
Computer-Verified Foundations of Metaphysics
and an Ontology of Natural Numbers in Isabelle/HOL

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Daniel Kirchner

Berlin, December 2021

Betreuer: Prof. Dr. habil Christoph Benzmüller
Zweitgutachter: Dr. Edward N. Zalta
Drittgutachter: Prof. DDr. Hannes Leitgeb

Datum der Disputation: 16. Mai 2022

Selbstständigkeitserklärung

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen,
die wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in
keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich
mich einverstanden.

Abstract

We utilize and extend the method of shallow semantic embeddings (SSEs) in classical
higher-order logic (HOL) to construct a custom theorem proving environment for abstract
objects theory (AOT) on the basis of Isabelle/HOL.

SSEs are a means for universal logical reasoning by translating a target logic to HOL
using a representation of its semantics. AOT is a foundational metaphysical theory,
developed by Edward Zalta, that explains the objects presupposed by the sciences as
abstract objects that reify property patterns. In particular, AOT aspires to provide a
philosphically grounded basis for the construction and analysis of the objects of mathe-
matics.

We can support this claim by verifying Uri Nodelman’s and Edward Zalta’s reconstruc-
tion of Frege’s theorem: we can confirm that the Dedekind-Peano postulates for natural
numbers are consistently derivable in AOT using Frege’s method. Furthermore, we can
suggest and discuss generalizations and variants of the construction and can thereby
provide theoretical insights into, and contribute to the philosophical justification of, the
construction.

In the process, we can demonstrate that our method allows for a nearly transparent
exchange of results between traditional pen-and-paper-based reasoning and the comput-
erized implementation, which in turn can retain the automation mechanisms available
for Isabelle/HOL.

During our work, we could significantly contribute to the evolution of our target theory
itself, while simultaneously solving the technical challenge of using an SSE to implement
a theory that is based on logical foundations that significantly differ from the meta-logic
HOL.

In general, our results demonstrate the fruitfulness of the practice of Computational
Metaphysics, i.e. the application of computational methods to metaphysical questions
and theories.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Prior Work . 2
1.3. Contributions and Structure of the Thesis 5
1.4. Verified Document Generation and Conventions 6

2. Shallow Semantic Embeddings 7
2.1. Embeddings of Domain-Specific Languages 7
2.2. SSEs as Universal Reasoning Tools . 8
2.3. SSE of Quantified Higher-Order Modal Logic 9
2.4. SSEs with Abstraction Layers . 11
2.5. Isabelle’s Native Abstraction Mechanisms 13
2.6. Implicit Interpretation and Assignment Functions in SSEs 18
2.7. Reproducing the Syntax of the Target Theory 18

3. Abstract Object Theory 22
3.1. Overview . 22
3.2. The Language . 24
3.3. The Axiom System . 27
3.4. The Deductive System . 30
3.5. Interesting Theorems of AOT . 36
3.6. Avoiding Known Paradoxes . 39
3.7. Extending AOT’s Free Logic to Relations 41
3.8. Further Properties of AOT . 43

4. SSE of AOT in Isabelle/HOL 48
4.1. Model Construction . 48
4.2. Syntax of the Target Theory . 57
4.3. Extending Isabelle’s Outer Syntax . 59
4.4. Representation of an Abstract Semantics of AOT 61
4.5. Specifications and the Hilbert-Epsilon-Operator 62
4.6. Axiom System and Deductive System . 63
4.7. Meta Theorems . 70
4.8. Artifactual Theorems . 79
4.9. Discussion . 83

iii

5. Natural Numbers in AOT 84
5.1. General Idea of the Construction . 85
5.2. Equinumerosity of Relations . 85
5.3. The Number of Fs and Hume’s Theorem 90
5.4. The Number Zero . 91
5.5. Counting in Possible Worlds . 92
5.6. Ancestral Relations and Transitive Closures 93
5.7. Weak Ancestral Relations . 95
5.8. Generalized Induction . 97
5.9. The Predecessor Relation . 98
5.10. Natural Numbers . 101
5.11. Zero is a Natural Number . 101
5.12. Being a Natural Number is Rigid . 102
5.13. Zero Has No Predecessor . 102
5.14. No Two Natural Numbers have the Same Successor 102
5.15. Mathematical Induction . 103
5.16. Properties of the Predecessor Relation and Natural Numbers 103
5.17. Possible Richness of Objects . 104
5.18. Every Number has a Unique Successor . 105
5.19. The Predecessor Axiom in Detail . 106
5.20. Modelling Possible Richness of Objects . 112
5.21. Prospect of an Enhanced Version of the Construction 113
5.22. Summary . 115

6. Higher-Order Object Theory 116
6.1. Overview of Higher-Order Object Theory 116
6.2. Applications to Theoretical Mathematics 117
6.3. Bounded Models . 118
6.4. Abstract Objects in Unbounded Models 119

7. Conclusion 121

A. Isabelle Theory 123
A.1. Model for the Logic of AOT . 123
A.2. Outer Syntax Commands . 144
A.3. Approximation of the Syntax of PLM . 145
A.4. Semantics . 156
A.5. Definitions of AOT . 185
A.6. Axioms of AOT . 188
A.7. The Deductive System PLM . 193
A.8. Basic Logical Objects . 338
A.9. Restricted Variables . 349
A.10.Extended Relation Comprehension . 356
A.11.Possible Worlds . 368

iv

A.12.Natural Numbers . 419
A.13.Additional Theorems . 507

References 521

v

1. Introduction

1.1. Motivation

The analysis of foundational formal systems using automated theorem provers is as old
as automated theorem provers themselves: Already in the middle of the last century,
Bertrand Russell was quick to recognize the potential of computational methods, when
confronted with the Logic Theorist,1 commonly regarded as the first automated theorem
prover, and its ability to prove 38 out of 52 theorems from chapter two of Whitehead and
Russell’s Principia Mathematica, including a proof more elegant than one of Whitehead
and Russell’s own (see [23]):

I am delighted to know that Principia Mathematica can now be done by
machinery. I wish Whitehead and I had known of this possibility before we
both wasted ten years doing it by hand. I am quite willing to believe that
everything in deductive logic can be done by a machine.2

However, building up a sound reasoning environment from scratch is a non-trivial task.
Consequently, today there is only a limited number of trusted systems that can offer
sophisticated interactive and automated reasoning tools like Coq [50], HOL-Light [24] or
Isabelle/HOL [39]. Furthermore, most of these systems have at least parts of their logical
foundation in common. For example, they are all based on some variation of functional
type theory. This may lead to a bias in the computational analysis of foundational
theories towards systems that use a similar logical foundation.
The following represents an attempt at overcoming this issue. We utilize the concept
of a shallow semantic embedding (SSE) with abstraction layers to transfer the merits
of the reasoning environment of Isabelle/HOL to a fundamentally different foundational
system, namely to Abstract Object Theory (AOT).
While it is not a requirement for our proposed general method, we demonstrate that
we can extend Isabelle/HOL by a customized reasoning infrastructure written in Is-
abelle/ML that allows for an almost entirely transparent transfer of reasoning in our
target logic and abstracts the syntactic and inferential differences between Isabelle/HOL
and AOT, while still internally using the verified core logic of Isabelle/HOL as semantic
backend. This means we effectively construct a dedicated theorem proving environment
for AOT that (1) is immediately guaranteed to be sound, (2) can be used to explore
the safety of axiomatic extensions of the system and (3) allows for the reuse of the
automation infrastructure available for Isabelle/HOL.

1A system developed by Allen Newell and Herbert Simon at Carnegie Mellon and programmed by
J. C. Shaw using the vacuum tubes of the JOHNNIAC computer at the Institute for Advanced Study.

2Letter from Russell to Simon dated 2 November, 1956; preserved in [49], page 208.

1

1. Introduction

While our method can potentially be applied to a multitude of logical systems, AOT is
a particularly well-suited target. On the one hand, it aims to be a foundational meta-
physical system that can serve as the basis for mathematics and thereby stands in the
tradition of Russell and Whitehead’s Principia Mathematica, while in fact extending its
scope to e.g. linguistics and the sciences in general (see [58]). On the other hand, it
is based on logical foundations that significantly differ from classical functional higher-
order type-theory and were even argued to be incompatible (see [43]). Initial results of
our research (see [29]) demonstrated how our method for formally analyzing models and
semantics of such a system can be beneficial and vital for its soundness (see 3.6.2). Dur-
ing our continued work, we could contribute to the evolution of AOT and simultaneously
arrived at a model structure and semantics that allows to faithfully reproduce its deduc-
tive system in Isabelle/HOL while retaining the existing infrastructure for automated
reasoning.3

As a prime result, we can show that the construction of Natural Numbers and the deriva-
tion of the Dedekind-Peano postulates, including Mathematical Induction, described in
Principia Logico-Metaphysica (PLM)4 are verifiably sound. Furthermore, we can sug-
gest the generalization of an additional axiom required for this construction, that we
believe strengthens the argument that the construction does not require any inherently
mathematical axioms.

1.2. Prior Work

Since the time of Russell and the Logic Theorist, there has been significant progress
both in the development of automated theorem provers in general and in the application
of computational methods to metaphysical questions and foundational logical theories
in particular. Some of the more recent developments in this area are outlined in the
following sections.

1.2.1. Prior Computational Analysis of Abstract Object Theory

The computational analysis of AOT was pioneered by Fitelson and Zalta in [17]. They
used the first-order system Prover9 (see [34]) for their work and were able to verify the
proofs of the theorems in AOT’s analysis of situations and possible worlds in [65]. Fur-
thermore, they discovered an error in a theorem about Platonic Forms in [46] that had
been left as an exercise. Other work with Prover9 that does not target AOT includes the
simplification of the reconstruction of Anselm’s ontological argument (in [41], Oppen-
heimer and Zalta show that only one of the three premises they used in [42] is sufficient)
or the reconstruction of theorems in Spinoza’s Ethics in [26].

3Note, however, that our embedding currently only extends to the second-order fragment of AOT.
We briefly discuss the challenges of representing full higher-order object theory in chapter 6.

4PLM is a continuously developed online monograph (see [62]) written by Edward Zalta, that contains
the most recent canonical presentation of AOT. This thesis is written relative to the version dated
October 13, 2021, archived in [63].

2

1.2. Prior Work

However, there are inherent limitations to the approach of analyzing higher-order theo-
ries like AOT with the help of first-order provers. While it is possible to reason about
the first-order truth conditions of statements by introducing sort predicates and using
a number of special techniques to translate the statements into the less-expressive lan-
guage of multi-sorted first-order logic (a detailed account of such techniques is given in
[1]), the complexity of the resulting representation increases for expressive, higher-order
philosophical claims. In general, this approach may be sufficient for analyzing concrete
isolated arguments, but it becomes infeasible to construct a natural representation of an
entire expressive higher-order theory and its full deductive system (see also [30]).

1.2.2. Prior Work involving Shallow Semantic Embeddings

Independently, the emergence of sophisticated higher-order reasoning environments like
Isabelle/HOL allows for a different approach, namely the analysis of arguments and the-
ories directly in higher-order logic by constructing Shallow Semantic Embeddings (SSEs)
(see [2]). In contrast to a deep embedding which defines the syntax of a target system
using an inductive data structure and evaluates statements semantically by recursively
traversing this data structure, a shallow semantic embedding instead provides a syntac-
tic translation from the target logic to the meta-logic. This is done by reusing as much of
the infrastructure of the meta-logic as possible, while defining the syntactic elements of
the target logic that are not part of the meta-logic by means of a representation of their
semantics. Since sets have a natural representation in higher-order logic, this approach
works well for any logical system that has a semantics defined in terms of sets. The
approach of shallow semantic embeddings is discussed in more detail in chapter 2.
For example, Benzmüller et al. provide an extensive analysis of quantified modal logic
using SSEs by means of embedding modal operators based on their Kripke semantics [6,
3, 9]. This allowed for an analysis of Gödel’s ontological argument in second-order S5
modal logic and weaker logics such as KB (see [8, 4]), followed by a range of studies of
similar ontological arguments (see e.g. [20]).
Another more recent example of the application of SSEs is the LogiKEy framework for
ethical reasoning, normative theories and deontic logics (see [5] and [10]). The goal
of LogiKEy is to develop the means for the control and governance of intelligent au-
tonomous systems. The framework is based on a set of SSEs of different deontic logics,
combinations thereof, as well as ethico-legal domain theories in higher-order logic with
an implementation in Isabelle/HOL.
The advantage of these studies using SSEs compared to the earlier use of first-order
systems is that arguments can be represented in their native syntax and are thereby
readable and maintainable, while the theorem proving environment is capable of auto-
matically transforming statements into a suitable first-order representation on the fly
to allow first-order theorem provers like E (see [48]) or SPASS (see [51]) to perform
proof search much like e.g. Prover9 was able to do on a manually constructed first-order
representation.

3

1. Introduction

These studies were still mainly concerned with case studies of concrete arguments or with
conservative extensions of higher-order logic like quantified higher-order modal logic.

1.2.3. Analysis of AOT with the SSE Approach

Initial results of our own research were reported in [29], in which we applied an extended
version of the technique of SSEs to AOT. For AOT no extensive prior analysis of canon-
ical models was available, in contrast to, for example, the extensive analysis of Kripke
models for higher-order modal logic that served as theoretical basis for the previous
work using SSEs mentioned above. While the so-called Aczel models of object theory
(see [60]) provide an important building block for constructing models of AOT in HOL,
no full set-theoretic model of object theory had been constructed. In [29] we extended
the existing Aczel models to a richer model structure that was capable of approximating
the validity of statements of the at the time most recent formulation of the second-order
fragment of AOT in Principia Logico-Metaphysica.5 Furthermore, we introduced the new
concept of abstraction layers. An abstraction layer consists of a derivation of the axioms
and deduction rules of a target system from a given semantics that is then considered
as ground truth while "forgetting" the underlying semantic structure, i.e. the reasoning
system is prevented from using the semantics for proofs, but is instead configured to
solely rely on the derived axioms and deduction rules. Abstraction layers turned out to
be a helpful means for reasoning within a target theory without the danger of deriving
artifactual theorems (see 4.8), while simultaneously allowing to maintain a flexible se-
mantic backend that can be used to explore axiomatic extensions and variations of the
target theory.
A major initial result of this project, reported in [31], was the discovery of an oversight in
an early version of PLM that allowed for the reintroduction of a previously known para-
dox into the system. While multiple quick fixes to restore the consistency of AOT were
immediately available, in the aftermath of this result AOT was significantly reworked
and improved. The result triggered an extensive debate about the foundations of AOT
which culminated in the extension of the free logic of AOT to relations, while previously
it was restricted to individual terms only. This evolution of AOT was accompanied by a
continuous further development of its embedding in Isabelle/HOL. This mutually bene-
ficial mode of work was described in [30] and resulted in a now stabilized and improved
formulation of AOT and a matching embedding of its second-order fragment. The details
of this process and its results are the main subject of this thesis.

5The respective version of PLM is archived in [64].

4

1.3. Contributions and Structure of the Thesis

1.3. Contributions and Structure of the Thesis

In the following, we first provide a more detailed description of Shallow Semantic Embed-
dings (chapter 2) and a brief introduction to Abstract Object Theory (chapter 3). Based
on that, chapter 4 describes the constructed embedding of the second-order fragment of
AOT (as presented in PLM [63]) in Isabelle/HOL.
In the process we highlight the contributions of the embedding to AOT on the one hand
and the techniques developed for its implementation on the other hand.
In chapter 5 we present our results on PLM’s construction of natural numbers and discuss
an extension of AOT with a more general comprehension principle for relations among
abstract objects. We also discuss some interesting variations of the construction that
may be adopted by PLM in the future.
Finally, in chapter 6 we briefly discuss the issue of applying our method to the full
higher-order type-theoretic version of AOT.
Our primary goals are to show that:

• SSEs can not only be used for case studies and the analysis of isolated arguments,
but also for implementing the axioms and full deductive system of entire logical
theories.

• The above is even feasible for a challenging target like AOT, which itself has the
ambition to be a foundational framework and is based on significantly different
logical foundations compared to our meta-logic HOL.

• We can reproduce the full deductive system of AOT in readable and usable form
while preserving Isabelle’s automation mechanisms. Thereby, we can effectively
construct a dedicated automated theorem proving environment for AOT.

• Using our method we could significantly contribute to our target theory.
• We can demonstrate the extent of our target theory and the practical feasibility

of reproducing complex reasoning in it by reproducing and validating its analysis
of natural numbers.

• In the process, we can provide valuable theoretical insights into, and analyze ex-
tensions and variations of, the construction of the natural numbers.

5

1. Introduction

1.4. Verified Document Generation and Conventions

This thesis is generated using Isabelle’s document preparation system (see [53]). In
particular, all formal statements cited in the thesis are renderings of verified theorems
in the embedding, unless specifically stated otherwise and marked with vertical bars at
the page margins.6

The appendix contains a rendering of the raw theory files of the embedding including all
proofs.7 The implementation currently consists of around 25,000 lines of Isabelle proof
text.8 While Isabelle allows producing latex code for raw theories directly,9 semantic
information (e.g. color-coding of free vs. bound variables) is lost in the process, which
reduces the readability. For that reason, we devised a custom theory presentation system
similar to Isabelle’s HTML theory presentation that uses PIDE markup information
(see [52]) to provide a color-coded rendering of the theory files equipped with hyperlinks
for cross-references.10

Whenever a theorem in the appendix refers to a specific item number in PLM, the
corresponding item number can be found in parentheses at the right page margin. While
we will sometimes refer to item numbers in PLM directly, we will usually refer to the
implementation in the appendix by section and line number and rely on the statement
in the appendix being annotated with the item number of the corresponding statement
in PLM. In particular, the thesis is written relative to the version of PLM dated October
13, 2021 (see [63]).
While a certain degree of familiarity with the reasoning environment of Isabelle/HOL
might be helpful, the fact that reasoning in Isabelle/HOL is designed to be natural and
intelligible should allow following the constructions without extensive prior knowledge
of Isabelle/HOL. An introduction to reasoning in Isabelle/HOL can be found in [38].
The implementation is written relative to the Isabelle2021-1 (December 2021) release of
Isabelle.

6With the exception of chapter 6 which is not written relative to an embedding in Isabelle and omits
the marking at the page margins.

7The corresponding theory files can also be found at [27].
8Around 20,000 lines are reasoning in the abstraction layer, i.e. reasoning in the logic of the target

theory, while the remainder builds up the required model structure and semantics as well as the syntax
representation of AOT.

9This mechanism is used for raw theory content that is inlined in the main thesis, but not for the
appendix.

10Therefore, we recommend reading this thesis in digital form.

6

2. Shallow Semantic Embeddings

2.1. Embeddings of Domain-Specific Languages

In computer science, deep and shallow embeddings have been a traditional means to
implement domain-specific languages by embedding them into general-purpose host lan-
guages (see for example [22]). A simple example is a language of expressions that can be
either integer constants, resp. literals, or the addition of two other expressions. If we con-
sider Isabelle/HOL as the host language in this process, the following would constitute
a deep embedding of this language:

datatype expression = Literal int | Addition expression expression
primrec eval :: ‹expression ⇒ int› where

‹eval (Literal x) = x›
| ‹eval (Addition x y) = eval x + eval y›

The deep embedding consists of a (usually recursive) algebraic datatype that captures
the syntactic elements of the language to be embedded. This representation of the
syntax is then given a semantics by means of an evaluation function that traverses this
algebraic datatype.1 A shallow embedding on the other hand, represents the syntactic
elements of a target language directly in their semantic domain. In our example, the
semantic domain of expressions is the integers. On this domain, operations are then
defined directly by means of their semantics:

type-synonym expression = int
definition Literal :: ‹int ⇒ expression› where ‹Literal x ≡ x›
definition Addition :: ‹expression ⇒ expression ⇒ expression› where ‹Addition x y ≡ x + y›

Note that in the shallow embedding, the domain of expressions is shared with the meta-
language by directly representing expressions in the type to which they evaluate seman-
tically in the deep embedding, namely int in the example.
There is a natural correspondence between the deep and shallow representations of this
language. In particular it holds that Deep.eval (Deep.Literal x) = Shallow.Literal x and
Deep.eval (Deep.Addition x y) = Shallow.Addition (Deep.eval x) (Deep.eval y). So semantic

1In the setting of logical theories this evaluation function would usually depend on interpretations
and assignment functions. However, in our simple example this is not necessary, since the simple language
of expressions neither involves constants nor variables (respectively since literals have trivial interpreta-
tions).

7

2. Shallow Semantic Embeddings

evaluation is implicit in the shallow embedding. On the other hand there are also
differences between the two representations. For example, in the deep embedding adding
x to y results in an expression that is different from the expression of adding y to x for
distinct x and y, even though they are equivalent under evaluation:

x 6= y =⇒ Deep.Addition x y 6= Deep.Addition y x
Deep.eval (Deep.Addition x y) = Deep.eval (Deep.Addition y x)

In contrast, commuted additions are identical in the shallow embedding:

Shallow.Addition x y = Shallow.Addition y x

In fact, the shallow embedding can be thought of as a quotient of the deep embedding
under semantic evaluation.
While there are several advantages and disadvantages of using shallow vs. deep embed-
dings for Domain-Specific languages, we forgo a detailed discussion of them here and
focus on shallow embeddings of logical theories in the next sections.

2.2. SSEs as Universal Reasoning Tools

In [2], Benzmüller develops the idea of using Shallow Semantic Embeddings (SSEs) in
classical higher-order logics (HOL) as a means for universal reasoning.
He notes that while already Leibniz envisioned a characteristica universalis, a most uni-
versal formal language in which all knowledge (and all arguments) about the world and
the sciences can be encoded, in practice, today we rather find a rich and heterogeneous
zoo of different logical systems.
A solution to this dilemma is the use of a universal meta-logic, in which a multitude of
logic formalisms can be embedded.
While there are multiple such unifying approaches, for example using algebraic logic or
category theory as framework, Benzmüller defends the use of SSEs in HOL for pragmatic
reasons:

• For HOL there are sophisticated automation tools readily available that have been
developed for several decades like e.g. Isabelle/HOL.

• Since HOL itself is very expressive, an embedding into HOL can often be achieved
using simple techniques and can result in an elegant and concise representation of
the target logic.

• Using a shallow embedding approach, the technical overhead of the translation
can be kept minimal, which enables the reuse of the automation infrastructure
available for the meta-logic.

While we already mentioned a variety of results that were achieved using this general
method (see section 1.2.2), in the following we will demonstrate the process of building
such an SSE at a simple example.

8

2.3. SSE of Quantified Higher-Order Modal Logic

2.3. SSE of Quantified Higher-Order Modal Logic

An example of a non-classical logic that is used prominently in philosophical arguments
is Quantified Higher-Order Modal Logic in various different axiomatizations. While
there have been extensive studies of modal logics using SSEs in Isabelle/HOL (see sec-
tion 1.2.2), we restrict ourselves to the discussion of a simple embedding of S5 modal
logic to further illustrate the general concept of SSEs.

A natural semantic basis for SSEs of any modal logic is its Kripke-semantics (see [32]).
In general, a Kripke frame consists of a set of possible worlds and a binary relation on
these worlds called accessibility relation. For S5 there are two versions of semantics, one
in which the accessibility relation is an equivalence relation and one in which there is no
accessibility relation at all (see [18]). For our purpose the simpler model suffices.2

For possible worlds we can introduce a primitive type w in Isabelle/HOL.3

typedecl w

A Kripke model further involves a relation between possible worlds and modal formulas
that is usually read as a formula being satisfied at a possible world. So the semantic
domain of propositions is the boolean-valued functions acting on (or, equivalently, the
sets of) possible worlds. In an SSE we use the semantic domains as types for the object-
level terms themselves,4 so we can introduce a type o of propositions as synonym of the
type of functions mapping possible worlds (of type w) to booleans (type bool). This way
the proposition can, as a function, be applied to a possible world, yielding True, if the
proposition is satisfied at that world or False otherwise.5

type-synonym o = ‹w ⇒ bool›

A proposition is valid in case it is satisfied in all worlds (or, alternatively, in a designated
actual world).6

definition valid :: ‹o ⇒ bool› (‹|= -› 100) where
‹|= p ≡ ∀ w . p w›

Now the classical logical operators can be defined as follows (note the bold print for
the defined operators versus the non-bold print of the corresponding operators of the
meta-logic):

2We will later argue that this is also a natural choice for the particular modal logic of Abstract
Object Theory due to its additional actuality operator and rigid definite descriptions, see section 4.7.4.

3A set-theoretic model of HOL would represent this type with a non-empty set of objects that may
serve as denotation for objects of type w.

4Note that it is also possible to model restrictions on the evaluation domains explicitly, as recently
demonstrated in [7].

5Note that this choice of a representation of propositions commits us to a modal logic, in which
necessary equivalence implies identity. We will later discuss how we can construct a hyperintensional
logic instead.

6The specification in parentheses after the type of the defined constant, o ⇒ bool, is mixfix notation
used to introduce the symbol |= as syntax for the introduced constant valid with the specified precedence.
The means to introduce custom syntax in Isabelle/HOL are discussed in more detail in section 2.7.

9

2. Shallow Semantic Embeddings

definition not :: ‹o ⇒ o› (‹¬-› [140] 140) where
‹¬p ≡ λ w . ¬p w›

definition imp :: ‹o ⇒ o ⇒ o› (infixl ‹→› 125) where
‹p → q ≡ λ w . p w −→ q w›

definition conj :: ‹o ⇒ o ⇒ o› (infixl ‹∧› 135) where
‹p ∧ q ≡ λ w . p w ∧ q w›

definition disj :: ‹o ⇒ o ⇒ o› (infixl ‹∨› 130) where
‹p ∨ q ≡ λ w . p w ∨ q w›

The additional modal operators, i.e. the box operator for necessity and the diamond
operator for possibility, can be further defined as:
definition box :: ‹o ⇒ o› (‹�-› [150] 150) where

‹�p ≡ λ w . ∀ v . p v›
definition dia :: ‹o ⇒ o› (‹♦-› [150] 150) where

‹♦p ≡ λ w . ∃ v . p v›

Now Isabelle can show automatically that the S5 axioms are valid:
lemma K : ‹|= �(p → q) → (�p → �q)›

by (auto simp: box-def imp-def valid-def)
lemma T : ‹|= �p → p›

by (auto simp: box-def imp-def valid-def)
lemma 5 : ‹|= ♦p → �♦p›

by (auto simp: box-def dia-def imp-def valid-def)

The proofs of the axioms are automatically found by sledgehammer, Isabelle/HOL’s
main tool for automation.7

So far we have constructed an embedding of propositional S5 modal logic using what
is commonly known as Standard Translation of modal logic (see [11]). However it is
straightforward to enrich this embedding with quantification.8

definition forall :: ‹(′a ⇒ o) ⇒ o› (binder ‹∀ › 110) where
‹∀ x . ϕ x ≡ λw . ∀ x . ϕ x w›

definition exists :: ‹(′a ⇒ o) ⇒ o› (binder ‹∃ › 110) where
‹∃ x . ϕ x ≡ λw . ∃ x . ϕ x w›

Note that we didn’t introduce any particular type for individuals, but stated polymorphic
definitions relative to a type variable ′a. This way the same quantifier can be used for
propositions themselves, any desired type for individuals or even properties of any order.9

As an example of theorems involving quantifiers and modal logic, we derive the Barcan
formulas. sledgehammer can again automatically provide proofs.
lemma ‹|= (∀ x . �ϕ x) → �(∀ x . ϕ x)›

by (auto simp: box-def forall-def imp-def valid-def)
7sledgehammer is discussed in more detail in the following section.
8See also the work by Benzmüller et al. cited in section 1.2.2.
9Note that this construction implies a shared domains for objects across possible worlds. An ad-

ditional meta-logical predicate for logical existence in a possible world can be added to model varying
domains.

10

2.4. SSEs with Abstraction Layers

lemma ‹|= ♦(∃ x . ϕ x) → (∃ x . ♦ϕ x)›
by (auto simp: dia-def exists-def imp-def valid-def)

lemma ‹|= �(∀ x . ϕ x) → (∀ x . �ϕ x)›
by (auto simp: box-def forall-def imp-def valid-def)

lemma ‹|= (∃ x . ♦ϕ x) → ♦(∃ x . ϕ x)›
by (auto simp: dia-def exists-def imp-def valid-def)

However, note that the automatic proofs again unfold the semantic definitions. We have
shown that the Barcan formulas are valid in the constructed embedding, but from the
proofs we cannot tell which axioms are required for proving them.10

Depending on the application, it can be enough to be able to tell if a theorem is seman-
tically valid or if a statement semantically follows from a set of assumptions. However,
for the purpose of implementing a full logical theory including its own deductive system,
semantic validity is not the primary concern, but rather derivability from the formal
system.11

Fortunately, it is possible to restrict Isabelle’s automated reasoning tools like sledge-
hammer, s.t. they may not unfold semantic definitions. If this is done at larger scale
and in a reliable manner for the purpose of analyzing derivability in a given deductive
system, we say that we introduce abstraction layers to the SSE.

2.4. SSEs with Abstraction Layers

The concept of enriching traditional SSEs with abstraction layers was first introduced
in [29]. The goal is to be able to use the automated reasoning tools provided by a
system like Isabelle/HOL not merely to analyze semantic validity of statements in the
embedded theory, but to reliably determine the derivability of a statement from the
deductive system of the theory itself.
An abstraction layer is simply constructed by proving that the axioms and deduction
rules of a target logic are semantically valid in the embedding, after which they are
considered as ground truths: all subsequent reasoning in the abstraction layer is restricted
to only rely on the derived axioms and rules and may no longer refer to the underlying
semantics. Consequently, only theorems derivable in the target logic are derivable in the
abstraction layer.12

So while abstraction layers are conceptually rather simple, an interesting technical ques-
tion is how the automation capabilities of the meta-logic can be preserved and reliably
restricted to respect the imposed restrictions.

10As a matter of fact we did not even state any axioms governing implications or quantifiers in the
embedded logic.

11Even if the target theory is provably complete with respect to the semantics used for constructing
the embedding, i.e. semantic validity implies derivability, we still want to know which axioms and rules
can be used to construct a concrete derivation.

12Note, however, that this relies on the additional assumption that meta-logical inferences based on
the derived axioms and rules correspond to derivations in the target logic, as mentioned in the end of
this section.

11

2. Shallow Semantic Embeddings

While Isabelle provides its own mechanisms for abstract reasoning like type classes,
locales and specifications, those are not primarily designed for this exact purpose and
come with limitations that can make them unsuitable to achieve that purpose on their
own, as described in more detail in the following section.
As mentioned in the last section, the main tool for automated reasoning in Isabelle/HOL
is sledgehammer (see [44]). sledgehammer can be invoked during any proof and
will try to automatically find a proof for the current proof goal. To that end, simply
speaking,13 it collects all theorems and definitions derived in the current theory context
together with all local assumptions (collectively referred to as facts) and processes the
resulting set of facts heuristically to find a subset of relevant facts. It then encodes
the problem of deriving the current goal from the chosen facts in a format that can
be consumed by external theorem provers like E [48], SPASS [51], verit [15] or Z3 [37].
This may, for example, involve a translation from higher-order problems to first-order
problems. If one of the invoked provers can prove the current goal, sledgehammer
tries to reconstruct a short proof using Isabelle’s native proving methods (which operate
directly on Isabelle’s trusted reasoning core) that can be directly inserted to prove the
current goal.14

The relevant part of the process to consider for the purpose of constructing an abstrac-
tion layer is the initial selection of facts from the theory context. We do not want
sledgehammer to use the equational theorems that unfold our semantic definitions,
but instead derive the goals from only the axioms and specific derivational rules that
correspond to the rules of the deductive system of the embedded theory. sledgeham-
mer allows us to provide some guidance in its choice. It is possible to (1) indicate that
a certain set of facts is likely to be helpful in the proof (using add:), (2) prevent it from
using certain facts (either using del: or by marking facts with the special attribute no-atp)
or (3) to provide it with a specific set of facts to use directly without taking any other
facts into account.
Conceptually, option (3) is the best fit for the purpose of abstraction layers and was used
in [29]. However, sledgehammer will no longer employ its heuristics and machine learn-
ing algorithms to filter the provided facts for relevance, but will directly use the provided
set. Consequently, the proving power and therefore the usefulness of sledgehammer is
significantly diminished, especially for larger theories.
In our current implementation, we therefore use option (2) instead. However, this comes
with some challenges. While the equational theorems introduced by simple defini-
tions can easily be collected and marked, other more advanced constructions in Isabelle
like type definitions or lift-definitions (see [25]) introduce several theorems implicitly.
While it is still possible to collect these theorems manually, the process is cumbersome
and error-prone.

13For a precise description of the full details of the process refer to [44].
14Furthermore, for provers like veriT and Z3, proof reconstruction using the smt tactic is available,

i.e. they provide proofs that can (sometimes) be directly replayed relative to Isabelle’s trusted reasoning
core. See [19] and [13].

12

2.5. Isabelle’s Native Abstraction Mechanisms

On the other hand, it is not possible to simply exclude all theorems that were derived up
to a certain point, since this includes the theorems of Isabelle’s Main theory, i.e. - among
others - the construction of classical higher-order logic on top of Isabelle’s more basic
Pure logic. This includes theorems sledgehammer relies on and disbarring them will
leave it non-functional (conceptually, such theorems can be thought of as meta-theorems
about derivations in our context).
The solution used in the current embedding of AOT is the use of Isabelle’s internal ML
API to automatically collect theorems to be added to an exclusion list. For convenience,
a new command AOT-sledgehammer is introduced that internally configures sledge-
hammer to use the desired set of theorems and then passes the current proof state to
it.15 With this method we can achieve significantly better proof automation than [29].
It is important to note that abstraction layers still rely on the implicit assumption that
meta-logical reasoning about derivations in the target logic is faithfully represented by
the meta-logical inferences in Isabelle enabled by the constructed deduction rules.
In particular, the deductive system of our target theory is implemented as meta-rules
in Isabelle’s Pure logic, while the used automation mechanisms additionally rely on
the logic of Isabelle/HOL. Consequently, we need to convince ourselves that resulting
inferences are reproducible in the target system and, conversely, that derivations in our
target system are exhaustively captured by the rules of our abstraction layer. For our
embedding of AOT we sketch such an argument in section 4.7.5.

2.5. Isabelle’s Native Abstraction Mechanisms

While abstraction layers provide a means to insulate reasoning in our embedding from
artifactual theorems (i.e. theorems that are merely semantically valid but not deriv-
able in the target theory; see also 4.8), we additionally use Isabelle’s native abstraction
mechanisms. This serves to establish an additional intermediate abstraction between
the concrete model construction and the derivation of the axioms and deductive system
of the target theory, which helps in exploring changes to the model structure without
having to adjust the full derivation of the abstraction layer.

2.5.1. Specifications

For example, we extensively use specifications (see §11.4 in [55]). A specification is
used to assert statements about previously uninterpreted constants. The specification
command opens a proof context that requires the user to show that there exists a concrete
instantiation for the given constants, for which the desired statements hold. Internally it
then uses Isabelle’s Hilbert-Epsilon-operator SOME x. ϕ x to augment the given constants
with a concrete definition. We will discuss the technical details of this mechanism in
section 4.5. As a consequence, a model of the meta-logic may choose any denotation

15Alternatively, we allow configuring sledgehammer itself to only use the restricted set of theorems.

13

2. Shallow Semantic Embeddings

for the given constants that satisfies the specification, while the existence of such a
denotation is guaranteed by the provided witness. However, depending on the use case
of this mechanism, care has to be taken to ensure that there actually are non-trivial
choices beyond the provided witness.
To illustrate this issue, we showcase the construction of a (hyper-)intensional conjunction
in which p ∧ q implies both p and q and vice-versa, but it does not hold that (p ∧ q) =

(q ∧ p). We first show a construction that will fail due to the choice of a representation
type that implies extensionality:
typedef o1 = ‹UNIV ::bool set›.. — Introduce an abstract type of propositions o1 with the
universal set of booleans (i.e. {True, False}) as representation set.16

definition valid-o1 :: ‹o1 ⇒ bool› where
‹valid-o1 p ≡ Rep-o1 p› — Validity is simply given by the boolean representing the proposition.17

We introduce an uninterpreted constant for conjunctions with infix syntax.
consts o1-conj :: ‹o1 ⇒ o1 ⇒ o1› (infixl ‹∧› 100)

specification (o1-conj) — We specify our conjunction by introduction and elimination rules.
o1-conjE1 : ‹valid-o1 (p ∧ q) =⇒ valid-o1 p›
o1-conjE2 : ‹valid-o1 (p ∧ q) =⇒ valid-o1 q›
o1-conjI : ‹valid-o1 p =⇒ valid-o1 q =⇒ valid-o1 (p ∧ q)›

We need to prove that there is a term satisfying the above specification. The natural
choice is the lifted conjunction on the booleans.

by (rule exI [where x=‹λ p q . Abs-o1 (Rep-o1 p ∧ Rep-o1 q)›])
(auto simp: Abs-o1-inverse valid-o1-def)

However, even though the identity of commuted conjunctions is not part of the speci-
fication, it is still derivable.18

lemma ‹p ∧ q = q ∧ p›
by (metis Rep-o1-inject o1-conjE1 o1-conjE2 valid-o1-def)

The reason is that there is only one choice for a conjunction operator on the booleans
that satisfies our specification and this choice is commutative. We can in fact prove that
our conjunction has to be identical to the witness we provided:
lemma ‹(∧) = (λp q . Abs-o1 (Rep-o1 p ∧ Rep-o1 q))›

by (metis Abs-o1-inject Abs-o1-inverse UNIV-I o1-conjE1 o1-conjE2 o1-conjI
type-copy-obj-one-point-absE type-definition-o1 valid-o1-def)

16For every type definition using an explicit representation set (typedef), we need to prove that the
set is non-empty. In the case of the universal set of another type, this proof is trivial, as indicated by
the two dots.

17For any typedef, Isabelle introduces constants prefixed with Abs- and Rep-, mapping the repre-
sentation type to the defined abstract type and vice-versa.

18Note that if we constructed abstraction layers as discussed in the last section, sledgehammer would
be prevented from considering the implicit theorems introduced by the type definition of o1 (which relate
the type to its representation type) and, therefore, would not be able to prove this theorem.

