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Abstract

Given the ubiquity of synthetic chemicals in our daily life, it is crucial to assess the

hazardous effects of new chemical substances on humans, animals, and the environment.

Toxicity assessment has traditionally been based on in vitro and in vivo studies, but

ethical and economic arguments call for reduction and replacement of animal testing.

Therefore, computational toxicity prediction has gained momentum to support toxicity

studies and to ultimately reduce animal testing. In silico approaches are comparably fast

and inexpensive, and many of them can be applied prior to synthesis and in vitro testing

of new chemicals.

Computational methods such as machine learning (ML), similarity search, and struc-

tural alerts are already in use during the development of new chemicals. They are often

restrained by limitations in data availability for training and by the need for applica-

bility domain determination for predictions on new data. In this thesis, novel in silico

strategies for guiding in vivo and in vitro toxicity testing were developed. Means to max-

imise the gain from limited available data were explored, as well as strategies to improve

the applicability of in silico toxicity prediction approaches. A special focus was laid on

studying the potential of the conformal prediction (CP) framework, which is built on

top of an ML model, to allow for confidence estimation. The CP framework utilises an

extra calibration set to compare the predicted probabilities of new query compounds to

those previously seen. The calibrated probabilities are returned in the form of so-called

p-values.

To support toxicity testing of new chemicals, the Python-based KnowTox pipeline was

developed. Following a holistic approach, a compound of interest can in silico be exam-

ined from three perspectives: KnowTox searches for known toxic substructures, returns

how similar compounds were tested in vitro, and queries pre-trained CP models. The

value of complementing the outputs of different in silico approaches was demonstrated

in a retrospective case study on two triazole molecules from industry. Focusing on the

estrogen receptor (ER), an important target for endocrine disruption, we further explored

whether in silico predictions can help to pre-select compounds for in vitro experiments.

Starting from nine newly discovered ER active compounds (using the recently-developed

E-Morph Screen ER assay), it was prospectively shown that similarity search and CP

models can help to increase the hit rate of in vitro screens, enabling fast and efficient

identification of novel endocrine disruptors.

In the above described studies, CP was used as it outputs valid confidence estimates

and guarantees pre-defined error rates (on the exchangeability assumption). Moreover,

allowing class-wise calibration, data imbalances are usually well-handled. The potential

of CP was, in this thesis, further investigated for the generation of bioactivity descrip-

tors, and to mitigate data drift effects. The ChemBioSim project addressed the challenge

of predicting in vivo toxicological effects by informing CP models with bioactivity de-
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scriptors originating from in vitro data. Compared to chemical descriptors, bioactivity

descriptors may provide more mechanistic information and help to better capture complex

in vivo outcomes. To avoid in vitro testing of every query molecule, p-values returned by

CP models trained on in vitro datasets served as bioactivity descriptors. For the investi-

gated MNT and cardiotoxicity endpoints, in vivo toxicity prediction could be improved

by using bioactivity (instead of chemical) descriptors.

The CP framework is designed to yield valid predictions, provided that training and

test set are exchangeable. This assumption is not always fulfilled; data drifts may occur

e.g. when the chemical space or assay conditions change. To mitigate effects of data

drifts, we have developed a recalibration strategy, suggesting to exchange the calibration

set with data closer to the test data. The strategy, developed based on the Tox21 data,

was further analysed for temporal data drifts using ChEMBL data and for differences

between public and proprietary data. In most cases, recalibration led to restored validity,

a prerequisite for model applicability.

Besides applications of computational toxicity prediction methods and CP, this thesis

further discusses general aspects of data and applicability domain in the context of in

silico toxicology. While regulatory agencies still require animal studies, with the compu-

tational strategies discussed in this work, we aim to foster the reliability of predictions

and the applicability of models, to ultimately reduce animal testing.
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Zusammenfassung

Synthetische Chemikalien sind in unserem täglichen Leben allgegenwärtig, was die Un-

tersuchung neuer Chemikalien auf toxische Effekte unerlässlich macht. Toxikologische

Untersuchungen werden traditionellerweise anhand von in vitro und in vivo Studien

durchgeführt. Jedoch fordern ethische und wirtschaftliche Argumente die Reduktion und

letztendlich den Ersatz von Tierversuchen. Daher hat die computergestützte Toxizitäts-

vorhersage an Bedeutung gewonnen, um Toxizitätsstudien zu unterstützen und letztlich

Tierversuche zu reduzieren. In silico Methoden sind vergleichsweise schnell und günstig,

und viele von ihnen können vor der Synthese und in vitro-Prüfung neuer Chemikalien

angewendet werden.

Computergestützte Methoden wie Maschinelles Lernverfahren (ML), Ähnlichkeits-

suche und Substruktursuche werden im Entwicklungsprozess neuer Chemikalien bereits

angewendet. Sie stossen jedoch oft an ihre Grenzen. Ein Grund dafür ist die limitierte

Datenverfügbarkeit, ein anderer die Gewährleistung der Anwendbarkeit der Modelle. Im

Zuge dieser Arbeit wurden neuartige in silico Strategien zur Steuerung von in vivo und in

vitro Versuchen entwickelt. Es wurden Strategien zur Maximierung des Nutzens aus den

begrenzt verfügbaren Daten sowie Strategien zur Verbesserung der Anwendbarkeit von in

silico-Toxizitätsvorhersageansätzen untersucht. Ein besonderer Schwerpunkt der Arbeit

lag auf der Untersuchung des Potenzials des Conformal Prediction (CP) Frameworks, das

auf einem ML-Modell aufbaut, um eine Vetrauensabschätzung zu ermöglichen. CP ver-

wendet ein zusätzliches Kalibrierungsset, mithilfe dessen die von ML Modellen vorherge-

sagten Wahrscheinlichkeiten für neue Moleküle kalibriert werden. Die Kalibrierung erfolgt

anhand von Vorhersagen für bereits bekannte Moleküle und die kalibrierten Wahrschein-

lichkeiten werden als sogenannte p-Werte zurückzugeben.

Um das Planen von toxikologischen Studien und die Risikobeurteilung von Chemika-

lien zu unterstützen, wurde die Python-basierte KnowTox Pipeline entwickelt. KnowTox

verfolgt einen ganzheitlichen Ansatz, bei dem eine neue Substanz aus drei Perspektiven

in silico beurteilt wird: KnowTox sucht nach bekannten unerwünschten Substrukturen,

ermittelt wie ähnliche Substanzen in vitro getestet wurden, und es werden Vorhersagen

mit vortrainierten CP Modellen gemacht. In einer retrospektiven Fallstudie mit zwei ehe-

maligen Entwicklungskandidaten aus der Industrie konnte der Nutzen des Kombinierens

verschiedener in silico Methoden aufgezeigt werden. Unsere nächste Studie konzentrierte

sich auf den Östrogenrezeptor (ER), einen wichtigen Angriffspunkt für hormonaktive Sub-

stanzen. Es wurde untersucht, ob in silico Vorhersagen auch bei der Vorselektionierung

von Testsubstanzen für in vitro Versuche nützlich sein können. Anhand von neun Sub-

stanzen, die mithilfe des kürzlich entwickelten E-Morph Screen ER Assays als ER-aktiv

eingestuft worden sind, konnte prospektiv gezeigt werden, wie Ähnlichkeitssuche und

CP-Modelle die Trefferquote von in vitro Screeningverfahren erhöhen können, was eine

schnellere und effizientere Identifizierung neuartiger Endokriner Disruptoren ermöglicht.
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In den oben beschriebenen Studien wurde die CP-Methode gewählt, weil sie valide

Vertrauensabschätzungen macht und vordefinierte Fehlerraten garantiert. Zusätzlich

kann CP durch klassenweise Kalibrierung gut mit den für toxikologische Datensätze

üblichen Ungleichgewichten zwischen der Anzahl aktiver und inaktiver Moleküle umge-

hen. Desweiteren wurde in dieser Arbeit das Potenzial der CP-Methode für die Gene-

rierung von Bioaktivitäts-Deskriptoren und zur Abschwächung von Datendrifteffekten

untersucht. Das ChemBioSim Projekt befasste sich mit der Herausforderung, toxikologi-

sche in vivo Effekte vorherzusagen, indem CP-Modelle mit Bioaktivitäts-Deskriptoren

aus in vitro-Daten angereichert wurden. Im Vergleich zu chemischen Deskriptoren,

könnten Bioaktivitäts-Deskriptoren mehr mechanistische Informationen enthalten und

helfen, komplexe in vivo-Endpunkte besser zu erfassen. Um zu vermeiden, dass jedes

vorhergesagte Molekül auch synthetisiert und in vitro getestet werden muss, wurden

CP Modelle auf in vitro Datensätzen trainiert und die ausgegebenen p-Werte als Bioak-

tivitäts-Deskriptoren verwendet. Für die untersuchten MNT- und Kardiotoxizitäts-End-

punkte konnte die Vorhersage der in vivo Toxizität mithilfe der Bioaktivitätsdeskriptoren,

im Vergleich zu chemischen Deskriptoren, verbessert werden.

Das CP Framework wurde so konzipiert, dass die Modelle gültige Vorhersagen liefern,

vorausgesetzt, dass Trainings- und Testdatensatz austauschbar sind. Diese Annahme ist

jedoch nicht immer erfüllt. Es kann zum Beispiel zu Datendrifts kommen, wenn sich

der chemische Raum oder die Assay-Bedingungen ändern. Um die Auswirkungen solcher

Datendrifte abzuschwächen, haben wir eine sogenannte ‘Rekalibrierungs-Strategie’ ent-

wickelt, bei der das Kalibrierungsset durch neue Daten ersetzt wird, die näher am Test-

datensatz liegen. Die Strategie wurde anhand der Tox21 Datensätze entwickelt und an-

schliessend weiter für die Anwendung auf temporale Datendrifts sowie auf Unterschiede

zwischen öffentlichen und proprietären Daten untersucht. In den meisten Fällen führte

die Rekalibrierung zur Wiederherstellung der Validität, eine Voraussetzung für die An-

wendbarkeit des Modells.

Neben den Anwendungen von computergestützten Methoden und CP zur Vorher-

sage der Toxizität, werden in dieser Arbeit auch allgemeine Aspekte der Daten und der

Anwendbarkeit im Kontext der in silico Toxikologie diskutiert. Während die Aufsichts-

behörden nach wie vor Tierversuche verlangen, zielen die in dieser Arbeit erörterten

Strategien darauf ab, die Zuverlässigkeit der Vorhersagen und die Anwendbarkeit der

Modelle zu verbessern, um letztendlich Tierversuche zu reduzieren.
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Acronyms

ML machine learning

CP conformal prediction

QSAR quantitative structure-activity relationship

AD applicability domain

ADHanser applicability domain

RDHanser reliability domain

DDHanser decidability domain

RF random forest

SVM support vector machine

KNN k-nearest neighbours

ER estrogen receptor

AR androgen receptor

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals

OECD Organisation for Economic Co-operation and Development

HTS high-throughput screening

nc score nonconformity score

EDC endocrine-disrupting chemical

MNT micro nucleus test
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Introduction

1.1 Toxicity assessment of chemical substances

Synthetic chemicals are ubiquitous in our daily life. They appear e.g. in the form of

drugs, pesticides, and cosmetic ingredients, but are also present in cleaning agents, or

used to soften plastic. Consequently, humans and the environment are inevitably exposed

to a variety of chemical substances, which may not only have beneficial, but also toxic

effects [1]. The risk that a substance is actually causing harm, depends on its hazard

(i.e. toxicity) and the exposure to it [2].

Toxicity is still one of the most important reasons for drug attrition during the devel-

opment of new medicines [3–5]. According to a study conducted by four large pharmaceu-

tical companies and performed on data for 812 oral development candidates, nominated

between 2000 and 2010, 40% of the failed drug candidates dropped out due to non-clinical

toxicology, i.e. toxic effects detected before progressing to the clinics. During Phase I and

II clinical studies, drug attrition due to clinical safety accounted for 25% of the failed com-

pounds [4]. Already during the development of new drugs and other types of chemicals, it

is crucial that potential toxic effects on humans or the environment are assessed. Adverse

effects of chemical substances comprise various types of toxicity. For example, organs,

such as the heart, liver, or lung might be adversely affected. Exposure to chemicals could

also cause reproductive and developmental toxicity, or mutagenicity [4–7].

An important class of toxic chemical substances are endocrine-disrupting chemi-

cals (EDCs). They disturb the hormone system and as a consequence exhibit toxic

effects such as reproductive disfunction, hormone-dependent cancers, or disruption of

brain or immune system development [8–11]. EDCs can act via various mechanisms

of action; some need further investigation [8, 11]. They may mimic or partly mimic

natural hormones such as estrogens, androgens, or thyroid hormones. They may also

directly interact with hormone receptors or interfere with other players of the endocrine

system [8, 9, 12, 13]. Well-known EDCs are, among others, bisphenol-A used in plastic

and can manufacturing [10], pesticides such as dichlorodiphenyltrichloroethane or per-

methrin, and synthetic steroids which are present in contraceptives such as estradiol

and estrone [14]. Awareness and concerns about severe effects of EDCs on humans and

wildlife have grown since the 1990’s. This has led to a variety of (inter-)national actions,

such as revised guidelines, government-established inventories of produced or imported
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Figure 1.1: The prevalence of chemicals in the environment can lead to unwanted effects on
plants and animals. Illustration by Moreno Morger.

chemical substances, or the launch of EDC screening programs, among others by the EU,

USA, WHO, and Organisation for Economic Co-operation and Development (OECD) [8,

15–19].

While the awareness of the potential ‘risk’ of chemicals rose, it also became clear that

safety data was missing for a large portion of marketed chemicals [20–23]. Hence, in 2006,

the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legis-

lation was enforced. The REACH legislation requires hazard assessment for all chemicals

available on the European Union’s market. The hazard information requirements depend

on the amount and how they were produced, imported, and used [21, 24].

1.2 Replace, reduce, and refine animal testing

Traditionally, toxicity studies in animals, such as mice, rats, or monkeys, and subsequent

extrapolation to humans have been used for the assessment of toxicological effects of

chemical substances [25]. In 2019, almost 475,000 animals were employed in Germany for

production, quality control, and toxicological safety assessment [26]. Such in vivo studies

are expensive, time-consuming, and come with the uncertainty of extrapolation from test

animals to humans.
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Moreover, the ethical aspects of animal experimentation need to be considered. In

1959, the 3R’s principle, i.e. replacement, reduction, and refinement of animal testing,

was introduced by William Russell and Rex Burch and published in their book on ‘The

Principles of Humane Experimental Technique’ [27]. They called for substantial effort

to research for alternatives to animal testing (replacement), more efficient, reliable, and

reproducible experiments (reduction), and to minimise suffering of laboratory animals

(refinement). Also the REACH legislation from 2006 promotes non-animal based meth-

ods. Based on animal welfare considerations, animal tests should only be used as a last

resort [21, 24, 28].

Figure 1.2: Toxicity of new chemicals is traditionally assessed in animal studies. In vitro
testing is an essential alternative for already synthesised compounds. Illustration by Moreno
Morger.

In the following, different alternatives to animal toxicity testing will be introduced,

i.e. read-across, in vitro testing, and in silico predictions. These methods are also referred

to as new approach methodologies (NAMs) [29].

Read-across approach

The read-across approach [24, 30] to fill data gaps is based on the assumption that similar

compounds may exhibit similar toxic effects. If data is missing on the properties of a

query molecule, more may be learnt from reading-across information from sufficiently
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similar molecules. Read-across is one of the non-animal-based methods, which is in

certain cases accepted by the regulatory agencies [6, 24, 31, 32]. The aim of read-across

predictions is to be (more or less) equivalent to and thus able to replace a standard

animal study [32]. Therefore, sound and well-justified read-across is required [24]. This

entails proper planning, documentation for reproducibility and transparency, and expert

judgment. A big challenge is also the assessment of uncertainty, of both the underlying

experimental data, and the similarity justification [31, 32]. The state-of-the-art and

insights on the read-across studies submitted to REACH were summarised by Ball et

al. [6].

In the second report on ‘The Use of Alternatives to Testing on Animals for the REACH

Regulation’, it was reported that up to 75% of the dossiers contained a read-across or

category approach for at least one endpoint [24, 33]. Several successful read-across studies

have been published since then [31, 32]. For example, van Ravenzwaay et al. provided a

retrospective read-across case study with three phenoxy-herbicides. They demonstrated

how a 90-day study in rats could have been waived with the use of metabolomics data

from blood samples in a 28-day study [34].

Read-across is a so-called expert method and typically performed manually. However,

computational support can be useful to mine for appropriate similar molecules in a large

database, to rank them, and to collect experimental information about them [19, 35, 36].

In vitro approaches

In vitro methods provide valuable alternatives to animal testing. Nowadays, many bio-

chemistry and cell-based experiments can be performed in the form of high-throughput

screening (HTS) assays [25]. While such assays are much faster, cheaper, and more eth-

ical than in vivo experiments, the interpretation and extrapolation from in vitro to in

vivo experiments remains challenging [23, 37]. In vitro and in vivo experiments are often

performed with different doses and measurements taken at different time points. More-

over, certain systemic effects can be difficult to detect in vitro when biochemical and

cell-based in vitro systems cannot capture whole-animal systems. Another difficulty is

the analysis of the formation and the toxic effects of metabolites which are formed upon

bioactivation in the liver or other tissues.

Both in vitro and in vivo experiments come with experimental errors, i.e. variabil-

ity between assay conditions, the person conducting the experiment, or animal physiol-

ogy [38–40].

In silico approaches

In silico methods, which build on the information gained from in vitro and in vivo stud-

ies, provide another level of alternatives to animal testing. Computational methods for

toxicity prediction [3, 31, 41, 42] can be used in the early stages of the development of
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new chemicals, to guide toxicity testing and hopefully lead to the exclusion of harmful

compounds in the early stages. A variety of methods that can help to assess the hazard

of compounds, such as similarity search, structural alerts, and machine learning (ML),

will be introduced in the next section. Computational predictions are relatively fast and

cheap, compared to in vivo and in vitro experiments. In silico tools can even be deployed

to not yet synthesised compounds and to compounds not available in sufficient amount for

testing. Additionally, raw data, code, models, and environments can be stored, shared,

and reused by independent researchers to reproduce the results [40].

The use of in silico toxicology in regulatory frameworks is still limited [31]. The first

guideline to allow in vitro experiments to be replaced by in silico predictions was the ICH

M7 guideline for mutagenicity assessment. Given certain prerequisites, if the predictions

from two in silico approaches — typically structural alerts and ML — come to the same

(negative) result, an in vitro AMES assay for manufacturing impurities assessment may

be waived [31, 43].

Also the combination of in vitro and in silico methods is promising, although there

are only a few publications exploring such strategies [44–47]. The full potential is not yet

exploited.

Figure 1.3: Computational methods, such as machine learning models trained on in vitro or
in vivo data, are promising alternatives to animal testing, particularly for not yet synthesised
chemicals. Illustration by Moreno Morger.
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1.3 In silico methods for toxic endpoint prediction

Computational methods used for risk assessment and toxicity prediction of novel com-

pounds are diverse. The main computational methods will be introduced in the following.

Machine 

learning
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Read-across support
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Figure 1.4: An overview of computational toxicity prediction methods.

Similarity-based approaches

Many computational prediction methods follow the similarity hypothesis. The similar-

ity property principle, introduced by Johnson and Maggiora in 1990, states that similar

compounds should have similar properties, especially similar biological effects [48, 49].

Similarity can be defined and determined in different forms, such as chemical, molecular,

or biological similarity. According to Maggiora et al. [49], chemical similarity focuses on

the physicochemical properties of a compound. These are usually values that describe a

global property of a molecule, such as molecular weight, logP, or boiling point. Molecular

similarity takes structural features of molecules and their representations into account.

It can be defined by shared substructures or topologies of the molecules. In some cases,

chemically or structurally very similar molecules might still show large differences in po-

tency, so-called activity cliffs [49–52]. Biological similarity, i.e. comparing the outcomes

of biological or biochemical assays, is a strategy to tackle activity cliffs [53–55]. While

molecular similarity can be directly computed from chemical structures, traditional bi-

ological similarity implies that the compounds to compare were previously synthesised

and assayed.

In cheminformatics, similarity between molecules is typically assessed by comparing

their representations in the form of descriptors. Descriptors are vectors of binary and/or
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continuous values, each value corresponding, for example, to a chemical, molecular, or

biological feature of a compound (see Section 3.1).

Similarity between chemicals might be easily determined by eye — if two substances

are compared. When working with large chemical databases, a computational similarity

search can be useful to retrieve resembling molecules for a query compound and rank

them by similarity. Such a similarity search (see Section 3.2 for more details) mainly

consists of three steps. First, the molecules are encoded in the form of descriptors (see

Section 3.1). Second, a similarity metric is needed to calculate the pairwise similarity

between the query compound and each molecule in the database. Finally, the molecules

in the database are ranked by similarity to the query molecule.

The concept of a similarity search is fairly straightforward and many different molecule

encodings and similarity measures are available. However, not all similarity measures

are suitable for comparing compounds in large databases due to hardware and software

restrictions [56]. Also the interpretation of the outcomes, which are typically values

ranging between 0 and 1, is challenging. The similarity values not only depend on the

molecule representation and the similarity measure. Even if a combination is selected,

properties such as the molecule size and the position of a dissimilar atom or functional

group have an influence [49]. For example, the Tanimoto similarity coefficient, which

takes into account the number of shared features by two compounds A and B and the

number of unique features in the union of A and B, tends to be lower when comparing

small molecules, i.e. molecules with a low bit density [57].

If the similarity between chemicals is sufficient, they might qualify for the read-across

approach to fill data gaps. Support for read-across is available, for example, in the OECD

QSAR toolbox [19, 35] and the eChemPortal[36]. Although these tools are openly avail-

able, they cannot easily be integrated into existing applications, e.g. internal platforms

and pipelines in industry.

Structural alerts

Structural alerts, also known as toxicophores, are molecular substructures that have been

associated with particular unwanted, e.g. toxic, effects [58]. The detection of structural

alerts is an expert method, which assumes that chemicals with similar substructures might

exhibit similar toxic effects. Such substructures were initially derived from structure-

activity relationship studies [59, 60]. Meanwhile, the collection of available structural

alerts has been extended by structural alerts extracted through statistical evaluation and

computational methods [31, 59–63]. The application of structural alerts appears already

in the early stages of new chemicals’ development to avoid the design of potentially toxic

molecules [59]. They can, for example, be employed when assembling (virtual) screening

libraries for drug discovery, as described by Brenk et al. [64]. The authors provide a list of

unwanted, e.g. potentially mutagenic or reactive, groups in their publication. Many other

such lists of unwanted substructures are available in the literature [58, 65]. The e-MolTox
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webserver for in silico drug safety analysis, for example, allows to query a molecule for the

occurrence of any of such potentially toxic substructures [65, 66]. ToxAlerts is another

web-based platform that offers a collection of structural alerts as well as the use of the

alerts for virtual screening to flag potentially harmful substances [58, 67].

Considerable advantages of structural alerts are the fast and easy use, as well as their

interpretability [62, 63]. Moreover, if more knowledge becomes available, i.e. from data-

driven methods or from experts’ experience [31, 59], the lists with undesired substructures

can easily be extended. While structural alert approaches (if alert, then toxic) are usually

highly sensitive, there is also a high chance for the occurrence of false positives, i.e. not

all compounds with an undesired structural moiety are actually toxic as the effects on

chemical toxicity depend on the structural environment [31, 68, 69]. Furthermore, there

is no guarantee for negative predictions (i.e. if no alert, then non-toxic). The method can

only reveal existent knowledge. Therefore, Alves et al. suggest that the appearance of a

structural alert should rather be seen as a hypothesis about the mechanism of action or

the toxic effect [69]. The relevance of the alert should, however, be assessed by experts.

It is also noted that some structural moieties might be responsible for both the mode of

action and the adverse effect of a compound [31, 70]. It is, therefore, not always desired

to remove any compound with such a substructure. For example, triazole substructures

are responsible for the interaction of fungicides with both the intended target fungal

lanosterol 14α-demethylase and the homologous human off-target aromatase [71, 72].

Another drawback to keep in mind is that structural alerts only focus on one part of a

molecule. If effects depend on multiple groups existing in the same molecule, they cannot

be analysed with structural alerts [31].

Machine learning

Machine learning is a method to enable computers to learn from data [73, 74]. For su-

pervised ML methods, the model built on labelled training data is then used to make

predictions about the label of yet unseen instances. ML models can be used for the pre-

diction of potential toxicological effects of chemical substances. In the context of relating

a property, such as toxicity or activity, to a set of molecular descriptors, ML models are

typically referred to as quantitative structure-activity relationship (QSAR) models [31,

42, 75, 76]. In this case, the labels correspond to a specific endpoint, such as a specific

type of toxicity, or an assay outcome. The labels are binary or categorical in the case of

classification, or continuous variables in regression. The molecules can be represented in

the form of descriptors (see Section 3.1). Several traditional ML algorithms, such as ran-

dom forest, support vector machine, and k-nearest neighbours are employed (see Section

3.3)[7, 77].

With the availability of more powerful computers, new algorithms, and more data, ML

has become more popular for toxicity prediction in recent years [42]. A famous promoter

for ML model building for toxicity prediction was the Tox21 Data Challenge [77]. The
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organisers motivated 40 participating groups to build ML models on nuclear receptor

and stress response pathway datasets with about 8000 compounds and submit totally

178 models for final evaluation. While the grand challenge winner (DeepTox) [78] used

a deep neural network approach, all winning models achieved high AUC-ROC scores

between 0.81 and 0.95 [77], Furthermore, CERAPP and CoMPARA [12, 79] are two

recent, highly collaborative, studies on estrogen and androgen receptor modelling. In

the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) and the

Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA), 17 or 25

international groups built models for estrogen receptor (ER) (CERAPP) or androgen

receptor (AR) (CoMPARA) binding, agonism, and antagonism using QSAR and docking

approaches. From these models, one consensus model was built per project with the aim

to reveal new potential EDCs.

Although similar descriptors as in similarity search and computational read-across

support are used, with ML algorithms, more complex, especially non-linear, patterns can

be learnt from the molecules and their labels. Well-performing models can be trained au-

tomatically and benefit more from computational rather than toxicological expertise [31,

80]. Nevertheless, ML models should not only make accurate predictions, but also be

useful, i.e. with respect to the selected endpoint, applicability domain, and interpretation

of the outputs. Therefore, in 2007 the OECD issued guidelines for harmonised evaluation

of QSAR models [31, 81].

Tropsha et al. published a series of best practices in QSAR papers, among others

focusing on the importance of data curation, model validation, and applicability domain

determination [38, 82–84]. Another prominent challenge building ML classification mod-

els for toxicological effects are the imbalances between classes [55, 76, 85]. Toxicological

datasets typically contain more inactive (non-toxic) than active (toxic) compounds (see

Section 1.5 for more detail on toxicity data).

While many ML models and tools for toxicity prediction have been published, ML

is still a developing field [31, 65, 86–90]. More research is needed, especially to face

challenges with regard to data limitations and applicability domain determination.

1.4 Confidence in machine learning predictions

Whenever an ML model is built and used for predictions, it is crucial to know if the model

can be confidentially applied to new data. The desired level of confidence depends on the

application context. For compound prioritisation purposes, the risk of a false prediction

is inferior, thus a lower accuracy can be accepted. The accuracy of a prediction becomes

more important, if a compound is more advanced in the (drug) discovery pipeline, if the

study becomes more expensive, and if decisions with respect to hazard and risk assessment

are made [91, 92]. While global accuracy of a batch of compounds can be determined in
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internal and external validation and may be sufficient during compound prioritisation, the

confidence in a prediction for an individual compound needs to be assessed differently [92].

The need for a so-called applicability domain (AD) for ML models is even noted down

in the OECD guidelines on the validation of (Q)SAR models. The AD is defined as

the ‘response and chemical structure space in which the model makes predictions with

a given reliability’ [93]. ‘Response’ stands for the output (label) of an ML model. For

regression, the label is a continuous variable, which can differ from the label space used to

train the model. In classification, the labels are categorical and, thus, the AD is typically

based on the (molecular) descriptor space only, i.e. the descriptors used to encode the

molecules [94].

Applicability, reliability, and decidability domains

Hanser et al. have outlined that AD is an even more complex concept. A confident decision

can only be derived from a prediction if it is valid, reliable, and decisive; it is difficult to

address all three aspects with one question. Therefore, they suggested to consider three

levels of confidence, i.e. the applicability, the reliability, and the decidability domains (see

Figure 1.5) [92, 95].

Applicability domain: 

Is the prediction valid?

Reliability domain:

Is the prediction reliable?

Decidability domain:

Is the prediction decisive?

Figure 1.5: The concept of applicability domain can be divided into three levels: applicability,
reliability, and decidability domain [92, 95]

The applicability domain (ADHanser) defines the boundaries, in terms of descriptors,

compound classes, and structural features, within which a model is suitable to be ap-

plied. These boundaries can, for example, be defined by the range of descriptor values

in the training set or by a convex hull, i.e. the minimum convex area, around the first

components of a principal component analysis fitted on the training data [92, 94, 95].

The reliability domain (RDHanser) depends on the quality, quantity, and relevance of

the underlying model information, e.g. a prediction of a query compound is expected to

be more reliable if more similar compounds are contained in the training set. RDHanser
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can be estimated by distance- and density-based methods, therefore, nearest-neighbour

approaches can be helpful. For example, the reliability of a prediction is considered higher

if there are more close neighbours, if the distance to the nearest neighbours is smaller, or

if the neighbours are more equally distributed. Even within the ADHanser, a prediction

is more reliable if the compound is in an area with higher information density [92, 95].

According to Hanser et al., the ADHanser and RDHanser can be estimated before mak-

ing a prediction, while the decidability domain (DDHanser) is only defined with the pre-

diction. The DDHanser estimates if a prediction is decisive or equivocal. It requires

probability or likelihood predictions per class label. Such a probability could be derived

directly from an ML algorithm, i.e. the number of trees in a random forest that produce a

specific label or the label distribution among the nearest neighbours. It is recommended

to calibrate the decidability level, so it can reflect the expected accuracy. This can e.g. be

achieved within the conformal prediction (CP) framework as explained in Section 3.4 [92,

94, 95].

In a review on chemoinformatic classification methods and their applicability domain,

Mathea et al. [94] had already discussed a concept similar to the DDHanser. They differen-

tiated between AD approaches for novelty detection and confidence estimation. Novelty

detection methods only consider the descriptor space and ‘mark’ compounds which are

outside the descriptor space covered by the training set. Confidence estimation, similar

to the DDHanser concept introduced by Hanser et al., takes into account the ‘labels’ and

hence compounds at the decision boundary of the two classes. It was stated that the error

rate of a batch of predictions might be reduced more efficiently by rejecting predictions

at the overlap region than by excluding remote object predictions — remote objects may

still lie on the correct side of the decision boundary. It is, therefore, important to have

means to detect compounds at the decision boundary.

Conformal prediction for confidence estimation

Conformal prediction (CP) [87, 96–98] (see Section 3.4) has become a popular method

for confidence estimation, with the DDHanser concept included in the framework. The

CP framework is built on top of an ML algorithm and contains an additional calibration

step. It is possible to define an accepted error rate, which will not be exceeded given

that data is exchangeable, i.e. stems from the distribution [96, 98]. Instead of a single

value, the prediction output is a prediction set (classification) or a prediction interval

(regression). For binary conformal classification, the prediction set contains either of

the classes (single-label prediction), both classes, or it is empty. The interpretation of

the three types of prediction sets can be related to the ADHanser and DDHanser. An

empty prediction set suggests that the compound is outside the ADHanser. A single-label

prediction is returned if the model’s confidence is high enough, i.e. if the compound is

inside the AD and inside the DDHanser. If the prediction set contains both classes, the

compound is considered inside the ADHanser but outside the DDHanser between the two
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classes, i.e. the model does not have enough information to assign the compound to one

of the classes.

Advantages of the CP framework are the straight-forward interpretation of predic-

tions. Moreover, for a batch of compounds, it can (retrospectively) be checked if the

applicability domain assumption is correct, i.e. if training and test data stem from the

same distribution. In classification, there is an additional advantage that (Mondrian [99])

CP is usually dealing well with imbalanced data.

The exchangeability assumption is, however, not always fulfilled, i.e. when test in-

stances have drifted from the training data’s descriptor space or when transitioning to

a new experimental setup for investigating the same biological effects [100, 101]. More

research is needed on how to mitigate effects of such data drifts on the performance of

CP models.

1.5 Toxicity data as a basis for in silico predictions

The aforementioned toxicity prediction approaches all rely on sufficient and, ideally, con-

sistent and standardised data [76]. In particular, the quality of ML models, which are

trained on large datasets, relies on well-curated and standardised data.

These desires are not always satisfied, particularly for toxicological datasets, which

are often sparse and imbalanced [42, 55, 76, 85]. This can be explained by economical and

ethical considerations: if a compound is confirmed toxic for one crucial endpoint, it will

most likely be attrited and not tested in any further assay. Moreover, only non-harmful

compounds should be submitted to regulatory agencies (and will be published).

Therefore, different actions have been taken to improve the situation. First, initiatives

such as the Tox21 and ToxCast programs set their sights on generating more complete

publicly-available in vitro datasets [77, 102, 103]. The combined Tox21 and ToxCast

dataset contains about 8000 compounds with measurements taken in about 1000 consis-

tent HTS assays and are a good basis for the training of ML models. Second, 13 phar-

maceutical companies teamed up in the eTOX project with the aim to share pre-clinical

toxicological data to be used for read-across, model building, and evaluation [3]. Last but

not least, there are large bioactivity databases, such as PubChem and ChEMBL. The

PubChem database, hosted by the US National Institutes of Health, contains informa-

tion on chemical substances and their biological activities — 96.5 million unique chemical

structures and 1.25 million biological assays as of August 2018 — which are provided by

university labs, governmental agencies, and industries [104, 105]. The ChEMBL database

is developed and maintained by the EMBL-EBI in the UK and consists of manually ex-

tracted information on binding, functional, and ADMET properties (of drug-like bioactive

compounds) from the literature [106–108]. ChEMBL Release 28 contains more than 2

million distinct compounds and activity measurements for more than 14,000 targets [108].

The PubChem and ChEMBL databases report distinct and complementary data types.
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Nevertheless, there is some overlap in the databases as PubChem and ChEMBL have

developed a mutual exchange mechanism for dose-response assay data [104, 107].

To manage the combination of data produced in different laboratories, standardisation

tools or pipelines for chemical structures are utilised [104, 106]. Particularly, ChEMBL

has recently put substantial effort into structure curation and published an open source

chemical structure curation pipeline [109]. Another popular and publicly-available stan-

dardisation tool is the IMI eTox project standardiser tool by Atkinson [110]. Important

steps of chemical structure curation are the removal of salts and solvents, charge neutral-

isation, and normalisation of structures according to defined rules and conventions.

High quality data lay the foundation for well-performing predictive models. And only

if the predictions are accurate and reliable, toxicologists and regulatory agencies may be

persuaded by the usefulness of in silico models.
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Aim and Objectives

Ethical and economic aspects of hazard assessment of new chemicals motivate the re-

placement, reduction, and refinement of animal testing. Computational methods are

promising tools to predict potential toxicological effects of new chemicals. While meth-

ods such as similarity search, structural alerts, and machine learning are already applied

at different stages during the development process, some important challenges remain.

The main constraints of computational toxicity prediction methods are the limited data

and the need to assess the confidence in predictions. The aim of this thesis is to explore

several toxicity prediction methods, with a focus on the CP framework, to answer the

following questions:

• Can the effects of limited data be mitigated by combining different computational

toxicity prediction methods? Does this strategy lead to complementary information

gain or a consensus when in a case study applied to compounds from industry?

• Does the hit rate in toxicity screening improve when combining in silico and in

vitro methods? Is this approach useful in the identification of endocrine-disrupting

chemicals?

• Can the need for experimental measurements be bypassed when using conformal

predictions to generate predicted bioactivity descriptors? How do models based on

such descriptors perform compared to using molecular descriptors?

Although CP can be useful in the above described cases, the challenge of restricted

model applicability domains remains. Data drifts between old training and new test data

restrain the application of CP models. It would be helpful to find a strategy to mitigate

the effects of such data drifts.

• How can CP be used to assess and mitigate the effects of data drifts between the

datasets from the Tox21 Data Challenge?

• Is the strategy developed for the Tox21 data transferable to other datasets, i.e. can

it be applied to temporal data drifts and differences in chemical or assay space

between external and internal data?
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Aim and Objectives

The outcomes of the thesis should provide strategies to tackle some of the main challenges

of computational toxicology, such as data limitations and effects of data drifts. With this,

it aims to promote the application of computational toxicology in the reduction of animal

experimentation.
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Computational methods

In this section, first, the descriptors used in this thesis are introduced. Then, the method-

ology of similarity search is explained, followed by an introduction of the ML algorithms.

Finally, the CP framework is described.

3.1 Molecular, chemical, and bioactivity descriptors

For similarity searches and the building of ML models, compounds need to be encoded

in a computer readable format. Descriptors can consist of binary or count features, also

called fingerprints, or contain continuous variables per feature. In this thesis, several

types of molecular, chemical, and bioactivity descriptors were employed, which will be

described in the following.

Molecular ACCess System keys

Molecular ACCess System (MACCS) keys [111] are SMARTS-pattern based descriptors.

MACCS consists of 166 keys that were pre-defined by medicinal chemists. Every key

— corresponding to one bit position — checks whether the molecule contains a certain

functional group or atom type. Rules for MACCS keys differ slightly between implemen-

tations [111]. For this work, the RDKit Python library [112] was used to calculate the

MACCS keys; a list of the 166 rules in RDKit can be found in [113]. Since the MACCS

descriptor has a pre-defined number of 166 keys, it is quickly calculated, and can, fur-

thermore, be interpreted easily. As a disadvantage, the few keys might be insufficient

to distinguish similar molecules. For example, key 134 checks for the appearance of any

halogen and does not differentiate Cl from F substituents.

Extended Connectivity Fingerprints

Extended Connectivity Fingerprints (ECFPs) [114] are 2D topological descriptors which

were specially developed for structure-activity modelling. In the ECFP, every bit cor-

responds to an atom of the molecule and its circular environment of a given diameter.

For a detailed explanation of the algorithm, the reader is referred to the publication by

Rogers and Hahn [114]. For the generation of identifiers, which are comparable between
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molecules, every (core) atom is hashed to a 32-bit integer. The 232 long, but sparse finger-

print can be folded into a smaller descriptor, e.g. 1024 bit long. Such shorter fingerprints

use less storage and calculation time (e.g. for model building), although some information

and interpretability can be lost due to rare bit collisions. In this work, the RDKit [112]

implementation of the Morgan fingerprint was used, which follows the same above de-

scribed algorithm, with the exception that it takes the radius instead of the diameter as

input parameter. As a consequence, Morgan (radius 2) is equal to ECFP (diameter 4).

Physicochemical descriptors

Physicochemical descriptors are one-dimensional properties with continuous (non-binary)

variables, which can, among others be calculated within RDKit [112]. Examples of such

physicochemical descriptors are the molecular weight, logP, or the number of rotatable

bonds. A list of available descriptors in RDKit can be found in the documentation [115].

Signature molecular descriptors

The algorithm of the signature molecular descriptor [116, 117] defines fragments of a

molecule specified by a ‘height’ parameter, i.e. the number of atomic bonds and enu-

merates them. In this work, the count of these fragments was used. Note that signa-

ture descriptors are extremely sparse and that the enumeration of fragments is dataset-

dependent.

Bioactivity descriptors

For the bioactivity descriptors, used in this work, CP binary classification models were

trained on 373 datasets for in vitro biological effects that can lead to toxicological end-

points, such as cytotoxicity, genotoxicity, or thyroid hormone homeostasis. These models

were used to calculate the predicted p-values (per model and class) for new compounds.

The predicted p-values were used as bioactivity descriptors.

3.2 Similarity search

A computational similarity search can be useful to find compounds which are similar to

a query molecule within a large database. Such a similarity search requires, first, a way

to describe the molecules (see Section 3.1 for more details on descriptors) and, second,

a measure to calculate the similarity between two descriptors [49, 56]. A well-known

similarity coefficient for binary descriptors is the Tanimoto index [118]. It is calculated

by the number of features shared by two compounds A and B divided by the number

of unique features in the union of A and B. For count fingerprints or descriptors with

continuous variables, another metric such as euclidean distance is required.

After encoding the molecules and calculating pairwise similarity to the query molecule,
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the compounds are ranked by similarity. It can be helpful to highlight the substructures

that two molecules have in common, e.g. using RDKit [112].

3.3 Machine learning algorithms

The supervised ML algorithms used in this thesis are explained in the following. These are

random forest (RF) and support vector machine (SVM) for classification and k-nearest

neighbours (KNN) for regression.

Random forest

RF is an ensemble learning method which consists of a group of decorrelated decision

trees. Each tree is built on a random subset of the training data and a given number of

randomly selected features and is later used to make a prediction. The final RF prediction

is based on a majority voting system between all trees. For classification, the class or

the probabilities per class can be returned. The main parameter to be tuned is the

number of decision trees, which is ideally high for increased classifier performance (but

adds computational cost). Moreover, the RF ensemble learning approach typically yields

quite robust models with some sacrifice in interpretability [73, 74, 119].

Support vector machine

In an SVM, the classes are separated by a hyperplane; the samples, which lie nearest to

the hyperplane are called support vectors. The model is optimised by maximising the

margin between the decision boundary and the closest samples. Since many datasets

might not be linearly separable, a kernel function can be introduced, i.e. the samples are

projected into a higher-dimensional space by creating nonlinear combinations from the

original features. The kernel helps to reduce the computational cost, i.e. by transforming

high-dimensional distance measures to a similarity measure between 0 and 1. Examples

for kernels are linear, polynomial, or the RBF (radial basis function). In the RBF, the

value is only dependent on the distance to a fixed point. The most important SVM tuning

parameters are the cost function C and the kernel coefficient γ. C stands for the penalty

accounted for instances on the wrong side of the hyperplane. γ determines how much

influence a single training example has. With a small γ, the influence of an individual

data point reduces further [73, 74, 119].

k-nearest neighbours

The KNN algorithm makes a prediction for a test sample based on the label of its nearest

neighbours. The algorithm is fundamentally different from RF and SVM as its discrim-

inating power lies in memorising the training dataset [120]. The algorithm basically

consists of three steps. First, the number k of nearest neighbours to consider (or the
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distance within which neighbours should be considered) is defined. Second, the nearest

neighbours around the sample to predict are identified. Third, a prediction is computed

using the mean of the sample’s neighbours. Note that the KNN algorithm does not

involve a training step. This comes with the advantage of easy expandability with addi-

tional training data and the drawback of computational complexity growing linearly with

the number of training samples [74, 119].

3.4 Conformal prediction

Besides obtaining internally valid ML models, it is crucial to estimate the confidence in

the predictions made on an external test set. In this work, CP [87, 96–98] was used

for confidence estimation. In the following, the CP framework as well as the evaluation

of CP models are explained. Note that the description is referring to the Mondrian

setting [99] (i.e. separate handling of active and inactive compounds for calibration) for

binary classification, as used in this work.

Originally, CP was designed in an on-line setting, meaning that, after each predic-

tion, the label was determined and used to inform the model before predicting a new

sample [121]. In ML applications, the computationally more efficient inductive conformal

predictors (ICPs) [122] (see Figure 3.1a) are typically used.

Analogous to ML, a training and a test set are the basis for CP model training

and validation. To allow for the additional calibration step, the training set is split

into a so-called proper training and a calibration set. An ML model is then trained

on the compounds (descriptors and binary labels) of the training set and used to make

predictions for the calibration and the test set compounds. The prediction outputs from

the ML model are further transformed into so-called nonconformity scores (nc scores),

which indicate how unusual a certain prediction is relative to previous predictions [121,

123].

Note that the use of a normaliser model (see Figure 3.1f) is optional in classification.

This would be an additional regressor model, e.g. KNN regression, which is trained on the

nc scores of the proper training set. The model output is the mean nc score of the nearest

neighbours for a query compound and can be used to normalise the nc score obtained

from the base model. This normalisation is important for conformal regression [123–125],

but has, to our knowledge, not been applied to classification before. In this work, it was

shown useful in the application of CP classification models, trained on public data, to

internal data from industry.

Following the binary and Mondrian setting [99], the nc scores for the calibration set

compounds are sorted into two lists; one with the nc scores for the active class compounds;

and one for the inactive class, as illustrated in Figure 3.1b. The nc scores for the test

compounds, which are two values per instance (1 active, 1 inactive), are arranged within

the lists to calculate the two p-values (see Figure 3.1b-d). A p-value is calculated as
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Figure 3.1: Concepts of conformal prediction. a) Overview of an ICP. b) Nonconformity scores
(nc scores) for an example calibration set with four inactive (class 0) and five active (class 1)
compounds. The nc scores are sorted into two lists. c) Predictions and nonconformity scores
(calculated using an inverse probability error function) for one example compound. d) Arranging
the nc score for the example compound into the nc score lists from the calibration set, the p-
values can be calculated. Depending on the selected significance level, the subsequent prediction
sets may differ. e) The calculated p-value depends on the calibration set. f) Optionally, an
additional normaliser model can be included in the workflow.

the ratio of the (previously predicted) calibration set compounds belonging to the class,

which are more unusual, i.e. having a higher nc score, than the test instance.
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The concept of calibration could be compared to the calibration of a measuring device

in an experimental setting. Analogously, the device is calibrated based on the conditions

(e.g. temperature, air pressure, or moisture), and the CP model needs to be calibrated

with compounds from a similar feature or prediction space. A different calibration set

leads to different p-values and thus different evaluation values, as illustrated in Figure

3.1e.

While ML classification models return a single-point estimate, i.e. the labels or the

probability belonging to a class predicted for a test instance, the CP output is a prediction

set. For the prediction sets, a significance level is chosen, which refers to the maximum

accepted error rate in the predictions and is commonly set to 0.2 or 20% [126]. The

prediction set contains all class labels, for which the p-value is larger than the significance

level. Exemplified in Figure 3.1d, for two example p-values of 0.20 (class 0) and 0.17 (class

1) and the significance level 0.2, the prediction set is {0}. However, with an expected

error rate of 0.1, the prediction set would be {0, 1} and if more errors, i.e. 0.3, are

accepted, the prediction set would be empty ({∅}).

For the evaluation of the prediction sets it is important to know that in CP, a pre-

diction (set) is defined to be correct if it contains the correct label. This means that a

prediction set is always correct if it contains both labels ({0,1}) and wrong if it is empty

({∅}), although these sets do not provide much information.

The main CP evaluation measures are validity and efficiency, which are calculated

for a chosen significance level. Validity is defined as the ratio of correct predictions,

i.e. prediction sets containing the correct label. A typical efficiency measure is the ratio

of single-class predictions (i.e. {0} and {1}). Since (informationally) efficient predictions

are not necessarily correct, often the additional ‘accuracy’ evaluation measure is used.

Accuracy is calculated as the proportion of correct single-class predictions.

Note that while the non-efficient predictions do not add any information on the com-

pounds’ label, they can provide useful information about new compounds to be assayed

for model improvement. Screening of more compounds from the empty category can

improve the applicability domain while assaying more chemicals from the both category

can improve the decidability domain [85].
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Results

4.1 KnowTox: pipeline and case study for confident

prediction of potential toxic effects of compounds

in early phases of development

In silico toxicity prediction methods are promising alternatives to animal testing. Their

potential has, however, not yet been fully exploited. The applicability of ML models

is, for example, limited by the size of available datasets and the need for prediction

confidence estimates. In the following work, we explore if combining toxicity prediction

methods and presenting the predictions in the form of a holistic picture can lead to

more informative and reliable predictions. To this end, the Python-based KnowTox tool

will be developed. Designed for prioritising compounds and guiding toxicity testing,

KnowTox combines machine learning models, alerts for toxic substructures and read-

across support. To illustrate the value of the holistic approach in the early stages of new

chemical’s development, KnowTox will retrospectively be applied to a case study with

proprietary compounds from industry.
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Abstract 

Risk assessment of newly synthesised chemicals is a prerequisite for regulatory approval. In this context, in silico meth‑
ods have great potential to reduce time, cost, and ultimately animal testing as they make use of the ever-growing 
amount of available toxicity data. Here, KnowTox is presented, a novel pipeline that combines three different in silico 
toxicology approaches to allow for confident prediction of potentially toxic effects of query compounds, i.e. machine 
learning models for 88 endpoints, alerts for 919 toxic substructures, and computational support for read-across. It 
is mainly based on the ToxCast dataset, containing after preprocessing a sparse matrix of 7912 compounds tested 
against 985 endpoints. When applying machine learning models, applicability and reliability of predictions for new 
chemicals are of utmost importance. Therefore, first, the conformal prediction technique was deployed, compris‑
ing an additional calibration step and per definition creating internally valid predictors at a given significance level. 
Second, to further improve validity and information efficiency, two adaptations are suggested, exemplified at the 
androgen receptor antagonism endpoint. An absolute increase in validity of 23% on the in-house dataset of 534 
compounds could be achieved by introducing KNNRegressor normalisation. This increase in validity comes at the cost 
of efficiency, which could again be improved by 20% for the initial ToxCast model by balancing the dataset during 
model training. Finally, the value of the developed pipeline for risk assessment is discussed using two in-house triazole 
molecules. Compared to a single toxicity prediction method, complementing the outputs of different approaches 
can have a higher impact on guiding toxicity testing and de-selecting most likely harmful development-candidate 
compounds early in the development process.
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Introduction
Before newly developed chemicals can be approved, their 
potential toxic effects on humans and the environment 

inevitably need to be assessed. Most regulations such as 
REACH [1] require animal studies for risk assessment. 
E.g. more than 540,000 animals were employed in Ger-
many in 2017 for production, quality control, and safety 
assessment [2].

Given the ever growing amount of available toxic-
ity data, computational toxicity prediction methods 
have great potential to reduce time, cost, and ultimately 
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animal testing. Using historical data, they can help to dis-
close relationships between compounds that would not 
have been identified manually and, thus, reveal potential 
risk of compounds in early phases of development. In 
silico predictions can hint at potentially hazardous inter-
actions or critical structural moieties of new molecules. 
If the corresponding assays are conducted first, harm-
ful compounds can be filtered out before performing a 
wide range of additional experiments. Moreover, in silico 
methods can support product optimisation and reduce 
long-term animal toxicity studies [3, 4].

In silico strategies for supporting risk assessment range 
from computational read-across approaches and search 
for substructural alerts to statistical methods. Espe-
cially, quantitative structure-activity relationship (QSAR) 
techniques such as machine learning (ML) [5] methods 
require a large precompiled dataset.

The US Environmental Protection Agency (EPA) has 
provided the ToxCast dataset [6] consisting of roughly 
8000 compounds, such as pharmaceuticals, pesticides, 
and environmental chemicals, that were tested on up 
to 1000 endpoints, e.g. cell cycle, steroid receptors, and 
cytotoxicity. ToxCast has since been used: to develop 
QSAR models [7–9]; to generate biological fingerprints 
for in vivo endpoint predictions [10]; to decipher adverse 
outcome pathways [7, 11]; and as a basis for read-across 
[12–14].

