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Abstract
Modeling social systems and studying their dynamical behavior plays an important role
in many fields of research. Agent-based modeling provides a high degree of detail into
artificial societies by describing the model from the perspective of the agents. The in-
teractions of agents, often characterized by simple rules, lead to complex, time-evolving
patterns. Their understanding is of great importance, e.g., for predicting and influ-
encing epidemics. Analysis and simulation, however, often becomes prohibitively time-
consuming when the number of agents or the time scale of interest is large. Therefore,
this thesis is devoted to learn significantly reduced models of large-scale agent-based
systems from simulation data. We show how data-driven methods based on transfer
operators can be used to find reduced models represented by ordinary or stochastic
differential equations that describe the dynamical behavior of larger groups or entire
populations and thus enable the analysis and prediction of agent-based systems. To this
end, we first present an extension of EDMD (extended dynamic mode decomposition)
called gEDMD to approximate the Koopman generator from data. This method can be
used to compute eigenfunctions, eigenvalues, and modes of the generator, as well as for
system identification and model reduction of both deterministic and non-deterministic
dynamical systems. Secondly, we analyze the long-term behavior of certain agent-based
models and their pathwise approximations by stochastic differential equations for large
numbers of agents using transfer operators. We show that, under certain conditions,
the transfer operator approach connects the pathwise approximations on finite time
scales with methods for describing the behavior on possibly exponentially long time
scales. As a consequence, we can use the finite-time, pathwise approximations to char-
acterize metastable behavior on long time scales using transfer operators. This can
significantly reduce the computational cost. The third part addresses the data-driven
model reduction since in many cases no analytical limit models are known or existent.
We show how the Koopman operator theory can be used to infer the governing equa-
tions of agent-based systems directly from simulation data. Using benchmark problems,
we demonstrate that for sufficiently large population sizes the data-driven models agree
well with analytical limit equations and, moreover, that the reduced models allow pre-
dictions even in cases far from the limit or when no limit equations are known. Lastly,
we demonstrate the potential of the presented approach. We present an ansatz for
the multi-objective optimization of agent-based systems with the help of data-driven
surrogate models based on the Koopman generator. In particular, when limit models
are unknown or non-existent, this approach makes multi-objective optimization prob-
lems solvable that would otherwise be computationally infeasible due to very expensive
objective functions.
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Veniet tempus quo ista quae nunc latent in lucem dies extrahat et
longioris aeui diligentia. Ad inquisitionem tantorum aetas una
non sufficit, ut tota caelo uacet; quid quod tam paucos annos
inter studia ac uitia non aequa portione diuidimus? Itaque per
successiones ista longas explicabuntur. Veniet tempus quo posteri
nostri tam aperta nos nescisse mirentur.

The time will come when diligent research over very long periods
will bring to light things which now lie hidden. A single lifetime,
even though entirely devoted to the sky, would not be enough for
the investigation of so vast a subject. What about the fact that
we do not divide our few years in an equal portion at least be-
tween study and vice? And so this knowledge will be unfolded
only through long successive ages. There will come a time when
our descendants will be amazed that we did not knew things that
are so plain to them.

Seneca, Naturales Quaestiones, Book VII, Chapter XXV





1 Introduction

Modeling social dynamics and studying the collective phenomena that emerge from
them is an important task in research. Agent-based modeling offers an intuitive and
powerful framework to model interaction and collaboration of single agents, smaller
groups or entire populations. A high degree of modeling flexibility allows major insights
into complex dynamic patterns emerging from the interactions of discrete entities, so-
called agents, that are equipped with often simple rules describing their behavior. This
makes them equally suitable for experts and layperson without extensive mathematical
knowledge. In many cases, a large number of agents is not only desired but also required,
e.g., to represent initially low numbers of agents and thus increase the resolution. With
up to 1.5 million agents the Mobility Transition Model [117] is one such case. Built to
support political and social decision-making processes, the model simulates the evolu-
tion of private mobility demand allowing to find and test different strategies to reduce
the carbon dioxide emissions. To better understand the various processes involved and
gain deeper insights into agent-based models, data-driven methods help to analyze the
vast amounts of data generated.

Agent-Based Modeling. Agent-based modeling is a microscopic modeling technique
that describes a model from the perspective of each single agent. The model is defined
by a set of autonomous agents acting and interacting in a shared environment. Its coun-
terpart is macroscopic modeling, which describes the system globally at a high level,
e.g., in terms of differential equations or mean-field approximations. An agent can rep-
resent any kind of discrete entity, such as individuals, groups or organizations, but also
atoms, molecules, or technical devices. Each agent is described by a set of instructions
that govern its behavior, i.e., how it interacts with other agents and the environment.
Interactions reach from simple extraction of information or goods, to exchange thereof
up to complex processes like organization, coordination or cooperation. The environ-
ment can be very versatile and include, e.g., geographical conditions, (social) networks
and infrastructures. Complex combinations of the aforementioned but also abstract
constructs such as rules, laws and norms can be set up as a common environment or
integrated into it. Note that not all environmental information must be available to
each agent at all times. It can be locally restricted or only temporarily available.

Agent-based modeling has been an ongoing process since 1957, when microsimulation,
a technique developed by Orcutt [129], first focused on individuals and their interac-
tions in economic and social systems. However, its roots go back to the 1940s, when
von Neumann and Ulam introduced the concept of cellular automata, see [164, 167].
Motivated by the increasing computational power of computer systems in the 1990s,
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1 Introduction

simulations of agent-based models to analyze their dynamics became the most com-
mon tool. Nowadays, many models are implemented either using software frameworks
such as NetLogo [170] or directly via programming languages, possibly using toolboxes
such as Mesa [77], see, e.g., [1] for a recent review on software for agent-based mod-
eling. A milestone of agent-based modeling was set in the 1970s by Clifford and Sud-
bury [29] with the introduction of the so-called voter model, which marks one of the
most prominent applications of agent-based modeling: opinion dynamics. The term
was later on coined by Holley and Liggett [71]. The basic idea of the voter model
is that agents imitate the opinion of their neighbors. Over the years, many modi-
fications and extensions concerning, for instance, the representation and number of
distinct opinions, imitation and interaction, or environments have been developed, see,
e.g., [25, 158, 74, 140]. Further milestones in the development of agent-based modeling
are, for example, Schelling’s model of segregation [149] or the sugarscape model [46],
developed by Epstein and Axtell. Other applications concern, for instance, innovation
spreading or infection kinetics [80, 48], emergency response planning [123, 41] or the
evolution of languages [99, 159], but also biological systems on various scales [139], see
also [25, 5] for overviews of social dynamics and agent-based systems in biology.

The last decades have also produced a wide range of mathematical applications, from
(highly detailed) microscopic stochastic descriptions following spatial movement and
neighbor interactions [39], individual-based stochastic descriptions in networks with-
out movement [15], Markov chain approaches for collective population dynamics [9] to
descriptions in terms of ordinary or stochastic (partial) differential equations for very
large numbers of agents [111, 165, 64, 120, 68]. Like the applications, the methods
and techniques for modeling agent-based systems are diverse, reaching from data-based
micro-simulations of synthetic populations [166] up to abstract individual- or agent-
based and multi-agent models. In addition, different communities have developed their
own terms and language. The term individual-based is commonly used in ecology, while
the term multi-agent is usually used in control engineering and computer science. In
social sciences, the term agent-based is most commonly used. While the terms have
many things in common, they also differ from one another. For example, while a real
multi-agent system, e.g., consisting of unmanned autonomous vehicles, can be simu-
lated by an agent-based model, a virtual multi-agent system denotes the same as an
agent-based model.

Agent-based modeling is advantageous whenever complex interactions between dis-
crete entities are to be modeled, the interaction with the environment or its influence
or both cannot be neglected, heterogeneity among the agents is desired or required,
or agents learn autonomously and adapt to new situations, see also [16, 25, 80]. How-
ever, echoing a quote attributed to Einstein and paraphrased in the New York Times
in the 1950s that “everything should be made as simple as possible, but no simpler”,
agent-based models should be made as complex as necessary, but no more complex.
To ensure this, documentation is an important challenge that every modeler must face.
Guidelines for documentation and characterization of agent-based models have been de-
veloped. The ODD (overview, design concepts, details) protocol [65] standardizes the
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documentation based on seven aspects designed to make any agent-based model more
understandable and reproducible. These concern the purpose of the model, its enti-
ties, state variables and scales, an overview of process and scheduling, the description
of design concepts (i.e. basic principles, emergence, adaptation, objectives, learning,
prediction, sensing, interaction, stochasticity, collectives, observation), the initializa-
tion, its input data, and submodels. Of particular importance is scheduling, occasion-
ally referred to as activation, since the vast majority of agent-based models follows a
discrete-time regime. The question behind scheduling is in which order which agent(s)
influence(s) which other agent(s) at each time step [169]. To simplify comprehensibility
and standardize the discussion of time schedules, the SAS (synchrony, actor type, scale)
classification [169] has been proposed. Most commonly used are randomized interaction
schedules, which means that at each time step the order of interacting agents changes. A
related issue is whether agents can “see” the changes made by previously acting agents
in the same time step. This does not only affect the dynamical collective behavior of
the system but also plays a role when the model is to be parallelized. See also [31] for
a study on the impact of different scheduling approaches. The scheduling problem can
naturally be circumvented by using a continuous-time regime since here it is assumed
that no two actions occur at exactly the same time. Additionally, a continuous-time
schedule can be interpreted as less artificial when modeling systems of social, living
individuals. A variety of continuous-time approaches, for instance, based on Markov
processes [3, 39] have been developed. A corresponding software framework is proposed
in [168]. In this thesis, we consider agent-based models of both time regimes.

Data-Driven Science. With the abundance of data, whether from archaeological or
present day records, experiments, or numerical simulations, data science has emerged
to encompass almost all areas of research today. Dynamical systems are the key to
success to understand the complex processes which created the data. Their analysis is
of great importance for various applications in physical, biological, engineering, but also
in social sciences. Many of them are characterized as nonlinear and high-dimensional
systems, most of which may also be affected by inaccuracies or uncertainties. Data-
driven methods are able to extract information about the behavior of dynamical systems
from data without requiring a priori knowledge about the system itself. This makes
these methods suitable for many problems where a closed system description is not
possible or available. In recent years, methods have been developed, e.g., to approximate
the associated transfer operators, to gain insight into coherent and metastable sets, or
to perform stability analyses, but also to infer the governing equations of the underlying
dynamics, for model reduction, or for optimization and control of dynamical systems,
e.g., [109, 82, 95, 88, 7, 134, 135, 136, 89].

Neural network-based approaches represent one class of data-driven methods. In-
spired by nature, neural networks consist of many hierarchical connected layers of so-
called artificial neurons, which receive signals from other neurons, process them, and
send them to other neurons. Each neuron represents a nonlinear function applied to a
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1 Introduction

weighted sum of the neuron’s inputs. The universal approximation theorem guarantees
that any function can be represented by a neural network with sufficiently many layers
and linear output layer [107]. Although neural networks are extremely powerful and
have high predictive accuracy, they often do not lead to interpretable models of the
dynamics.

Another class of data-driven methods, which we will focus on in this thesis, builds on
the Koopman and Perron–Frobenius transfer operators associated with the dynamical
system. Their eigenvalues and eigenvectors provide important information about the
global behavior of the system. In appropriately defined function spaces, both operators
are adjoint to each other. However, practical considerations justify the use of one or
the other operator. The Perron–Frobenius operator describes the evolution of densities,
which can be thought of as the evolution of mass distribution under the action of a
flow [23]. The Koopman operator describes the evolution of observables that represent
any type of measurement that can be made, e.g., during an experiment or simulation.
The benefit is that instead of analyzing nonlinear but finite-dimensional dynamical
systems, one can consider the linear but infinite-dimensional operators associated with
the dynamical system. Linearity then allows the application of many methods developed
for linear systems.

Typically, a projection onto finite-dimensional subspaces spanned by a set of basis
functions is done to solve the infinite-dimensional problem numerically. Ideally, the
projected representations are sparse and allow for interpretation. Data-driven algo-
rithms such as dynamic mode decomposition (DMD) [150, 163], which is shown to be
related to the Koopman operator [145, 23], or its generalization extended dynamic mode
decomposition (EDMD) [171, 82], which provides higher accuracy in approximating the
Koopman operator, can be used to analyze high-dimensional nonlinear dynamical sys-
tems. Building on EDMD, a method described in [109, 110] uses the matrix logarithm
to obtain a finite-dimensional representation of the Koopman generator, which is then
used to identify the governing equations of the underlying dynamics, thus showing the
connection between the governing equations of a dynamical system, the corresponding
transfer operators and generators. Another popular data-driven method is called sparse
identification of nonlinear dynamics (SINDy) [20], which, however, was developed to
learn the governing equations and not the transfer operator. All aforementioned algo-
rithms have constantly been extended and generalized to kernel- [171, 157, 86], tensor-
[81, 59, 26], or neural network-based [101, 107, 108] versions.

Aim of This Thesis. Let us return to the Mobility Transition Model. In order to make
reasonable statements about carbon dioxide emissions, one must of course be interested
in the mobility behavior of the population as a whole and not in the individual decisions
of each agent. However, due to the very large number of agents, simulation and analysis
of the Mobility Transition Model and agent-based models in general is time-consuming
and impractical. To explain the past and, more importantly, to forecast the future in
order to develop measures to reduce greenhouse gases in the mobility sector, we are
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interested in the evolution of aggregate state variables, such as the number of cars
with internal combustion engines. Therefore, the aim of this thesis is to learn reduced
models of agent-based systems directly from data that allow for analysis and prediction
of the collective behavior of larger groups or entire populations. As agent-based models
often lack closed system descriptions, data-driven learning methods are used to find
coarse-grained models representing the aggregate dynamics of large-scale agent-based
systems.

Outline of This Thesis
This work was preceded by several publications to which the author made significant
contributions. They are referred to at the beginning of the respective chapters.

Theoretical Background. In Chapter 2, we introduce all mathematical concepts that
are relevant to this thesis. The first part is concerned with the Koopman and Perron–
Frobenius transfer operators and their generators associated with deterministic and non-
deterministic dynamical systems. We provide an overview of their spectral properties,
as well as numerical approximation methods. The second part presents agent-based
models, their representation as continuous-time Markov jump processes, and, in this
case, known approximation results for aggregate dynamics for large numbers of agents.
We also present three models that recur as guiding examples in this thesis.

Data-Driven Approximation of the Koopman Generator. Chapter 3 concentrates on
the data-driven approximation of the infinitesimal generator of the Koopman opera-
tor, since the generator can also be used to extract important properties of dynami-
cal systems. Due to its close connection to the operator, the Koopman generator re-
cently attracted attention, for instance, to estimate parameters of stochastic differential
equations [141], when computing its eigenfunctions from Galerkin-projected eigenvalue
problems [60], or when approximating its adjoint, the Perron–Frobenius generator [56].
The novel framework is derived from the classic EDMD algorithm and computes a
finite-dimensional matrix representation of the Koopman generator without requiring
integration of trajectories. In addition to eigenfunctions, eigenvalues and modes, the
framework also identifies the governing equations not only for deterministic but also
for non-deterministic dynamical systems from data. We compare its efficacy and show
relationships with other methods for system identification.

Population Limits and Large Time Scales. In Chapter 4, we study continuous-time
agent-based systems and their pathwise approximation by ordinary and stochastic dif-
ferential equations for large populations on long time scales. When the number of agents
N or the time scale of interest T or both become large, simulation-based analysis of
agent-based models becomes impractical as the computational cost virtually explodes
due to more operations per time step and the number of time steps in total. The two
best-known approaches to addressing these challenges concern
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1 Introduction

(A) the large population limit N → ∞ for large but finite, N -independent time scales,
where appropriate limit equations, which are computationally and analytically
inexpensive, describe the aggregate dynamics of the agent-based system, or

(B) the behavior on exponentially long time scales T � exp(ζN) via the large deviation
principle or WKB approximations (after Wentzel, Kramers and Brillouin).

For large numbers of agents N and fixed finite time intervals [0, T ], i.e., case (A), the
main known result is the approximation of an agent-based model described as Markov
jump process by a closed system of (mean-field) ordinary differential equations [91, 47]
that can be extended to stochastic differential equations to reproduce also fluctua-
tions [93, 47]. It is important to say that both are pathwise results, i.e., the trajectory
of the (rescaled) agent-based model converges for N → ∞ and fixed T < ∞ to the
trajectories of the limit equations. In the second case (B), when we consider time in-
tervals that scale exponentially with N , i.e., T � exp(ζN), rare events, that occur with
very low probability p � exp(−ζN) as large deviations from the expected dynamical
behavior of the agent-based model, can accurately be described by asymptotic expan-
sion approaches using the WKB method [8] or the large deviation principle [121]. We
consider metastability as one example. A dynamical system is in a metastable state
when the process is attracted to one state for a long time before it transitions to an-
other (meta)-stable state. Understanding these rare events, i.e., the transition between
metastable states, can be of interest for many applications, e.g., to mitigate or prevent
disasters or to initiate changes. The concepts (A) and (B) can be related to each other
via the behavior on long (but not necessarily exponentially long) time scales connected
to metastability. We demonstrate how transfer operator approaches, e.g., so-called
Markov state models (MSM) [153, 19], adapted to agent-based systems, can help to
close the gap between finite and exponentially long time scales. Using results from (A),
i.e., many short trajectories of the corresponding population limit, the transfer operator
approach can characterize rare events on (exponentially) long time scales for fixed large
N , i.e., (B). This opens up the possibility of computing in parallel and thus consider-
ably reducing the computation time. Analogous issues concerning metastability have
been discussed for (discrete-time) Markov chain approaches [66] and the Fokker–Planck
equation [58].

Data-Driven Model Reduction of Agent-Based Systems. Chapter 5 addresses the
data-driven model reduction of agent-based systems and connects the results of the
previous two chapters. The drawback of the approach in Chapter 4 and, in general,
methods based on analytically derived differential equations or Markov chain approaches
is that they require insider knowledge of the model itself, which, however, might not be
available. Therefore, data-driven learning of the governing equations of social dynamics
is of growing interest. Several approaches have already been discussed in the literature,
e.g., the so-called equation-free approach introduced by Kevrekidis et al. [79, 78]. De-
signed to circumvent the derivation of macroscopic equations at system-level when they
are believed to exist but cannot be expressed in closed form, the equation-free approach
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is used in [177] to obtain a coarse-grained model of a spatio-temporally varying agent-
based system. This approach is also used for bifurcation, stability or rare event analysis
of agent-based models, see [162, 103]. The equation-free-variable-free approach [102] is
an extension of the aforementioned, which includes diffusion maps to learn also the
essential coarse-grained variables. Two other data-driven approaches are, e.g., one non-
parametric approach similar to parameter estimation problems for ordinary differential
equations [105], or one based on SINDy to learn systems of ordinary differential equa-
tions from stochastic agent-based models [124]. Although terms like metastability or
coherence exist in the context of social systems, Koopman operator-based methods have
barely been used so far. Some applications involve Koopman mode analysis to inves-
tigate the dynamics of spatial-temporal distributions of different agent types [52], or
the extraction of non-obvious information from the system state that indicate changes
in the dynamics [70]. In our approach, we use the Koopman generator to learn re-
duced models for complex stochastic agent-based dynamics directly from (highly noisy)
data. The goal is the data-based analysis of the reduced models of complex agent-based
systems. We demonstrate that for sufficiently large numbers of agents, the data-driven
reduced models are in good agreement with the analytically derived limit models, which
also appear in Chapter 4, and, moreover, also allow prediction in cases far from the
limit or when a limit equation is unknown.

Multi-Objective Optimization of Agent-Based Systems. Finally, in Chapter 6 we
show how the reduced models obtained in Chapter 5 can be used to solve multi-objective
optimization problems associated with agent-based systems. Since agent-based models
often have many different parameters, each of which affects the dynamics of the sys-
tem in a particular way, our goal is to find optimal combinations of them to achieve a
certain target behavior, which then can be interpreted, for example, as finding a cam-
paign strategy. From the mathematical perspective, we are dealing with multi-objective
optimization problems, i.e., the simultaneous optimization of multiple, possibly com-
peting objectives; in our case objective functions defined by the dynamical behavior of
the agents. It is expected that evaluating objective functions defined in this way, and
more generally objectives that depend on experimental or simulation results, will be
costly and time-consuming. One option to circumvent this problem is to replace expen-
sive objectives by appropriate surrogate functions, i.e., sufficiently accurate substitutes
which often can be evaluated by several orders of magnitude faster. Such surrogates can
quickly be determined via interpolation, regression or machine learning [133, 12]. In-
stead of replacing single objective functions, another option is to replace the full model
itself by a surrogate and then use that to solve the optimization problem. Data-driven
methods can help to find surrogates, which is especially advantageous when the op-
timization problem involves dynamical systems. See also [133] for a recent review on
surrogate modeling.

Although agent-based models often exhibit a wide range of parameters that determine
the dynamic behavior, the full potential of (multi-objective) optimization is not yet re-
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1 Introduction

alized. As most parameters act on the level of individual agents, it is often unclear how
they affect the emergent dynamical behavior such that simple trial-and-error methods,
e.g., for model calibration, can be unsatisfying or ineffective or both. Multi-objective
optimization is commonly used for a guided or automatic calibration of agent-based
systems with the goal that the agents mimic the behavior of a given reference system.
The vast majority uses multi-objective evolutionary algorithms to solve the problem
as these are simple to use even for complex tasks, see, e.g., [4] and references therein.
Examples are the statistical fitting of an agent-based system that models the finan-
cial market to real-world market data [144], or of an ant foraging model to biological
observations [24]. In addition to fitting, multi-objective optimization can also provide
insights (e.g., parameters or initial conditions) beyond those discovered from numerical
simulations, such as in [139], where it is applied to a highly complex immunological
agent-based model simulating experimental autoimmune encephalomyelitis, a brain in-
flammation model of laboratory animals comparable to human multiple sclerosis. Other
works concerning multi-objective parameter calibration of agent-based models can be
found in [104, 122, 138, 90, 35, 10]. For a recent review of calibration techniques
see [137].

A different approach in taken [97], where the authors propose to learn surrogate mod-
els via non-parametric machine learning by mapping parameter inputs and outputs of
agent-based models to obtain computationally cheap surrogates. These are then used
for simulation, calibration and parameter space exploration. Although an explicit appli-
cation to multi-objective optimization is missing, the authors stress out the importance
of parameter space exploration, the existence of equally good parameter settings and a
higher influence of certain parameters compared to others. In [96], departing from the
previous works, an architecture for tunable agents using multi-objective reinforcement
learning is proposed that allows them to approximate the properties of different types
of agents that do not follow this new tunable regime.

Another application of multi-objective optimization in agent-based modeling is the
active support of decision-making processes. In [125], a multi-objective evolutionary
algorithm is used to find optimal strategies for contingency planning, with objectives
such as minimizing fatalities, population disease state, or hospital waiting time given
by the output of an agent-based system. In all papers, model stochasticity and the
computational complexity are identified as main difficulties. Besides surrogates based
on machine learning [97], surrogate modeling based on difference equations [130], partial
differential equations [28], or ordinary differential equations [174] each fitted to an agent-
based system are also used to reduce the computational effort during the optimization
process. Our approach relies on the data-driven reduced models obtained with the
aid of the Koopman generator. Under certain conditions, linear interpolation between
Koopman generators is possible, which then can be used to construct surrogate models
with varying parameters for agent-based systems to solve associated multi-objective
optimization problems.
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2 Theoretical Background

The following chapter introduces the mathematical concepts that are relevant to this
thesis starting in Section 2.1 with the Koopman and Perron–Frobenius transfer oper-
ators, their infinitesimal generators, and their data-driven approximation, followed by
an introduction to agent-based models in Section 2.2.

2.1 Transfer Operators

With its introduction in 1931, the Koopman operator theory offers nowadays a popular
framework for the analysis of dynamical systems [87, 98, 23]. Instead of analyzing non-
linear but finite-dimensional dynamical systems, Koopman operator theory considers
linear but infinite-dimensional operators associated with the dynamical systems, which
allows the application of methods developed for linear systems. In this thesis, we will
focus on the Koopman operator and its adjoint, the Perron–Frobenius operator for the
analysis and model reduction of large-scale agent-based systems.

In the following, we first give an overview of the Koopman operator and its genera-
tor as well as their respective adjoints, the Perron–Frobenius operator and generator.
Afterwards, we discuss some spectral properties and summarize some numerical ap-
proximation methods. The methodology in Section 2.1 follows [82, 84, 85].

2.1.1 Koopman Operator and its Generator

Let X ⊂ Rd denote a (finite-dimensional) state space and let (T,X,Φ) denote a dynam-
ical system for a time set T (e.g., T = R≥0) and evolution operator Φ: X → X. Let
f ∈ L∞(X) be a real-valued observable of the system which can, e.g., represent any
kind of measurement or sensor probe typically taken in discrete time steps during an
experiment. Then, instead of tracing the trajectory of the system {x,Φ(x),Φ2(x), . . . }
for x ∈ X, we analyze the evolution of the measurements {f(x), f(Φ(x)), f(Φ2(x)), . . . }.
The Koopman operator K : L∞(X) → L∞(X) describes the evolution of observables and
is given by

(Kf)(x) = f(Φ(x)),

see [87, 98]. It can naturally be extended to continuous-time dynamical systems [23],
which we concentrate on in this thesis.
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2 Theoretical Background

Deterministic Dynamical Systems

We consider autonomous ordinary differential equations (ODEs) of the form

d

dt
x = b(x) (2.1)

for x ∈ X and vector field b : Rd → Rd. The Koopman semigroup {Kt}t≥0 of operators
Kt : L∞(X) → L∞(X) is defined as

(Ktf)(x) = f(Φt(x)),

where Φt(x) denotes the flow map that takes the initial value problem with initial state
x(0) = x0 to the solution x(t) at time t, i.e., Φt(x0) = x(t). The semigroup property
follows from the semigroup property of the flow map, i.e., for t, s ≥ 0 it holds that

(KtKsf)(x) = (Ktf) ◦ Φs(x) = f ◦ Φt ◦ Φs(x) = f ◦ Φt+s(x) = (Kt+sf)(x),

where ◦ denotes the composition of two functions f and g, see [98, 23, 82]. From now
on, we refer to the Koopman semigroup of operators shortly as Koopman operator. If
f is a vector-valued function, the Koopman operator acts component-wise on f . The
Koopman operator is an infinite-dimensional, linear and non-expansive operator, i.e.,

(i) Kt(α1f1 + α2f2) = α1Ktf1 + α2Ktf2,
(ii) ‖Ktf‖L∞ ≤ ‖f‖L∞

for all α1, α2 ∈ R and f, f1, f2 ∈ L∞(X). The first property follows directly from the
linearity of the composition, i.e.,

Kt(α1f1 + α2f2) = α1f1 ◦ Φt + α2f2 ◦ Φt = α1Ktf1 + α2Ktf2.

The second property results from |f(x)| ≤ ‖f‖L∞ a.e. which implies |f(Φt(x))| ≤ ‖f‖L∞

[87, 98]. The infinitesimal generator L of the Koopman generator is defined by

Lf := lim
t→0

(
Ktf − f

)
t

,

and with respect to (2.1) given by

Lf =
d

dt
f = b · ∇xf =

d∑
i=1

bi
∂f

∂xi
,

which results from the chain rule applied to f(x(t)). Thus, the generator L is the Lie
derivative of f along b for the dynamical system (2.1) and hence also called Lie operator
[87, 98, 85, 22]. If f is continuously differentiable, then u(t, x) = Ktf(x) satisfies the
first-order partial differential equation ∂u

∂t = Lu, which is known as Liouville equation
and consequently Kt = exp(tL) [85].
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2.1 Transfer Operators

Non-deterministic Dynamical Systems

The Koopman operator can be extended to stochastic differential equations (SDEs) of
the form

dXt = b(Xt)dt+ σ(Xt)dWt, (2.2)
where {Xt}t≥0 ∈ X is a time-homogeneous stochastic process and b : Rd → Rd denotes
the drift term, σ : Rd → Rd×s the diffusion term, and Wt an s-dimensional Wiener
process. A stochastic process {Xt}t≥0 is said to be time-homogeneous if the transition
probability between two states Xt and Xs for t ≥ s only depends on the difference
between the initial and final time t − s [131]. Given an SDE of the form (2.2), the
stochastic Koopman operator is defined by

(Ktf)(x) = E[f(Φt(x)) | Xt = x], (2.3)

where E[ · ] denotes the expectation value. Again, it is an infinite-dimensional, linear and
non-expansive operator. Using Itô’s lemma and given a twice continuously differentiable
function f , the infinitesimal generator of the stochastic Koopman operator with respect
to (2.2) can be characterized by

Lf = b · ∇xf +
1

2
a : ∇2

xf =

d∑
i=1

bi
∂f

∂xi
+

1

2

d∑
i=1

d∑
j=1

aij
∂2f

∂xi∂xj
, (2.4)

where a = σσ> and ∇2
x denotes the Hessian, see [72] for details. If f is twice continu-

ously differentiable, then u(t, x) = Ktf(x) satisfies the second-order partial differential
equation ∂u

∂t = Lu, which is called Kolmogorov backward equation [114]. For this reason
the Koopman operator is also referred to as backward operator.

