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Summary

People routinely collect information about choice alternatives before deciding between them. For
example before buying a new car, a customer may test drive several alternatives before making a
choice. Such decisions from experience (DfE) are characterized by active or passive (i.e., through
observation) sampling processes that may involve categorizing and evaluating each sample, and
finally integrating all available samples into a choice. After a short introduction (chapter 1), in
part one of this dissertation I present two studies from the domain of decisions from experience,
addressing separate but closely related questions. The first study (chapter 2) deals with the
question of how control over the sampling process impacts on the final choice. In how far do full,
partial, and no control over sampling differ in terms of their neurocognitive processes, and are some
levels of control more beneficial than others? The second study (chapter 3) focuses on processes
related to evaluating individual samples in a sequence. How are individual samples weighted
before they are integrated into a choice? For both studies, I employ Electroencephalography
(EEG) recordings, relating behavior and brain measures. In part two of this dissertation, I then
shift from decisions from experience to more methodological issues related to EEG research and
present two further studies. The third study of this dissertation (chapter 4) addresses an emerging
hardware problem: The parallel port, the previous gold standard for sending event markers, is
slowly disappearing from commercially available computers. What are potential alternatives, how
reliable and performant are they, and how can they be built and operated on a budget? In the
fourth study (chapter 5), my co-authors and I present an extension to an existing and commonly
used data standard (BIDS) for EEG data, with the aim of improving the foundations of good
research data management and reproducibility of scientific results. Finally, I conclude with a
chapter (chapter 6) to briefly summarize the other chapters and delineate open questions and
future directions.
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Zusammenfassung

Menschen sammeln routinemäßig Informationen über Alternativen, bevor sie sich zwischen ihnen
entscheiden. Beispielsweise kann ein Kunde vor dem Kauf eines neuen Autos mehrere Alternativen
testen, bevor er eine Entscheidung trifft. Solche Verfahren sind durch aktive oder passive (d.h.
durch Beobachtung) Stichprobenprozesse gekennzeichnet, die eine Kategorisierung und Bewertung
der einzelnen Proben und schließlich die Integration aller verfügbaren Proben in eine Entschei-
dung umfassen können. Nach einer kurzen Einführung (chapter 1), stelle ich im ersten Teil dieser
Dissertation zwei Studien aus dem Bereich "Entscheidungen nach Erfahrung" vor, die sich mit
unterschiedlichen, aber eng verwandten Fragen befassen. Die erste Studie (chapter 2) beschäftigt
sich mit der Frage, wie sich die Kontrolle über den Stichprobenprozess auf die endgültige Entschei-
dung auswirkt. Inwieweit unterscheiden sich vollständige, teilweise und keine Kontrolle über die
Probenahme in Bezug auf ihre neurokognitiven Prozesse, und sind einige Stufen der Kontrolle
vorteilhafter als andere? Die zweite Studie (chapter 3) konzentriert sich auf Prozesse im Zusam-
menhang mit der Bewertung einzelner Proben in einer Sequenz von Proben. Wie werden die
einzelnen Proben gewichtet bevor sie in eine Entscheidung integriert werden? Für beide Studien
verwende ich Elektroenzephalographie (EEG)-Aufnahmen, und setze Verhaltens- und Gehirnmes-
sungen in Beziehung. Im zweiten Teil dieser Dissertation wende ich mich dann von "Entscheidungen
nach Erfahrung" zu eher methodischen Fragen im Zusammenhang mit EEG Forschung und stelle
zwei weitere Studien vor. Die dritte Studie dieser Dissertation (chapter 4) befasst sich mit einem
neuen Hardwareproblem: Die parallele Schnittstelle, der bisherige Goldstandard zum Senden von
Ereignismarkern, verschwindet langsam von handelsüblich erwerbbaren Computern. Was sind
mögliche Alternativen, wie zuverlässig und leistungsfähig sind sie, und wie können sie mit einem
geringen Budget gebaut und betrieben werden? In der vierten Studie (chapter 5) stellen meine
Mitautoren und ich eine Erweiterung eines bestehenden und häufig verwendeten Datenstandards
(BIDS) für EEG-Daten vor. Dabei verfolgen wir das Ziel, die Grundlagen für ein gutes Forschungs-
datenmanagement und die Reproduzierbarkeit wissenschaftlicher Ergebnisse zu verbessern. Zum
Abschluss stelle ich ein Kapitel vor (chapter 6), das die anderen Kapitel kurz zusammenfasst und
offene Fragen und zukünftige Richtungen beschreibt.
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1 | General Introduction

Imagine it is Friday evening after a long and grueling work week and you just entered a wine shop
that you have wanted to visit for a long time. Naturally, you want to acquire a good bottle of
wine to enjoy over the weekend, but it must not be too expensive lest you spent all your hard
earned money in that single purchase. To get a first impression, you may start with browsing the
catalogue of available wines to arrive at a decision whether this wine shop is more or less pricey
than the other wine shops you know. Having your tight budget in mind, you might even try to
estimate whether on average the white wines or the red wines in this shop are more expensive.
Next, you may request to try a few samples, to not only get the most affordable wine (judging
from the catalogue), but also the best tasting one, before you finally decide for a bottle to buy.

All of these three actions our imaginary agent may undertake have something in common: They
lead to decisions from experience, that is, decisions based on sequential samples that need to
be categorized, integrated, and formed into a choice. In the first part of this dissertation, I will
present two empirical studies covering the neural correlates of decisions from experience, as revealed
through Electroencephalography (EEG).

The second part of this dissertation has a focus on practical, methodological matters directly
related to empirical EEG research. I will propose to record experimental event markers with a
Microcontroller Unit (MCU) based solution that can serve as a viable alternative to the previous
gold standard that is rapidly disappearing from commercially available equipment. Furthermore, I
will describe recent advances with regards to standardized documentation and sharing of research
data, in order to improve reproducibility of scientific results.

In the following I will briefly outline and contextualize each of these two parts.

1.1 Decisions from Experience

Since the early 2000s, the term decisions from experience (DfE) has been frequently used in behav-
ioral research to describe contexts where study participants initially have little or no knowledge
about a number of payoff distributions, and are then instructed to sample from the options to
maximize either their cumulative payoff or their prospective payoff in a single choice after the
sampling phase (Hertwig, 2015; Hertwig et al., 2004; Weber et al., 2004; Wulff et al., 2018). DfE
as a term is most meaningful when seen as one endpoint on a continuum with decisions from
description (DfD) as the opposite endpoint. In contrast to DfE, DfD happen whenever an agent
receives a full description of all available choice options, and the probabilities associated with each
of their outcomes (e.g., Gigerenzer et al., 2005). For example when deciding whether or not to take
a drug based on statistical reports of adverse effects on the drug’s package insert. Contrasting DfE
and DfD in human decision-makers has revealed the so-called description-experience-gap: Humans
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Chapter 1

tend to underweight rare events in decisions from experience, but overweight them in decisions
from description (Hertwig & Erev, 2009; Rakow & Newell, 2010).

However, decisions from experience are a broad and relevant research topic in their own right,
with a long standing tradition aside from its contrast to decisions from description (e.g., Ander-
son, 1964; Busemeyer, 1982, 1985; Edwards, 1961; Robbins, 1952). In research areas outside of
behavioral sciences such as in cognitive neuroscience or computer science, DfE is not often used
as a term, perhaps because its natural counterpoint DfD receives a much smaller focus compared
to in behavioral research. Instead, DfE are being researched more generally under terms such as
evidence accumulation, sequential sampling, or sequential integration (Cheadle et al., 2014; Kang
& Spitzer, 2021; Shadlen & Shohamy, 2016; Spitzer et al., 2017; Tsetsos et al., 2012; Wyart et al.,
2012; Wyart et al., 2015), or under the umbrella of reinforcement learning and exploration and
exploitation (Sutton & Barto, 2018), in form of the multi-armed bandit paradigm and its many
derivatives such as the fully explorative bandit or best-arm identification problem (Audibert &
Bubeck, 2010; Bubeck et al., 2009; Daw et al., 2006; Even-Dar et al., 2006; Gabillon et al., 2012;
Shahrampour et al., 2017).

In this dissertation, decisions from experience will refer to all processes that involve actively or pas-
sively (i.e., through observation) sampling outcomes from one or several distributions, and forming
the sampled information into a final choice that can be correct or incorrect with regards to some
aspects of the sampled distributions.

Let us now come back to our wine shop example, and see how the imaginary agent’s decisions from
experience map onto the laboratory tasks that I employ in this dissertation. First, our agent tried
to browse the catalogue to get an impression of how pricey the shop was. This corresponds to the
averaging task (Figure 1.1, left), where an agent observes a rapid sequence of Arabic digits from 1
to 9 and is then asked whether the arithmetic mean of the sequence was higher or lower than 5.
Second, our agent made an (arguably futile) attempt to get the best deal by setting white wines
against red wines, trying to see whether one category was more expensive than the other. This
corresponds to the comparison task (Figure 1.1, middle), where an agent observes digits as in the
averaging task, but each digit is additionally marked with a color and the agent is asked whether
the arithmetic mean of digits in one color was higher than the other. Third and finally, our agent
took the opportunity to taste several wines and purchase a single bottle. This corresponds to the
sampling paradigm (Figure 1.1, right), where an agent can actively sample from one of several
unknown payoff distributions until they decide to stop sampling and choose one of the options to
receive a payoff in the form of a random draw from that option.

I will now briefly outline some of the key research questions that have been addressed with these
tasks, and specify the open questions in the current literature that are addressed with this disser-
tation.

1.1.1 The sampling paradigm: human exploration and search

Unlike many other paradigms of decisions from experience, the sampling paradigm strictly sepa-
rates exploration and exploitation. That is, the typical trade-off that an agent faces of whether
to use their limited time and resources to explore an unknown but potentially rewarding option
or whether to exploit the option that is currently thought to be the most rewarding, is suspended
(Sutton & Barto, 2018). Instead, study participants first freely (and at no expense) explore all
available choice options and are given the chance to learn about their underlying payoff distribu-
tions (exploration). Only once a participant willingly terminates their exploration, the exploitation

2



1.1. Decisions from Experience

Averaging task Comparison task Sampling paradigm
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Figure 1.1. Laboratory tasks employed in this dissertation. Left: In the averaging task, partic-
ipants observe a rapid stream of 10 digits between 1 and 9 at a rate of about 3 digits per second. After
having seen all digits, participants need to decide whether the arithmetic mean of the sequence was above
or below 5. Middle: In the comparison task, participants observe a rapid stream of digits as in the averag-
ing task (left), however each digit sample has one of two meaningful color categories (here: red and blue).
After having seen all digits, participants need to decide whether the red digits or the blue digits had a
higher mean. Right: In the sampling paradigm, participants can actively sample two previously unknown
payoff distributions (here: left and right "squares") for as long as they wish. When the participant stops
sampling, they make a final choice between the two payoff distributions and a random draw from that
choice is awarded to the participant as a bonus (indicated with green color).

phase begins, that is: The participant would select one of the available choice option to receive a
random draw from it as their reward.

This feature allows a clear view on self-directed information search, without having to first disen-
tangle whether an agent’s action was explorative or exploitative in a given context (see e.g., Daw
et al., 2006). Thus, the sampling paradigm has been used extensively to address questions such as
(i) "Which factors determine the extend of exploration (number of drawn samples) in self-directed
search?" (Lejarraga et al., 2012; Rakow et al., 2008; Spaniol & Wegier, 2012), (ii) "What are pre-
dictors of stopping to search?" (Hertwig & Pleskac, 2010; Markant et al., 2015; Ostwald et al.,
2015), or (iii) "Do human agents resort to stereotypical search patterns?" (Hills & Hertwig, 2010).

In much of the research employing the sampling paradigm, authors have furthermore controlled
the extent to which information search is self-directed, for example by limiting the overall amount
of samples that can be drawn from payoff distributions (Gonzalez & Mehlhorn, 2016; Hau et al.,
2008), or by suspending the search altogether and letting the computer draw samples for the agent
(Rakow et al., 2008). Such manipulations either served as a contrast to "fully free" self-directed
information search, or to bias self-directed information search in directions that would make the
subsequent choices more comparable to those in decisions from description (Rakow & Newell, 2010).
Yet, to date few studies have directly compared how different degrees of control over self-directed
sampling and exploration affect subsequent choice.

In chapter 2, I will present a study in which my co-authors and I show that full control over
sampling, compared to partial control and no control, leads to a distinct benefit in behavioral
accuracy. Furthermore, through EEG measures and multivariate analysis thereof, we shed new
light on the neurocognitive processes that underlie these behavioral benefits.
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1.1.2 "Averaging" and "comparison" tasks: approximate numerical judg-
ment and non-linear weighting of samples

When forming decisions based on numerical samples, not all samples are judged equal. Imagine
that you see ten digits between 1 and 9 and need to decide whether their average was larger than
5 (this is the averaging task, see Figure 1.1, left). A reasonable policy would be to give a sample
"6" in the sequence just as much weight towards the final decision as a sample "4". Similarly,
a sample "7" should receive just as much more (absolute) weight compared to a "6", as a "3"
would receive compared to a "4". In many contexts however, decision-makers do not employ such
"linear" weighting policies. Rather, they are often found to either overweight inlying values (e.g.,
4 and 6 in our example) in terms of decision weight relative to outlying values (e.g., 1 and 9
in our example), or to exhibit the opposite tendency of overweighting outlying values. Relative
overweighting of inlying values has been called "compression", and is commonly observed from
psychophysics to economic choice (Bernoulli, 1954; Fechner, 1860; Juechems et al., 2021; Tversky
& Kahneman, 1992). The opposite tendency, "anti-compression", has also been observed – most
often in decisions from experience – both in humans (e.g., Spitzer et al., 2017; Tsetsos et al., 2012),
and in non-human animals (Ludvig et al., 2014; Madan et al., 2019). In addition to compression
or anti-compression, decision-makers may show a general bias towards either large or small values.
These concepts are visualized and further described in Figure 1.2.
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Figure 1.2. Schematic depiction of linear and non-linear weighting policies. Potential sample
values (here: 1 to 9 in a sequence of random digits) are mapped onto subjective decision values (arbitrary
units), which indicate how much sway a given sample holds over the final choice (here: whether the mean
of a sequence of digits higher than 5). Left: During compressive weighting (blue line), inlying values are
overweighted, that is, the highest rate of change in the function is at the inlying values. Such a weighting
policy gives rise to a "diminishing sensitivity" to larger values in economic choice (Tversky & Kahneman,
1992). The opposite can be seen during anti-compressive weighting (green line), where outlying values are
overweighted, and the highest rate of change in the function is at outlying values. Middle/Right: Same
conventions as in left, but with an additional bias towards small/large values.

Weighting of sample values has major consequences for subsequent choice, and arguably the sam-
pling process itself when considering the impact that, for example, the history of previous choices
has on subsequent choices (e.g., Urai et al., 2019). Moreover, a large range of seemingly irrational
human behaviors can be explained by alternative weighting policies and recast as "optimal be-
havior under constraints", "bounded rationality", "resource rationality", or "rational inattention"
(Gigerenzer & Brighton, 2009; Lieder & Griffiths, 2020; Sims, 2003; Summerfield & Tsetsos, 2015).
But why do decision-makers employ compression in some contexts, and anti-compression in others?
Recent findings suggest that, while compression is far more commonly observed, anti-compression
can arise in capacity-limited observers who must focus their resources on a subset of samples at
the expense of others (Clarmann von Clarenau et al., 2022). However – as the authors themselves
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discuss – their framework of explaining when compression or anti-compression arise does not lend
itself to predicting which contexts would promote either behavior. For such predictions, neuro-
scientific approaches to uncover mechanisms of over- and underweighting, as well as to determine
resources that particular tasks require, are indispensable.

In chapter 3, I will present a study in which my co-authors and I employ two different task instruc-
tions for the same physical stimuli that lead to compression and anti-compression in behavioral
choice. Intriguingly, we find that the corresponding neural geometries indicated anti-compression
in both cases. This suggests enhanced processing of extreme (outlying) values as a "default" in
the brain, and raises the question at which point the eventual downweighting process occurs that
manifests itself in the compression observed in behavior.

1.2 Improving two aspects of electroencephalography re-
search

For the second part of this dissertation, we take a step back from the empirical questions on
decisions from experience, and how they can be researched using EEG. Instead, we will deal with
two concrete problems that arise with EEG research during the scientific process.1 Namely (i) how
to properly mark events in the EEG data stream for later analysis, and (ii) how to document and
organize neuroimaging data to maximize reproducibility.

1.2.1 The parallel port: replacements for the disappearing gold standard

If you are reading this dissertation and were born after the year 2000, chances are high that you
do not know the "parallel port". Other readers may remember the parallel port as something on
your PC to connect a printer device to. However regardless of age and knowledge about computer
devices, almost all readers who have performed EEG research will know about the parallel port,
and a major practical problem associated with it.

The parallel port has traditionally been used as an interface between computers and EEG mea-
surement equipment to synchronize the exact time when a study participant experiences a certain
event (e.g., seeing a stimulus presented on screen) with the corresponding voltage measurement in
micro Volts on their scalp (EEG). The reason for its adoption in research equipment were two-fold:
(i) through use of direct current signals that are directly translated into digital states, the parallel
port can achieve microsecond resolution of data transmission, and (ii) the parallel port was com-
monly available on consumer-grade personal computers. While reason (i) is still valid and a good
reason to keep using the parallel port, reason (ii) reflects the major issue I alluded to above. In
brief: the parallel port has been largely replaced by the USB port, and researchers need to find
replacements to interface their (potentially slightly older but still robust) research hardware with
modern computer hardware.

In chapter 4, I present a study in which my co-author and I test various alternatives to the dated
gold standard and discuss why transparent testing, reporting, and guidelines of such solutions can
help to improve EEG research (see also Figure 1.4).

1In fact, both problems came up for me personally during my work on decisions from experience and I wanted
to solve them along the way.
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Figure 1.3. The parallel port and an adapter. Left: Schematic of the parallel port connector
with 25 pins. For our purposes, only 8 data pins (corresponding to 1 byte of data) and any one of the 8
ground pins are relevant (see labels in the schematic). Middle: 8 data and 1 ground cable connecting to
a Microcontroller Unit (MCU) that served as an adapter from USB to parallel port (here, the MCU is an
"Arduino Leonardo"). Right: USB cable from a computer (black) connecting to the MCU, and then to
the EEG amplifier via a parallel port cable (gray)

1.2.2 BIDS: a community-developed standard for organizing and docu-
menting data

Conducting a very simple psychological study might result in a dataset that can easily be fit into a
single csv file, with each row representing a participant, and with an accompanying README file to
describe the columns and a few further details. However, even for this simplistic example2, some
problems are apparent:

• Which variables are recorded during the study, and are all present in the data file?

• How are the variables documented in the README file?

• To what extent is metadata about the experiment procedure reported in the README file?