Read-across is a common, often manual, approach 
in toxicology [12, 15, 16], based on the assumption that 
similar molecules can evoke similar toxic effects. Miss-
ing information on query chemicals’ properties may 
be gathered by reading across information from very 
similar molecules. Using different molecular encodings 
and diverse similarity measures, computers can search 
through large compound databases to identify the most 
similar compounds and—given a decent similarity—
transfer knowledge to a query compound. Prerequisite 
for successful read-across is a robust and reproducible 
test system of the underlying experimental data [16], 
i.e. a standardised assay set-up to ensure comparable 
read-outs. Another challenge is the determination of the 
amount of required similarity between two compounds 
that allows safe and reliable knowledge transfer.

Since often not the complete molecule, but rather a 
specific functional group or fragment, is responsible for 
an unwanted effect, identifying such toxic substructures 
in a query molecule is of high practical value. Several 
authors published lists of toxic alerts or other undesired 
substructures which can be used to flag novel com-
pounds [17, 18]. For instance, the OCHEM ToxAlert 
server allows to browse and query structural alerts for 
various toxicological endpoints [17, 19].

Often the relationship between molecular structure 
and toxic effect is not linear, thus, statistical methods 
such as QSAR models are applied to recognise more 
complex patterns in datasets. The set-up of high-per-
forming toxicity prediction models has recently been 
promoted in the Tox21 Data Challenge. Research groups 
competed in model performance on 12 nuclear receptor 
and stress response pathways trained on roughly 10,000 
compounds [20], including various ML algorithms such 
as random forest, support vector machine, and deep 
learning approaches [21–23]. The winning models on 
all 12 endpoints showed AUC-ROC scores between 0.81 
and 0.95 on an external blinded test set [20].

Fuart Gatnik and Worth published an overview on 
publicly and commercially available software tools, such 
as the well-known TOPKAT [24] and DEREK [25] meth-
ods, for toxicity prediction [26]. Concluding, the authors 
stated that the availability and quality of the models is 
endpoint-dependent and they emphasised on the obser-
vation that generally more research is needed in terms 
of assessment of the applicability of the in silico mod-
els. Besides pure predictions, for practical applications, 
knowledge about the applicability domain, i.e. the space 
of chemicals the model can make reliable predictions for, 
is of major importance. Hanser et  al. [27] suggested to 
further divide this concept into three domains: applicabil-
ity, reliability, and decidability. The applicability domain 
indicates whether a model can be applied to make a pre-
diction for a certain use case. It can be defined, for exam-
ple, by a convex hull around the main components of a 
principal component analysis (PCA) fitted on the fea-
tures of the training data. The reliability domain gives 
information on whether the obtained prediction is reli-
able enough for the use case. It can be explored by inves-
tigating the average  distance to the nearest neighbours. 
The decidability domain returns if a clear decision can be 
made, based on the outcome of the prediction. Therefore, 
the distribution of the nearest neighbour’s labels can be 
analysed [27].

A recently promoted method for confidence estima-
tion, especially regarding reliability and decidability, is 
conformal prediction (CP) [28, 29]. A conformal predic-
tor returns, whether enough evidence is given to reliably 
assign the query substance to a certain class. CP models 
have recently been developed and applied in drug discov-
ery [29–31], and toxicology, e.g. to predict cytoxicity [32], 
endocrine disruption [33], and skin penetration [34]. 
Moreover, recently, eMolTox was introduced, a web-
server offering 174 CP models [35]. However, to the best 
of our knowledge, few information about applying such 
models to real-world use cases has been published.

In this work, KnowTox, a holistic toxicity prediction 
approach, that integrates refined conformal predictors, 
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structural alerts, and read-across support based on 
molecular similarity, is introduced and applied to indus-
trial chemicals. The main source of toxicity information 
is the publicly available ToxCast dataset. Being aware of 
the challenge to apply ML models trained on public data 
to an industrial setting, first, the CP model performance 
was optimised focusing on the androgen receptor end-
point and validated on an in-house dataset. The focus 
is on endocrine disruption as a disturbance of steroidal 
hormone homeostasis can cause severe toxic effects, e.g. 
leading to male feminisation or reproduction disorders 
[36, 37]. Thus, screening for agonistic and antagonis-
tic activities on androgen and estrogen receptors is fre-
quently conducted in yeast cells (so-called YES- and YAS 
assays [38]) and sufficient validation data is available. 
Finally, CP models were trained using the same CP set-up 
for another 87 ToxCast endpoints with enough training 
data available. Moreover, with KnowTox, the refinement 
of chemical structures is guided by the implementa-
tion of warnings about unfavourable structural moieties 
described in literature [35, 39, 40]. To support read-
across, a similarity search is proposed which can auto-
matically point to toxic effects in cells and interactions 
known for the most similar molecules within ToxCast. 
In a case study, the potential of KnowTox is exemplified 
on two in-house triazoles. Multiple components of the 
KnowTox pipeline indicated liver toxicity and endocrine 
disruption which is in accordance with literature and ret-
rospective test results.

Data and methods
In the following, first the main datasets and their prepara-
tion will be introduced, followed by the individual meth-
ods for the KnowTox toxicity prediction tool, including 
CP, PCA, toxic substructure and similarity search.

Datasets
ToxCast dataset
The source of molecules and assay data for KnowTox is 
the freely available ToxCast dataset provided by the EPA. 
It consists of over 8000 compounds tested on up to 1092 
different toxic endpoints. The data was downloaded from 
EPA’s National Center for Computational Toxicology  [41] 
(date 23.06.2017). Toxicity values were directly adopted 
from the hitcalls defined by the EPA. Flags were not con-
sidered, but endpoints corresponding to background meas-
urements were excluded. This yielded a sparse matrix of 
8390 compounds with respective toxicity value (0,1, NaN) 
per tested endpoint (985 total). The ToxCast dataset repre-
sented the basis for the similarity search as well as for CP.

Androgen receptor datasets
To validate and optimise the CP set-up for model applica-
tion on external data, three datasets for androgen recep-
tor antagonism (AA) were collected (see Table 1).

ToxCast‑AA  The AA assay from ToxCast (assay end-
point id 762) was selected. The assay originates from the 
Tox21 platform and was conducted in human kidney cells 
(HEK293T). It is a reporter gene assay that measures beta 
lactamase induction upon antagonistic activity regulated 
by the human androgen receptor. Activity data are avail-
able for 6710 chemicals.

In‑house‑AA  The in-house dataset from BASF consists 
of 534 chemicals tested in YES/YAS assays [38]. They are 
mainly pesticides, such as fungicides and herbicides, and 
not part of the ToxCast dataset. These compounds were 
not launched on the market but failed for different rea-
sons during the development. In the YAS assay, human 
androgen receptor is expressed in yeast cells. Upon bind-
ing of an androgenic compound, the lacZ reporter gene is 
activated, which is responsible for expression of β-galac-
tosidase. Presence of this enzyme can be detected by a 
colour change. Anti-androgenic effects can be observed 
if binding of a known androgenic agent is inhibited and 
thus the colour change is reduced or does not occur at all. 
YES assays are conducted similarly, but in yeast cells that 
express the human estrogen receptor.

External‑AA  Another external dataset, collected by 
Jensen et al. [42] and by Vinggaard et al. [43] for QSAR 
modelling, was downloaded from Norinder et  al. [33]. 
The dataset consists of initially 925 molecules that were 
especially selected to represent a large chemical space 
[43]. 361 of these molecules, that are not part of Tox-
Cast, were used in this study. Data originate from an AA 
assay reporting luminescence response upon inhibition of 
androgen binding to a synthetic androgen receptor and 
following gene expression in chinese hamster ovary cells.

Table 1  Size and  purpose of  androgen receptor 
antagonism datasets used to  validate the  original 
conformal prediction model

Dataset Purpose Actives Inactives

ToxCast-AA 762 Train and test model 868 5842

In-house-AA Validation I 280 254

External-AA Validation II 160 201
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Dataset preprocessing
Standardisation
Each molecule was standardised by applying the follow-
ing workflow: first, duplicates (compounds tested more 
than once for a specific endpoint) were removed. Only 
one instance was kept if the assay outcomes agreed—
otherwise both instances were discarded. Next, mol-
ecules were standardised using the IMI eTox project 
standardiser tool [44]. This included discarding non-
organic compounds, application of certain structure 

standardisation rules (e.g. handling of tautomers, shift-
ing protons between heteroatoms), neutralisation, and 
removal of, mainly organic, salts. Due to this standardi-
sation step new duplicates occurred; they were treated 
as described above. Next, remaining mixtures as well 
as fragments with less than three heavy atoms were 
removed yielding a cleaned dataset of 7912 ToxCast mol-
ecules tested on up to 985 endpoints (see Fig. 1, top). The 
resulting total number of active and inactive compounds 
for the AA datasets are listed in Table 1.

Descriptor calculation
For similarity search as well as CP, all molecules were 
encoded by molecular descriptors implemented in 
RDKit. For similarity search and the original CP model, 
a combination of the SMARTS-pattern based MACCS 
keys and the circular-environment based Morgan fin-
gerprint (radius 3, 1024 bits) was chosen. MACCS keys 
[45] represent the presence or absence of predefined 
functional groups. Morgan fingerprints [46] are a more 
abstract representation of a molecule, covering every 
atom and its circular environment including all atoms 
and bonds within a defined radius. Concatenation of the 
two descriptors resulted in a 1191-bit long feature vec-
tor representation per molecule. For the normalised and 
normalised + balanced CP models (see Table  2), the 
concatenated descriptor (binary values) was reduced to 
bits with feature variance of equal or higher than 0.01. 
Additionally, 200 physicochemical descriptors within 
RDKit [47] (float values) were calculated, normalised 
and reduced (feature variance threshold 0.001). Finally, 
these two descriptor sets were concatenated resulting in 
a feature vector of length 1341. Normalisation of phys-
icochemical parameters and feature reduction were per-
formed based on all standardised ToxCast molecules.

KnowTox pipeline
KnowTox allows input of a query molecule and offers 
in silico support for risk assessment from various view 
points, comprising CP, similarity search to support read-
across, and search for toxic substructures (see Fig. 1). In 
the following, the individual methods will be explained.

Fig. 1  Overview of KnowTox. Combining toxicity information from 
different sources, the complementary outputs of the KnowTox tool 
help to generate a holistic toxicity prediction picture for a novel 
query compound. ToxCast Database bar plot: Number of actives 
(grey) and inactives (blue) available per endpoint, sorted by number 
of actives. Red vertical line: CP models were built for the endpoints 
on the left side of the threshold line (at least 300 active and inactive 
compounds tested, red horizontal line)

Table 2  Conformal prediction models built for androgen receptor antagonism

a  nc: nonconformity score
b  physicochemical descriptors

Model name Descriptors nca Balancing

Original Morgan + MACCS Default No

Normalised Morgan + MACCS + physchemb Normalised No

Normalised + balanced Morgan + MACCS + physchemb Normalised Yes
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Machine learning and conformal prediction
General CP workflow  The CP framework is built on top 
of ML models and is designed to make valid predictions at 
a given significance level (SL), assuming exchangeability 
[30]. An overview of the CP workflow used here (offline-
mode, binary classification setting) is shown in Fig.  2. 
Similar to the standard ML setting, the dataset is stratified 
and randomly split into a training and a test set. Then, an 
additional calibration step is introduced, in which training 
data is further split into a proper training and a calibra-
tion set. An underlying ML model, e.g. a random forest, is 
fitted on the proper training set and used to make a pre-
diction (probability p̂ ) for compounds of the calibration 
and the test set. The prediction outcome per class is trans-
formed into a so-called nonconformity score  (nc score). 
A nonconformity error function is chosen in the way that 
more ideal predictions yield lower nc scores; a typical 
error function for random forest classification models is 
the inverse probability (Eq. 1):

To improve reliability estimation of predictions, an addi-
tional normaliser regression model (e.g. kNN) can be fit-
ted on the descriptors of the proper training set and their 
nc scores. For a new compound, the normaliser regres-
sion model returns a normalised nc score ( nc scorenorm ), 

(1)nc score = 1− p̂

by dividing the nc score of the compound by the average 
nc score of the compound’s k nearest neighbours within 
the proper training set (see Eq. 2).

Using mondrian classification [48], the CP algorithm 
generates for each class a sorted list of nc scores or 
nc scoresnorm for the calibration set. The ratio of these 
nonconformity scores higher, and thus more noncon-
forming, than the nc score predicted for a query com-
pound is called p-value. If a p-value is larger than a given 
SL ǫ (maximum allowed error rate), that label is assinged 
to a compound. Thus, for a binary classification problem, 
the output prediction set per compound contains either 
one class ({0},{1}), both classes ({0,1}), or an empty pre-
diction set ({}). To obtain more stable predictions, multi-
ple conformal predictors can be trained and the p-values 
are averaged, so-called aggregated conformal predictors 
(ACPs) [49] are generated.

CPs are typically evaluated regarding validity, efficiency 
and accuracy. Validity is defined as the ratio of predic-
tions containing the correct label. A common efficiency 
measure is the ratio of single class predictions (SCPs). 
Accuracy of SCPs corresponds to the ratio of correct 
SCPs divided by all SCPs.

(2)nc scorenorm =
nc score

norm

Fig. 2  Schematic description of CP workflow. Data is split into training and test set (blue box). The training set is further divided into calibration 
(red box) and proper training set (violet box). An ML model is fitted on the proper training set and used to predict compounds of the calibration 
and test set. Predictions are transformed into nonconformity scores (nc scores). Calibration is conducted by sorting the nc scores of the calibration 
set (class-wise, mondrian) into two lists. The nc score of a test compound is arranged in the list and thus the p-value calculated. An additional 
normaliser model (green box) can optionally be fitted on the descriptors and nc scores of the compounds of the proper training set
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CP model set‑up in this study  Three different settings for 
CP were applied. The corresponding models will further 
be called ’original’, ’normalised’ and ’normalised + bal-
anced’ model (see Table 2).

For the original model, data was split into 80% train-
ing and 20% test data. Within each loop of a fivefold 
cross-validation, an ACP with 25 loops was generated. In 
each ACP loop, training data was split into 70% proper 
training and 30% calibration data (see Carlsson et  al. 
[49]). Random forest models (500 estimators, else default 
parameters) were trained on the proper training sets and 
the predictions calibrated using the respective calibration 
sets (inverse probability error function, mondrian condi-
tion). P-values were aggregated by their median as sug-
gested by Linusson et al. [50]. Finally, the mean p-value of 
the cross-validation was calculated.

For the normalised model, information from the near-
est neighbours in the training set was taken into account 
as described in Eq.  2. The normaliser model was fitted 
using the KNNRegressor algorithm (scikit-learn, default 
parameters).

In the normalised + balanced model, per ACP loop, 
the proper training and calibration data were five times 
randomly subsampled to equal numbers of actives and 
inactives.

After evaluation, normalised + balanced models were 
built for all ToxCast endpoints for which at least  600 
compounds were measured—300  active (toxic) and  300 
inactive (non-toxic)—yielding 88 CP models (see Fig.  1, 
ToxCast Database bar plot, vertical red threshold line).

Principal component analysis (PCA) for AA data
For chemical space analysis, a 2-component PCA was 
fitted on ToxCast AA data. ToxCast-AA, in-house-AA, 
and external-AA data were projected into the descriptor 
space. Same descriptors were used as described for the 
normalised and normalised + balanced CP models.

Structural alerts
To identify potentially toxic or unwanted substructures in 
the query molecules, known structural alerts, encoded as 
SMARTS patterns, collected from literature are used. A 
list of 919 structural alerts incorporated in KnowTox was 
kindly provided by the authors of eMolTox [35]. Using 
RDKit, a substructure search for all these patterns in the 
query molecule is performed. Matching substructures 
are stored together with information about the associated 
toxic effect, individually highlighted in the molecule and 
labelled.

Similarity search and read‑across
Computational support for read-across in KnowTox 
is implemented via a similarity search and subsequent 

extraction of information from ToxCast. For similarity 
search, a query compound is compared to all ToxCast 
compounds using the calculated descriptors. Finally, 
ToxCast compounds are ranked by Tanimoto similar-
ity to the query compound. The tool returns the most 
similar compounds together with their  respective maxi-
mum common substructure (MCS) with the query com-
pound highlighted. Subsequent read-across is supported 
by extracting experimental activity of these similar mol-
ecules from the ToxCast dataset for all 985 endpoints.

Python libraries and versions
Molecules were standardised using the standardiser 
library [44] version 0.1.9. Descriptor calculation, struc-
tural alerts and similarity search were implemented using 
RDKit [47] version 2018.03.4. For local calculation of fea-
ture variances, normalisation of physicochemical param-
eters, and PCA, scikit-learn [51] version 0.19.2 was used. 
CP models were trained using nonconformist [52] ver-
sion 2.1.0 and underlying ML models using scikit-learn 
(version 0.19.0). Plots were generated using matplotlib 
version 2.2.3.

Supplementary information on github
A github repository with supplementary information is 
provided under https​://githu​b.com/volka​merla​b/knowt​
ox_manus​cript​_SI. It contains the pre-processed ToxCast 
and external-AA data, as well as a notebook demonstrat-
ing the conformal prediction set-ups used in this work.

Results and discussion
In this section, first, the optimisation of the CP model 
with respect to applicability to in-house and external data 
will be discussed, with focus on prediction of AA assay 
outcome as well as on the complete set of 88 ToxCast 
endpoints. Finally, the full spectrum of predictions pro-
vided by KnowTox will be show cased on two triazoles.

Conformal predictors—validation of AA model
The aim of this study was to generate reliable toxicity 
prediction CP models which can be applied to in-house 
industrial chemicals. Data from the freely available and 
comparably large ToxCast toxicity database  is used, 
which contains experimental data from consistent meas-
urements per assay endpoint. As there is a shift in chemi-
cal and descriptor space expected, when applying the 
models to in-house compounds, it is important to vali-
date the method carefully. Thus, a CP model to predict 
androgen receptor antagonism (AA) was selected for 
validation. Here, an in-house dataset with 534 indus-
trial compounds was available, as well as another exter-
nal dataset with 361 compounds. AA is an important 
endpoint to examine a compounds’ risk for endocrine 
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disruption disorders such as male feminisation or sexual 
disruption in fish [36] and other species [37].

By design, conformal predictors are valid at a given SL, 
assuming data exchangeability [30]. This is also observed 
when training a standard CP model on ToxCast AA data. 
Figure 3a shows a calibration plot of the internal valida-
tion of the original ToxCast-AA model. Ideally, the error 

rate is equal to the significance (diagonal in Fig. 3a), thus, 
the original ToxCast-AA model is valid (orange line in 
Fig.  3a). Also, high efficiency (ratio of SCPs) of 0.87 is 
achieved at SL 0.2. Since evaluation at SL 0.2 is com-
monly used in literature, the values will also be given 
when describing the further validation process. Further-
more, the performance of the ToxCast-AA model is in 

Fig. 3  Calibration plots of the original, normalised, and normalised + balanced ToxCast-AA models applied to internal validation, in-house-AA and 
external-AA data

Table 3  Comparison of  original conformal prediction model for  androgen receptor antagonism  at 0.2 SL with  other 
studies from literature

a  Values of models fitted on two different AA datasets.
b  Three models with different fingerprints trained on one AA dataset
c  class 1 = actives, class 0 = inactives

Model Validity Efficiency Accuracy

All Class 1c Class 0c All Class 1c Class 0c

KnowTox-AA 0.81 0.82 0.81 0.87 0.80 0.78

eMolTox [35]a – 0.76–0.81 0.81–0.82 0.94–0.99 – –

Norinder et al. [33]b 0.80–0.81 0.81–0.83 0.79–0.82 – 0.79–0.82 0.78–0.79
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line with two other AA models extracted from literature 
(see Table 3), i.e. the eMolTox webserver [35] and work 
by Norinder et al. [33]. Validity, efficiency, and accuracy 
values for all three studies  (if reported) at SL 0.2 are in 
the range of 0.76–0.83, 0.87–0.99, and 0.79–0.82, respec-
tively. Although the above described AA models all use 
CP, they are only partly directly comparable as underly-
ing data, techniques and/or features differ (see Table 4). 

Note that some other QSAR models for AA have been 
published, based on similar data, using random for-
est, deep learning [53], and the Case Ultra system [54]. 
Since set-up and reported performance measures differ 
from this CP study, they can not directly be compared. 
Very recently, CoMPARA, an extensive study on andro-
gen receptor modelling, was published by Mansouri et al. 
[55]. Scientists from 25 research groups have contributed 
to consensus models for androgen receptor binding, ago-
nism, and antagonism with a predictive accuracy of 78% 
for the AA evaluation set (which is in the same range as 
the CP accuracy (SCP) obtained for the original Know-
Tox-AA model, see Table 3). The individual AA models 
were trained on 1525 ToxCast chemicals using, amongst 
others, neural networks as well as tree-based and linear 
modelling approaches.

When applying the original ToxCast-AA model to the 
libraries of in-house (Fig.  3b) and external molecules 
(Fig.  3c), validity at 0.2 SL dropped from 0.81 for the 
internal validation to 0.59 for the in-house dataset. Fur-
thermore, a high discrepancy was observed between the 
ratio of correct predictions of the active (0.98) and inac-
tive (0.16) class for the in-house data (see Additional 
file  1: Table  S1). Reasons for lower validity could be 
lacking exchangeability between the compounds of the 

datasets (pharmaceuticals vs. industrial chemicals) and 
data originating from different assays.

Hence, the chemical space was analysed with respect 
to 1) the most similar compounds and 2) the descriptor 
space using  PCA. First, the average Tanimoto similarity 
to the ten most similar molecules in ToxCast decreases 
from 0.51 for intra ToxCast similarity to 0.44 for external 
data and 0.37 for in-house data. Second, the PCA (Fig. 4) 
reveals that the in-house data (blue dots) shows the high-
est density in the lower right corner, which is different 
from the dense area of the ToxCast data (red dots). The 
external dataset (grey dots) is more similar to the Tox-
Cast distribution, occupying a dense area in the middle 
of the plot. Varying distribution and density contribute to 
poor exchangeability between the different datasets.

To improve reliability of the models, the chemical space 
was considered by including information about the near-
est neighbours to normalise the conformal predictions. 
While such a normalisation of the nc scores is important 
for regression models [56, 57], to the best of our knowl-
edge, it has not been applied to classification tasks so 
far. Including the KNN normalisation clearly improved 
validity for internal validation and the in-house dataset 
from 0.81 to 0.85 and from 0.59 to 0.82 at 0.2 SL, respec-
tively (see Additional file  1: Table  S2). Figure  3d,e show 
the lower error rate at a higher confidence area (small 
SLs), but decreased efficiency. Improved validity comes 
with the cost that less SCPs are made by the model, i.e. 
efficiency of 0.37 for ToxCast-AA and 0.21 for in-house-
AA at 0.2 SL. From an application point of view, this is 
acceptable, since it is preferred to make no prediction 
rather than a wrong assertion.

Table 4  Information on  KnowTox-AA and  other CP 
methods using the random forest ML algorithm to predict 
androgen receptor antagonism

a  ACP aggregated conformal predictor, CCP cross-conformal predictor [48]
b  Two models ((1), (2)) fitted on two different AA datasets
c  Three models ((1), (2), (3)) with different fingerprints trained on one AA dataset
d  Data for a total of 174 CP models originated from ChEMBL, Pubchem, Toxnet, 
eChemPortal databases and literature [35]

Method Data source: 
actives/inactives

CP 
aggregation 
methoda

Descriptors

KnowTox-AA ToxCast: 868/5842 ACP Morgan+MACCS
(+physchem)

eMolTox [35]b Literature:d

(1) 532/6207
(2) 406/6256

ACP Morgan + physchem

Norinder et al. 
[33]c

Jensen et al. [42]:
293/637

CCP (1) Dragon
(2) Signatures
(3) Physchem

Fig. 4  ToxCast, in-house and external data are projected into the 
descriptor space of a 2-component PCA trained on ToxCast-AA data
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Nevertheless, still, a high discrepancy between the 
accuracy of the active and inactive classes can be 
observed, with the highest discrepancy of 0.54 for the 
prediction of the external-AA data (see Additional file 1: 
Table S2). This is due to the high imbalance in the train-
ing data with a ratio of 1 active to 6.7 inactives in which 
the KNN algorithm is searching for nearest neighbours. 
While balancing in a mondrian ACP setting is normally 
not necessary, in the case of the additional KNN normali-
sation, random equal size sampling of the proper training 
and the calibration set, clearly reduced the discrepancy 
between the two classes for accuracy, as well as efficiency 
(see Table 5, Fig. 3g–i).

The following factors should be noted regarding model 
performance: Firstly, the refined, normalised + balanced 
conformal predictors have been validated for use at low 
SLs. They are valid on the in-house dataset at SLs below 
0.3, on the external dataset below 0.2. Therefore, predic-
tions for the case study compounds are based on SL 0.2. 
As there is no interest in predictions with high error rates, 
the low validity at higher SLs can be ignored. Secondly, 
the three datasets all originate from different assays (i.e. 
performed in human, yeast, and hamster cells; a human 
androgen receptor was expressed in both human and 
yeast cells). Due to a limited amount of available toxicity 
data, it is inevitable to compare data from different organ-
isms, nevertheless, caution should be exercised.

The knowledge gained from creating the normalised + 
balanced model was applied to the remaining endpoints of 
the ToxCast dataset. Using the validated strategy, totally, 
88 models were built with overall validity between 0.81 
and 0.86, and overall efficiency between 0.32 and 0.68 at SL 
0.2 (see Fig. 5, top). The accuracy of single class predictions 
ranged from 0.65 to 0.95 (see Fig. 5, bottom). Numbers for 
all 88 models and information about the endpoints can be 
found in Additional file 1: Tables S4 and S5, respectively.

KnowTox—case study
If KnowTox is queried with a compound of interest, 
three modules are envoked: conformal prediction  (CP) 
for 88 endpoints, screening for unfavourable structural 

moieties, and support for read-across from similar com-
pounds (see Fig. 6).

In this section, KnowTox usage is exemplified on two 
triazoles from the in-house dataset. They were designed 
as potential fungicides, but discontinued for various rea-
sons. Both molecules share an epoxide structure with 
two halogenated phenyl moieties and a triazole ring with 
a thioether substitute (see Fig. 6a).

Table 5  Evaluation of normalised + balanceda conformal prediction model for androgen receptor antagonism at 0.2 SL

a  normalised nc score and balancing of calibration and proper training set
b  cl.: class (class 1 = actives, class 0 = inactives)

Dataset Purpose Validity Efficiency Accuracy

All cl.1b cl.0b All cl.1b cl.0b All cl.1b cl.0b

ToxCast-AA train model 0.85 0.84 0.85 0.57 0.39 0.60 0.89 0.76 0.91

In-house-AA validation I 0.90 0.90 0.89 0.20 0.18 0.23 0.75 0.80 0.71

External-AA validation II 0.80 0.76 0.82 0.43 0.33 0.52 0.74 0.67 0.78

Fig. 5  Evaluation of final 88 CP models. Top: validity vs. efficiency for 
inactives (blue) and actives (grey). Bottom: sorted, overall accuracy
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Fig. 6  KnowTox tool applied in a case study. a Triazoles1&2 used as query compounds for the case study. b Output of CP. Grey: number of 
endpoints per family available for CP. Red and blue: number of endpoints where triazoles1&2 were predicted to be active (SCP) at SL 0.2. c Three 
selected toxic alerts found for triazoles1&2. (Note that the potentially critical “triazole” substructure is not considered in this work). d Triazole1 
(left) and triazole2 (right) and their most similar molecules in ToxCast including CAS number and Tanimoto similarity. Red: maximum common 
substructure. e Experimental information from ToxCast for propiconazole (left) and bromuconazole (right). Grey: available assays in ToxCast. Blue: 
assays where compound was tested active
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Firstly, a conformal prediction with every of the above 
described 88 models is made. Each model returns two 
p-values, one for the inactive (p0) and one for the active 
(p1) class. The higher p-value denotes the class the 
compound is most likely assigned to. For example, the 
ToxCast-AA model predicts triazole1 to be active with 
p-values p0 = 0.19 and p1 = 0.56 . In literature, CPs 
are often evaluated at a specified maximum accepted 
error rate (equivalent to SL ǫ ). For instance, if no more 
than 20% errors are accepted ( SL = 0.2 ), the result is a 
prediction set containing all labels with p-values above 
0.2. Thus, triazole1 is predicted AA ({1}) while triazole2 
( p0 = 0.21 , p1 = 0.60 for AA prediction) is assigned both 
labels ({0,1}). Therefore, no decision is made for triazole2. 
However, if 25% errors would be allowed ( SL = 0.25 ), tri‑
azole2 would also be predicted to be AA only ({1}).

Alternatively, evaluation can be independent from 
a predefined SL, i.e. with respect to credibility and 
confidence [28]. Credibility is defined as the largest 
p-value, this means the highest SL where a compound 
is still assigned to the corresponding label. Confidence 
is defined as 1–second largest p-value; since a high 
p-value of an alternate class reduces the confidence in 
the prediction. Triazole1 is predicted to be AA with 
credibility = 0.56 and confidence = 0.81.

Referring to the three domains concept by Hanser et al. 
[27] (applicability, reliability, decidability), mentioned in 
the introduction, higher p-values, indicate higher relia-
bility of a prediction while a large difference between the 
two p-values corresponds to increased decidability.

Considering the predictions by all 88 CP models (see 
Fig.  6b), both triazoles were predicted to be only active 
(SL 0.2) at a total of 15 endpoints, related to DNA bind-
ing, nuclear receptors, cell cycle as well as for aromatase 
inhibition (CYP19A1). A full list of the p-values for the 
predictions can be found in Additional file 1: Table S3.

Potential interaction of triazoles with aromatase can 
be explained through the mode of action of triazole fun-
gicides. They inhibit the biosynthesis of ergosterol—an 

essential component of fungal cell membranes—chang-
ing the composition of the cell membrane. More pre-
cisely, the fungal enzyme lanosterol 14α-demethylase 
(CYP51) is inhibited which is closely related to human 
CYP15 and CYP19 (aromatase). Homology of fungal 
CYP51 to human CYP19 suggests likewise effects on 
steroidogenesis in humans [58]. Aromatase is responsi-
ble for catalysing the transformation of androgens into 
estrogens [59]. Inhibition can have a severe impact on 
hormone levels, though the actual physiological effects 
remain unclear [60, 61].

Besides, both triazoles were predicted to induce tran-
scription factor activity and, thus, elevate the level of 
pregnane X receptor (PXR) response element and phe-
nobarbital-responsive enhancer module mRNA. The two 
response elements are bound by members of the endo-
geneous human nuclear receptor subfamily 1 (PXR and 
constitutive androstane receptor (CAR), respectively), 
and are involved in overlapping pathways of xenobiotic 
detoxification, mainly occuring in the liver [62]. PXR is 
responsible for the expression of xenobiotic metabolising 
enzymes (e.g. cytochromes) in humans and is activated 
by a wide range of xenobiotics (e.g antibiotics) as well as 
endobiotics [63]. Activation of PXR has previously been 
observed by other azole fungicides such as miconazole 
and propiconazole [64] (see Fig. 7a, b). Moreoever, many 
conazoles are known to be involved in inhibition and 
induction of mammalian cytochromes P450 [65]. Gener-
ally, metabolism and elimination of foreign substances, 
such as fungicides, is favourable, it is mainly alarming 
when it comes to drug-drug interactions [66] (e.g. induc-
tion of xenobiotic metabolism by one drug may also 
affects metabolism and thus plasma levels of another 
drug). An example is the antimycotic drug ketoconazole 
(Fig. 7c) which is preferably applied topically rather than 
orally due to its high drug-drug interaction potential [67].

Triazoles1&2 were both predicted to have antagonistic 
effects on the thyroid receptor. Indeed, thyroid endocrine 
effects of triazole fungizides have not yet extensively been 

Fig. 7  Chemical structures of triazole and imidazole fungicides referred to in the case study section
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studied: There is no indication of an effect in mammali-
ans in vivo and only few reports in vitro and in zebrafish: 
Thyroid endocrine effects have previously been reported 
for two triazole fungicides hexaconazole and tebucona-
zole (see Fig. 7d, e) in zebrafish larvae [68]. Yu et al. sug-
gested that the latter two triazoles can influence both, 
thyroid hormone levels and gene transcription in the 
hypothalamic-pituitary-thyroid axis. Changing thyroid 
hormone levels can affect several important physiological 
processes, e.g. tissue growth and differentiation, energy 
homeostasis, and metabolism [69, 70].

Furthermore, triazoles1&2 were predicted to inter-
fere with the cell cycle, i.e. leading to cytotoxicity. Also, 
in literature, evidence for cytotoxicity and cell cycle 
inhibition by triazole fungicides or mixtures contain-
ing such is given. For instance, Schwarzbacherova et  al. 
reported cytotoxic and genotoxic effects, such as reduced 
cell viability, decreased cell proliferation, and apopto-
sis of bovine lymphocytes induced by fungicides [71]. 
In another study, they found bovine lymphocytes prolif-
eration inhibited by a mixture of two conazole fungicides 
[72]. Additionally, Zhou et  al. [73] described apoptotic 
effects of tebuconazole (see Fig. 7e) on human placental 
trophoblast cells.

Summarising, it could be shown that the CP models 
make reasonable predictions for potential toxic effects of 
these compounds, which could be substantiated with evi-
dence in literature.

Secondly, with a search for structural alerts, toxicity 
prediction is supported with information from literature 
about substructures that have been previously assigned 
to specific toxic endpoints. Each query compound is 
screened against totally 919 available alerts and any criti-
cal substructure is highlighted.

Three alerts found for triazoles1&2 are shown in 
Fig. 6c. According to Benigni et al. halogenated benzenes 
are prone to non-genotoxic carcinogenicity via agonis-
tic or antagonistic interaction with the aryl hydrocarbon 
receptor  (AhR) [74]. AhR activation can result in altered 
gene expression and thus various types of toxicity, e.g. 
immunotoxicity, liver tumor promotion, and carcino-
genicity [74, 75].

The sulfur moiety points to a study by Liu et  al. [40], 
where 23 drugs containing acyclic bivalent sulfur moie-
ties were investigated. Eight out of them are known for 
liver toxicity, another 14 are possibly hepatotoxic. Since 
only for one of the investigated drugs, liver toxicity could 
be excluded certainly, potential liver toxicity should be 
considered for these moieties. Conversely, this alert must 
not be an exclusion criterion, as the above drugs were 
still launched to the market.

Another warning is issued towards the epoxide sub-
structure, a highly reactive group. Presence of the oxygen 

makes the carbons in the three-membered ring electro-
philic. Thus they are typically accessed by nucleophiles, 
via an SN2-type mechanism resulting in ring opening 
and a covalent bond. This may cause mutagenic or carci-
nogenic effects, as well as skin sensitization and aquatic 
toxicity [39, 76–78]. While the nucleophile preferentially 
attacks the less substituted ring carbon, [76] in the case of 
triazoles1&2, access to any ring carbon is sterically hin-
dered due to the three surrounding substituents. Thus, 
the present epoxides can be considered inert.

Note that the issued warnings are based on the 919 
toxic alerts incorporated into KnowTox. If the collec-
tion of structural alerts is desired to be even more com-
prehensive, it can always be extended by literature or 
in-house knowledge. For example, the triazole substruc-
ture, which is also included in the ToxAlerts tool as an 
“extended functional group” [19, 79], is not considered in 
this work. As seen in the CP part, this moiety is respon-
sible for both, the antifungal activity, and adverse effects 
due to aromatase inhibition.

Thirdly, risk assessment is complemented through inclu-
sion of information from experimental ToxCast assay out-
comes of similar molecules. For a query compound, the 
7912 compounds of the ToxCast dataset are screened to 
identify the molecules with highest Tanimoto similarity 
and toxicity information of these most similar molecules is 
displayed. To simplify the assessment of the grade of simi-
larity, and thus the reliability in the read-across, the Tani-
moto index, as well as the MCS between the molecules are 
indicated. Similarity search and support for read-across 
can especially be valuable for those endpoints where 
minority class data was too few to build a CP model.

When querying the triazoles in the similarity search, 
eight fairly similar molecules are returned (see Fig.  6d). 
The similarity is mainly reflected in the triazole sub-
structure and halogenated benzenes, mostly connected 
in three- or four-membered ring-systems. Note that no 
other molecule with an epoxide substructure is captured 
within the similarity search.

Assuming that the found molecules are similar enough, 
known experimental information about them could be 
used to support read-across. Although ToxCast provides 
data from 985 assays, the most similar molecules to the 
two triazoles were only assayed for 32 to 639 endpoints 
each. The most similar molecule to triazole1, propicona-
zole, was, amongst others, tested active at several nuclear 
receptor-related endpoints (e.g. PXRe, CAR, androgen, 
thyroid and estrogen receptors), cytochromes P450 (i.e. 
19, 1a, 2b, 2c, 2d, 3a), and GPCRs (e.g. opioid receptors, 
muscarinic cholinergic receptors, and histamine receptor 
H2). Furthermore, it had effects on several developmental 
endpoints of zebrafish embryos [80] (see Fig. 6e). Experi-
mentally observed activity for bromuconazole, the most 
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similar compound to triazole2, was mainly restricted to 
nuclear receptors (e.g. retinoic acid, androgen, and estro-
gen receptors, PXR), DNA binding (AhR, p53, sterol reg-
ulatory element binding protein), and cytochromes P450 
(19A1, 2a, 2b, 2c, 3a). It should, moreover, be noted that 
Br-substituents, as in bromuconazole, are generally more 
reactive than F- or Cl-substituents [39]. So, certain toxic 
effects might be more distinct in bromuconazole than 
in molecules without Br- substituted moieties, such as 
triazoles1&2.

The toxic effects described for triazoles1&2 above can 
be related to pathways, such as CAR/RXR and PXR/RXR 
activation, xenobiotic metabolism signaling, and AhR 
signaling, which were also investigated in a study by Hes-
ter et al. [65] and related to hepatocarcinogenesis.

An association of bromuconazole with xenobiotic 
metabolism and nuclear receptors (i.e. PXR), as sug-
gested by the similarity-based read-across, is further sup-
ported by a recent study by Abdelhadya et al. [81]. They 
reported, inter alia, that the liver oxidative damage is 
associated with increased PXR activity and concurrent 
decrease in expression of the CAR gene.

In conclusion, indications of liver toxicity, liver enzyme 
induction, and aromatase inhibition were found in rats 
treated with these two triazoles in in-house studies. Thus, 
further development of these two triazole candidates 
was discontinued. Also, according to literature, several 
conazole fungicides have been associated to potential AA 
endocrine disruption [82]. For example, AA effects were 
reported for prochloraz (Fig. 7f ) in human prostate can-
cer cells [83]. Also, propiconazole (Fig.  7b) showed AA 
activity in vitro, though it could not be asserted in vivo 
[84]. Moreover, another explanation for triazole-induced 
liver toxicity was recently provided by Knebel et al. who 
investigated molecular mechanisms of hepatic steatosis 
[85]. The triazole fungicides propiconazole and tebucon-
azole (see Fig. 7b, e) were shown to influence the expres-
sion of steatosis-related genes. Especially, the observed 
additivity of equimolar mixtures suggests a common 
mode of action.

To conclude, KnowTox was able to predict many inter-
actions, especially with respect to the induction of xeno-
biotic enzymes, endocrine effects, and liver toxicity. The 
discussed predictions could be supported by literature 
findings for other related molecules. Also, the KnowTox 
tool could reproduce the main in vivo effects of two tria‑
zole compounds, which have been discontinued as devel-
opment candidates.

To sum up, such a holistic analysis of the toxic potential 
of a novel molecule can be of high reward in compound 
(de-)selection, planning further toxicity testing, and to 
support read-across. Nevertheless, its benefit can still be 
increased by incorporation of larger datasets, biological 

activity fingerprints characterising the compounds, and 
in vivo endpoint data for model development. Note that 
KnowTox is based on the ToxCast dataset chosen for its 
size, scope and accessibility. Used in early stages of new 
chemical’s development, the tool can provide a broad 
overview on possible interactions with toxicity-related 
targets. For application in regulatory toxicity testing, it 
is beneficial to have toxicity data which fundamentally 
support regulatory required toxicity assays in animals, 
e.g. reproduction toxicity studies. In case of occurrence 
of toxic effects, the tool will help to identify a potential 
mode-of-action. In addition, it will increase certainty 
if data support the absence of toxic effects. Thus, if, in 
future, sufficient standard toxicity data will be avail-
able for model training, the introduced pipeline has the 
potential to become even more powerful. Also, informa-
tion about the compound’s bioavailability and in vitro to 
in vivo translation of the assays would be of high interest 
[10, 86–88]. According to Grenet et al. [87], it seems to be 
more challenging to predict long-term in vivo endocrine 
disruption, compared to predicting short-term in  vivo 
endocrine effects. Furthermore, for a complete risk 
assessment, the quantitative dose-response needs to be 
considered. That is beyond the scope of this paper. Infor-
mation on the type and amount of formed metabolites 
is highly desirable (see the prominent role of xenobiotic 
metabolism in the toxic effects of triazole fungicides).

In vitro toxicology has embarked on combining data 
from different sources to derive more reliable and more 
relevant information on potential toxic effects of com-
pounds [89, 90]. This concept also applies to in silico tox-
icology and combinations of the different in vivo, in vitro, 
in silico methods: combining the input from different, 
complementary models can provide advantageous infor-
mation which cannot be obtained from one single source.

Conclusion
In silico methods for toxicity prediction are promising 
tools assisting in the reduction and replacement of ani-
mal testing. In this work, three different approaches were 
combined in order to support holistic risk assessment for 
new query molecules.

In praxis, it is not only important to have well per-
forming models, but also to know that they can be 
confidently applied to novel compounds (applicability 
domain), that the predictions are reliable (reliability 
domain) and informative (decidability domain). A pop-
ular technique for confidence estimation for machine 
learning models is conformal prediction, which enables 
straightforward training of valid and balanced models 
with little optimisation effort. While this advantage was 
also witnessed during internal validation, in this work, 
some challenges emerged during application to an 
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external dataset where exchangeability was not given. 
Therefore, the models were refined in two steps: firstly, 
using k-nearest neighbour normalisation improved 
validity of both internal and in-house data predictions 
(reliability domain). Secondly, random equal size sam-
pling of the training set improved informational effi-
ciency of the predictions (decidability domain). This 
strategy was initially validated on an AA model and 
subsequently transferred to totally 88 ToxCast end-
point models. Complemented with structural alerts 
from literature and providing support for read-across, 
the KnowTox tool generates a risk assessment picture 
to examine potential toxicity of a novel query com-
pound from different angles as exemplified by the case 
study on two triazoles.
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Additional file

KnowTox: Pipeline and Case Study for Confident
Prediction of Potential Toxic Effects of Compounds in

Early Phases of Development

Andrea Morger, Miriam Mathea, Janosch H Achenbach, Antje
Wolf, Roland Buesen, Klaus-Juergen Schleifer, Robert Landsiedel

and Andrea Volkamer

Table S1: Evaluation of original conformal prediction model for androgen
receptor antagonism at 0.2 significance level (SL)

Validity Efficiency Accuracy
Dataset Purpose all cl.1a cl.0a all cl.1 cl.0 all cl.1 cl.0

ToxCast-AA train model 0.81 0.82 0.81 0.87 0.89 0.87 0.78 0.80 0.78
In-house-AA validation I 0.59 0.98 0.16 0.94 0.98 0.91 0.56 0.97 0.07
External-AA validation II 0.75 0.77 0.74 0.79 0.77 0.81 0.68 0.70 0.67

acl.: class (class 1 = actives, class 0 = inactives)

Table S2: Evaluation of normalised conformal prediction model (normalised
nonconformity score) for androgen receptor antagonism at 0.2 SL

Validity Efficiency Accuracy
Dataset Purpose all cl.1a cl.0a all cl.1 cl.0 all cl.1 cl.0

ToxCast-AA train model 0.85 0.82 0.85 0.37 0.14 0.40 0.95 0.46 0.98
In-house-AA validation I 0.82 0.84 0.80 0.21 0.25 0.16 0.85 0.94 0.71
External-AA validation II 0.75 0.65 0.83 0.29 0.19 0.37 0.77 0.39 0.93

acl.: class (class 1 = actives, class 0 = inactives)
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cp_pval_eval_examples_triazoles

Seite 1

Triazole1 Triazole2 Triazole1 Triazole2
Endpoint p0 p1 p0 p1 Endpoint p0 p1 p0 p1

1 0.140 0.747 0.123 0.572 241 0.441 0.631 0.276 0.373
45 0.079 0.522 0.086 0.367 243 0.431 0.627 0.300 0.498
63 0.405 0.457 0.466 0.566 249 0.439 0.700 0.240 0.440
64 0.193 0.444 0.169 0.397 251 0.092 0.559 0.071 0.461
66 0.154 0.424 0.142 0.407 253 0.419 0.571 0.274 0.263
69 0.214 0.623 0.241 0.720 257 0.549 0.509 0.302 0.275
74 0.294 0.700 0.226 0.686 267 0.416 0.658 0.261 0.483
75 0.342 0.411 0.220 0.334 277 0.257 0.692 0.176 0.554
82 0.391 0.676 0.381 0.680 287 0.373 0.721 0.212 0.467
84 0.425 0.734 0.364 0.739 291 0.383 0.797 0.271 0.483
91 0.187 0.597 0.134 0.517 297 0.351 0.749 0.268 0.480
97 0.200 0.648 0.186 0.648 299 0.468 0.733 0.322 0.527
98 0.323 0.724 0.289 0.714 301 0.444 0.714 0.308 0.571

100 0.386 0.804 0.319 0.744 303 0.378 0.819 0.166 0.584
101 0.142 0.571 0.178 0.623 305 0.347 0.799 0.192 0.593
102 0.393 0.471 0.268 0.429 307 0.466 0.810 0.262 0.635
103 0.013 0.281 0.024 0.436 309 0.358 0.745 0.185 0.517
104 0.236 0.615 0.221 0.570 315 0.299 0.866 0.165 0.777
106 0.433 0.652 0.230 0.569 317 0.356 0.723 0.177 0.535
107 0.056 0.459 0.108 0.625 762 0.191 0.558 0.214 0.597
113 0.073 0.379 0.082 0.445 765 0.205 0.640 0.213 0.622
114 0.300 0.668 0.248 0.690 767 0.036 0.423 0.086 0.558
117 0.444 0.328 0.270 0.299 785 0.408 0.357 0.410 0.353
134 0.395 0.615 0.334 0.566 786 0.283 0.690 0.244 0.601
135 0.307 0.633 0.202 0.448 788 0.602 0.153 0.648 0.259
142 0.630 0.264 0.493 0.181 789 0.205 0.681 0.232 0.600
145 0.399 0.609 0.273 0.364 793 0.171 0.519 0.227 0.480
147 0.386 0.765 0.285 0.671 794 0.399 0.580 0.337 0.585
153 0.411 0.711 0.221 0.398 797 0.498 0.612 0.389 0.488
157 0.287 0.808 0.218 0.675 804 0.193 0.705 0.190 0.703
159 0.373 0.761 0.256 0.593 806 0.554 0.338 0.593 0.480
165 0.417 0.787 0.284 0.575 1110 0.262 0.692 0.232 0.709
167 0.368 0.470 0.299 0.238 1113 0.067 0.322 0.330 0.662
169 0.357 0.708 0.172 0.369 1116 0.325 0.594 0.269 0.477
171 0.452 0.563 0.442 0.422 1120 0.247 0.767 0.255 0.684
173 0.388 0.774 0.322 0.655 1127 0.289 0.636 0.339 0.590
175 0.478 0.616 0.304 0.414 1317 0.212 0.642 0.174 0.670
177 0.426 0.798 0.253 0.534 1321 0.342 0.593 0.406 0.678
179 0.350 0.807 0.213 0.590 1325 0.242 0.615 0.216 0.498
181 0.391 0.691 0.320 0.557 1329 0.264 0.547 0.222 0.440
185 0.326 0.762 0.303 0.713 1412 0.183 0.558 0.197 0.576
189 0.408 0.662 0.356 0.599 1441 0.297 0.782 0.244 0.695
221 0.329 0.811 0.173 0.599 1496 0.278 0.844 0.277 0.795
235 0.400 0.663 0.249 0.376 1816 0.159 0.436 0.194 0.464

Table S3: P-values obtained from predictions with 88 KnowTox confor-
mal prediction models for triazoles1&2.