2.1.2 Perron–Frobenius Operator and its Generator
Let us now consider the dual perspective. Given a measure space (X,B, µ) with σ-
algebra B and probability measure µ, a map Φt : X → X is called measurable if Φ−t(A) ∈
B for all A ∈ B and Φ−t(A) := {x ∈ X | Φt(x) ∈ A}. It is called non-singular
if µ(A) 6= 0 implies µ(Φ−t(A)) 6= 0 for all A ∈ B. Assume that Φt : X → X is a
measurable, non-singular map and let f ∈ L1(X) with f ≥ 0 a.e. and ‖f‖L1 = 1 be the
probability density of a random variable x in X, i.e., x ∼ f [98, 56, 82]. Non-singularity
of Φt guarantees that sets with positive measure are not mapped to sets with zero
measure [82]. While the Koopman operator describes the evolution of observables, the
Perron–Frobenius operator describes evolution of densities.

Deterministic Dynamical Systems

The Perron–Frobenius semigroup {Pt}t≥0 of operators Pt : L1(X) → L1(X) is defined
by ∫

A
Ptf(x)dµ(dx) =

∫
Φ−t(A)

f(x)dµ(dx)

11



2 Theoretical Background

for any measurable set A ∈ B [98, 56]. As for the Koopman operator, we refer to
the Perron–Frobenius semigroup of operators shortly as Perron–Frobenius operator.
The Perron–Frobenius operator is a Markov operator, i.e., a linear, positive and non-
expansive operator with

(i) Pt(α1f1 + α2f2) = α1Ptf1 + α2Ptf2,

(ii) Ptf ≥ 0 for f ≥ 0,

(iii) ‖Ptf‖L1 ≤ ‖f‖L1

for all α1, α2 ∈ R and f, f1, f2 ∈ L1(X) [98]. Further, it is the adjoint of the Koopman
operator, that is 〈

Ptf ,g
〉
µ
=
〈
f ,Ktg

〉
µ
,

where 〈f ,g〉µ :=
∫
X f(x)g(x)dµ(x) denotes the duality paring between L1 and L∞

functions. For invariant measure µ, the operator Pt : Lp(X) → Lp(X) is well-defined
for every p ∈ [1,∞] [11]. Its infinitesimal generator L∗, the adjoint of the Koopman
generator L, is given by

L∗f = −
d∑

i=1

∂(bif)

∂xi
,

where the bi correspond to the right-hand side of (2.1). The generator L∗ is also referred
to as Liouville operator. The function u(t, x) = Ptf(x) satisfies the partial differential
equation ∂u

∂t = L∗u, which is known as continuity equation, and thus Pt = exp(tL∗)
[98, 85, 22].

Non-deterministic Dynamical Systems

In order to define the stochastic Perron–Frobenius operator, we first need the definition
of the transition density function. Let P[Xt ∈ A | Xt0 = x] denote the conditional
probability for a stochastic process {Xt}t≥0 to be in A at time t ≥ t0 after starting
in Xt0 = x. For a stochastic process {Xt}t≥0 ∈ X the transition density function or
transition kernel pt : X× X → R≥0 is defined by

P[Xt ∈ A | Xt0 = x] :=

∫
A
pt(x, y)dy

for all A ∈ B [98, 84]. It can be interpreted as the infinite-dimensional counterpart
of the transition matrix of a Markov chain. Then, the stochastic Perron–Frobenius
operator is defined by

(Ptf)(x) =

∫
X
pt(y, x)f(y)dµ(y),

see [98, 84]. As before in the deterministic case, it is a Markov operator and for invariant
measure µ, the operator Pt : Lp(X) → Lp(X) is well-defined for every p ∈ [1,∞]. The
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2.1 Transfer Operators

infinitesimal generator with respect to SDE (2.2), which is the adjoint operator of L, is
given by

L∗f = −
d∑

i=1

∂(bif)

∂xi
+

1

2

d∑
i=1

d∑
j=1

∂2(aij f)

∂xi∂xj
.

The partial differential equation ∂u
∂t = L∗u is called Fokker–Planck equation or Kol-

mogorov forward equation and hence the Perron–Frobenius operator is also referred to
as forward or evolution operator [98].

Remark 2.1.1. Reversible stochastic differential equations, precisely reversible with
respect to the measure, build an important class of systems. These are systems that
satisfy the detailed balance, which means that at the equilibrium state, each elementary
process and its reverse are in balance. The Koopman operator extends from L∞

µ (X) to
the Hilbert space L2

µ(X) with inner product 〈f ,g〉µ =
∫
X f(x)g(x)dµ(x) for the process

Xt with stationary measure µ [11]. Reversibility is a necessary condition for possessing
a stationary measure. These systems can just be described by the diffusion σ and a
scalar potential F : Rd → R. Then, the drift is obtained by

b = −1

2
a∇F +

1

2
∇ · a,

where the divergence in 1
2∇ · a is applied to each column of a [131]. In this setting

both the Koopman operator and the Perron–Frobenius operator are self-adjoint. The
Koopman generator becomes self-adjoint and is typically an unbounded operator on a
suitable dense subspace of L2

µ(X) [84, 85].

2.1.3 Spectral Decomposition and Koopman Modes
The eigenfunctions and eigenvalues of transfer operators contain essential information
about the global behavior of dynamical systems. A function ϕ with corresponding
eigenvalue λ is called eigenfunction of the Koopman operator if

(Ktϕ)(x) = exp(λt)ϕ(x), (2.5)

which is equivalent to
(Lϕ)(x) = λϕ(x).

This means also that eigenfunctions of the Koopman operator are also eigenfunctions of
the Koopman generator. In general, eigenvalues and eigenfunctions are complex even if
the state space and the dynamics are real-valued. If ϕi and ϕj are eigenfunctions with
associated eigenvalues λi and λj , then also ϕiϕj with eigenvalue λi + λj as

(Ktϕiϕj)(x) = exp((λi + λj)t)ϕiϕj(x)

holds due to the linearity of Kt. As the Perron–Frobenius operator is the adjoint of
the Koopman operator, both share the same spectrum. Their eigenfunctions, however,
differ [115, 82, 84].
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Remark 2.1.2. In some cases, eigenvalues are defined as follows. We call λt an eigen-
value of Kt with corresponding eigenfunction ϕ if

(Ktϕ)(x) = λtϕ(x).

Obviously, both definitions are related via the exponential function, i.e., λt` = exp(−λ` t),
where λ` denotes an eigenvalue defined according to (2.5). The definition holds anal-
ogously for the Perron–Frobenius operator. Eigenvalues as defined in this remark can
be more conveniently in some cases, e.g., in the case of invariant densities, which are
defined as eigenfunctions satisfying Ptρ = ρ for all t ≥ 0. The corresponding eigenvalue
is given by λt = 1 respectively λ = 0.

Example 2.1.3. Consider the dynamical system

d

dt

[
x1
x2

]
=

[
γx1

δ (x2 − x21)

]
. (2.6)

Beside the trivial eigenfunction ϕ1(x) = 1 with generator eigenvalue λ1 = 0, also
ϕ2(x) = x1 and ϕ3(x) =

2γ−δ
δ x2 + x21 with corresponding generator eigenvalues λ2 = γ

and λ3 = δ, respectively, are eigenfunctions of the Koopman generator [21]. Further
eigenfunctions with corresponding generator eigenvalues can be obtained via multipli-
cation, e.g.,

λ4 = 2δ, ϕ4(x) =
(
2γ−δ
δ

)2
x22 + 2 2γ−δ

δ x21x2 + x41 = ϕ3(x)
2,

λ5 = γ + δ, ϕ5(x) =
2γ−δ
δ x1x2 + x31 = ϕ2(x)ϕ3(x).

4

Koopman Modes

Let f : X → R be an observables of the system and ϕ` denote a linearly independent
eigenfunction. Then,

f(x) =

∞∑
`=1

vj`ϕ`(x)

which extends for vector-valued f = [f1, . . . , fn]
> to

f(x) =
∞∑
`=1

v`ϕ`(x),

where v` = [v1`, . . . , vn`]
> ∈ Cn. The vector v` is called Koopman mode. An important

class of observables are the so-called full-state observables g(x) = x for which we have

(Ktg)(x) = (g ◦ Φt)(x) = Φt(x).

14
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With the help of the Koopman eigenvalues λ`, eigenfunctions ϕ` and modes v` we can
use the Koopman operator to propagate the state of the system [171], i.e.,

(Ktg)(x) =
∞∑
`=1

(Ktϕ`)(x)v` =
∞∑
`=1

exp(λ` t)ϕ`(x)v`.

Remark 2.1.4. We obtain an analogous expression for the Perron–Frobenius operator.
Further, if we assume that the dynamics are reversible and let λ` denote the eigenvalues
of the operator Pt, sorted by decreasing value, it holds that 0 = λ1 > λ2 ≥ . . . and the
eigenvalues satisfy

lim
`→∞

| exp(λ` t)| = 0 and lim
t→∞

| exp(λ` t)| = 0.

Hence, for a given lag time τ > 0 there exists an index d̃ ∈ N such that exp(λ` t) ≈ 0
for all t ≥ τ and all ` > d̃. Then, for a given function f and eigenfunctions ϕ` with
f(x) =

∑∞
`=0 ϕ`(x)β` for β` ∈ R, we obtain

(Ptf)(x) =
∞∑
l=1

exp(λ` t)ϕ`(x)β` ≈
d̃∑

l=1

exp(λ` t)ϕ`(x)β` for all t ≥ τ.

This means that a large part of information about the long-term density propagation
of the dynamics is contained in d̃ dominant eigenpairs. The associated time scales are
called dominant time scales and given by T` = −λ−1

` for ` = 2, . . . , d̃, see [152, 127] for
details.

Example 2.1.5. The one-dimensional Ornstein–Uhlenbeck process is given by the SDE

dXt = −αXtdt+
√
2β−1dWt

with inverse temperature β and friction coefficient α. Using recurrence relations for
the Hermite polynomials, i.e., H`+1(x) = xH`(x) − H ′

`(x), the eigenfunctions ϕ` and
eigenvalues λ` are given by

ϕ`(x) =
1√

(`− 1)!
H`−1

(√
αβx

)
, λ` = −α(`− 1), ` = 1, 2, . . .

where H` denotes the `th probabilists’ Hermite polynomial [131]. The Perron–Frobenius
eigenfunction can be obtained from the Koopman eigenfunctions by multiplying them
with the invariant density ρ given by

ρ(x) =
1√

2πα−1β−1
exp

(
−αβ x

2

2

)
.

It is a Gaussian with decreasing variance for increasing friction and decreasing temper-
ature. The Ornstein–Uhlenbeck process is reversible and the generator is self-adjoint
in the space L2(ρ) weighted by the invariant density [131, 85]. 4
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Remark 2.1.6. In this work we concentrate on discrete point spectra of Koopman
operators though systems of high complexity, e.g., chaotic or measure-preserving, (non-
dissipative) dynamical systems, give rise to non-compactness or continuous spectra.
Their numerical analysis is discussed in detail in [60]. For further details on the Koop-
man operator spectrum see, e.g., [115, 34, 116].

2.1.4 Numerical Approximation Methods
As the Koopman and Perron–Frobenius operator are infinite-dimensional operators, we
cannot handle them numerically in a direct way but often consider projections onto
finite-dimensional subspaces. However, there are a few cases where it is possible to
construct a linear and finite-dimensional representation of a nonlinear dynamical system
as demonstrated in the next example.

Example 2.1.7. Consider again the dynamical system (2.6) and choose f1 = x1,
f2 = x2 and f3 = x21 as observables. Then, we can write the system as

d

dt

f1f2
f3

 =

 γ 0 0
0 δ −γ
0 0 2γ︸ ︷︷ ︸

L

 f1f2
f3



and the dynamics receive a linear representation with L as a finite-dimensional approx-
imation of the Koopman generator. 4

In general we cannot find such a finite-dimensional representation. In the following,
we consider the projection of transfer operators onto finite-dimensional subspaces.

Galerkin Approximation of the Koopman Generator

Let H be a Hilbert space and L ⊂ H finite-dimensional subspace with basis {ψi}ni=1.
Then, the unique linear operator A : L → L with

〈ψj ,Aψi〉 = 〈ψj ,Aψi〉

for all i, j = 1, . . . , n is called Galerkin projection of operator A to L [82]. Assume
that ψi : Rd → R for all basis functions {ψi}ni=1. Then, we can compute a Galerkin
approximation L of the generator L with the help of the matrices A,G ∈ Rn×n with

Aij = 〈Lψi ,ψj〉µ ,

Gij = 〈ψi ,ψj〉µ
(2.7)

for a given measure µ. We obtain the matrix representation L of the projected operator
L by L> = AG−1. Given a function

f(x) =
n∑

i=1

ciψi(x) = c>ψ(x)
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for ψ(x) = [ψ1(x), . . . , ψn(x)]
> and c = [c1, . . . , cn]

> ∈ Rn, we get (Lf)(x) = (Lc)>ψ(x).
Defining ϕ`(x) = ξ>` ψ(x) we get

(Lϕ`)(x) = (Lξ`)
>ψ(x) = λ` ξ

>
` ψ(x) = λ`ϕ`(x),

meaning that the coefficients for the eigenfunctions of L are contained in the eigenvector
ξ` of L with corresponding eigenvalue λ`. Note that in general the projected generator
does not result in a rate matrix [85].

Example 2.1.8. For the Ornstein–Uhlenbeck process it is possible to compute the
matrix L analytically. Assume that we have a basis consisting of monomials up to
degree n− 1, i.e., ψ(x) = [1, x, . . . , xn−1]>. Note that Lψk is contained in the subspace
spanned by {ψi}ni=1 and, moreover, for k ≥ 3,

(Lψk)(x) = −α(k − 1)xk−1 + β−1(k − 1)(k − 2)xk−3.

The matrix L ∈ Rn×n is is then given by



1 x x2 x3 x4 x5 x6 ...

1 0 2β−1

x −α 6β−1

x2 −2α 12β−1

x3 −3α 20β−1

x4 −4α 30β−1

x5 −5α
. . .

x6 −6α
... . . .


.

For the better understanding the rows and columns are labeled according to their
correspondence to the basis functions. As seen in Example 2.1.5, we verify that the
eigenvalues are given by λ` = −α(` − 1), for ` = 1, . . . , n, and that the coefficients of
the eigenfunctions are given by the eigenvectors [85]. 4

Further details on Galerkin discretizations of transfer operators and their properties
can be found in, e.g., [153, 154, 82, 84]. In general the required integrals cannot be com-
puted analytically, so that instead we estimate them from data via, e.g., Monte Carlo
integration. The following algorithms are common ways to compute approximations of
projected transfer operators.

Extended Dynamic Mode Decomposition

Extended dynamic mode decomposition (EDMD) [171] is an algorithm that was de-
veloped to compute finite-dimensional approximations of the Koopman operator, its
eigenfunctions, eigenvalues and modes. Let xi, yi ∈ Rd, i = 1, . . . ,m be pairs of d-
dimensional data vectors such that yi = Φti(xi) for ti > 0. The data vectors can be
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obtained, e.g., from measurements or black-box simulations. Additionally, EDMD re-
quires a set of uniformly bounded basis functions or observables, also called dictionary,
{ψi}ni=1 ⊂ L∞(X). Further, we have that {ψi}ni=1 ⊂ Lr(X) for 1 ≤ r ≤ ∞ as the state
space X ⊂ Rd is assumed to be bounded. Having this we can set up the transformed
data matrices ΨX ,ΨY ∈ Rn×m such that

ΨX =

ψ1(x1) . . . ψ1(xm)
... . . . ...

ψn(x1) . . . ψn(xm)

 and ΨY =

ψ1(y1) . . . ψ1(ym)
... . . . ...

ψn(y1) . . . ψn(ym)


and we assume that there exists a matrix M such that ΨY = MΨX . In general we
cannot solve this equation exactly as it is usually overdetermined. Therefore, we solve
the minimization problem

min ‖ΨY −MΨX‖F , (2.8)

where ‖ · ‖F denotes the Frobenius norm. The matrix K = M> represents a finite-
dimensional approximation of the Koopman operator Kt with respect to the basis
spanned by {ψi}ni=1. The minimization problem (2.8) can be solved analytically and
its solution is given by

M = ΨY Ψ
+
X = (ΨY Ψ

>
X)(ΨXΨ>

X)+ = ÂĜ+

for matrices

Â =
1

m

m∑
l=1

ψ(yl)ψ(xl)
> and Ĝ =

1

m

m∑
l=1

ψ(xl)ψ(xl)
>.

Here, A+ denotes the Moore–Penrose pseudoinverse of a matrix A. The eigenfunctions
of the Koopman operator are then given by the left eigenvectors and eigenvalues of
M = ÂĜ+. For large amounts of data points, that is, m → ∞, it has been shown
in [171, 82] that EDMD converges to a Galerkin approximation. For Â = (Âij)i,j=1,...,n

and Ĝ = (Ĝij)i,j=1,...,n it holds

Âij =
1

m

m∑
l=1

ψi(yl)ψj(xl) −→
m→∞

∫
(Ktψi)(x)ψj(x)dµ(x) =

〈
Ktψi ,ψj

〉
µ
= Aij ,

Ĝij =
1

m

m∑
l=1

ψi(xl)ψj(xl) −→
m→∞

∫
ψi(x)ψj(x)dµ(x) = 〈ψi ,ψj〉µ = Gij ,

where xl ∼ µ and 〈f ,g〉µ :=
∫
X f(x)g

∗(x)dµ(x).
The Koopman modes are obtained as follows. Let ξ` be the `th eigenvector of M and

set Ξ :=
[
ξ1 . . . ξn

]
. Define ϕ(x) := [ϕ1(x), . . . , ϕn(x)]

> and assume B ∈ Rn×d such
that x = g(x) = B>ψ(x) = Ξ>ψ(x). Then

g(x) = B>ψ(x) = B>Ξ−>ϕ(x)
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2.1 Transfer Operators

and we obtain the Koopman modes v` from the column vectors V = B>Ξ−> that are
required to reconstruct the dynamics.

As shown in [82] EDMD can also be used to approximate the Perron–Frobenius
operator with respect to the density of the data points. Exploiting duality of Kt and
Pt yields

MPF = (ΨXΨ>
Y )(ΨXΨ>

X)+ = Â>Ĝ+.

The eigenfunctions of the Perron–Frobenius operator are approximated by the left eigen-
vectors and eigenvalues of MPF = Â>Ĝ+.

Remark 2.1.9. Dynamic mode decomposition (DMD) [150] was developed in the fluid
dynamics community as algorithm to identify coherent structures in fluid flows from
time-series data and is nowadays a common algorithm, see [27, 163, 81, 95] and refer-
ences therein. In this work, we summarize the exact DMD [163]. As before for EDMD,
for m given data vectors yi = Φti(xi), DMD assumes that there exists a matrix M such
that Y =MX for the data matrices

X =
[
x1 . . . xm

]
and Y =

[
y1 . . . ym

]
.

Again, this equation in general cannot be solved exactly. Instead we solve

min ‖Y −MX‖F . (2.9)

The DMD eigenvalues and modes are given by the eigenvalues and eigenvectors of M ,
respectively. As the name suggests, (exact) DMD is a special case of EDMD. Let the
set of observables be such that ψ(x) = x, i.e., the set of observables consists of linear
function only. Let MEDMD and MDMD be the matrices that minimize (2.8) and (2.9),
respectively. Then

MEDMD = ΨY Ψ
+
X = Y X+ =MDMD,

which means that the DMD algorithm approximates the Koopman operator using linear
functions only. The Koopman modes correspond with the DMD modes in this case [82].

Remark 2.1.10. The choice of basis function depends on the problem and could, e.g.,
comprise monomials, radial basis functions, Hermite or Legendre polynomials. The
optimal choice of basis functions, however, is still an open question. On the one hand
the set of basis functions should be large enough to represent the system’s dynamics,
running the risk of ill-conditioned matrices and overfitting. On the other hand, if the
set of basis functions is not sufficient or inappropriately chosen, the results will be
inaccurate. We will discuss what can be done in such a case in Chapter 5. For further
discussions on the choice of basis function see, e.g., [171].

Ulam’s Method

One of the most common methods to compute finite-dimensional approximations of the
Perron–Frobenius operator Pt is called Ulam’s method or box discretization, see, e.g.,
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[164, 151, 147, 55]. Here, we present the box discretization of the stochastic Perron–
Frobenius operator. For the deterministic case we refer to [82]. Let Bi ⊂ X, i = 1, . . . , n,
denote finitely many disjoint subsets such that they from a complete, non-overlapping
partition of the state space X, i.e.,

⋃n
i=1Bi = X with Bi ∩ Bj = ∅ for i 6= j. The

subsets Bi are called boxes. Let 1Bi denote the indicator function of subset Bi, i.e.,
1Bi : X → R,

1Bi(x) =

{
1, if x ∈ Bi,

0, otherwise.

Let L ⊂ L2(X) be a finite dimensional subspace spanned by the indicator functions,
that is ψi = 1Bi , i = 1, . . . , n. Then, the projected transfer operator with respect to L
is the operator QPtQ, where Q : L2

µ(X) → L defined by

Qu =

m∑
i,j=1

G−1
ij 〈ψi ,u〉µ ψj with mass matrix Gij = 〈ψi ,ψj〉µ

denotes the Galerkin projection of the original function space of Pt to L with respect
to the scalar product 〈· , ·〉µ. The matrix representation P t of the projected Perron–
Frobenius operator is given by

ptij = Pµ

(
Φt(x) ∈ Bj | x ∈ Bi

)
=

1

µ(Bi)
Eµ

(
1j(Φ

t(x))1i(x
)

with initial values distributed according to µ and i, j = 1, . . . , n. The matrix P t is
row-stochastic. Its entries can be estimated by counting how many times points Φt(xli)
are contained in box Bj when starting in Bi, i.e., xli ∈ Bi for l = 1, . . . ,m0. That is

ptij ≈
1

m0

m0∑
k=1

1j(Φ
t(xli)) (2.10)

for mutually independent realizations of Φt(xli), see, e.g., [151, 147, 82, 127]. A wide
range of works contributes on how well dominant eigenvalues of the original transfer
operator Pt are approximated by the eigenvalues of the projected transfer operator
QPtQ, such as in [38], where the error is characterized via the projection error induced
by Q, or in [153], where upper and lower error bounds for every complete partition
of the respective state space into sets are established. In [147] the long-term error
‖Pst − (QPtQ)s‖ is studied for s� 1.

Remark 2.1.11. Choosing indicator functions as observables, i.e., {1Bi}ni=1, and m0

data points per box, then EDMD computes the same finite-dimensional representation
as Ulam’s method. In fact, the matrix ΨX is given by

ΨX = diag
(

1>
m0
, . . . ,1>

m0

)
∈ Rn×nm0 ,
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2.2 Agent-Based Models

where 1m0 = [1, . . . , 1]> denotes a vector of length m0 and diag(d1, . . . , dn) a diagonal
matrix with entries di; here, vectors of length m0. It holds that matrix K =M>, which
results from the minimization problem (2.8), has the same entries as P t with entries
defined by (2.10), i.e., K = P t. For further details we refer to [82].

2.2 Agent-Based Models

To motivate what follows let us first consider a system of N agents interacting with
each other in an interaction network and assume that each agent can change between d
different states according to transition rules. The state of an agent can be interpreted,
e.g., as health state, opinion or any kind of discrete property. It is also denoted as
type, breed, choice, species or strategy depending on the application and community.
Note that in some applications the state may not be changeable for logical reasons,
e.g., when modeling different species. The full state of the agent-based model (ABM)
is given by {1, . . . , d}N and grows like dN , which imposes computationally problems
when the number of agents N is large. Alternatively, we can describe the model via
the population state, which can be favorably when we are not interested in each agent’s
state but in the collective behavior of larger groups or the entire population. The
population state is given by the numbers of agents of each type and grows like Nd

in worst case scenario, which makes it computationally more appealing than the full
ABM state. For indistinguishable agents and random interactions, e.g., enabled via a
complete interaction network, the population state description is exact and transition
rules between types imply transition rules between population states. In all other cases
the aggregation of the full ABM state space involves an approximation error [127].

In this thesis we consider three different agent-based systems of increasing complexity
as guiding examples. The first system is a continuous-time voter model, where agents
interact with each other in a network and change their opinion, i.e., their state, based
on transition rules. Different interaction networks are considered. The second model is
a discrete-time, spatial predator-prey model, where agents move randomly in a given
domain. Differently from the voter model, where changes in the population state are
due to changing numbers of agents sharing one opinion, for the predator-prey model
changes result as a consequence of reproduction and death. That is, the state of an agent
is immutable. The third agent-based system models social violence and was originally
proposed by Epstein [45]. Depending on a dynamically changing neighborhood and
individual parameters, agents switch between peaceful and violent states. A central
authority tries to suppress a rebellion among the population by arresting insurgents.
This model is the most complex in this work as agents are heterogeneous with respect
to their parameters and movement is not necessarily purely randomly.

We will now introduce the representation of agent-based systems as Markov jump
process and their approximation for large numbers of agents in terms of ordinary and
stochastic differential equations. Afterwards, we will present the three guiding exam-
ples. The methodology in Section 2.2 follows [126, 127].
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2.2.1 Agent-Based Models as Markov Jump Processes
Agent-based modeling is a bottom-up technique, meaning that the collective dynami-
cal behavior and global properties result from the definitions at agent-level. We use a
formalism commonly used in chemical contexts that focuses on the population state,
resulting in a clear and transparent description. Consider an agent-based system con-
sisting of

(i) a fixed number N ∈ N of agents,
(ii) a set {Si}di=1 of types available to the agents,
(iii) a set {Rk }Kk=1 of transition rules defining possible changes between the agents’

types,
(iv) a set {αk }Kk=1 of propensity functions specifying the rates at which transitions

randomly occur,
and assume that the interaction network is complete such that the population state
representation is exact. The latter assumption simplifies the following. Nevertheless,
generalizations, e.g., by weighted interaction networks or by weakly connected, complete
components or clusters, are possible. These affect the propensity functions and the
population state space, which then additionally depend on the neighborhood of each
agent.

At any point in time, each agent is assigned a type Si and the population state x ∈ XN

of the ABM is completely described by the vector

x = [x1, . . . , xd]
> ∈ Nd

0,

where xi denotes the number of agents of type Si. The population state space XN is
given by the d− 1-dimensional simplex

XN :=
{
x ∈ Nd

0 |
∑d

i=1xi = N
}
. (2.11)

The index N emphasizes the fact that XN is a discrete space. This description is equiv-
alent to the partition of the space of all possible configurations in [9]. Transition rules
Rk that are mostly described from the viewpoint of each agent define feasible changes
of the type Si via actions or interactions. They are represented by a reaction equation
of the form

Rk : a1kS1 + . . .+ adkSd 7→ b1kS1 + . . .+ bdkSd,

where the coefficients alk, blk ∈ N0 denote the numbers of agents of each type that are
involved in the transition Rk. To ensure that the number of agents N remains constant
in time, we assume that

∑d
i=1 aik =

∑d
i=1 bik for each k = 1, . . . ,K. Each transition

rule induces an immediate change in the population state of the form

x 7→ x+ νk,

where the vector νk = [ν1k, . . . , νdk]
>, defined by νik := bik − aik, describes the net

change in the number of agents of type Si due to transition Rk. Note that distinct
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2.2 Agent-Based Models

transitions Rk 6= Rl can have identical net change vectors νk = νl; more on this in
Section 2.2.3. The rates of occurrence for each transition Rk are determined by the
propensity functions αN

k : X → [0,∞), which are assumed to be proportional to the
number of combinations of agents in x, and, moreover, scale with the number of agents
N , i.e.,

αN
k (x) =


γkN

d∏
i=1

1

Naik

(
xi
aik

)
, if xi ≥ aik for all i = 1, . . . , d,

0, otherwise.

Here, γk > 0 denotes the rate constant for the kth transition Rk. The probability for
transition Rk is then given by αN

k (x)dt for an infinitesimal time step dt [126, 127].

Temporal Evolution

The temporal evolution of the population state can be described as continuous-time,
discrete-space stochastic process

{XN
t }t≥0 with XN

t = [x1(t), . . . , xd(t)]
> ∈ XN (2.12)

and randomly occurring jumps of the form XN
t 7→ XN

t + νk, where xi(t) denotes the
number of agents of type Si at time t ≥ 0. It is a piece-wise constant process, i.e., a
Markov jump process. We are shortly referring to (2.12) as ABM process. Given the
current state Xt = x of the process at time t, the waiting time τ(x) until the next jump
occurs is exponentially distributed with mean λ(x)−1, where λ : XN → [0,∞) denotes
the jump rate function and is defined by

λ(x) :=

K∑
k=1

αN
k (x).

At time t+τ(x) the process jumps according to one transition Rk to the new state x+νk
with probability αN

k (x)λ(x)−1. Let P (x, t) be the conditional probability of finding the
process in state x at time t after starting in x0, i.e.,

P (x, t) := P
[
XN

t = x | XN
0 = x0

]
.