14

2.5. Isabelle’s Native Abstraction Mechanisms

In order to avoid this issue, we cannot simply rely on the specification command, but
also have to take care that the types of the specified constants can actually deliver the
desired degree of intensionality. In our example, we can introduce an abstract intensional
type for propositions that merely has a boolean extension. First we introduce an abstract
type:
typedecl o2 — Introduce an abstract type for propositions.

Thus far, a model of HOL satisfying our theory may choose any non-empty set as rep-
resentation set for objects of type o2. To arrive at a meaningful type of propositions,
we axiomatically introduce a surjective extension function mapping the abstract propo-
sitions to their boolean extension. The surjectivity of the extension function excludes
degenerate models in which there is only one proposition.19

axiomatization o2-ext :: ‹o2 ⇒ bool› where
o2-ext-surj: ‹surj o2-ext›

definition valid-o2 :: ‹o2 ⇒ bool› where
‹valid-o2 p ≡ o2-ext p› — Validity of a proposition is given by its boolean extension.

consts o2-conj :: ‹o2 ⇒ o2 ⇒ o2› (infixl ‹∧› 100)

specification (o2-conj) — We again specify our conjunction by introduction and elimination
rules.
o2-conjE1 : ‹valid-o2 (p ∧ q) =⇒ valid-o2 p›
o2-conjE2 : ‹valid-o2 (p ∧ q) =⇒ valid-o2 q›
o2-conjI : ‹valid-o2 p =⇒ valid-o2 q =⇒ valid-o2 (p ∧ q)›

We again need to prove the existence of a term satisfying the given specification. Since
our extension function is surjective, a natural suitable witness can be constructed using
the inverse of the extension function.

by (rule exI [where x=‹λ p q . (inv o2-ext) (o2-ext p ∧ o2-ext q)›])
(simp add: o2-ext-surj f-inv-into-f valid-o2-def)

Now as a consequence of our specification, our conjunction is still commutative under
validity:
lemma ‹valid-o2 (p ∧ q) = valid-o2 (q ∧ p)›

Note that the proof (found by sledgehammer) now solely relies on the properties of
(∧) given in our specification:

19Note, that we can also construct an equivalent type without a meta-logical axiom: we can (1) intro-
duce an uninterpreted constant that defines a set of products (or, alternatively, sums) of an additional
uninterpreted type of intensions and the type of extensions (bool in the example), (2) specify that this
set is both non-empty and large enough to allow for a surjective function to the extensions (the universal
set of such products will be a witness for this specification) and (3) use this set as representation set
for our intensional type. The existence of a surjective extension function will become derivable from the
specification. However, we found that the model-finding tool nitpick works better with the equivalent
axiomatic introduction of an extension function on an abstract type.

15

2. Shallow Semantic Embeddings

using o2-conjE1 o2-conjE2 o2-conjI by blast

However, commuted conjunctions are no longer identical. The model-finding tool nit-
pick (see [12]) can provide a counterexample by constructing a model for o2 that has
more than two members.
lemma ‹(p ∧ q) = (q ∧ p)›

nitpick[user-axioms, expect = genuine, show-consts, atoms o2 = p q r , format = 2]
oops — Abort proof and discard the lemma.

The model given by nitpick20 chooses a three-element set for type o2. We chose p, q
and r as names for these elements. o2-ext is modelled as (p := True, q := False, r := False)
and (∧) as ((p, p) := p, (p, q) := q, (p, r) := r , (q, p) := r , (q, q) := q, (q, r) := r , (r , p) :=
r , (r , q) := r , (r , r) := r).
This is indeed one of the minimal (non-degenerate)21 models for conjunctions that are
classical under validity, but are not identical under commutation. On the other hand,
nitpick can also satisfy the same statement by providing a model with cardinality 2 for
type o2:
lemma ‹(p ∧ q) = (q ∧ p)›

nitpick[satisfy, user-axioms, expect = genuine, show-consts, atoms o2 = p q, format = 2]
oops

Note that for the above it is sufficient to find a concrete choice for p and q, s.t. the
identity holds for those two propositions. However, nitpick can also produce (in this case
the same) model satisfying the identity for all propositions, respectively - equivalently -
refute the identity failing to hold:
lemma ‹∀ p q . (p ∧ q) = (q ∧ p)› — Satisfy the identity for all p and q.

nitpick[satisfy, user-axioms, expect = genuine, show-consts, atoms o2 = p q, format = 2]
oops

lemma ‹(p ∧ q) 6= (q ∧ p)› — Refute non-identity for arbitrary p and q.
nitpick[user-axioms, expect = genuine, show-consts, atoms o2 = p q, format = 2]
oops

While the above describes a general mechanism that (given a careful choice of types)
can be used to force Isabelle to rely on a specific set of specified properties for constants
while simultaneously retaining assured consistency,22 the mechanism has limitations.
For instance, specifications are limited in their capability to specify polymorphic con-
stants. While it is both possible to provide a shared specification for all types of a

20The precise model may vary for different versions of Isabelle.
21The specification for conjunctions alone can also be satisfied in degenerate models, in which either all

propositions are true or all propositions are false, i.e. in particular for models with only one proposition.
However, we excluded such degenerate models by requiring a surjective extension function, which prevents
nitpick from considering these degenerate cases.

22The specification part is guaranteed to be consistent, since we provided an explicit witness in the
process; the consistency of the axiom assuring the surjectivity of the extension function is confirmed by
nitpick.

16

2.5. Isabelle’s Native Abstraction Mechanisms

polymorphic constant, as well as to provide separate specifications for concrete distinct
type instantiations of a polymorphic constant, doing both at the same time is in general
not possible.

2.5.2. Type Classes and Locales

Isabelle provides further abstraction mechanisms, e.g. type classes and locales, but
each comes with its own limitations. Technically, a locale (see §5.7 in [55]) is a functor
that maps parameters and a specification to a list of declarations. In practice, this can
be used to reason relative to abstract parameters that validate a set of assumptions and
then interpret the locale by proving the assumptions for a concrete instantiation of
its parameters. As a result of this interpretation of the locale, all declarations of, and in
particular all theorems proven in, the locale will be instantiated to the given parameters
and added to the theory context. A limitation of locales is that they cannot involve
polymorphic assumptions, which prevents us from formulating the full system of AOT
abstractly as a single locale.
Type classes (see §5.8 in [55]) are technically locales that depend on exactly one type
variable and additionally introduce an axiomatic type class for which, roughly speaking,
the parameters of the locale are introduced as global constants that satisfy the locale
assumptions. In practice, type classes can be used to define properties on types and
reason about any type with those properties. Type classes can then be instantiated for
a concrete type23 by proving that the assumptions are satisfied for a concrete definition
of the locale parameters at that type.
For example, it is possible to instantiate a type class to products of two generic types (i.e.
type variables) of specific sorts. We use this mechanism to inductively define properties
of n-ary relations of AOT as relations among arbitrary tuples (see section 4.1).
Ideally, it should be possible to implement the full axiom system and deduction rules
of our target system using a system of type classes and locales (which would provide
an abstraction layer that is enforced on the logical level) and then merely to validate
the consistency of the construction by instantiating, resp. interpreting these type classes
and locales using a concrete semantic construction. However, in a complex target system
that involves polymorphic axioms and complex interdependencies between its types, this
is not always feasible and we have to rely on abstraction layers as described in the last
section.
While a full discussion of the subtleties of type classes goes beyond the scope of this
thesis, the short summary we provided above should be sufficient for understanding our
use of type classes in chapter 4. Furthermore, it is important to note that while we
use type classes to formulate theorems generically for several types, logically, the type
classes can be eliminated for each concrete instantiation of such a theorem with fully
specified concrete types.

23More precisely, a type constructor that may depend on additional types that can be restricted to
certain type classes, resp. sorts.

17

2. Shallow Semantic Embeddings

2.6. Implicit Interpretation and Assignment Functions in SSEs

Models of logical theories are usually formulated in terms of set-theory. In the following
chapters, when we say that we construct models of the target logic AOT using our
embedding, we do not construct classical set-theoretic models, but our implementation
forms a model of AOT in HOL.
While a deep embedding would make interpretation and assignment functions explicit,
they remain implicit in shallow embeddings. The meta-logic Isabelle/HOL itself involves
constants and variables that are reused to represent the constants and variables of our
target system. Consequently, we do not have to construct explicit interpretation and
assignment functions, but can rely on HOL’s semantics for constants and variables.
In simple models of HOL,24 every type has a set as its domain and a statement is valid,
if it holds for every interpretation of the constants of each type and every assignment of
the variables at each type.
A set-theoretic model of the embedded logic can be constructed by lifting a set-theoretic
model of HOL through the semantic definitions of the SSE. The model-finding tool
nitpick [12] can aid in making these lifted models concrete.
Technically, a shallow embedding defines a substructure in the models of HOL, which
yields a model of the embedded logic under the defined validity.

2.7. Reproducing the Syntax of the Target Theory

To achieve the goal of constructing a custom theorem proving environment for a new
theory by the means of an embedding, the primary concern is achieving a faithful rep-
resentation of its axioms and deductive system and, thereby, to be able to faithfully
reproduce reasoning in the embedded system.
However, for the embedding to be of practical use, it is equally important that the
resulting representation is readable and, ideally, that a person that is familiar with the
embedded theory, but has limited expertise in the particularities of the meta-logical
system in which the theory is embedded, can still use the embedding to reason in the
target system without a steep learning curve.
Isabelle’s Isar (Intelligible semi-automated reasoning) language itself (see [55]) is, as the
name suggests, specifically tailored towards being readable. Isar makes up the outer
syntax of an Isabelle theory file and consists of commands that specify theorems and
structured proofs acting on Isabelle’s system of terms and types, which are formulated
in inner syntax. Inner syntax is highly customizable. In the examples in the previous
sections we already made use of the ability to define new (bold) operators using mixfix
notation (see §8.2 in [55]). However, we only used the mechanism to provide symbols
to be used inside the grammar tree of Isabelle/HOL’s own term structure.25 In general

24Ignoring complications due to e.g. polymorphism.
25Thereby we cannot use symbols that are already used in HOL for our target logic.

18

2.7. Reproducing the Syntax of the Target Theory

Isabelle’s inner syntax is described by a context-free priority grammar. It consists of a set
of terminal symbols, an extensible set of non-terminal symbols and a set of productions
(see §8.4 in [55]). For the purpose of embedding the syntax of a target theory during
the construction of SSEs, it stands to reason to use the defined validity as root for the
grammar subtree of the embedded language.
Reusing the example of the simple modal logic in section 2.3, this can be done as follows:
type-synonym o3 = ‹w ⇒ bool›

This time we do not use mixfix notation to directly introduce syntax for the validity
constant.
definition valid-o3 :: ‹o3 ⇒ bool› where ‹valid-o3 p ≡ ∀ w . p w›

Instead, we introduce a nonterminal as grammar root for the syntax of the embedded
language. The nonterminal then serves as purely syntactic type for propositions in the
grammar of our sub-language.
nonterminal propo3

The nonterminal can be used as syntactic type in syntax definitions.
syntax valid-o3 :: ‹propo3 ⇒ bool› (‹|= -› 1)

Furthermore, we need to specify how propositions can be produced from terminals in
the grammar. We want to use simple identifiers to refer to proposition variables. To
that end we introduce a copy-production rule (a rule that is not tied to a constant). The
terminal id-position is used for identifiers with additional markup information (i.e. it
contains an encoding of the source position of the identifier to be used in the context of
Isabelle/PIDE; see [52]).
syntax :: ‹id-position ⇒ propo3› (‹-›)

Now we can already construct a simple term in our new syntax:
term ‹|= p›

Since we introduce an entirely new grammar subtree that is independent of the inner
syntax of HOL, we can now reuse the same symbols for logical connectives as used in
HOL (instead of having to use bold versions like in the previous section). We first define
the connectives without syntax (here the symbols refer to connectives and operators in
the language of HOL):
definition not-o3 :: ‹o3 ⇒ o3› where ‹not-o3 p ≡ λw . ¬p w›
definition imp-o3 :: ‹o3 ⇒ o3 ⇒ o3› where ‹imp-o3 p q ≡ λw . p w −→ q w›
definition conj-o3 :: ‹o3 ⇒ o3 ⇒ o3› where ‹conj-o3 p q ≡ λw . p w ∧ q w›
definition disj-o3 :: ‹o3 ⇒ o3 ⇒ o3› where ‹disj-o3 p q ≡ λw . p w ∨ q w›
definition box-o3 :: ‹o3 ⇒ o3› where ‹box-o3 p ≡ λw . ∀ v . p v›
definition dia-o3 :: ‹o3 ⇒ o3› where ‹dia-o3 p ≡ λw . ∃ v . p v›

And then define syntax for them in our grammar subtree. The syntax definitions are
only used for parsing terms of the syntactic type propo3, i.e. terms in the grammar tree
spanned by the marker |= introduced above.

19

2. Shallow Semantic Embeddings

syntax not-o3 :: ‹propo3 ⇒ propo3› (‹¬-› [40] 40)
syntax imp-o3 :: ‹propo3 ⇒ propo3 ⇒ propo3› (infixl ‹−→› 25)
syntax conj-o3 :: ‹propo3 ⇒ propo3 ⇒ propo3› (infixl ‹∧› 35)
syntax disj-o3 :: ‹propo3 ⇒ propo3 ⇒ propo3› (infixl ‹∨› 30)
syntax box-o3 :: ‹propo3 ⇒ propo3› (‹�-› [50] 50)
syntax dia-o3 :: ‹propo3 ⇒ propo3› (‹♦-› [50] 50)

Now we can start to produce complex terms in our new syntax:

term ‹|= �p −→ q ∨ ♦r›

However, it is noteworthy that since the introduced grammar subtree is independent of
the usual HOL grammar, a lot of details need to be considered. For example, without
further work it is not possible to specify the types of terms in our grammar sub-tree. For
that to work the :: syntax used in HOL would need to be reintroduced,26 which requires
some familiarity with Isabelle’s internals like the purely syntactic constant -constrain
(see §8.5.4 in [55]).
As a simpler example, we also need to introduce parentheses explicitly in our grammar
subtree:

syntax :: ‹propo3 ⇒ propo3› (‹ ′(- ′)›)
term ‹|= p ∧ (♦q −→ p)› — Without the above this would not parse.

It is still possible to mix the usual HOL syntax with our newly defined subgrammar to
argue about validity:

lemma ‹(|= ♦p −→ q) −→ (¬(|= p) ∨ (|= q))›
using dia-o3-def imp-o3-def valid-o3-def by auto

In the above the left-most implication and the diamond operator are the implication of
the embedded logic and our defined possibility operator. The other logical connectives
are the ones of the meta-logic HOL.
While the mechanism described above is sufficient for introducing an accurate represen-
tation of the syntax of most target theories that are compatible with the lexical syntax of
Isabelle/Pure,27 reasoning in the logic of the target theory entails additional challenges.
For example, reasoning using Kripke-semantics usually involves proving statements rel-
ative to a fixed, but arbitrary possible world - however semantic possible worlds are
not part of the syntax of the target theory and managing them can become a distrac-
tion. Therefore, we not only define custom inner syntax for the language of AOT, but
also extend Isabelle’s outer syntax by custom commands that hide this complexity (see
section 4.3).

26Or, alternatively, new syntax could be introduced for the same purpose. In our embedding of AOT
we will instead reproduce the fact that PLM implicitly imposes type constraints based on the names of
its (meta-)variables.

27Note that AOT does not fall into this category and requires additional and more complex means
to arrive at a good approximation of its syntax as described in section 4.2.

20

2.7. Reproducing the Syntax of the Target Theory

In the following chapter we describe our target theory AOT in terms of our defined
syntax, while the technical construction of the syntax representation itself is discussed
in section 4.2.

21

3. Abstract Object Theory

The following sections provide a brief introduction to Abstract Object Theory (AOT or
object theory). While the first section will explain the general idea and motivation of
object theory, the subsequent sections reproduce the language and axiom system of AOT
as implemented in our embedding. In the process, we hint at the major differences be-
tween the formulation of AOT in PLM and its incarnation in our embedding, referencing
the discussion of implementational details in the next chapter where applicable. Recall
that, as mentioned in section 1.4, all definitions and theorems are cited directly from our
embedding and thereby verified by Isabelle. Exceptions to this rule are explicitly stated
and marked by vertical bars at the page margins.
We restrict ourselves to the discussion of the second-order fragment of AOT which is
the target of our embedding in Isabelle/HOL.1 The second-order fragment is expressive
enough for the analysis of a wide variety of objects occurring in philosophy and mathe-
matics, including Basic Logical Objects like Truth Values and Extensions of Propositions
(see A.8, resp. PLM chapter 10); Platonic Forms (see PLM chapter 11); Situations,
Worlds, Times, and Stories (see A.11, resp. PLM chapter 12); Concepts (see PLM
chapter 13) and Natural Numbers (see A.12, resp. PLM chapter 13).2

The applications of higher-order object theory and the challenges in representing it in
Isabelle/HOL are briefly discussed in chapter 6. To get an intuition for the level of
expressiveness of full higher-order object theory, note that it can be used to analyze e.g.
Zermelo-Fraenkel set-theory itself as one of its abstract objects.

3.1. Overview

AOT is a metaphysical theory inspired by ideas of Ernst Mally and formalized by Edward
Zalta. While the theory has been evolving for several decades (see [56, 59]), its most
recent canonical presentation is given in Principia Logico-Metaphysica (PLM), which is
under continuous development and the most recent version of which can be accessed as
online monograph (see [62]). This thesis is written relative to the version dated October
13, 2021 (see [63]). A summary similar to the one in this section can also be found
in [31].
AOT draws two fundamental distinctions, one between abstract and ordinary objects,
and one between two modes of predication, namely, classical exemplification [F]x, or more

1In the following chapters up until chapter 6, we will refer to the second-order fragment of AOT
plainly as AOT or object theory.

2The chapter numbering of PLM is relative to [63].

22

3.1. Overview

generally, [R]x1...xn and encoding x[F], or more generally, x1...xn[R].3 The variables x1,
x2, . . . , xn, resp. x, y, z, . . . , range over both ordinary and abstract objects and we can
distinguish claims about these two kinds of objects by using the exemplification predica-
tions O!x or A!x to assert, respectively, that x exemplifies being ordinary or x exemplifies
being abstract. Whereas ordinary objects are characterized only by the properties they
exemplify, abstract objects may be characterized by both the properties they exemplify
and the properties they encode. But only the latter play a role in their identity condi-
tions: A!x & A!y → (x = y ≡ �∀F (x[F] ≡ y[F])), i.e, abstract objects are identical if and
only if they necessarily encode the same properties. The identity for ordinary objects
on the other hand is classical: O!x & O!y → (x = y ≡ �∀F ([F]x ≡ [F]y)), i.e., ordinary
objects x and y are identical if and only if they necessarily exemplify the same properties.
It is axiomatic that ordinary objects fail to encode properties (O!x → ¬∃F x[F]), and
so only abstract objects can be the subject of true encoding predications. For example,
whereas Pinkerton (a real American detective) exemplifies being a detective and all his
other properties (and doesn’t encode any properties), Sherlock Holmes encodes being
a detective (and all the other properties attributed to him in the novels), but doesn’t
exemplify being a detective. Holmes, on the other hand, intuitively exemplifies being
a fictional character (but doesn’t encode this property) and exemplifies any property
necessarily implied by being abstract (e.g., he exemplifies not having a mass, not having
a shape, etc.).4

The key axiom of AOT is the comprehension principle for abstract objects. It asserts,
for every expressible condition on properties (i.e. for every expressible set of properties),
that there exists an abstract object that encodes exactly the properties that satisfy the
condition; formally: ∃ x (A!x & ∀F (x[F] ≡ ϕ{F}))
Here ϕ{F} is the notation we use in the embedding to signify that ϕ may contain a free
occurrence of the bound variable F (ϕ may not contain a free occurrence of x, unless
we had explicitly added x in curly braces as well).5 Taken together, the comprehension
principle and the identity conditions of abstract objects imply that abstract objects can
be modelled as elements of the power set of properties: every abstract object uniquely
corresponds to a specific set of properties.
Given this basic theory of abstract objects, AOT can elegantly define a wide variety of
objects that have been postulated in philosophy or presupposed in the sciences, including

3Note that we use additional square brackets around property terms in exemplification or encoding
formulas, except for specific (primitive or defined) constants like E !, O! and A!. This is a syntactic
concession that makes the process of parsing atomic formulas in Isabelle simpler. In AOT’s usual
notation these square brackets would be omitted, i.e. exemplification would be written as Fx1 . . . xn and
encoding as xF .

4He encodes having a mass, having a shape, etc., since these are properties attributed to him, at least
implicitly, in the story. As an abstract object, however, he does not exemplify these properties, and so
exemplifies their negations.

5PLM, on the other hand, uses the opposite convention: any meta-variable like ϕ may contain free
occurrences of arbitrary variables (even those that are bound at the occurrence of ϕ) unless explicitly
excluded, i.e. instead of ϕ{F}, PLM simply states ϕ and uses natural language to add the proviso that
x may not occur free in ϕ. See 4.7.2 for a more detailed discussion.

23

3. Abstract Object Theory

Leibnizian concepts, Platonic forms, possible worlds, natural numbers, logically-defined
sets, etc.
Another crucial aspect of the theory is its hyperintensionality: Relation identity is defined
in terms of encoding rather than in terms of exemplification. Two properties F and
G are stipulated to be identical if they are necessarily encoded by the same abstract
objects (F = G ≡ �∀ x (x[F] ≡ x[G])).6 The theory does not impose any restrictions on
the properties encoded by a particular abstract object. For example, the fact that an
abstract object encodes the property [λx [F]x & [G]x] does not imply that it also encodes
either the property F, or G or even [λx [G]x & [F]x] (which, although extensionally
equivalent to [λx [F]x & [G]x], is a distinct intensional entity).7

Therefore, without additional axioms, pairs of materially equivalent properties (in the
exemplification sense), and even necessarily equivalent properties, are not forced to be
identical. This is a key aspect of the theory that makes it possible to represent the
contents of human thought much more accurately than classical exemplification logic
would allow. For instance, the properties being a creature with a heart and being a crea-
ture with a kidney may be regarded as distinct properties despite the fact that they are
extensionally equivalent. And being a barber who shaves all and only those persons who
don’t shave themselves and being a set of all those sets that aren’t members of themselves
may be regarded as distinct properties, although they are necessarily equivalent (both
necessarily fail to be exemplified).
In the following sections, we provide a brief overview of the language, the axiom system
and the deductive system of PLM as implemented in our embedding. For the original
formulation of the system and a detailed discussion refer to [63], respectively [62].8

3.2. The Language

A precise description of AOT’s language can be found in PLM chapter 7. In this section
we provide a simplified informal description while explaining some of the deviations from
AOT’s conventions we use in our embedding.
The language distinguishes between constants, variables and terms at each type. The
types of the second-order fragment consist of a type of individuals and of a type of
n-place relations (for each n ≥ 0), i.e. relations among n individuals.9 Formulas are
considered as 0-place relation terms. PLM uses the following naming conventions for
referring to the primitive language elements of each type:

6Traditionally, one might expect properties to be identical, if they are necessarily exemplified by the
same objects instead.

7Note that this hyperintensionality also extends to propositions. We will see that proposition identity
is defined in terms of property identity: p = q ≡ [λx p] = [λx q]

8At the time of writing both citations refer to the same version of PLM, but in the future [62] will
refer to the most recent formulation of PLM, while [63] will contain the archived version of PLM that
served as reference for this thesis. Naturally, referenced items and section numbers of PLM will be
relative to [63].

9We briefly discuss the full higher-order type theory in chapter 6.

24

3.2. The Language

• Primitive individual constants: a1, a2, . . .

• Individual variables: x1, x2, . . .

• Primitive n-place relation constants: Pn
1 , P

n
2 , . . .

• n-place relation variables: Fn
1 , F

n
2 , . . .

• A distinguished 1-place relation constant for being concrete: E !

For increased readability, it allows to use less formal names, e.g. to use x, y, z, . . . in
place of x1, x2, . . . ; p, q, r , . . . in place of F 0

1 , F
0
2 , . . . or F , G, H , . . . in place of F 1

1 , F
1
2 , . . . ,

etc.10

Additionally, PLM uses Greek letters for meta-variables, i.e. schematic meta-logical
variables that may range over all variable names or all terms at a given type. By con-
vention, it associates specific kinds of meta-variables with Greek letters (with additional
numbered subscripts as needed) as follows:

• Meta-variables ranging over individual variables: ν, µ
• Meta-variables ranging over individual terms: κ
• Meta-variables ranging over n-place relation terms: Πn

• Meta-variables ranging over formulas (i.e. zero-place relation terms): ϕ, ψ, . . .
• Meta-variables ranging over variables of any type: α, β, . . .
• Meta-variables ranging over terms of any type: τ , σ, . . .

PLM’s system of constants, variables and meta-variables does not have to be reproduced
in all detail in our embedding for the following reasons:

• The embedding collapses all alphabetic variants. This is discussed in more detail
in section 4.7.1.

• The embedding implicitly generalizes free variables in theorems to schematic vari-
ables. This is discussed in more detail in section 4.7.3.

• The distinction between constants and variables is done at the meta-logical level
of Isabelle/HOL, i.e. variables and constants of the same type are distinguished
by declaring them as constant, resp. using them as variable in the meta-logic.

Furthermore, AOT introduces the following primitive formula- and term-forming oper-
ators:

• ¬ϕ, the negation operator
• �ϕ, the necessity operator
• Aϕ, the actuality operator
• ϕ → ψ, the conditional operator
• ∀α ϕ{α}, the universal quantifier11

10See PLM item (5).
11As mentioned in the previous section, PLM, by default, allows any free variables to occur in instances

of a meta-variable, unless specified otherwise. For technical reasons, we choose the opposite convention,
i.e. while a meta-variable may still contain any occurrence of variables that would remain free, any bound

25

3. Abstract Object Theory

• ιxϕ{x}, the definite description operator12

• [λx1...xn ϕ{x1...xn}], the relation abstraction- or λ-operator13

AOT uses two kinds of atomic formulas, exemplification formulas and encoding formulas.
In PLM exemplification formulas are written as Πκ1. . . κn, whereas encoding formulas
are written as κ1. . . κnΠ. In our embedding, we use additional square brackets for easier
parsing, i.e. we use:

• [Π]κ1...κn for atomic exemplification formulas
• κ1...κn[Π] for atomic encoding formulas

Furthermore, PLM allows for extending the above language using two kinds of definitions:
definitions by identity and definitions by equivalence. While the inferential role of these
definitions will be discussed in more detail in section 3.4.2, for now we rely on an intuitive
understanding of their meaning. PLM defines multiple concepts that are commonly
taken as primitive, such as logical existence and identity. These basic definitions can be
found in section 7.2 of PLM and are implemented in our embedding in section A.5. In
particular, PLM defines the following:
Derived connectives and quantifiers (see A.5.7):14

ϕ & ψ ≡df ¬(ϕ → ¬ψ)
ϕ ∨ ψ ≡df ¬ϕ → ψ
ϕ ≡ ψ ≡df (ϕ → ψ) & (ψ → ϕ)
∃α ϕ{α} ≡df ¬∀α ¬ϕ{α}
♦ϕ ≡df ¬�¬ϕ

Logical existence, i.e. the conditions under which a term denotes (see A.5.37):
κ↓ ≡df ∃F [F]κ
Π↓ ≡df ∃ x1...∃ xn (x1...xn[Π])
ϕ↓ ≡df [λx ϕ]↓

Being ordinary and being abstract (see A.5.67):
O! =df [λx ♦E !x]
A! =df [λx ¬♦E !x]

Identity of individuals (see A.5.72):
κ = κ ′ ≡df O!κ & O!κ ′ & �∀F ([F]κ ≡ [F]κ ′) ∨ (A!κ & A!κ ′ & �∀F (κ[F] ≡
κ ′[F]))

Identity of properties, i.e. 1-place relations (see A.5.81):

variables that may occur in an instance of the meta-variable have to be explicitly listed in curly brackets.
See 4.7.2 for a more detailed discussion. Also note that while the meta-logical ∀ -quantifier in HOL has
wide scope, the universal quantifier of AOT has narrow scope and quantifying over complex formulas
generally requires parentheses.

12Note that similarly to the universal quantifier above, definite descriptions have narrow scope and
using complex formulas as matrix requires parentheses.

13Note that this includes the zero-place case [λ ϕ], read as that ϕ. The scope of the λ-expression is
explicitly given with the surrounding square brackets.

14The diamond operator ♦ϕ can be read as possibly ϕ. The precedence of the operators is demon-
strated in A.5.25.

26

3.3. The Axiom System

Π = Π ′ ≡df Π↓ & Π ′↓ & �∀ x (x[Π] ≡ x[Π ′])

Identity of propositions, i.e. 0-place relations (see A.5.114):
ϕ = ψ ≡df ϕ↓ & ψ↓ & [λx ϕ] = [λx ψ]

Identity of n-place relations (n ≥ 2):15

Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ y1. . . ∀ yn−1 ([λx [Π]xy1. . . yn−1] = [λx [Π ′]xy1. . . yn−1]
& [λx [Π]y1xy2. . . yn−1] = [λx [Π ′]y1xy2. . . yn−1] & . . . & [λx [Π]y1. . . yn−1x] =
[λx [Π ′]y1. . . yn−1x])

Based on the described language and definitions we can state AOT’s axiom system.

3.3. The Axiom System

In the following, we reproduce the full axiom system of the latest formulation of AOT,
while commenting on several aspects that are specific to AOT. Unless explicitly noted
otherwise, we will directly cite the axioms from our implementation while explaining
notational and conceptual differences to the original axiom system. The original axiom
system is stated in PLM chapter 8 with detailed explanations. The implementation
in our embedding can be found in A.6. Throughout the section we will refer to the
statements of the axioms in A.6, which will in turn refer to the item numbers of the
respective axioms in PLM.
The first set of axioms build up a Hilbert-style deductive system for negation and im-
plications following Mendelson’s [35] system (see A.6.9):

ϕ → (ψ → ϕ)
ϕ → (ψ → χ) → (ϕ → ψ → (ϕ → χ))
¬ϕ → ¬ψ → (¬ϕ → ψ → ϕ)

The next set of axioms constructs a quantifier logic for a free logic with non-denoting
terms (see A.6.16, A.6.30). Formulas of the form τ↓ can be read as the term τ denotes
and refer to the notion of logical existence that was defined in the previous section.16

∀α ϕ{α} → (τ↓ → ϕ{τ})
∀α (ϕ{α} → ψ{α}) → (∀α ϕ{α} → ∀α ψ{α})
ϕ → ∀α ϕ
[Π]κ1...κn → Π↓ & κ1...κn↓
κ1...κn[Π] → Π↓ & κ1...κn↓

The last two axioms in the list above are noteworthy: they establish that if any atomic
exemplification or encoding formula is true, then its primary terms are significant.

15The idea here is that two n-place relations are identical, if they denote and all their projections to
n − 1 objects are identical. In the embedding it is tricky to reproduce the ellipse notation used for
this definition directly, therefore the statement here is not cited from the embedding, as indicated by
the vertical bars at the margins. The implementation of this definition in the embedding can be found
in A.5.107 and is discussed in more detail in section 4.6.4.

16See section 4.7.2 for a discussion of the free variable notation using curly brackets and slight differ-
ences in the formulation compared to PLM. κ1. . . κn↓ abbreviates κ1↓ & . . . & κn↓.

27

3. Abstract Object Theory

Additionally, PLM establishes a base set of denoting terms with the following axiom:
τ↓, provided τ is a primitive constant, a variable, or a λ-expression in which
the initial λ does not bind any variable in any encoding formula subterm.

Reproducing the natural language condition on τ in the embedding is non-trivial (see A.6.19,
which uses the auxiliary predicate INSTANCE-OF-CQT-2 defined in A.4.1283); we discuss
the implementation of this axiom in detail in section 4.6.1.
For a simple intuition, note that all λ-expressions, in which every atomic formula in the
matrix is an exemplification formula, denote, while special care has to be taken in the
presence of encoding formulas.17 The axiom will be discussed in more detail later in this
chapter.
The next axiom states that identical objects or identical relations can be substituted in
formulas. Note that the used identity is not primitive, but was defined in the last section
(see A.6.69).18

α = β → (ϕ{α} → ϕ{β})

The following axiom (see A.6.73) is the single modally fragile axiom of the system.
This is signified by the turnstile operator `. All other axioms are modally strict (for
simplicity, we assume the corresponding turnstile operator `� by default and refrain
from mentioning it explicitly19). The distinction is discussed further in section 3.4.7.20

` Aϕ → ϕ

Intuitively, modally-fragile statements extend to actual truths, while modally-strict state-
ments refer to necessary truths.
Apart from the above modally-fragile principle, the logic of actuality is governed by the
following modally-strict axioms (see A.6.77):

A¬ϕ ≡ ¬Aϕ
A(ϕ → ψ) ≡ Aϕ → Aψ
A∀α ϕ{α} ≡ ∀α Aϕ{α}
Aϕ ≡ AAϕ

The logic of necessity and possibility is axiomatized using the classical K, T and 5 axioms
of a propositional S5 modal logic (see A.6.91):

�(ϕ → ψ) → (�ϕ → �ψ)

17Note that this includes "implicit" encoding formulas that merely occur in the definiens of a defined
constant used in the matrix. Those are also counted as encoding formula subterms of the matrix. See
PLM items (8) and (17.3).

18PLM formulates the axiom as: α = β → (ϕ→ ϕ ′), whenever β is substitutable for α in ϕ, and ϕ ′ is
the result of replacing zero or more free occurrences of α in ϕ with occurrences of β. This is equivalent
to the formulation in the embedding modulo the equivalence of alphabetic variants (see 4.7.1). The
precise correspondence is discussed in more detail in section 4.7.2 at the example of the first quantifier
axiom above.

19Respectively, printing of modally-strict statements cited from the embedding is set up in such a
way that it does not print the turnstile operator.

20Note that PLM uses Aϕ ≡ ϕ as axiom instead. However, the right-to-left direction is derivable
and future versions of PLM will only use the left-to-right implication instead.

28

3.3. The Axiom System

�ϕ → ϕ
♦ϕ → �♦ϕ

Additionally, PLM states the following axiom (see A.6.101) that requires that there
might be a concrete object that is not actually concrete, thereby ensuring that the
domain of ordinary (i.e. possibly concrete) objects is non-empty21 and committing the
system against modal collapse.

♦∃ x (E !x & ¬AE !x)
The classical S5 modal logic is connected to the logic of actuality by the following two
axioms (see A.6.108):

Aϕ → �Aϕ
�ϕ ≡ A�ϕ

Definite descriptions in AOT are governed by the following axiom (see A.6.115), which
will allow the derivation of a version of Russell’s analysis of descriptions (see sec-
tion 3.4.6):

x = ιxϕ{x} ≡ ∀ z (Aϕ{z} ≡ z = x)

A consistent axiomatization of complex relation terms in AOT requires some care. While
λ-expressions follow the classical principles of α-, β- and η-conversion, they have to be
suitably restricted to denoting terms, since not all λ-expressions are guaranteed to de-
note. Also note that the embedding generally collapses alphabetic variants (see 4.7.1), so
while a version of α-conversion can be stated, it effectively reduces to the statement that
denoting λ-expressions are self-identical in our implementation. α-, β- and η-conversion
are formulated as follows (see A.6.125):

[λν1...νn ϕ{ν1...νn}]↓ → [λν1...νn ϕ{ν1...νn}] = [λµ1...µn ϕ{µ1...µn}]
[λx1...xn ϕ{x1...xn}]↓ → ([λx1...xn ϕ{x1...xn}]x1...xn ≡ ϕ{x1...xn})
[λx1...xn [F]x1...xn] = F

Note that the last of the above axioms, η-conversion, also has the 0-place case [λ p] =
p.22

The following axiom of coexistence is specific to AOT and, together with generally ex-
tending AOT’s free logic to relation terms and the refinement of base cases of denoting
terms, a main aspect in the evolution of PLM that was originally triggered by its analysis
using our embedding. It states that whenever a λ-expression denotes, any λ-expression
with a matrix that is necessarily and universally equivalent on all abstracted variables
will denote as well (see A.6.143):

[λν1...νn ϕ{ν1...νn}]↓ & �∀ ν1...∀ νn(ϕ{ν1...νn} ≡ ψ{ν1...νn}) →
[λν1...νn ψ{ν1...νn}]↓

21Note that this consequence of the axiom relies, among others, on the fact that AOT allows deriving
the Barcan formulas, in particular A.7.3470.

22While identical by axiom, the syntactically distinct terms p and [λ p] in AOT are meant to capture
the natural-language distinction between the statement p itself and the statement that p is true. Also
note that in the embedding the 0 -place case is stated separately for η-conversion (see A.6.139) and
α-conversion (see A.6.129). β-conversion in PLM is only stated for n ≥ 1.

29

3. Abstract Object Theory

This axiom, together with AOT’s move to a general free logic for complex terms, is
discussed in more detail in section 3.7.
The remaining axioms govern AOT’s second mode of predication, encoding.
The first of these axioms reduces n-ary encoding to unary encoding of projections as
follows:23

x1. . . xn[F] ≡ x1[λy [F]yx2. . . xn] & x2[λy [F]x1yx3. . . xn] & . . . & xn[λy [F]x1. . . xn−1y]

The second axiom governing encoding states that encoding is modally rigid (see A.6.188):
x[F] → �x[F]

Furthermore, as mentioned in the introduction of this chapter, encoding is reserved for
abstract objects or in other words: ordinary objects do not encode properties (see A.6.192):

O!x → ¬∃F x[F]

The last axiom is the core axiom of AOT, the Comprehension Principle for Abstract
Objects. For any expressible condition on properties, there exists an abstract object that
encodes exactly those properties that satisfy the condition (see A.6.200):

∃ x (A!x & ∀F (x[F] ≡ ϕ{F}))

All above axioms are to be understood as axiom schemata, i.e. their universal closures are
axioms as well. Furthermore, for all axioms except the modally-fragile axiom of actuality,
their modal closures (i.e. actualizations and necessitations) are taken as axioms as well.