Morger et al. 3

Tabelle1

Seite 1

Accuracy Validity Efficiency Accuracy Validity Efficiency
Endpoint cl0 cl1 cl0 cl1 cl0 cl1 Endpoint cl0 cl1 cl0 cl1 cl0 cl1

1 0.82 0.76 0.84 0.82 0.59 0.56 241 0.78 0.74 0.84 0.84 0.54 0.51
45 0.84 0.72 0.85 0.81 0.57 0.56 243 0.83 0.75 0.84 0.83 0.62 0.57
63 0.84 0.78 0.85 0.83 0.62 0.61 249 0.82 0.75 0.84 0.83 0.59 0.52
64 0.83 0.74 0.84 0.83 0.59 0.5 251 0.78 0.81 0.84 0.85 0.59 0.55
66 0.83 0.77 0.83 0.83 0.62 0.47 253 0.81 0.77 0.82 0.82 0.6 0.54
69 0.79 0.72 0.83 0.84 0.61 0.44 257 0.82 0.75 0.86 0.82 0.53 0.48
74 0.81 0.76 0.81 0.82 0.69 0.49 267 0.81 0.76 0.85 0.8 0.56 0.53
75 0.74 0.79 0.83 0.83 0.49 0.63 277 0.77 0.81 0.82 0.86 0.6 0.59
82 0.76 0.7 0.83 0.82 0.57 0.52 287 0.81 0.76 0.85 0.82 0.6 0.49
84 0.81 0.76 0.83 0.83 0.63 0.53 291 0.84 0.77 0.84 0.82 0.57 0.44
91 0.85 0.78 0.84 0.84 0.66 0.52 297 0.76 0.75 0.82 0.85 0.58 0.46
97 0.83 0.76 0.82 0.82 0.64 0.52 299 0.81 0.8 0.83 0.84 0.62 0.48
98 0.84 0.72 0.84 0.82 0.61 0.47 301 0.8 0.75 0.83 0.82 0.61 0.48

100 0.81 0.77 0.83 0.83 0.66 0.54 303 0.78 0.74 0.83 0.84 0.61 0.51
101 0.85 0.79 0.83 0.82 0.65 0.45 305 0.77 0.74 0.83 0.83 0.61 0.52
102 0.85 0.71 0.84 0.83 0.67 0.5 307 0.83 0.8 0.83 0.85 0.61 0.51
103 0.82 0.8 0.82 0.82 0.65 0.66 309 0.8 0.76 0.84 0.86 0.57 0.5
104 0.85 0.77 0.84 0.84 0.64 0.45 315 0.78 0.77 0.82 0.83 0.61 0.59
106 0.83 0.62 0.86 0.83 0.53 0.39 317 0.82 0.8 0.83 0.84 0.61 0.51
107 0.84 0.8 0.82 0.83 0.68 0.58 762 0.91 0.76 0.85 0.84 0.6 0.39
113 0.84 0.81 0.82 0.83 0.68 0.61 765 0.9 0.77 0.84 0.83 0.57 0.38
114 0.83 0.72 0.84 0.84 0.59 0.47 767 0.88 0.77 0.84 0.82 0.6 0.47
117 0.78 0.81 0.81 0.82 0.6 0.71 785 0.88 0.85 0.84 0.81 0.58 0.62
134 0.87 0.77 0.83 0.83 0.65 0.5 786 0.93 0.76 0.85 0.83 0.6 0.37
135 0.85 0.79 0.82 0.82 0.69 0.65 788 0.61 0.85 0.84 0.86 0.3 0.45
142 0.73 0.81 0.82 0.83 0.52 0.66 789 0.92 0.79 0.83 0.83 0.6 0.41
145 0.8 0.71 0.84 0.8 0.56 0.51 793 0.87 0.84 0.83 0.81 0.66 0.54
147 0.81 0.76 0.85 0.84 0.64 0.49 794 0.83 0.84 0.85 0.84 0.57 0.55
153 0.82 0.8 0.83 0.85 0.6 0.47 797 0.97 0.77 0.85 0.82 0.65 0.37
157 0.8 0.77 0.83 0.82 0.62 0.56 804 0.9 0.81 0.83 0.81 0.64 0.53
159 0.82 0.79 0.82 0.82 0.59 0.45 806 0.91 0.85 0.86 0.83 0.67 0.59
165 0.83 0.78 0.84 0.84 0.58 0.43 1110 0.82 0.78 0.83 0.83 0.61 0.57
167 0.77 0.77 0.83 0.84 0.52 0.52 1113 0.79 0.79 0.83 0.82 0.57 0.54
169 0.81 0.78 0.84 0.84 0.56 0.46 1116 0.89 0.78 0.84 0.82 0.59 0.46
171 0.81 0.72 0.84 0.83 0.59 0.5 1120 0.88 0.76 0.83 0.82 0.68 0.5
173 0.84 0.8 0.84 0.81 0.62 0.5 1127 0.89 0.66 0.85 0.82 0.66 0.42
175 0.84 0.79 0.85 0.85 0.59 0.49 1317 0.81 0.78 0.84 0.83 0.59 0.56
177 0.81 0.78 0.85 0.85 0.59 0.46 1321 0.81 0.77 0.84 0.82 0.54 0.53
179 0.8 0.75 0.85 0.82 0.58 0.5 1325 0.89 0.72 0.86 0.81 0.56 0.45
181 0.81 0.75 0.83 0.82 0.61 0.56 1329 0.86 0.76 0.85 0.85 0.54 0.44
185 0.81 0.75 0.83 0.81 0.58 0.49 1412 0.83 0.74 0.83 0.82 0.68 0.57
189 0.83 0.77 0.85 0.85 0.6 0.48 1441 0.79 0.67 0.84 0.81 0.58 0.5
221 0.78 0.76 0.83 0.82 0.57 0.56 1496 0.76 0.73 0.82 0.82 0.61 0.57
235 0.81 0.8 0.83 0.84 0.65 0.56 1816 0.92 0.81 0.84 0.84 0.68 0.48

Table S4: Class-wise evaluation of conformal prediction models.
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Endpoint_ID Description Endpoint Family Endpoint Subfamily # Actives # Inactives

1 T47D cell cycle cytotoxicity 413 1169
45 CellLoss cell cycle cytotoxicity 396 533
63 Ahr dna binding basic helix-loop-helix protein 397 2670
64 AP dna binding basic leucine zipper 557 2501
66 BRE dna binding Smad protein 349 2721
69 CRE dna binding basic leucine zipper 303 2760
74 EGR dna binding zinc finger 441 2624
75 ERE nuclear receptor steroidal 794 2254
82 HIF1a dna binding basic helix-loop-helix protein 335 2731
84 HSE dna binding heat shock protein 369 2696
91 MRE dna binding zinc finger 647 2417
97 NRF2 dna binding basic leucine zipper 1164 1878
98 Oct dna binding POU domain protein 481 2578

100 Pax6 dna binding paired box protein 405 2664
101 PBREM nuclear receptor non-steroidal 346 2721
102 PPRE nuclear receptor non-steroidal 469 2591
103 PXRE nuclear receptor non-steroidal 1494 1549
104 RORE nuclear receptor orphan 333 2739
106 Sp1 dna binding zinc finger 302 2760
107 SREBP dna binding basic helix-loop-helix leucine zipper 473 2591
113 VDRE nuclear receptor non-steroidal 819 2231
114 Xbp1 dna binding basic leucine zipper 401 2662
117 ERa nuclear receptor steroidal 678 2388
134 PPARg nuclear receptor non-steroidal 852 2206
135 PXR nuclear receptor non-steroidal 873 2177
142 RXRb nuclear receptor non-steroidal 479 2580
145 Eselectin cell adhesion molecules selectins 376 947
147 HLADR cell adhesion molecules MHC Class II 510 812
153 MCP1 cytokine chemotactic factor 346 976
157 Proliferation cell cycle cytotoxicity 554 767
159 SRB cell cycle cytotoxicity 433 886
165 uPAR cytokine plasmogen activator 382 940
167 VCAM1 cell adhesion molecules Immunoglobulin CAM 328 997
169 Vis cell morphology cell conformation 396 921
171 Eotaxin3 cytokine chemotactic factor 403 920
173 MCP1 cytokine chemotactic factor 358 964
175 Pselectin cell adhesion molecules selectins 372 954
177 SRB cell cycle cytotoxicity 361 962
179 uPAR cytokine plasmogen activator 319 1005
181 VCAM1 cell adhesion molecules Immunoglobulin CAM 400 923
185 HLADR cell adhesion molecules MHC Class II 356 965
189 IP10 cytokine chemotactic factor 349 974
221 Proliferation cell cycle cytotoxicity 401 920
235 CollagenIII cell adhesion molecules collagen 403 915
241 IP10 cytokine chemotactic factor 384 933
243 MCSF cytokine colony stimulating factor 388 932
249 PAI1 cytokine plasmogen activator inhibitor 367 957
251 Proliferation cell cycle cytotoxicity 575 746
253 SRB cell cycle cytotoxicity 312 1012
257 VCAM1 cell adhesion molecules Immunoglobulin CAM 383 939
267 MMP9 protease matrix metalloproteinase 359 965
277 CD40 cytokine inflammatory factor 397 927
287 MCSF cytokine colony stimulating factor 358 962
291 SRB cell cycle cytotoxicity 341 981
297 VCAM1 cell adhesion molecules Immunoglobulin CAM 405 919
299 CD38 cytokine other cytokine 404 918
301 CD40 cytokine inflammatory factor 399 922
303 CD69 cytokine inflammatory factor 370 953
305 Eselectin cell adhesion molecules selectins 377 945
307 IL8 cytokine interleukins 315 1005
309 MCP1 cytokine chemotactic factor 318 1004
315 Proliferation cell cycle cytotoxicity 522 802
317 SRB cell cycle cytotoxicity 333 990
762 AR nuclear receptor steroidal 868 5845
765 AR nuclear receptor steroidal 603 6161
767 Aromatase cyp steroidogenesis-related 925 5770
785 ERa nuclear receptor steroidal 323 6462
786 ERa nuclear receptor steroidal 761 5969
788 ERa nuclear receptor steroidal 857 5716
789 ERa nuclear receptor steroidal 494 6265
793 GR nuclear receptor steroidal 369 6431
794 GR nuclear receptor steroidal 333 6471
797 MMP cell morphology organelle conformation 705 3810
804 TR nuclear receptor non-steroidal 1390 5345
806 AhR dna binding basic helix-loop-helix protein 641 6106

1110 ARE dna binding basic leucine zipper 1199 4871
1113 HSE dna binding heat shock protein 404 5781
1116 p53 dna binding tumor suppressor 593 6167
1120 FXR nuclear receptor non-steroidal 698 5467
1127 PPARg nuclear receptor non-steroidal 389 5813
1317 p53 dna binding tumor suppressor 735 5975
1321 p53 dna binding tumor suppressor 663 6033
1325 p53 dna binding tumor suppressor 668 6048
1329 p53 dna binding tumor suppressor 648 6082
1412 DR4 nuclear receptor non-steroidal 624 2438
1441 ISRE dna binding interferon regulatory factors 405 2655
1496 TCF dna binding HMG box protein 384 2670
1816 AR nuclear receptor steroidal 916 5286

Table S5: Information about endpoints where con-
formal prediction models are available. More de-
tails about all endpoints can be found under:
https://figshare.com/articles/ToxCast and Tox21 Data Spreadsheet/6062503.



Results

4.2 Quantitative high-throughput phenotypic

screening for environmental estrogens using

the E-Morph Screening Assay in combination

with in silico predictions

The combination of toxicity prediction methods was shown successful in the KnowTox

project (see Section 4.1), yet the extensive prediction output can be challenging to inter-

pret for non-toxicology experts. The following work focuses on the ER and, for facilitated

decision making, multiple ER assays from ToxCast will be organised in a consensus ap-

proach. Activity on the ER can lead to endocrine disruption, a crucial threat to the

environment with consequences such as hormone-dependent cancers or reproductive dis-

function. In the following study, the recently-developed E-Morph Screen ER assay, aimed

at the detection of novel estrogenic substances, will be validated. Although conducting

the in vitro assay may be relatively fast, efforts required for synthesis or purchase of sub-

stances to be screened should not be neglected. Therefore, we explore to what extent the

addition of in silico toxicity prediction methods can make the screening more efficient.

It will be prospectively investigated if pre-selecting more-likely active compounds with a

similarity search and conformal predictions can increase the hit rate.
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Quantitative high-throughput phenotypic screening for environmental 
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Handling Editor: Olga Kalantzi  

A B S T R A C T   

Background: Exposure to environmental chemicals that interfere with normal estrogen function can lead to 
adverse health effects, including cancer. High-throughput screening (HTS) approaches facilitate the efficient 
identification and characterization of such substances. 
Objectives: We recently described the development of the E-Morph Assay, which measures changes at adherens 
junctions as a clinically-relevant phenotypic readout for estrogen receptor (ER) alpha signaling activity. Here, we 
describe its further development and application for automated robotic HTS. 
Methods: Using the advanced E-Morph Screening Assay, we screened a substance library comprising 430 
toxicologically-relevant industrial chemicals, biocides, and plant protection products to identify novel substances 
with estrogenic activities. Based on the primary screening data and the publicly available ToxCast dataset, we 
performed an in silico similarity search to identify further substances with potential estrogenic activity for follow- 
up hit expansion screening, and built seven in silico ER models using the conformal prediction (CP) framework to 
evaluate the HTS results. 
Results: The primary and hit confirmation screens identified 27 ‘known’ estrogenic substances with potencies 
correlating very well with the published ToxCast ER Agonist Score (r = +0.95). We additionally detected po
tential ‘novel’ estrogenic activities for 10 primary hit substances and for another nine out of 20 structurally 
similar substances from in silico predictions and follow-up hit expansion screening. The concordance of the E- 
Morph Screening Assay with the ToxCast ER reference data and the generated CP ER models was 71% and 73%, 
respectively, with a high predictivity for ER active substances of up to 87%, which is particularly important for 
regulatory purposes. 
Discussion: These data provide a proof-of-concept for the combination of in vitro HTS approaches with in silico 
methods (similarity search, CP models) for efficient analysis of large substance libraries in order to prioritize 
substances with potential estrogenic activity for subsequent testing against higher tier human endpoints.   

1. Introduction 

Endocrine-disrupting chemicals (EDCs) are a group of exogenous 

substances that interfere with the endocrine system, leading to adverse 
health effects, including cancer (WHO/IPCS, 2002). Global cancer 
burden has substantially increased over the last decades and incidence 
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rates are projected to further rise in the future (Sung et al. 2021; Wild 
et al. 2020). In 2020, female breast cancer has been the most commonly 
diagnosed cancer worldwide (Sung et al. 2021) and estrogens are an 
important risk factor (Yager and Davidson 2006). Thus, the identifica
tion of exogenous substances that mimic estrogen function and subse
quent reduction of human exposure to such substances are important 
measures for the effective prevention of endocrine-related cancers such 
as breast cancer. 

Environmental sources of substances with estrogenic activity are 
manifold and include consumer products and food packaging materials, 
preservatives, food additives, and pesticides, but are also naturally 
found in food (e.g. phytoestrogens) (Paterni et al. 2017). In regulatory 
toxicology, the detection of potential substance-related adverse health 
effects still calls for traditional in vivo test guideline studies that mainly 
use rodents to evaluate the potential hazards of single substances (OECD 
2001; 2018a; b; c). However, such cost- and time-consuming in vivo 
studies not necessarily mimic human-relevant physiological and disease 
conditions. In addition, the ethical issues related to animal testing in 
general and the high numbers of test animals needed further fuel the 
rising need and interest in human-relevant alternative in silico, in che
mico, and in vitro test methods to reduce and eventually replace animal 
testing according to the 3Rs principle (Russell and Burch 1959). 

Following the assumption that structurally similar substances can 
have similar toxicological effects (Maggiora et al. 2014), risk assessment 
commonly uses read-across approaches to effectively reduce costs and 
animal testing (Carrio et al. 2016; Hemmerich and Ecker 2020; Raies 
and Bajic 2016). Indeed, various established QSAR models, which 
represent statistical in silico models that relate a set of structural de
scriptors of a substance to its biological activity, can support read-across 
(Ma et al. 2015; Tropsha 2010). Still, the prediction of toxicity from 
structural similarity remains challenging for risk assessment because 
in silico predictions alone do not yet sufficiently fulfill information re
quirements for complex human health endpoints. 

In recent years, machine learning approaches gained momentum, 
which use the increasingly comprehensive in chemico and in vitro test 
data in an iterative process with growing certainty to identify combi
nations of substance features that may lead to a specific toxicological 
effect (Gayvert et al., 2016; Huang and Xia, 2017; Mayr et al., 2016). A 
special case of machine learning is conformal prediction (CP), which 
adds confidence estimation to the model predictions (Alvarsson et al. 
2021; Norinder et al. 2014; Vovk et al. 2005). The CP framework is built 
on top of a machine learning method and uses an additional calibration 
step based on experimental test results to determine the confidence 
when making predictions on new data. CP models have recently been 
intensively and successfully built and applied to toxicological questions 
(Morger et al. 2020; Morger et al. 2021; Norinder et al. 2016; Svensson 
et al. 2017b; Zhang et al. 2021). 

The increasing quantity and diversity of chemicals that are produced 
and marketed worldwide stimulate the establishment of high- 
throughput screening (HTS) research programs that use in chemico and 
in vitro assays to efficiently generate comprehensive concen
tration–response information for a large number of substances. For 
example, the U.S. EPA Toxicity Forecaster (ToxCast) project generated 
screening data for over 10,000 environmental chemicals that were 
tested in hundreds of HTS assays addressing toxicological and endocrine 
endpoints in order to rank and prioritize substances for subsequent in 
vivo testing (Dix et al. 2007; Judson et al. 2010; Reif et al. 2010; Rotroff 
et al. 2013). These screening data have further been integrated into an 
in silico ToxCast ER pathway model, which converts results from 18 
automated ER screening assays into a relative ER bioactivity score 
ranging from 0.00 (no activity) to 1.00 (bioactivity of the reference 
substance 17-alpha-Ethinylestradiol) (Browne et al. 2015; Judson et al. 
2015). More recently, Judson et al. demonstrated that a reduced set of 
four out of the originally 18 ER screening assays achieves a comparable 
performance (Judson et al. 2017). Furthermore, the Collaborative Es
trogen Receptor Activity Prediction Project (CERAPP) developed 

another in silico consensus model for prediction of ER binding, agonistic, 
and antagonistic activities of chemicals (Mansouri et al. 2016). This 
CERAPP ER consensus model integrates 48 individual computational 
models using different QSAR and structure-based approaches, which 
have been trained and optimized using the relative potency information 
from the ToxCast ER Agonist Model (Browne et al. 2015; Judson et al. 
2015). 

The in chemico and in vitro HTS assays that provide the data for the 
ToxCast ER pathway model each cover single, mechanistic events of 
estrogen signaling (ER binding, ER dimerization, regulation of gene 
expression, and cell proliferation) but the immediate relevance of the 
derived data regarding adverse effects, including human cancer, is still 
limited. Hence, development and application of novel cell-based test 
methods that combine HTS capability with more human-relevant, 
functional endpoints can support a more direct extrapolation of the 
test results to the complex signaling events and regulatory mechanisms 
that drive adverse effects including cancer progression and metastasis. 
We have recently shown that the cell-based E-Morph Assay provides 
such an endpoint, i.e., the machine learning-based analysis of estrogen- 
dependent phenotypic changes at adherens junctions (AJ) (Bischoff 
et al. 2020; Kornhuber et al. 2021). The E-Morph Assay is based on the 
observation that the inhibition of ER signaling in an MCF-7 breast cancer 
cell line led to a prominent reorganization of AJs and induced the 
clustering of the AJ protein E-cadherin (E-Cad), which could be reverted 
by co-treatment with estrogenic substances (Bischoff et al. 2020). These 
changes in cell morphology correlated with increased cellular stiffness 
and decreased cell motility, with deregulation of these two parameters 
often being associated with breast cancer progression and metastasis 
(Bischoff et al. 2020). In addition, we could describe comparable 
changes in E-Cad localization in clinical breast cancer tissue samples 
supporting the clinical relevance of the assay endpoint. 

In the present study, we optimized the E-Morph Assay for automated 
robotic HTS and used this advanced E-Morph Screening Assay to analyze 
a substance library comprising 430 toxicologically-relevant industrial 
chemicals, biocides and plant protection products that are reported to 
act through various nuclear hormone receptors. Using our HTS data in 
combination with already publicly available in chemico and in vitro 
ToxCast data as well as in silico prediction approaches using the CP 
framework, we could further identify additional, novel substances with 
potential estrogenic activity. 

2. Materials and methods 

2.1. Cell line and cell culture conditions 

The MCF-7/E-Cad-GFP cell line (de Beco et al. 2009; 2020) that 
stably expresses a fluorescent E-Cadherin-GFP fusion protein was kindly 
provided by Sylvie Coscoy (Laboratoire Physico-Chimie Curie, Institut 
Curie, PSL Research University - Sorbonne Universités, UPMC-CNRS, 
Paris, France). 

Routine cell cultures were maintained at 37 ◦C with 5% CO2 in 
normal-serum medium containing Dulbecco’s modified Eagle’s medium 
(DMEM, low glucose, pyruvate, no glutamine, no phenol red) (Gibco/ 
Thermo Fisher Scientific, Waltham, MA, USA), 10% (v/v) Fetal Bovine 
Serum (FBS, S0615, Estradiol levels: 22.3 pg/ml) (Biochrom/Merck, 
Darmstadt, Germany), 2 mM stable glutamine (Gibco/Thermo Fisher 
Scientific), 100 µg/ml streptomycin / 100 U/ml penicillin (Biochrom/ 
Merck), and 0.4 mg/ml geneticin (Gibco/Thermo Fisher Scientific). 
Cells were sub-cultured over a maximum of 10–12 passages, and regu
larly tested using the Eurofins Genomics mycoplasma test service 
(Eurofins Genomics, Ebersberg, Germany). 

Experiments were performed in reduced-serum medium as described 
above but containing only 5% (v/v) FBS to minimize background es
trogen levels and potential test chemical binding to serum lipids and 
proteins in the exposure medium. The final estradiol concentration in 
reduced-serum medium (4.1 pM) was in the range of physiological 

S. Klutzny et al.                                                                                                                                                                                                                                 



Environment International 158 (2022) 106947

3

serum levels of postmenopausal women (Rothman et al. 2011). If not 
otherwise stated, cells were seeded into multi-well plates at suitable 
concentrations to achieve 80–90% confluency after 24 h. Cells were then 
exposed to reduced-serum medium containing the respective test 
chemical in combination with the anti-estrogen Fulvestrant (Fulv, 10 
nM) (Sigma-Aldrich/Merck, Darmstadt, Germany) for 48 h, followed by 
the sample preparation procedure. Experimental controls included the 
solvent control, the Fulv control containing 10 nM Fulv only, and the co- 
treatment (reactivity) control containing 10 nM Fulv + 10 µM Estrone 
(Sigma-Aldrich/Merck) (each in reduced-serum medium). In all exper
iments, the solvent control corresponds to the respective experimental 
conditions, excluding Fulv and test chemicals. The DMSO (Sigma- 
Aldrich/Merck) concentration in the solvent control was always 
adjusted to the highest DMSO concentration used in the experiment, i.e. 
in the range of 0.1–0.4% depending on the experimental setting. 

2.2. Quantitative PCR 

Cells were seeded into 12-well plates at a concentration of 
4x105 cells/well in 1 ml reduced-serum medium and exposed to test 
substances as described above. RNA extraction (RNeasy Kit, Qiagen, 
Hilden, Germany), cDNA synthesis (High-Capacity cDNA Reverse 
Transcription Kit, Applied Biosystems/Thermo Fisher Scientific, Wal
tham, MA, USA), and quantitative PCR (qPCR) (PowerUp SYBR Green 
Master Mix, Applied Biosystems/Thermo Fisher Scientific) were con
ducted according to the manufacturers protocols using a QuantStudio 7 
Flex Real-Time PCR System (Applied Biosystems/Thermo Fisher Scien
tific) (40 cycles; denaturation for 15 s at 95 ◦C; annealing, extension, and 
fluorescence read for 1 min at 60 ◦C). RNA concentrations (A260) and 
purity ratios (A260/A280 and A260/A230) were determined using a 
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). Purity 
ratios of ~ 2.0 (A260/A280) and 2.0–2.2 (A260/A230) were generally 
considered acceptable. cDNA synthesis was performed using 1 µg RNA 
and RT random primers (High-Capacity cDNA Reverse Transcription Kit, 
Applied Biosystems/Thermo Fisher Scientific). For qPCR, 1 µl of 1:10 
diluted (water) cDNA was added to 10 µl master mix containing water, 
primers and SYBR Green. RNA expression levels (fold change) were 
calculated according to the ΔΔCT method (Livak and Schmittgen 2001). 
Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation 
Protein, Zeta (YWHAZ) was used as housekeeping gene. If not otherwise 
stated, each experiment was performed in technical triplicates and in at 
least three independent repetitions. Primers used (5′-3′ orientation): 

BCL2L1 (CAGCTTGGATGGCCACTTAC, 
TGCTGCATTGTTCCCATAGA); 

TFF1 (CATCGACGTCCCTCCAGAAGAG, 
CTCTGGGACTAATCACCGTGCTG); 

PGR (TCAACTACCTGAGGCCGGAT, GCTCCCACAGGTAAGGACAC); 
AREG (TGGATTGGACCTCAATGACA, 

TAGCCAGGTATTTGTGGTTCG); 
ESR1 (CCACCAACCAGTGCACCATT, 

GGTCTTTTCGTATCCCACCTTTC); 
GFP (AAGCTGACCCTGAAGTTCATCTGC, 

CTTGTAGTTGCCGTCGTCCTTGAA); 
CDH1 (AGGAGCCAGACACATTTATGGAA, 

GCTGTGTACGTGCTGTTCTTCAC); 
mCdh1 (AACCCAAGCACGTATCAGGG, 

GAGTGTTGGGGGCATCATCA); 
YWHAZ (ACTTTTGGTACATTGTGGCTTCAA, 

CCGCCAGGACAAACCAGTAT). 

2.3. Western blot 

Cells were seeded into 6 or 12-well plates at a concentration of 1x106 

or 4x105 cells/well in 2 ml or 1 ml reduced-serum medium and exposed 
to substances as described above. For protein extraction, cells were 
washed with ice-cold Phosphate-buffered saline (PBS) and scraped in 

100–200 µl lysis buffer (50 mM Tris/HCl pH 7.4, 150 mM NaCl, 0.1% 
(w/v) Na-deoxycholate, 0.1% (w/v) SDS, 1% (v/v) IGEPAL CA-630/NP- 
40, 5 mM EDTA pH 8.0, 5 mM EGTA, 1X cOmplete Protease Inhibitor 
Cocktail (Roche, Basel, Switzerland), PhosSTOP Phosphatase Inhibitor 
Cocktail (Roche) and incubated for 30 min on ice. Lysates were centri
fuged at 13,000 g and 4 ◦C for 10 min, and the supernatant was 
collected. Total protein concentrations were determined using a Pierce 
BCA Protein Assay Kit (Thermo Scientific/Thermo Fisher Scientific, 
Waltham, MA, USA) and a BSA standard (Thermo Fisher Scientific) ac
cording to the manufacturer’s instructions. Protein lysates were sepa
rated by SDS-PAGE using Mini-PROTEAN precast gels (4–15% 
polyacrylamide) (Bio-Rad Laboratories, Hercules, CA, USA) according to 
the manufacturer’s instructions. Proteins were transferred onto nitro
cellulose membranes (Bio-Rad Laboratories) using a semi-dry Trans-Blot 
Turbo Transfer System (1.3 A per gel, 25 V for 7 min) (Bio-Rad Labo
ratories). Membranes were blocked with 5% low-fat milk powder for 60 
min, rinsed in Tris-buffered saline containing Tween 20 (TBS-T) (TBS, 
0.1% Tween 20), and incubated with primary and secondary antibodies 
in 0.6% low-fat milk powder in TBS-T (TBS, 0.1% Tween 20) over night 
at 4 ◦C and for 3 h at room temperature, respectively. Antibodies/dyes 
used: mouse anti-E-Cad (1:1,000) (Clone 36, BD Biosciences, Franklin 
Lakes, NJ, USA) and HRP-conjugated goat anti-mouse secondary anti
body (1:10,000) (Jackson ImmunoResearch, West Grove, PA, USA). 
Protein detection was carried out using a Pierce ECL Western Blotting 
Substrate (Thermo Scientific/Thermo Fisher Scientific) in a Fusion Solo 
S (VWR, Radnor, PA, USA) imaging system. Coomassie Brilliant Blue 
(Bio-Rad Laboratories) total protein staining of nitrocellulose mem
branes was used as loading control (Welinder and Ekblad 2011). Semi- 
quantitative densitometric analysis of western blot bands was per
formed using the FIJI software (Schindelin et al. 2012). The band in
tensities were normalized to the respective Coomassie total protein 
staining of each lane. The results from each treatment condition were 
then normalized to the solvent control. 

2.4. siRNA knockdown 

Cells were seeded into 6 or 12-well plates at a concentration of 1x106 

or 4x105 cells/well in 2 ml or 1 ml reduced-serum medium and exposed 
to substances as described above. Transfections were carried out using 
the HiPerFect Transfection Reagent (Qiagen) and a mix of four ESR1 
siRNAs (FlexiTube GeneSolution GS2099, Quiagen) (10 nM) with 
different target sequences (SI02781401; SI03114979; SI03065615; 
SI00002527). Cells were transfected at the time of cell seeding according 
to the manufacturer’s reverse-transfection protocol. 

2.5. ER binding experiments 

Cells were seeded into 96-well plates and exposed to substances as 
described above. Transfections were carried out using the FuGENE HD 
Transfection Reagent (Promega, Madison, WI, USA), the pBIND-ERα 
[hRluc] vector (50 ng), and the pGL4.35[luc2P/9XGAL4 UAS/Hygro] 
vector (50 ng) (both Promega) according to the manufacturer’s protocol. 
The binding of a test substance with estrogenic activity to a fusion 
protein containing an estrogen receptor-ligand binding domain (ER- 
LBD) and a yeast Gal4 DNA-binding domain (Gal4-DBD) (pBIND-ERα 
[hRluc] vector) led to the expression of an UAS-controlled Firefly lucif
erase reporter protein (pGL4.35[luc2P/9XGAL4UAS/Hygro] vector), 
which was detected using the Dual-Glo Luciferase Reagent (Promega). 
The detected Firefly luminescence (pGL4.35[luc2P/9XGAL4UAS/ 
Hygro] vector) was normalized to the Renilla luminescence (pBIND-ERα 
[hRluc] vector) to derive a relative signal intensity. 

2.6. E-Morph Screen: Cell seeding and test substance exposure scenarios 

Cells were seeded into CellCarrier-96 Ultra Microplates (Perki
nElmer, Waltham, MA, USA) at a concentration of 9x104 cells/well in 
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225 µl reduced-serum medium, grown until 80–90% confluency for 24 
h, and then exposed to 250 µl reduced-serum medium containing each 
test chemical in combination with 10 nM Fulv for 48 h. 

All 430 test substances (Sigma-Aldrich/Merck) of the BfR- 
ChemLibrary were previously dissolved in DMSO (Sigma-Aldrich/ 
Merck) at a stock concentration of 10 mM and stored at the Compound 
Management Unit of the Leibniz Institute of Molecular Pharmacology 
(FMP, Berlin, Germany). For this project, a copy of the BfR-ChemLibrary 
was provided by the FMP on five 96-well microplates (Greiner Bio-One, 
Frickenhausen, Germany) along with an empty column for the assay 
controls. The preparation of the exposure medium and its application to 
cells was performed using a JANUS Automated Liquid Handling Work
station (PerkinElmer) and customized treatment protocols written in 
WinPREP (PerkinElmer). 

For the hit selection (primary) screen, 2 µl of the test substance (10 
mM) were transferred into an empty 96-well microplate (Greiner Bio- 
One) and then dissolved (1:100) in 198 µl reduced-serum medium 
containing 100 nM Fulv. Subsequently, 25 µl of the exposure medium 
containing the diluted test substance (100 µM) were then transferred 
from the compound plates to the cell culture assay plates containing 225 
µl reduced-serum medium to achieve a final test substance concentration 
of 10 µM and a final Fulv concentration of 10 nM. Considering that the 
nominal concentration of a test chemical does not necessarily reflect the 
concentration at the target site due to potential partitioning of test 
chemicals to other extracellular compartments in in vitro assays (Proença 
et al., 2021), a starting concentration of 10 µM is often used for hit se
lection in comparable HC/HT screening projects in order to maximize 
exposure of cells to the test substance. Sufficiently high exposure levels 
ensure confidence in negative test results and are particularly important 
for detection of substances with weak estrogenic activities, such as in
dustrial chemicals, that were, in contrast to pharmaceuticals, not 
designed to act on the ER pathway. 

For the hit confirmation (potency) and the hit expansion screens, 9 µl 
of the test substance (10 mM) were transferred into an empty 96-well 
microplate (Greiner Bio-One) and then dissolved (1:33) in 291 µl 
reduced-serum medium containing 100 nM Fulv. From this start con
centration (300 µM), serial dilutions were generated at a 1:3 ratio in 
reduced-serum medium containing 100 nM Fulv. Subsequently, 25 µl of 
the exposure medium containing the diluted test substance (300 µM to 
10 pM) was then transferred from the compound plates to the cell cul
ture assay plates containing 225 µl reduced-serum medium to achieve a 
final test substance concentration of 30 µM to 1 pM and a final Fulv 
concentration of 10 nM. 

For all screening approaches, the three solvent control wells of each 
plate contained 0.2% (primary screen) or 0.4% (hit confirmation screen) 
DMSO, the three Fulv control wells contained 10 nM Fulv, and the two 
co-treatment (reactivity) control wells contained 10 nM Fulv + 10 µM 
Estrone (each in reduced-serum medium). 

2.7. E-Morph Screen: Fluorescence microscopy and quantitative image 
analysis 

The preparation of the cells for fluorescence microscopy was per
formed using a JANUS Automated Liquid Handling Workstation (Per
kinElmer) and an ELx405 Select CW Microplate Washer (BioTek 
Instruments, Winooski, VT, USA). After treatment for 48 h, the cells 
were stained in PBS containing 1 µM CellTrace Far Red (Molecular 
Probes/Thermo Fisher Scientific, Waltham, MA, USA) to visualize the 
cell–cell contact morphology according to (Kornhuber et al. 2021) as an 
internal quality control and 2 µg/ml Hoechst 33,342 (Molecular Probes/ 
Thermo Fisher Scientific) to label nuclei for 20 min at 37 ◦C with 5% 
CO2, then washed twice with PBS, fixed with 4% formaldehyde solution 
for 15 min at room temperature, and finally washed again with PBS. 
During this procedure, the E-Cad-GFP signal was preserved and did not 
require additional staining. 

Cells were subsequently imaged with an Opera Phenix High-Content 

Screening System (PerkinElmer) using a 20x air objective (NA 0.4) at 
three standardized positions per well and three or four optical sections 
with 4 µm or 3 µm spacing per position. Image analysis was performed 
using the integrated Harmony software (PerkinElmer) and customized 
image analysis routines (Fig. S1A). First, nuclei were identified using the 
Hoechst 33,342 channel to define each cell. Nuclei touching the edge of 
the image were excluded from further analysis. Next, cell outlines were 
identified using the GFP channel and the E-Cad-GFP signal intensity was 
measured for each cell. Finally, a mean E-Cad-GFP signal intensity was 
calculated across all cells per well. 

For visualization of concentration-response curves of relative E-Cad- 
GFP signal intensities (SIE-Cad-GFP), the mean E-Cad-GFP signal intensity 
(SI) per well (SIwell) was normalized to the average SI (SIavr) of the 
corresponding three solvent control wells on each plate according to 
(Malo et al. 2006): 

SIE-Cad-GFP =
SISubstance

well

SISolv
avr

*100  

2.8. E-Morph Screen: Automated data evaluation 

The process automation software KNIME [v4.1.2] (Berthold et al. 
2008) was used to build a customized pipeline (Fig. S1B; File S1) for fast 
and efficient automated processing, evaluation, and statistical analysis 
of the quantitative image data obtained from the individual screens. 
Briefly, this KNIME workflow retrieved all .txt files that were exported 
from the Harmony software (PerkinElmer) into a specified folder and 
executed the following steps in a loop function: a) import .txt files and 
convert to tables b) adjust table columns and rows (e.g. remove un
necessary columns), c) merge all measurement tables into a global table, 
and d) join measurement data with the plate assignment metadata (e.g. 
substance name and concentration). 

In order to detect potential cytotoxic substance effects on cell 
viability (CV), the mean number of nuclei (N) per well (Nwell) was 
normalized to the average N (Navr) of the corresponding three Fulv 
control wells on each plate according to (Malo et al. 2006): 

CV =
NSubstance

well

NFulv
avr

*100% 

Substances leading to a CV < 75% (i.e., representing a ≥ 25% 
reduction of the number of nuclei compared to the 10 nM Fulv control) 
in at least two out of three runs were assigned to the group of ‘Toxic 
substances’. For substances leading to a CV ≥ 75%, the mean E-Cad-GFP 
signal intensities were further analyzed. 

To identify potential estrogenic substances, the mean E-Cad-GFP 
signal intensity (SI) per well (SIwell) was normalized to both the average 
SI (SIavr) of the corresponding three solvent control wells (SI = 100) AND 
the three Fulv control wells (SI = 0) on each plate according to (Malo 
et al. 2006): 

SI =
SIFulv

avr − SISubstance
well

SIFulv
avr − SISolv

avr
*100 

Substances leading to an SI ≥ 20 in at least two out of three runs were 
considered as potential estrogenic substances in the primary screen. The 
image data of these substances were furthermore visually assessed for 
ambiguous results and potential imaging artifacts. 

For quality assessment, the signal separation (effect size) between 
the solvent control and Fulv control and the deviation of values within 
each control group was determined for each plate and run. The Z’-factor 
(Z’) was calculated based on the average SI (SIavr) and the standard 
deviation (SIsd) of both the three Fulv control and the three solvent 
control wells on each plate according to (Iversen et al. 2006; Zhang et al. 
1999): 
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Z’ =

(
SISolvent

avr − 3SISolvent
sd

)
−
(
SIFulv

avr + 3SIFulv
sd

)

SISolvent
avr − SIFulv

avr
= 1 −

3
(
SISolvent

sd + SIFulv
sd

)

SISolvent
avr − SIFulv

avr 

The acceptance criterion for a valid run was Z’ > 0.5. 

2.9. Data visualization and statistical analyses 

All quantitative data were exported into Excel (Microsoft, Redmond, 
WA, USA)-readable files. Graphical visualizations and statistical ana
lyses of data were performed using Prism 8 (GraphPad Software, San 
Diego, CA, USA). Quantitative data were plotted using descriptive sta
tistical indexes, i.e. mean and standard deviation. SI concen
tration–response curves from the hit confirmation and hit expansion 
screens were fitted using the non-linear fit algorithm (four parameters, 
variable hill slope) to calculate half-maximal concentrations (EC50). 
The Pearson correlation coefficient (r) has been used to measure the 
strength of association and the direction of the relationship between the 
determined EC50 values of the substances tested in the E-Morph Assay 
and the ToxCast ER Agonist Score. Statistical methods used for 
computational tools are described below in detail. Figures were gener
ated using Illustrator CC 2020 (Adobe, San Jose, CA, USA). 

2.10. Computational predictions 

The in silico toxicity prediction pipeline follows the main steps from 
the previously published KnowTox project (Morger et al. 2020). In this 
study, the KnowTox pipeline was slightly adapted for the identification 
of substances with estrogenic activities and the individual steps are 
briefly explained in the following. A more detailed description of the 
underlying concepts is available in the original publication (Morger 
et al. 2020). 

2.10.1. Dataset and preprocessing 

2.10.1.1. ToxCast dataset. The publicly available U.S. EPA ToxCast 
dataset, comprising 8,390 chemicals tested against up to 1,092 end
points, was downloaded from U.S. EPA’s Center for Computational 
Toxicology and Exposure (U.S. EPA, 2017) and used for training of the 
in silico conformal prediction (CP) models and for the similarity search. 
In addition to the data preparation steps described in (Morger et al. 
2020), canonical SMILES were extracted from the PubChem database 
using the PubChem PUG REST API (Kim et al. 2015). If no canonical 
SMILES were available from PubChem, the original ToxCast SMILES 
were retained. 

2.10.1.2. Standardization. First, all instances (molecules and mixtures 
comprising multiple chemicals) were standardized using the IMI eTOX 
project standardizer tool (Atkinson 2014) applying the following steps: 
discard non-organic compounds, neutralize, apply certain structure 
standardization rules (e.g. handling of tautomers, shifting protons be
tween heteroatoms), neutralize, and remove (mainly organic) salts. 
Second, standardized molecules and mixture components with less than 
four heavy atoms, as well as all remaining mixtures, were discarded. 
This standardized dataset, containing 7,911 molecules, was used as a 
basis for the similarity search. For subsequent read-across support, 
measured activities of these molecules in seven ToxCast screening assays 
covering relevant ER-related endpoints (see Table 4) were considered. 

To train CP models on seven estrogen receptor assay datasets, the 
measured activities (binary) in these assays were assigned to the stan
dardized molecules. Next, each molecule was represented as InChI (In
ternational Chemical Identifier), a standardized format, to recognize 
molecules that appear more than once in the dataset. Chemicals with 
duplicate InChIs were merged and measurements were aggregated by 
median (median = 0.5 was discarded). This resulted in a data frame of 
7,135 compounds tested on up to seven endpoints. 

2.10.1.3. Descriptor calculation. As input for similarity search and CP, 
descriptors were calculated for all molecules using the RDKit Python 
library [v.2020.03.1] (Landrum 2006). For similarity search, the 
circular-environment based Morgan fingerprint (1024 bits, radius 3) and 
the SMARTS-pattern based MACCS keys (167 bits) were calculated and 
concatenated. For CP, the above fingerprints were further extended with 
200 physicochemical descriptors calculated using the RDKit library. The 
physicochemical descriptors were normalized based on mean and 
standard deviation of the physicochemical descriptors of substances for 
which ToxCast assay data was available. Further molecular descriptors 
used for the analysis of bisphenols (i.e. MorganCount, MACCS, phar
macophore fingerprints) were also calculated using the RDKit 
functionalities. 

2.10.2. In silico methods 

2.10.2.1. Similarity search and read-across support. To support read- 
across with in vitro activity information from similar molecules, a simi
larity search was implemented using RDKit functionalities. For a query 
molecule, the Tanimoto similarity to all molecules in the standardized 
ToxCast data set was calculated, based on the above-described de
scriptors. The ten most similar compounds were returned together with 
their Tanimoto similarity and the maximum common substructure with 
the query molecule. 

2.10.2.2. Conformal prediction (CP). CP is a framework on top of a 
machine learning algorithm, which has the advantage to provide a 
measure of confidence to the prediction as it includes an additional 
calibration step (Alvarsson et al. 2021; Norinder et al. 2014; Vovk et al. 
2005). Therefore, besides the proper training set, an additional cali
bration set is needed. By comparing the predictions for a query com
pound with the predictions already made for the calibration set, the 
algorithm calculates how well the new prediction conforms to the pre- 
calculated data points per class (i.e., binary: active and inactive, mon
drian classification (Sun et al. 2017)) using calculated p-values. 

Given that the training and test data are exchangeable, conformal 
predictors are designed to conform to a pre-defined maximum error rate. 
This error rate (significance level) functions as a threshold, so the CP 
output is a prediction set, which contains all classes for which the p- 
value is higher than the significance level. For a binary classification 
problem with classes ‘0’ and ‘1’, the possible prediction outputs are: 
‘single class’ ({0},{1}), ‘both class’ ({0,1}), or an empty prediction set 
({}). A more detailed description of CP, and specifically the use of an 
additional normalizer model to improve the applicability of the CP 
models to unseen data, is provided in (Morger et al. 2020). 

For each of the ER related endpoints, CP models (nonconformist 
Python library (Linusson 2015)) were trained and evaluated within a 
fivefold cross-validation. Thus, the ToxCast data was randomly and 
stratified split into five parts. In each fold, 80% training and 20% test 
data were used and an aggregated conformal predictor (ACP) (Carlsson 
et al. 2014) with 20 loops was initialized. In every ACP loop, the training 
data was further split into a proper training (70%) and a calibration set 
(30%) and a random forest model (500 estimators, else default param
eters, scikit-learn Python library [v.0.22.2] (Pedregosa et al. 2011)) was 
trained on the proper training set. The predictions were calibrated using 
the calibration set, inverse probability error function, and mondrian 
condition (Sun et al. 2017). Furthermore, the predicted values were 
normalized using information from the nearest neighbors of the proper 
set (KNNRegressor [v2.1.0] (Linusson 2015) as described in (Morger 
et al. 2020)). Median was used to aggregate the p-values from the 20 
ACP loops, as recommended by (Linusson et al. 2017). The p-values of 
the cross-validation were averaged by their mean. 

2.10.2.3. CP evaluation. To evaluate the CP ER models and the pre
dictions of the hit expansion compounds, evaluation measures such as 
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validity, efficiency and accuracy were used. Validity was calculated as 
the percentage of prediction sets containing the correct class, i.e., the 
fraction of all ‘both class’ ({0,1}) and correct ‘single class’ ({0}, {1}) 
predictions. Efficiency of the models was calculated as the ratio of 
prediction sets only containing a single class, i.e., {0} and {1}. Accuracy 
was determined by the ratio of correct ‘single class’ classifications 
compared to all ‘single class’ predictions. 

2.10.2.4. Consensus prediction. To derive a single prediction per com
pound over all seven CP ER models, the predictions from the individual 
models were merged into a so-called consensus prediction. Thus, for 
each prediction, the prediction set was calculated for a maximum 
accepted error rate of 20%. Only the efficient single class predictions 
were considered and the mode was calculated following a ‘majority 
vote’ principle to obtain one consensus prediction for ER agonism per 
substance. 

2.10.2.5. Comparative docking. Docking is a structure-based modeling 
technique to predict the preferred orientation of a ligand when it is 
bound to a protein, which can be mainly divided into a placement and a 
scoring step (Brooijmans and Kuntz 2003). Docking was performed 
using the Endocrine Disruptor Monitoring tool (2019 EDMonv3) of the 
@TOME-2 platform, an inverse screening pipeline that was developed to 
study interactions between ERα and potentially ER active substances 
(Pons and Labesse 2009). The EDMonv3/@TOME-2 webserver provides 
docking of ligands into several endocrine disruption targets (collected in 
the database “NR_HUMAN_I90_2019M8 (Aug 2019)”). 

In this study, the binding modes of five bisphenol(-like) ligands 
(Bisphenol F, 4-Benzylphenol, 4,4’’-Dihydroxybiphenyl, 4,4’’-Dihy
droxybenzophenone, and Bisphenol E) were analyzed when docked to 
ERα, for which the database contains 221 different protein structures for 
docking. For the docking experiment, 3D coordinates for each of the five 
compounds were generated using RDKit, and default parameters were 
used for the EDMonv3/@TOME-2 screening on ERα (H_NR3A1_ERa). 

Out of 221 available structural supports for ERα, the server returned 
the 20 best complexes per compound. To be able to directly compare the 
resulting poses for the five compounds, a common target structure that 
was returned as one of the top 20 complexes for all queries was desired. 
Twelve crystal structures were returned for all five query compounds 
consistently. Amongst them, the 3UUA ER agonist PDB structure was 
chosen, which was already investigated in the analysis of bisphenol-ER 
interactions by (Delfosse et al. 2012). Docking results, i.e., the crystal 
structure of 3UUA with the best docked pose of the respective ligand, 
were downloaded (as .pdb file) from the server and further analyzed 
using LigandScout [v4.4.3] (Wolber and Langer 2005). 

2.11. Performance calculations 

For each comparison, the overall concordance of active and inactive 
class predictions, i.e., the proportion of all substances that are correctly 
classified as active (NTrue Actives) or inactive (NTrue Inactives) from all tested 
substances (N), were calculated as follows: 

Concordance =
NTrue Actives + NTrue Inactives

N
*100 

The accuracy of active class predictions (Pactive class), i.e., the pro
portion of all substances that are correctly classified as active (NTrue Ac

tives) from all substances that are active in the reference method (NTrue 

Actives + NFalse Inactives), were calculated as follows: 

Pactive class =
NTrue Actives

NTrue Actives + NFalse Inactives
*100 

The accuracy of inactive class predictions (Pinactive class), i.e., the 
proportion of all substances that are correctly classified as inactive (NTrue 

Inactives) from all substances that are inactive in the reference method 
(NTrue Inactives + NFalse Actives), were calculated as follows: 

Pinactive class =
NTrue Inactives

NTrue Inactives + NFalse Actives
*100  

3. Results and Discussion 

3.1. E-Cadherin-GFP cell membrane signal intensity as a novel readout to 
efficiently measure estrogen signaling activity 

As described in (Kornhuber et al. 2021), the E-Morph Assay allows 
the identification and characterization of estrogenic substances based on 
quantitative changes in the morphology of cell–cell contacts at the level 
of AJs in the MCF-7/vBOS breast cancer cell line, which occur 24–48 h 
after exposure to an anti-estrogenic compound such as Fulvestrant 
(Fulv). In this first description of the assay, the cell–cell contact 
morphology was visualized using live-cell staining and analyzed by 
applying a quantitative image analysis pipeline with an integrated 
classification model (Kornhuber et al. 2021). 

In order to improve the HTS capability of the E-Morph Assay and to 
streamline the visualization and analysis procedures, we now selected a 
MCF-7 cell line that stably expressed an E-Cad-GFP transgene encoding 
for the mouse E-Cad fused to GFP, which has been shown to actively 
engage in the AJ assembly, maintenance, and dissociation process (de 
Beco et al. 2009; 2020). Treatment of this MCF-7/E-Cad-GFP cell line 
with the anti-estrogen Fulv for 48 h resulted in an AJ phenotype similar 
to the one observed in the MCF-7/vBOS cell line (Bischoff et al. 2020; 
Kornhuber et al. 2021) (Fig. 1A), and, in addition, influenced the E-Cad- 
GFP signal intensity (SI) (Fig. 1A). The SI increased in a concentration- 
dependent manner upon Fulv treatment (Fig. 1B, light grey) with a mean 
EC50 of 0.95 nM (Fig. 1C, light grey). In turn, co-treatment with 
increasing concentrations of 17β-Estradiol (E2) reduced the effect of 
Fulv on the SI again (Fig. 1B, grey) with a mean EC50 of 32.1 pM 
(Fig. 1C, grey). 

The dependence of the SI on Fulv- or E2-mediated changes of es
trogen signaling was verified by gene expression analyses of the estrogen 
receptor alpha (ERα) target genes BCL2L1, TFF1, PGR, and AREG. In line 
with results from the MCF-7/vBOS cell line (Bischoff et al. 2020), these 
mRNA expression levels were downregulated or upregulated in MCF-7/ 
E-Cad-GFP cells under anti-estrogenic (Fulv) or estrogenic (Fulv + E2) 
conditions, whereas ESR1 (encoding for ERα) itself was not affected 
(Fig. 1D). Interestingly, the expression of the E-Cad-GFP transgene itself 
clearly increased upon Fulv-treatment on the mRNA and protein level, 
whereas the expression level of the endogenous human E-Cad was 
hardly affected (Fig. 1D-F, Fig. S2A-B). The latter observation is again in 
line with our results from the MCF-7/vBOS cell line (Bischoff et al. 
2020), whereas the interesting effect of estrogen signaling on the 
expression of the E-Cad-GFP transgene has not been described before 
and will be subject of future analyses. As shown by (Bischoff et al. 2020), 
the described changes in ERα target gene expression levels and the 
resulting AJ reorganization process occur at different times and differ in 
their kinetics. Although the authors identified several relevant cellular 
components that are involved in the phenotype formation process, the 
precise mechanisms connecting estrogen signaling activity and AJ 
reorganization is not yet fully understood. 

Importantly, these Fulv-induced effects were indeed directly caused 
by inhibition of ERα activity, since specific depletion of ERα by small 
interfering RNAs (siRNAs) targeting ESR1 sufficed for the formation of 
the AJ phenotype, the increased SI, and the elevated E-Cad-GFP 
expression levels (Fig. 1G-H; Fig. S2B). ERα activity was effectively 
depleted by siESR1 as indicated by the reduction of AREG and the in
crease of BCL2L1 ERα target gene expression levels (Fig. S2B-C). 
Moreover, the application of Fulv to siESR1 knockdown cells only 
slightly further increased the SI and the E-Cad-GFP expression level 
(Fig. 1G-H). Likewise, addition of E2 could also not rescue these siESR1- 
mediated effects (Fig. 1G-H). 

