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Preface

Publications

This thesis is built on a research project that was recently published in BMC Ge-
nomics by Abdullaev, Umarova, and Arndt (2021) under the title "Modelling seg-
mental duplications in the human genome". It is available at https://doi.org/

10.1186/s12864-021-07789-7. Parts of the text in the thesis were adopted from
this research paper. The publication covers our results described in Chapters 4 and
partly 5. On the other hand, Chapter 6 contains our yet unpublished results about
the reconstruction of duplication events from the SD network and genomic features
associated with duplicated regions. We expect to submit this part of the thesis for
publication soon.
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Chapter 1

Introduction

The diploid human genome consists of 23 pairs of chromosomes that encode herita-
ble information about an individual. There are 22 pairs of autosomes and a pair of
sex chromosomes that differ in male (X, Y) and female (X, X). Almost exact sets of
chromosomes (except for somatic mutations accumulated) are present in all somatic
cells of a body. Even though the genomic information is the same, the difference in
epigenetic states and regulatory mechanisms effect the cell fate thus leading to dis-
tinct cell morphologies. The DNA sequences that comprise genomes vary between
unrelated human individuals and between human and other species in their content.
Per average, two individual human haploid genomes differ by 4.1 to 5 million vari-
ants which cover approximately 20 million basepairs (Consortium et al., 2015). This
is close to 0.6% of the overall genome sequence since the human genome is about
3.1 billion basepairs long. About 3 million sites or 0.1% of genomic sequence cor-
respond to single nucleotide polymorphisms or differences in one nucleotide. The
rest are structural variants that include: duplications, deletions, insertions (when
DNA sequence is added without copying), translocations (when DNA fragment is
transferred from another locus), inversions (when an order of nucleotide sequence
changes to the opposite) and complex events. Long duplications or deletions are
called copy-number variations or CNVs. Copy-number variations correspond to
about 0.4% of difference between individuals. Long duplications (longer than 1 kbp)
that are fixed in the human population are called segmental duplications or SDs. In
this thesis we analyze properties of segmental duplications in the human genome.

When a new mutation appears in a population, it, eventually, either reaches fix-
ation (presence in all individuals) or vanishes. Three main forces affect this process:
the mutation rate, random drift (stochastic effects of sampling) and selection. In
this thesis we study large genomic duplications that are fixed in the human popu-
lation. Some of them can be explained by positive selection (when, for example, a
functional gene is duplicated) or by increased mutation rate resulting in recurrent
duplications, however, in most cases, it is hard to find out the reason for fixation. In
terms of duplication mechanisms it is also not always easy to predict the responsible
one. Thus the question of why a specific duplication is present, which sequences
get copied, and where such copies are inserted into a genome is a complicated one.
In this thesis, a similar question was studied: why duplications that we see in the
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human genome are distributed in such a way relative to each other. We handled this
task by studying possible dynamic scenarios of duplications expansion in genomes.

1.1 Research objective

This thesis presents an analysis of long genomic duplications, known as segmental
duplications (or SDs), in the human genome. The main focus is put upon the dy-
namic aspects of expansion of segmental duplications. The distribution of segmental
duplications in the genome is highly non-uniform. But why segmental duplications
happen non-uniformly in the genome? Are there any universal "rules" behind the
process of SD expansion or is it just a sum of independent mechanisms acting in dif-
ferent parts of the genome. If there are some, can we model this process? To answer
those questions we analyzed special distributions and sequence similarities between
SDs to reject certain naive scenarios for SD evolution and came up with a minimal
model for the expansion of SDs, which complies with the observed data. The general
processes of SD propagation were rarely modelled mathematically. In this thesis we
attempted to change this situation, and, eventually, accumulated new facts about
SD evolution. We suggest a universal propagation model for segmental duplica-
tions in the human genome. Moreover, we predicted characteristics of duplicated
regions associated with high duplication rate. Our research project gives an insight
into segmental duplications dynamics both by modelling duplication process and
by analyzing genomic features affecting duplication rates.

1.2 Thesis outline

In the second chapter we introduce segmental duplications (SDs) and present known
facts about them. It starts with a historic overview, discussion about different sources
of redundancy in the human genome, detection methods, dynamic properties of SD
expansion in the genome and the role in gene duplications and human genome evo-
lution. This thesis describes an interdisciplinary project, which includes mathemat-
ical algorithms applied to answer biological questions. Thus a chapter dedicated to
the network theory was added to the thesis. The Chapter 3 gives a brief glossary
of complex networks related terminology. In Chapter 4 our results on dynamical
aspects of SD evolution are presented and discussed. Human genome segmental
duplications were studied as a graph which allowed to suggest a model of SD expan-
sion in the genome. The same analysis was performed in genomes of other species -
results are presented in Chapter 5. Then in Chapter 6 the duplication events are re-
constructed from the complex network of segmental duplications and genomic fea-
tures associated with actively duplicating regions are suggested. Conclusions and a
summarizing discussion can be found in Chapter 7.
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Chapter 2

Genomics Background

2.1 Human Genome Project and genomic sequence redun-
dancy

It makes sense to start our introduction with the Human Genome Project (HGP).
This seems relevant when introducing segmental duplications or SDs (the main ob-
ject of our research project). Even though earlier studies observed large genomic du-
plications often associated with disease (Tomlinson et al., 1994; Eichler et al., 1997;
Wong, Royle, and Jeffreys, 1990), still large-scale annotation of segmental duplica-
tions became possible when the reference genome was ready. Technically, the HGP
was the moment of a phase transition in computational biology which affected its
paradigms: the tools we use, the questions we ask, the scale of data we work with
etc. So even if not considering our topic of interest, one would not call that a begin-
ning in medias res.

Historically, the Human Genome Project was established in 1990, it was planned
for 15 years with an overall costs of $3 billion. It ended up two years earlier than ex-
pected in April 2003 (50th anniversary of Watson and Crick discovery) and costed
less than expected ($2.7 billion dollars (1991)). The first draft version of human
genome was announced even earlier in 2000. The project was done by the Inter-
national Human Genome Sequencing Consortium (IHGSC) which united scientists
from 20 sequencing centers in US, China, France, Germany (including the Max Planck
Institute for Molecular Genetics), UK and Japan. In parallel, a private biotechnology
company called Celera Genomics was competing with IHGSC to produce a first se-
quence of the human genome.

Eventually, approximately 92% of human genome was sequenced except for het-
erochromatic parts which are mostly comprised of highly repetitive subtelomeric
and pericentromeric regions. The estimated sequence quality of the hg17 reference
(2004) exceeded 99.99% accuracy and only 341 assembly gaps remained unresolved
(IHGSC, 2004).

The way human genome was sequenced by IHGSC is known as hierarchical
shotgun and it differs from regular NGS whole-genome sequencing that became
widespread later. The sequencing pipeline started with genomic DNA fragmenta-
tion into large pieces (150− 200 kbp) which were further cloned in bacterial artificial
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chromosome (BAC) vectors (Fig. 2.1). These BACs were transformed in E. coli cul-
ture, so that, as a result, each clone carries one BAC which is amplified with the
means of bacterial DNA replication machinery. Such a collection of genomic frag-
ments is called BAC library.

Since the price of sequencing in late 90s was much higher than nowadays, only
most informative BACs were picked for it. However, it is not a straightforward
task when you do not know the sequence. To disentangle this vicious circle, ad-
ditional sources of information were considered. Sequence-tagged sites (STSs) are
short (200− 500 bps) nucleotide sequences that are present in a genome in one copy
and location of a corresponding locus is known in advance. Presence of specific STSs
in BACs was detected by PCR amplification. This allowed to tag BACs to specific
genomic regions and thus pick non-redundant set of BACs covering largest frac-
tion of the genome (Fig. 2.1). Other methods like fluorescence in situ hybridization
(FISH) and DNA fingerprinting were also applied to map BAC library fragments on
chromosomes, but less extensively (IHGSC, 2001). Genomic inserts from selected
BACs were fragmented into smaller DNA pieces (∼ 2 kbp) which were than se-
quenced with a Sanger-based sequencing machine and assembled (IHGSC, 2001).
For resulting contigs and scaffolds the BACs of origin were known which in its turn
were approximately mapped on chromosomes. This knowledge, substantially eased
the process of genome assembly from a set of contigs. At late stages of the project
147, 480 assembly gaps were closed and complicated regions of the assembly were
finalized (IHGSC, 2004).

The resulting genome is approximately 3.1 billion base pairs long and includes
approximately 21 thousand protein-coding genes. This was one of the surprising
observations of the HGP, because it was expected that there are much more (over
40 thousand) genes. The fraction of protein-coding sequences in the genome was
also surprisingly low (1.5%), while the rest of the genome is comprised of high-
copy repeats, introns, regulatory regions and more that altogether was prematurely
stamped as "junk" DNA (Fig. 2.3a). The level of redundancy in human genome was
higher than expected, in particular, it was estimated that segmental duplications
cover ∼ 5% of human reference genome (Bailey et al., 2002). In the next sections
we will discuss origins and types of genomic redundancy and a large fraction of the
text is dedicated to segmental duplications. In conclusion of this section something
rather obvious has to be said: it is hard to overestimate an importance of the Hu-
man Genome Project and especially its impact on bioinformatics, biotechnology and
medicine. It is quite illustrative that if we iterate through big human-related bioin-
formatics projects that came after: the HapMap, ENCODE, TCGA, 1000 Genomes
project, Telomere-to-Telomere Consortium project – none of them would be possible
without proper assembly of the human genome.
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FIGURE 2.1: The workflow of human genome sequencing by
IHGSC. At the first step the genome was fragmented and cloned into
BACs. On the second step approximate locations on chromosomes
were determined for DNA fragments based on sequence-tagged sites
or STSs (drawn as coloured stars). Non-redundant BACs were further
picked for sequencing and, on the last step, contigs corresponding to

specific BAC are assembled.

2.1.1 Perfect matches and stick-breaking process

We would like to start a discussion about redundant sequences in human genome
from stretches of perfect matches observed in it. This view does not imply knowl-
edge on duplication mechanisms or biology behind those sequences, but study them
in a light of mathematical models. When we align genomes of various species
against themselves we can observe that not only one trivial alignment is present
(a perfect match between full genomic sequence and its copy), but also additional
shorter perfect matches (identical sequences) are observed between non-allelic loci
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of a genome. Surprisingly, a length distribution of such perfect matches is dramat-
ically different from what we expect if we imagine a genome as a random string of
nucleotides. In this case the expected length distribution is exponential. It comes up
if considering mismatched basepairs as events originating from the Poisson distribu-
tion, while distance between such events (or length of a perfect match) is distributed
exponentially then. However, in real life the length distribution follows a power-law
n(l) ∝ lα where n(l) is a number of perfect matches of length l (Fig. 2.2). Power-law
slopes are observed both in genomes with masked and unmasked high-copy sim-
ple repeats. The exponent values α are quite consistent among eukaryotic species:
α ∼ −3 as it was first observed by Gao and Miller (2011). This distribution of per-
fect matches was further explained by Massip and Arndt (2013) with a so-called
"stick-breaking" model. This model was inspired a model from the field of polymer
chemistry (Kuhn, 1930). Based on stick-breaking process, duplications of constant
length L happen in a genome with the rate γ. Single-nucleotide substitutions hap-
pen in a genome in parallel with the rate µ and fragment perfect matches observed
between duplications into shorter matching intervals until complete dissolution of
duplicated sequence. Thus we can assume that over time the number of perfect
matches of specific length l can either decrease when substitutions disrupt them or
grow when substitutions break longer sequences of length l̂ where l̂ ∈ [l + 1; L]
into fragments l and l̂ − l. Simulations and analytical solutions for such a process
predict that in equilibrium state the following distribution is present n(l) = Cl−3

where C = γL
µ which agrees with observed distribution of perfect matches in the

masked version of human genome. Curiously, the value of C is close to one for hu-
man genome which in a context of stick-breaking model suggests that probability
of a genomic position to be duplicated is approximately equal to its probability of
being substituted (Massip and Arndt, 2013). The stick-breaking process with modifi-
cations was further successfully applied to explain other match length distributions,
such as exponent α = −5 for matches between protein–coding genes, α = −4 for
retroduplicated loci and k-mer distributions in Alu repeats sequences (Sheinman et
al., 2016; Massip et al., 2015; Massip et al., 2016). Simple mathematical model of ran-
dom duplications and substitutions is sufficient to explain perfect matches length
distribution in genomes. However, to get a deeper look into nature of redundant
sequences in the human genome we have to consider different types of repeats with
their mechanisms of propagation.

Finally, we wanted to mention that this story is illustrative to the fact that pre-
diction of simple universal mechanism for a process could arise even in presence of
multiple facts on the complexity of its specific cases. There are many possible mech-
anisms involved in long genomic duplications and short repeats propagation in a
genome. Accumulation of knowledge about it is often an accumulation of multiple
complex scenarios which makes the overall picture more detailed, but less clean as a
whole. Sometimes it is reasonable to make a step back from a frontier of such anal-
ysis by reduction or even deconstruction of considered objects in order to make a
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FIGURE 2.2: The perfect matches length distribution. Plotted on a
log-log scale with the logarithmic binning. The perfect matches were
detected by aligning repeat masked chromosome 1 of the hg19 refer-
ence against itself with MUMmer tool (Kurtz et al., 2004). One can see
a clear power-law distribution with the slope α = −3 as discussed in

the main text.

forward step with a generalized prediction which naturally arises then. This view
is also consonant with what was done in our research project on segmental duplica-
tions.

2.1.2 Repeat classes

Redundant sequences in the human genome are mostly represented with high copy
repeats. Based on annotation of a human reference these repeats cover around half
of it (Fig. 2.3a) (IHGSC, 2001). When this fraction was estimated based on analysis of
high-abundance k-mer clusters it grew up to about two thirds of the genome (Koning
et al., 2011). Unknown repeats and highly divergent ones are included in this set
along with previously annotated ones. This large group of redundant sequences
can in most cases be assigned to different repeat classes. Based on a distribution
throughout a genome repeats are divided into tandem ones: those where copies are
located in arrays one after another, and interspersed: when copies are located in
a genome more or less at random positions. As we will see further, the difference
between two groups is more dramatic than just positioning of copies relative to each
other.

Tandem repeats

Tandem repeats are mostly represented with so-called satellite repeats. The name
"satellite" originates from early experiments on genomic DNA centrifugation in a
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density gradient. Low-complexity satellite repeats have biased nucleotide frequen-
cies in comparison with the rest of the genome thus corresponding DNA is moving
in a gradient test tube as a separate "satellite" band. Satellite DNA is composed of
large arrays of tandemly repeating non-coding sequences. Most of it is concentrated
in centromeric and telomeric regions of the genome, moreover, satellite repeats are
important for centromere and telomere formation along with organization of hete-
rochromatin (Shatskikh et al., 2020). The main mechanism responsible for satellite
repeats formation is a DNA polymerase slippage that happens during replication in
the S phase of cell cycle (Tautz and Schlötterer, 1994). Highly repetitive sequences
form DNA loops that either increase or decrease resulting number of repeat units
added by a polymerase. Satellite repeats are classified into three groups: microsatel-
lites, minisatellites and satellites in a narrow sense.

• Microsatellites or short tandem repeats are arrays of small (2 - 9 bps) units
that are located in multiply loci in the human genome. Arrays of microsatel-
lite repeats are highly mutable and differ in their number between different
individuals. Overall, microsatellites cover 3% of the human genome sequence
(Subramanian, Mishra, and Singh, 2003). Changes in microsatellite composi-
tion can effect gene regulation, expression or lead to disease, for instance, there
are several triplet expansion disorders, such as fragile X syndrome, Friedre-
ich’s Ataxia or Huntington’s disease (Pearson, Nichol Edamura, and Cleary,
2005; Bidichandani, Ashizawa, and Patel, 1998). The genome-wide difference
in microsatellite composition accounts for ∼ 10− 15% of heritable variation
in gene expression (Gymrek et al., 2016). Human telomeres themselves are
composed of tandemly repeating blocks: . . . TTAGGG – TTAGGG – TTAGGG. . .
which are classified as microsatellites (Thakur, Packiaraj, and Henikoff, 2021).

• Minisatellites represent tracks of repetitive DNA where longer units (usually,
10 - 60 bps long) are organized in tandem arrays (typically, repeated 5 - 50
times). Similarly to microsatellites, these repeats are highly polymorphic in hu-
man population and are enriched around centromeric and telomeric regions.
Minisatellites are often associated with fragile genomic sites and genomic re-
arrangement hotspots (Vergnaud and Denoeud, 2000).

• Satellite repeats are sometimes considered as a separate class. Satellite re-
peats include several tandem repeat groups of variable length which constitute
centromeres, pericentromeric and subtelomeric regions (as we said, telomeres
are usually included in microsatellites). Centromeres of human chromosomes
consist of specific α-satellites which are one of the longest (repeat unit of 170
bps) and most widespread among satellites (∼ 10% of all repeats number)
(Aldrup-Macdonald and Sullivan, 2014). Subcentromeric regions differ among
human chromosomes and are predominantly occupied by satellites I-III and β-
satellites (Thakur, Packiaraj, and Henikoff, 2021).
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Curiously, satellite repeats are fairly well conserved in terms of their sequence, while
their copy number changes are common even between individuals of the same specie
(Plohl, Meštrović, and Mravinac, 2012). This characteristic of microsatellite repeats
is exploited in DNA fingerprinting for population genetics, crime investigations and
kinship tests. Also, microsatellites were widely used as genetic markers allowing to
locate genes responsible for a specific phenotype or disease based on co-inheritance
observations, however, later SNPs became more applicable for this role.

Interspersed repeats

Overwhelming fraction of interspersed repeats is represented by transposable el-
ements (TEs) which exploit specific enzymes for their propagation in a genome.
Transposable elements are mobile genetic elements that encode enzymes needed
for their propagation. Some transposable elements encode all needed enzymes and
thus are able to independent transposition in a genome while other TEs miss some
enzymatic machinery and exploit one encoded in other TEs. These two groups are
called autonomous and non-autonomous TEs, respectively. Transposable elements
and tandem repeats are quite distinct: units of transposable elements are longer,
satellite repeats do not encode proteins and have low complexity repetitive sequence
which it is not the case for TEs. Based on a mechanism of propagation, transposable
elements are divided into two classes.

• Retrotransposons or class I TEs need an RNA intermediate for their propaga-
tion. Common mechanism for retrotransposition include the following gener-
alized steps. Retrotransposons are first transcribed with one of RNA poly-
merases. A reverse transcriptase enzyme is than translated from resulting
RNA intermediate or exploited from the host cell in order to synthesize com-
plementary DNA or cDNA. This DNA fragment is inserted back into genome
with the help of integrase or endonuclease enzymes. This mechanism is simi-
lar to retroviral life cycles because class I elements and retroviruses have com-
mon evolutionary origin while transitions between these two groups and hor-
izontal gene transfer is possible (Koonin, Dolja, and Krupovic, 2015; Hay-
ward, 2017). Two big groups of autonomous class I TEs include: LTR retro-
transposons which are structurally characterized by long terminal repeats and
non-LTR retrotransposons, which are usually referred to as LINEs (long inter-
spersed elements). Non-autonomous ones are represented with short inter-
spersed elements (SINEs) which in primate genomes are dominated by Alu re-
peats. Without going into details, all listed groups have rather different mech-
anisms of propagation, patterns of insertion, evolutionary origin and encode
different gene sets. Overall, class I transposable elements cover a huge (more
than 40%) fraction of the human genome (Fig. 2.3a) (Gregory, 2005). Among
them Alu (∼ 11%) and LINE-1 (∼ 17%) are the most abundant representatives
(IHGSC, 2001; Batzer and Deininger, 2002).
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• DNA transposons or class II transposable elements are mobile elements that
use single- or double-stranded DNA intermediate in a process of transposi-
tion. Class II TEs recruit transposase enzyme to recognize genomic sequence
of transposon, cut one from the genome and paste it elsewhere. This mech-
anism is referred to as "cut-and-paste" in contrast to "copy-and-paste" one of
retrotransposons. Overall, DNA transposons account for 3% of genomic se-
quence. Most of class II transposable elements observed in the human genome
were active early in primate evolution (> 37 mya), while currently there are
no active DNA transposons in our genome (Pace and Feschotte, 2007).

Transposable elements shaped human genome throughout primate evolution by af-
fecting both linear distances between variable genetic elements and the spatial struc-
ture. This influenced various aspects, from regulation of expression, genes evolu-
tion and DNA repair mechanisms to large-scale evolutionary effects, such as spe-
ciation process, origin of cellular life, sexual reproduction (for example, germline
cells defence from TEs), virus evolution and so on (Koonin, 2016; Tóth et al., 2016;
Serrato-Capuchina and Matute, 2018). What is more relevant to our project, trans-
posable elements create hotspots for genomic rearrangements. As we will see in
further sections, burst of segmental duplications in primate evolution was associ-
ated with excess of Alu repeats. Finally, mobile elements are associated with mul-
tiple human diseases, such as: hemophilia A and B (L1 retrotransposon insertion
into anti-hemophilic factor (AHF) gene), cause of colon cancer (disruption of APC
gene by LINE-1), porphyria (insertion of Alu into PBGD gene) etc. (Miki et al., 1992;
Kazazian et al., 1988; Mustajoki et al., 1999).

2.1.3 Segmental duplications

Segmental duplications (SDs) or low copy repeats (LCRs) are long duplications of
genomic sequence that are fixed in a genome. A fixation in population genomics
is a process when specific allele frequency reaches 100% or, in other words, it gets
present in all individual genotypes in a population. By the common definition seg-
mental duplications are longer than 1 kbp with the level of sequence identity higher
than 90%. Let’s dive into the given definition. Firstly, the threshold for the length
and the level of sequence identity between copies are imposed artificially, because of
technical reasons. The process of sequence alignment of a human reference against
itself was extremely time consuming in early 2000s (weeks of computation) so there
were some restriction for reported hits. In parallel, alternative approach for SD pre-
diction (WSSD) that we will discuss in detail later used another technical threshold
(≥ 95% and ≥ 15 kbp), which, eventually, did not become conventional.

Based on neutral sequence evolution, duplications with sequence identity > 90%
appeared around 40 mya or after, which roughly corresponds to the split of the New
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FIGURE 2.3: Redundant sequences in the human genome. The
piechart (a) represents types of genomic sequences and their frac-
tion in the human genome. One can see that protein-coding ex-
ons cover minority of the genome, while about half of the genome
is represented with redundant sequences. Adopted from Gregory
(2005). b. Segmental duplications are recognized as longer than 1 kbp
alignments of > 90% sequence identity between non-allelic loci of a
genome. Based on location of duplicated sequences relative to each
other SDs are classified into inter- and intrachromosomal, while in-
trachromosomal ones can be tandem or not (interspersed). Coloured

lines correspond to different chromosomes.

and Old World monkeys (Bailey and Eichler, 2006). This means that SDs that orig-
inated during the burst of duplication activity early in hominid evolution are in-
cluded in SD annotation. It also means that human shares annotated SDs with other
Old World monkeys, but not with less related species.

Segmental duplications are evolutionary fixed in a genome according to defini-
tion, otherwise duplications are classified as copy-number polymorphic or CNVs.
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Technically, we can not say for sure if duplication is fixed in a population, especially
when it comes to early annotations when only one human genome was sequenced.
This could lead to reconsidering some SDs as CNVs when more individual samples
are studied. However, the nature of CNVs and SDs is similar, that is why some
conclusions about SDs are drawn from observations made on CNVs. Now, as we
discussed the definition of SDs we can talk about ones in more details.

2.2 Segmental duplications analysis

2.2.1 Segmental duplications detection methods

Detection of segmental duplications in a genome is not a straightforward task: all
methods have their own limitations and even now, after about 20 years of SD re-
search, we can not say that a golden standard method has been established. Wide-
spread application of long-read sequencing could, in theory, solve this problem in
the future when this technique becomes more accessible, but, as for now, most of
our data on SDs comes from other sources. In this section we will focus on two
main computational approaches for SD prediction: WGAC and WSSD, and briefly
mention other methods.

Among experimental methods for detection of SDs, fluorescence in situ hybridiza-
tion (FISH) is a widespread technique for validation of SDs. Usually a subset of SDs
predicted computationally is validated with FISH to assess an accuracy of predic-
tions. In FISH fluorescently labeled DNA probes are hybridized against metaphase
chromosomes in order to find all complementary DNA sequences. This allows to
detect long duplications and to map them approximately on chromosomes. Alter-
natively, copy-number variable loci can be detected with comparative genomic hy-
bridization arrays (aCGH) with high resolution. Two samples of genomic DNA: test
and reference one, are first labeled with red Cyanine 5 (Cy5) and green Cyanine 3
(Cy3) fluorophores, respectively. Fragmented genomic DNA from two samples in
equal quantities is mixed and cohybridized against DNA microarray covered with
single-stranded DNA oligonucleotides complementary to genomic loci of interest.
The fluorescence colour or the Cy3/Cy5 fluorescence ratio is proportional to the
copy-number ratio of a specific piece of genome in test and reference samples. In-
creased copy-number in test sample would lead to red fluorescence, while decreased
one would result in green light. This method allows to detect relative copy-number
changes between individuals of the same or related species, but not the location of
copied DNA sequences in a genome. Finally, quantitative PCR (qPCR) can be ap-
plied to measure copy-number of specific genomic region in order to validate possi-
ble duplication.

The first method is called whole-genome assembly comparison or WGAC. It is
based on the most intuitive solution for segmental duplications prediction: in a nut-
shell, a reference genome is split into genomic intervals (400 kbp) that are further
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aligned against each other (Bailey et al., 2001). Segmental duplications are detected
as long stretches of alignment observed between different genomic intervals. In
WGAC approach high-copy simple repeats are first excluded from genomic seg-
ments prior to alignment. This step is called "fuguization", it makes WGAC more
sensible to SDs riddled with repeats that would otherwise be missed. Alignment of
genomic intervals is performed via BLAST with consequent refinement of alignment
ends after returning repeat sequences back (Altschul et al., 1990).

Another approach termed whole-genome shotgun sequencing detection (WSSD)
distinguishes unique and duplicated sequence on the basis of the depth of read cov-
erage and the level of sequence identity of reads alignment to a reference (Bailey
et al., 2002). The idea is the following, if we allow reads to map in multiple positions
on a reference genome, those sites with increased copy number in the genome will
have higher depth of read coverage, moreover, we expect that read coverage grows
proportionally to copy-number. The level of identity of reads to reference align-
ment is used as another evidence, because copies of a duplicated region often differ
in their sequence composition. For instance, segmental duplications, by a common
definition, differ by up to 10% of their sequence. Thus long genomic regions where
decreased read mapping quality is observed together with increased depth of read
coverage are considered as potential loci involved in duplications.