Questions such as these pile up in more complicated experimental designs. For example, studies
involving EEG recordings will additionally contain the EEG data, which may be in any vendor-
specific file format that might be difficult to read with the software at hand. This dataset might
furthermore contain anatomical MRI brain scans for source-reconstruction of the EEG data, and
so on. More generally, idiosyncratic ways to organize data can easily lead to misunderstandings
between collaborators, missing (meta-)data, and a waste of time to re-organize data to fit the
structure and metadata expected by analysis scripts (or vice versa). All of these negatively impact
the reproducibility of scientific research, often even in the same lab, and potentially by the same
person at different points in time.

The Brain Imaging Data Structure (BIDS) is an emerging standard for dataset organization and
documentation to address these problems (https://bids.neuroimaging.io/). With its inception in
2015, BIDS now covers rules and guidelines for multiple neuroimaging modalities such as MRI,
MEG, EEG, iEEG, and PET (Gorgolewski et al., 2016; Holdgraf et al., 2018; Niso et al., 2018;
Norgaard et al., 2022; Pernet et al., 2019). BIDS is a community-built and maintained, and an
evolving standard. That is, all changes and additions to the standard are proposed and executed
via transparent and inclusive processes – such as a BIDS Extension Proposal (BEP) – that allow
each contributor to have a say (see Figure 1.2 for an overview of the community structure).

In chapter 5, I present the extension of BIDS to include rules and guidelines for EEG data, which
my co-authors and I merged into the BIDS specification in 2019.

2The simplistic example is also an optimistic example, because we assume the data is shared in a commonly
readable data format, csv, and a README file is supplied. It is not unlikely that instead, just a single proprietary
data format file without enough documentation is shared. For example a single SPSS file.

6

https://bids.neuroimaging.io/


1.3. References
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Other Working/Interest Group

Figure 1.4. Schematic of the BIDS community structure. The community broadly consists of all
individuals who used or are generally interested in BIDS. Any community member may become a contrib-
utor, for example by fixing typos in the specification text, or by pointing out and fixing inconsistencies.
Maintainers are very active community members who support the general infrastructure, help contrib-
utors with their plans, and develop long-term plans for the project. The maintainers work closely with
the steering group, an elected group of individuals who make decisions pertaining to the longevity and
sustainability of the project, and who hold authority of last resort in addressing conflicts among groups
and alleged violations of the Code of Conduct. When there is a need for substantial changes or additions to
the BIDS specification, the community may for a BIDS Extension Proposal (BEP) working group,
which is headed by BEP leads. Past BEP leads become part of the advisory group, who stay in close
contact with current maintainers and the steering group. Any other working or interest group may
be formed by the community, subject to steering group approval. For more information, see the BIDS
Governance Document (https://bids.neuroimaging.io/governance.html).
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Abstract

When acquiring information about choice alternatives, decision makers may have varying levels
of control over which and how much information they sample before making a choice. How does
control over information acquisition affect the quality of sample-based decisions? Here, combining
variants of a numerical sampling task with neural recordings, we show that control over when to
stop sampling can enhance (i) behavioral choice accuracy, (ii) the build-up of parietal decision
signals, and (iii) the encoding of numerical sample information in multivariate electroencephalo-
gram patterns. None of these effects were observed when participants could only control which
alternatives to sample, but not when to stop sampling. Furthermore, levels of control had no effect
on early sensory signals or on the extent to which sample information leaked from memory. The
results indicate that freedom to stop sampling can amplify decisional evidence processing from the
outset of information acquisition and lead to more accurate choices.
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Chapter 2

2.1 Introduction

Humans routinely acquire information about choice alternatives before deciding between them. In
many situations, decision makers can control which and how much information they sample. For
example, when deciding which of 2 products to buy, a customer may deliberately study reviews
and testimonials before making a final choice. In other situations, the availability and amount of
relevant information is determined by external factors. For instance, when selecting job applicants
in an organization that uses standardized interviews, an employer must decide based on the ap-
plicants’ answers to the same set of predefined questions. More generally, decision scenarios can
differ in the extent to which an agent has control over sampling, in terms of which and how much
information is sampled before a choice is made.

One experimental setup suitable for studying how control over sampling may affect decision-making
is a numerical sampling paradigm (Hertwig et al., 2004; Hertwig & Erev, 2009) in which partici-
pants can view sequential samples of possible choice outcomes before deciding for one or the other
option. The paradigm has been used extensively in behavioral studies of risky choice to exam-
ine how decision makers choose between options about which they learned from experience (i.e.,
through sampling the payoff distribution; "experience-based" decisions) as opposed to from formal
description (where participants would be explicitly informed that there is, e.g., "25% chance to
obtain €10, otherwise €0"; Hertwig, 2015; Wulff et al., 2018) Across these studies, researchers have
also varied the extent to which participants were able to control the sampling process themselves.
While the standard paradigm allows participants to decide freely which alternatives to sample and
how often (Hertwig & Erev, 2009), some studies have prespecified the total number of samples to
be taken (Fleischhut et al., 2014; Gonzalez & Mehlhorn, 2016; Hau et al., 2008; Ungemach et al.,
2009) or included matched ("yoked") conditions in which participants had no control at all over the
sampling sequence (Rakow et al., 2008). However, the latter variants of the sampling paradigm
have been devised primarily to reduce confounds in comparison with decisions from description
(Rakow & Newell, 2010). Therefore, it still remains unclear how control over sampling may alter
experience-based decision-making itself.

Several lines of evidence suggest that a sense of control can be beneficial in cognitive tasks (Gureckis
& Markant, 2012; Murayama et al., 2016). Agency in information acquisition has, for instance,
been found to improve subsequent memory performance (Voss et al., 2011), even when exposure
to the information was held constant (Murty et al., 2015). Another line of work has shown better
performance in tasks self-selected by the participant than when the same tasks were selected by an
experimenter (Murayama et al., 2015). More generally, various studies have identified performance
benefits associated with volitional control per se and indicated that such effects could be mediated
by motivational factors (Patall, 2012; Patall et al., 2008). However, the effects of control cannot
easily be generalized across domains. In some contexts, control does not seem to impact task
performance (Flowerday & Schraw, 2003; Flowerday et al., 2004) or can be detrimental – for
instance, when control is perceived as irrelevant or as too complex (Katz & Assor, 2007; but see
Murayama et al., 2015).

In the domain of decisions from experience using the sampling paradigm (Hertwig et al., 2004;
Hertwig & Erev, 2009), understanding of the role of agency in the sampling process is rather
incomplete. In a recent meta-analysis, Wulff et al. (2018) suggested that control over sampling
appears to alter the temporal weighting of numerical samples in subsequent choice. Specifically,
when participants were given full control over sampling, their choices indicated stronger "recency"
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effects (i.e., a tendency to overweight the later samples in a sequence, which is routinely observed
in sequential tasks with discrete samples, e.g., Anderson, 1964; Cheadle et al., 2014; Kang &
Spitzer, 2021; Spitzer et al., 2017; Tsetsos et al., 2012; D. J. Weiss & Anderson, 1969; Wyart et al.,
2015). However, the meta-analysis by Wulff et al. (2018) was limited to comparisons across studies
and did not address the general performance benefits (or drawbacks) that may be associated with
control over sampling or the neurocognitive processes that might underlie them.

Here, we used specially designed variants of a numerical sampling paradigm combined with Elec-
troencephalography (EEG) recordings to study how control over sampling affects experience-based
decision-making. We systematically varied whether participants (i) were free to decide how much
information to sample and from which option (full control), or (ii) could decide only from which
option to sample but with a prespecified total number of samples (partial control), or (iii) had
no control over sampling at all (no control). Importantly, our design controlled for differences in
stimulus presentation by matching the sample sequences in the no-control conditions with those
in the self-controlled tasks (full or partial control). We found that full, but not partial, control
over sampling had a beneficial effect on choice accuracy and that this benefit was associated with
a stronger encoding of numerical sample information from the outset of information acquisition.

2.2 Materials and Methods

2.2.1 Participants

Forty healthy volunteers took part in the experiment (20 female, 20 male; mean age 26.3 ± 3.7
years; all right-handed). All participants provided written informed consent and received a flat fee
of €10 and €10 per hour as compensation, as well as a performance-dependent bonus (€9.35 ±
€0.48 on average). The study was approved by the ethics committee of the Max Planck Institute
for Human Development.

2.2.2 Experimental design

The tasks were variants of the classic sampling paradigm described in Hertwig and Erev (2009).
On each trial, in all experimental conditions, participants were asked to decide between 2 choice
options (left or right), each of which could return 1 of 2 different reward values (displayed as an
Arabic digit between 1 and 9; Figure 2.1a, green digit). Prior to making a final decision for one of
the options, participants viewed samples from each option. That is, they could preview potential
choice outcomes (Figure 2.1a, white digits). Each option returned one outcome (e.g., "1") with
probability p, and another outcome (e.g., "9") with probability 1-p. The outcome probability p
of the options ranged from 0.1 to 0.9 (in steps of 0.1) and remained constant in the course of a
trial. We constrained the outcome values and probabilities on each trial such that (i) none of the
4 possible outcome values (2 for each option) were identical and (ii) the difference in expected
value between the 2 options was always 0.9 (based on piloting results). Under these constraints,
the choice problems presented on each trial were selected pseudorandomly, with the additional
restriction that each sample value (1, 2, ..., 9) occurred with approximately equal probability
across the experiment. Participants were instructed to learn from the observed samples and to
finally select the option that they expected to return the higher reward (i.e., the larger numerical
value). Participants were told that the reward returned by their final choice would influence their
bonus payout at the end of the experiment.

Half of the participants were assigned to the "full control" condition, where they were free to
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Figure 2.1. Experimental task and behavioral results. a) Schematic illustration of an example
trial. Participants were asked to decide which of 2 choice options (left or right) would yield a larger
numerical outcome. Before committing to a choice, participants could draw up to 19 samples (full control
group) or were required to draw a fixed number of 12 samples (partial control group). Samples are shown
as white digits; the final choice outcome is shown in green. The inset table shows the outcome values
and probabilities for the 2 choice options in the example trial. In yoked baseline conditions, participants
judged replays of previously recorded sampling streams. b) Mean accuracy (proportion of times the option
with the higher mean of samples was chosen) in each condition. c) Decision weights (see Materials and
Methods) of samples occurring early, mid, or late in the sampling sequence, for each sampling condition.
d) Difference in decision weight between late and early samples. Higher values indicate that late samples
had a stronger relative influence on choice than early samples ("recency" effect). Error indicators in all
panels show SE.

sample from the left or right option as often as they wished before making a final choice. The only
restriction on sampling in the full control condition was that a sample had to be taken within 3 s
(otherwise the trial was restarted) and that the total number of samples could not exceed 19. The
other half of participants were assigned to the "partial control" condition, which was identical to the
full control condition except that a fixed number of 12 samples had to be drawn on every trial. The
number of samples was based on pilot data where free-sampling participants took approximately
12 samples on average. In other words, participants in the partial control condition were also free
to sample from the left or right option but had no control over when to stop (or continue) sampling:
They were always prompted to make a final choice after the 12th sample.

In both sampling conditions, the beginning of a new trial was signaled by a green fixation stimulus
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(a combination of bull’s-eye and cross hair; Thaler et al., 2013) that turned white after 1 s.
Upon pressing the left or right button on a USB response pad (using the left or right hand,
respectively), participants were shown a black circular disk (diameter 5◦ visual angle) 4.5◦ to the
left (choice option 1) or right (choice option 2) of fixation after 0.2-0.4 s (randomly varied). After
another delay of 0.8 s, the number sample was presented in white (font Liberation Sans, height
4◦) in the disk area for 0.5 s (see Figure 2.1a for a schematic illustration). After this, the disk
disappeared and participants were given 3 s to draw the next sample. The black disk served as
a spatial cue to minimize differences in surprise about the sample location (left/right) in yoked
conditions without sampling control (see below). The sampling procedure was repeated depending
on condition (partial control: 12 samples; full control: up to 19 samples), and the resulting sample
sequences (including their precise timing) were recorded (see yoked conditions below). In the full
control condition, a third button on the response pad (above the "right" button) was available to
stop the sampling sequence. In all conditions, after the sampling was finished, the fixation stimulus
changed color to blue for 1 s and participants were asked to make a final choice between the left
and right options. The button and display procedure for the final choice was identical to that
for drawing samples, except that the final choice outcome was displayed in green to indicate the
eventually obtained reward. The rewards (i.e., the payouts from the final choices) were converted
to Euros with a factor of 0.005 and added as a bonus to participant’s reimbursement after the
experiment (see Participants above).

Within both groups (full and partial control), each participant additionally performed the task in
a "yoked" condition, where they had no control over sampling. Here, participants made decisions
based on replays of previously recorded sampling streams (without any control over which and
how many samples were shown or their timing). Accordingly, we refer to the yoked conditions
as the no-control baseline conditions. In each group, half of the participants first performed the
self-controlled sampling task (full or partial) and subsequently performed the no-control task with
a replay of their own sampling sequences. In informal debriefing after the experiment, none of
these participants reported to have noticed that they viewed exact replays of their own sampling
sequences. The other half of the participants in each group performed the no-control task first
(yoked to the sampling sequences of another participant in the same group) and the respective
self-controlled task second. Control analysis showed no differences in choice accuracy between
participants who performed the baseline task first (yoked to another participant’s sequences) or
second (yoked to their own sequences) (all p > 0.05). Furthermore, in the subset of participants
who were yoked to another participant, the difficulty of active versus yoked sampling sequences
did not differ (all p > 0.05). Each participant performed 100 trials (5 blocks of 20 trials with short
breaks between blocks) in the self-controlled and yoked task variant, respectively.

Participants in the full control group drew on average 8.6 samples (SD=4.2, median=8), compared
with the 12 samples that had to be drawn in the partial control group. Due to the principled
impossibility of matching full and partial control trials (e.g., with respect to the precise length
and timing of the sampling sequences on individual trials), all our analyses focus on comparisons
of differences to the yoked baseline condition within each group. This analysis strategy rules out
stimulus confounds that may arise, for instance due to "amplification effects" under full control,
where the decision to stop sampling may be more likely when the momentary difference between
the accumulated option values happens to be large (Hertwig & Pleskac, 2010).

The experiment was programmed in Python using the PsychoPy package (Peirce et al., 2019)
and run on a Windows 10 PC. The experiment code is available on Zenodo (https://doi.org/10.
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5281/zenodo.3354368). Behavioral responses were recorded using a USB response pad (The Black
Box ToolKit Ltd, United Kingdom). Throughout the experiment, eye movements were recorded
using a Tobii 4C Eye-Tracker (Tobii Technology, Sweden; sampling rate 90 Hz). To reduce eye
movements, participants’ gaze position was analyzed online while the experiment was run in all
sampling conditions. The program displayed a warning message and restarted the trial whenever
the gaze left an elliptical area centered on the central fixation stimulus (width 5◦ visual angle,
height 2.85◦ visual angle) more than 4 times during a trial. Saccades towards the outcome samples
were robustly detected with these settings. On average, 3% of trials per participant were restarted
due to a lack of fixation or failure to draw a sample within 3 s (see above). Offline analyses
confirmed that participants generally held fixation in the remaining trials.

2.2.3 Supplementary tasks

After the main experiment, participants performed an additional short task on the same choice
problems, where the options were not explored through sampling but described formally on screen
(e.g., "8 with 60% or 4 with 40%?"). Due to a coding error, much of the data (84%) from this task
was incorrectly recorded and the results are thus not reported here. Participants further completed
a brief numeracy questionnaire (Berlin Numeracy Test (BNT); Cokely et al., 2012). Exploratory
analysis showed no significant correlations of the effects reported in our main analysis with BNT
scores.

2.2.4 EEG recording

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG was
recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) positioned
according to the international 10% system. Electrode FCz was used as the recording reference. We
additionally recorded the horizontal and vertical electrooculogram (EOG) and electrocardiogram
(ECG) using passive electrode pairs with bipolar referencing. All electrodes were prepared to have
an impedance of less than 10 kΩ. The data were recorded using a BrainAmp DC amplifier (Brain
Products GmbH Munich, Germany) at a sampling rate of 1,000 Hz, with an RC high-pass filter
with a half-amplitude cutoff at 0.016 Hz (roll-off: 6 dB/octave) and low-pass filtered with an anti-
aliasing filter of half-amplitude cutoff 450 Hz (roll-off: 24 dB/octave). The dataset is organized
in Brain Imaging Data Structure format (BIDS; Gorgolewski et al., 2016) according to the EEG
extension (Pernet et al., 2019) and is available on GIN (https://doi.org/10.12751/g-node.dtyh14).

2.2.5 Behavioral data analysis

We quantified choice accuracy in each condition as the proportion of trials on which participants
chose the option in which the observed samples were on average larger. A choice was thus defined
as correct when the experienced samples of the chosen option had the higher arithmetic mean. This
choice corresponds to that of a noiseless ideal observer in the task, given the presented samples.
Differences in accuracy between sampling conditions were analyzed using a mixed 2x2 analysis
of variance (ANOVA, self-controlled/yoked; full/partial), followed up with Bonferroni-corrected
pairwise t-tests. All statistical tests reported (including in the EEG analyses, see below) are
2-tailed.

Based on previous work, we expected participants to show a recency effect, that is, a relative
overweighting of later samples. To quantify recency effects in the behavioral data, we used a
reverse correlation approach (Neri et al., 1999; Spitzer et al., 2016) based on logistic regression.
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We first divided the samples in a trial into early, mid, and late samples. The first and last 2
samples in a trial were defined as early and late samples, respectively, and the remaining samples
as "mid" samples. Trials with fewer than 5 samples overall were discarded in this analysis (between
1% and 41.5% of trials per participant, mean=13.3%). For each participant, task condition, and
time window, we regressed the participant’s final choices (left: 0, right: 1) onto the numerical
sample values (numbers 1, 2, ..., 9 rescaled to -4, -3, ..., 4), where the values for the left option
were sign-flipped to reflect their opposite impact on the probability of choosing the right option
(Spitzer et al., 2017). The regression coefficients resulting from this analysis provide a measure of
"decision weight", that is, of the influence that number samples (early, mid, or late) had on choice.
We quantified recency as the difference in weight between late and early samples Figure 2.1d.
Differences in recency between conditions were assessed with a 2x2 ANOVA specified analogously
as above.