3.4. The Deductive System

While an implementation of the complete deductive system of PLM chapter 9 can be
found in A.7, a full discussion of the entire system would go beyond the scope of this
thesis. However, we will discuss some aspects in detail with a particular focus on concepts
that are required for the construction of natural numbers in chapter 5.

3.4.1. Primitive and Derived Meta-Rules

Since the axioms of AOT are to be understood as axiom schemata, i.e. their statement
includes the statement of adequate closures, a single primitive rule of inference suffices
for the deductive system of PLM, i.e. Modus Ponens (see A.7.16):24

If ϕ and ϕ → ψ then ψ.

23Note that similarly to the definition of n-ary relation identity, the formulation using ellipses is
non-trivial to reproduce in the embedding. Therefore we again do not cite the axiom directly from the
embedding, but state it as given in PLM modulo our notational conventions. The precise implementation
in the embedding can be found in A.6.169 and is discussed in more detail in section 4.6.4.

24Note that we are still citing rules directly from the embedding using a special printing mode for
meta-rules.

30

3.4. The Deductive System

While PLM can refer to structural induction on the complexity of a formula and the
length of derivations to derive further meta-rules, by the nature of a Shallow Semantic
Embedding, the precise term structure is not preserved, but instead terms are directly
represented as objects in their semantic domain, and theorem-hood is not defined by
means of derivations but internally constructed in terms of semantic validity. For that
reason, in our embedding we derive the rules in question by referring to the semantic
properties of the embedding. In particular, we derive the following rules semantically:
The deduction theorem (see A.7.170):

If ϕ ` ψ then ϕ → ψ.

I.e. if assuming ϕ it can be derived that ψ, then ϕ implies ψ.
The rule of necessitation RN (see A.7.110 and A.7.106):

If `� ϕ then �ϕ.

The rule RN can only be applied to a formula ϕ, if ϕ has a modally-strict proof, as
signified by `�. We discuss this in more detail in section 3.4.7.
The rule of generalization GEN (see A.7.99):

If for arbitrary α: ϕ{α} then ∀α ϕ{α}.
for arbitrary is implemented using a meta-logical all quantifier. This means that ϕ has
to hold for an arbitrary choice of α and therefore independently of any local assump-
tions about any concrete α. This goes along with PLM’s restriction to only allow the
application of GEN, if α does not occur free in any assumption.

3.4.2. The Inferential Role of Definitions

PLM uses two kinds of definitions: definitions-by-equivalence ϕ ≡df ψ and definitions-
by-identity τ =df σ. While, intuitively, definitions by equivalence imply definiens and
definiendum to be equivalent (≡) and definitions by identity imply them to be identical
(=), further care is required when stating their precise inferential roles.

Definitions by Equivalence Since equivalence (≡) is itself defined using a definition-
by-equivalence (as mentioned in section 3.2), equivalence itself cannot be used to specify
the inferential role of definitions-by-equivalence. Instead the inferential role has to be
formulated in terms of primitives of the language, i.e. in terms of implications.
To that end, PLM formulates a Rule of Definition by Equivalence that we reproduce in
the embedding as follows (see A.7.118):

If ϕ ≡df ψ then ϕ → ψ.
If ϕ ≡df ψ then ψ → ϕ.

In other words, a definition-by-equivalence of the form ϕ ≡df ψ introduces the closures
of ϕ → ψ and ψ → ϕ as necessary axioms.25

25Therefore, the rule has axiomatic character and also has to be derived from the semantics in the
appendix. The same is true for the rule of definition by identity below.

31

3. Abstract Object Theory

The principle that a definition-by-equivalence in fact implies definiens and definiendum
to be equivalent becomes a derived rule (see A.7.601):

If ϕ ≡df ψ then ϕ ≡ ψ.

However, note that while this also implies necessary equivalence of definiens and definien-
dum (using the rule of necessitation RN mentioned above), in AOT necessary equivalence
of propositions does not imply their identity. Another noteworthy subtlety in PLM’s use
of definitions by equivalence is its convention that such definitions are stated using
object-level variables, even though those variables act as meta-variables. For instance,
following PLM’s conventions, the definition of identity for properties (see 3.2) can be
stated as:

F = G ≡df F↓ & G↓ & �∀ x (x[F] ≡ x[G])

However, replacing F and G by any property term constitutes a valid instance of this
definition. In order to avoid confusion for a reader that is not familiar with this conven-
tion, we choose to either state the definitions using meta-variables instead,26 or state a
derived equivalence as theorem using object-variables in its place (which allows forgoing
clauses about the significance of the involved terms in the definiendum). I.e. in the
upcoming chapters, instead of stating the full definition-by-equivalence for e.g. property
identity, we may illustrate the definition using a simpler theorem using regular object-
level variables while dropping significance constraints:

F = G ≡ �∀ x (x[F] ≡ x[G])

This simplification is justified, since most definitions of PLM are formulated in such a way
that the definiens implies the significance of all free terms in the definiendum, so unless
noted otherwise it can be assumed that the definiendum of a definition-by-equivalence
is false for non-denoting terms. A notable example of an exception to this rule is the
definition of non-identity: non-identity between two terms holds not only if both terms
denote with different denotations, but also if either of them fails to be significant.

Definitions by Identity A subtlety in definitions by identity is the question of when a
defined term denotes. This is made explicit in the formulation of the Rule of Definition
by Identity (see A.7.141):

If τ{α1...αn} =df σ{α1...αn} then
(σ{τ1...τn}↓ → τ{τ1...τn} = σ{τ1...τn}) & (¬σ{τ1...τn}↓ → ¬τ{τ1...τn}↓).

I.e. if the definiens denotes, a definition by identity implies identity, if the definiens fails
to denote, a definition by identity implies that the definiendum fails to denote as well.
In the simplest case of a definition-by-identity that does not involve any free variables,
the definition-by-identity reduces to a plain identity, if the definiens provably denotes.

26For example, property identity may be stated as: Π = Π ′ ≡df Π↓ & Π ′↓ & �∀ x (x[Π] ≡ x[Π ′])

32

3.4. The Deductive System

3.4.3. Reasoning in PLM

Based on the fundamental meta-rules above, PLM derives further theorems and rules
governing Negations and Conditionals (see A.7.165); Quantification (see A.7.629); Logi-
cal Existence, Identity and Truth (see A.7.913); Actuality and Descriptions (see A.7.1720);
Necessity (see A.7.2507); Relations (see A.7.4220); Objects (see A.7.7508) and Proposi-
tional Properties (see A.7.8826).
Apart from the specific items discussed in the following sections, it may generally be
helpful to be aware of the following derived properties of the deductive system:

• Propositional reasoning in AOT is classical.27

• Modal reasoning can be read semantically as following Kripke-semantics without
accessibility relation and with a fixed designated actual world for the actuality
operator. In particular, AOT follows an S5 modal logic with actuality operator
and Barcan formulas.

• The free logic extends to all types, but all propositions provably denote. Quantifiers
range over denoting objects and the defined identity constitutes an existing identity,
i.e. to be identical two entities need to both denote and denote the same thing.28

3.4.4. Restricted Variables

A common theme in abstract object theory is the definition and analysis of certain
families of objects. For instance, Possible Worlds, Logical Sets or Natural Numbers are
specific families of abstract objects. Furthermore, some constructions involve talking
about the Ordinary Objects specifically. To be able to more conveniently state theorems
involving such families of objects, PLM introduces a generic mechanism for defining
restricted variables that range over objects satisfying a certain restriction condition (see
PLM section 10.5).

A formula ψ that involves a single free, unrestricted variable α, i.e. a formula that can
be written as ψ{α} in the notational convention of the embedding, is called a restriction
condition, just in case that it is both non-empty, i.e. ∃α ψ{α} is a (modally-strict)
theorem, and has strict existential import, i.e. ψ{τ} → τ↓ is a (modally-strict) theorem.
PLM distinguishes restriction conditions, in which non-emptiness and strict existential
import are modally-strict and weak restriction conditions, in which neither are required
to be modally-strict. Since the parts of PLM implemented in our embedding do not
involve weak restriction conditions, the embedding thus far forgoes an implementation
of them. However, the current implementation can easily be extended to also cover weak
restriction conditions.

27In particular, as stated in PLM item (113), all classical propositional tautologies are theorems of
AOT.

28Respectively, denote and satisfy the axiom of the substitution of identicals. Our implementation
has the property that PLM’s defined identity implies meta-logical identity.

33

3. Abstract Object Theory

Furthermore, a restriction condition is rigid, if additionally ∀α (ψ{α} → �ψ{α}) is a
modally-strict theorem.29

An example of a rigid restriction condition is being ordinary, i.e. O!x.30

Restricted variables are governed by the following conventions (see PLM item (331)):
Let γ be a variable that is restricted by the restriction condition ψ{α}. Then a quantified
formula of the form ∀ γ ϕ{γ} is to be understood as an abbreviation of ∀α(ψ{α} → ϕ{α})
for an unrestricted variable α. Furthermore, ∃ γ ϕ{γ} abbreviates ∃α(ψ{α} & ϕ{α}) and
similar conventions are introduced for definite descriptions, λ-expressions and definitions.
For non-rigid restriction conditions, PLM bans the use of free restricted variables in
theorem statements and merely allows bound occurrences. However, for rigid restriction
conditions PLM allows the use of free restricted variables in theorem statements and
extends reasoning in the system by allowing to take ψ{γ} as modally-strict axiom.
This construction allows natural reasoning with rigidly restricted variables, i.e. the
fundamental rules GEN and RN as well as usual quantifier and modal reasoning (e.g.
∀ -elimination, existential introduction, Barcan formulas, etc.) can be extended to re-
stricted variables governed by a rigid restriction condition.

3.4.5. Identity on the Ordinary Objects

While the general definition of identity for individuals was given in section 3.2, PLM
also introduces an identity relation on the ordinary objects and matching infix notation
(see A.7.7582):31

(=E) =df [λxy O!x & O!y & �∀F ([F]x ≡ [F]y)]

x =E y ≡ O!x & O!y & �∀F ([F]x ≡ [F]y)

Notably, while the above definition of =E constitutes a denoting relation (the λ-expression
does not involve encoding claims and thereby denotes by axiom), general identity of both
ordinary and abstract objects does involve encoding claims and does not constitute a
general relation of identity. In particular, the assumption that general identity among
individuals is a relation contradicts the existence of indistinguishable abstract objects
discussed in section 3.8.1.
Identity on the ordinary objects will play an important role in PLM’s analysis of Natural
Numbers, discussed in chapter 5.

29While our embedding supports non-rigid restriction condition, the parts of PLM currently imple-
mented involve only rigid restriction conditions.

30It is a theorem that there necessarily exists an ordinary object �∃ x O!x (see A.7.7510), as a
consequence of the modal axiom ♦∃ x (E !x & ¬AE !x), the definition of being ordinary as O! =df [λx
♦E !x], β-conversion and some modal reasoning. Furthermore, strict existential instance follows from
one of the quantifier axioms (see A.6.34). Rigidity is a consequence of the definition of being ordinary
(see A.7.4158).

31Note that the introduced infix notation x =E y merely abbreviates [(=E)]xy and the stated
equivalence is a theorem derived by β-conversion.

34

3.4. The Deductive System

3.4.6. Definite Descriptions

The following axiom, that was already mentioned in section 3.3, governs definite descrip-
tions:

x = ιxϕ{x} ≡ ∀ z (Aϕ{z} ≡ z = x)

In particular, definite descriptions are modally rigid and refer to the object that satisfies
the matrix ϕ in the actual world. While an extensive set of theorems and rules for
reasoning with definite descriptions is given in section 9.8 of PLM (see A.7.1720), for
an intuitive understanding of descriptions in AOT it suffices to note that they follow
a variant of Russell’s analysis of definite descriptions. In particular, atomic formulas
involving definite descriptions can be translated to existence claims as follows:32

[Π]ιxϕ{x} ≡ ∃ x (Aϕ{x} & ∀ z (Aϕ{z} → z = x) & [Π]x)

ιxϕ{x}[Π] ≡ ∃ x (Aϕ{x} & ∀ z (Aϕ{z} → z = x) & x[Π])

I.e. an atomic formula involving a description is equivalent to there being a unique object
that actually satisfies the matrix of the description and this object satisfies the given
atomic formula. The author of PLM is called “Edward Zalta” is equivalent to There
is a unique object that is actually the author of PLM and this object is called “Edward
Zalta”, respectively to There is an object that is actually the author of PLM, every other
object that is actually the author of PLM is the same object, and this object is called
“Edward Zalta”.
Similarly, a definite description denotes, just in case that there is a unique object that
actually satisfies its matrix:

ιxϕ{x}↓ ≡ ∃ !x(Aϕ{x})

E.g. “the author of Principia Mathematica” does not denote, since Principia Mathe-
matica was actually coauthored by Russell and Whitehead, i.e. there is no unique object
that actually authored Principia Mathematica (even if possibly either either of them
might have authored it alone in a non-actual world).

3.4.7. Modally-Strict and Modally-Fragile Theorems

PLM constructs two derivational systems, the first, written as `, is concerned with
modally-fragile theorems, while the second, written as `�, is concerned with modally-
strict theorems.33 The main difference between the two is that the `-system is equipped
with the modally-fragile axiom of actuality and its universal (though not its necessary
or actual) closures (as mentioned in section 3.3):

32For simplicity we restrict ourselves to the case of unary exemplification and encoding. Analog
principles hold for n-ary exemplification and encoding formulas.

33To state modally-strict and modally-fragile theorems in our embedding, we also use AOT-theorem
and AOT-act-theorem respectively. Cited statements that are undecorated are modally-strict by
default.

35

3. Abstract Object Theory

` Aϕ → ϕ

On the other hand, every modally-strict axiom is also part of the `-system. As indicated
by this axiom, semantically, the modally-fragile theorems are concerned with all actual
truths, whereas modally-strict theorems are concerned with truths that are necessary.34

Consequently, the fundamental meta-rule RN mentioned in section 3.4.1 is restricted to
modally-strict derivations: If ϕ has a modally-strict proof, then its necessitation �ϕ is
an (again modally-strict) theorem.
PLM’s axiom system has the property that the actualization of any modally-fragile
axiom (in particular A(Aϕ → ϕ)) is a modally-strict theorem (see A.7.1730).
Consequently, for any formula that is derivable as modally-fragile theorem, i.e. ` ϕ, it
holds that `� Aϕ. In particular, it follows from ` �ϕ that `� A�ϕ, which implies `�

ϕ. PLM refers to this principle as the weak converse of RN.
However, while true in our semantics and derivable in the unextended axiom system of
PLM, PLM rejects the weak converse of RN in general. The goal is to explicitly allow
augmenting the theory by asserting contingent truths without having to assert their
actualization as modally-strict fact. After doing so, the weak converse of RN would
indeed fail, so in order to keep the reasoning system robust against additional assertions
of this kind, PLM does not allow reasoning using the weak converse of RN. A detailed
discussion of this issue can be found in PLM item (71).
While section 4.7.4 hints at a potential way of reproducing this strict distinction using a
more complex semantics, for simplicity we refrain from doing so in our embedding and
instead rely on our abstraction layer to prevent reasoning using the weak converse of
RN, while it remains valid in our semantics.35

3.5. Interesting Theorems of AOT

Before we continue our technical discussion of the specifics of AOT, we give some exam-
ples of interesting abstract objects and properties that can be derived about them.

3.5.1. Truth Values as Abstract Objects

An example of AOT’s ability to define metaphysical entities as abstract objects and
derive interesting properties about them, is truth values.
In AOT, it is possible to provide a syntactic definition of what it means to be a truth
value of a proposition (see A.8.11):

TruthValueOf (x,p) ≡df A!x & ∀F (x[F] ≡ ∃ q ((q ≡ p) & F = [λy q]))
34Consequently, in our models modally-fragile axioms and theorems are semantically valid in a desig-

nated actual world, while modally-strict axioms and theorems are valid in all semantic possible worlds.
35Note that it is still possible to add contingent truths to the modally-fragile system of the embedding

and - while it would immediately become derivable semantically - just refrain from adding a modally-
strict actualization of the assertion to the abstraction layer.

36

3.5. Interesting Theorems of AOT

An abstract object x is the truth value of a proposition p, just in case it encodes a
property F, if and only if there is a proposition q that is equivalent to p and F is the
propositional property being a y, such that q.
We say that an abstract object x encodes a proposition p, if it encodes the property being
a y, s.t. p, i.e. if x[λy p]. Using that notion, it is possible to define two particular truth
values, i.e. The True and The False, as the abstract object that encodes all propositions
that are true, resp. all propositions that are false (see A.8.217):

> =df ιx(A!x & ∀F (x[F] ≡ ∃ p (p & F = [λy p])))
⊥ =df ιx(A!x & ∀F (x[F] ≡ ∃ p (¬p & F = [λy p])))

Now it becomes possible to derive natural properties of truth values analytically. For
instance:

• There are exactly two truth values (see A.8.312):36

∃ x ∃ y (TruthValue(x) & TruthValue(y) & x 6= y &
∀ z (TruthValue(z) → z = x ∨ z = y))

• The True is distinct from The False (see A.8.222): > 6= ⊥
• The True and The False are truth values (see A.8.290):37

` TruthValue(>)
` TruthValue(⊥)

• A proposition is true, iff its truth value is The True and it is false, iff its truth
value is The False (see A.8.400):
` TruthValueOf (x,p) → (p ≡ x = >)

` TruthValueOf (x,p) → (¬p ≡ x = ⊥)

The analysis of truth values is an example of AOT’s ability to define and analyze abstract
objects that faithfully represent entities that are usually only considered semantically.
AOT’s analysis of possible worlds that is discussed in the next section is another example
of this feature.

3.5.2. Fundamental Theorems of Possible Worlds

Similarly to truth values, possible worlds are usually solely considered semantically.
However, AOT allows to define possible worlds as a class of abstract objects and derive
fundamental theorems about them.
As a first step, consider the following definition of a Situation (see A.11.10):

Situation(x) ≡df A!x & ∀F (x[F] → Propositional(F))

36An abstract object x is a truth value, if it is the truth value of some proposition p:
TruthValue(x) ≡df ∃ p TruthValueOf (x,p)

37Note that since descriptions are modally rigid and refer to objects in the actual world, these theorems
are modally-fragile, i.e. actual, but not necessary truths: While there are necessarily exactly two truth
values, different possible worlds have different truth values (exactly two in each world). The defined >
and ⊥ are the truth values of the actual world.

37

3. Abstract Object Theory

A situation is an abstract object that only encodes propositional properties. A property
F is propositional, just in case that there is a proposition p, s.t. F = [λy p] (see A.7.8829):

Propositional(F) ≡df ∃ p F = [λy p]

Being a situation is a rigid restriction condition,38 so as explained in section 3.4.4, we can
use s as a restricted variable that ranges over situations. A situation makes a proposition
true, written s |= p, just in case it encodes [λy p]:39

s |= p ≡ s[λy p]

Now a possible world can be defined as a situation that possibly makes exactly those
propositions true that are true (see A.11.1399):

PossibleWorld(x) ≡df Situation(x) & ♦∀ p (x |= p ≡ p)

Similarly to situations, it can be shown that being a possible world is a rigid restriction
condition, allowing the use of w as a restricted variable ranging over possible worlds.
Now it can be derived that possible worlds are possible (i.e. possibly actual), consistent
and maximal situations and, furthermore, that any abstract object that is a possible and
maximal situation is a possible world:

• Actual(x) ≡df Situation(x) & ∀ p (x |= p → p)
A situation is actual, if it only makes true propositions true (see A.11.728).

• Possible(x) ≡df Situation(x) & ♦Actual(x)
A situation is possible, if it is possibly actual (see A.11.1127).

• Consistent(x) ≡df Situation(x) & ¬∃ p (x |= p & x |= ¬p)
A situation is consistent, if it does not make any proposition and its negation true
at the same time (see A.11.1039).

• Maximal(x) ≡df Situation(x) & ∀ p (x |= p ∨ x |= ¬p)
A situation is maximal, if any proposition is either true or false in it (see A.11.1559).

• Possible(w) & Consistent(w) & Maximal(w)

Possible worlds are possible, consistent and maximal (see A.11.1484, A.11.1508
and A.11.1561).

• PossibleWorld(x) ≡ Maximal(x) & Possible(x)
An abstract object is a possible world, if and only if it is a maximal and possible
situation (see A.11.1610).

The fundamental theorems of possible worlds relate the defined possible worlds to possi-
bility and necessity of the modal logic of AOT (see A.11.2236 and A.11.2263):

♦p ≡ ∃w w |= p
38Note that by being a situation we refer to the formula Situation(x) in this case. The term

[λx Situation(x)] is not guaranteed to denote. Similarly for being a possible world below.
39Note that the double turnstile symbol |= used here is a defined symbol in AOT and not the semantic

symbol used in chapter 2 and again starting from section 4.1.3 to symbolize truth conditions in a semantic
possible world relative to the meta-logic HOL. Also note that by convention the defined double turnstile
symbol |= of AOT is to be understood to have the narrowest possible scope, i.e. w |= p & q is to be
read as (w |= p) & q.

38

3.6. Avoiding Known Paradoxes

�p ≡ ∀w w |= p

A proposition is possible, just in case some possible world makes it true, and necessary,
just in case every possible world makes it true.
Furthermore, it can be shown that the basic connectives and quantifiers are well-behaved
with respect to being true in a possible world, i.e. (see A.11.2361 and following):40

• w |= (p & q) ≡ w |= p & w |= q
• w |= (p → q) ≡ w |= p → w |= q
• w |= (p ∨ q) ≡ w |= p ∨ w |= q
• w |= (p ≡ q) ≡ (w |= p ≡ w |= q)
• w |= ∀α ϕ{α} ≡ ∀α w |= ϕ{α}
• w |= ∃α ϕ{α} ≡ ∃α w |= ϕ{α}

Taken together this reproduces the semantic analysis of AOT with Kripke semantics
syntactically within the derivational system of AOT itself. It is a notable feature of
AOT that it can, in this sense, accurately reason about its own semantics.
While PLM provides an analysis of a range of further interesting objects, including
Logical Sets, Platonic forms, Stories and Fictional Characters and Leibnizian Concepts,
a full discussion of them would go beyond the scope of this thesis.
Instead, we discuss some further technical properties of the system of AOT that will be
relevant for our discussion of natural numbers in chapter 5.

3.6. Avoiding Known Paradoxes

3.6.1. The Clark-Boolos Paradox

Naive formulations of AOT, in which all λ-expression are assumed to denote relations,
are subject to the Clark-Boolos Paradox.41

In particular consider the λ-expression [λx ∃F (x[F] & ¬[F]x)], i.e. being an object, s.t.
there is a property it encodes, but does not exemplify. The assumption that this property
denotes leads to paradox (see A.7.4362): Assuming that the λ-expression denotes, call it
K, s.t. K = [λx ∃F (x[F] & ¬[F]x)]. By the comprehension principle of abstract objects,
there is an abstract object a that encodes exactly K and no other properties. Now if
a were to exemplify K, it would follow by β-conversion that there is a property that a
encodes, but does not exemplify. However, the only property encoded by a is K, which
is exemplified by a by assumption yielding a contradiction.

40Notably, the proofs of the last two theorems were contributed to AOT on the basis of proofs in our
embedding.

41The paradox was discovered by Romane Clark in a formalization of Meinong’s theories by William
Rapaport who reported it in [47], p. 225. Independently, George Boolos constructs the same paradox
in [14], p. 17, under the name SuperRussell in an analysis of Frege’s foundations of arithmetic.

39

3. Abstract Object Theory

If, on the other hand, a does not exemplify K, it follows that a encodes K and does not
exemplify K, so it serves as witness to the claim ∃F (a[F] & ¬[F]a). Thus it follows by
β-conversion that a does exemplify K yielding a contradiction.
Previous formulations of PLM disbarred λ-expressions like K syntactically: a λ-expression
was only considered to be well-formed, if its matrix was a so-called propositional formula.
A formula was defined to be propositional, just in case that it did not contain encoding
subformulas. However, an oversight in the precise formulation of these provisos made it
possible to reintroduce the paradox as described in the next section.
In the current formulation of PLM, the paradoxical λ-expression is well-formed, but does
not fall under the axiom that stipulates base cases of denoting terms (see 3.3): The initial
λ binds a variable that occurs in an encoding formula subterm.
Given that the assumption that the λ-expression denotes leads to contradiction, it now
provably fails to denote (see A.7.4362):

¬[λx ∃G (x[G] & ¬[G]x)]↓

3.6.2. Reintroduction of the Clark-Boolos Paradox

When attempting to construct an embedding of a previous formulation of PLM (see [64])
that relied on restricting matrices of λ-expressions to propositional formulas as defined
in the previous section, we found the following oversight (see [29] and [31]):
Encoding formulas embedded in the matrix of definite descriptions within complex for-
mulas were not considered encoding subformulas and thereby such complex formulas
were still considered propositional.42

This allowed constructing λ-expressions that were considered well-formed, but (actually)
equivalent to the paradoxical Clark-Boolos property K discussed above, namely:

K ′ =df [λx [λy ∀ p (p → p)]ιz(z = x & ∃F (z[F] & ¬[F]z))]

Since [λy ∀ p (p → p)] is (necessarily) universally exemplified by all objects, it being
exemplified be a definite description is equivalent to the matrix of the description being
actually satisfied by a unique object, i.e.:43

AOT-theorem ‹[λy ∀ p (p → p)]ιz (z = x & ∃F (z[F] & ¬[F]z)) ≡
∃ !z (A(z = x & ∃F (z[F] & ¬[F]z)))›

proof(safe intro!: ≡I →I)
AOT-assume ‹[λy ∀ p (p → p)]ιz (z = x & ∃F (z[F] & ¬[F]z))›
AOT-hence ‹ιz (z = x & ∃F (z[F] & ¬[F]z))↓›

using cqt:5 :a[axiom-inst, THEN →E , THEN &E(2)] by blast
AOT-thus ‹∃ !z (A(z = x & ∃F (z[F] & ¬[F]z)))›

using actual−desc:1 [THEN ≡E(1)] by blast
42While the matrix of a definite description (or a λ-expression) is a subterm of any formula containing

the description (or λ-expression), it is not a subformula. See PLM items (6), (7) and (8).
43We choose this opportunity to demonstrate that reasoning in our embedding is readable and intu-

itively understandable, by directly proving the equivalence in the syntax of the embedding. The proof
was automatically verified during the generation of this document as mentioned in section 1.4.

40

3.7. Extending AOT’s Free Logic to Relations

next
AOT-assume ‹∃ !z (A(z = x & ∃F (z[F] & ¬[F]z)))›
AOT-hence ‹ιz (z = x & ∃F (z[F] & ¬[F]z))↓›

using actual−desc:1 [THEN ≡E(2)] by simp
AOT-thus ‹[λy ∀ p (p → p)]ιz (z = x & ∃F (z[F] & ¬[F]z))›

by (safe intro!: β←C cqt:2 GEN →I)
qed

The left-hand side is equivalent to [K ′]x by β-conversion (assuming K ′ is a well-formed,
respectively a denoting relation). The right-hand side can be simplified to A∃F (x[F]

& ¬[F]x), so it is equivalent to A[K]x. Thereby, assuming K ′ denotes yields a modally-
fragile proof of a contradiction following the argument given in the previous section.44

An obvious solution to this issue would have been to further restrict propositional for-
mulas to not only disbar encoding subformulas, but also encoding formula subterms, i.e.
to also disallow encoding formulas embedded in matrices of descriptions and thereby
disbarring K ′ as not well-formed.
However, this had resulted in the loss of the ability to formulate interesting λ-expressions
involving descriptions that are safe and were deemed worthwhile to preserve. Therefore,
this solution was rejected in favour of extending AOT’s free logic to relation terms
as described in the next section. In the most recent formulation of AOT, it becomes
a theorem that the paradoxical relation K ′ does not denote on pain of contradiction
(see A.7.4560, resp. A.7.4620).

3.7. Extending AOT’s Free Logic to Relations

In the aftermath of the discovery of the reintroduction of the Clark-Boolos paradox,
AOT’s free logic was extended to all its types.45

In the process, the definitions for logical existence (τ↓) mentioned in section 3.2 were
introduced.46 Notably, it is possible to define the conditions under which relation terms
denote using encoding, i.e. Π↓ ≡df ∃ x1...∃ xn (x1...xn[Π]), while a similar definition using
exemplification would fail in the second-order fragment, since there are denoting, but
necessarily unexemplified properties, i.e. ∃ x1...∃ xn ([Π]x1...xn) may be false for denoting
Π.47

44The proof can also be strengthened to be modally-strict, see A.7.4620.
45AOT previously also involved a free logic. However, it was restricted to individual terms to account

for non-denoting definite descriptions. While there were λ-expressions that were not considered well-
formed syntactically, all λ-expressions that were well-formed were implicitly assumed to denote.

46Previously, the free logic for individuals relied on a notion of logical existence that was based on
identity, i.e. κ was considered to denote, just in case ∃ x x = κ. While the new definition of logical
existence is more primitive, i.e. it is formulated in terms of primitives of the language rather than defined
identity, it now becomes a theorem that τ↓ ≡ ∃β β = τ (see A.7.1448).

47In higher-order object theory, however, it is possible to define existence of relations using higher-
order exemplification as ∃F [F]Π.

41

3. Abstract Object Theory

The switch to a richer free logic also involved multiple changes to the axiom system
ultimately resulting in the version given in section 3.3. The quantifier axioms were re-
formulated using the defined notion of τ↓ for all types. Furthermore, α- and β-conversion
were restricted to denoting λ-expressions, the coexistence axiom was added and the base
cases for denoting terms were adjusted. The coexistence axiom was based on a similar
principle that was discovered as an artifactual theorem of the embedding of AOT at the
time.48 Recall its statement as:

[λν1...νn ϕ{ν1...νn}]↓ & �∀ ν1...∀ νn(ϕ{ν1...νn} ≡ ψ{ν1...νn})→ [λν1...νn ψ{ν1...νn}]↓

It is also referred to as safe extension axiom, since it merely asserts that a λ-expression
with matrix ψ denotes, in case there provably is a denoting λ-expression with a matrix
ϕ, s.t. both matrices are necessarily equivalent on all objects, i.e. in case the extension
of the λ-expression is known to be safe. Consequently, the axiom has no impact on the
size of models (or on consistency): a model can always choose the same denotation for
[λν1...νn ψ{ν1...νn}] as it chose for [λν1...νn ϕ{ν1...νn}].49

Initial versions of PLM that were equipped with a free logic on all types still retained the
concept of propositional formulas (formulas without encoding subformulas), but dropped
the implicit assumption that well-formed λ-expressions (i.e. λ-expressions with proposi-
tional matrix) generally denote, but instead excluded λ-expressions with matrices that
contain definite descriptions from the base cases of axiomatically denoting terms.
The coexistence axiom allowed to safely derive that certain λ-expressions involving def-
inite descriptions may still denote: Whenever it was possible to eliminate a description
from the matrix of a λ-expression using a description-free propositional formula that is
necessarily equivalent on all objects, it was safe to derive that the λ-expression denotes.
However, due to the fact that no longer all λ-expressions with propositional matrix
could be assumed to denote, the distinction between propositional and non-propositional
formulas lost most of its relevance. Consequently, the next step was to simplify the
system by replacing this syntactic distinction entirely by a restriction of the base cases
of denoting terms, i.e. all λ-expressions became well-formed, but only λ-expressions
without definite descriptions and without encoding formula subterms were asserted to
denote by axiom.
The, at the time of writing, most recent extension of the set of axiomatically denot-
ing λ-expression, which resulted in the formulation given in section 3.3, allowed us to
derive necessary and sufficient conditions for λ-expressions to denote, as explained in
section 3.8.2 below. A potential further refinement is discussed in section 4.6.1.

48In particular ∃G�∀ x1...xn(Gx1..xn ≡ ϕ{x1...xn}) → ∃F(F = [λx1...xn ϕ{x1...xn}]).
49However, note that this is not a requirement: While, by construction, both λ-expressions are nec-

essarily equivalent under β-conversion, AOT does not require them to be identical.

42

3.8. Further Properties of AOT

3.8. Further Properties of AOT
3.8.1. Indistinguishable Abstract Objects

The issue raised in form of the Clark-Boolos Paradox and its variants in section 3.6
is a general issue of the comprehension principle for abstract object and their identity
conditions, which intuitively imply that abstract objects correspond to sets of properties,
together with the fact that abstract objects are simultaneously meant to themselves
exemplify properties:
Properties have exemplification-extensions which are traditionally conceived of as sets
of individuals.50 However, if abstract objects correspond to sets of properties and
exemplification-extensions of properties themselves correspond to sets of objects, one
may wonder how this can be achieved consistently: How can abstract objects be sets
of properties and simultaneously (in the simplest case of non-modal and extensional
properties) elements of properties?
A semantic solution to this dilemma is given by Aczel models which are described in
section 4.1.1. But there are also derivable theorems of AOT that serve to clarify how
this dangling paradox may be avoided.
In particular, it is derivable that there are distinct, but exemplification-indistinguishable
abstract objects (see A.7.8572):

∃ x ∃ y (A!x & A!y & x 6= y & ∀F ([F]x ≡ [F]y))

The comprehension principle for abstract objects requires the existence of sufficient ab-
stract objects, that it has to be the case that some of them collapse under exemplification.
In light of avoiding a violation of Cantor’s Theorem one may even argue that most ab-
stract objects are indistinguishable, since the cardinality of the set of abstract objects is
strictly larger than the cardinality of the set of properties.51

Interestingly, though, it is impossible to independently construct two concrete abstract
objects that provably fail to be distinguishable. This is also discussed in section 5.19
in the context of our proposed extended comprehension principle for relations among
abstract objects. While PLM’s proof of the theorem above (see A.7.8572) uses a slightly
different construction, we can provide a proof that makes it explicit that we can construct
an abstract object particularly in such a way that there has to be a distinct abstract
object that is indistinguishable from it:
AOT-theorem ‹∃ x∃ y(A!x & A!y & x 6= y & ∀F([F]x ≡ [F]y))›
proof −

— Consider the object a that encodes being indistinguishable from any abstract object that
does not encode being indistinguishable from itself.

50In a modal setting properties are even associated with multiple sets of objects for different semantic
possible worlds or, equivalently, extensions of modal properties are conceived of as mapping objects to
sets of possible worlds in which the property is exemplified by the objects.

51And even the set of properties in turn has a strictly larger cardinality than the set of urelements,
which in Aczel models will serve as proxies for abstract objects to define their exemplification behaviour,
as described in more detail in section 4.1.1.

43

3. Abstract Object Theory

AOT-obtain a where a-prop:
‹A!a & ∀F (a[F] ≡ ∃ y(A!y & F = [λz ∀G([G]z ≡ [G]y)] & ¬y[λz ∀G([G]z ≡ [G]y)]))›
using A−objects[axiom-inst] ∃E [rotated] by fast

— We show that a encodes being indistinguishable from itself using a proof by contradiction.
AOT-have 0 : ‹a[λz ∀G([G]z ≡ [G]a)]›
proof (rule raa−cor :1)

AOT-assume 1 : ‹¬a[λz ∀G([G]z ≡ [G]a)]›
AOT-hence ‹¬∃ y (A!y & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]y)] &

¬y[λz ∀G([G]z ≡ [G]y)])›
by (safe intro!: a-prop[THEN &E(2), THEN ∀E(1), THEN ≡E(3)] cqt:2)

AOT-hence ‹∀ y ¬(A!y & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]y)] &
¬y[λz ∀G([G]z ≡ [G]y)])›

using cqt−further :4 [THEN →E] by blast
AOT-hence ‹¬(A!a & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]a)] &

¬a[λz ∀G([G]z ≡ [G]a)])›
using ∀E(2) by blast

moreover AOT-have ‹A!a & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]a)] &
¬a[λz ∀G([G]z ≡ [G]a)]›

by (safe intro!: a-prop[THEN &E(1)] &I rule=I :1 cqt:2 1)
ultimately AOT-show ‹p & ¬p› for p using reductio−aa:1 by blast

qed
— Hence, by construction, there is an abstract object, s.t. being indistinguishable from it is

identical to being indistinguishable from a, but which does not encode being indistinguishable
from itself.

AOT-hence ‹∃ y (A!y & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]y)] &
¬y[λz ∀G([G]z ≡ [G]y)])›

by (safe intro!: a-prop[THEN &E(2), THEN ∀E(1), THEN ≡E(1)] cqt:2)
— Call this object b.
then AOT-obtain b where b-prop:

‹A!b & [λz ∀G([G]z ≡ [G]a)] = [λz ∀G([G]z ≡ [G]b)] & ¬b[λz ∀G([G]z ≡ [G]b)]›
using ∃E [rotated] by blast

— Now a and b are indistinguishable.
AOT-have ‹∀G([G]a ≡ [G]b)›
proof −

AOT-have ‹[λz ∀G([G]z ≡ [G]a)]a›
by (safe intro!: β←C cqt:2 GEN ≡I →I)

AOT-hence ‹[λz ∀G([G]z ≡ [G]b)]a›
using b-prop[THEN &E(1), THEN &E(2)] rule=E by fast

thus ?thesis
using β→C by blast

qed
— But while a encodes being indistinguishable from b, b does not encode being indistinguishable

from itself and therefore a is not identical to b.
moreover {

AOT-have ‹a[λz ∀G([G]z ≡ [G]b)]›
using b-prop[THEN &E(1), THEN &E(2)] 0 rule=E by fast

AOT-hence ‹a 6= b›
by (safe intro!: ab−obey:2 [THEN →E] ∨I (1) ∃ I (1)[where τ=‹«[λz ∀G([G]z ≡ [G]b)]»›]

44

3.8. Further Properties of AOT

&I b-prop[THEN &E(2)] cqt:2)
}
— Therefore, a and b are witnesses to the claim of the theorem.
ultimately AOT-have ‹A!a & A!b & a 6= b & ∀G([G]a ≡ [G]b)›

using &I a-prop[THEN &E(1)] b-prop[THEN &E(1), THEN &E(1)] by blast
AOT-hence ‹∃ y(A!a & A!y & a 6= y & ∀G([G]a ≡ [G]y))› by (rule ∃ I)
AOT-thus ‹∃ x∃ y(A!x & A!y & x 6= y & ∀G([G]x ≡ [G]y))› by (rule ∃ I)

qed

Notably, the existence of indistinguishable abstract objects can be used to prove that
there is no general relation of identity in AOT, i.e. [λxy x = y] does not denote:
AOT-theorem ‹¬[λxy x = y]↓›
proof(rule raa−cor :2) — Proof by contradiction.