The WSSD approach is appropriate to detect SDs with sufficient level of conser-
vation and length (usually, ≥ 15 kbp and ≥ 94%, respectively). Lower sequence
identity level could affect mapping of reads originating from diverged copies, while
short regions of increased coverage depth could be unrecognized. This is where
WGAC algorithm has an advantage over WSSD. However, one important advantage
of WSSD approach is that it does not depend on quality of a given reference genome
assembly, which, as we will further discuss in detail, is often quite low. The WGAC
approach can only recognize duplications that are present in a reference genome and
can not validate their correctness per se. On the other hand, even SDs collapsed by
assembler into single genomic region can be recognized by WSSD. Moreover, WSSD
algorithm can be applied in a cross-specie manner when WGS reads from one specie
are mapped to a reference genome of closely related specie. Both WGAC and WSSD
have their own strong and weak sides. That is why de novo SD annotations are often
done with both methods applied to make SD predictions more accurate (for exam-
ple, Bailey et al. (2004) or Liu et al. (2009)).

Long-read sequencing technology has a great potential for producing de novo
genome assemblies of a quality exceeding GRCh38 reference (Miga et al., 2020). For
example, long reads are more likely to cover breakpoints of SDs with deeper in-
sight into surrounding unique DNA sequence, which allows to proper anchoring
of duplication copies. Long reads also allow resolving redundant low-complexity
sequences surrounding SDs which were often unresolved and left as assembly gaps
before. However, there is one major technical issue that limits opportunities of long-
read sequencing. The error rate of both PacBio and Oxford Nanopore Technologies
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(ONT) long reads is quite high (∼ 15% of bps) which is comparable to the level of
sequence identity between copies of SDs (Weirather et al., 2017). Such a high er-
ror rate limits opportunities of genome assemblers to recognize separate copies of
a duplicated region, which leads to collapses where paralogous sequences are erro-
neously merged into one. For example, it was found that only about 30% of SDs were
properly resolved in recent de novo long-read assemblies CHM1 and ONT assembly
of NA12878, where proper resolution means that duplication is correctly placed in
the genome and at least 50 kbp extended into unique sequence on both sides of SD
(Vollger et al., 2019).

The Segmental Duplication Assembler (SDA) is a computational tool that is often
applied to solve this problem (Vollger et al., 2019). It takes advantage of polyploid
phasing in order to resolve collapsed regions in assemblies. First, genomic intervals
with elevated read coverage are detected and studied as potential collapsed regions.
For each of them paralogous sequence variants (PSVs) are suggested as those SNVs
that appear at the same threshold as unique sequencing depth. This threshold al-
lows to distinguish paralogous or allelic variants from read errors. Then the graph
is constructed where PSVs represent nodes, edges are added if a pair of PSVs is ob-
served in the same read (thus reads themselves define paths in the graph). Clusters
of connected nodes identified in this PSV graph correspond to paralogous copies of
a genomic region. Reads belonging to these clusters are reassembled again indepen-
dently in order to get separate sequences of copies (Fig. 2.4). The SDA approach
successfully resolved many collapsed sequences in long-read assemblies.

2.2.2 Segmental duplications in the human genome

Segmental duplications were first annotated in the draft human reference genome
in 2001 with the WGAC algorithm (Bailey et al., 2001). The first estimate of a du-
plicated sequence content was at 13.2% of the genome with a low level of recall
by FISH. It was clear that this fraction is inflated by the misassemblies of the refer-
ence. Application of the WSSD method in 2002 re-estimated this fraction to be at
around 5% which agrees with a nowadays knowledge on SDs (Bailey et al., 2002).
Anyway, the amount of segmentally duplicated sequence was higher than what was
expected before the HGP. Moreover, it was found that segmental duplications ac-
count for higher fraction of nucleotide difference between human and chimp than
single-base substitutions (> 2.7% and 1.2%, respectively) and strongly contribute
to the variation between human individuals (Cheng et al., 2005; Redon et al., 2006).
Based on positioning relative to each other segmental duplications are classified into
inter- and intrachromosomal ones. Interchromosomal SD is the one where copies are
located at different chromosomes while copies of intrachromosomal SD are on the
same. The last group includes tandem SDs, those where copies are located adjusted
to each other (< 1 Mbp between copies). Human genome is enriched with inter-
chromosomal and interspersed SDs (non-tandem ones) in comparison with other
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FIGURE 2.4: The schematic pipeline of the SDA tool. Regions sus-
picious for assembly collapse are defined based on read coverage
depth profiles. Green and red dotted lines represent normal coverage
of unique sequence and a threshold for elevated one (normal cover-
age +3 s.d.), respectively. PSVs are identified and the PSV graph is
constructed as described in the main text. Clusters of PSVs are de-
tected; then reads are partitioned accordingly and reassembled inde-
pendently. Colours on the scheme illustrate these clusters and result-

ing contigs. The source of the figure: Vollger et al. (2019).

non-hominid genomes which are dominated by tandem duplications (Bailey and
Eichler, 2006).

SDs are distributed very non-uniformly in the human genome (Fig. 2.5). Hotspots
for segmental duplications are concentrated in pericentromeric and subtelomeric re-
gions of chromosomes. From ∼ 150 Mbp of genomic sequence covered by SDs, 31%
is located in pericentromeric regions, 2% in subtelomeric ones and 67% are intersti-
tial (i.e. lie between pericentromeric and subtelomeric regions) (Koszul and Fischer,
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2009). The dominating mechanisms of duplications are distinct in all these areas.
For example, segmental duplications in subtelomeric regions are mainly formed by
NHEJ or non-homologous end joining. NHEJ is one of the pathways for repair of
double-strand breaks in DNA. In contrast to homology-mediated repair this mech-
anism does not rely on long stretches of homologous sequences. Erroneous NHEJ
can lead to unequal translocations of telomeric fragments between chromosomes
which result in accumulation of interchromosomal duplications. Detailed analysis
of 41 subtelomeric duplicons found that 92% of breakpoints were consistent with the
NHEJ mechanism (Linardopoulou et al., 2005). It also agrees with the fact that peri-
centromeric regions are enriched with interchromosomal SDs (2.7-fold enrichment
over the genome average) (Bailey et al., 2001), especially high sequence identity ones
(Fig. 2.6).
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FIGURE 2.5: The UCSC genome browser annotation of an exam-
ple genomic region (chr1:143,955,418 - 144,255,418). The illustrated
region shows a complex structure of a genomic locus enriched with
SDs. Every element of the "Segmental duplication" track represents a
long alignment observed between corresponding genomic region and
its copy located elsewhere (indicated by the coordinates aside of each
element). Colours of the alignments represent the level of sequence
identity: light to dark grey (90 - 98%); yellow (98 - 99%); orange (>
99%). Repetitive elements like LINEs, SINEs, LTRs etc. are usually
much shorter and present in high number of copies in the genome
(tracks on the top). These were added to illustrate the difference be-

tween SDs and high-copy repeats.

Even stronger enrichment of SDs is observed in pericentromeric regions: both
inter- (4.5-fold) and intrachromosomal duplications (3.1-fold) are enriched there in
comparison with the rest of the genome (Bailey et al., 2001). Within closest to cen-
tromere 0.5 Mbp there are 6 times more interchromosomal duplications than in-
trachromosomal ones while further away this fraction gradually descends to the
genome average. Big fraction of duplicated sequence in pericentromeric regions can
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be traced back to ancestral fragments of interstitial euchromatin (She et al., 2004). To
explain this, special "two-step model" was proposed on how pericentromeric regions
evolved in terms of duplications (Eichler et al., 1997). In a nutshell, on the first step,
euchromatic segments are copied into pericentromeric loci where these blocks are
concentrated. On the second step, resulting complex loci are copied with juxtaposed
duplicons from diverse euchromatic regions in them. This process gives rise to mo-
saic SDs in pericentromeric regions (Fig. 2.10a). We will come back to this model in
later sections.
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FIGURE 2.6: Segmental duplications mechanisms overview. a. Sub-
telomeric SDs are formed by NHEJ-mediated translocations between
chromosome arms. Pericentromeric SDs are often complex and ap-
pear as a result of two-step model of SDs expansion. Euchromatic
fragments from multiple genomic locations are first seeded in one lo-
cus and then duplicated as mosaic SDs in pericentromeric parts. In-
terstitial SDs, covering rest of chromosomes are formed by homology
mediated mechanisms as illustrated on the figure where NAHR cre-
ates tandem duplication. b. Quantitative characteristics of SDs in
different chromosome parts. Y axis represents overall length of SDs,
coloured bars represent sequence identity levels. One can see that
both in pericentromeric and interstitial regions intrachromosomal du-
plications are, on average, younger (have higher sequence identity
level), while the opposite is true for subtelomeric ones. Adopted from

Bailey and Eichler (2006)



18 Chapter 2. Genomics Background

Interstitial segmental duplications are dominated by intrachromosomal duplica-
tions in comparison with the regions discussed. When comparing with non-primate
genomes, the average distance between copies of intrachromosomal SDs is higher
in human, because of lower frequency of tandem SDs. Interstitial segmental du-
plications are often associated with repeated sequences at the boundaries. Repeated
sequences make a locus more susceptible to all homology-driven mechanisms of seg-
mental duplications formation: both non-allelic homologous recombination (NAHR)
and DNA polymerase slippage during replication or repair. Alu repeats are an im-
portant group of sequences that make genomic regions unstable. An analysis of a
sequence content of pairwise SDs boundaries showed that Alu repeats are signifi-
cantly enriched there (covering 24% of the sequence as compared to 10% elsewhere).
The enrichment was observed for younger Alu subfamilies (AluY and AluS) which
emerged recently in primate evolution, whereas the oldest primate subfamily (AluJ)
showed no enrichment (Bailey, Liu, and Eichler, 2003). It is suggested that the burst
of Alu retroposition activity during the primate evolution around 35 – 40 mya sensi-
tized the ancestral human genome for Alu–mediated segmental duplication events
both via NAHR and ploymerase slippage mechanisms. Based on sequence identity
levels and phylogenetic reconstruction (we will discuss one in detail in Chapter 5),
the peak of SD expansion was observed early in hominoid evolution (Samonte and
Eichler, 2002). Alu-mediated segmental duplications are mostly characterized by
long-range translocations, because of relatively universal distribution of Alu repeats
in the genome.

Alternatively, segmental duplications themselves are the source of genomic in-
stability leading to further duplications and rearrangements. Segmental duplica-
tions are long highly identical sequences that increase the probability of non-allelic
homologous recombination or template switches during DNA replication. One wide-
spread scenario of a duplication driven by previously duplicated sequences is illus-
trated at (Fig. 2.6a). NAHR between copies of a tandem SD can lead to deletion along
with duplication of the copies number. It explains an elevated duplication dynamics
of tandem SDs and, as it was noted by Seymour Fogel in 1983: "It is conceivable that
the rate limiting step in tandem gene amplification is the very first event leading
to the initial duplication. Once two or more copies of the segment are present, the
likelihood of tandem amplification is much greater." (Fogel et al., 1983). Findings in
comparative genomics analysis showed that recent SDs tend to happen in already
duplicated regions (this phenomenon is known as "duplication shadowing") (Cheng
et al., 2005). CNVs in the human population also preferentially happen in already
duplicated loci (Korbel et al., 2007; Kim et al., 2008).
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2.2.3 Mechanisms for segmental duplications

In this section we will discuss the mechanisms of segmental duplications in detail,
their abundance and conditions needed. In general, the mechanisms were formu-
lated as theoretical models which were tested based on indirect experimental evi-
dence. CNVs accumulation was tested in various stress conditions or cell cultures
where crucial enzymes of DNA repair were nonfictional. An information on the
mechanism responsible for duplication can also be extracted from DNA sequences
in its junctions. For example, NHEJ leaves characteristic "scars" proximal to break-
points: short deletions or insertions. NAHR-mediated duplications are surrounded
by long highly homologous sequences which provided the source for homologous
recombination. Replication-mediated mechanisms often imply shorter homologous
sequences. These events can be detected by microhomology stretches at CNVs/SDs
junctions.

The CNVs can be classified into recurrent and non-recurrent based on their abil-
ity to be formed as independent evolutionary events. Recurrent events are the same
CNVs that appear independently in unrelated individuals, i.e. have the same size,
junctions coordinates and sequence content. On the other hand, non-recurrent CNVs
are those appearing in the same locus, but having nothing in common in terms of
sequence characteristics. At least 40 genomic disorders are caused by recurrent re-
arrangements and more than 70 are attributed to non-recurrent events (Vissers and
Stankiewicz, 2012). The same terminology can be applied for SDs, where recurrent
means homoplasic event: when the same duplications are fixed in several species,
but originated independently in ancestral lineages. We introduce this difference
here, because different mechanism are prone to either recurrent or non-recurrent
events.

Genomic rearrangements appear when erroneous DNA replication, DNA repair
or homologous recombination take place. The mechanisms of rearrangements are
further classified based on homology needed to proceed: homology mediated or
micro-/non-homology mediated ones. Homologous recombination (HR) is a mech-
anism involved in repair of dsDNA breaks and in processes of genomic exchange
between chromosomes (gene-conversion and crossing-over). HR between chromo-
somes does not lead to mutagenesis if the same chromosomal region is involved.
On the other hand, non-allelic homologous recombination can result in duplications,
deletions or inversions of genomic sequence. When a double-strand DNA break is
detected in the interphase, the HR is applied to fix the break based on homologous
chromosome or sister chromatid sequence template (Krejci et al., 2012). HR can go
either via double Holliday junction DSB repair (the pass that could lead to crossing
over or gene conversion) or synthesis-dependent strand annealing (SDSA) - both
these mechanisms can result in genomic rearrangements (an illustrated scheme of
HR can be found in Appendix chapter). Non-allelic HR between tandem repeats
in direct orientation leads to duplication along with deletion (Fig. 2.7a). NAHR be-
tween inverted repeats results in inversion of the fragment between repeat units.
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FIGURE 2.7: Duplication mechanisms not associated with DNA
polymerase template switching. a. An example of non-allelic ho-
mologous recombination between tandem repeats that leads to the
duplication and deletion of genetic material. The break-induced
replication (BIR) is a pathway to resolve one ended dsDNA breaks.
A missing arm of a chromosome is restored by replicating homol-
ogous chromosome sequence. Similarly, when tandem repeats are
not properly aligned during BIR the genomic region between two re-
peats can be duplicated or lost. The scheme (b) illustrates the break-
age–fusion–bridge cycle. Loss of telomeric parts by two chromo-
somes can lead to them being merged into one dicentric chromosome
by the NHEJ (telomeres play the protective function). Such a situa-
tion can happen when a dsDNA break is not fixed upon replication
thus leading to a pair of chromatids without telomeric caps. Dur-
ing anaphase the dicentric chromosome is split by two kinetochores
pulling it in opposite direction. Random double-strand break leads to
genomic DNA translocation, while the chromosome without a telom-
ere can initiate another round of the breakage–fusion–bridge cycle.

Adopted from Hastings et al. (2009).

When HR happens through both either double Holliday junction or SDSA sce-
narios it requires presence of both fragments of DNA that were split by a double-
strand DNA break. However, HR happens differently when only one fragment is
present. Then a whole missing chromosome arm is restored based on homologous
or sister chromosome. Thus one-ended dsDNA break repair results in prolong re-
gions of loss of heterozygosity (LOH) (Hastings et al., 2009). This type of DNA re-
pair is often associated with DNA replication, because when helicase reaches a nick
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in DNA template a single dsDNA fragment is released (Fig. 2.7). This replication er-
ror is resolved with break-induced replication (BIR) pathway (Hastings et al., 2009).
When homologous sequence is encountered the BIR pathway allows DNA replica-
tion to proceed from that place, however, non-allelic stretches of homology lead to
genomic rearrangements in this case.

In any of discussed scenarios the homologous recombination requires long stretches
of homology. Minimum of 134 - 232 bps of matching sequence for mammalian
species is needed for HR (Waldman and Liskay, 1988). That is why NAHR-mediated
SDs/CNVs are often found in regions that underwent segmental duplications in a
past. The rate of HR between homologous sequences correlates positively with the
sequence identity level, length and G/C content and correlates negatively with the
distance between copies (Dittwald et al., 2013; Carvalho and Lupski, 2016). The fact
that HR-based duplications can appear as a result of interaction between specific
loci (those with sufficient sequence homology) explains the fact that recurrent CNVs
mostly resulted from NAHR. Recurrent duplications happen in unstable genomic
sites where precise positions of breakpoints are determined by homology borders
and the sequence is unambiguously defined by the interval between them (Carvalho
and Lupski, 2016).

Another group of duplication scenarios requires short or no homology. As op-
posed to NAHR, non-homology mediated scenarios give rise to non-recurrent CNVs,
because various sites can be involved in genomic rearrangement, which itself can be
complex and associated with extra deletion/insertion "scars" at junctions (Carvalho
and Lupski, 2016). The first such mechanism is NHEJ which, as we discussed in the
previous section, is responsible for subtelomeric SD propagation. Non-homologous
end joining is one of the pathways involved in repair of dsDNA breaks (along with
HR and microhomology-mediated end joining). Homologous recombination is a
preferred mechanism for DNA breaks repair, because of its accuracy, however, if ho-
mologous template is not accessible (usually, during the G1 phase), NHEJ is a mech-
anism for dsDNA breaks repair. Even microhomology of 1 - 3 bps is sufficient for
NHEJ to merge two DNA fragments: hybridize, fill in the gaps and ligate them (Pan-
nunzio et al., 2014). If there are several double-stranded breaks present in a moment:
NHEJ can result in chromosome arm translocations because of its low specificity.
We observe many such translocations and associated SDs in subtelomeric regions
of mammalian genomes (Fig. 2.6), because exchange of telomeres between non-
homologous chromosomes is less deleterious than large-scale chromosome arms
translocations. More complex scenario of NHEJ-mediated genomic rearrangements
was described in cancerogenesis. The so-called "breakage–fusion–bridge cycle" hap-
pens when loss of telomeric region happens in a pair of chromosomes at the same
time (Fig. 2.7b) (Murnane, 2012). For example, this condition appears when a chro-
mosome loses one of telomeres and is replicated whereas dsDNA break is not fixed.
As a result, a pair of chromatids lacking telomere on one side appears, which are
not protected from fusion by the cap of telomere repeats. These chromatids will
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likely be fused into one dicentric chromosome by the NHEJ pathway. During mito-
sis the centromeres of dicentric chromosome are pulled in opposite directions with a
new dsDNA break emerging at random position. New cells will inherit the chromo-
somes with missing telomeres that could start a new cycle. Since the dsDNA break
happens at random position during the anaphase of mitosis, this event is associated
with large translocations.

Aphidicolin is a reversible inhibitor of DNA replication in eukaryotic cells. It
blocks the replicative DNA polymerases Polα and Polδ (DeFilippes, 1984). When
CNVs characteristics were analyzed in cells subjected to aphidicolin, it was ob-
served that 65% of CNVs had microhomologies or no homologous sequences at
breakpoints, showing a limited impact of homologous recombination (Arlt et al.,
2009). This illustrates the fact that non-homology mediated replicative mechanisms
can be responsible for the CNVs formation. One such widespread scenario is called
"replication slippage" (Hastings et al., 2009). It happens in replication when a DNA
polymerase slips over the DNA template to another position and continues the com-
plementary strand synthesis from another locus (Fig. 2.8a). Depending on a slip-
page direction this can result either in tandem duplication (backward transition)
or deletion of a genetic material (forward transition). The slippage not necessarily
happens over the same DNA template. The process when a replication fork stalls
and a DNA polymerase jumps to a ssDNA fragment belonging to another replica-
tion fork to continue the synthesis is called fork stalling and template switching or
FoSTeS (Fig. 2.8b) (Lee, Carvalho, and Lupski, 2007). Earlier we discussed the ho-
mology mediated break-induced replication pathway, however, one-sided dsDNA
breaks that can appear during DNA replication can be resolved without HR. The
suggested mechanism is called microhomology-mediated BIR (MMBIR). It is similar
to BIR in its general principles, however, because of difference in enzymatic machin-
ery it does not rely on long homologous sequences and utilizes microhomologies
for DNA replication to proceed (Fig. 2.8c) (Hastings et al., 2009). Downregulation
of Rad51 enzyme in stress conditions which is essential for homology detection in
HR, hinders BIR pathway and leads to MMBIR where 3’ end overhang anneals to a
ssDNA template sharing minor homology. Low processivity polymerase Pol32 car-
rying out replication in MMBIR is prone to multiple template switches until a fully
functional replication fork is established (as illustrated at Fig. 2.8c). This leads to a
complex nature of resulting non-recurrent CNVs which share microhomologies at
junctions.

2.3 Insights into segmental duplications propagation and evo-
lution

This section covers several research projects that aimed to suggest some generalized
models of SD evolution. With the focus on quantitative or dynamic sides of it. In two
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FIGURE 2.8: Duplication mechanisms associated with DNA poly-
merase template switching. Several scenarios of non-homology me-
diated rearrangements. a. Replication slippage over the template
leads to deletions or insertions. b. Stalling of a replication fork
can lead to temporary DNA polymerase template switching to a
DNA template in another replication fork (mediated by microhomol-
ogy). This results in genetic material being copied from the non-
homologous locus. c. The microhomology-mediated BIR (MMBIR)
differs from the standard BIR because it does not rely on homolo-
gous sequence. It happens that DNA polymerase undergoes several
rounds of template switching until reaching the correct homologous
template. DNA fragments copied from multiple loci form complex
duplication event composed of sequences of different ancestry. The

figure source: Hastings et al. (2009).



24 Chapter 2. Genomics Background

projects a modified version of an A-Bruijn graph was utilized to study SDs ancestral
origin, evolution and expansion principles.

2.3.1 Markov process for segmental duplications propagation

The following research project proposes a dynamic model of the duplication process
as early as in 2005 (Zhou and Mishra, 2005). Several mammalian genomes were stud-
ied, but we will focus on the human genome related findings. It was observed by
earlier studies that Alu repeats, especially, young subfamilies are enriched in flank-
ing regions of SDs in comparison to the genomic background (Bailey, Liu, and Eich-
ler, 2003). However, it is hard to answer quantitatively, which fraction of SDs were
formed by repeat-mediated homology mechanisms, because the presence of repeats
in SD flanking regions does not necessarily mean involvement of repeats in their
formation. A special Markov process was proposed to answer this question.

Only those SDs copied once, not overlapping other SDs and non-tandem ones
were studied to be sure that alignment corresponds to an actual duplication event.
All such SDs were classified according to presence of repeats in flanking regions.
The expectation is that repeats have to belong to the same family, be on the same
side, same orientation and distance from the breakpoints if they mediated the dupli-
cation. SDs are denoted as (+/+), (+/-) or (-/-) if such repeats are present in both,
one or no flanks respectively. However, in the course of evolution, repeats can be
added or lost in the flanks, thus making the picture more complicated. More than
that, SDs were binned according to the level of sequence divergence (8 divergence
or age groups). So the Markov process included transitions between various states.
Overall, there were 3 ∗ 8 = 24 combinations of flanking repeats and sequence iden-
tity states (Fig. 2.9). To measure the probabilities of transitions between states in one
time step ∆t realistic parameters were included from other literature sources: muta-
tion rate, repeats insertion rate, mutation rates in repeats etc. (see Zhou and Mishra
(2005) for details). The only unknown parameters that the authors wanted to infer
were h - the fraction of SDs originated in repeat-mediated homologous recombina-
tion and the fractions fx attributed to different repeat families x. For example, based
on the model, h fAlu of all SDs originated via Alu-mediated recombination.

The inference of unknown parameters is possible under two assumptions. Firstly,
all parameters were conserved over a long evolutionary period and, secondly, the
stationary state was reached in the system. An expected distribution of SDs in a
stationary state was calculated analytically (see Zhou and Mishra (2005) for details).
The parameters (h, fx) were fitted by minimizing χ2 statistic between observed and
expected distributions of SD states. Cross-validation was applied to evaluate the ac-
curacy of models. Only Alu and L1 repeats were considered. The second group did
not show any significant enrichment in flanking regions. Moreover, the value h fL1

was not significantly different from zero, while h fAlu, on the other hand, was. The
highest accuracy of the model was achieved when repeat-mediated recombination
explains h ∼ 30% of SDs, while h fAlu ∼ 12% of SDs are Alu-mediated ones. Finally,
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FIGURE 2.9: The Markov process scheme. The Markov process that
we discussed in the main text includes 3 states for flanking sequences:
(-/-), (-/+), (+/+) and 8 levels for sequence identities between copies
(k − 1, k, k + 1, etc.). Each circle on the scheme represents a state,
arrows represent possible transitions that can happen in a time inter-
val [t, t + ∆t] with various probabilities. When the stationary state is
reached, SD distribution over all conditions stays unchanged, i.e. all
states in-flows and out-flows are equal. The figure source: Zhou and

Mishra (2005).

it was observed that DNA helix stability was lower, while flexibility was higher in
flanking regions without repeats. It was suggested that lower mechanic stability of
DNA in flanking regions might be one of the factors providing duplications when
SD can not be explained by recombination.

Some common suggestions used in this research are now outdated. The dupli-
cation rates and other parameters varied substantially in a course of primate evo-
lution, the reference genome quality improved substantially over last decades, non-
homology mediated mechanisms were not considered and lower mechanic stability
of DNA helix in SDs breakpoints can not explain the rest of duplications. However,
this was an early attempt to model the process of segmental duplications expan-
sion in the genome. Considering the Markov process formalization of SD evolution
allowed authors to quantify the impacts of duplication mechanisms.

2.3.2 A-Bruijn graphs and core duplicons

One approach to systematically study SDs in their complexity was suggested at
(Jiang et al., 2007). A modified version of A-Bruijn graph was suggested as a way of
representation for complex events. All alignments of SDs were split into duplicons
which are continuous segments of synteny not interrupted by any breakpoints (see
Fig. 2.10a for illustration). It makes sense to introduce our notion of a duplicated
region here: a duplicated region is a genomic interval that covers a maximal set of
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overlapping alignments (i.e. duplicated region equals to a union of all overlapping
alignment intervals). If a new SD happens in a genomic region covered by one or
several SDs in most cases the number of duplicons will increase by 2. This hap-
pens because every new breakpoint divides previous duplicons if it falls between
the borders or adds a duplicon outside of the farmost breakpoint (if it falls out-
side of a duplicated region). Only when a new breakpoint hits an earlier alignment
breakpoint no increase is expected there. The A-Bruijn graph was constructed in
the following way: edges correspond to duplicons (uninterrupted segments), nodes
are breakpoints. Then segmental duplication (same as duplicated region) is a path
through the graph; the path includes only two nodes if SD and duplicon borders
match. If a segmental duplication covers n junctions, this path covers n+2 nodes.