2.2.6 EEG preprocessing

The EEG recordings were visually inspected for noisy segments and bad channels. Ocular and
cardiac artifacts were corrected using independent component analysis (ICA). To this end, we
high-pass filtered a copy of the raw data at 1 Hz and downsampled it to 250 Hz. We then ran an
extended infomax ICA on all EEG channels and time points that were not marked as bad in the
prior inspection. Using the EOG and ECG recordings, we identified stereotypical eyeblink, eye
movement, and heartbeat artifact components through correlation with the independent compo-
nent time courses. We visually inspected and rejected the artifact components before applying the
ICA solution to the original raw data (Winkler et al., 2015). We then filtered the ICA-cleaned data
between 0.1 and 40 Hz, interpolated bad channels, and re-referenced each channel to the average of
all channels. Next, the data were epoched from -0.2 to 0.8 s relative to each individual number sam-
ple onset. Remaining bad epochs were rejected using a thresholding approach from the FASTER
pipeline (Step 2; Nolan et al., 2010). On average, n=1925 clean epochs (93.85%) per participant
were retained for analysis. The epochs were downsampled to 250 Hz and baseline corrected relative
to the period from -0.2 to 0 s before stimulus onset. All EEG analyses were performed in Python
using MNE-Python (Gramfort et al., 2013), MNE-BIDS (Appelhoff et al., 2019), and custom code.
All analysis code is available on Zenodo (https://doi.org/10.5281/zenodo.5929222).

2.2.7 Event-related potential analysis

EEG analyses are reported for the epochs around the onset of the individual number samples. We
first examined lateralized visual Event Related Potential (ERP) components to test whether early
visual processing differed between the sampling conditions. To this end, we subtracted the ERP for
stimuli presented on the right from the ERP for stimuli presented on the left and then subtracted
the mean signal of right-hemispheric (O2, PO4, PO8, PO10) occipitoparietal channels of interest
(based on previous literature; Eimer, 1998) from the corresponding left-hemispheric (O1, PO3,
PO7, PO9) channels. Mean amplitudes of the lateralized evoked potential were extracted from
prototypical time windows (P1 ERP component: 80-130 ms, N1 ERP component: 140-200 ms) for
each sampling condition and analyzed in a mixed 2x2 ANOVA (self-controlled/yoked; full/partial).

We further examined centro-parietal evoked responses (CPP/P3, averaged over the early, mid, and
late samples in each trial) as a potential correlate of decisional evidence accumulation (O’Connell
et al., 2012; Pisauro et al., 2017; Twomey et al., 2015). To this end, we averaged the signal over
centro-parietal channels (Cz, C1, C2, CPz, CP1, CP2, CP3, CP4, Pz, P1, P2) and focused on a
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time window from 300 to 600 ms, based on previous analyses of CPP/P3 responses during visual
stimulus sequences (Polich, 2007; Spitzer et al., 2017; Wyart et al., 2015).

2.2.8 Representational similarity analysis

To examine the encoding of numerical sample value in multivariate ERP patterns, we used an ap-
proach based on representational similarity analysis (RSA, Kriegeskorte & Kievit, 2013). For RSA,
the ERPs were additionally smoothed (Grootswagers et al., 2016) with a Gaussian kernel (35 ms
half duration at half maximum). We used a conventional ERP-RSA approach (e.g., Luyckx et al.,
2019; Spitzer et al., 2017), where the representational geometry of a stimulus space (here, sam-
ple values 1-9) is characterized by the multivariate (dis-)similarity between the ERP topographies
(comprising all 64 channels) associated with each sample value. Representational dissimilarity was
computed at each time point of the ERP, between each pair of stimuli (using Euclidean distance as
dissimilarity measure), yielding a 9x9 representational dissimilarity matrix (RDM; see Figure 2.3a,
lower) at each time point. We refer to the RDMs computed from the ERP data as "ERP-RDMs".

To the extent that multivariate ERP patterns encode numerical sample information, they should
show a "numerical distance" effect (e.g., Luyckx et al., 2019; Spitzer et al., 2017; Teichmann et al.,
2018). That is, the representational dissimilarity between, for example, numbers "2" and "3" should
be smaller than that between "2" and "4", which, in turn, should be smaller than that between
"1" and "4", and so forth, for any pairing of numbers. To assess numerical distance effects in our
ERP-RDMs, we created a theoretical model RDM (Figure 2.3a, upper) where each cell reflects the
actual numerical difference between sample values (i.e., the numerical distance between "3" and "7"
is 4, and that between "4" and "6" is 2). We then quantified the match between the model RDM
and the ERP-RDM at each time point by computing the correlation (Pearson’s r) between the
two, with stronger correlation indicating stronger encoding of numerical magnitude in multivariate
ERP patterns (see also Spitzer et al., 2017; Teichmann et al., 2018). Correlations between model-
and ERP-RDMs were restricted to the lower triangle (excluding the diagonal) to omit redundant
matrix entries.

In addition to numerical distance, we examined the extent to which ERP patterns encoded the
"extremity" of a sample value (i.e., its absolute difference from the midpoint of the sample range,
5; Figure 2.3d). To avoid confounds by potential deviations from a uniform distribution of sample
values across the experiment, we additionally orthogonalized each model RDM to an RDM reflect-
ing the relative frequency of numerical sample occurrences (see also Spitzer et al., 2017). However,
qualitatively similar results were obtained when this orthogonalization step was omitted.

For statistical analysis, we used t-tests against zero with cluster-based permutation testing (Maris
& Oostenveld, 2007) to control for multiple comparisons over time points (10,000 iterations, cluster-
defining threshold p=0.05). We then recomputed the ERP-RSA separately for each sampling con-
dition to test for differences in number encoding. Differences between conditions were examined
using mixed 2x2 ANOVAs (self-controlled/yoked; full/partial), again using cluster-based permu-
tation testing to control for multiple comparisons over time points. Analogous RSA analyses were
performed separately on the first and second half of samples from each trial (Figure 2.3c).

2.2.9 Analysis of neurometric distortions

Our basic RSA of numerical distance and extremity assumes a linear representation of numerical
magnitude, where the representational distance between, for example, "3" and "5" is the same as
that between e.g., "7" and "9". However, based on previous work (e.g., Luyckx et al., 2019; Nieder,

20



2.3. Results

2016; Spitzer et al., 2017), the neural representation of numbers might be nonlinearly distorted.
That is, the neural number representation might be compressed (such that the representational
distance between e.g., "8" and "9" is smaller than that between "5" and "6") or anti-compressed
(such that the distance between "8" and "9" is larger). To examine such potential distortions (see
also Spitzer et al., 2017), we transformed the numerical sample values using a parameterized power
function v = sign(x + b) × |x + b|k, where x are the numerical sample values (1-9 normalized to
the range [-1, 1]), exponent k determines the shape of the transformation (k < 1 compression,
k = 1 linear, k > 1 anti-compression; see inset plot in Figure 2.4b for illustration of the resulting
distortions), and b reflects an overall bias towards smaller (b < 0) or larger numbers (b > 0).
We then created model RDMs (analogously as above) from the thus transformed values (v), for
different values of k (varied between 0.5 and 10) and b (varied between -0.75 and 0.75; where
k = 1 and b = 0 corresponds to linear/unbiased transformation). For each parameter combination,
we correlated the resulting model RDM with the ERP-RDM (analogously as above). In each
participant, the parameter combination for which the model RDM correlated most strongly with
the ERP-RDM was used as the estimate of the participant’s neurometric distortion. Statistical
analysis of the neurometric parameters proceeded with conventional statistical tests on the group
level.

2.3 Results

Participants (n=40) observed sequential samples (Arabic digits 1-9) of the potential rewards of
choice options (left/right) before deciding on one of them Figure 2.1a. In different conditions,
participants (i) could determine from which option(s) to sample and when to stop sampling ("full
control", 1-19 samples/trial, n=20 participants) or (ii) could determine only from which option to
sample for a fixed number of samples ("partial control", 12 samples/trial, n=20 participants). Each
participant additionally performed the task in a "yoked" condition with matched sample sequences
(see Materials and Methods) that they could not control. Our behavioral and EEG analyses focus
on the effects of control (full or partial) relative to the respective matched (yoked) no-control
conditions.

2.3.1 Behavior

Mean choice accuracy (i.e., the percentage of trials on which participants chose the option in
which the average of the sampled values was larger, see Materials and Methods) was 83.8% un-
der full control (SE=1.4%, yoked baseline: 80.3%, SE=1.2%) and 79.6% under partial control
(SE=1.6%, yoked baseline: 80.3%, SE=1.6%). A mixed 2x2 ANOVA with the factors control over
sampling (self-controlled or yoked; within participants) and control type (full or partial; between
participants) showed no main effects [self-controlled/yoked: F(1,38)=2.143, p=0.151, η2p=0.053;
full/partial: F(1,38)=1.321, p=0.258, η2p=0.034], but a significant interaction of the 2 factors
[F(1,38)=5.108, p=0.03, η2p=0.118]. Post hoc tests showed significantly higher accuracy under full
control than in the yoked baseline [t(19)=2.644, p=0.032, d=0.605, Bonferroni corrected], but no
such effect under partial control [t(19)=-0.561, p>0.9, d=-0.108]. Thus, relative to matched base-
line conditions, we found an accuracy benefit of control over sampling under full control but not
under partial control.

We next examined whether and how the temporal weighting of sample information differed between
conditions. To this end, we examined the samples’ decision weights (see Behavioral data analysis)
separately for early, mid-, and late portions of the sampling sequence (Figure 2.1c). As expected
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based on previous work (Anderson, 1964; Cheadle et al., 2014; Kang & Spitzer, 2021; Spitzer
et al., 2017; Tsetsos et al., 2012; D. J. Weiss & Anderson, 1969; Wyart et al., 2015), we found a
pronounced recency pattern, with decision weight generally increasing over the course of the trial.
In other words, later samples had a higher impact on the final choice than earlier samples. For
comparison between sampling conditions, we quantified recency as the difference in decision weight
between late and early samples (Figure 2.1d). A mixed 2x2 ANOVA, specified analogously as for
accuracy above, showed no significant main effects [self-controlled/yoked: F(1,38)=0.8, p=0.377,
η2p=0.021; full/partial: F(1,38)=3.363, p=0.075, η2p=0.081] and no interaction between the 2 factors
[F(1,38)=1.483, p=0.231, η2p=0.038]. Thus, we found no impact of control over sampling on recency.
To summarize the behavioral results, full control over sampling was characterized by increased
choice accuracy but was not distinguished in the extent to which sample information "leaked"
(Usher & McClelland, 2001), or was forgotten, in the course of a trial.

2.3.2 Visual evoked responses

Turning to the EEG data, we first examined visual evoked responses to test whether the sampling
conditions differed in terms of early sensory processing of the sample stimuli (e.g., due to potential
differences in stimulus-directed visual attention; Luck et al., 2000). Figure 2.2a shows the occipi-
toparietal ERP difference between stimuli occurring in the right and left visual fields, subtracted
between contralateral channels (see Event-related potential analysis). Statistical analysis showed
no differences between sampling conditions in the time window of either the P1 (80-130 ms) or
the N1 component (140-200 ms) of the visual ERP [all F(1,38)<1.71, all p>0.20, all η2p<0.044;
mixed 2x2 ANOVAs specified as in the behavioral analysis above]. We thus found no evidence for
differences in early visual processing between the sampling conditions.

2.3.3 Centro-parietal positivity/P3

We next examined centro-parietal positivity (CPP) responses over centro-parietal channels between
300 and 600 ms after stimulus onset. The amplitude of the CPP response to a sample generally
increased in the course of the trial (Figure 2.2b-d), which is in line with previous studies implicat-
ing the CPP in decision formation (O’Connell et al., 2012; Twomey et al., 2015). Figure 2.2c and
d illustrates the monotonic ramping up of CPP across samples occurring early, mid, and late in
the trial (see Materials and Methods) under partial and full control. Descriptively, the build-up
of CPP appeared stronger under full control. For statistical analysis, we examined the increase in
CPP amplitude from early to late samples in the individual sampling conditions (Figure 2.2b). A
significant increase in amplitude was evident in each condition (including yoked; Figure 2.2b, all
p<0.02, t-tests against zero, uncorrected). A mixed 2x2 ANOVA comparing the amplitude differ-
ence between conditions showed no significant main effects [self-controlled/yoked: F(1,38)=1.579,
p=0.217 η2p=0.04; full/partial: F(1,38)=1.534, p=0.223, η2p=0.039], but a significant interaction
[F(1,38)=11.408, p=0.002, η2p=0.231]. Post hoc t-tests showed that the CPP increased more steeply
in the full control condition than in the yoked baseline [t(19)=2.772, p=0.024, d=0.687, paired t-
test, corrected], whereas no such effect was evident under partial control [t(19)=-1.932, p=0.137,
d=-0.355]. Thus, the increased choice accuracy under full control was accompanied by a steeper
increase of centro-parietal decision signals within trials (O’Connell et al. 2012; Twomey et al.
2015; Wyart et al. 2015; Spitzer et al. 2016). (O’Connell et al., 2012; Spitzer et al., 2016; Twomey
et al., 2015; Wyart et al., 2015). Importantly, these effects were observed in comparison against
matched (yoked) baseline, ruling out that they were attributable to any specific characteristics of
the self-sampled stimulus sequences.
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Figure 2.2. Univariate EEG results with ERPs time-locked to number sample onset. a) Early
visual ERPs (left - right stimuli, right channels subtracted from left channels) in each sampling condition.
Gray shadings indicate time windows of the P1 and N1 components, respectively (80-130 ms and 140-200
ms). b) The difference in centro-parietal (CPP) amplitudes between samples occurring late versus early
in the trial (see panels c and d), plotted separately for each sampling condition (including yoked). c)
The "ramping up" of CPP amplitudes (0.3-0.6 s) over early, mid, and late samples in the partial control
condition. Gray shadings indicate the time window from which average amplitudes were extracted in panel
b. d) Same as c, for the full control condition. Error indicators in all panels show SE.

2.3.4 Representational similarity analysis

Our results so far show that decisions made with full control over sampling were more accurate and
accompanied by a stronger build-up of parietal choice signals (Figure 2.2c-d), whereas there were
no differences in early visual processing (Figure 2.2a) or in the extent to which sample information
"leaked" over time (i.e., no difference in recency effects; Figure 2.1b-c). One possibility is that a
benefit of full control may have arisen at the stage of numerical processing, in encoding a sample’s
abstract value (i.e., its numerical magnitude, which is to be integrated into the subjectively per-
ceived value of the choice option). We used an RSA-based approach (see Materials and Methods)
to examine the neural encoding of the samples’ numerical magnitude, building on previous findings
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of numerical distance effects in multivariate ERP patterns (Luyckx et al., 2019; Sheahan et al.,
2021; Spitzer et al., 2017; Teichmann et al., 2018). Specifically, we correlated the multivariate sim-
ilarity structure of samples (1-9) in our ERP data with theoretical models reflecting (i) numerical
distance and (ii) extremity of the sample values (see Materials and Methods).

Numerical distance

We found robust encoding of numerical magnitude in terms of a numerical distance effect in
multivariate ERP signals between approximately 160 and 800 ms after sample onset (Figure 2.3b,
pcluster<0.001, t-test against zero), which replicates and extends previous findings in tasks without
sampling control (Luyckx et al., 2019; Sheahan et al., 2021; Spitzer et al., 2017; Teichmann et al.,
2018). To test whether the strength of this effect differed between levels of sampling control, we
examined its time course in the various conditions (full, partial, yoked baselines) using mixed 2x2
ANOVAs (specified analogously as above). The analysis showed no main effects (all pcluster>0.05)
but a significant interaction cluster between 320 and 580 ms (pcluster=0.009). We next compared
the average numerical distance effects in the time window of this cluster. We found the effect to
be significantly larger (relative to yoked baseline) under full control [t(19)=3.65, p=0.003, d=1.05,
corrected] but not under partial control [t(19)=-1.065, p=0.6, d=-0.340, corrected]. In other words,
the encoding of numerical magnitude in sample-level neural signals was enhanced under full control,
mirroring the pattern of findings for CPP build-up (Figure 2.2b) and choice accuracy (Figure 2.1b).

We next asked whether the enhanced number encoding under full control was driven only by late
samples occurring near the time of the decision to stop sampling. To this end, we repeated the
RSA analysis separately for the first (Figure 2.3c, left) and second (Figure 2.3c, right) half of
the samples in a trial. Importantly, a significant enhancement under full control relative to yoked
baseline was already evident in the first half of samples [t(19)=2.279, p=0.034, d=0.707], that is,
long before participants stopped sampling. The effect in the second half of samples was similar
[t(19)=2.237, p=0.037, d=0.673; partial control: both p>0.24]. In sum, we found no indication
that enhanced number encoding under full control occurred only near the time of deliberate (vs.
forced) stopping. Rather, the effect appeared to emerge early in the sampling sequence. We note
again that we only interpret effects in relation to the respective matched (yoked) control conditions,
as other comparisons may suffer from nontrivial stimulus confounds (see Experimental design).

Extremity

Inspection of the empirically observed ERP-RDM (Figure 2.3a, lower) suggests that besides nu-
merical distance, the multivariate ERP patterns also encoded the extremity of the sample values
(i.e., their absolute distance from the midpoint of the sample range, see also Spitzer et al. 2017;
Luyckx et al. 2019). Using a model RDM of numerical extremity (Figure 2.3d; note that the
model is orthogonal to the numerical distance RDM in Figure 2.3a, upper), we found a significant
effect between approximately 260 and 800 ms (t-test against zero, pcluster<0.001) in the ERP data
collapsed across conditions. However, testing for differences between sampling conditions yielded
no significant results (all pcluster>0.05). Together, while both numerical distance and numeri-
cal extremity were reflected in the multivariate ERP data, only numerical distance mirrored the
enhancement under full control that was observed in CPP build-up and in behavior.
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Figure 2.3. RSA results. a) Upper: Model RDM reflecting the pairwise numerical distance between
sample values. Lower: Grand mean ERP-RDM averaged across participants and sampling conditions in
a representative time window between 300 and 600 ms after sample onset. b) Time course of numerical
distance effects in multivariate ERP patterns, plotted separately for each sampling condition. Black bar
indicates time windows of significant numerical distance encoding (collapsed across sampling conditions).
Purple bar indicates the time window of significant differences between sampling conditions (interaction
effect, see Results). c) Mean numerical distance effects by condition. Left: First half of samples in each
choice trial. Right: Second half. d) Model RDM reflecting the sample values’ extremity in terms of their
absolute distance from the midpoint of the sample range (i.e., 5). e) Time course of extremity encoding in
multivariate ERPs, plotted separately for each sampling condition. All error bars and shadings show SE.

Neurometric distortions

Recent studies of sequential number comparisons (without participant control over sampling) have
shown that neural number representations can be distorted (e.g., compressed or anti-compressed)
away from the perfectly linear distance structure of our idealized model RDMs (Figure 2.3a; see
Materials and Methods). We used a "neurometric" approach (Spitzer et al., 2017) to test (i) whether
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such distortions were replicated in our task and (ii) whether they differed between levels of control.
To this end, we parameterized our model RDMs to reflect the distance structure of transformed
values v = sign(x+ b)× |x+ b|k, where x are the numerical sample values (1-9 normalized to the
range [-1, 1]), exponent k determines the shape of the transformation (k < 1 compression; k = 1

linear; k > 1 anti-compression), and b reflects a bias towards smaller (b < 0) or larger numbers
(b > 0). Our ERP data, averaged across all conditions, were best explained by parameterizations
k > 1 and b > 0 (Figure 2.4a; both p<0.003, t-tests of individual subject maxima against 1 and
0, respectively, averaged over parameterized distance and extremity). Thus, the neural number
representation was anti-compressed and biased towards larger magnitudes (Figure 2.4b), strongly
resembling the distortions observed in previous work (Luyckx et al., 2019; Spitzer et al., 2017). In
comparisons between levels of control, however, we found no evidence for differences in the degree
of anti-compression (Figure 2.4c, left; both p>0.545, t-tests of k against yoked baselines or bias;
Figure 2.4c, right; both p>0.131, t-tests of b against yoked baselines). In other words, under full
control, the encoding of numerical sample information was amplified (Figure 2.3b and c) without
any notable changes in its general representational geometry.