AOT-assume 0 : ‹[λxy x = y]↓›
— Let a and b be witnesses to the theorem discussed above.
AOT-obtain a b where 1 : ‹A!a & A!b & a 6= b & ∀F([F]a ≡ [F]b)›

using aclassical2 ∃E [rotated] by blast
— From our assumption and the fact that a is self-identical, it follows that a exemplifies the

projection of the identity relation to a.
moreover AOT-have ‹[λx [λxy x = y]ax]a›

by (safe intro!: 0 β←C cqt:2 tuple-denotes[THEN ≡df I] &I =I)
— Since a and b are indistinguishable, b has to exemplify this property as well.
ultimately AOT-have ‹[λx [λxy x = y]ax]b›

by (safe intro!: 1 [THEN &E(2), THEN ∀E(1), THEN ≡E(1)] 0 cqt:2)
— Which by beta-conversion yields that a is identical to b.
AOT-hence ‹a = b›

by (safe dest!: β→C)
— Which contradicts the fact that a and b are distinct by construction.
AOT-thus ‹p & ¬p› for p

using 1 &E =−infix[THEN ≡dfE] reductio−aa:1 by blast
qed

This aspect of AOT will be of notable importance during the construction of natural
numbers in chapter 5. In the following section, we will see another prominent example
of a theorem of AOT that involves indistinguishable objects and relates to Aczel models.

3.8.2. Necessary and Sufficient Condition for Relations to Denote

The move to a free logic for relation terms and the iterative extension of the base cases
of denoting terms mentioned in section 3.7, ultimately allowed us to contribute the
following theorem to AOT:

[λx ϕ{x}]↓ ≡ �∀ x ∀ y (∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))

A λ-expression denotes, if and only if necessarily its matrix agrees on all indistinguishable
objects.
The proof (see A.7.8603) relies on the fact that under the assumption of the right-
hand-side, it follows that �∀ y (∃ x (∀F ([F]x ≡ [F]y) & ϕ{x}) ≡ ϕ{y}). Now since

45

3. Abstract Object Theory

[λy ∃ x (∀F ([F]x ≡ [F]y) & ϕ{x})]↓ by axiom (by construction the initial λ does not bind
a variable that occurs in an encoding formula subterm - in particular it occurs only
in the exemplification formula [F]y), [λx ϕ{x}]↓ follows by the coexistence axiom. The
left-to-right direction can be shown by instantiating F to [λx ϕ{x}] and some modal
reasoning.
This theorem has several repercussions. It provides the analytic means to judge whether
a λ-expression denotes within the system of AOT itself. Notably, this led to a proof of
the existence of world-relative relations and thereby of rigidifying relations, as discussed
in more detail in the next section.
Furthermore, it can contribute to a potential reformulation of the construction of natural
numbers that does not require a modal axiom that generates ordinary objects. This is
mentioned in section 5.21, although at the time of writing, the analysis of this potential
change is not yet complete, so the current version of PLM at the time of writing does
not yet contain this new enhanced construction.
In general, this theorem is a prime example of the benefits of the semantic analysis of
AOT using our embedding that has led to significant theoretical improvements of AOT
and may yet allow for further improvements in the future.
Semantically, the theorem is closely related to Aczel models of AOT. The condition of
being indistinguishable, ∀F ([F]x ≡ [F]y), semantically corresponds to x and y sharing
the same urelement. Consequently, the theorem states that λ-expressions denote, if their
matrix agrees on objects with the same urelements or, in other words, if they can be
represented as functions acting on urelements. A more detailed semantic discussion and
a precise construction involving a mapping from individuals to urelements and relations
modelled as proposition-valued functions acting on these urelements can be found in
chapter 4.

3.8.3. World-Relative Relations and Rigidifying Relations

A notable consequence of the theory of possible worlds outlined in section 3.5.2 and
the necessary and sufficient conditions for relations to denote described in the previous
section is the fact that world-relative relations denote.
In particular, it can be derived that any denoting λ-expression can be relativized to a
possible world, i.e. (see A.11.2920 and A.11.2953):

[λx ϕ{x}]↓ → [λx w |= ϕ{x}]↓

[λx1...xn ϕ{x1...xn}]↓ → [λx1...xn w |= ϕ{x1...xn}]↓

This allows for a definition of world-relative relations as follows (see A.11.2992):
Fw =df [λx1...xn w |= [F]x1...xn]

Notably, it becomes a theorem that there exist rigidifying relations.52

52Zalta refers to [21], in which Daniel Gallin postulates the existence of rigidifying relations as an
axiom.

46

3.8. Further Properties of AOT

A relation is rigid, if exemplifying it is modally collapsed (see A.11.2995):
Rigid(F) ≡ �∀ x1...∀ xn([F]x1...xn → �[F]x1...xn)

And a relation F rigidifies a relation G, just in case F is rigid and exemplifying it is
equivalent to exemplifying G (see A.11.2999):

Rigidifies(F ,G) ≡df Rigid(F) & ∀ x1...∀ xn([F]x1...xn ≡ [G]x1...xn)

World-relative relations can now be used as a witness to show that there exist rigidifying
relations (see A.11.3057):

∃F Rigidifies(F ,G)

Rigidifying relations will play an important role in the construction of natural numbers
described in chapter 5 and their existence previously had to be ensured by stating this
last theorem as axiom.

3.8.4. Sixteen Distinct Properties

Another result that can be traced back directly to the construction of the embedding is
the derivation of a more refined theorem about minimal models of AOT. While previously
PLM merely derived that there are six distinct properties, it is a natural consequence of
our constructed models that there are at least sixteen distinct properties. This is due to
the fact that there need to be at least two distinguishable individuals (discerned by being
ordinary and being abstract) and two possible worlds (required by the axiom asserting
the existence of a contingently non-concrete objects object as mentioned in 3.3). Two
possible worlds imply that there are at least 22 = 4 distinct propositions. Mapping two
discernible objects to 4 propositions can be done in 24 = 16 distinct ways.
And indeed we could construct a proof in the system of AOT itself that verifies that
this is not a mere artifact of the model construction, but a proper theorem in AOT.
See A.7.6909 for a detailed (though somewhat tedious) proof.
Notably, this result also implies that there is at least 216 = 65556 distinct abstract
objects in minimal models of AOT. On the other hand, models that validate the theory
of natural numbers described in chapter 5 involve at least countably infinitely many
ordinary objects53 and thereby uncountably many properties and abstract objects.
Before we proceed to discuss AOT’s analysis of natural numbers in chapter 5, we describe
the technical details of the implementation of AOT in our embedding in the next chapter.

53At least in the current construction. A potential future version of the construction mentioned in
section 5.21 may instead require at least countably infinitely many special urelements, but not ordinary
objects.

47

4. SSE of AOT in Isabelle/HOL

4.1. Model Construction

While the precise model construction of the embedding can be found in A.1, this section
provides a high-level description of this construction. The general idea is based on Aczel
models of AOT, which are extended to accommodate for AOT’s hyperintensional modal
logic on the one hand and its free logic for individual and relation terms on the other
hand. Furthermore, we use a system of type classes to construct relations of arbitrary
arity as relations among tuples of individuals.1

Recall that, as mentioned in section 2.6, we do not construct set-theoretic models of
AOT, but instead construct models of AOT in HOL, while any set-theoretic model of
HOL that validates our construction can be lifted to a set-theoretic model of AOT.

4.1.1. Aczel Models

Domain D = A ∪C

U = Urelements =

Define a mapping:
‖a‖ : A → S

C S

P = Properties = ℘(U)

A = Abstract Objects = ℘(P)

Figure 4.1.: Extensional, non-modal Aczel model of AOT.

1However, for each fixed arity of relations the type classes can be logically eliminated.

48

4.1. Model Construction

The general structure of our models is based on Aczel models (see [60]). Aczel models are
extensional models that validate both the comprehension principle for abstract objects2

and classical relation comprehension in the absence of encoding formulas.
Aczel models involve a domain of urelements U that is split into ordinary urelements C
and special urelements S. In the extensional, non-modal setting, the power set of the set
of urelements suffices for representing properties. Abstract objects in turn are modelled
using the power set of properties.
Furthermore, the models involve a (non-injective) mapping from abstract objects to
special urelements. The special urelement ||x|| to which an abstract object x is mapped
determines which properties the abstract object x exemplifies.
The domain of individuals D is defined as the union of abstract objects and ordinary
urelements (resp. ordinary objects).
Any individual x ∈ D can be associated with an urelement |x| ∈ U :

|x| =

{
x, if x ∈ C
||x||, if x ∈ A

Based on this construction the truth conditions for AOT’s atomic formulas, i.e. encoding
and exemplification, can be defined as follows:

• An object x exemplifies a property F, just in case that |x| ∈ F.
• An object x encodes a property F, just in case x ∈ A and F ∈ x.

This construction immediately validates both the identity conditions for abstract objects
and the comprehension principle of abstract objects:

• Two abstract objects are identical, if they encode the same properties.
• For every set of properties, there is an abstract object that encodes exactly those

properties in the set.

Furthermore, Aczel models validate a restricted version of relation comprehension. Since
the truth conditions of any exemplification formula solely depend on the urelement
associated with the exemplifying individual, any condition ϕ on individuals that does not
contain encoding claims can equivalently be represented as a condition on urelements.
Therefore, for any such condition ϕ, there exists a relation F that is exemplified by
exactly those objects that satisfy ϕ: ∃F∀ x([F]x ≡ ϕ{x}), given that ϕ does not involve
encoding claims.
While Aczel models generally demonstrate that abstract objects and encoding can be
modelled without being subject to the Clark-Boolos paradox (recall 3.6.1), there are
several issues that remain unaddressed, including:

• AOT’s relations are not extensional and not even merely intensional, but fully
hyperintensional.

2The last axiom in section 3.3, resp. A.6.200 in the embedding: ∃ x (A!x & ∀F (x[F] ≡ ϕ{F}))

49

4. SSE of AOT in Isabelle/HOL

• Complex individual and relation terms and the free logic of AOT are not modelled
explicitly.

• Relation comprehension for formulas in the absence of encoding formulas does not
immediately cover all the base cases of axiomatically denoting relation terms as
mentioned in section 3.3.

• Aczel models do not cover n-ary relations for n ≥ 2.3

Therefore, while the models used for our embedding inherit the idea of urelements and
a mapping from abstract objects to special urelements, we extend the general model
structure for our embedding.

4.1.2. Types of the Embedding

The terms of AOT are represented in our embedding using the following types in the
meta-logic:4

• Type o for formulas, resp. propositions.
• Type κ for individual terms.
• Type < ′a> for relation terms. Here ′a is a type variable that is restricted to

types of class AOT-κs, which is instantiated for κ (yielding unary relations, resp.
properties, as <κ>) and arbitrary tuples of type κ (i.e. <κ × κ> is used to represent
two-place-relations, etc.).5

In the following, we will briefly explain how each of these types is constructed.6 The
language elements of AOT (i.e. atomic formulas, logical connectives, quantifiers, complex
individual and relation terms) can then be represented by introducing constants that act
on objects of these types. We will introduce a custom sub-grammar in the inner syntax of
Isabelle/HOL that approximates AOT’s syntax and translates to terms involving these
constants (as outlined in section 2.7). We will then formulate specifications for the
constants that will allow us to derive the axiom system and deduction rules of AOT.
The construction of the types will ensure that there are suitable witnesses for these
specifications.
The type class AOT-Term (see A.1.463) is used as a common type class that is instantiated
for each of the types above. It involves a single parameter AOT-model-denotes of type
′a ⇒ bool, that determines the meta-logical conditions under which a term of type ′a
denotes. We will explain how AOT-model-denotes is instantiated for each type below.

3While in an extensional setting they can be interpreted as sets of tuples of urelements, validating
AOT’s definition of relation identity in a hyperintensional context requires further care.

4Note that types and objects have separate namespaces in Isabelle. Also recall the brief introduction
to type classes in section 2.5.2.

5Technically, AOT-κs is instantiated for products of a type of class AOT-κ and a type of AOT-κs,
while AOT-κ abstracts the properties of type κ (and is only instantiated for κ).

6This will involve introducing additional types, in particular for urelements, that will not be used
for representing terms of AOT directly, but merely to construct the types above.

50

4.1. Model Construction

The additional type ′a AOT-var is defined for each type ′a of class AOT-Term using the ob-
jects of type ′a, for which AOT-model-denotes is True, as representation set (see A.1.1240).7
This type is used to represent the variables of each of the types above, e.g. κ AOT-var
will be the type of individual variables. Thereby, variables range exactly over the denot-
ing objects at each type. To be used in place of terms, a variable of type ′a AOT-var is
mapped to its representation type ′a using the constant AOT-term-of-var.8

4.1.3. Hyperintensional Propositions

The hyperintensionality of AOT is modelled at the level of propositions. The construc-
tion follows the general method outlined in section 2.5.1.
The type o is introduced as a primitive type (see A.1.12). It is used to represent hy-
perintensional propositions and is associated with modal extensions following Kripke
semantics: a primitive type w for semantic possible worlds is introduced (see A.1.20) and
it is axiomatized that there be a surjective mapping AOT-model-do from propositions of
type o to Montague intensions, i.e. boolean valued functions on possible worlds (type w
⇒ bool; see A.1.21).
We define for a proposition ϕ of type o to be valid in a given semantic possible world
v (written [v |= ϕ])9, just in case AOT-model-do maps p to a Montague intension that
evaluates to True for v (see A.1.30).
This way, our type of propositions o is assured to contain a proposition for each Montague
intension, but does not require the collapse of necessarily equivalent propositions:
For any given Montague intension ϕ, the inverse of AOT-model-do yields a proposition of
type o that is valid in exactly those worlds for which ϕ evaluates to True (see A.1.36).10

However, the construction allows for the type o to contain more propositions than there
are Montague intensions. I.e there may be two distinct objects p and q of type o that
are necessarily equivalent, i.e. they are valid in the same semantic possible worlds. This
can be confirmed by nitpick:

lemma ‹∀ v . [v |= p] ←→ [v |= q]› and ‹p 6= q›
nitpick[satisfy, user-axioms, expect=genuine]

7Since the representation set of a type in Isabelle/HOL cannot be empty, the type class AOT-Term
involves the assumption that there is an object for which AOT-model-denotes is True, which has to
be proven for each instantiation of the type class and thereby can be assumed for each type of class
AOT-Term.

8Each typedef that defines a type using a representation set automatically introduces morphisms,
usually prefixed with Rep- and Abs-, that map objects of the defined type to objects of its representation
set and vice-versa. In this case we chose the custom names AOT-term-of-var and AOT-var-of-term
instead of Rep-AOT-var and Abs-AOT-var.

9Note that this use of the double turnstile symbol |= is defined within the meta-logic HOL and
distinct from the use in AOT’s possible world theory described in section 3.5.2.

10This fact relies on the surjectivity of AOT-model-do. The embedding introduces the notation εo w
. ϕ w for the proposition given by inv AOT-model-do ϕ. We will use such propositions during witness
proofs in specifications.

51

4. SSE of AOT in Isabelle/HOL

nitpick can find a model in which p and q are represented by two distinct objects, while
both of them have the same Montague intension under AOT-model-do.
Note, however, that the construction also allows for necessary equivalent propositions
to be collapsed:
lemma ‹∀ p q . (∀ v . [v |= p] ←→ [v |= q]) −→ p = q›

nitpick[satisfy, user-axioms, expect=genuine]

In this case nitpick chooses a model in which the type o is isomorphic to the type of
Montague intensions w ⇒ bool, i.e. there are just as many objects of type o as there are
Montague intensions.
Just as AOT itself, the model construction does not presuppose the degree of hyperin-
tensionality of propositions.
To instantiate the type class AOT-Term for type o, we need to define the conditions under
which propositions denote. Since in AOT all formulas denote, AOT-model-denotes is True
for all objects of type o. Consequently, the type o AOT-var is isomorphic to the type o.
On top of this hyperintensional type of propositions, the logical connectives will later be
defined by specification as outlined in section 2.5.1.
Notably, previous versions of our embedding (in particular the construction in [29]),
modelled hyperintensionality more explicitly by using an additional primitive type s of
intensional states. Propositions were modelled explicitly as boolean-valued functions
acting on states and possible worlds (type s ⇒ w ⇒ bool). Semantic validity was defined
using the evaluation of propositions in a designated actual state. The logical connectives
were defined to have classical behaviour in the actual state, while their behaviour was left
unspecified in non-actual states. While such an explicit construction using intensional
states can still serve as a concrete model for our abstract type o, the fact that AOT does
not presuppose any additional structure on non-actual states allowed us to replace the
explicit construction by the more general abstraction described above.

4.1.4. Extended Aczel Model Structure

Our representation is based on Aczel models, so the construction of the types of indi-
viduals and relations relies on urelements.
The embedding introduces a type of urelements υ (see A.1.57) that is comprised of three
separate kinds of urelements:

• Ordinary urelements of type ω (see A.1.45),
• Special urelements of type σ (see A.1.53) and
• Null-urelements of type null (see A.1.55).

Following the structure of Aczel models, ordinary urelements are used to model ordinary
objects and special urelements determine the exemplification behaviour of abstract ob-
jects. The additional null-urelements are introduced to be able to distinguish between
non-denoting individual terms (see below).

52

4.1. Model Construction

For simple models, the types of ordinary, special and null urelements can all remain
purely abstract types.11

Hyperintensional relations are modelled as proposition-valued functions. In particular,
the embedding introduces the type urrel (see A.1.63) that is represented by the set of all
functions from urelements to propositions (type υ ⇒ o), which map null-urelements to
necessarily false propositions.12 This type of urrelations will be in one-to-one correspon-
dence with the denoting property terms, i.e. denoting objects of type <κ>, respectively
objects of type <κ> AOT-var.
The additional null-urelements serve to avoid two kinds of artifactual theorems:

• Let p be the proposition denoted by the term [F]ιxϕ{x} and let q be the proposition
denoted by the term [F]ιxψ{x}. Furthermore, assume that provably neither of the
descriptions denote, i.e. both ¬ιxϕ{x}↓ and ¬ιxψ{x}↓ are theorems. Now while
AOT requires p and q to be necessarily equivalent, in particular they are both
necessarily false, it does not (in general) presuppose that p is identical to q.13 In
the embedding this is achieved by allowing descriptions (with distinct matrices)
to be mapped to distinct null-urelements to which the urrelation corresponding
to F can assign distinct (albeit necessarily false) propositions.14 While artifactual
theorems of this kind could also be avoided by merely allowing exemplification
formulas to choose distinct propositions for distinct non-denoting terms, this would
not be sufficient to avoid the second kind of artifactual theorems:

• In AOT there may be distinct properties, s.t. for any object exemplifying either of
them necessarily results in the same proposition. I.e. ∀ x �([F]x = [G]x) does not
imply F = G. The ∀ -quantifier ranges over all denoting individuals. If relations
were merely modelled as functions from urelements that correspond to denoting
individual terms to propositions, the identity would follow, since two functions are
identical, if they agree on all arguments. By introducing null-urelements, however,
we allow F and G to vary on additional urelements outside of the range of the
quantifier.15

11I.e. a model of HOL may choose (non-empty) domains of any size for each kind of urelements. In
chapter 5 we will discuss a more specific construction that is required to validate the additional axioms
needed for the construction of natural numbers.

12Note that our construction allows for multiple distinct propositions that are necessarily false.
13An example of an exception is the case in which the matrices are alphabetic variants of each other

or can be transformed into each other by substituting identical subterms, in which case ϕ and ψ are also
meta-logically identical.

14Note that this is not a mere technicality, but it may be desirable to distinguish e.g. between the
proposition The number smaller than 3 is a natural number (which fails due to there not being a unique
such number) and The number greater than 3 and smaller than 2 is a natural number (which fails due
to there not being any such number). Furthermore, it might make sense to consider the proposition The
present king of France is a natural number to be an entirely different proposition than the first two. The
embedding allows to assign each of the non-denoting definite descriptions distinct null-urelements and
thereby allows the propositions to differ. However, it also allows to choose a model with only a single
null-urelement which would collapse these propositions.

15An alternative approach would be to introduce a primitive type of relations that is merely assigned
a proposition-valued function as extension, similarly to how Montague intensions are assigned to the

53

4. SSE of AOT in Isabelle/HOL

Note that the additional null-urelements have no impact on minimal models of AOT. In
minimal models, propositions are in one-to-one correspondence to Montague intensions:
for every boolean valued function on possible worlds there is exactly one proposition.
While urrelations have to assign propositions to null-urelements, by construction, ur-
relations are required to evaluate to necessarily false propositions on null-urelements.
Hence, there is only one choice for doing so, namely the single proposition with the
constant-false function as Montague intensions. Consequently, the number of relations
in minimal models of AOT is unaffected.
As a last ingredient of our Aczel model structure, we require a mapping ασ from sets
of urrelations (which will be used to represent abstract objects) to special urelements
(see A.1.235). As in the basic Aczel model construction, this mapping will determine
the exemplification behavior of abstract objects.
For urrelations to become a proper quotient of proposition-valued functions acting on
individual terms, as described below, we require this mapping to be surjective. However,
we can show that any mapping ασ ′ from sets of urrelations to special urelements can
be extended to a surjective mapping ασ that distinguishes all abstract objects that
are distinguished by ασ ′, i.e. if ασ ′ x 6= ασ ′ y, then ασ x 6= ασ y. This is possible
due to the fact that the set of abstract objects is significantly larger than the set of
special urelements. In particular, under any arbitrary mapping from abstract objects to
special urelements, there has to be at least one abstract object a that shares the same
urelement with an amount of other abstract objects that is larger than the total amount
of special urelements (proof by a pigeonhole-style argument, see A.1.73). Therefore, any
mapping ασ ′ that is not surjective, can be extended to a surjective mapping by further
differentiating the abstract objects that share their urelements with a.
To keep the construction as flexible as possible, we first introduce an uninterpreted
constant ασ ′ and then generically extend it to a surjective mapping ασ (see A.1.234).
To validate extended relation comprehension we can then augment ασ ′ using a suitable
specification. The precise construction of ασ ′ needed for extended relation compre-
hension is discussed in more detail in section 5.19.
Additionally, we introduce the constant AOT-model-concreteω (see A.1.452) and specify it
in such a way, that (1) for every object x (of type ω) there is a possible world w (of type
w), s.t. AOT-model-concreteω x w and (2) there is an object x and a possible world w, s.t.
AOT-model-concreteω x w ∧ ¬ AOT-model-concreteω x w0 (where w0 is the designated actual
world). This constant will be used to construct AOT’s relation of being concrete. The
specified properties ensure that objects of type ω will be possibly concrete, i.e. ordinary,
and that there possibly is an object that is concrete, but not actually concrete, which is
asserted by AOT as an axiom. A function that is true for an object x (of type ω) and

primitive type of propositions. However, this would require a polymorphic axiomatization to account for
relations of all arities which is incompatible with the model-checking tool nitpick. Even only axiom-
atizing a finite subset of all arities would require nitpick to construct significantly larger models and
thereby diminish its usefulness. Furthermore, this construction would further complicate validating the
definition of n-ary relation identity.

54

4.1. Model Construction

a semantic possible world w (of type w), just in case w is not the actual world w0, can
serve as witness for the specification.16

Based on the type of urelements υ and the type of urrelations urrel we can construct the
type κ of individual terms.

4.1.5. Individual Terms and Properties

The type κ (see A.1.430) consists of ordinary objects of type ω (shared with ordinary
urelements), abstract objects modelled as sets of urelements (type urrel set) and null-
objects of type null (shared with null-urelements) that will serve to model non-denoting
definite descriptions. We can lift the surjective mapping from abstract objects to special
urelements ασ to a surjective mapping κυ from individual terms to urelements (i.e. type
κ ⇒ υ) (see A.1.434), s.t. for any urelement we can find an object of type κ that is
mapped to that urelement (see A.1.439).
To instantiate the type class AOT-Term for type κ, we define AOT-model-denotes to be
True for exactly those objects of type κ that are not null-objects.
Relation terms will be defined relative to types of a type class that abstracts individuals
and tuples of individuals. We will explain this generic construction below. However,
it may be helpful to first consider the case of properties (i.e. type <κ>) specifically,
even though in the embedding this case will only occur as a special case of the generic
construction.
Property terms (of type <κ>) are represented by proposition-valued functions acting on
individuals (type κ ⇒ o). A property term denotes, if its representing function ϕ satisfies
the following conditions:

• ϕ κ = ϕ κ ′, whenever κυ κ = κυ κ ′, i.e. ϕ evaluates to the same propositions for
objects that have the same urelements.

• ϕ evaluates to necessarily false propositions for objects of type κ that do not denote.

Consequently, since κυ is surjective and urrelations have the property to be necessarily
unexemplified on null-urelements, denoting property terms are in one-to-one correspon-
dence with urrelations (see A.1.691). This is crucial for constructing encoding and
validating the comprehension principle of abstract objects, since abstract objects are
modelled as sets of urrelations.
We can now now construct a function that can later serve as witness for our specification
of exemplification. For a property term Π and an individual term κ, we can choose a
proposition p, such that:

16Note that we have to assert the existence of a non-actual world using a meta-logical axiom,
see A.1.26. Also note that this construction does not imply that in our embedding no objects will
be actually concrete and all ordinary objects will be concrete in all non-actual worlds. While our witness
has this additional property, a model of HOL may choose any denotation for AOT-model-concreteω
that merely satisfies the properties of the specification.

55

4. SSE of AOT in Isabelle/HOL

• If Π denotes, then p = Rep-rel Π κ, i.e. the proposition resulting from applying the
function representing Π to κ. This proposition will, by construction, be necessarily
false, if κ does not denote.

• p is a necessarily false proposition otherwise.
Furthermore, the construction allows us to define the meta-logical truth conditions of
encoding as follows: κ encodes Π just in case that (1) Π denotes, (2) κ is represented by
an abstract object x and (3) the urrelation corresponding to Π is contained in x.

4.1.6. Type Classes for Individual Terms

The type class AOT-κs is a combination of three more specific type classes:
AOT-IndividualTerm (see A.1.510), AOT-RelationProjection (see A.4.407) and AOT-Enc
(see A.4.714). The latter two formulate conditions on relations among objects of their
type variable. Therefore, they can only be formulated after a type of relations is intro-
duced. The type of relations itself will be defined relative to the class AOT-IndividualTerm.
The most important parameter of this class is AOT-model-term-equiv, an equivalence rela-
tion which is satisfied for two objects, if they have common urelements.17 We furthermore
introduce the notion of individual terms to be regular and specify a transformation of
proposition-valued functions acting on individual terms, s.t. after the transformation the
behaviour of the function is solely determined by its values on regular terms. This will
be relevant for the definition of n-ary relation identity (see 4.6.4). An unary individual
term (i.e. an object of type κ) is always regular, while a tuple will only be regular, if at
most one of its elements does not denote.
In the next section, we will introduce relations as proposition-valued functions acting on
objects of sort AOT-IndividualTerm. The class AOT-RelationProjection defines an abstract
notion of projections of relations that will be relevant for defining n-ary relation identity.
The class AOT-Enc defines an abstract notion of encoding. Encoding for type κ is
specified as explained in the last section, while for tuples it is constructed in such a way
that the axiom of n-ary encoding will become derivable. Together, the three type classes
form the class AOT-κs.
In the formulation of the axiom system, individuals in ellipses notation will be allowed
to have any type of class AOT-κs, and relations will be assumed to act on any type of
class AOT-κs.18 This way axioms about relations can be stated for all arities at the same
time (since the concrete type of individuals κ as well as arbitrary iterated products of
it, e.g. κ × κ × κ, are all of class AOT-κs).

17Note that an object of a type of class AOT-IndividualTerm may itself e.g. be a pair of two objects
of type κ, since the product of κ with itself, i.e. type κ × κ, is also of class AOT-IndividualTerm.
AOT-model-term-equiv for pairs is defined as the conjunction of AOT-model-term-equiv on
both projections. Consequently, two tuples (κ1,...κn) and (κ1

′,...κn
′) of objects of type κ are

AOT-model-term-equiv-equivalent if for all 1 ≤ i ≤ n, κi has the same urelement as κi ′.
18Unless a statement involves explicit exemplification or encoding formulas that imply restrictions on

the type, e.g. a particular arity.

56

4.2. Syntax of the Target Theory

4.1.7. Generic Relation Terms

The generic type of relation terms is defined as the type of proposition-valued functions
acting on a type of class AOT-IndividualTerm (see A.1.582).
To instantiate the type class AOT-Term to our generic type of relation terms, we have
to define the conditions under which a relation term denotes.
A relation term denotes, if it is represented by a proposition-valued functions ϕ on
individual terms, such that (see A.1.606):

• ϕ agrees on AOT-model-term-equiv-equivalent terms, i.e. it evaluates to the same
proposition for individual terms that share the same urelements.

• For non-denoting individual terms, ϕ evaluates to necessarily false propositions.
• ϕ is well-behaved on irregular terms (i.e. on irregular terms it evaluates to the

proposition given by AOT-model-irregular ϕ, which solely depends on ϕ’s behaviour
on regular terms). This will be important to validate the definition of n-ary re-
lation identity and is discussed in section 4.6.4. Note that since unary individual
terms, i.e. objects of type κ, are always regular, this restriction does not apply to
properties of type <κ>.

Consequently, exemplification of denoting relation terms, can (as already indicated for
the unary case) simply be modelled by the application of the proposition-valued function
representing the relation term to the given individual term (which may be a tuple of
terms of type κ), while exemplifying non-denoting relation terms yields a necessarily
false proposition.19

Generic encoding was already described in the last section.
We now have constructed all the required types and prepared the required witnesses for
constructing an abstract semantics of AOT using specifications in section 4.4. However,
this semantics is formulated using our implementation of AOT’s syntax, so in the fol-
lowing two sections we will first briefly discuss how we extend Isabelle’s inner syntax by
an approximation of the syntax used in PLM and how we extend Isabelle’s outer syntax
by custom commands used for structured reasoning in the embedding.

4.2. Syntax of the Target Theory

We already discussed the possibility of extending Isabelle’s inner syntax in general in
section 2.7. Following the method described in that section, we introduce AOT-prop as
syntactic root type for propositions in AOT (see A.2) and define a custom grammar
for AOT on top of it (see A.3). However, Isabelle’s high-level mechanisms for defining
custom syntax have certain limitations that make an accurate representation of AOT’s
syntax challenging.

19By can be modelled here we mean that we can construct a witness for the semantic specification of
exemplification.

57

4. SSE of AOT in Isabelle/HOL

In particular, Isabelle’s lexical analysis is not designed to be configurable. It presupposes
that identifiers consist of multiple characters and have to be delimited by whitespace or
certain delimiter tokens.
While requiring identifiers to be delimited can be considered as a reasonable syntactic
concession, we found that reproducing the compact form of atomic formulas used in
PLM results in significantly improved readability.
Therefore we utilize Isabelle’s low-level mechanisms to customize syntax by providing
transformations on its abstract syntax tree and its term representation written in Stan-
dard ML.
In particular, we use parse-ast-translations and parse-translations (see §8.4 in [55])
to split what Isabelle would natively regard as a single identifier. That way we are
able to e.g. translate the term [Π]κκ ′ to AOT-exe Π (κ,κ ′). The 2-ary exemplification
formula is translated to an application of the constant AOT-exe to the relation term and
a tuple of individual terms. Similarly, κκ ′[Π] is translated to AOT-enc (κ,κ ′) Π. Involved
constants are introduced in A.3 as uninterpreted constants (see A.3.41), which are only
later enriched with semantic structure using specifications (see A.4 and section 4.4).20

Furthermore, PLM associates the symbols used for its terms with their types, as de-
scribed in section 3.2. While it is possible to rely on Isabelle’s type inference in most
cases, this will not always result in correctly typed terms without additional type anno-
tations which would negatively affect readability.
For that reason, we construct an extensible system for typing terms based on their
names. In particular we introduce the command AOT-register-type-constraints
that can be used to introduce named categories of types and equip them with type
constraints both for unary terms and tuples. We then allow registering symbols as vari-
ables and meta-variables of a given category with AOT-register-variable-names and
AOT-register-metavariable-names. The extensible design allows for reproducing
AOT’s concept of restricted variables (see 3.4.4) by further associating a term category
with a restriction condition (see A.9).21

A danger in the extensive use of complex custom syntax is silent errors in the syntactic
translations that could result in an expression to be parsed contrary to their intended
meaning. To alleviate this danger we define multiple printing modes. The embedding
can be configured to print terms in an approximation of AOT’s syntax, e.g.:

[Π]κy → p ∨ ϕ
using meta-syntax, an enriched version of HOL’s syntax without complex transforma-
tions, e.g.:

(|Π,(κ, 〈y〉)|) → 〈p〉 ∨ ϕ

20The type construction discussed in the previous section allows us to construct witnesses for these
specifications.

21The restriction condition will be added when parsing quantifiers using restricted variables. For
rigidly restricted variables a sub-type is introduced that is restricted to all terms that satisfy the restric-
tion condition, allowing to add the restriction condition as axiom for objects of this restricted type.

58

4.3. Extending Isabelle’s Outer Syntax

or as plain HOL terms without any syntactic sugar, e.g.:

AOT-imp (AOT-exe Π (κ, AOT-term-of-var y)) (AOT-disj (AOT-term-of-var p) ϕ)

Note that while the meta-syntax already involves distracting complexities like the anno-
tation of non-meta-variables using 〈-〉, additional explicit syntax for exemplification (|-,-|)
and explicit tuples, plain HOL syntax quickly becomes unreadable for complex terms.
For the purpose of implementing a full theory with an extensive body of theorems, we
contend that the improved readability outweighs the potential danger of complex syntax
transformations, especially given the ability to confirm the accuracy of the translation
using less complex printing modes.

4.3. Extending Isabelle’s Outer Syntax

While the syntax transformations described in the last section go a long way in allowing
the intuitive statement of terms and formulas of AOT, reasoning in the target logic
entails additional challenges.
For example, reasoning in the embedding involves keeping track of the semantic possible
world in which statements are valid. To avoid this cognitive overhead, we implement
a copy of Isabelle’s Isar language in Standard ML that automatically handles semantic
possible worlds and allows theorem statements and proofs to be transferred directly from
and to PLM without the need of explicitly mentioning semantic possible worlds.
While modally-strict theorems of PLM are valid in all semantic possible worlds, concep-
tually its proofs work relative to an arbitrary but fixed world. For proving a necessary
fact during a proof, e.g. �ϕ, PLM often reasons by providing a modally-strict sub-proof
of ϕ and appealing to the rule RN. In our embedding we reproduce this by introduc-
ing an outer syntax command AOT-modally-strict { that opens a block of reasoning
relative to a fresh possible world. For example:
AOT-theorem ‹�(¬ϕ & ¬ψ) → �(ϕ ≡ ψ)›
proof(rule →I)

AOT-assume 0 : ‹�(¬ϕ & ¬ψ)›
— Start a modally-strict sub-proof.
AOT-modally-strict {

AOT-assume ‹¬ϕ & ¬ψ›
AOT-hence ‹ϕ ≡ ψ›

by (metis &E →I ≡I reductio−aa:1)
}
— Conclude the necessitation of the result by RN.
AOT-hence ‹�((¬ϕ & ¬ψ) → (ϕ ≡ ψ))›

by (metis →I RN)
AOT-thus ‹�(ϕ ≡ ψ)› using 0 qml:1 [axiom-inst] →E by blast

qed

This corresponds to the following proof using Isabelle’s native outer syntax:

59

4. SSE of AOT in Isabelle/HOL

theorem ‹[v |= �(¬ϕ & ¬ψ) → �(ϕ ≡ ψ)]›
proof(rule →I)

assume 0 : ‹[v |= �(¬ϕ & ¬ψ)]›
{

fix w — We choose a fresh possible world for our sub-proof.
assume ‹[w |= ¬ϕ & ¬ψ]›
hence ‹[w |= (ϕ ≡ ψ)]›

by (metis &E →I ≡I reductio−aa:1)
}
hence ‹[v |= �((¬ϕ & ¬ψ) → (ϕ ≡ ψ))]›

by (metis →I RN)
thus ‹[v |= �(ϕ ≡ ψ)]› using 0 qml:1 [axiom-inst] →E by blast

qed

Additionally, we introduce the command AOT-define, which allows to directly state
definitions of PLM (see 3.4.2). Internally, this involves introducing a new constant for
the defined entity and setting up the syntax for parsing and printing according to the
specified syntactic type (while the logical type of the constant is deduced). This new
constant is then automatically specified to fulfill the given definition using a mechanism
similar to the specification command, while the entailed existence proof is constructed
automatically.22

The convenience of this mechanism becomes apparent by inspecting a definition of ex-
clusive or :
AOT-define xor1 :: ‹ϕ ⇒ ϕ ⇒ ϕ› (infixl ‹XOR1 › 10)

xor1-spec: ‹ϕ XOR1 ψ ≡df (ϕ ∨ ψ) & ¬(ϕ & ψ)›

This is (roughly)23 the same as:
consts xor2 :: ‹o ⇒ o ⇒ o›
syntax xor2 :: ‹ϕ ⇒ ϕ ⇒ ϕ› (infixl ‹XOR2 › 10)
specification(xor2)

xor2-spec: ‹AOT-model-equiv-def «ϕ XOR2 ψ» «(ϕ ∨ ψ) & ¬(ϕ & ψ)»›
by (auto intro!: exI [where x=‹λ ϕ ψ . εo w . [w |= (ϕ ∨ ψ) & ¬(ϕ & ψ)]›]

simp: AOT-model-equiv-def AOT-model-proposition-choice-simp)

We also introduce auxiliary commands like AOT-find-theorems and AOT-sledgehammer
to aid in constructing proofs. AOT-find-theorems works similar to the Isar command
find-theorems, but automatically parses AOT syntax and generalizes concrete vari-
ables to schematic variables for pattern matching. AOT-sledgehammer is a wrapper
that invokes sledgehammer while restricting its search for theorems, s.t. the model-
specific theorems are ignored and only the theorems and rules of the abstraction layer
are allowed for proofs.
The list of commands can be found in A.2, while the actual ML implementation is
available at [27].