Overall there were 11,951 non-redundant duplicons of length > 100 bps. For
each of these duplicons an ancestral locus was predicted by comparative genomics.
The logic is the following: among all possible ancestral loci for a specific duplicon,
the one that shares the longest homologous syntheny block in an outgroup specie is
likely the ancestral region (see Fig. 2.10b). This method allowed to establish 4,692
ancestral duplicons out of 11,951 duplicon segments. The comparative FISH and
validation with known datasets proved the consistency of predicted ancestral loci.
The analysis of duplicons distribution showed that chromosomes 1q, 7, 9p, 10q, 15q,
16p, 17, 19, 22q, X and Yq are substantially enriched with both ancestral and deriva-
tive duplicons, while 2, 3p, 4, 5q, 6q, 8q, 12 and 18q ones are depleted (Jiang et al.,
2007). To some extent it can be explained by more active intrachromosomal duplica-
tion activity in the first group of chromosomes.

Special attention was paid to those duplicated regions where multiple dupli-
cations happened in a course of evolution. Overall, 437 duplicated regions were
termed complex duplication blocks when included more than 10 duplicons. To an-
swer the question on how these regions evolved, the duplicon-wise sequence diver-
gence from an ancestral locus, their coordinates in the genome and pairwise simi-
larities between complex duplication blocks were analyzed. Hierarchical clustering
of complex duplication blocks (based on shared duplicons) showed that there are 24
clusters present, 10 and 14 of which are dominated by inter- and intrachromosomal
events, respectively. Detailed analysis of ancestral duplicon composition identified
14 duplicons characteristic for specific clusters. These were termed "core" dupli-
cons and defined as those present in > 67% of complex duplication blocks within
a cluster (Fig. 2.10c). It was suggested that core duplicons are associated with evo-
lutionary important regions. For example, the genes embedded in 4 out of 14 core
duplicons are associated with human gene innovations. The fraction of RefSeq genes
and spliced ESTs in core duplicons was about twice higher than in non-core dupli-
cons, however, little enrichment over unduplicated genome parts was observed. In
further studies the maximum parsimony evolutionary history was modelled for du-
plicons and the concept of core duplicons was revisited (Kahn, Hristov, and Raphael,
2010). Some non-core duplicons turned out to be as promising in defining mosaic
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FIGURE 2.10: The workflow and approaches to study mosaic SDs.
a. The scheme illustrates the two-step model for mosaic SDs forma-
tion and the overall pipeline of analysis from Jiang et al. (2007). First,
a complex region is formed by duplications from ancestral loci (so-
called seeding events), then mosaic SDs are duplicated from it. Col-
ored blocks represent duplicons of different ancestry, breakpoints are
dotted lines on the scheme. When all duplicons are detected an an-
cestral locus for each one is predicted by reciprocal best hit method
as illustrated at (b). Several duplications in a specie of interest re-
sulted in one genomic region being present in three copies (marked
with blue brackets). By aligning those regions to an outgroup specie
genome where no duplications happened, one can detect an ancestral
locus in the specie of interest. It is present as the longest homologous
synteny block. c. A set of complex duplicated regions that share a
core duplicon. Coloured blocks represent duplicons of different an-

cestry. Adopted from Jiang et al. (2007).

duplications clusters as the core ones.
In this analyzes complex alignments observed in duplicated regions were di-

vided into blocks not interrupted by breakpoints (duplicons). This formalization
simplified the task of systematic ancestry reconstruction otherwise only possible for
specific loci with intensive manual inspection (Locke et al., 2005; Horvath et al., 2005;
Lupski and Stankiewicz, 2005). Global predictions of how ancestry and non-ancestry
duplicons are distributed, how they cluster relative to each other, reconstruction of
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duplicon-wise phylogeny etc. - many such questions can be answered with this
formalization. Probably, the most prominent observation was that some duplicons
(core duplicons) are involved in duplications especially often which likely points out
to their evolutionary importance. This research illustrates one of the ways we can
study general principles of SD expansion.

2.3.3 Mosaic model

Here we will discuss another use of an A-Bruijn graph modification to systemati-
cally study SDs (Pu, Lin, and Pevzner, 2018). The main focus of the research is on
the SDquest tool which allows fast prediction of SDs in genomes. It utilizes tech-
niques based on k-mers and A-Bruijn graphs to detect SDs, even those falling below
the conventional threshold of > 90% sequence identity. It might as well be discussed
in the section dedicated to methods of SD prediction, however, this method is more
specific than widespread WSSD and WGAC. Secondly, we are more interested in the
way segmental duplications were mathematically formalized to draw some conclu-
sions about their evolution.

As we said, the SDquest tool allows fast characterization of SDs even those orig-
inated earlier than 40 mya. When defining SDs as duplications longer than 500 bps
and > 70% sequence identity it turned out that 6.05% of hg19 reference genome is
covered with SDs in comparison with 5.2% for conventional thresholds. Let’s dis-
cuss the algorithm principles in detail.

• A preliminary identification of segmental duplications is carried out as a search
for repetitive k-mers. Repetitive k-mers are those present in several copies in a
genome. The length of a k-mer is picked so that it is unlikely to see more than
one copy at random sequence of a genome length (by default k = 25). Copies
of segmental duplications share matching sequences thus can be detected by
increased number of repetitive k-mers in comparison with not duplicated re-
gions. After filtering for high-copy repeats repetitive k-mers are identified in a
genome. In the human genome more than 19 million distinct repetitive k-mers
were identified, 90% of which fall in known SD regions.

• Two distinct repetitive k-mers are called d-paired if the distance between them
is less than d (default d = 500 bps). In the graph where repetitive k-mers are
vertices, d-paired k-mers are connected by edges, putative SDs are detected as
connected components. There were 20,009 such putative SDs detected in the
human genome after filtering for length and repetitive k-mers frequency.

• Putative SDs are aligned all against all to validate them and refine the break-
points. Then pairwise alignments are merged into mosaic SDs (synonym of
our duplicated region) if overlap. There were 16,231 mosaic SDs detected.

• Similarly, the A-Bruijn graph is constructed by the SDquest with minor modi-
fications. Mosaic SDs are divided into shared alignment blocks (or SD-blocks)
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not interrupted by breakpoints in any mosaic SD. The notions of SD-block and
duplicon from the previous section are very similar. SD-blocks are edges in the
A-Bruijn graph, vertices correspond to clusters of breakpoints. This graph is
similar to the one described in the previous section, however, at Pu, Lin, and
Pevzner (2018) more attention is paid to its formation or, in other words, the
network growth. The resulting graph represents a footprint of SD evolution.
Segmental duplications and duplicated regions are paths in the graph, con-
nected components are independent units of evolution: SD-blocks belonging
to different connected components share no common duplication events.

Large branching connected components in the A-Bruijn graph correspond to
"bursts" of duplications with multiple loci involved. Linear connected components
(simple tree graphs without branches) represent those cases where likely all se-
quences involved in duplications are from the same ancestry region. So the A-Bruijn
graph topology can give some clues on segmental duplications evolution which can
not be seen from alignments coordinates alone. There are 4002 connected compo-
nents in the human genome, 2836 of them are trivial SDs made of one SD-block,
75 of the other 1166 are composed of more than 10 SD-blocks. There is a node of
a degree 137 and two edges with multiplicities 262 and 232. These are the signs of
duplication hotspots or even emerging common repeats.

Curiously, out of 1166 non-trivial components 169 included cycles (see an exam-
ple at Fig. 2.11a). These cycles can not be explained by duplications only and there-
fore more complex evolutionary scenarios were considered (Fig. 2.11b). A cycle can
be caused by an SD-block present in several copies in SDs from the same connected
component. This type of cycles are observed in 91 out of 169 cyclic components. Al-
ternative scenario suggests that either SD jumped into an already duplicated region
or deletion happened inside of a duplicated region. These cases explained cycles in
74 out of 78 (78 = 169 - 91) components. The most complicated explanations charac-
terized last 4 components. These cycles resulted from duplications of genetic mate-
rial from extrachromosomal circular DNA elements (ecDNA) also known as ampli-
somes (Raphael and Pevzner, 2004). This type of genomic translocations via ecDNA
is characteristic for tumor cells (Turner et al., 2017), however, it was suggested that
this mechanism plays a role in human genome evolution.

In conclusion, similar use of the A-Bruijn graph by Pu, Lin, and Pevzner (2018)
allowed to systematically study SD evolution. For example, independent groups of
SD-blocks were detected that coevolved together, based on connected components
topology some predictions can be made on a duplication process that corresponding
loci underwent. Cyclic components were studied in detail. This allowed to assign
specific mechanisms for each case and thus evaluate quantitatively the prevalence of
each mechanism. It also make sense to mention that both described research projects
and the one that we did utilized a graph representation for annotated SD alignments.
However, as we will see later, the ways these graphs were constructed are com-
pletely different. That is why most conclusions of described research projects relate
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FIGURE 2.11: Cycles in the A-Bruijn graph. a. An example of
A-Bruijn graph connected component. It originated as a result of
complex pattern of duplications which also gave rise to the cycles
in the graph (coloured for convenience). Adopted from Pu, Lin,
and Pevzner (2018). The scheme (b) shows three possible scenarios
on how cycles can appear in the A-Bruijn graph. The simple cy-
cles appear when an SD-block is repeated, indel cycle when inser-
tion or deletion disrupted mosaic SD and ecDNA-mediated cycles are
formed when genomic fragment is copied from extra-chromosomal

circular DNA elements.
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to SD-blocks/duplicons which were nodes in the networks, while, in our research
project evolutionary dynamics of duplicated regions was in the focus.

2.3.4 Evolutionary role of SDs: gene duplications

According to the well-known Ohno’s model the primary mechanism for emergence
of genes with novel functions is by duplication and divergence (Ohno, 1970). A
gene duplication creates redundancy thus liberating one copy from a purifying se-
lection characteristic for a single gene state. Thus one copy can accumulate changes
and gain a new function without harmful consequences for the organism. Segmen-
tal duplications are large enough to duplicate entire or large fractions of genes thus
making SDs an important source of gene innovations. Segmental duplications can
affect the genes in various manners: by duplicating an entire gene, shuffling exons,
making gene fusions and altering expression profiles by modifying regulatory se-
quences.

Gene duplications are mostly formed by interstitial SDs. Some gene families
were propagated by segmental duplications in subtelomeric regions, including ol-
factory receptors family members and FOXD4 gene paralogues (Trask et al., 1998;
Wong et al., 2004). On the other hand, the pericentromeric SDs are depleted with
genes in comparison with other duplications (Dennis and Eichler, 2016). There are
several characteristic features of genes duplicated by SDs. Firstly, those are often
under positive selection (especially ones overlapping core duplicons) (Jiang et al.,
2007). Moreover, these genes are 5 to 10 times as likely being copy-number variable
between species and among individuals of the same specie than single copy genes
(Cheng et al., 2005; Tuzun et al., 2005). Finally, the genes duplicated in the human
lineage are enriched with some functional categories: neural system development
(synaptogenesis, neuron migration and expansion of the prefrontal cortex), foreign
chemical substances detection (olfactory reception) and metabolism, immune re-
sponse, cell differentiation and spermatogenesis (Jiang et al., 2007; Sudmant et al.,
2013; Dennis and Eichler, 2016).

Gene duplication events observed in the human genome can be mapped on its
ancestral lineage. Overall, there are 27 human genes that were duplicated after the
divergence of the gorilla lineage but before the split of human and chimp lineages
(5 - 7 mya), duplications of 80 genes happened in the human and African great apes
lineage (7 - 13 mya), 124 genes were duplicated in the human and great ape lineage
(13 – 18 mya) and 105 genes were involved in duplications in the human lineage,
while shared by all ape species (18 - 24 mya) (Dumas et al., 2007). Human-specific
duplication events gave rise to 80 paralogous genes belonging to 33 gene families
(Dennis et al., 2017). We will consider the most prominent examples of human-
specific gene duplications.

• The gene SRGAP2A which encodes SLIT-ROBO Rho GTPase activating pro-
tein 2A was duplicated in the human lineage twice. Firstly, the duplication of
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SRGAP2A 3.4 mya resulted in the truncated copy SRGAP2B. The second du-
plication of SRGAP2B gave rise to the paralogous gene SRGAP2C 2.4 million
years ago (Dennis et al., 2012). This time interval coinsides with paleontologi-
cal estimates on when the neurocortex expansion happened in the human lin-
eage (Jobling, Hurles, and Tyler-Smith, 2019). This gene family, likely, plays an
important role in a brain development. Overexpression of human-specific par-
alog SRGAP2C in cell cultures and in vivo regulates dendritic spine maturation
and radial migration of neurons (Charrier et al., 2012).

• The duplication of ARHGAP11A gene (encoding Rho-type GTPase-activating
protein 11A) 5.2 mya resulted in paralogous ARHGAP11B copy (Dennis et al.,
2012). The ARHGAP11B gene seem to be involved in progenitor cells differen-
tiation into the basal radial glial and neuronal cells (Florio et al., 2015). More-
over, the corresponding human-specific SD could mediate further 15q13.3 mi-
crodeletion which causes cognitive disorders and schizophrenia (Sharp et al.,
2008).

• The NBPF15 (or protein domain DUF1220) gene belongs to the neuroblastoma
breakpoint family (NBPF). This gene duplicated multiple times recently in the
human evolution, its paralogous sequences populated the chromosome 1. The
gene copy number alterations observed in the region 1q21.1 are associated with
various neurologic diseases, such as microcephaly and autism spectrum disor-
der (Dumas et al., 2012).

• The NPIP gene family encodes nuclear pore complex interacting proteins of
unknown function. The NPIP genes show signs of strong positive selection
(Johnson et al., 2001). Moreover, about 10% of euchromatin sequence of 16p
chromosome arm is comprised of SDs referred as LCR16. The corresponding
core duplicon LCR16a embeds NPIP genes which means that NPIP gene ex-
pansion was evolutionary important (Jiang et al., 2007).

• Several duplications of AMY1 gene that encodes salivary amylase also played
a role in human evolution. Increased copy number of AMY1 gene likely lead
to higher level of amylase in the saliva of modern human (Sudmant et al., 2015;
Groot et al., 1989). This expansion was beneficial for early humans because it
allowed to digest starch-rich diet associated with a hunter-gatherer to an agri-
cultural life transition. Curiously, the copy-number of AMY1 gene is highly
variable among modern human populations. The copy-number is correlated
with the amount of starch in diets worldwide (Perry et al., 2007).

Finally, SDs can provide long stretches of homology thus leading to recurrent
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genomic rearrangements. Many CNVs associated with disease take plays at seg-
mental duplication sites. This list includes CNVs associated with cognitive disor-
ders (Stankiewicz and Lupski, 2002; Sharp et al., 2006), multiple cancer types (La-
hortiga et al., 2007; Weir et al., 2007), epilepsy (Bonaglia et al., 2005), autism spec-
trum disorder (Ullmann et al., 2007), Alzheimer disease (Rovelet-Lecrux et al., 2006),
glomerulonephritis (Aitman et al., 2006) and many more. Also, as we saw earlier for
human-specific gene duplications, those innovations are often associated with cor-
responding disorders when paralogous copies are lost.
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Chapter 3

Introduction to Network Analysis

In this section we will introduce all the terminology needed to understand our anal-
ysis of complex networks. The field of science that analyses complex networks is
very comprehensive with numerous applications, methods and algorithms. For this
thesis, we will leave a big part of it out of the scope to be more focused on the rele-
vant terminology.

3.1 Fundamental terminology in graph theory

• A graph is a mathematical object that represents a system of nodes (or ver-
tices) and edges that link pairs of nodes. More formally, a graph is a pair
G = ({V}, {E}), where {V} and {E} are sets of nodes and edges, respectively.
Each edge can be considered as a tuple of two connected nodes [vi, vj] where
nodes vi and vj are called endpoints. In directed graphs (see the definition be-
low) endpoints are ordered according to an edge orientation. Neighbors are
all nodes connected to a specific node by edges.

Graphs can be mathematical abstractions and studied as such, however, often
graphs represent some real life systems where nodes correspond to objects and
edges are interactions between them. Typically, graphs are visualized as a set
of points for nodes which are connected by lines corresponding to edges.

• Graphs can be either directed when edges are oriented or undirected when
not. Directed edges, usually, represent asymmetric interactions with a source
and a target (forces, streams, citations etc.) while undirected edges are sym-
metric (phone calls, distances, routes etc.).

• Edges that connect a node to itself are called loops or self-loops. Multi-edges
or multiple edges are two or more edges that link the same pair of vertices.
Simple graph is the one which includes no loops or multi-edges as opposed
to a multigraph where these structures are permitted.

• Weighted edges are those ones for which a number (weight) is assigned. A
corresponding graph is also called weighted.
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• A connected component of an undirected graph is a subgraph where all pairs
of nodes are linked by a path of edges and it is not part of any larger connected
subgraph. Connected components partition a graph into isolated subgraphs
not connected between each other.

• A graph is called complete or fully connected when edges between all pairs of
nodes are present. A complete graph is characterized by N nodes and N(N−1)

2

edges composition, because there are maximum N(N−1)
2 edges possible for a

simple graph with N nodes.

• A clique is a subset of nodes such that every pair of distinct nodes in the clique
are adjacent (linked with an edge). In other words, the subgraph that corre-
sponds to a clique is fully connected.

• A path is a sequence of distinct edges that joins a sequence of vertices. A cycle
in a graph is such a path where the first and the last nodes are the same. A
connected undirected graph with no cycles is called a tree graph.

• A minimum spanning tree (MST) is a path going through all nodes of the
edge-weighted connected graph without any cycles and with the minimal pos-
sible sum of edge weights. According to the definition this path has to be a
tree covering all nodes. There are several algorithms that can find the MST
of a graph, for example, Prim’s and Kruskal’s algorithms. Both find the min-
imal overall weight tree with the run-time ∝ O(E log N), where N and E are
numbers of nodes and edges, respectively.

• Edges of a graph define relations between nodes or adjacency relations. Thus
a graph can be specified by a matrix of node-to-node relations or adjacency
matrix. The adjacency matrix A is a square matrix of size N (number of nodes),
where Aij > 0 if ith and jth nodes are connected, otherwise Aij = 0. The
Aij value equals to the number of edges between corresponding nodes. Thus
adjacency matrices of simple graphs consist of 0 and 1 values. The adjacency
matrix of an undirected graph is symmetric (Aij = Aji).

• The node degree (ki) of a node is the number of edges that are connected to it.
In the complete graph with N nodes all nodes are of degree ki = N − 1.

• The local clustering coefficient of a node is a quantitative characteristic of how
close its neighbours are to a clique, in other words, how connected the neigh-
bors are between each other. The local clustering coefficient of a node vi equals:

Ci =
2|{ejk : vj, vk ∈ N (vi)}|

ki(ki − 1)
, Ci ∈ [0, 1],

where ejk is an edge between nodes vj and vk that both belong to the neighbor-
hood of vi (denoted as N (vi) in the formula), ki is a node degree of vi. Often,
the mean clustering coefficient is calculated as a graph topology characteristic.
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• The average path length is the average number of edges along the shortest
paths between all possible combinations of node pairs.

3.2 Fundamental terminology in network science

• A complex network is similar in its meaning to a graph. The difference be-
tween those two is not formally defined and usually depends on questions
one tries to answer. Generally, a complex network is a large graph, usually
representing some real-life system, where nodes and/or edges have attributes
assigned (e.g. ids, weights, flow capacities etc.). Many real-life complex net-
works display characteristic network topologies (specific arrangements of ver-
tices and edges) that differ them from random graphs, with structural patterns
that are neither completely regular nor random. Such features include heavy
tails in the node degree distribution, high clustering coefficients, community
and hierarchical structures (see the definitions below). These topological fea-
tures often reflect specific mechanisms of networks formation.

• The network science is a field of the graph theory that studies complex net-
works. Complex networks are applied to study various systems in physics,
computer science, sociology, logistics, omics data analysis, neurobiology, ecol-
ogy, epidemiology and so on. Predictions on network growth, community
structure, structural robustness, network flow etc. are, typically, made in com-
plex network analysis tasks.

• Structures of biological networks are often non-uniform in their adjacency.
Nodes often cluster together into denser modules (or communities) with higher
level of connectivity than in the rest of the network. Modularity is a measure
of how easily the network can be divided into modules. Networks with high
modularity have more edges between the nodes within modules but sparse
connections between nodes in different modules. It is also said that these net-
works have a community structure.

• A giant component is a connected component of a network that contains a
significant proportion of nodes and edges in the network.

• Centrality measures are scalar values given to each node of a graph to quantify
its importance. Which nodes are considered important depends on a specific
centrality measure and their position in a graph. Some examples of centrality
measures we discussed already: the local clustering coefficient and a node de-
gree, however, there are more existing measures. The betweenness centrality
of a node, for example, is the fraction of all possible shortest paths in a network
that pass through it. Similarly, one can define betweenness of edges.

• A random graph is a term that refers to a graph generated according to some
probability function. The probability distribution can describe its expected
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characteristics and topology. The Erdős–Rényi model is the model for gen-
erating random graphs. In the Erdős-Rényi model, all graphs of a fixed vertex
set with a fixed number of edges are taken equally likely. Similarly, in related
model which is called the Erdős–Rényi–Gilbert model, each theoretically pos-
sible edge is either present with probability p or absent otherwise. As a result,
a probability of generating specific graph with N nodes and E edges equals:

pE(1− p)(
N
2 ) − E, E ≤

(
N
2

)
,

where (N
2 ) equals to the maximal number of possible edges in a graph of N

nodes.

• The scale-free network is another network topology that is often observed
in real-life complex networks (citation network, World Wide Web, protein-
protein interaction network etc.). The scale-free network is a network whose
node degree distribution asymptotically follows a power-law. Thus the prob-
ability of a node to have k neighbors is proportional to p(k) ∝ kα, where the
slope α is negative and often in the interval −3 ≤ α ≤ −2 in real-life net-
works. Networks of such type have numerous edges with small node degrees
and several "hubs" linked to multiple nodes. The mean shortest path length in
these networks is substantially lower than in random graphs because of these
hub nodes.

There are several models that allow to generate scale-free networks, most of
them are associated with various types of preferential attachment. It means
that the probability of a new node to be adjusted to an existing one is higher
for those nodes with higher node degree. This principle is also known as the
"rich gets richer" principle. The most well-known model for scale-free net-
works generation is the Barabási–Albert (BA) model which also utilizes the
preferential node attachment (Albert and Barabási, 2002). In the BA model
nodes are added to the network one at a time. When added the new node is
linked to m existing nodes. It happens in a preferential manner: the probability
for an existing node vi to be connected to the new one linearly dependence on
its node degree ki. When the network is large enough:

pi = m
ki

∑j k j
,

where the summation goes over all existing nodes. Networks resulting from
the BA model have a scale-free topology with the slope α = −3.

• The configuration model is a method for generating random networks of a
given node degree sequence.



39

Chapter 4

Network Analysis of Segmental
Duplications

4.1 Network construction

We based our analysis on the already annotated segmental duplications (SDs) in the
reference human genome (Bailey et al., 2001). A corresponding list of GRCh38 an-
notated SDs was downloaded from the UCSC genome browser website (Kent et al.,
2002). Basically, we start with a list of pairwise local alignments longer than 1 kbp
with at least 90% identity between different regions of the human reference genome.
There are 27,348 autosomal alignments in this list. For our analysis we disregard the
sex chromosomes because we expect different evolutionary forces acting on these
chromosomes (recombination and mutation rates and their consequences). How-
ever, not every reported alignment refers to a unique segmental duplication event,
because, when a new duplication overlaps with an older one, the new copy aligns
not only to the ancestral region, but also can be aligned to other copies of the an-
cestral region. We call such an alignment "secondary" if it appears as a result of an
overlap between a new duplication and an already duplicated region. These align-
ments do not represent a duplication event between aligning regions.

To study this puzzling system of segmental duplications (Fig. 2.5) we generated
a network of SDs in the following way. Each node represents a duplicated region:
a duplicated region is a genomic interval that covers a maximal set of overlapping
alignments (i.e. duplicated region equals to a union of all overlapping alignment
intervals). Undirected edges link nodes if an alignment between two regions exists
(the construction process is illustrated at Fig. 4.1). In general we used this network
after trimming multiple edges between any pair of nodes (multiple edges) and self-
loop edges. In the remainder of the text we will denote genomic regions that corre-
spond to nodes of the SD network as duplicated regions and will associate network
characteristics to those regions directly, for example, we consider a node degree of a
duplicated region (meaning a node degree of a node corresponding to a duplicated
region of interest).



40 Chapter 4. Network Analysis of Segmental Duplications

* *

* *

genome

1st duplication

2nd duplication

3rd duplication

tim
e

C(4,4): N=4, E=4 
{k1,k2,k3,k4}={1,3,2,2}

k1 k2 k3 k4

FIGURE 4.1: An example of network construction from SDs. The
scheme illustrates an example of several duplication events in the
genome, the resulting alignments and the network constructed based
on those alignments. In every time step one duplication happens
in the genome and a second copy is inserted in the genome nearby.
Alignments appear not only between a copied region and its copy as
expected, but also when a duplication overlaps one of existing dupli-
cated regions (the second duplication event on the scheme). We refer
to those alignments as "secondary". For the network construction we
grouped sets of overlapping alignments into separate duplicated re-
gions. Each duplicated region is represented with a node in the SD
network. Edges are added if there exists an alignment between du-

plicated regions.

4.2 Network characteristics

The resulting SD network has 6656 nodes and 16,042 edges (Fig. 4.2). The network
can be decomposed into 1999 connected components, i.e. isolated subgraphs where
any pair of nodes is connected by a path of edges. One distinctive feature of the SD
network is that it includes a giant component with 1325 nodes (19.9% of all nodes)
and 9678 edges (60.3% of all edges) that corresponds to multiple overlapping dupli-
cation events enriched in some genomic loci.