Lastly, we examined whether our neurometric findings were also reflected in participants’ sampling
behavior. Stronger neural encoding of larger sample values (as suggested by the neurometric bias
towards large numbers, cf. Figure 2.4b) may imply that these values (e.g., "9" or "8") may drive
behavior more strongly than small numbers (e.g., "1" to "2"), despite their nominally identical
diagnosticity for the options’ mean values. If that was the case, participants in the full control
condition should have been more likely to stop sampling after large numbers. Empirically, this
should register in a relatively later mean position of large numbers (on average across trials)
within the self-terminated sequences under full control, compared to the fixed-length sequences
under partial control (where number values are expected to be uniformly distributed across the
sequence by design). Indeed, we found that the mean relative position (relative to the sequence’s
length) of a sample increased with its numerical magnitude (1-9) in the full control conditions
(p=0.005, linear trend analysis) but not in the partial control condition (p>0.78). In other words,
participants showed a tendency to stop sampling after larger numbers, consistent with the finding
of a neurometric bias towards larger numbers. We report this additional aspect of self-terminated
sampling for the sake of completeness; our yoked design warrants that our findings about the effects
of control over sampling are unaffected by it.

2.4 Discussion

Using variants of a numerical sampling paradigm and controlling for stimulus confounds, we ob-
served increased choice accuracy when participants had control over the sampling process before
committing to a choice. On the neural level, the behavioral benefit was reflected in a stronger en-
coding of the numerical sample information in multivariate EEG patterns and in a steeper build-up
of centro-parietal choice signals. The key determinant of these effects was participants’ control over
"how much" information to sample. Freedom to decide only which options to sample, but not when
to stop sampling, did not bring about the same effects, neither in behavior nor in neural signals.

Drawing on a well-established sequential sampling framework (Gold & Shadlen, 2007; O’Connell
et al., 2012; Ratcliff & McKoon, 2008), our behavioral and neural findings provide a neurocognitive
perspective on how control over sampling may boost choice accuracy. We observed no differences
in early visual ERPs known to be modulated by top-down visual attention (Luck et al., 1994;
Luck et al., 2000; Mangun & Hillyard, 1991), but a robust enhancement further downstream in
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the processing hierarchy, at the level of symbolic number encoding (Ansari et al., 2005; Nieder &
Dehaene, 2009). Our results replicate recent findings of a "neuronal numberline" in multivariate
ERP patterns, where the neural representation of, for example, number "6" is more similar to that
of "7" than to that of "9" (Luyckx et al., 2019; Sheahan et al., 2021; Spitzer et al., 2017; Teichmann
et al., 2018). We found this multivariate encoding of numerical magnitude to be amplified under full
control, mirroring the pattern observed in behavioral performance. Importantly, number encoding
was already enhanced for samples occurring early in the trial, long before participants stopped
sampling to make a final choice. Likewise, the behavioral benefit appeared driven by early and
late samples alike, as indicated by the absence of differences in temporal weighting. Consistent
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with these findings, we also observed a steeper rise in parietal indices of evidence accumulation
(CPP/P3; O’Connell et al., 2012; Twomey et al., 2015) "across" samples, as if each individual
sample contributed stronger evidence to the ongoing decision formation. In a sequential sampling
framework where evidence is accumulated into a running decision variable (Glickman & Usher,
2019; Gold & Shadlen, 2007; Kiani et al., 2008; O’Connell et al., 2012; Ratcliff & McKoon, 2008),
our EEG and behavioral findings may thus both be attributable to an improvement in numerical
evidence processing.

One possible explanation for our findings relates to motivational factors. Previous work has shown
that the ability to actively control the environment and/or one’s subjective experiences can have
beneficial effects, for example, on memory (Murty et al., 2015; Voss et al., 2011), self-regulation,
and error monitoring (Legault & Inzlicht, 2013), learning and inductive inference (Gureckis &
Markant, 2012; Markant & Gureckis, 2014), and various other aspects of cognition and behavior
(Leotti & Delgado, 2011; Leotti et al., 2010; Murayama et al., 2016; Patall, 2012; Patall et al.,
2008). Our findings add to these literature by showing that control can also confer benefits in
sample-based decision-making, specifically when participants can control when to stop sampling.
While the extrinsic rewards for choice accuracy were identical across our task conditions, control
over stopping can add an incentive to optimize the time spent on a trial (Ostwald et al., 2015;
Tickle et al., 2020). There is typically a trade-off between speed and accuracy of task execution
(Heitz, 2014), such that faster decisions come at the cost of lower accuracy (but see Gigerenzer
et al., 2011), However, the present findings under full control cannot be explained by such a trade-
off, given that we observed benefits relative to yoked trials of identical length. As we used exact
copies of participant-generated sampling sequences in our baseline conditions, we can also rule out
the possibility that the results are attributable to amplification effects (Hertwig & Pleskac, 2010),
where participants tend to stop sampling when the cumulative difference between options happens
to be large (leading to objectively easier trials; see below). With these simpler explanations ruled
out, our findings suggest that control per se may lead to more efficient sample encoding, potentially
through increased task engagement when decision time can be optimized on a trial-by-trial basis.

We found no differences between conditions in the temporal weighting of sample information over
the course of a trial. A clear recency effect (relative overweighting of late samples) was evident
in all task conditions, including yoked baselines. This pattern appears to be at odds with a
previous meta-analysis of numerical sampling studies (Wulff et al., 2018), where recency effects
were observed solely in conditions with full agency over sampling. However, the present findings are
consistent with routine observations of recency effects in other sequential integration tasks where
sample presentation is entirely experimenter-controlled (Anderson, 1964; Cheadle et al., 2014;
Kang & Spitzer, 2021; Luyckx et al., 2019; Spitzer et al., 2017; Tsetsos et al., 2012; D. J. Weiss
& Anderson, 1969; Wyart et al., 2015). Here, using carefully designed yoked control conditions,
we found no evidence that the strength of recency effects (which may arise, e.g., by forgetting,
or leakage of sample information over time; Usher & McClelland, 2001) would depend on the
level of control over sampling. We also found no differences in the representational geometry of
the sampled information in neural signals. Neurometric analysis showed an anti-compression of
numerical values (Luyckx et al., 2019; Spitzer et al., 2017) in all conditions, regardless of the level
of control. The absence of differences in these more qualitative aspects of information processing
in our tasks suggests that the cognitive benefits of full control may best be described as an overall
increase in the gain of neural processing (Donner & Nieuwenhuis, 2013; Eldar et al., 2013; Murphy
et al., 2016), which may amplify the critical decisional information in a sample (here, numerical
magnitude).
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None of the benefits observed under full control were evident in the partial control condition, where
participants could only decide which option to sample next, but not when to terminate sampling.
Although this condition gave participants some level of agency (relative to the yoked conditions
without control; Chambon et al., 2020; A. Weiss et al., 2021), we suspect that it may not have
induced a strong sense of control over the task. It even seems possible that participants may have
perceived the requirement to perform a prescribed number of sampling actions as externally con-
trolled and a cognitive burden (see also Sullivan-Toole et al., 2017). Indeed, post hoc examination
of left/right sampling patterns showed that our participants resorted to stereotypical sampling
routines (either alternating between options: "a-b-a-b-..." or sampling first one option and then
the other: "a-a-a-...-b-b-b") in 67.61% of trials (relative to the yoked conditions without control;
for related findings, see Hills & Hertwig, 2010). In other words, participants made little use of
the freedom to vary their left/right sampling strategy trial by trial (and/or sample by sample),
potentially due to a lack of perceived benefits (Dixon & Christoff, 2012). In this light, it is perhaps
not surprising that we found no processing enhancements under partial control, in either behavior
or neural signals.

Numerical sampling tasks similar to ours have been used extensively in the past to study decisions
from experience (Hertwig et al., 2004) in complement to the common use of symbolic descriptions
to study risky choice (Juechems et al., 2021; Kahneman & Tversky, 1979). Experience-based
choices can differ systematically from description-based choice, especially in terms of probability
weighting (Hertwig & Erev, 2009; Wulff et al., 2018). A much-discussed aspect of this "description-
experience gap" is that participants in experience-based tasks tend to rely on relatively few samples
(Hau et al., 2010; Plonsky et al., 2015; Wulff et al., 2018). Also in our experiment, participants
in the full control condition chose to sample less than they could have (Furl & Averbeck, 2011).
Although one explanation is that small samples can render choices objectively simpler (Hertwig
& Pleskac, 2008, 2010), our findings suggest that small samples may also defy typical accuracy
trade-offs if the decision to stop sampling lies in the autonomy of the sampling agent (see also
Petitet et al., 2021). Granting participants’ full control over sampling may thus not only enable
but directly promote reliance on small samples through more efficient processing of the sample
evidence.

Finally, our multivariate EEG analysis also showed a neural signature of the samples’ "extremity"
(Figure 2.3d and e), which did not differ between levels of control over sampling. Future work may
investigate the potential significance of this finding with respect to the role of extreme events in
experience-based decisions (e.g., Ludvig et al., 2018; Ludvig et al., 2014; Ludvig & Spetch, 2011).

In summary, we found that control over sampling can enhance the neural encoding of decision
information and improve choice accuracy. The results add to a growing collection of findings that
exercising agency can benefit performance in cognitive tasks and shed light on the neural processes
that may support such benefits.
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Abstract

When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or
underweight extreme sample values, depending on task context. In a context of overweighting,
recent work has shown that extreme sample values were overly represented also in neural signals,
in terms of an anti-compressed geometry of number samples in multivariate electroencephalogra-
phy (EEG) patterns. Here, we asked whether neural representational geometries may also reflect
underweighting of extreme values (i.e., compression) which has been observed behaviorally in a
great variety of tasks. We used a simple experimental manipulation (instructions to average a
single-stream or to compare dual-streams of samples) to induce compression or anti-compression
in behavior when participants judged rapid number sequences. Model-based representational simi-
larity analysis (RSA) replicated the previous finding of neural anti-compression in the dual-stream
task, but failed to provide evidence for neural compression in the single-stream task, despite the
evidence for compression in behavior. Instead, the results suggested enhanced neural processing
of extreme values in either task, regardless of whether extremes were over- or underweighted in
subsequent behavioral choice. We further observed more general differences in the neural represen-
tation of the sample information between the two tasks. The results suggest enhanced processing
of extreme values as the brain’s default. Such a default raises new questions about the origin of
common psychometric distortions, such as diminishing sensitivity for larger values.
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3.1 Introduction

When making decisions about magnitudes such as numbers, people tend to distort sample infor-
mation away from its true value. A commonly observed distortion is a compression of magnitude,
where extreme (or outlying) samples receive relatively less weight than prescribed by a linear and,
according to common interpretation, normative transformation of objective into psychological or
subjective values (Bernoulli, 1954; Fechner, 1860; Juechems et al., 2021; Li et al., 2017; Tversky &
Kahneman, 1992; Vandormael et al., 2017). However, in some task contexts, the opposite type of
distortion has been observed, that is, an anti-compression, where extreme or outlying samples are
overweighted (Clarmann von Clarenau et al., 2022; Kunar et al., 2017; Luyckx et al., 2019; Spitzer
et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020).

Using electroencephalographic (EEG) recordings and multivariate representational similarity anal-
ysis (RSA), recent work has identified a potential neural signature of such psychometric distortions.
During processing of symbolic number samples, multivariate EEG patterns have been character-
ized by a "numerical distance effect", where the representational similarity of, for instance, "4"
and "5" is larger than that between "4" and "6", which in turn is larger than that between "3"
and "7", and so forth (Appelhoff et al., 2022; Luyckx et al., 2019; Sheahan et al., 2021; Spitzer
et al., 2017; Teichmann et al., 2018). Intriguingly, in a multi-sample decision task that promoted
anti-compression of number samples in behavior, the "neural numberline" underlying the numeri-
cal distance effect was found to be anti-compressed as well (Appelhoff et al., 2022; Luyckx et al.,
2019; Spitzer & Haegens, 2017). The findings suggested that behaviorally relevant distortions in
multi-sample decisions may occur already when the individual samples are being processed.

However, such "neurometric" signature of psychometric distortion has thus far only been reported
in tasks that promoted anti-compression, that is, a selective overweighting of extreme (outlying)
sample values in behavior. A much more common observation in other task contexts is a compres-
sion of magnitude, where extreme values are underweighted, for instance, in psychophysical tasks
(Fechner, 1860; Stevens, 1957; Wyart et al., 2012), in studies of numerical cognition (Dehaene,
2003; Longo & Lourenco, 2007; Nieder & Dehaene, 2009; Nieder & Miller, 2003), and in behavioral
economics experiments (Kellen et al., 2016; McAllister & Tarbert, 1999; Tversky & Kahneman,
1992). To what extent large-scale neural patterns, as recorded with human EEG, may also reflect
psychometric compression is still unknown.

In the present study, we capitalized on recent progress in understanding the experimental factors
that may mediate whether people compress or anti-compress magnitudes in decision making (see
also Summerfield & Parpart, 2022). Specifically, in a recent behavioral study, we found compression
when judging the average of a single sequence, but anti-compression when comparing dual-streams
of number samples (Clarmann von Clarenau et al., 2022). Here, we adopted this experimental
manipulation to examine the neural signatures of compressive (as compared to anti-compressive)
number processing in multivariate EEG patterns.

Behaviorally, the results confirmed a compression of numerical values in the single-stream task, and
an anti-compression of the same values in the dual-stream task. In neural signals, we replicated
the finding of an anti-compressed number representation in the dual-stream task. Surprisingly,
however, we found no evidence for neural compression in the single-stream task. Instead, we ob-
served more general differences in the neural representation of the sample information. Whereas in
the dual-stream task, the samples’ neural geometry predominantly reflected their abstract magni-
tude, the single-stream task was associated with a more direct, non-quantitative representation of
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the concrete sample stimuli. The results relativize the diagnosticity of sample-level EEG-metrics
for psychometric distortions. They also suggest a default mode of processing, namely, enhanced
neural processing of extreme sample values, regardless of whether they are over- or underweighted
in subsequent behavior.

3.2 Results

3.2.1 Behavioral results

As expected, mean choice accuracy (Figure 3.1b) was higher in the single-stream task (80.5% ±
0.8% SE) than in the dual-stream task [76.3% ± 0.7% SE; t(29)=5.51, p<0.001, d=1.02; paired
t-test]. This suggests that comparing two streams was more difficult than averaging a single-stream
(of otherwise physically identical inputs; Figure 3.1a).

To characterize how the numerical value (1-9) of a sample influenced subsequent choice, we cal-
culated model-free decision weights (see Materials and Methods). Descriptively, the weighting
curve showed a concave shape (indicating compression) in the single-stream task (Figure 3.1c,
left), whereas an convex shape (indicating anti-compression) was evident in the dual-stream task
(Figure 3.1c, right).

For quantitative analysis, we fitted a psychometric model (see Materials and Methods), which
characterizes the transformation of sample values (1-9) as a sign-preserving power function with
exponent kappa (k; where k < 1 indicates compression and k > 1 anti-compression). The model
further includes parameters for overall bias (b) towards larger or smaller numbers (b > or < 0) and
decision noise (s, see Materials and Methods).

The best-fitting parameter estimates are shown in Figure 3.1d. Of main interest was parameter
kappa (k), which indicates the extent to which a weighting policy is compressed or anti-compressed
relative to a linear weighting (k = 1). Indeed, k was significantly smaller than 1 in the single-stream
task [M=0.82, SE=0.07, t(29)=-2.43, p=0.02, d=0.44; one-sample t-test against 1] and significantly
larger than 1 in the dual-stream task [M=1.82, SE=0.16, t(29)=5.21, p<0.001, d=0.95], which con-
firms robust compression in single-stream averaging, and robust anti-compression in dual-stream
comparison. The essential difference in transformation (Equation 3.1) implied by these k-values
is illustrated in Figure 3.1c (insets). While the transformation is concave (i.e., shallower towards
the extremes) in the single-stream task, it is convex (i.e., steeper towards the extremes) in the
dual-stream task.

Examining bias (b), we found significantly positive values both in the single-stream task [M=0.02,
SE=0.01, t(29)=3.52, p=0.001, d=0.64] and in the dual-stream task [M=0.21, SE=0.06, t(29)=3.34,
p=0.002, d=0.61]. Thus, judgments in both tasks were overall biased towards larger numbers,
which is consistent with previous work (Clarmann von Clarenau et al., 2022; Luyckx et al., 2019;
Spitzer et al., 2017). Finally, noise (s) was significantly higher in the dual-stream (M=1.23,
SE=0.07) than in the single-stream task [M=0.98, SE=0.06; t(29)=-4.40, p<0.001, d=0.70; paired
t-test]. This is consistent with the lower level of accuracy in the dual-stream task (see Figure 3.1b).

Together, our experimental manipulation was successful in inducing opposite types of psychometric
distortions, with identical stimulus inputs in the two task conditions. Whereas decision weighting
was compressed (suggesting relative underweighting of extreme values) in the single-stream task,
it was anti-compressed (suggesting relative overweighting of extreme values) in the dual-stream
task.
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Figure 3.1. Experimental paradigm and behavioral results. a) Each participant performed two
variants of a sequential number integration task. Left: In both variants, participants viewed a stream of
ten rapidly presented digits (five in red and five in blue color; in random serial order) drawn from 1 to
9 (uniform random). In the single-stream averaging task, participants were asked to judge whether the
average value of all ten samples was higher or lower than 5 (ignoring the samples’ colors). In the dual-stream
comparison task, participants were asked to report whether the red or the blue samples had the higher
average value. Right: In both tasks, the response mapping onto left/right button presses was randomized
across trials and cued only after sample presentation, in order to avoid motor preparation confounds. b)
Mean accuracy (proportion correct choices) in the two tasks. c) Decision weights of number values in the
single-stream (left) and dual-stream (right) tasks. Inset plots illustrate the shape of distortion implied by
the best-fitting k (see panel d) according to model Equation 3.1, with b set to 0 for visual comparison
between task conditions. d) Parameter estimates from fitting our psychometric model to the empirical
choice data (cf. c). Error bars in all panels show SE.