22The existence proofs are generally trivial: the definiens itself can be chosen as witness.
23AOT-define additionally supports our printing modes and performs internal book-keeping needed

for example for the substitution methods to recognize the new definition.

60

4.4. Representation of an Abstract Semantics of AOT

4.4. Representation of an Abstract Semantics of AOT

In A.4, we construct an abstract semantics for the primitive (and some of the basic
defined) language elements of AOT. The goal of this layer of abstraction is to specify
only the properties of the models that are required to derive the axiom system and rules
of AOT later.
The defined semantics heavily relies on Isabelle’s specification command to abstract
specific model choices to more general semantic properties. The model construction
merely enables us to construct witnesses for the specifications.
As a simple example, we specify implications by requiring that ϕ→ ψ is true in a semantic
possible world w, just in case ϕ being true in w implies ψ being true in w (see A.4.21).
More complex examples include the specification of descriptions (see A.4.71) and the
joint specification of exemplification and λ-abstraction (see A.4.125).
Notably, we specify necessity (see A.4.32) using validity in all semantic possible worlds
and actuality (see A.4.38) using validity in a designated actual world w0 (see also 4.7.4).
Furthermore, we specify AOT’s identity as existing identity of meta-logical terms (see
A.4.63), while we derive that this corresponds to AOT’s definition of identity at each
type in A.5.72.24

One goal of this intermediate layer of abstraction is to keep the derivation of the ab-
straction layer that contains the axioms and the deductive system of AOT impervious
to minor changes in the model construction.
However, it also eliminates artifactual theorems: instead of simply defining λ-abstraction
and exemplification using a concrete model construction, we introduce them using ab-
stracted properties and merely provide a concrete witness that satisfies those properties.
This increases the choice of admissible models of HOL validating our construction, since
such a model is not restricted to the provided witness, but is merely bound by the ab-
stract properties. This eliminates artifactual theorems that would merely be true for
our provided witness, but are not derivable from the required properties.
For example, in the witness proof of the specification of exemplification and λ-abstraction
(see A.4.125), we define exemplification, as indicated in the previous sections, as a func-
tion exe (type < ′a> ⇒ ′a ⇒ o with ′a of sort AOT-IndividualTerm) taking a relation term
Π and individual terms κs to a proposition p, s.t. if Π denotes, p is given by applying
the function representing Π to the individual terms κs, and if Π does not denote, p is a
specific, fixed necessarily false proposition. This choice of a witness implies that [Π]κ =

[Π]κ ′ for any κ and κ ′, whenever Π does not denote. However, since our specification does
not imply this fact, the construction still allows for models in which [Π]κ is a proposition
that is distinct from [Π]κ ′ for distinct κ and κ ′ (though both propositions have to be
necessarily false).
In this sense, the technical details of the constructed witnesses are not particularly
relevant in contrast to that we (1) have chosen representation types and basic definitions

24Logical existence τ↓ is handled similarly.

61

4. SSE of AOT in Isabelle/HOL

(e.g. for terms to denote) that allow constructing suitable witnesses, (2) our specification
is sufficiently strong to validate the axiom system of AOT and (3) our specification is
weak enough and our types are general enough to preserve hyperintensionality and avoid
most artifactual theorems. The details of our specifications can be found in A.4.

4.5. Specifications and the Hilbert-Epsilon-Operator

As mentioned in section 2.5.1, the specification command internally uses Isabelle’s
native Hilbert-Epsilon-operator SOME x. ϕ x. This operator is axiomatized in the meta-
logic using the following single principle:

ϕ x =⇒ ϕ (SOME x. ϕ x)

In particular, this implies that the operator behaves like the classical Hilbert-Epsilon-
operator, i.e. it holds that (∃ x. ϕ x) = ϕ (SOME x. ϕ x). Consequently, whenever there
is a witness for ϕ, then whatever is true for everything that satisfies ϕ is true for SOME
x. ϕ x:

[[∃ a. ϕ a;
∧

x. ϕ x =⇒ ψ x]] =⇒ ψ (SOME x. ϕ x)

However, it is noteworthy that this operator obeys the following principle of extension-
ality:

(∀ x. ϕ x = ψ x) −→ (SOME x. ϕ x) = (SOME x. ψ x)

This is due to the fact, that in the meta-logic, extensional equivalence implies identity,
i.e. the antecedent implies ϕ = ψ and the consequent follows by substitution of identicals.
Therefore, we cannot e.g. define an intensional conjunction as follows (we reuse the type
o2 and its defined validity from section 2.5.1):25

definition o2-conj ′ (infixl ‹∧ ′′› 100) where
‹ϕ ∧ ′ ψ ≡ SOME χ . valid-o2 χ ←→ (valid-o2 ϕ ∧ valid-o2 ψ)›

Since it holds that (valid-o2 χ = (valid-o2 ϕ ∧ valid-o2 ψ)) = (valid-o2 χ = (valid-o2 ψ ∧
valid-o2 ϕ)), commutativity of (∧ ′) is immediately derivable:

lemma ‹(p ∧ ′ q) = (q ∧ ′ p)›
unfolding o2-conj ′-def by metis

However, we can avoid this issue, if we do not define the value of the conjunction function
for specific arguments using the Epsilon-operator, but instead the conjunction function
itself, i.e.:

definition o2-conj ′′ (infixl ‹∧ ′′′′› 100) where
‹(∧ ′′) ≡ SOME conj . ∀ ϕ ψ . valid-o2 (conj ϕ ψ) = (valid-o2 ϕ ∧ valid-o2 ψ)›

25Note that in mixfix notation a single quote ′ is used as escape character for distinguishing place-
holders - from underscores ′-. A syntactic single quote is therefore given as ′′.

62

4.6. Axiom System and Deductive System

This way, our conjunction has any property that is true for all possible functions that
behave as conjunction under validity. In other words, any choice for a concrete conjunc-
tion is admissible, including intensional ones, as long as it has our required extensional
property under validity.26

This is exactly how the specification command works: the specification statements are
transformed to closed terms by universal generalization and combined via conjunction
and the result is used as the matrix of the Hilbert-Epsilon-operator. Given the provided
witness, the desired properties of the Hilbert-Epsilon term become derivable.
Note that the extensionality of the Hilbert-Epsilon operator still implies that any other
operator defined using a meta-logically equivalent condition is identical, i.e.:

definition o2-conj ′′′ (infixl ‹∧ ′′′′′′› 100) where
‹(∧ ′′′) ≡ SOME conj . ∀ ϕ ψ . (valid-o2 ψ ∧ valid-o2 ϕ) = valid-o2 (conj ϕ ψ)›

lemma ‹(∧ ′′) = (∧ ′′′)›
by (auto intro!: Eps-cong simp: o2-conj ′′′-def o2-conj ′′-def)

To avoid this issue completely, we would need to introduce an additional dependency on a
meta-logical parameter that is allowed to vary across otherwise meta-logically equivalent
definitions.27

4.6. Axiom System and Deductive System

The axiom system as derived in the embedding was already described in section 3.3 and
the fundamental meta-rules were mentioned in section 3.4. By construction, most of
them can be derived from the abstract semantics using simple, automatically generated
proofs.
While the full derivation of the axiom system in the embedding can be found in A.6
and the deductive system of PLM chapter 9 is derived in A.7, in the following, we will
focus on some particular axioms, rules and proofs that are challenging to represent in
the embedding. This mostly happens due to PLM’s statement involving either complex
preconditions given in natural language or due to the statement extending over multiple
types.

26Note, however, that we still need to make sure that the involved types are sufficiently intensional
as discussed in section 2.5.1.

27Note that nitpick has specific support for the specification command: it ignores the underlying
definition using the Hilbert-Epsilon operator, and instead solely considers the given specification, see [12].
In that sense, the underlying definition of a specification is commonly treated as part of an inaccessible
implementational detail of an abstraction layer, even in the meta-logic HOL itself.

63

4. SSE of AOT in Isabelle/HOL

4.6.1. Base Cases of Denoting Terms

One of the axioms we mentioned explicitly as difficult to implement in section 3.3 is the
second (in PLM’s numbering) quantifier axiom which establishes a set of base cases of
denoting terms. Recall the formulation of the axiom in PLM (item (39.2)):

τ↓, provided τ is a primitive constant, a variable, or a λ-expression in which
the initial λ does not bind any variable in any encoding formula subterm.

We implement this axiom by splitting it up into cases. The first and obvious way to split
the axiom is to split it into the separate cases listed in the natural language formulation:
constants, variables and λ-expressions.
The embedding does not have to distinguish explicitly between constants and variables:
both constants and variables are modelled as entities of the same type (′a AOT-var)
and the distinction between constants and variables is done by declaring the entity as a
constant or using it as a variable in the meta-logic. So it suffices to state one case for
constants and variables (see A.6.19):

α↓

α ranges over all expressions of type ′a AOT-var (see 4.1.2) and therefore ranges over the
denoting objects of type ′a, which immediately validates α↓ semantically. Note that the
axiom only extends to primitive constants, i.e. it does not extend to defined constants.
In our embedding defined constants are modelled as terms of a given type, i.e. directly
in the base type ′a, not the type ′a AOT-var, so the axiom cannot be instantiated to
them, as intended.
The remaining case concerns λ-expressions and is more complex to represent. Internally,
a λ-expression denotes, just in case that its matrix ϕ is necessarily equivalent on all
denoting objects that share an urelement, or formally (see A.4.269):

AOT-model-denotes (AOT-lambda ϕ) =
(∀ v κ κ ′.

AOT-model-denotes κ ∧
AOT-model-denotes κ ′ ∧ AOT-model-term-equiv κ κ ′ −→
[v |= ϕ κ] = [v |= ϕ κ ′])

However, this is a semantic criterion and does not directly correspond to the formulation
of above axiom. While, for arbitrary complex terms, we cannot directly capture the
syntactic restriction stating that the initial λ does not bind any variable in any encoding
formula subterm, we can construct a set of introduction rules for a predicate on matrices
that will cover all terms that match the natural language description.
To that end, we define the auxiliary constant AOT-instance-of-cqt-2 (see A.4.1283). This
constant acts on matrices of λ-expressions, i.e. on functions that map entities of a type of
class AOT-κs (recall that this may either be an unary individual or a tuple of individuals,
see 4.1.6) to propositions.
AOT-instance-of-cqt-2 is true for any such function that agrees on arguments that denote
and are AOT-model-term-equiv-equivalent, i.e. that has identical values for arguments

64

4.6. Axiom System and Deductive System

that denote and share the same urelements. By construction of λ-expressions the use of
any such function as matrix of a λ-expression will result in a denoting relation term.
Now we enrich the abstraction layer with several introduction rules for AOT-instance-of-cqt-2 :

• Functions that do not depend on their argument correspond to matrices in which
the λ-bound variables do not occur. Therefore such functions trivially fall under
the formulation of the axiom (see A.4.1304).

• Exemplification formulas of the form [Π]κ1...κn in which the λ-bound variable does
not occur in Π fall under the axiom, if all individual terms κi do not contain an
occurrence of the λ-bound variable in encoding formula subterms. This is captured
in another auxiliary constant AOT-instance-of-cqt-2-exe-arg (see A.4.1286) described
below.

• Let ν1...νn be the variables bound by the initial λ. Then an exemplification formula
of the form [λµ1...µn ϕ{ν1...νn,µ1...µn}]κ1...κn as matrix falls under the axiom, if (1)
all individual terms κi fall under the axiom as described below and (2) ϕ falls under
the axiom w.r.t ν1...νn, i.e. ϕ does not contain any occurrences of ν1...νn in encoding
formula subterms, respectively for any µ1...µn it holds that ϕ{ν1...νn,µ1...µn} as
function on ν1...νn satisfies AOT-instance-of-cqt-2 (see A.4.1431).

• Complex formulas fall under the formulation of the axiom, just in case all its
operands fall under the formulation of the axiom. E.g. a negation falls under the
axiom, just in case the negated formula falls under the axiom (see A.4.1307).

• Encoding formulas only fall under the axiom, if the λ-bound variables do not occur
in them at all. This is already covered in the first case above. However, this may
be refined in the future anticipating an upcoming change in PLM as discussed at
the end of this section.

The above rules cover all cases except the primary individual terms in exemplification
formulas. The additional auxiliary constant AOT-instance-of-cqt-2-exe-arg (see A.4.1286)
acts on functions taking entities of a type ′a of class AOT-κs to entities of a type ′b
of class AOT-κs. AOT-instance-of-cqt-2-exe-arg holds for any such function that sends
denoting and AOT-model-term-equiv-equivalent arguments to again AOT-model-term-equiv-
equivalent values. By construction, if the application of any such function to the variables
ν1...νn occurs as primary individual term in an exemplification formula, then the exem-
plification formula satisfies the meta-logical definition of AOT-instance-of-cqt-2 (since the
result of the exemplification is known to agree on objects with the same urelements).
Similarly to AOT-instance-of-cqt-2 we add introduction rules for AOT-instance-of-cqt-2-exe-arg
to the abstraction layer:

• The identity function falls under AOT-instance-of-cqt-2-exe-arg (this is the case in
which the λ-bound variables themselves occur as primary individual terms in an
exemplification formula; see A.4.1366).

• Constant functions fall under AOT-instance-of-cqt-2-exe-arg (this is the case in which
the λ-bound variables do not occur in a primary individual term of an exemplifi-
cation formula; see A.4.1371).

65

4. SSE of AOT in Isabelle/HOL

• Definite descriptions fall under AOT-instance-of-cqt-2-exe-arg just in case their ma-
trix (as function acting on the λ-bound variables) falls under AOT-instance-of-cqt-2,
i.e. a description may occur in a primary term of an exemplification formula, if
its matrix does not contain the λ-bound variables in an encoding formula subterm
(see A.4.1392).

• There are further technical introduction rules due to the implementation of n-
ary relations as relations acting on tuples (see A.4.1376), e.g. the fst and snd
projections fall under AOT-instance-of-cqt-2-exe-arg (i.e. [λxy [F]x] and [λxy [F]y])
and the application of the Pair function to two terms falls under the axiom, if both
terms fall under AOT-instance-of-cqt-2-exe-arg (i.e. [λx [F]κκ ′] falls under the axiom,
if neither κ nor κ ′ contain x in an encoding formula subterm).

While the details of this construction are complex, the result is a set of introduction rules
that allow proving AOT-instance-of-cqt-2 exactly for those matrices that fall under the
natural language condition of the axiom. The axiom itself is then implemented condi-
tionally: a λ-expression denotes axiomatically, if its matrix satisfies AOT-instance-of-cqt-2
(see A.6.21). The introduced introduction rules may be used in the abstraction layer,
while it is inadmissible to unfold the definition of AOT-instance-of-cqt-2 itself (i.e. the
only matrices for which AOT-instance-of-cqt-2 is derivable in the abstraction layer are
exactly those that satisfy the natural language restriction of PLM’s axiom).
Note that at the time of writing, a generalization of the axiom is under discussion that
would extend it to the following:28

τ↓, provided τ is a primitive constant, a variable, or a λ-expression in which
the initial λ does not bind any variable that is a primary term in an encoding
formula subterm.

In an encoding formula κ1...κn[Π] only Π as well as κ1 through κn are defined to be
primary terms, but no nested term counts as primary term, so this entails strictly more
cases than the formulation given above.
In anticipation of this change, this is already validated by the embedding, however, the
corresponding introduction rules are not yet added to the abstraction layer to disbar
their use for the time being (see A.4.1468).
See 4.8.1 for a discussion of some consequences of this upcoming change.

4.6.2. The Rule of Substitution

Similar to the axiom above, there is also derived rules in PLM that are challenging to
reproduce in the embedding. A prominent example is the Rule of Substitution. PLM
formulates this rule in item (159) as follows:29

28The precise formulation in the upcoming next version of PLM may vary slightly in its wording, but
is likely to extend over the same amount of cases.

29PLM formulates the rule relative to modally-fragile derivations `, but further argues that it is
equally valid for modally-strict derivations `�. Furthermore, it also states a variant in which the
precondition is weakened to `� ϕ ≡ χ, which allows to derive `� �(ϕ ≡ χ) by RN.

66

4.6. Axiom System and Deductive System

If ` �(ϕ ≡ χ), then where Γ is any set of formulas and ϕ ′ is the result of
substituting the formula χ for zero or more occurrences of ψ where the latter
is a subformula of ϕ, Γ ` ϕ if and only if Γ ` ϕ ′.

The notable restriction in this formulation is the proviso that ψ is a subformula of ϕ.
Subformulas are defined recursively in PLM item (6) and notably do not entail matrices
of descriptions or non-nullary λ-expressions: E.g. the formula ϕ is not a subformula of
[F]ιxϕ{x} or of [λy ϕ{y}]x.
While the inductive base cases for proving the rule can easily be reproduced in the em-
bedding (see A.7.2702), combining the rule to a single statement in Isabelle is challenging.
Therefore we instead provide custom-written proving methods that allow applying the
rule as intended by PLM. This works by internally analyzing the structure of (the ML
representation of)30 the involved formulas in order to choose the appropriate rule that
allows to reduce the goal to a substitution in a less complex formulas. In that sense,
the proving methods reconstruct the general proof of the rule in PLM by induction on
the complexity of the involved formulas at every invocation of the proving method on a
concrete formula.

4.6.3. Proofs by Type Distinction

PLM involves proofs that involve a case distinction by type. An example is the theorem
that two terms being identical implies that both denote (see A.7.930).
In our embedding, we reproduce this kind of reasoning by introducing a new type class,
in this case AOT-Term-id, that assumes the statement of the theorem, and then by
instantiating this type class to all the types the statement is supposed to apply to. We
then augment the type constraints for terms of these types to include the newly defined
class.
In a future version of the embedding, we intend to use Standard ML to define a simple
outer syntax command (similarly to AOT-define discussed in section 4.3) that will hide
the complexity of this process and will allow for a more intuitive statement of theorems
that are to be proven by type distinction.

4.6.4. Definition of n-ary Relation Identity

Recall the definition of n-ary relation identity of PLM given in section 3.2:

Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ y1. . . ∀ yn−1 ([λx [Π]xy1. . . yn−1] = [λx [Π ′]xy1. . . yn−1]

& [λx [Π]y1xy2. . . yn−1] = [λx [Π ′]y1xy2. . . yn−1] & . . . & [λx [Π]y1. . . yn−1x] = [λx
[Π ′]y1. . . yn−1x])

30A proving method written in Isabelle/ML can traverse the ML representation of terms and determine
structural properties. However, properties determined in this way cannot be used as logical preconditions
in inner syntax. They are meta-logical properties that, in general, cannot be represented in the logical
layer.

67

4. SSE of AOT in Isabelle/HOL

While we can easily represent ellipse notation in terms that are uniform over arities, as
e.g. in β-conversion, by choosing a single variable of a type class that can be instanti-
ated to tuples in place of the ellipse list of variables, this definition involves additional
conjunctive clauses depending on the arity and is thereby harder to implement.
A solution would be to approximate the statement of the definition by stating it explicitly
for finitely many arities.31 However, the construction using type class instantiations on
product types described in section 4.1 also allows us to state the definition generically,
albeit that we have to rely on an auxiliary construction in the meta-logic.
The generic version of the definition in our embedding is the following (see A.5.107):

Π = Π ′ ≡df

Π↓ & Π ′↓ &
∀ x1...∀ xn(«AOT-sem-proj-id «x1...xn» (λκ1κn. «[Π]κ1...κn»)

(λκ1κn. «[Π ′]κ1...κn»)»)

The quotation marks «-» allow us to inject meta-logical terms into the custom gram-
mar we introduced for AOT syntax and vice-versa. Here ellipses like x1...xn are, meta-
logically, a single variable x1xn restricted to an arbitrary type of the type class AOT-κs.
The auxiliary constant AOT-sem-proj-id is defined in the type class AOT-RelationProjection
(see A.4.407; recall that this is a subclass of AOT-κs). It satisfies an additional restric-
tion on types of the class AOT-UnaryRelationProjection (resp. on the concrete type κ;
see A.4.416) and has a concrete definition on products:

AOT-sem-proj-id κ ϕ ψ = «[λx ϕ{x}] = [λx ψ{x}]»
AOT-sem-proj-id (κ1, κ2κn) (λ(x, y1yn). «ϕ{x,y1...yn}»)
(λ(x, y1yn). «ψ{x,y1...yn}») =

«[λx ϕ{x,κ2...κn}] = [λx ψ{x,κ2...κn}] &
«AOT-sem-proj-id κ2κn (λy1yn. «ϕ{κ1,y1...yn}») (λy1yn. «ψ{κ1,y1...yn}»)»»

Note that the outermost identities in these statements are meta-logical identities that
thereby allow immediate meta-logical substitution. In the unary case, AOT-sem-proj-id
reduces to the the identity of the one-place relations given by λ-abstracting the given
matrices ϕ and ψ.
In the product case, it is defined for matrices acting on pairs (of type ′a × ′b) as a
conjunction. The first conjunct is the identity of the one-place relations resulting from
λ-abstracting x in the applications of the matrices to x and κ2...κn. The second conjunct
recursively refers to AOT-sem-proj-id on type ′b acting on κ2κn (corresponding to κ2...κn
in our AOT syntax implementation) and partial applications of the matrices to κ1.
Now restricting the generic definition to type κ, yields the following instance:

Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ x «AOT-sem-proj-id «x» (λκ. «[Π]κ») (λκ. «[Π ′]κ»)»

Unfolding the definition of AOT-sem-proj-id in the unary case, this yields
Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ x ([λx [Π]x] = [λx [Π ′]x])

While this is technically not a definition of AOT, the implied equivalence is a theorem
as a consequence of η-conversion.

31In fact, for convenience we do this for arities up to four (see A.5.87).

68

4.6. Axiom System and Deductive System

Restricting the definition to type κ × κ, yields this instance:
Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ x «AOT-sem-proj-id «x» (λκ1κ2. «[Π]κ1...κ2») (λκ1κ2.
«[Π ′]κ1...κ2»)»

Now unfolding the definition of AOT-sem-proj-id in the product case (i.e. for type κ ×
κ) followed by unfolding it for the recursive unary case, yields the proper definition of
2 -ary relation identity:32

Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ y ([λz [Π]zy] = [λz [Π ′]zy] & [λz [Π]yz] = [λz [Π ′]yz])

Similarly, instantiating to type κ × κ × κ yields ternary relation identity, etc.
While this construction yields the technical means to state the definition of n-ary relation
identity as well as the axiom of n-ary encoding generically, properly unfolding the meta-
logical definitions can be cumbersome in practice.
For that reason we additionally explicitly derive the definition of identity and the axiom
of n-ary encoding for arities up to four, which is more than sufficient for the instances
currently used in PLM. For n-ary encoding we currently do not formulate a generic
version, even though the same mechanism as above can be applied to this case as well.
In the future, we intend to define a convenient theorem attribute (see below) that can be
used to immediately instantiate n-ary statements of generic form directly to an arbitrary
arity n given as argument to the attribute.
Another subtlety in the definition of n-ary relation identity is the fact that two n-ary
relations already have to be identical, if all their projections to unary relations using n−1
denoting individual terms are identical. However, in order to avoid artifactual theorems,
we defined relations as functions that also act on null-urelements, resp. on tuples that
may involve null-urelements. The identity of their projections merely implies that the
functions representing the n-ary relations in question evaluate to the same propositions
for all tuples of n−1 urelements that correspond to denoting individuals (i.e. that
are not null-urelements) and one urelement that may be a null-urelement. This is the
reason why in section 4.1.7 we required the behaviour of an n-ary relation on irregular
individual terms (i.e. tuples that involve more than one null-urelement) to be completely
determined by the behaviour of the relation on regular individual terms (i.e. tuples that
involve at most one null-urelement). This way the identity of all projections of two n-
ary relations to unary relations indeed implies their identity as required for validating
the definition, while we still avoid the artifactual theorem that ∀ x1...∀ xn ([Π]x1...xn =

[Π ′]x1...xn) → Π = Π ′.

4.6.5. Auxiliary Theorem Attributes

The embedding defines several auxiliary theorem attributes that help in reproducing
common reasoning patterns of PLM that would otherwise be subject to technical com-
plications.

32Technically, this additionally involves expanding the n-ary quantifier to two unary quantifiers, one
of which can be eliminated.

69

4. SSE of AOT in Isabelle/HOL

PLM often prefers stating theorems using free object level variables rather than meta-
variables (that would range over potentially non-denoting terms) in order to avoid having
to specifically state the precondition that the respective terms denote.
However, whenever a term is trivially known to denote from context, PLM may sim-
ply instantiate such theorems directly to terms. This is valid, since it is always possi-
ble to apply GEN followed by ∀ -elimination for terms to the theorem. To reproduce
this transformation within the embedding the theorem attribute unvarify is introduced
(see A.7.705), which takes the variable to be generalized as argument and automatically
performs the required transformation on the theorem. Similarly, the attribute unconstrain
(see A.9.224) can be used to transform a theorem formulated with restricted variables
to a theorem involving unconstrained variables with the added precondition that they
satisfy the respective restriction conditions.

4.7. Meta Theorems

4.7.1. The Collapse of Alphabetic Variants

We already informally stated that the embedding collapses alphabetic variants. In this
section we will define more precisely what this means and justify this collapse.
Isabelle internally represents bound variables using de-Bruijn indices (see [16]). We will
showcase this mechanism in detail below. As a consequence, terms that are alphabetic
variants are meta-logically indistinguishable. To justify representing AOT’s bound vari-
ables directly using bound variables in Isabelle, we need to show that both (1) AOT’s
notion of alphabetic variants is equivalent to Isabelle’s use of de-Bruijn indices and (2)
any rule of AOT is still valid if any assumption or the conclusion are replaced by an
alphabetic variant (as a generalization of PLM’s existing Rule of Alphabetic Variants).33

AOT’s Alphabetic Variants align with Isabelle’s use of de-Bruijn Indices

Internally, Isabelle represents binding notation by function application and abstraction.
E.g. if we let Isabelle print the internal ML representation of the term ∀ p (p → p), we
arrive at the following:34

∀ p (p → p)
Const (AOT-syntax.AOT-forall, (o ⇒ o) ⇒ o) $

Abs (p, o,
Const (AOT-syntax.AOT-imp, o ⇒ o ⇒ o) $ Bound 0 $ Bound 0)

33This includes theorems and axioms by thinking of them as rules with an empty set of assumptions.
34Note that we are not merely talking about a representation in the meta-logic HOL, but about the

internal ML representation of HOL terms. Technically, we have setup an antiquotation that allows us to
print a term together with its internal representation.

70

4.7. Meta Theorems

While a complete discussion of the ML representation of terms goes beyond the scope of
this thesis, it suffices to have a rough understanding of the involved syntax. The atomic
terms are typed constants, Const ([identifier], [type]), bound variables Bound [de−Bruijn
index] and free variables Free ([identifier], [type]). $ is a binary operator that signifies
function application between terms. Abs ([name], [type], [term]) is the abstraction of [term]

over a bound variable of type [type]. Note that while the internal representation retains
the name of the bound variable p, it has no logical meaning and is merely used e.g.
for term printing, while, logically, occurrences of the bound variables are referred to by
Bound with a de-Bruijn index. An index of zero refers to the innermost abstraction the
bound variable is contained in. An index of one refers to the next outer abstraction, e.g.
∀ p (p → ∀ q (q → p))
Const (AOT-syntax.AOT-forall, (o ⇒ o) ⇒ o) $

Abs (p, o,
Const (AOT-syntax.AOT-imp, o ⇒ o ⇒ o) $ Bound 0 $

(Const (AOT-syntax.AOT-forall, (o ⇒ o) ⇒ o) $

Abs (q, o,
Const (AOT-syntax.AOT-imp, o ⇒ o ⇒ o) $ Bound 0 $ Bound 1)))

Note that in the inner abstraction Bound 0 refers to q, while Bound 1 refers to p.
Our claim is that two terms or formulas of AOT are alphabetic variants, if and only if
their representation using de-Bruijn indices is the same.
PLM defines alphabetic variants as follows (see PLM item (16)): It refers to two occur-
rences of a variable as linked, if both are free or they are bound by the same occurrence
of a variable-binding operator. PLM further introduces BV-notation for formulas and
terms:35 the BV-notation of a formula ϕ is ϕ[α1, . . . , αn], where α1, . . . αn is the list of
all variables that occur bound in ϕ, including repetitions. Further ϕ[β1/α1, . . . , βn/αn]

refers to the result of replacing αi by βi in ϕ[α1, . . . , αn]. Now ϕ ′ is defined to be an
alphabetic variant of ϕ just in case for some n:

• ϕ ′ = ϕ[β1/α1, . . . , βn/αn],
• ϕ ′ has the same number of bound variable occurrences as ϕ and so can be written

as ϕ ′[β1, . . . , βn], and
• for 1 ≤ i, j ≤ n, αi and αj are linked in ϕ[α1, . . . , αn] if and only if βi and βj are

linked in ϕ ′[β1, . . . βn].

By definition, each group of linked variable occurrences in AOT corresponds to exactly
one abstraction in Isabelle’s internal representation and all de-Bruijn indexed Bound
terms that refer to this abstraction. Since changing the variable name of a linking
group will not affect the de-Bruijn indices, the de-Bruijn representation of two alpha-
betic variants is therefore the same. Conversely, changing any index in the de-Bruijn
representation translates to breaking a linking group as defined in PLM, thereby terms
with different de-Bruijn representation are not alphabetic variants.

35In the following we will restrict our discussion to formulas, but the argument applies analogously
to terms as well.

71

4. SSE of AOT in Isabelle/HOL

Since thereby the formulas and terms that are collapsed in Isabelle’s internal represen-
tation are exactly the alphabetic variants of AOT, it remains to argue that the collapse
is inferentially valid, i.e. AOT allows to freely interchange alphabetic variants in any
derivation.

Equivalence of Alphabetic Variants in AOT

Conveniently, PLM itself derives the following Rule of Alphabetic Variants (see PLM
item (114)):36

Γ ` ϕ if and only if Γ ` ϕ ′, where ϕ ′ is any alphabetic variant of ϕ.
It is straightforward to strengthen this further to the following:

Γ ` ϕ if and only if Γ ′ ` ϕ ′, where ϕ ′ is any alphabetic variant of ϕ and Γ ′ is
a set of alphabetic variants of Γ, i.e. for every ψ ∈ Γ there is an alphabetic
variant ψ ′ of ψ, s.t. ψ ′ ∈ Γ ′, and vice-versa.

To see that this rule is valid, it suffices to realize that for every ψ ∈ Γ and ψ ′ ∈ Γ ′ by the
above rule it holds that ψ a` ψ ′ and hence all premises in Γ are derivable from Γ ′ and
vice-versa. More rigorously, the version with assumptions can be reduced to the version
without assumptions by arguing with successive applications of the deduction theorem
to eliminate the assumptions, applying the version of the rule without assumptions and
then reconstructing the result using modus ponens. This mechanism is shown explicitly
in section 4.7.3 for a similar case.
Hence, AOT allows one to freely move from any formula to an alphabetic variant in all
theorems and assumptions, justifying the fact that the embedding identifies alphabetic
variants.

4.7.2. Free Variable Notation, Substitutability and Bound Variables

As mentioned in chapter 3, PLM allows terms and formulas with arbitrary free variables
to be used in place of its meta-variables, except for free variables that are explicitly
excluded in natural language. The embedding on the other hand requires one to explicitly
mention any variables that are bound at the occurrence of a meta-variable, if they should
be allowed to occur in an instance of the meta-variable. This is due to the fact that
binders are implemented in the embedding as operators that act on functions. Similarly,
the substitution of variables in meta-variables is implemented using function application.
For example, PLM formulates the first quantifier axiom as follows (see PLM item (39.1)):

∀αϕ → (τ ↓→ ϕτ
α), provided τ is substitutable for α in ϕ

Here ϕτ
α is defined in PLM item (14) as recursively replacing all occurrences of α in ϕ

that are not bound within ϕ itself with τ .
36Note that while PLM states meta-rules using `, unless otherwise noted by convention they apply

to both ` and `�. See remark (67) in PLM. We adopt this convention in the following sections.

72

4.7. Meta Theorems

The precise definition of being substitutable can be found in PLM item (15). In particular,
it states the following summary:

τ is substitutable at an occurrence of α in ϕ or σ just in case every occurrence
of any variable β free in τ remains an occurrence that is free when τ is
substituted for that occurrence of α in ϕ or σ.

and further:
τ is substitutable for α in ϕ or σ just in case τ is substitutable at every free
occurrence of α in ϕ or σ.

In the embedding, the same axiom is stated as follows:
∀α ϕ{α} → (τ↓ → ϕ{τ})

Internally, ϕ is a function acting on terms and both ϕ{α}, resp. ϕ{τ}, are the function
application of ϕ to α, resp. τ . The following is the HOL representation of the formula
of the axiom:

AOT-imp (AOT-forall (λα. ϕ α)) (AOT-imp (AOT-denotes τ) (ϕ τ))

The ∀ -quantifier is represented as the function application of the constant AOT-forall to
the meta-logical λ-abstraction of ϕ applied to the bound variable α. The substitution of
τ for α in ϕ is represented as the function application of ϕ to τ .
As mentioned in section 4.7.1, internally Isabelle represents bound variables using de-
Bruijn indices that uniquely associate any bound variable with its binder, independently
of the name of the variable. β-reduction of the function application of an abstraction to a
term merely replaces the bound variables referring to the outermost abstracted variable.
Thereby, substitutability is implicit in the construction: applying a meta-variable that
is represented as a function to different arguments does not affect variables bound by
nested binders.
Therefore, strictly speaking, the implementation of the axiom in the embedding is
stronger than the axiom stated in PLM. Consider the following instance of the axiom:

∀α ∃β (β = α) → (τ↓ → ∃β (β = τ))

Here ϕ is ∃β β = α. Now in PLM’s terms, β itself would not be substitutable for α in ϕ,
since substituting β for α directly would result in β being bound by the existence quanti-
fier. However, Isabelle allows this instantiation and resolves this issue by automatically
generating an alphabetic variant of the nested binder. The following is the direct result
of instantiating ϕ to ∃β β = α and τ to β in above axiom:

∀α ∃β (β = α) → (β↓ → ∃β ′ (β ′ = β))

While this is not a direct instance of the axiom in PLM, we have argued in section 4.7.1
that it is a meta-theorem of AOT that all alphabetic variants are interderivable. Further-
more, for any ϕ an alphabetic variant can be constructed that makes any τ substitutable
for an occurrence of α in ϕ by replacing all variables bound in ϕ that occur free in τ by
fresh variables.

73

4. SSE of AOT in Isabelle/HOL

This signifies one of the main advantages and simultaneously disadvantages of the use
of SSEs. While the use of the meta-logical mechanisms to deal with alphabetic variants
and binders allows the implementation to forgo a custom implementation of concepts like
substitutions and substitutability, this in turn requires a careful meta-theoretical analy-
sis to assure that the resulting implementation remains faithful. However, for practical
purposes the advantages outweigh the disadvantages. Not only is a custom implemen-
tation of substitutions and alphabetic variants error-prone and cumbersome, since it is
at the same time seemingly trivial, but nonetheless implementationally complex, but re-
lying on the meta-logical implementation has also significant advantages for automated
reasoning: For example, while by construction Isabelle will see alphabetic variants as
identical entities and can freely substitute them, manual substitution, as it would be
required for deep embeddings, would require rigorous proofs about recursively defined
transformations on the deep syntax representation that can quickly go beyond the lim-
its of the available automation capabilities, even without attempting to prove complex
theorems.

4.7.3. Generalizing Free Variables to Schematic Variables

After a theorem is proven in Isabelle, it is implicitly exported to the current theory con-
text in schematic form. That means each free variable used in the theorem is implicitly
generalized to a schematic variable that can be instantiated to any variable or term of
the same type. Since the embedding uses distinct types for (denoting) variables and
(potentially non-denoting) terms that have the same type in AOT (see 4.6.1), this does
not mean that any theorem involving AOT variables can be directly instantiated to AOT
terms, however, it does mean that all theorems of AOT are implicitly stated using meta-
variables ranging over all variable names. As an example the theorem ∀F ([F]x → [F]x)
not only implicitly asserts its alphabetic variants, e.g. ∀G ([G]x → [G]x), but can also
be directly instantiated for a different free individual variable, e.g. ∀G ([G]y → [G]y). In
the notation of AOT this means that we actually state the theorem ∀G ([G]ν → [G]ν),
where ν ranges over all names for individual variables. While PLM does not derive a
meta-rule that matches this principle, it is usually a straightforward consequence of a
series of applications of the meta-rule of universal generalization GEN followed by appli-
cations of the rule of ∀Elimination for variables. However, to formulate this as a general
principle, some care has to be taken and we have to additionally rely on the collapse of
alphabetic variants.
We start by stating and proving the trivial case as a rule in AOT’s system:

If ` ϕ, then ` ϕβ
α where β is substitutable for α in ϕ.

Assume ` ϕ. Since the derivation of ϕ does not need any premises, it follows by the rule
of universal generalization (GEN) (see section 3.4.1) that ` ∀α ϕ.37 Since by assumption

37Note that we are using PLM’s syntactic convention here, i.e. α may occur free in ϕ, which using
our conventions we would usually signify by writing ϕ{α}.

74

4.7. Meta Theorems

β is substitutable for α in ϕ we can immediately conclude by ∀Elimination (see A.7.643)
that ` ϕβ

α.
However, we want to generalize this rule further to a version that allows for premises
and does not require the proviso that β is substitutable for α in ϕ.
To that end the next step is to generalize above rule to include premises:

If Γ ` ϕ, then Γβ
α ` ϕβ

α where (1) β is substitutable for α in ϕ and (2) β is
substitutable for α in all ψ ∈ Γ and (3) Γβ

α is the set of all ψβ
α for ψ ∈ Γ.

One way to show this is by first eliminating all premises in Γ using the deduction theorem
(see section 3.4.1) and then referring to the simpler rule above. The resulting theorem
will yield ϕβ

α from Γβ
α by successive applications of modus ponens.