The number of edges that a node has (node degree) represents a number of copies
of a corresponding duplicated region. This network can be further described con-
sidering topological network characteristics, including a component size and a node
degree distributions (Fig. 4.3). The connected component size distribution decreases
following a power-law distribution p(N) ∝ N−2.7 while the giant component is well
separated from this distribution. The distribution of node degrees has a mean of
4.8 and follows an exponential tail for large node degrees (Fig. 4.3b). Interestingly,
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FIGURE 4.2: The SD network. The network constructed based on
SDs of the reference Human genome (SD network). The black circles
and lines represent nodes and edges of the SD network. There are
6656 nodes and 16,042 edges in the SD network in total. One can see
that the SD network includes multiple small connected components
and a distinctive giant component with 1325 nodes and 9678 edges in

it (located in a center of the figure).

the average number of edges E in a component with N nodes follows a power-law:
E(N) ∝ N1.47 (Fig. 4.3c). Later we will come back to this observation and give an
interpretation of it.

Due to its size we can study the giant component in more detail. The clustering
coefficient of a node is the number of edges between vertices in the neighborhood
of a specific node divided by the overall number of possible edges between those
neighbors. The mean clustering coefficient calculated over all nodes in the giant
component was equal to C = 0.57 in the SD network. The average shortest path
length l = 4.93. The modular structure of the giant component was also investi-
gated using the label propagation algorithm (Raghavan, Albert, and Kumara, 2007).
It was found that the giant component is enriched with dense clusters of nodes or
modules. The majority of network modules were enriched with intrachromosomal
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Figure 2 a. The SD network component size distribution plotted on a log-log scale using
logarithmic binning (see Methods). The number of connected components decreases with their
size comparable to a power-law distribution p(N) ∝ N−2.7 which is represented as a straight
orange line added as a guide to the eye. One distinctive feature of this distribution is the presence
of a giant component which shows up as a single dot on the right of the distribution. b. The node
degree distribution of the SD network plotted on a log-linear scale. An exponential tail of the node
degree distribution is stressed with the orange guide to the eye line. c. For each component size
observed in the SD network the average number of edges in corresponding components is plotted
on a log-log scale. An average number of edges in components grows as a power-law of a
component size: E(N) ∝ N1.47 dependence (orange line) was fitted with linear regression
log(E) ∼ log(N).

any pair of nodes is connected by a path of edges. One distinctive feature of the
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duplication events enriched in some genomic loci.

This network can be further described considering topological network charac-

teristics, for example the component size distribution (Fig. 2a), which decreases
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separated from this distribution. The distribution of node degrees, i.e. the number

of edges a node has, has a mean of 4.8 and has an exponential tail for large node

degrees (Fig. 2b). Interestingly, the average number of edges E in a component with

N nodes follows a power-law: E(N) ∝ N1.47 (Fig. 2c). Later we will come back to

this observation and give an interpretation of it.

Due to its size we can study the giant component in more detail. The clustering

coefficient of a node is the number of edges between vertices in the neighborhood

of the node divided by the overall number of possible edges between those vertices.

The mean clustering coefficient calculated over all nodes in the giant component was

equal to C = 0.57 in the SD network. The average shortest path length l = 4.93.

The modular structure of the giant component was also investigated using the

label propagation algorithm [28]. It was found that the giant component is enriched

FIGURE 4.3: Characteristics of the SD network. a. The SD network
component size distribution plotted on a log-log scale using logarith-
mic binning (to reduce stochastic noise in the heavy tail of distribu-
tion). The number of connected components decreases with their size
comparable to a power-law distribution p(N) ∝ N−2.7 which is rep-
resented as a straight orange line added as a guide to the eye. One
distinctive feature of this distribution is the presence of a giant com-
ponent which shows up as a single dot on the right of the distribu-
tion. b. The node degree distribution of the SD network plotted on
a log-linear scale. An exponential tail of the node degree distribution
is stressed with the orange guide to the eye line. c. For each compo-
nent size observed in the SD network the average number of edges in
corresponding components is plotted on a log-log scale. An average
number of edges in components grows as a power-law of a compo-
nent size: E(N) ∝ N1.47 dependence (orange line) was fitted with

linear regression log(E) ∼ log(N).

duplications (most of nodes in a module belong to the same chromosome). Addi-
tional figures illustrating characteristics of the SD network can be found in Appendix
chapter.

Even though the SD network can be described by general topological features
we want to remark that the observed topology does not coincide with one of the
well-studied network topologies (like scale-free or random networks). We therefore
decided to simulate the dynamics of a network growth based on some predefined
"rules" inspired by our knowledge on genome evolution to see if such a synthetically
generated network might reflect the same network topology as the observed SD
network.
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4.3 Dynamical processes

In order to study dynamical aspects of the propagation of SDs in the human genome
we first constructed SD network and then asked what dynamical process could gen-
erate such a network. We decided to simulate possible network growth models that
were inspired by copying models (Chung et al., 2003). Finding a simple network
growth model that would generate similar features and topology as the SD network
would shed light on the dynamical processes of how the SD network evolved.

Our network growth model includes two processes:

• The first process represents novel duplications that do not overlap any older
ones. In the context of network growth this results in de novo addition of a
connected components C(2, 1), i.e. the connected component with 2 nodes
and 1 edge with rate π to the network (Fig. 4.4).

• The second process represents duplication events that overlap existing dupli-
cated regions and thus new copies acquire not only alignments with an an-
cestral duplicated regions, but can also give rise to secondary alignments with
other copies of a duplicated region (Fig. 4.1a). If the overlap is long enough
we expect it to be annotated as a segmental duplication even though it cor-
responds to a secondary alignment. In the context of network growth this
process is represented by a duplication of an existing "mother" node (that by
definition has copies elsewhere in the genome) and the new "daughter" node
inheriting some fraction of neighbors from the "mother" node in addition to the
edge between the "mother" and the "daughter" nodes that is added by default
(Fig. 4.4). In our probabilistic model we added a parameter f that represents
the probability of each edge connected to the "mother" node to be inherited by
the "daughter" node. After a duplication the node degree of a "daughter" node
kd ∈ 1, 2, . . . , km + 1 where km is the node degree of a "mother" node (Fig. 4.4).
Node duplications happen with the rates proportional to a second parameter
δ. However, since only the ratio of the two rate parameters δ/π matters for
simulations we assume π = 1 in the remainder of the text.

4.3.1 The Uniform Copying Model (UCM)

In the previous section we formulated universal principles of our copying models.
However, the copying models that we use in practice differ in the way we define
duplication rates of nodes. In the simplest model, we assume that duplication rates
for all nodes i are the same: δi = δ. We will further refer to this model as the Uniform
Copying Model or UCM (Fig. 4.4). The connected component size distributions in
networks grown using the UCM follows a power-law distribution p(N) ∝ N−1. Al-
though disguised by finite-size effect in Fig. 4.5a, this can be more clearly seen in
longer simulations in (Fig. 4.6a). In the later "Analytical solutions" section we also



44 Chapter 4. Network Analysis of Segmental Duplications

Abdullaev et al. Page 7 of 31

Process 1:

Process 2:

rate 𝜋 = 1

f

(mother 
node)

f

(daughter 
node)

UCM: rate 𝛿i = 𝛿 

PCM: rate 𝛿i = 𝛿ki 
(ki - node degree)

C(2,1)

C(4,3)

C(4,3)

a b

Figure 3 a. The scheme illustrates two processes of a network growth in our growth models. One
can find a biological explanation for these two processes in the main text. Process1: The
component C(2, 1) is added to a network with the rate π. Process2: Each node i in the network
can be duplicated with the rate δi. We call the pre-existing to be duplicated node a “mother”
node, while the new node is called a “daughter” node. A “daughter” node gets at least one edge
linked to a “mother” node by default and inherits connections from the “mother” node to its
neighbors each with the probability f . In other words, each neighbor of a ”mother” node can
become a neighbor of a ”daughter” node with the probability f , while the edge between ”mother”
and ”daughter” nodes is always added. The difference between the Uniform Copying Model
(UCM) and the Preferential Copying Model (PCM) is in defining the duplication rates of nodes
δi. In the UCM the node duplication rates are constant: δi = δ for all nodes, while in the PCM
the duplication rates are linearly proportional to a node degree of the corresponding node:
δi = δki where ki is a node degree of the ith node. b. We denote components with N nodes and
E edges as C(N,E). This notation does not always correspond to a unique possible graph
topology, for example, there is only one topology for C(2, 1) while there are two for C(4, 3).
Components with N nodes and any possible number of edges are denoted as C(N, ∗) which is the
same as all components of size N .

The connected component size distributions in networks grown using the UCM
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The Preferential Copying Model (PCM)

The UCM was not sufficient to explain the SD network topology. This motivated us

to study a different dynamics of copying models. The next simplest copying model

is the one where a duplication rate of a node i depends linearly on the node degree

ki: δi = δki. In this copying model highly connected nodes will be duplicated with

preference and we will further refer this model as the Preferential Copying Model

or PCM (Fig. 3).

FIGURE 4.4: Schematic representation of network growth processes
and connected components. a. The scheme illustrates two processes
of a network growth in our growth models. One can find a biolog-
ical explanation for these two processes in the main text. Process 1:
The component C(2, 1) is added to a network with the rate π. Process
2: Each node i in the network can be duplicated with the rate δi. A
"daughter" node gets at least one edge linked to a "mother" node by
default and inherits connections from the "mother" node to its neigh-
bors each with the probability f . In other words, each neighbor of a
"mother" node can become a neighbor of a "daughter" node with the
probability f . The difference between the Uniform Copying Model
(UCM) and the Preferential Copying Model (PCM) is in defining the
duplication rates of nodes. These are constant δi = δ in the UCM,
while in the PCM the duplication rates grow linearly with a node de-
gree δi = δki where ki is a node degree of corresponding node. b. We
denote components with N nodes and E edges as C(N, E). This nota-
tion does not always correspond to a unique possible graph topology,
for example, there is only one topology for C(2, 1) while there are two
for C(4, 3). Components with N nodes and any possible number of
edges are denoted as C(N, ∗) which is the same as all components of

size N.

derive this behavior analytically (4.4). To reduce a noise in distributions associated
with synthetic networks, here and for the next copying model, we run 500 simula-
tions with the same parameters, aggregated all networks and plotted distributions
of resulting pooled networks. Since the connected component size distributions of
synthetic networks are different from the one of the SD network (the power-law ex-
ponents are different and they lack prominent giant components) we assume that
the SD network evolved according to another network growth model.
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Figure 4 The connected component size distributions observed in pooled (see Methods)
simulations of network growth based on UCM and PCM growth models. In all cases we used the
parameter f = 0.5 and δ values listed in the legend. An orange guide to the eye line is added to
illustrate the slope observed in the connected component size distribution of the SD network
(p(N) ∝ N−2.7). a. The component size distributions observed in the UCM simulations differ
from the one observed in the SD network. Both slopes are different and no peaks that correspond
to giant components are observed in the UCM simulated networks. b. The component size
distributions observed in the PCM simulated networks are similar to the one of the SD network.
All distributions independently of δ value follow a similar slope on a log-log scale to the one of the
SD network for component sizes observed in the SD network. Moreover, both the PCM synthetic
networks and the SD network include giant components. It can be seen as a peak at the right side
of the component size distributions of the PCM simulated networks.

Our analytical solution predicts the power-law distribution p(N) ∝ N−1−f for

the connected component size distribution. This behaviour is also observable in

simulations of the PCM. The power-law tail gets obvious for pooled long simulations

(see Supplementary, Sup. Fig. 2).

There is no reason to reject the PCM based on the connected component size

distributions observed in synthetic networks. In all the PCM simulations observed

component size distributions followed a similar slope on a log-log scale to the one

of the SD network (Fig. 4b). Moreover, giant components were present in the PCM

simulated networks similarly to the SD network (Fig. 4b).

Estimation of the parameters for the PCM

To make further conclusions on relatedness of the PCM to the evolution of the SD

network, we inferred values for the parameters f and δ such that a PCM generated

network matches the characteristics of the observed SD network.

The average fraction of neighbors f inherited from a “mother” node was predicted

using an interesting observation. We observed that the average number of edges E

in connected components generated by the PCM grows with the number of nodes

N according to E ∝ N1+f when N →∞. This is in contrast to a more complicated

dependence that can be analytically predicted for simpler UCM (see Supplementary,

Sup. Fig. 3). We therefore used a linear regression of log(E) ∼ log(N) to estimate

the power-law exponent and find that the power-law E ∝ N1.47 fits best to the

observations, thus suggesting the value freg = 0.47 (Fig. 2c). The parameter δ

was predicted using Approximate Bayesian Computation (ABC) to be equal to

δABC = 5.1∗10−4 with the 95% confidence interval for the parameter value: δABC ∈
[3 ∗ 10−4; 6.6 ∗ 10−4] (see Methods).

Independent of the above methods, an alternative method was applied to infer the

values of f and δ parameters. Based on the PCM we expect that when a duplication

FIGURE 4.5: The component size distributions observed in pooled
simulations of network growth based on UCM and PCM growth
models. In all cases we used the parameter f = 0.5, δ values as indi-
cated in the legends and simulated a network growth until resulting
network reaches the size of the SD network. An orange guide to the
eye line is added to illustrate the slope observed in the connected
component size distribution of the SD network (p(N) ∝ N−2.7). a.
The component size distributions observed in the UCM simulations
differ from the one observed in the SD network. Both slopes are
different and no peaks that correspond to giant components are ob-
served in the UCM simulated networks. b. The component size dis-
tributions observed in the PCM simulated networks are similar to the
one of the SD network. All distributions independently of δ value fol-
low a similar slope on a log-log scale to the one of the SD network for
component sizes observed in the SD network. Moreover, PCM syn-
thetic networks and the SD network include giant components. It can
be seen as a peak at the right side of the component size distributions

of the PCM simulated networks.

4.3.2 The Preferential Copying Model (PCM)

The UCM was not sufficient to explain the SD network topology. This motivated us
to study a different dynamics of copying models. The next simplest copying model
is the one where a duplication rate of a node i depends linearly on a node degree
ki and the parameter δ value: δi = δki. In this copying model highly connected
nodes are duplicated with preference and we will further refer this model as the
Preferential Copying Model or PCM (Fig. 4.4).

Our analytical solution predicts the power-law distribution p(N) ∝ N−1− f for
the connected component size distribution (see the "Analytical solutions" section
4.4). This behaviour is also observable in simulations of the PCM. The power-law
tail gets obvious for pooled and long simulations (see Fig. 4.6).

There is no reason to reject the PCM based on the connected component size
distributions of synthetic networks. We simulated a network growth according to
the PCM until the number of nodes of synthetic networks reaches the one of the SD
network. The connected component size distributions observed in PCM synthetic
networks follow a similar slope on a log-log scale to the one of the SD network
(Fig. 4.5b). Moreover, giant components appear in PCM simulations, similarly to the
SD network (peaks on the right side of the distributions at Fig. 4.5b).
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FIGURE 4.6: The connected component size distributions observed
in simulations of network growth (log-log scale). The distribu-
tions observed in synthetic networks follow our analytically pre-
dicted slopes. a. The UCM simulated networks follow the power-law
p(N) ∝ Nα where α = −1 for all parameter δ values (parameter f
values do not effect the distributions in the UCM). b-c. The PCM sim-
ulated networks follow the power-law p(N) ∝ Nα where α = −1− f
for all parameter δ and f values. Straight lines represent analytically

predicted slopes in all panels.

4.3.3 Additional information on network growth

We construct our models of network growth based on specific copying mechanism
as described in the previous sections. There are two types of processes happening
during the network growth: an addition of a new connected component C(2, 1) to
a network or duplication of an existing node and inheritance of some fraction of its
edges. Our assumption is that all genomic loci can be duplicated independently of
other duplication events. Thus we used the Kinetic Monte Carlo (KMC) method to
run a simulation of network growth where all events happen independently of each
other (Young and Elcock, 1966).

For a graph with N nodes and E edges at time point t, a total of N + 1 possible
processes have to be considered. First the addition of a new component C(2, 1), with
the rate π, and the duplications of any one of the existing nodes, with rates δi. The
rates of all possible processes are represented as a vector~r(t) of length N + 1. For
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the UCM we use δi = δ thus the rates vector:

~rUCM(t) =


π

δ
...
δ


For the PCM we use δi = δki where ki is a node degree of node i thus the rates vector:

~rPCM(t) =


π

δk1
...

δkN


One of N + 1 possible processes at time point t is picked at random with probabil-
ities proportional to the given rates~r(t). An average waiting time before this event
happens is exponentially distributed. It can be calculated as ∆t = − ln(u)/(∑i~ri(t)),
where u is sampled randomly from the (0, 1] interval. Since only relative rates mat-
ter in the KMC we used π = 1 in all simulations and fitted only the δ value.

All network growth simulations terminate when the number of nodes in a net-
work reaches some predefined threshold (in most cases the number of nodes in the
SD network).

4.4 Analytical solutions

In this section we present analytical solution for key distributions of our models
introduced earlier in the main text.

• In the UCM (Uniform Copying Model) each component grows with the rate
proportional to its size (number of nodes). So a component size N as a function
of an absolute time t and the time when a component was added to a network
s changes in the following way:

∂N(s, t)
∂t

= δN,

This differential equation can be solved by the following ansatz:

N(s, t) = 2eδ(t−s), N(s = t, t) = 2

which can be inverted and solved for s:

s(N, t) = t− 1
δ

ln(
N
2
)
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This finally gives us the power-law distribution p(N) ∝ Nα where α = −1:

p(N, t) ∝
∂s(N, t)

∂N
∝ N−1

This result agrees with observations from UCM simulations (Fig. 4.6a).

• In the PCM (Preferential Copying Model), on the other hand, each component
C(N, E) grows with the rate proportional to the sum of node degrees of all N
nodes in a component which equals 2E. According to our simulations E ∝
N1+ f dependence is characteristic for components in the PCM growth thus the
size N(s, t) of PCM components changes in the following way:

∂N(s, t)
∂t

∝ δN1+ f ,

This differential equation can be solved in the following way:

N(s, t) ∝ (C− δ f (t− s))−1/ f ,

it can be inverted:

s− t ∝
N− f − C∗

δ f
,

This leads to the power-law distribution p(N) ∝ Nα where α = −1− f :

p(N, t) ∝
∂s(N, t)

∂N
∝ N−1− f

C and C∗ are constants. This result agrees with observations from long PCM
simulations (Fig. 4.6b,c).

• When a node is duplicated in UCM component C(N, E) an expected number
of edges increases by 1 + f (2E)/N, i.e. one edge to the daughter node plus
an additional fraction of f edges of the average node degree 2E/N, since all
nodes are duplicated equally likely. Therefore the number of edges E in UCM
components changes with N in the following way:

dE(N)

dN
= 1 + f

2E
N

Firstly, the homogeneous differential equation is rearranged:

dE
E

= 2 f
dN
N

,

and solved:
E(N) = CN2 f
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Now we return to solving the original non-homogeneous equation for C(N)

using the variation of parameters method:

dC
dN

N2 f + 2 f CN2 f−1 = 1 + 2 f CN2 f−1,

which can be reduced to:
dC = N−2 f dN,

and solved for C(N):

C(N) =

{
1

1−2 f N1−2 f + C∗, f 6= 0.5

log N + C∗, f = 0.5

which leads to the following solution of the original differential equation:

E(N) =

{
1

1−2 f N + N2 f C∗, f 6= 0.5

N log N + NC∗, f = 0.5

Thus when N → ∞ the number of edges E in the UCM components follows:

E(N) ∝


N, 0 ≤ f < 0.5

N log N, f = 0.5
N2 f , 0.5 < f ≤ 1

C and C∗ are constants. This result agrees with a dependence observed in UCM
synthetic networks (Fig. 4.7a)

4.5 Estimation of the parameters for the PCM

To make further conclusions on relatedness of the PCM to the evolution of the SD
network, we inferred values for the parameters f and δ such that a PCM generated
network matches the characteristics of the observed SD network. In the next subsec-
tions we will discuss two strategies that were applied to infer the parameters values.

4.5.1 The parameters inference from edges to nodes ratio and ABC

In the first approach, the average fraction of neighbors f inherited from a "mother"
node was predicted using one empirical observation. We found that the average
number of edges E in connected components generated by the PCM grows with the
number of nodes N according to E ∝ N1+ f when N → ∞ (see Fig. 4.7b). This is
in contrast to a more complicated dependence that can be analytically predicted for
simpler UCM growth (see the "Analytical solutions" section 4.4) and observed in
simulations (see Fig. 4.7a). We therefore used a linear regression of log(E) ∼ log(N)

to estimate the power-law exponent and find that the power-law E ∝ N1.47 fits best
to the observations, thus suggesting the value freg = 0.47 (Fig. 4.3c).
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FIGURE 4.7: The average number of edges in components is plot-
ted against a component size (log-log scale). Different colours cor-
respond to network growth simulations with different f values us-
ing the UCM (a) and the PCM growth (b). Straight lines represent
the slopes of a power-law growth predicted analytically for the UCM
(see the "Analytical solutions" section 4.4) and the ones observed in

the PCM simulations (E ∝ N1+ f ).

The parameter δ value was predicted using the Approximate Bayesian Computa-
tion method. The Approximate Bayesian Computation (ABC) is a Bayesian method
to approximately predict posterior parameter distributions when an analytical for-
mula for a likelihood function can not be derived (Rubin, 1984). To apply ABC a
rejection criteria (specific distance measure) and a tolerance level (distance thresh-
old) are needed that allow to say if the resulting outcome of a simulation is similar
to a real observation or not. In our case we compared the connected component size
distributions in the SD and the PCM simulated networks. As a rejection criterion
we used the Bray-Curtis dissimilarity (DBC) from Bray and Curtis (1957). The Bray-
Curtis dissimilarity between a sorted arrays of N biggest connected component sizes
is calculated in the following way:

DBC(X, Y) = ∑N
i=1 |Xi −Yi|

∑N
i=1(Xi + Yi)

.

We limited the number of components to N = 500 because the Bray-Curtis dis-
similarity can only be calculated for arrays of the same length (which can not be
guaranteed if we take all components). We applied the ABC method by running
5000 simulations of the PCM with f = 0.47 and δ values taken uniformly from
the interval [5 ∗ 10−5; 9 ∗ 10−4]. The rejection criterion is satisfied when the Bray-
Curtis dissimilarity between component size vectors of simulated and the SD net-
works DBC(simulated, SD) < 0.2 (tolerance level). Based on the ABC the param-
eter δABC = 5.1 ∗ 10−4 with the 95% confidence interval for the parameter value:
δABC ∈ [3 ∗ 10−4; 6.6 ∗ 10−4].
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4.5.2 The parameters inference from small components dynamics

Independent of the above methods, an alternative method was applied to infer the
values of f and δ parameters. Based on the PCM we expect that when a duplication
happens in a component C(2, 1) we get either a component C(3, 3) or C(3, 2) with
probabilities f and 1− f , respectively. Moreover, according to the PCM an overall
rate of further duplications in C(3, 3) is 1.5 times higher than in C(3, 2) components
because the sum of node degrees equals 6 and 4, respectively. All bigger components
C(>3, ∗) appear as a result of one or more duplications in C(3, ∗) components. New
C(2, 1) components appear with the rate π = 1. For a mathematical analysis of
the temporal dynamics we will denote the expected numbers of such components
at time t as nt(2, 1), nt(3, 2), nt(3, 3) and nt(> 3, ∗) respectively. As described above
their time dependence is given by the following set of partial differential equations:

∂nt(2, 1)
∂t

= 1− 2δnt(2, 1),

∂nt(3, 2)
∂t

= 2δ(1− f )nt(2, 1)− 4δnt(3, 2),

∂nt(3, 3)
∂t

= 2δ f nt(2, 1)− 6δnt(3, 3),

∂nt(>3, ∗)
∂t

= 4δnt(3, 2) + 6δnt(3, 3)

This system of equations was solved by the Wolfram (Wolfram Alpha):

nt(2, 1) =
(1− e−2δt)

2δ
,

nt(3, 2) =
(1− f )(1− 2e−2δt + e−4δt)

4δ
,

nt(3, 3) =
f (1− 1.5e−2δt + 0.5e−6δt)

6δ
,

nt(>3, ∗) =
f − 9 + 3(4− f )e−2δt − 3(1− f )e−4δt − f e−6δt

12δ

There are 4 equations and 3 unknown variables f , δ and t in this system. There-
fore the goal is to find f , δ, t values that minimize a certain loss function. Here we
used the weighted city block distance L:

L =
4

∑
i=1

|~nt,i −~nsd,i|
~nsd,i

between the following vectors:
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~nt =


nt(2, 1)
nt(3, 2)
nt(3, 3)

nt(>3, ∗)

 and ~nsd =


nsd(2, 1)
nsd(3, 2)
nsd(3, 3)

nsd(>3, ∗)


where nsd(N, E) is a number of components C(N, E) in the SD network. Minimiza-
tion of a loss function L over f , δ and t variables was performed with the Nelder–Mead
method (Nelder and Mead, 1965) which converged to its minimum at fmin = 0.52; δmin =

3.2 ∗ 10−4; tmin = 1320.

4.6 Evaluation with PCM simulations

Both independent methods that we considered in the previous subsections result in
consistent predictors for the model parameters ( freg = 0.47, δABC = 5.1 ∗ 10−4) and
( fmin = 0.52, δmin = 3.2 ∗ 10−4). However, from now on we will consider only the
pair: f = freg = 0.47 and δ = δABC = 5.1 ∗ 10−4. These parameter values were used
for PCM simulations. Topological characteristics of the PCM simulated network
( f = 0.47; δ = 5.1 ∗ 10−4) were compared with ones of the SD network (Fig. 4.8).
Those networks are very similar in both connected component size and node degree
distributions.

Moreover, characteristics of the giant component in the SD network were com-
pared with other randomly generated networks, i.e. the configuration model net-
work (random network of a given degree sequence), random graph, scale-free net-
work and the giant component of the PCM synthetic network. All these networks
were of the same or comparable size (number of nodes and edges) as the SD net-
work. This was achieved by specifying the size or applying proper parameters dur-
ing a network growth. The giant component of the SD network is more similar to
the giant components observed in the PCM simulations than to the other networks
that we used in comparison (Table 4.1).

Moreover, we have no reason to reject the hypothesis that the giant component
of the SD network comes from the distribution of the biggest components of the
PCM synthetic networks (empirical p-value = 0.21). This p-value was measured
in the following way: 500 PCM simulations were run ( f = 0.47, δ = 5.1 ∗ 10−4),
each time the size of the biggest connected component was saved. Based on the
empirical biggest component size distribution there is no reason to think that the
giant component is of "unexpected" size given the PCM model (Fig. 4.9).