Together, these data support the conclusion that the MCF-7/E-Cad- 
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Fig. 1. Visualization and quantification of E-Cad-GFP signal intensity (SI) along the cell membrane as an endpoint for estrogenic activity in the E-Morph Screening 
Assay. (A) Fluorescence images showing E-Cad distribution and intercellular spacing in MCF-7/E-Cad-GFP cells upon Fulvestrant (10 nM Fulv) treatment for 48 h as 
compared to the solvent control. Scale bars, 10 µM. (B) Representative concentration–response curves from quantitative image analysis of E-Cad-GFP expressing cells 
under anti-estrogenic (Fulv titration) and estrogenic (10 nM Fulv + 17β-estradiol (E2) titration) conditions (treatment for 48 h). The plot depicts the relative E-Cad- 
GFP signal intensity, which increases under anti-estrogenic conditions and decreases under estrogenic conditions. Signal intensities are normalized to the solvent 
control (Ctrl). Non-linear fit (four parameters, variable hill slope, bottom constrained to Ctrl). Biological replicates, n = 1. Error bars, mean +/- SD from ≥ 3 technical 
replicate experiments. (C) Mean half-maximal concentrations (EC50mean) derived from dose-response curves as described in Fig. 1B. Non-linear fit (four parameters, 
variable hill slope, bottom constrained to the solvent control). Biological replicates, n = 5 (Fulv titration, normalized to the solvent control) and n = 3 (10 nM Fulv +
E2 titration, normalized to the solvent control and the 10 nM Fulv control). (D) Quantitative PCR measurement of mRNA expression levels of typical ERα target genes 
(BCL2L1, TFF1, PGR, AREG), ESR1, GFP, and CDH1 under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2) conditions (treatment for 48 h). 
Relative mRNA expression levels for each treatment condition are normalized to the solvent control (Ctrl). Biological replicates, n ≥ 3. Error bars, mean + SD. (E) 
Quantitative PCR measurement of mRNA expression levels of GFP, murine Cdh1 and human CDH1 under anti-estrogenic (10 nM Fulv) conditions (treatment for 48 
h). Relative mRNA expression levels for each treatment condition are normalized to the solvent control (Ctrl). Biological replicates, n = 3. Error bars, mean + SD. (F) 
Quantification of protein expression levels of endogenous E-Cad (120 kDa) and transgenic E-Cad-GFP (150 kDa) bands from chemiluminescence western blots shown 
in Fig. S2A. Relative protein expression levels under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2) conditions (treatment for 48 h) are 
normalized to the solvent control (Ctrl). Biological replicates, n = 3. Error bars, mean + SD. Loading control, Coomassie total protein staining. G) Quantification of E- 
Cad-GFP signal intensities from cells transfected with ESR1 siRNA or GFP siRNA compared to cells transfected with scrambled control siRNA (siCtrl) for 72 h. Cells 
were additionally grown under anti-estrogenic (10 nM Fulv) and estrogenic (10 nM Fulv + 10 nM E2 or 10 nM E2 alone) conditions (treatment for 48 h). Relative E- 
Cad-GFP signal intensities are normalized to cells treated with scrambled control siRNA and the solvent control (Ctrl). Biological replicates, n = 2. Error bars, mean +
SD. (H) Quantitative PCR measurement of GFP mRNA expression levels of data shown in Fig. 1G. Relative mRNA expression levels are normalized to cells treated 
with scrambled control siRNA (siCtrl) and the solvent control (Ctrl). Biological replicates, n = 2. Error bars, mean + SD. 
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GFP cell line can adequately replace the original MCF-7/vBOS cell line 
in the E-Morph Screening Assay and that the SI represents a novel and 
reliable readout for estrogenic activity. This readout further simplifies 
quantitative image analysis pipelines because it does not require 
training of a supervised machine learning algorithm for image classifi
cation such as in the original E-Morph Assay readout. 

3.2. Automated high-throughput screening for estrogenic substances 

Besides implementing the novel primary readout of the E-Morph 
Screening Assay, we adapted and optimized the cell treatment and 
staining procedure for automated handling of 96- and 384-well-plates 
using a robotic platform. To speed up the image data analysis and 
evaluation procedure, we further improved the automated imaging and 

quantitative image analysis pipeline and built an automated image data 
evaluation pipeline using the KNIME software (Fig. S1A-B, File S1). In 
this KNIME workflow, substance-related cell death or altered cell pro
liferation were automatically detected by counting the number of nuclei 
as a readout for the number of cells. In a next step, the measured SI was 
normalized to both the solvent control (SI = 100) and the 10 nM Fulv 
control (SI = 0) for cut-off-based classification of substances with po
tential estrogenic activity (ER activity: SI ≥ 20, i.e., representing a ≥
20% reduction of the Fulv-mediated increase in E-Cad-GFP membrane 
signal intensity). 

We then applied this automated HTS pipeline to screen a substance 
library comprising 430 toxicologically-relevant industrial chemicals, 
biocides, and plant protection products, as well as reference substances 
with already known, specific activities on different nuclear receptor 

Fig. 2. E-Morph screen workflow and results. Decision tree describing the data interpretation procedure and the results of the three consecutive E-Morph screens 
involving in vitro (E-Morph Screening Assay) and in silico (similarity search, conformal prediction) methods to identify substances with estrogenic activity. See main 
text for details. Rectangular boxes, numbers of substances. Hexagonal boxes, numbers of assays/models. Oval boxes, substance groups based on comparison to the 
published ToxCast ER Agonist Score (see Fig. 3). 

S. Klutzny et al.                                                                                                                                                                                                                                 



Environment International 158 (2022) 106947

9

signaling pathways (Filer et al., 2014; Wetzel et al., 2017; EFSA, 2015; 
OECD, 2017; U.S. NIEHS, 2019). A complete list of these BfR- 
ChemLibrary substances and the corresponding screening results are 
available in Supplementary Table S1. The data interpretation procedure 
for identification of estrogenic substances and the screening results are 
summarized in Fig. 2. The quality and performance of the screens was 
furthermore evaluated in the KNIME workflow based on a commonly 
used statistical parameter, i.e., the Z’-factor (Z’). Each run achieved a Z’- 
factor > 0.5, which indicates a very robust HTS assay according to 
(Iversen et al. 2006; Zhang et al. 1999) and demonstrates the applica
bility of the E-Morph Screening Assay for HTS purpose. Notably, 
(Kornhuber et al. 2021) already compared the robustness of the selected 
48 h time point with a shorter treatment period of 30 h and concluded 
that the effect size of the assay declined when the test chemical exposure 
time was reduced. 

3.3. Primary screen and hit selection 

In the primary screen (Fig. 2), we tested the 430 substances at a 
single concentration of 10 µM in the presence of 10 nM Fulv for 48 h in 
three independent runs. Of those, 24 substances led to a significantly 

reduced cell viability (CV) < 75% (Figs. 2 and 3, red) and were therefore 
subsequently re-tested at lower concentrations (1 pM - 30 µM) in the hit 
confirmation screen as described below. We identified 60 potential hit 
substances (SI ≥ 20), of which 33 substances clearly influenced the 
characteristic estrogen-dependent AJ morphology in a similar way as 
compared to the Estrone reactivity control (visual assessment), corre
sponding to an overall hit-rate of 7.7% (Fig. 2). The other 27 substances 
did either not clearly influence the AJ phenotype or caused rather un
related changes in fluorescence intensity and were therefore first 
considered ‘inactive’ but flagged as ‘ambiguous’ in Table S1. Comparing 
the results for the 33 clear hit substances with the published ToxCast ER 
Agonist score (Browne et al. 2015; Judson et al. 2015) identified 18 
substances with a ToxCast ER Agonist Score ≥ 0.3 that were considered 
verified actives in the primary screen (Figs. 2 and 3, grey). The ToxCast 
ER Agonist Score of the remaining 15 hit substances was < 0.3 or ‘not 
available’ (NA) indicating potential yet undescribed estrogenic activity 
(Figs. 2 and 3, green). Notably, seven of the 373 substances that were 
first classified as ‘inactive’ had a ToxCast ER Agonist Score ≥ 0.3 and 
were therefore included in the subsequent hit confirmation screen to be 
tested at higher concentrations. 

3.4. Hit confirmation screen and potency determination 

In the hit confirmation screen (Fig. 2), we re-tested the 33 primary 
hit substances (SI ≥ 20), the 24 substances displaying cytotoxicity at 10 
µM, and the seven ‘inactive’ substances with a ToxCast ER agonist score 
≥ 0.3 (in total 64 substances) at multiple concentrations ranging from 1 
pM to 30 µM in the presence of 10 nM Fulv for 48 h in multiple inde
pendent runs. A clear concentration-dependent estrogenic activity was 
detected for 28 out of the 33 primary hit substances (SI ≥ 20), three out 
of the 24 ‘cytotoxic’ substances (CV < 75%) when tested at concentra
tions < 10 µM, and six out of the seven ‘inactive’ substances (ToxCast ER 
agonist score ≥ 0.3) when tested at concentrations > 10 µM. The 
remaining substances did not show a clear activity in the tested con
centration range. These data show that the results of the primary screen 
and the hit confirmation screen were concordant to a large extent and 
highlight the need of testing substances in a wide concentration range to 
increase the hit rate. Based on the respective ToxCast ER Agonist Score, 
we grouped the active substances as ‘Known estrogenic substances’ 
(≥0.3; 27 substances) (Fig. 2, grey; Table 1) or potential ‘Novel estro
genic substances’ (<0.3 or not available (‘NA’); 10 substances) (Fig. 2, 
green; Table 2). Accordingly, the inactive substances were grouped as 
‘True negative substances’ (‘TN’) (<0.3; 299 substances), ‘False negative 
substances’ (‘FN’) (≥0.3; 1 substance), or ‘NA’ if no ToxCast ER Agonist 
Score was available (93 substances) (Fig. 2, white; Table S1). 

Using the concentration–response data that was collected in the hit 
confirmation screen, we further determined the potencies (EC50) and 
relative ER bioactivities (logEC50 normalized to 17-alpha-Ethinylestra
diol) for 24 out of the 27 ‘Known estrogenic substances’ (Fig. 2, 
{‘Known’,‘Yes’}; Fig. 4A; Table 1), which correlated well with the 
respective ToxCast ER Agonist Scores (r = +0.95) (Fig. 4A-B; Table 1). 
No EC50 values could be determined for the remaining three substances, 
including Tamoxifen, which showed only weak estrogenic activity in the 
hit confirmation screen (Fig. 2, {‘Known’,‘Weak’}; Table 1). The weak 
estrogenic activity of Tamoxifen might reflect its partial agonistic 
function (Jordan 1977), which is further supported by its estrogenic 
activity in the uterotrophic bioassay in rodents (Kleinstreuer et al. 
2016). Overall, the measured activities were also concordant with the 
CERAPP ER consensus model predictions (Table 1). Among the sub
stances with a ToxCast ER Agonist Score ≥ 0.3, only 2,4′-DDT may have 
been a potential false negative substance in the E-Morph Screen (Fig. 2, 
‘FN’; Table 1). This particular chemical appears to be difficult to detect 
in the tested concentration range as it also showed weak or no activity in 
other ER testing systems according to the Integrated Chemical Envi
ronment database (Bell et al. 2020; Bell et al. 2017) of the U.S. National 
Toxicology Program. 

Fig. 3. Primary screening and hit selection. Relative E-Cad-GFP signal in
tensities of 430 test substances that were measured in the hit selection (pri
mary) screen as compared to the published ToxCast ER Agonist Score. Cells 
were exposed to 10 nM Fulv + 10 µM test substance for 48 h. Each data point 
represents the mean relative signal intensity obtained from three independent 
runs. Relative E-Cad-GFP signal intensities are normalized to the solvent control 
(Ctrl, SI = 100) and the 10 nM Fulv control (Fulv, SI = 0). Substances that 
induce an increase of the relative signal intensity above the assay threshold 
(horizontal dashed line, SI ≥ 20) are considered as primary hit substances. Hit 
substances with a ToxCast ER Agonist Score ≥ 0.3 (vertical dashed line) are 
depicted in grey color and assigned to the group of ‘Known estrogenic sub
stances’. Hit substances with a ToxCast ER Agonist Score < 0.3 or ‘not avail
able’ (NA) (vertical dashed line) are highlighted in green color and assigned to 
the group of potential ‘Novel estrogenic substances’. Test substances leading to 
a cell viability (CV) < 75% are indicated in red color and assigned to the group 
of ‘Toxic substances’. Data from substances that were excluded after visual 
assessment of images are not displayed. Biological replicates, n = 3. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Potencies (EC50) and relative ER bioactivities were also determined 
for all 10 substances that were assigned to the group of ‘Novel estrogenic 
substances’ (Fig. 2, ‘Novel’; Fig. 4C; Table 2). The calcium chelating 
agent EDTA was considered a false positive substance because of its 
known interference with the Ca + -dependent E-Cad activity and 
therefore excluded from further analysis. The two most potent sub
stances in this hit class were the pesticide Hexythiazox (insecticide) with 

an EC50 of 10 nM, for which no estrogenic activity has been described 
before, and the progestin Norethisterone acetate (NETA) with an EC50 
of 625 nM. The remaining substances showed weaker activities in the 
µM range. The estrogenic activities of NETA, Nandrolone (androgen and 
anabolic steroid (AAS)), Phloretin (flavonoid), and Bisphenol F (indus
trial chemical), for which no ToxCast ER Agonist Score was available, 
were consistent with previous studies (Branham et al. 2002; Chwalisz 

Table 1 
Screening results for the group of ’Known estrogenic substances’ compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA in silico ER models E-Morph 
Screening Assay 

Hit confirmation screen 

ToxCast ER 
Agonist Scorea) 

CERAPP ER 
Agonist Modelb) 

Substance group Potency [M] ER Bioactivity 
[rel. LogEC50] 

Comment 

EC50 SD n 

Diethylstilbestrol 56-53-1 0.94 active Known 7.97E- 
10 

6.99E- 
10 

3 1.03 active 

Beta-Estradiol 50-28-2 0.94 active Known 9.00E- 
10 

1.30E- 
10 

3 1.03 active 

Hexestrol 84-16-2 0.99 active Known 1.05E- 
09 

2.59E- 
10 

4 1.02 active 

Ethinyl Estradiol 57-63-6 1.00 active Known 1.56E- 
09 

3.04E- 
10 

3 1.00 active 

Mestranol 72-33-3 0.74 active Known 2.26E- 
09 

7.13E- 
10 

4 0.98 active 

Estrone 53-16-7 0.81 active Known 3.18E- 
09 

2.83E- 
09 

4 0.96 active 

Alpha-Estradiol 57-91-0 1.06 active Known 5.50E- 
09 

1.74E- 
09 

4 0.94 active 

Zearalenone 17924- 
92-4 

0.71 active Known 1.66E- 
07 

6.01E- 
08 

4 0.77 active 

Bisphenol AF 1478- 
61-1 

0.55 active Known 2.96E- 
07 

1.47E- 
07 

3 0.74 active 

Trenbolone-Dea 10161- 
33-8 

0.48 active Known 4.30E- 
07 

1.70E- 
07 

3 0.72 active 

Genistein 446-72- 
0 

0.54 active Known 4.35E- 
07 

4.00E- 
07 

4 0.72 active 

Norethisterone 68-22-4 0.52 active Known 7.71E- 
07 

4.22E- 
07 

4 0.69 active 

Bisphenol B 77-40-7 0.49 active Known 1.07E- 
06 

5.16E- 
07 

4 0.68 active 

5alpha-Androstan-17beta-OL- 
3ON 

521-18- 
6 

0.40 active Known 1.28E- 
06 

1.59E- 
06 

4 0.67 active 

Nonylphenol techn Gemisch 84852- 
15-3 

0.44 active Known 1.39E- 
06 

1.77E- 
07 

2 0.67 active 

Dehydroisoandrosterone 53-43-0 0.37 active Known 1.54E- 
06 

6.70E- 
07 

4 0.66 active 

4-tert.-Octylphenol 140-66- 
9 

0.39 active Known 1.80E- 
06 

5.59E- 
07 

2 0.65 active 

Bisphenol A 80-05-7 0.45 active Known 2.23E- 
06 

4.10E- 
07 

3 0.64 active 

Biochanin A 491-80- 
5 

0.36 active Known 3.09E- 
06 

1.05E- 
06 

4 0.63 active 

Daidzein 486-66- 
8 

0.44 active Known 3.10E- 
06 

9.26E- 
07 

2 0.63 active 

2,2’,4,4’- 
Tetrahydroxybenzophenon 

131-55- 
5 

0.40 active Known 4.26E- 
06 

2.32E- 
06 

4 0.61 active 

17alpha-Hydroxyprogesterone 68-96-2 0.34 active Known 8.22E- 
06 

4.64E- 
06 

2 0.58 active 

Levonorgestrel 797-63- 
7 

0.39 active Known 8.79E- 
06 

2.99E- 
06 

2 0.57 active 

Apigenin 520-36- 
5 

0.31 active Known 2.16E- 
05 

2.16E- 
05 

4 0.53 active 

1,1,1-Tris(4-hydroxyphenyl) 
ethane 

27955- 
94-8 

0.32 active Known NA NA 1 NA weakly active at 30 
µM (22,3 % rescue) 

2,4’-DDT Lösung 789-02- 
6 

0.39 active FN NA NA 1 NA negative 

17a-Methyltestosterone 58-18-4 0.50 active Known NA NA 1 NA weakly active at 10 
µM (21,3 % rescue) 

Tamoxifen 10540- 
29-1 

0.45 inactive Known NA NA 1 NA weakly active at 10 
µM (26,6 % rescue) 

Overall classifications and potencies of 28 substances with a ToxCast ER Agonist Score ≥ 0.3. EC50, mean potency from multiple independent runs (n). SD, standard 
deviation. ER Bioactivity, potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). NA, not available/not applicable. FN, false negative substance. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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et al. 2012; Rochester and Bolden 2015; Sirianni et al. 2012), results 
from ER transactivation screening assays (Table S4), as well as the 
CERAPP ER consensus model (Table 2). Nandrolone (19-nortestoster
one) was further shown to be active in the STTA and VM7Luc ER 
transactivation assays of OECD TG 455 (OECD 2016). For 2,4,6-TTBP 
(industrial chemical), Azoxystrobin (fungicide), Hexythiazox, and 
Diuron (herbicide), the ToxCast ER Agonist Score was 0.00 and they 
were also inactive in the relevant ER screening assays (Table S4) as well 
as the CERAPP ER consensus model (Table 2). Furthermore, these sub
stances were also classified as ‘non-binder’ in the FW and CERI ER 
binding assays of OECD TG 493 (OECD 2015). In addition, for the 
fungicide Zineb (Zink-ethylen-1,2-bis-dithiocarbamat) no conclusive 
data demonstrating estrogenic activity was available, yet (Table S4). 

These partially discordant results between the E-Morph Screening 
Assay, the ToxCast ER HTS data, and the in silico ER models (ToxCast and 
CERAPP) can have various reasons (including false positive results), but 
may also reflect that, in contrast to the simplifying ER HTS assays con
ducted in the ToxCast project, the functional E-Morph Screening Assay 
integrates multiple interacting cellular pathways. On the one hand, it 
therefore provides a more complete picture of relevant cellular mecha
nisms mediating estrogen-dependent effects. On the other hand, inte
gration of multiple mechanistic events or cellular signaling pathways in 
a single assay increases the degrees of freedom for possible modes of 
action of test substances and necessitates running secondary assays to 
confirm substance-specific effects on distinct signaling pathways. 

3.5. Verification of ‘Novel estrogenic substances’ 

In order to verify the nine (excluding EDTA) potential ‘Novel estro
genic substances’ (Table 2), we first determined the mRNA expression 
levels of the ERα target genes BCL2L1, TFF1, PGR, and AREG along with 
ESR1 and CDH1. Cells were exposed to each test substance at a con
centration of 10 µM in the presence of 10 nM Fulv for 48 h and the effects 
were compared to the mRNA expression profiles under anti-estrogenic 
(Fulv) and estrogenic (Fulv + E2) conditions (Fig. 5A; Fig. S2D). Hex
ythiazox and NETA showed the most similar expression profiles when 

compared to the E2 reference substance, which was in line with the high 
potency that was measured in the E-Morph Screening Assay. Nan
drolone, Phloretin, and Diuron also showed an estrogenic expression 
profile, albeit to a weaker extent. Bisphenol F slightly inhibited the Fulv 
effect, particularly for TFF1 expression. Importantly, these effects on 
gene expression profiles could be confirmed when cells were only 
exposed to these test substances without Fulv co-treatment (Fig. 5B; 
Fig. S2E). Interestingly, Bisphenol F showed the strongest effect in this 
case. The expression profiles of the phenol 2,4,6-TTBP and the pesticide 
Zineb did not support an estrogenic effect neither in the competitive 
treatment nor in the single treatment scenario (Fig. 5A-B; Fig. S2D-E). 
The gene expression pattern of Azoxystrobin rather showed some sur
prising anti-estrogenic effect, particularly for TFF1 and PGR, when 
applied to cells without Fulv (Fig. 5B; Fig. S2E). 

To characterize the underlying mechanism of action of the potential 
‘Novel estrogenic substances’ (Table 2), we next performed a ‘pBIND- 
ERα vector assay’, which allows the identification of substances that 
directly bind to the ERα ligand binding domain. In this assay, MCF-7/E- 
Cad-GFP cells were transiently transfected with both the reporter and 
control vector plasmids and subsequently treated with each test sub
stance at 10 µM for 48 h (Fig. 5C). The results were very similar to the 
detected gene expression profiles. Hexythiazox and NETA showed the 
highest activity in this assay, whereas Nandrolone, Phloretin, Diuron, 
and Bisphenol F showed weaker effects. Again, an estrogenic activity at 
the level of ERα binding could not be identified for 2,4,6-TTBP, Zineb, 
and Azoxystrobin. 

Together, these secondary assay data support the detected estrogenic 
activity of Hexythiazox, NETA, Nandrolone, Phloretin, Diuron, and 
Bisphenol F from the group of potential ‘Novel estrogenic substances’ 
that were identified by the E-Morph Screening Assay (Fig. 2; Table 2). 
These data further underline the importance of running secondary as
says to identify potential false positive substances, i.e., 2,4,6-TTBP, 
Zineb, and Azoxystrobin. These substances might act on E-cadherin or 
AJs in an estrogen-independent manner that will be addressed in future 
analyses. 

Table 2 
Screening results for the group of ’Novel estrogenic substances’ compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA in silico ER models E-Morph 
Screening Assay 

Hit confirmation screen 

ToxCast ER 
Agonist Score a) 

CERAPP ER Agonist 
Model b) 

Substance group Potency [M] ER Bioactivity [rel. 
LogEC50] 

Comment 

EC50 SD n 

Hexythiazox 78587–05-0 0.00 inactive Novel 1.01E- 
08 

3.94E- 
09 

4  0.91 active 

Norethindrone acetate 
(NETA) 

51–98-9 NA active Novel 6.25E- 
07 

4.62E- 
07 

6  0.70 active 

EDTA iron(III) sodium 
salt 

15708–41-5 0.00 inactive Novel 1.10E- 
06 

7.34E- 
07 

3  0.68 active 

Nandrolone 434–22-0 NA active Novel 2.04E- 
06 

1.38E- 
06 

6  0.65 active 

Phloretin 60–82-2 NA active Novel 3.36E- 
06 

1.41E- 
06 

5  0.62 active 

2,4,6-Tri-tert- 
butylphenol (TTBP) 

732–26-3 0.00 inactive Novel 4.73E- 
06 

3.12E- 
06 

4  0.60 active 

Bisphenol F 620–92-8 NA active Novel 4.79E- 
06 

1.41E- 
06 

5  0.60 active 

Diuron 330–54-1 0.00 inactive Novel 6.04E- 
06 

2.91E- 
06 

3  0.59 active 

Azoxystrobin 131860–33- 
8 

0.00 inactive Novel 6.34E- 
06 

3.68E- 
06 

6  0.59 active 

Zineb 12122–67-7 NA inactive Novel 8.71E- 
05 

8.48E- 
05 

2  0.46 active 

Overall classifications and potencies of 10 substances that were active in the E-Morph Screening Assay with a ToxCast ER Agonist Score = 0.00 or ‘not available’ (NA). 
EC50, mean potency from multiple independent runs (n). SD, standard deviation. ER Bioactivity, potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). 
NA, not available/not applicable. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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3.6. Identification of structurally similar substances and hit expansion 
screening 

Based on the assumption that structurally similar substances can 
interact with similar targets (Bender and Glen 2004), we performed an 
in silico similarity search against the substances for which ToxCast assay 
data was available (Fig. 2). The chemical structures of the nine 
(excluding EDTA) potential ‘Novel estrogenic substances’ (Table 2) were 
used as input for the identification of other structurally similar sub
stances (Table S2; File S2). Based on the resulting similarity scores 
(Tanimoto index) and literature search, we selected a final set of 20 
similar substances and measured their potential estrogenic activity and 
potency in the E-Morph Screening Assay (Fig. 6; Table 3). Notably, we 
set a relatively low global Tanimoto cut-off (>0.3) for inclusion of 
similar substances into the hit expansion screening in order to account 
for the diverse structural complexities of the input substances. 
Furthermore, the number of selected similar substances per input sub
stance varied because of the composition of the ToxCast substance 

library. For example, the ToxCast database contains assay data for many 
different bisphenols with relatively high similarity scores (>0.5) to 
Bisphenol F, but no data for substances that are similar to the pesticide 
Hexythiazox with a score above 0.4 (Table 3; Table S2; File S2). 

Of the 20 similar substances, 10 substances had already been tested 
in the primary or hit confirmation screens (Fig. 2; Table 3) and their re- 
testing in the hit expansion screening (5 active, 5 inactive) provided 
concordant results (Table S1). Interestingly, three of these substances 
(4,4′-Dihydroxybiphenyl (92–88-6), 4,4′-Dihydroxybenzophenone 
(611–99-4), Triclocarban (101–20-2)) were initially considered as 
‘ambiguous’ by visual inspection in the primary screen at 10 µM (Fig. 2; 
Table S1). However, based on the hit expansion screening of a wider 
concentration range, these substances could now be re-assignment to the 
group of ‘Novel estrogenic substances’ (Table 3; Table S1). Hence, a 
visual inspection of the AJ phenotype at a single concentration also 
bears the risk of misinterpretation of substance effects, particularly at 
concentrations near the cytotoxic range. Of the remaining 10 newly 
tested substances, six substances were active and four substances were 

Fig. 4. Hit confirmation screening and potency determination. A) Potencies (half-maximal concentrations, EC50) of 24 ‘Known’ hit substances that were active in the 
hit confirmation (potency) screen with a ToxCast ER Agonist Score ≥ 0.3. Each data point represents an individual run. The three ‘Known’ hit substances 1,1,1-Tris- 
(4-hydroxyphenyl)-ethan, Methyltestosterone, and Tamoxifen showed only weak activity (no EC50 value could be determined) and are therefore not shown. Bio
logical replicates, n ≥ 3. Error bars, mean +/- SD. (B) Correlation between the potencies (half-maximal concentrations, EC50) of 24 ‘Known’ hit substances obtained 
from the E-Morph Assay and the published ToxCast ER Agonist Score. Each data point represents the mean of the relative bioactivities obtained from individual runs 
shown in Fig. 4A. The contour line indicates full correlation. Pearson r = +0.95. (C) Potencies (half-maximal concentrations, EC50) of 10 ‘Novel’ hit substances that 
were active in the hit confirmation (potency) screen with a ToxCast ER Agonist Score = 0.00 or ‘not available’ (NA). Each data point represents an individual run. 
Biological replicates, n ≥ 3. Error bars, mean +/- SD. 
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inactive (Fig. 2; Table 3, Table S1). Interestingly, Norgestrel, a racemate 
of D-Norgestrel and L-Norgestrel/Levonorgestrel enantiomers (Kuhl 
2005), was inactive in the hit expansion screen despite a ToxCast ER 
Agonist Score of 0.39 (Table 3, ‘FN’), whereas the known active enan
tiomer Levonorgestrel by itself was active in our assay (Table 3, 
‘Known’). Thus, selecting candidate substances based on structural 
similarities to our primary hits, resulted in the identification of in total 

nine additional ‘Novel estrogenic substances’. The measured estrogenic 
activities for most of these substances were supported by the CERAPP ER 
consensus model (Table 3). 

Together, these screening data provide strong support for an estro
genic activity of NETA, Nandrolone, Phloretin, and Bisphenol F and 
demonstrate that the combination of in silico similarity search and in 
vitro testing supports the identification of estrogenic activities. 

Fig. 5. Verification of ‘Novel’ hit substances. (A) Gene expression profiles from quantitative PCR measurements of ESR1, CDH1, and typical ERα target genes 
(BCL2L1, TFF1, PGR, AREG). Cells were exposed to 10 nM Fulv + 10 µM test substance (competitive treatment) for 48 h. Measurements from estrogenic (10 nM Fulv 
+ 10 nM E2, top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference gene expression profiles. Relative mRNA expression levels are normalized to 
cells treated with the solvent control (Ctrl). Biological replicates, n = 3. (B) Gene expression profiles from quantitative PCR measurements of ESR1, CDH1, and typical 
ERα target genes (BCL2L1, TFF1, PGR, AREG). Cells were exposed to 10 µM test substance only (single treatment) for 48 h. Measurements from estrogenic (10 nM E2, 
top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference gene expression profiles. Relative mRNA expression levels are normalized to cells treated 
with the solvent control (Ctrl). Biological replicates, n = 3. C) Relative luciferase signal intensities obtained from an ERα reporter gene assay. Cells were co- 
transfected for 72 h with a pBIND-ERα expression vector (Gal4-DBD fused to ERα-LBD, Renilla luciferase) and a target vector expressing a UAS-controlled 
Firefly luciferase. Cells were exposed to 10 µM test substance only for 48 h. The detected Firefly luminescence was normalized to Renilla luminescence. Relative 
signal intensities from estrogenic (10 nM E2, top) and anti-estrogenic (10 nM Fulv, bottom) conditions provide reference measurements. Biological replicates, n = 3. 
Error bars, mean + SD. 
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Although, potential false positive results, like 2,4,6-TTBP, Zineb, or 
Azoxystrobin, are inevitable, the identification of Hexythiazox and 
Diuron as potential estrogenic substances seems to be relevant and 
warrant further investigation. 

3.7. Docking of bisphenols into ERα 

Even though the primary hit substance Bisphenol F shares a very 
similar chemical structure with 4-Benzylphenol (Fig. 7, File S2), the 
latter was inactive in the E-Morph Screening Assay (Table 3; Table S1). 
This was particularly surprising since this substance had the highest 
Tanimoto similarity score of 0.78 as compared to three additional sub
stances with similarity scores between 0.49 and 0.56 that were active in 
the E-Morph Assay. Here, it needs to be considered that terminal func
tional group differences in molecules often have less influence on the 
calculated similarity than central atom changes (because of the nature of 
the calculation of the circular environments, such as in the Morgan 
fingerprint). The different activities could neither be explained using 
diverse other molecular fingerprints (MorganCount, MACCS, pharma
cophore fingerprints), which were very similar for these bisphenols 
(Table S3). In scientific literature, such phenomena are often described 
as activity cliffs (Maggiora et al. 2014) in which, e.g., changes of one 
atom or functional group in otherwise very similar molecules can lead to 
a notable difference in activity. To better understand this effect, we 
performed a docking analysis (Brooijmans and Kuntz 2003) and inves
tigated potential variations in interaction patterns of the bisphenols with 
ERα using the @TOME-2 web-server according to (Delfosse et al. 2012). 
The docking results showed an apparent difference in the binding of 4- 
Benzylphenol to ERα (Fig. 7, red arrow) as compared to the other four 
tested bisphenols. The latter four substances are all capable of forming 
undirected interactions with the hydrophobic pocket core, while being 
anchored on both sides through hydrogen bonds (see pharmacophoric 
interactions in Fig. 7). Hence, the inactivity of 4-Benzylphenol in the E- 
Morph Screening Assay could be explained by the absence of an 
important hydrogen bond to histidine H524 (because of a missing hy
droxy (–OH) group), which may significantly reduce the binding ca
pacity of 4-Benzylphenol to ERα. 

3.8. Generation of in silico models for prediction of estrogenic activities in 
HTS approaches 

Ideally, these kinds of structural analyses will eventually lead to the 
development of highly predictive (Q)SAR tools to identify estrogenic 
activities in environmental chemicals based on structural fingerprints. 
As a proof-of-concept for the application of in silico prediction models in 
HTS approaches, we used ToxCast ER screening data to build seven 
in silico prediction models based on the conformal prediction (CP) 
framework (Morger et al. 2020; Norinder et al. 2014; Vovk et al. 2005) 
for the relevant mechanistic events of estrogen signaling, i.e., ER bind
ing, ER dimerization, regulation of gene expression, and cell prolifera
tion (Table 4), that are also included in the ToxCast ER Agonist Model 
(Browne et al. 2015). We trained these CP ER models on all binary 
readouts (active/inactive) of the corresponding in chemico and in vitro 
ER screening assays that were conducted in the ToxCast project. A 
fivefold cross-validation was employed to assess the performance of 
each model (Table 4). The benefit of the CP method over simpler simi
larity search is thereby two-fold. First, machine learning (ML) models 
are statistical models that relate a set of structural descriptors of a 
chemical compound to its biological activity. Thus, the CP model learns 
which features in the molecule contribute more (or less) to the outcome, 
whereas a simpler similarity search treats all features the same. In other 
words, while similarity search looks for more obvious similarities be
tween molecules, CP may detect more hidden, and also non-linear, re
lationships. Second, CP is built on top of a ML framework and adds a 
calibration step. This allows for monitoring the reliability of the pre
dictions more closely, thus providing a measure of confidence in the 
prediction per molecule. 

All CP ER models were valid at the 0.2 significance level (validity ≥
0.8), i.e., making<20% prediction errors when considering ‘single class’ 
(active or inactive) and ‘both class’ (active and inactive) predictions 
(Table 4). This high mean validity of 0.85 ± 0.01 indicates that the 
models were well calibrated and can therefore be reliably applied to new 
data. The mean efficiency, i.e., the fraction of single class predictions 
made by the models, was 0.39 ± 0.12 (Table 4) and notably lower than 
compared to other CP ER models described before (Ji et al. 2018; Nor
inder et al. 2016). This can be a consequence of the use of the additional 
normalizer regression model and prior equal size sampling of the proper 
training and calibration set, which was shown to improve the prediction 
performance on external data (Morger et al. 2020). The CP ER models 
had a mean accuracy, i.e., the fraction of correct single class predictions 
made by the models, of 0.71 ± 0.10 (Table 4). Regarding the class-wise 
evaluation, the mean accuracy for prediction of the active class was 
rather high with an average of 0.83 ± 0.03, whereas the mean accuracy 
for prediction of the inactive class was slightly lower with an average of 
0.67 ± 0.13 (Table 4). The reduced mean accuracy for inactive class 
predictions was mainly caused by two rather weakly performing 
endpoint models (aeid_788 and aeid_2) (Table 4, italics). Nevertheless, 
the overall results show that the individual CP ER models can reliably 
predict agonistic ER activity, especially since the focus of this study is to 
detect active substances. 

We then applied the seven CP ER models to classify the nine 
(excluding EDTA) potential ‘Novel estrogenic substances’ (Table 2) from 
primary and hit confirmation screening as well as the selected 20 
structurally similar substances from the hit expansion screening 
(Table 3). The respective p-values, which describe the certainty of the 
active/inactive predictions of the individual models, are summarized in 
Table S4. To facilitate direct comparison of the CP ER model classifi
cations with the E-Morph Screening Assay results, we converted the 
seven individual CP ER model predictions into an overall ‘consensus 
prediction’ by applying a ‘majority rule’ principle (Table 5; Table S4). 
The in chemico and in vitro test results of the seven corresponding ER 
screening assays included in the ToxCast project were converted in the 
same way to obtain an overall ‘consensus test result’ for each individual 
substance (Table 5; Table S4). Notably, for some of the 29 test 

Fig. 6. Hit expansion screening and potency determination. Potencies (half- 
maximal concentrations, EC50) of nine additional hit substances that were 
active in the hit expansion screen. Each data point represents an individual run. 
Biological replicates, n = 3. Error bars, mean +/- SD. 
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Table 3 
Screening results for the hit expansion substances compared to published in silico ER model data from the U.S. EPA.  

Chemical name CAS No. US EPA  

in silico ER models 

Similarity 
search 

E-Morph Screening 
Assay 

Hit expansion screen 

ToxCast  

ER Agonist 
Score a) 

CERAPP  

ER Agonist 
Model b) 

Similarity 
score 

Substance group Potency [M] ER Bioactivity [rel. 
LogEC50] 

Comment Tested in primary 
screen 

EC50 SD n 

Hexythiazox 78587–05-0 0.00 inactive  1.00 Novel 1.01E-08 3.94E-09 4 0.91 active Y 
Iprodion 36734–19-7 0.00 inactive  0.36 TN NA NA  NA inactive Y 
Norethindrone acetate (NETA) 51–98-9 NA active  1.00 Novel 6.25E-07 4.62E-07 6 0.70 active Y 
Ethynodiol diacetate 297–76-7 NA active  0.73 Novel < 1.37E- 

08 
< 1.37E- 
08 

3 NA active – 

Norgestrel 6533–00-2 0.39 active  0.55 FN NA NA  NA inactive – 
Levonorgestrel 797–63-7 0.39 active  0.55 Known 1.97E-05 1.27E-05 2 0.53 active Y 
Norgestimate 35189–28-7 NA active  0.51 Novel 7.27E-07 7.14E-07 3 0.70 active – 
Nandrolone 434–22-0 NA active  1.00 Novel 2.04E-06 1.38E-06 6 0.65 active Y 
Norgestrel 6533–00-2 0.39 active  0.60 FN NA NA  NA inactive – 
Levonorgestrel 797–63-7 0.39 active  0.60 Known 1.97E-05 1.27E-05 2 0.53 active Y 
Phloretin 60–82-2 NA active  1.00 Novel 3.36E-06 1.41E-06 5 0.62 active Y 
Benzophenone-2 131–55-5 0.40 active  0.43 Known 3.55E-06 1.00E-07 3 0.62 active Y 
2,4,4′- 

Trihydroxybenzophenone 
1470–79-7 NA active  0.42 Novel 5.60E-06 1.98E-06 3 0.60 active – 

Diphenolic acid 126–00-1 0.17 active  0.38 Novel NA NA  NA active at ≥ 30 
µM 

– 

2,4,6-Tri-tert-butylphenol 
(TTBP) 

732–26-3 0.00 inactive  1.00 Novel 4.73E-06 3.12E-06 4 0.60 active Y 

Butylhydroxytoluene 128–37-0 0.00 inactive  0.72 TN NA NA  NA inactive Y 
2,5-Di-tert-butylhydroquinone 88–58-4 0.00 inactive  0.60 TN NA NA  NA inactive – 
Bisphenol F 620–92-8 NA active  1.00 Novel 4.79E-06 1.41E-06 5 0.60 active Y 
4-Benzylphenol 101–53-1 NA active  0.78 NA NA NA  NA inactive Y 
4,4′-Dihydroxybiphenyl 92–88-6 NA active  0.56 Novel 1.34E-05 2.59E-06 3 0.55 active Y 
4,4′-Dihydroxybenzophenone 611–99-4 NA active  0.49 Novel 1.17E-05 1.42E-06 3 0.56 active Y 
Bisphenol E 2081–08-5 NA active  0.49 Novel 1.34E-05 6.56E-07 3 0.55 active – 
Diuron 330–54-1 0.00 inactive  1.00 Novel 6.04E-06 2.91E-06 3 0.59 active Y 
Linuron 330–55-2 0.00 inactive  0.67 TN NA NA  NA inactive Y 
Swep 1918–18-9 NA inactive  0.59 NA NA NA  NA inactive – 
Troclocarban 101–20-2 0.00 inactive  0.52 Novel 3.65E-06 2.33E-06 3 0.62 active Y 
Azoxystrobin 131860–33- 

8 
0.00 inactive  1.00 Novel 6.34E-06 3.68E-06 6 0.59 active Y 

Picoxystrobin 117428–22-5 0.00 inactive  0.45 TN NA NA  NA inactive – 
Fluoxastrobin 361377–29-9 0.00 inactive  0.33 Novel 6.23E-06 3.72E-06 2 0.59 active – 
Zineb 12122–67-7 NA inactive  1.00 Novel 8.71E-05 8.48E-05 2 0.46 active Y 
Maneb 12427–38-2 0.00 inactive  1.00 TN NA NA  NA inactive Y 

Overall classifications and potencies of 20 hit expansion substances as compared to the ToxCast ER Agonist Score. The similar substances for the nine (excluding EDTA) potential ‘Novel estrogenic substances’ (bold italic) 
were selected based on their structural similarity and their activity in different ToxCast steroidal nuclear receptor assays. EC50, mean potency from multiple independent runs (n). SD, standard deviation. ER Bioactivity, 
potency (logEC50) normalized to 17-alpha-Ethinylestradiol (1.00). NA, not available/not applicable. FN, false negative substances. TN, true negative substance. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015) 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016) 
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substances, no conclusive (Table S4, ‘NC’) CP ER model classifications 
were achieved, i.e., ‘both class’ predictions were returned by the CP 
framework (no decisions could be made), and not all these substances 
were tested in every of the seven ER screening assays (Table S4, ‘NA’). 

For this small subset of 29 substances, the overall concordance of the 
CP ER consensus model, the E-Morph Screening Assay, and the 
consensus of the ER screening assay test results was in the range of 
71–76% (Table 6). Hence, the performance of the CP ER consensus 
model was comparable to the mean accuracy of the seven individual CP 
ER models (see Table 4) supporting the consensus model approach, 
which integrates multiple relevant mechanistic events of estrogen 
signaling. Importantly, the high predictivity of the CP ER consensus 
model (100%) and the E-Morph Screening Assay (87%) for active class 
substances promotes their future use in HTS frameworks. With regard to 

the evaluation of the E-Morph Assay screening results, the CP ER 
consensus model supported 89% of the active class assignments for the 
subset of 29 substances. The reduced predictivity of the E-Morph 
Screening Assay (54%) for inactive class substances was mainly caused 
by a higher frequency of non-concordant ‘false positive’ results, which, 
however, represent substances with potential estrogenic activity (‘Novel 
estrogenic substances’ group, Table S1) that are of particular interest for 
prioritized follow-up testing. 

Taken together, these data suggest that the generated CP ER models 
are applicable for fast and efficient browsing of large substance libraries 
to prioritize substances with potential estrogenic activity for subsequent 
in vitro testing in HTS approaches, such as E-Morph. Benchmarking the 
CP prediction models and the E-Morph Screening Assay against a larger 
set of reference substances will provide further insights into their 

Table 4 
Development and evaluation (cross-validation) of CP ER models.  

U.S. EPA in chemico/in vitro ER screening assays Conformal prediction ER models 

Assay name Assay ID 
(aeid) 

Biological 
mechanism 

Validity Efficiency Accuracy no. of compounds 

all inactive active all inactive active all inactive active inactive active 

NVS_NR_hER 714 receptor binding  0.85  0.85  0.85  0.40  0.36  0.57  0.73  0.69  0.81 819 204 
OT_ER_ERaERb_1440 745 receptor 

dimerization  
0.86  0.85  0.88  0.32  0.29  0.53  0.68  0.62  0.88 1333 180 

ATG_ERE_CIS_up 75 gene expression, 
mRNA  

0.85  0.85  0.85  0.43  0.40  0.51  0.74  0.71  0.81 2257 792 

ATG_ERa_TRANS_up 117 gene expression, 
mRNA  

0.84  0.84  0.84  0.50  0.47  0.61  0.77  0.75  0.83 2385 681 

TOX21_ERa_BLA_Agonist_ratio 785 gene expression, 
protein  

0.86  0.86  0.84  0.57  0.57  0.57  0.87  0.87  0.84 6465 320 

TOX21_ERa_LUC_VM7_Agonist 788 gene expression, 
protein  

0.85  0.85  0.85  0.25  0.22  0.41  0.58  0.5  0.84 5719 858 

ACEA_T47D_80hr_Positive 2 cell proliferation  0.86  0.87  0.84  0.24  0.20  0.41  0.63  0.54  0.81 1307 266   
Mean  0.85    0.39    0.71  0.67  0.83     
SD  0.01    0.12    0.10  0.13  0.03   

Information on the seven CP models built for seven ER screening assay endpoints conducted in the ToxCast project. Accuracies highlighted in italics indicate reduced 
performance of two CP ER models for prediction of inactive substances. 

Fig. 7. Docking of bisphenols into ERα. Pharmacophoric interactions of different bisphenols with ERα. For each substance, the outcome of the E-Morph Screening 
Assay (active/inactive) and the Tanimoto similarity to Bisphenol F are indicated. The red arrow points to a clear difference in the binding of 4-Benzylphenol to ERα 
(missing hydrogen bond) as compared to the other four tested bisphenols. Visualizations using LigandScout after docking with the @TOME-2 webserver according to 
(Delfosse et al. 2012). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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predictive capacities in future studies. In iterative in silico - in vitro 
screening cycles, the newly generated data could then also be used to 
update and improve the CP ER models. Particularly, additional training 
data that cover the chemical space for which the current models make 
poor predictions could prompt more efficient and accurate predictions, 
which in turn supports the identification of additional active substances 
by HTS (Svensson et al. 2017a). 

4. Conclusion 

Over the years, many organizations worldwide have published 
candidate lists of suspected EDCs, which include hundreds of substances 
that may pose a potential threat to human health and the environment 
(WHO/UNEP, 2012). The identification and regulatory restriction of 
such EDCs is a central goal of chemicals management frameworks and 
policies worldwide. Commitments such as the ‘European Green Deal’ 
even pursue a zero-pollution ambition towards a fully ‘toxic-free envi
ronment’ in the next decades. This intention is reflected in the recently 

adopted ‘Chemicals Strategy for Sustainability’ (EC 2020), which also 
promotes the ‘safe-by-design’ approach, i.e. the use of substances that 
pose less or no harm to humans and the environment. For now, adverse 
health effects of EDCs are mainly investigated in animal experiments 
(OECD, 2001, 2018a, 2018b, 2018c), although animal data are not 
necessarily directly translatable to (patho-)physiological processes in 
humans (Holen et al. 2017). Moreover, these in vivo assays are not 
necessarily specific for individual endocrine mechanisms or suitable for 
the analysis of ‘real-life’ co-exposure scenarios. The projected doubling 
of the global chemical sales by 2030 (WHO, UNEP, 2019) and, in par
allel, the intended phasing out of animal experimentation in toxicolog
ical testing (Grimm 2019) emphasize the need for novel human-relevant 
HTS methods and computational approaches to ensure protection of 
human health and the environment. 

Table 5 
Comparison of results from the E-Morph Screen and CP ER models with published in vitro and in silico ER data from the U.S. EPA.  

Chemical name CAS No. U.S. EPA  

in silico  
ER models 

U.S. EPA 
in chemico/in vitro 
ER screening assays 

E-Morph Screening Assay Conformal prediction  

ER models 

ToxCast  

ER Agonist 
Scorea) 

CERAPP  

ER Agonist 
Modelb) 

Consensus test results Substance 
group 

Potency 
[M] 

Consensus predictions 

active inactive  EC50 active inactive 

Hexythiazox 78587–05-0 0.00 inactive 1 (14%) 6 (86%) Novel 1.01E-08 0 0 
Norethindrone acetate (NETA) 51–98-9 NA active 2 

(100%) 
0 Novel 6.25E-07 6 

(100%) 
0 

Norgestimate 35189–28-7 NA active 2 (100%) 0 Novel 7.27E-07 4 (100%) 0 
Nandrolone 434–22-0 NA active 2 

(100%) 
0 Novel 2.04E-06 7 

(100%) 
0 

Phloretin 60–82-2 NA active 2 
(100%) 

0 Novel 3.36E-06 7 
(100%) 

0 

Benzophenone-2 131–55-5 0.40 active 7 (100%) 0 Known 3.55E-06 7 (100%) 0 
Troclocarban 101–20-2 0.00 inactive 0 6 (100%) Novel 3.65E-06 1 (100%) 0 
2,4,6-Tri-tert-butylphenol 

(TTBP) 
732–26-3 0.00 inactive 1 (20%) 4 (80%) Novel 4.73E-06 4 (80%) 1 (20%) 

Bisphenol F 620–92-8 NA active 4 
(100%) 

0 Novel 4.79E-06 7 
(100%) 

0 

2,4,4′-Trihydroxybenzophenone 1470–79-7 NA active 5 (100%) 0 Novel 5.60E-06 7 (100%) 0 
Diuron 330–54-1 0.00 inactive 0 6 

(100%) 
Novel 6.04E-06 0 5 

(100%) 
Fluoxastrobin 361377–29-9 0.00 inactive 1 (20%) 4 (80%) Novel 6.23E-06 0 0 
Azoxystrobin 131860–33- 

8 
0.00 inactive 1 (17%) 5 (83%) Novel 6.34E-06 1 

(100%) 
0 

4,4′-Dihydroxybenzophenone 611–99-4 NA active 2 (100%) 0 Novel 1.17E-05 7 (100%) 0 
Bisphenol E 2081–08-5 NA active 4 (100%) 0 Novel 1.34E-05 7 (100%) 0 
4,4′-Dihydroxybiphenyl 92–88-6 NA active 2 (100%) 0 Novel 1.34E-05 2 (100%) 0 
Levonorgestrel 797–63-7 0.39 active 6 (86%) 1 (14%) Known 1.97E-05 6 (100%) 0 
Zineb 12122–67-7 NA inactive 0 0 Novel 8.71E-05 0 2 

(100%) 
Ethynodiol diacetate 297–76-7 NA active 2 (100%) 0 Novel < 1.37E-08 5 (100%) 0 
Diphenolic acid 126–00-1 0.17 active 6 (86%) 1 (14%) Novel pos ≥ 30 

µM 
5 (100%) 0 

Norgestrel 6533–00-2 0.39 active 5 (100%) 0 FN inactive 6 (100%) 0 
4-Benzylphenol 101–53-1 NA active 2 (100%) 0 NA inactive 4 (100%) 0 
Picoxystrobin 117428–22-5 0.00 inactive 1 (17%) 5 (83%) TN inactive 1 (100%) 0 
Butylhydroxytoluene 128–37-0 0.00 inactive 1 (17%) 5 (83%) TN inactive 2 (100%) 0 
2,5-Di-tert-butylhydroquinone 88–58-4 0.00 inactive 1 (14%) 6 (86%) TN inactive 4 (100%) 0 
Swep 1918–18-9 NA inactive 0 (0%) 4 (100%) NA inactive 0 5 (100%) 
Linuron 330–55-2 0.00 inactive 0 (0%) 7 (100%) TN inactive 0 1 (100%) 
Iprodion 36734–19-7 0.00 inactive 1 (17%) 5 (83%) TN inactive 0 0 
Maneb 12427–38-2 0.00 inactive 0 (0%) 6 (100%) TN inactive 0 2 (100%) 

Overall classifications and potencies for the nine (excluding EDTA) potential ‘Novel estrogenic substances’ (bold italic) and the 20 hit expansion chemicals that were 
tested in the E-Morph Screening Assay as compared to the ToxCast ER Agonist Score and the available ToxCast ER agonist assay screening data. Consensus predictions 
considering modes of all single class predictions from the individual ER models or ER screening assays. EC50, mean potency from multiple independent runs. NA, not 
available/not applicable. FN, false negative substances. TN, true negative substances. 
a)Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model (Browne et al. 2015). 
b)CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (Mansouri et al. 2016). 
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4.1. The E-Morph screening Assay provides a reliable and robust human- 
relevant readout to determine ER signaling activity by phenotypic HTS 

The E-Morph Assay (Kornhuber et al. 2021) addresses a human- 
relevant functional endpoint of adversity, i.e., the perturbation of 
cell–cell adhesion leading to breast cancer progression and metastasis 
(Bischoff et al. 2020). In the present study, we further developed the 
applicability of the original E-Morph Assay for automated HTS using 
local changes in E-Cad-GFP signal intensity (SI) as a novel, simple and 
reliable HTS-compatible phenotypic readout for estrogenic activity (see 

Fig. 1). The SI readout was very robust, with each valid run in the pri
mary screen achieving a Z’-factor above 0.5 (Iversen et al. 2006; Zhang 
et al. 1999). The determined EC50 values under anti-estrogenic (Fulv 
treatment) and estrogenic (Fulv + E2 treatment) conditions were 
directly comparable to the results of the original E-Morph Assay 
(Kornhuber et al. 2021) with the advantage that the adapted assay 
avoids both live-cell staining and extensive quantitative image analysis 
procedures. Based on an intact, complete, and interconnected endoge
nous estrogen signaling pathway, the E-Morph Screening Assay there
fore facilitates the efficient identification of substances with estrogenic 
activities and the determination of their potencies from concentration- 
response curves. It could therefore help to accelerate the identification 
of new substances of concern and support the comprehensive assessment 
of potential mixture effects of EDCs (Schlotz et al. 2017; Yu et al. 2019). 