Then, the temporal evolution of the ABM can be described in two ways using P (x, t).
The first option is to characterize the evolution of the probability using the Kolmogorov
forward equation

d

dt
P (x, t) =

K∑
k=1

[
αN
k (x− νk)P (x− νk, t)− αN

k (x)P (x, t)
]
, (2.13)

where we set αN
k (x) := 0 and P (x, t) := 0 for x /∈ Nd

0. The equation (2.13) is also
known as chemical master equation [62]. Alternatively, we can use the Perron–Frobenius
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2 Theoretical Background

operator Pt
N , which is given by Pt

N = exp(tGN ), where GN denotes the right-hand side
of (2.13). To simplify the notation we denote this specific generator by GN instead of
L∗
N . The index N indicates for which number of agents the dynamics are considered.

It acts on functions f ∈ L2
π(X) of x via

(Pt
Nf)(y) =

∑
x∈XN

f(x)P
[
XN

t = y | XN
0 = x

]
.

As the master equation (2.13) cannot be solved analytically, the distribution of the
ABM process is usually estimated by Monte Carlo simulations generated using Gille-
spie’s stochastic simulation algorithm [61]. It constructs exact realizations of the ABM
process in continuous-time and thus naturally circumvents the scheduling problem of
ABMs that arises in discrete-time. However, as the number of agents N increases, nu-
merical computation using the Gillespie algorithm becomes inefficient, as the waiting
time between each jump decreases and thus jumps occur more frequently, resulting in
smaller progress in each iteration. Additionally, the influence of a single agent vanishes
since the size of an individual jump with respect to N decreases. Approximations of
the population state for large numbers of agents N based on ODEs or SDEs mitigate
this problem as their time iterations are in general independent of N .

2.2.2 Population Limits for Finite Time Intervals
Defining the relative frequency c := x/N and introducing the so-called smallness pa-
rameter ε := 1/N , we can rewrite the master equation (2.13) of the ABM process in
terms of the frequency-based probability distribution

ρN (c, t) := P
[
XN

t = Nc
]
= P (Nc, t),

with scaled propensities
α̃ε
k(c) := N−1αN

k (Nc).

The rescaled master equation is given by

d

dt
ρε(c, t) =

1

ε

K∑
k=1

[α̃ε
k(c− ενk)ρ

ε(c− ενk, t)− α̃ε
k(c)ρ

ε(c, t)] (2.14)

and the corresponding transfer operator is denoted by P̃t
N . It is generated by P̃t

N =

exp(t G̃N ), where G̃N denotes the generator of the rescaled master equation (2.14). It
depends on N and acts on functions f ∈ L2

π(X/N) on the rescaled population space
X/N . Assuming convergence of the rescaled propensity functions α̃ε

k → α̃k for ε→ 0, it
has been shown in the 1970s by Kurtz [94] that for N → ∞ the rescaled process, whose
distribution follows the master equation (2.14), converges to the frequency process
{Ct}t≥0 given by the ODE

d

dt
Ct =

K∑
k=1

α̃k(Ct)νk (2.15)
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with C0 = limN→∞
XN

0
N . We refer to (2.15) as ODE limit model. It is a pathwise

approximation
sup

t∈[0,T ]
‖XN

t /N − Ct‖ ≤ ζN−1/2

for every finite T and a.s. finite constant ζ, both independent of N , where ζ will in
general depend on T [94, 47]. Here, ‖ · ‖ refers to any norm on Rd. For the first order
moment of XN

t /N it holds that

E
[
XN

t /N
]
= Ct +O(N−1)

for all t ≥ 0 [91, 92]. A higher order approximation, which is additionally capable of
reproducing fluctuations and thus approximating the second order moment, is given by
the SDE

dCt =

K∑
k=1

α̃k(Ct)νkdt+

K∑
k=1

1√
N

√
α̃k(Ct)dWk(t)νk (2.16)

with C0 = limN→∞
XN

0
N . Here Wk(t), k = 1, . . . ,K, denote independent Wiener pro-

cesses [93]. We refer to (2.16) as SDE limit model, which is also known as chemical
Langevin equation in the context of chemical reaction kinetics [63]. The pathwise ap-
proximation error is given by

sup
t∈[0,T ]

‖XN
t /N − Ct‖ ≤ ζ

log(N)

N
(2.17)

for finite T and a.s. finite constant ζ, both independent of N [93, 47]. For the first and
second order moments it holds that

E
[
XN

t /N
]
= Ct +O(N−2),

Var
(
XN

t /N
)
= Ct +O(N−2)

for all t ≥ 0 [64]. Note again that the ODE and SDE limit models are approximations
which only hold for finite time intervals [0, T ] that are independent of N . In many cases
the SDE (2.16) is not discussed directly but in terms of a mean-field approximation.
The corresponding Fokker–Planck equation is given by

∂

∂t
ρ(c, t) = −

d∑
i=1

∂

∂ci
(bi(c)ρ(c, t)) +

1

2N

d∑
i=1

d∑
j=1

∂2

∂ci∂cj
(Σij(c)ρ(c, t)) (2.18)

with

b(c) :=

K∑
k=1

α̃k(c)νk and Σ(c) :=

K∑
k=1

α̃k(c)νk ν
>
k

see, e.g., [74, 111]. The Perron–Frobenius operator T t
N associated with the SDE limit

model is given by T t
N = exp(tGN ), where GN is the operator on the right-hand side
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of (2.18). Again, we emphasize its dependence on N . It acts on functions f ∈ L2
π([0, 1]

d).
Like the master equation (2.14) of the Markov jump process before, also the Fokker–
Planck equation (2.18) cannot be solved analytically in general. Realizations of (2.16)
can be generated using an Euler–Maruyama scheme, where the step size of the iterations
are asymptotically independent of the population size N . Thus, for large N the SDE
limit model (2.16) becomes more efficient than the ABM process (2.12).

Remark 2.2.1. Linear noise approximation, which is given by the leading-order term
of the corresponding system size expansion, is another commonly used approach to
approximate the distribution of the ABM process defined by the master equation (2.13)
and to obtain insights into power spectra to detect oscillations as given, e.g., in predator-
prey systems [112, 161]. However, estimates of first- and second-order moments by the
linear noise approximation are less accurate than for the SDE limit model [64].

2.2.3 Extended Voter Model
The (extended) voter model is well-known not only in the field of opinion dynamics as
noisy multi-state voter model but also for the description of foraging ant colonies or
chemical systems, see, e.g., [69, 13, 128]. This model is characterized by its simplicity
yet potential for complexity as ODE and SDE limit models for large numbers of agents
can be derived analytically. The model as presented here follows the methodology
in [126, 127].

Consider N agents, d opinions and two transitions and assume that agents are nodes
in an interaction network, which can be of any shape at this point. To simplify notation,
we introduce the use of tuples (i, j) instead of generic indices k. Given two agents with
different opinions Si 6= Sj , the first transition is given by imitation or adaption. It is a
second-order transition of the form

Rij : Si + Sj 7→ 2Sj ,

meaning that an agents with opinion Si adopts the opinion Sj of another agent. We
interpret this, for instance, as persuasion of one agent by the other or adoption of a new
technology. This is the “classical” idea of the original voter model as defined in [29, 71].
The second transition is given by exploration or mutation, i.e., a first-order transition
of the form

R′
ij : Si 7→ Sj ,

where agents change their opinion independently of all other agents, i.e., it is a ran-
domly occurring change of state. Although the transitions Rij and R′

ij are differently
motivated, their net change vectors are identical and given by νij = ej − ei, where
ei ∈ Nd

0 denotes the unit vector with the ith entry equal to one and all others zero.
Now, assuming a complete interaction network and positive transition rate constants
γij , γ

′
ij > 0, the propensity functions for Rij and R′

ij are given by

αij(x) =
γij
N
xixj and α′

ij(x) = γ′ij xi.
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Figure 2.1: (a) Interaction network with N = 10 agents and d = 3 types at time t = 0.
(b) Realization of the ABM process. Reprinted from [126].

The scaling with N is justified by the fact that the probability for two specific agents
to interact with each other is proportional to 1/N .

Example 2.2.2. Assume that we have a complete interaction network with N = 10
agents, d = 3 opinions and that the rate constants are given by

γ12 = γ23 = γ31 = 2,

γ32 = γ21 = γ13 = 1,

γ′ij = 0.01

for (i, j) = {(1, 2), (2, 3), (3, 1), (3, 2), (2, 1), (1, 3)}. Figure 2.1 (a) shows the interaction
network at time t = 0 with agents’ opinions represented by blue, red, and yellow
vertices. Figure 2.1 (b) shows a realization of the ABM process obtained by Gillespie’s
algorithm. 4

Remark 2.2.3. The framework introduced in Section 2.2.1 is versatile and can also
be used to model, for instance, infection kinetics defined by SIR (susceptible, infected,
recovered) models. Setting notation to S := S1 (susceptible), I := S2 (infected) and
R := S3 (recovered) the transition rules for the SIR model are given by

S + I 7→ 2I, (infection)
I 7→ R, (recovery).

Various extension, e.g., with birth and death from any compartment or additional
compartments as quarantined agents, are possible.
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2.2.4 Predator-Prey Model
The second agent-based system is inspired by nature describing the interaction of preda-
tors and prey; thus predator-prey model. Our model is an agent-based version of the
famous Lotka–Volterra equations, which model the dynamical behavior of two interact-
ing species as differential equations. The model as presented here is taken from [126].

The predator-prey model consists of two different types of agents: predators and
prey. Assume that the domain, in which the agents move freely, is continuous with
periodic boundary conditions. Gaussian random walks with normally distributed step
size determines the movement of the agents. That is, given its current position zi(k0),
the agent is located after k time steps at position

zi(k0 + k) = zi(k0) +
k∑

i=1

ζi for ζi ∼
√
hN (0, 1). (2.19)

Unlike the voter model, the predator-prey model is formulated in discrete time. At each
time step and according their type, each agent executes the following steps:

Prey. Move and reproduce with probability prep. Place offspring randomly in
the space.

Predator. Move and search for prey within a radius of vision v. If prey is
available in vision, choose one randomly, kill it and reproduce with probability
p′rep. Otherwise die with probability pdeath.

Figure 2.2 describes the predator-prey model as flow chart in more detail. Note that
there is neither interaction nor competition between the prey. For simplicity we assumed
independence of resources for the predator-prey model, which results in an unlimited
growth of the prey in the absence of predators. Note that the total population size is
not constant but kept under control by the existence of predators.

Remark 2.2.4. The predator-prey model cannot be formulated directly using the for-
malism summarized Section 2.2.1 as a consequence of the spatial component. However,
if we assume a well-mixed system and denote prey by S1 and predators by S2, the rules
for the predator-prey model translate to

S1 7→ 2S1, (reproduction of prey)
S1 + S2 7→ 2S2, (reproduction of predators)

S2 7→ ∅, (death of predators)

for some rate constants γi > 0, i = 1, . . . , 3 [126].
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Figure 2.2: Flow chart of the predator-prey model. Reprinted from [126].

Table 2.1: Parameters used for realizations of the predator-prey model.
Parameter Value
Space height × width 100 × 100
Step size variance h 1
Reproduction probability prey prep 0.03
Reproduction probability predator p′rep 0.5
Probability of death pdeath 0.02
Radius of vision v 3
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Figure 2.3: (a) Snapshot of the full state of the predator-prey model at time t = 250.
(b) Realization of the population state for the parameters given in Table 2.1. The
vertical gray dashed line marks the time at which the snapshot in (a) is taken. Reprinted
from [126].

Example 2.2.5. Figure 2.3 (a) shows a snapshot of the full ABM state at time t = 250
of the predator-prey model for a realization using the parameters listed in Table 2.1.
Green and red dots represent prey and predators, respectively. The search radius of the
predators is indicated by the light-red area around the red dots. The population state
is depicted in Figure 2.3 (b) and shows the respective numbers of prey and predators.
The time at which the snapshot of the state in Figure 2.3 (a) was taken is marked by
a gray dashed line. 4

2.2.5 Civil Violence Model

The third agent-based systems models social insurgencies between two kinds of inter-
acting agents in space. In its original version the civil violence model [45] is formulated
in discrete-time and discrete-space, where agents move through random walks on a
grid, temporarily occupying these positions for other agents. In this work, we present
a slightly modified version, which allows a punctuated equilibrium and is based on the
work in [51].

As for the predator-prey model we assume that the space is continuous with periodic
boundary conditions and that agents perform Gaussian random walks of the form (2.19).
The civil violence model is formulated in discrete time and consists of two different types
of agents: citizens and officers. They are defined as follows:

Citizen. Citizens are heterogeneously characterized by the two inherent param-
eters hardship H and risk aversion R, which are uniformly distributed in the
interval [0, 1]. In each step citizens decide deterministically whether they become
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2.2 Agent-Based Models

rebellious or quiet, i.e., whether their state is active or inactive. The decision rule
is given by:

change state to
{

active, if H(1− L)−RParr ≥ T,

inactive, else.

The parameters L and T are identically for all agents representing legitimacy of
the authority and the activity threshold, respectively. The value Parr represents
a spatio-temporally varying arrest probability depending on the individual neigh-
borhood of each agent. It is defined as sigmoid-shaped function Parr : N2

0 → [0, 1]
given by

Parr(Av, Cv) := 1− exp

(
−κ Cv

Av

) 15∑
i=0

(
κ Cv

Av

)i
i!

, (2.20)

where Cv and Av denote the numbers of officers and active citizens within a
neighborhood of radius v and κ a constant. For details on the choice of Parr

see [51].

Officer. Officers patrol (defined by (2.19)) and arrest the nearest active citizen in
their radius of vision v′. They do not participate in insurgencies. To move quicker
during an outburst of violence officers jump to the positions of active citizens.
Arrested citizens are sent to jail for J iterations uniformly drawn over an integer
distribution U(0, Jmax) and released on a random position if they completed their
prison sentence.

All parameters are fixed for the entire simulation. Figure 2.4 shows the civil violence
model as flow chart in more detail. Note that differently from other implementations
here a citizen first decides based on its current environment whether to become active
or not before moving to a new position. This can be interpreted as an active decision
to participate in a demonstration or revolution, such as the violent G20 demonstrations
in Hamburg, Germany in July 2017. It is shown in [51] that the civil violence model
with arrest probability function (2.20) allows to model repetitive outburst of violence,
whereas this behavior cannot be observed in the original version. For further studies
on the dynamical behavior of the civil violence model we refer to [45, 51, 177, 32, 100,
52, 70].

Example 2.2.6. Figure 2.5 (a) shows a snapshot of the full ABM at time t = 119 of
the civil violence model for a typical realization using the parameters listed in Table 2.2.
Inactive and active citizens are represented by green and red dots, respectively. Officers
are indicated in blue. The population state is depicted in Figure 2.5 (b) in terms of the
number of actives, jailed and inactive citizens. 4
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Figure 2.4: Flow chart of the civil violence model.

Table 2.2: Parameters used for realizations of the civil violence model.
Parameter Value
Space height × width 100 × 100
Number of agents N 7500
Number of police officers 125
Citizens’ step size variance h 1
Officers’ step size variance h′ 1
Citizens’ radius of vision of v 10
Officers’ radius of vision of v′ 10
Activity threshold T 0.1
Legitimacy L 0.8
Maximum jail sentence Jmax 120
Constant κ 62.6716
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Figure 2.5: (a) Snapshot of the full state of the civil violence model at time t = 119.
(b) Realization of the population state for the parameters given in Table 2.2. The
vertical gray dashed line marks the time at which the snapshot in (a) is taken.
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3 Data-Driven Approximation of the
Koopman Generator

This chapter concentrates on the data-driven approximation of the Koopman gener-
ator for both deterministic and stochastic dynamical systems. We present a general
framework based on standard EDMD (cf. Section 2.1.4) to compute a matrix repre-
sentation of the infinitesimal generator of the Koopman operator from data without
requiring trajectory integration. Additionally, it can be used to approximate eigenval-
ues, eigenfunctions and modes of the generator. Due to duality, the framework extends
to approximate the generator of the Perron–Frobenius operator. We show that the
generator approximation can be used to identify the governing equations of determin-
istic and stochastic dynamical systems. We also show relationships to other methods
for system identification such as the Koopman lifting technique [109], SINDy [20] and
KRONIC [76]. The latter, however, focus mainly on ODEs. Lastly, we demonstrate
the numerical efficacy and advantage of the resulting method with the help of suitable
examples and benchmark problems. Looking ahead to Chapter 5, we will explore an-
other powerful application of the Koopman generator approximation. We will show that
the framework can be used to identify reduced models directly from high-dimensional
(noisy) data provided by agent-based systems. This significantly reduces the computa-
tional effort and facilitates the analytical investigation.

The results presented in this chapter appeared in our publication [85], to which the
author has made significant contributions.

3.1 Infinitesimal Generator EDMD
As the Koopman operator, so its infinitesimal generator can be used to extract impor-
tant properties of dynamical systems. We now reformulate standard EDMD introduced
in Section 2.1.4 to compute approximations of the infinitesimal generators of Koopman
or Perron–Frobenius operator as well as the corresponding eigenvalues, eigenfunctions
and modes. To emphasize the connection to standard EDMD, the proposed technique
is called generator EDMD or shortly gEDMD.

3.1.1 Deterministic Dynamical Systems

Consider an ODE of the form (2.1) and assume that we have m measurements of the
system’s states {xl }ml=1, and their corresponding pointwise time derivatives, given by
{ ẋl }ml=1, which can also be estimated from data, cf. [21]. The deterministic case has
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3 Data-Driven Approximation of the Koopman Generator

also been derived from another perspective with different motivations in [76, 75]. We
discuss their connection in detail in Section 3.2.

Generator Approximation

Just like EDMD, also generator EDMD requires a set of basis functions. Let {ψi}ni=1 de-
note the set of basis functions. Writing it in vector form as ψ(x) = [ψ1(x), . . . , ψn(x)]

>,
we are able to define

ψ̇k(x) = (Lψk)(x) =
d∑

i=1

bi(x)
∂ψk

∂xi
(x).

The partial derivatives of the basis functions required for ψ̇k(xl) do not impose a prob-
lem as they can be precomputed analytically or, alternatively, obtained via automatic
differentiation or symbolic computing toolboxes. Further note that b(xl) is simply given
by ẋl, which can be approximated using, e.g., finite differences if a direct measurement
is not possible. We can set now up the matrices ΨX , Ψ̇X ∈ Rn×m for all data points
and basis functions, which are given by

ΨX =

ψ1(x1) . . . ψ1(xm)
... . . . ...

ψn(x1) . . . ψn(xm)

 and Ψ̇X =

ψ̇1(x1) . . . ψ̇1(xm)
... . . . ...

ψ̇n(x1) . . . ψ̇n(xm)

 . (3.1)

Analogously to EDMD, we assume that there exists a matrix M such that Ψ̇X =MΨX ,
which we solve in least-square sense by minimizing ‖Ψ̇X −MΨX‖F since in general this
problem cannot be solved exactly. Then, the solution is given by

M = Ψ̇XΨ+
X =

(
Ψ̇XΨ>

X

)(
ΨXΨ>

X

)+
= ÂĜ+

with
Â =

1

m

m∑
l=1

ψ̇(xl)ψ(xl)
> and Ĝ =

1

m

m∑
l=1

ψ(xl)ψ(xl)
>.

Since the Koopman generator might be sparse even when the operator for the time-t
map is not, its approximation can be advantageous.

As the deterministic case represents a special case of non-deterministic systems for
σ = 0, we will show the proof of convergence to a Galerkin approximation in the infinite
data limit, i.e., m→ ∞, in Section 3.1.2. The matrix L =M> is an empirical estimate
of the matrix representation of the infinitesimal generator L. By duality, the matrix
representation of the adjoint operator L∗, i.e., the generator of the Perron–Frobenius
operator, is given by L̂∗ = (M∗)> = (Â>Ĝ+)>. If the gEDMD approximation converges
for n → ∞ to the Koopman generator as the standard EDMD approximation does for
the Koopman operator, see [88] for details, is an open question and will be studied in
future work.
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3.1 Infinitesimal Generator EDMD

Remark 3.1.1. In the case that the measurement data xl are, e.g., corrupted by noise,
or if the time derivatives ẋl need to be approximated numerically, spurious nonzero
entries might exists in the matrix M . In order to reduce these entries the same sparsi-
fication approach as proposed for SINDy, see [20], can be applied to gEDMD.

Example 3.1.2. Consider again the dynamical system defined in Example 2.1.3 for
γ = −0.8 and δ = −0.7 and use a set of basis functions comprising of monomials up
to degree 8. We generated 1000 uniformly distributed training points in X = [−2, 2]×
[−2, 2] and applied gEDMD. We obtain the eigenvalues and (rescaled) eigenfunctions

λ1 ≈ 0, ϕ1(x) ≈ 1,

λ2 ≈ −0.7 = δ, ϕ2(x) = 1.286x2 + 1.000x21 ≈
2γ−δ
δ x2 + x21,

λ3 ≈ −0.8 = γ, ϕ3(x) ≈ x1,

which agree with the analytically computed ones in Example 2.1.3. Again, we obtain
further eigenfunctions as products of the previous eigenfunctions, e.g., λ6 ≈ −1.6 = 2γ
with ϕ6(x) = 1.000x21 ≈ ϕ3(x)

2. The ordering of the eigenfunctions and eigenvalues
depends on the values of γ and δ. The eigenvalues are typically sorted by decreasing
values. 4

System Identification

With gEDMD it is possible to reconstruct the governing equations of the underlying
dynamical system using the full-state observable g(x) = x. Assume that the state space
X is bounded so that the full-state observable is (component-wise) contained in L∞(X)
and that it can be represented by the basis functions ψi, which can trivially be assured
by adding the observables {xi}di=1 to the set of basis function. Further, let ξ` denote
the `th eigenvector of L̂ and Ξ = [ξ1, . . . , ξn] and assume that B ∈ Rn×d is the matrix
such that g(x) = B>ψ(x). Define ϕ(x) = [ϕ1(x), . . . , ϕn(x)]

> = Ξ>ψ(x). Then

g(x) = B>ψ(x) = B>Ξ−>ϕ(x),

where the column vectors of the matrix V = B>Ξ−> are the Koopman modes v` for the
full-state observable. The derivation of the modes works analogously to the standard
EDMD case, see Section 2.1.4 or [82, 171] for further details. Applying the genera-
tor component-wise, we obtain a representation of the system in terms of eigenvalues,
eigenfunctions, and modes of the generator, i.e.,

(Lg)(x) = b(x) ≈
n∑

`=1

λ`ϕ`(x)v`,

which allows to decompose the system into different frequencies. Alternatively, the
system can directly be represented in terms of the basis functions, that is

(Lg)(x) = b(x) ≈ (L̂B)>ψ(x),
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3 Data-Driven Approximation of the Koopman Generator

which is then equivalent to SINDy. We discuss it in more detail in Section 3.2. The
following example demonstrates the procedure.

Example 3.1.3. In Example 3.1.2 we compute the eigenvalues λ` and corresponding
eigenfunctions ϕ`(x). To reconstruct the dynamical system from Example 2.1.3 we still
need to compute the Koopman modes. These are given by

v2 = [0, 0.778]> ≈ [0,
δ

2γ − δ
]>,

v3 = [1, 0]>,

v6 = [0, −0.778]> ≈ [0, − δ

2γ − δ
]>.

All other modes are numerically zero. Then, we obtain

b(x) ≈ λ2ϕ2(x)v2 + λ3ϕ3(x)v3 + λ6ϕ6(x)v6 ≈
[

γx1
δ (x2 − x21)

]
.

Expressing it directly using the basis functions, this results in

b(x) ≈ (L̂B)>ψ(x) =

[
0 −0.8 0 0 0 . . .
0 0 −0.7 0.7 0 . . .

]


1
x1
x2
x21
x1x2

...


=

[
γx1

δ (x2 − x21)

]
.

Hence, the governing equations are identified correctly in both cases. Furthermore, the
matrix L̂ is sparse as shown in Figure 3.1 (a). Note that the nonzero entries in the last
rows of the matrix are due to the fact that Lψk cannot be represented accurately with
the chosen basis. For instance, for ψ45(x) = x82, we obtain (Lψ45)(x) = 8δx72 (x2 − x21).
However, the term x21x

7
2 is not contained in the set of basis functions since its degree is

greater than 8. 4

Remark 3.1.4. We assumed in the previous two examples that the derivatives for
the training data are known or can be computed with sufficient accuracy. However,
for inaccurate estimates or noise-corrupted data the resulting matrix representations of
the operators often become nonsparse. To eliminate spurious nonzero entries we can
apply further techniques like denoising, total-variation regularization, or iterative hard
thresholding, see also [21] and references therein. Assume that the derivatives b(xl)
are corrupted by noise, i.e., b(xl) + η, where η is sampled from a Gaussian distribution
with standard deviation ς. The iterative hard thresholding procedure proposed in [21]
progressively eliminates all entries smaller than a given threshold δ and then recomputes
the coefficients. In this way, applying hard thresholding to gEDMD we can remove
undesired entries from the matrix representation L̂. However, attention is required as
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Figure 3.1: (a) Sparsity pattern of the Koopman generator approximation L̂ computed
in Example 3.1.3. Darker colors represent entries with larger magnitude. (b) Recovery
error depending on the standard deviation ς for different thresholds δ. The results
reveal that in the case of inaccurate estimates of the derivatives further techniques
are necessary to obtain suitable representations of the system. For a well-chosen cut-off
value, iterative hard thresholding allows to recover the correct dynamics in the presence
of noise. Without thresholding the results agree with the δ = 1× 10−4 case. Figure (b)
reproduced from [85].

the sparsification results depend strongly on the chosen threshold as Figure 3.1 (b)
suggests. We define the recovery error as the average difference between the true and
the estimated coefficients after 10 iterations of the hard thresholding procedure. On the
one hand, for a smaller signal-to-noise ratio, a larger threshold is needed to eliminate
spurious nonzero entries. On the other hand, if the threshold is chosen too large, it also
removes actual coefficients, which then deteriorates the approximation accuracy.

Conservation Laws

For a given dynamical system, a function E : Rd → R is said to be a conserved quantity
if it remains constant for all t and all initial values, i.e., d

dtE = ∇E · b = 0. This
immediately implies that E is an eigenfunction of the Koopman generator associated
with eigenvalue λ = 0. Analogously, invariant densities are given by eigenfunctions of
the Perron–Frobenius generator corresponding to eigenvalue λ = 0. Note that conserved
quantities are not unique, i.e., any linear combination is a conserved quantity as well.
Further, not all systems have conserved quantities, for instance, mechanical systems
with damping. As early as 1931 Koopman considered conserved quantities in his original
paper [87]. Conservation laws and conserved quantities play an important role in physics
and engineering. However, their discovery is in principle difficult so that their numerical
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3 Data-Driven Approximation of the Koopman Generator

approximation is helpful. With the aid of gEDMD it is possible to identify non-trivial
eigenfunctions associated λ = 0, that is, conserved quantities, from data. Similarly,
in [76, 75] the connection between conservation laws and Koopman eigenfunctions is
used to find conserved quantities from data. The relationship of both methods will be
discussed in detail in Section 3.2.

Example 3.1.5. Let us compute the conserved quantities of the following two systems
with the help of gEDMD. Assume that the derivatives { ẋl }ml=1 are known. For both
systems we generated 1000 uniformly distributed training points in X = [0, 1]× [0, 1].
(i) Let us consider the undamped Duffing oscillator, i.e., for α, β ∈ R we have

d

dt

[
x1
x2

]
=

[
x2

−αx1 − βx31

]
.

Choosing α = −1.1, β = 1.1 and a dictionary comprising of monomials up to degree 5,
the multiplicity of eigenvalue λ = 0 is two and we obtain a conserved quantity of the
form

E(x) = −0.5500x21 + 0.2750x41 + 0.5x22 − 0.0148 ≈ α

2
x21 +

β

4
x41 +

1

2
x22 + c,

where c ∈ R is an arbitrary constant.

(ii) Consider the mathematical pendulum, i.e., for α ∈ R we have

d

dt

[
x1
x2

]
=

[
x2

−α sin(x1)

]
.

For this example we choose a dictionary that consists of monomials and trigonometric
functions. Again, for α = 1 the multiplicity of eigenvalue λ = 0 is two and we obtain a
conserved quantity of the form

E(x) = 0.5x22 − 1.000 cos(x1)− 1.0712 ≈ 0.5x22 − α cos(x1) + c,

where c ∈ R is an arbitrary constant. 4

3.1.2 Non-deterministic Dynamical Systems

Let us now generalize gEDMD to SDEs of the form (2.2). Assume that we have a
set of m measurements of the system state {xl }ml=1, the drift {b(xl)}ml=1 as well as the
diffusion {σ(xl)}ml=1. Drift and diffusion are assumed to be known or that they can be
estimated pointwise. The latter will be the case in Chapter 5, where gEDMD is applied
to obtain coarse-grained representations of agent-based systems. Again, let {ψi}ni=1

denote the set of basis functions.