In particular, let ψ1, . . . , ψn be the list of premises in Γ, s.t. ψ1, . . . , ψn ` ϕ.38 By the
deduction theorem it follows that ψ1, . . . , ψn−1 ` ψn → ϕ. Continuing to apply the
deduction theorem, we end up with ` ψ1 → (ψ2 → (. . . → (ψn → ϕ). . .). By assumption
β is substitutable for α in this theorem, hence by the rule above we can conclude that:
` ψ1

β
α → (ψ2

β
α → (· · · → (ψn

β
α → ϕβ

α) . . .)

Since all ψi
β
α are in Γβ

α, it follows that Γβ
α ` ϕβ

α by n applications of modus ponens.
What remains is the proviso that β be substitutable for α in ϕ and in all ψ ∈ Γ. However,
note that for every ϕ and Γ we can choose alphabetic variants ϕ ′ and Γ ′ that replace all
bound occurrences of β with a fresh variable γ that does not occur in ϕ or in any ψ ∈ Γ.
In the last section we have seen that Γ ` ϕ, if and only if Γ ′ ` ϕ ′. Since β is trivially
substitutable for α in ϕ ′ and in all ψ ∈ Γ ′, it follows by the rule above that Γ′β

α ` ϕ′β
α.

Since Isabelle collapses alphabetic variants by eliminating concrete variable names with
de-Bruijn indices, this suffices as justification for the schematic generalization of free
variables in theorems and rules in the embedding.
To clarify the last argument, consider the following theorem as example:

∀ x ([R]xy → [R]xy)
Isabelle will let us instantiate this theorem using z in place of y, i.e. ∀ x ([R]xz → [R]xz)
is an instance of above theorem.
However, Isabelle will not allow one to directly instantiate y to x, since in ∀ x ([R]xx →
[R]xx) (which also happens to be a theorem, but a distinct one) all occurrences of x are
bound and while Isabelle allows to instantiate schematic variables to free variable, it
does not allow instantiating them to bound variables.39

But since alphabetic variants are collapsed, the following is identical to the original
theorem: ∀ z ([R]zy → [R]zy)
In this formulation of the theorem, there is no a naming conflict and we can instantiate
y to x to get ∀ z ([R]zx → [R]zx).

38Note the discussion of derivations in PLM item (59).
39To be precise Isabelle will in fact allow this kind of instantiation, but only in situations in which it

can automatically rename the bound variable on its own, as we do manually in the continuation of the
example.

75

4. SSE of AOT in Isabelle/HOL

Note that this is still an instance of the original theorem, but we just cannot state
this instance without simultaneously renaming the bound variable. Even though, inter-
nally, the variable names are eliminated, concrete variable names, of course, still make
a difference when parsing inner syntax.
Given this discussion, the meta-rule derived above together and the justification of the
collapse of alphabetic variants, we may conclude that the fact that Isabelle implicitly
generalizes free variables to schematic variables remains faithful to the derivational sys-
tem of AOT.40

4.7.4. Trivial Accessibility Relation for the Modal Logic

As already hinted at in section 2.3, choosing a trivial accessibility relation (respectively,
equivalently, no accessibility relation at all) is a natural choice for modelling the modal
logic of AOT. In fact, it can be shown that if AOT’s actuality operator is modelled using
a fixed actual world, any accessibility relation used for modelling necessity has to be
trivial.
To see this, consider the following simple embedding of a general extensional modal
logic with actuality operator, in which the actuality operator is modelled as validity in
an arbitrary, but fixed actual world w0.
consts r :: ‹w ⇒ w ⇒ bool›
consts w0 :: w
type-synonym o = ‹w ⇒ bool›
definition valid :: ‹o ⇒ bool› (‹|= -›) where ‹valid ≡ λ ϕ . ∀ w . ϕ w›
definition impl :: ‹o ⇒ o ⇒ o› (infixl ‹→› 8) where ‹impl ≡ λ ϕ ψ w . ϕ w −→ ψ w›
definition box :: ‹o ⇒ o› (‹�-› [50] 50) where ‹box ≡ λ ϕ w . ∀ v . r w v −→ ϕ v›
definition actual :: ‹o ⇒ o› (‹A-› [50] 50) where ‹actual ≡ λ ϕ w . ϕ w0›
definition equiv :: ‹o ⇒ o ⇒ o› (infixl ‹≡› 10) where ‹equiv ≡ λ ϕ ψ w . ϕ w ←→ ψ w›

In this simple system, sledgehammer can immediately prove that all semantic possible
worlds have to be related by the accessibility relation, given the T axiom and one of
AOT’s axioms of actuality and necessity:
lemma

assumes ‹
∧
ϕ . |= (�ϕ → ϕ)›

and ‹
∧
ϕ . |= (�ϕ ≡ A�ϕ)›

shows ‹∀ x y . r x y›
by (metis (mono-tags, opaque-lifting) assms equiv-def actual-def box-def impl-def valid-def)

However, note that this does not mean that a trivial accessibility relation is in fact
the only choice in modelling AOT’s modal logic. While the S5 axioms imply that the
accessibility relation has to be an equivalence relation, we conjecture that it is possible
to model an actuality operator by choosing a different actual world for each equivalence
class of worlds induced by the accessibility relation.

40Note that for free meta-variables the generalization to schematic form is in fact a requirement for
being able to instantiate the meta-variables to arbitrary terms as intended by AOT.

76

4.7. Meta Theorems

However, independently of potential philosophical issues one may raise against presuming
(even if only for the purpose of modelling) that, in different modal contexts, different
worlds may be actual, an additional practical problem arises: in order to additionally
satisfy AOT’s axiom for rigid definite descriptions, the description operator would need
to become world-relative: instead of choosing the unique object that satisfies the matrix
of the description in the globally-fixed actual world, the description operator would have
to choose the unique object that satisfies the matrix in the respective actual world of
the equivalence class of possible worlds in which the formula containing the description
is evaluated.
Allowing the denotation of an individual term to vary depending on modal context
constitutes a significant complication for the models. Therefore, our current work forgoes
further analysis of this way to extend our representation of AOT. However, such an
extension of the models may constitute an interesting topic for future research. We
conjecture that it is possible to construct models with a different actual world for each
equivalence class of worlds, and that doing so could lead to a means to reproduce the
strict distinction between modally-strict and modally-fragile theorems in AOT as follows
(recall section 3.4.7): while modally-strict theorems could be modelled as being valid in
all possible worlds, i.e. across all equivalence classes in the accessibility relation, modally-
fragile axioms could be modelled as being valid in a globally-fixed actual world. This
way, adding a contingent truth to the modally-fragile derivation system would merely
assert that it holds in the globally-fixed actual world, whereas a modally-strict proof of
some statement being actually true would require that statement to be true in all actual
worlds. This would constitute a model in which ` ϕ would no longer imply `� Aϕ and,
consequently, in which the converse of RN fails (as allowed by PLM), i.e. ` �ϕ would no
longer imply `� ϕ (while the former merely requires ϕ to be valid in all worlds accessible
from the globally-fixed actual world, the latter also requires ϕ to be true even in worlds
inaccessible from the global actual world).

4.7.5. Primitive Inferences of Isabelle/Pure and Derivations of AOT

As mentioned in section 2.4, being able to trust the abstraction layer constructed for
AOT relies on verifying that inferences in the meta-logic correspond to valid reasoning
in the system of PLM, given that the set of available theorems and rules is suitably
restricted.
We implement the rules of AOT as rules in Isabelle’s Pure logic. The primitive inferences
of Pure are described in section 2.3 of [54].41 In this section we will in particular argue
that the rules in figure 4.2, when applied in our abstraction layer, will correspond to
valid reasoning in AOT.42

41In particular figure 4.2 is presented as figure 2.2 in section 2.3.1 of [54].
42As noted below, an exhaustive analysis would also need to consider the richer logic of Isabelle/HOL.

77

4. SSE of AOT in Isabelle/HOL

A ∈ Θ
` A (axiom) A ` A (assume)

Γ ` B[x] x /∈ Γ

Γ `
∧

x. B[x]
(
∧

-intro)
Γ `

∧
x. B[x]

Γ ` B[a]
(
∧

-elim)

Γ ` B
Γ − A ` A =⇒ B (=⇒-intro) Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B (=⇒-elim)

Figure 4.2.: Primitive inferences of Pure

The meta-logical axiom rule corresponds to PLM items (63.1) and (63.3) which state
that axioms and theorems of AOT can be used in derivations.
assume corresponds to the special case of PLM item (63.2) given as ϕ ` ϕ.∧-intro and ∧-elim align with our implementations of PLM’s GEN rule and ∀ -elimination:
Using our notational convention, it is an instance of ∧-intro that Γ ` ϕ{α} and α /∈ Γ

implies Γ ` for arbitrary α: ϕ{α}. The latter is the precondition of our GEN rule, i.e.
we can derive ∀α ϕ{α} in AOT. Similarly, the ∧-elim rule corresponds to the rule given
in A.7.643, which states that we can derive ϕ{β} from ∀α ϕ{α}.
Note, however, that the ∧-intro and ∧-elim rules are not restricted to our defined
types of object-level variables of AOT. In particular, they can also be applied to meta-
variables ranging over terms of AOT. However, applications of ∧-intro and ∧-elim to
meta-variables exactly corresponds to the fact that PLM allows to instantiate arbitrary
terms of a given type in place of its meta-variables.
The =⇒-intro and =⇒-elim rules correspond to the deduction theorem (PLM item (75)),
which states that if Γ, ϕ ` ψ, then Γ ` (ϕ → ψ) and the meta-rule stated in PLM item
(63.5) stating that if Γ1 ` ϕ and Γ2 ` (ϕ → ψ), then Γ1,Γ2 ` ψ.
Furthermore, Pure is equipped with a primitive equality that allows for substituting
terms that are meta-logically equal. In general, PLM’s identity corresponds to meta-
logical equality on denoting terms (see A.4.63) and non-denoting terms in PLM are not
meta-logically identical (e.g. recall the fact that non-denoting definite descriptions can
be assigned distinct null-urelements). While in certain corner cases, the embedding may
involve artifactual identities (see 4.8), those cannot be derived without explicit appeals
to the semantics. For implicit meta-logical identities that occur in alphabetic variants,
we argued in section 4.7.1 that the meta-logical equality is consistent with reasoning in
PLM.
While we do not claim that this analysis is exhaustive,43 it nevertheless provides strong
evidence for the assumption that reasoning in our abstraction layer is in fact reproducible

43For example, while the rules of our target theory are implemented in the format of rules of Is-
abelle/Pure, the automated proving methods we use (e.g. metis, meson and blast) work relative to
the richer logic of Isabelle/HOL (see chapter 2 of [45]) and for a full account the relevant axioms and
inferences of Isabelle/HOL would need to be considered as well.

78

4.8. Artifactual Theorems

as derivations in the sense of PLM. For the purpose of a seamless exchange of results
between our embedding and PLM, this level of assurance has proven sufficient. In
our work we have not encountered a proof in our abstraction layer that could not be
reproduced in the system of PLM.
Conversely, the fact that we can derive PLM’s axioms and rules in the embedding shows
that derivations of PLM can be reproduced in the embedding.
An interesting project for future research may be to implement AOT directly as an
object logic of Isabelle/Pure. However, instead of being able to rely on the soundness of
Isabelle/HOL as semantic backend, this would require a direct axiomatization of AOT
in Pure, which means that we would loose the ability to easily judge the consistency of
our representation of AOT and of extensions of its axiom system, which is one of the
prime objectives of our current project.

4.8. Artifactual Theorems

In general, artifactual theorems can be defined as follows:
Let T be the target theory and M be the theory in which we are building a model M of
T (so that M is expressible in M). Then an artifactual theorem φ of T relative to M
and M is a formula expressible in the language of T that is derivable in M from M but
which is not derivable in T itself. For example, if T is second-order logic with identity
(2OL=) and M is ZF+U (Zermelo-Fraenkel set theory with Urelements) and the model
M in ZF+U represents the predicates of T as sets of Urelements in ZF+U, then the
claim:
φ = ∀x(Fx ≡ Gx)→ F = G

becomes derivable in ZF+U from M, even though it is not a theorem of 2OL=. (In
this case, φ is interpreted in M as an instance of the axiom of Extensionality of ZF+U.)
This particular φ is therefore an artifactual theorem of 2OL= relative to ZF+U and the
model M of predicates as sets.
The abstraction layer we define in our embedding aims to disallow artifactual theorems
by limiting theoremhood to what can be derived from the representation of the axioms
and rules of T in M; thus, appeals to the axioms and rules of M (beyond those that
correspond to the axioms and rules of T) are not allowed in the derivations of theorems
of T .

We have discussed in section 4.7 that for technical reasons the embedding collapses
certain classes of statements (e.g. alphabetic variants), but that this merely extends to
statements that are interderivable in AOT itself. As a result we can reasonably assume
that well-formed statements of AOT that are provable in the abstraction layer of our
embedding also have a derivation in AOT, i.e. only theorems that are derivable from
the formal system T itself are derivable from M using the representation of the axioms
and rules of T .

79

4. SSE of AOT in Isabelle/HOL

Ideally, the construction of M is general enough, s.t. even using the full system of
axioms and rules of M , no theorem is derivable from M that does not have a derivation
in the formal system of T itself. However, in the case of our embedding, there are still
counterexamples.
As a matter of fact, comparing derivability in the abstraction layer of the embedding,
respectively in the formal system of PLM itself, with validity in our underlying semantic
structure has been the driving force in our collaboration with the authors of AOT.
In particular, whenever a potential artifactual theorem was recognized, this resulted in
an analysis of the discrepancy which regularly led to either a further abstraction of the
semantics used in the embedding to eliminate the theorem or to an extension of AOT’s
axiom system itself, in case it turned out that (1) the discrepancy could be resolved by a
natural extension of AOT’s axiom system, (2) this extension had merit in that it allowed
for deriving new interesting theorems in AOT or that it simplified existing derivations
and (3) the extension was philosophically justifiable.
An example of a statement that is now a theorem of AOT, but originated as an artifactual
theorem of the embedding, is the necessary and sufficient conditions for relations to
denote discussed in section 3.8.2. An earlier example is the coexistence axiom discussed
in 3.7, the formulation of which was based on a similar principle that was discovered in
the analysis of the semantic properties of the embedding at the time.
This process is ongoing and in the remainder of this section we will discuss some examples
of remaining artifactual theorems and the current state of their discussion.

4.8.1. Identity of Projections to Indistinguishable Objects

A variant of the fact that there are indistinguishable abstract objects discussed in sec-
tion 3.8.1 is the fact that for every two-place relation of AOT there are distinct ab-
stract objects, s.t. the projections of the relation to these abstract objects are identical
(see A.7.8428 and A.7.8473):

∃ x ∃ y (A!x & A!y & x 6= y & [λz [R]zx] = [λz [R]zy])
∃ x ∃ y (A!x & A!y & x 6= y & [λz [R]xz] = [λz [R]yz])

However, the construction used for the embedding makes the following stronger state-
ments true:

∀F ([F]a ≡ [F]b) → [λx [R]xa] = [λx [R]xb]
∀F ([F]a ≡ [F]b) → [λx [R]ax] = [λx [R]bx]

This is an artifact of modelling relations as proposition-valued functions acting on urele-
ments. Since being indistinguishable, ∀F ([F]a ≡ [F]b), semantically implies that a and
b share the same urelement, the projections are forced to collapse.
However, we already mentioned in section 4.6.1 that it is currently being considered to
extend the base cases of denoting λ-expressions. This extension has particular merit in
deriving theorems in higher-order object theory. In the second-order fragment it would
be a consequence of this change that the following λ-expressions denotes by axiom:

80

4.8. Artifactual Theorems

[λx y[λz [R]zx]]↓
Under this assumption, however, the currently artifactual theorems above become proper
theorems of AOT, respectively theorems of the abstraction layer of the embedding
(see A.13.807 for a proof). By an analogous proof (see A.13.831), even the following
becomes derivable (since the extended axiom will also assert that [λx y[λz [G]x]]↓):

∀F ([F]a ≡ [F]b) → ∀G ([G]a = [G]b)

Semantically, this theorem states that whenever two objects share an urelement, then
exemplifying any property results in the same proposition for both of them, which further
consolidates the derivational system of AOT with the representation of relations as
proposition-valued functions acting on urelements.
So while the theorems above are currently artifactual, they are likely to become proper
theorems of the next upcoming version of PLM.

4.8.2. Proposition Identity and Identity of Propositional Relations

AOT’s definition of proposition identity reduces proposition identity to the identity of
unary propositional relations (see A.5.114):

p = q ≡df p↓ & q↓ & [λx p] = [λx q]

However, due to the fact that our semantic specification of exemplification and λ-
abstraction (see A.4.125) is polymorphic and simultaneously specifies relations of all
arities, it involves the following more general assertion:

[λν1...νn ϕ] = [λν1...νn ψ] =⇒ ϕ = ψ

It is a consequence of this more general semantic principle that, for example, the following
becomes an artifactual theorem:

[λxy p] = [λxy q] ≡ p = q

Even though relations are modelled as proposition-valued functions in the embedding,
theoretically, it is possible to allow the λ-expressions in question to map to propositions
that are merely necessarily equivalent to p, resp. q, but not identical to them. However,
since the definition of proposition identity still needs to be validated, this would re-
quire splitting the specification of exemplification and λ-expressions into separate cases
for relations on unary individual terms and tuples of individual terms (e.g. using an
additional system of type classes), which represents a technical challenge. The details
of such a modified construction also depend on more general open questions regarding
n-ary relation identity and generalized η-conversion, which we will discuss in the next
section.

4.8.3. Corner-Cases of Relation Identity

AOT involves two axiomatic, respectively definitional claims about identity between n-
ary (n ≥ 2) relation terms (besides the identity of alphabetic variants), in particular
η-conversion:

81

4. SSE of AOT in Isabelle/HOL

[λx1...xn [F]x1...xn] = F

As well as n-ary relation identity, e.g. for n = 2 :
Π = Π ′ ≡df Π↓ & Π ′↓ & ∀ y ([λz [Π]zy] = [λz [Π ′]zy] & [λz [Π]yz] = [λz [Π ′]yz])

However, AOT does not presuppose that nested atomic exemplification formulas in λ-
expressions can be arbitrarily contracted to identical relations. For example, none of the
following are theorems of AOT:

[λxy [λz [F]zy]x] = [λxy [F]xy]

[λxy [λz [F]xz]y] = [λxy [F]xy]

[λxy [λz [F]zy]x] = [λxy [λz [F]xz]y]

The embedding constructs λ-abstraction and exemplification using the specification
command by postulating that λ-abstraction and exemplification have to exhibit certain
properties (e.g. β- and η-conversion) and by then providing a concrete witness that
satisfies these properties.
However, the postulated properties given in the specification go beyond the axioms
of AOT they ultimately validate. Validating the axioms of AOT for arbitrary n-ary
relations in the embedding while maintaining the definition of n-ary relation identity
requires, at least in the current construction of the embedding, additional properties for
λ-abstraction and exemplification.44

While the artifactual theorems above are validated by the provided witness for our spec-
ification, it is currently unknown whether the properties postulated in the specification
are sufficient to derive them as artifactual theorem. Neither can nitpick provide a
counterexample for the theorem, nor can sledgehammer construct a proof from the
specification, so further manual inspection of the situation is required.
Interestingly, in general, AOT refrains from presuming the identity of its intensional
entities, even under conditions that would usually be assumed to imply equality. η-
conversion is a notable exception to this principle. However, there are also arguments
for rejecting η-conversion in an hyperintensional context that is meant to accurately
represent human thought and language, see e.g. [36].
So independently of the potential artifactual theorem discussed above, it is an interest-
ing philosophical question whether η-conversion should be presumed by axiom at all.
Similarly, there are open questions about the definition of identity of n-place relations in
AOT and a potential alternative definition using n-ary encoding as discussed in PLM [63]
item (37). Curiously, while the current definition of n-ary relation identity reduces the
identity of ternary relations to the identity of all their projections to unary relations,
the identity of all their projections to two-place relations does not imply the identity of
direct projections to unary relations (without a more general contraction principle) and
therefore does not imply the identity of the ternary relations.

44For example, the property named AOT-sem-exe-denoting in A.4.125 is solely used for validating
n-ary relation identity.

82

4.9. Discussion

We expect that a future more extensive analysis of this issue will, similarly to previous
artifactual theorems, result in further theoretical insights, ultimately followed by either
an enhancement of the formulation of AOT or a refined embedding, in which e.g. the
above might provably not be theorems, even outside the abstraction layer.

4.9. Discussion

We have described an implementation of the second-order fragment of AOT in classical
higher-order logic by means of an SSE that can accurately reproduce AOT’s reasoning
in an abstraction layer. While our semantic backend is not provably free of artifactual
theorems, this can be explained due to the fact that AOT does not itself presuppose
a strong and exhaustive intended semantics, relative to which a completeness result is
intended and could be achieved. On the contrary, the authors of AOT explicitly try to
avoid letting the axioms and deductive system of AOT be driven by semantics, but rather
aspire to devise a philosophically justifiable formal system that stands independently of
a set-theoretic semantics and in which notions like truth values and possible worlds can
instead be analysed as objects of the system itself:

It is important to remember that the formal semantics simply provides a
set-theoretic framework in which models of the metaphysical theory may
be constructed. The models serve the heuristic purpose of helping us to
visualize or picture the theory in a rigorous way. It is extremely important
not to confuse the models of the theory with the world itself. [. . .] So the goal
of our enterprise is not to build a model, but rather to construct a formal
theory that correctly mirrors the structure the world may have and, as a
result, correctly reflects the entailments among the data.45

Nevertheless, our semantic analysis could significantly contribute especially to the the-
oretical understanding of the conditions, in AOT, under which relations exist. These
existence questions require rigorous philosophical consideration and can have a profound
impact on the axiom system (recall e.g. 3.7).
While there are open questions e.g. concerning the identity of n-ary relation terms,
we anticipate these questions to be the subject of future debate that will, similar to
past examples of similar discussions, result in both theoretical insights and an improved
implementation.

Given our discussion of the general system of AOT in the previous chapter and its
implementation in our embedding in this chapter, we are now suitably equipped to
discuss our implementation of PLM’s construction of natural numbers, including the
extended model construction required for validating its additional axioms.

45Edward Zalta in [59] section 2.4.

83

5. Natural Numbers in AOT

While AOT can represent mathematical theories themselves as abstract objects (see
chapter 6), it distinguishes this analysis of Theoretical Mathematics from the notion
of Natural Mathematics. Natural Mathematics consists of ordinary, pretheoretic claims
about mathematical objects and arises directly as abstraction of exemplification patterns
rather than being based on the axioms of some mathematical theory (see item (304) in
PLM1).
Following this idea, Uri Nodelman’s and Edward Zalta’s claim in PLM chapter 14 is that
natural numbers can be naturally defined within object theory and the laws they abide
by up to and including Second-Order Peano Arithmetic can be derived without having
to appeal to any intrinsically mathematical axioms or notions.
We have reproduced parts of this construction in our implementation2 and arrived at
the following results:

• The construction of natural numbers is sound and the Dedekind-Peano postulates,
including mathematical induction, are consistently derivable.

• We could model the additional axioms required for the construction in our frame-
work.

• We could generalize one of the aforementioned axioms, strengthening the theoret-
ical basis and justification of the construction.

• We can analyze variations of the construction that may be adopted in the future.

In particular, we can derive the Dedekind-Peano postulates about Natural Numbers as
follows:

1. Zero is a natural number.
2. No natural number has Zero as its successor.
3. If a natural number k succeeds the numbers n and m, then n = m.
4. Every natural number has a Successor.
5. Mathematical Induction: If (1) Zero exemplifies a property F and (2) for any

number n, it follows from the fact that n exemplifies F that the successor of n
exemplifies F, then F is exemplified by all natural numbers.

1As in the previous chapters, we refer to at the time of writing most recent version of PLM, dated
October 13 2021, which will continue to be available at [63].

2At the time of writing the implementation encompasses the construction of natural numbers and the
Dedekind-Peano postulates. We expect a full implementation of the derivation of Second-Order Peano
Arithmetic in the foreseeable future.

84

5.1. General Idea of the Construction

Furthermore, the contributions to the general evolution of AOT we described in the
previous chapters have had repercussions on the details of the construction. We will
describe this interaction in more detail in the following sections, while reproducing the
construction Nodelman and Zalta present in PLM chapter 14.

5.1. General Idea of the Construction

The strategy for constructing natural numbers in AOT basically follows the idea of
Frege’s Theorem (see [57]). Frege showed that the Peano axioms can be derived from
Hume’s Principle using Second-Order Logic. Hume’s Principle states that the number of
Fs is equal to the number of Gs if and only if F and G are equinumerous. Two relations
are equinumerous, if and only if there is a one-to-one correspondence between them or,
in other words, if and only if there is a bijection between the objects exemplifying F and
the objects exemplifying G.
Frege himself derived Hume’s Principle from Basic Law V, which together with second-
order logic leads to Russel’s Paradox. However, deriving Peano arithmetic from Hume’s
Principle itself does not require Basic Law V. In PLM’s chapter 14, Nodelman and Zalta
propose a definition of equinumerosity and the number of Fs in object theory and are
able to derive Hume’s Principle. Based on that, they present a definition of Natural
Numbers and a consistent derivation of the Dedekind-Peano postulates.

5.2. Equinumerosity of Relations

On the basis of traditional mathematical training based on set theory and functional
logic, the seemingly most natural conception of equinumerosity involves the notion of a
bijection. Two properties are equinumerous (i.e., intuitively, they are exemplified by "the
same number" of objects), if and only if there is a bijection between the sets of objects
exemplifying them.
However, this conception of equinumerosity relies on objects of theoretical mathematics
and their axiomatization (sets, functions, bijections). While object theory can in fact
define those notions as well, it takes relations to be the more primitive, fundamental
concept and thereby prefers a definition in terms of relations alone.
The concept of there being a bijection between the sets of objects exemplifying two
properties can equivalently be captured by the notion of there being a one-to-one cor-
respondence between the properties.

5.2.1. One-to-One Correspondences

A one-to-one correspondence between the properties F and G is a relation R, s.t. (1) for
every object x that exemplifies F, there is a unique object y exemplifying G, s.t. x bears

85

5. Natural Numbers in AOT

R to y and conversely (2) for every object y that exemplifies G, there is a unique object
x exemplifying F, s.t. x bears R to y. Formally (see A.12.12):3

R |: F 1−1←→ G ≡
∀ x ([F]x → ∃ !y(([G]y & [R]xy))) & ∀ y ([G]y → ∃ !x(([F]x & [R]xy)))

The relation to a bijection is readily apparent: for any object exemplified by F, the
relation R identifies a unique object exemplified by G and vice-versa.
However, this unrestricted notion of a one-to-one correspondence is not well-suited for a
definition of equinumerosity that validates Hume’s principle in AOT. The intuitive rea-
son for this is that abstract objects cannot be counted. In particular, recall that there
are distinct, but exemplification-indistinguishable abstract objects (see section 3.8.1
and A.7.8572):

∃ x ∃ y (A!x & A!y & x 6= y & ∀F ([F]x ≡ [F]y))

Based on this fact, we can prove that there is no one-to-one correspondence between A!

and itself:

AOT-theorem ‹¬∃R R |: A! 1−1←→ A!›
proof(rule raa−cor :2) — Proof by contradiction.

AOT-assume ‹∃R R |: A! 1−1←→ A!› — Assume the contrary.
then AOT-obtain R where 0 : ‹R |: A! 1−1←→ A!› — Let R be a witness.

using ∃E by metis
— By definition of a one-to-one correspondence it follows that:
AOT-hence ‹∀ x ([A!]x → ∃ !y ([A!]y & [R]xy))›

using 1−1−cor [THEN ≡dfE] &E by blast
— Now let a and b be witnesses to the theorem cited above.
moreover AOT-obtain a b where 1 : ‹A!a & A!b & a 6= b & ∀F([F]a ≡ [F]b)›

using aclassical2 ∃E by blast
— Taken together, this means there has to be a unique abstract object to which a bears R.
ultimately AOT-have ‹∃ !y ([A!]y & [R]ay)›

using ∀E(2) &E →E by blast
— Now let c be a witness, s.t. c is abstract and a bears R to c.
then AOT-obtain c where 2 : ‹A!c & [R]ac›

using &E(1) ∃E uniqueness:1 [THEN ≡dfE] by blast
— By beta-conversion it follows that a exemplifies being an x that bears R to c.
AOT-hence ‹[λx [R]xc]a›

by (auto intro!: β←C cqt:2 dest: &E)
— Since by construction a and b exemplify the same properties, the same holds true for b.
AOT-hence ‹[λx [R]xc]b›

by (safe intro!: 1 [THEN &E(2), THEN ∀E(1), THEN ≡E(1)]) cqt:2 [lambda]
— Again by beta conversion it follows that b bears R to c.
AOT-hence 5 : ‹[R]bc›

using β→C by blast

3Note that as mentioned in section 3.4.2, instead of stating the original definitions-by-equivalence
of AOT that involve additional significance clauses, we may instead illustrate the definitions in simpler
form using derived equivalences formulated using object-level variables throughout this chapter. In each
case the full definition in the appendix is referenced.

86

5.2. Equinumerosity of Relations

— Now the following is a consequence of the assumption that A! is in one-to-one correspondence
to itself:

AOT-have ‹∀ x ∀ y ∀ z ([A!]x & [A!]y & [A!]z → ([R]xz & [R]yz → x = y))›
using eq−1−1 [unvarify F G, OF oa−exist:2 , OF oa−exist:2 , THEN ≡E(1),

THEN fFG:4 [THEN ≡dfE], THEN &E(1),
THEN fFG:2 [THEN ≡dfE], THEN &E(2), OF 0].

— In particular this is true for a, b and c.
AOT-hence ‹[A!]a & [A!]b & [A!]c → ([R]ac & [R]bc → a = b)›

using ∀E(2) by blast
— But we already established that a, b and c are abstract, as well as that a bears R to c and

b bears R to c, so a and b have to be identical.
AOT-hence ‹a = b›

using 1 [THEN &E(1)] 2 5 &E →E &I by metis
— Which contradicts a and b being distinct by construction.
AOT-thus ‹p & ¬p› for p

using 1 =−infix ≡dfE &I &E raa−cor :1 by fast
qed

So if equinumerosity was defined in terms of the existence of a full one-to-one correspon-
dence, A! would not be equinumerous to itself and consequently equinumerosity would
not be an equivalence relation. However, Frege’s construction assumes that equinu-
merosity partitions all properties into equivalence classes, i.e. that equinumerosity is an
equivalence relation. While it is an interesting question for future research, whether a
variant of the construction was possible, in which equinumerosity merely was a partial
equivalence relation (and consequently not all properties could be counted, resp. the
number of Fs would not denote for every F), the construction in the current version
of PLM at the time of writing chooses to stay closer to Frege’s original method. In
particular, Nodelman and Zalta restrict their analysis to ordinary objects and we will
therefore choose this option for the main discussion in this chapter.
In section 5.21 we will discuss alternative options to address the issue that may lead to
an enhanced version of the construction in the future.

5.2.2. One-to-One Correspondences on the Ordinary Objects

As mentioned in the introduction of this chapter, natural mathematics arises from ab-
stracting exemplification patterns. In case of natural numbers, those patterns in partic-
ular need to be among objects that can be counted. While abstract objects in general
cannot, ordinary objects can always naturally be counted. Hence Nodelman and Zalta,
following [60], introduce the notion of one-to-one correspondences among the ordinary
objects. To that end, they introduce the restricted variables u, v, r, s that range over
only the ordinary objects.4 Using these restricted variables, a one-to-one correspon-
denceE among the ordinary objects can be defined in the same way as a full one-to-one
correspondence (see A.12.182):

4Recall the discussion of restricted variables in section 3.4.4.

87

5. Natural Numbers in AOT

R |: F 1−1←→E G ≡
∀ u ([F]u → ∃ !v(([G]v & [R]uv))) & ∀ v ([G]v → ∃ !u(([F]u & [R]uv)))

5.2.3. Definition of Equinumerosity

Based on one-to-one correspondencesE on the ordinary objects, equinumerosity on the
ordinary objects can be defined as suggested above: two relations are equinumerousE, if
and only if there is a one-to-one correspondenceE on the ordinary objects between them
(see A.12.187):5

F ≈E G ≡df ∃R R |: F 1−1←→E G

Equinumerosity on the ordinary objects is indeed an equivalence relation (see A.12.211):
F ≈E F
F ≈E G → G ≈E F
F ≈E G & G ≈E H → F ≈E H

Reflexivity can be shown by using the identity on the ordinary objects (=E) (see 3.4.5)
as witness for the existence of a one-to-one-correspondenceE between any property and
itself. Note that this is only possible, since, in contrast to general identity, identity on
the ordinary objects constitutes a (denoting) relation.
Symmetry is a simple consequence of the symmetry of the definition of one-to-one cor-
respondencesE.
Transitivity requires a slightly more verbose proof (see A.12.276), that hinges on the
fact that [λxy O!x & O!y & ∃ v ([G]v & [R1]xv & [R2]vy)] can be chosen as a witness for
the existence of a one-to-one-correspondenceE between F and H, if R1 is a one-to-one-
correspondenceE between F and G and R2 is a one-to-one-correspondenceE between G
and H.

5.2.4. Properties of Equinumerosity

Nodelman and Zalta continue to derive a variety of properties of equinumerosity that are
helpful for the remainder of the construction. While a full account of the progression of
theorems can be found in PLM, respectively in our implementation in A.12, the following
is a selection of noteworthy auxiliary theorems:
Properties that are unexemplified on the ordinary objects are equinumerous (any relation
may serve as one-to-one-correspondenceE between them; see A.12.712):

¬∃ u [F]u & ¬∃ v [H]v → F ≈E H
A property F that is exemplified by some ordinary object is not equinumerous to a
property H that is not exemplified by any ordinary object (proof by contradiction, since

5In the following sections we will drop the explicit mention of the restriction to the ordinary objects
and simply talk about equinumerosity and being equinumerous instead of equinumerosity on the ordinary
objects, resp. equinumerousE .

88

5.2. Equinumerosity of Relations

the existence of a one-to-one correspondenceE would imply that H is exemplified by an
ordinary object; see A.12.737):

∃ u [F]u & ¬∃ v [H]v → ¬F ≈E H
Respectively, removing (adding) ordinary objects from (to) a pair of equinumerous prop-
erties yields equinumerous properties (see A.12.772):6

F ≈E G & [F]u & [G]v → F−u ≈E G−v

F−u ≈E G−v & [F]u & [G]v → F ≈E G
Properties that are equivalent on the ordinary objects (written as ≡E) are equinumerous
(see A.10.74, A.12.1755):7

F ≡E G ≡ ∀ u ([F]u ≡ [G]u)
F ≡E G → F ≈E G

5.2.5. Modal Properties of Equinumerosity

It is noteworthy that, in general, equinumerosity is not modally rigid. In particular,
it is provable that there are relations that are possibly equinumerous and possibly not
equinumerous (see A.12.1514):

∃F ∃G ♦(F ≈E G & ♦¬F ≈E G)

As a simple example consider a property that is necessarily unexemplified and another
property that is actually unexemplified, but possibly exemplified by some ordinary ob-
ject.8 While such properties are equinumerous in the actual world, there is no one-to-
one-correspondenceE between them in the possible world, in which the second property
is exemplified by an object.
We will see in the next section that for this reason it makes sense to use the actual world
as a reference for the definition of numbering properties.
In any modal context, it is possible to express equinumerosity relative to the behaviour of
properties in the actual world. In particular the following is a (modally-strict) theorem
(see A.12.1896):

F ≈E G ≡ ∀H ([λz A[H]z] ≈E F ≡ [λz A[H]z] ≈E G)

I.e. two properties F and G are equinumerous, if and only if for all properties H, F is
equinumerous to actually exemplifying H just in case that G is. Furthermore, for rigid
properties,9 equinumerosity is modally collapsed (see A.12.1951):

Rigid(F) & Rigid(G) → �(F ≈E G → �F ≈E G)

6The statements rely on the following definition of F−x, i.e. being an F that is not x : F−x =df

[λz [F]z & z 6=E x]. The proofs rely on constructing suitable one-to-one correspondencesE by case
analysis.

7The identity on the ordinary objects (=E) can be chosen as witness for the existence of a one-to-
one-correspondenceE .

8The existence of such properties is guaranteed by the fact that by axiom there is an object that is
not actually, but possibly concrete as mentioned in section 3.3.

9I.e. properties that are modally collapsed: Rigid(F) ≡ �∀ x ([F]x → �[F]x), see also 3.8.3.

89

5. Natural Numbers in AOT

The proofs of the last two theorems hinge on the existence of rigidifying relations. Re-
call the earlier discussion of this topic in section 3.8.3 - notably, in earlier versions of
PLM, the existence of rigidifying relations had to be ensured by axiom. In the current
formulation of AOT, the necessary and sufficient conditions for relations to denote that
we contributed to the theory (see section 3.8.2), can be used to prove the existence
of world-indexed properties that can serve as witnesses for the existence of rigidifying
relations, thereby eliminating the need for the additional axiom.

5.3. The Number of Fs and Hume’s Theorem

To state Hume’s Theorem, additionally to the definition of equinumerosity above, a
definition of The Number of Fs (written as #F) is required. To that end Nodelman
and Zalta first define what it means for an object to number a property as follows
(see A.12.2177):

Numbers(x,G) ≡ A!x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)

An abstract object x numbers a property G, if it encodes exactly those properties, such
that actually exemplifying them is equinumerous to G. An alternative choice would be to
forgo the actuality operator and merely require that x encodes exactly those properties
that are themselves equinumerous to G.10 However, we noted in the last section that
equinumerosity is (in general) not modally rigid, so such a definition would have the
undesirable consequence that numbering properties would depend on modal context and
consequently that every possible world would need its own sets of numbers (see 5.5). To
avoid this issue the actual world is used as a reference. Later in this chapter, we will
show that this does not mean that it is impossible to count in non-actual worlds and
that this definition is consistent with the pretheoretic intuition of one group of natural
numbers that can count objects at any possible world (see 5.5).
Now The Number of Gs can simply be defined as the object that numbers G (see A.12.2503):

#G =df ιxNumbers(x,G)

Using these definitions Hume’s principle becomes derivable as a theorem (see A.12.2589):
` #F = #G ≡ F ≈E G

Note that, due to the fact that AOT’s definite descriptions are modally rigid and refer to
objects in the actual world, this theorem is not modally strict.11 However, the following
variants are necessary facts with modally-strict proofs (see A.12.2602):

∃ x (Numbers(x,F) & Numbers(x,G)) ≡ F ≈E G

∃ x ∃ y (Numbers(x,F) & ∀ z (Numbers(z,F) → z = x) & Numbers(y,G) &
∀ z (Numbers(z,G) → z = y) &
x = y) ≡

F ≈E G
10In fact, earlier versions of the construction used this definition (see e.g. [60]).
11Recall that this is signified by the turnstile symbol ` and recall the discussion in section 3.4.7.