3.2.2 EEG results

Multivariate (RSA) results

Turning to the EEG data, we first examined the encoding of sample information in multivariate
ERP patterns using RSA (see Materials and Methods). Specifically, we examined in each of the two
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tasks (single-stream and dual-stream) the extent to which RSA patterns encoded (i) the concrete
digit that was shown as sample stimulus (e.g., "4" or "8"), (ii) its color (i.e., red or blue), and (iii)
the numerical magnitude information in a sample (i.e., 1-9, in terms of a numerical distance effect;
see Materials and Methods and Figure 3.2a).
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Figure 3.2. RSA results. a) Model RDMs encoding individual sample attributes. Left, "Digit" model
encoding the unique number symbols; Middle, "Color" model encoding whether a sample was red or blue;
Right, "Numerical distance" model encoding the samples’ magnitude (1-9). For visual clarity, the model
RDMs are illustrated before orthogonalization (see Materials and Methods). b) Correlation between
orthogonalized model RDMs and the empirical ERP-RDMs in the single-stream (left) and dual-stream
(right) task. Colored shadings show SE. Marker lines on bottom indicate time windows of significant
differences from zero. Gray shading outlines the time window used in subsequent neurometric analysis
(see Figure 3.4 below). c) Difference in correlation between the single- and dual-stream tasks. Same
conventions as in b.

The visual attributes of a sample (i.e., its color and digit shape) were encoded early on, from
approximately 100 to 700 ms after sample onset, in both tasks (Figure 3.2b all pcluster<0.001).
From approx. 200 ms on, the RSA patterns also encoded the samples’ numerical magnitude,
in terms of a significant numerical distance effect (single-stream: pcluster<0.001; dual-stream:
pcluster<0.001), thus replicating and extending previous work (Appelhoff et al., 2022; Luyckx et
al., 2019; Sheahan et al., 2021; Spitzer et al., 2017; Teichmann et al., 2018). Descriptively, the
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numerical distance effect observed in the single-stream task, while robustly significant, appeared
weaker than that in the dual-stream task.

Comparing the RSA time courses between the two task conditions (Figure 3.2c) confirmed that
the numerical distance effect in the dual-stream task was significantly stronger (pcluster<0.002).
Surprisingly, we found no difference in color encoding between the two tasks, even though color
was task-relevant only in the dual-stream task, but not in the single-stream task. Instead, in
the single-stream task, we observed a relatively stronger representation of the concrete digit (i.e.,
the unique number symbol) that had been displayed (pcluster<0.005). This effect was evident in a
relatively late time window (approximately 400-600 ms, that is, only after the early visual encoding
of digits and color).

Together, multivariate ERP patterns in both task conditions robustly encoded information about
the sample’s color, the number symbol it showed, and its numerical magnitude. The representation
of samples in the single-stream task, however, showed qualitative differences, in terms of a relatively
weaker encoding of numerical magnitude, and a relatively stronger encoding of the concrete sample
stimuli.

Neurometric RSA results

Next, we examined potential distortions of the "neural numberline" underlying the neural magni-
tude representation disclosed in the above RSA results. To this end, we parameterized the numer-
ical distance model (Figure 3.2d, right) to reflect distortions by k (compression/ anti-compression)
and b (bias towards/against larger numbers), analogously as in our psychometric model (see Ma-
terials and Methods, Equation 3.1). We then used exhaustive gridsearch to determine for each
participant the parameter combination with which the model fitted the data best. Figure 3.3b
illustrates the improvement in fit (in terms of ∆ r relative to the standard model with k = 1 and
b = 0; cf. Figure 3.2d, right) in a representative time window (0.2-0.6 s; cf Figure 3.2c and Fig-
ure 3.3a). Note that neurometric mapping was performed using a log scale of k (where log(k) = 0

corresponds to k = 1, see Figure 3.3b) to avoid fitting bias (see Materials and Methods).

The results (Figure 3.3b) replicated our previous finding of a significant distortion of the neural
numberline in the dual-stream task (Figure 3.3b, right). Specifically, like in our previous work
(Appelhoff et al., 2022; Spitzer et al., 2017), we observed neurometric estimates of k > 1 (i.e., anti-
compression) and of b > 0 (i.e., a bias towards larger numbers; p=0.013, FDR-corrected), which
mirrors the pattern observed in the behavioral data (cf. Figure 3.1c-d, orange). However, contrary
to our expectations, we found no evidence for a neurometric compression in the single-stream
task (Figure 3.3b, left), where the psychometric weighting in behavior was clearly compressed (cf.
Figure 3.1c-d, blue). Descriptively, the neurometric map in the single-stream task indicated a
pattern similar to that in the dual-stream task (i.e., anti-compression k > 1, and positive bias,
b > 0). However, the improvement in fit over the linear/unbiased model was only weak and
statistically non-significant (Figure 3.3b, left) potentially reflecting that the numerical distance
effect in the single-stream task was overall weaker (cf. Figure 3.2b).

Examining the mean neurometric parameter estimates in the two tasks statistically, they showed
significant anti-compression (k > 1) both in the dual-stream [M=3.05, SE=0.40; t(29)=5.16,
p<0.001, d=0.94] and in the single-stream task [M=3.81, SE=0.57; t(29)=4.90, p<0.001, d=0.89,
t-tests against 1]. Direct comparison of neurometric k between the two tasks showed no significant
difference [t(29)=1.25, p=0.22, d=0.28, paired t-test]. A positive offset bias (b) was evident in the
dual-stream task [M=0.18, SE=0.04; t(29)=3.97, p<0.001, d=0.73] but not in the single-stream
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task [M=0.04, SE=0.05; t(29)=0.75, p=0.46, d=0.14, t-tests against 0; difference between tasks
t(29)=-2.27, p=0.03, d=0.54, paired t-test]. Together, the neurometric RSA results yielded no
evidence for a compression of numerical magnitude akin to that observed in behavior in the single-
stream task. If anything, the results were suggestive of anti-compression (k > 1) in both tasks,
although it should be noted that the improvement in model fit (relative to a linear model) in the
single-stream task was small and not statistically significant (Figure 3.3b, left).
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Figure 3.3. Neurometric RSA results. a) Mean ERP-RDMs in the time window of the numerical
distance effect (see gray shading in Figure 3.2b). b) Mean neurometric maps. Left: single-stream task;
right: dual-stream task. Dashed lines indicate linear (k = 1) and unbiased (b = 0) parameterizations.
Color scale indicates increase in model correlation (∆ r) relative to the standard model where k = 1
and b = 0. Transparency mask delineates where the increase was statistically significant (p<0.05, FDR
corrected). Red markers show maxima (diamond, mean map; dots, individual participant maps).

Univariate ERP results (CPP/P3)

We complemented our analysis by examining neurometric distortions also in univariate ERP sig-
nals, specifically in the sample-evoked CPP/P3 response. Previous research has implicated the
CPP/P3 in decision formation, with its amplitude reflecting the perceived strength of evidence
(Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; Twomey et
al., 2015; Wyart et al., 2015). CPP/P3 amplitudes were also found to be modulated by numerical
sample values in the context of a comparison task (Spitzer et al., 2017).
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Figure 3.4. Univariate CPP/P3 results. a) Centro-parietal ERPs (mean-subtracted) evoked by
sample values 1-9 in the single- (left) and dual-stream (right) tasks. Marker lines on bottom indicate
time windows of significant differences between the 9 different sample values (all pcluster<0.001, repeated
measures analysis of variance). b) Mean CPP/P3 amplitudes averaged over the time window outlined by
gray shading in a (0.3 - 0.7 s). c) Neurometric model fit of CPP/P3 amplitudes. Line plot shows grand
mean fit. Inset bar graph shows mean parameter estimates. Error indicators in all panels show SE.

We observed modulations of CPP/P3 amplitude by numerical value both in the single-stream
(Figure 3.4a, left; pcluster<0.001) and in the dual-stream task (Figure 3.4a, right; pcluster<0.001,
repeated measures analyses of variance), with the modulation in the dual-stream task appear-
ing descriptively stronger. The mean amplitudes showed a U-shaped pattern over numbers 1-9
(Figure 3.4b), consistent with previous findings that CPP/P3 reflects the strength of decisional
evidence in an unsigned fashion (i.e., a theoretical quantity similar to the absolute |dv| in our
psychometric model, which would reflect the strength of evidence for either choice, "<" or ">";
see also Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016;
Twomey et al., 2015; Wyart et al., 2015). Thus, for model-based analysis, we fitted Equation 3.1
to the CPP/P3 amplitude data (using pairwise distance matrices and gridsearch analogous to our
neurometric RSA above), but using |dv| to generate the model-predicted pattern.

The best-fitting parameter estimates are shown in Figure 3.4c (inset bar graph). Mirroring the RSA
results, the parameter estimates based on CPP/P3 amplitude showed significant anti-compression
(k > 1) in both tasks [single-stream: M=2.58, SE=0.55; t(29)=2.88, p=0.007, d=0.53, dual-
stream: M=3.12, SE=0.51; t(29)=4.15, p<0.001, d=0.76, t-tests against 1], with no significant
difference between tasks [t(29)=-0.69, p=0.49, d=0.18, paired t-test]. A positive offset bias was
again observed in the dual-stream task [M=0.28, SE=0.06; t(29)=5.00, p<0.001, d=0.912], but
not in the single-stream task [M=0.09, SE=0.05; t(29)=1.78, p=0.09, d=0.33, t-tests against 0;
difference: t(29)=-2.97, p=0.006, d=0.63, paired t-test]. Together, the univariate ERP analysis
thus corroborates our RSA finding that the neural processing of number samples in single-stream
averaging was not characterized by compression but – if anything – by anti-compression, despite
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the evidence for compression in subsequent behavioral choice (cf. Figure 3.1c-d).

3.3 Discussion

We observed opposite types of psychometric distortions (compression or anti-compression) in be-
havior when participants were instructed to process an identical stream of numbers in two distinct
ways, namely, comparing the complete stream against a fixed target value or comparing two sub-
streams against each other. However, contrary to expectations based on past research, the neural
signals associated with the processing of the individual number samples showed evidence for anti-
compression (i.e., enhanced processing of extreme values) under both instructions, regardless of
whether extreme values were over- or underweighted in subsequent behavioral choice. We fur-
ther observed qualitative differences between the sample representations in the two tasks, with a
relatively weaker encoding of the samples’ numerical magnitude in the single-stream task.

In psychophysical research concerned with the how attributes of a physical stimulus (e.g., size,
weight, color) relate to their subjective experience or perception, human observers are commonly
found to underweight extreme values. Such subjective "compression" of magnitude can be observed
in a great variety of settings, from basic sensory-perceptual judgments (Fechner, 1860; Stevens,
1957) to economic decisions (Kellen et al., 2016; McAllister & Tarbert, 1999; Tversky & Kahneman,
1992). There exist various theoretical accounts for the origin and potential benefits of subjective
compression in perception and decision making (Bhui & Gershman, 2018; Ciranka et al., 2022;
de Gardelle & Summerfield, 2011; Li et al., 2017; Stewart et al., 2006; Summerfield & Li, 2018;
Vandormael et al., 2017). Our present results seem to contrast these vast literatures with the
finding that human brain signals tended to reflect the magnitude of numerical values in an anti-
compressed fashion, even when they were compressed in later choice.

However, while the typical finding in many tasks is compression, there are task contexts where
observers overweight extreme samples in choice behavior, in line with an anti-compression of sample
values (Clarmann von Clarenau et al., 2022; Kunar et al., 2017; Ludvig et al., 2014; Luyckx et al.,
2019; Shevlin et al., 2022; Spitzer et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020). We
recently showed that such anti-compression can be beneficial in tasks that are computationally
challenging (like our dual-stream comparison task), and where capacity-limited observers may be
forced to selectively focus on a subset of the samples at the expense of others (Clarmann von
Clarenau et al., 2022). Our present findings may suggest that in task contexts in which higher-
level processing capacities are exceeded, participant behavior may more directly reflect the brain’s
default response to extreme values (i.e., privileged processing).

Despite the lack of evidence for different neural geometries of numerical magnitude in the two tasks,
the samples’ overall representation in neural signals yet differed. In the dual-stream task, neural
signals encoded the numerical magnitude of a sample more strongly than in the single-stream
task. This result was unexpected because nominally, the numerical magnitude of a sample was
of equal relevance in both tasks. In the single-stream task, in turn, we found relatively stronger
encoding of which unique number symbol was presented. Further, although the color of a sample
(red/blue) was task-irrelevant in the single-stream task, the neural encoding of color was as strong
and as sustained as in the color-based dual-stream task. While these results were unexpected, they
may suggest more general differences in the role of "abstract" magnitude processing (Dehaene,
2003; Nieder, 2005; Nieder & Dehaene, 2009; Piazza & Izard, 2009; Walsh, 2003) in the two
tasks. Potentially, in the more challenging dual-stream task participants relied more directly on an
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intuitive "sense of magnitude" (Leibovich et al., 2017; Piazza et al., 2006; Spitzer et al., 2014) to
gauge a sample’s decision value. The computationally simpler single-stream task, in contrast, may
have allowed them to engage in more symbolic-analytic processing (e.g., approximate arithmetics
and/or verbalization) – processes that might be less amenable to EEG-decoding than the numerical
distance pattern that prevailed in the dual-stream task.

The neural anti-compression of sample values in both of the tasks was also evident in univariate
CPP/P3 signals which had previously been implicated in the decisional evaluation of stimulus
information (Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016;
Twomey et al., 2015; Wyart et al., 2015). Interpreting the amplitude of CPP/P3 signal as an
index of the perceived strength of evidence, our findings in the single-stream task show a mismatch
between the pattern observed in sample-by-sample processing (anti-compression, as revealed by
neural data) and that in eventual judgment of the aggregate stream (compression, as evident in
behavior). Future work will be required to identify the neural mechanisms underlying the eventual
downweighting of extreme values in such task contexts, despite enhanced encoding in sample-level
decision signals. It should be noted that the amplitude of P3 signals is known to be modulated
by various factors, including how rare or surprising an event is (Donchin, 1981; DuncanJohnson &
Donchin, 1977). However, the sample values in our experiment were uniformly distributed, that
is, each value occurred equally often on average, ruling out an alternative explanation in terms of
stimulus frequency.

Whether extreme values are over- or underweighted has major implications for the behavioral
choices people make. One and the same numerical evidence, as in the present study, may lead to
opposite choices, depending on how people respond to and process extreme values. For instance,
anti-compression can explain systematic violations of "rational" axioms, such as transitivity, in
multi-attribute choice (Summerfield & Tsetsos, 2015; Tsetsos et al., 2016). More generally, non-
linear distortions of objective data (such as numbers) have often been interpreted as paradigmatic
manifestations of seemingly "irrational" human behaviors in decision making (e.g., non-linear prob-
ability weighting in risky choice as assumed in cumulative prospect theory; Tversky & Kahneman,
1992). However, over the past years a new literature has evolved that recasts these behaviors
as well-adapted policies of capacity-limited observers, fostering rather than hampering their mea-
surable performance under these constraints (Bhui et al., 2021; Gigerenzer & Brighton, 2009;
Gigerenzer et al., 2011; Juechems et al., 2021; Lieder & Griffiths, 2020; Sims, 2003, 2010; Tsetsos
et al., 2016). Here, we shed new light on the open question of how such adaptive distortions may
arise mechanistically, in terms of the neural signal patterns evoked by samples of evidence while
observers are in the process of reaching a decision. Our finding of a "default" anti-compression
of values in neural responses – regardless of subsequent behavior – raises the question at which
exact processing stage value compression emerges, and how it leads to, for instance, the well-known
"diminishing sensitivity" to larger values in economic choices (e.g., Tversky & Kahneman, 1992).

3.4 Materials and Methods

3.4.1 Participants

Thirty-two healthy volunteers took part in the experiment. We excluded two participants who
reported having misunderstood the task instructions and who performed near chance level (50%
correct choices) in one of the tasks (52% and 53%, respectively; both p>0.4, Binomial tests against
0.5). Results are reported for the n=30 remaining participants (15 male, 15 female; mean age 27.4
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± 4.9 years; one left handed). All participants provided written informed consent and received €10
per hour as compensation, in addition to a €10 flat fee for participation, as well as a performance-
dependent bonus (€7.03 ± 1.08 on average). The study was approved by the ethics committee of
the Max Planck Institute for Human Development.

3.4.2 Experimental design

Each participant performed two variants of a sequential number integration task (Clarmann von
Clarenau et al., 2022; Spitzer et al., 2017). The stimulus protocols in the two task variants were
identical (Figure 3.1a). On each trial, participants viewed a sequence of 10 Arabic digits (randomly
drawn from a uniform distribution of numbers 1 to 9) displayed in either red or blue font color
(randomly assigned to each sample, with the restriction that each sequence contained 5 red and 5
blue samples). In the "averaging" (single-stream) task, participants were asked to judge whether
the average of all 10 number samples in the sequence (regardless of their color) was larger or smaller
than 5. In the "comparison" (dual-stream) task, participants were asked to indicate whether the red
or the blue samples had the higher average value. Past behavioral work has shown a psychometric
compression of number values in the single-stream task, whereas anti-compression was evident in
the latter dual-stream task (Clarmann von Clarenau et al., 2022; Spitzer et al., 2017).

The experiment was programmed in Python using the PsychoPy package (Peirce et al., 2019)
and run on a Windows 10 PC. The experiment code is available on GitHub (https://github.
com/sappelhoff/ecomp_experiment). Throughout the experiment, we additionally recorded eye-
movements using an EyeLink 1000 Plus (SR Research Ltd., Canada), which were not analyzed
in the present study. Participants were informed about the eye-movement recording and were
instructed to keep their gaze at the center of the screen throughout the experiment.

Each trial started with a white central fixation stimulus (a combination of bulls eye and cross hair;
Thaler et al., 2013) on an otherwise black screen. After 500 ms, the fixation stimulus disappeared
and the number sequence was presented at a rate of 350 ms per sample (font Liberation Sans; height
3◦ visual angle; see Figure 3.1a). Each sample was smoothly faded to black after 270 ms to improve
the visual experience of the stimulus transitions. After the last sample, participants were prompted
to enter a response by pressing the left or right button on a USB response pad (The Black Box
ToolKit Ltd., UK). To avoid left/right motor response preparation during sequence presentation,
in each of the two tasks, we randomized the mapping of responses ("smaller" or "larger" in the
averaging task; "red" or "blue" in the comparison task) onto left/right button presses trial-by-trial,
using a response screen (Figure 3.1a, right).

If participants failed to respond within 3 s, the trial was discarded and after a delay of 100 ms, a
message ("too slow!") was displayed in red color for 1 s. On average, participants responded within
0.67±0.27 s and timeouts occurred only on 0.03 % of trials. On the remaining trials, performance
feedback was displayed ("correct" or "wrong", in green or orange color, respectively) for 350 ms.
All feedback was displayed centrally in Liberation Sans font with a height of 1◦ visual angle. On
4.85% of trials, in which the objective sequence average was precisely 5 (in the single-stream task)
or identical for red and green samples (in the dual-stream task), a random feedback message was
displayed. These trials were excluded from the analysis of accuracy levels, but were included in
the modeling- and EEG analyses (see also Spitzer et al., 2017). After feedback, the central fixation
stimulus re-appeared and after 500 to 1500 ms (randomly varied), the next trial started.