We found convincing evidence that the PCM growth results in networks topolog-
ically similar to the SD network. Our predicted f and δ parameter values were both
consistent between two methods and accurate in reflecting the SD network topol-
ogy when used in PCM simulations. Overall, this means that the PCM model or the
network growth model with preferential duplication rates reflects the growth prin-
ciples of the SD network. In other words, the SD network during its evolution grew
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Figure 5 Different topological characteristics of the SD network (orange dots) and the PCM
simulated networks with inferred parameters f = 0.47, δ = 5.1 ∗ 10−4 (blue dots) are compared.
Multiple PCM simulations were pooled together to get a better resolution for the distributions. a.
The node degree distribution is plotted on a log-linear scale with the linear binning. We can see
that the exponential tail is observed in both synthetic and the SD networks and the power of
exponents is the same. b. The connected component size distributions plotted on a log-log scale
with the logarithmic binning. The slope observed in simulations is the same as the one of the SD
network for all component sizes observed in it. The peak that corresponds to the giant component
is also present where expected. c. The average number of edges in components of different sizes is
plotted against a component size on a log-log scale. We can see that the average number of edges
grows as a power-law of a component size: E ∝ N1.47 (red line) in simulated and the SD
networks.

Both independent methods: regression/ABC and minimization result in consistent

predictors of the model parameters (freg = 0.47, δABC = 5.1 ∗ 10−4) and (fmin =

0.52, δmin = 3.2 ∗ 10−4). However, for future simulations we will use only the

f = freg = 0.47 and δ = δABC = 5.1 ∗ 10−4 values.

Different topological characteristics of the PCM simulated network (f = 0.47; δ =

5.1 ∗ 10−4) were compared with ones of the SD network (Fig. 5). Those networks

are very similar in both connected component size and node degree distributions.

Moreover, we have no reason to reject the hypothesis that the giant component of

the SD network comes from the distribution of the biggest components of the PCM

synthetic networks (empirical p-value = 0.21) (Sup. Fig. 4).

Moreover, characteristics of the giant component in the SD network were com-

pared with other previously studied randomly generated networks, i.e. the configu-

ration model network (random network of a given degree sequence), random graph,

scale-free network and the giant component of the PCM synthetic network. All

these networks were of the same or comparable size (number of nodes and edges)

as the SD network (see Methods). The giant component of the SD network is more

similar to the giant components observed in the PCM simulations than to the other

networks that we used in comparison (Table 1).

FIGURE 4.8: Comparison of the SD network and PCM synthetic
ones. Topological characteristics of the SD network (orange dots) and
the PCM simulated networks with inferred parameters f = 0.47, δ =
5.1 ∗ 10−4 (blue dots) are compared. Multiple PCM simulations were
pooled together to get a better resolution for the distributions. a. The
node degree distribution is plotted (log-linear scale). We can see that
the exponential tail is observed in both synthetic and the SD network
and the power of exponents is the same. b. The connected component
size distributions (log-log scale). The slopes observed in distributions
are the same (where SD network components are present). The peak
that corresponds to the giant component is also present where ex-
pected. c. The average number of edges in components of different
sizes is plotted against a component size on a log-log scale. In both

cases the dependence: E ∝ N1.47 (red line) is observed.

Type Clustering coefficient Shortest path
SD network GC 0.57 4.93
PCM network GC 0.18 3.5
Random network 0.012 2.95
Scale-free network 0.031 2.83
Configuration network 0.08 3.02

TABLE 4.1: Comparison with other synthetic networks. Differ-
ent characteristics of Erdős–Rényi random graph, scale-free network,
configuration model network (the same node degrees as in the giant
component of the SD network) and the giant components (GC) ob-
served in the SD and PCM simulated networks are compared. These
characteristics include: a mean clustering coefficient and an average
shortest path length. Among the networks we studied the PCM syn-
thetic network is the most similar to the SD network (even though

these are rather distinct).
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FIGURE 4.9: The histogram of sizes of the biggest components.
These components were obtained in 500 PCM simulations. The arrow
points to the size of the giant component of the SD network. Accord-
ing to the size distribution, there is no reason to assume that the giant
component (GC) of the SD network comes from another distribution.

similarly to the PCM network growth. But what is the biological meaning of the
preferential duplication rate? It means that the probability of a duplicated region to
be duplicated again grows linearly with the number of copies (node degree) of that
region. More precisely, the duplication probability grows linearly with the number
of loci that share long homologous sequences with the region (including secondary
alignments). This seems to be a fundamental "rule" for SD propagation in the human
genome. In the next section we will discuss some biological scenarios explaining this
propagation dynamics.

4.7 Reasons for the preferential copying model

Firstly, let’s start with the most trivial explanation. The length of duplicated regions
could be a major factor explaining why duplication rates grow linearly with node
degree. We may expect that the probability of a duplicated region to overlap a new
SD would grow with the length of the duplicated region. Simply speaking, if new
SDs randomly "fall" on the genome, the longer duplicated regions are more likely to
get a new duplication than shorter ones. If high node degree regions are longer - this
could be an explanation for preferential duplication rates. To check this hypothesis
we studied factors affecting the length of duplicated regions and, especially, effect
of node degree.
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One can do this by selecting those features of duplicated regions that are im-
portant in prediction of the length of duplicated regions. We used the random for-
est regression algorithm where the length of duplicated regions (response variable)
was predicted from several characteristics of duplicated regions (predictor variables)
from the untrimmed SD network. These characteristics include: a node degree, the
size of a connected component a node belongs to, a mean copy number of a du-
plicated region, the fraction of intrachromosomal edges from all edges of a node,
the number of self-loop edges and multi-edges among edges of a node. The last two
characteristics can only be retrieved from the untrimmed SD network (the one where
self-loops and multi-edges are not excluded). The percent of variance explained by
the random forest using 10-fold cross-validation was R2 ∼ 67%.

Permutation based importance values that are assigned to predictor variables by
the random forest algorithm are usually affected by a number of categories and a
scale of a variable. To overcome this problem the response variable was shuffled
1000 times while keeping predictor variables intact. Each time the random forest
algorithm was trained on the data and all feature-specific importance values were
measured. Then for each predictor variable i an empirical p-value was calculated in
the following way:

p =
∑

Np
j=1 I(impp

j [i] > impr[i])

Np

where Np is the number of permutations, I() is an indicator function, impp[i] and
impr[i] are the ith feature permutation based importance values observed with and
without the response variable shuffling respectively (Altmann et al., 2010). At sig-
nificance level α = 0.01 a node degree, a mean copy number of a region, the number
of multiple edges and self-loops are significant in a duplicated region length predic-
tion.

For these significant factors we can reason why they affect the length. With ev-
ery new duplication of a duplicated region (which effects its node degree and mean
copy-number) or duplication that "jumps" into an already duplicated region (effects
the number of self-loops and multiple edges) we expect an increase of a duplicated
region length. So the length of a duplicated region is influenced by the interplay
of several factors, including a node degree. The corresponding node degree depen-
dence is plotted at the Fig. 4.10. Thus we can assume a mechanistic explanation: the
preferential duplication rates appear because the probability of a new SD to overlap
a duplicated region is higher for longer duplicated regions.

The node degree represents the number of long sequences in other genomic loci
homologous to a corresponding duplicated region. These stretches of long homol-
ogy increase the probability for genomic rearrangements (including duplications).
Thus with growing node degree the probability of a duplicated region to be in-
volved in homology-mediated genomic rearrangements also grows and grows lin-
early. That might be another factor explaining the preferential duplication rates of
the PCM.
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FIGURE 4.10: Length against node degree dependence for dupli-
cated regions. The length (in bps) of all duplicated regions (nodes of
the SD network) plotted against the node degree on a log-log scale
(blue dots). Even though the observed dependence is complicated
and not linear the average length of a duplicated region grows lin-
early with a node degree (red dots). The red line represents a linear

growth on a log-log scale.

In the previous sections we studied only the SDs that were fixed in the human
genome. However, the fixation process of new duplications can also be affected by
the SDs that were duplicated before. To study this effect copy-number variations
(CNVs) observed in 2504 individuals were downloaded from the 1000 Genomes
project (Sudmant et al., 2015). All autosomal CNVs were split into 3 groups based
on their frequency in the human population. There were rare, medium and high
frequency CNVs with corresponding minor allele counts (MACs) in three ranges:
[1; 3], [4; 15] and [16; 2504] (overall, there are 5008 haplotypes). The duplicated re-
gions (nodes) were also split into 4 groups according to their node degree in the SD
network: [1; 1], [2; 5], [6; 30] and [31; 140]. In both cases the intervals were chosen
such that the number of observations in each interval is comparable. Since both dis-
tributions are highly skewed towards small values the intervals get longer for larger
values.

For duplicated regions that belong to each group we studied frequencies of all
CNVs that overlap those regions (Fig. 4.11). We can see that medium and high fre-
quency CNVs are enriched in duplicated regions in comparison with the rest of the
genome. Moreover, the fraction of high frequency CNVs grows with a node degree
of a duplicated region, while the fraction of rare CNVs decreases. This can be ex-
plained by higher probability of recurrent duplication events in high node degree
regions, variation in recombination rates or decreased purifying selection in those
sites. All of these factors can affect the probability of fixation of new duplications
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in a population. In our case, it seems that the probability of a CNV to be fixed in a
population is higher if it overlaps high node degree duplicated regions. This might
be another factor explaining the preferential duplication rates of the PCM.
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FIGURE 4.11: Characteristics of CNVs that overlap different ge-
nomic regions. These genomic regions include duplicated sequences
of different node degrees (specified on the X axis) and the remain-
ing not duplicated parts of the genome. All CNVs are divided into 3
groups: rare CNVs (1 ≤ MAC ≤ 3), medium frequency CNVs (4 ≤
MAC ≤ 15) and high frequency CNVs (16 ≤ MAC ≤ 2504) which
are colored in blue, orange and green, respectively. The fraction of
high frequency CNVs is higher in all duplicated regions than in the
rest of the genome and this fraction grows with the node degree of

duplicated regions.

4.8 Stability of our predictions

In this section we convinced ourselves that qualitative and to some extend also quan-
titative properties of our network analysis stay invariant under slight changes of the
used cut-offs or considering uncertainties in the definition of the exact borders of
segmental duplication. We considered the following stability tests addressing some
critical aspects of the SD network construction.

We constructed the SD network based on duplications with reduced length and
sequence identity cut-offs (length > 500 bps, sequence identity > 70%). These SDs
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were predicted by the SDquest tool at Pu, Lin, and Pevzner (2018) and include older
duplications which are otherwise missed. This allowed us to overcome the issue that
the common definition of segmental duplications filters out those duplications that
are either shorter than 1000 bps or less than 90% identical.

Moreover, we parameterized the process of merging SDs into duplicated regions
to see if our SD network and its characteristics are stable under different strategies
of its construction. To do this we considered padded SDs, i.e. we increased the
annotated length of SDs by P padding bps on both sides. Negative or positive values
of P resulted in shorter or longer SDs, respectively, while P = 0 corresponds to our
original merging process. Considering padded SDs will generate slightly different
networks, since SDs will overlap less or more often, respectively.

We also checked if our predictions about network growth models are still valid
if we add a process of edges loss to UCM and PCM simulations. To do this, at each
time step of a network growth process we removed each edge of a synthetic network
with pre-defined probability r. Only reasonable values of r were considered that do
not abrupt the network growth completely, however, affect it. If addition of edges
loss process makes UCM more relevant in reproducing the SD network topology
or the PCM less applicable we would have to reconsider our predictions on the SD
network growth.

Finally we considered the SD network constructed based on annotated SDs ex-
cept for those belonging to pericentromeric regions. We defined those regions as
3 Mbp regions around centromeres. As we mentioned earlier, for complex dupli-
cated regions in pericentromeric loci special two-step formation model was pro-
posed (Eichler et al., 1997). Complex duplicated regions appear when a genomic
locus, firstly, accumulates copies of other genomic loci and, secondly, duplicates
as mosaic SDs. This duplication process is characteristic for pericentromeric parts
of the genome and is not explicitly included in our copying models. We checked
if the topology of the SD network stays invariant when excluding pericentromeric
SDs. This would mean that the PCM is still valid as a general model of segmental
duplications propagation even though we know that some fraction of duplicated
regions propagated differently. If the topology changes, this would mean that the
PCM seemed reasonable only when we included duplicated regions that likely prop-
agated differently. In this case we would need to reject the PCM as a model for the
SD network growth.

None of the factors above affected our results substantially or changed our con-
clusions about dynamics of duplication process (Table 4.2). The characteristics of SD
networks stayed unchanged when we used padded SDs in construction (Fig. 4.12)
and did not change substantially when we excluded pericentromeric SDs (Fig. 5.3b).
Similarly, the UCM and PCM network growth where edges are lost in a course of
simulation result in synthetic networks we expect from corresponding models with-
out edges loss (Fig. 4.13). The SD network constructed on SDquest annotated SDs
is larger (as expected with reduced cut-offs), however similar in all characteristics
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except for a mean clustering coefficient (Fig. 4.12). It is much smaller than the one
observed in the normal SD network (0.17 and 0.57, respectively). The mean clus-
tering coefficient might be higher in the normal SD network because that network
includes more confident alignments than the SDquest based one.

Overall, our observations show the stability of our predictions given some tech-
nical variations in the SD network construction process.

SD networks: Nodes Edges Intra- (%) Tandem (%) Shortest path Clustering

original SDs (P = 0) 6656 16,042 29 9 4.93 0.57
SDquest SDs 9605 34,986 22 4 5.62 0.17
no centrom. SDs 5771 10,860 32 11 5.17 0.63
padding (P = −100) 7281 17,166 30 10 4.89 0.58
padding (P = −50) 7266 17,155 30 10 4.89 0.58
padding (P = 50) 6322 15,550 27 8 4.83 0.56
padding (P = 100) 6213 15,423 29 8 4.87 0.56

TABLE 4.2: Characteristics of several alternatively constructed SD
networks. The normal SD network that we used everywhere by de-
fault (P = 0), several SD networks with different paddings P used in
construction, SD networks built from SDquest predicted SDs and SDs
excluding pericentromeric ones (see the main text). The characteris-
tics include: number of nodes and edges, fraction of intrachromoso-
mal and tandem edges among all edges, a mean clustering coefficient
and an average shortest path length. We can see that all characteris-
tics of the SD networks are stable when using different paddings P.
The SD network constructed on SDquest annotated SDs is larger (as
expected with reduced cut-offs), however similar in other character-

istics except for the mean clustering coefficient.
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FIGURE 4.12: The SD networks constructed differently are com-
pared to check a stability of predictions. There connected compo-
nent size (a) and a node degree (b) distributions of original SD net-
work and the one constructed based on duplications predicted with
SDquest (> 500 bps, sequence identity > 70%) are plotted. Even
though the size of alternative SD network is larger we can see that
distributions are similar both in terms of slopes and giant component
presence. The connected component size (c) and node degree (d) dis-
tributions of multiple SD networks with paddings P are plotted. This
parameter represents number of bases added to extend (if P > 0) or
shorten (if P < 0) each SD interval on both sides before constructing
an alternative SD network. The value of P = 0 corresponds to our
original SD network. We can see that even with quite large absolute
values of P parameter both distributions stay pretty much unchanged

in all networks.
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FIGURE 4.13: The network growth models are studied when edges
loss process is added. The connected component size distributions
observed in simulations of network growth are plotted on a log-log
scale. Additional process of edges loss was added in both UCM (a)
and PCM (b) to check how it affects the topology of resulting syn-
thetic networks. At each time step each edge is removed with the
probability r. Red line represents the slope of the distribution ob-
served in the SD network. One can see that when using reasonable
values of r both models of network growth behave as expected in
standard UCM and PCM simulations. Too large values of r can hin-
der any network growth (like in UCM simulation with r = 1 ∗ 10−3).

4.9 Summary

In this chapter we studied segmental duplications in the human genome using ap-
proaches from complex network theory. We first constructed a network of segmental
duplications which we called the SD network. Every node in it corresponds to a du-
plicated genomic region, edges are added if homology between a pair of duplicated
regions exists. We studied topological characteristics of the SD network, and found
that these were distinct from those observed in other well-known networks in the
field of complex network theory. So we decided to simulate a network growth ac-
cording to some predefined "rules" to find a model that reproduces the SD network
topology in simulation. We used copying models of network growth where node du-
plication rates were defined differently. The trivial model with constant duplication
rates (UCM) was unable to explain the SD network topology, while more complex
preferential copying model or PCM was good for this task. This means that SDs,
likely, evolved according to a simple dynamical principle: the probability of a dupli-
cated region to be duplicated again grows linearly with its number of copies. Several
biological scenarios were suggested to explain preferential duplication rates. Firstly,
this effect can be explained mechanistically: duplicated regions with high node de-
gree are usually longer, thus more likely to overlap new duplications. Secondly, the
probability of fixation of new duplications (studied on population CNVs) is, likely,
higher in high node degree regions. This might be because of reduced purifying
selection, recurrent duplication events or other reasons, however, the probability of
fixation seems to be higher in those sites. Finally, every edge of the SD network
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represents a long stretch of homology which can be a source for further genomic
rearrangements. We also considered the stability of our prediction: whether alterna-
tive strategies of the network construction, different sets of SDs, changes in the UCM
or PCM settings etc. affect our predictions. It turned out that our predictions about
SD propagation principles are reproduced independently of technical variations.
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Chapter 5

Segmental Duplications in
Genomes of Other Species

5.1 Limited accuracy of predicted duplications

Even though there were many attempts to predict SDs in reference genomes of non-
human species with WGAC algorithm - the overall consensus is that the quality of
such predictions is quite limited. The main reason is that genome assemblies (es-
pecially old outdated ones) of non-human species are less accurate than the human
reference. The last one was generated with hierarchical shotgun sequencing which
allowed to partly overcome the main limitation of short-read sequencing: poor per-
formance in low-complexity redundant sequences (IHGSC, 2004). There is a ten-
dency to collapse repeated sequences into single contigs or completely miss those
sequences when short-read de novo assemblies are constructed (Salzberg and Yorke,
2005).

On the other hand, the opposite error could arise when assembling diploid (or
polyploid) genomes. When a locus is too heterozygous it is often erroneously assem-
bled into duplicated sequence. Two contigs are formed from reads belonging to re-
spective copies of chromosomes, which look like a duplicated sequence in resulting
assembly. The last type of misassemblies was extensively studied and quantified by
(Kelley and Salzberg, 2010). Paired-end reads that map to contigs with duplicated
sequences were studied in 4 reference genome assemblies (chimpanzee (panTro2),
domestic cow (UMD1.6), chicken (galGal3) and cow (canFam2)). The distances be-
tween mates in read pairs were compared with what we expect in corresponding
whole-genome sequencing platform setup as illustrated at Fig. 5.1. If merging con-
tigs into one resolves unrealistic distances between reads in pair, this likely means
that observed duplications are erroneous. The analysis revealed that large fraction:
75% (14.4 Mbp) of chicken, 56% (2.3 Mbp) of cow, 81% (16.7 Mbp) of chimp and 10%
(9.7 kbp) of dog contigs with duplicated sequences are result of erroneous assem-
bly of divergent loci. This illustrates the fact that non-human reference genomes,
especially their old versions, include multiple assembly errors associated with du-
plicated or variable DNA sequences.

Finally, the human reference genome was extensively studied and corrected which
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FIGURE 5.1: The scheme illustrates the principle of erroneous du-
plications detection. Two contigs with copies of a duplicated region
C1 and C2 are given. Grey lines represent unique sequences. If merg-
ing contigs into one results in more realistic distances between read
mates mapped to an assembly, this likely means that unique C∗ se-
quence was misassembled. The figure was adopted from Kelley and

Salzberg (2010).

is usually not the case for other species. Many assembly errors and gaps in the hu-
man reference genome were resolved in later de novo assemblies (Jain et al., 2018;
Miga et al., 2020).

The advance of long-read sequencing allowed to construct more accurate genome
assemblies for some non-human species (He et al., 2019; Hon et al., 2020; Jagan-
nathan et al., 2021). High copy-number duplicated regions, long SDs and long
stretches of low-complexity DNA sequence were, as expected, especially often mis-
assambled in previous short-read assemblies. Anyway, even though the process of
genome assemblies refinement got a giant bust when long-read sequencing technol-
ogy became accessible, this process is far from being over (even in relatively accurate
human genome (Nurk et al., 2021)).

5.2 Reconstruction of lineage-specific duplication events

In this section we will concentrate on the research project which provided us with the
data on duplicated regions comparative genomics (Sudmant et al., 2013). We want
to describe it in more detail and discuss how the data correlates with our analysis of
the SD network.
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The attempt to predict segmental duplications in great ape genomes and to as-
sign corresponding duplication events to ancestral phylogenetic lineages was done
by Sudmant et al. (2013). The dataset included 97 individual WGS samples, 75 of
which originated from the Great Ape Genome Diversity Project (Prado-Martinez
et al., 2013) and the remaining 22 were from the Orangutan Genome Project and
the Denisova Genome Project (Locke et al., 2011; Meyer et al., 2012). These sam-
ples included: Bornean orangutans (9 samples), Sumatran orangutans (8 samples),
humans (10 human and 1 Denisovan samples), bonobo (14 samples), western chim-
panzee (5 samples), Nigerian–Cameroon chimpanzee (10 samples), eastern chim-
panzee (6 samples), central chimpanzee (2 samples), western gorilla (29 samples),
eastern gorilla (3 samples) and cross-river gorilla (1 sample). Even though some
of these taxa are classified as species while some are subspecies, for simplicity, we
will further refer them all as the great ape species. Reads from the listed ape sam-
ples were mapped on the human reference genome and the copy-number variable
regions were detected based on coverage analysis. This allowed to determine the ab-
solute copy number of loci and the breakpoints at an individual genome level which
were further reported in human genome based coordinates. All predicted copy-
number variable regions were classified as fixed in specific lineage, copy number
polymorphic or private (present in one individual only). This method has an ad-
vantage over CGH arrays that were earlier used for the task of CNVs annotation in
great ape genomes (Dumas et al., 2007; Gazave et al., 2011; Fortna et al., 2004). The
breakpoints and a copy-number of CNVs can be predicted more accurately in the
approach based on read coverage. Moreover, the biases associated with the fact that
great ape samples are hybridized against DNA probes originating from the human
genome further limits the resolution of CGH arrays.

There are 11,836 fixed duplications (325 Mbp), 5528 fixed deletions (47 Mbp) and
6406 CNVs (96.2 Mbp) detected by Sudmant et al. (2013) which overall comprises
around 16% of hominid genome. It was found that long duplications that are fixed
in great ape species (or segmental duplications) are distributed non-uniformly and
tend to happen close to already duplicated genomic regions. On the other hand,
fixed deletions are distributed independently with respect to each other. The fact
that new SDs tend to happen in already duplicated regions is called "duplication
shadowing" and was already observed earlier (Cheng et al., 2005; Marques-Bonet
and Eichler, 2009; Newman et al., 2005). For example, approximately half of SDs
shared between human and chimp are mapped within 5 kbp of SDs shared among
human, chimpanzee and orangutan, while third of human-chimpanzee-orangutan
duplications map adjacent to human-chimpanzee-orangutan-macaque shared SDs
(Marques-Bonet and Eichler, 2009). Ancestral SDs are often prone for consequent du-
plications thus leading to duplication shadowing and recurrent duplication events.
It could happen in several scenarios, for example, because of long homologous
stretches of duplicated regions or because of repeats in flanking sequences increas-
ing the NAHR probability. This observation indirectly agrees with our prediction
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that duplication rates grow with a number of copies of a region. This behaviour can
be seen as duplication events that happen with a preference to already duplicated
loci. In other words, duplications of an already duplicated region are more often
than what we expect if SDs fall randomly on the genome. If we imagine this sce-
nario in terms of network growth, we would expect that only components C(2, 1)
are added to a network with hardly any node duplication events happening.

By the means of comparative genetics, duplications and deletions were assigned
to specific lineages. Such a phylogenetic reconstruction of SDs is complicated by
the recurrent duplication events. The rate of duplication events homoplasy in great
apes is estimated around 20% (Marques-Bonet and Eichler, 2009). Overall, the num-
ber of duplicated nucleotides is∼ 3 times higher than deleted ones. Lineage-specific
duplication rates normalized by a lineage time span (measured in Mbp per million
years) are quite variable across the great ape phylogenetic lineages. The fastest rate
was in ancestral African great ape lineage (6.61 Mbp/Mya) with further decay in
gorilla ancestor and human-chimpanzee ancestor to 4.46 and 3.02 Mbp/Mya, re-
spectively (Fig. 5.2a). This means a burst of duplications early in African hominid
evolution which was also observed by Marques-Bonet and Eichler (2009) and contra-
dicts earlier suggestions that excess of duplication events is specific for the human
ancestor lineage (Olson, 1999; Varki, Geschwind, and Eichler, 2008). Deletions, on
the other hand, happened in a relatively clock-like manner with some acceleration
in chimpanzee-bonobo ancestor lineage (Fig. 5.2b).

There are 407 and 340 lineage-specific duplication and deletion events, respec-
tively, that, at least partly, overlapped genes in the course of great ape evolution.
Specifically, there are 33 gene duplication events that are private for human genome.
The highest rates of gene duplications were characteristic to African great ape and
human-chimpanzee ancestors, while the highest gene deletion rate was in chimpan-
zee-bonobo ancestor. One possible explanation for increased deletion rate in the
chimpanzee-bonobo ancestor lineage is that it went through several population bot-
tlenecks that reduced purifying selection acting on large deletions (Prado-Martinez
et al., 2013).

The considered data was also used in our project. This will be further described
in a more comprehensive way. If, as for now, we ignore details, the copy-number of
a locus is similar in its meaning to a node degree of a corresponding node: both rep-
resent a number of homologous sequences. Thus we can study how a node degree of
a specific node changes in different species or even, informally speaking, in parallel
evolutionary experiments. Unfortunately, this reconstruction does not always allow
to assign the ancestral copy-numbers, because many SDs originated before hominid
evolution. However, we overcame this issue by studying how evolutionary dynamic
a locus is instead of how many times it duplicated after its hominid ancestral state
(see below).
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FIGURE 5.2: Duplication (a) and deletion (b) rates are plotted along
the great ape phylogenetic tree. The width of branches is scaled pro-
portionally to duplication or deletion rates, respectively. Two rates
are assigned to the branches: the number of duplicated (a) or deleted
(b) bps normalized by the number of substituted ones (above in pairs
of values) and Mbp/Mya (below). The highest duplication rate was
characteristic for the African great ape ancestor lineage, which further
dropped in the chimpanzee–human and gorilla ancestor lineages.
Deletions happened in a relatively clock-like manner in the course
of great ape evolution. The figure was adopted from Sudmant et al.