4.2. E-Morph phenotypic screening correctly identified 27 ‘known’ 
estrogenic substances and 10 ‘novel’ substances with potential estrogenic 
activity 

We used the E-Morph Screening Assay to analyze a novel substance 
library (BfR-ChemLibrary) comprising 430 toxicologically-relevant in
dustrial chemicals, biocides, and plant protection products (see Figs. 2 
and 3). We identified 27 estrogenic substances of which the potencies of 
24 substances correlated very well with the ToxCast ER pathway model 
(Browne et al. 2015; Judson et al. 2015) (see Fig. 4, Table 1). We further 
identified 10 additional potential estrogenic substances that have not 
been described as such in ToxCast before (see Fig. 4, Table 2). According 
to a recently proposed human-relevant potency threshold (HRPT) for 
ERα agonism, the minimum relative activity of a test substance must be 
at least 0.01% of strong estrogens (E2 or 17α-Ethinylestradiol) to exert 
adverse effects in humans via an ERα-mediated mechanism (Borgert 
et al. 2018). In the E-Morph Screening Assay, the potencies of the active 
substances (Fig. 4; Table 1 and 2) were in the range of 1 nM (strong 
activity, e.g., E2) to 10 µM (weak activity, e.g., Apigenin) and, thus, 
fitted well into the HRPT with only Zineb displaying a potency slightly 
below. Subsequent hit verification studies, including gene expression 
profiling and ERα binding supported the detected estrogenic activity of 
Hexythiazox, NETA, Nandrolone, Phloretin, Diuron, and Bisphenol F but 
not of 2,4,6-TTBP, Zineb, and Azoxystrobin (see Fig. 5). 

4.3. Use of in silico tools increased the hit-rate and supported the hit 
evaluation 

The E-Morph screening results for the group of ‘novel’ substances 
(Table 2) were further substantiated by additional testing of 20 struc
turally similar substances that were selected based on an in silico simi
larity search for subsequent hit expansion screening, which identified in 
total another nine ER active substances (see Fig. 6 and Table 3). While 
being structurally very similar to Bisphenol F, 4-Benzylphenol was 
inactive in the E-Morph Screening Assay. Additional docking studies 
detected a difference in the binding mode (i.e., a missing hydrogen 
bond) to ERα, which could explain the difference in activity of otherwise 
very similar molecules (see Fig. 7). Hence, computational docking an
alyses can significantly support the interpretation of in vitro screening 
results, particularly regarding the capability of substances to bind to 
nuclear hormone receptors. In addition, we built seven in silico ER 
models using the CP framework and the publicly available ToxCast assay 
data to predict further substances with potential estrogenic activity and 
to support the E-Morph screening results. The high predictivity for 
active substances (see Table 5 and 6), which is particularly important 
from a regulatory point of view to protect human health and the envi
ronment, support that the E-Morph Screening Assay and the CP ER 
models are fit-for-purpose to be applied to new data in an automated 
manner. 

Table 6 
Predictivity of the E-Morph Screening Assay and CP ER models.     

U.S. EPA in 
chemico/in 
vitro ER 
screening 
assays 

E-Morph 
Screening 
Assay    

Consensus test 
results 

Test results 

Conformal 
prediction 
ER models 

Consensus 
predictions 

N 25 26 
NTrue Actives 15 16 
NFalse Inactives 0 2 
NTrue Inactives 4 3 
NFalse Actives 6 5 

Concordance 76% 73% 
Pactive class 100% 89% 
Pinactive class 40% 38%         

U.S. EPA in 
chemico/in 
vitroER 
screening 
assays 

Conformal 
prediction 
ER models    

Consensus test 
results 

Consensus 
predictions 

E-Morph 
Screening 
Assay 

Test results N 28 26 
NTrue Actives 13 16 
NFalse Inactives 2 5 
NTrue Inactives 7 3 
NFalse Actives 6 2 

Concordance 71% 73% 
Pactive class 87% 76% 
Pinactive class 54% 60%         

E-Morph 
Screening 
Assay 

Conformal 
prediction 
ER models    

Test results Consensus 
test results 

U.S. EPA in 
chemico/in 
vitro ER 
screening 
assays 

Consensus 
predictions 

N 28 25 
NTrue Actives 13 15 
NFalse Inactives 6 6 
NTrue Inactives 7 4 
NFalse Actives 2 0 

Concordance 71% 76% 
Pactive class 68% 71% 
Pinactive class 78% 100% 

Concordance between the E-Morph Screening Assay, the CP ER models, and the 
available ToxCast ER agonist assay screening data was calculated based on the 
results of the nine (excluding EDTA) ’Novel estrogenic substances’ and the 20 hit 
expansion chemicals. Note that the total numbers (n) of substances differ 
because for some of the 29 test substances, no conclusive CP ER model classi
fications were achieved and not all of the 29 substances were tested in every of 
the seven ToxCast ER screening assays. Consensus predictions considering 
modes of all single class predictions from the individual CP ER models or Tox
Cast ER screening assays. n, total number of substances. N, number of true/false 
active/inactive substances for each type of comparison. P, predictivity for 
active/inactive substances. 
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4.4. Future applications of the E-Morph screening Assay and the CP ER 
models 

Provided that a future validation study demonstrates transferability 
and inter-laboratory reproducibility, the E-Morph Screening Assay ap
pears to be generally suitable for inclusion in existing HTS projects, 
where it can be used to identify both substances with estrogenic and 
anti-estrogenic activities using the same phenotypic readout. In ER 
testing batteries, the E-Morph Screening Assay could be used for effi
cient analysis of comprehensive substance libraries in order to prioritize 
substances for subsequent testing against higher tier endpoints, thereby 
avoiding unnecessary animal testing. ER testing strategies could addi
tionally benefit from further development and implementation of in si
lico tools, including similarity search approaches and CP models, in the 
evaluation of screening results and targeted selection of candidate 
substances for follow-up in vitro analysis. Well-trained CP ER models 
may ultimately even replace existing ER HTS assays that resemble the 
complex (patho-)physiological processes in humans to a rather limited 
extent. The combination of human-relevant HTS assays and CP models 
in testing and assessment strategies can ultimately help to increase 
confidence in in vitro results for the regulatory decisions making and 
thus make an important contribution to achieve the goal of a next 
generation risk assessment framework that does no longer depend on 
animal experimentation. 
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Marc Nazaré (Compound Management Unit and Medicinal Chemistry 
Group, Leibniz Institute of Molecular Pharmacology, Berlin, Germany) 
for generation and management of the BfR-ChemLibrary compound 
plates. We further gratefully acknowledge our colleagues from BfR/Bf3R 
for scientific input and comments on the manuscript. This work was 
supported by an internal BfR research funding program (Sonderfor
schungsprojekt 1322-683), the HaVo-Stiftung for A.M., and a BMBF 
grant (031A262C) for A.V. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2021.106947. 

References 

Alvarsson, J., Arvidsson McShane, S., Norinder, U., Spjuth, O., 2021. Predicting With 
Confidence: Using Conformal Prediction in Drug Discovery. J. Pharm. Sci. 110 (1), 
42–49. 

Atkinson, F. Standardiser. https://github.com/flatkinson/standardiser; 2014. 
Bell, S., Abedini, J., Ceger, P., Chang, X., Cook, B., Karmaus, A.L., Lea, I., Mansouri, K., 

Phillips, J., McAfee, E., Rai, R., Rooney, J., Sprankle, C., Tandon, A., Allen, D., 
Casey, W., Kleinstreuer, N., 2020. An integrated chemical environment with tools for 
chemical safety testing. Toxicol. In Vitro 67, 104916. https://doi.org/10.1016/j. 
tiv.2020.104916. 

Bell, S.M., Phillips, J., Sedykh, A., Tandon, A., Sprankle, C., Morefield, S.Q., Shapiro, A., 
Allen, D., Shah, R., Maull, E.A., Casey, W.M., Kleinstreuer, N.C., 2017. An Integrated 
Chemical Environment to Support 21st-Century Toxicology. Environ. Health 
Perspect 125, 054501. 

Bender, A., Glen, R.C., 2004. Molecular similarity: a key technique in molecular 
informatics. Org. Biomol. Chem. 2 (22), 3204. https://doi.org/10.1039/b409813g. 

Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; 
Thiel, K.; Wiswedel, B. KNIME: The Konstanz Information Miner. Data Analysis, 
Machine Learning and Applications; 2008. 

Bischoff, P.; Kornhuber, M.; Dunst, S.; Zell, J.; Fauler, B.; Mielke, T.; Taubenberger, A.V.; 
Guck, J.; Oelgeschlager, M.; Schonfelder, G. Estrogens Determine Adherens Junction 
Organization and E-Cadherin Clustering in Breast Cancer Cells via Amphiregulin. 
iScience 2020;23:101683. 

Borgert, C.J., Matthews, J.C., Baker, S.P., 2018. Human-relevant potency threshold 
(HRPT) for ERalpha agonism. Arch Toxicol 92, 1685–1702. 

Branham, W.S.; Dial, S.L.; Moland, C.L.; Hass, B.S.; Blair, R.M.; Fang, H.; Shi, L.; Tong, 
W.; Perkins, R.G.; Sheehan, D.M. Phytoestrogens and mycoestrogens bind to the rat 
uterine estrogen receptor. J Nutr 2002;132:658–664. 

Brooijmans, N., Kuntz, I.D., 2003. Molecular recognition and docking algorithms. Annu. 
Rev. Biophys. Biomol. Struct. 32 (1), 335–373. 

Browne, P., Judson, R.S., Casey, W.M., Kleinstreuer, N.C., Thomas, R.S., 2015. Screening 
Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environ. 
Sci. Technol. 49 (14), 8804–8814. 

Carlsson, L.; Eklund, M.; Norinder, U. Aggregated Conformal Prediction. Progress in 
Pattern Recognition, Image Analysis, Computer Vision, and Applications; 2014. 
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Results

4.3 ChemBioSim: enhancing conformal prediction of

in vivo toxicity by use of predicted bioactivities

In the KnowTox (see Section 4.1) and E-Morph Screen (see Section 4.2) studies it was

explored how in silico toxicity prediction can guide in vitro testing. Since individual in

vitro assays cannot completely represent complex in vivo systems, it is desirable to create

in silico models for the prediction of in vivo toxicity. Besides direct interactions with

off-targets, in vivo toxicological effects of a chemical are also affected by its exposure, as

well as by complex cellular mechanisms and downstream pathways. Therefore, predicting

in vivo toxicity solely from the molecular structure is challenging. In the following study,

we will investigate if including information from in vitro assay outcomes in the form of

bioactivity descriptors can improve the performance of CP models built for the genotox-

icity, liver toxicity, and cardiotoxicity endpoints. Using standard bioactivity descriptors

would require that each query molecule be synthesised and tested in all the descriptor-

specific assays before a prediction can be made. Therefore, one aim of this work will be

to explore if such bioactivity descriptors can be computed from CP models. CP models

will be built on in vitro datasets and the predicted p-values for query compounds will be

used as bioactivity descriptors. The performance of CP models based on such bioactivity

descriptors will be compared to such using chemical (i.e. molecular and physicochemical)

descriptors only or a combination of both.
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ABSTRACT: Computational methods such as machine learning approaches have a strong
track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to
predict in vivo endpoints is more limited due to the high number of parameters and processes
that may influence the outcome. Recent studies have shown that the combination of chemical
and biological data can yield better models for in vivo endpoints. The ChemBioSim approach
presented in this work aims to enhance the performance of conformal prediction models for in
vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes.
Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and
cardiological (DICC) issues, were selected for this study due to their high relevance for the
registration and authorization of new compounds. Since the sparsity of available biological assay
data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning
model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets.
Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as
descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a
method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and
bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors
increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean
efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model
performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed
detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo
endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological
informationwhich is not necessarily captured by chemical descriptorsin an automated workflow without the need for adding
experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All
bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded
from https://doi.org/10.5281/zenodo.4761225.

■ INTRODUCTION

Modern toxicity testing heavily relies on animal models, which
entails ethical concerns, substantial costs, and difficulties in the
extrapolation of results to humans.1 The increasing amount
and diversity of not only drugs but also more generally of
chemicals present in the environment and the lack of
knowledge about their toxic potential require the development
of more efficient toxicity assessment tools.
In recent years, in silico tools for toxicity prediction have

evolved into powerful methods that can help to decrease
animal testing.2−4 This is particularly true when applied in
tandem with in vitro methods.5 Machine learning (ML)
models trained on data sets of compounds with known
activities for an assay can be used as predictive tools for
untested compounds.6 These models are generally trained on
chemical and structural features of compounds with measured
activity values.7 However, the outcomes of in vivo toxicological

assays depend on a number of biological interactions such as
the administration, distribution, metabolism, and excretion
(ADME) and the interaction with different cell types.4 The
ability of chemical property descriptors to capture these
complex interactions and, consequently, the predictive power
of ML models trained on these molecular representations are
limited. By the example of classification models for hit
expansion8,9 and toxicity prediction,10−13 recent studies have
shown that the predictive power of in silico models can be
improved by the amalgamation of chemical and biological

Received: April 20, 2021
Published: June 21, 2021

Articlepubs.acs.org/jcim

© 2021 The Authors. Published by
American Chemical Society

3255
https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

D
ow

nl
oa

de
d 

vi
a 

17
8.

38
.8

8.
18

6 
on

 F
eb

ru
ar

y 
15

, 2
02

2 
at

 1
4:

41
:2

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



information. More specifically, it has been shown that
bioactivity descriptors could help to infer the activity of new
substances by capturing the similarity of compounds in the
biological space, i.e., identifying those compounds that behave
similarly in biological systems (but may be chemically
dissimilar). However, options to integrate biological data into
models are limited by the sparsity of the available experimental
data. In principle, the use of bioactivity features in ML requires
compounds of interest to be tested in all assays conforming the
bioactivity descriptor set. Norinder et al.14 however showed, by
the example of conformal prediction (CP) frameworks built on
random forest (RF) models, that the use of predicted
bioactivity descriptors in combination with chemical descrip-
tors can yield superior cytotoxicity and bioactivity predictions
while circumventing the problems of sparsity of data and
extensive testing. CP models are a robust type of confidence
predictors that generate predictions with a fixed error rate
determined by the user.15 To estimate the confidence of new
predictions, the predicted probabilities of a set of compounds
with known activity (calibration set) are used to rank the
predicted probabilities for new compounds and calculate their
so-called p-values (i.e., calibrated probabilities). An additional
feature of CP models is their ability to handle data imbalance
and predict minority classes more accurately.16

The CP approach offers the advantage of a mathematical
definition of a model’s applicability domain (AD); i.e.,
chemical space within the model makes predictions with a
defined reliability based on the allowed error rate.17 Other
common approaches for defining the applicability domain are
based on compound similarity or predicted probability and a
more or less arbitrary (user-defined) threshold. However, CP
models return a statistically robust class membership
probability for each class. Under the exchangeability
assumption of the samples (assumption also made for classical
ML models), the observed error rate returned by CP models
will be equal to (or very close to) the allowed (i.e., user-
defined) error rate.
The aim of this study is to determine if, and to what extent,

classification models for the prediction of in vivo toxicity
endpoints can benefit from integrating chemical representa-

tions with data from biological assays. To include the biological
assay information in the models, predicted bioactivities were
derived from 373 CP models, each representing an individual
biological assay. The results obtained for models trained
exclusively on chemical descriptors (“CHEM”), trained
exclusively on bioactivity (“BIO”) descriptors, or trained on
the combination of chemical and bioactivity descriptors
(“CHEMBIO”) were analyzed for three toxicological in vivo
endpoints: in vivo genotoxicity (with the in vivo micronucleus
test (MNT)), drug-induced liver injury (DILI), and cardio-
logical complications (DICC).
The in vivo MNT assay is used to detect genetic

(clastogenic and aneugenic) damage induced by a substance
causing the appearance of micronuclei in erythrocytes or
reticulocytes of mice or rats.18 DILI describes the potential
hepatotoxicity of a compound. Although there is no consensus
method for assessing the DILI potential of a compound, the
U.S. Food and Drug Administration (FDA) proposed a
systematic classification scheme based on the FDA-approved
drug labeling.19 The DICC endpoint comprises five cardio-
logical complications induced by drugs and annotated in
clinical reports: hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction.
Severe organ toxicity, as observed with DILI and DICC, but

also genotoxicity (which can lead to carcinogenesis and
teratogenic effects) must be avoided and hence recognized
early in the development of industrial chemicals and drugs.
Both hepatic and cardiovascular adverse effects are listed as
two of the most common safety reasons for drug withdrawals20

and failures in drug development phases I−III.21 Moreover,
REACH, the chemical control regulation in the European
Union, is requiring the in vivo MNT as follow up of a positive
result in any genotoxicity test in vitro.22 The Organisation for
Economic Co-operation and Development (OECD) Guideline
474 and the International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use
(ICH) list the in vivo MNT assay as one of the recommended
tests for detecting genotoxicity, as it can account for ADME
factors and DNA repair processes.18,23

Table 1. Overview of Collected Assay Data

database/
endpoint description source

ToxCast
database

• 222 high-throughput screening assays, including endpoints related to cell cycle and morphology control, steroid
hormone homeostasis, DNA-binding proteins, and other protein families (e.g., kinases, cytochromes, and
transporters)

ToxCast database version
3.324

eMolTox
database

• 136 in vitro assays, including endpoints related to mutagenicity, cytotoxicity, hormone homeostasis,
neurotransmitters, and several protein families (e.g., nuclear receptors, cytochromes, and cell surface receptors)

Ji et al.25

genotoxicity • AMES mutagenicity assay AMES assay: eChemPortal,26

Benigni et al.,28 Hansen et
al.29

• chromosome aberration (CA) assay

• mammalian mutagenicity (MM) assay CA and MM assays:
eChemPortal, Benigni et al.

bioavailability • human oral bioavailability assay Falcoń-Cano et al.27

permeability • Caco-2 assay Wang et al.30

thyroid
hormone
homeostasis

• deiodinases 1, 2, and 3 inhibition assays Garcia de Lomana et al.31

• thyroid peroxidase inhibition assay
• sodium iodide symporter inhibition assay
• thyroid hormone receptor antagonism assay
• thyrotropin-releasing hormone receptor antagonism assay
• thyroid stimulating hormone receptor agonism and antagonism assays

P-glycoprotein
inhibition

• P-glycoprotein (ABCB1) inhibition assay Broccatelli et al.32
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This study introduces an improvement of the in silico
prediction of in vivo toxicity endpoints by considering the
activity of compounds in multiple biological test systems. We
show that predicted bioactivities, which present the benefit of
not needing further experimental testing for new compounds,
are often enough to achieve ML models with increased
performance.

■ MATERIALS AND METHODS
Data Sets. In the following paragraphs, the data from

biological assays used for generating descriptors based on
predicted bioactivities are introduced followed by the data
related to the three in vivo toxicological endpoints (MNT,
DILI, and DICC). Finally, the reference data sets used to
analyze the chemical space covered by the in vivo endpoints
are described.
All information required for the download of any of the data

sets used for modeling in this study (including download links,
exact json queries, as well as MD5 file checksums) are provided
in Table S1 (for the in vivo endpoints) and Table S2 (for the
biological assays).
Biological Assays. For the generation of descriptors from

predicted bioactivities, a total of 373 data sets (each belonging
to a single biological assay) were collected (Table 1): 372 data
sets from in vitro assays obtained from the ToxCast,24

eMolTox,25 and eChemPortal26 databases and the literature,
and one data set from an in vivo assay (a human oral
bioavailability assay) obtained from Falcoń-Cano et al.27 From
the ToxCast and eMolTox databases, only endpoints with at
least 200 active and 200 inactive compounds listed (after
structure preparation and deduplication; see the section
Structure Preparation for details) were considered for
modeling. Besides the endpoints selected from these two
databases, data sets for assays covering genotoxicity, bioavail-
ability, permeability, thyroid hormone homeostasis disruption,
and P-glycoprotein inhibition were considered (Table 1). A
more detailed description of the data collection and activity
labeling of these data sets is provided in Table S2. The
numbers of active and inactive compounds in each of the 373
data sets (after the structure preparation and deduplication
steps) are reported in Table S3.
In Vivo Endpoints. During the development of this study, a

larger number of publicly available in vivo endpoint data sets
were investigated for their suitability for modeling. Taking into
account the quantity and quality of the data, as well as the
regulatory relevance of the toxicological endpoints, three in
vivo endpoints were selected for this study: MNT, DILI, and
DICC. The collection of the respective data sets is introduced
in the following paragraphs.
MNT Data Set. For the MNT assay, data from the European

Chemicals Agency (ECHA) available at the eChemPortal were
collected. Only experimental data derived according to the
OECD Guideline 474 (or equivalent) were considered. All
assay outcomes annotated as unreliable or related to
compounds that are cytotoxic were discarded. All compounds
(identified based on CAS numbers) with conflicting activity
data were also removed. Additional data were obtained from
the work of Benigni et al.,28 which includes curated data sets
from the European Food Safety Authority (EFSA) data. In
addition, data sets for MNT on mouse (1001 compounds) and
rat (127 compounds) compiled by Yoo et al.33 and containing
binary activity labels for MNT were obtained. These additional
data sets include data, among other sources, from the FDA

approval packages, the National Toxicology Program (NTP)
studies, the U.S. EPA GENETOX database, the Chemical
Carcinogenesis Information System (CCRIS) and the public
literature. The mouse and rat data sets did not contain
overlapping compounds and an overall MNT result
(independent from the species) was derived for the 1128
compounds in the data set. The final data set (after the
structure preparation and deduplication steps) contains a total
of 1791 compounds (316 active and 1475 inactive compounds;
Table 2).

DILI Data Set. The data for the DILI endpoint were
obtained from the verified DILIrank data set compiled by the
FDA.34 In this data set, drugs are classified as “Most-DILI-
concern”, “Less-DILI-concern”, “No-DILI-concern”, and “Am-
biguous-DILI-concern”. For the purpose of this study,
compounds in the “Most-DILI-concern” and “Less-DILI-
concern” classes were labeled as ″active″ and compounds in
the “No-DILI-concern” class were labeled as ″inactive″.
Compounds of the ″Ambiguous-DILI-concern″ class were
removed from the data set. The final binary DILI data set
contained 692 compounds (445 active and 247 inactive
compounds).
DICC Data Set. For the DICC endpoint, the data set

compiled by Cai et al.35 on different cardiological complica-
tions was used. In their work, Cai et al. gathered individual
data sets for hypertension, arrhythmia, heart block, cardiac
failure, and myocardial infarction from five databases:
Comparative Toxicogenomics Database (CTD),36 SIDER37

(side effect resource), Offsides38 (database of drugs effects),
MetaADEDB39 (adverse drug events database), and Drug-
Bank.40 In this study, a unique DICC data set was built that
combines the five data sets of Cai et al. In the DICC data set,
compounds were labeled as “active” if they were measured to
be active on at least one of the cardiological endpoints (and
active, inactive, or “missing” on the remaining endpoints), and
as “inactive” otherwise. This resulted in a data set of 3256
compounds after the structure preparation and deduplication
steps (988 active and 2268 inactive compounds; see section
Structure Preparation for details).

Reference Data Sets. Three reference data sets were
obtained to represent the chemical space of pesticide active
ingredients, cosmetic ingredients, and drugs in order to analyze
the coverage of these types of substances by the in vivo
endpoint data sets. The chemical space of pesticides was
represented by the 2417 compounds (after structure
preparation and deduplication; see the section Structure
Preparation for details) collected in the Pesticide Chemical
Search database41 (from the Environmental Protection
Agency’s (EPA) Office of Pesticide Programs) and down-
loaded from the CompTox Dashboard.42 The chemical space
of cosmetic ingredients was represented by the 4503
compounds (after structure preparation and deduplication)
included in the COSMOS cosmetics database,43 created as part

Table 2. Overview of the Data Sets for the in Vivo
Endpoints

number of

endpoint active compounds inactive compounds ratio

MNT 316 1475 1:5
DILI 445 247 2:1
DICC 988 2268 1:2
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of a European Union project for determining the safety of
cosmetics in industry without the use of animals, and
downloaded from the CompTox Dashboard as well. The
chemical space of drugs was represented by the 10087 (after
structure preparation and deduplication) approved, exper-
imental, or withdrawn drugs contained in DrugBank.44

Structure Preparation. The structures of all molecules
were prepared starting from the respective SMILES strings,
which are directly available from most data resources. For
resources that do not provide SMILES strings (e.g.,
eChemPortal and the work of Yoo et al.), this information
was obtained by querying the PubChem PUG REST
interface45 with the CAS numbers. CAS numbers for which
no SMILES was retrieved by this PubChem search were
queried with the NCI/CADD Chemical Identifier Resolver.46

For the 977 compounds that did not produce any match with
this procedure either, the “RDKit from IUPAC” node of
RDKit47 in KNIME48 was used in an attempt to derive a
structure from the chemical name. For 131 out of these 977
compounds, the chemical structure was successfully derived
with this method. The remaining 846 compounds, without
known chemical structures (e.g., including compound mixtures
and unspecific formulas), were removed.
All obtained SMILES notations were interpreted, processed,

and standardized with the ChemAxon Standardizer49 node in
KNIME. As part of this process, solvents and salts were
removed, aromaticity was annotated, charges were neutralized,
and structures were mesomerized (taking the canonical
resonant form of the molecule). All compounds containing
any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br,
and I were removed from the data set with the “RDKit
Substructure Filter” node in KNIME. In the case of
multicomponent compounds, the structures of the individual
components forming the compound were compared. More
specifically, the canonical SMILES of the components were
derived with RDKit, and in case the components had identical
canonical SMILES, one of them was kept; otherwise, the whole
compound was filtered out. Lastly, compounds with fewer than
four heavy atoms were discarded.
Canonical SMILES were derived with RDKit from all

standardized compounds. For each endpoint data set, duplicate

canonical SMILES with conflicting activity labels were
removed from the respective endpoint data set.
A KNIME workflow with the specific steps and settings for

the preparation of the structures as well as for the calculation
of the chemical descriptors (see Descriptor Calculation
section) is provided in the Supplementary Information.

Descriptor Calculation. Chemical Descriptors. Molecular
structures were encoded using count-based Morgan finger-
prints with a radius of 2 bonds and a length of 2048 bytes,
computed with the ″RDKit Count-Based Fingerprint″ node in
KNIME. Morgan fingerprints encode circular environments
and capture rather local properties of the molecules. To
capture global molecular properties, all 119 1D and 2D
physicochemical property descriptors implemented in the
“RDKit Descriptor Calculation” node in KNIME were
calculated. These descriptors encode properties such as the
number of bonds and rings in a molecule, the number of
particular types of atoms, or the polarity and solubility of the
compound. Two acidic and two basic pKa values were also
calculated per molecule with the “pKa” KNIME node from
ChemAxon.50 Missing pKa values (for molecules without two
acidic or basic groups) were replaced with the mean value of
the data set.

Bioactivity Descriptors. For the calculation of the
bioactivity descriptors, first, 373 CP modelsone per
assaywere fitted on the respective biological assay sets (see
the Data Sets section for details). The workflow for the
generation of these models is explained in detail in the “Model
development” section. With the generated bioactivity CP
models, two p-values for each compound contained in the
three in vivo endpoint data sets were predicted (Figure 1).
Both the p-values for the active (p1) and for the inactive (p0)
classes for each assay were used as bioactivity descriptors,
resulting in 746 descriptors.

Chemical Space Analysis. To visualize the chemical space
covered by the data sets of the in vivo endpoints,
dimensionality reduction was performed on a subset of 23
physically meaningful and interpretable molecular descriptors
generated with RDKit (Table S4). For that purpose, the
principal component analysis (PCA) implementation of scikit-
learn51 was applied on the merged in vivo endpoint data sets

Figure 1. Workflow for the derivation of the bioactivity descriptors for the in vivo toxicity CP models. For each biological assay, a conformal
prediction model is built and used to predict the p-values of the compounds in the three in vivo endpoint data sets. These predicted p-values are
used as bioactivity descriptors, in combination with chemical descriptors, for training the models of the in vivo endpoints.
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(merged on the canonical SMILES). A further visualization of
the chemical space defined by the complete CHEM and
CHEMBIO descriptor sets was performed with the Uniform
Manifold Approximation and Projection (UMAP).52 This
method conducts a dimension reduction while maintaining the
global structure of the data (i.e., the pairwise distance between
samples). For each of the three in vivo endpoint data sets, a
two-dimensional projection was performed on the CHEM and
CHEMBIO descriptor sets, respectively, with 50 nearest
neighbors, a minimum distance of 0.2, and use of the
“euclidean” metric as the distance measure.
The molecular similarities of the compounds of the in vivo

endpoint data sets and the collected pesticides, cosmetics, and
drugs reference data sets were quantified with Tanimoto
coefficients calculated from Morgan fingerprints with a radius
of 2 bonds and a length of 1024 bits (fingerprints computed
with the ″RDKit Fingerprint″ node in KNIME).
Model Development for the Biological Assays and In

Vivo Toxicity Endpoints. Workflow for the Development
of CP Models. The same model development workflow was
followed to train the CP models used for the calculation of the
bioactivity descriptors, as well as to train the final models for
the in vivo toxicity endpoints. Note that the structure
preparation and chemical descriptor calculation was done in
KNIME, but the following workflow was implemented in
Python. All hyperparameters of the functions used in the
workflow for deriving the CP models are specified in Table S5.

Prior to model development, a variance filter was applied to
all features used as input for the in vivo toxicity CP models
(including the bioactivity features if present) in order to
remove any features with low information content. More
specifically, any features with a variance (among the
compounds in the respective data set) of less than 0.0015
were removed. Note that, in order to preserve the homogeneity
of the input features, this variance filter was not part of the
workflow for the biological assay CP model development (used
to calculate the bioactivity descriptors). Also, in all cases
(including the biological assay CP models), the features were
scaled (by subtracting the mean and scaling to unit variance)
prior to model development by applying the StandardScaler
class of scikit-learn on each endpoint-specific data set.
For CP model development, each endpoint-specific data set

was divided into 80% training and 20% test set using the
StratifiedShuffleSplit class of scikit-learn (Figure 2). For
performance assessment, this splitting of the data was
performed within a 5-fold cross-validation (CV) framework.
During each CV run, the training set was further divided
(stratified) into a proper training set (70% of the training set)
and a calibration set (30% of the training set) with the
RandomSubSampler class from the nonconformist Python
package.53 An RF model was trained on the proper training set
using the scikit-learn implementation (with 500 estimators and
default values for the rest of the hyperparameters). The trained
RF model was then used to predict the probabilities of the
compounds in the calibration set. From these probabilities, the

Figure 2. Workflow of the aggregated Mondrian CP set up for the development of the models for the biological assays and the in vivo endpoints.
The aggregated CP framework included 20 random splits in calibration and proper training data sets, on which individual RF models were trained,
and the resulting p-values per test compound were afterward averaged. The feature selection step was implemented with a lasso model and only
included in the development of the in vivo toxicity CP models (in vivo toxicity CP models without feature selection were also trained for
comparison).
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so-called nonconformity score (nc score) was derived by
applying a nonconformity error function, which yields low nc
scores for predictions close to the true value. Here, the inverse
probability error function from the nonconformist package
(named “InverseProbabilityErrFunc”) was used to calculate the
nc scores. This error function is defined as

= − ̂ |P y xnc score 1 ( ),i

with P̂(yi | x) being the probability of predicting the correct
class.
By definition, errors produced by CP models do not exceed

the significance level ε (i.e., indicated error rate) under the
assumption that training and test compounds are independent
and belong to the same distribution. However, these errors
may be unevenly distributed across classes. To achieve
conditional validity with respect to the active and inactive
classes, the Mondrian approach was used. Following the
Mondrian CP approach, a sorted nc score list with the
calculated nc scores of the calibration set was created for each
class (active/inactive) independently. After calculating the nc
scores (one per class) for the test compounds, their rank (with
regard to the calibration set) in the respective list was
calculated. The rank of the nc score of each test compound
defines the predicted p-value for the respective class.
An aggregated CP approach54 was conducted by repeating

the random splitting of the proper training and calibration sets
20 times. As a result, the p-values for a test set were calculated
20 times and the final p-value was derived from the median
value.
CP models output a set of labels, which contain one class

(“active” or “inactive”), both classes, or none. If the final p-
value for any of the classes was higher than the significance
level ε, the compound was assigned to that class (or to both
classes if both p-values were higher than ε). Thus, based on the
p-values and the significance level, the CP model determines
whether a compound is within the applicability domain (AD)
of the model.55 Compounds within the AD of the model are
assigned to one or both classes and those outside of the AD are
assigned to the empty class (i.e., no class label is assigned).
The predicted p-values obtained by applying the bioactivity

CP models on the in vivo endpoint data sets (for the
generation of the bioactivity descriptors) were used as is, and
no class labeling was performed (i.e., no significance level was
assigned). Instead, the p-values for both classes were
considered.
In Vivo Toxicity CP Models Including Feature Selection.

The workflow for developing the in vivo toxicity CP models
that include feature selection is similar to the general workflow
described in the previous section but additionally includes a
least absolute shrinkage and selection operator (lasso)
model.56 Lasso is a regression method that penalizes the
coefficients of the input features for the selection of variables
and the regularization of models. Some feature coefficients are
shrunk to zero and therefore eliminated from the model.
In our workflow, a lasso model with the LassoCV

implementation of scikit-learn was trained on the complete
training set (prior to splitting the complete training set into
proper training and calibration set; see Figure 2). To optimize
the regularization parameter alpha of the lasso model, an inner
5-fold CV is applied. The list of coefficients assigned to each
feature is obtained, and those features with a coefficient
shrunken to zero are filtered out from the data set. Only the

selected features (i.e., with a coefficient higher than zero) are
used as input for the aggregated CP workflow described in the
previous section.
In order to use the coefficients for ranking the features

according to their importance for the analysis of the models,
the mean among the absolute values of the coefficients
obtained during each outer CV run was calculated.
Since the lasso model discards highly correlated features,

considering only the lasso coefficients for the analysis of the
most relevant features could lead to an underestimation of the
importance of some biological assays. Therefore, this analysis
was mainly based on the feature importance values of the RF
models without feature preselection with lasso. The feature
importance values of RF were extracted, and the mean across
CV runs were calculated. Lastly, to better estimate the relative
importance of each feature, a min-max normalization with the
MinMaxScaler class of scikit-learn (with a range of 0.01 to
one) was applied on the mean coefficients higher than zero and
on the mean feature importance values of RF.

Performance Evaluation of CP Models. Two important
metrics for the evaluation of CP models were calculated based
on all predictions of the respective test sets: the validity and
the efficiency. CP models are proven to be valid (i.e., guarantee
the error rate indicated by the user) if the training and test data
are exchangeable.15 To achieve the indicated validity of the
predictions, CP models output a set of class labels that can be
empty, contain both labels, or only one of the labels (i.e., single
class predictions). The validity is defined as the ratio of
predictions containing the correct label (the “both” class set is
therefore always correct and the “empty” set is always wrong).
The efficiency measures the ratio of single class predictions
(i.e., predictions containing only one class label) and,
therefore, how predictive a model for a given endpoint is.
Additionally, the F1 score, Matthews correlation coefficient

(MCC), specificity, sensitivity, and accuracy (both overall and
independently for each class) were calculated (on the single
class predictions only), to determine the model quality. The F1
score is the harmonic mean of precision and recall and is
robust against data imbalance. The MCC considers all four
classes of predictions (true positive, true negative, false
positive, and false negative predictions) and takes values in
the range of −1 to +1 (a value of +1 indicates perfect
prediction). This metric is also robust against data imbalance.
The specificity is determined by the proportion of inactive
compounds correctly identified, while the sensitivity is
determined by the proportion of active compounds correctly
identified. The accuracy is defined as the ratio of correct
predictions.
The CP models were evaluated at a significance level ε of

0.2, i.e., at a confidence level (1 − ε) of 0.80. The set of
predicted classes at this confidence level will contain the true
class label in at least 80% of the cases (for valid models). This
significance level was selected because it usually offers an
adequate trade-off between efficiency and validity.57,58

The difference in performance between models with distinct
descriptors was evaluated with the nonparametric Mann−
Whitney U test.59 For each pair of models compared, the
distribution of values obtained in the different CV runs for a
given performance metric (e.g., efficiency) was given as input
in the “mannwhitneyu” function implemented in SciPy.60
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■ RESULTS AND DISCUSSION

In this study, we investigated if, and to what extent, the
consideration of predicted bioactivities can improve the
performance of in silico models for the prediction of the in
vivo toxicity endpoints MNT, DILI, and DICC. To this end,
we first trained CP models for 373 biological assays and
applied them on the in vivo endpoint data sets for deriving the
predicted bioactivities. For training the models for the three in
vivo endpoints, we embedded three types of RF models in CP
frameworks: (a) CHEM models based exclusively on chemical
descriptors, (b) BIO models based exclusively on (predicted)
bioactivity descriptors, and (c) CHEMBIO models based on
the combination of both types of descriptors.
Chemical Space Analysis. In order to develop an

understanding of the chemical space represented by the
training data from the three in vivo endpoints (MNT, DILI,
and DICC), we compared the overlap of the chemical space
between the in vivo endpoint data sets and three reference data
sets. The overlap between data sets serves as an indication of
the relevance of models trained on the in vivo data sets for
different chemical domains (pesticides, cosmetics, and drugs).
The reference data sets represent pesticides (2417 compounds
from the EPA’s Office of Pesticide Programs), cosmetics (4503
cosmetics ingredients from the COSMOS database), and drugs
(10,087 approved, experimental, or withdrawn drugs from
DrugBank).
We found that the MNT data set covers 16% of the

pesticides reference set, 10% of the cosmetics reference set,
and 8% of the drugs reference set, considering exact matches
only (exact matches defined as any pair of compounds with a
Tanimoto coefficient of 1.00; Table 3). The DICC data set
covers 34% of the drugs reference set but just 7 and 6% of the
cosmetics and pesticides reference sets, respectively. The
lowest coverage rates were observed for the DILI data set (as it
is also the smallest data set), with just 6, 2, and 1% for the
drugs, pesticides, and cosmetics reference sets, respectively.

For assessing the structural relationships between the active
and inactive compounds present in the MNT, DILI, and DICC
in vivo data, we referred to PCA. The PCA was performed on
selected interpretable molecular descriptors, which describe,
e.g., the number of bonds, rings, and particular types of atoms
in a molecule, or the polarity and solubility of the compounds
(Table S4). The three in vivo toxicity data sets were combined
(containing 4987 compounds) and used to perform the PCA.
The PCA plots reported in Figure 3 indicate that the

physicochemical properties of the active and inactive
compounds of the individual in vivo endpoint data sets are
mostly similar, with only a few outliers. Outliers with high
values for the first principal component (PC1, x axis) are
molecules with high molecular weight. Outliers with low values
in the second component of the PCA (PC2, y axis) are mostly
acyclic and polar, while molecules with high values on this axis
have a high number of rings. Most outliers are inactive on the
three investigated endpoints. The loadings plots (indicating
how strongly each descriptor influences a principal compo-
nent) are provided in Figure S1.
In order to investigate the chemical space with regard to the

full set of descriptors used for model training, we utilized
UMAP to compare the two-dimensional projections of the
CHEM and CHEMBIO descriptor sets. UMAP conducts a
dimension reduction of the data while maintaining the pairwise
distance structure among all samples. In general, no clear
separation of activity classes emerged for any of the three
endpoints. Moreover, no significant difference was observed in
the projections derived from the two descriptor sets regarding
their ability to cluster compounds with different activity labels.
The resulting UMAP plots are provided in Figure S2.
The structural diversity within the individual compound sets

was determined based on the distribution of pairwise
Tanimoto coefficients (based on atom-pair fingerprints)61

among (a) all pairs of active compounds, (b) all pairs of
inactive compounds, and (c) all pairs consisting of one active
and one inactive compound (Figure 4). For the three in vivo
endpoints, the distribution of pairwise compound similarities
shows a tailing toward low similarities for the three sets of
compounds (a, b, and c), indicating a high molecular diversity
in the data sets. It is also shown that compounds in one class
are not more similar to each other than they are to compounds
of the other class, since the distribution of similarities of the
three subsets is in all cases comparable.
Hence, the classification of compounds in the active and

inactive classes based only on their structural similarity is not
straightforward and complementary information may be
necessary for in silico methods to be able to differentiate
between classes.

Performance of CP Models for Deriving the Predicted
Bioactivities. With the aim to improve the predictive
performance for in vivo toxicity endpoints, we included
information about the outcome of the compounds in biological
assays (obtained from the ToxCast database, eMolTox,
eChemPortal, and other publications) as input for the in
vivo toxicity CP models. To avoid increased sparsity of the
data due to missing experimental values, a fingerprint based on
predicted bioactivities was developed. More specifically, for
each of the 373 collected biological assay data sets, a
bioactivity CP model was trained on molecular fingerprints
and physicochemical property descriptors (see Materials and
Methods for details).

Table 3. Percentage of Compounds in the Reference Data
Sets Covered by Compounds in the Three In Vivo Endpoint
Data Sets (MNT, DILI, DICC) at Given Similarity
Thresholds

endpoint

parameter
Tanimoto coefficient

thresholda MNT DILI DICC

% coverage
pesticides

1.0 16 2 6
≥0.8 17 2 7
≥0.6 29 3 11
≥0.4 62 10 36
≥0.2 99 85 97

% coverage
cosmetics

1.0 10 1 7
≥0.8 14 1 9
≥0.6 29 3 17
≥0.4 68 17 58
≥0.2 99 89 99

% coverage drugs 1.0 8 7 34
≥0.8 9 8 37
≥0.6 16 15 51
≥0.4 40 34 73
≥0.2 99 96 100

aTanimoto coefficients calculated from binary Morgan fingerprints
(1024 bits and radius 2).
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CP models are a type of confidence predictor that use the
predictions made by the model on a set of compounds with
known activities (calibration set) to rank and estimate the
certainty of the predictions for new compounds57 (see
Materials and Methods section for details). These models
output a set of labels (instead of only one label), which can
contain one class (active or inactive), both classes, or none of
them. Therefore, two important metrics for the evaluation of
CP models are the validity, which measures the ratio of
prediction sets containing the correct label (i.e., the “both”
class is always correct), and the efficiency, which measures the
ratio of single class predictions. Furthermore, the quality of the
single class predictions (covered by the AD of the model) can
be evaluated with common metrics like the F1 score or the
MCC. The performance of models developed in this work was
evaluated on the validity, efficiency, and F1 score results
referring to mean values obtained by 5-fold CV at a
significance level ε of 0.2 (Table S6). The MCC, specificity,
sensitivity, and overall and class-wise mean accuracies of the
single class predictions are also provided in Table S6.
The AD of ML models defines the region in chemical space

where the model makes predictions with a given reliability.
Depending on the focus of the study, there are different ways
to define the AD. For example, unusual compounds or
unreliable predictions can be flagged, assuming that they are
likely outside the aforementioned region. In our case, error rate

reduction is the focus of defining an AD; hence, it is mandatory
to use confidence measures to identify objects close to the
decision boundary and reject their predictions. A large
benchmark study from Klingspohn et al. concluded that
built-in class probability estimates performed constantly better
than the alternatives (e.g., distance measures) in terms of error
reduction.62,63 In the current study, we are using the RF
prediction score (best confidence measure for RF) as
nonconformity measure for the CP. Hence, it is expected
that no other nonconformity measure (or method) will
outperform the prediction score to estimate the confidence
of the predictions.
All 373 bioactivity CP models showed adequate mean

validities for the given significance level (for which the
expected validity is 0.80) that ranged from 0.78 to 0.83 (Figure
5) and thus obtained the defined error rate. The mean
efficiency values and F1 scores spread over a wider range.
There were 19 CP models (5%) with mean efficiencies lower
than 0.70 (Figure 6). The lowest mean efficiency (0.41) was
obtained for the ToxCast assay “ATG Ahr CIS dn”. On the
other hand, mean efficiencies higher than 0.90 were achieved
for 101 CP models (27%), where the highest mean efficiency
of 0.99 was obtained for the two eMolTox assays “Substrates of
cytochrome P450 2C19” and “Differential cytotoxicity
(isogenic chicken DT40 cell lines)”, and the two ToxCast
assays “TOX21 ERa LUC VM7 antagonist 0.1nM E2” and

Figure 3. Principal component analysis based on a selection of interpretable molecular descriptors generated with RDKit on the merged in vivo
toxicity data sets. Inactive compounds are colored in red and active compounds in green. The variance explained by the first two principal
components is indicated in the axes.

Figure 4. Distribution of pairwise Tanimoto coefficients based on atom-pair fingerprints for three types of compound pairs: (a) active-to-active
(blue), (b) inactive-to-inactive (orange), and (c) active-to-inactive (green).
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“TOX21 SBE BLA antagonist ratio”. Hence, the ratio of single
class predictions obtained by the bioactivity CP models was
relatively high and only in a few cases the models showed poor
efficiencies. In general, the models with the lowest mean
efficiency had highly imbalanced classes and a low number of
active compounds, while the contrary was observed for the
models showing the highest mean efficiencies.
Seventy-seven models (21%) obtained F1 scores higher than

0.90, indicating a very good performance of these models on
the single class predictions. There were 149 CP models (40%)
with mean F1 scores lower than 0.70. Only for 15% of all
models, the mean F1 scores were lower than 0.60, indicating
poor performance. The worst-performing model was that for
the ToxCast assay “ATG Ahr CIS dn” (mean F1 score of 0.38)
and the best-performing ones for the eMolTox assays
“Modulator of Neuropeptide Y receptor type 1”, “Modulator
of Urotensin II receptor”, and “Agonist of Liver X receptor
alpha” (F1 score of 1.00). One explanation for the good
predictivity could be the fact that the chemical space of the
active and inactive compounds is well differentiated (PCA
plots of the chemical space of these data sets are shown in
Figure S3). The classification of these compounds might
therefore be easier than for data sets with more similar
compounds between classes.
The performance of all CP models for the biological assays

can be found in the Supplementary Information (Table S6).
In Vivo Toxicity CP Model Performance. The in vivo

toxicity CP models were trained on three sets of descriptors:

(i) the chemical descriptor set (“CHEM”) comprising
physicochemical features and the molecular fingerprint; (ii)
the bioactivity descriptor set (“BIO”) containing the predicted
p-values for the biological endpoints; and (iii) the “CHEM-
BIO” descriptor set, which contains all features from both the
CHEM and the BIO descriptor sets.
The number of features in the CHEM descriptor set (2171

features) is almost three times higher than the number of
features of the BIO descriptor set (746 features), and together,
they add up to 2917 features. The underrepresentation of
bioactivity features in the CHEMBIO descriptor set and, more
generally, the high number of total features could lead to a
dilution of relevant information in the high-dimensional
feature space. Moreover, since no prefiltering has been applied
to the BIO descriptor set, some features may be redundant or
less relevant for the specific in vivo endpoints. In order to test
whether a reduction of the feature space could increase the
performance of the in vivo toxicity CP models, we introduced a
feature selection procedure based on a lasso model (which
assigns coefficients, i.e., weights, to all features) that we applied
prior to model training (see Materials and Methods for
details).
With each of the CHEM, BIO, and CHEMBIO descriptor

sets, two types of models were trained: (i) baseline models
based on all features of the respective descriptor set (only
filtering out those features with low variance; see Materials and
Methods for details) and (ii) models based on a subset of
features selected with a lasso model (built on the feature subset
after the variance filter). For the model training, only those
features with coefficients higher than zero in the lasso model
were selected (see Materials and Methods for details).
The models based on the preselected set of features (based

on (ii) lasso procedure) generally performed better (details
will be discussed together with the individual in vivo endpoint
performances below) and also present the computational
advantage that only the p-values for the selected biological
assays need to be computed to build the bioactivity descriptor
for new compounds. Therefore, in the following paragraphs,
only the results of these models will be further discussed. The
results from the baseline models without feature selection with
lasso (as described in (i)) are presented in Figure S3 and Table
S7. All models were evaluated on the mean validity, efficiency,
and F1 score (on the single class predictions) over 5-fold CV
at a significance level ε of 0.2. The MCC is presented in Table
4 (see discussion in the next paragraph); specificity, sensitivity,
and overall and per class accuracy data are provided in Table
S8. The differences in the performance among models with

Figure 5. Histogram of the performance distribution of the CP
models for the biological assays. All models were valid but their
efficiencies and F1 scores showed a high degree of variability.

Figure 6. Percentage of the 373 bioactivity CP models showing mean efficiencies and mean F1 scores in the four given ranges.
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different descriptors are evaluated with a Mann−Whitney U
test at a p-value <0.05.
It is important to consider the inherent noise and errors in

experimental data, which sets the upper limit for the models’
performance, as a model can only be as good as the data it is
trained on.64 Hence, models trained on chemical descriptors
only, which already achieve high performance rates, may not
benefit from the addition of bioactivity fingerprints, as the

noise in the data may be the bottleneck in these cases.
Unfortunately, there is no information available on the noise in
the data sets under investigation. Since studies such as that by
Zhao et al.65 have shown that low levels of noise are often
tolerated by models while the removal of suspicious data
points often decreases model performances and causes
overfitting issues, we decided to not attempt to identify and
remove noise in the data.

Table 4. Average Performance of the CP Models Generated from a Selected Set of Featuresa

endpoint descriptor validity STD validity efficiency STD efficiency F1 score STD F1 score MCC STD MCC

MNT CHEM 0.77 0.02 0.76 0.05 0.61 0.02 0.28 0.05
BIO 0.82 0.03 0.81 0.05 0.70 0.03 0.46 0.06
CHEMBIO 0.81 0.03 0.85 0.03 0.70 0.03 0.44 0.07

DILI CHEM 0.78 0.05 0.91 0.04 0.74 0.05 0.49 0.09
BIO 0.81 0.04 0.83 0.07 0.76 0.04 0.53 0.07
CHEMBIO 0.81 0.03 0.88 0.04 0.77 0.03 0.55 0.06

DICC CHEM 0.79 0.02 0.84 0.02 0.72 0.03 0.46 0.05
BIO 0.79 0.02 0.96 0.02 0.81 0.01 0.63 0.02
CHEMBIO 0.79 0.02 0.94 0.01 0.82 0.01 0.65 0.03

aMean and standard deviation (STD) calculated over a 5-fold CV. The highest mean per metric and endpoint is highlighted (bold).