40



3.1 Infinitesimal Generator EDMD

Generator Approximation

Let

dψk(x) = (Lψk)(x) =

d∑
i=1

bi(x)
∂ψk

∂xi
(x) +

1

2

d∑
i=1

d∑
j=1

aij(x)
∂2ψk

∂xi∂xj
(x) (3.2)

and for all data points and basis functions, we assemble the matrix dΨX ∈ Rn×m with

dΨX =

dψ1(x1) . . . dψ1(xm)
... . . . ...

dψn(x1) . . . dψn(xm)

 .
Again, the partial derivatives of the basis functions can be precomputed analytically.
Differently from the deterministic case, here we also need the second derivatives. As
before, we assume that there exists a matrix M such that dΨX = MΨX , which leads
to the minimization problem ‖dΨX −MΨX‖F . Solving it in least-square sense results
in

M = dΨXΨ+
X =

(
dΨXΨ>

X

)(
ΨXΨ>

X

)+
= ÂĜ+

with

Â =
1

m

m∑
l=1

dψ(xl)ψ(xl)
> and Ĝ =

1

m

m∑
l=1

ψ(xl)ψ(xl)
>.

As in the deterministic case, the solution M = L̂> = ÂĜ+ is an empirical estimate of
the matrix representation of the generator L and M∗ = (L̂∗)> = Â>Ĝ+ an estimate of
the adjoint operator L∗. Proposition 3.1.6, which appeared along with the correspond-
ing proof in our publication [85], summarizes the convergence results of gEDMD.

Proposition 3.1.6 (Proposition 3.5 in [85]). For an infinitely large set of training data,
i.e., m → ∞, gEDMD converges to the Galerkin projection L of the generator L onto
the space spanned by the basis functions {ψi}ni=1.

Proof. Let m→ ∞, we obtain

Âij =
1

m

m∑
l=1

dψi(xl)ψj(xl) −→
m→∞

∫
(Lψi)(x)ψj(x)dµ(x) = 〈Lψi ,ψj〉µ = Aij ,

Ĝij =
1

m

m∑
l=1

ψi(xl)ψj(xl) −→
m→∞

∫
ψi(x)ψj(x)dµ(x) = 〈ψi ,ψj〉µ = Gij ,

where xl ∼ µ. This means that the matrices Â and Ĝ are empirical estimates of the
matrices A and G, respectively.

For the deterministic case, i.e., σ = 0, replace dψi(xl) by ψ̇i(xl). The proof is
analogously to standard EDMD.
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Remark 3.1.7. As before in the deterministic case we assumed that the drift and
diffusion coefficients of the SDE (2.2) are known. However, both can be estimated
pointwise from data, e.g., by finite differences via the Kramers–Moyal formulae. We
will discuss this case in detail in Chapter 5. If a single ergodic simulation is available,
the definition of dψk in (3.2) can alternatively be replaced by

dψk(xl) =
1

t
(xl+1 − xl) · ∇ψk(xl) +

1

2t

[
(xl+1 − xl)(xl+1 − xl)

>
]
: ∇2ψk(xl).

Remark 3.1.8. If the stochastic dynamical system (2.2) is reversible with respect to
the measure µ, it is sufficient to use only the first-order derivatives of the basis functions
as the Galerkin matrix A in (2.7) can be expressed as

Aij = 〈Lψi ,ψj〉µ = −1

2

∫
∇ψiσσ

>∇ψ>
j dµ.

The drift coefficient enters implicitly via the invariant measure µ, see [175] for details.
The empirical estimate Â for A is defined as

Â = − 1

2m

m∑
l=1

dψ(xl)dψ(xl)
>,

where dψ(xl) = ∇Ψ(xl)σ(xl). Here, ∇Ψ ∈ Rn×d denotes the gradient matrix, where
each row corresponds to the gradient of a basis function.

Example 3.1.9. Let us compute the eigenfunctions of the Koopman and the Perron–
Frobenius generator for three examples. Assume that {b(xl)}ml=1 and {σ(xl)}ml=1 are
known and not estimated from data.
(i) Consider again the Ornstein–Uhlenbeck process defined in Example 2.1.5 and set
α = 1 and β = 4. We choose monomials up to order 10 and generated 100 uniformly
distributed training points in X = [−2, 2]. The gEDMD result is shown in Figure 3.2 (a).
The numerically computed Koopman generator eigenfunctions are practically indistin-
guishable from the analytical solutions. For this small amount of training data the same
computation using standard EDMD usually gives a less accurate approximation of the
dominant eigenfunctions. As already mentioned in Remark 2.1.10, the choice of basis
functions is a crucial step for the approximation accuracy. This can be observed in
Figure 3.2 (b). Using the same set of basis functions as for the Koopman generator, the
dominant eigenfunctions of the Perron–Frobenius generator cannot be approximated
that well. If we select Gaussian functions instead of monomials, we can significantly
improve the results as it is shown in Figure 3.2 (c). Here, we choose 30 Gaussian func-
tions with bandwidth σ = 0.1. Unfortunately, the most suitable set of basis functions is
in general unknown in advance. Let us consider now the sparsity patters of the genera-
tor approximations by gEDMD and EDMD corresponding to the Ornstein–Uhlenbeck.
The ideal resulting model is parsimonious since sparse representations minimize model
complexity while simultaneously enabling accurate predictions without overfitting. The
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Figure 3.2: Eigenfunctions of (a) the Koopman generator and (b) the Perron–
Frobenius generator associated with the Ornstein–Uhlenbeck process computed via
gEDMD and monomials up to degree 10 compared to the analytically computed eigen-
functions (dashed). (c) Eigenfunctions of the Perron–Frobenius generator but with 30
Gaussian functions as dictionary. (d-f) Sparsity patterns of the generator approxima-
tion L̂ computed with gEDMD, operator approximation K̂τ computed with EDMD,
and operator approximations exp(τL̂) obtained from L̂ using the same lag time τ as for
K̂τ . Darker colors represent entries with larger magnitude. Reproduced from [85].

Figures 3.2 (d–f) show the sparsity patters of L̂ for the generator computed via gEDMD
and twice K̂τ for the operator, which is once computed directly via EDMD and once
via exp(τL̂) using the matrix exponential and the same lag time τ = 0.1 as used for
EDMD. The result reveals that gEDMD leads to a sparser representation with less
spurious nonzero entries. Comparing Figure 3.2 (d) with the analytically computed
generator representation in Example 2.1.8 demonstrates the efficiency of gEDMD.
(ii) We consider now a more complex example given by an SDE of the form (2.2) with

state-dependent, non-isotropic diffusion term, i.e.,

b(x) = −∇V (x) =

[
4x1 − 4x31

−2x2

]
and σ(x) =

[
0.7 x1
0 0.5

]
,

where V (x) = (x21 − 1)2 + x22 represents the double-well potential giving raise to
metastable behavior in terms of rare transitions between the two wells. We can de-
tect metastable states with the help of the generator eigenvalues. More precisely, the
metastable sets can be identified by the eigenfunctions corresponding to the dominant
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Figure 3.3: (a) Double-well potential. (b) First and (c) second eigenfunction of the
Perron–Frobenius generator showing two clearly separated wells, which are tilted due
to the non-isotropic noise. In all plots, blue corresponds to small and yellow to large
values. Reproduced from [85].

eigenvalues close to the largest eigenvalue λ = 0. Moreover, the number of metastable
sets is equal to the number of dominant eigenvalues close to λ = 0 (including λ = 0
and counting multiplicity). Figure 3.3 (a) shows the potential V and (b-c) two domi-
nant eigenfunctions of the Perron–Frobenius generator computed via gEDMD. The two
metastable states can be well identified via the first two eigenfunctions of the respective
Perron–Frobenius generator. Both sets are well separated by the second eigenfunction
as shown in Figure 3.3 (c). The corresponding two dominant eigenvalues and the third
are approximately given by

λ1 ≈ −0.0194, λ2 ≈ −0.2042 and λ3 ≈ −2.0230.

Note the clear gap between the second and third eigenvalue. Here, we used 30000
training points in X = [−2, 2]× [−1, 1] with a basis consisting of 300 Gaussian functions
with bandwidth σ = 0.2. The basis functions are centered at the midpoints of a regular
box discretization. 4
(iii) Let us change V to a quadruple-well potential, i.e., V (x) = (x21−1)2+(x22−1)2, and

consider an SDE of the form (2.2), again with state-dependent, non-isotropic diffusion
term, that is,

b(x) = −∇V (x) =

[
4x1 − 4x31
4x2 − 4x32

]
and σ(x) =

[
1 x1x2
0 1

]
.

Figure 3.4 (a) shows the potential V and (b-e) the four dominant eigenfunctions of
the Perron–Frobenius generator computed via gEDMD using 400 radial functions with
bandwidth σ = 0.15. Here, we generated 400000 training data points in X = [−2, 2]×
[−2, 2]. As before, the Perron–Frobenius eigenfunctions can be used to detect the four
metastable states. The corresponding four dominant eigenvalues are approximately
given by

λ1 ≈ −0.1534, λ2 ≈ −0.4163, λ3 ≈ −0.6532 and λ4 ≈ −0.8984.
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Figure 3.4: (a) Quadruple-well potential. (b-e) First four dominant eigenfunction of
the Perron–Frobenius generator. As for the double-well problem, the eigenfunctions
clearly separate the wells from each other. Again, the non-isotropic noise causes all
wells to be tilted. (f) Non-dominant eigenfunction associated with eigenvalue λ5 corre-
sponding to a faster process. In all plots, blue corresponds to small and yellow to large
values.

The fifths eigenvalue, which is given by λ5 ≈ −4.1267, shows a clear offset. The
corresponding eigenfunction is depicted in Figure 3.4 (f). Note that also the Koop-
man eigenfunctions encode this information. Figure 3.5 shows the first three nontrivial
eigenfunctions of the Koopman generator indicating a possible partition of the state
space X. We computed them for Figure 3.5 (a-c) using a dictionary of monomials up
to and including order 4 and for Figure 3.5 (d-f) using 400 radial basis functions as for
the Perron–Frobenius generator as dictionary. Additionally, we observe that the eigen-
functions in Figure 3.5 (d-f) are coarser than in Figure 3.5 (a-c). This is as expected
since we only use smooth basis functions in the first case, which results in smooth
representations of the eigenfunctions. 4

Remark 3.1.10. Due to the connection between operator and generator, we can also
use the eigenfunctions of the operator to detect metastable states. In this case the
number of metastable sets is given by the number of dominant eigenvalues close to the
maximal eigenvalue λt = 1 (including λt = 1 and counting multiplicity). The dominant
eigenfunctions ϕ` show different sign combinations when weighted with the invariant
measure, i.e., ϕ` =

ϕ`
µ , see [153]. Considering their zeros, we can decompose the state
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Figure 3.5: First three nontrivial eigenfunctions of the Koopman generator for the
quadruple-well problem computed using a dictionary consisting in (a-c) of monomials
up to and including order 4 and in (d-f) of 400 radial basis functions with bandwidth
σ = 0.15.

space into metastable sets with associated asymptotic exit rates given approximately
by the inverse dominant time scales, see [73].

System Identification

As already in the deterministic case, gEDMD can also be used in the non-deterministic
case for system identification. Making the same assumptions on X, we discover the
drift term b of the underlying dynamics with the aid of the full-state observable g. To
identify the diffusion term, note that for ψk(x) = xixj , it holds that

aij(x) = (Lψk)(x)− bi(x)xj − bj(x)xi, (3.3)

where a = σσ>. Note that the drift term b has to be identified in advance. Additionally,
we assume that both bi and bj as well as bi(x)xj and bj(x)xi are representable in
the space spanned by the basis functions {ψi}ni=1. Practically, this means that if,
for instance, b contains monomials of degree p, then the dictionary must also include
monomials of degree p+ 1. This requirement applies to all types of basis functions.
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Remark 3.1.11. Note that using (3.3), we do not identify σ but a = σσ>. If the
drift term σ itself is needed, for instance, to generate new trajectories of the identified
system, we can obtained it by a Cholesky decomposition of a, see also [175]. Further
note that σ is not defined uniquely.

Example 3.1.12. Let us review Example 3.1.9 to illustrate the recovery of the drift
and diffusion terms from the generator representation.
(i) For the Ornstein–Uhlenbeck process, we identify

b(x) = (Lψ2)(x) = −αx and a(x) = (Lψ3)(x)− 2b(x)x = 2β−1,

which gives σ(x) =
√
2β−1. Comparing it to the matrix representation of the generator

analytically computed in Example 2.1.8, shows that the system is identified correctly.
(ii) To compute a representation of the Koopman generator for the double-well prob-

lem, we choose a dictionary consisting of monomials up to and including order 4 and
generated 8000 random training points x ∈ X = [−2, 2] × [−1, 1] and use exact values
for b(x) and σ(x). The first six columns of the generator approximation are given by



1 x1 x2 x2
1 x1 x2 x2

2

1 0 0 0 0.49 0 0.25
x1 0 4 0 0 0.5 0
x2 0 0 −2 0 0 0
x2
1 0 0 0 9 0 0

x1 x2 0 0 0 0 2 0
x2
2 0 0 0 0 0 −4

x3
1 0 −4 0 0 0 0

x2
1 x2 0 0 0 0 0 0

x1 x2
2 0 0 0 0 0 0

x3
2 0 0 0 0 0 0

x4
1 0 0 0 −8 0 0

x3
1 x2 0 0 0 0 −4 0

x2
1 x

2
2 0 0 0 0 0 0

x1 x3
2 0 0 0 0 0 0

x4
2 0 0 0 0 0 0



.

Using columns two and three, we correctly recover the drift term b. Following (3.3),
the entries of matrix a are given by

a11(x) = (Lψ4)(x)− 2b1(x)x1 = 0.49 + x21,

a12(x) = (Lψ5)(x)− b1(x)x2 − b2(x)x1 = 0.5x1,

a22(x) = (Lψ6)(x)− 2b2(x)x2 = 0.25

which in fact is σσ>. 4
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(iii) The representation of the Koopman generator for the quadruple-well problem
follows the same way as for the double-well problem. Using 8000 random training
points x ∈ X = [−2, 2]× [−1, 1] and monomials up to and including order 4, we obtain
the drift term b and matrix a with entries

a11(x) = (Lψ4)(x)− 2b1(x)x1 = 1 + x21x
2
2,

a12(x) = (Lψ5)(x)− b1(x)x2 − b2(x)x1 = x1x2,

a22(x) = (Lψ6)(x)− 2b2(x)x2 = 1,

which is σσ>. Thus, the system is correctly identified. The full results can be found in
Appendix A.1. Note that in the examples (ii) and (iii) monomials of order up to 3 are
not sufficient to recover a. 4

Remark 3.1.13. The following must still be mentioned:
(i) For the sake of illustration the considered systems are mainly composed of mono-

mials. However, any dictionary containing twice continuously differentiable functions
is possible.
(ii) The results depend on accurate estimates of the drift and diffusion terms. Noisy

data leads to nonsparse solutions. Just as in the deterministic case, iterative hard
thresholding can improve the results. As in Remark 3.1.4, we now add Gaussian noise
with variance ς = 0.1 to the drift and diffusion terms and apply hard thresholding with
threshold δ = 0.1. Then, we obtain the drift

b(x) =

[
4.00057x1 − 4.00012x31

−1.99998x2

]
and diffusion

a11(x) = 0.50035 + 0.99901x21 − 0.00016x41,

a12(x) = 0.49729x1 − 0.00250x1x2 + 0.00097x31x2,

a22(x) = 0.25648 + 0.00720x22

from the matrix approximation of the Koopman generator. Although the noise is also
included in the diffusion term, which, as a consequence, might lead to an overestimation
of the same, the obtained coefficients are still close to the analytical solution. Alterna-
tively, iterative hard thresholding can directly be applied to the coefficients of aij(x) to
find a sparse representation of a(x).

Just like SINDy, the method to discover the drift and diffusion terms of SDEs is
subject to the same two difficulties that crucially affect the validity of the learned
model:
(i) The dictionary needs to be rich enough such that b and a can be written in terms

of the basis functions.
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(ii) The drift and diffusion estimates must be available with sufficient accuracy.
Failure to meet either (i) or (ii), i.e., lack of expressivity of the dictionary or too noisy
data, typically leads to nonsparse solutions. Using a larger set of training data or
including further basis functions might mitigate these problems; however, the latter
carrying the risk of overfitting. Notwithstanding, assuming that the model includes
only a few simple terms, we are able to recover the governing equations of stochastic
dynamical systems with the aid of the presented method. Furthermore, the approx-
imation of the generator represents an important task itself since its eigenvalues and
eigenfunctions provide information about time scales and metastable sets. Moreover,
they can be used for model reduction and control. For further discussions on this topic
we refer to [85, 89, 136] and references therein.

Conservation Laws

Also in the non-deterministic case, generator EDMD can also be used to approximate
conserved quantities from data. If E is a conserved quantity of a non-deterministic
system, then by the definition of the Koopman operator (2.3) and the partial differential
equation ∂u

∂t = Lu it holds that LE = 0. Thus, we can approximate conserved quantities
by extracting non-trivial eigenfunctions associated with λ = 0.

To motivate the subsequent, assume that the stochastic model is driven by noise
and that the noise term of the stochastic dynamical system has a small but positive
correlation time, i.e., its autocorrelation function is not a delta function but a sharp
peak. This implies that dWt is regular and that the dynamical system has a well-defined
solution. If the correlation time tends to zero, the SDE converges to a Stratonovich
SDE given by

dXt = b(Xt)dt+ σ(Xt) ◦ dWt, (3.4)

where we use ◦ to distinguish (3.4) from SDEs of the form (2.2) in the sense of Itô
[57, 131]. The difference between Stratonovich and Itô SDEs lies in the evaluation of
the corresponding stochastic integral equation

Xt = X0 +

∫ t

0
b(Xt)dt+

∫ t

0
σ(Xt)dWt, t ∈ [0, T ].

The second integral cannot be defined uniquely as Riemann-Stieltjes integral since the
Brownian motion has an unbounded variation. For an equidistant partition on [0, T ]
with step size ∆t such that 0 = t0 < t1 < . . . < tK = T we define∫ t

0
σ(Xt)dWt := lim

K→∞

K−1∑
k=0

σ ((1− α)Xk + αXk+1) (Wk+1 −Wk) , α ∈ [0, 1].

For α = 0 we call it Itô stochastic integral and we refer to an Itô SDE. For α = 0.5 we
obtain the Stratonovich stochastic integral and consequently a Stratonovich SDE. Other
values of α exist. With the aid of the drift correction formula we convert a Stratonovich
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SDE to an Itô SDE by correcting the noise-induced drift. It is defined component-wise
as

ci(x) =
d∑

j=1

s∑
k=1

∂σik
∂xj

(x)σjk(x), i = 1, . . . , d.

The corresponding Itô SDE reads

dXt = (b(Xt) +
1

2
c(Xt))dt+ σ(Xt)dWt,

see [160, 131] for further details. We will need the drift correction formula in Exam-
ple 3.1.15 since the previous work has been carried for Itô SDEs.

Remark 3.1.14. Stratonovich SDEs allow an analogous formalism of conserved quan-
tities as in the deterministic case. For a system of the form (3.4) a sufficient condition
for E to be a conserved quantity is

∇E>

[
b+

s∑
i=1

σi

]
= 0,

where σi denotes the ith column of σ. This result follows directly from the chain rule
of Stratonovich calculus, see [119, 49, 176].

Example 3.1.15. Let us consider the noisy Duffing oscillator, i.e., for α, β, ε ∈ R we
have a Stratonovich SDE of the form (3.4) with

b(x) =

[
x2

−αx1 − βx31

]
and σ(x) = εb(x).

Before we can apply gEDMD, we need to convert it to an Itô SDE by correcting the
noise-induced drift given by

c(x) = ε2
[

b2(x)(
−α− 3βx21

)
b1(x)

]
.

We set α = −1.1, β = 1.1, ε = 0.05 and choose a dictionary that contains monomials.
Then, applying gEDMD, the multiplicity of the eigenvalue λ = 0 is two and we obtain a
conserved quantity of the form E(x) ≈ α

2x
2
1+

β
4x

4
1+

1
2x

2
2+c, where c ∈ R is an arbitrary

constant. Note that due to the Stratonovich formalism E has the same structure as in
Example 3.1.5. 4

3.2 Relationships between gEDMD and Other Methods
In the following, similarities and differences between the presented methods and other
well-known approaches to system identification and generator approximation are high-
lighted.
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3.2.1 SINDy

SINDy [20], which is an acronym for sparse identification of nonlinear dynamics, was
developed to learn ODEs from data and marks a milestone for data-driven discovery
of dynamical systems. Since then, various extensions have been developed such as
parameter identification of stochastic systems [17] or the data-driven discovery of partial
differential equations [146, 113], just to name a few applications. Just as gEDMD, the
SINDy applies to a set of d-dimensional data vectors given by the state xi and the
corresponding time derivative ẋi. Note that unlike gEDMD, SINDy does not identify
the transfer operator, but directly determines the governing equations of the dynamical
system. Defining the matrix Ẋ as

Ẋ =
[
ẋ1 · · · ẋm

]
,

we assume again that the evolution of the dynamical system can be described by a
linear operator M such that Ẋ =MΨX . Omitting sparsification terms and solving the
minimization problem ‖Ẋ −MΨX‖F in least-square sense, we obtain the solution

M = ẊΨ+
X = (ẊΨ>

X)(ΨXΨ>
X)+ = ÂĜ+

for matrices

Â =
1

m

m∑
l=1

ẋlψ(xl)
> and Ĝ =

1

m

m∑
l=1

ψ(xl)ψ(xl)
>.

SINDy can be considered as a special case of gEDMD for deterministic systems due
to the close connection between the vector field of a deterministic dynamical system
and its Koopman generator. Assume that the full-state observable, which is given by
g(x) = B>ψ(x), is contained in the dictionary and let ψk = xj . Then

ψ̇k =

d∑
i=1

bi
∂ψk

∂xi
=

d∑
i=1

bi
∂xj
∂xi

=

d∑
i=1

bi δij = bj = ẋj

since all partial derivatives are zero except for i = j. Assuming ψ = [g(x), ψd+1, . . . , ψk]
>,

the matrix Ψ̇X can be written as

Ψ̇X =

[
Ψ̇1

Ψ̇2

]
=

[
Ẋ

Ψ̇2

]
and it follows that

ẋ = B>ψ̇(x) ≈ B>Mψ(x) = B>Ψ̇X︸ ︷︷ ︸
Ẋ

Ψ+
Xψ(x) = ẊΨ+

X︸ ︷︷ ︸
MS

ψ(x) =MSψ(x).
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3.2.2 KRONIC

KRONIC [75, 76], which stands for Koopman reduced order nonlinear identification and
control, is derived from SINDy for the data-driven discovery of Koopman eigenfunctions,
which are then used for control and the detection of conservation laws. For an a priori
known Koopman eigenvalue (and using the notation of Section 3.1), KRONIC results
in the eigenvalue problem (

λ`Ψ
>
X − Ψ̇>

X

)
ξ` = 0.

Alternatively, KRONIC can learn eigenvalues and the corresponding eigenfunctions
simultaneously. If we multiply from the left by ΨX and assume regularity of ΨXΨ>

X ,
this coincides with the deterministic gEDMD eigenvalue problem. Consequently, despite
their different derivations, gEDMD and KRONIC are closely related for deterministic
systems, which is also mentioned in [76].

3.2.3 Koopman Lifting Technique

The Koopman lifting technique [109, 110] is another methods that makes use of the
infinitesimal generator L to discover the governing equations of dynamical systems.
Although mainly developed for ODEs, extensions to SDEs with isotropic noise exist.
The Koopman lifting technique works in two steps. First, standard EDMD is used to
obtain an approximate representation of the Koopman operator K̂τ from trajectory
data for a fixed lag time τ and set of basis functions {ψi}ni=1. In the second step, the
matrix logarithm is applied to obtain an approximation of the generator, that is

L̂ =
1

τ
log K̂τ .

The system is then identified in the same way as demonstrated in Example 3.1.3 for
gEDMD. As the Koopman lifting technique builds upon standard EDMD, neither time-
derivatives of the states nor the partial derivatives of the basis functions are required.
Instead, only pairs of τ -lagged data is needed. However, due to the non-uniqueness of
the matrix logarithm, only a sufficiently small sampling time τ can guarantee that the
(possibly complex) eigenvalues lie in the strip {z ∈ C : |=(z)| < π}, where = denotes
the imaginary part. Roughly speaking, to capture the entire spectrum of frequencies an
infinite sampling rate is necessary [110]. However, the independence of time-derivatives
can be a useful alternative, e.g., when only trajectory data is accessible, since the
presented estimation of the diffusion term can be transferred to the Koopman lifting
technique. Practically this means that if time-derivatives have to be approximated
from trajectory data, then the order of the finite-difference approximation and the step
size crucially influence the accuracy of gEDMD, while the accuracy of the Koopman
lifting technique depends mostly on the lag time (and the implementation of the matrix
logarithm). For exact time-derivatives gEDMD has in general a higher accuracy than
the Koopman lifting technique. Table 3.1 summarizes and compares the accuracies of
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Table 3.1: Root mean square error for the system identification via gEDMD and the
Koopman lifting technique (KLT) as a function of different lag times respectively step
sizes τ and the order of finite-difference approximation for the dynamical systems as
they appear in the Examples 2.1.3 and 3.1.5. For each system the dictionary consists
of monomials up to and including degree 3 as well as trigonometric functions. We
generated 5000 training points uniformly distributed in X = [−1, 1] × [−1, 1] for both
methods. For exact derivatives the error for gEDMD is numerically zero.

Lag time resp. step size
Dynamical system Method Order τ = 0.1 τ = 0.01 τ = 0.001

Simple system KLT 6.97× 10−4 4.53× 10−4 6.75× 10−6

2 5.92× 10+0 3.39× 10−2 2.84× 10−5

gEDMD 4 3.49× 10−2 4.45× 10−4 7.01× 10−6

6 1.89× 10−3 4.60× 10−4 6.98× 10−6

Duffing oscillator KLT 3.44× 10−3 2.65× 10−4 1.24× 10−4

2 9.51× 10−1 2.54× 10−2 1.36× 10−4

gEDMD 4 9.77× 10−2 2.68× 10−4 1.27× 10−4

6 2.07× 10−2 2.83× 10−4 1.20× 10−4

Mathematical pendulum KLT 2.80× 10−3 2.18× 10−4 1.30× 10−5

2 1.59× 10−1 4.67× 10−3 1.38× 10−5

gEDMD 4 3.33× 10−3 1.35× 10−4 1.03× 10−5

6 3.48× 10−4 1.32× 10−4 1.08× 10−5

both approaches using the root mean square error (RMSE), which is defined by

err :=
√

1
l

∑l
i=1(ŷi − yi)

2, (3.5)

where yi and ŷi denote the measured quantity and its prediction, respectively.
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4 Population Limits and Large Time Scales
In this chapter, we focus on agent-based systems formulated as continuous-time stochas-
tic processes and their pathwise approximations by SDEs. We consider the case when
the number of agents or the time scale of interest or both become large. By means
of transfer operators, more specifically the Perron–Frobenius operator, we study for
both the ABM and its SDE approximation the long-term behavior and the existence
of metastable sets associated with it. Under certain conditions, the transfer operator
approach bridges the pathwise approximation by differential equations for large pop-
ulation sizes on finite time scales and methods to characterize the long-term behavior
on exponentially long time scales. We demonstrate that using the transfer operator
approach it is possible to study the behavior on exponentially long time scales for
medium or large population sizes by means of many short trajectories. Due to the
pathwise closeness of the ABM and the SDE approximation, the structures determined
using transfer operators are close for a sufficiently large number of agents, which can
reduce the computational cost of analyzing ABMs. For reasons of comprehensibility,
the considerations in this chapter are limited to ABMs acting on complete networks.
The extended voter model introduced in Section 2.2.3 is used as guiding example.

The results presented in this chapter appeared in our publication [127], to which the
author has made significant contributions.

4.1 Transfer Operator Approach
Metastability is a weak form of stability. A dynamical system is in a metastable state
when it is in an apparently stable state, although the system can transition to a more
stable state. Figuratively speaking, a bowling pin is in a metastable state if it wobbles
without falling over. Obviously, if it fell over, it reached a more stable state.

Consider the extended voter model acting on a complete interaction network. For
suitable chosen rate constants one opinion prevails in the population for a long period
of time before another opinion emerges, replaces the old one and eventually dominates.
Thus, the system exhibits a metastable behavior. In most cases the SDE limit model is
capable to reproduce such metastable behavior for moderate to large population sizes.
Clearly, the ODE limit model cannot reproduce it and fails in most cases. However, we
will see that the SDE limit model, as it requires finite time scales (especially independent
of the population size), may also be insufficient to fully explain this behavior.

To motivate the subsequent, we consider the Fokker–Planck equation (2.18). Assum-
ing technical conditions regarding the growth of b and Σ at infinity, a unique invariant
measure (stationary density) exists. However, it may exist only on the accessible part of
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the state space. The SDE limit model is reversible, i.e., it satisfies the detailed balance
condition with respect to this measure, if and only if there exists a smooth function V
such that

b(c) = −Σ(c) · ∇V (c) +
1

2N
∇ · Σ(c).

This can be written more explicitly as

K∑
k=1

α̃k(c)

(
ν>k ·

[
∇V − 1

2N
∇ log α̃k(c)

]
+ 1

)
νk = 0. (4.1)

If there exists a solution V of (4.1) with sufficient growth at infinity, the invariant
measure µ̂ of the SDE limit model (precisely the density associated with it) is given by

µ̂(c) =
1

Z
exp(−2NV (c)),

where Z is a normalization factor, see [175] for details. For further illustration, let us
calculate the invariant measure for an agent-based system.