90

5.4. The Number Zero

Note that the last theorem corresponds to a translation of the descriptions in Hume’s
theorem according to Russell’s analysis of definite descriptions.

5.4. The Number Zero

Given the fact that we defined numbers by means of the properties they number, which
in turn is - informally speaking - based on how many objects those properties exemplify,
a natural definition of the number Zero arises. The number Zero is the object that
numbers the empty property, to be more precise the number of being a non-self-identical
ordinary object (see A.12.2683).12

0 =df #[λx O!x & x 6=E x]

Note that while the above definition introduces the number Zero as (abstract) object, we
have not defined the notion of a Natural Number yet, nor shown that the number Zero
indeed is a natural number. The definition of Natural Number will rely on introducing
a predecessor relation and, intuitively speaking, defining that an abstract object is a
natural number if there is a series of objects starting at Zero, ending at the given abstract
object, s.t. two consecutive objects in that series bear the predecessor relation to each
other. While we will describe this construction in detail in the following sections, we
can already define the strictly more general13 notion of a Natural Cardinal and it will
immediately follow that Zero is a natural cardinal. An object x is a natural cardinal,
just in case that there is a property G, s.t. x is the number of Gs (see A.12.2570):

NaturalCardinal(x) ≡df ∃G x = #G

By the definition of the number Zero, it becomes immediately apparent that Zero is a
natural cardinal (see A.12.2688):14

NaturalCardinal(0)

12To be precise being a non-self-identicalE object (see section 3.4.5). This distinction is non-trivial:
While O!x & x 6=E x ≡ O!x & x 6= x is a theorem, due to the hyperintensionality of object theory,
it does not have to be the case that [λx O!x & x 6=E x] and [λx O!x & x 6= x] are the same property
(as a matter of fact it is not even asserted a priori that the latter even denotes a property at all). So
#[λx O!x & x 6=E x] and #[λx O!x & x 6= x] are not the same object a priori, even though it is
a theorem that they are identical. But this theorem has to appeal to the fact that both properties are
equinumerous and to Hume’s Theorem. Further examples of terms denoting the number Zero are #[λx
x 6= x] and #[λx ∃ p (p & ¬p)].

13It is a theorem that #O! is a natural cardinal that is infinite and not a natural number
(see A.12.5456).

14However, note that the proof has to appeal to the fact that #G↓ (see A.12.2505) as well as the fact
that [λx O!x & x 6=E x]↓ by axiom.

91

5. Natural Numbers in AOT

5.5. Counting in Possible Worlds

In section 5.3, we mentioned the use of the actual world as reference for defining number-
ing properties and hinted at the fact that this is justified and consistent with pretheoretic
intuition. We can now discuss this in more detail at the example of the number Zero.
The number of a property is defined as rigid definite description and thereby uses the
actual world as frame of reference. In particular, using the number Zero as example,
this means the following (see A.12.2918):

¬∃ u A[F]u ≡ #F = 0

If and only if a property F is not actually exemplified by any ordinary object, the number
of that property is Zero. This may seem counter-intuitive at first: the stated theorem
is modally-strict and thereby a necessary fact. So in any possible world, even in worlds
in which F could be exemplified, the number of F is still Zero, if F is not actually
exemplified. However, this is merely due to the fact that definite descriptions are rigid
and themselves refer to objects in the actual world.
Moving away from the rigidly defined number of Fs, it is a modally-strict theorem (and
thereby a necessary fact), that Zero numbers any property that is not exemplified by
any ordinary object (see A.12.2844):

¬∃ u [F]u ≡ Numbers(0 ,F)
�(¬∃ u [F]u ≡ Numbers(0 ,F))

I.e. Zero numbers empty properties in all possible worlds. A different take on this is the
fact that any object that possibly numbers a necessarily empty property is the number
Zero (see A.13.5):

♦Numbers(x,[λz O!z & z 6=E z]) → x = 0
By contrast, if numbering a property had been defined without using the actual world
as reference, then "the" number Zero would be a different abstract object in different
possible worlds:
If we define Numbers ′ without the use of the actuality operator, s.t.:

Numbers ′(x,G) ≡ A!x & ∀F (x[F] ≡ F ≈E G)

Then it is a theorem (see A.13.46) that:
∃ x ∃ y (♦Numbers ′(x,[λz O!z & z 6=E z]) & ♦Numbers ′(y,[λz O!z & z 6=E z]) &

x 6= y)
I.e. there would be distinct abstract objects that might count necessarily empty prop-
erties. This is clearly contrary to the pretheoretic intuition that numbers are universal,
i.e. that counting empty properties in any world will yield one and the same number
Zero.
On the other hand, we can further consolidate the use of the actual world as reference
frame, by realizing that we can talk about the numbers of properties in different worlds,
despite the rigidity of definite descriptions and the use of the actual world as reference
for defining numbers. We again use the number Zero as example and can show that if

92

5.6. Ancestral Relations and Transitive Closures

and only if a property F is not exemplified in a given possible world w, then the number
of exemplifying F at w is Zero (see A.12.2987):15

w |= ¬∃ u [F]u ≡ #Fw = 0

5.6. Ancestral Relations and Transitive Closures

As mentioned above, natural numbers will, informally speaking, be defined by the means
of series of objects that bear a (yet to be introduced) predecessor relation to each other.
However, traditionally, a series of objects relies on it being possible to index its objects
using a continuous sequence of natural numbers. Since our goal is to define natural
numbers, using this traditional notion of a series is not an option. Instead we construct
ancestral relations. In particular the strong ancestral of a relation will match the concept
of the transitive closure of the relation. Natural numbers will be defined as the objects
to which the number Zero bears the weak ancestral (i.e. the transitive and reflexive16

closure) of the predecessor relation, i.e. the number Zero itself or any object that is
transitively preceded by Zero.
The first step in this process is to define being a hereditary property with respect to a
relation, which will lead to a definition of the strong ancestral of a relation.

5.6.1. Properties that are Hereditary with respect to a Relation

A property F is hereditary w.r.t. a relation R, if and only if for every pair of objects x
and y, s.t. x bears R to y, if x exemplifies F, then y exemplifies F (see A.12.3117):

Hereditary(F ,R) ≡ ∀ x ∀ y ([R]xy → ([F]x → [F]y))

Intuitively, a relation R defines sequences of objects as follows: we call a list of objects
x1, ..., xn an R-induced sequence, if for every 0 < i < n, xi bears R to xi+1. Then F
being hereditary w.r.t. R means that any R-induced sequence starting in F (i.e. starting
with an object exemplified by F), is completely contained in F (i.e. every object in the
sequence exemplifies F as well).
Or in other words, a property F is hereditary w.r.t a relation R, if "F-ness" is inherited
from all objects that exemplify F to the objects that are R-related to them.

5.6.2. Strong Ancestral of a Relation and Transitive Closures

Using the above definition, we can introduce the Strong Ancestral of a relation R, which
is written as R∗ (see A.12.3125):17

15Recall the discussion of AOT’s theory of Possible Worlds and world-indexed properties in sec-
tion 3.8.3.

16We will see that reflexivity will have to be restricted to a specific domain.
17Note that while PLM uses R∗ for the strong ancestral, i.e. the transitive closure, of R and later

R+ for the weak ancestral, i.e. the transitive and reflexive closure, of R, Isabelle’s HOL library uses the
opposite convention, i.e. it uses r+ as transitive and r∗ as reflexive-transitive closure.

93

5. Natural Numbers in AOT

R∗ =df [λxy ∀F (∀ z ([R]xz → [F]z) & Hereditary(F ,R) → [F]y)]

An object x bears R∗ to y, just in case that y exemplifies every property F that is
hereditary w.r.t R and that is exemplified by all objects to which x bears R. To convince
ourselves that this definition captures the transitive closure of R, we may fix x and
consider a property F, s.t. ∀ z ([R]xz → [F]z) & Hereditary(F ,R). Any such property F
is exemplified by all objects immediately following x in an R-induced sequence (first
conjunct) as well as all objects in any longer R-induced sequence starting at x (second
conjunct). Hence (informally thinking of properties as sets) any such F contains all
objects that are transitively related to x. Note, however, that F may exemplify additional
objects that are not part of any R-induced sequence. However, the intersection of all
such properties F yields the smallest set of objects that are transitively related to x,
which is exactly those objects that are transitively related to x.
It is interesting to note that there is a different way to define the transitive closure of a
relation R, namely:
The transitive closure of a relation R is the intersection of all transitive relations R ′ that
are contained in R. As a matter of fact, we can state this definition in AOT as well, and
prove it to be equivalent to the strong ancestral of R.
First we define for a relation to be transitive as follows:
AOT-define Transitive :: ‹τ ⇒ ϕ› (‹Transitive ′(- ′)›)

‹Transitive(R) ≡df ∀ x∀ y∀ z([R]xy & [R]yz → [R]xz)›

Next we can define for a relation to be contained in another relation, or alternatively,
moving away from set-theoretic concepts, for a relation to entail another relation:
AOT-define Entails :: ‹τ ⇒ τ ⇒ ϕ› (‹Entails ′(-,- ′)›)

‹Entails(R,R ′) ≡df ∀ x∀ y([R]xy → [R ′]xy)›

Being in the intersection of all transitive relations entailed by R means exemplifying all
of them. Hence we can define the transitive closure of R as follows:
AOT-define TransitiveClosure :: ‹τ ⇒ Π› (‹TransitiveClosure ′(- ′)›)

‹TransitiveClosure(R) =df [λxy ∀R ′(Transitive(R ′) & Entails(R,R ′) → [R ′]xy)]›

Now we can prove that this definition of a transitive closure is equivalent to the definition
of a strong ancestral above:
AOT-theorem ‹[TransitiveClosure(R)]xy ≡ [R∗]xy›
proof(safe intro!: ≡I →I)

AOT-assume ‹[TransitiveClosure(R)]xy›
AOT-hence ‹[λxy ∀R ′(Transitive(R ′) & Entails(R,R ′) → [R ′]xy)]xy›

by (auto intro: rule−id−df :2 :a[OF TransitiveClosure] intro!: cqt:2)
AOT-hence ‹∀R ′(Transitive(R ′) & Entails(R,R ′) → [R ′]xy)›

using β→C by fast
AOT-hence ‹Transitive(R∗) & Entails(R,R∗) → [R∗]xy›

using ∀E(1) rule−id−df :2 :b[OF ances−df] hered:2 by blast
— The following is a consequence of PLM’s theorems about strong ancestral relations (see A.12.3136

and A.12.3222).

94

5.7. Weak Ancestral Relations

moreover AOT-have ‹Transitive(R∗) & Entails(R,R∗)›
by (auto intro!: &I Entails[THEN ≡df I] Transitive[THEN ≡df I] GEN →I

simp: anc−her :1 [THEN →E] anc−her :6 [THEN →E])
ultimately AOT-show ‹[R∗]xy›

using →E &I by blast
next

AOT-assume 0 : ‹[R∗]xy›
AOT-have ‹∀R ′(Transitive(R ′) & Entails(R,R ′) → [R ′]xy)›
proof(safe intro!: GEN →I ; frule &E(1); drule &E(2))

fix R ′

AOT-assume transitive: ‹Transitive(R ′)› and entails: ‹Entails(R,R ′)›
— The following is an instance of another theorem about strong ancestral relations (see A.12.3148).
AOT-have ‹[R∗]xy & ∀ z([R]xz → [λz [R ′]xz]z) & Hereditary([λz [R ′]xz],R) → [λz [R ′]xz]y›

by (rule anc−her :2 [unvarify F]) cqt:2 [lambda]
moreover AOT-have ‹Hereditary([λz [R ′]xz],R)›
proof (safe intro!: hered:1 [THEN ≡df I] &I cqt:2 GEN →I)

fix z y
AOT-assume ‹[R]zy› and ‹[λz [R ′]xz]z›
AOT-hence ‹[R ′]zy› and ‹[R ′]xz›

using entails by (auto dest: Entails[THEN ≡dfE] ∀E(2) →E β→C)
AOT-hence ‹[R ′]xy›

using transitive by (auto dest!: Transitive[THEN ≡dfE] dest: ∀E(2) →E intro!: &I)
AOT-thus ‹[λz [R ′]xz]y›

by (auto intro!: β←C cqt:2)
qed
moreover AOT-have ‹∀ z([R]xz → [λz [R ′]xz]z)›

using entails[THEN Entails[THEN ≡dfE]]
by (auto intro!: GEN →I β←C cqt:2 dest: ∀E(2) →E)

ultimately AOT-have ‹[λz [R ′]xz]y›
using 0 &I →E by auto

AOT-thus ‹[R ′]xy›
by (rule β→C)

qed
AOT-thus ‹[TransitiveClosure(R)]xy›

by (auto intro: rule−id−df :2 :b[OF TransitiveClosure]
intro!: β←C cqt:2 tuple-denotes[THEN ≡df I , OF &I])

qed

5.7. Weak Ancestral Relations

As mentioned above, our goal is to define being a natural number as either being Zero
or being an object, s.t. Zero bears the strong ancestral of the to-be-defined predecessor
relation to it. This matches the notion of the weak ancestral of the predecessor relation.
Traditionally, the weak ancestral of a relation R+ is defined, s.t. an object x bears R+

to an object y, if and only if either x bears the strong ancestral R∗ to y or x = y.

95

5. Natural Numbers in AOT

However, recall that in AOT there is no general relation of identity, i.e. [λxy x = y] does
not denote (see 3.8.1). Consequently, the immediate candidate for defining the weak
ancestral of a relation [λxy [R∗]xy ∨ x = y] does not denote for arbitrary choices of R.18

For this reason Nodelman and Zalta proceed by introducing rigid one-to-one relations.
Rigid one-to-one relations induce a notion of identity on their domain that is consistent
with general identity (on this domain), but constitutes a denoting relation.

5.7.1. Rigid One-to-One Relations

For a relation to be one-to-one is related to the notion of a function being injective. A
relation R is one-to-one, if whenever two objects x and y bear R to the same object z,
then x and y are identical (see A.12.3256):

1−1 (R) ≡ ∀ x ∀ y ∀ z ([R]xz & [R]yz → x = y)

Note, however, that one-to-one relations are more general than injective functions, since
the criterion to be one-to-one does not imply that the relation is functional, i.e. that
each object in its domain is related to exactly one object.
An object x is in the domain of a relation R, just in case that there is an object y, s.t. x
bears R to y (see A.12.3322):

InDomainOf (x,R) ≡ ∃ y [R]xy

While the predecessor relation will in fact be a functional relation, a relation that relates
a single object to all other objects, but no other object to any object, is an example of
a one-to-one relation that’s succinctly non-functional. However, in order to introduce a
restricted notion of identity, functionality is not a requirement.
On the other hand, in order to simplify modal reasoning and to be able to introduce well-
behaved restricted variables, it is helpful to only consider rigid one-to-one relations. A
rigid one-to-one relation is a relation that is one-to-one and rigid (see A.11.2995, A.12.3259):19

Rigid1−1(R) ≡ 1−1 (R) & Rigid(R)

Since being a rigid one-to-one relation is a rigid restriction condition, we can introduce
well-behaved restricted variables that range over them.20

In the following we will use R as a restricted variable ranging over rigid one-to-one
relations.21

5.7.2. Identity Restricted to the Domain of Rigid One-to-one Relations

For a variable R that is restricted to rigid one-to-one relations, a restricted notion of
identity can now be defined as follows (see A.12.3372):

18For example, if R is a necessarily empty relation, the matrix of [λxy [R∗]xy ∨ x = y] is necessarily
equivalent to [λxy x = y] for all x and y and [λxy [R∗]xy ∨ x = y] fails to denote by co-existence.

19Recall the discussion about rigid relations in section 3.8.3.
20Recall the discussion of restricted variables in section 3.4.4.
21Note that PLM uses R. However, in our framework choosing R is simpler for technical reasons.

96

5.8. Generalized Induction

(=R) =df [λxy ∃ z ([R]xz & [R]yz)]

Note that in contrast to general identity, the definiens of R-identity (trivially) denotes
a proper relation.
By β-conversion and using infix notation, two objects x and y are R-identical, just in
case that there is an object to which they are both R-related (see A.12.3379):

x =R y ≡ ∃ z ([R]xz & [R]yz)

Since R is restricted to rigid one-to-one relations, the resulting identity relation is exactly
the restriction of general identity to the domain of R (see A.13.266):

x =R y ≡ InDomainOf (x,R) & InDomainOf (y,R) & x = y

Consequently, the defined identity is a partial equivalence relation that is reflexive on
the domain of R (see A.12.3470):

InDomainOf (x,R) → x =R x
x =R y → y =R x
x =R y & y =R z → x =R z

A simple example of a rigid one-to-one-relation is the identity on the ordinary objects
(=E), the domain of which is the ordinary objects (see A.13.768 and A.13.788).

5.7.3. The Weak Ancestral of a Relation

Based on the concept of R-identity, the weak ancestral R+ of a rigid one-to-one relation
R can be defined as follows (see A.12.3529):

R+ =df [λxy [R∗]xy ∨ x =R y]

Restricting to the domain of R, two objects are now exactly in the weak ancestral relation
R+ if they are either transitively R-related (i.e. in the strong ancestral relation R∗) or
identical:

InDomainOf (x,R) → ([R+]xy ≡ [R∗]xy ∨ x = y)

In other words, the weak ancestral of a relation is its transitive and reflexive closure,
with reflexivity being restricted to the domain of the relation.

5.8. Generalized Induction

In order to understand the formulation of generalized induction, first consider the fol-
lowing theorem that Nodelman and Zalta prove before even introducing weak ancestral
relations, but which already has "inductive character" (see A.12.3160):

[F]x & [R∗]xy & Hereditary(F ,R) → [F]y

While this may not look like an inductive principle as stated, unfolding the definition of
Hereditary, this is equivalent (under some trivial transformations) to the following:

97

5. Natural Numbers in AOT

AOT-theorem pre-ind ′: ‹[F]z & ∀ x∀ y([R]xy → ([F]x → [F]y)) → ∀ y ([R]∗zy → [F]y)›
proof(safe intro!: →I GEN)

fix y
AOT-assume ‹[F]z & ∀ x∀ y([R]xy → ([F]x → [F]y))›
AOT-hence ‹[F]z & Hereditary(F ,R)›

by (AOT-subst-def hered:1) (auto intro!: &I cqt:2 elim: &E)
moreover AOT-assume ‹[R]∗zy›
moreover AOT-have ‹[F]z & [R∗]zy & Hereditary(F ,R) → [F]y›

using anc−her :3 . — This is an instance of the theorem cited above.
ultimately AOT-show ‹[F]y›

using &I &E →E by metis
qed

I.e. if an object z exemplifies F and F is inherited via R, then any object that is
transitively R-related to z exemplifies F.
Pretend for a moment that R was a well-defined predecessor relation and z the number
Zero. Then this theorem would imply that if (1) F holds for Zero and (2) for any x and
y, s.t. x precedes y, if x exemplifies F, then y exemplifies F, then F holds for all numbers
transitively preceded by Zero (and since F also holds for Zero by assumption this would
trivially imply that F holds for any natural number).
In principle, this is how mathematical induction will be derived. However, it is incon-
venient that the induction step in this formulation ranges over the full domain of all
objects. Instead, it should be sufficient to consider all natural numbers.
By instantiating F to [λx [F]x & [R+]zx], we arrive at the following theorem, which PLM
refers to as Generalized Induction (see A.12.3851):22

[F]z & ∀ x ∀ y ([R+]zx & [R+]zy → ([R]xy → ([F]x → [F]y))) →
∀ x ([R+]zx → [F]x)

In this formulation, the induction step merely ranges over objects to which z bears the
weak ancestral relation of R. Thinking of R as the predecessor relation and z as the
number Zero, this will be exactly the natural numbers. I.e. instantiating this generalized
principle of induction to the predecessor relation and the number Zero, yields classical
mathematical induction (relative to the upcoming definition of natural numbers).

5.9. The Predecessor Relation
5.9.1. Definition

While the definition of the predecessor relation is rather straightforward, the interesting
question will be whether it actually denotes a relation, which we will discuss in detail

22Note that (1) [R+]zy for any y implies [R+]zz, yielding [λx [F]x & [R+]zx]z in all cases in which
the consequent of the strengthened theorem does not trivially hold (i.e. if ¬∃ y [R+]zy) and (2) that the
consequent of the weaker theorem can be strengthened since [R+]zy either implies (a) z = y, in which
case [F]y follows from the assumption [F]z, or it implies (b) [R∗]zy, in which case the consequent of
the weaker principle yields [F]y. The additional fact that [R]xy and [R+]zx imply [R+]zy is sufficient
to arrive at the strengthened theorem.

98

5.9. The Predecessor Relation

in section 5.9.2. For the moment assume that the λ-expression in the definiens of the
following definition denotes (see A.12.4288):

� =df [λxy ∃F ∃ u ([F]u & Numbers(y,F) & Numbers(x,F−u))]

Given the assumption that this relation denotes, it follows by β-conversion that (see A.12.4294):
�xy ≡ ∃F ∃ u ([F]u & Numbers(y,F) & Numbers(x,F−u))

So an object x precedes an object y just in case there is a property F and an ordinary
object u, s.t. u exemplifies F, y numbers F and x numbers being an F other than u (via
the definition F−u =df [λz [F]z & z 6=E u]).
This is a variant of Frege’s definition of the successor relation.23 The idea can be clarified
by considering how the first natural numbers are related w.r.t. this relation:

• The number Zero numbers properties that are not exemplified by any ordinary
object. Hence there cannot be a property F that is exemplified by an object u, s.t.
Zero numbers F, which means that Zero is not preceded by any object.

• The number One numbers properties that are exemplified by a single ordinary
object.24 Hence any property F numbered by One is exemplified by some ordinary
object u. Furthermore, F−u, i.e. being an object exemplifying F other than u, is
not exemplified by any ordinary object. Hence Zero is the unique predecessor of
One.

• The number Two numbers properties that are exemplified by two distinct ordinary
objects. Being an object that exemplifies any of these properties other than any
particular object the given property exemplifies, is a property exemplified by only
one ordinary object, hence numbered by One, i.e. One precedes Two, etc.

5.9.2. Assuring that the Predecessor Relation Denotes

It is important to realize that the λ-expression used in the definition above does not
trivially denote a relation in AOT. Numbering a property is an encoding claim: an object
numbers a property G, just in case it encodes all properties, s.t. actually exemplifying
it is equinumerous to G. In general, encoding claims cannot be abstracted to denoting
properties and relations.25

In fact it is easy to see that the minimal model of AOT does not validate this axiom:
the minimal model contains one ordinary urelement (resp. one ordinary object) and one
special urelement. Since special urelements determine the exemplification extensions of
abstract objects, there being only one special urelement implies that all abstract objects

23Nodelman and Zalta argue in favour of a predecessor relation due to the fact that in contrast to a
successor relation, the argument order of the predecessor relation matches the numerical order of objects
in the relation. Apart from that, the notions are interchangeable, i.e. Succeeds(y,x) is exactly �xy.

24While we have not formally introduced any number other than Zero, we consider this intuitive
understanding helpful in clarifying the idea of the predecessor relation. The number One will formally
be introduced later in this chapter.

25Recall the discussion in section 3.6.

99

5. Natural Numbers in AOT

exemplify the same properties and relations. This implies in particular that either all
objects are preceded by Zero (including Zero itself) or no object is, i.e. �00 or ¬∃ x �0x.
However, we have already (informally) argued above that Zero is not preceded by any
object.26 Hence in this model it would have to hold that ¬∃ x �0x. However, since the
minimal model still contains one ordinary object, the number One can be constructed
and (again as argued above) is preceded by Zero, i.e. �01, which yields a contradiction.
Nodelman and Zalta assert that the predecessor relation denotes by axiom and emphasize
that the relation is not inherently mathematical and no mathematical primitives are
needed to assert, as an axiom, that it denotes (see PLM item (782)). In particular, they
argue that expressions of the form Numbers(y,F), while seemingly mathematical in nature,
can be eliminated, since they are defined in terms of primitives of AOT. Furthermore,
they argue that the relation merely asserts the existence of an ordering relation on
abstract objects and ordering relations can, in general, be expressed in entirely logical
terms.
However, even if one concedes that the axiom is not inherently mathematical, it can be
objected that it is rather ad-hoc: rather than asserting a general principle according to
which encoding claims can be abstracted to relations, it singles out a specific relation
and this relation is, after all, used to define a concept that is very much mathematical
in nature. Furthermore, the axiom is not trivially consistent: as we have seen, minimal
models of the base system of AOT do not validate it.
Using our embedding we can, however, contribute to this situation in two ways:

• We can show that the axiom is consistent by constructing models that validate it.
• We can generalize the axiom to an independently justifiable comprehension prin-

ciple for relations among abstract objects, s.t. it becomes a theorem that the
predecessor relation in particular denotes.

We defer a more detailed discussion to section 5.19 and in the following continue to
reproduce the construction of natural numbers and the derivation of the Dedekind-Peano
postulates as given by Nodelman and Zalta in PLM.

5.9.3. The Predecessor Relation as Rigid One-to-One Relation.

It can be derived that the predecessor relation is modally rigid: Rigid(�), respectively
�xy → ��xy. While the full proofs can be found in A.12.4301, it is noteworthy that
it again requires that one argue by appealing to rigidifying relations: by the theorem
governing the predecessor relation given above, �xy implies that there exists a property
F and an ordinary object u, s.t. [F]u & Numbers(y,F) & Numbers(x,F−u). However, none
of the conjuncts are guaranteed to be necessary. But we may refer to the fact that for
any property F there exists a property G that rigidifies F and this property G can serve
as witness for the claim that ��xy.

26Both ¬∃ x �x0 and �01 are formally derived in A.12.4498, resp. A.12.5437.

100

5.10. Natural Numbers

Furthermore, it is a consequence of a modally-strict variant of Hume’s principle that the
predecessor relation is one-to-one (see A.12.4426): 1−1 (�).
Consequently, the Predecessor Relation is a rigid one-to-one relation and we can instan-
tiate the definition of the strong ancestral to � (see A.12.4468):

�∗ = [λxy ∀F (∀ z (�xz → [F]z) & Hereditary(F ,�) → [F]y)]

Furthermore, being �-identical as well as the weak ancestral of � are also well-defined
(see A.12.4540):

x =� y ≡ ∃ z (�xz & �yz)
�+ = [λxy [�∗]xy ∨ x =� y]

Before we continue to define natural numbers, note that it is already derivable that the
number Zero neither has a direct nor a transitive predecessor (see A.12.4498): ¬∃ x �x0
respectively ¬∃ x [�∗]x0

5.10. Natural Numbers

Using the infrastructure introduced in the past sections, we can now follow through with
the strategy described in the beginning of the chapter and define being a natural number
as being an object, s.t. Zero bears the weak ancestral of the predecessor relation to it
(see A.12.4577):

� =df [λx [�+]0x]

Since being a natural number trivially denotes, it follows by β-conversion that (see A.12.4582):
�x ≡ [�+]0x

5.11. Zero is a Natural Number

The first Dedekind-Peano postulate can now be derived (see A.12.4588):
�0

Interestingly, both in Frege’s original work and in Zalta’s initial reconstruction (see [60])
the weak ancestral was defined using general identity and consequently [�+]00 is a simple
consequence of the fact that Zero is self-identical. However, due to the construction via
rigid one-to-one relations this theorem requires a non-trivial proof: [�+]00 by definition
is just the case if either [�∗]00 (which was already refuted above) or 0 =� 0.
However, 0 =� 0 is not a simple consequence of the fact that 0 = 0, but additionally
requires that InDomainOf (0 ,�), respectively that ∃ y �0y, i.e. the proof effectively requires
to construct the number One as witness.27

27The number One can for example be introduced as the number of any relation exemplified by exactly
one ordinary object. Since it is a theorem (see A.7.7510) that there is an ordinary object ∃ x O!x, we
can choose a to be a witness to this existential claim and choose #[λx O!x & x =E a] as a witness to
∃ y �0y..

101

5. Natural Numbers in AOT

Preliminary working versions of the chapter of PLM left this non-trivial proof as an
exercise referring to it being a trivial consequence of the self-identity of the number
Zero. Trying to prove the statement in the embedding showed that additional work is
required due to the changes in the construction compared to previous versions and we
were able to notify Nodelman and Zalta both that the proof is non-trivial and suggest to
them the proof given in A.12.4588 and outlined in the footnote of the last paragraph.28

5.12. Being a Natural Number is Rigid

From the generalized principle of induction when instantiating F to [λx ��x] and R to
�, it follows that �x → ��x and consequently that Rigid(�) (see A.12.4631, A.12.4689).
Since furthermore Zero is a witness to the existence of natural numbers and it is easy to
prove that �κ → κ↓,29 being a natural number is a rigid restriction condition and it is
possible to introduce well-behaved restricted variables ranging over the natural numbers
(recall section 3.4.4).
In the following the variable names m, n, k, i and j are used to range over natural
numbers.

5.13. Zero Has No Predecessor

We have already mentioned the fact that ¬∃ x �x0 above, but we can now restate this
theorem a fortiori for variables restricted to natural numbers, which constitutes the
second Dedekind-Peano postulate (as mentioned earlier this formulation is equivalent to
the assertion that Zero is not the successor of any natural number; see A.12.4714):

¬∃n �n0

5.14. No Two Natural Numbers have the Same Successor

The third Dedekind-Peano postulate is a general property of any one-to-one relation,
but can be stated explicitly using restricted variables for natural numbers (on which
�-identity matches general identity) as follows (see A.12.4725):

∀n ∀m ∀ k (�nk & �mk → n = m)

Whenever two natural numbers n and m precede the same natural number k (or, equiv-
alently, if n and m have the same successor), they have to be identical.

28Note that the chapter was under heavy revision at the time and this omission would likely have been
independently discovered eventually. However, it is one of the merits of working in a computer-verified
setting that such omissions become immediately apparent.

29It is a simple consequence of one of the quantifier axioms mentioned in section 3.3.

102

5.15. Mathematical Induction

5.15. Mathematical Induction

Furthermore, we can now derive Mathematical Induction (see A.12.4738):

∀F ([F]0 & ∀n ∀m (�nm → ([F]n → [F]m)) → ∀n [F]n)

If a property (1) is exemplified by the number Zero and (2) it being exemplified by a
natural number implies it being exemplified by its successor, then all natural numbers
exemplify that property.30 This is a simple consequence of instantiating generalized
induction (recall section 5.8) to the predecessor relation.
Thereby the fifth Dedekind-Peano postulate is derivable. Note, however, that we haven’t
yet derived the fourth postulate, i.e. that every natural number has a unique successor.
The construction so far is validated by the minimal models of AOT that are extended
to validate the predecessor axiom (i.e. in which the predecessor relation denotes). Val-
idating the predecessor axiom involves increasing the number of special urelements in
the model (see 5.19), but it does not require to increase the number of ordinary urele-
ments/objects, so there are still models with only a single ordinary urelement/object,
in which the predecessor relation denotes. However, in such models the only natural
numbers are Zero and One and the number One does not have a successor. For that
reason, Nodelman and Zalta extend the system by another axiom, which we will discuss
below after stating a few more derived properties of the predecessor relation and natural
numbers.

5.16. Properties of the Predecessor Relation and Natural
Numbers

Successors of natural numbers are (transitively) natural numbers (see A.12.4766):
�nx → �x
[�∗]nx → �x
[�+]nx → �x

Predecessors of natural numbers are (transitively) natural numbers (see A.12.4824):
�xn → �x
[�∗]xn → �x
[�+]xn → �x

Natural numbers are natural cardinals (see A.12.4865):
�x → NaturalCardinal(x)

The predecessor relation is functional (see A.12.4899):
30Note that, strictly speaking, our natural language formulation rather corresponds to the derived

theorem ∀F ([F]0 & ∀n ([F]n → [F]n ′) → ∀n [F]n) (see A.13.273), where n ′ is defined as the
successor of n, resp. the natural number that is preceded by n (see A.12.5336). However, this formulation
can only be derived after proving that every number has a (unique) successor.

103

5. Natural Numbers in AOT

�xy & �xz → y = z
�nm & �nk → m = k

5.17. Possible Richness of Objects

As mentioned above, the construction so far is valid in models with only a single ordinary
object and consequently with only two natural numbers, which is not sufficient to derive
that every natural number has a successor.
The following modal axiom, by which Nodelman and Zalta proceed to extend the system,
changes this (see A.12.4956):

∃ x (�x & x = #G) → ♦∃ y (E !y & ∀ u (A[G]u → u 6=E y))

If there is a natural number which numbers G, then there might have been a concrete
object y which is distinct from every ordinary object that actually exemplifies G. We
will explain in detail how we extend our models to be able to validate this axiom in
section 5.20. In summary, the axiom requires extending the domain of ordinary urele-
ments/objects to an at least countably infinite set.
This axiom requires some justification, especially given the claim that the construction is
purely logical and does not require to presuppose any intrinsically mathematical claims.
Traditionally, a system is no longer considered to be purely logical, if it asserts the
existence of more than one object.31 While Nodelman and Zalta agree with this principle,
they argue (see PLM item (799)) that it only extends to concrete objects. While above
axiom does imply that the domain of ordinary objects (recall that being ordinary is
defined as being possibly concrete) is at least countably infinite, it does not imply that
there is even a single object that is actually concrete. Nodelman and Zalta further argue
that on the one hand it is in fact common for logical systems to assert the existence
of more than one abstract object, for example that there are two distinct truth values,
the True and the False,32 and that on the other hand logicians traditionally work under
the assumption that the domain of objects might be of any size, which they take as a
modal claim: while logic may not presuppose that the domain of concrete objects has
any particular size, it allows for the possibility of the domain being of any size, i.e. it is
valid for a logic to presuppose that there may possibly be more than one object, as long
as that does not imply that there is actually more than one (concrete) object.
Independently of the question whether this axiom may or may not be considered as
purely logical, towards which we refrain from presuming to pass judgement either way,
we certainly agree that it captures a pretheoretic intuition: it can be considered as a
prerequisite of talking about natural numbers to be able to imagine that no matter
how many objects we currently consider that there possibly might have been yet another

31E.g. PLM cites Boolos [14]: “In logic, we ban the empty domain as a concession to technical
convenience but draw the line there: We firmly believe that the existence of even two objects, let alone
infinitely many, cannot be guaranteed by logic alone.”

32In particular, they refer to Frege’s logic.

104

5.18. Every Number has a Unique Successor

object, even though for doing so we do not need to be able to point to this object in the
actual world (i.e. it may not be concrete, but merely possibly concrete).
While this may serve as justification for the axiom, Frege’s original construction does
not rely on a similar assumption, but can use the number of the property being less than
or equal to n, #[λx x ≤ n], as witness for a successor of any natural number n. In the
presented construction that relies on equinumerosity among the ordinary objects, this
is not an option: since natural numbers are abstract, being a natural number smaller or
equal to n is only exemplified by abstract objects and therefore unexemplified by ordinary
objects. Thus #[λx x ≤ n] is Zero and, in particular, cannot serve as the successor of
any number.
However, we will discuss two variants of the construction in section 5.21 in which dis-
cernible abstract objects can be counted (and in which natural numbers, in particular,
will be discernible). This allows for the construction of a successor of n as #[λx x ≤ n],
thereby eliminating the need for this axiom.

5.18. Every Number has a Unique Successor

The axiom above is sufficient to derive the last Dedekind-Peano postulate, i.e. that every
natural number has a unique successor (see A.12.5249):

∀n ∃ !m(�nm)

Every natural number n is a natural cardinal and, by definition (see A.12.2570), natural
cardinals are the number of some property and thus NaturalCardinal(n) → ∃G n = #G.
Let G be a property such that n = #G.
Now the axiom implies that there is an ordinary object v, s.t. G does not actually
exemplify v. This requires an appeal to the Barcan formulas (in particular A.7.3470)
and relies on the additional fact (see A.12.5215) that:

♦∀ u (A[G]u → u 6=E v) → ∀ u (A[G]u → u 6=E v)

Hence, since n = #G implies that n numbers [λx A[G]x] (see A.12.2742), the object that
numbers [λx A[G]x ∨ x =E v] can be used as witness for a successor of n.
Uniqueness follows from the fact that the predecessor relation is functional.
Hence, it is possible to define the successor n ′ of a natural number n as the natural
number that is preceded by m:

n ′ =df ιx(�x & �nx)
Numerals can be defined as iterated successors, e.g. 1 =df 0 ′.
While PLM continues to derive further theorems of Number Theory, defines mathemat-
ical functions and operations, including recursively defined functions such as addition,
and proceeds to derive Second-Order Dedekind-Peano arithmetic, we will conclude our
discussion of the topic here and instead discuss in more detail how we modelled the two
required additional axioms.