Figure 7. Distribution of the validity, efficiency, and F1 score values obtained within the 5-fold CV framework for the (a) MNT, (b) DILI, and (c)
DICC CP models built on the different descriptor sets after feature selection. The CHEM descriptor set includes the molecular fingerprint and
physicochemical descriptors; the BIO descriptor set includes the predicted p-values for a set of biological endpoints (bioactivity descriptor); the
CHEMBIO descriptor set includes the previous two descriptor sets. Significant differences in the distribution (p-value <0.05) are denoted by a star.
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To evaluate the influence of the predicted bioactivities on
model performance, the results of the in vivo toxicity CP
models (including feature selection with lasso) based on the
CHEM, BIO, and CHEMBIO descriptor sets were analyzed
for each of the three in vivo endpoints.
For the MNT endpoint, the mean validities obtained by the

two models including the BIO descriptor set (0.82 (±0.03)
with the BIO and 0.81 (±0.03) with the CHEMBIO descriptor
sets) were significantly higher than the validity of the model
trained on the CHEM descriptor set alone (mean validity of
0.77 (±0.02); Figure 7, Table 4). While the validity of the
model based on the CHEM descriptor set (0.77 ± 0.02) was
lower than the expected validity at a significance level of 0.2
(i.e., expected validity of 0.80), the validity could be restored
by adding the bioactivity descriptors (in the BIO and
CHEMBIO descriptor sets). The mean efficiency obtained
with the CHEMBIO descriptor set (0.85 ± 0.03) was
significantly higher than the one obtained with the CHEM
descriptor set alone (0.76 ± 0.05) but also higher than with the
BIO descriptor set (0.81 ± 0.05) only. The two models
including the BIO descriptor set significantly increased the
predictive performance of the single class predictions, as
reflected by the F1 score. More specifically, the model based
on the CHEM descriptor set yielded a mean F1 score of 0.61
(±0.02), while the models based on the BIO and CHEMBIO
descriptor sets both obtained a mean F1 score of 0.70 (±0.03).
Thus, the model based on the CHEMBIO descriptor set not
only increased the number of single class predictions but also
the accuracy of these predictions.
The analysis of the number and type of the features selected

with lasso for the models based on the CHEMBIO descriptor
set showed that a total of 157 features were selected, 30 of
which were bioactivity features (19%). Of the 15 features with
the highest lasso coefficients, seven were bioactivity features
and eight are chemical features (Table S10). Compared to the
models without feature selection, the efficiency of the
CHEMBIO MNT model including feature selection was
significantly higher (0.07 higher mean efficiency). Otherwise,
the difference in the performance between models with and
without feature selection (only comparing models with the
same descriptor set) was not significant.
The DILI models obtained mean validities between 0.78

(±0.05; with the CHEM descriptor set) and 0.81 (±0.04 with
the BIO and ±0.03 with the CHEMBIO descriptor sets). The
distribution of efficiencies within the CV from models trained
on the different descriptor sets was not significantly different.
However, the mean efficiencies ranged from 0.83 (±0.07; with
the BIO descriptor set) to 0.91 (±0.04; with the CHEM
descriptor set; Figure 7). The mean F1 score based on the

single class predictions was also comparable among the three
models and was between 0.74 (±0.05) with the CHEM
descriptor set and 0.77 (±0.03) with the CHEMBIO
descriptor set. Although there is no model for DILI that
outperforms the others, the models including biological
features (CHEMBIO and BIO) have a slightly higher mean
validity and F1 score (while a lower number of single class
predictions is obtained compared to the model trained on the
CHEM descriptor set). Thus, both the BIO and CHEM
descriptor sets may contain relevantbut not complement-
inginformation for the prediction of the DILI endpoint. In
the model based on the CHEMBIO descriptor set, 648
features were selected by the lasso model, 59 of which were
bioactivity features (9%). The smaller percentage of bioactivity
features (compared to the number of features in the MNT
model) among the selected features also reflects the fact that
including the bioactivity descriptor set did not improve the
performance of the models significantly for this endpoint.
Nevertheless, among the 15 features with the highest lasso
coefficients, nine were bioactivity features and six were
chemical features (Table S10). Compared to the models
without feature selection by lasso, the efficiencies of the BIO
and CHEMBIO models were significantly increased (up to
0.08 higher mean efficiency).
In the case of the DICC endpoint, the models based on each

of the three different descriptor sets yielded mean validities of
0.79 (±0.02). The models trained on the BIO and CHEMBIO
descriptor sets showed significantly higher efficiencies (0.96 ±
0.02 and 0.94 ± 0.01, respectively) than the model trained on
the CHEM descriptor set (0.84 ± 0.02, Figure 7). Not only the
ratio of single class predictions (i.e., efficiency) was improved
in the models including the BIO descriptor set but also the
quality of these predictions. The two models including the BIO
descriptor set obtained significantly higher F1 scores (mean F1
score of 0.81 (±0.01) with the BIO and 0.82 (±0.01) with the
CHEMBIO descriptor sets) than the model based on the
CHEM descriptor set (mean F1 score of 0.72 (±0.03)). The
significantly better performance of the DICC models making
use of the BIO descriptor set over the DICC models based
solely on CHEM descriptors is also reflected in the nature of
the features selected by lasso from the CHEMBIO descriptor
set: among the 666 features selected, 101 are bioactivity
features (15%). Furthermore, the bioactivity features were
assigned high coefficients by the lasso model, and from the top
50 features (ranked after the mean coefficient), 34 belong to
the bioactivity descriptor set (15 out of the top 15 features are
bioactivity features; Table S10). Compared to the models
without feature selection, the efficiencies of the two models
including the BIO descriptor set decreased when the feature

Table 5. Summary of Model Performances of the ChemBioSim Models and Existing Methods

endpoint model
mean

sensitivity
mean

specificity evaluation modeling approach comments

MNT Yoo et al. 0.54−
0.74

0.77−0.93 5% leave-
many-out

Leadscope Enterprise and CASE Ultra software variations related to different modeling
approaches

our method 0.78 0.76 5-fold CV CP built on RF models CHEMBIO model with feature selection
DILI Ancuceanu et

al.
0.83 0.66 nested CV meta-model with a naiv̈e Bayes model trained

on output probabilities of 50 ML models
our method 0.78 0.78 5-fold CV CP built on RF models CHEMBIO model with feature selection

DICC Cai et al. 0.69−
0.75

0.72−0.81 5-fold CV combined classifier using neural networks
based on four single classifiers

results refer to five cardiological
complications endpoints evaluated
independently

our method 0.83 0.86 5-fold CV CP built on RF models CHEMBIO model with feature selection
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selection was included (up to 0.03 lower mean efficiency).
Also, the mean F1 score of the model trained on the CHEM
descriptor set decreased by 0.04 when including the feature
selection procedure. One possible explanation for the decrease
in performance is the potential overfitting of the models
without feature selection to the training data due to the high
number of features.
In summary, it was shown that the addition of bioactivity

descriptors in the form of predicted p-values for a set of
biological assay outcomes can improve the predictive ability of
CP models with regard to the number of single class
predictions as well as to the quality of these predictions.
However, this effect and its magnitude were endpoint-
dependent and not achieved in all cases. It was also shown
that including feature selection before training, the models can
help to discard irrelevant features favoring those more relevant
for the specific endpoint.
Comparison with Existing Models. Several in silico

models for MNT, DILI, and DICC are described in the
literature (Table 5). However, to our knowledge, no CP
models have been previously developed for these endpoints.
Note that the studies cannot be directly compared given
differences in underlying data and techniques. Also, the
evaluation of the models differs since the quality of the
predictions of CP models is in general evaluated on single class
predictions only. However, considering existing models can
help to put the results of this study into context.
Yoo et al.33 recently collected data sets for MNT in mice and

rats, containing 1001 and 127 compounds, respectively. They
developed statistical-based models with the Leadscope and
CASE Ultra software combined with different balancing
techniques for the mouse data set based on chemical features
and structural alerts (functional groups or substructures
frequently found in molecules eliciting a determined biological
effect). Their best model with regard to specificity (i.e., the
proportion of inactive compounds correctly identified) on a
5% leave-many-out framework yielded a mean specificity of
0.93 but a mean sensitivity (i.e., the proportion of active
compounds correctly identified) of only 0.54. The model with
the highest sensitivity (and also with the most balanced
sensitivity-to-specificity ratio) obtained a mean specificity of
0.77 and a mean sensitivity of 0.74. To train our MNT CP
models, we combined the mouse and rat data sets from Yoo et
al. and added further data sources (see Materials and Methods
section) to obtain a data set with 1791 compounds. For
comparison, the specificity and sensitivity values obtained by
our models trained on the CHEMBIO descriptor set including
feature selection with lasso were also calculated (Table 5). The
CHEMBIO model for the MNT endpoint yielded a mean
specificity of 0.76 and a mean sensitivity of 0.78. Thus,
compared to the most balanced model of Yoo et al., our model
showed a slightly higher sensitivity and comparable specificity
on a significantly larger data set (790 additional compounds).
Several in silico models with adequate predictive perform-

ance have already been reported for the DILI endpoint.66−68 In
a recent study based on the same data set as our models,
Ancuceanu et al.68 built 267 different models combining
feature selection techniques with ML algorithms. Meta-models
using the output of 50 ML models as input for a final model
were developed. Their meta-model with the highest balanced
accuracy (0.75) evaluated in a nested CV was built training a
naiv̈e Bayes model on output probabilities of 50 ML models.
This model yielded a mean specificity of 0.66 and a mean

sensitivity of 0.83. In comparison, our CHEMBIO DILI model
yielded a much more balanced sensitivity-to-specificity ratio.
The mean specificity and sensitivity obtained by our model
were both 0.78.
Although in silico models for cardiological complications are

more scarce, Cai et al.35 compiled data sets for five different
cardiological complications (hypertension, arrhythmia, heart
block, cardiac failure, and myocardial infarction), on which our
DICC data set is based, and developed a combined classifier
for each of the five endpoints. These classifiers yielded mean
specificities between 0.72 and 0.81 and sensitivities between
0.69 and 0.75 (depending on the endpoint). Our CHEMBIO
model for the DICC endpoint yielded a mean specificity of
0.86 and a mean sensitivity of 0.83, thus increasing the
performance observed for the previous models (especially with
regard to the sensitivity).
Overall, our models yielded a high balanced sensitivity-to-

specificity ratio and often generally good performance. It
should be considered that the existing models used for
comparison were built on complicated and highly optimized
model architectures for the studied endpoint, while in this
study, we used simple RF models without hyperparameter
optimization embedded in a CP framework for the predictions
with the aim of comparing the different descriptors.

Analysis of Feature Importance to Discover Bio-
logical Relationships. Understanding which bioactivity
features are most important for the prediction can help to
identify the most relevant assays for an endpoint and to
discover unknown biological relationships. From the complete
CHEMBIO descriptor set (i.e., the descriptor set without
feature selection with lasso), we analyzed the 15 descriptors
that were assigned the highest feature importance values by the
RF model. The reason for using the complete set of
CHEMBIO descriptors instead of the subset of features
selected by the lasso method (which generally yields better
performing models) is that the lasso model discards highly
correlated features during the feature selection. Therefore,
feature importance analysis involving a descriptor preselection
with lasso may lead to an underestimation of the importance of
some of the features.
The RF model for the MNT endpoint ranked the features

from (i) the AMES assay, (ii) the eMolTox assay for
mutagenicity, and (iii) the eMolTox assay for agonism on
the p53 signaling pathway as the most important features
(Table S9). These three in vitro assays are known to be
biologically related to the MNT endpoint: the AMES and
mutagenicity assays evaluate the genotoxic potential of
compounds in vitro by measuring the capability of substances
to induce mutations in bacterial strains. DNA damage leading
to these gene mutations could also cause the chromosome
aberrations observed in the MNT.69 The tumor suppressor
p53 has the capacity of preventing the proliferation of cells
with a damaged genome and is also referred to as “the
Guardian of the Genome”.70 The p53 signaling pathway is
activated i.a. when DNA damage accumulates in a cell. As a
result, a mechanism of cell cycle arrest, cellular senescence or
apoptosis is initiated. Since genotoxic damage is one of the
primary triggers of the activation of the p53 signaling pathway,
the detection of agonism of the p53 pathway could be an
indication of the genotoxic activity of a compound, which
could also lead to micronuclei formation in vivo.71 The
contribution of the p53 signaling pathway for the prediction of
MNT in vivo is highlighted by the high feature importance
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assigned to features corresponding to further assays related to
this endpoint (ToxCast assays “TOX21 p53 BLA p3 ratio,”
“TOX21 p53 BLA p5 ratio,” and “TOX21 p53 BLA p2 ratio”
(each measuring the ratio of two measurements with the
inducible beta lactamase (BLA) reporter); Table S9). Also the
biological function of the constitutive androstane receptor
(CAR) and aryl hydrocarbon receptor (AhR) could explain the
high importance assigned by the model to the ToxCast assay
“TOX21 CAR antagonist” and the eMolTox assay “Activator
the aryl hydrocarbon receptor (AhR) signaling pathway.” The
AhR and the CAR are ligand-activated transcription factors
functioning as sensors of xenobiotic compounds. Upon
activation of these receptors, i.a. the expression of enzymes
involved in the metabolism of xenobiotic compounds, is
upregulated.72,73 The downregulation of enzymes detoxifying
compounds (or their metabolites) mediated by CAR
antagonists, as well as the AhR-mediated upregulation of
enzymes activating compounds to form genotoxic metabolites
seem to contribute to the observed effects in the MNT. The
remaining features among the 15 most important features for
MNT are related to the eMolTox assay “Antagonist of the
farnesoid-X-receptor (FXR) signaling pathway.” The FXR, also
called bile acid receptor, is a nuclear receptor that regulates,
among other things, bile acid and hepatic triglyceride levels.74

Its possible biological relationship with genotoxicity has not
been reported so far (to the best of our knowledge).
Comparing the features with the highest feature importance
values with RF to the features with the highest lasso
coefficients during feature selection (Table S9 and Table
S10), an overlap of the assays for AMES, the p53 signaling
pathway, and the CAR antagonism was observed, highlighting
the relevance of these biological endpoints for the prediction of
MNT.
Although in the case of DILI the performance of the RF

models making use of bioactivity descriptors was not superior
(see Table 4) over that of the models trained on chemical
descriptors only, 14 out of the 15 top-ranked features were
bioactivity features. The highest feature importance was
obtained for a chemical descriptor (smr VSA10) that captures
polarizability properties of compounds. The bioactivity
features ranked at positions 3 and 4 are the two p-values (of
the active and inactive classes) for human oral bioavailability,
respectively. Since any compound must be absorbed and
distributed in order to be able to elicit any kind of biological
response, bioavailability is essential to induce liver injury.
Moreover, orally administered substances undergo a hepatic
first pass before they become systemically available. Other than
that, several features related to modulators of G protein-
coupled receptors were of high importance (see Table S9).
Despite the lack of a clear biological relationship between liver
injury and opioid receptors (kappa, mu and delta) or
muscarinic acetylcholine receptors (M2, M3, M4 and M5),
the activity of compounds against these receptors showed high
predictivity for DILI. Between the features with the highest
feature importance values for RF and the features with the
highest lasso coefficients (Table S10) we found an overlap of
descriptors for the bioavailability, mu opioid receptor, and
muscarinic acetylcholine receptor assays.
Consistent with the DILI model, also the DICC model

assigned high ranks (rank 1 and rank 4) to the two features
related to human oral bioavailability (i.e., p-values for the
active and inactive classes). The importance of these features is
plausible, as substances first need to be absorbed in order to be

able to elicit any response. We also found the ToxCast assay
“TOX21 ERa LUC VM7 agonist”, an assay for detecting
agonists of the estrogen receptor alpha, to have a high
relevance value assigned by the DICC RF model. There is
evidence about the important correlation between estrogen
levels and cardiovascular diseases.75 The cardioprotective
effects shown by estrogen derive from the increase in
angiogenesis and vasodilation as well as the decrease in
oxidative stress and fibrosis. Another feature that was assigned
a high importance is agonism on the retinoid X receptor (RXR;
eMolTox assay “Agonist of the RXR signaling pathway” and
ToxCast assay “TOX21 RXR BLA agonist”). Following its
activation, RXR forms homo- or heterodimers with other
nuclear receptors (e.g., thyroid hormone receptor), regulating
the transcription of several genes and therefore playing a role
in diverse body functions. It has been shown that the
functionality of RXR influences, for example, the composition
of the cardiac myosin heavy chain, thus affecting the correct
functionality of the heart.76 The induction of phospholipidosis,
a phospholipid storage disorder in the lysosomes, was also
assigned a high importance value by the DICC RF model.
There is still controversy whether phospholipidosis is a toxic or
an adaptive response, as it does not necessarily result in target
organ toxicity.77 However, a high percentage of compounds
inducing phospholipidosis has been found to also inhibit the
human ether-a-̀go-go-related gene (hERG),78,79 an ion channel
that contributes to the electrical activity of the heart. Inhibitors
of hERG can lead to fatal irregularities in the heartbeat
(ventricular tachyarrhythmia).80 Another bioactivity that was
of high importance for the prediction of cardiological
complications is the agonism of the p53 signaling pathway
(ToxCast assays “TOX21 p53 BLA p2 ratio” and “TOX21 p53
BLA p3 ratio”). As already mentioned, the p53 transcription
factor is related to tumor suppressor mechanisms of the cell,
but it also inhibits the hypoxia-inducible factor-1 (Hif-1) in the
heart. Inhibition of Hif-1 hinders cardiac angiogenesis (i.e., the
formation of new blood vessels). This hindrance presents a
problem in cases of cardiac hypertrophy (an adaptive response
to increased cardiac workload), as blood pressure overload can
lead to heart failure.81,82 Recently, heart failure has also been
related to DNA damage. Higo et al.83 showed that single-
stranded DNA damage is accumulated in cardiomyocytes of
failing hearts and that mice lacking DNA repair mechanisms
are more prone to heart failure. This relationship between
DNA damage and heart failure could also explain the high
relevance assigned by the DICC RF model to the three
features related to genotoxicity in cells lacking DNA damage
response pathways (from the eMolTox assay “Differential
cytotoxicity against isogenic chicken DT40 cell lines with
known DNA damage response pathways - Rad54Ku70 mutant
cell line” and the ToxCast assay “TOX21 DT40 657”). The
comparison of the most important features for RF with the
features assigned the highest coefficients by lasso showed an
overlap of the descriptors for the bioavailability and estrogen
agonism assays. Furthermore, other assays related to
genotoxicity (and correlated with the ones with a high feature
importance shown in Table S9) were also assigned high
coefficients.
Apart from biological relationships, there are other factors

that may influence the importance values assigned to the
respective bioactivity features. One should keep in mind that
predicted p-values are used for the representation of biological
properties, not measured bioactivity values. This means that
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feature importance values are likely affected by the perform-
ance and applicability of the individual models used for
predicting the p-values. For example, bioactivity features based
on biological assay data sets with a strong overlap with the in
vivo endpoint data sets could be favored by a model, as the
predicted p -values for structurally similar compounds are likely
more accurate (as they were also used to train the bioactivity
model itself).
Therefore, the overlap between the in vivo endpoint data set

and the data sets of the selected biological assays, as well as the
performance of the biological assay models, was analyzed to
test possible correlations with the assigned feature coefficients.
Overall, we observed no strong correlation between the extent
of overlaps in the data and the assigned feature importance
values. Also, no pronounced correlation between the perform-
ance of the bioactivity CP models and the feature importance
values was observed (Figure 8), but bioactivity descriptors
predicted with models showing lower efficiencies also often
resulted in less important features.
The comparison between the data set overlap and model

performance with the coefficients obtained during feature
selection with the lasso model showed similar effects and
correlations to the feature importance of the RF models
discussed here (Figure S5).
In general, it was observed that the most predictive

biological assays have a clear biological relationship with the

corresponding in vivo endpoint. However, not all biological
assays with a clear biological connection were assigned a high
feature importance. Moreover, biological assays with a less
obvious biological relationship were sometimes given a high
relevance, as they may describe a more general behavior of the
compounds in biological systems. These less obvious relation-
ships could also reflect yet unknown effects and point to
further lines of investigation.

■ CONCLUSIONS
In this work, we have explored the potential of incorporating
predicted bioactivities to improve the in silico prediction of in
vivo endpoints beyond the level of accuracy reached by
established molecular descriptors. More specifically, in the first
part of this work, we collected 373 compound data sets with
biological assay outcomes from the literature for modeling, and
in the second part, we developed an elaborate conformal
prediction framework in combination with the random forest
algorithm, with the aim to identify the scope and limitations of
the developed bioactivity descriptors for in vivo toxicity
prediction on three selected in vivo endpoints (MNT, DILI,
and DICC).
Overall, valid in vivo toxicity CP models could be produced

with the different descriptors for all endpoints. For the MNT
and DICC endpoints, the incorporation of predicted
bioactivities was highly beneficial for the performance of the

Figure 8. Mean feature importance reported by the RF model for the bioactivity descriptors in relationship with the percentage of overlapping
compounds (of the in vivo data set), the efficiency and F1 score of the models for each biological assay. For each of the 373 biological assays, the
highest mean feature importance of the two p-values used as descriptors (for the active and inactive classes of each assay) was taken. The feature
importance values were normalized with a min-max normalization (from 0.01 to 1; see Materials and Methods section) for easier comparison.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00451
J. Chem. Inf. Model. 2021, 61, 3255−3272

3268



models. Compared to the models based only on chemical
descriptors, the mean efficiencies of the models for MNT and
DICC including bioactivity descriptors increased by 0.09
(from 0.76 to 0.85) and 0.12 (from 0.84 to 0.96), respectively.
The mean F1 scores also increased by 0.09 (from 0.61 to 0.70)
and 0.10 (from 0.72 to 0.82), respectively. The performance of
the model for the DILI endpoint did not significantly improve
by the integration of bioactivity descriptors, but a slight
increase in the mean F1 score was also observed. The chemical
and bioactivity descriptors may not complement each other for
the prediction of DILI, which could explain the lower influence
of the selected descriptor set on the performance. The
prediction of the DILI endpoint may be especially challenging
due to the nature of the data set, which has a reduced number
of compounds and combines substances producing major and
less severe effects in the active class. Further investigations are
needed to determine how to improve the learning power of
ML models for this endpoint.
In general, applying a feature selection procedure with a

lasso model prior to model training with RF increased the
mean efficiency of the models (up to 0.08 for the MNT and
DILI endpoints). Feature selection proved especially beneficial
in the models including the bioactivity descriptor set, as some
biological assays may be redundant or not related to the in vivo
endpoints.
The analysis of the most important features of the models

based on the CHEMBIO descriptor set for each in vivo
endpoint showed that generally these features had an
explainable relationship with the biological mechanism eliciting
the toxicity in vivo. For instance, some of the most important
features for the MNT, an in vivo genotoxicity assay, are
measuring genotoxicity in vitro or are involved in tumor
suppressor mechanisms of the cells. In the case of the DILI and
DICC endpoints, human oral bioavailability was ranked as one
of the most important features, as bioavailability is an
unavoidable requirement to elicit organ toxicity. Furthermore,
the high feature importance assigned to assays with a less clear
biological relationship could hint to unknown interactions that
might help to better understand the toxic mechanisms.
The determination of which features will make the largest

impact on the in vivo models prior to model development
remains a difficult task since there are many factors influencing
the relevance of the bioactivity features. However, using
biological assays with known biological relevance for the in
vivo endpoints is a well-suited approach. Also, for which in
vivo endpoints the bioactivity descriptor will enhance the
results cannot be predicted beforehand and may require
evaluation case-by-case.
Overall, the approach presented in this work shows how the

prediction of in vivo endpoints, which entail a high complexity
due to all interactions taking place in biological systems, can be
improved by the incorporation of bioactivity fingerprints.
Moreover, the CP framework supporting the developed
models also presents the advantage of intrinsically defining
the applicability domain of these models and ensuring a
defined error rate. Our approach also showed that bioactivity
information can be included in the form of predicted
probabilities, opening the possibility to apply these models
directly on new compounds, without the need to fill their
bioactivity profile experimentally. The bioactivity CP models
for deriving the predicted bioactivities as well as the in vivo
toxicity CP models trained on the different descriptor sets (and

including feature selection with lasso) are freely available for
download (https://doi.org/10.5281/zenodo.4761225).84

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00451.

Loading plot of the PCA; UMAP projections for the
three in vivo endpoints on the CHEM and the
CHEMBIO descriptor sets; PCA of the biological assays
with a mean F1 score of 1.0; distribution of the
performance over 5-fold CV for the models for the three
in vivo endpoints without feature preselection with
lasso; scatter plots of lasso coefficients vs data set overlap
and model performance of the models for the biological
assays (PDF)
Download links, queries, and MD5 file checksum of the
in vivo endpoint data sets; download links, queries, and
MD5 file checksum of the biological assay data sets; data
set information for the biological assays used to build the
bioactivity descriptors; list of molecular descriptors used
in principal component analysis; average performance of
the CP models built on the biological assay data sets
average performance of the CP for the three in vivo
endpoints without feature preselection with lasso; top 15
features with the highest feature importance values for
the three in vivo endpoints; top 15 features with the
highest lasso coefficients for the three in vivo endpoints
(ZIP)
KNIME workflow for the preparation of the molecular
structures and calculation of the CHEM descriptors
(ZIP)

■ AUTHOR INFORMATION
Corresponding Authors

Johannes Kirchmair − Department of Pharmaceutical
Sciences, Faculty of Life Sciences, University of Vienna,
Vienna 1090, Austria; orcid.org/0000-0003-2667-5877;
Phone: +43 1-4277-55104; Email: johannes.kirchmair@
univie.ac.at

Miriam Mathea − BASF SE, Ludwigshafen am Rhein 67063,
Germany; orcid.org/0000-0002-3214-1487; Phone: +49
621 60-29054; Email: miriam.mathea@basf.com

Authors
Marina Garcia de Lomana − BASF SE, Ludwigshafen am
Rhein 67063, Germany; Department of Pharmaceutical
Sciences, Faculty of Life Sciences, University of Vienna,
Vienna 1090, Austria; orcid.org/0000-0002-9310-7290

Andrea Morger − In Silico Toxicology and Structural
Bioinformatics, Institute of Physiology, Berlin 10117,
Germany; orcid.org/0000-0003-4774-6291

Ulf Norinder − MTM Research Centre, School of Science and
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S2 

Figure S1. Loadings plot of the PCA based on a selection of interpretable molecular 

descriptors generated with RDKit on the global in vivo toxicity data set. The loadings plot 

shows how strongly each feature influences a principal component. 
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Figure S2. UMAP projections for the three in vivo endpoints (MNT in vivo, DILI and 

DICC) on (A) the CHEM descriptor set and (B) the CHEMBIO descriptor set.  



S4 

Figure S3. Principal component analysis based on a selection of interpretable molecular 

descriptors generated with RDKit. The PCA was derived from the merged data set of three 

eMolTox assays (“Modulator of Neuropeptide Y receptor type 1”, “Modulator of Urotensin 

II receptor” and “Agonist of Liver X receptor alpha”) for which the CP models yielded 

mean F1 scores on the single class predictions of 1.0. The active and inactive compounds of 

these data sets are located in differentiated parts of the chemical space, facilitating their 

classification. 
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(c)  

Figure S4. Distribution of the validity, efficiency and F1 score values obtained within the 5-

fold CV framework for the (a) MNT, (b) DILI and (c) DICC CP models built on the 

different descriptor sets without feature selection. The CHEM descriptor set includes the 

molecular fingerprint and physicochemical descriptors; the BIO descriptor set includes the 

predicted p-values for a set of biological assays (bioactivity descriptor); the CHEMBIO 

descriptor set includes the previous two descriptor sets. Significant differences in the 

distribution (p-value < 0.05) are denoted by a star. 
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Figure S5. Mean coefficient reported by the lasso model for the bioactivity descriptors in 

relationship with the percentage of overlapping compounds (of the in vivo data set), the 

efficiency and F1 score of the models for each biological assay. For each of the 373 

biological assays, the highest mean coefficient of the two p-values used as descriptors (for 

the active and inactive classes of each assay) was taken. The coefficients higher than 0 were 

normalized with a min-max normalization (from 0.01 to 1; see Materials and Methods 

section) for easier comparison. 



Results

4.4 Assessing the calibration in toxicological in vitro

models with conformal prediction

In our previous studies, CP was used for confidence estimation (see Sections 4.1 and

4.2) and to generate bioactivity descriptors (see Section 4.3). In the following project, a

third potential application of CP will be explored, i.e. the use of CP for the mitigation of

data drift effects. While the CP framework is designed to yield valid models given that

training and test data are exchangeable, this exchangeability assumption is not always

fulfilled. CP models are typically well-calibrated within a cross-validation, but validity

may drop when the models are applied to a batch of new query compounds. Violations of

the exchangeability assumption may not be uncommon. They occur, for example, when

a new chemical space is explored, or when data is produced in different laboratories.

In the following work, data drift effects will be studied with the example of the Tox21

datasets, a collection of toxicological in vitro datasets, that were originally produced for

a data challenge and subsequently released in three subsets. Multiple potential reasons

for poor model calibration will be discussed and a strategy to mitigate effects of data

drifts exploiting the CP framework will be introduced.
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Abstract 

Machine learning methods are widely used in drug discovery and toxicity prediction. While showing overall good 
performance in cross-validation studies, their predictive power (often) drops in cases where the query samples have 
drifted from the training data’s descriptor space. Thus, the assumption for applying machine learning algorithms, that 
training and test data stem from the same distribution, might not always be fulfilled. In this work, conformal predic-
tion is used to assess the calibration of the models. Deviations from the expected error may indicate that training 
and test data originate from different distributions. Exemplified on the Tox21 datasets, composed of chronologically 
released Tox21Train, Tox21Test and Tox21Score subsets, we observed that while internally valid models could be 
trained using cross-validation on Tox21Train, predictions on the external Tox21Score data resulted in higher error rates 
than expected. To improve the prediction on the external sets, a strategy exchanging the calibration set with more 
recent data, such as Tox21Test, has successfully been introduced. We conclude that conformal prediction can be used 
to diagnose data drifts and other issues related to model calibration. The proposed improvement strategy—exchang-
ing the calibration data only—is convenient as it does not require retraining of the underlying model.

Keywords:  Toxicity prediction, Conformal prediction, Data drifts, Applicability domain, Calibration plots, Tox21 
datasets

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Machine learning (ML) methods are ubiquitous in drug 
discovery and toxicity prediction [1, 2]. In silico toxicity 
prediction is typically used to guide toxicity testing in 
early phases of drug design [3]. With more high-quality 
standardised data available, the (potential) impact of ML 
methods in regulatory toxicology is growing [4]. The col-
lection of available toxicity data is increasing, thanks in 
part to high-throughput screening programs such as 
ToxCast [5] and Tox21 [6, 7], but also with public-private 
partnerships such as the eTOX and eTRANSAFE pro-
jects, which focus on the sharing of (confidential) toxicity 

data and ML models across companies [8, 9]. In any case, 
no matter which underlying data and ML method is used, 
it is essential to know or assess if the ML model can be 
reliably used to make predictions on a new dataset.

Hence, validation of ML models is crucial to assess 
their predictivity. Several groups investigated random vs. 
rational selection of optimal test/training sets, e.g. using 
cluster- or activity-based splits, with the goal of better 
reflecting the true predictive power of established models 
[10–14]. Martin et al. [11] showed that rational selection 
of training and test sets—compared to random splits—
generated better statistical results on the (internal) test 
sets. However, the performance of both types of regres-
sion models on the—artificially created—external evalua-
tion set was comparable.

Thus, further metrics to define the applicability domain 
(AD), the domain in which an ML classifier can reliably 
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be applied [15–21], are needed. Besides traditional met-
rics accounting for chemical space coverage, Sheridan 
[20] discussed uncertainty prediction regression mod-
els, fitted with the activity prediction errors as labels and 
diverse AD metrics as descriptors (e.g. accounting for 
variation among RF tree predictions, predicted activity 
ranges with different confidence, or similarity to nearest 
neighbours). Since in classification models, the response/
activity is a categorical value, only the chemical space 
remains to define the AD. Mathea et al. [15] categorised 
the available methods into novelty and confidence esti-
mation  techniques. The former consider the fit into the 
underlying chemical descriptor space as a whole, whereas 
the latter focus on the reliability of predictions, i.e. data 
points may be well embedded in the descriptor space but 
abnormal regarding their class label.

A popular method for confidence estimation is con-
formal prediction (CP), which has in recent years been 
widely applied in the drug discovery and toxicity predic-
tion context [15, 22]. In CP, ML models are trained, and 
with the help of an additional calibration set (inductive 
conformal prediction [23]), the predictions are calibrated, 
i.e. ranked based on previously seen observations, result-
ing in so-called conformal p-values or simply p-values 
(not to be confused with statistical p-values from hypoth-
esis testing). The design of the CP statistical framework 
guarantees that the error rate of the predictions will not 
exceed a user-specified significance level. The control of 
this significance level makes CP advantageous compared 
to traditional confidence estimation methods, such as 
distance from the decision boundary, or ensemble mod-
els [15].

ML algorithms rely on the assumption that the prob-
ability distribution of the training data and test data 
are I.I.D. (independent and identically distributed). For 
conformal prediction, a slightly weaker assumption in 
the form of exchangeability is assumed for producing 
well-calibrated models [24]. This assumption is never-
theless not always fulfilled, especially when training and 
test data come from different sources. For example, data 
drifts were observed between training and test data of the 
USPS (handwritten digits) and the Statlog Satellite (satel-
lite image) datasets [25]. Similar observations were made 
in the toxicity prediction context when applying andro-
gen receptor agonism CP models trained on publicly 
available data to an industrial dataset [26]. Some efforts 
to look at data exchangeability include studies using mar-
tingales to uncover exchangeability issues in an online 
setting [25].

In this work, we explored how the above described con-
cepts of conformal prediction can be used to assess the 
quality of the model calibration when trained and applied 
on various toxicological in vitro datasets or subsets. For 

this purpose, the freely available Tox21 datasets [27], ini-
tially prepared for a data challenge to encourage model 
building and benchmarking toxicity prediction, were 
used. We show that conformal prediction allows us to 
identify data drifts between the Tox21 datasets, and we 
also propose strategies to mitigate this.

Data and methods
In this section, first the used Tox21 datasets are intro-
duced. Second, the general conformal prediction frame-
work along with aspects such as aggregation, evaluation 
and strategies to improve the calibration are described. 
Finally, the set-up and the individual computational 
experiments of this work are explained, including a refer-
ence to code and data availability.

Data collection, preprocessing and encoding
Tox21 datasets
The investigations in this work were performed on the 
freely available Tox21 datasets [27]. They consist of 
approximately 10,000 chemicals, which were tested on up 
to 12 endpoints of the nuclear receptor (NR) and stress 
response (SR)  pathways. As the dataset was released 
in a challenge setting, the three subsets were chrono-
logically published to the Tox21 Data Challenge partici-
pants: Tox21Train for training the models, Tox21Test 
as an intermediate set for the leaderboard to check the 
performance (and for participants to improve their mod-
els), and Tox21Score as the final dataset to determine the 
best performing models. The respective datasets were 
downloaded from the US National Center for Advanc-
ing Translational Sciences [28] on January 29th, 2019. 
Each compound was provided in sdf-format together 
with a binary value (0/non-toxic, or 1/toxic) for each of 
the 12 endpoints (X if no assay outcome was available for 
the compound). Note that throughout this manuscript, 
the Tox21 datasets are, consistently, referred to as Tox-
21Train, Tox21Test and Tox21Score, this should not be 
confused with additional training and test set splits nec-
essary for the ML/CP model set-ups.

Data preprocessing
The datasets were standardised as described in Morger 
et  al. [26]. Briefly, the IMI eTox standardiser tool was 
applied to discard non-organic compounds, to exert cer-
tain structure standardisation rules, to neutralise, and to 
remove salts [29]. Before and after applying the stand-
ardisation protocol, compounds with duplicate InChIs 
(IUPAC International Chemical Identifiers [30]) but disa-
greeing labels were discarded. Furthermore, remaining 
mixtures and fragments with less than four heavy atoms 
were removed. The numbers of data points available per 
dataset and endpoint after standardisation are presented 
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in Table 1. The corresponding numbers before standardi-
sation can be found in the Additional file 1: Table S1.

Compound encoding
Converting molecules into numerical data was per-
formed using the signature molecular descriptor [32, 33], 
using the program CPSign [34] version 0.7.14. The sig-
nature descriptor has been used extensively in previous 
QSAR studies [35–37]. In brief, the signature molecular 
descriptor enumerates all fragments of a molecule using 
a specified number of atomic bonds, often referred to 
as height, here using height 1 to 3 (e.g., height 1 creates 
fragments containing a center atom and all its one-bond 
connected atoms). This descriptor is often extremely 
sparse as there is a large number of fragments in a dataset 
and each molecule contains only a small set of these frag-
ments. Herein, the count of each fragment was used; it is 
also possible to use a bit-type vector, where 0/1 indicates 
whether the fragment is present or not. The composition 
of the training set and hence the number of descriptors 
is different per endpoint. On average 36,721 (± 2363 std) 
fragments were defined per endpoint in the Tox21Train 
set, whereas the signatures for Tox21Test and Tox-
21Score are based on the fragments in Tox21Train.

Modelling
Conformal prediction
Conformal prediction (CP) is a statistical framework, 
which provides means for confidence estimation [15, 38]. 
The baseline conformal predictor is the computationally 
efficient inductive conformal predictor (ICP) [23] (indi-
cated in purple in Fig. 1a). An ICP operates on the out-
put from an underlying model. To allow calibration of the 

outputs, the training set is divided into a proper train-
ing set and a calibration set. An underlying model, most 
often a machine learning model, is fitted on the proper 
training set, predictions are made for both the test and 
the calibration set compounds, and transformed into so-
called nonconformity scores. In a binary Mondrian set-
ting [38, 39], for each test compound two p-values are 
calculated, one per class, by comparing the outcome of 
each instance with the outcomes of the corresponding 
calibration set compounds. Given the two p-values and 
a predefined significance level ǫ = 1− confidence level , a 
prediction set is calculated. The prediction set contains 
all class labels, for which the p-value is larger than the 
significance level. For more information on conformal 
prediction, see Alvarsson et  al. [40] and Norinder et  al. 
[41].

Aggregated conformal prediction methods
To reduce the variance in efficiency of ICPs, multiple 
conformal predictors can typically be aggregated [42, 43] 
(see Fig. 1). In the commonly used aggregated conformal 
prediction (ACP) [43] aggregation method, the training 
set is randomly split n times into a proper training set 
and a calibration set, with which n ICPs are trained and 
calibrated (Fig. 1a). The p-values resulting from the dif-
ferent ICPs are then averaged. While the consolidation of 
multiple models stabilises the predictions, a uniform dis-
tribution of the p-values is not necessarily observed after 
their averaging [42].

The influence of ACPs on the calibration can be ana-
lysed by additionally incorporating the recently devel-
oped synergy conformal prediction (SCP) method 
(Fig.  1b) [44]. In the SCP, one fixed calibration set is 

Table 1  Number of compounds (separated as actives and inactives) available per Tox21 dataset and endpoint after standardisation. 
The full names for the endpoints are adopted from Huang et al. [31]

Endpoint Tox21Train Tox21Test Tox21Score

Actives Inactives Actives Inactives Actives Inactives

Aryl hydrocarbon receptor (NR_AhR) 933 6687 29 236 71 506

Androgen receptor, full length (NR _AR) 373 8370 3 282 11 549

Androgen receptor, ligand binding domain (NR_AR_LBD) 295 7742 4 242 8 543

Aromatase (NR_Aromatase) 338 6362 18 192 36 466

Estrogen receptor, full length (NR_ER) 901 6290 27 231 49 441

Estrogen receptor, ligand binding domain (NR_ER_LBD) 419 7763 10 270 20 548

Peroxisome proliferator-activated receptor gamma (NR_PPAR) 204 7414 15 245 31 543

Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive 
element (SR_ARE)

1032 5653 47 181 89 433

ATAD5 (SR_ATAD5) 322 8179 25 240 36 554

Heat shock factor response element (SR_HSE) 386 7233 10 250 19 558

Mitochondrial membrane potential (SR_MMP) 1094 5719 38 195 56 457

p53 (SR_p53) 515 7542 28 234 40 543
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randomly selected, and the proper training set is split 
into n subsets to train multiple sub-models. Note that 
the analysis of other options to build an SCP, e.g. train-
ing several models using different ML algorithms on the 
same (sub)set, is out of scope for this work. The predic-
tions made with every sub-model are aggregated before 
calculating the p-values and prediction sets. A fixed 
calibration set reduces the number of available training 
compounds, but the needlessness of averaging p-values 
ensures a uniform distribution of the latter and hence 
leads to theoretically valid models [44].

Model evaluation
CP models are typically evaluated by their validity and 
efficiency [15]. Validity, for a given significance level, is 
defined as the ratio of prediction sets that contain the 
true label. The efficiency of a model is a way to measure 
the information content of the model, and we herein use 
the most widely used efficiency metric: ratio of single 
label sets at a given significance level. In binary CP, the 
possible prediction sets are { ∅ }, {0}, {1} and {0,1}, where 
only the {0} and {1} (i.e. single label sets) are informative, 
and ‘empty’ and ‘both’ sets are uninformative in a sense. 
Thus, the fraction of single label sets should be maxim-
ised for best efficiency.

Model calibration
When evaluating the predictive performance on a test 
set, deviations from the underlying assumption that all 
data come from the same distribution will lead to predic-
tions that are invalid and hence the results might be mis-
leading. In this work, we use calibration plots to identify 
deviations from acceptable levels of calibration, and also 
discuss potential mitigation strategies.

Assessing model calibration
In a conformal prediction setting, the observed error rate 
of predictions is theoretically proven to not be larger than 
the specified significance level. In return, any deviations 
between these values  may indicate data drifts (or other 
causes for the deviations, such as a too small test set). 
The level of calibration can be visualised in a so-called 
calibration plot, where the observed error rate (y-axis) 
is plotted versus the significance level (desired error 
rate, x-axis). For valid (well-calibrated) models the val-
ues should lie on the diagonal line. Deviations from this 
behaviour signals deviations from perfect calibration. We 
also include efficiency in the plot, calculated as the frac-
tion of single-class predictions. These plots, from hereon 
called calibration and efficiency plots (CEPs), were used 
in this work to assess the model calibration and efficiency 
(see Fig. 2). As a measure of the level of calibration, we 

a b
Fig. 1  Inductive conformal predictor (ICP) and the aggregated conformal prediction methods used in this study. a Aggregated conformal 
prediction (ACP) and ICP (box with purple edge): The dataset is split into a training set and a test set. The training set is further split into a proper 
training set to train the model and a calibration set. The predictions made for the test set compounds are used to calculate nonconformity scores 
(nc) and compared to nonconformity scores in the calibration set to calculate p-values and generate prediction sets. In ACP, multiple models are 
trained and calibrated with randomly selected proper training and calibration sets, and p-values from these are averaged. b Synergy conformal 
prediction (SCP): In order to ensure a uniform distribution of p-values, SCP averages the nonconformity scores instead. Multiple models are trained 
on (subsets of ) the proper training set and with each model predictions are made for the test set and for a fixed calibration set
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use the root-mean-square deviation (RMSD) between the 
specified significance and the observed error rate.

Model update strategies
In a setting where a model has been trained but new data 
on the same or a similar endpoint is made available, it is 
interesting to consider how the new data should be uti-
lised in order to improve primarily the level of calibra-
tion but also the efficiency. We investigated two update 
strategies, see Fig. 3. The first strategy included updating 

the whole training set with new data followed by subse-
quent retraining of the model (see Fig. 3a). In the second 
strategy, the proper training set was kept and only the 
calibration set was exchanged with more recent data (see 
Fig. 3b).

Study design
In this work, six different CP experiments were explored 
as illustrated in Fig. 4 and Table 2. The first experiment 
consisted of a cross-validation  (CV) using ACP on the 
Tox21Train dataset (1-internal_CV), the second com-
prised predictions with the CV-models from experiment 
1 on the Tox21Score dataset (2-pred_score). In the third 
experiment, the influence of ACP on the calibration was 
assessed by training an SCP model on Tox21Train and 
predicting Tox21Score (3-pred_score_SCP). Finally, in 
the last three experiments, the model update strategies to 
improve the calibration were evaluated (see Fig. 3). Thus, 
in experiment 4 the training set was updated (4-train_
update) and the model retrained, while in experiment 5 
and 6 only the calibration set was updated (5-cal_update 
and 6-cal_update_2).

The individual experiments were conceptualised in a 
way that the proper training sets were consistent across 
all experiments (where applicable). A fivefold CV was 
implemented, not only for internal validation (1-inter-
nal_CV), but conserved for all experiments. Hence, the 
selected data per CV loop of a fivefold CV were retained 
for all trained models (i.e. in the 1-internal_CV, 4-train_
update and 3-pred_score_SCP experiments). Specifically, 
the indices of the training compounds were saved, so that 
the same training sets could be used for the subsequent 
experiments. This ensures that the results from the dif-
ferent experiments can be directly compared. For the 
ACP model, 20 aggregated ICPs were used with 30% (of 
the training set) set aside as a calibration set and 70% as a 

Fig. 2  Calibration and efficiency plot. The dark lines show the 
mean error rate for the active (dark red) and inactive (dark blue) 
compounds. For a well-calibrated model, the error rate ideally follows 
the dashed diagonal line. The light coloured lines illustrate the mean 
efficiencies expressed as ratio of single label sets for the active (light 
red) and inactive (light blue) compounds. The shaded areas indicate 
the respective standard deviations within the fivefold CV. Class 0: 
inactive compounds, class 1: active compounds

a b
Fig. 3  Model update strategies analysed to improve calibration. a Update training set: The whole training set is updated with new data. This 
involves retraining a new model. b Exchange calibration set: Only the calibration set is updated with new data. Models can hereby be re-calibrated 
without training a new model
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proper training set. For the 3-pred_score_SCP experiment 
(using SCP, see Fig. 1a), the training set was split into a 
fixed 30% calibration set and the proper training set 
divided into four equally sized partitions. For the 4-train_
update experiment, the training set was first updated 
with the Tox21Test dataset and then split into calibra-
tion and proper training set using the above described 
ratios. For the two experiments updating the calibration 
set, the same trained CV-model from 1-internal_CV was 

calibrated with only the Tox21Test dataset (5-cal_update) 
and in the last experiment (6-cal_update_2) replacing the 
calibration examples with 50% randomly stratified split 
Tox21Score data.

SVM models were trained using  the Scikit-learn 
Python library [45] version 0.23.2 with an RFB kernel, 
C =  50, γ =  0.002) [37]. For conformal prediction, the 
nonconformist Python library [46] was used with margin 
error function, Mondrian condition [38, 39] version 2.1.0. 

Fig. 4  Overview of the experiments discussed in this work. Top: Splitting of Tox21 data into (proper) training, calibration and test set. Bottom: Data 
for training, calibration, and prediction as well as aggregator used in the specific experiments.

Table 2  Overview of the experiments discussed in this work. Note that all splits were performed randomly stratified

Nr. Name Explanation

1 internal_CV A fivefold CV, training one ACP per fold, is performed on the Tox21Train dataset and internally evaluated on the respective hold 
out data.

2 pred_score Using the CV-models trained within the above described CV, the Tox21Score data are predicted.

3 pred_score_SCP The same CV splits are applied as described above. The training set is then split into a fixed calibration set and four proportion-
ate sub-proper training sets. For each of the four corresponding sub-proper training sets, an ML model is trained. Predictions 
are made for Tox21Score (and the calibration set compounds) with every model; the four nonconformity scores (ncs) are 
averaged before calculating the p-values.

4 train_update The training set from the CV is combined with the Tox21Test set. This updated training set is then split into proper training and 
calibration set to train new ACP models for the CV set-up. Tox21Score data are predicted with the new models.

5 cal_update The CV-models from experiment 1 are used, but the calibration is updated with the Tox21Test data to predict Tox21Score.

6 cal_update_2 The CV-models from experiment 1 are used, but the calibration is updated with 50% of Tox21Score data. The other 50% of 
Tox21Score are predicted. In every fold of the CV, Tox21Score is split in two equal subsets.
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For ACP, p-values were aggregated by median (see [42]), 
for SCP the nonconformity scores were averaged before 
calculating p-values.

Code and data availability
A GitHub repository associated with this work is avail-
able at https://​github.​com/​volka​merlab/​cptox​21_​manus​
cript_​SI. It contains the signature fingerprints for all 
pre-processed datasets as well as example code to dem-
onstrate how the different ACP experiments were per-
formed. The repository also provides the result files 
containing the respective measures for all experiments, 
from which the CEPs and boxplots can be generated. The 
SCP code is available from the original SCP repository by 
Gauraha et al. [44, 47].

Results and discussion
The aim of this study was to assess the level of calibration 
between the initial release of the Tox21Train data and the 
subsequently released Tox21Score data using conformal 

prediction (experiments 1–3). In follow-up experiments, 
we also investigated two model update strategies for 
incorporating the Tox21Test data (experiments 4–6). An 
overview of the error rates and efficiencies at significance 
level 0.2 for all experiments is provided in the Additional 
file 1: Table S2.

Experiment 1: Cross‑validation on the Tox21Train datasets
Before applying a model to external data, it needs to be 
validated by ensuring that the model is internally well 
calibrated. Hence, in a first experiment (1-internal_CV), 
models were built in a fivefold CV scenario on the Tox-
21Train datasets. The models for the 12 Tox21 endpoints 
were internally valid with a mean error rate of 0.17 (± 
0.01 std) at significance level 0.2, as well as a high mean 
efficiency of 0.77 (± 0.13 std).

The error rates and efficiencies over all significance 
levels (mean and std of the five CV folds per model) 
are illustrated in CEPs (Fig.  5a) for three example end-
points (namely SR ARE, NR_Aromatase and NR_AR; the 

a

b
Fig. 5  CEPs for models trained on Tox21Train and subsequent internal cross-validation (a) and predictions on Tox21Score (b). CEPs for a selection of 
three example endpoints (SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed explanation of all 
the components in the CEP, see Fig. 2
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remaining CEPs are shown in the Additional file 1: Figure 
S1). While the models are overall well calibrated, i.e. the 
observed error rates follow the diagonal line in the CEPs, 
and the standard deviations between the individual runs 
are low, there are a few outliers. The high variance (see 
shaded areas in the CEPs) for the active compounds and 
the low efficiency for NR_AR reflect the observations 
in the Tox21 data challenge that NR_AR was one of the 
most difficult targets to model and has, with 387 active 
and 9201 inactive compounds, the lowest active com-
pound rate after NR_PPARγ and NR_AR_LBD [31]. The 
well-calibrated models were ready to be applied to exter-
nal data which stem from the same distribution as the 
training data.

Experiment 2: Model performance on the Tox21Score 
datasets
To investigate how well the CP models from the cross-
validation perform on an external dataset, predictions 
were made for the Tox21Score data (2-pred_score). A 
mean error rate at significance level 0.2 of 0.31 (± 0.12 
std) was achieved. The efficiency dropped only slightly to 
0.72 (± 0.14 std). The deviations from the diagonal line in 
the CEPs (Fig. 5b, Additional file 1: Figure S2) for most of 
the endpoints indicate that the calibration of the models 
was poor when predicting Tox21Score.

