einen daran, dass die unterschiedlichen Moleküle aufgrund ihrer Symmetrie und elektronischen Struktur nur bedingt vergleichbar sind. Zum anderen besteht für ein und dasselbe Molekül nicht immer ein Konsens bei der Zuordnung der Frequenzen zu den Normalschwingungen.

Das Augenmerk wird hier auf den Vergleich zwischen Anisol und Phenol gelegt, da beide eine vergleichbare Struktur aufweisen. Zum anderen existieren zahlreiche experimentelle Daten in der Literatur für Phenol^{4, 6, 18, 84, 109, 112, 117-126}. Ein Unterschied der beiden Moleküle ergibt sich in Wasserstoffbrückenbindungen. Anisol fungiert aufgrund der einsamen Elektronenpaare am Sauerstoffatom als Protonenakzeptor, wogegen Phenol aufgrund der OH-Gruppe als Protonendonator auftritt. Unterschiede zwischen den IR-Spektren von Anisol und Phenol treten in den Schwingungen auf, bei denen der Substituent involviert ist. Aufgrund der unterschiedlichen reduzierten Massen der C-X-Schwingung, erscheinen die Schwingungen im Anisolspektrum bei niedrigerer Energie als beim Phenol. Im Anisol existieren keine O-H-Schwingungen, dafür zahlreiche Normalmoden, die in der Methoxygruppe lokalisiert sind. Die Normalschwingungen des aromatischen Ringes jedoch zeigen sehr ähnliche Frequenzen sowohl für den S₀-Zustand als auch für den S₁-Zustand. Im Grundzustand sind nur geringe Unterschiede bei der Zuordnung von Kleinermanns¹¹⁷ für Phenol und Balfour⁸³ für Anisol feststellbar. Die gleiche Situation ergibt sich für den S₁-Zustand, wenn man die in dieser Arbeit getroffene Zuordnung für Anisol und die von Kleinermanns¹¹⁷ für Phenol vergleicht, der die frühere Zuordnung von Bist⁸⁵ revidiert.

Ein deutlicher Unterschied tritt zwischen der berechneten und beobachteten Frequenz der Mode 9a auf. Im S₁-Zustand von Phenol ist die Schwingung dem Signal bei 975 cm⁻¹ zugeordnet und im Anisol-Spektrum dem Peak bei 948 cm⁻¹. Unsere Rechnungen ergeben für diese Schwingung einen Wert von 1135 cm⁻¹ unter Einbeziehung eines Korrekturfaktors von 0,900. Für Phenol wurde ein Wert von cm⁻¹ berechnet bei 965 Verwendung eines ungewöhnlich niedrigen Korrekturfaktors von 0,7934. Für Anisol erhält man den experimentellen Wert mit einem Skalierungsfaktor von 0,7518. Eine ähnliche Situation trat auch für die Schwingung 15 ein. Wir vermuten, dass die ungewöhnlich niedrigen Skalierungsfaktoren dieser Schwingungen auf eine Anharmonizität im angeregten Zustand zurückzuführen ist.

Verbindung	Zustände	v(6a)	v(12)*	v(1)*	v(18a)	v(18b)	v(6b)	Lit.
Anisol	S_0	553	997	788	1022	260	618	83, 79
	S_0 - S_1 relat. %	- 9.40	-6.02	68	- 6.65	- 0.38	-14.72	
	S_1	501	937	759	954	259	527	
Phenol	S_0	527	999	823	1026	403	619	109
	S_0 - S_1 relat. %	- 9.87	- 6.41	- 4.86	- 6.63	- 1.73	-15.51	
	S_1	475	935	783	958	396	523	
Toluol	S_0	514	1004	789	1012	340	620	127, 128
	S_0 - S_1 relat. %	- 11.28	- 7.17	-4.82	-4.74	- 17.35 ?	- 14.84	
	S_1	456	932	751	964	281	528	
Anilin	S_0	527	997	822	1025	375	615	129, 130
	S_0 - S_1 relat. %	- 6.64	- 4.41	-3.04	- 6.34	- 9.87	-7.80	
	S_1	492	953	797	960	338	567	
Fluorbenzol	S_0	519	1010	812	1028	401	618	131
	S_0 - S_1 relat. %	- 21.00?	- 9.41	- 6.16	- 6.03	-16.71	- 32.20	
	S_1	410?	915	762	966	334	419	

Chlorbenzol	S ₀	417	1004	707	1026	295	615	132, 133
	S_0 - S_1 relat. %		- 7.17	- 5.23	- 5.95	- 2.03	-15.28	
	\mathbf{S}_1		932	670	965	289	521	
Benzonitril	\mathbf{S}_0	457	1003	759	1024	628	628	134-137
	S_0 - S_1 relat. %	- 11.16	- 6.48		-5.86		-17.20	
	S_1	406	938		964		520	
Benzol	S_0	608	1010	993	1037			94
	S_0 - S_1 relat. %	- 14.31		- 7.04	- 11.38			
	S_1	521		923	919			

 Tabelle 4-5: Vergleich der Frequenzen ausgewählter Normalmoden von monosubstituierten Benzolen.

*: In der Literatur wird die Zuordnung der Schwingung v₁ und v₁₂ oft vertauscht. Hier wird die Zuordnung an der in Tabelle 4-2 und Tabelle 4-3 angepasst, um die Frequenzverschiebungen besser vergleichen zu können.

4.2.6 Zusammenfassung

Im Kapitel 4.2 erfolgte die profunde Besprechung des isolierten Anisole Anisol-h8, Anisol-d3 und Anisol-d8. Nach Besprechung des reinen elektronischen Überganges und der vibronischen Struktur im elektronischen Grundzustand offenbarte die detaillierte Analyse der REMPI-Spektren von Anisol-h8, Anisol-d3 und Anisol-d8 die vibronische Struktur von Anisol im S₁-Zustand. Im Rahmen dieser Doktorarbeit konnten damit erstmals alle 42 Normalschwingungen für Anisol im ersten elektronisch angeregten Zustand plausibel zugeordnet werden. Die Zuordnung der Signale zu Normalmoden basiert dabei auf den von mir durchgeführten quantenchemischen Rechnungen und der Untersuchung des Isotopeneffektes. Zusätzlich wurde die getroffene Zuordnung durch Vergleich mit anderen monosubstituerten Benzolen, speziell Phenol, gestützt. Eine Auswahl an Obertönen und Kombinationsschwingungen bekräftigte dabei die getroffene Zuordnung der Normalmoden. Nach Auffassung des Autors kann daher die getroffene Zuordnung als zuverlässig betrachtet werden, wobei einige Zuordnungen als vorläufige, nach dem heutigen Kenntnisstand getroffene betrachtet werden müssen.

Die Ergebnisse dieses Kapitels dienen nun als geeigneter Startpunkt, um unterschiedliche Arten von intermolekularen Wechselwirkungen im S_1 -Zustand von molekularen Aggregaten zu untersuchen. Dabei soll unter anderem der Einfluss der Wechselwirkungen auf die vibronische Struktur von Anisol näher untersucht werden. Als Untersuchungsobjekte für die Wasserstoffbrückenbindung wird im folgenden Kapitel 4.3 detailliert das System Anisol-Ammoniak untersucht. Im Kapitel 4.4 wird dann die Wasserstoffbrücke mit der van-der-Waals-Wechselwirkung im System Anisol/Argon und der Quadrupol-Dipol-Wechselwirkung im System Anisol/Kohlenstoffdioxid verglichen.