Example 4.1.1. We consider the voter model with N agents and two types of agents.
Due to conservation, this is essentially a one-dimensional system and the solution of
the SDE limit model (2.16) satisfies C(t) = [c, 1− c]> with

dc =
[
(γ21 − γ12)c(1− c)− γ′12 c+ γ′21(1− c)

]
dt

+
1√
N

[
−
√
γ12 c(1− c)dW1(t) +

√
γ21 c(1− c)dW2(t)

]
+

1√
N

[
−
√
γ′12 cdW3(t) +

√
γ′21(1− c)dW4(t)

]
.

Using condition (4.1), it can be shown that this one-dimensional SDE is reversible.
Assuming symmetric rate constants, that is, γ12 = γ21 = γ > 0, γ′12 = γ′21 = γ′ > 0,
and setting κ := γ

γ′ , there exists a smooth function V satisfying (4.1), i.e.,

V (c) =
1

2N
log(2γ c(1− c) + γ′)− 1

2κ
log(2κc(1− c) + 1).

The invariant measure µ̂, depending on N , is then given by

µ̂(c) =
1

Z
exp(−2NV (c)) =

1

Zγ′
(2κc(1− c) + 1)

N
κ
−1 .

Figure 4.1 shows the invariant measure for different numbers of agents. For small
population sizes, precisely N = 60, it takes maxima for c = 0 and c = 1, while for
large population sizes, i.e., N = 1000 and N = 5000, there exists a unique maximum at
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Figure 4.1: Invariant measure of the SDE limit model for γ12 = γ21 = 1, γ′12 = γ′21 =
0.005, and κ = 200 depending on different values of N (red/solid: N = 60, blue/dashed:
N = 1000, green/dotted: N = 5000). Reproduced from [127].

c = 0.5. For larger N the concentration around the maximum gets sharper. In contrast
to this, the ODE limit model, which is given by

d

dt
c = −2γ′c+ γ′,

has a unique stable fixed point at c∗ = 0.5 to which it asymptotically converges. This
means that for N → ∞ both the ABM and the SDE limit vary around c∗ and get close
in finite time. The existence of the asymptotic stable fixed point of the ODE explains
why the invariant measure of the SDE takes a unique maximum at c∗ for large N .
It does not explain the behavior for small N , i.e., why there exist maxima elsewhere
for N = 60. Analogously, this holds for the ABM dynamics as well. We will observe
that the full behavior of the dynamics can be explained by the existence of metastable
sets. 4

4.1.1 Transfer Operators and Metastability
For the subsequent considerations, we recall the transfer operators P̃t

N and T t
N of the

(rescaled) ABM process and the associated SDE limit model, respectively, introduced
in Section 2.2.2. Let ϕ` denote the eigenfunctions of P̃t

N with corresponding eigen-
values λt` and analogously ϕ̂` and λ̂t` for T t

N . Note that in this chapter eigenvalues
are used according to Remark 2.1.2. We assume that both processes are geometrically
ergodic on the respective space and that the respective measures µ and µ̂ exist. For
the sake of comprehensibility we assume additionally reversibility of both dynamics,
which, however, is not necessary. Under this assumption the transfer operators become
self-adjoint in the Hilbert space L2

π (with π = µ or π = µ̂, respectively) and hence have
a real-valued spectral decomposition. This makes the following shorter and easier to
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follow compared to the setting where reversibility is not assumed. In this case the more
complicated complex alternatives like the Schur decomposition [40] or the singular value
decomposition have to be used. According to Remark 2.1.4, λt1 = 1 is an isolated and
time-independent eigenvalue. Further, it is the only eigenvalue with absolute value 1
and the corresponding eigenfunction is equal to the invariant measure, i.e., ϕ1 = µ.
This holds for both transfer operators P̃t

N and T t
N .

We are now able to revisit metastability and recall Remark 3.1.10, which said that the
dominant eigenvalues, in this chapter eigenvalues that are close to the maximal eigen-
value λ = 1, and the corresponding eigenfunctions can be used to identify metastable
sets in the respective dynamics. Another important role of the dominant eigenfunctions
lies in the theoretical justification of so-called Markov state models (MSMs), which are
very low-dimensional reduced models of the full transfer operators with almost the
same dominant eigenvalues [19, 153]. Given d̃� d dominant eigenvalues of the transfer
operator P̃t

N , the Markov states of an MSM are constructed by non-negative ansatz
functions ψk, k = 1, . . . , d̃, which satisfy P̃t

Nψk ≈ ψk as closely as possible. Thus,
we can interpret them as macro-states, which are almost invariant under the dynam-
ics. The ansatz functions ψk are chosen such that they form a partition of unity, i.e.,∑

k ψk = 1, and further, that the eigenvalues of the projected transfer operator QP̃t
NQ

are as close as possible to the dominant eigenvalues of the transfer operator P̃t
N . The

MSM is represented by a d̃ × d̃ matrix. Several algorithms for the computation of the
almost-invariant ansatz functions ψk based on the dominant eigenfunctions of P̃t

N have
been developed in the last years, such as set-oriented algorithms like milestoning [152]
or PCCA+ [143], which approximate a basis of the dominant eigenspace.

All previous considerations can be applied to both, the ABM and SDE process in-
dependently of the number of agents N . Furthermore, we will see in the next two
applications that for sufficiently large N the respective results of the MSM analysis are
close for the ABM and SDE process and converge for N → ∞.

Application: Metastable Behavior for Two Agent Types – Part 1

Let us revisit the voter model and the corresponding SDE limit model with two types
of agents and set the transition rates to γ12 = γ21 = 1 and γ′12 = γ′21 = 0.005. Fig-
ure 4.2 (a) and (b) show typical long trajectories of the two processes for N = 60
agents. Both the ABM and the SDE process show a metastable behavior with at least
two metastable areas which are located around c = 0 and c = 1. For increasing N
and with respect to the same time interval, these two metastable areas vanish and the
trajectories vary around the deterministic solution of the ODE limit model, see Fig-
ure 4.2 (c) and (d) for N = 5000. Short escapes from a narrow cylinder surrounding
the ODE fixed point become increasingly rare. We observe this behavioral dependence
of N also in Example 4.1.1.

We now want to explain this behavior with the existence of metastable sets. There-
fore, we approximate the Perron–Frobenius transfer operators P̃τ

N and T τ
N of the ABM

and SDE processes for different numbers of agents, here N = {60, 100, 200, 1000}, and
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Figure 4.2: Realizations of (a) the ABM and (b) the SDE process for two types S1 and
S2 of agents and N = 60 agents. (c) and (d) Realizations for N = 5000 agents. The
rate constants are chosen as γ12 = γ21 = 1 and γ′12 = γ′21 = 0.005. The asymptotically
stable fixed point of the ODE limit model is given by c∗ = [0.5, 0.5]>. In contrast to
the SDE limit model, the ODE limit model cannot approximate the ABM process as it
cannot reproduce the typical metastable behavior. Figures (a) and (b) reprinted from
[127].

time τ = 5. To calculate the projected transfer operators QP̃τ
NQ and QT τ

NQ, we use
Ulam’s method and discretize the one-dimensional state space into n uniform boxes
setting n = 30 for N = 60 and n = 100 for larger N . The entries of the respective
stochastic discretization matrices are then approximated by (2.10) for m0 = 5000 tra-
jectories of length τ = 5 per box for each process. Figure 4.3 (a) and 4.4 (a) show the
invariant measures of the respective stochastic discretization matrices. Compared to
the analytical results calculated in Example 4.1.1 for the SDE limit model, we observe
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Table 4.1: Second and third eigenvalues for different numbers of agents N for the
ABM and SDE limit model. Error estimates indicate that the error is about ±0.01 in
all cases. Reproduced from [127].

ABM SDE

Number of agents N λτ2 λτ3 λ̂τ2 λ̂τ3

60 0.9332 0.7204 0.9292 0.7002
100 0.9506 0.8131 0.9446 0.7932
200 0.9503 0.8591 0.9519 0.8579

1000 0.9510 0.8961 0.9492 0.8913

a very good approximation of the analytical result.
In the next step, we compute the dominant eigenvalues and eigenfunctions. For the

discretized matrix associated with the ABM process and N = 60 agents the leading five
eigenvalues are given by

λτ1 ≈ 1, λτ2 ≈ 0.93, λτ3 ≈ 0.72, λτ4 ≈ 0.46, λτ5 ≈ 0.25.

For the SDE limit model we obtain

λ̂τ1 ≈ 1, λ̂τ2 ≈ 0.93, λ̂τ3 ≈ 0.70, λ̂τ4 ≈ 0.43, λ̂τ5 ≈ 0.21.

The corresponding eigenfunctions for the second and third eigenvalues are shown in
Figure 4.3 (b) and (c). We observe that for both the ABM and SDE process the
second eigenfunctions ϕ2 and ϕ̂2 are qualitatively similar. Further, their respective
zeros decompose the state space into the two metastable sets given by A = [0, 0.5), and
B = [0.5, 1]. The associated metastable time scale of T2 = −τ/ log(λτ2) ≈ 100 seems
to correspond to the typical transition behavior shown in Figure 4.2 (a) and (b). For
the third eigenfunctions ϕ3 and ϕ̂3 we observe again qualitative agreement. Their zeros
reveal that also the approximate set [0.2, 0.8] around the fixed point c∗ = 0.5 of the
ODE limit model is metastable with associated metastable time scale T3 ≈ 14.

The dominant eigenvalues for further values of N are summarized in Table 4.1. We
observe that as N increases, the second eigenvalues remain (almost) the same, while the
third eigenvalues increase with N . As a consequence, the associated metastable time
scales T2 does not change significantly, while the metastable time scale corresponding to
the third eigenvalue increases from T3 ≈ 14 for N = 60 to T3 ≈ 45 for N = 1000. This
means that the set around the fixed point c∗ = 0.5 of the ODE process is increasingly
metastable, i.e., rare events happen less frequently. The same observations can be
made with the second and third eigenfunctions for the ABM and SDE process, which
are shown in Figure 4.4 (b) and (c). For N = 1000 agents these are now very similar.
The zeros of the second eigenfunctions still decompose the state space into the same
metastable sets as for N = 60 agents. However, for N = 1000 the metastable set around
the fixed point c = 0.5 has become significantly smaller, i.e., approximately [0.35, 0.65].
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Figure 4.3: (a) Invariant measures of the ABM and SDE process, respectively. The
analytical result is indicated in black/dashed. (b) and (c) weighted eigenfunctions
corresponding to the second and third eigenvalue, respectively. The eigenfunctions
associated with the ABM process are shown in blue and for the SDE limit model in
red. Rate constants are chosen as γ12 = γ21 = 1 and γ′12 = γ′21 = 0.005, for N = 60
agents. Figures (b) and (c) reprinted from [127].
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Figure 4.4: (a) Invariant measures of the ABM and SDE process, respectively. The
analytical result is indicated in black/dashed. (b) and (c) Weighted eigenfunctions
corresponding to the second and third eigenvalue, respectively. The eigenfunctions
associated with the ABM process are shown in blue and for the SDE limit model in
red. Rate constants are chosen as γ12 = γ21 = 1 and γ′12 = γ′21 = 0.005, for N = 1000
agents. Figures (b) and (c) reprinted from [127].
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Figure 4.5: Three c-dependent quasi-stationary ansatz functions ψk, k = 1, 2, 3, used
for constructing the MSM for the ABM process for N = 1000 agents. Reproduced from
[127].

For further analysis of the three metastable sets, we build an MSM for the ABM
process for N = 1000 agents via PCCA+ [143]. For three dominant eigenvalues, the
matrix representation of the projected transfer operator is given by

QP̃τ
NQ =

0.9506 0.0006 0.0488
0.0005 0.9525 0.0470
0.0271 0.0288 0.9441

 .
The eigenvalues λ = {1, 0.95, 0.89} of matrix QP̃τ

NQ agree with the dominant eigenval-
ues up to two digits. Figure 4.5 shows the computed almost invariant ansatz functions
ψk, k = 1, 2, 3. As the non-negative ψk form a partition of unity, they can be interpreted
as almost quasi-stationary distributions that are almost invariant under the dynamics.
However, they are not close to indicator functions of any of the sets1 meaning that
we cannot decompose the state space completely into three dominant metastable sets.
The metastability of the three sets is too weak. Therefore, we apply further techniques
in the following paragraph and application to increase the resolution of the underlying
rare events.

Mean First Exit Times

Next, we want to determine the expected mean first exit time ηN (i) for both processes
to get further information about their behavior. The vector ηN = (ηN (i))i∈I of the
expected mean first exit times ηN (i) for starting in some box Bi, where i ∈ I with
I = {i = 1, . . . , n : Bi ∩A = ∅} and entering some box A can be obtained by solving

1

τ
(Id− P τ

I )ηN = 1I . (4.2)

1In many other scenarios, however, this is the case, see [153] for details.
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Here P τ
I denotes the submatrix of the m×m discretization matrix P τ of the projected

transfer operator QP̃τ
NQ (respectively QT τ

NQ) for indices i ∈ I, and 1I the vector of
length |I| with all entries equal to one. Note that the sets A and Bi do not need to
be metastable sets or correlated with them. Equation (4.2) can be derived from the
Galerkin discretization of the respective equation of the full transfer operator. The
vector ΦN = (ΦN (i))i∈I of the associated rates can be computed via

ΦN (i) =
1

N
log(ηN (i)). (4.3)

We will calculate and compare the mean first exit times for both processes in the second
part of the application.

Application: Metastable Behavior for Two Agent Types – Part 2

We again consider the voter model and its corresponding SDE limit model with two
types of agents, but this time with asymmetric rates γ12 = 1, γ21 = 1.1, γ′12 = 0.03 and
γ′21 = 0.005. The ODE limit model exhibits one stable fixed point c∗ ≈ 0.7195 in [0, 1].
The deviation of the fixed points can be found in Appendix A.2. As in the previous case
with symmetric rate constants, both the ABM and the SDE process remain for large
N and finite time intervals in a tight cylinder around the deterministic ODE solution.

Again, we approximate the transfer operators P̃τ
N and T τ

N of the ABM and SDE
processes for N in {60, 100, 200, 1000} and time τ = 5 via a box discretization of the
state space into n = 30 for N = 60 and n = 100 boxes for larger N from m0 = 5000
trajectories of the respective process per box. The first and second eigenfunctions of the
projected transfer operators are shown in Figure 4.6 for N = 1000 agents. The invariant
measures, i.e., first eigenfunctions, of both processes agree and are concentrated on the
region around the fixed point c∗. Additionally, we observe that both eigenfunctions
decompose the state space into two main metastable sets, where one is located on the
left and the other on right of the fixed point c∗.

Let us now determine the expected mean first exit time ηN (i) for starting in some
box Bi for i ∈ I and I = {i = 1, . . . , n : Bi ∩A = ∅} and entering some set A = [0.9, 1],
which gives us also the expected mean first exit times ηN (i) from [0, 0.1] to [0.9, 1]. We
compute the associated rates ΦN (i) via Equation (4.3). Table 4.2 summarizes the rates
ΦN (i) for different numbers of agents N . We note two things: First, the mean first exit
times ηN associated with the ABM and the SDE dynamics are remarkably similar and
second, they grow exponentially with N . How these two observations can be explained
with the help of large deviation theory, is discussed in Section 4.2.

4.1.2 Advantages and Limits

Let us now take a closer look at the advantages and limitations of the transfer operator
approach. As a result of the pathwise closeness (2.17) of the ABM and SDE process, the
discretization matrices P t

SDE = QT t
NQ and P t

ABM = QP̃t
NQ of the transfer operators
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Table 4.2: Exit rates ΦN of the mean first exit times from [0, 0.1] to [0.9, 1] for different
numbers of agents N for the ABM and SDE process. The rates ΦN are marked as red
crosses in Figure 4.10. Reproduced from [127].

ABM SDE

Number of agents N ηN ΦN η̂N Φ̂N

60 458 0.0866 440 0.0784
100 540 0.0534 530 0.0515
200 874 0.0298 885 0.0293

1000 22000 0.0136 22100 0.0126

corresponding to both processes are close for large N . This implies

P t
SDE = P t

ABM +O(1/N)

entrywise [47, 153] for all times t ∈ [0, τ ] and (not too large) finite τ < ∞. Given an
n-dimensional ansatz space for the discretization, there exists a finite constant ζ0 <∞
such that

‖P τ
SDE − P τ

ABM‖1 ≤ ζ0
n

N

holds as an asymptotic result, i.e., there exists an N0 ∈ N such that the statement
holds for all N > N0. This result implies that for sufficiently large N we may use
the discretized SDE transfer operator to characterize the long-term behavior of the
ABM process. Moreover, since only trajectories of length τ are needed, we can actually
compute them in parallel for all boxes, which speeds up computation time.

However, as the discretizations P t
SDE and P t

ABM are computed using Ulam’s method
by means of trajectories via (2.10), we have to include an additional sampling er-
ror of order 1√

m0
in the number m0 of trajectories. Moreover, as the ansatz space

is finite-dimensional, the discretizations differ from the true transfer operators by the
discretization error errdiscr, see [147, 38]. Summarizing all results, we obtain in total

‖P τ
SDE,m0

− P̃τ
N‖1 ≤ ζ0

n

N
+ ζ1

n
√
m0

+ errdiscr, (4.4)

where P τ
SDE,m0

denotes the numerical approximation of the discretized transfer operator
P τ
SDE given time τ . Figure 4.7 gives a graphical overview of the different errors appearing

in Equation (4.4). Note that estimate (4.4) does not require any assumption of a spectral
gap of P̃t

N , but solely about time τ and the ansatz space, see [147, 148] for details on
the approximation error of MSMs.

In summary, we conclude that even for large values of N , the resolution given by the
underlying discretization limits the identification of metastable structures of the ABM
process by studying the discretized transfer operator P t

SDE associated with the SDE limit
model. The resolution itself may be restricted by computational resources. Especially
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Figure 4.6: (a) Invariant measures (first eigenfunctions). (b) Weighted second eigen-
functions associated with the ABM (blue) and the SDE process (red) for N = 1000
agents. Rate constants are chosen as γ12 = 1, γ21 = 1.1, γ′12 = 0.03 and γ′21 = 0.005.
Reprinted from [127].
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P τ
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P τ
ABM P τ
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ζ0
n
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ζ1
n√
m0

Eq. (4.4)

Figure 4.7: Connection between the true transfer operator P̃τ
N of the ABM process,

its discretization P τ
ABM, the discretization P τ

SDE associated with the SDE process and
its numerical approximation P τ

SDE,m0
for a given lag time τ .

if the metastable structures became finer and finer as N increases, the resolution needs
to be increased to ensure a sufficient accuracy. While achieving a higher resolution
by increasing the dimension n of the ansatz space with N , we may not be able to
sufficiently reduce the first error term in Equation (4.4).

Remark 4.1.2. Equation (4.4), its consequences and in general this work assume that
all types of agents are available in sufficient numbers. In the case of a sufficiently large
number of agents (more generally, the system size), the SDE limit model is known to
accurately approximate the chemical master equation [64]. However, if bi- or multi-
stability stems from the discreteness of the system (that is, if the size of the system
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is not large enough), the continuous approximation by the SDE process might fail to
capture this noise-induced multi-stability of the discrete system, see [42, 67]. In these
cases, hybrid modeling approaches may be used to approximate only parts of the process
components by an SDE, see [172] for more details.

4.2 Large Deviations
In Section 4.1 we saw that the transfer operator approach reaches its limitations when
rare events associated with metastability occur on time scales growing exponentially
with the number of agents N . The necessary increase of the resolution by increasing
the dimension n of the ansatz space is limited by computational resources and the
approximation accuracy estimate (4.4). In order to avoid this problem, we now use large
deviation theory which allows us to study these unlikely tail events. Using the voter
model with two types of agents as example, we will see that under specific conditions
there is an approximate agreement of the tail probabilities of the ABM process and the
corresponding SDE limit model, although this is not necessary the case as shown in,
e.g., [8]. As before in Section 4.1, we use the rescaled ABM process Cε

ABM(t) := 1
NX

N (t)
with smallness parameter ε = 1/N with the associated master equation (2.14) for our
analysis. Before giving a short introduction into large deviation theory, let us first take
a look at an illustrative example.

Example 4.2.1. Consider the voter model with two types of agents and set the rate
constants such that γ′21 = 0, δ = γ21 − γ12 > γ′12 > 0. Then the ODE limit model
exhibits two fixed points, where one is a stable fixed point at c∗stable = 1 − γ′

12
δ and

the other an unstable fixed point at c∗unstable = 0. The second fixed point refers to the
trapping state c∗trap = [0, 1] of the ABM process. For every initial value c0 ∈ (0, 1] the
trajectory of the ODE limit model converges asymptotically to the stable fixed point
c∗stable. For finite time intervals [0, T ] and sufficiently large N , the ABM and its SDE
limit model remain in a narrow cylinder around the deterministic solution of the ODE
process. However, for very large time intervals, i.e., T scales exponentially with N ,
both the ABM process and the associated SDE limit model will rarely deviate from the
narrow cylinder around the stable fixed point, approach and, in the case of the ABM
process, finally end up in the trapping state. This behavior can be seen in Figure 4.8
for the ABM. After more than 1.6× 106 time steps the ABM process leaves the narrow
cylinder around the stable fixed point and gets caught in the trapping state. 4

4.2.1 Introduction to Large Deviation Theory
Large deviation theory studies the exponential decay of probabilities characterizing
unlikely tail events for a large parameter; here the number of agents N . In the following,
we give a brief introduction to large deviation theory tailored to the formulations of
agent-based systems as introduced in Section 2.2.1. For a more general introduction to
the topic we refer the reader to, e.g., [121].
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Figure 4.8: Realization of the voter model ending up in the trapping state c∗trap
(green/dotted) after staying close to the stable fixed point c∗stable (red/dashed) for a
very large time interval. The rate constants are set to γ12 = 0.2280, γ21 = 0.3205,
γ′12 = 0.0261 and γ′12 = 0 and satisfy the condition in Example 4.2.1 such that the ODE
process has two fixed points.

Let Cε(·) = Cε(t), t ∈ [0, T ] be an (arbitrary, random) path from a suitable path
space C (e.g., C = H1([0, T ],Rd)) with initial value Cε(0) = c0 and ε = 1/N . Let the
probability distribution generated by the master equation (2.14), respectively by the
Markov jump process associated with it, or by the SDE limit equation (2.16) be denoted
by P. Given a specific path c(·) = c(t), t ∈ [0, T ] with initial value c(0) = c0 from the
path space C (e.g., the solution of the ODE limit model (2.15)) we call I : C → [0,∞]
the large deviation rate function associated with P if

lim
δ→0

lim inf
ε→0

ε logP

(
sup

t∈[0,T ]
‖Cε(t)− c(t)‖ < δ

)

= lim
δ→0

lim sup
ε→0

ε logP

(
sup

t∈[0,T ]
‖Cε(t)− c(t)‖ < δ

)
=− I (c(t))

for t in [0, T ], see [50]. This is written more intuitively as

P (Cε(·) ≈ c(·)) � exp

(
−1

ε
I (c(·))

)
, (4.5)

and means that the probability to find an arbitrary random path Cε(·) close to a specific
path c(·) decays exponentially with asymptotic rate given by the product of smallness
parameter 1/ε and rate function I. Here, ≈ denotes δ-closeness of the paths Cε(·) and
c(·) and � asymptotic equality or exponential equivalence, that is

ε logP (Cε(·) ≈ c(·)) = −I (c(·)) + o(1),
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4 Population Limits and Large Time Scales

where xε = x + o(1) means that (xε − x)/ε → 0 for ε → 0. We call expression (4.5) a
large deviation principle.

Alternatively, we can consider the following: the probability pε(t0, c0, t1, c1) to go
from c0 at time t0 to c1 at time t1 can be expressed via the path integral formalism by

pε(t0, c0, t1, c1) �
∫

exp

(
−1

ε
I (c(·))

)
Dc(·),

where Dc(·) denotes integration over all paths c(·) with initial value c(t0) = c0 and
final value c(t1) = c1 [18]. This means, that for small ε, the exponential factor
exp(−1

εI (c(·))) acts as probability density in C and that the rate function I is the
path space measure introduced by the dynamics.

In many cases, we can obtain expressions for the rate function by constructing its
pointwise form I : Rd × [0, T ] → [0,∞]. In this case Equation (4.5) becomes

P (Cε(t) ≈ c) � exp

(
−1

ε
I(c, t)

)
, (4.6)

meaning that
ε logP (Cε(t) ≈ c) = −I(c, t) + o(1)

for all t in [0, T ]. While I characterizes the associated probability distribution in the
path space C, the pointwise rate function I describes the asymptotic behavior of the
probability distribution P induced by the dynamics in the state space Rd [127].

4.2.2 Large Deviation Rate Functions for the ABM and SDE Process
Next, we compute the pointwise rate functions I for the master equation (2.14) of the
rescaled ABM process and the corresponding SDE limit model (2.16). We focus on
the essential results. In many cases, there exist explicit techniques as the Gärtner–
Ellis [44] or the Feng–Kurtz [50] methods to find the rate functions, see [121]. Besides
large deviation principle, other asymptotic approaches like WKB theory or eikonal
approximations, cf. [43, 8], allow the investigation of exponentially small probabilities
for Fokker–Planck and master equations in the sense of (4.6).

The following results are based on our publication [127].

Large Deviation Rate Functions for the ABM Process

It was shown in [8] that the solution of the master equation (2.14) satisfies

ρεABM(c, t) � exp

(
−1

ε
IABM(c, t)

)
for a rate function IABM. We can derive a Hamilton–Jacobi equation for IABM of the
form

∂tIABM(c, t) +HABM(c,∇I) = 0
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4.2 Large Deviations

with the Hamiltonian function
HABM(c, ξ) :=

∑
k

α̃k(c)
(
exp(ν>k · ξ)− 1

)
(4.7)

for ξ ∈ Rd. The rate function IABM can be characterized by

IABM(c(t)) = IABM(c0, 0) +

∫ T

0
LABM(c(t), ċ(t))dt, t ∈ [0, T ]

for c(0) = c0 using the Lagrangian

LABM(c, v) := sup
ξ

[
v> · ξ −HABM(c, ξ)

]
.

However, in general the Lagrangian LABM does not have an explicit form.

Mean First Exit Times. The infinitesimal generator G̃ε = G̃N of the rescaled ABM
process underlying the master equation (2.14) is given by

(G̃εf)(c) :=
1

ε

∑
k

α̃k(c) [f(c+ ενk)− f(c)] .

Let τ εc0 denote the exit time of the ABM process from a bounded domain D ⊂ Rd with
boundary ∂D starting in c0 ∈ D. Then, for the mean first exit time ηε(c0) = E(τ εc0)
it holds that G̃εηε = −1 with boundary conditions ηε = 0 on ∂D. We are interested
in large deviations of the mean first exit time ηε(c0) from a bounded domain D after
starting in a state c0 ∈ D. Therefore, we set

ηε(c0) � exp

(
1

ε
ΦABM(c0)

)
for a rate function ΦABM : Rd → [0,∞], which has to be interpreted as

lim inf
ε→0

ε log ηε(c0) = lim sup
ε→0

ε log ηε(c0) = ΦABM (c0) .

The large deviation theory then allows us to obtain∑
k

α̃k(c)
(
exp(ν>k · ∇ΦABM(c0))− 1

)
= 0

as an expression for the rate function ΦABM [121]. We can further write it using the
Hamiltonian HABM defined in (4.7), i.e.,

HABM(c0,∇ΦABM(c0)) = 0.

This implies that we can determine the rate function ΦABM for the mean first exit
time via the curves HABM = 0 in the phase portrait of the Hamiltonian system associ-
ated with the master equation (2.14). Therefore, the Hamiltonian HABM is crucial for
the characterization of both the large deviation rate function and the (exponentially
large) mean first exit time. Before computing the rate function ΦABM explicitly in
Section 4.2.3 using the Hamiltonian HABM, we repeat the previous considerations for
the SDE process.
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4 Population Limits and Large Time Scales

Large Deviation Rate Functions for the SDE Process

We consider a rate function ISDE for the SDE process (2.16) with the density ρεSDE(c, t)
such that

ρεSDE(c, t) � exp

(
−1

ε
ISDE(c, t)

)
.

Again, there exists a Hamiltonian function HSDE such that we have an equation of the
form [8, 121]

∂tISDE(c, t) +HSDE(c,∇ISDE) = 0.

Both rate functions IABM and ISDE have the same minimum curve, which is given by
the solution of the ODE limit model. Moreover, for small ξ, it holds that

HABM = HSDE +O(‖ξ‖3), (4.8)

which implies that the associated Hamiltonian of the SDE limit model is the second-
order accurate approximation of the Hamiltonian of the ABM process near the ODE
limit curve.

If the matrix Σ defined in the Fokker–Planck equation (2.18) is invertible, we can
directly compute the associated Lagrangian [53, 18]. In this case, large deviation rate
function ISDE on path space of the SDE system can be expressed as

ISDE (c(t)) =
1

2

∫ T

0
(ċ(t)− b(c(t)))>Σ(c(t))−1(ċ(t)− b(c(t)))dt

for paths c(t) ∈ H1([0, t],Rd) with t ∈ [0, T ] that start in the initial state c0. We set
ISDE(c0, 0) = 0 as initial condition.