Note that predictions were also made for the Tox21Test 
compounds (shown in the  Additional file  1: Figure S3 
only, referred to as pred_test). This set-up was similar to 
the intermediate setting in the Tox21 challenge, where 
predictions on Tox21Test were decisive for the leader-
board. The mean error rate at significance level 0.2 over 
all endpoints was higher than expected (0.26 ± 0.11 std). 
So, the models were not well-calibrated for predictions 
on Tox21Test. The mean efficiency was 0.70 (± 0.15 std), 

i.e. similar to 2-pred_score  results. The poor calibration 
for the predictions on both (external) datasets is an indi-
cation that the Tox21Score and the Tox21Test data might 
come from a different distribution than the Tox21Train 
data.

Experiment 3: Influence of aggregation method 
on the calibration
Reasons for poor calibration can be the difference 
between the distribution of two datasets, but also the 
data set size (discussed later) or the aggregation strategy 
for the conformal predictor (here ACP). From a theoreti-
cal perspective, the use of ACP can affect the calibration, 
as ACPs have not been proven to be always valid [42]. In 
ACP, the p-values from all ICPs are aggregated, which 
in theory could result in a non-uniform distribution. To 
rule out that the use of ACP is the (main) reason for the 
poor calibration, the recently developed SCP aggregation 
method was applied. In the SCP framework (see Fig. 1b), 
nonconformity scores are averaged before calculating 
the p-values, which are the basis for the calibration. This 
aggregation method has been shown to be theoretically 
valid [44].

Applying SCP improved the calibration on the Tox-
21Score dataset (3-pred_score_SCP), the mean error rate 
decreased to 0.27 (± 0.12 std) and the mean efficiency at 
significance level 0.2 was 0.73 (± 0.13 std). The error rates 
and efficiencies over all significance levels are shown in 
the CEPs in Fig. 6 for the SR_ARE, NR_Aromatase, and 
NR_AR endpoints and in the Additional file 1: Figure S4 
for all 12 endpoints. It is especially noticeable that the 
calibration curves in the CEPs became less sigmoidal for 
many endpoints—such sigmoidal curves have typically 
been observed for ACPs [42, 44]. The sigmoidal shape is 
unfavourable from a theoretical perspective as it means 

Fig. 6  Results from experiment 3-pred_score_scp: SCP models were trained on Tox21Train and predictions made for Tox21Score. CEPs are shown 
for a selection of three example endpoints (SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed 
explanation of all the components in the CEP, see Fig. 2
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that the model is poorly calibrated at low and high signifi-
cance levels, but may be less problematic in an application 
context since the error rate is typically over-conservative 
at lower (i.e. relevant) significance levels. One drawback 
of SCP is the fixed calibration set, which means that part 
of the training set information is never used for training. 
Together with the smaller proper training set partitions, 
this can lead to less efficient predictions. This can be seen 
in the relatively large standard deviations of the error and 
efficiency rates in the CEPs (Fig. 6 and Additional file 1: 
Figure S4). For this reason, and since ACP is commonly 
used in literature, which makes the outcomes more com-
parable with work by other scientists, ACP was used for 
the subsequent experiments.

Summarising the results from experiment 1–3, it was 
concluded that the Tox21Test and Tox21Score data may 
originate from slightly different distributions than the 
Tox21Train data. This could be explained by knowing 
that the three Tox21 datasets were created (screening of 
compounds) at different stages. For the Tox21Train set, 
the actual “Tox21 10K dataset” [31] was used, for which 
data had been available at the start of the challenge. The 
Tox21Test dataset is part of the LOPAC1280 (Library of 
Pharmacologically Active Compounds) dataset, which 
was used to validate the Tox21 assays [31, 48]. The Tox-
21Score data were separately provided by the EPA and 
only screened during the challenge [31]. So-called data 
or assay drifts typically occur over time or when moving 
towards a different chemical space [49].

Experiment 4: Effects on calibration by updating 
the training set
When the model is not well calibrated for the predictive 
task and newer data are available, one would intuitively 
combine these additional data (i.e. Tox21Test) with the 
previous training data (i.e. from 1-internal_CV), train a 
new model, and use it to predict Tox21Score (4-train_
update). Following this strategy, the mean error rate over 
the 12 endpoints dropped to 0.23 (± 0.06 std) compared 
to the predictions with the model built on the Tox21Train 
data (2-pred_score, 0.31 ± 0.12 std). The mean efficiency 
at significance level 0.2 (0.71 ± 0.15 std) was in a simi-
lar range as with the original training set (0.72 ± 0.14 
std). Thus, the updating of the training set and retrain-
ing the model led to a small improvement in calibration 
(see CEPs in Additional file 1: Figure S5). One reason why 
we observed only a minor improvement of the calibration 
could be the sizes of the two datasets. The update set (254 
± 22 compounds) is small compared to the original train-
ing set (7647 ± 692 compounds) and has thus a lower 
influence on the new model. Furthermore, this strategy 
involves additional computational resources and the data 
of the previous model needs to be available for retraining.

Effects on calibration by updating the calibration set
Experiment 5: Replace the calibration set with observations 
from Tox21Test
An alternative to updating the whole training set is to 
replace only the calibration set with the more recent data. 
This comes with the additional advantage that the cali-
bration set can be renewed even if the training data are 
unavailable.

Updating the calibration set did result in a lower mean 
error rate of 0.21 (± 0.05 std) for the predictions on Tox-
21Score (5-cal_update). The mean efficiency at signifi-
cance level 0.2 dropped to 0.51 (± 0.18 std). The loss in 
efficiency at low significance levels can be observed in the 
CEPs (Fig. 7a and Additional file 1: Figure S6), where the 
peak in efficiency is shifted towards higher significance 
levels. In the same CEPs, the improved calibration can 
be seen in the lower error rates. For six endpoints, when 
considering inactive compounds, or 11 endpoints, with 
regard to active compounds, even overconservative valid-
ity, i.e. a lower than expected error rate was achieved.

Experiment 6: Exchange the calibration set with half 
of Tox21Score
The chronological order of how the experimental data 
were produced is given by the Tox21 challenge organisers 
[31]. However, it is not clear if the compounds contained 
in Tox21Score (and Tox21Test) were really developed 
later than those in Tox21Train. For a ‘perfect’ calibration, 
it is required that the calibration and the test set stem 
from the same distribution. To simulate this, a second 
updating experiment, i.e. 6-cal_update_2, was imple-
mented. While still using the same proper training set as 
for the former experiments, the updated calibration set 
was created from Tox21Score. In every of the five (origi-
nal) CV folds, 50% of Tox21Score was (randomly strati-
fied) selected to constitute the calibration set while the 
other 50% of Tox21Score was used as test set. With this 
set-up, calibration and test set originate from the same 
distribution. This was also reflected in the mean error 
rate of 0.18 (± 0.01 std) at significance level 0.2, which 
was in a similar range as for the 1-internal_CV with the 
original calibration set (0.17 ± 0.01 std). Similar to the 
previous updating experiment 5-cal_update, the effi-
ciency decreased to 0.50 (± 0.17 std) at significance level 
0.2. Note that also the size of the calibration set was simi-
lar to the former 5-cal_update experiment, as the Tox-
21Score set contains roughly twice as many compounds 
(551 ± 35) as Tox21Test (254 ± 22). On the other hand, 
by using half of Tox21Score for calibration, only the other 
half of the compounds was available for use as test set. 
This could lead to higher variations, e.g. in the error rate, 
especially for datasets with few test compounds. Such an 
example is shown for the NR_AR endpoint, for which 
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Tox21Score only contains 11 actives. The standard devia-
tion (shaded area) for the error rate and efficiency of the 
active compounds (red) increased compared to the 5-cal_
update experiment (Fig.  7). For the other two example 
endpoints in Fig.  7b (SR_ARE and  NR_Aromatase), the 
calibration improved considerably. Summarising, the 
CEPs in the  Additional file  1: Figure S7 illustrate how 
the calibration improved after exchanging the calibra-
tion set with data from the same distribution as the test 
set, but also how the efficiency dropped compared to the 
4-train_update strategy (Additional file 1: Figure S5). The 
decrease in efficiency in the ‘cal_update’ experiments 
is undesired but can be an acceptable trade-off in cases 
where validity could be restored.  However, it has to be 
noted that the 6-cal_update_2 scenario is not often prac-
tically applicable as the updated calibration data needs to 
be available before making predictions.

Ultimately, updating the calibration set has no impact 
on the applicability domain of the underlying model. 

Improved calibration level and lower efficiency rather 
indicate that more compounds outside the applicability 
domain might be detected and classified as ‘both’ pre-
diction sets. Thus, applying the 5-cal_update over the 
4-train_update strategy is mainly promising in a situation 
as described in this work where the number of available 
new compounds is limited.

Quantification of the calibration for all experiments
The error rates (discussed above) depend on the desired 
significance level. In the calibration plot, the error rates 
are plotted over a range of significance levels. However, 
if the model will only be applied at a certain significance 
level, obtaining a good level of calibration at that signifi-
cance level might be enough. But, if the calibration of the 
model is assessed from a theoretical perspective, all sig-
nificance levels must be considered. This was illustrated 
for the individual experiments with the help of CEPs as 

a

b
Fig. 7  Updating the calibration set with more recent data from Tox21Test (a) or Tox21Score (b). CEPs for a selection of three example endpoints 
(SR_ARE, NR_Aromatase, NR_AR). Class 0: inactive compounds, class 1: active compounds. For a detailed explanation of all the components in the 
CEP, see Fig. 2
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discussed above. To have a comparable metric, the root-
mean-square deviation (RMSD) over all significance lev-
els (step-width 0.1) was calculated.

Boxplots illustrating the RMSDs between observed and 
expected error rates over all endpoints are available in 
Fig. 8a for the active compounds and Fig. 8b for the inac-
tive compounds, and show how the error rate deviations 
behave between the individual experiments. The mean 
RMSD values (overall, actives and inactives) for all exper-
iments are provided in the Additional file 1: Table S3.

Clearly, the RMSD for the actives and inactives is low 
in the internal CV with Tox21Train (1-internal_CV) 
for most of the endpoints (mean overall RMSD: 0.022), 
while the deviations increased for the predictions on 
Tox21Score (2-pred_score, mean overall RMSD: 0.150). 
When using the SCP aggregation method (3-pred_score_
SCP), the RMSD decreased for eight endpoints, albeit, 
only by a small amount (Fig.  8, mean overall RMSD: 
0.121). Updating the training set (4-train_update, using 
ACP) led only to a small improvement of the mean 
RMSD of the active compounds (mean RMSD, actives: 
0.135, Fig.  8a), while the improvement was more dis-
tinct for the inactive compounds (mean RMSD, inactives: 
0.089, see Fig. 8b). When exchanging the calibration set 
with Tox21Test (5-cal_update), the RMSD decreased 
for 11 endpoints (except for SR_ARE, for which the cali-
bration was already very good (overall RMSD SR_ARE, 
1-pred_score: 0.055) with the original calibration set). The 
mean overall RMSD (0.054) was, however, still not at the 

same level as for 1-internal_CV. This can be attributed to 
overconservative validity, especially for the active com-
pounds (see Additional file 1: Figure S6) which led to an 
increased RMSD for several endpoints. The overconserv-
ative validity almost disappeared when the calibration set 
was exchanged with data which are inherently exchange-
able with the test set (6-cal_update_2). The mean RMSD 
(0.018) value of the inactive compounds is at a similar 
level as for the internal CV on Tox21Train (1-internal_
CV) as shown in Fig. 8b. The RMSD values of the active 
compounds vary more between the different endpoints. 
This may be explained by the small number of active 
compounds available in the calibration and test sets for 
some endpoints. To summarise, the CP models trained 
on Tox21Train were internally well calibrated (1-inter-
nal_CV) but showed poorer calibration for the prediction 
of Tox21Score (2-pred_score). Applying SCP (3-pred_
score_SCP) or updating the training set with Tox21Test 
(4-train_update) did not improve the calibration to the 
same extent as when exchanging the calibration set only 
(5-cal_update, 6-cal_update_2).

Impact of data size on the calibration
Importantly, the proofs on CP validity are made assuming 
an asymptotic number of test examples (i.e. requiring an 
infinite number of test examples) [24]. Hence, the poor 
calibration is not necessarily only due to exchangeability 
issues (or the use of ACP, for which there are no validity 
guarantees). The calibration could also be affected by the 

a b
Fig. 8  Box plots for the root-mean-square deviation (RMSD) between the expected and observed error rates for all 12 Tox21 endpoints compared 
amongst the different experiments are shown. On the left results for the active compounds (a), on the right for the inactive compounds (b) are 
plotted. Note that the y-axis ranges differ
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statistical variation due to finite test sets in all computa-
tional experiments. In the broadest sense, also the over-
conservative validity could be due to the finite number of 
test examples.

Looking at the outliers in the RMSD (Fig.  8), they 
mainly arise from endpoints NR_AR_LBD, NR_AR and 
SR_ATAD5, which are, besides NR_PPARγ , the end-
points with the smallest overall number of actives (in 
all three Tox21 datasets combined). For the NR_AR and 
NR_AR_LBD datasets, the predictive performance (both 
in validity and efficiency) is expected to be less good for 
the active compounds, as the number of available active 
compounds is very small (i.e. 3 and 4 in Tox21Test and 
11 and 8 in Tox21Score, respectively). If we have only 
eight compounds in the calibration set, this means that 
only nine different p-values can be obtained for a new 
active compound. This low resolution obviously makes 
it impossible to obtain perfect calibration. Since it is dif-
ficult to define a minimum required number of actives, 
and since the resolution for the p-values of the inactive 
compounds is much higher, results for all endpoints were 
included in the evaluation. The calibration might gener-
ally improve if the experiments were repeated on larger 
and/or more balanced datasets.

Although, the composition of the three Tox21 datasets 
may not conform with all model assumptions, this may 
more closely resemble many real-life scenarios where 
data is generated at different time points and older data 
is often used to predict new outcomes. All the more, it 
is therefore important to have strategies to improve the 
calibration and thus the application of CP models on new 
data.

Conclusions
In this work, the potential of CP to diagnose data drifts 
in toxicity datasets was investigated on the Tox21 data. 
Deviations between observed and expected error rates 
was monitored using calibration plots and quantified 
using the  RMSD from  the expected calibration level. 
Poor calibration was observed for models trained on Tox-
21Train and predictions made on Tox21Score, indicat-
ing the presence of drifts between the two datasets. The 
distribution of the data may not be the only reason for 
error rate deviations in the calibration plot. In additional 
experiments using the newly introduced SCP framework, 
it was ruled out for 10 endpoints that the employed CP 
aggregation method (ACP) has a major impact. A sec-
ond influencing factor on the calibration can be the 
small data set size. It was discussed that the calibration 
may be improved to some extent by having larger data-
sets, especially containing more active compounds, for 
model training, calibration and testing. Overall, it was 
concluded that the three Tox21 datasets likely do not 

originate from the same distribution and may be chal-
lenging for ML methods. Nonetheless, these datasets do 
reflect outcomes that may occur in experimental screen-
ing scenarios.

Two different model update strategies using the inter-
mediate Tox21Test data were investigated with the aim to 
improve the poor calibration. The calibration of predic-
tions on Tox21Score could be slightly enhanced by updat-
ing the training set with more recent data (Tox21Test) 
and retraining the models—the more natural behaviour 
if new data has been obtained. However, exchanging only 
the calibration set with newer data (Tox21Test) led to a 
slightly smaller error rate, albeit often with a reduction in 
efficiency. As an additional advantage of the 5-cal_update 
strategy, retraining of the model is not required.
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Table S1: Number of compounds available per Tox21 dataset and endpoint
before standardisation.

Tox21Train Tox21Test Tox21Score
endpoint actives inactives actives inactives actives inactives
NR AhR 950 7214 30 241 73 537
NR AR 380 8977 3 288 12 574
NR AR LBD 303 8291 4 248 8 574
NR Aromatase 360 6861 18 196 39 489
NR ER 937 6756 27 237 51 465
NR ER LBD 446 8302 10 276 20 580
NR PPAR γ 222 7957 15 251 31 574
SR ARE 1097 6067 47 186 93 462
SR ATAD5 338 8748 25 246 38 584
SR HSE 428 7718 10 256 22 588
SR MMP 1142 6174 38 199 60 483
SR p53 537 8092 28 240 41 575

Table S2: Mean ± standard deviation values over all twelve endpoints for
observed error rate and efficiency at SL 0.2 for all experiments.

nr. name error rate at SL 0.2 efficiency at SL 0.2
1 internal CV 0.17 ± 0.01 0.77 ± 0.13
2 pred score 0.31 ± 0.12 0.72 ± 0.14
− pred test* 0.26 ± 0.11 0.70 ± 0.15
3 pred score SCP 0.27 ± 0.12 0.73 ± 0.13
4 train update 0.23 ±0.06 0.71 ±0.15
5 cal update 0.21 ± 0.05 0.51 ± 0.18
6 cal update 2 0.18 ± 0.01 0.50 ± 0.17

*pred test : the CV-models from internal cv were used to make predictions on
Tox21Test.
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Figure S1: 1-internal CV: ACP models were trained and calibrated on
Tox21Train and internally validated. CEPs for all twelve Tox21 endpoints
are shown. Class 0: inactive compounds, class 1: active compounds. For a
detailed explanation of all the components in the CEP, see Figure 2.
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Figure S2: 2-pred score: ACP models were trained and calibrated on
Tox21Train and predictions were made for Tox21Score. CEPs for all twelve
Tox21 endpoints are shown. Class 0: inactive compounds, class 1: active
compounds. For a detailed explanation of all the components in the CEP,
see Figure 2.
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Figure S3: pred test: ACP models were trained and calibrated on
Tox21Train and predictions were made for Tox21Test. CEPs for all twelve
Tox21 endpoints are shown. Class 0: inactive compounds, class 1: active
compounds. For a detailed explanation of all the components in the CEP,
see Figure 2.
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Figure S4: 3-pred score SCP: SCP models were trained on Tox21Train and
predictions made for Tox21Score. CEPs for all twelve Tox21 endpoints are
shown. Class 0: inactive compounds, class 1: active compounds. For a
detailed explanation of all the components in the CEP, see Figure 2.
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Figure S5: 4-train update: The training set from Tox21Train was updated
with Tox21Test. An ACP model was retrained and predictions were made
for Tox21Score. CEPs for all twelve Tox21 endpoints are shown. Class 0:
inactive compounds, class 1: active compounds. For a detailed explanation
of all the components in the CEP, see Figure 2.
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Figure S6: 5-cal update: ACP models were trained on Tox21Train and
calibrated on Tox21Test. Predictions were made for Tox21Score. CEPs for
all twelve Tox21 endpoints are shown. Class 0: inactive compounds, class 1:
active compounds. For a detailed explanation of all the components in the
CEP, see Figure 2.
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Figure S7: 6-cal update 2: ACP models were trained on Tox21Train and
calibrated on 50% of Tox21Score. Predictions were made for the other 50%
of Tox21Score. CEPs for all twelve Tox21 endpoints are shown. Class 0:
inactive compounds, class 1: active compounds. For a detailed explanation
of all the components in the CEP, see Figure 2.
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Table S3: Mean RMSD values over all 12 endpoints, calculated for all
compounds, as well as for active and inactive compounds, separately.

nr. name all actives inactives
1 internal CV 0.022 0.032 0.022
2 pred score 0.150 0.167 0.154
− pred test* 0.116 0.180 0.119
3 pred score SCP 0.121 0.147 0.124
4 train update 0.090 0.135 0.089
5 cal update 0.054 0.073 0.058
6 cal update 2 0.018 0.057 0.018

*pred test : the CV-models from internal cv were used to make predictions on
Tox21Test.



Results

4.5 Studying and mitigating the effects of data drifts

on ML model performance at the example of

chemical toxicity data

The previous study (see Section 4.4) could show the success of recalibrating conformal

prediction models with the example of the Tox21 datasets. It would be useful, if this

strategy could also be applied to mitigate temporal data drifts, or in the case of training

and test data originating from different sources. Therefore, the recalibration strategy will

be further explored in two real-life scenarios. First, mitigating effects of temporal data

drifts will be investigated with the example of twelve toxicity-related ChEMBL datasets.

ChEMBL is one of only a few bioactivity databases, which contains temporal information

— it allows splitting the data based on the publication date. Second, conformal predic-

tion models will be trained on publicly-available liver toxicity and genotoxicity data and

the recalibration strategy will be explored to calibrate the models for application on

proprietary data from industry.
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ABSTRACT

Machine learning models are widely applied to predict molecular properties or the biological activity of small molecules on a
specific protein. Models can be integrated in a conformal prediction (CP) framework which adds a calibration step to estimate
the confidence of the predictions. CP models present the advantage of ensuring a predefined error rate under the assumption
that test and calibration set are exchangeable. In cases where the test data have drifted away from the descriptor space of the
training data, or where assay setups have changed, this assumption might not be fulfilled and the models are not guaranteed to
be valid.
In this study, the performance of internally valid CP models when applied to either newer time-split data or to external data was
evaluated. In detail, temporal data drifts were analysed based on twelve datasets from the ChEMBL database. In addition,
discrepancies between models trained on publicly available data and applied to proprietary data for the liver toxicity and MNT in
vivo endpoints were investigated. In most cases, a drastic decrease in the validity of the models was observed when applied to
the time-split or external (holdout) test sets.
To overcome the decrease in model validity, a strategy for updating the calibration set with data more similar to the holdout set
was investigated. Updating the calibration set generally improved the validity, restoring it completely to its expected value in
many cases. The restored validity is the first requisite for applying the CP models with confidence. However, the increased
validity comes at the cost of a decrease in model efficiency, as more predictions are identified as inconclusive.
This study presents a strategy to recalibrate CP models to mitigate the effects of data drifts. Updating the calibration sets
without having to re-train the model has proven to be a useful approach to restore the validity of most models.

1 Introduction
Machine learning (ML) models are usually trained — and evaluated — on available historical data, and then used to make
predictions on prospective data. This strategy is often applied in the context of toxicological data to predict potential toxic
effects of novel compounds1–6. Internal cross-validation is a common practice for assessing the performance of ML models.
When applying the model to new data, it is advisable to observe the applicability domain (AD) of an ML model7, 8. The
AD determines the compound space and the response value (label) range in which the model makes reliable predictions9.
Investigating classification models, Mathea et al.8 distinguished AD methods that rely on novelty from those relying on
confidence estimation. Novelty detection methods focus on the fit of the query samples to the given descriptor space.
Confidence estimation methods determine the reliability of the predictions by taking into account that samples may be well
embedded in the descriptor space but be unusual in terms of their class membership.

A popular method for confidence estimation is conformal prediction (CP)10, 11. The framework of an inductive conformal



predictor uses three types of datasets: proper training, calibration, and test set. The proper training set is used to train an
underlying ML model. With this model, predictions are made for the calibration and test set. According to the rank that is
obtained for the prediction outcome of the test compound as compared to the calibration set, so-called p-values are calculated
to give an estimate of the likelihood of a compound to belong to a certain class. If a significance level, i.e. an expected error
rate, is defined, the compounds are assigned labels for those classes where the p-value is larger than the significance level. For
binary classification, the possible prediction sets are ‘empty’ ({ /0}), ‘single class’ ({0}, {1}), and ‘both’ ({0,1}). Single class
predictions indicate a confident prediction for a certain class. Additionally, the CP framework recognises compounds for which
it cannot make a reliable prediction ({ /0}) and compounds at the decision boundary, for which the predictions are reliable but
indecisive ({0,1}). Provided that the calibration and test data are exchangeable, the framework of the conformal predictor is
mathematically proven to yield valid predictions at a given significance level10, 11.

The performance and applicability domain of a model are determined by the quality and quantity of the data it has been
trained on. One prerequisite for building good models is the availability of large, well distributed and consistent datasets. To
assemble large datasets, modellers often need to collect data from different sources, e.g. data which were produced in different
assays or laboratories or over longer periods of time12–14. However, data from different sources and data taken at different time
points may have distinct property distributions, reflecting, for example, the evolution of research interests or changes in assay
technologies and protocols15, 16. Since the predictivity of ML models is constrained by their AD, data drifts pose a challenge to
modelling tasks, including toxicity or bioactivity prediction.

When ML models are validated using cross-validation (CV), the data is usually randomly split into training and test data.
The resulting sets intrinsically stem from the same distribution and, typically, high model performance on the test set is observed.
Nevertheless, it has been shown that model performance can be substantially lower for datasets obtained by time-split or
datasets from other sources5, 17–19. This may be an indicator that the distribution of the data has changed. Hence, it is essential
to confirm that ML models can be applied to a specific dataset and to determine the confidence in the predictions.

The data drifts, which challenge the underlying ML models, do also affect conformal predictors when the trained and
calibrated models are applied to a new dataset. In previous work17, a new strategy was introduced to mitigate the effects related
to data drifts by exchanging the calibration set with data closer to the holdout set. The study built on the Tox21 data challenge2,
which was invented to support and compare ML models for twelve toxicity endpoints and included three subsequently released
datasets. We showed that internally valid CP models resulted in poor performance when predicting the holdout data. The
observed effects were associated to data drifts between datasets and could be mitigated by exchanging the calibration set with
the intermediate set — without the need to retrain the models.

Here, we aim to expand and challenge our previous analysis on the recalibration strategy by a wider variety of datasets,
beyond Tox21. Furthermore, we utilise enhanced compound encodings which combine molecular fingerprints with predicted
bioactivity descriptors, specifically designed for toxicity prediction12, 20.

First, temporal data drifts are studied using twelve toxicity-related endpoint datasets extracted from the ChEMBL
database21, 22. The ChEMBL database is a manually curated data collection containing quantitative and qualitative mea-
surements for more than two million compounds tested in up to more than 1.3 million assays. The large size of the database
makes it a primary data resource for machine learning, in particular in the context of activity prediction23–25 and target
prediction26, 27. Moreover, it is one of only a few publicly available bioactivity databases that provides temporal information on
bioactivity measurements in the form of the publication date.

In the second part of this study, the impact on model validity from using data with differences in assay setups and source
laboratories is investigated. Therefore, models were trained on public datasets for two in vivo endpoints, i.e., ‘liver toxicity’ and
‘in vivo micro nucleus test (MNT)’, and applied to predict proprietary data. Both, liver toxicity and MNT are in vivo endpoints
with high relevance for the registration and authorisation of new chemical compounds28–30.

2 Data and Methods
In this section, first, the used datasets are described, including chemical structure standardisation, data splitting and compound
encoding. Second, the CP setup together with the individual modelling strategies is explained. Finally, further data analysis and
visualisation methods are outlined.

2.1 Data assembly
2.1.1 Dataset description, collection and filtration
Large toxicity-related ChEMBL datasets To investigate temporal data drifts, the ChEMBL database21, 22 version 26 was
queried following the protocol described by Škuta et al.31. In short, the presented 29 target datasets containing more than
1000 compounds were downloaded with measured pIC50 values and publication year. Next, the datasets were cleaned to
handle molecules contained more than once in a target dataset, called duplicates (see Supplementary Material Section A1.1).
Then, compounds were standardised (see Section 2.1.2) and the datasets temporally split (see Section 2.1.4). Activity was
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assigned based on the target family and following the activity cutoff suggestions by the Illuminating the Druggable Genome
Consortium32. Only datasets with more than 50 active and 50 inactive compounds in the holdout set were retained for the study.
From the resulting 20 target datasets, only twelve targets that are linked to toxicity33, 34 (see Supplementary Material Section
A1.1 and Table 1) were selected for this study.

Table 1. ChEMBL target datasets used to investigate data drifts including the target name and the number of active and
inactive compounds.

ChEMBL ID name active compounds inactive compounds
CHEMBL220 Acetylcholinesterase (human) 1334 1339
CHEMBL4078 Acetylcholinesterase (fish) 2056 1755
CHEMBL5763 Cholinesterase 1871 884
CHEMBL203 EGFR erbB1 2955 1104
CHEMBL206 Estrogen receptor alpha 826 590
CHEMBL279 VEGFR 2 3782 1392
CHEMBL230 Cyclooxygenase-2 1148 872
CHEMBL340 Cytochrome P450 3A4 2501 815
CHEMBL240 HERG 1601 3375
CHEMBL2039 Monoamine oxidase B 1413 1121
CHEMBL222 Norepinephrine transporter 406 1160
CHEMBL228 Serotonin transporter 449 1662

Public and inhouse datasets for liver toxicity and MNT To assess drifts between data originating from different sources,
public and proprietary datasets for two in vivo endpoints (drug-induced liver injury (DILI) and micro nucleus test (MNT)) were
collected. For CP model training, the same public datasets for DILI and MNT were used as compiled and described by Garcia
de Lomana et al.12. After data pre-processing and deduplication the respective DILI dataset consists of 445 active and 247
inactive compounds; the MNT dataset of 316 active and 1475 inactive compounds (see Supplementary Material Section A1.2
for more details). Note that we will from here on refer to the DILI endpoint as ‘liver toxicity’.

Two proprietary BASF SE inhouse datasets for liver toxicity and MNT in vivo were used as independent test and update sets.
In short, liver toxicity was measured in rats according to the OECD Guidelines 407, 408 and 42235–37. MNT was determined in
mice following the OECD Guideline 474, or in (non-GLP) screening assays29. The liver toxicity dataset contains 63 active and
77 inactive compounds and the MNT dataset contains 194 active and 172 inactive compounds, after data pre-processing and
deduplication (see Supplementary Material Section A1.3).

2.1.2 Chemical structure standardisation
Standardisation of chemical structures was conducted as described by Garcia de Lomana et al.12. Briefly, the SMILES of
each of the compounds were standardised with the ChemAxon Standardizer38 node in KNIME39, 40 to remove solvents and
salts, annotate aromaticity, neutralise charges and mesomerise structures (i.e. taking the canonical resonant form of the
molecules). Multi-component compounds, as well as compounds containing any unwanted element were removed from the
dataset. Canonical SMILES were derived for the standardised compounds and used for removing duplicates. In cases where
duplicate SMILES had conflicting labels, the compounds were removed from the dataset.

2.1.3 Compound encoding
To encode the molecules for training the CP models, the ‘CHEMBIO’ descriptors developed by Garcia de Lomana et al.12 were
used. These descriptors combine chemical with predicted bioactivity descriptors to describe the compounds. The chemical
descriptor comprises a 2048-byte Morgan count fingerprint (with a radius of 2 bonds)41 and a 119-byte physicochemical
property descriptor from RDKit42 (calculated with KNIME39, 40).

For deriving the bioactivity descriptors, Garcia de Lomana et al.12 first built binary classification CP models for 373 in
vitro toxicological endpoints, such as cytotoxicity, genotoxicity and thyroid hormone homeostasis (including datasets from
ToxCast33, eMolTox43 and literature). These models were used to calculate the p-values (see Section 2.2.1) per target endpoint
model and class, thus, resulting in a 746-byte predicted bioactivity fingerprint. For use in CP-based toxicity prediction model
studies, the individual features were scaled prior to model training. The combination of chemical and bioactivity descriptors
into the 2913-byte ‘CHEMBIO’ descriptor has shown superior performance in the CP study by Garcia de Lomana et al.12 and
was therefore used in this study.
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2.1.4 Data splitting
After standardising the compounds (see Section 2.1.2), the target datasets derived from the ChEMBL database were temporally
split based on the publication year. This resulted in four subsets, i.e. train, update1, update2, and holdout set, see Table 2. Thus,
compounds were ordered by publication year (old to new).

Aiming for the typically used ratio of 80% training (further divided in 70% proper training and 30% calibration set) and
20% test set5, 6, 44, year thresholds were set to assign at least 50% of the total compound number to the proper training set, and
at least 12% to each calibration set. The remaining compounds were used as holdout data (see Supplementary Material Section
A1.4 for more details).

For the computational experiments with the liver toxicity and MNT data, the standardised public datasets were used for
training. The standardised proprietary data were time-split into update and holdout set based on the internal measurement date
(see Supplementary Material Section A1.4 for details). Due to the small number of available inhouse compounds, only one
update set was deducted, containing at least 50% of the total available inhouse dataset, see Table 2.

Table 2. Number of active and inactive compounds and year threshold used for the time split. ChEMBL data were temporally
split into training, update1, update2 and holdout set based on the publication year. Models for the micro nucleus test and liver
toxicity endpoint were trained on public data while the inhouse data were split into update and holdout set based on the internal
measurement date.

training set update1 set update2 set holdout set
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CHEMBL220 2014 802 840 2016 211 248 2017 217 138 2020 104 113
CHEMBL4078 2014 1031 1008 2015 259 275 2016 267 202 2020 499 270
CHEMBL5763 2015 1125 600 2016 302 75 2017 307 95 2020 137 114
CHEMBL203 2012 1660 433 2014 526 213 2016 428 291 2020 341 167
CHEMBL206 2006 437 325 2012 117 63 2016 114 97 2020 158 105
CHEMBL279 2010 1955 649 2013 523 307 2014 618 137 2020 686 299
CHEMBL230 2010 475 542 2013 218 78 2015 237 80 2020 218 172
CHEMBL340 2012 1272 496 2014 439 153 2015 341 59 2020 449 107
CHEMBL240 2012 797 1938 2014 301 413 2016 265 526 2020 238 498
CHEMBL2039 2014 710 645 2015 189 192 2017 380 212 2020 134 72
CHEMBL222 2009 231 673 2011 61 227 2015 40 206 2020 74 54
CHEMBL228 2009 242 858 2011 97 373 2014 31 235 2020 79 196
micro nucleus test - 1475 316 2005 70 134 - - - 2020 98 50
liver toxicity - 247 445 2011 42 48 - - - 2020 35 15

*thresh: Data points published (ChEMBL) or measured (micro nucleus test, liver toxicity) until this year threshold are included
in the corresponding subset.

2.2 Conformal Prediction
2.2.1 Inductive and aggregated conformal predictor
The framework of an inductive conformal predictor (ICP) (see Fig. 1a) uses three types of datasets: proper training set,
calibration set, and test set45. On the proper training set, an underlying ML model is fitted to make predictions for the calibration
and test set instances. The outcomes, i.e. the probabilities for a compound to be assigned to class 0 or 1 in binary classification,
are converted into so-called nonconformity scores (nc scores) by using a nonconformity function. Here, the inverse probability
error function, which is typical used together with random forest (RF) models, is applied20, 46–48.
For each test data point, the calibrated model outputs two so-called p-values in the binary setup. Therefore, the nc scores of the
calibration set are sorted into two lists, one per class. The ratio of nc scores of the calibration set, which are larger than the
nc score for a test sample, results in a p-value. If a significance level, i.e. an expected error rate, is selected, prediction sets can
be derived. They contain the class labels for which the p-value is larger than the significance level. For binary classification,
the possible prediction sets are { /0}, {0}, {1}, {0,1}. Given that calibration and test data are exchangeable, the CP framework
ensures that the observed error rate does not exceed the significance level10, 11.

In an ICP, only part of the information available in the training set is used for calibration as the other part is required to fit
the underlying ML model. To improve the informational efficiency, multiple ICPs are typically aggregated in an aggregated
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conformal predictor (ACP)47, as in this study. Therefore, the training and prediction part (see yellow box in Fig. 1) is repeated
n (here n = 20) times. In fact, the training set was 20 times split into calibration and proper training set, 20 models were built
on the proper training set and calibrated with the corresponding calibration set. Each compound was predicted 20 times and the
calculated p-values were aggregated taking the median value49.

2.2.2 Evaluation of conformal predictors
Conformal predictors are generally evaluated with respect to their validity, efficiency and accuracy of single class predictions.
Validity is defined as the ratio of prediction sets containing the correct class label. As predictions are considered correct when
they contain the correct label, ‘both’ predictions ({0,1}) are always correct. Empty prediction sets ({ /0}) count as erroneous.
Efficiency of the predictions can be assessed by the ratio of prediction sets containing a single class label, i.e. {0} and {1}. The
ratio of these single class predictions containing the correct label is often calculated as the single class accuracy. In the case of
unbalanced datasets, class-wise metrics, i.e. separate metrics for the compounds belonging to the active and inactive class, can
also be calculated. Balanced metrics (e.g. balanced validity, balanced efficiency and balanced accuracy), are then calculated as
the arithmetic mean of the class-wise metrics.

2.2.3 CP setup and experiments
In this work, it was further explored how effects of data drifts can be mitigated by recalibrating a CP model. In the ‘update
calibration set’ strategy, the original calibration set (Fig. 1a, blue-purple box) is exchanged with data assumed to be closer to
the holdout set (Fig. 1b). Three main experiments were performed and compared. First, an internal fivefold CV experiment was
performed (Fig. 1b.i). Hence, the training set was five times randomly stratified split into 80% training and 20% test set. Within
each CV fold, an ACP consisting of 20 ICPs (inverse probability error function, mondrian condition, nonconformist Python
library, version 2.1.046) using an underlying RF classifier (500 estimators, else default parameters, scikit-learn Python library,
version 0.22.250) was implemented. Each model was trained on 70% (proper training set) and calibrated on 30% (original
calibration set) of the selected training data. The test sets from the CV-splits were predicted with the CV-models calibrated
with the original training set. Second, the same calibrated CV-models were used to predict the holdout set, i.e. the ‘newest’
data from the ChEMBL datasets or the inhouse DILI and MNT test sets (Fig. 1b.ii). Third, the same models were recalibrated
using the update sets, which were determined as described in 2.1.4. For the experiments with the ChEMBL data, two update
sets (update1 and update2) were used each, as well as a combination of update1+update2. For the inhouse data, only one
update set was used. The recalibrated models were used to make predictions on the same holdout sets (Fig. 1b.iii) All models
were evaluated at a significance level of 0.2, as it has been shown that this level offers a good trade-off between efficiency and
validity51, 52.

2.3 Visualisation and further data analysis
Visualisation Data visualisations were created using matplotlib version 3.2.153.

UMAP For descriptor space analysis, UMAPs were generated on the CHEMBIO fingerprints using the umap-learn Python
library, version 0.4.654. The parameters were set to n_neighbors = 100, min_distances = 0.8 and distance_metric =
”euclidean”, meaning that a range of 100 nearest neighbours was considered to learn the manifold data structure. The
distance between two points plotted in the UMAP is at least 0.8 and the distance between two data points is calculated using the
euclidean distance.

Compound clustering To analyse commonalities between compounds per set, compounds were clustered, using the
"Hierarchical Clustering" node in KNIME. The clusters were annotated based on the Tanimoto coefficients of Morgan
fingerprints (1024 bits, radius 2) between all compound pairs. A distance threshold of 0.5 was chosen, i.e., clusters were split
so that all compounds within a cluster have a smallest distance below the threshold. Since the analysis focused on detecting
clusters that spread over more than one set (training/test/update/holdout), clusters with less than two compounds, i.e. singletons,
were not considered. Clustering and fingerprint calculation was performed in KNIME.

2.4 Availability of data and code
Code is available on GitHub at https://github.com/volkamerlab/CPrecalibration_manuscript_SI. The
GitHub repository contains example notebooks on how to perform the recalibration experiments on a selected endpoint as well
as on all twelve ChEMBL endpoints together. The code can be adapted and used for other datasets.

The input data for the twelve ChEMBL endpoint models can be retrieved from https://doi.org/10.5281/zenodo.
5167636. The public data for the liver toxicity and in vivo MNT endpoints are freely available as described in Garcia de
Lomana et al.12. The in house data for liver toxicity and in vivo MNT are proprietary to BASF SE.
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Figure 1. a) Framework of an inductive conformal predictor (ICP). An ML model is fitted on the compounds of the proper
training set to make predictions for the calibration and test (holdout) set instances. The predictions are transformed into
nonconformity scores (nc scores). By comparing the outcome of the test compound to the outcomes of the calibration set,
p-values are calculated, which give an estimate on the likelihood of the compound to belong to a certain class. If a significance
level is selected, prediction sets are calculated. Blue-purple box: In the ‘update calibration set’ strategy, the calibration set is
updated. Yellow box: If multiple conformal predictors are aggregated, the part highlighted in the yellow box is repeated n
times. b) Overview of CP experiment setup: Experiments (i) CV, and prediction of holdout set using ii) original calibration set,
iii) update calibration sets to investigate temporal data drifts and drifts between data from different origin, i.e., ChEMBL and
inhouse data.

3 Results and Discussion

When using ML algorithms, it is assumed that the training data and test data are independent and identically distributed
(I.I.D.). Similarly, conformal prediction (CP) models are designed to be valid if training and test data originate from the same
distribution, i.e., are exchangeable10. This prerequisite, however, is not always fulfilled, especially when new compound spaces
or different assay sources are explored. Hence, given comprehensive training data and modelling tasks, valid CP models can
often be generated in a random-split k-fold CV setup. However, when predictions on external test data are performed, model
performances have been shown to drop55. Here, we analysed the effects of data drifts on the validity of CP models. Thereby,
we assessed the impact of recalibrating a CP model with updated data to restore the validity and positively affect performance.
Note that this strategy has been introduced in the previous study, exemplified on the Tox21 challenge data17, and is further
investigated here for different datasets, molecular encodings and study settings.

In the first part of this study, temporal data drifts were analysed on twelve toxicity-related datasets from the ChEMBL
database. In the second part, the applicability of models trained on public data to proprietary toxicity datasets was investigated.

3.1 Time-split experiments with twelve ChEMBL datasets
To analyse the impact of temporal data drifts on CP model performance, ChEMBL datasets for twelve endpoints were
prepared. The selected endpoints are toxicologically relevant targets, known for off-target effects, drug-drug interactions or as
ecotoxicological endpoints, which need to be considered during the development of new chemicals33, 34 (see Supplementary
Table S1). The collected datasets were temporally split into training, update1, update2 and holdout subsets based on their
publication date (see Section 2 and Table 2).
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Experiments i and ii: CV and predictions using original calibration set Five-fold CV on the training data produced valid
(mean balanced validity: 0.81), efficient (mean balanced efficiency: 0.93), and accurate (mean balanced accuracy: 0.87) models
at significance level 0.2 (see experiment cv_original in Table 3 and Fig. 2). However, predictions with the same CV-models on
the holdout data, i.e., newest data w.r.t. publication year, resulted in non-valid models with a higher-than-expected error rate
(mean balanced validity of 0.56) as well as lower mean efficiency and accuracy (see experiment cal_original in Table 3 and Fig.
2). Class-wise evaluations for all experiments are provided in Supplementary Fig. S1.
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Figure 2. Time split evaluation (balanced validity, balanced efficiency, balanced accuracy) of CV experiments and predictions
for the holdout set using the original (cal_original), update1 (cal_update1), update2 (cal_update2) and combined
update1_and_2 (cal_update1_and_2) calibration set for twelve ChEMBL datasets

The poor calibration of the model, i.e., a mean absolute loss in balanced validity of 0.25, for predictions on the holdout set
may be an indicator for data drifts over time. Changes in the descriptor space or assay conditions (also due to diverse groups
investigating the same target class) over the years may be responsible for such data drifts. Note that the data points in the
holdout set were published at least five to ten years later than the training set instances (depending on the endpoint, see Table
2). Thus, it was investigated if the effects of these drifts can be mitigated by updating the calibration set with intermediately
published data, i.e. update1 or update2 sets.

Experiment iii: Update calibration set To investigate whether valid models can be obtained with a small amount of new data,
the calibration set was updated with more recent data while the trained CV-models were left unchanged17. For the ChEMBL
experiments, the new calibration sets consist of the update1, update2 set, or a combination of both sets.

Measured over all twelve endpoints, updating the calibration set with update1 or update2 led to an improvement of the mean
balanced validity by up to 0.20 compared to the models with the original calibration set, reaching 0.73 and 0.76 with update1
and update2, respectively (see experiments cal_update1 and cal_update2 in Table 3 and Fig. 2). However, a slight decrease in
the mean balanced efficiency by up to 0.09 was also observed (reaching 0.79 and 0.74 for update1 and update2, respectively).

It should be noted that restoring the validity is a prerequisite for applying CP models with confidence7, 17. In the absence of
validity, the confidence of the predictions is not guaranteed and the efficiency becomes an irrelevant metric (CP model would
not offer any advantage and could be exchanged by the base model (e.g. random forest) to obtain an efficiency of one). With
validity being a prerequisite for the application of CP models, restoring it by recalibration is an improvement. The concurrent
loss in efficiency is undesired but also expected, since many instances in the holdout test set may fall outside the applicability
domain of the underlying model. Lower efficiency along with improved validity indicates that the model recognises more
compounds, for which it does not have enough information to classify them into a single class. Hence they are predicted
as ‘both’. To avoid the loss in efficiency, the underlying model could be retrained with more up to date data. For example,
compound representatives classified as empty or both sets by the current model could be experimentally screened to include
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their outcomes in an updated training set, feeding the model the necessary information to increase its efficiency. However,
to achieve an improvement in the efficiency by retraining, a high amount of new data is usually required. Other studies56–58

have explored the use of conformal prediction based active learning approaches to select data points that provide the most
information to the model if experimentally evaluated. By using these approaches, a small number of additional data points can
greatly extend the AD of the model.

While no overall improvement — or impairment — was observed in terms of accuracy (see Table 3 and Fig. 2), restored
validity allows predictions with an associated confidence.

To analyse the impact of the size of the calibration set on the model performance, the two update sets were combined and
used as a new calibration set (update1+2). In summary, all evaluation values remained at a similar level as for the update1
and update2 experiments. Mean balanced validity of 0.77, mean balanced efficiency of 0.73 and mean balanced accuracy of
0.67 were achieved (see experiment cal_update1_and_2) in Table 3 and Fig. 2). This indicates that the variation in size of
the different calibration sets (from around 500 compounds in the original, update1, and update2 calibration sets to around
1000 compounds in the update1+2 set) in the ‘update calibration set’ strategy does not have a major influence on model
performance in this study. Previous studies have shown that the size of the calibration set, nevertheless, has an influence on the
resolution of the p-values, i.e. if more data points are available for calibration, the calculation of the p-values becomes more
precise/distinct6, 17. For instance, a calibration set with only 4 active compounds can only produce five different p-values, while
a larger calibration set will be more precise in the p-value assignment.

Table 3. Overall, balanced and class-wise evaluation of time-split experiments with ChEMBL data

predict holdout set
cv cal_original cal_update1 cal_update2 cal_update1_and_2

validity 0.81 ± 0.01 0.57 ± 0.14 0.75 ± 0.07 0.77 ± 0.09 0.78 ± 0.07
efficiency 0.93 ± 0.04 0.82 ± 0.14 0.78 ± 0.12 0.74 ± 0.13 0.73 ± 0.15
accuracy 0.87 ± 0.04 0.68 ± 0.10 0.68 ± 0.08 0.70 ± 0.10 0.70 ± 0.09
balanced validity 0.81 ± 0.01 0.56 ± 0.11 0.73 ± 0.09 0.76 ± 0.08 0.77 ± 0.08
balanced efficiency 0.93 ± 0.04 0.83 ± 0.14 0.79 ± 0.12 0.74 ± 0.13 0.73 ± 0.15
balanced accuracy 0.87 ± 0.04 0.65 ± 0.09 0.65 ± 0.09 0.66 ± 0.10 0.67 ± 0.09
validity inactive class 0.81 ± 0.01 0.62 ± 0.26 0.76 ± 0.22 0.78 ± 0.22 0.78 ± 0.20
efficiency inactive class 0.93 ± 0.04 0.84 ± 0.14 0.79 ± 0.14 0.72 ± 0.14 0.73 ± 0.16
accuracy inactive class 0.87 ± 0.05 0.72 ± 0.26 0.69 ± 0.26 0.68 ± 0.29 0.70 ± 0.24
validity active class 0.81 ± 0.01 0.50 ± 0.22 0.71 ± 0.19 0.74 ± 0.18 0.75 ± 0.14
efficiency active class 0.93 ± 0.05 0.81 ± 0.14 0.78 ± 0.13 0.75 ± 0.10 0.73 ± 0.16
accuracy active class 0.87 ± 0.04 0.59 ± 0.20 0.61 ± 0.26 0.64 ± 0.23 0.64 ± 0.20

ChEMBL data composition analysis It is concluded that the validity of predictions for the holdout set can be restored when
using more recent data to calibrate the CP models.

This could be attributed to the fact that the distribution of calibration and holdout sets are more similar compared to the
training data. The efficiency of the models is slightly affected by this strategy, as the model still lacks information to make single
class predictions. Nevertheless, the characteristics of the time-split within the ChEMBL data based on the publication year
should be considered with care. In theory, a cluster cross-validation (where by design compounds belonging to the same cluster
are always in the same splits) should present a more challenging task than a temporal time-split (where series of compounds
could be further developed after the splitting date)26. However, this situation could be different for time-splits on public domain
data. Yang et al.19 showed on a benchmark study that time-split cross-validation is a much harder task on public domain data
(PDBbind59–61 in this case) than in industry setups. Using ChEMBL data, we observe that one publication may contain a whole
chemical series, which was developed over a longer period of time, but is labelled in ChEMBL with the same publication date.
Moreover, the fact that public data in ChEMBL arise from different sources reduces the chances that a compound series is
further developed over time (and is therefore present in several splits). This might increase the chemical diversity between
time-splits within openly collected data compared to data from a single institution. Analysing the molecular clusters of the
ChEMBL data used in this study and their distribution among time-splits, we observed that only few clusters are scattered
over different splits. Only between 7% and 16% of the compounds in a single cluster (with distance threshold of 0.5 and only
considering clusters with at least two compounds) were spread over more than one split (see Supplementary. Fig. S5). This
result indicates that, in this case, the prediction of the holdout set may be even more challenging than in an industrial (time-split)
scenario, where early developed compounds of a compound series may be included in the consecutive training/update/holdout
sets.
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Figure 3. Analysis of individual endpoints (a) Balanced evaluation of time-split experiments for four selected ChEMBL
endpoints. Each plot represents CV results (cv) and predictions for the holdout set using the original (cal_original), update1
(cal_update1), update2 (cal_update2) and combined update1_and_2 (cal_update1_and_2) calibration set. The doted line at 0.8
denotes the expected validity for the chosen significance level (of 0.2). (b) UMAP showing the descriptor space covered by the
compounds in the different time-split sets for ChEMBL206 endpoint

Individual endpoint performance analysis The above discussed performance values referred to average values over models
built for twelve endpoints. This led to the conclusion that updating the calibration set on average improves the validity at
the cost of a small loss in efficiency. Considering the endpoints individually, the influence of updating the calibration set
on the performance of the models varied. On average there was no substantial difference between updating the calibration
set with update1 or update2 data. However, looking at individual models (Fig. 3a, Supplementary Fig. S4), e.g. endpoint
ChEMBL228, the continuous calibration worked better in restoring the validity with update1 than update2 sets. In contrast,
recalibrating with the update2 sets led to better performance for endpoints ChEMBL206, ChEMBL222, and ChEMBL279 (see
also Supplementary Fig. S2 and S3).

The observations that the effects of recalibration for each endpoint are dependent on the update set might be explained by
the descriptor space covered by the respective holdout, update and training sets. Our hypothesis is that updating the calibration
set might be more beneficial if the update set compounds cover a descriptor space more similar to the holdout compounds than
the original calibration set.