Each participant first performed 300 trials in one of the tasks (single-stream averaging or dual-
stream comparison), followed by 300 trials in the other task (in counterbalanced serial order across
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subjects). Thus, 3000 number samples were presented in each task condition and participant.
Trials were performed in blocks of 50, with summary performance feedback (percentage correct
choices) being provided after each block. After completing all blocks of the first task, participants
received the instructions for the second task. To avoid differences in stimulus input, the second
task was performed on the exact same number sequences as the first task. Upon completing the
second task, participants received a monetary bonus depending on their mean accuracy in both
tasks.

3.4.3 EEG recording

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG was
recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) positioned
according to the international 10% system. Electrode FCz was used as the recording reference. We
additionally recorded the horizontal and vertical electrooculogram (EOG) and electrocardiogram
(ECG) using passive electrode pairs with bipolar referencing. All electrodes were prepared to have
an impedance of less than 10 kΩ. The data were recorded using a BrainAmp DC amplifier (Brain
Products GmbH Munich, Germany) at a sampling rate of 1000 Hz, with an RC high-pass filter
with a half-amplitude cutoff at 0.016 Hz (roll-off: 6 dB/octave) and low-pass filtered with an anti-
aliasing filter of half-amplitude cutoff 450 Hz (roll-off: 24 dB/octave). The full dataset will be
made available upon publication of this article on GIN: https://gin.g-node.org/sappelhoff/mpib_
ecomp_sourcedata/.

3.4.4 Behavioral data analysis

We calculated model-free decision weights to examine how strongly each numerical sample value
(1, 2, ..., 9) contributed to participants’ choices in the two tasks. In the single-stream task,
these weights were computed as the proportion of times a sample value was associated with the
subsequent choice "larger". Analogously, in the dual-stream task, the weights were computed as
the proportion of times the sample’s color (i.e., red or blue) was subsequently chosen (see also
Spitzer et al., 2017). For comparison with model predictions (see below), we computed decision
weights also from the model-predicted choice probabilities (CP , see Equation 3.3) obtained from
using the best fitting parameter estimates in each participant.

3.4.5 Psychometric model

To quantify psychometric distortions (i.e., compression or anti-compression) in behavior, we used a
simple psychometric model that has been used extensively in previous work (Appelhoff et al., 2022;
Clarmann von Clarenau et al., 2022; Li et al., 2017; Luyckx et al., 2019; Spitzer et al., 2017). The
model formalizes the transformation of objective sample values X (here: numbers 1-9, normalized
to the range [-1, 1]) into a subjective decision value dv as a sign-preserving power function:

dv =
X + b

|X + b|
× |X + b|k, (3.1)

where exponent k (kappa) determines the overall shape of the transformation (k < 1: compression;
k = 1: linear; k > 1: anti-compression). Parameter b (bias) implements an overall weighting bias
towards smaller (b < 0) or larger (b > 0) numbers. Sample-level decision values (dv) are integrated
into a trial-level decision value (DV ) by summation over samples:
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DV =

10∑
i=1

dvi × ci, (3.2)

where c is an indicator variable denoting a sample’s color (red: -1, blue: +1) in the dual-stream
task. In the single-stream task, c was fixed at 1. This way, Equation 3.2 effectively implements
a comparison between streams in the dual-stream task, and simple averaging in the single-stream
task. Finally, the trial level decision value (DV ) is transformed into a choice probability according
to a logistic function:

CP =
1

1 + e
−DV

s

, (3.3)

where CP denotes the probability of choosing ">5" (in the single-steam task) or "blue>red" (in
the dual-stream task), and parameter s quantifies the level of decision noise, with larger values of
s implying more random choices.

The model was fitted to each participant’s individual choice data using the Nelder-Mead method as
implemented in SciPy (Virtanen et al., 2020), with parameter values restricted to the ranges (k: [0,
5]; b: [-0.5, 0.5], s: [0.01, 3]). Fitting was performed iteratively using 900 combinations of different
starting values for each task condition, and the solution with the lowest Bayesian Information
Criterion (BIC) was used in the analysis. Statistical analysis of the fitted parameters proceeded
with conventional inferential tests on the group level.

3.4.6 EEG preprocessing

We used functions from MNE-Python (Gramfort et al., 2013) and PyPrep (based on Bigdely-
Shamlo et al., 2015) to automatically mark noisy segments and bad channels in the EEG recordings.
We additionally screened all recordings visually to reject noisy segments or bad channels that the
automatic procedures had missed. This way, on average, 2.5 ± 1.6 channels were discarded per
participant. Next, we corrected ocular and cardiac artifacts using independent component analysis
(ICA). To this end, we high-pass filtered a copy of the raw data at 1 Hz and downsampled it to
100 Hz. We then ran an extended infomax ICA on all EEG channels and time points that were
not marked as bad in the prior inspection. Using the EOG and ECG recordings, we identified
stereotypical eye blink, eye movement, and heartbeat artifact components through correlation
with the independent component time courses. We visually inspected and rejected the artifact
components before applying the ICA solution to the (Winkler et al., 2015). We then filtered
the ICA-cleaned data between 0.1 and 40 Hz, interpolated bad channels, and re-referenced each
channel to the average of all channels.

3.4.7 Event-related potentials (ERPs)

We epoched the preprocessed data from -0.1 to 0.9 s relative to each sample stimulus onset.
Remaining bad epochs were rejected using a thresholding approach from the FASTER pipeline
(Step 2; Nolan et al., 2010). On average, n=5764 clean epochs (96.1%) per participant were
retained for analysis. The epochs were then downsampled to 250 Hz and baseline corrected relative
to the period from -0.1 to 0 s before stimulus onset. Since our analyses focused on stimulus-specific
effects, we subtracted the overall mean waveform from the individual epochs, in each of the two
task conditions. The mean-subtracted epochs were then averaged into stimulus-specific ERPs for
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each sample value (1, 2, ..., 9) in each color (red/blue). Note that the individual samples in a
stream were statistically independent by design, allowing us to examine stimulus-specific ERP
responses in a time window that overlapped with the onset of the next sample stimulus.

3.4.8 Representational similarity analysis

We used representational similarity analysis (RSA) to examine the encoding of sample informa-
tion in multivariate ERP patterns (Kriegeskorte & Kievit, 2013). Specifically, we examined the
representational geometry of our stimulus space (numbers 1 to 9, colored red or blue) in terms of
the multivariate (dis-)similarity between the ERP topographies (64 channels) associated with the
18 different stimuli. Representational dissimilarity was computed as the Mahalanobis distance,
between each pair of stimuli, yielding an 18x18 representational dissimilarity matarix (RDM), at
each time point of the peri-sample epoch. To compute the Mahalanobis distance, we fitted a gen-
eral linear model to the z-scored trial data, with each stimulus type specified as a condition, and
used the residual trial-by-trial variance for pairwise distance calculation. This procedure ensured
multivariate noise normalization for the RDMs (Guggenmos et al., 2018). Below, we refer to the
thus obtained RDMs as ERP-RDMs.

To examine the information encoded in the ERP-RDM time courses, we used three different model
RDMs (see Figure 3.2a) reflecting (i) the unique digit symbols, with minimum dissimilarity be-
tween identical digits, and maximum dissimilarity between distinct digits ("digit" model), (ii) the
samples’ color, with minimum (maximum) dissimilarity between same (different) colors ("color"
model), and (iii) the numerical distance between samples, that is, the arithmetic difference be-
tween their objective number values ("numerical distance" model). To render the three models
fully independent, we recursively orthogonalized each model RDM with respect to all others using
the Gram-Schmidt process (Appelhoff et al., 2022; Spitzer et al., 2017). Finally, we assessed the
match between each model RDM and the empirically observed ERP-RDMs via Pearson correlation
at each time point, using only the lower triangle of the RDMs and omitting the diagonal, to exclude
redundant matrix cells.

For statistical analysis of the RSAs time courses, we used t-tests against zero with cluster-based
permutation testing to control for multiple comparisons over time points (Maris & Oostenveld,
2007). To test whether RSA results differed between the single- and dual-stream tasks, we first
computed their difference, followed by cluster-based permutation tests against zero. All permu-
tation tests were performed over 1000 iterations with a cluster-defining threshold of p=0.01 and
cluster length as the critical statistic (thresholded at p=0.01).

3.4.9 Analysis of neurometric distortions

The theoretical model underlying conventional RSA of numerical distance effects (see above) is
a straight number line, where the numbers (1, 2, ..., 9) are equidistant. The standard numerical
distance model (Figure 3.2a, right) is equivalent to a model of dv according to Equation 3.1 (see
Psychometric model) where k = 1 and b = 0. To examine potential nonlinear distortions of
the number representations in neural signals ("neurometric" distortions), we constructed numerical
distance models based on dv while varying the values of k (from log(k) = −2 to +2, see Figure 3.3b)
and b (from -0.5 to 0.5). Varying k on a log scale centered around log(k) = 0 (i.e., k = 1) ensured
that parameter estimates were not biased to show anti-compression (or compression) by chance
in subsequent gridsearch. For each parameter combination, we correlated the resulting model
RDMs with the ERP-RDM, yielding a grid ("neurometric map") of the parameter space (see
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Figure 3.3b). The parameter combination with the maximum correlation was used as the estimate
of the participant’s neurometric distortion parameters (see also Appelhoff et al., 2022; Spitzer et
al., 2017). Statistical analysis of the neurometric parameter estimates proceeded with conventional
statistical tests on the group level.

3.4.10 Univariate ERP analysis

For complementary inspection of univariate ERP responses evoked by the number samples, we ex-
amined the stimulus-specific ERP (see above) for each sample value (1-9; collapsed across red/blue
colors). To focus on CPP/P3 responses (see Results), the ERPs were pooled over centro-parietal
channels (CP1, P1, POz, Pz, CPz, CP2, P2) and amplitudes were examined in a time window
from 300 ms to 700 ms based on previous work (Appelhoff et al., 2022; Polich, 2007; Spitzer et al.,
2017; Wyart et al., 2015). The ERP time courses were analyzed statistically using cluster-based
permutation testing (see above). For model-based analysis, we used the same approach as in our
analyses of neurometric distortions in RSA (see above), except that the model RDMs were con-
structed from |dv| (i.e., the absolute, unsigned magnitude of dv, see Results) and correlated with
the pairwise differences in univariate ERP amplitude between samples 1-9.

3.5 Supplemental material

All data will be made available upon publication of this article on GIN: https://gin.g-node.org/
sappelhoff/mpib_ecomp_sourcedata/.

All analysis code will be made available upon publication of this article on GitHub: https://
github.com/sappelhoff/ecomp_analysis. The experiment code is available on GitHub: https://
github.com/sappelhoff/ecomp_experiment.
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Abstract

Modern experimental research often relies on the synchronization of different events prior to data
analysis. One way of achieving synchronization involves marking distinct events with electrical
pulses (event markers or "TTL pulses"), which are continuously recorded with research hardware,
and can later be temporally aligned. Traditionally, this event marking was often performed using
the parallel port in standard personal computers. However, the parallel port is disappearing from
the landscape of computer hardware, being replaced by a serial (COM) port, namely the USB port.
To find an adequate replacement for the parallel port, we evaluated four Microcontroller Units
(MCUs) and the LabJack U3, an often-used USB data acquisition device, in terms of their latency
and jitter for sending event markers in a simulated experiment on both Windows and Linux. Our
results show that all four MCUs were comparable to the parallel port in terms of both latency and
jitter, and consistently achieved latencies under 1 ms. With some caveats, the LabJack U3 can also
achieve comparable latencies. In addition to the collected data, we share extensive documentation
on how to build and use MCUs for event marking, including code examples. MCUs are a cost-
effective, flexible, and performant replacement for the disappearing parallel port, enabling event
marking and synchronization of data streams.
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Chapter 4

4.1 Introduction

Experimental research in a multitude of scientific disciplines involves the presentation of stimuli to
research subjects. Be it displaying a visual stimulus to a human, applying an electric shock to a
rodent, or switching off the lights in a room being navigated by an autonomous robot – researchers
need to record these events together with other data to make sense of the results. A traditional
implementation for event marking is the parallel port available on standard computers (Clerc et
al., 2016). The parallel port works with direct current signals that directly translate to digital
states on the receiving interface, and can thus achieve microsecond resolution of data transmission
(Stewart, 2006; Voss et al., 2007). These fast direct current signals, also called Transistor-transistor
logic (TTL) pulses, persuaded manufacturers of recording hardware for experimental research to
adopt the parallel port as a standard interface for implementing event marking. However, the
parallel port’s original role as a general interface to transmit data has been taken over by serial
communication protocols, specifically the ubiquitous Universal Serial Bus (USB) protocol. As
parallel port interfaces are replaced by USB ports on commercially available computers, it is
becoming increasingly difficult to obtain modern computer hardware that supports a parallel port
"out of the box". Yet, most data recording hardware for experimental research still relies on event
marker inputs sent from a parallel port interface. Consequently, researchers often find themselves
hoarding outdated computer equipment or relying on workarounds such as PCI adapter cards or
old docking stations for modern laptops. The problem of parallel port availability is even more
pronounced for users of Apple computers, which are traditionally produced without a parallel port
interface (Knight, 1997). But even for users of recent versions of Microsoft Windows, access to
the parallel port has become increasingly difficult for native applications and impossible for web
browser-based studies (see e.g., Bridges et al., 2020).

Workarounds for event marking should be treated with caution: because they tend not to be
exhaustively tested, they can introduce dangerous uncertainty about the true latency between
an event and its associated marker in the data. Some analysis techniques such as event-related
potentials (ERPs, Luck, 2014) can tolerate a small constant latency of a few milliseconds, but
quickly become unusable with unpredictable variations of the latencies (i.e., jitter). Commercial
manufacturers are beginning to acknowledge this situation and to release products tailored to
bridging the link from USB connectors to the proprietary connectors expecting TTL pulse inputs
as from a parallel port. Currently, there are at least seven products to choose from (e.g., Canto et
al., 2011, see Supplemental Material for a list), most of which have been tested by their respective
manufacturers. Unfortunately, however, most of the products have at least one of the following
drawbacks: (i) they are expensive, (ii) they are specific to a particular type of hardware, or (iii)
they provide supported functionality only under a limited set of operating system or software
packages (i.e., hardware drivers or accompanying software are not provided for all major operating
systems). Although the relatively widespread MCU evaluation boards such as Arduinos can be
used for the same purpose, many labs shy away from them because of uncertainty as to whether
or not events can be marked with the required precision. The same holds for commercial USB
input/output products for which no published timing test results are available (Wimmer et al.,
2019).

With the present study, we aim to resolve this uncertainty and to demonstrate that USB-based
"event trigger devices" that present themselves as serial (COM) ports can generally serve as ade-
quate replacements for the previous gold standard parallel port. We describe the general principle
underlying the commercial products that link the USB port to proprietary connectors expecting
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a TTL pulse. Furthermore, we run a suite of latency tests on several such event trigger devices
under two major operating systems (Windows, Linux) and compare the results against the per-
formance of a traditional parallel port. We did not run tests under the macOS operating system
because devices running macOS do typically not have native parallel port support. In the Supple-
mental Material, we provide a detailed tutorial on how to build event-trigger devices and software
examples on how to operate them.

4.2 General principle underlying MCUs

A Microcontroller Unit (MCU) consists of at least one processor, memory (both volatile working
memory and programmable memory for program code), and digital in- and output ports (e.g., for
TTL signals or standardized buses like USB or the Serial Peripheral Interface (SPI)). Upon startup,
the MCU reads the firmware from the internal memory and executes the contained instructions.
The event-trigger devices analyzed here were programmed to read a trigger value from the PC,
either directly via an embedded USB controller or a separate USB controller chip attached via
an internal serial port, activate the corresponding output ports for a few milliseconds, and repeat
these instructions from the beginning. The pseudocode for the simplest possible trigger device
firmware consists of just a few lines (see Algorithm 1). This design involves at least two send-
or receive-buffers (four in the case of a separate USB controller) which, combined with a fixed
transfer rate and buffer sizes, put upper bounds on bandwidth (typically 14.4 kB/s at 115200
baud; 1.2 kB/s at 9600 baud) and lower bounds on latency (69.4 µs at 115200 baud with a single
pair of buffers that can be flushed instantaneously up to 107 ms for two 64-byte buffers at 9600
baud). The simplest communication scheme translates one input byte to 8 bits, each of which
is linked to one digital output and encoded in base 2 (e.g., the trigger 75 would translate to
0× 128 + 1× 64 + 0× 32 + 0× 16 + 1× 8 + 0× 4 + 1× 2 + 1× 1 = 010010112, so the pins 7, 4, 2,
and 1 would be enabled).

Algorithm 1 Example pseudocode for operating an event trigger device. Note that
unlike in this example, some MCUs may have specialized functions that allow setting all output
pins at once, without having to iterate through a loop.

while True do
bits = read_byte_from_pc()
output_pin = 0
for bit_value in bits do

set_output(output_pin, bit_value)
output_pin = output_pin + 1

end for
wait_briefly()
reset_outputs()

end while

Following the code in Algorithm 1, an event trigger (in form of a TTL pulse) can be caused by
sending a single byte, the trigger value, to the device’s input buffer. More functionality can be
built in by replacing the MCU’s firmware, implementing an instruction scheme that evaluates the
input and sets outputs depending on the result of the computation. With minor adjustments,
some MCUs can even be accessed via WebUSB to synchronize browser-based experiments with
measurement devices via TTL pulses. Being able to program an MCU’s firmware to execute almost
arbitrary logic and communication protocols can thus be a big advantage. However, such firmware
modifications are typically not possible for commercial devices, as these are often constrained by
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built in, proprietary firmware. This constitutes the main difference between the MCUs tested here
and other devices, such as the LabJack U3. Their general functionality and the communication
protocol between the host PC and the trigger device stays identical.

4.3 Methods

To compare the latency and jitter of MCUs with that of the parallel port, we devised a test
setup using a LabStreamer device (NeuroBehavioral Systems; Albany, CA, USA), a standard Dell
Optiplex 750 desktop computer with a native parallel port (the host computer), a Teensy 3.2
MCU to simulate keypresses, and a LabJack U3 (LabJack Cooperation; Lakewood, CA, USA)
and four other MCUs to be tested against the parallel port (see Figure 4.1). We established a
communication protocol between the host computer and the LabStreamer device using the Lab
Streaming Layer (LSL; https://github.com/sccn/labstreaminglayer). LSL is a software library for
streaming timestamped measurement samples and TTL pulses over the local network. Clock offsets
and uncertainty of the offset estimation between sender and receiver are periodically measured and
subtracted out, so the receiver of a measurement sample (here: the LabStreamer) can record the
time a TTL pulse was sent, rather than the time it was received.