(2013).

5.3 SD networks of other species

In this section we tried to answer the following question, whether the SD networks
of other species which evolved independently from humans are similar to the hu-
man SD network or may have resulted from other growth scenarios. We therefore
downloaded the latest reference genomes of 8 additional species from the UCSC
genome browser. The list of reference genomes includes: human (hg38), gorilla (gor-
Gor4), gibbon (nomLeu3), mouse (mm10), rat (rn6), dog (canFam3), chicken (galGal6),
zebrafish (danRer11) and C. elegans (ce11). Not for all considered genomes SD an-
notations exit. To overcome this problem and to make all annotations provided by
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the same tool we did de novo SD prediction ourselves. The SEDEF tool was used
to annotate segmental duplications in the genomes (Numanagic et al., 2018); again,
only autosomes were included in the analysis. For an accurate comparison we also
used the same tool to de novo predict SDs in the human genome. Based on SDs iden-
tified by SEDEF tool SD networks were constructed for the above species including
human. The human SD network built from the SEDEF predicted SDs was compared
with the original one (Fig. 5.3a). The SEDEF predicted SD network is larger both
in terms of the number of nodes and edges (Table 5.1), however, almost all dupli-
cated regions from the original SD network were present in it. In fact, the number
of SEDEF predicted SDs was higher than in the original UCSC annotation. This is
due to the fact that SEDEF by default reports duplications satisfying less strict length
and sequence identity criteria plus the UCSC annotation underwent additional fil-
tering steps, such as: agreement of WGAC and WSSD methods predictions, FISH
validation etc. (Bailey et al., 2001; Bailey et al., 2002).

Human Gorilla Gibbon Mouse Rat Dog Chicken Zebrafish Worm
GS (109 bp) 2.88 2.78 2.65 2.46 2.62 2.2 0.96 1.35 0.083
Num. of nodes 12,579 30,935 29,376 14,766 35,919 18,438 3,169 34,445 1,572
Num. of edges 37,319 42,643 443,916 166,145 183,618 62,308 17,102 601,289 2,199
Intra- (%) 19 46 7 8 24 7 36 9 37
Tandem (%) 6 25 2 2 10 3 8 1 17
f value 0.48 0.43 0.57 0.42 0.42 0.33 0.29 0.35 0.32

TABLE 5.1: Characteristics of the SD networks of different species.
These include: genome size (GS) excluding sex chromosomes, num-
ber of nodes, number of edges, fraction of intrachromosomal edges
and tandem edges among all edges of a network and regression-
based predicted f values. An edge is denoted as tandem if both du-
plicated regions linked with the edge are located at the same chro-
mosome at the distance < 0.5 Mbp. One can see that the sizes and
characteristics of the SD networks are quite distinct. Moreover, the
human SD network constructed with SEDEF predicted SDs is sub-
stantially larger than the one built on UCSC annotated SDs (includes

6,656 nodes and 16,042 edges).

The resulting SD networks of different species are quite distinct in their sizes
and other network characteristics (Table 5.1). The component size distributions, on
the other hand, are similar both in terms of the slope of the distributions and in the
presence of a giant component (Fig. 5.4). Similarly to the human SD network we also
observed a clear power-law growth of the average number of edges with component
size in all species. Corresponding regression-based predicted values of the param-
eter f are listed in the Table 5.1. The genome and the SD network of C. elegans are
the smallest ones, thus we do not see a prominent giant component as we observe
in other species. We would like to note that the SDs shared by the species are very
unlikely to be responsible for such a similarity in the SD networks topologies. As
we already said, based on sequence identity levels most of predicted segmental du-
plications appeared only after the divergence of the New and Old World monkeys.
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FIGURE 5.3: SEDEF based, original SD network and the one con-
structed without pericentromeric regions. The connected compo-
nent size distributions plotted on a log-log scale with logarithmic
binning. a. Comparison of the SD networks constructed from the
UCSC annotated and SEDEF predicted SDs. b. The SD networks con-
structed based on all SDs of the human genome and all SDs excluding
pericentromeric ones. In both cases we observe similar distributions.

When we calculated the Bray-Curtis pairwise dissimilarities between component
size vectors we found that the species cluster similarly to their phylogenetic rela-
tionships, for example, primate and mammalian clusters were observed (Fig. 5.4d).
Thus, based on our data, the topology of the SD network seems to be reflective
of phylogenetic relationships among species which might be indicative of a shared
slowly evolving molecular mechanism responsible for the continuous spread of seg-
mental duplications in genomes.

5.4 Analysis of CNVs in ape genomes

We used a data from Sudmant et al. (2013) (which was earlier introduced in the
"Reconstruction of lineage-specific duplication events" section 5.2) to see if evidence
from comparative genomics of great ape species supports the preferential model (or
PCM) of SD evolution. In this study reads from whole-genome sequencing samples
of 12 great ape species were mapped on the human reference genome and copy-
numbers of corresponding homologous loci were measured based on a read cov-
erage depth. For each ape specie several individual samples were used: Bornean
orangutans (9 samples), Sumatran orangutans (8 samples), humans (10 human and
1 Denisovan samples), bonobo (14 samples), western chimpanzee (5 samples), Nige-
rian–Cameroon chimpanzee (10 samples), eastern chimpanzee (6 samples), central
chimpanzee (2 samples), western gorilla (29 samples), eastern gorilla (3 samples) and
cross-river gorilla (1 sample). The resulting data we used includes copy-numbers of
multiple genomic loci (each is defined in human reference genome coordinates) ob-
served in all studied samples, from them only duplications were further used.

For each of 11,262 loci which were involved in segmental duplications during
the ape evolution and fixed in at least one specie we calculated the metrics repre-
senting how dynamic (in terms of duplications) a region was. We first calculated
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Figure 7 The connected component size distributions plotted for the SD networks of different
species on a log-log scale. The red lines in panels (a)-(c) represent the slope observed in the SD
network of human. Observed distributions follow this slope on a log-log scale and a giant
component is observed in most species. a. The group of primate species that includes human,
gorilla and gibbon. b. The group of other mammalian species that includes rat, mouse and dog. c.
The group of distinct species that do not belong to mammals: chicken, zebrafish and C. elegans.
The SD network of C. elegans is the smallest one, thus we do not see a prominent giant
component as in other species. d. The heatmap of similarities (1− Bray-Curtis dissimilarities)
between connected component size vectors in all studied species. The dendrogram on top
corresponds to hierarchical clustering of the species according to their similarities. We can see that
the dendrogram, to some extent, reflects phylogenetic relationships between species (for example,
presence of primate and mammalian branches).

variations in the human population grows with the node degree of a duplicated re-

gion it overlaps with. This might be attributed to different scenarios: overall genomic

instability of a duplicated region that has multiple copies, recurrent duplications

happening in unstable genomic sites, decreased purifying selection against new du-

plications in those regions or positive selection for beneficial gene duplications and

decreased recombination rates that reduce an efficiency of the purifying selection.

In all such cases, CNVs in high node degree duplicated regions are more likely to

be fixed in human population. This might explain the preferential duplication rates

in PCM.

It was found that the SD network topology is quite consistent among relatively

distant species, at least, in terms of component size distribution. Moreover, a topol-

ogy of an SD network seems to be a biologically meaningful characteristic of species

that reflects phylogenetic relationships and can further be studied.

One more observation that comes from the PCM is that the number of nodes

in the network at some point starts to grow hyperbolically and nodes accumulate

FIGURE 5.4: The connected component size distributions plotted
for the SD networks of different species (log-log scale). The red
lines in panels (a) - (c) represent the slope observed in the SD net-
work of human. Observed distributions follow this slope on a log-
log scale and a giant component is observed in most species. a. The
group of primate species that includes human, gorilla and gibbon. b.
The group of other mammalian species that includes rat, mouse and
dog. c. The group of distinct species that do not belong to mammals:
chicken, zebrafish and C. elegans. d. The heatmap of 1− Bray-Curtis
dissimilarities between connected component size vectors in all the
species. We can see that the hierarchical clustering dendrogram on
top, to some extent, reflects phylogenetic relationships between the
species (for instance, presence of primate and mammalian branches).

a mean copy-number of each genomic region over all samples of a specific specie.
This was done to overcome the bias associated with different number of samples
per specie. Then we used the first central moment of a copy-number or the follow-

ing value: ∆i = ∑12
j=1
|Xij − Xi |

12 where Xij is a copy-number of ith genomic region in
jth specie (there are 12 species in the dataset), while Xi is a mean copy-number of a
corresponding region. One of the reasons why we did not use a copy-number gain
over the ancestral state is that for those loci which started to duplicate early in ape
evolution the ancestral copy-number can not be accurately suggested.

Then we measured how dynamics ∆ depends on characteristics of nodes from
the human SD network (Fig. 5.6). The borders of duplications in ape species not
necessarily match the borders of duplicated regions we used so we calculated the
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FIGURE 5.5: The E against N dependence in connected components
of different species. The plots (a) - (i) show how the number of
edges E in connected components grow with their size N in differ-
ent species. For all sizes the mean value of E is plotted. One can see
that E ∝ Nαs dependence is present in all species, where αs values are

specie-specific and listed in the legends.

mean ∆ value over all intervals overlapping specific duplicated region. One can see
that the duplication dynamics ∆ of duplicated regions clearly grows with a node
degree and a connected component size. This means that the giant component and
especially high node degree duplicated regions in it are the most actively duplicat-
ing loci in apes. This observation agrees with the PCM growth that we suggested.
This trend can be reproduced if we use another measures for duplication dynam-
ics, like the second central moment or normalized ∆i/Xi (see Appendix). Moreover,
the genomic loci that were duplicated recently in the human lineage mostly overlap
the duplicated regions belonging to the giant component while older duplications
that are shared by several primate species overlap smaller components more often
(Fig. 5.6c). This again agrees with the PCM growth. In early phases of PCM network
growth a giant component is not yet formed thus connected components grow in a
relatively uniform manner, however, when a prominent giant component appears,
majority of duplication events start to concentrate there (similarly to the "rich gets
richer" principle). Thus the fact that recent (or human specific) SDs are enriched in
the giant component agrees with such growth.
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FIGURE 5.6: The plot represents how the mean duplication dynam-
ics ∆ depends on network characteristics. The average dynamics
grows with a connected component size (a) and a node degree (b)
which are plotted on a log-linear and a log-log scales respectively.
This agrees with the PCM growth that we suggested for the SD net-
work. To illustrate the growing trend the locally estimated scatter-
plot smoothing function loess(α = 0.75, degree = 1) was added (or-
ange line). c. All nodes of the SD network were divided into groups
based on a component size while human lineage SDs based on their
age. We grouped SDs according to a phylogenetic lineage of origin
(marked by a corresponding set of ape descendant species on X axis)
and visualized nodes that overlap those groups. The ids we used to
refer the species: Hse (human), Hde (Denisovan), Chi (chimpanzee),
Gor (gorilla) and Pon (orangutan). One can see that the SDs exclu-
sively observed in human genomes (evolutionary recent SDs) mostly
happened in the giant component while older ones are distributed in

components of various sizes.

5.5 Summary

In this chapter we studied segmental duplications in various non-human genomes.
We de novo annotated segmental duplications in 9 reference genomes (human, go-
rilla, chimp, rat, mouse, dog, chicken, zebrafish and C. elegans). It turned out that
even though the SD networks were quite distinct in their size, the network topolo-
gies were similar in all cases, except for the genome of C. elegans (which is, probably,
too small). This supports our believe that the PCM network growth is characteristic
not only for human genome, but likely for the clade of vertebrate species.
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We also took advantage of the data from Sudmant et al. (2013) where copy-
numbers of human duplicated regions were studied in several ape species. We in-
ferred duplication activity of human duplicated regions by looking at intensity of
copy-number changes in homologous sequences in ape species. We tested the cor-
rectness of the PCM in the following way: if high node degree regions are more
evolutionary dynamic in other ape species - this would support the PCM, otherwise
we would have to reject one. As a result, we found that high node degree regions
are more evolutionary dynamic in ape species than low node degree ones.
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Chapter 6

Duplication Events Reconstruction
from the SD Network

6.1 Articulation of the question

The preferential copying model (PCM) for growth of the SD network was suggested
to explain its topology and gives us a potential to reconstruct duplication events
responsible for its formation. Edges of the SD network represent alignments of ho-
mologous sequences that share common origin, however, the information on the
temporary order and direction of duplications (i.e. which genomic region among
two copies is ancestral) is missing. Moreover, edges of the SD network represent ei-
ther real duplication events or secondary alignments that appear because of overlaps
between independent duplications. Reconstruction of real duplication events from
the whole network of duplicated regions will allow us to further look into biological
factors responsible (or at least associated) with segmental duplications.

This task can be illustrated with the following analogy: let’s say we have a graph
where each node represents one individual and edges are added if two individuals
know each other. All individuals know their parents, but also have some more social
connections either inherited from their parents or generated throughout their lives.
Then our task is to find a real family tree (or reconstruct all parent to child edges)
in the graph with unspecified relationships between individuals. In our case, this
"recollection" of existing duplication events from the network is possible if reasoning
of PCM is taken into account as a key.

Accurate reconstruction of duplication events in a complex genomic locus is a
complicated bioinformatics task. It answers the question how some specific region
was formed, however, more global question of why some genomic regions duplicate
more often than others is obscured by such a reductionist approach. Even though
our network approach disregards some information related to duplicated regions
when it is studied as a node, it allows studying segmental duplications as a whole
thus revealing some biological principles of SD creation from the SD network. In
a nutshell, we reconstructed duplication events from the SD network to predict the
number of duplications that each genomic region did in the course of evolution.
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Then we solved a machine-learning task of predicting important genomic features
associated with number of duplications of genomic region (see details below).

6.2 The origin of cycles in the SD network

Before going into our method of reconstruction, firstly, we have to understand the
nature of the cycles in the SD network. Cycles appear as a result of duplication when
a new "daughter" node inherits the edge to the neighbor of the "mother" node from
it (Fig. 6.1a). One conclusion from this is that only cycles of size 3 can appear as a
result of such secondary edges acquisition in PCM. Indeed in a cycle of size N where
N > 3 we expect at least one event of secondary edge acquisition (as the only way to
get cyclic structure). On the other hand, it is impossible to acquire a neighbor from
the "mother" node that does not have one (Fig. 6.1b), thus only cycles of size 3 appear
as a result of node duplications in the PCM. In agreement with this we observe that
out SD network is depleted with cycles of size > 3 in comparison with other net-
works of well-known topology (Table 6.1). These bigger cycles are likely observed
in our network because of superposition of several cycles of size 3 (Fig. 6.1c). Thus
it is more informative to look at shortest self-paths of nodes (shortest paths from a
specific node to itself if it exists). In dramatic contrast to other networks only for 1
out of 1325 nodes we observed a self-path longer than 3 edges, which is substantially
less than what we see in other networks (Table 6.1). These observations show us that
the SD network likely evolved according to one of our copying models.

Type Clustering coef. Shortest path > 3-cycles (%) > 3 self-paths (%)
SD network GC 0.57 4.93 8 0.1
Random network 0.012 2.95 96 37
Scale-free network 0.031 2.83 94 25
Configuration network 0.08 3.02 70 36

TABLE 6.1: Cycles composition in various networks. The charac-
teristics of several networks that include: random graph, scale-free
network, the giant component of the SD network and corresponding
configuration network (random graph with node degrees of original
network preserved) are listed in the table. First three columns repre-
sent the mean clustering coefficient, the mean shortest path between 2
nodes and the fraction of cycles of size larger than 3 among all cycles
in the network. The SD network is strongly depleted with large cycles
(or enriched with the cycles of size 3) in comparison with other net-
work types. We also measured the length of a shortest self-path from
a specific node to itself where possible (column 4) and calculated the
fraction of self-paths that cover more than 3 edges. The depletion of
long self-paths is even more prominent than in case of long cycles
(0.1% of all self-paths). In all cases we used networks of the size com-

parable to the giant component of the SD network.
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FIGURE 6.1: Origin of cycles in the PCM. a. The scheme illustrates
that cycles of size 3 can appear as a result of a duplication event when
a daughter node inherits an edge from a mother node (the dotted line
represents the secondary edge). b. On the other hand, cycles of size
4 or more can not appear in our copying model. The node IV can
not inherit the edge (I, IV) from its mother node I I I, because the last
one does not have the node I among its neighbors. Thus we do not
expect cycles of size 4 or larger in our PCM network except for those
cases when superposition of several cycles of size 3 forms cycles of
larger size. Such an example is present at the scheme c. The cycle of
size 4 (coloured in red) appears as a result of 4 cycles superposition:

(I, I I, I I I), (I, I I, V), (I, IV, V) and (I, I I I, IV).

6.3 Principles of duplication event reconstruction

6.3.1 Reconstruction examples: graphs with and without cycles

If we disallow any inheritance of neighbors from the "mother" node (e.g. by sim-
ulating PCM with f = 0) we will observe a network without any cycles where
each edge represents a real duplication event, while connected components unite
duplicated regions of the same ancestry. Directionality of duplication events can be
reconstructed in unique way if we assume that we know which node was the ances-
tral one in a connected component (Fig. 6.2). If we compare two figures (Fig. 6.2a
and Fig. 6.2b) we will see that directionality of edges changes when taking another
ancestral nodes while number of duplications that happened in each node is almost
invariant to this choice. Thus for our task it is enough to find edges in the SD net-
work that correspond to real duplications while assigning directionality is not that
important.
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FIGURE 6.2: Reconstruction of duplication events in a graph with-
out cycles. a. The scheme illustrates the fact that reconstruction of
duplication events is a straightforward task when we study a net-
work without any cycles. This type of network can only appear if no
secondary edges were inherited during the network growth (for ex-
ample, if we run PCM simulation with f = 0). If we know a priori
which node was the first in a simulation, there is only one solution
reconstructing duplication events responsible for such a network for-
mation. We can reconstruct all "mother" to "daughter" nodes relation-
ship, however, information on duplications timing is missing. On
both schemes black arrows represent duplication events (where an
arrow points from "mother" to "daughter" nodes), red arrows point
to the first node in a simulation while numbers in parentheses denote
the number of duplications each node made in a course of a network
growth. One can see that by assigning different first nodes (a) and (b)
we get quite a distinct pattern of duplications, however, overall num-
ber of duplications each node made stays almost the same except for
those nodes used as a starting ones (numbers coloured in red). This
means that to get an information on how many times each node of
the SD network duplicated in the course of its evolution - we do not
have to reconstruct directionality in the network. It is enough to dis-
tinguish edges representing real duplication events (primary edges)

from secondary ones.

An example network with one cycle of size 3 can only appear if a node in a
cycle inherited one neighbor in the cycle. However, this could happen in several
scenarios (Fig. 6.3a) so reconstruction of duplication events from a network with cy-
cles is not a straightforward task anymore and with every new cycle in a network
number of alternative solutions grows. So algorithmically this task can be formu-
lated as a search for a spanning tree that goes through all nodes of the SD network
and covers only those edges that correspond to duplication events (excluding sec-
ondary alignments) (Fig. 6.3b). The spanning tree does not have any cycles thus
in the SD network with NSD = 6656 nodes, ESD = 16, 042 edges and CSD = 1999
components we have to find a spanning tree with NSTree = NSD = 6656 nodes,
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ESTree = NSD − CSD = 4657 edges and CSTree = CSD = 1999 components by re-
solving cycles. There are several existing algorithms that can find the minimum
spanning tree (MST) from a graph that goes through the edges of minimal overall
weight. To use these algorithms on our SD network we first have to assign weights
to the edges so that the lower the weight of an edge – the higher the probability that
this edge corresponds to a duplication event between two respective nodes. Thus
resulting MST would mostly cover those edges representing real duplication events
as opposed to secondary alignments.
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FIGURE 6.3: Reconstruction of duplication events in graphs with
cycles. The black arrows represent duplication events (pointing from
"mother" to "daughter" nodes), red arrows represent the starting node
known a priori while the dotted lines represent secondary edges. One
can see that the cyclic graph in the center of the scheme (a) can be re-
constructed in three different manners even when the first node stays
the same. This results from the fact that cycles can appear in a net-
work if one of its nodes inherits an edge from its mother node. And
each of three edges in the cycle can become secondary. The number
of possible configurations grows fast with the number of secondary
edges (or cycles) in the network of interest. The scheme (b) illustrates
one possible reconstruction of duplication events in a more complex
network. The graph of reconstructed duplications has to be of a tree

structure (connected and acyclic).

6.3.2 Edge weight assignment

We used an heuristic approach to assign weights to the edges of the SD network.
Each node in the network we independently studied and tried to predict its mother
node. Based on the PCM each node of a connected component except for the ances-
tral pair of nodes appeared as a result of duplication of its mother node. Moreover,
the mother node has to be among the neighbors of a node of interest. The mother
node is the one that on average shares most of the neighbors with its daughter node.

Indeed, we can divide all potential neighbors of our node of interest D into five
categories based on their origin relative to it (Fig. 6.4). The first two categories in-
clude those nodes that were already present at the moment of D birth and could
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potentially become its neighbors at that moment. These include one mother node
and its neighbors at the moment of D node birth (nodes M and I, I I, I I I, IV at
Fig. 6.4a respectively). The other three categories include those nodes that appeared
after the moment of D birth: the progeny of the mother node that appeared after
the birth of our node (nodes M

′
1, M

′
2), the progeny of the neighbors of our node

that appeared after the birth of our node (nodes I
′
1, I

′
2, I I

′
1) and all the progeny of

our node D itself (nodes D
′
1, D

′
2 and D

′
3). Also, for convenience, several functions

were introduced to define sets of nodes: N () is a set of neighbors of a specific node,
Nbirth() has the same meaning asN (), but the set includes only those neighbors that
were present at the moment of D node birth, P() is a progeny of a specific node that
appeared after the D node birth. Let’s give several examples of those functions use:

N (M) = {I, I I, I I I, IV, D, M
′
1, M

′
2},

Nbirth(M) = {I, I I, I I I, IV},
P(M) = {M

′
1, M

′
2},

N (I) = {M, D, I
′
1, I

′
2},

Nbirth(I) = {M},
P(I) = {I

′
1, I

′
2}.

As one will see in further calculations, on average, a mother node of any cho-
sen node shares the highest fraction of its daughter node neighbors. We used this
observation in our approach of assigning weights to edges of the SD network. For
each edge ei between our node D and ith neighbor ni we assign the weight wi =

1 − ‖N (D) ∩ N (ni)‖
kD

, where kD is a node degree of D while ‖ · ‖ brackets denote the
number of elements in a set (Fig. 6.4b). Values of wi lie in the interval [0 < wi ≤ 1]
where wi = 1 when no neighbors of D are shared with ni, while wi > 0 because at
least one neighbor of D (ni itself) is never among neighbors of ni.

Now we can estimate the expected number of shared neighbors between ni and
D, i. e. ‖N (D) ∩ N (ni)‖ for neighbors belonging to all five described categories.
For simplicity, in the last three categories which include neighbors inherited after
the birth of D only "nearest" progeny (daughter nodes) will be included (because
"further" progeny shares even less neighbors with D). Let’s start by defining the
following sums:

I = ∑
i∈Nbirth(M)

1(i)

The indicator function 1() here and in all formulas below is defined as: 1(i) = 1
if i is among neighbors of D and 1(i) = 0 otherwise.

P = ∑
i∈P(I)

1(i) + ∑
j∈P(I I)

1(j) + ... + ∑
l∈P(IV)

1(l)
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FIGURE 6.4: All possible node to node relationships in our copying
model from specific node’s point of view. a. All nodes in the nearest
neighborhood of the node D include: the mother node M, the neigh-
bors of the mother node that were present before the birth of the node
D (I, I I, I I I, IV), the daughters of the mother node that appeared af-
ter the birth of D (denoted as M

′
i), the progeny of the nodes I − IV

denoted with apostrophes and the daughters of the node D itself (de-
noted as D

′
i). The nodes and edges coloured in black were present

at the moment of the birth of the node D, while gray ones appeared
after. Dotted lines represent those secondary edges inherited by D ei-
ther at the moment of its birth (black ones) or when some other nodes
were duplicated after the birth of D (grey ones). For convenience we
include on the first scheme only those secondary edges connected to
D while other ones are not shown. The scheme (b) includes the node
D and its neighborhood with all edges (as we said, some of secondary
edges are missing on the previous scheme). The weights of the edges
connected to the node D represent weights wi calculated according
to the formula described in the main text. As expected, the lowest
weight, which corresponds to the node sharing the highest number
of neighbors with D, was assigned to the edge connecting D to its

mother node M.

where P represents the number of nodes that are connected to D among the after
birth progeny of Nbirth(M) nodes (i.e. among I

′
1, I

′
2, I I

′
1 nodes in our case).

M = ∑
i∈P(M)

1(i)

where M represents the number of nodes that are connected to D among M
′
i (the

progeny of M that appeared after the birth of D).

D = ∑
i∈P(D)

1(i) = ‖D′‖

where D represents the number of nodes that are connected to D among D
′
i (or

equivalently among P(D) ). This value just equals to the number of D
′

nodes.
Then an expected number of shared neighbors ‖N (D) ∩ N (ni)‖ for neighbors
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ni belonging to all five categories of nodes described above can be calculated this
way:

‖N (D) ∩ N (M)‖ = I + f P + M + f D

‖N (D) ∩ N (M
′
i)‖ = 1 + f I + f 2P + f (M − 1) + f̂ D

‖N (D) ∩ N (l)‖ = 1 +
.
f (I − 1) +

.
f f (P − ∑

j
1(l

′
j)) + ∑

j
1(l

′
j) + f M + f D

‖N (D) ∩ N (l
′
i)‖ = 1 +

.
f f (I − 1) +

.
f f 2(P − ∑

j
1(l

′
j)) + f ∑

j
1(l

′
j) + f 2M + f̂ D

‖N (D) ∩ N (D
′
i)‖ = f I + f̂ P + f̂ M + f D

where l ∈ Nbirth(M),
.
f − is a probability of an edge being present between two

nodes from the Nbirth(M) set. It is proportional to the local clustering coefficient.
The value f̂ ∈ [ f 2, f ] and depends on the order of duplication events (for example,
whether the node I

′
1 appeared before or after the D

′
1). One can check the correctness

of these equations by going over all possible pairwise relationships between node
types (which is 5 ∗ 5 = 25 pairs) and calculate the probabilities of sharing neighbors
from corresponding node categories. These probabilities would represent the coef-
ficients associated with each term of the above sums. For example, if we consider
only ‖N (D) ∩ N (M)‖ equation, the mother node M shares all neighbors of D from
the setNbirth(M) because all these nodes are connected to M by definition; shares all
neighbors of D from P(M) set because M is their mother node and thus connected
to all of them; shares fraction f of P(D) nodes because these nodes inherit the edge
to M each with probability f and, finally, shares the fraction f of neighbors D be-
longing to the {P(I), P(I I), P(I I I), P(IV)} set, because each node in it inherits
the edge to M from its mother node with probability f .