Mean First Exit Times. As before for the ABM process, we consider the rate func-
tion ΦSDE for the mean first exit time from the given domain of the SDE process. The
infinitesimal generator Gε = GN corresponding to the SDE process (2.16) is given by

(Gεf)(c) = −
d∑

i=1

bi(c)
∂

∂ci
f(c) +

ε

2

d∑
i=1

d∑
j=1

Σij(c)
∂2

∂ci∂cj
f(c)

and in this case we get [18]

b(c)> · ∇ΦSDE(c) +
1

2
∇ΦSDE(c)

> · Σ(c)∇ΦSDE(c) = 0.

Again, the Hamiltonian function HSDE can be expressed by

HSDE(c,∇ΦSDE(c)) = 0.
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4.2 Large Deviations

4.2.3 Application: Explicit Rate Functions for Specific Propensities
After these preparations we derive explicit rate functions for the voter model. We con-
sider again two types of agents. The total (rescaled) propensity function for the extended
voter model is given by

aij(c) := αij(c) + α′
ij(c) = γij ci cj + γ′ij ci

for (i, j) = {(1, 2), (2, 1)} with net change vectors ν12 = −ν21 = [−1, 1]>.

Explicit Rate Function for the ABM Process

The Hamiltonian associated with the master equation (2.14) is given by

HABM(c, ξ) = a12(c) (exp(ξ2 − ξ1)− 1) + a21(c) (exp(ξ1 − ξ2)− 1)

and the Lagrangian is defined as

LABM(c, v) = sup
ξ

[
v> · ξ + a12(c) (1− exp(ξ2 − ξ1)) + a21(c) (1− exp(ξ1 − ξ2))

]
.

Due to the conservation property c1 + c2 = 1 for all solutions of the master equation,
it holds for the Lagrangian that

LABM(c, v) =

{
LABM,1(c1, v1), v1 + v2 = 0, c2 = 1− c1

∞, otherwise,

where LABM,1 denotes the reduced Lagrangian and is given by

LABM,1(c, v) = sup
∆ξ

[∆ξv + a12(c) (1− exp(−∆ξ)) + a21(c) (1− exp(∆ξ))]

for ∆ξ := ξ1 − ξ2, c and v one-dimensional, and aij(c) = aij((c, 1 − c)). The reduced
Lagrangian can be computed explicitly, which results in

LABM,1(c, v) = v log

[
1

2a21(c)
(v +

√
v2 + 4a12(c)a21(c))

]
+ a12(c) + a21(c)−

√
v2 + 4a12(c)a21(c).

Along the trajectory of the reduced ODE limit model, i.e.,

v = ċ = (γ21 − γ12)c(1− c) + γ′21(1− c)− γ′12 c (4.9)

it holds that LABM,1 = 0. The corresponding reduced Hamiltonian is given by

HABM,1(c,∆ξ) = a12(c) (exp(−∆ξ)− 1) + a21(c) (exp(∆ξ)− 1)

and we obtain the curves for HABM,1(c,∆ξ) = 0:

∆ξ = 0, ∆ξ(c) = log
a12(c)

a21(c)
. (4.10)

Figure 4.9 (a) shows the phase portrait of HABM,1 and the two curves (4.10) marked in
green and red.
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Figure 4.9: (a) Phase portrait of the reduced Hamiltonian HABM,1 with curves (4.10)
(green and red) for the ABM process. (b) Phase portrait of the reduced Hamiltonian
HSDE,1 with curves (4.11) (green and red) for the SDE limit model. The arrows indicate
the direction of the temporal evolution. Reprinted from [127].

Explicit Rate Function for the SDE Process

As a consequence of the conservation property, for the SDE process in this application
its holds that matrix Σ, which is given by

Σ = (a12 + a21)

[
1 −1
−1 1

]
,

is not positive. In fact, it has an eigenvalue 0. This implies that we have to use a
reduced Lagrangian LSDE,1 given by

LSDE,1(c, v) = max
∆ξ

(
v∆ξ + (a12(c)− a21(c))∆ξ −

1

2
∆ξ2

)
=

1

2
(a12(c)− a21(c) + v)2 .

Again, along the trajectory of the reduced ODE limit equation (4.9) it holds that
LSDE,1 = 0. The associated reduced Hamiltonian is given by

HSDE,1(c,∆ξ) = (a21(c)− a12(c))∆ξ +
1

2
(a12(c) + a21(c))∆ξ

2

and the curves for HSDE,1(c,∆ξ) = 0 are given by

∆ξ = 0, ∆ξ(c) = 2
a12(c)− a21(c)

a12(c) + a21(c)
. (4.11)
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4.2 Large Deviations

Additionally, we observe that HSDE,1 = HABM,1 + O(∆ξ3) in accordance with Equa-
tion (4.8). Figure 4.9 (b) shows the phase portrait of HSDE,1 and the two curves (4.11)
marked in green and red. Comparing both phase portraits and the zero-curves shown
in Figure 4.9 (a) and (b), we see that they are visually indistinguishable, which im-
plies that the respective large deviation rates for the mean first exit times are almost
identical.

Example 4.2.2. Consider again the voter model with two types of agents and the
same asymmetric rate constants γ12 = 1, γ21 = 1.1, γ′12 = 0.03 and γ′21 = 0.005 as in
Section 4.1.1 (Application, Part 2). In this setting we can explicitly compute the large
deviation rate functions. For instance, to calculate the rate of the mean first exit time
for passing from c0 = 0.1 to c1 = 0.9, i.e., facing a growth from a minority of 10 % of
the agents of type S1 to a majority of 90 %, we have to do the following: Starting in
state c0 we follow the green curve ∆ξ = 0 corresponding to the ODE limit model until
the fixed point c∗ ≈ 0.7195. Afterwards, we have to act against the ODE limit process
and follow the red curve. As the considered model is one-dimensional, the rate function
is given by

Φ(c0 → c1) =

∫ c∗

c0

∆ξdc+

∫ c1

c∗
∆ξdc ≈ 0 + 0.0102 = 0.0102,

which results from ∇Φ = ∆ξ, see [18]. Inserting the zero-curves (4.10) and (4.11)
for the ABM and SDE process, respectively, yields the same value for both rates.
Comparing these results to the empirical rate ε log(ηε(c0 → c1)) estimated from 1000
realizations of the ABM and the SDE process, we observe that the empirical rate
converges to the large deviation rate Φ(c0 → c1) for ε→ 0, i.e., N → ∞. Additionally,
the empirical rate of the ABM and the SDE process are almost identical even for small
N . Moreover, we also observe quantitative agreement with the rates of the mean first
exit times computed in Section 4.1 using the associated transfer operators, see Table 4.2.
Figure 4.10 summarizes the results, where the values of Table 4.2 are indicated by red
markers. 4

Remark 4.2.3. Along the curves ∆ξ = 0 the temporal derivative d
dtc =

∂H
∂∆ξ is positive

on the left hand side of the fixed point c∗ and negative on the right hand side, while the
temporal derivative d

dt∆ξ = −∂H
∂c is constant 0. Thus, with the ODE limit model, we

always end up at the fixed point c∗, no matter which side we approach from. Along the
red curves for, e.g., ∆ξ > 0, both derivatives d

dt∆ξ and d
dtc are positive and we follow

the red curve upwards to c1. In Figure 4.9 the direction of the temporal evolution is
indicated by arrows.

4.2.4 Deviations of the SDE Rates from the ABM Rates
For the voter model analyzed in Section 4.2.3 the Hamiltonian’s phase portraits of
the ABM process and its SDE limit model are visually indistinguishable, see Fig-
ure 4.9, so that the resulting mean first exit rates are almost identical. However, as the
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Figure 4.10: Mean time ηε(c0 → c1) to pass from c0 = 0.1 to c1 = 0.9 for (a) the
ABM process and (b) the SDE limit model compared to the value Φ(c0 → c1) = 0.0102
of the rate function. The dashed lines mark the confidence interval for confidence level
0.999. The values of Table 4.2 are indicated by red markers. Reprinted from [127].

Hamiltonian of the SDE limit model is only a second order accurate approximation in
∆ξ = ξ1 − ξ2 of the ABM process, there may be deviations for large ∆ξ, which lead
to exponential deviations in the exit times. In these cases, the SDE process fails to
quantitatively capture the dynamics of the ABM process. Therefore, characterization
of metastable behavior via the SDE process is in general insufficient to quantitatively
understand the metastability of the ABM process.
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5 Data-Driven Model Reduction of
Agent-Based Systems

In Chapter 4 we saw that the long-term characteristic behavior of agent-based systems
can be determined by simulating (many) short trajectories of the corresponding SDE
limit models instead. In this chapter, our goal is to illustrate how we can use the
Koopman generator to obtain reduced models represented by ordinary or stochastic
differential equations and infer the physical laws of complex agent-based system from
aggregated trajectory data that represents the collective behavior of larger groups or
the entire population. The approach is based on the methods presented in Chapter 3,
with the difference that here we directly learn reduced models from (highly noisy)
data generated by an ABM. Since we know the resulting limit processes for agent-
based systems defined on complete networks such as the voter model, we can compare
the numerical results obtained for finitely many agents with the theoretical results
and demonstrate that under appropriate conditions the estimated models are in good
agreement with known limit cases. We show that the obtained reduced models are in
good agreement with the corresponding SDE limit models for large population sizes and
can be used for both system identification and predictions of the temporal evolution.
Furthermore, we demonstrate that the proposed approach also yields good reduced
models that allow prediction in some other cases where the limit process is unknown
or the system is even far from a limit case. This is shown for the voter model on
incomplete, clustered interaction networks as well as for agent-based systems that do
not have a network-based formulation such as the predator-prey model or civil violence
model. In general, this approach requires a large amount of data, which, however,
is not a problem in simulation studies, where a surrogate model is required for the
optimization or control of the full-complexity ABM.

The results presented in this chapter appeared in our publication [126].

5.1 Learning Reduced Models from Noisy Data
Although the presented approach is based on Chapter 3 and our publication [85], learn-
ing a reduced model for an agent-based system from (noisy) aggregated trajectory data
still remains a non-trivial task. Firstly, we need to estimate the drift and diffusion
terms pointwise, cf. Section 3.1. Secondly, we obtain global descriptions of the drift and
diffusion terms using the Koopman generator, cf. Section 3.1.1. The necessarily large
number of agents and the often counterintuitive choice of basis function pose further
problems. The proposed approach is sketched in Figure 5.1. We will now go through
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Agent-Based Model

Macro-Scale

Micro-Scale

Figure 5.1: On the micro-scale level the agent-based system computes state Xt+τ given
an initial state Xt. On the macro-scale level we need to determine a reduced model
represented by an SDE such that the aggregate state xt+τ associated with Xt+τ can be
computed from xt (associated with Xt).

the main steps necessary to learn the Koopman generator from data generated by an
ABM.

Measurements. We consider an ABM and assume that we have access to m measure-
ments of an aggregate state variable representing agents sharing, e.g., the same type
Si or belonging to some group. Let us denote these measurements by {xl}ml=1. To
ensure a good coverage of the whole aggregate space, we choose the measurements xl
such that they are uniformly distributed in the (aggregate) state space X. Note that
X is not necessarily the population state space (2.11). To achieve a good coverage of
the aggregate state space X, one option is to construct an appropriate map from the
macroscopic (aggregate) state xt = xl(t) to the microscopic ABM state Xt = Xl(t),
l = 1, . . . ,m. By appropriate we mean that the mapped macroscopic state xt and a
naturally evolved ABM state Xt with same aggregate variables agree in probability. In
practice, this means that if, e.g., the agents follow a certain spatial distribution, this
must be taken into account when constructing the map. Alternatively, we can gather
the measurements “on the fly”, i.e., by using the full ABM states belonging to aggregate
trajectories, which can be obtained from the simulation of the ABM. The price to pay
for this rather straightforward approach is that it might not result in a good coverage of
the entire aggregate space. The mapping back from micro-scale to macro-scale consists
in most cases only of determining the different group sizes. At this point we know the
(macroscopic) aggregate states xt and xt+τ associated with the microscopic states Xt

and Xt+τ , respectively.

Pointwise Estimates. The overall goal is to find an SDE of the form (2.2), which
represents a reduced model of the ABM. However, along with the simplicity of ABMs
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5.1 Learning Reduced Models from Noisy Data

comes that the drift and diffusion terms b and σ are inherently unknown such that we
need accurate estimate of them. This can be achieved via pointwise finite difference
approximations for each measurement {xl }ml=1 using the Kramers–Moyal formulae

b(x) := lim
τ→0

E
[
1

τ
(Xτ − x)

∣∣∣∣ X0 = x

]
, (5.1)

a(x) := lim
τ→0

E
[
1

τ
(Xτ − x)(Xτ − x)>

∣∣∣∣ X0 = x

]
. (5.2)

The above formulae can be derived from the Kramers–Moyal expansion, see, e.g., [142].
We evaluate both expressions by Monte Carlo methods via multiple short trajectories
of the ABM at each data point {xl }ml=1 (using the map between macro-scale and micro-
scale level). The simulation of several short realizations of the full ABM is similar
to the so-called equation-free approach. We also applied it previously in Chapter 4 to
approximate the Perron–Frobenius operator of an ABM and the corresponding SDE
limit process. It is important to emphasize that these pointwise estimates of the drift
and diffusion for each training data point form the first step in obtaining a global
description of them. We now know the (macroscopic) aggregate states {xl}ml=1 and the
pointwise drift and diffusion estimates {b(xl)}ml=1 and {a(xl)}ml=1.

Conservation. If the aggregate state is subject to conservation, we have only d − 1
degrees of freedom and the aggregated trajectory data belongs to a d − 1 dimensional
system. For instance, if the number of agents N is constant for all time t ≥ 0, the ag-
gregate state xj(t) (e.g., representing the number of agents of type Sj) can be expressed
by

xj(t) = N −
∑
i 6=j

xi(t).

Thus, without loss of generality, we reduce each measurement by keeping only the first
d − 1 components. This way we eliminate redundant representations of the system.
Additionally, we can obtain a frequency representation ci(t) = xi(t)/N by scaling the
measurements by the number of agents N .

Basis Functions. Next, we need to select a set of basis functions {ψi}ni=1, which, again,
is a non-trivial but crucial step, since in general it is not clear how the drift term b and
diffusion term σ of the SDE (2.2) look like. Assuming that the SDE approximation
of the ABM adopts to the model structure introduced in Section 2.2 and comprises at
most pth order transitions, we can show that a dictionary consisting of monomials up to
and including degree p+1 is sufficient to correctly identify the model of the form (2.16).
To show this, we rewrite the SDE (2.16) such that it takes on the form of (2.2), i.e.,
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the drift and diffusion terms b(c) and σ(c) are given by

b(c) =

K∑
k=1

α̃k(c)νk, (5.3)

σ(c) =
1√
N

[√
α̃1(c)ν1 . . .

√
α̃K(c)νK

]
. (5.4)

First note that the maximum degree of all propensity functions coincides with the
highest order transition. Thus, to identify the drift term (5.3), the set of basis functions
needs to contain at least monomials up to degree p. Second, as gEDMD identifies
a = σσ> and not the diffusion term (5.4) itself, we compute for c = x/N

a(c) := σ(c)σ(c)> =

K∑
k=1

1

N
α̃k(c)νkν

>
k ,

which implies that monomials are sufficient for the identification of the diffusion term
as well. Moreover, due to diffusion identification using Equation (3.3), we can conclude
that also monomials of degree p+1 are required. However, in Section 5.2.4 we see that
monomials are not always sufficient to correctly identify the underlying dynamics.

Identification. We can now compute the matrices ΨX and dΨX of Section 3.1.2 and
set up the minimization problem ‖dΨX −MΨX‖F . The solution L = M> represents
an empirical estimate of the infinitesimal generator L corresponding to the ABM. We
identify the drift and diffusion terms b and σ using a suitable projection matrix B,
which are now global descriptions (i.e., functions depending on x), cf. Section 3.1.1.
The considerations above are not restricted to ABMs but applicable to other (stochastic)
dynamical systems, where different scale regimes, estimation of drift and diffusion terms,
or conversation play a role. Algorithm 5.1 summarizes the procedure.

Remark 5.1.1. A Python toolbox for the data-driven model reduction of agent-based
systems via Algorithm 5.1 is available at https://github.com/Henningston/ABMs.
The toolbox contains the following:

(i) The voter model implemented as Markov jump process on complete networks, the
extended voter model implemented in discrete-time for arbitrary networks, and
the predator-prey model. The respective models are contained in VoterModel.py,
ExtendedVoterModel.py and PredatorPreyModel.py.

(ii) The demo scripts use the voter model to show how the toolbox can be used. The
script demo_data_generation.py illustrates the generation of measurements of
the aggregated state. In demo_post_processing.py drift and diffusion terms for
each measurement are estimated pointwise using the Kramers–Moyal formulae.
The data is normalized and the generator approximation matrix is computed. The
reduced stochastic differential equation can be simulated with demo_reduced_
SDE.py. Its accuracy can be evaluated with demo_evaluation.py.
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5.2 Numerical Results

Algorithm 5.1: Algorithm 4.1 in [126]

1. Generate m measurements {xl}ml=1 of the aggregated state of the ABM.
2. Estimate the drift and diffusion terms {b(xl)}ml=1 and {a(xl)}ml=1 at the

measurement points, e.g., via Monte Carlo simulations for short lag times τ
using the Kramers–Moyal formulae (5.1) and (5.2).

3. If applicable, normalize the data:
a) Reduce the training data by keeping only d− 1 components of each

measurement as well as its drift and diffusion estimates.
b) Scale by the number of agents N , i.e., ci(t) = xi(t)/N .

4. Choose a suitable set of basis functions {ψi}ni=1 and compute the matrices ΨX

and dΨX .
5. Minimize ‖dΨX −MΨX‖F and obtain a generator approximation L =M>

and identify the drift and diffusion terms using Formula (3.3).

5.2 Numerical Results

We now consider four benchmark problems to evaluate the efficacy of the procedure
summarized in Algorithm 5.1. In Section 5.2.1, for varying numbers of agents N and
numbers of Monte Carlo samples k for the pointwise drift and diffusion estimates we
compare the data-driven results with the theoretical SDE limit model (2.16) for the
voter model. If the number of agents is sufficiently large and the accuracy of the
estimates is high enough, the data-driven SDE coincides with the SDE limit model
associated with the voter model, which shows that these are two crucial parameters for
the quality of the numerically obtained model. In Section 5.2.2, we extend the SDE
limit model and consider the case where the network consists of clusters connected
by a few edges only. We observe that with increasing connectivity between the clus-
ters the fractions of agents sharing the same opinions synchronize. In the subsequent
Sections 5.2.3 and 5.2.4, we go beyond network-based descriptions and consider the
predator-prey model and the civil violence model. While the first model still allows the
use of monomials as basis functions, this is not the case for the second. All results are
compared using the root mean square error defined in (3.5).

5.2.1 Extended Voter Model on Complete Networks

We consider the voter model with d = 3 opinions as defined in Section 2.2.3 and
assume a fully connected interaction network. Due to the conservation of agents, this is
essentially a two-dimensional system and the state space is given by the two-dimensional
simplex XN as defined in (2.11). Thus, we reduce the limit SDE (2.16) by one equation
to make it comparable with the data-driven SDE. We set the same rate constants as in
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Example 2.2.2, i.e.,

γ12 = γ23 = γ31 = 2, (5.5a)
γ32 = γ21 = γ13 = 1, (5.5b)

γ′ij = 0.01, (5.5c)

for (i, j) = {(1, 2), (2, 3), (3, 1), (3, 2), (2, 1), (1, 3)}. We then scale each measurement by
the number of agents N and obtain cj(t) = 1−

∑
i 6=j ci(t). Then, the drift and diffusion

terms are given by b : X → R2 and a : X → R2×2, respectively. Their derivation can be
found in Appendix A.3. Note that a(c) = a(c)> = (aij(c)).

For the dictionary we choose monomials up to degree 3 as the highest order transition,
i.e., imitation, is of order 2. We can now analytically construct for any given number of
agents N ∈ N the first columns of the generator approximation LN using the coefficients
of b and a. For example, for N = 10 agents the matrix entry l22 is given by the coefficient
of c1 in the first component b1 of the drift term b, i.e., l22 = γ31 − γ13 − γ′12 − γ′13 − γ′31,
see Equation (A.2a) in Appendix A.3 for details. Then, the first six columns of matrix
L10 are given by

L10 =



1 c1 c2 c21 c1c2 c22 ...

1 0 0.01 0.01 0.001 0 0.001 . . .
c1 0 0.97 0 0.321 0.009 0 . . .
c2 0 0 −1.03 0 0.009 0.321 . . .
c21 0 −1 0 1.64 0 0 . . .
c1c2 0 −2 2 0 −0.36 0 . . .
c22 0 0 1 0 0 −2.36 . . .
c31 0 0 0 −2 0 0 . . .
c21c2 0 0 0 −4 1 0 . . .
c1c22 0 0 0 0 −1 4 . . .
c32 0 0 0 0 0 2 . . .


∈ R10×10.

Given the expressions derived for the drift and diffusion term of the SDE limit model,
see Appendix A.3, we expect that the drift and diffusion terms of the data-driven system
take on the following structure:

bi(c) := βi5 c
2
1 + βi4 c

2
2 + βi3 c1c2 + βi2 c1 + βi1 c2 + βi0, (5.6a)

aij(c) := κij5 c
2
1 + κij4 c

2
2 + κij3 c1c2 + κij2 c1 + κij1 c2 + κij0 . (5.6b)

We can immediately obtain the coefficients βih appearing in (5.6a) from the second and
third column of matrix LN , i.e,

b1(c) = (Lψ2)(c) = −c21 − 2c1c2 + 0.97c1 + 0.01,

b2(c) = (Lψ3)(c) = c22 + 2c1c2 − 1.03c2 + 0.01.
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The coefficients κijh appearing in (5.6b) are obtained from the columns four to six. For
instance, the component a12(c) is given by

a12(c) = (Lψ5)(c)− b1(c)c2 − b2(c)c1 = −0.3c1c2 − 0.001c1 − 0.001c2.

Under certain conditions we can recover the rate constants of the underlying Markov
jump process. For the considered system we compare the drift and diffusion coefficients
of the SDE limit model (2.16) with the data-driven system (5.6) and set up a system
of linear equations Aγ = v, where A is a suitable matrix and γ and v are given by

γ = [γ12, γ13, . . . , γ32]
>,

v = [β15 , . . . , β
2
0 , κ

11
5 , . . . , κ

22
0 ]>.

In this example the rate constants (5.5) are chosen such that the model is symmetric
in the sense that imitation is possible in both ways (i.e., γij 6= 0 for all i 6= j). As
a consequence, we cannot solve the linear system exactly but only find dependencies
for γij and γji that give the same coefficients of the drift and diffusion terms b and σ.
However, this is only affecting the reconstruction of the underlying Markov jump process
but not the data-driven model.

Evaluations

We compare the numerical results to the corresponding analytical counterparts, i.e.,
the columns of matrix LN and the drift and diffusion terms of the SDE limit model.
We set a maximum of 5000 for both the number of agents N and the number of Monte
Carlo samples k for the pointwise estimation via the Kramers–Moyal formulae. As the
state space XN is discrete and the number of agents N assumed to be constant, the
amount of distinct points is finite and depends on N and d. More precisely, the number
of distinct points of a d-dimensional regular discrete simplex with N +1 points on each
edge is given by

(
N+d
d

)
for d ≤ N [33]. In this example, we consider three opinions

and thus have a two-dimensional simplex with
(
N+2
2

)
points. Choosing m ≤

(
N+d
d

)
uniformly distributed measurements in XN for different N as indicated in Table 5.1,
we estimate the drift and diffusion term for each point via finite differences using the
Kramers–Moyal formulae for k short trajectories of the Markov jump process with a
lag time of τ = 0.01. In total we used m · k training data points for the identification.

Figure 5.2 shows the identification error between the numerically obtained drift and
diffusion coefficients and the analytical counterparts of the SDE limit model depending
on the number of agents and Monte Carlo samples. With increasing N and k the
error decreases by several orders of magnitude. However, the number of agents has a
significantly larger influence than the number of samples. In particular, for small N ,
e.g., N = 10, we observe that higher values of k do not improve the error. This is
consistent with Equation (2.17) since the SDE (2.16) approximation of the Markov
jump process improves for larger N .
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Figure 5.2: Approximation error of the coefficients of (a) the drift and (b) diffusion
estimates for the voter model in Section 2.2.3 compared to the exact SDE limit model
(2.16) depending on the number of agents N and number of Monte Carlo samples k for
the estimation via Kramers–Moyal formulae. For increasing N and k the approximation
error decreases. The number of measurementsm depends onN and is given in Table 5.1.
Reproduced from [126].

Table 5.1: Measurement set sizes used for the computation of the system identification
error of the voter model on complete networks for given N . The total training data set
is of size m · k.

Number of agents N Measurements m
10 7
25 35
50 133

100 515
250 3163

N ≥ 500 10000

Another important aspect next to system identification is how well the data-driven
model approximates the dynamics of the ABM, e.g., to make predictions about the
number of agents of a specific type, which then might be used for optimization or
control. In Figure 5.3 (a) we see the long-term prediction of the data-driven model and
the analytical SDE limit model (2.16). Expectation and standard deviation, which are
estimated from 1000 Monte Carlo simulation, show a good agreement. In particular
with respect to the numerical effort that makes the simulation required for Figure 5.3 (a)
infeasible in many cases, the data-driven model provides valuable results. In addition,
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Figure 5.3: (a) Expectation (solid) and standard deviation (shaded) of the data-driven
model for the dynamics of the voter model for N = 5000 agents and the corresponding
SDE limit model (2.16) (black/dotted) estimated from 1000 Monte Carlo simulations.
The initial state is set to c(0) = [0.2, 0.7, 0.1]> ∈ X. (b) Approximation error of the drift
and diffusion estimates compared to the analytical SDE limit model (2.16) depending
on the number of measurements m for fixed k1 = 10 (dashed), k2 = 100 (solid). The
error is averaged over 100 simulations and N = 5000 agents. Independently, for both
parameters m and k, a smaller error can be expected for larger amounts of training
data. Reproduced from [126].

the time required to simulate the data-driven model is significantly less than the original
ABM.

Next, we compute the dependency of the error on the number of measurements m
given a fixed k. Figure 5.3 (b) shows the error depending on m averaged over 100
simulations for 5000 agents for two fixed k, namely k1 = 10 (dashed) and k2 = 100
(solid). As expected, with increasing m the error decreases by several orders of magni-
tude independently of k. If we consider the total number of training data points m · k,
the impact of increasing m is larger than the one of increasing k. We observe that for
small m · k, the error is smaller for k1 = 10 than for k2 = 100 since the state space is
covered more densely by the measurements. For instance, for k1 = 10 and m = 100 the
error is less than for k2 = 100 and m = 10. This can easily be seen by shifting the solid
lines by one decade to the right. Thus, we have two parameters to tune the amount of
training data to be used.

5.2.2 Extended Voter Model on Clustered Networks

In the previous section we assumed that the network is fully connected. However, since
the assumption that any agent can interact with all other agents at any time is rather
the exception in ABMs, we consider now the case where the network consists of Q
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(not necessarily equally-sized) clusters. Within a cluster we assume that each agent
is connected to all other agents, i.e., each cluster q is a complete subgraph of size Nq.
Between distinct clusters two agents are connected with probability p such that for
sufficiently small p the clusters are connected only by a few edges. The corresponding
adjacency matrix can then be represented as block matrix with dense and sparse sub-
matrices. As before, the agents act according to the rules of the voter model. However,
as the network is not fully connected anymore, transition propensities depend on the
size of the individual neighborhood of each agent and therefore might differ among
agents. Additionally, since now aggregation without respecting the network structure
leads to errors, we augment the population state to include subpopulations for each
cluster, i.e., we aggregate per cluster. This cluster-wise aggregated data is then used to
learn a reduced, data-driven model of the agent dynamics.

An SDE Limit Model for Clustered Networks

We now extend the SDE limit model to describe the temporal evolution of the relative
frequencies for each type per cluster. Assume that the interaction network consists of Q
clusters and that the edges connecting two different clusters are drawn uniformly with
probability p. The augmented system state is given by

C(t) =
[
c1(t)

>, . . . , cQ(t)
>
]>

∈ RdQ.

Let α̃q,k denote the rescaled propensity function of transition k in cluster q and νq,k ∈
RdQ the corresponding net change vector. We obtain the augmented SDE limit model
given by

dC(t) =

Q∑
q=1

 Kq∑
k=1

α̃q,k(C(t))νq,kdt+

Kq∑
k=1

1√
N

√
α̃q,k(C(t))dWq,k(t)νq,k

 .
For simplicity, we assumed equally-sized clusters, i.e., N agents per cluster. However,
clusters of different sizes are also possible as we see in the following example.

Example 5.2.1. Consider a network with two clusters Q1 and Q2, each with N1 and N2

agents. Let p denote the probability for an edge connecting two agents of cluster Q1

and Q2. The connection strength between cluster Q1 and Q2 is defined as the ratio
between the number of edges E connecting both clusters and the total number of
possible connecting edges Emax = N1N2. The expected connection strength is then
given by

E
[

E

Emax

]
=

E[E]

Emax
=
pN1N2

N1N2
= p.