To investigate the influence of the descriptor space, the compounds’ ‘CHEMBIO’ descriptors of the training, update1,
update2, and holdout set were transformed into a two-dimensional space using UMAP (Fig. 3b). For endpoint ChEMBL206,
for which the update2 strategy worked clearly better, a large part of the update1 set overlaps with the training set, indicating
that fewer improvement can be expected when recalibrating with it. Contrary, there is more overlap between the holdout and
update2 sets. This might explain the particularly positive effects of recalibrating with update2 on the validity and accuracy for
predicting the ChEMBL206 holdout set.

To quantify these differences in a rational manner, the Tanimoto coefficient based on Morgan fingerprints of each holdout
compound to its nearest neighbour in the training and update sets, respectively, was calculated. Exemplified for endpoint
ChEMBL206, the median coefficient of the holdout compounds to their nearest neighbour in the respective sets confirmed
that the the holdout set is on average more similar to the update2 set (median coefficient of 0.42) than to the update1 or
training sets (median coefficients of 0.29 and 0.33, respectively; distribution of distances to nearest neighbour (NN) provided in
Supplementary Fig. S6).

3.2 Update calibration strategy on inhouse datasets
When insufficient internal data are available to build ML models (or, in general, to extent the descriptor space coverage of the
models), public data can be used in industrial setups for model training. Exemplified by MNT in vivo and liver toxicity CP
models, we explored whether the applicability and validity of predictions on internal data could be improved by recalibrating
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models trained on public data with part of the internal data.
CP models were fitted on publicly available data for MNT in vivo and liver toxicity, previously collected and used for

model building by Garcia de Lomana et al.12. Liver toxicity induced by chemicals is a growing cause of acute liver failure62.
MNT in vivo is an assay to assess mutagenicity29. Both endpoints are highly relevant for registration and authorisation of new
chemicals28–30. The internal data were temporally split into update (older data) and holdout (more recent data) sets. Note that
due to the limited data size only one update set was created (Table 2).

Experiments i and ii: CV and predictions using original calibration set The CP models were built on the publicly available
training data and validated within a fivefold CV. The predictions for the liver toxicity and the MNT endpoints resulted in a
balanced validity of 0.81 and 0.82, a balanced efficiency of 0.81 and 0.79 and a balanced accuracy of 0.77 and 0.77, respectively
(see Table 4). Thus, valid models with high efficiency and accuracy were obtained when evaluated within CV.

Applying these models to the holdout set containing internal data, the balanced validity dropped drastically by up to
0.34 points (liver toxicity: 0.47, MNT: 0.50). The balanced accuracy of the models also decreased strongly (liver toxicity:
0.43, MNT: 0.49), while the balanced efficiency increased (liver toxicity: 0.89, MNT: 0.94). The latter indicates that mostly
single class predictions were made. The class-wise evaluation of the MNT model predictions discloses that almost all internal
compounds were predicted to be inactive (accuracy inactive compounds: 0.99, accuracy active compounds: 0, see Table 4 and
Supplementary Fig. S7). For the liver endpoint, a similar trend was observed (accuracy inactive compounds: 0.7, accuracy
active compounds: 0.16). These observations indicate that the distributions of the holdout and calibration data, i.e. of internal
and external data, are highly different. Summarising, applying the models trained on public data to the internal data resulted in
non-valid models that mainly predict all internal compounds as inactive.

Table 4. Evaluation of experiments to investigate drifts between internal and external data

liver toxicity micro nucleus test
predict holdout set predict holdout set

cv cal_original cal_update cv cal_original cal_update
balanced validity 0.81 0.47 0.82 0.82 0.50 0.74
balanced efficiency 0.81 0.89 0.38 0.79 0.94 0.40
balanced accuracy 0.77 0.43 0.49 0.77 0.49 0.39
validity inactive class 0.81 0.75 0.84 0.80 0.99 0.61
efficiency inactive class 0.84 0.84 0.45 0.79 0.89 0.54
accuracy inactive class 0.77 0.70 0.63 0.75 0.99 0.29
validity active class 0.82 0.20 0.80 0.83 0.00 0.88
efficiency active class 0.78 0.95 0.31 0.79 1.00 0.26
accuracy active class 0.77 0.16 0.35 0.78 0.00 0.50
validity 0.82 0.58 0.84 0.81 0.66 0.70
efficiency 0.80 0.87 0.40 0.79 0.93 0.45
accuracy 0.77 0.52 0.57 0.76 0.63 0.33

Experiment iii: Update calibration sets For the liver toxicity endpoint, exchanging the calibration set with the earliest
developed internal data (years 2005-2019, containing at least 50% of all internal data) could restore the validity for both
compound classes (inactive: 0.84, active: 0.80). The balanced efficiency decreased largely from 0.89 to 0.38 (inactive
compounds: 0.45, active compounds: 0.31) as many single class predictions were now identified as inconclusive and shifted to
the ’both’ class. The balanced accuracy increased only slightly from 0.43 to 0.49. Nevertheless, the accuracy became more
balanced (inactive: 0.63, active compounds: 0.35), as now more active compounds were correctly identified as such. The
observations for the liver toxicity endpoint are similar to those for the ChEMBL endpoints. It is promising that the validity
could be restored, although the balanced efficiency dropped. The improved balanced accuracy of 0.49 still leaves room for
further improvements. To visualise the differences in the descriptor space covered by the public and internal data, UMAPs
were derived (see Fig. 4a and 4b). Both datasets seem to cover a similar area of the descriptor space calculated with UMAP.
The low accuracy obtained by applying the model on internal data could thus be better explained by the differences in the
endpoint definition, as public and internal data were derived from different assays and species. These differences could lead to
inconsistencies in the class labelling of a compound (i.e. one compound having different outcomes in each assay). Although
the validity of the models could be restored by recalibration, these inconsistencies could be one explanation for the poor
performance in terms of accuracy.

For MNT, updating the calibration set led to an improved balanced validity from 0.50 to 0.74 (inactive compounds: 0.61,
active compounds: 0.88) and a strongly reduced balanced efficiency from 0.94 to 0.40 (inactive compounds: 0.54, active
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(a) Training and test set of liver toxicity endpoint (b) Update and test set of liver toxicity endpoint

(c) Training and test set of MNT endpoint (d) Update and test set of MNT endpoint

Figure 4. Descriptor space analysis of the liver toxicity (a and b) and MNT datasets (c and d) derived by UMAP. The
descriptor space covered by the active and inactive compounds of the test sets is compared to the space covered by the training
(a and c) and update sets (b and d), respectively.

compounds: 0.26). The fact that the validity for the active class is high while the efficiency of this class remains low, indicates a
high number of both predictions for the active compounds. Thus, the model is lacking information about active compounds to
make single class predictions. A reduction in the balanced accuracy to 0.39 was observed, while the values are again more
balanced between classes (inactive compounds: 0.29, active compounds: 0.50). Concluding, in the case of MNT, the balanced
validity could be improved when recalibrating the models, but for the inactive compounds, it could not be restored to the
expected level of 0.8. Analysing the descriptor space of the different datasets and their class labels (see UMAPs in Fig. 4c and
4d), it can be observed that almost all holdout compounds overlapping with the training set are inactive, while most of the
holdout compounds overlapping with the update set are active. After updating the calibration set, the validity of the active class
increased and could be restored, as this class is now better represented in the calibration set. However, the contrary is observed
for the inactive class. Moreover, the efficiency drops as the analysed compounds are very different from the training set and the
models are missing information about this area of the descriptor space to make single class predictions.

Although exchanging the calibration set with data from the same origin as the holdout set, i.e. with inhouse data, did help to
increase the validity, these results show that the descriptor space of the holdout set still needs to be better represented by the
training set to obtain efficient and accurate — and therefore useful — models.

11/25



4 Conclusion

CP models, or generally ML models, are widely used for molecular property predictions, including activity or toxicity5, 6, 63.
Notably, the CP framework is based on the assumption that test and calibration data stem from the same distribution10, 11. If this
prerequisite is not given, the models are not guaranteed to be valid (i.e. return the expected error rate). The goal of this study
was twofold. Firstly, the performance of internally valid CP models, when applied to either newer time-split or (true) external
data, was assessed. Second, the impact of model updating strategies exchanging the CP calibration set with data closer to the
prediction set was evalutated. Building on previous work performed on the Tox21 datasets17, we investigated here two scenarios
with data subsets that may stem from different distributions. First, temporal data drifts were analysed at the example of twelve
toxicity-related datasets collected from the ChEMBL bioactivity database. Second, discrepancies between performance of
models trained on publicly available data vs. models recalibrated on inhouse data was evaluated on holdout inhouse data for the
liver toxicity and MNT in vivo endpoints.

Due to changes in descriptor space and assays, over time or between laboratories, data drifts occur and were observed
through the performed experiments (i and ii) on both the twelve ChEMBL as well as the liver toxicity and MNT datasets.
Overall, valid CP models within CV were built for all endpoint datasets at a significance level of 0.2. In contrast, validity
dropped below the expected error rate of 0.8, when applied to the holdout sets. Resulting mean balanced validities were 0.56 ±
0.11 over all twelve ChEMBL datasets, 0.47 for liver toxicity and 0.50 for MNT.

To address the poor validity on the holdout set, CP updating strategies were implemented (experiment iii), in which the
calibration sets were exchanged by part of the newer or proprietary data, with the aim of restoring the validity. For most of the
ChEMBL endpoints, the validity (at 0.2 significance level) could be mostly restored (mean balanced validity: 0.77 ± 0.08).
The same holds for predictions on the proprietary liver toxicity endpoint data (balanced validity: 0.82). For the MNT data, the
calibration was also improved, but to a lower extent (balanced validity: 0.74). Note that the improved validity comes at the cost
of reduced efficiency for ten of the ChEMBL endpoints (average absolute loss between 0.04 and 0.10, depending on the update
set used), which is more prominent for the liver toxicity and the MNT endpoints (absolute loss up to 0.55). A drop in efficiency
is, however, more acceptable than non-valid models, which cannot be confidently applied. Too low efficiency may indicate that
the model lacks information, e.g., chemical and biological descriptor space coverage, for classifying the new compounds.

With regard to the accuracy of the single class predictions, no change was observed on average for the ChEMBL endpoints
when updating the calibration set. However, for the liver toxicity and MNT endpoints a more balanced accuracy between
classes was observed after the update, as more compounds were identified as active.

In principle it is not possible to define an overall update/calibration criteria for all applications, but more research is needed
to derive a generic approach on how to define it within the specific use-cases. In future studies it should be investigated how
the degree of deviation of the calibration set from the training and holdout sets influences the models validity, efficiency and
accuracy. This trade-off between the similarity of the calibration data to each set and the amount of available update data
will probably determine in which scenarios the recalibration strategy is a good approach to overcome data drifts, and when a
complete model retraining is necessary.

It is in the nature of the field of compound toxicity prediction or drug design that ML models are applied to completely new
compounds that are potentially quite different from the training set. This work showed the necessity of considering data drifts
when applying CP or ML models to new and external data and the need of developing strategies to mitigate the impact on the
performance.
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Additional file
Studying and mitigating the effects of data drifts on ML model performance at the

example of chemical toxicity data

Andrea Morger, Marina Garcia de Lomana, Ulf Norinder, Fredrik Svensson, Johannes Kirchmair, Miriam
Mathea and Andrea Volkamer

A1 Additional information on data and methods

A1.1 Target selection for the ChEMBL datasets
Target datasets were selected following a collection of 1360 ligand sets provided by Škuta et al.31 for similarity searching,
bioactivity classification and scaffold hopping. First, the 29 target datasets, for which Škuta et al. found ≥ 1000 compounds
with reported pIC50 values, were downloaded, including pIC50 values and publication year. The following cleaning procedure
was applied to each target dataset: If there were multiple measurements per compound and endpoint, the mean and standard
deviation were calculated. Only the mean measurement of those duplicates was kept if the standard deviation was lower or
equal than 0.5, otherwise they were discarded. The oldest publication year (i.e. lowest number) was kept for aggregated data
points. The compounds were standardised as described in the main manuscript (section 2.1.2) and temporally split into training,
update1, update2, and holdout set as explained in 2.1.4. If fewer than 50 active and 50 inactive compounds were left in the
holdout set after the time-split, the target dataset was excluded from the study. Finally, 20 targets remained which match the
filtering criteria. Of these, a total of twelve targets were selected that are linked to toxicity. A target was defined to be associated
to toxicity if it was either assayed in ToxCast33, or part of the list of targets that are recommended to early assess the potential
hazard of a compound34.

A1.2 Public datasets for liver toxicity and MNT
To assess drifts between data originating from different sources, public and proprietary datasets for liver toxicity and micro
nucleus test (MNT) were collected. For CP model training, the same public datasets for liver toxicity (more specifically here
drug-induced liver injury (DILI)) and MNT in vivo were used as described by Garcia de Lomana et al.12. Data for the DILI
endpoint were gathered from the U.S. Food and Drug Administration (FDA)64 and for the MNT in vivo endpoint from three
sources (eChemPortal65, the work of Benigni et al.66 and Yoo et al.67). The respective datasets contain 692 (445 active and
247 inactive compounds) and 1791 compounds (316 active and 1475 inactive compounds) after the data pre-processing and
deduplication steps conducted by Garcia de Lomana et al.12.

A1.3 Inhouse datasets for liver toxicity and MNT
Two inhouse datasets for liver toxicity and MNT in vivo, with data generated by BASF SE, were used as holdout and update set
to investigate data drifts between data with different origin. Liver toxicity was measured in oral assays on rats (including OECD
Guidelines 407, 408 and 422, as well as range finding oral studies). Compounds showing adverse or adaptive effects in the liver
in any of these studies were labelled as active. MNT in vivo was determined in mice in an assay following the OECD Guideline
474 or in (non-GLP) screening assays (with 18 animals). The liver toxicity dataset contains 140 (63 active and 77 inactive)
compounds and the MNT in vivo dataset contains 366 (194 active and 172 inactive) compounds after the data pre-processing
and deduplication steps (following the same procedure as Garcia de Lomana et al.12, see "Chemical structure standardisation").

A1.4 Time-splitting procedure
Note that all compounds published (ChEMBL data) or assayed (inhouse data) in the same year were assigned to the same split.

ChEMBL data After standardising the compounds (see 2.1.2), the ChEMBL data were time-split into four datasets, i.e. train,
update1, update2, and holdout set based on the publication year. A minimum number of compounds per dataset was defined
based on a predefined ratio, i.e. the training set must contain at least 50% of the total number of compounds, the update1 and
update2 sets must contain at least 12% each. Starting from the earliest year, all compounds published in that year were assigned
to the training set and the number of training compounds was assessed. Same for the next year(s) until the training set contained
at least the minimum number of training compounds defined. Then, all compounds published in the following year(s) were
assigned to the update1 set until the respective threshold was reached. With the same procedure, the compounds published in
the subsequent year(s) were allocated to the update2 set. All remaining compounds belong to the holdout set. The number of
active and inactive compounds available per subset of the twelve holdout ChEMBL target datasets, as well as the corresponding
time thresholds for splitting, are provided in Table 2.
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Liver toxicity and MNT data To investigate the occurrence of discrepancies between external and internal data (see A1.2), the
liver toxicity and MNT datasets were investigated. The external data were used for model building as well as for the original
calibration set. The internal data were time-split into update and holdout set based on the date they were measured internally.
Due to the small number of available inhouse compounds, only one update set was deducted. The data was selected by year as
described for the ChEMBL data until at least 50% of the compounds were assigned to the update set. The number of training,
update and holdout compounds available for the liver toxicity and MNT endpoints are shown in Table 2.

Table S1. ChEMBL datasets and their biological relevance. A selection of possible toxicological or adverse effects due to
agonism (or activation) or antagonism (or inhibition) with the targets is provided.

ChEMBL ID name toxicological or adverse effects
CHEMBL220 Acetylcholinesterase (human) decreased blood pressure or heart rate, increased GI motility34, 68

CHEMBL4078 Acetylcholinesterase (fish) decreased blood pressure or heart rate, increased GI motility34, 68

CHEMBL5763 Cholinesterase decreased heart rate, QT interval prolongation69

CHEMBL203 EGFR erbB1 skin toxicity, cardiotoxicity70, 71

CHEMBL206 Estrogen receptor alpha antiandrogenic effects, hormone-dependent cancers72, 73

CHEMBL279 VEGFR 2 hypertension, disturbed wound healing, GI and skin toxicity74

CHEMBL230 Cyclooxygenase-2 myocardial infarction, increased blood pressure, ischaemic stroke,
atherothrombosi34, 75

CHEMBL340 Cytochrome P450 3A4 drug-drug interactions, detoxification by metabolism, activation of toxic
metabolites76

CHEMBL240 HERG QT interval prolongation77

CHEMBL2039 Monoamine oxidase B cell death78

CHEMBL222 Norepinephrine transporter increased heart rate or blood pressure, constipation34, 79

CHEMBL228 Serotonin transporter increased GI motility, insomnia, anxiety, sexual dysfunction34, 80
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A2 Additional information on results
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Figure S1. Class-wise time split evaluation (validity, efficiency, accuracy) of CV experiments and predictions for the holdout
set using the original (cal_original), update1 (cal_update1), update2 (cal_update2) and combined update1_and_2
(cal_update1_and_2) calibration sets for twelve ChEMBL datasets.
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Figure S2. Inactive compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.
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Figure S3. Active compounds evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on
training data, predict holdout data using ii) original calibration set iiia) update1, iiib) update2, iiic) combined update1+2
calibration sets.
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Figure S4. Balanced evaluation of time-split experiments for individual ChEMBL endpoints. i) cross-validation on training
data, predict holdout data using ii) original calibration set, iii) updated calibration set, a) update1, b) update2, c) combined
update1+2 sets. The doted line at 0.8 denotes the expected validity for the chosen significance level (of 0.2).
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Figure S5. Spreading of clusters amongst the data subsets (i.e. splits) for the ChEMBL datasets. Most of the clusters (with at
least two compounds) do not spread over more than one subset (i.e. training, update1, update2 or holdout set).
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(a) training set (b) Update1 set (c) Update2 set

Figure S6. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the
corresponding subset (training, update1 and update2) for ChEMBL206 endpoint .
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Figure S7. Time split evaluation (validity, efficiency, accuracy) of experiments i) CV, predictions using ii) original calibration
set, iii) update calibration set for the liver toxicity and MNT inhouse datasets.

24/25



Figure S8. Distribution of Tanimoto coefficients between each holdout compound to its nearest neighbour in the training (left)
and update (right) set for the liver (top) and MNT (bottom) endpoints.
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Discussion

Drugs and other chemical compounds may not only be beneficial, but can also cause

undesired effects to humans and the environment. Therefore, hazard assessment for new

chemicals is crucial. Toxic effects of chemicals on humans are still mainly estimated with

the help of in vivo studies, but animal studies are linked to ethical, economic, and tech-

nical concerns [40]. Following the 3R’s principle by Russell and Burch [27], there is great

need and interest to replace, reduce, and refine animal testing. In silico toxicity prediction

methods can have an increasing impact on the reduction and the replacement of animal

experiments. In this chapter, first, applications of multiple computational toxicology

methods are reviewed. Second, two main challenges in computational toxicology, i.e. the

need for confidence estimation and data limitations, are discussed. Finally, an outlook

on computational toxicology as an alternative to animal experimentation is presented.

5.1 In silico methods for toxic endpoint prediction

KnowTox tool for holistic toxicity prediction

The KnowTox tool [127] was designed to support toxicologists in planing toxicological

studies and to support the toxicological assessment of chemical substances. It integrates

three methods that can help to assess the hazard of chemical substances: KnowTox com-

prises CP models for 88 toxicity-related biological effects, alerts for 919 toxic substruc-

tures, and read-across support based on 7912 molecules which have been experimentally

tested in up to 985 in vitro assays.

The potential of combining multiple computational toxicity prediction methods into

one platform has also been recognised by other groups around the time when Know-

Tox was developed. To name a few, the Protox II webserver offers toxicity predictions

based on molecular similarity and ML models [128, 129]. Another example is the VEGA-

HUB platform, which incorporates multiple tools, mainly read-across based, but also ML

models, available for regulatory purposes for the exploration and analysis of chemical

properties with a focus on ecotoxicology [130, 131]. Probably most similar to KnowTox

is the e-MolTox webserver [65, 66]. E-MolTox provides CP models and toxic substruc-

ture analysis, also returning the most similar molecule within a training dataset. An-

other important source for estimating the (eco-)toxicological potential of new chemicals
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is the OECD QSAR Toolbox, which was developed by the Laboratory of Mathematical

Chemistry in close collaboration with the European Chemicals Agency (ECHA) [19, 35].

Nevertheless, there are advantages of developing an in-house tool, such as having access

to the source code and being able to modify and extend it to individual needs. Know-

Tox consists of individual building blocks, which can be exchanged or extended based

on the needs and data availability. Moreover, KnowTox outputs a customisable report,

and the CP strategy was validated on new molecules which were candidates for product

development at BASF.

The holistic approach from KnowTox was shown beneficial when applied in a ret-

rospective case study on two former triazole fungicide candidates, which were attrited

during toxicity studies [127]. The main reasons for their attrition, i.e. growth of liver

and aromatase inhibition could retrospectively be explained with the KnowTox model

outputs. This indicates that, in the case of the two triazoles, two critical types of toxicity

could have been discovered during development, and thus that computational predictions

can successfully guide project decisions and inform on the choice of critical toxicological

screening assays.

The underlying hypothesis of KnowTox was that the combination of different com-

putational toxicology methods, which integrate data from different sources, can lead to

predictions with improved reliability estimates. This hypothesis was to some extent cor-

roborated in the provided case study. For example, both a structural alert as well as

ML predictions warned against potential liver toxicity of the triazole query molecules. A

concordant result among multiple predictive methods implies more confidence, while con-

tradicting predictions may reduce the reliability and call for experimental investigations.

Certain reliability estimates can already be extracted from the integrated methods. To

estimate the confidence in ML predictions in particular, the CP framework (see Section

5.2) was employed. Also, the similarity search provides support for reliability estimation,

both by calculating the Tanimoto similarity to the query compound and by highlight-

ing the maximum common substructure. Incorporating information from different data

sources was further demonstrated to be a strategy to tackle data limitations. If no ML

model was trained on a given dataset due to data available for fewer than 300 active or

300 inactive chemicals (e.g. certain cytochromes in the triazole case study), ML predic-

tions may be substituted with a similarity search and subsequent extraction of existing

experimental data for sufficiently similar molecules.

The KnowTox prediction outputs for a novel query compound — depending on the

data situation — can yield a large amount of data to interpret. CP confidence estimates

and Tanimoto similarity help estimating the reliability of individual predictions. The

relevance of a model output is yet to be judged by toxicology experts, who subsequently

decide, if a compound with predicted hazard should be excluded, or if any and which

(confirmatory) assays should be conducted.

To facilitate the interpretation and encourage the application of the holistic tool, it
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could be helpful to focus on so-called ‘cut-off’ criteria in regulatory toxicology (e.g. mu-

tagenicity, carcinogenicity, reproductive toxicity). Therefore, a grouping of models, bio-

logical assays for read-across, and alerts per endpoint or toxicity type should be explored

in future studies. Further challenges of the KnowTox tool and the underlying methods

and data, respectively, are discussed in Sections 5.2 and 5.3.

E-Morph Screen Assay combined with in silico methods to increase hit rates

During the validation of the E-Morph Screen Assay [132], the benefits of a combination of

in silico and in vitro methods were investigated in the example of estrogen receptor activ-

ity. The E-Morph Screen assay measures changes in the organisation of adherens junctions

and can be used to identify substances that interact with the estrogen system [133]. For

the assay validation, ToxCast assays relevant for ER activity were collected and a con-

sensus CP model was built on the corresponding seven ER agonism datasets. Starting

with nine novel ER active compounds identified with the E-Morph Screen, a similarity

search within ToxCast, as well as support from the ER consensus CP model led to the

detection of six additional novel estrogenic substances, which were experimentally val-

idated. The study showed that the hit rate of the E-Morph Screen measurements was

clearly increased when combining it with computational similarity search and CP. This

means that ER active compounds can be found in a faster and cheaper manner when

combining experimental and in silico methods.

The usefulness of CP to discover active compounds at a higher rate has also been

described by Svensson et al. [47]. They showed how iterative rounds of CP predictions,

docking, and experimental screening can lead to an increased hit rate in a retrospective

study on 41 targets from the Directory of Useful Decoys, Enhanced (DUD-E) dataset.

Notably, in our study, we could demonstrate the hit rate increase prospectively.

Our study also underlined that similarity is relative. Depending on the selected de-

scriptors and similarity measures, two molecules may be perceived as more or less similar.

This, together with the impact that the molecule size and the position of differing func-

tional groups may have [49, 57], makes it challenging to define a similarity threshold

in a screening workflow and to compare outcomes from different ‘strategies’. Instead of

a threshold, our study focused on the 10 most similar compounds and final screening

candidates were selected after subsequent literature search. Another challenge occurred

in the form of activity cliffs. Among a subset of compounds from ToxCast including the

four most similar molecules to Bisphenol F, the most similar (Tanimoto index, various

molecular fingerprints), and only ER-inactive molecule, was 4-Benzylphenol. The only

difference to Bisphenol F is one missing hydroxy group. With similarity search — several

types of molecular descriptors were investigated — or CP, this difference was not reck-

oned enough. Both ligand-based methods do not take into account the properties of the

target protein.

Ligand-protein interactions could, however, be analysed with a docking approach. 4-
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Benzylphenol was virtually placed in the binding pocket of estrogen receptor alpha protein

structures. We could illustrate that a hydrogen bond, present in the interactions with the

bisphenols, could not be formed due to the lack of the second hydroxy group. In fact, other

groups demonstrated that docking can be supportive in screening cascades. For example,

Svensson et al. [47] used docking to pre-select an initial set of compounds for screening.

Ballante et al. [134] summarised prospective studies using molecular docking to screen

for G protein-coupled receptor ligands. While docking was successful to identify new

ligands in several cases, systematic integration of docking was out of scope for this thesis

for several reasons. One of the biggest challenges of docking is the relative prediction

of binding affinities [134, 135]. Moreover, the usefulness of docking heavily relies on the

availability of protein structures for the target or at least a close analogue together with

the amino acid sequence. Success of docking may also rely on availability of the correct

ligand stereochemistry [135, 136].

In our work [132], a proof-of-concept for the combination of in vitro and in silico

methods to increase the hit rate in in vitro screens was demonstrated. It is important to

note that an increase in the hit rate does not guarantee that all predictions are correct.

Rather, a larger proportion of in silico predictions are correct, which still need to be

confirmed in vitro. Hence having the in vitro E-Morph Screen assay in place is a big

advantage. The in vitro-in silico combination requires less testing, i.e. saving time and

costs, while still giving experimental results for the more promising compounds. In a next

step, the proposed combination strategy could be applied to screen larger databases for

novel ER-active substances. Furthermore, the activity cliffs observed with several types

of molecular descriptors might be tackled by more mechanism-focused, e.g. bioactivity or

CHEMBIO [137], descriptors.

CHEMBIO descriptors for improved prediction of in vivo endpoints

The aim of the ChemBioSim project [137] was to build accurate CP models for the predic-

tion of in vivo toxicity endpoints such as genotoxicity, hepatotoxicity, and cardiotoxicity.

We wanted to find out if results from in vitro assays that are related to the in vivo

endpoint, can inform and hence improve the models. To avoid dependency on experi-

mental data for the training and test compounds, predicted bioactivity descriptors were

generated by building CP classification models on 373 in vitro datasets.

It should be highlighted that the prediction of in vivo endpoints is an important

challenge in itself. Thomas et al. [138] and Liu et al. [55] have tackled this with the

example of the ToxRef database. While well-performing models could be generated in

the latter study, no specific strategy was shown to yield overall best-performing models

for every endpoint.

The application of in vitro assay data in the form of bioactivity descriptors was devel-

oped by Petrone et al. [53], who were looking for a new method to interrogate large-scale

chemical biology data. Since the underlying data originates from HTS assays, the descrip-
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tors were named HTS fingerprints. In several follow-up studies [54, 139–141], these HTS

fingerprints were used e.g. for virtual screening, hit expansion, or target prediction. One

major limitation of HTS fingerprints is the need for large amounts of available experimen-

tal data [141]. An elegant way to circumvent the often missing or sparse experimental

data is the building of ML or CP models, and using the prediction outputs as bioactivity

descriptors, as recently demonstrated by Cortes, Škuta, Norinder et al. [126, 142, 143].

In the ChemBioSim project [137], binary conformal predictors with underlying ran-

dom forest models were built on in vitro datasets and both predicted p-values were used

as bioactivity descriptors. The performance of bioactivity, chemical (physicochemical and

molecular), and CHEMBIO (combination of the bioactivity and chemical) descriptors was

compared when training CP models for the micro nucleus test (MNT), cardiac, and hep-

atic toxicity in vivo endpoints. In the prediction of MNT and cardiotoxicity, CHEMBIO

or bioactivity descriptors were shown superior compared to chemical descriptors only.

For the hepatotoxicity endpoint, no significant performance change was observed. These

performance differences indicate that a conclusion drawn for a selection of in vivo end-

points may not be directly transferable to all other in vivo toxicological endpoints, for

different reasons. First, it has to be noted that when using chemical descriptors alone

the liver toxicity model was already more efficient compared to the models for MNT and

cardiotoxicity, leaving limited room for improvement. Especially, since experimental mea-

surements come with inherent noise and errors [141, 144], including predicted bioactivity

descriptors may introduce more noise than benefit for already well-performing models.

Secondly, it was discussed that the information gain from bioactivity descriptors may be

reduced with high correlation of their features with the chemical descriptors. Finally,

it is important that the encoded information is relevant for the in vivo endpoint to be

predicted [143]. One could consider pre-selecting in vitro datasets for model building

with known relation of the biological effects to the in vivo endpoint. In the ChemBioSim

project [137], predicted bioactivity descriptors from all available models were used and,

subsequently, feature importance was investigated. Such feature importance studies af-

ford opportunities to find new relationships between query compound and bioactivity,

and can help to explore the mode of action of novel compounds.

5.2 Confidence in machine learning predictions

Applicability, reliability, and decidability domains for conformal predictions

In order to confidentially apply ML models, it is crucial to determine their AD. In this

work, CP was used as an AD approach for confidence estimation, i.e., taking into account

the decision boundary between two classes. The CP framework includes several parts of

the AD concept proposed by Hanser et al. [95], who suggested to split the AD definition

into three steps: applicability domain (ADHanser), reliability domain (RDHanser), and
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decidability domain (DDHanser). See Section 1.4 for a description of the three domains.

In principle, all three ‘Hanser’ domains are covered by the CP framework, although

in a different manner. The DDHanser is clearly reflected in the CP framework returning

prediction sets, and not being restricted to single-point estimates. single-label predictions,

i.e. prediction sets that contain exactly one class, can be considered inside the DDHanser,

whereas empty prediction sets and those containing both classes are regarded as outside

the DDHanser. The content of the prediction set does not only depend on a single-point

estimation, but on the calibrations based on two class-wise sorted lists. The calibrated

p-values may be interpreted as RDHanser, i.e. the higher the p-value (and the lower the

p-value for another class [96]) the more reliable the assignment of a class label to the

compound. A difference to RDHanser is that the p-values in CP are only available after

making the prediction, while RDHanser can e.g. already be determined based on the

distance to and density of the nearest neighbours in the predictor space [95]. At first

glance, one may be tempted to treat the ADHanser equal to whether a prediction set

contains any class label or is empty. There are, however, three arguments indicating

deviations from the concepts introduced by Hanser et al. Firstly, by definition, the

ADHanser is supposed to be determined before making a prediction, and no prediction

should be made if a compound is outside [95]. Yet, the CP framework does by design allow

a certain fraction of false predictions [97], which may be empty prediction sets. Secondly,

whether a prediction set is empty does not only depend on the instance to predict, but

also on the chosen significance level [97]. Thirdly, in novelty detection, the applicability

domain is typically based on the descriptor space [94], while in CP (at a given significance

level), the prediction sets are derived from the p-value space. Nevertheless, with the CP

concepts, the ADHanser can partly be investigated.

The limitations of CP are reached when ADHanser estimates for new, and especially

individual, compounds are desired. Therefore, we still rely on traditional AD definitions,

e.g. based on the descriptor space, the distance to, or the local density of the nearest

neighbours [94, 95].

Moreover, it is desirable that the applicability domain of a CP model could be tailored

to the set of instances to which it is applied. The, for this purpose, developed strategy

to mitigate effects of data drifts is discussed in the next section.

Mitigation of data drifts with conformal prediction (recalibration strategy)

In our work on the Tox21 datasets [145], a recalibration strategy was introduced and

shown useful to mitigate effects of data drifts on the model applicability domain. The

recalibration strategy suggests to exchange the calibration set with new data if data drifts

are observed. Data drifts can lead to poorly calibrated models. Poor calibration can, for

example, be detected in the form of deviations from the diagonal line when plotting

expected versus observed error rate in a so-called calibration plot [87, 98, 101, 127, 145].

CP underlies the exchangeability assumption: Provided that training and test data
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stem from the same distribution, the CP framework is designed to yield valid models [96,

98]. Note that exchangeability is slightly weaker than the assumption of data being

Independent and Identically Distributed (I.I.D.), which is generally assumed for all ML

methods [98]. Nevertheless, in many cheminformatics use-cases, data drifts between

training and test data are observed [87, 101, 127, 145, 146]. This may be due to entering

a new chemical space (e.g. developing a new chemical series), further developing an assay

for a certain biological effect, or when experiments have been conducted in different labs,

by different people, or under different experimental conditions. Such data drifts typically

become visible in CP when valid models are trained in a cross-validation, but validity is

not given anymore when the same model is applied to a new dataset.

Similarly to when a measuring probe needs to be calibrated for field work in a new

environment, CP models should be well-calibrated for the data to predict. If the model

is not well-calibrated, the predictions are not necessarily reliable [95, 101].

Hence, our recalibration strategy was developed [145]. We propose to exchange the

calibration set with available new data that is more similar to the test set than the

original calibration set. The recalibration strategy was first developed with the example

of the Tox21 data [145]. In a follow-up study, the strategy was then further investigated

for the use on time-split ChEMBL data and to address differences between external and

internal (BASF) data [147]. Our studies could show that validity can be restored, if

calibration and test data stem from the same distribution, and if the size of the datasets

is large enough. Note that, in practice, a calibration set stemming from the exact same

distribution as the test data is not often available as the calibration set is needed prior

to making predictions [145].

If applied as in the recalibration study, restored validity often comes with a loss in

efficiency. Given a well-calibrated model, more compounds outside the AD (or more

specifically outside the DDHanser) are recognised and classified as both prediction sets,

which is represented in the low efficiency [145]. While, following Hanser et al. [92], validity

is considered first priority for model applicability, efficiency (i.e. a high proportion of

single-label predictions) is, nevertheless, important for the usefulness of a model. More

research is needed to study which levels of efficiency are still acceptable. Similarly to

the error rate, such an efficiency threshold may, of course, be context dependent. An

improvement in efficiency might be achieved by retraining a model with an updated

training set, though retraining requires access to training data and stronger computational

resources. The efficiency, which is related to RDHanser and DDHanser, could e.g. be

improved by screening compounds from the both and empty prediction sets and including

this data in the training set [85]. A recent conformal regression study on assay transition

showed that the efficiency of valid models could be improved when using data from old and

new assays for training, but only using data from the current assay for calibration [101].

It would be interesting to investigate if these findings are transferable to the use-case of

time-split data and data from different sources, as well as to the classification context.
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As a drawback, this approach will not spare the retraining of a new ML model.

5.3 Toxicity data as a basis for in silico predictions

The quality of the ML and other modelling approaches highly depends on the quality and

quantity of available data. In fact, other researchers have observed indications that, for

the performance of ML models, data may matter more than the algorithm [73, 148, 149].

To be used for QSAR modelling, toxicological datasets are ideally large and contain well-

curated structures and consistent measurements from standardised assays. Models should

be built for endpoints with high relevance for the intended use-case and ideally training

data and instances to be predicted are I.I.D.. Note that I.I.D. is an assumption and

can typically not be guaranteed before making a prediction, especially when predicting

individual instances.

Comparing sources of toxicological data

For the work performed within this thesis, several popular freely-available sources of

toxicological data were used, among others from the ToxCast, Tox21, and ChEMBL

databases, as well as proprietary data from industry.

ToxCast and Tox21 The ToxCast database comprises HTS data for about 8000 chem-

ical substances, such as pharmaceuticals, pesticides, or cosmetic ingredients, which have

been tested for up to about 1000 biological effects. The largest subset origins from the

Tox21 platform, which was combined with ToxCast [77, 102, 103].

ToxCast and Tox21 are large publicly-available toxicity databases with measurements

taken from consistent assays [102], which makes them useful and popular for ML model

building in the toxicology area [7, 12, 77–79, 128].

Nevertheless, 8000 is still a small number, especially since experimental measurements

are noticeably not available for all 1000 biological effects. According to the REACH

regulation, about 32,000 registered chemical substances were on the market in 2018 [150].

Moreover, in 2014, more than 15,000 molecules were registered in the Chemical Abstracts

Service (CAS) in a single day [151]. Also drug libraries of the pharmaceutical industry

can contain between tens of thousands and millions of chemicals [103]. Moreover, the

predictive power of this HTS data for in vivo endpoints, and hence their impact on

regulatory toxicology, has been discussed by several authors [138, 152–154]. On the

one hand, they outlined limited predictivity of ToxCast phase I assays and chemicals to

estimate in vivo hazards [138] and carcinogenicity [153]. On the other hand, authors

described the potential of ToxCast for chemical prioritisation with respect to endocrine

disruption [152] and in vivo hazards [138]. Punt et al. [154] investigated the potential

of ToxCast to assess the safety of food chemicals. They suggested that it could have an
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impact on regulatory risk assessment, especially by elucidating mechanistic information

and for read-across.

In the KnowTox project [127], the ToxCast data was helpful to show the concept

of holistic toxicity prediction and for the development of a retrospective case study. If

available, it would, however, be desired to build the tool around more relevant and larger

datasets. For example, the integrated CP models could be complemented or replaced by

models for toxicity-related biological effects that are more easily transferable to in vivo or

clinical data. Likewise, outcomes of similarity search and subsequent read-across support

might be more informative if performed on more complete and larger datasets.

ChEMBL ChEMBL is a manually curated database, the ChEMBL Release 28 contains

more than 2 million distinct drug-like molecules and activity measurements on more than

14,000 targets [106, 108].

Hence, ChEMBL provides a much larger source of data, which is also freely available,

yet it has to be noted that not all targets are related to toxicity. With the measurements,

ChEMBL provides temporal information in the form of the publication year [108]. This

additional information is useful for splitting ML datasets during model validation [155].

Although ChEMBL is one of the few databases that comes with such temporal informa-

tion, the order of the publication date does not necessarily coincide with the order of

synthesising a molecule or testing it. Since authors may collect data for a series of com-

pounds for one publication, we observed [147] that such time-splits of the ChEMBL data

may less resemble such of datasets from industry, but rather a scaffold split, which is con-

sidered more challenging than a time split [156]. Similarly, Yang et al. had demonstrated

that time-split cross-validation on public domain data may present a more challenging

task than in an industrial setting [157].

Finally, the ChEMBL data originating from different sources and the recording of

different units and prefixes require additional data curation steps [142, 158].

Proprietary data from industry The datasets from industry used in two projects

[127, 147] were provided by BASF. We had access to internal data for androgen receptor

antagonism (YAS assay), liver toxicity, and genotoxicity (MNT).

Such proprietary data present precious real-world data. As opposed to ToxCast data

which was specifically generated for modelling, the main purpose of proprietary toxicity

data is safety assessment. Hence, if a molecule is assessed to be toxic at one critical

endpoint, typically no further measurements will be taken. Since large datasets are

required for ML, available models are often restricted to the most frequently conducted

assays and studies. For example, the YAS assay is among the more frequently conducted

assays and the dataset has a comparatively balanced ratio between positive and negative

outcomes. Therefore, sufficient AR antagonism data was available for model validation

in the KnowTox project [127]. If data was available, the normalisation strategy would,
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ideally, have been externally validated for each of the CP models contained in KnowTox.

Limitations of toxicity data and how to overcome them

Toxicity testing is an exclusion criterion for a compound’s further development. If con-

firmed toxic at one crucial endpoint, a substance will most likely not be tested in any

further assay. Moreover, only compounds, which are considered safe, will be submitted

to regulatory agencies. This, together with the fact that most of the data is proprietary,

can lead to the typical and challenging sparse and imbalanced toxicological datasets.

Sparse data lead to smaller training datasets and may decrease the predictivity of ML

models. One strategy to optimally utilise the limited available data, as well as to better

estimate the reliability of the predictions, is to combine multiple models or modelling tech-

niques in a consensus approach. In the KnowTox study [127], it was demonstrated that

more information can be obtained by combining prediction outputs from CP, structural

alerts, and read-across support. In the E-Morph Screen Assay validation project [132],

trust in ER activity predictions was increased by consolidating conformal predictions

from seven ER CP models in one single prediction [132]. A consensus approach, based

on different ML models was also praised and seen effective in the literature, for example

in the CERAPP and CoMPARA studies [12, 79]. Earlier, Reif et al. had developed a

prioritisation scheme to determine a compound’s potential endocrine activity based on

information from in vitro assays, chemical descriptors, and biological pathways [152].

Nevertheless, it is desired to enhance available toxicity datasets with more data, for

example by mutual data sharing between companies. Such important opportunities are

already being embraced by members from industry and academia in consortia such as

eTOX [3] and eTRANSAFE [159]. The aim of eTOX is the extraction and sharing of pre-

clinical study data from 13 pharmaceutical companies which could subsequently be used

for read-across and training of prediction models [3, 90, 160]. The eTRANSAFE project

builds on the achievements of eTOX and focuses on translation between pre-clinical and

clinical safety data. While substantial effort was required to safeguard intellectual prop-

erty in the data [3, 159], an interesting outcome of the eTRANSAFE project is the

concept of virtual control groups that are expected to reduce the number of animals re-

quired for in vivo studies [41]. If resources are available and ethical considerations allow

(e.g. for in vitro data), one could strategically measure more compounds to enlarge avail-

able datasets. Such a testing could be guided by CP: Analysing the compounds predicted

as empty or both prediction sets and updating the model could specifically increase the

model applicability domain [85].

Small datasets are also a limitation for modern AI methods such as deep learning

(DL), which is typically successful with big data. DL models behind google translate were

trained on millions of data points [161] and the ImageNet Large Scale Visual Recognition

Challenge was based on millions of images to train DL models for image recognition [162,

163]. This might explain why the winning DL models (DeepTox) of the Tox21 data
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challenge outperformed traditional ML models only slightly. Both compared to their

own models based on non-DL methods and compared to the models of other challenge

participants, the difference in AUC on the final test set was below 0.1 [78].

Ignoring class-imbalances in datasets may lead to overestimation of global evaluation

measures. For example, if a dataset contains less than 3% active compounds, as the case

for the PPAR-γ training set from the Tox21 data challenge, a model could reach 97%

accuracy but sensitivity of 0% by predicting all compounds as inactive. Hence, data im-

balances need to be considered during training and evaluation. There are data-balancing

techniques in ML such as under- or oversampling [164, 165]. While undersampling re-

duces the amount of data for modelling, oversampling techniques may create artificial

data, i.e. data which was not initially present in the data and created synthetically. Such

is the case of Smote [166]. CP typically provides a simple way to handle data imbalances

when using the Mondrian condition [99]. The resolution of the p-values may be lower,

but classes are handled separately [145]. Esposito et al. [167] recently suggested an al-

ternative approach for handling imbalanced data by adjusting the decision threshold in

ML. The method especially showed an advantage for classifying compounds ending up

in the both prediction sets with CP.

Finally, the investigated modelling techniques (CP models, ToxAlerts, and read-

across) were applied in the form of binary classifiers. Outputs can serve as indicators

to detect potential hazardous effects of new molecules and thereby guide toxicity testing.

It has to be noted that a single activity threshold per dataset is used to label com-

pounds as toxic and non-toxic, respectively. In reality, different compounds may exert

toxic effects at different exposure [153, 168, 169]. This concept is especially relevant for

drugs and synthetic chemicals that may enter the human (or animal) body. Based on

its pharmacokinetic profile, a chemical stays in the body for a certain amount of time

and reaches a certain plasma concentration. The amount and frequency of how a drug is

dosed further depends on its potency at a target. Hence, some information may be lost

in binary classification. The toxicity threshold of classification models may be adapted

or one may consider regression models, which output an activity value (or range — in

conformal regression), which can be used for further analysis.

Last but not least, the data used in this work originates mainly from HTS assays.

To estimate toxic effects in vivo, subsequent in vitro to in vivo extrapolation is required.

In this work [137, 147], in vitro data in the form of bioactivity descriptors was used to

predict in vivo toxicological outcomes. Provided that in vitro data is available, another

approach for in vitro to in vivo extrapolation would be to use physiologically-based toxi-

cokinetic modelling (PBTK) [37, 170, 171]. PBTK uses compound-specific (in vitro or in

silico) and physiological input parameters, which are extrapolated to (in vivo) pharma-

cokinetic parameters. Predicted maximal plasma concentration levels of the compound

are compared to lowest observed effect concentrations determined in vitro to identify at

which dose a chemical could exhibit toxic effects [170]. Importantly, accurate modelling
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of in vivo endpoints relies on the understanding of mechanisms and pathways, which may

not yet be sufficiently elucidated for complex toxicological endpoints [31, 126, 172].

5.4 Replace, reduce, and refine animal testing

Ethical and economic reasons call for the replacement, reduction, and refinement of ani-

mal testing and computational toxicology provides a potential for the development of al-

ternative methods [40, 173]. The investigated strategies such as combination of modelling

methods, conformal prediction for confidence estimation, and recalibration to mitigate

data drifts effects can potentially contribute to make ML models more widely applicable

in the field of predictive toxicology. With the integrated confidence estimates and con-

sensus approaches we aim at fostering trust in predictions and enhancing the acceptance

of computational methods in the toxicology field.

Early attrition of hazardous molecules can save many animals and money and shorten

discovery and development timelines [88, 173–175]. Hence, it is crucial to embed such

models and methods for predictive toxicology into the discovery and early development

pipeline for new chemicals while keeping in mind the applicability of the models and the

confidence in predictions [83, 94, 95]. While the available methods can now already be

used to guide the toxicity testing, for example to hint at most critical endpoints to be

investigated, or to immediately exclude likely hazardous compounds [31, 173], it may

still be a long way ahead until computational toxicology approaches are more widely

accepted by regulatory agencies [31, 40, 43, 88]. An important reason for this matter of

fact are the particularly high requirements on the accuracy, especially sensitivity, of such

regulatory-accepted models. A wrong decision may lead to harmful effects on humans or

the environment when a hazardous substance reaches the market.

Restricted data availability has been described as one of the main reasons for limited

performance and trust in computational toxicity prediction. Furthermore, especially

recently evolving techniques such as deep learning and reinforcement learning [176, 177]

are based on big data. Therefore, it will most likely not be possible to completely replace

animal experiments with in silico predictions in the near future [25, 174].

Nevertheless, the impact that predictive toxicology may have on the reduction of

animal testing should not be neglected. Strategies suggested in this work, such as com-

plementary and consensus approaches for more informative and reliable predictions, or

the recalibration strategy to mitigate effects of data drifts aim to support the creation of

safer chemicals while reducing the need for animal testing.
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To stop harmful chemicals from entering the market, it is crucial to assess their toxic

potential. Toxicological effects of chemical substances on humans, animals, and the envi-

ronment have traditionally been assessed based on in vivo and in vitro experiments [40].

Computational methods, although only marginally accepted by regulatory agencies, have

a large potential to reduce animal testing, especially in early phases of chemical develop-

ment.

Computational toxicity prediction methods are often limited by the small amount

of available data and confidence estimates are desired to estimate the reliability of the

predictions. The aim of this work was to investigate if the combination of multiple in silico

toxicology methods, such as substructure and similarity search, and CP, can improve the

confidence and efficiency of predictions. A special focus was set on the CP framework. It

is built upon ML models and the predicted probabilities are calibrated with the help of

a calibration set. The power of the CP framework was explored for various applications:

as a means for confidence estimation [127, 132], to calculate bioactivity descriptors [137,

147], and to mitigate effects of data drifts [145, 147].

With KnowTox [127], a toxicity prediction tool was developed that comprises CP

models, structural alerts, and read-across support. In a retrospective case study, it was

shown that gathering information originating from different methods is a promising way

to gain more insight into the toxicity profile of a new chemical. Using KnowTox, it was

possible to uncover the key toxic effects, i.e. liver toxicity and aromatase inhibition, of

two former fungicide candidates from BASF that led to their attrition.

During the validation of the E-Morph Screen [132], a recently developed estrogen

receptor assay for the detection of potential endocrine disrupting chemicals, we illustrated

the prospective use of in silico toxicology methods for the prioritisation of compounds to

be tested in in vitro assays. When pre-selecting potentially active compounds with the

help of similarity search, a hit rate increase for detecting novel estrogenic substances in the

ToxCast library could be achieved. In future studies, this in-silico-in-vitro-combination

could be used to screen large datasets of yet uncharacterised chemical substances for

endocrine disruptive agents.

In the ChemBioSim study [137], the use of in vitro assay information for the pre-

diction of in vivo endpoints was investigated. To avoid synthesis and testing of every

query molecule, CP models were trained on a collection of toxicological in vitro datasets
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and the generated p-values, i.e. calibrated predicted probabilities, were used as so-called

bioactivity descriptors. For MNT and cardiotoxicity, it could be demonstrated that the

bioactivity descriptors, or their combination with chemical (molecular and physicochem-

ical) descriptors, can yield superior predictions compared to using chemical descriptors

alone.

Given exchangeability, CP is designed to yield automatically valid models at a pre-

defined maximum error rate. The exchangeability assumption, which is also made for

ML, is not always fulfilled. Typically, valid models are obtained in a cross-validation,

however, when applied to the test data, validity may drop. Impaired validity on test

data may be explained by data drifts, e.g. when exploring a new chemical space over

time or when predicting data from different sources. Such data drifts can retrospectively

be detected in poorly calibrated CP models. When comparing observed versus expected

validity in so-called calibration plots, deviations from the diagonal line may be observed.

As an approach to mitigate data drift effects, the recalibration strategy was developed

with the example of the Tox21 datasets [145]. Subsequently, application of the strategy

to temporal data drifts in time-split ChEMBL datasets and to discrepancies between

training and test data from different sources [147] was investigated. The recalibration

strategy involves exchanging the calibration set with data assumed to be closer to the test

set. It was demonstrated that validity can be restored or improved when the calibration

data origins from an exact same or a similar distribution as the test set, respectively.

While more research is needed to minimise the drop in efficiency when restoring validity,

the recalibration strategy comes with the advantage that no retraining of the model

is needed. Hence, a comparatively small dataset of updated data may be sufficient to

retrieve valid models.

Considering the need for more and consistent data, as well as the complexity of certain

toxicological endpoints, computational toxicology methods will most likely not be able

to completely replace animal testing in the near future. Nevertheless, this work suggests

ways to improve confidence in and applicability of the methods. The results illustrate

how in silico toxicology can help to guide toxicity testing, hence contributing towards

the development of safer chemicals while reducing animal experimentation.
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