Now one can see that a mother node is expected to share the highest number of
neighbors with a daughter node in comparison with other nodes. However, the bias
could appear if one of the neighbors ni is actively duplicated in unbalanced manner
after the birth of D. This, in our equations, means a high value of ∑

i∈P(l)
1(i) sum

which inflates the ‖N (D) ∩ N (l)‖ value where l ∈ Nbirth(M).
So the overall logic is the following: we know (from the PCM) that a mother

node, on average, shares the highest number of neighbors of a daughter node in
comparison with other nodes in a neighborhood of a daughter node. Thus after as-
signing weights in the described manner we expect that edges connecting mother
and daughter nodes would, on average, have lower weights, thus minimum span-
ning tree covering all nodes in the graph and going through edges of minimal overall
weight would be enriched with primary alignment edges (as opposed to secondary
alignment edges) that represent real duplication events. Finally, let’s note that an
edge weight depends on a node we pick: for an edge e between vertices a and b the
weight we can be calculated as we = 1 − ‖N (a) ∩ N (b)‖

ka
or we = 1 − ‖N (a) ∩ N (b)‖

kb

and those values are ordinarily not the same. In practice we assigned the least of
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two values as a weight of specific edge which equals we = 1 − ‖N (a) ∩ N (b)‖
min(ka, kb)

.

6.3.3 Comments on the algorithm choice

In this section we would like to make some comments on how we formulated the
algorithm and why our solution was the most reasonable among other potential ap-
proaches. Our algorithm is based on an MST search in a network where weights are
reversely proportional to the number of shared neighbors between linked vertices.
An accuracy of our algorithm was evaluated on synthetic networks generated using
the PCM and compared with other networks using other trivial models (use of node
degrees, use of random spanning tree) and several centrality measures.

We considered alternative approaches to reconstruct duplication events that take
the SD network as an input and/or take advantage of the fact that the network likely
grew according to PCM. Formulating the task as a probabilistic model is not practical
because one can not estimate the probability of a specific MST without the knowl-
edge about the directionality of edges and the temporal order of all events relative
to each other. In theory, this information can be obtained by comparative genomics
means, but this task is out of the scope of our analysis and is far from being simple
(because of a complex nature of duplication events, assembly gaps etc.). Otherwise,
one cannot suggest both the probability of an "observation" and the original prob-
ability distribution. Out of the same reason, even less relevant approach would be
considering probabilities of a node making n duplications and inheriting l edges
from other nodes without any suggested spanning tree of duplications. Getting ad-
vantage of the ensemble of all possible spanning trees (or even looking for a sample
of a meaningful size) does not seem like a promising solution given enormous num-
ber of all possible spanning trees. Can we take a sample of random spanning trees,
optimize them in some way and see if they reach some local maxima? Yes, but we
did not come up to any alternative optimizational criteria except for the one based on
shared neighbors, which in theory leads to the same solution as we see in our MST
approach. Overall, because of these limitations we decided to switch from more in-
tuitive "holistic" approaches based on trees, ensembles of trees and probabilities to
the ones studying elements of the network (nodes or edges) independently.

As described in the previous section the weights reversely proportional to the
number of shared neighbors were assigned to all edges independently and a MST
was constructed based on them. In the next section we will compare the perfor-
mance of our algorithm with other alternatives on PCM synthetic networks. These
alternatives include two trivial "background" models: a random spanning tree and a
node degree vector as a proxy of the number of duplications. And additionally mul-
tiple centrality measures which were formulated in the field of complex networks for
diverse tasks. We checked if any of these metrics is more relevant than our method
in reconstruction task we formulated.
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6.4 Accuracy evaluation

6.4.1 Accuracy evaluation based on PCM simulations

We tested the accuracy of our approach on PCM simulated networks. All PCM sim-
ulations were done with the parameters inferred before: δ = 5.1 ∗ 10−4, f = 0.47,
and resulting networks were of a size of the giant component of the SD network
(N = 1325 nodes). To do this we simulated the PCM based network growth and
kept information on edges status (primary edges representing duplication events or
secondary ones). Then we assigned weights to edges of synthetic networks in the
manner discussed above and run Kruskal’s algorithm to reconstruct the minimum
spanning tree on the weighted network (Kruskal, 1956). Two metrics were used to
measure the accuracy of our predictions: the fraction of correct (primary) edges in
the MST and a variance explained in duplications number that each node underwent
during the simulation (Table 6.2). We compared our method with several alternative
simple strategies of predicting number of duplication events per node (listed in the
Table 6.2). These include multiple types of node centrality measures. In the most
trivial model a node degree of a node in a PCM synthetic network was used as a
predicted number of duplications that the node did during the network growth.
This model was used as a baseline to access an accuracy of our method (to check
if it gives better predictions than the trivial model). One can see that our heuristic
approach performs the best among other methods and explains 77% of variance in
number of duplications while the trivial model reaches only 58%. This proves an
accuracy of our method, which was then applied on the real SD network. From the
resulting MST that covers putative duplication events in the SD network we calcu-
lated the number of duplications that happened in each node. Since edges of a node
in MST represent duplication events (or primary alignments) we can say that almost
every node i (except for the first one) in the network was duplicated ki − 1 times
where ki is a node degree of ith node in the MST. The first or "oldest" node is the one
that was duplicated k0 times (based on PCM), where k0 is a node degree of the first
node. Predicting a first node in each component of the SD network is not a straight-
forward task (and likely biologically irrelevant because of complex nature of some
duplication events) we can approximate a number of duplication events as a node
degree ki − 1 for all nodes of the SD network. This way we generated an integer
vector

−→
D sd, where each element

−→
D sd[i] represents a number of duplication events

that happened in ith node (or node degree of ith node in MST −1).

6.4.2 Additional validation of predicted MST

In a previous section we validated our method based on PCM simulations where
we knew a correct order of duplication events. In this section we wanted to use
some indirect evidence to check if our MST predicted for the SD network gives a
reasonable reconstruction of real duplication events. To do this we first applied the
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Method Edges match (%) Variance explained (R2)
Node degrees vector NA 0.58
Random spanning tree 20 0.44
Kruskal’s MST 64 0.77
Betweenness (edges) 17 0.64
Betweenness (nodes) NA 0.66
Closeness centr. NA 0.17
Eigenvector centr. NA 0.48
PageRank centr. NA 0.67
Radiality centr. NA 0.02

TABLE 6.2: Comparison of several methods for predicting the num-
ber of duplications that each node made during PCM simulations.
To evaluate an accuracy we measured the fraction of correctly pre-
dicted primary edges (where possible) and a variance explained
for the vector of real duplications number (R2). We measured an
accuracy of our MST based algorithm described in the main text
("Kurskal’s MST" row in the table). We used multiple centrality mea-
sures for nodes in resulting PCM synthetic networks as listed; one
can find more information about these measures, for example, in de-
scription of centralities in LightGraphs module documentation (Seth
Bromberger and contributors, 2017; Brin and Page, 1998). In case of
edges betweenness we, similarly to our algorithm, constructed the
MST based on betweenness values of edges as weights. Finally, we
considered the vector of node degrees and a random spanning tree
covering nodes of a synthetic network as a trivial models to estimate
a baseline quality of predictions. One can see that our algorithm per-
forms the best in both criteria among all alternatives with, per aver-
age, 64% of primary edges correctly predicted and 77% of variance in

number of duplications explained.

described algorithm to the SD network and checked if the resulting MST is enriched
with real duplication events based on some features of edges in it.

We can expect that if two or more alignments have their breakpoint coordinates
matching, it is quite unlikely that this match happened as a random coincidence.
This could happen because of some features of the sequence around the breakpoint
(mechanic instability, NAHR hotspot etc.) or simply because this alignment is sec-
ondary (appears as a result of overlap of duplication events). One can find an il-
lustration of how this matching breakpoints appear at the Fig. 6.5a. It means that
an alignment nested inside of another longer alignment with one of the breakpoints
matching between them is suspicious for being secondary (thus representing a sec-
ondary edge). Not necessarily all secondary alignments are satisfying this criterion
(the number of suspicious ones is much smaller than the number of secondary edges
in the SD network), but the alignment that satisfies it is likely secondary. In practice,
we considered inexact matches where the distance between breakpoints is less than
5 bps. The longer alignment in a pair or a pair of unnested alignments with matching
borders are on the other hand not suspicious. So we collected all "suspicious" edges
that correspond to alignments satisfying the described criterion and check if those
edges are depleted in the MST predicted for the SD network. These "suspicious"
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edges with matching breakpoints were depleted among edges of our predicted MST
in comparison with 1000 random samples of edges taken from the rest of the SD
network (empirical p-value < 0.001).

duplicationoriginal region

copy

“suspicious” 
alignments

1 2 3

1’ 2’
3’

a

b
II III

IVI

M

II III
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100%
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FIGURE 6.5: The criteria we used to validated our predicted MST
of duplications. We suggested that the correct MST is depleted with
suspicious alignments (nested ones with matching breakpoints) and
the scheme (a) illustrates this. The duplication event overlaps the
alignments marked by 1, 2 and 3 and copies them incompletely (the
loci to which 1, 2 and 3 align are not present on the scheme). Thus
the resulting copy aligns to the "mother" locus plus three additional
loci (the alignments are marked as 1’, 2’ and 3’ respectively) and since
the original alignments were copied in abrupted manner, the align-
ments 1’, 2’ and 3’ are suspicious according to our criterion. b. We
suggest that at the moment of duplication two copies of a genomic
sequence are almost identical (at least in a simple scenario of copy-
paste process). Thus a "daughter" node inherits alignments (or sec-
ondary edges) with a sequence identity observed for corresponding
alignments (edges) of a "mother" node which is illustrated on the
scheme. The sequence identity levels of corresponding alignments

are assigned to the edges on the scheme and shown by the colour.

Secondly, we expect that a correct MST covering real duplication events includes
more edges of higher sequence identity than a random set of edges from the SD net-
work. This might sound counter-intuitive, but edges with higher sequence identity
are expected to be enriched in the correct MST of duplications in comparison with
other secondary edges. In a simple scenario, we can assume that a level of sequence
identity between two copies is the highest right after the moment of duplication and
it decreases in a process of accumulation of neutral mutations with time. Secondly,
when a duplicated region is duplicated again we expect that corresponding edge
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between "mother" and "daughter" node is of high sequence identity shortly after the
duplication. On the other hand, edges inherited by a "daughter" node are of the
same level of sequence identity as we observe for "mother" node (Fig. 6.5b). This
can be illustrate with an example where a set of words represent duplicated regions
while hamming distances are measures of sequence identity between them. If we
make a copy of one of the words it will inherit all hamming distances to other words
observed for the original word while the hamming distance between the original
word and the new one will be equal to zero. Same behavior is expected for the
sequence identity levels between duplicated regions. Thus at the moment when
secondary edges appear, the level of their sequence identity is the same as the one
observed between the "mother" node and the corresponding neighbor (they inherit
corresponding level of identity), while primary edges are of high sequence identity
at the moment of their formation (identical or close to it). This levels of sequence
identity drop in time in a process of mutation accumulation, however, we expect
that highly identical alignments more likely correspond to real duplication events
than those of lower sequence identity. We found that in agreement with our sugges-
tions the predicted MST for the SD network is enriched with highly identical edges
(alignments). There are more alignments of sequence identity higher than 0.99 in the
predicted MST in comparison with random samples of edges from the rest of the SD
network (empirical p-value = 0.001 based on 1000 permutation tests).

In this subsection we studied some features of alignments in order to make some
conclusions about the accuracy of reconstructed duplication events. Even though
we can not make quantitative evaluation of the accuracy - we can see that for both
criteria our predicted MST "behaves" as expected for the spanning tree enriched with
primary edges (real duplications). This and the tests made on PCM synthetic net-
works (see previous subsection 6.4.1) give us a reason to believe in our MST of du-
plication events reconstructed for the SD network and allow us to move further into
studying biological features of the SD propagation process.

6.5 Associations with genomic features

6.5.1 Observed associations

In this section we will discuss the current knowledge about genomic features asso-
ciated with SDs, i.e. those genome properties that are often observed in SD sites or
their flanking regions. We start with the fact that we already discussed: segmental
duplications tend to lie in subtelomeric and pericentromeric parts of human chro-
mosomes. A slight positive correlation of segmental duplications distribution with
the gene density was reported by Zhang et al. (2005) along with negative correlation
with recombination rates. On the other hand, when considering duplicons which
constitute duplicated regions, core duplicons are enriched, while non-core dupli-
cons are depleted with exonic sequences in comparison with the rest of the genome
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(see the "A-Bruijn graphs and core duplicons" section (2.3.2) or Jiang et al. (2007)).
Moreover, large duplications tend to be enriched in heterochromatic parts of the
genome or, according to other observations, in hetero- to eurochromatin transition
regions (Grunau et al., 2006; Kirsch et al., 2008). Duplicated regions are, on average,
of higher G/C content in comparison with the rest of the genome (Bailey, Liu, and
Eichler, 2003; Zhang et al., 2005). In agreement with that, CNVs breakpoints seem to
be enriched with G/C-rich sequences predicted to form G-quadruplexes (Bose et al.,
2014). The listed factors are observed irregularly and not necessarily reproduced in
other experimental settings. It was even observed that those associations could be
specific to some chromosomes, but absent in others (Zhang et al., 2005).

High-copy repeats can cause segmental duplications through homology-medi-
ated or other mechanisms. Thus it is not surprising that some repeat classes are
enriched at breakpoints of SDs. Some cases of duplication causing repeats were re-
ported even before SD annotation in the human genome (Eichler et al., 1996; Eichler,
Archidiacono, and Rocchi, 1999; Guy et al., 2000). The systematic study by Bai-
ley, Liu, and Eichler (2003) identified those repeat classes that are significantly over-
represented at SDs breakpoints when compared with the genome average. Only
those segmental duplications not overlapping other SDs and accurately annotated
were considered. As a result, two repeat classes are significantly overrepresented at
breakpoints: Alu repeats and satellites (specifically, HSATII, GSAT, and TAR1), while
many repeat classes are even underrepresented in flanking regions (Fig. 6.6). Among
Alu subfamilies, younger ones (AluY and AluS) account for the enrichment, while the
oldest primate subfamily (AluJ) does not (Bailey, Liu, and Eichler, 2003). Similarly,
the flanking regions of the core duplicon (LCR16a) were studied by Cantsilieris et al.
(2020). The chromosome 16 is especially enriched with interspersed SDs, while most
of the chromosome 16 short arm duplications are associated with the 20-kbp core
duplicon LCR16a. The sequence composition of the LCR16a flanks was studied in
human and primate species. The flanks of the core duplicon are enriched with Alu
repeats and are of higher G/C content (Cantsilieris et al., 2020).

Replication timing is another factor associated with duplications. For example,
early replicating genomic regions are more gene rich, genes are more transcription-
ally active, the G/C content is higher in early replicating regions etc. CNVs are also
associated with replication timing, but the dependence seems to be complex. For
example, it was observed that recurrent CNVs are enriched in early replicating ge-
nomic parts, whereas non-recurrent CNVs are more frequent in the late ones (Koren
et al., 2012; Chen et al., 2015). The same question was addressed from a different
angle when induced pluripotent stem cells (iPSC) were compared with their parent
fibroblasts with respect to replication timing and CNVs accumulation. Specifically,
it was found that CNVs gains are preferentially located in the genomic regions that
became early replicating during pluripotent cell transition (Lu et al., 2014). Another
evidence from the field of cancer genomics suggests a different pattern of CNVs
accumulation. Often during carcinogenesis extensive changes in replication timing
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FIGURE 6.6: Repeats at breakpoints of SDs. The barchart represents
frequencies of various repeat families in breakpoint regions ("junc-
tion" in the plot legend), inside of SDs and in their flanking regions
("control" in the plot legend) and in the rest of the genome ("finished
genome"). Single and double asterisks highlight those distributions
where significant differences: junctions vs control and control vs fin-
ished genome, respectively, are observed. One can see a significant
enrichment of Alu and satellite repeats at SDs breakpoints. The figure

source: Bailey, Liu, and Eichler (2003).

happen along with accumulation of somatic CNVs. An analysis of more than 330,000
somatic copy number alterations showed that these events are more frequent in late
replicating regions in tumor cells (De and Michor, 2011). Finally, it was suggested
that division into early and late replicating regions is not sufficient to explain CNVs
distribution. The hotspots of CNVs are strongly associated with sites of reduced
DNA polymerase velocity. These can be detected as ones where the difference in
replication timing (or replication timing derivative) is the largest. In other words,
a genomic site located between early and late replicating regions is the one where
DNA polymerase progression slows down. This, in theory, leads to increased prob-
ability of replication template switching. Association of such genomic sites with
CNVs was observed by Chen et al. (2015). After all we can say that replication tim-
ing could play a role in SD formation. It is not something unexpected given the fact
that many segmental duplication mechanisms are associated with DNA replication.
However, effect of replication timing on CNVs is not completely clear and likely
complex.
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6.5.2 Genomic features as predictor variables

For each duplicated region (node) of the SD network we collected multiple genomic
features associated with that region. These genomic features include: replication
timing, recombination rates, openness of chromatin, genome assembly gaps, CTCF
sites, coordinates of a duplicated region, G/C nucleotides content, number of gene
overlaps, repeat overlaps and CpG island overlaps (see Table 6.3). The fraction of
intrachromosomal edges from all edges of a corresponding node is the only feature
in the analysis that originates from the SD network description while all other ge-
nomic features were extracted from the UCSC genome browser (https://genome.
ucsc.edu). UCSC LiftOver tool was used to transfer coordinates from hg37 to hg38
where needed (Kent et al., 2002). The feature values were measured either inside
of a duplicated region (between its breakpoints) or in flanking regions of length 50
bps padding the duplicated regions on both sides ("Position" column at Table 6.3).
The feature types include: counts (repeats, assembly gaps etc.), mean values in cor-
responding genomic intervals (replication timing, recombination rate etc.) and frac-
tions (fraction of G/C nucleotides, intrachromosomal edges from all neighbors of a
node). Other than that, a span of replication timing, i.e. the difference between max-
imal and minimal timing values in a genomic interval, was measured and used as a
proxy for the replication pausing ("Replication pausing" at Table 6.3). For those fea-
tures where flanking regions are studied we did not distinguish between flanks and
used the sum (or mean) of two values. All genomic features described so far were
used to find associations with high duplication rates. In other words, we formu-
lated a machine-learning task of predicting the number of duplications (response
variable) given the matrix of genomic features associated with duplicated regions
(predictor variables). By assessing how important each genomic feature is in pre-
dicting the number of duplications we can say which features are associated with
high duplication rates in the genome.

6.5.3 Genomic features associated with duplicated regions

First of all, we studied if various characteristics of duplicated regions differ from
those observed in random genomic sites. We compared duplicated regions against
random genomic sequences without, as for now, taking into account the number of
duplications that happened in each region. In this chapter we do not distinguish ac-
tively and rarely duplication regions, however, the next section is dedicated to that
task. We randomly shuffled duplicated regions positions in the human genome and
measured the genomic features we discussed in the previous section. We did mul-
tiple rounds of shuffling to get a background distribution. Mean values observed
for the original duplicated regions were compared to the background distributions
and for most features these values were either significantly larger or smaller than
expected from the null hypothesis. This is quite predictable given the fact that du-
plications are distributed very non-uniformly in the human genome and some of

https://genome.ucsc.edu
https://genome.ucsc.edu
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Genomic feature Type Position Cell line
Coordinates and length value — —
Telo-/centromere dist. value — —
Intrachrom. edges (%) fraction — —
Replication timing mean inner + flanks GM12878
Replication pausing span inner + flanks GM12878
Recombination rate mean inner + flanks —
DNAse hypersens. mean inner + flanks master (125 cell types)
Assembly gaps count flanks —
CTCF sites count flanks GM12878
GC nucleotides (%) fraction inner + flanks —
Genes count inner —
CpG islands count inner + flanks —
DNA transposons count flanks —
LTR retrotransposons count flanks —
LINEs count flanks —
SINEs count flanks —
Satellite repeats count flanks —

TABLE 6.3: Technical information on how each listed genomic fea-
ture was processed. The columns "Type" and "Position" specify how
and where a feature was measured (either inside of a duplicated re-
gion or in two flanking regions of 50 bps). Some characteristics were
estimated both inside and in flanks of duplicated regions. Those were
added into the analysis as two separate columns. Some of the features
are cell line specific, however, the cell lines where segmental duplica-
tions happened belong to the germline. In absence of a relevant data
from the germline, we picked the source of the data as listed in the
"Cell line" column. We used either a data from the GM12878 lym-
phoblastoid cell line (picked arbitrary) or the master track for DNAse
hypersensetivity. The master track represents an integrated DNAse
hypersensetivity data for 125 separate cell lines (one can read more
on that at http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&

g=wgEncodeAwgDnaseMasterSites and Thurman et al. (2012)).

the associations we see were reported earlier. For example, assembly gaps are en-
riched at flanking regions (because large complex duplications are hard to prop-
erly map), duplicated regions are located in late replicating regions or/and in those
where DNA polymerase slows down, recombination rates are lower in duplicated
regions, while the G/C content is higher (Fig. 6.7).

Next we wanted to study in detail how repeats are distributed relative to dupli-
cated regions breakpoints (inside, outside or at borders of duplicated regions). To do
this we used sliding non-overlapping windows of length 50 bps that started at the
breakpoint of a duplicated region (coordinates from a border: [0; 49]) and moved
30 steps away ([0; 49], [50; 99], . . . , [1450; 1499], respectively) and 5 steps inside
([−250; −201], [−200; −151], . . . , [−50; −1]). These sliding windows moved sym-
metrically (as a pair) relative to breakpoints on both sides of a duplicated region and
counted the number of repeat overlaps in each pair of windows. Moreover, to study

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeAwgDnaseMasterSites
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeAwgDnaseMasterSites
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FIGURE 6.7: Characteristics of duplicated regions in comparison
with the genome average. The barchart represents distributions of
various genomic features (listed on the X axis) measured in randomly
shuffled genomic intervals. The crosses are values that we observe for
original duplicated regions (red ones are above and blue ones are be-
low the background mean). Only those features where the difference

is significant are listed out of the whole list of features (Table 6.3).

the background distribution the sliding windows coordinates were randomly shuf-
fled throughout the human genome 10 more times. As a result the distributions were
different for different repeat classes. These could be divided into two groups. Re-
peats in the first group include: DNA transposons, LTRs, L1 and L2 repeats from the
LINE family and MIR repeats from SINE. These are depleted inside of a duplicated
region and their numbers grow when we move further outside from a duplicated
region borders (Fig. 6.8). Repeats in the second group are enriched in a close prox-
imity outside of duplicated regions, especially at the very breakpoints. This group
includes: satellites, microsatellites, Alu and low complexity repeats (illustrated at
Fig. 6.8 subplots, starting from the satellites on). The low complexity repeats are
composed of polypurine or polypyrimidine repeated stretches, or regions of high AT
or GC content. The second group of repeats is likely responsible for genomic insta-
bility that leads to duplication events and is unlikely attributed to a non-uniform SD
distribution in the genome (concentration of SDs in subtelomeric or subcentromeric
regions, proximity to assembly gaps etc.). Firstly, because repeats from the second
group are depleted inside of duplicated regions and at a relatively small distance
from them and, secondly, because exclusion of duplicated regions flanked by the as-
sembly gaps did not change the observed distributions. The differences in repeats
frequency between proximal flanking windows ([0; 49]) and shuffled windows are
significant for all repeat families, except for L1 (Fig. 6.7).
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FIGURE 6.8: The distribution of different repeat families relative
to the breakpoints of duplicated regions. Technically, we took two
genomic windows of 50 bps upstream and downstream of all dupli-
cated regions, calculated the number of repeats falling into those win-
dows and divided it by the overall number of those windows (the
frequency values on the Y axes). We did 5 measurement steps in-
side of duplicated regions, 30 measurements outside and 10 times in
random genomic positions. The X axes represent the genomic posi-
tions relative to breakpoints (marked with vertical line); last 10 points
separated by another vertical line correspond to counts in randomly
thrown windows. The first group of repeats (from DNA transposons
to MIR repeats) includes those depleted inside of duplicated regions
with no enrichment observed around the breakpoints in comparison
with the rest of the genome. On the other hand, the second group
(from satellites to low complexity repeats) includes repeats that are
enriched at the very breakpoints of duplicated regions or in nearby
windows (satellites, microsatellites, Alu and low complexity repeats).

6.5.4 Prediction of genomic features associated with increased duplica-
tion rates

We applied several machine learning algorithms to estimate the accuracy of pre-
dictions as a percentage of response variable variance explained. Various genomic
features were predictor variables, while number of duplications that happened in
a region - response variable. The applied algorithms include: the linear regression,
the support vector regression (SVR), decision trees and the random forest reached a
similar quality of predictions with the maximal % of variance explained R2 = 30.5%
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observed for the random forest (with 5-fold cross-validation). Our main interest was
to find genomic features that are important in the prediction and thus associated
with number of duplications that happen in duplicated region. So we first estimated
feature importances that are assigned to predictor variables by the random forest al-
gorithm. Then we estimated the statistical significance of those importance values in
a special permutation manner described by Altmann et al. (2010). Multiple rounds
of permutation of a response variable with consequent runs of random forest algo-
rithm allows to approximate a null distribution of importance values for each feature
when no interaction between a predictor and response variables exist. The resulting
empirical p-value (the fraction of importance values in permutations that are larger
than observed one) allows overcoming the biases characteristic for a regular impor-
tance value. As a result, the following genomic features were important in number
of duplications prediction: length of a duplicated region (emp. p-value < 0.001),
fraction of intrachromosomal edges (emp. p-value < 0.001), number of overlapping
genes (emp. p-value = 0.023) and CpG islands (emp. p-value = 0.0025), replica-
tion pausing (emp. p-value = 0.025) (the last two measured inside of a duplicated
region). Significant importance of those features cannot be attributed to the fact
that some of those features are correlated with each other. To clarify the type of
dependence between the features and response variable we calculated partial cor-
relation coefficients (Spearman’s) for each predictor variable (genomic feature) with
the response variable (number of duplications or jumps) controlling for all other
predictors as possible confounding variables (Fig. 6.9). Additionally, we measured
the regular Spearman’s rank correlation coefficient and estimated its significance by
permutations. One can interpret these coefficients in the following way: the regular
correlation coefficient represents the dependence we would observe without consid-
ering other correlated features. However it could be a result of other confounding
correlations that are taken into account when the partial correlation is calculated.
These two values could be dramatically different (even of an opposite sign), be-
cause the partial correlation coefficient shows the affect of one variable to another
independent of other features (i.e. specific association). For example, if features are
positively correlated, but are of negative partial correlation, it can be interpreted as
the features are associated in the nature, but in the same conditions the presence of
one decreases the probability to observe another.