PC LabStreamer

Network Network2

USB MCU / LU3 / Par3 TTL Input

TTL InputTeensy 3.2 Keyboard

1

1

Time 

TT
L 

pu
lse

s

 2 LSL Trigger

Teensy 3.2 Keyboard

MCU / LU3 / Par

1

3

Latency

a)

b)

Figure 4.1. Testing setup. a Setup of the hardware. b Schematic representation of the signal time
courses. For both panels, (1) the Teensy 3.2 keyboard simultaneously sends a key press to the PC and a
TTL pulse to the LabStreamer; the PC receives the key press and sends (2) a timestamped LSL trigger via
the network (marking timepoint zero), and (3) TTL pulse via the Microcontroller Unit (MCU), LabJack
U3 (LU3), or parallel port (Par) to the LabStreamer. This yields the latency of the tested device (b).

The measurement process then proceeded as follows. The Teensy 3.2 MCU presented itself as a
virtual keyboard to automatically send a keystroke to the host computer and simultaneously a TTL
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pulse to the LabStreamer (sampling the digital inputs at 10 kHz) every 90 ms. Using LSL, the host
computer and the LabStreamer then synchronized their clocks via a network connection. Upon
receiving the simulated keypress signal, the host computer sent two additional signals: (i) a TTL
pulse over the parallel port, LabJack U3, or a connected MCU, which was programmed to receive
that signal via an emulated serial port running at 115200 baud per second, and (ii) an LSL trigger
timestamped to the received keypress. The receiving MCU or LabJack U3 then read the signal
byte and activated corresponding digital outputs, thus sending a TTL pulse to the LabStreamer
(see Supplemental Material for the scripts). In each test run, at least 2500 measurements were
made. Measurements with an LSL timestamp uncertainty below 0.01 ms, for example due to
computational or network delays, were marked as invalid. Afterwards, we selected the first 2500
valid measurements from each test run for analysis.

We tested the LabJack U3 using two different methods of relaying the data: The standard
setFIOState method, and the writeRegister method, which was recommended by the Lab-
Jack customer support to achieve faster latencies. Note that each method was tested on the same
LabJack U3 device in separate measurement sessions.

Next to the parallel port and the LabJackU3, we tested four different, popular MCUs: (i) the
widely used Arduino Uno as an example of an 8-bit MCU without native USB capabilities, (ii)
the Arduino Leonardo (technically identical to the Arduino Pro Micro), an 8-bit MCU with an
embedded native USB controller, (iii) the Teensy LC, an inexpensive 32-bit ARM MCU, and (iv)
the Teensy 3.2, an affordable 32-bit MCU with enough communication interfaces and digital/analog
in- and output ports for demanding experimental setups requiring the synchronization of several
devices or processing of inputs, such as voice feedback. All devices (MCUs, parallel port, and
LabJack U3) were tested with Python 3.6 and the Python bindings for the Psychtoolbox (Kleiner
et al., 2007) on the Windows 7 and Ubuntu Linux 18.04 operating systems separately. To access
the parallel port, the PsychoPy library was used (Peirce et al., 2019).

After data recording, we compared the device latencies of transmitting the byte from the PC to the
LabStreamer by calculating the mean, median, standard deviation, and interquartile range of the
data for each device and operating system. Additionally, we computed these statistics averaged
across devices within each operating system group to see whether the devices performed better on
one or the other operating system. All computations and plotting were done in Python using the
libraries Numpy (van der Walt et al., 2011), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007),
and Seaborn (Waskom, 2021).

4.4 Results

Mean and median latencies as well as standard deviation and interquartile ranges are reported in
Table 4.1 and visually presented in Figure 4.2. Across both operating systems, the parallel port
had the lowest average latency and jitter. However, apart from the LabJack U3, all other tested
devices consistently achieved latency and jitter comparable to that of the parallel port. For the
LabJack U3, the mode of operation (writeRegister versus setFIOState) made a large difference.
The writeRegister method resulted in smaller latencies, however this method also produced a
large amount of outliers on Windows, but not on Linux (see Figure 4.2). The setFIOState method,
in contrast, resulted in the longest latencies of all tested devices, but did not produce as many
outliers as the writeRegister method. Notably, the LabJack U3 operated with the setFIOState
method was much faster under Linux compared to Windows. Averaging over devices (excluding
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Table 4.1. Latencies for all tested devices in milliseconds. The table includes an entry for the
Teensy 3.2 device that simulated a keyboard in the test setup. Its latency is negative because the simulated
keystroke happened prior to the timepoint zero (the LSL Trigger, cf. Figure 4.1).

Operating system Device Mean SD Median IQR
Linux Teensy 3.2 Keyboard −1.650 0.410 −1.672 0.574
Linux Parallel Port 0.212 0.032 0.211 0.05
Linux Teensy 3.2 0.244 0.032 0.243 0.049
Linux Teensy LC 0.254 0.032 0.255 0.052
Linux LabJack U3 (writeRegister) 0.280 0.039 0.279 0.054
Linux Arduino Leonardo 0.308 0.036 0.308 0.052
Linux Arduino Uno 0.453 0.045 0.452 0.05
Linux LabJack U3 (setFIOStatus) 0.616 0.120 0.603 0.057
Windows Teensy 3.2 Keyboard −1.756 0.334 −1.751 0.503
Windows Parallel Port 0.210 0.030 0.209 0.049
Windows Teensy 3.2 0.296 0.030 0.296 0.05
Windows Teensy LC 0.319 0.033 0.319 0.05
Windows Arduino Leonardo 0.352 0.032 0.353 0.05
Windows LabJack U3 (writeRegister) 0.439 0.287 0.401 0.082
Windows Arduino Uno 0.505 0.031 0.507 0.051
Windows LabJack U3 (setFIOStatus) 1.144 0.099 1.157 0.158

Note. SD standard deviation, IQR interquartile range.

the LabJack U3 as an outlier) within each operating system group showed a small performance
benefit of using Linux over Windows. Devices operated on Linux were 0.042 ms faster (mean). The
device latency between operating systems was nearly identical for the parallel port (mean latency
Linux = 0.212 ms, mean latency Windows = 0.210 ms). Looking at the remaining devices (again,
excluding the LabJack U3 as an outlier), the smallest effect of operating system on device latency
was observed for the Arduino Leonardo (mean latency Linux = 0.308 ms; mean latency Windows
= 0.352 ms), and the largest effect for the Teensy LC (mean latency Linux = 0.254 ms; mean
latency Windows = 0.319 ms).

4.5 Discussion

We evaluated four popular microcontrollers and a LabJack U3 device as potential replacements
for the parallel port. All microcontrollers achieved latencies comparable to the parallel port in
terms of both absolute latencies and jitter. The 8-bit MCUs (Arduino Uno, Arduino Leonardo)
were generally slower than the 32-bit MCUs (Teensy LC, Teensy 3.2) but still consistently achieved
latencies below 1 ms and below half a millisecond compared to the parallel port so even high-speed
data recordings with sampling rates in the lower kilohertz range will therefore record triggers with
a maximum delay and jitter of a few samples relative to a native parallel port. The LabJack U3
performed worse than all tested MCUs when accessed with code from the programming interface
documentation (the setFIOState method). Direct access to the device’s internal memory through
the writeRegister method improved the latency, at the cost of increased complexity for the user.
It is important to note, however, that when operated under Windows, the writeRegister method
resulted in a number of large outliers of up to 7 ms. This problem did not occur when operating
the LabJack U3 with the writeRegister method under Linux, or when operating it using the
setFIOState method under either operating system. Apart from these eye-catching outliers in
that particular case, the remaining devices did not produce many outliers. Although there were
a few outliers larger than half a millisecond in two tests (Arduino Leonardo and Arduino Uno on
Linux), they were well below the usual unavoidable timing differences, such as due to missed screen
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Figure 4.2. Raincloud plot (Allen et al., 2021) of TTL pulse latencies for the parallel port,
all tested MCUs, and the LabJack U3. The LabJack U3 was tested using two different methods;
(i) through the standard LabJack setFIOState method, and (ii) through writing data directly to the
register with the writeRegister method. Under Windows, the LabJack U3 (writeRegister) had 11 more
measurements between 2.3 and 7 ms that are not shown in the figure (mean = 4 ms), as indicated with
the red asterisk.

refreshes and the latency of the input devices. Our testing setup also allowed us to measure the
input lag due to the operating system without the underlying delays in real keyboards (see latency of
Teensy 3.2 Keyboard in Table 4.1). This measured input lag provides a lower bound of unavoidable
timing differences, that is, even if input (e.g., a keyboard or response box) and output (e.g., an
event-trigger box based on an MCU) are hypothetically perfect and without delay, researchers
still have to expect around 1.7 ms of delay with some jitter (see Table 4.1). This means that for
example, in experiments marking a subject’s response in a recorded electroencephalogram EEG by
sending an event trigger after receiving a key press, the delay due to the operating system will be
at least an order of magnitude above MCU TTL pulse latency (for a similar point, see Ulrich &
Giray, 1989). Taken together, the results show that using MCUs (and with the mentioned caveats,
the LabJack U3) to send digital event signals can reliably achieve adequate performance. Due to
a lack of an Apple device with native parallel port support, we did not perform the tests under
the macOS operating system. We speculate that the performance would have been slightly worse
(longer latencies and increased jitter) compared to Windows and Linux, based on other results
comparing the three operating systems (Bridges et al., 2020; Simpson, 2019). Yet for some macOS
users, MCUs may still be an attractive option given the lack of alternatives.

Our findings build trust in the commercial products that have been introduced to the market in
recent years to fill the gap left by parallel ports. However, the simplicity of our experimental setup
and the devices we built for testing indicates that it may not be necessary to buy a commercial
product: With some time and dedication, a replacement for the parallel port can be easily built (see
Supplemental Material for instructions). Such Do-it-yourself (DIY) devices afford much greater
flexibility than many commercially available devices: By choosing the MCU and other materials, as
well as the software to run on the device, the end users themselves determine on which system the
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device will run. For the MCU devices presented in this study, we supply firmware as well as high-
level Python code under a permissive license in the Supplemental Material. The LabJack U3 on
the other hand is shipped with a proprietary firmware and a dedicated software interface provided
by the LabJack Cooperation. With the growing literature on open-source hardware in the spirit
of open science (White et al., 2019), many other building instructions and software examples are
available on the Internet. Unlike many commercial products, MCUs and the additional components
needed to build a replacement for the parallel port are relatively cheap (around €30 in total) and
are thus also available to researchers and users whose budgets do not allow them to buy expensive
new hardware (Chagas, 2018). It is still important to stress that each laboratory setup must be
appropriately tested and benchmarked before data recording (Plant et al., 2004; Plant & Quinlan,
2013; Plant & Turner, 2009). However, the same applies to commercial hardware and software. In
summary, considering the affordable prices, ease of use, performance, and flexibility of MCUs with
a native USB controller, there are many reasons for deploying them in laboratory studies.

4.6 Supplemental Material

The datasets generated and analyzed during the current study are archived and permanently
available in the Zenodo repository under: https://doi.org/10.5281/zenodo.3838621.

The supplemental material including the analysis code and code used for data recording is available
as a website: https://sappelhoff.github.io/usb-to-ttl. The source of the website is archived on
Zenodo and permanently available under: https://doi.org/10.5281/zenodo.3838692.

The preprint for this chapter is available on PsyArXiv under: https://doi.org/10.31234/osf.io/
x5dnb
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Abstract

The Brain Imaging Data Structure (BIDS) project is a rapidly evolving effort in the human brain
imaging research community to create standards allowing researchers to readily organize and share
study data within and between laboratories. Here we present an extension to BIDS for Electroen-
cephalography (EEG) data, EEG-BIDS, along with tools and references to a series of public EEG
datasets organized using this new standard.

67

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41597-019-0104-8


Chapter 5

5.1 Introduction

EEG was first applied in humans nearly a century ago (Berger, 1929). It records the electric
potential fluctuations at the scalp, primarily from locally synchronous post-synaptic activity in
the apical dendrites of pyramidal cells in the cortex. Widely used in both clinical and non-clinical
settings, EEG is becoming increasingly important in cognitive neuroscience, with statistics from
scientific reports showing that interest in EEG has been growing faster since the early 2000s.
This can be attributed to interest in brain-computer interfaces and more sophisticated dynamics
measures along with more accurate biophysical models for reconstructing sources. EEG is more
versatile than other imaging modalities because (i) it is lightweight and requires relatively low-
cost equipment, (ii) it can be used in many different environments (e.g., while sitting in a lab
chair, driving, walking, playing a video game, sleeping, interacting with others in social situations,
etc.), (iii) it can be used either alone or in conjunction with other imaging modalities, (iv) its
task design constraints are less restrictive than metabolic (PET) or hemodynamic (fMRI) imaging
methods, and (v) it captures neural activity with millisecond precision, making it possible to record
cortical dynamics at the speed of perception, thought and action. Because of this versatility, the
field of applications for EEG is broad. In turn, the commercial market for EEG systems is much
larger than that of other imaging techniques (e.g., PET, MRI, MEG), resulting in a multitude of
equipment manufacturers (more than 10 major manufacturers in neuroscience) building different
hardware systems, usually with their own software and proprietary data formats. Manufacturers
have little financial incentive to cooperate and provide compatible formats. This resulting diversity
of formats is an impediment to reusing data as well as to building large-scale EEG databases.

The Brain Imaging Data Structure, originally proposed for Magnetic Resonance Imaging (MRI), is
a human brain research community standard used for organizing and sharing brain imaging study
data within and between laboratories for many (ultimately all) imaging modalities (Gorgolewski
et al., 2016). BIDS primarily addresses the heterogeneity of data organization by following the
FAIR principles (Wilkinson et al., 2016) of findability, accessibility, interoperability, and reusability.
BIDS addresses findability and reusability by providing rich metadata in dedicated sidecar files and
interoperability by using existing standard data formats. Accessibility is not directly addressed by
BIDS, but by repositories that build on BIDS, such as OpenNeuro (https://openneuro.org). By
stipulating how to structure data using naming conventions and dedicated metadata files to store
dictionaries (.json) and data (.tsv), BIDS fosters interoperability and reuse of acquired datasets.
Because BIDS data are structured, BIDS also addresses issues of reproducibility by allowing the
creation of fully automated data analysis workflows.

Here we report on the extension of BIDS to EEG data. EEG-BIDS builds upon the MEG-BIDS
extension (Niso et al., 2018) and is presented concurrently with the iEEG-BIDS extension covering
human intracranial electrophysiology (Holdgraf et al., 2019). In this document we only highlight
the main features of EEG-BIDS. The full documentation of the EEG-BIDS extension can be found
via the link to the specification on the general BIDS website (https://bids.neuroimaging.io/).

5.2 EEG-BIDS Summary

The extension of BIDS to EEG data closely follows the general BIDS specification (see Figure 5.1).
Each subject’s data corresponds to a directory of raw data containing subdirectories for each
session and data modality. This is accompanied by a dataset_description.json file containing
generic information about the dataset and in the case of the EEG modality, a metadata file with
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the suffix eeg.json. The eeg.json file exhaustively specifies among other metadata details of the
experimental task and the EEG recording system. Optional directories include the sourcedata
directory, which can be used to supply original non-formatted data. Furthermore, a stimuli
directory and a code directory can be present to allow data conversion and preprocessing to be
reproduced, as indicated in the original specification (Gorgolewski et al., 2016). Within each
subject directory, the eeg subdirectory contains the EEG and metadata. For instance, for a
single session study, sub-XX would have subdirectory eeg which contains EEG files using the
naming pattern sub-XX_task-YY_eeg.<extension> corresponding to acquisitions of EEG data.
In addition, sub-XX_task-YY_channels.tsv must be specified describing the parameters of the
data acquisition and two extra files, sub-XX_task-YY_electrodes.tsv and sub-XX_task-YY_-
coordsystem.json, should be specified if the positions of the electrodes are known (see below).

name type u n i t s s ta tus s t a t u s _ d e s c r i p t i o n
CP5 EEG microV good n / a
FC5 EEG microV bad high f req noise
FC1 EEG microV good n / a
C3 EEG microV good n / a
VEOG EOG microV good n / a

{
"TaskName " : "TASKNAME" ,
" SamplingFrequency " : 1000 ,
" S o f t w a r e F i l t e r s " : " n / a " ,
" EEGChannelCount " : 4 ,
" EOGChannelCount " : 1 ,
" EEGReference " : " placed on Cz" ,
" PowerLineFrequency " : 50

}

name x y z impedance
CP5 −0.77 −0.30 0.57 8
FC5 −0.77 0.30 0.57 12
FC1 −0.29 0.31 0.91 2
C3 −0.59 0.00 0.81 5
VEOG n / a n / a n / a n / a

onset du ra t i on value s t i m _ f i l e
6 1 1 st im1 . png
10 1 2 st im2 . png
15 1 3 st im3 . png
24 1 1 st im1 . png

{
" EEGCoordinateSystem " : "T1w" ,
" EEGCoordinateUnits " : "mm" ,
" AnatomicalLandmarkCoordinates " : {

"LPA " : [−0.067 , 1.736e−09, −3.844e−09] ,
"NAS" : [−4.11e−09, 0.091 , −4.541e−10] ,
"RPA" : [0 .064 , −6.435e−09, −4.566e−09]

} ,
" AnatomicalLandmarkCoordinateSystem " : "T1w" ,
" AnatomicalLandmarkCoordinateUnits " : "mm" ,
" IntendedFor " : " sub−01_T1w . n i i . gz "

}

/
README
CHANGES
dataset_description.json
participants.tsv
participants.json
task-TASKNAME_events.json
sub-01

eeg
sub-01_task-TASKNAME_eeg.edf
sub-01_task-TASKNAME_eeg.json
sub-01_task-TASKNAME_events.tsv
sub-01_task-TASKNAME_channels.tsv
sub-01_task-TASKNAME_electrodes.tsv
sub-01_task-TASKNAME_coordsystem.json

anat
sub-01_T1w.nii.gz
sub-01_T1w.json

stimuli
stim1.png
...

sourcedata
sub-01

eeg
sub-01_task-TASKNAME_eeg.xdf

...
...