Let us consider the same transition rules as for the voter model in Section 2.2.3, i.e.,
imitation and exploration. Since the latter is a transition independent of all other
agents, it is also independent of the network structure. In contrast, imitation depends on
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the network as it is induced either inside or outside a cluster such that the corresponding
transition rule is given by

Rqq′,ij : Sq,i + Sq′,j → Sq,j + Sq′,j .

If q = q′, we call Rqq′,ij an intra-cluster transitions, otherwise an inter-cluster transi-
tions. Note that while the transition rules Rqq′,ij for q = q′ and Rij (cf. Section 2.2.3)
look the same, their propensity functions αij differ. For intra-cluster transitions they
are given by

αij =
1

Nq + pNq′
γq,ij xq,ixq,j .

Note the difference in the denominator which is due to the fact that each agent expects
Nq + pNq′ possible partners for interaction. For inter-cluster transitions the propensity
functions are given by

αqq′,ij =
p

Nq + pNq′
βq,ij xq,ixq′,j

with corresponding net change vector νqq′,ij = νij . This is because an inter-cluster
transition Rqq′,ij has only influence cluster Qq and thus, from the agents’ point of view,
Rqq′,ij has the same effect as R′

ij . For the augmented state C(t) =
[
c1(t)

>, c2(t)
>]> ∈

R2d, the SDE solution is given by

dcq,i(t) =

[∑
i 6=j

1

(p+ 1)
(γq,ji − γq,ij)cq,i(t)cq,j(t) (5.7a)

+
∑
i 6=j

[
γ′
q,ji cq,j(t)− γ′

q,ij cq,i(t)
]

(5.7b)

+
∑
i 6=j

p

(p+ 1)

[
βq,ji cq,j(t)cq′,i(t)− βq,ij cq,i(t)cq′,j(t)

]]
dt (5.7c)

+
1√
N

[∑
i 6=j

√
1

(p+ 1)
γq,ji cq,i(t)cq,j(t)dW

im
q,ji(t)−

√
1

(p+ 1)
γq,ij cq,i(t)cq,j(t)dW

im
q,ij(t) (5.7d)

+
∑
i 6=j

√
γ′
q,ji cq,j(t)dW

ex
q,ji(t)−

√
γ′
q,ij cq,i(t)dW

ex
q,ij(t) (5.7e)

+
∑
i 6=j

√
p

(p+ 1)
βq,ji cq,j(t)cq′,i(t)dW

int
q,ji(t)−

√
p

(p+ 1)
βq,ij cq,i(t)cq′,j(t)dW

int
q,ij(t)

]
. (5.7f)

The addends (5.7c) and (5.7f) correspond to inter-cluster transitions, while the others
correspond to intra-cluster transitions. To simplify the notation, we assumed that both
clusters are of the same size. We drop the index q whenever it is clear from the context.
However, for unequally-sized clusters the following coefficients change:

1
p+1 −→ 1

p
Nq′
Nq

+1
, (inter-cluster)

p
p+1 −→ p

p
Nq
Nq′

+1
, (intra-cluster).

Additionally, 1/
√
N changes to 1/

√
Nq. Then, for Nq � Nq′ , the influence of cluster q′

vanishes, while Nq � Nq′ the opposite is the case. 4
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Algorithm 5.2: Discrete-Time Extended Voter Model
forall timesteps do

Randomly arrange all agents in a queue.
forall agents in queue do

Get number N of adjacent neighbors.
Get number Xj of type Sj in neighborhood for all d types.
Calculate transition probabilities P = exp(tstepG) based on neighbors for

(Gij)i,j=1,...,d =

{
−
∑d

j=1
γijXj

N + γ′ij , if i = j,
γijXj

N + γ′ij , else.

Update agent’s state according to previously calculated probabilities.

Evaluations

We consider a network consisting of two equally-sized clusters, each with N = 50
agents, and assume that the rate constants for intra- as well as inter-cluster transitions
are equal in both clusters, i.e., γq,ij = γq′,ij , γ′q,ij = γ′q′,ij , and βq,ij = βq′,ij = γq,ij for all
(i, j) = {(1, 2), (2, 3), (3, 1), (3, 2), (2, 1), (1, 3)}. For imitation we set the rate constants
to (5.5a) and (5.5b). For exploration we set γ′ij = 0 for all pairs (i, j). In this section we
simulated the ABM in discrete time with step size tstep = 0.01 using Algorithm 5.2. We
chose m = 1000 uniformly distributed initial states of the ABM and created k = 1000
samples for each of them to obtain the data-driven model via Algorithm 5.1 applied to
the cluster-based aggregate states of the agent dynamics on the network.

The data-driven model is compared against the model defined in (5.7) for the two
networks depicted in Figures 5.4 (a) and (b). The first network, being a subgraph of the
second, has a connection strength of p = 0.01. The second network has a 20-times larger
connectivity, i.e., p = 0.2. The prediction of the temporal evolution of the expectation
for each type per cluster is shown in Figures 5.4 (c) and (d). Although both predictions
start from the same initial value, they quickly differ in their evolution over time. We
also find that at higher connectivity, i.e., larger p, both clusters synchronize so that
the relative number of agents per type in each cluster is identical, see Figure 5.4 (d).
In both cases, this is a direct consequence of the network structure. As for complete
networks in Section 5.2.1, the results improve for larger values of N , m, and k.

Remark 5.2.2. Consider a network where two agents are randomly connected with
a probability of 10 %. If the network is not connected, we consider each component
individually. In any case, the resulting network is sparsely connected. We assume that
the network (the component) consists of N = 500 agents such that the approximate
average degree is 50. We compute a data-driven model for this setting using m =
k = 1000 measurements and realizations for a lag time of τ = 0.01 and compared it
to the ABM. Figure 5.5 (a) shows the first moments of the data-driven model (solid)
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Figure 5.4: (a-b) Adjacency matrices of interaction networks with two clusters of
connectivity p = 0.01 and p = 0.2, respectively. Each cluster has N = 50 agents,
where black represents an edge and white no edge. (c-d) First-order moments of the
data-driven model (solid) and the limit SDE (5.7) (dotted) for initial value c(0) =
[0.85, 0.1, 0.05, 0.2, 0.5, 0.3]>. The data-driven model is estimated using m = k = 1000
measurements and realizations for a lag time of τ = 0.01. Reproduced from [126].

and the ABM (dashed) estimated from 1000 Monte Carlo simulations. While for short
times t the data-driven model agrees with the ABM, for larger time t the prediction
deteriorates primarily due to the sparsity of the network. It should be noted that
the lack of a reference model for sparse networks complicates the analysis. However,
if we compare the pointwise difference between the expectations of the data-driven
approximation (solid) or the SDE limit model (2.16) (gray/dotted) and the voter model
(dashed), the data-driven model provides a better approximation than the limit SDE,
see Figure 5.5 (b).
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Figure 5.5: (a) Expectation of the data-driven model (solid) compared to the voter
model (dashed) for N = 500 agents on a random network with average degree of
approximately 50 estimated from 1000 Monte Carlo simulations. The initial state is
c(0) = [0.2, 0.7, 0.1]> ∈ X. The data-driven model is estimated using m = k = 1000
measurements and realizations for a lag time of τ = 0.01. For comparison, the expecta-
tion of the SDE limit model (2.16) is indicated in gray/dotted. (b) Pointwise error with
respect to S1 agents between the data-driven model or the expectation of the SDE limit
model and the voter model. The error of the data-driven model is lower, indicating a
better approximation. Figure (a) reprinted from [126].

5.2.3 Predator-Prey Model

Let us now move beyond network-based agent-based system and consider the predator-
prey model introduced in Section 2.2.4 for the parameters listed in Table 2.1. Although
all agents move relatively slowly with respect to the dimension of the space and search
radius v of the predators (cf. Remark 2.2.4), we assume that the model we are looking
for still resembles the classical Lotka–Volterra differential equations. Thus, we choose
monomials up to degree 3 for the set of basis functions so that we can identify the
coefficients of the drift and diffusion terms. The data-driven model is then learned
from m = k = 1000 measurements and samples. As this ABM is formulated in discrete
time, the lag time for the pointwise drift and diffusion estimates via (5.1) and (5.2),
respectively, is set to one time step, i.e., τ = 1. Note that step 3a) of Algorithm 5.1, i.e.,
reduction of the data, is not applicable here since the number of agents is not constant.
Figure 5.6 (a) shows one possible trajectory of the data-driven SDE similar to that of
the predator-prey model in Figure 2.3 (b). For a better comparison we computed the
first-order moment of both models via 958 Monte Carlo simulations. In 42 out of 1000
realizations size of the prey population grew exponentially due to the extinction of the
predators. Figure 5.6 (b) and (c) show the phase portraits of the first-order moment of
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Figure 5.6: (a) Realization of the data-driven SDE learned from m = k = 1000
measurements and samples for the predator-prey model with parameters given in Ta-
ble 2.1. Phase portraits of the first-order moment of (b) the data-driven SDE and
(c) the predator-prey model estimated from 958 Monte Carlo simulations. Reprinted
from [126].

the data-driven SDE and the predator-prey model. We observe that the reduced model
is able to approximate the qualitative dynamical behavior of the ABM.

5.2.4 Civil Violence Model

We consider now the civil violence model introduced in Section 2.2.5 for the parameters
listed in Table 2.2. This model is already so complex that a proper choice of basic
functions is not obvious. For instance, a dictionary consisting exclusively of monomials
is not sufficient in this case as we can see in Figure 5.7 (a), where the data-driven
model is obtained using monomials up to order 4 and m = k = 100 measurements
and samples for lag time τ = 1. However, exploiting physical insights about the agent-
based system, we are able to learn a reduced model that qualitatively agrees with the
dynamical behavior of the full-complexity ABM.

Let c1 and c2 denote the fraction of active and jailed agents, respectively. By conser-
vation, the fraction of inactive agents is given by c3 = 1− c1− c2. As shown in [51], the
choice of arrest probability function plays a major role in the behavior of the model.
Therefore, we augment the set of basis function {ψi}ni=1 by n additional functions
defined by

ψ2i := ψi · P̂ , i = 1, . . . , n, (5.8)

where the function P̂ : Rd → [0, 1] is given by

P̂ (c) := exp(−κc1)
15∑
i=0

(κc1)
i

i!
.

The constant κ is the same as for the arrest probability function (2.20). Note that P̂ is
related to the arrest probability function (2.20) via Parr(Av, Cv) = 1− P̂ (Cv/Av). The
new set of basis function comprises 2n functions.
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Figure 5.7: (a) Prediction of the temporal evolution of the data-driven model learned
from the dynamics of the civil violence model with the parameters in Table 2.2 using
m = k = 100 training points and samples and monomials as basis functions. (b) The
same prediction, but using the augmented set of basis functions. (c) Empirically de-
termined distribution of the civil violence model estimated from 10000 trajectories of
length t = 500 and phase portrait of data-driven model. Blue corresponds to small and
yellow to large values.

Table 5.2: Mean characteristics of the civil violence model and the data-driven model
estimated from 10000 trajectories with length t = 500.

Civil violence model Data-driven model
Peak to peak distance 78.46 77.10
Peak height 1927 1704
Peak width at 0.98 relative height 20.52 21.12
Peak width at 0.5 relative height 9.409 6.767

Evaluations

Again, choosing monomials up to degree 4 and the functions defined in (5.8) as dictio-
nary, we learn a data-driven model for the same set of training data. Figure 5.7 (b)
shows a long-term prediction of the data-driven model, which highly resembles the tra-
jectory shown in Figure 2.5 (b). The phase portrait shown in Figure 5.7 (c) fits the
empirical obtained distribution of the ABM, which is estimated from 10000 Monte Carlo
simulations with length t = 500. Furthermore, comparing the characteristic periodic
outbursts of violence, we observe a remarkable agreement of the mean peak to peak dis-
tance and the mean peak width at 0.98 relative height between the data-driven model
and the full ABM. Further characteristics are listed in Table 5.2. Thus, by using insider
information about the agent-based system, we are able to augment set of basis functions
such that it is possible to obtain a data-driven reduced model that qualitatively agrees
with the agent dynamics.
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6 Multi-Objective Optimization of
Agent-Based Systems

In this chapter, we show how the reduced models computed in Chapter 5 can be used
as surrogates to solve multi-objective optimization problems involving agent-based sys-
tems. Our goal is to find optimal tradeoffs between several possibly conflicting objec-
tives, which are given by the dynamical behavior of the system. Surrogate modeling
is of particular interest here, as objective functions defined by agent-based systems are
often expensive or even infeasible to evaluate. We show that if the underlying dynamics
are linear with respect to the parameters, it is possible to construct surrogate models
with varying parameters using convex interpolation of Koopman generators. As an
example we examine the long-term effect of a parameter change on the agent dynamics
for two agent-based systems. In the case of the voter model, the goal is, for instance,
to find or evaluate a campaign strategy to shift the opinion of the majority in a desired
direction. We show that the surrogate model based on convex interpolation of Koop-
man generators has high agreement with an analytic derived surrogate for the expensive
objective function under consideration. In the second example, the civil violence model,
we consider the optimization of utilization of labor force. Both the number of officers
deployed and the number of insurgents are to be minimized at the same time. In both
scenarios, we show that the results obtained with the help of these surrogates actually
approximate optimal points of the agent dynamics by comparing them to test points
for which the objective is evaluated using the full-complexity agent-based systems.

6.1 Introduction to Multi-Objective Optimization
Whether in industry, economy, society, or even everyday life, a common problem is
achieving multiple goals simultaneously. Often these contradict each other and share
no optimum. For many industrial goods, for example, quality cannot be improved if the
selling price is to be reduced at the same time. Another example with current reference
concerns the length of curfews due to the corona virus pandemic. The minimization
of socio-economic costs and limiting virus spread are two conflicting goals. Therefore,
a compromise must be found, i.e., an agreement reached by mutual concessions, often
varying or blending the original goals. An optimal compromise cannot be improved
further without worsening at least one of the other goals.

Multi-objective optimization concerns the simultaneous optimization of k objective
functions f1, . . . , fk : Rn → R. Roughly speaking, multi-objective optimization first
tries to find all the optimal compromises before a decision is taken. This opens up more
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options for decision makers, as better compromises can easily be overlooked in single-
objective optimization, e.g., due to an a priori prioritization of conflicting objectives.
The question of what is “the best” optimal compromise is answered in decision-making
theory and beyond the scope of this chapter.

In the following, we consider multi-objective optimization problems formulated as

minimize
y∈Rn

F (y) = [f1(y), . . . , fk(y)]
>

subject to gi(y) ≤ 0, i = 1, . . . , q

hj(y) = 0, j = 1, . . . , p,

(6.1)

where F : Rn → Rk, g : Rn → Rq and h : Rn → Rp. The decision space is given by Rn

and the objective space by the image of F . The feasible decision space or feasible set is
given by

R = {y ∈ Rn | g(y) ≤ 0, h(y) = 0}.

The following definition provides the necessary fundamentals.

Definition 6.1.1 ([155, 156]). Consider the multi-objective optimization problem (6.1).
Let v, w ∈ Rn and y, y? ∈ R. Then

(i) v is less than w, i.e., v <p w, if vi < wi for all i = 1, . . . , n. The relation ≤p is
defined in an analogous way.

(ii) v is dominated by w (equivalently, we say w dominates v) if

F (v) 6= F (w) and F (w) ≤p F (v).

(iii) y? is called Pareto optimal or Pareto point if there is no y that dominates y?.

The set of all Pareto optimal points is called Pareto set after the Italian engineer,
economist and sociologist of the same name. The image of the Pareto set under the
objective function F is called the Pareto front.

There exists various methods and techniques to solve multi-objective optimization
problems such as scalarization, ε-constraint methods, evolutionary and genetic algo-
rithms, particle swarm, agent-based and multi-agent methods, see [118, 155, 30, 133, 2,
14] and references therein. All these methods are well-suited to compute (sets of) single
Pareto points. Other methods such as continuation methods [155] use the fact that
the Pareto set is a k − 1-dimensional smooth manifold under certain conditions. Set-
oriented methods such as subdivision techniques [37] compute outer approximations of
the entire Pareto sets. Many approaches use box discretizations to cover the Pareto set.
A suitable data structure helps to limit memory requirements. For a general overview
on set-oriented methods see, e.g., [156].

In this chapter, we use a subdivision technique known as sampling algorithm [37] to
obtain a covering of the Pareto set. This algorithm uses only evaluations of the objective
function F and does not require its derivative, which is especially advantageous for
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Algorithm 6.1: [37, 132]
Let B0 be a collection of finitely many subsets of R such that

⋃
B∈B0 B = R.

Then, obtain the new collection Bs+1, s ≥ 0, iteratively from Bs in two steps:
1. Construct a new collection B̂s+1 from Bs by subdividing each subset B ∈ Bs

such that ⋃
B∈B̂s+1

B =
⋃

B∈Bs

B,

diam(B̂s+1) = θs+1diam(Bs)

for 0 < θmin ≤ θs+1 ≤ θmax < 1.
2. Define the new collection Bs+1 by

Bs+1 :=
{
B ∈ B̂s+1 | @B̂ ∈ B̂s+1 such that B̂ dominates B

}
.

agent-based systems. Assume that every decision variable y is bounded component-
wise, i.e., ai ≤ yi ≤ bi for i = 1, . . . , n, such that the feasible decision space R is given
by

R = [a1, b1]× . . .× [an, bn] ⊂ Rn. (6.2)

Let B denote a collection of finitely many subsets of R such that
⋃

B∈B B = R. Before
summarizing the sampling algorithm given in [37], we need the definition of set-wise
dominance.

Definition 6.1.2 (Remark 2.1.6 in [132]). A set B? dominates a set B if for every
y ∈ B there exists at least one y? ∈ B? such that y? dominates y.

The sampling algorithm works iteratively in two steps. In the first step, each box
B ∈ Bs, s ≥ 0, is subdivided with respect to the coordinates, which leads to a new
collection of boxes B̂s+1. In the second step, each box B ∈ B̂s+1 is subject to a set-wise
non-dominance test in which all boxes containing only dominated points are discarded.
The remaining boxes form the new collection Bs+1. Algorithm 6.1 summarizes the
procedure following the notation in [132]. For further details see [37, 155, 156, 132].

Remark 6.1.3. The following points are worth mentioning:
(i) Set-wise dominance as in Definition 6.1.2 is difficult to check. Using a finite num-

ber of test points per box, we can perform the non-dominance test heuristically. An
insufficient testing, however, might result in boxes being falsely discarded. By adding
all neighboring boxes of the current collection and then discarding the dominated ones,
falsely rejected boxes can be recovered. See [156, 132] for further details.
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Figure 6.1: Box coverings after (a) 8 and (b) 12 iterations obtained using Algo-
rithm 6.1. The black/solid line indicates the Pareto set.

(ii) As each box can be represented by a center and a radius, all collections can
be stored efficiently in a binary tree such that the memory consumption grows linearly
with n. GAIO [36], a toolbox written for MATLAB, provides binary tree data structures
and algorithms for set-oriented calculations and can be used for the implementation of
Algorithm 6.1.

The following example illustrates the previous concepts and demonstrates the func-
tionality of Algorithm 6.1.

Example 6.1.4. Consider a multi-objective optimization problem of the form (6.1)
with objective functions fi : R → R given by

f1(y) = (y1 − 1)2 + (y2 − 1)2

f2(y) = (y1 + 1)2 + (y2 + 1)2

and feasible decision space R = [−1.5, 1.5] × [−1.5, 1.5]. Obviously, the Pareto set is
given by {y ∈ R | −1 ≤ y1 = y2 ≤ 1}, i.e., a straight line connecting the minima [1, 1]>

and [−1,−1]> of the two objective functions f1 and f2, respectively. Figure 6.1 shows
the box coverings obtained via Algorithm 6.1 after 8 and 12 iterations. The black/solid
line indicates the Pareto set. 4

6.2 A Multi-Objective Optimization Ansatz for Agent-Based
Systems

Agent-based systems often have a lot of different parameters influencing the dynamical
behavior of the system. While some of them are just of technical nature (i.e., necessary
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for the correct implementation), most of them can be given an interpretation (e.g.,
reproduction rates, radius of vision or range of motion). In this section, we want to
take influence on these parameters with respect to some target behavior of the ABM.
The question behind changing the parameters is which policies, strategy, action, sanc-
tion, program, operations or any other measure achieves best all desired targets. For
the ease of readability we use the terms policy and influence throughout this section.
Clearly, none of these are free of charge and thus, we assume that influencing the ABM
parameters causes certain costs. The aim is to find the optimal tradeoffs between all
desired goals and the required investment for the policy. In the sense of multi-objective
optimization, for an objective function F : R → Rk given (partially) by an agent-based
system, we want to compute the Pareto set for n decision variables (here parameters of
an agent-based system). Assume that the objective functions fi : R → R, i = 1, . . . , k,
can be written as

fi(y) =

∫ t1

t0

ri(y)dt+ si(y)

where ri : R → R and si : R → R denote running and static costs, respectively. There
are two issues:
(A) Most agent-based systems are high-dimensional, which makes them computation-

ally expensive. Additionally, the ABM can be stochastic. Consequently, both have
an effect on the objective functions fi. Therefore, for an efficient computation of
the multi-objective optimization problem either surrogates of the objective func-
tions fi are needed or a surrogate model for the entire ABM that is less expensive
to evaluate.

(B) Most agent-based system cannot be expressed analytically such that (some) exact
derivatives of the objectives fi cannot be found. If they can be approximated,
they might not be accurate enough. We hence need derivative-free or fault-tolerant
methods to solve the multi-objective optimization problem.

The major of these two problems is (A) since we can circumvent (B) simply by using
Algorithm 6.1, which only relies on function evaluations and does not require derivatives
of the objective functions. To address the first problem, we consider surrogate models
of entire agent-based systems based on Koopman generators.

6.2.1 Koopman Generator Interpolation

In Chapter 5, we have shown that under certain conditions it is possible to obtain
reduced models using the Koopman generator that accurately approximate the aggre-
gate dynamics of ABMs. However, these are fixed for the chosen set of parameters and
computing a reduced model for every parameter during the optimization process would
not only be expensive but also ineffective. It has been shown recently that it is possible
to interpolate between Koopman generators of control-affine dynamical systems, i.e.,
systems which are linear with respect to the control, see Theorem 3.2 in [136]. We can
deduce the following for parameter-affine non-deterministic dynamical systems:
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Theorem 6.2.1. Given a space of twice differentiable functions, if the dynamics are
parameter-affine (i.e., linear with respect to the parameter), then the Koopman genera-
tors are parameter-affine.

Proof. Consider a parameter-affine dynamical system

dXt = b(Xt, p)dt+ σ(Xt, p)dWt (6.3)

with drift b : Rd → Rd, diffusion σ : Rd → Rd×s and parameter p : Rdp → Rdp . Drift and
diffusion terms of system (6.3) are give by

b(Xt, p) = b0(Xt) +

dp∑
i=1

pi bi(Xt) (6.4)

a(Xt, p) = a0(Xt) +

dp∑
i=1

piai(Xt) (6.5)

for a = σσ>. Given some twice differentiable function f , the stochastic Koopman
generator Lp depending on p applied to f yields

Lpf = b · ∇xf +
1

2
a : ∇2

xf

= b0 · ∇xf +

dp∑
i=1

pi bi · ∇xf +
1

2
a0 : ∇2

xf +
1

2

dp∑
i=1

piai : ∇2
xf,

where ∇2
x denotes the Hessian. Setting Ap = Lp − L0, we obtain

Apf =

dp∑
i=1

pi

[
bi · ∇xf +

1

2
ai : ∇2

xf

]
.

The operators Ap are linear with respect to parameter p. Moreover, the Koopman
generators are linear with respect to parameter p.

This means that for any linear combination of parameters p =
∑dp

i=1 αipi we obtain

Lp = L0 +

dp∑
i=1

αiLi.

In particular, if the ABM is linear with respect to the decision variable y ∈ R and the
feasible decision space R is given by (6.2), then we can construct a surrogate model
based on convex interpolation of Koopman generators Li corresponding to the vertices
of the convex polytope R. The generators of the surrogate model for varying y ∈ R are
obtained from

L =

2n∑
i=1

αiLi,

where
∑2n

i=1 αi = 1 and αi ∈ [0, 1].
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6.2.2 Extended Voter Model

We consider the voter model with d = 2 opinions as defined in Section 2.2.3 with
fully connected interaction network and set the transition rate to γ12 = 1, γ21 = 2
and γ′12 = γ′21 = 0.1. For instance, to win votes in election campaigns or to change
individual mobility behavior to green technologies, we want to find a long-term policy
that affects the transition rates γ12 and γ21 such that the expected number of agents
of type S1 is minimized. We are interested in the long-term effect of the policy on the
ABM dynamics and assume only static costs. Additionally, we assume that the policy
once applied to the model via γ12 + y1 and γ21 + y2, for y = [y1, y2]

> ∈ R ⊂ R2, will
not change. In order to find the Pareto set, we set up a multi-objective optimization
problem of the form (6.1) with feasible decision space R := [−1, 5]×[−2, 5] and objective
function F : R → R2 with

f1(y) = E[X1(t, y)/N ], (6.6a)
f2(y) = y21 + y22, (6.6b)

whereX1(t, y) denotes the number of agents of type S1 at time t depending on parameter
y ∈ R. As the first objective (6.6a) is expensive to evaluate, we construct a surrogate
model based on Koopman generators and Theorem 6.2.1. In fact, drift and diffusion
terms can be written as (6.4) and (6.5). Thus, for large numbers of agents N the
ABM dynamics are parameter-affine. Using Algorithm 5.1, we learn four generator
approximations corresponding to the four vertices of the feasible decision space R for
N = 500 agents from 100 training points with each 100 samples. Having this, the
objective function f1 is given by

f1(y) = E[X1(t, y)/N ] ≈ C1(t, y),

where C1(t, y) denotes the data-driven ODE model associated with the ABM at time t
depending on parameter y ∈ R. Figure 6.2 shows both objective functions for all pa-
rameters y ∈ R and t = 10. Note that the SDE limit model might also be used, however,
at a higher expense due to stochasticity. Also note that the second objective (6.6b) rep-
resenting the costs of the policy is given by the modeler and problem. To demonstrate
the procedure, we assume that any influence on the transitions rates γ12 and γ21 has a
cost.

Before computing an outer approximation of the Pareto set, let us consider the fol-
lowing as an alternative to the surrogate model. Since we know the ground-truth model
in this example (i.e., ODE (2.15) resp. SDE (2.16)) and since we are interested in the
long-term behavior, i.e., t→ ∞, we can replace the objective (6.6a) by calculating the
fixed points of C1(t, y) (in general solving ODE (2.15) resp. SDE (2.16) for a given
number of agents N and time t ≥ 0). Exploiting c2 = 1− c1, the ODE limit process is
given by

d

dt
c1 = c1(1− c1)(γ21 + y2 − γ12 − y1)− c1(γ

′
12 + γ′21) + γ′21.
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Figure 6.2: Objective functions f1 and f2 as defined in (6.6) for N = 500 agents
depending on the policy y = [y1, y2]

> ∈ R = [−1, 5]× [−2, 5].

The fixed point as a function f̃1 depending on y is given by

f̃1(y) =


γ+y2−y1−(γ′

12+γ′
21)+

√
(γ′

12+γ′
21−(γ+y2−y1))2+4γ′

21(γ+y2−y1)
2 (γ+y2−y1)

, if γ + y2 − y1 6= 0
γ′
21

γ′
21+γ′

12
, else,

where γ := γ21 − γ12, see Appendix A.2 for the deviation. Comparing the objective
function surrogate based on the ODE fixed point equation with the surrogate model
based on convex interpolation of Koopman generators, we see a good agreement of both
surrogates for large time t (here t = 10). Figure 6.3 shows the error defined as pointwise
difference between both surrogates.

After these preparations we can now apply Algorithm 6.1 to compute an outer approx-
imation of the Pareto set. Figure 6.4 shows the computed coverings after 12 iterations
plotted against objective function (6.6a) for both surrogate methods. As expected, we
observe that the coverings are almost identical. For a refined feasible decision space,
that is a subspace R? ⊂ R with

R? = [0.25, 0.75]× [−0.75,−0.25] ⊂ R,

motivated, for instance, by a range of special interest, we compute another covering of
the Pareto set. Figure 6.5 shows in (a) the computed covering of the Pareto set for R?

and in (b) the image of R? under the objective function F (6.6) as light blue area as
well as the approximated Pareto front (red/solid). To verify that our surrogate model
approximated the dynamics of the ABM sufficiently well, we randomly choose some
test points (blue/dots) for which we evaluate objective (6.6a) from 100 Monte Carlo
simulations using the full-complexity agent dynamics. Figure 6.5 (c) and (d) show close-
ups of two different kinds of test points. We observe on the one hand in Figure 6.5 (c)
that test points covered by the boxes in Figure 6.5 (a) actually approximate the Pareto
front of the ABM. These points are mapped on the Pareto front and thus are non-
dominated. On the other hand, we observe that the marked test points (in general,
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Figure 6.3: Pointwise difference between the surrogate model based on convex inter-
polation of Koopman generators and the objective function surrogate based on the fixed
point equation of the ODE limit model.
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Figure 6.4: Pareto set coverings after 12 iterations obtained using (a) the surrogate
model based on convex interpolation of Koopman generators and (b) the objective
function surrogate based on the ODE fixed point equation plotted against objective
function (6.6a) for N = 500 agents and feasible decision space R = [−1, 5]× [−2, 5].

points that are not covered in Figure 6.5 (a)) are located on the right-hand side of
the Pareto front and thus are dominated, see Figure 6.5 (d). The error bars indicate a
99.9 % confidence level.