The partial and regular correlation coefficients are significant and positive for the
length of a duplicated region, number of CpG islands (inside) and replication paus-
ing (inside), while negative for intrachromosomal edges fraction. Other correlation
coefficients were not significantly different from zero according to at least one of the
tests. These results agree with our observations. The length of a duplicated region is
positively correlated with the node degree of a region (see Fig. 4.10 above) and thus
with the number of duplications that a region underwent. As we discussed earlier,
the loci with reduced DNA polymerase velocity (the "Replication pausing" track in
our analysis) could be associated with genomic duplications. Our results supported
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this hypothesis: the association of replication pausing and duplication frequency is
reproduced by several our approaches (Fig. 6.9a). Association with the number of
gene overlaps also makes sense given the fact that segmental duplications were re-
sponsible for gene families propagation and evolution in the human lineage (see the
"Evolutionary role of SDs: gene duplications" section 2.3.4). To our knowledge, only
increased G/C content was observed in segmental duplications, however, enrich-
ment of CpG islands in highly duplicated regions is not described yet.

Several high-copy repeat families had significant non-zero (mostly negative) par-
tial correlation coefficients with the number of duplications that duplicated regions
underwent (Fig. 6.9b). However, most of these associations were not supported by
significant Spearman’s correlation coefficients or the random forest importance es-
timates. Only microsatellites are positively correlated according to both correlation
coefficients. However, it seems unlikely that any of considered repeat families are
strongly associated with duplication rates of genomic loci. Overall, we predicted the
genomic features that are associated with highly duplicating regions in the human
genome and reasoned the type of association.

6.6 Summary

In this chapter we reconstructed duplication events from segmental duplications
alignments. We did this based on the SD network without any additional sources
of information. Earlier we suggested the preferential copying model for the SD net-
work growth. This allowed us to come up with criteria for primary edges corre-
sponding to real duplication events: if a node ni shares a big fraction of neighbors
with its neighbor nj, it is likely that nj is a mother node of ni. We used this principle
to assign weights to edges (those mother to daughter edges are of lower weight in
comparison with secondary ones). We then constructed a minimum spanning tree
(MST) that covers all nodes and goes through edges of minimal overall weight. We
validated our approach on PCM simulations and other indirect evidence tests, such
as distribution of sharp border alignments and high sequence identity ones. Our
method of reconstruction turned out to be more accurate than its alternatives. An
accurate MST allows to answer, how many times each node (or a duplicated region)
was duplicated in the course of evolution. We used this knowledge to find those
genomic features associated with actively duplicating loci. Moreover, we studied
characteristics of duplicated regions and their flanks in comparison with the genome
average. We found multiple skews associated with duplicated regions and their
breakpoints, non-uniform repeats distributions and some associations with highly
duplicating loci. These results in detail are described in this chapter.
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FIGURE 6.9: Different characteristics of duplicated regions signif-
icantly associated with their number of duplications. Only signif-
icant associations (after Bonferroni correction) predicted by the ran-
dom forest, the partial correlations or both are listed. a. These in-
clude: length of a duplicated region, fraction of intrachromosomal
edges from all edges of a node, number of CpG islands overlapping
a duplicated region or its flanks, replication pausing and number of
overlapping genes. The cells coloured in light blue represent those
features with high permutation importance in the random forest al-
gorithm. Dark blue and red cells correspond to features with signifi-
cant negative or positive correlation coefficients (specified in the cells)
while unfilled cells represent non-significant ones. b. High copy re-
peats that showed significant partial correlation with the number of
duplications. Most of them are not supported by the random forest

or significant non-zero Spearman’s correlation coefficient.
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Chapter 7

Discussion

Segmental duplications (SDs) are long (> 1 kbp) duplications of genomic sequence
that have high sequence identity (> 90%) and are fixed in a genome. Segmental
duplications play an important role in evolution by increasing the probability of
genomic rearrangements, creating new gene paralogs, affecting the speciation and
so on. In this thesis we study SD evolution with the main focus on duplications in
the human genome. Specifically, we address the dynamic properties of duplication
process as our main topic of interest.

We studied the dynamics of a globally acting propagation process for segmental
duplications in the human genome. To do this a mathematical formalization in terms
of networks and network growth processes was applied. The SD network was gener-
ated from annotated SDs. In this approach network nodes represent genomic regions
involved in duplications and edges indicate the presence of an alignment between
two regions. This gave us the opportunity to investigate several network growth
models and reason about their relevance in describing the nature of SD evolution.
The simplest copying model with equal probabilities of node duplications (UCM)
is not sufficient to explain the SD network topology. However, a more complicated
preferentially copying model (PCM) with preferential node duplication rates nicely
fits all topological characteristics of the SD network, especially if taking into account
that the growth model includes only 2 parameters ( f and δ). Based on the PCM
the duplication rate of already duplicated regions grows linearly with the number
of copies of those regions (more precisely, with the number of loci that share long
homologous sequences with those regions).

The PCM was accurate in predicting the SD network characteristics even with-
out inclusion of additional processes that reflect real life events, such as: deletions of
duplicated regions, decrease of homology below the detection threshold in time, du-
plication where a new copy jumps into an already duplicated region etc. Moreover,
we consciously did not include separate processes that correspond to different du-
plication mechanisms as they are described in the literature (duplication dynamics
is different in pericentromeric, subtelomeric and other genomic regions) or different
processes corresponding to intra- and interchromosomal duplications (see the "Ge-
nomics Background" chapter 2). The explicit addition of such processes to the model
would make the parameterization heavier while biological conclusions more vague.
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Models with multiple parameters can overfit the data even if irrelevant dynamics is
suggested. The PCM, on the other hand, has little number of parameters thus the
good fit that we observed, likely, results from its relevance to the SD network growth
and not overfitting. However, the two-step model explaining the mosaic structure
of pericentromeric SDs assumes that genomic segments are first translocated into
one genomic locus and this process is not included in the PCM. As we observed,
the exclusion of pericentromeric SDs from the analysis does not change the SD net-
work topology substantially thus keeping our global predictions valid. Moreover,
the topology of the SD network does not change significantly if we try alternative
strategies of the SD network construction or add new processes to network growth
models (see the "Stability of our predictions" section 4.8). This means that our pre-
diction about preferential nature of duplication rates is stably reproduced and is not
an artifact of the SD network construction strategy.

We suggested some interpretations of why the network evolution of the SD net-
work follows a model with preferential node duplications. A mechanistic explana-
tion could be that with growing node degree the length of the corresponding dupli-
cated region also grows, thus the probability that the next duplication will overlap
that duplicated region also grows. Secondly, growing node degree of a duplicated
region is also associated with growing probability of genomic rearrangements (in-
cluding duplications) in that locus. Finally, we observed that the frequency of copy-
number variations in the human population grows with the node degree of a dupli-
cated region it overlaps with. This might be attributed to different scenarios: overall
genomic instability of a duplicated region that has multiple copies, recurrent dupli-
cations happening in unstable genomic sites, decreased purifying selection against
new duplications in those regions or positive selection for beneficial gene duplica-
tions and decreased recombination rates that reduce an efficiency of the purifying
selection. In all such cases, CNVs in high node degree duplicated regions are more
likely to be fixed in human population. This might explain the preferential duplica-
tion rates in the PCM as well.

One more observation that comes from the PCM is that the number of nodes in
the network at some point starts to grow hyperbolically and nodes accumulate al-
most exclusively in the giant component. This means that in the PCM we do not
have an equilibrium steady state. Thus the overall length of duplicated regions in
the genome should also reach a hyperbolic growth at some point leading to an "SD
explosion". If this prediction is correct it is curious how this problem is addressed
in natural evolution of genomes without any notable signs of this effect in the topol-
ogy of the SD network. One possible scenario is that selection might act only on
high node degree duplicated regions (very right tail of the node degree distribution)
by decreasing the probability for further duplications. However, a constant rate of
nodes/edges loss would slow down but not prevent the hyperbolic growth. To stop
this growth more complex scenarios have to be considered, for instance, a time de-
pendent rate of duplications or loss, when periods of increased relative loss rate
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compensate nodes accumulation. In principle, this agrees with estimates of dupli-
cation/deletion rates in primate phylogenetic lineages. Those rates changed quite
substantially in the human ancestor lineage from the split of New and Old world
monkeys to modern human (see the "Reconstruction of lineage-specific duplication
events" section 5.2).

The network formalization was also applied to study SDs in other (non-human)
species genomes. We predicted SDs in genomes of 9 phylogenetic distinct species
which include well-studied ape genomes, genomes of domestic animals and model
organisms. We decided not to use known SD annotations because these were often
assigned to outdated reference genome versions and were constructed a bit differ-
ently, moreover, not all annotations that we needed were open-access or existed. For
all latest reference genomes (including the human one) we de novo annotated SDs.
Having the same experimental setting was more important for us than the accuracy
of SD prediction which is likely higher in specialized studies dedicated to SD an-
notation in a specific genome. The reason is that we only considered topological
characteristics of SD networks which have to be constructed in the same manner,
otherwise biases resulting from different approaches could make them incompara-
ble.

We found that even though sizes of SD networks were quite different, there was
a clear similarity in the SD networks topologies. This can be observed in the same
power-law slope in all connected component size distributions, presence of giant
components in almost all cases, E ∝ Nαs dependence for components C(N, E) in the
SD networks etc. (αs values are specie-specific). This similarity is unlikely to result
from SDs shared by the species. A big fraction of predicted SDs consists of duplica-
tions that originated after the New and Old world monkeys split as we mentioned
earlier. Thus we expect that distinct vertebrate species (like human and chicken)
are far from sharing enough duplicated regions to explain similarities in networks
characteristics. It seems like all considered vertebrate species follow similar evolu-
tionary dynamics of duplications or the "rules" according to which SDs propagate
in the genomes. More than that, we suggest that SDs in vertebrate genomes likely
propagated according to the PCM (where duplication rate of a genomic region grows
linearly with its number of copies). This can be seen from the characteristic topol-
ogy of SD networks which, at least to our knowledge, was not met in other complex
networks in the field (like internet, citation networks etc.) and can be reproduced by
PCM simulations. The described topology is not recognized in the SD network con-
structed based on C. elegans duplications. This means either different mechanism
of SD propagation in non-vertebrate species or simply results from the fact that the
genome of C. elegans is too small.

Curiously, when we measured the Bray-Curtis pairwise dissimilarities between
the connected component sizes vectors we found that to some extent these are reflec-
tive of phylogenetic relationships between species. In other words, related species
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seem to have more similar SD networks (at least when it comes to connected com-
ponent size distributions) than less related ones. However, the accuracy of such
phylogenetic reconstruction is in fact relatively limited (see Fig. 5.4).

We again addressed the question of the preferential copying model validation in
the human genome with the means of comparative genomics. We took advantage
of, informally speaking, more "dynamical" comparative genomics as opposed to the
previous "static" one. Data from Sudmant et al. (2013) provided us with some metric
of how dynamic (or actively duplicating) different human genome loci were in the
course of ape species evolution (both in human and other ape lineages). In a nut-
shell, for nodes of the human SD network we got the information on how evolution-
ary active corresponding genomic locus was. Overall, our observations agreed with
the PCM: high node degree duplicated regions are more evolutionary dynamic, du-
plicated regions belonging to bigger components are also duplicating more actively
and, finally, recent duplications that happened in a course of human evolution are
enriched among duplicated regions of the giant component. To make the last ob-
servation more clear: when we simulate network growth according to the PCM, we
expect that at the beginning of simulations all components grow in a comparable
rate, while at some point one starts to outgrow other (a future giant component)
with accelerating rate. Thus at later stages of the PCM growth we expect that dupli-
cations almost exclusively happen in a giant component which is similar to what we
observe in our genomic data.

Overall, we find our results of the comparative genomics tests supporting the
preferential copying model of segmental duplications propagation. Moreover, it
seems likely that the PCM shaped landscape of segmental duplication not only in
human, but also in other vertebrate species.

In Chapters 4 and 5 we predicted the universal rules of how segmental duplica-
tions propagate in genomes. Duplication rates grow with the number of copies of
a specific duplicated region, which we called a preferential duplication rate. How-
ever, we continued analysis of dynamical properties of SD evolution, but this time
we paid attention to biological characteristics that could increase duplication rates.
We approximated the number of duplications that happened in each genomic re-
gion. This, as we already mentioned, is not equal to the number of alignments,
because some of them are secondary. According to the PCM network growth, each
node in a connected component (except for the first pair) originated as a result of
other node duplication. Moreover, a daughter node inherits a fraction of edges from
its mother node. We can use this knowledge to approximately predict mother to
daughter nodes relationships and, consequently, which edges are primary (real du-
plication events) and which are secondary.

We constructed an algorithm that predicts the number of duplications (which we
also call "jumps") that each node did in a course of network growth. This was done in
two steps. First we assigned weights to edges of the SD network which are inversely
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proportional to the number of neighbors shared by a pair of connected nodes. Sec-
ondly, we searched for the minimum spanning tree (MST) that goes through edges of
minimal overall weight, because lower weight means more shared neighbors, means
higher probability that an edge is a primary duplication edge (see the "Edge weight
assignment" section for details 6.3.2). There is no a priori information on how many
times each genomic region was duplicated in real life. Thus the algorithm was vali-
dated on PCM synthetic networks and some additional indirect evidence was used
to estimate its quality. For example, it was suggested that primary edges have to be
depleted with sharp borders alignments and enriched with high sequence identity
ones. This turned out to be true for our predicted MST. Moreover, it was substan-
tially more accurate than both random spanning trees and MSTs constructed on var-
ious centrality measures when tested on PCM synthetic networks (see the "Accuracy
evaluation" section for details 6.4). A manual analysis of duplication events (usually
quite a complicated task) can give more accurate reconstruction of ones and uncover
their complexity. However, in this thesis we are interested, firstly, in systematic pre-
dictions for all duplicated regions not limited to specific loci. Secondly, there is no
need in detailed reconstruction of events for our task, we only need a number of
duplications that happened in a locus. Finally, we wanted to take advantage of the
SD network approach as a way to study SDs. There could be alternative strategies
to study genomic features associated with actively duplicating sites, but these ap-
proaches are out of the thesis scope.

Given the MST of duplications one can predict the number of times each node
was duplicated. For majority of nodes it is equal to the node degree −1, so we
used such a vector of ki − 1 values as a response variable. Various genomic fea-
tures measured inside of duplicated regions or in flanking windows were utilized
as predictor variables. Our main interest was in finding those features associated
with the number of duplications, however, before solving this machine learning task
we considered whether genomic characteristics are different at duplicated regions
when comparing to the rest of the genome. It turned out that the difference is quite
dramatic which can be explained by highly non-random distribution of SDs in the
human genome. Some of the biases were expected given earlier reports on SD dis-
tribution. Then we used various techniques to extract those features associated with
duplications number. This is not a trivial task, because many features are correlated
with each other. We used random forest importance values assigned to predictor
variables and partial correlation coefficients to find significantly associated features.

Assembly gaps were enriched at duplicated regions breakpoints. This follows
from the fact that complex duplication events are harder to assemble than non-
redundant sequences, thus ones are often not fully "embedded" in a genome assem-
bly. The gene content was higher in duplicated regions which agrees with earlier
report (Zhang et al., 2005), moreover, it was positively correlated with the number of
duplications of a region. This seems reasonable given the fact that core duplicons are
parts of SDs that are duplicated especially intensely. These cores are enriched with
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genes, especially those important for human evolution. The number of overlapping
CpG islands, to our knowledge, was not reported as associated feature, however,
based on our analysis, it was both enriched in duplicated regions and positively cor-
related with its duplication rates. We also wanted to note that even though CpG
islands are correlated with both the G/C content and gene density, the partial cor-
relation coefficients and the random forest importance values are not subjected to
corresponding biases. Thus we, likely, see a real association not reported before. We
observed that duplicated regions are located in late replicating regions. Moreover,
we also found that DNA replication is slower in duplicated regions in comparison
with the genome average and this affect is more prominent for actively duplicating
loci. This evidence supports earlier report of Chen et al. (2015) and additionally sug-
gests a new correlation with duplication rates. Recombination rates seem to be lower
in duplicated regions, while G/C content is higher. The fraction of intrachromoso-
mal neighbors (the same chromosome duplications) among all neighbors of a node
can be considered as a characteristic of duplicated region’s duplication dynamics.
Some duplicated regions are prone to intrachromosomal duplications, while other
duplicate to all chromosomes (see Fig. A.7). Our analysis showed negative correla-
tion between the fraction of intrachromosomal edges and the number of jumps.

Another big group of features that we studied are high-copy repeats. We did not
find strong associations between the composition of repeats and duplication rates.
However, this composition was quite distinct in genomic windows located at differ-
ent positions relative to breakpoints (windows inside of duplicated regions, outside
ones, proximal to breakpoints and at random genomic positions). Those distribu-
tions are plotted in Fig. 6.8. We divided all repeats into two groups based on their
distribution relative to duplicated regions. Those depleted inside of duplicated re-
gions and around the breakpoints, while their fraction grows when moving away
from breakpoints. These include DNA transposons, L1, L2, LTR and MIR repeat
families. We can say that these repeats are rarely involved in duplication events. An-
other group includes repeats that are enriched at breakpoints and thus, ones making
genome susceptible to duplications. These are satellite, microsatellite, Alu and low
complexity repeats. Overall, these observations agree with earlier report by Bailey,
Liu, and Eichler (2003) (also see Fig 6.6), however, we additionally observed sig-
nificant enrichment of microsatellites and low complexity repeats at breakpoints in
comparison with the genome average. Our analysis is different from the one done
by Bailey, Liu, and Eichler (2003), because we considered all duplicated regions (re-
gions that underwent any number of duplication events), while in earlier analysis
only trivial duplications (single non-overlapping ones) were studied.

In conclusion, we think that the network formalization for the analysis of SDs
is a good way to study the evolution of SDs in human or other species genomes.
We illustrated how it can be applied to infer dynamical properties of SD propaga-
tion, compare them between distinct species and to reconstruct (approximately) real
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duplication events among all observed alignments. It allowed us to suggest a uni-
versal model of segmental duplications propagation: a duplication rate grows with
the number of copies of a duplicated region. More than that, we predicted several
associations between genomic features and high duplication rates, a task which was
not systematically studied before. Overall, we think that this research projects gives
a broad picture of factors affecting duplication rates and suggests a method (a net-
work of segmental duplications) that can further be applied to other problems in
computational biology. Glad someone read the thesis that far:)
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Appendix A

Supplementary materials

A.1 Supplementary figures

SUP. FIGURE A.1: Homologous recombination pathways. Double-
strand breaks are fixed with homologous recombination pathways. If
both fragments of DNA are detected by reparation machinery, either
double Holliday junction pathway or synthesis-dependent strand an-
nealing is activated. Double Holliday junction can be resolved in
crossing-over or not depending on how DNA strands are cut. The one
ended pathway is often activated during DNA replication. A missing
chromosome arm is restored via break-induced replication based on
homologous chromosome sequence. The figure source: Hastings, Ira,

and Lupski, 2009
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SUP. FIGURE A.2: The SD network with intrachromosomal edges
specifically coloured in red is illustrated.
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SUP. FIGURE A.3: The SD network where nodes having self-loop
edges are coloured in red. The self-loop edges are those edges that
connect a node to itself. One can see that these edges are mostly con-
centrated in the giant component. In the main text we consider the
trimmed version of the SD network: the one where all self-loop edges

are removed.
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SUP. FIGURE A.4: The SD network with multiple edges specifically
coloured in red is illustrated. Multiple edges appear when more
than one edge connects a pair of nodes. One can see that these edges
are mostly concentrated in the giant component. In the main text we
consider the trimmed version of the SD network: the one where all

redundant edges are removed.
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SUP. FIGURE A.5: The SD network with tandem edges specifically
coloured in red is illustrated. Tandem edges correspond to intra-
chromosomal SDs where the distance between two copies is less than

5 ∗ 105 bps.



110 Appendix A. Supplementary materials

va
ria

nc
e 

dy
na

m
ic

s

connected component size

a

connected component size

b

dy
na

m
ic

s 
Δ 

no
rm

al
iz

ed

SUP. FIGURE A.6: The plot represents how different metrices of du-
plicational dynamics grow with a connected component size. These
include the second central moment of copy-number (a) and normal-
ized dynamics ∆i/Xi (b). The locally estimated scatterplot smoothing

function was added to make it more visible (orange line).
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SUP. FIGURE A.7: The histogram illustrates the distribution of frac-
tions of intrachromosomal edges from all edges of nodes. Nodes
that are prone to intrachromosomal duplications have values close
to 1, while those with predominantly interchromosomal duplications
are closer to 0. In (a) we include nodes with > 5 neighbors, while in
(b) actively duplicating nodes with > 50 neighbors are included. We
can see that the first distribution is bi-modal with two peaks around 0
and 1. Nodes with high node degree from the second histogram are,

on the other hand, depleted with intrachromosomal hotspots.
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A.2 Computational Tools

The analysis and simulation described in this thesis were performed using the Julia
programming language Bezanson et al., 2017. We used the following packages:

• All the steps of our network analysis are performed using the LightGraphs.jl
package in the Julia programming language Seth Bromberger and contribu-
tors, 2017. Except for simple feature extraction and modification of the SD
network we used this package to calculate the mean clustering coefficient, the
average shortest path length, study the modularity of the network, use config-
uration model, generate random networks using the Erdős–Rényi model and
scale-free networks using the Barabási–Albert model Newman, 2010, Erdös
and Rényi, 1959, Albert and Barabási, 2002. We applied the Barabási–Albert
model with m = 7 (a number of edges that a new node forms) to get the size
of a resulting network close to the size of the SD network giant component.

• The network visualization is done with the GraphPlot.jl package in Julia.

• We used the Approximate Bayesian Computation method (ABC) from the Ap-
proxBayes.jl Julia package.

• To estimate the PCM parameter values the loss function was minimized with
the Nelder–Mead method from Optim.jl Julia package Nelder and Mead, 1965,
Mogensen and Riseth, 2018.
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Appendix B

Abstract

Segmental duplications (SDs) are long DNA sequences that are repeated in a genome
and have high sequence identity. In contrast to repetitive elements they are often
unique and only some have multiple copies in a genome. There are several well-
studied mechanisms responsible for segmental duplications: non-allelic homolo-
gous recombination, non-homologous end joining and replication slippage that act
in more complex scenarios. Overall, SDs comprise around 5% of the human genome
and play an important evolutionary role. For example, the expansion of segmental
duplications in the early human lineage, likely, affected the human brain evolution.
SDs are sites of recurrent genomic rearrangements, including those responsible for
genetic disorders and so on. However, we do not have a full understanding of the
dynamic properties of the duplication process. Can we suggest a universal scenario
of SDs propagation in genomes and which genomic characteristics affect this pro-
cess? This thesis is dedicated to answer those questions.

We study segmental duplications through a graph representation where nodes
represent genomic regions and edges represent duplications between them. The
resulting network (the SD network) has distinct features which allow us to make in-
ference on the evolution of segmental duplications. We propose a network growth
model that explains features of the SD network thus giving us insights on dynamics
of segmental duplications in the human genome. Based on our analysis of genomes
of other species the network growth model seems to be applicable for multiple ver-
tebrate genomes. Our model suggests that duplication rates of genomic loci grow
linearly with the number of copies of a duplicated region. Finally, we studied ge-
nomic features associated with duplicated regions. Our evidence supports earlier
observations and gives new insights about a duplication process.
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Appendix C

Zusammenfassung

Segmentale Duplikationen (SD) sind lange DNA-Sequenzen, die in einem Genom
wiederholt werden und eine hohe Sequenzidentität aufweisen. Im Gegensatz zu
repetitiven Elementen sind sie oft einzigartig und nur einige haben mehrere Kopien
in einem Genom. Es gibt mehrere gut untersuchte Mechanismen, die für segmen-
tale Duplikationen verantwortlich sind: nicht-allelische homologe Rekombination,
nicht-homologes End Joining und Replikationsschlupf, die in komplexeren Szenar-
ien wirken. Insgesamt machen SD etwa 5% des menschlichen Genoms aus und spie-
len eine wichtige evolutionäre Rolle. So hat beispielsweise die Ausbreitung segmen-
taler Duplikationen in der frühen menschlichen Abstammungslinie wahrscheinlich
die Entwicklung des menschlichen Gehirns beeinflusst. SD sind Orte wiederkehrender
genomischer Umlagerungen, einschließlich derer, die für Krankheiten verantwortlich
sind. Die dynamischen Eigenschaften des Duplikationsprozesses sind uns jedoch
noch nicht vollständig bekannt. Können wir ein universelles Szenario für die Aus-
breitung von SD in Genomen vorschlagen und welche genomischen Merkmale bee-
influssen diesen Prozess? Diese Arbeit ist der Beantwortung dieser Fragen gewid-
met.

Wir untersuchen segmentale Duplikationen anhand eines Graphen, in dem Kno-
ten genomische Regionen und Kanten Duplikationen zwischen ihnen darstellen.
Das sich daraus ergebende Netzwerk (das SD-Netzwerk) weist bestimmte Merk-
male auf, die es uns ermöglichen, Rückschlüsse auf die Entwicklung segmentaler
Duplikationen zu ziehen. Wir schlagen ein Netzwerkwachstumsmodell vor, das die
Merkmale des SD-Netzwerks erklärt und uns somit Einblicke in die Dynamik seg-
mentaler Duplikationen im menschlichen Genom gewährt. Basierend auf unserer
Analyse von Genomen anderer Spezies scheint das Netzwerkwachstumsmodell für
mehrere Wirbeltiergenome anwendbar zu sein. Unser Modell legt nahe, dass die
Duplikationsraten genomischer Loci linear mit der Anzahl der Kopien einer du-
plizierten Region wachsen. Schließlich haben wir genomische Merkmale untersucht,
die mit duplizierten Regionen in Verbindung stehen. Unsere Ergebnisse bestätigen
frühere Beobachtungen und geben neue Einblicke in den Verdopplungsprozess.
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