6

5

4

3
21

Figure 5.1. Exemplary EEG-BIDS dataset with previews of EEG files. The left side of the
figure shows a standard BIDS directory tree with the root containing files describing the dataset in gen-
eral (README, dataset_description.json), a file describing the participants (participants.tsv), and
as several JSON files (participants.json, task-TASKNAME_events.json), which contain the description
necessary to understand the contents of the TSV files. Note that JSON files at high levels get inherited
by lower levels unless overridden (the "Inheritance Principle"). Next to the files at the root, there is a
stimuli and a sourcedata directory that can be used to save the respective study data. Most important
are the subject directories named sub-<sub-label> for each study participant. Nested in the subject
directories are all recorded data split over modalities (eeg and anat, for the EEG and structural MRI
data respectively). The right side of the figure shows the contents of the eeg modality directory, including
the raw EEG data (1) and associated metadata (2). An events.tsv file (3) specifies all events that were
recorded during the session and can reference presented stimuli with the stimuli directory of the dataset
(see stim_file column). A channels.tsv file (4) provides further information about the raw EEG data
and can contain information not present in the raw EEG data file such as filter settings and channel status
(good/bad). Finally, an electrodes.tsv file (5) and an accompanying coordsystem.json file (6) provide
electrode locations and specify which coordinate framework to use to interpret the electrode locations (for
example with respect to a T1 weighted MRI scan).
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As in the MRI specification of BIDS, sub-XX_task-YY_events.tsv files should be present, encod-
ing all of the parameters of the experimental design (onset of events, trial type, duration, responses,
etc.). While such information is often present as one or several binary "trigger" channels in the
EEG recordings, the representation of events is rarely explicit in the original data (e.g., a numeric
code is used to indicate the onset of a given picture presented in a given experimental condition)
hence the necessity of these events.tsv files. Since the initial specification of BIDS for MRI in
2016, the Hierarchical Event Descriptor (HED) system for precise annotation of events has been
integrated, which is particularly useful for electrophysiological data in which dynamics of brain
activity are associated with multiple experimental events (Bigdely-Shamlo et al., 2016).

5.3 Specific EEG-BIDS Considerations

The process of converging on a list of suitable data formats for EEG-BIDS was governed by three
major requirements: A suitable data format should (i) address the needs of a large portion of
the global EEG community, (ii) be interoperable according to the FAIR principles (Wilkinson et
al., 2016), and (iii) meet the technical requirements of neuroscientific workflows, such as saving
numerical data with high precision.

As a solution to this challenge, the EEG-BIDS specification incorporates only two recommended
"official" data formats: The European Data Format (EDF), which is an ongoing international effort
to provide a common data format for electrophysiological recordings that began in 1992 (Kemp
et al., 1992), and the BrainVision Core Data Format, developed by Brain Products GmbH. While
the BrainVision Core Data Format was designed by Brain Products GmbH for its proprietary EEG
recording equipment and analysis software, it is based on the Microsoft Windows INI file and has
a concise documentation. Both of these formats follow the three requirements for suitable data
formats for EEG-BIDS: (i) A recent survey indicates that they are widely used in the community
(https://bids.berkeley.edu/news/bids-megeegieeg-data-format-survey), (ii) they have open access
documentation and an open source implementation for both reading and writing in at least two
programming languages that are widely used in the field (in this case, Python and MATLAB,
among others), and (iii) they have high numerical precision (EDF: 16 bits, BrainVision Core
Data Format: 32 bits). To accommodate a larger scientific audience and facilitate adoption, the
EEG-BIDS standard also allows two "unofficial" commonly used data formats: The format used
by the MATLAB toolbox EEGLAB (Delorme & Makeig, 2004, .set and .fdt files), and the
Biosemi format (.bdf). While not actively encouraged, these two formats are included due to
their popularity and their interoperability among the major software packages. Future versions
of BIDS may extend the list of "officially" supported data formats, based on the fulfillment of
the above mentioned three requirements for suitable data formats. Independently of the raw data
format used, critical metadata about the recording are always available in BIDS .tsv and .json
files.

In order to provide an unambiguous documentation of EEG data, we are clarifying two sets of terms
that are often used interchangeably: Electrodes versus channels, and fiducials versus anatomical
landmarks.

We distinguish between electrodes and channels using the following definitions: (i) An EEG elec-
trode is a contact point attached to the skin, (ii) a channel is the combination of the analog
differential amplifier and analog-to-digital converter that result in a potential (voltage) difference
being stored in the EEG dataset. The "reference" and "ground" electrodes should in general not be
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referred to as channels and only as electrodes. Some systems (e.g., Biosemi) have an active float-
ing reference, whilst for most of the other systems, the potential at electrodes is neither amplified
nor recorded. For EEG-BIDS, researchers must specify a channels.tsv file and may in addition
specify an electrodes.tsv file with an accompanying coordsystem.json file.

Furthermore, we distinguish between fiducials and anatomical landmarks using the following defi-
nitions: (i) Fiducials are objects with a well defined location used to facilitate the localization of
electrodes and co-registration with other geometric data such as the participant’s own T1 weighted
magnetic resonance head image, a T1 weighted template head image, or a spherical head model.
Commonly used fiducials are vitamin E pills, which are clearly visible in an anatomical MR image,
or reflective spheres that are localized with an infrared optical tracking system. (ii) Anatomical
landmarks on the other hand define locations on a research subject such as the nasion, which is
the intersection of the frontal bone and two nasal bones of the human skull. Fiducials are typically
used in conjunction with anatomical landmarks.

5.4 Public EEG-BIDS Datasets

Several study examples (with zero-byte data files) are available in the BIDS-examples GitHub
repository (https://github.com/bids-standard/bids-examples). We have also released three full
datasets formatted using the EEG-BIDS standard:

• The Matching Pennies dataset (Appelhoff et al., 2018) is an example of a single recording
session per participant. It was collected as part of a student project to replicate a brain-
computer interface study of motor intention decoding.

• The Rishikesh dataset (Delorme, 2018) is an example of multiple recording sessions per par-
ticipant. Participants were asked to meditate continuously whilst experience-sampling probe
questions were presented at random intervals throughout the duration of the experiment.

• The simultaneous resting-state EEG-fMRI dataset (Clayden & Deligianni, 2016) offers rest-
ing-state data in EEG and fMRI modalities, and structural T1 weighted data and diffusion
data (NODDI sequence).

5.5 Community Tools and Software Support

As part of the BIDS project, datasets formatted to follow the EEG-BIDS standard can be validated
using the "bids-validator", a JavaScript application that runs locally as a command line version
(using Node.js) or within an Internet browser (https://bids-standard.github.io/bids-validator/).
With this validation tool, researchers can check their newly formatted datasets and make full use
of the data structure’s strengths for instance, checking for missing data or underspecified metadata.

The BIDS starter kit (https://github.com/bids-standard/bids-starter-kit) is a collection of com-
munity-driven guides, tutorials, helper scripts, and wiki resources to help researchers get started
with BIDS. The resources cover two popular programming languages (Python and MATLAB) and
will be extended over time to incorporate additional guides.

We are collaborating with the developers of the most widely used EEG data analysis tools in order
to help EEG practitioners convert their existing data to the EDF or BrainVision Core Data Format.
Data conversion utilities from many raw EEG data formats to the EDF and BrainVision format
are available in MATLAB from the FieldTrip (Oostenveld et al., 2011) and EEGLAB (Delorme &
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Makeig, 2004) toolboxes, and in Python from the MNE-Python (Gramfort et al., 2013) package.
While specific software implementations are beyond the scope of the data specification, we here
also want the reader to be aware of further work being undertaken by the open source community
to interact with BIDS datasets. For instance, an EEGLAB "study" can now be exported as BIDS
(std_tobids.m), FieldTrip can similarly export (data2bids.m) while SPM12 (Litvak et al., 2011)
(spm_bids.m) and MNE-Python (in form of the MNE-BIDS project Appelhoff et al., 2019)) can
read any BIDS dataset. Ultimately, reading/writing BIDS dataset will be fully automatic, as it is
the case for MRI.

5.6 Data Analysis Pipelines and Beyond Sharing Raw Data

EEG’s long history, versatility and variety of applications makes it a data- and method-rich tech-
nique. Recently, the OHBM Committee on Best Practice in Data Analysis and Sharing (COBIDAS)
released a guideline for good practice and reproducibility in EEG (C. Pernet et al., 2020). Accord-
ing to the guideline, even the simplest processing pipeline already contains eight separate steps,
making it clear that while EEG-BIDS helps with data sharing, it will remain non-trivial to develop
automated processing pipelines of neurophysiology data such as already available for MRI data
(Gorgolewski et al., 2017). On its own, EEG-BIDS is the first necessary step toward achieving
validated and reproducible data analysis through standardizing the complete documentation of a
dataset.

This article describes the new EEG extension for BIDS, and has limited itself to sharing raw data
using previously developed community standards. Challenges that are specific to EEG, such as
support for data formats, are still under active debate, and some additional formats will likely
be incorporated once the technical issues are addressed and FAIR standards are achieved. The
development of BIDS for EEG derivatives is also already underway (BIDS Extension Proposal 21):
This will also make sharing of processed data possible, thereby fostering re-analyses, meta-analyses,
and new analyses without the burden of data preparation.

5.7 Supplemental Material

The datasets generated and analyzed during the current project (i.e., the community survey) are
available on GitHub under: https://github.com/sappelhoff/bids_format_survey.

The BIDS specification is available as a website: https://bids-specification.readthedocs.io. A PDF
version of the specification is archived on Zenodo and permanently available under: https://doi.
org/10.5281/zenodo.3686061.

The preprint for this chapter is available on PsyArXiv under: https://doi.org/10.31234/osf.io/
63a4y
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6 | General Discussion

In the introduction of this dissertation, we started with imagining somebody visiting a wine shop.
That imaginary agent was faced with the tough challenge to buy a well tasting bottle of wine
at a low price. If we were to directly apply the knowledge we gained from the chapters of this
dissertation to that imaginary agent, we might say that (i) it is probably a good idea to allow the
agent full control over which wines to sample, because it might boost their evidence processing
(chapter 2), or (ii) that extremely bad and good tasting wines, or extremely cheap and expensive
wines are likely overweighted compared to other wines, given an initial "default response" of the
brain (chapter 3). However, such direct applications from basic research to constructed real-life
examples are not always advisable1, and furthermore it would be hard to apply what we learned
about event marking using MCUs (chapter 4), or about neuroimaging data organization using
BIDS (chapter 5) to a customer in a wine shop. Therefore, in the following sections I will not make
any more references to the agent in the wine shop. I will summarize the key points from the past
four chapters, and delineate open questions and future directions.

6.1 Control over sampling is beneficial for subsequent choice

In chapter 2 we reported a new aspect of decisions from experience, where participants first sam-
ple the possible outcomes of choice options before deciding for one of the options and receiving
a random draw thereof as a reward. We found that the encoding of sample information in this
setting was enhanced – both in behavior and in EEG patterns – when participants were allowed
to fully self-control the sampling process (Appelhoff et al., 2022). Crucially, we obtained our re-
sults through comparison with baseline conditions containing fully matched stimulus sequences.
This design choice allowed us to preempt several critiques. For example, we could exclude that
choices under self-control might have been easier, due to optional stopping when differences be-
tween options were maximal (Hertwig & Pleskac, 2010), because these differences were identical
in the "no control" baseline condition. As another example, we could exclude that CPP measures
of evidence accumulation were due to any specific characteristics of the sampling sequence: The
observed steeper "ramp-up" of CPP signals during full control was not due to a potentially stronger
occurrence of rare or extreme outcomes near the stopping point (e.g., Donchin, 1981; DuncanJohn-
son & Donchin, 1977), because – again – the same outcomes occurred in the "no control" baseline
condition.

The analysis of our data also produced some findings that are potentially relevant for future
research. For example, we found a significant encoding of a samples "extremity", that is, its
distance from the median sample value. While extreme samples in decisions from experience are
often labeled extreme due to their rarity as well as their value (e.g., Pleskac & Hertwig, 2014; Wulff

1(and certainly not in this case)
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et al., 2018), there is also a considerable amount of research looking at samples’ extremity based
solely on their placement at the "edges" of a range of outcome values (e.g., 1 and 9 when the range
is 1-9; Ludvig et al., 2018; Ludvig et al., 2014; Ludvig & Spetch, 2011). Revisiting this branch of
research with a neurocognitive (EEG) perspective holds the potential to uncover mechanisms as
for why edge cases hold such sway over behavioral choice.

Our neurometric analysis furthermore showed a general overweighting of "outlying" extreme values,
together with a strong bias towards larger numbers (see also chapter 3). This appeared to have a
direct impact on stopping, because sampling sequences ended significantly more often with large
extreme values than expected by chance. A promising next step towards understanding optional
stopping in decisions from experience might be to scrutinize existing datasets (such as the large
meta-analytic dataset from Wulff et al., 2018), with the analysis method proposed in chapter 2, to
see whether stopping at extreme values is a more general trend. To follow up, EEG studies could
be designed to see which neurocognitive measures might predict optional stopping.

6.2 Compression in behavioral choice is not predicted by
EEG signals

When forming a choice based on a sequence of previously sampled values, decision-makers are
often found to non-linearly weight each value before integration. In compressive weighting, inlying
values have a higher impact than they should have compared to a linear weighting, whereas in anti-
compressive weighting, this is true for outlying values (e.g., Fechner, 1860; Spitzer et al., 2017;
Tsetsos et al., 2012; Tversky & Kahneman, 1992). In chapter 3 we harnessed recent findings on
when compression versus anti-compression is elicited in humans (Clarmann von Clarenau et al.,
2022). Showing participants the same stimuli sequences, we subtly changed task instructions from
an "averaging" instruction to a "comparison" instruction, and succeeded to replicate and extend
findings by Clarmann von Clarenau et al. (2022): The same participants compressed the sequences
under averaging instructions, and anti-compressed them under comparison instructions. Crucially,
we recorded EEG data throughout and applied a neurometric approach based on RSA to predict
compression or anti-compression in subsequent choice, based on neural patterns measured at the
time of individual sample presentation (see also chapter 2 and Appelhoff et al., 2022; Luyckx et
al., 2019; Spitzer et al., 2017). Contrary to our expectation, the neurometric approach predicted
anti-compression under both task instructions – even when the subsequent choice indicated a
compression of sample values (according to behavioral modeling). The results indicate that extreme
values are over-processed in the brain by "default". Future research will have the challenging task
to find the processes that lead to an eventual downweighting of extreme values in the brain, as to
reflect how these values become underweighted in choice behavior.

6.3 Microcontroller units are a viable alternative to the par-
allel port

In chapter 4 we showed that – in the context of sending "event markers" as in EEG research –
most modern microcontroller units (MCUs) can achieve a latency of less than 1 ms, with a low
amount of temporal jitter (Appelhoff & Stenner, 2021). All tested MCUs were comparable in
performance to the previous (now disappearing) gold standard, the parallel port. Therefore, when
performing time critical research such as ERP research (Luck, 2014), MCUs can be relied upon to
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not introduce major measurement inaccuracies.

Together with our report on latencies of the different devices, we supplied supplemental materials on
how to build MCU-based interfaces, as well as how to write the software to operate them. Prior to
our study, much of this knowledge was incomplete, hidden in lab-internal protocols or deeply buried
in user forums such as the PsychoPy (Peirce et al., 2019) forum (https://discourse.psychopy.org/)2.
Judging from personal experience and communications, many colleagues facing the problem of
needing an alternative to the disappearing parallel port either (i) used a significant amount of
time to find such "hidden" solutions, (ii) spent a large amount of money for commercial solutions,
or (iii) gave up on the problem and reverted to old computer equipment that still supported the
parallel port. We hope that having an openly accessible report with background information,
timing measurements, and software and build instructions will save future researchers this time,
in the spirit of open science and open hardware (Fecher & Friesike, 2014; White et al., 2019).
Furthermore, our report may make this technology accessible for researchers who may not be able
to afford the often pricey commercial solutions (Chagas, 2018).

We performed our study at a peculiar point in time. Many researchers still have research equipment
interfacing with the parallel port, but commercially available personal computers are typically not
shipped with a parallel port anymore. With the present study, we provide a temporary solution,
yet future technology will most likely rely on other technologies: For example on network protocols
that use time stamps which are synchronized at analysis time (e.g., using "Cristian’s algorithm"
Cristian, 1989), as is done in the popular Lab Streaming Layer (LSL) software (https://github.
com/sccn/labstreaminglayer). Using network protocols and time stamps instead of TTL markers
transmitted via wires would allow for wireless recordings that become important when running
mobile brain/body imaging studies (MoBI; Jungnickel et al., 2019), for example by using EEG in
virtual reality contexts. In any case, until we see what the future holds, our study provides some
solid grounds to continue doing EEG research without a parallel port.

6.4 A community-developed data standard helps to improve
reproducibility in science

The Brain Imaging Data Structure (BIDS) is a data standard that provides schemas on (i) how
to organize files and directories, (ii) how to structure metadata, and (iii) which information and
documentation to supply alongside a dataset. One important aspect of BIDS is its extensibility
through community processes, so-called BIDS Extension Proposals (BEPs). In chapter 5, we
summarized the results of such a BEP aimed at extending the BIDS format to cover EEG as a
data modality (Pernet et al., 2019).

A data standard like BIDS addresses fundamental aspects of good research data management. It
provides guidelines on how to organize, annotate, track, and store research data, and thus provides
the foundation for reproducibility of scientific results (Borghi & Van Gulick, 2021; Gorgolewski
& Poldrack, 2016; Poldrack et al., 2019). However, BIDS is more than "just a data standard";
it also represents a growing community that builds and maintains that standard. As of writing
this paragraph, more than 250 people have contributed in different ways, reaching from minor
corrections to the specification text up to major overhauls and extensions of the standard (see the
Contributors List3). Within 3 years of the acceptance of the EEG extension proposal presented

2In fact, Tristan Stenner and I initially met on that forum, trying to address the problem we then wrote the
paper on.

3https://bids-specification.readthedocs.io/en/stable/99-appendices/01-contributors.html
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in this dissertation, the report (Pernet et al., 2019) has been cited more than 130 times (Google
Scholar, retrieved 2022-03-11). Major community projects such as the EEGManyLabs initiative
(Pavlov et al., 2021) and the EEGManyPipelines initiative (https://www.eegmanypipelines.org/)
have adopted BIDS for their workflows. In the domain of neuroimaging, support for BIDS is
present in nearly all commonly used research software projects. Furthermore, there are more than
70 openly accessible EEG datasets in BIDS format shared on the OpenNeuro database alone (https:
//openneuro.org/; Markiewicz et al., 2021), noting that this is most likely a vast underestimation of
all EEG datasets that have been shared in BIDS format since the publication of our report. These
numbers serve as an indicator for both (i) the adoption of the standard by the wider neuroimaging
community, and (ii) the need that our standard addresses.

To remain successful in the future, BIDS needs to address several challenges. With a growing
standard that is continuously being extended, the need for active community members and main-
tainers to steer and streamline these extensions becomes pressing. Yet, finding volunteers who
have enough time and knowledge to navigate a complex specification that encompasses modalities
from arterial spin labeling MRI over physiological data to EEG derivatives is not easy. To lower
the level of complexity both users and maintainers of BIDS are facing, the steering group and
maintainers are currently discussing different models to go forward. One idea is to modularize the
specification into smaller entities such as (i) raw data, (ii) derived data, (iii) model specifications
(e.g., computational models, statistical models), and (iv) other data such as processes on prove-
nance tracking. Addressing these challenges early will ensure the sustainability of BIDS as the
major data standard in the domain of neuroimaging.
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