99



6 Multi-Objective Optimization of Agent-Based Systems

0.3 0.4 0.5 0.6 0.7

y1

−0.7

−0.6

−0.5

−0.4

−0.3

y 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0.2 0.4 0.6 0.8

f1(y)

0.2

0.4

0.6

0.8

1.0

f 2
(y
)

(b)

0.80 0.85

0.10

0.15

0.80 0.85

0.15

0.20

0.75 0.80

0.25

0.30

0.65 0.70
0.30

0.35

0.55 0.60

0.40

0.45

0.40 0.45

0.55

0.60

0.30 0.35

0.65

0.70

0.20 0.25

0.80

0.85

0.15 0.20

0.95

1.00

0.15 0.20

1.10

1.15

f1(y)

f 2
(y
)

(c)

0.25 0.30

0.70

0.75

0.60 0.65

0.40

0.45

0.30 0.35

0.70

0.75

0.50 0.55

0.50

0.55

0.35 0.40

0.65

0.70

0.50 0.55

0.45

0.50

0.65 0.70

0.35

0.40

0.325 0.330

0.670

0.675

0.30 0.35

0.65

0.70

0.630 0.635

0.390

0.395

f1(y)

f 2
(y
)

(d)

Figure 6.5: (a) Pareto set covering for refined feasible decision space R? ⊂ R after
12 iterations using the objective function surrogate. (b) Pareto front (red/solid) and
image of R? (light blue area) under the objective function (6.6). (c) and (d) close-ups
of non-dominated and dominated test points (blue/dots), respectively, which have been
computed via the full-complexity ABM. Error bars indicate a 99.9 % confidence level.
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6.2.3 Civil Violence Model
Let us now consider the civil violence model as introduced in Section 2.2.5 using the
parameters given in Table 2.2. Assume that we want to avoid underutilization of labor
force while simultaneously keeping riots at a low level. Thus, we are interested in the
long-term effect of the number of employed officers y on the the ABM dynamics for a
monitoring period [t1, t2], t2 � t1 > t0 = 0. We assume that the employment costs
for the officers is constant in time and that the number of officers does not change. In
order to compute an outer approximation of the Pareto set, we set up a multi-objective
optimization problem of the form (6.1) with objective function F : R → R,

f1(y) =
1

t2 − t1

∫ t2

t1

X1(τ, y)/N dτ, t2 > t1 > t0 (6.7a)

f2(y) = 500− 0.5y2 + 0.01y3 (6.7b)

and feasible decision space R := [20, 100]. Here, X1(t, y) denotes the number of active
citizen at time t depending on the number of officers y ∈ R. Again, it is not feasi-
ble to evaluate the objective (6.7a) directly using the ABM. Instead, we construct a
surrogate model based on Koopman generators. As a ground-truth model is missing,
we cannot check if the civil violence model actually fulfills the requirements of Theo-
rem 6.2.1. However, numerical analysis shows that convex interpolation between only
two Koopman generators leads to unsatisfactory results such that we learn nine Koop-
man generator approximations for y ∈ {20, 30, . . . , 90} as described in Section 5.2.4.
Then, the objective function f1 is given by

f1(y) =
1

t2 − t1

∫ t2

t1

X1(τ, y)/N dτ ≈ 1

t2 − t1

∫ t2

t1

C1(τ, y)dτ, t2 > t1 > t0

where C1(t, y) denotes the data-driven ODE model associated with the ABM at time t
depending on decision variable y ∈ R. We set t1 = 200 and t2 = 250. Again, objec-
tive (6.7b) is given by the modeler having its minimum at y = 331

3 . Figure 6.6 (a)
shows both objective functions for all y ∈ R. Again, we use Algorithm 6.1 to approx-
imate the Pareto set of the ABM dynamics. The result after 8 iterations is displayed
in Figure 6.6 (a) as blue/shaded area. We observe three potential Pareto set coverings
[33, 65], [67, 79] and [87, 100]. The corresponding Pareto front (red/solid) is shown in
Figure 6.6 (b). Additionally, we estimate for test points (blue with error bars) mean
and standard deviation of the objective function (6.7a) from 1000 Monte Carlo simu-
lations using the full-complexity ABM dynamics. We observe a good agreement of the
coverings [32, 65] and [67, 79] with the Pareto front of the ABM dynamics. However,
the covering [87, 100] is not correct. Indeed, a refinement on R? = [75, 100] confirms
that this covering does not approximate any part the Pareto set. Refining the feasible
decision space on R? = [30, 80] closes the gap between the coverings [32, 65] and [67, 79]
and results in a Pareto set approximation [32, 77], see Figure 6.6 (a) hatched area.
Note that other values for t1 and t2 might change the Pareto set and the approximation
accuracy.
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6 Multi-Objective Optimization of Agent-Based Systems
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Figure 6.6: (a) Objective functions f1 and f2 as defined in (6.7) for the parameters
given in Table 2.2 depending on the number of officers y ∈ R = [20, 100]. The approxi-
mated Pareto set is indicated in blue/shaded. (b) Pareto front (red/solid) corresponding
to the Pareto set in (a) and image of R under F (black/solid). Test points (blue with
error bars) indicating mean and standard deviation of the objective function (6.7a)
estimated from 1000 Monte Carlo simulations using the full-complexity ABM. While
the calculated Pareto set coverings [32, 65] and [67, 79] actually approximate the Pareto
front of the ABM dynamics, this is not true for the covering [87, 100]. Restricting R
on R? = [30, 80] closes the gap between the left and middle coverings and results in
the hatched area, i.e., [32, 77]. Restriction on R? = [75, 100] confirms that the third
covering on the far right does not any part of the Pareto set.

Remark 6.2.2. Similar as for the voter model, we can also construct a surrogate for the
objective function (6.7a), e.g., based on interpolation of points for which the objective
is evaluated via the full-complexity ABM. Although both methods compute essentially
the same outer approximation of the Pareto set, the objective function surrogates are
significantly faster to evaluate than the respective surrogate models. However, they are
rigid and do not have the same flexibility as the surrogate models (e.g., with respect to
time t). Table 6.1 summarizes and compares the computation times of both surrogate
types.

Remark 6.2.3. For the sake of illustration, we considered the case where only one
objective functions is defined by the agent dynamics. However, it is possible to find the
Pareto set with respect to several parameters of the ABM. Additionally, the proposed
approach can also be used to calibrate agent-based systems against target metrics.
In this case, the goal might be to minimize the errors with respect to the first and
second order moments or to calibrate the model such that the dynamics agree with
experimental observations.
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6.2 A Multi-Objective Optimization Ansatz for Agent-Based Systems

Table 6.1: Computation times of Algorithm 6.1 to solve the multi-objective optimiza-
tion problems analyzed in Sections 6.2.2 and 6.2.3 comparing both surrogates methods.
The computation was performed using an Intel i7-8569U CPU and 16 GB of RAM.

Surrogate type
Agent-based model Iterations Model Objective function
Voter model 4 50.1673 sec 0.0225 sec

8 23.1 min 0.2861 sec
12 13 h 9.2361 sec
16 - 4.8 min

Civil violence model 4 47.0111 min 0.0972 sec
8 4.87 d 5.6997 sec
12 - 21.7789 min

Remark 6.2.4. In the preceding two sections, the focus is not on (efficiently) solving
multi-objective optimization problems, but in demonstrating that surrogate models
based on the Koopman generator are sufficiently well suited for this purpose. Especially
in the case of the voter model on complete networks, it is more efficient to use the
well-known ODE or SDE limit models as surrogates (cf. Remark 6.2.2 and Table 6.1).
However, such limit models are not necessarily known or do not even exist at all, such
as in the case of the civil violence model. Thus, building surrogates using the Koopman
generator provides a way to solve multi-objective optimization problems with complex
agent-based systems.
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7 Conclusion and Outlook

Given the wealth of data available in agent-based modeling, data-driven methods are
the next logical step in gaining new insights into the emergent collective time-evolving
phenomena arising from the interactions of agents. To answer tomorrow’s questions,
understanding the dynamical evolution of aggregate quantities is of great interest and
importance, for example, to initiate the transition to environmentally friendly technolo-
gies or to fight pandemics. Agent-based systems modeling social interactions provide a
high level of detail into artificial societies but at often high computational costs. There-
fore, the question addressed in this thesis is how to learn reduced models from data for
large-scale agent-based systems that allow for analysis and prediction of the emergent
collective behavior.

Contributions. Data-driven methods based on transfer operators help with a plethora
of tasks such as metastability analysis, system identification or model reduction. In
Chapter 3, we presented an extension of the classical EDMD algorithm to compute a
finite-dimensional matrix approximation of the infinitesimal generator of the Koopman
or Perron–Frobenius operator from data. The presented framework gEDMD applies to
both deterministic and non-deterministic dynamical systems, and allows a decompo-
sition into eigenfunctions, eigenvalues and modes, which then can be used for system
identification, model reduction or the discovery of conservation laws. Furthermore, we
showed that gEDMD is related to other methods such as SINDy, which results as a
special case in the deterministic setting.

An important aspect is the behavior of agent-based systems for large numbers of
agents or long time scales of interest or both. In Chapter 4, we therefore studied the
metastable behavior of ABMs given as continuous-time Markov jump processes and
their pathwise approximations by SDEs for large population sizes. We demonstrated in
Section 4.1 that the Perron–Frobenius operator can reveal metastable structures and
long time scales associated with rare events for both the ABM and the SDE process,
and that for large numbers of agents these structures are close to each other. Due to the
pathwise closeness, we then characterized the long-term behavior of the ABM via the
corresponding SDE using Ulam’s method, i.e., we generated many short trajectories
of finite length from the SDE. Since the computational cost of the SDE, unlike the
ABM, is essentially not dependent on the number of agents, this is of high relevance.
However, this approach reaches its limits when we consider rare events that occur on
exponential time scales. We illustrated in Section 4.2 that in this case large deviation
theory can characterize the asymptotic rate functions for both processes. Using the
voter model, we demonstrated that they are close under certain conditions such that
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the metastable behavior of the ABM can be described via the corresponding SDE for
sufficiently large agent numbers. However, in general a characterization via the SDE is
not enough, cf. Section 4.2.4. When we consider more complex ABMs, large deviation
theory might also not be helpful to describe the rare events on long time scales, since
it might be unclear, for example, whether the SDE can replace the ABM, or how the
associated Hamilton–Jacobi equations can be solved efficiently, if this is the case. In this
context, the transfer operator approach provides a practical tool to identify metastable
structures, quasi-stationary distributions and to approximate mean first exit times or
transition rates. In addition, it allows us to use the finite-time, pathwise approximation
results to characterize the behavior on long, but not necessarily exponentially long, time
scales. In this way, the transfer operator approach connects the pathwise approximation
by differential equations for large population sizes on finite time scales with methods
for describing the long-term behavior on exponentially long time scales.

In Chapter 5, we used the insights of the previous two chapters and showed how
the Koopman generator can be used to obtain reduced models represented as ODEs or
SDEs from aggregate state variables of agent-based systems, however, this time directly
from noisy data. We considered four problems of different complexity to benchmark
the procedure.

In Sections 5.2.1 and 5.2.2, we considered the voter model with complete and clus-
tered interaction networks of homogeneous agents, where each agent might interact
with any other adjacent agent. In the first case, the temporal evolution of the ABM
was given by a continuous-time Markov jump process, while we simulated the ABM on
clustered networks in discrete time. We showed that the data-driven reduced models
are predictive for a sufficiently large number of agents and consistent with the respective
pathwise SDE limit models for both complete and clustered networks. The results in
Section 5.2.2 also revealed that the aggregation of state variables led to an approxima-
tion error in the population state model due to the incomplete, clustered network, which
then shortened the interval in which the data-driven model and its SDE approximation
agree. The results also show that a sufficiently large number of agents or, alternatively,
a high enough connectivity between clusters is required for the data-driven reduced
model and the SDE model to agree. Additionally, for arbitrary networks the predic-
tion horizon might be even shorter, cf. Remark 5.2.2. This implies that if the state
of an ABM strongly depends on the spatial structure, e.g., clustering, coexistence or
spatial heterogeneity, this must be taken into consideration. With the third benchmark
problem in Section 5.2.3, we showed that the proposed approach can also identify re-
duced models for agent-based systems that are not bound to interactions defined on
a network and where agents move freely in space. The reduced model captures the
qualitative behavior of the aggregate state of the predator-prey system.

For both the predator-prey model and the previous two benchmark problems, the
choice of basis functions was straightforward since either a theoretical limit model was
known or a model similarity (here to the Lotka–Volterra differential equations) could be
exploited. In Section 5.2.4, however, this choice was not obvious any longer. Physical
insights about the civil violence model allowed us to find an extended set of basis
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functions. Including the arrest probability function, the set of basis functions is rich
enough to reproduce qualitatively the typical dynamical behavior of the aggregate state
variables. The results show once more that the choice of the arrest probability function
is largely responsible for dynamic behavior of the model.

To successfully identify a reduced model from data, the presented approach requires
accurate, pointwise estimates of the drift and diffusion terms. To avoid nonsparse
solutions of the generator approximation in the case of inaccuracies or insufficiency,
iterative hard thresholding or denoising techniques might be applied to improve the
results. Additionally, we assumed in this work that all types of agents are present
in sufficient numbers, since in this case the discrete dynamics can be meaningfully
represented by continuous differential equations. If the number of agents is small, the
discreteness of the system can induce metastability such that this approach might fail,
cf. Remark 4.1.2.

In Chapter 6, we demonstrated how multi-objective optimization problems associated
with agent-based systems can be solved with the aid of the data-driven reduced models
computed in Chapter 5. We showed in Section 6.2.1 that under certain conditions
linear interpolation between Koopman generators associated with non-deterministic
dynamical systems is possible, which allows for the construction of surrogates with
varying parameters. The proposed approach can be used for both support of decision-
making processes and model calibration. We demonstrated the procedure for the voter
model on complete networks and the civil violence model. In Section 6.2.2, the goal was
to achieve a change in the long-term majority ratio of the voter model by influencing two
of the four rate constants. We tested the surrogate model based on Koopman generators
against an analytical derived surrogate for the fixed points of the corresponding ODE
limit model and found good agreement of both Pareto set coverings. In Section 6.2.3,
we showed that this approach also leads to good results for the civil violence model,
where we sought the Pareto set for the tradeoffs between labor force utilization and
security in society. With the ever-increasing spread of ABMs, the construction of data-
driven surrogates is of great importance especially in the case when limit models are
unknown or non-existent. Koopman generator based surrogates make it possible to solve
multi-objective optimization problems, where objectives are defined by the dynamical
behavior of the agents and thus would otherwise be computationally impossible due to
the very expensive objective functions.

Open Questions and Perspectives. Data-driven model reduction of large-scale agent-
based systems does not only reduce the computational effort but also opens up new pos-
sibilities for further analysis and applications. Nevertheless, there are still unanswered
questions and future perspectives that need to be addressed:

• Approximating the Koopman generator associated with dynamical systems has
proven to be beneficial for many applications. Open problems concern, e.g., the
convergence of gEDMD to the Koopman generator as the number of basis func-
tions goes to infinity, the question which part of the spectrum is approximated
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in the case of continuous spectra or non-compactness, or the extension to non-
autonomous dynamical systems. Another important issue is the optimal choice
of basis functions in order to avoid over- and underfitting.

• Open questions related to agent-based systems concern the optimal choice of ag-
gregate variables. From the application point of view, the population state space
provides important and obvious aggregate variables. However, there might exist
other non-obvious aggregate states. For instance, instead of using the number of
insurgents and detained citizens as aggregate state variables to learn a reduced
model for the civil violence model, we might also consider the perceived arrest
probability of the total population as aggregate variable. The question is how
non-obvious aggregate can be found. Alternatively, we might extend the popu-
lation state space to include intermediate states of agitation given by the arrest
probability function. Here, the question is whether this increase in dimension
actually helps to find good reduced models. In this context kernel-based [83] or
tensor-based [106] variants of gEDMD can help to mitigate the curse of dimen-
sionality that makes many data-driven methods unacceptably expensive to use in
the case of high-dimensional systems.

• The acquisition of data is another problem. Especially for large-scale agent-based
systems like the Mobility Transition Model, high computational costs require a
proper method for data acquisition. The question is how inside knowledge of the
model can be exploited to mitigate the enormous computational effort.

• In Chapter 4, the analysis using transfer operators was restricted to agent-based
models with complete interaction networks and homogeneous agents. In Chap-
ter 5, we went beyond this and learned reduced models for more complex ABMs
with both incomplete interaction networks and spatially dependent interactions.
To some extent a macro-scale representation by ODEs or SDEs is useful. However,
with increasing spatial complexity and influence, the use of this representation
leads also to a higher loss of information. It might fail completely if spatial inter-
action or interaction with the space itself significantly influence the behavior of
the agents and therefore the outcome of the model. Meso-scale models, e.g., sys-
tems of compartment chemical master equations [173], are intermediate between
micro- and macro-scale models and might be helpful in this case. It would be
interesting to investigate how data-driven approaches can help to find meso-scale
models.

• In addition to metastability analysis or optimization, also control of agent-based
systems is an important and interesting research direction. Here, the question
is how the reduced models can be used to find (optimal) control schemes that
steer the system into a desired state. For example, how can we use them to find
time-dependent harvesting schedules for systems like the predator-prey model,
or emergency response strategies to avoid outbreaks in the civil violence model
without permanently increasing the number of officers? Another research direc-
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tion concerns the concept of derivatives for agent-based systems. Recent advances
use, e.g., adjoint concepts [6, 54] for efficient gradient computation.

Future research should provide answers to these questions.

Data Availability. All the presented methods were implemented using Python and
MATLAB. The code for gEDMD and some of the examples discussed in Chapter 3 are
available at https://github.com/sklus/d3s. The ABM codes used for the simula-
tions in this work and the tools of Chapter 5 can be found at https://github.com/
Henningston/ABMs with corresponding data deposited at https://doi.org/10.5281/
zenodo.4522119. Supplementary data can be found at https://doi.org/10.5281/
zenodo.5561165.
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A Appendix

A.1 Quadruple-Well Problem

We compute a representation of the Koopman generator for the quadruple-well problem.
Choosing a dictionary consisting of monomials up to order 4, we generated 8000 random
training points in X = [−2, 2]×[−2, 2] and use the exact values for b(x) and σ(x). Then,
the first six columns of the generator approximation are given by



1 x1 x2 x2
1 x1 x2 x2

2

1 0 0 0 1 0 1
x1 0 4 0 0 0 0
x2 0 0 4 0 0 0
x2
1 0 0 0 8 0 0

x1 x2 0 0 0 0 9 0
x2
2 0 0 0 0 0 8

x3
1 0 −4 0 0 0 0

x2
1 x2 0 0 0 0 0 0

x1 x2
2 0 0 0 0 0 0

x3
2 0 0 −4 0 0 0

x4
1 0 0 0 −8 0 0

x3
1 x2 0 0 0 0 −4 0

x2
1 x

2
2 0 0 0 1 0 0

x1 x3
2 0 0 0 0 −4 0

x4
2 0 0 0 0 0 −8



.

Using columns two and three, we correctly recover the drift term b. Following (3.3),
the entries of matrix a are given by

a11(x) = (Lψ4)(x)− 2b1(x)x1 = 1 + x21x
2
2,

a12(x) = (Lψ5)(x)− b1(x)x2 − b2(x)x1 = x1x2,

a22(x) = (Lψ6)(x)− 2b2(x)x2 = 1,

which is in fact σσ>. Note that monomials of order up to 3 are not sufficient to recover
the drift a.
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A Appendix

A.2 Fixed Points of ODE Limit Model for Two Types of
Agents

Consider the ODE limit model (2.15) with two types S1 and S2 of agents and transition
rates γ12, γ21, γ′12 and γ′21. Then, exploiting c1 + c2 = 1, the ODE process can be
written as

d

dt
c1 = c1(1− c1)(γ21 − γ12)− c1(γ

′
12 + γ′21) + γ′21.

We calculate the fixed points. For the general case, we assume γ12 6= γ21 and γ′12 6= γ′21.
We obtain

0 =
d

dt
c1 = c1(1− c1)(γ21 − γ12)− c1(γ

′
12 + γ′21) + γ′21

= c21 + c1

(
γ′12 + γ′21
γ21 − γ12

− 1

)
− γ′21
γ21 − γ12

and using p-q-formula

c∗1 = − γ′12 + γ′21
2(γ21 − γ12)

+
1

2
±
√
(γ′12 + γ′21 − (γ21 − γ12))2 + 4γ′21(γ21 − γ12)

2(γ21 − γ12)

=
(γ21 − γ12)− (γ′12 + γ′21)±

√
(γ′12 + γ′21 − (γ21 − γ12))2 + 4γ′21(γ21 − γ12)

2(γ21 − γ12)

=
γ − (γ′12 + γ′21)±

√
(γ′12 + γ′21 − γ)2 + 4γ′21γ

2γ
,

where γ := γ21 − γ12. In order to guarantee 0 ≤ c∗1 ≤ 1, we have to choose + in the
above formula due to the following observation. For the case γ > 0, we have

γ − (γ′12 + γ′21) <
√
(γ − (γ′12 + γ′21))

2 + 4γ′21γ,

and therefore subtracting the square root leads to a negative nominator and c∗1 < 0. If
γ < 0, on the other hand, it holds∣∣γ − (γ′12 + γ′21)

∣∣ >√(γ − (γ′12 + γ′21))
2 + 4γ′21γ

and with this the − solution leads to

c∗1 =
γ − (γ′12 + γ′21)−

√
(γ′12 + γ′21 − γ)2 + 4γ′21γ

2γ
>

2(γ − (γ′12 + γ′21))

2γ
> 1.

Therefore, for γ = γ21 − γ12 6= 0 it holds that

c∗1 =
γ − (γ′12 + γ′21) +

√
(γ′12 + γ′21 − γ)2 + 4γ′21γ

2γ
. (A.1)
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A.3 Reduced Two-Dimensional System

For the case where γ12 = γ21, γ′12 6= γ′21, we obtain
d

dt
c1 = −c1(γ′12 + γ′21) + γ′21

and thus
c∗1 =

γ′21
γ′12 + γ′21

.

For the case where γ12 6= γ21, γ′ := γ′12 = γ′21, we obtain
d

dt
c1 = c1(1− c1)(γ21 − γ12) + γ′(1− 2c1)

and, using Equation (A.1),

c∗1 =
γ − 2γ′ +

√
4γ′2 + γ2

2γ
.

For the case where γ12 = γ21, γ′ := γ′12 = γ′21, we obtain
d

dt
c1 = γ′(1− 2c1)

such that c∗1 = 1
2 . In all cases, it holds that c∗2 = 1− c∗1.

A.3 Reduced Two-Dimensional System
We consider the voter model with d = 3 opinions as defined in Section 2.2.3 and assume a
fully connected interaction network. As the number of agents is assumed to be constant,
this is essentially a two-dimensional system. Since it holds that c3(t) = 1−c1(t)−c2(t),
we obtain the drift b : X → R2 given by

b1(c) = (γ13 − γ31)c
2
1 + (γ21 − γ12 + γ13 − γ31)c1c2

+ (γ31 − γ13 − γ′12 − γ′13 − γ′31)c1 + (γ′21 − γ′31)c2 + γ′31,
(A.2a)

b2(c) = (γ23 − γ32)c
2
2 + (γ12 − γ21 + γ23 − γ32)c1c2

+ (γ32 − γ23 − γ′21 − γ′23 − γ′32)c2 + (γ′12 − γ′32)c1 + γ′32.
(A.2b)

The diffusion term a : X → R2×2 with a(c) = a(c)> = (aij(c)) is given by

a11(c) =
1

N

(
(−γ13 − γ31)c

2
1 + (γ12 + γ21 − γ13 − γ31)c1c2 + (γ13 + γ31 + γ′12

+ γ′13 − γ′31)c1 + (γ′21 − γ′31)c2 + γ′31

)
,

(A.3a)

a12(c) = − 1

N

(
(γ12 + γ21)c1c2 + γ′12 c1 + γ′21 c2

)
, (A.3b)

a22(c) =
1

N

(
(−γ23 − γ32)c

2
2 + (γ12 + γ21 − γ23 − γ32)c1c2

+ (γ23 + γ32 + γ′21 + γ′23 − γ′32)c2 + (γ′12 − γ′32)c1 + γ′32

)
.

(A.3c)
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The remaining entries are given by

a13 = a11 − a12,

a23 = a22 − a12,

a33 = a11 + a22 + 2a12.

The entries of matrix LN can be reconstructed using the coefficients appearing in Equa-
tion (A.2) and Equation (A.3) via Formula (3.3). For instance, we obtain

l22 = γ31 − γ13 − γ′12 − γ′13 − γ′31.

Note that the indices ij depend on the ordering of the basis elements.
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Zusammenfassung
Die Modellierung sozialer Systeme und die Untersuchung ihres dynamischen Verhaltens
spielt in vielen Forschungsbereichen eine wichtige Rolle. Agentenbasierte Modellierung
ermöglicht einen hohen Detaillierungsgrad künstlicher Gesellschaften, indem das Mo-
dell aus der Perspektive der Agenten beschrieben wird. Die Interaktionen der Agenten,
die oft durch einfache Regeln vorgegeben sind, führen zu komplexen, sich zeitlich entwi-
ckelnden Mustern, deren Verständnis von großer Bedeutung zum Beispiel für die Vor-
hersage und Beeinflussung von Epidemien ist. Analyse und Simulation werden jedoch
oft unverhältnismäßig zeitaufwendig, wenn die Anzahl der Agenten oder die betrach-
tete Zeitskala groß ist. Diese Arbeit widmet sich daher dem Erlernen deutlich redu-
zierter Modelle großer agentenbasierter Systeme aus Simulationsdaten. Es wird gezeigt,
wie auf Transferoperatoren basierende, datengetriebene Methoden verwendet werden
können, um reduzierte, durch gewöhnliche oder stochastische Differentialgleichungen
darstellbare Modelle zu finden, die das dynamische Verhalten größerer Gruppen oder
ganzer Populationen beschreiben und somit die Analyse und Vorhersage agentenbasier-
ter Systeme ermöglichen. Dazu wird zunächst eine Erweiterung von EDMD vorgestellt,
um den Koopman Generator anhand von Daten zu approximieren. Die gEDMD ge-
nannte Methode kann zur Berechnung von Eigenfunktionen, Eigenwerten und Moden
des Generators sowie zur Systemidentifikation und Modellreduktion sowohl determi-
nistischer als auch nichtdeterministischer dynamischer Systeme verwendet werden. Im
nachfolgenden Kapitel wird das Langzeitverhalten bestimmter agentenbasierter Model-
le und deren pfadweisen Approximationen durch stochastische Differentialgleichungen
für große Agentenanzahlen mittels Transferoperatoren analysiert. Es wird gezeigt, dass
der Transferoperatoransatz unter bestimmten Bedingungen die pfadweisen Approxima-
tionen auf endlichen Zeitskalen mit Methoden zur Beschreibung des Verhaltens auf
möglicherweise exponentiell langen Zeitskalen verbindet. Dies bedeutet, dass die pfad-
weisen Näherungen auf endlicher Zeitskala genutzt werden können, um das metastabile
Verhalten auf langen Zeitskalen mit Hilfe von Transferoperatoren zu charakterisieren.
Dies kann die Rechenkosten erheblich reduzieren. Der dritte Teil befasst sich mit der
datengesteuerten Modellreduktion, da in vielen Fällen keine analytischen Grenzmodelle
bekannt oder vorhanden sind. Es wird demonstriert, wie die Koopman-Operatortheorie
verwendet werden kann, um die maßgeblichen Gleichungen agentenbasierter Systeme
direkt aus Simulationsdaten herzuleiten. Mittels Testprobleme wird gezeigt, dass die
datengetriebenen Modelle für ausreichend große Populationen gut mit analytischen
Grenzwertgleichungen übereinstimmen und dass die reduzierten Modelle sogar in Fällen,
die weit vom Grenzwert entfernt sind oder wenn keine Grenzwertgleichungen bekannt
sind, Vorhersagen ermöglichen. Zum Schluss wird ein Ansatz zur Mehrzieloptimierung
agentenbasierter Systeme mit Hilfe von datengetriebenen, auf dem Koopman Genera-
tor basierenden Ersatzmodellen präsentiert und damit das Potenzial der vorgestellten
Methode aufgezeigt. Insbesondere bei unbekannten oder inexistenten Grenzmodellen
macht dieser Ansatz Mehrzieloptimierungsprobleme lösbar, die andernfalls aufgrund
sehr teurer Zielfunktionen rechnerisch undurchführbar wären.
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