105

5. Natural Numbers in AOT

5.19. The Predecessor Axiom in Detail

Recall that the predecessor axiom of PLM is stated as follows (see A.12.4284):
[λxy ∃F ∃ u ([F]u & Numbers(y,F) & Numbers(x,F−u))]↓

In section 5.9.2 we have already established that the relation in question distinguishes
certain abstract objects that number properties and that this relation does not denote
in the minimal models of the base system of AOT. We also have already discussed that
there cannot be a relation in AOT that generally distinguishes between arbitrary abstract
objects (in particular [λxy x = y] does not denote; see 3.8.1). So we need to determine
what is special about the abstract objects that are distinguished by the predecessor
relation and allows us to construct models for it.
To that end, we first show that the predecessor relation coexists with numbering a
property. In particular we can prove the following (see A.12.3905):

[λxy ∃F ∃ u ([F]u & Numbers(y,F) & Numbers(x,F−u))]↓ ≡ ∀F [λx Numbers(x,F)]↓

So to validate the predecessor axiom, we can equivalently construct models in which
[λx Numbers(x,F)]↓ is a theorem. Recall that numbering a property is equivalent to the
following (see A.12.2180):

Numbers(x,G) ≡ A!x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)

So while numbering a property is a condition on the properties an abstract object en-
codes, it requires the abstract object to encode an entire class of properties, namely all
properties, s.t. actually exemplifying them is equinumerousE to the numbered property.
Further recall that being equinumerousE, informally speaking, means to be exemplified
by the same amount of ordinary objects.
This is the crucial fact that allows us to construct suitable models: while we need to
distinguish between abstract objects based on the properties they encode, the condition
under which these abstract objects encode or do not encode properties solely depends
on the exemplification patterns of those properties on the ordinary objects.
In our models, two abstract objects are exemplification-distinguishable, if they are mapped
to distinct special urelements. If we wanted to be able to distinguish between abstract
objects in general based on the exemplification patterns of the properties they encode,
this would mean that there had to be a distinct special urelements for any such pat-
tern. Exemplification of a property is a functions from urelements (including special
urelements) to modal truth conditions (i.e. functions from semantic possible worlds to
booleans).
Therefore, if we wanted to assign distinct special urelements based on general exem-
plification patterns, we would need an injective function from exemplification patterns
(i.e. sets of functions acting on urelements) to special urelements, which would be in
violation of Cantor’s theorem.
However, fortunately, we only need to distinguish between exemplification patterns on
ordinary objects. Since the domains of special urelements and ordinary urelements are

106

5.19. The Predecessor Axiom in Detail

independent, it is consistently possible to construct special urelements in such a way that
there can be an injective function mapping distinct sets of functions acting on ordinary
urelements alone to distinct special urelements.
In our general models we choose an abstract type σ as type of special urelements.33 In
our extended models that validate the predecessor axiom, we instead define the type
σ using the set of objects of type (ω ⇒ w ⇒ bool) set × (ω ⇒ w ⇒ bool) set × σ ′ as
representation set.34

Recall that the type ω is the type of ordinary urelements and w is the type of semantic
possible worlds. σ ′ is an additional abstract type of very special urelements that will
retain the model’s ability to distinguish between abstract objects beyond those that
differ in exemplification patterns on the ordinary objects. So in these models, special
urelements are tuples of two sets of property extensions on ordinary objects and a very
special urelement. We refer to the first set of extensions as the intersection set of
ordinary property extensions and to the second copy as the union set of ordinary property
extensions.
When we map an abstract object a to this new type of special urelements, we insert
a property extension on the ordinary objects into the intersection set, just in case a
encodes all properties with this extension on the ordinary objects. And we insert an
extension into the union set, just in case that there exists a property with that extension
(on the ordinary objects) that is encoded by a.
We use this construction as witness for a specification of the mapping ασ ′, which will
then be extended to a surjective mapping ασ as explained in section 4.1.4.
This construction forces two abstract objects to be assigned different special urelements,
in case either (1) one of them encodes a property with a given exemplification extension
on the ordinary object, while the other doesn’t encode any such property, or (2) one
of them encodes all properties with a given extension on the ordinary object, while the
other fails to encode at least one such property.
Furthermore, the construction still allows two abstract objects to be assigned different
special urelements, in case they differ only in encoding properties with the same extension
on the ordinary objects (by assigning them distinct very special urelements).
This extended model validates the following two axioms (see A.6.245, A.6.252):

• Π↓ & A!x & A!y & ∀F �([F]x ≡ [F]y) → (∀G (∀ u �([G]u ≡ [Π]u) → x[G]) ≡ ∀G (∀ u
�([G]u ≡ [Π]u) → y[G]))

• Π↓ & A!x & A!y & ∀F �([F]x ≡ [F]y) → (∃G (∀ u �([G]u ≡ [Π]u) & x[G]) ≡ ∃G (∀ u
�([G]u ≡ [Π]u) & y[G]))

I.e. if two abstract objects are (exemplification-)indistinguishable, then (1) if either one
encodes all properties that are necessarily equivalent on the ordinary objects to any
given denoting property term Π, then the other also encodes all these properties, and

33I.e. we allow any non-empty domain for σ in models of the meta-logic without restriction.
34A smaller subset of the set of such triples (a, b, s), e.g. for which it always holds that a ⊆ b and

for which a = b implies s = s0 for some fixed s0, would suffice.

107

5. Natural Numbers in AOT

(2) if either one encodes any property that is necessarily equivalent to Π on the ordinary
objects, there is also such a property that is encoded by the other.
While this formulation of the axioms is rather complex and not particularly intuitive,
we can equivalently (given the necessary and sufficient conditions for relation terms to
denote described in section 3.8.2) state them as follows (see A.10.445, A.10.458):

[λx ∃G (�G ≡E F & x[G])]↓
[λx ∃G (�G ≡E F & ¬x[G])]↓

I.e. (1) encoding a property that is necessarily equivalent on the ordinary objects to a
given property F denotes a property and (2) not encoding a property that is necessarily
equivalent on the ordinary objects to a given property F denotes a property.35

The following comprehension principles are derivable from the fact that above properties
denote (see A.10.473, A.10.531):

�∀F ∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∃F (ϕ{F} & x[F])]↓
�∀F ∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∃F (ϕ{F} & ¬x[F])]↓

We call ϕ a condition on extensions on ordinary objects, just in case it satisfies the
antecedent, i.e. just in case that �∀F ∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})). Then the com-
prehension principles state that for any condition ϕ on extensions on ordinary objects,
both encoding a property that satisfies ϕ and not encoding a property that satisfies ϕ

denote properties.36

In combination these two principles yield the following (see A.10.633):37

�∀F ∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∀F (x[F] ≡ ϕ{F})]↓
I.e. for every condition ϕ on extensions on ordinary objects, encoding exactly those
properties that satisfy ϕ denotes a property.
It is easy to show that being an F, s.t. actually exemplifying F is equinumerous to G,
is a condition on extensions on ordinary objects. Hence it is a consequence of this last
comprehension principle that [λx ∀F (x[F] ≡ [λz A[F]z] ≈E G)]↓ and thereby numbering
a property denotes by coexistence (see A.12.4236).

Justification of the Comprehension Principles

While the predecessor axiom singles out a particular relation among abstract objects for
the sole purpose of defining a mathematical relation, the comprehension principles we
suggest provide a general means to construct relations among abstract objects based on
specific encoding patterns in a manner that is provably consistent, but also independently
justifiable.

35Note that these properties coexist with their negations, i.e. [λx ∀G (�G ≡E F → ¬x[G])]↓ is
equivalent to the first, [λx ∀G (�G ≡E F → x[G])]↓ is equivalent to the second.

36See also A.10.591 and A.10.613 for derived variants of these principles.
37However, note that above principles are stronger, i.e. they are not derivable from the combined

principle.

108

5.19. The Predecessor Axiom in Detail

In general, the burden of justification rather lies in the fact that some abstract objects
are exemplification-indistinguishable: let Rt be the relation thinking about, s.t. [Rt]xy
can be read as x is thinking about y. Then for two distinct abstract objects a and b
to be exemplification-indistinguishable implies that it is impossible for anyone to think
about one without thinking about the other: ∀ x �([Rt]xa ≡ [Rt]xb), resp. ¬♦∃ x ([Rt]xa
& ¬[Rt]xb ∨ [Rt]xb & ¬[Rt]xa).
While the existence of such objects is justifiable, it is not necessarily a pretheoretic
intuition. Interestingly, it is not possible to independently construct two abstract objects
that are in fact exemplification-indistinguishable: while it is provable that there exist such
pairs of objects, the construction always has to rely on constructing one of the objects
particularly in such a way that it cannot be distinguished from the other.38 Whenever
two abstract objects are constructed independently, a model can generally choose two
distinct special urelements for them, thereby making them distinguishable. Only if the
construction of the second abstract object depends on the choice of a special urelement
for the first and forces both objects to be collapsed under the mapping from abstract
objects to special urelements, this becomes infeasible.
This helps in reconciling the fact that there are indistinguishable abstract objects with
the following pretheoretic intuition: given two independent abstract objects, we can al-
ways find ourselves thinking about one, but not the other. However, we can conceive of
concepts that e.g. themselves involve being indistinguishable from other abstract objects,
for which a clever construction in fact yields distinct concepts that are indistinguish-
able.39

So while we can always consistently distinguish between particular, independent abstract
objects, given that there still are indistinguishable abstract objects, we cannot formulate
a completely general principle that allows for distinguishing arbitrary abstract objects.
However, our suggested comprehension principles are restricted to abstract objects that
have encoding conditions that differ in exemplification patterns on the ordinary objects.
If for two abstract objects we can point to a pattern among the ordinary objects, s.t. one
of the object involves this pattern (i.e. it encodes a property that satisfies this pattern),
but the other one doesn’t involve this pattern at all (i.e. it encodes no property that
satisfies this pattern), we have a concrete criterion for telling the objects apart.40 The
same can be said, if one of the object fails to fully encode such a pattern (i.e. there is
a property with this pattern on the ordinary objects that it doesn’t encode), while the
other encodes all properties with this pattern.
The third, combined principle (which is weaker than the first two principles, but strong
enough for numbering a property to denote) is seemingly even easier to justify: if an
abstract object encodes exactly those properties that satisfy a given pattern on the

38And even this is only possible for specific choices of a first abstract object: For example, we cannot
construct an abstract object that is indistinguishable from the null-object (that encodes no properties)
since we can always conceive of a model that maps the null-object to a designated special urelement that
no other abstract object maps to.

39Recall the discussion in section 3.8.1.
40Respectively, equivalently by 3.8.2, for allowing a property that tells them apart to denote.

109

5. Natural Numbers in AOT

ordinary objects, then it is fully determined by this pattern, so in this sense we can
identify such abstract objects with the respective patterns on the ordinary objects they
encode.
Assuming that there are distinct patterns among the ordinary objects that are indistin-
guishable seems hardly justifiable. However, this relies on a particular understanding of
what it means to encode patterns among the ordinary objects that may not be completely
intuitive, as conceded in the next section.
However, our construction already shows that it is not necessary to justify the predecessor
relation directly as a denoting relation: We can generalize the issue to the question of
when abstract objects can be assured to be exemplification-distinguishable. In this more
general question we no longer see any ties to Mathematics whatsoever, but rather a
metaphysical discussion of the nature of abstract objects and relations among them.

Caveats of the Comprehension Principles

While the comprehension principles suggested above have some justification and allow for
deriving that useful encoding conditions such as numbering a property can be abstracted
to properties, they are not the only conceivable way of generically extending AOT with
relations among abstract objects.
In particular, it does not follow from the suggested principles that any of the following
properties denote:

• [λx ∀F (x[F]→ �∀ z ([F]z → O!z))], i.e. encoding only properties that are necessarily
restricted to ordinary objects.

• [λx x[λz O!z & ϕ{z}]], i.e. encoding a particular pattern among the ordinary objects.
• [λx ExtensionOf (x,[λz O!z & [G]z])] where ExtensionOf (x,G) is defined by PLM as

ExtensionOf (x,G) ≡df A!x & G↓ & ∀F (x[F] ≡ ∀ z ([F]z ≡ [G]z)) (see A.13.298).

The notion of an extension on the ordinary objects we used above would have to be
defined as (see A.13.300):

OrdinaryExtensionOf (x,G) ≡df A!x & G↓ & ∀F (x[F] ≡ ∀ z (O!z → ([F]z ≡ [G]z)))

With this definition, [λx OrdinaryExtensionOf (x,G)]↓ is derivable from the suggested prin-
ciples (see A.13.303). However, using this conception of extensions on ordinary objects
as the basis for our comprehension principles, has some potentially counter-intuitive
implications:
If one abstract objects encodes exactly the property being an ordinary table, and another
abstract object encodes exactly being an ordinary table or being abstract, our compre-
hension principles are not sufficient for telling them apart. Both objects involve the same
pattern among the ordinary objects, but neither encodes it fully, since, for instance, nei-
ther encodes being an ordinary table or being a natural number, which also has the same
exemplification pattern among the ordinary objects.

110

5.19. The Predecessor Axiom in Detail

The third, combined principle alone cannot even distinguish between an object that
encodes exactly being an ordinary table and an object that encodes exactly being a
mathematician - neither of these objects are fully determined by a pattern on the ordinary
objects in the sense of our principles, since neither encodes all properties with this
pattern.41

Relation to Leibnizian Concepts and Platonic Forms

Despite the concessions above, our comprehension principles align well with the analysis
of other philosophical objects in AOT. PLM defines for an abstract object to be the
Leibnizian Concept of a property as follows (see A.13.412):42

ConceptOf (x,G) ≡df C !x & (G↓ & ∀F (x[F] ≡ G ⇒ F))

An object x is a concept of G, just in case it encodes exactly those properties that are
necessarily implied by G, using the following definition of necessary implications between
properties (see A.13.353):

F ⇒ G ≡df G↓ & F↓ & �∀ x ([F]x → [G]x)

Now our comprehension principles make it derivable that being a concept of H is a
property, if H necessarily implies being ordinary (see A.13.414):

H ⇒ O! → [λx ConceptOf (x,H)]↓

So concepts of properties that do not involve abstract objects can always be distinguished
from other abstract objects.
Reusing the example above, the concept of being an ordinary table does encode being an
ordinary table or being abstract, since the former necessarily implies the latter. In fact
it encodes all properties that are necessarily equivalent on the ordinary objects to being
an ordinary table, since all those properties are necessarily implied by being an ordinary
table.
Consequently, concepts of properties that necessarily imply being ordinary and possibly
differ on some ordinary object become provably distinguishable. In particular, it becomes
a theorem that the concept of being an ordinary table is discernible from the concept of
being a mathematician (assuming that these properties are not necessarily exemplified
by the same objects).
Further examples of theorems that can be derived from our comprehension principles
are (see A.13.703 and A.13.720):

H ⇒ O! → [λx cH � x]↓

H ⇒ O! → [λx x � cH]↓

41However, they become distinguishable on the bases of the first principle above, since we can find
a pattern among ordinary objects one of the abstract objects encodes, while the other one doesn’t
(assuming mathematicians aren’t tables).

42Being a concept C ! is defined as C ! =df A!.

111

5. Natural Numbers in AOT

I.e. both including and being included by the concept of a property H denote, given that
H necessarily implies being ordinary.43

Thick platonic forms are defined similarly to Leibnizian concepts of properties (see A.13.738):
FormOf (x,G) ≡df A!x & G↓ & ∀F (x[F] ≡ G ⇒ F)

So we can also derive that being the (thick) platonic form of H denotes a property, if H
necessarily implies being ordinary (see A.13.740):

H ⇒ O! → [λx FormOf (x,H)]↓

This shows that our comprehension principles are by no means ad hoc and have relevant
implications for philosophical objects beyond the natural numbers. A detailed study of
the implications of these principles will be an interesting topic for future research.
However, given the prospect of a move from abstracting patterns among ordinary ob-
jects to abstracting patterns among discernible objects instead, an even more interesting
question may be whether similar general comprehension principles can be formulated for
distinguishing objects that encode different patterns among discernible objects. We will
discuss this further in section 5.21.

5.20. Modelling Possible Richness of Objects

Recall that the axiom of possible richness of objects was stated as follows (see A.12.4956):
∃ x (�x & x = #G) → ♦∃ y (E !y & ∀ u (A[G]u → u 6=E y))

Compared with the predecessor axiom, modelling possible richness of objects is straight-
forward. The axiom implies that there are countably infinitely many ordinary (even
though potentially not actually, but merely possibly concrete) objects, so in our models
we simply require there being a surjection from our type ω of ordinary urelements to
Isabelle’s type of natural numbers nat. While deriving the axiom from this change in
the model is still non-trivial, we can prove (notably, our proof relies on the extended
relation comprehension principles we introduced for modelling the predecessor relation
as well as AOT’s defined mathematical induction), that being a natural number in the
models implies encoding only properties that are actually exemplified by only finitely
many ordinary objects. Thereby, whenever a natural number numbers a property, it
is only actually exemplified by a finite number of ordinary objects and since we have
required infinitely many ordinary objects in our model, we can produce a witness to the
claim of the axiom (modulo some further modal reasoning).
Furthermore, there is no way to model the axiom without extending the domain of
ordinary objects in the model to infinitely many objects.
So for this axiom, the more interesting issue compared to modelling it is whether it
can be philosophically justified as a purely logical axiom or not (see 5.17). While we

43The definitions of cG (see A.13.551) and � (see A.13.408) can be found in appendix A.13, which
implements fragments of the theory of concepts given in PLM chapter 13.

112

5.21. Prospect of an Enhanced Version of the Construction

do not presume to judge whether the justification provided by Nodelman and Zalta in
PLM item (799), resp. in [60], is sufficient to establish this axiom as purely logical, we
certainly agree that it captures a natural and intuitive conception of counting.
Interestingly, however, it may be possible to eliminate the axiom altogether and more
closely reproduce Frege’s proof that every natural number has a successor as discussed
in the next section.

5.21. Prospect of an Enhanced Version of the Construction

At the time of writing, there is an ongoing debate concerning variations of the analysis
of natural numbers. In particular, instead of restricting the analysis to ordinary objects,
identity on the ordinary objects and equinumerosity on the ordinary object, Nodelman
and Zalta brought up the idea to instead follow the same basic construction relative to
discernible objects.44

Being discernible, D!, can be defined as the following relation:

D! =df [λx �∀ y (y 6= x → ∃F ¬([F]y ≡ [F]x))]

Using the necessary and sufficient conditions for relations to denote discussed in sec-
tion 3.8.2, it can be shown that D! denotes.45 Furthermore, just as being ordinary, being
discernible is a rigid restriction condition. Similar to =E on the ordinary objects, a rela-
tion of identity on the discernible objects =D can be defined as [λxy �∀F ([F]x ≡ [F]y)],
i.e. for discernible objects being indistinguishable implies identity. The construction up
until the modal axiom of section 5.17 can be preserved without any major changes. Being
equinumerousD can be defined just as equinumerousE (see section 5.2.3), but relative to
a one-to-one correspondenceD on discernible objects, which in turn can be defined just as
a one-to-one correspondenceE (see section 5.2.2), but using restricted variables ranging
over discernible instead of ordinary objects.
The fact that numbering a property coexists with the predecessor relation described in
section 5.19 is invariant under this change. Moreover, natural numbers will themselves
become discernible (since by Hume’s theorem for two objects numbering the same prop-
erties implies their identity). This allows for abandoning the modal axiom for possible
richness of ordinary objects and instead to more closely follow Frege’s construction,
in which the successor of a number n is defined as the number of the property being
smaller-or-equal to n, i.e. n ′ = #[λm m ≤ n], yielding �nn ′.
At the time of writing, we have prototypes for models of this new derivation available.
In these models we restrict the domain of ordinary urelements to be at most countably
infinite (i.e. either finite or in bijection to the natural numbers), and require the domain

44Personal correspondence of 14 October 2021 and 2 November 201. They are now revising the
chapter on number theory on the basis of this idea.

45Note that due to the matrix involving a non-identity claim and identity on individuals being defined
in terms of encoding, the λ-expression does not denote axiomatically.

113

5. Natural Numbers in AOT

of special urelements to be countably infinite.46 From this restriction it can be derived
that the class of cardinal numbers that measure the size of sets of discernible objects is
itself a countable set.47 Since abstract objects that number properties will be in one-
to-one correspondence with the cardinals of sets of discernible urelements,48 they can
thus injectively be mapped into the special urelements, making them discernible. Hence
this validates the theorem that numbering a property denotes and consequently yields
models for the predecessor axiom.
As mentioned in section 5.19, it is an interesting question whether similar general com-
prehension principles can be formulated for distinguishing objects that encode different
patterns among discernible objects, as we could suggest for patterns among ordinary
objects. However, since discerning abstract object based on patterns among discernible
objects yields new discernible objects, there is an increased danger of general comprehen-
sion principles for encoding patterns among discernible objects to become self-referential
and thereby inconsistent. So while we expect to be able to formulate meta-theorems
about the conditions under which it will be safe to assert the existence of relations
among abstract objects that encode patterns among discernible objects,49 it is unclear
if we will be able to arrive at general comprehension principles that can be formulated
in the theory itself.
In general, the price of being able to eliminate the modal axiom described in section 5.17
using the new construction will be that the predecessor axiom will become stronger and
may have to rely on independent means of justification.
Another similar variant of the construction, for which we have already constructed full
models (see [28]), does not restrict the domain of objects that can be counted at all,
but instead of counting distinct objects rather counts equivalence classes of objects that
are indistinguishable.50 This involves weakening the unique existence used in one-to-one
correspondences to uniqueness up to distinguishability, i.e. we define unique existenceD
as follows:

∃ !Dα ϕ{α} ≡df ∃α (ϕ{α} & ∀β (ϕ{β} → β =D α))

One-to-one correspondences and equinumerosity are then constructed relative to this
restricted notion of unique existence:

R |: F 1−1←→D G ≡
∀ x ([F]x → ∃ !Dy ([G]y & [R]xy)) & ∀ y ([G]y → ∃ !Dx ([F]x & [R]xy))

F ≈D G ≡df ∃R R |: F 1−1←→D G
46In a more general construction, it would be sufficient to require there being countably infinitely

many special urelements that serve as proxies for discernible objects, while allowing an arbitrary number
of special urelements for indiscernible objects.

47For every n, there is one cardinal number for finite sets of n discernibles, and additionally there is
one cardinal for countably infinite sets of discernibles.

48In another variant mentioned below they will be in one-to-one correspondence with the cardinals of
sets of arbitrary urelements.

49For example, any axiom that implies that certain abstract objects become discernible can be con-
sistently modelled, as long as it discerns at most countably many abstract objects.

50I.e. indistinguishable objects belong to the same equivalence class and objects belonging to different
equivalence classes are distinguishable.

114

5.22. Summary

While a construction based on discernible objects ignores objects that are indiscernible
for the purpose of counting, i.e. a property that is exemplified by two indistinguishable
abstract objects and no other objects is counted by Zero, this construction would count
such objects in bulk, i.e. the same property would be counted by One. For properties
that are only exemplified by discernible objects, both constructions are equivalent (i.e.
such properties are equinumerous in the first variant if and only if they are equinumerous
in the second).

5.22. Summary

In summary, we can conclude that the construction of natural numbers and the deriva-
tion of the Dedekind-Peano postulates given in PLM is provably sound. While the
construction relies on additional axioms, we can say that:

• PLM can present reasonable justifications for both axioms.
• The predecessor axiom in the current construction can be generalized to compre-

hension principles that are independently justifiable, which strengthens the argu-
ment that the axiom is not intrinsically mathematical.

• In a future construction, the modal axiom of possible richness of objects may no
longer be required, eliminating the need for its justification.

• It will be an interesting question for future research to determine whether the
predecessor axiom can be similarly generalized in this future construction.

Methodologically, we can conclude that:
• Our embedding can successfully reproduce even complex constructions and rea-

soning in our target system AOT.
• We can achieve our goal to provide a natural and readable implementation that

accurately reproduces syntax and reasoning in AOT without the need of keeping
complex translations in mind.

• The automation infrastructure of Isabelle can be preserved even for complex con-
structions in the target system.

• Using our method we could provide insights into the construction and efficiently
analyze potential extensions.

115

6. Higher-Order Object Theory

While the second-order fragment of AOT is expressive enough for a variety of applica-
tions, including applications in natural mathematics, as demonstrated in the last chapter
at the example of the analysis of natural numbers, the theory can be generalized to a full
type-theoretic higher-order version. A notable application of this generalized version of
AOT is the analysis of theoretical mathematics.
While natural mathematics involves the construction of mathematical objects directly
by abstracting exemplification patterns, and their properties are derived from the prin-
ciples of AOT itself, theoretical mathematics involves analyzing mathematical theories
themselves (as well as their objects, axioms and relations) as abstract objects.
While a full discussion of the type-theoretic version of AOT is beyond the scope of this
thesis, this chapter will provide a short, informal overview of its construction and the
challenges in constructing an embedding of it in Isabelle/HOL.
Note that while we reuse the notational conventions of our embedding for consistency
with the last chapters (e.g. we use square brackets in exemplification and encoding
formulas and the free-variable notation discussed in section 4.7.2), this chapter is not
written relative to an Isabelle representation, so in contrast to the last chapters, none of
the statements and terms are cited from an embedding. We forgo marking the statements
in this chapter using vertical bars at the page margin.

6.1. Overview of Higher-Order Object Theory

Our description is based on an at the time of writing unpublished draft of a chapter of
PLM. However, the full type-theoretic version of AOT is also already discussed in [61]
and a simplified version serves as the basis of the upcoming paper A Defense of Logicism
jointly authored by Hannes Leitgeb, Uri Nodelman and Edward Zalta (see [33]).
We already hinted at AOT’s system of types in section 3.2. Formally, it involves the
following types:

• i is a type.
• Whenever t1,· · · ,tn are types (n ≥ 0), 〈t1,. . . ,tn〉 is a type.

i is the primitive type of individuals, 〈t1,. . . ,tn〉 is the type of relations among n objects
of the respective types t1,. . . ,tn. Zero-place relations, i.e. relations of type 〈〉, form the
type of propositions. 〈i〉 is the type of properties among individuals. 〈〈i〉〉 is the type of
properties of properties of individuals. 〈〈i〉, 〈〉〉 is the type of binary relations between
properties and propositions, etc.

116

6.2. Applications to Theoretical Mathematics

The distinction between exemplification and encoding is reproduced for higher-order
types, i.e. the language involves exemplification formulas of the form [τ 〈t1,...,tn〉]τ τ1 . . . τ τn

and encoding formulas of the form τ τ1 . . . τ τn [τ 〈t1,...,tn〉].
Furthermore, the distinction between ordinary and abstract objects is generalized to all
types. I.e. for every type t there is a distinguished constant E!〈t〉 exemplified by all
concrete objects of type t, which yields definitions of being ordinary and being abstract
at every type.
While the definitions and axiom system are similar to the second-order version described
in sections 3.2 and 3.3, there are some notable differences. The following is a non-
exhaustive list:

• Relation identity for relations of type 〈t〉 is defined as:1
F = G ≡df ([O!]F & [O!]G & �∀ x(x[F] ≡ x[G])) ∨ ([A!]F & [A!]G & �∀H(F [H] ≡
G[H]))

• It is axiomatic that significant λ-expressions denote ordinary relations.
• η-conversion is restricted to ordinary relations.

Notably, the comprehension principle for abstract objects is retained at all types t. I.e.
let α by of type t and F be of type 〈t〉, then the following is an axiom:

∃α([A!]α & ∀F(α[F] ≡ ϕ{F}))

6.2. Applications to Theoretical Mathematics

The analysis of Theoretical Mathematics in higher-order object theory was described
in [61] and a variant is discussed in [33].
While a full-discussion of the subtleties involved again goes beyond the scope of this
thesis, we illustrate the general idea at the example of the representation of Zermelo-
Fraenkel set-theory as an abstract object ZF in higher-order AOT.
Technically, a mathematical theory in AOT is a situation, i.e. an abstract object that
encodes only propositional properties.2 So we can reuse the notation T |= p as the
proposition p is true in theory T.
One of the cornerstones of the analysis is the Importation Principle, stated in [33] as
follows:

When ϕ is a closed theorem of T, then T |= ϕ∗ shall be an axiom, where ϕ∗

is the result of indexing every occurrence of a term or predicate of T to T.
So taking S as ZF’s property of being a set, it is a theorem of ZF that:

`ZF ¬∃ y([S]y & y ∈ ∅)

This theorem can be imported to AOT using the following instance of the Importation
Principle:

1n-ary relation identity for n ≥ 2 and proposition identity are extended in a similar manner to
account for abstract n-place relations, resp. propositions.

2Recall the discussion in section 3.5.2.

117

6. Higher-Order Object Theory

ZF |= ¬∃ y([SZF]y & y ∈ZF ∅ZF)

Furthermore, the involved indexed terms of ZF are in turn abstract objects in AOT, e.g.
∅ZF = ιx([A!]x & ∀F(x[F] ≡ ZF |= [F]∅ZF)

SZF = ιF([A!]F & ∀F(F [F] ≡ ZF |= [F]SZF)

∈ZF = ιR([A!]R & ∀R(R[R] ≡ ZF |= [R]∈ZF)

Exemplifying properties in ZF can be translated to encoding claims in AOT. E.g. in ZF,
∅ exemplifies the property [λx ¬∃ y([S]y & y ∈ x)]. This property can be captured as an
abstract property in AOT that is encoded by ∅ZF :3

∅ZF [[λx ¬∃ y([SSF]y & y ∈ZF x)]ZF]

While a detailed account of the construction and its implications is the topic of the
upcoming paper [33], we will discuss the general issue of embedding higher-order AOT
in Isabelle/HOL in the next sections.

6.3. Bounded Models

[33] constructs minimal extensional models for the simplified version of higher-order
AOT it uses for its argumentation. This construction defines the height of a type t,
written h(t), and the width of a type t, written w(t) as:

• h(i) = 0
• h(〈〉) = 1
• h(〈t1,. . . ,tn〉) = 1 + max{h(t1),. . . ,h(tn)}
• w(i) = 1
• w(〈〉) = 1
• w(〈t1, . . . , tn〉) =

∑k
1 w(tk)

[33] then presents a concrete model construction for bounded languages Ln,m that are
cut off at width n and height m, i.e. the well-formed expressions of the language Ln,m

are the expressions of the unbounded language L in which only terms of type t are well-
formed, if w(t) ≤ n and h(t) ≤ m. In particular, types of height m only involve ordinary
objects, not abstract objects. For example, the second-order fragment described in the
last chapters, is cut off at height 1 : while it involves abstract individuals, all relations
and propositions are ordinary. Furthermore, while the second-order fragment considers
properties of objects (height 1), it does not consider higher-order relations like properties
of properties or properties of propositions.4

While we expect it to be feasible to construct a representation in Isabelle/HOL that
allows for an arbitrary parameter as cut-off in height (and potentially width, though it
may be possible to keep width unbounded), we expect the details of such a construction

3While λ-expressions in higher-order AOT are ordinary, theory-indexed λ-expressions are abstract.
4Note that the cut-off involves subtle changes in the precise formulation of the definitions and the

axiom system.

118

6.4. Abstract Objects in Unbounded Models

to be non-trivial due to the non-uniform nature of the representation sets of types. We
leave the construction of such an embedding to future research.

6.4. Abstract Objects in Unbounded Models

While, arguably, a construction of models for higher-order object theory with a fixed, but
arbitrary cutoff may be sufficient for all intents and purposes, the issue of constructing
unbounded models (resp. an unrestricted embedding of higher-order AOT in HOL) is
nevertheless interesting: theoretically, it may provide insights into the relative strength of
higher-order AOT compared to HOL. Technically, unbounded models have the advantage
of being uniform in all types, which is beneficial for a generic implementation.
However, if we consider the extent of the generalized comprehension principle of ab-
stract objects and the identity conditions of abstract objects, it becomes clear that the
construction of such models is not trivial.
In particular, note that the comprehension principle for abstract individuals has the
following instance:

∃ x ([A!]x & ∀F (x[F] ≡ ([O!]F & ϕ{F} ∨ [A!]F & ∀F (F [F] ≡ ψ{F}))))

Such an abstract object x (at type i) encodes all ordinary properties F (at type 〈i〉) that
satisfy an arbitrary condition ϕ and all abstract properties F that encode exactly those
properties of properties F (at type 〈〈i〉〉) that satisfy an arbitrary condition ψ on F .
Now for two such abstract objects (at type i) to be identical, they not only have to
encode the same ordinary properties (at type 〈i〉), but also the same abstract properties
(at type 〈i〉). Those abstract properties in turn are identical, if they encode the same
properties of properties (at type 〈〈i〉〉).
This can be iterated further, since there are also abstract properties of properties among
individuals that may encode properties of properties of properties among individuals,
etc. pp.
While we leave a more detailed and rigorous analysis to future research, we try to
informally illustrate the expected size of the set of abstract objects in unbounded models.
Thinking in terms of Aczel models, let Ot be the set of ordinary objects at type t and S t

the set of special urelements of type t. Now the set of relations among objects of type t,
i.e. O〈t〉 will be at least as large as the power set P(Ot ∪ S t). For simplicity, we consider
minimal, extensional Aczel models, in which we have O〈t〉 = P(Ot ∪ S t).
If we restrict ourselves to unary relations and write 0 for the type of ordinary individuals
i, 1 for the type of relations among individuals 〈i〉 and so on, i.e. in general we choose
n+ 1 for unary relations among the type we identified with n, we get the following:
O1 = P(O0 ∪ S0)

O2 = P(O1 ∪ S1)

O3 = P(O2 ∪ S2)

. . .

119

6. Higher-Order Object Theory

Now if we, solely for the purpose of arriving at a crude size estimate, further assume O0

is empty and S i = S0 = S, we get:
O0 = ∅
O1 = P(O0 ∪ S) = P(S)
O2 = P(O1 ∪ S) = P(P(S) ∪ S) ⊇ P(P(S)) ∪ P(S)
O3 = P(O2 ∪ S) = P(P(P(S) ∪ S) ∪ S) ⊇ P(P(P(S))) ∪ P(P(S)) ∪ P(S)
. . .

Now if we assume that S has only one element and identify it with P(∅), and (informally
for the purpose of illustrating) consider the limit Oω of relations at countably infinite
height, we arrive at a model of the natural numbers, i.e. |Oω| ≥ |�|.
The set of abstract objects at type m − 1 is the power set of ordinary and abstract
objects of type m, i.e. Am−1 = P(Om ∪ Am). So we get:
Am−1 = P(Om ∪ Am)

Am−2 = P(Om−1 ∪ Am−1) = P(Om−1 ∪ P(Om ∪ Am))

Am−3 = P(Om−2 ∪ Am−2) = P(Om−2 ∪ P(Om−1 ∪ P(Om ∪ Am)))

. . .

A0 = P(O1 ∪ P(O2 ∪ P(O3 ∪ P(. . . ∪ Am). . .)))

In particular, no finite application of power set operations is enough to construct A0

from the (illustrative) limit set Aω, which in turn would be the power set of Oω, i.e. of
a set at least as large as the natural numbers.
While this informal argument may not hold up to scrutiny, it is safe to say that the
set of abstract objects in an unbounded model of higher-order object theory will be
huge. We wouldn’t be surprised if a future more rigorous analysis were to conclude
that the set of abstract individuals in non-trivial models of higher-order AOT had to be
sufficiently large to form a model of ZF itself (resp. that the cardinality of A0 is strongly
inaccessible).
Consequently, a verifiably sound implementation relative to the unextended background
theory of Isabelle/HOL may be challenging, since the expressive power of higher-order
AOT may be on par with or even exceed the expressive power of this choice of a meta-
logic. However, even if this turns out to be the case, it may be possible to construct a
representation based on a stronger extension of Isabelle/HOL, for example HOLZF [40],
which axiomatizes the ZF universe itself as a type in HOL. The feasibility of such an
embedding as well as the question of the relative strength of higher-order object theory
compared to HOL, are interesting questions for future research.

120

7. Conclusion

We have presented an implementation of a foundational metaphysical theory in an au-
tomated reasoning environment by leveraging and extending the concept of shallow se-
mantic embeddings (SSEs) in classical higher-order logic.
Methodologically, we could demonstrate that:

• The SSE approach is scalable and can not only be used to analyze isolated argu-
ments, but can also be applied to full metaphysical theories.

• We can construct an accurate implementation of the axioms and deductive system
of the target theory using abstraction layers.

• The automation infrastructure of Isabelle/HOL can be preserved and applied to
construct proofs that accurately correspond to derivations in the target system.

While some constructions and modes of reasoning in a target system may be challenging
to reproduce in an embedding, we developed several techniques to address such cases,
including the definition of custom theorem attributes and proving methods and the ex-
tension of Isabelle’s Isar language by specialized outer syntax commands. Furthermore,
we devised a system of syntax translations on a custom sub-grammar of Isabelle’s inner
syntax to construct an accurate representation of the syntax of our target theory.
Using these techniques, it is not only possible to technically reproduce the logic of a
target theory, but also to construct a nearly transparent representation of its syntax and
reasoning flow. This allows for an efficient and effortless exchange of results between
traditional pen-and-paper based reasoning and the computerized implementation.
This way, we can effectively arrive at a dedicated automated theorem proving environ-
ment for our target system, while retaining a verifiably consistent meta-logical backend.
The construction of such a framework is not merely a technical exercise, but can trigger
a fruitful exchange that, in our case, led to significant improvements of the analyzed
theory itself.
In particular, in the application of our method to the second-order fragment of Abstract
Object Theory (AOT), we could demonstrate that:

• A semantic implementation can serve as a flexible backend that can be used to
explore variations and axiomatic extensions of the target system.

• Our semantic analysis could significantly contribute especially to the theoretical
understanding of the conditions, in AOT, under which relations exist. This has
led to considerable improvements in the formulation of AOT.

121

7. Conclusion

• We can verify complex constructions and reasoning within a given axiomatization
of the target system and efficiently analyze the effects of variations and extensions
of such constructions.

Concretely, we can confirm that AOT can serve as a sound basis for a variant of Frege’s
construction of natural numbers. We can verify that the Dedekind-Peano postulates
thus become consistently derivable in AOT.
We could contribute to the evolution of this construction and provide insights into the
nature of its required additional axioms, and into variants of the construction. This
includes a generalization of one of the axioms that may serve to strengthen the philo-
sophical justification of the construction.

Interestingly, our results simultaneously support the use of HOL as universal meta-
logic in that we can demonstrate that the SSE approach can be used to accurately
represent even challenging logical theories, while our results also strengthen the position
of our target theory AOT as foundational system in confirming its ability to provide a
philosophically grounded construction of mathematical objects.
In this context, an attempt of an implementation of the full type-theoretic higher-order
version of AOT using the SSE approach, as well as the formal analysis of its relative
strength compared to HOL and ZF are fascinating opportunities for future research.

122

A. Isabelle Theory

A.1. Model for the Logic of AOT
(*<*)1

theory AOT_model2

imports Main "HOL-Cardinals.Cardinals"3

begin4

5

declare[[typedef_overloaded]]6

(*>*)7

8

section‹Model for the Logic of AOT›9

10

text‹We introduce a primitive type for hyperintensional propositions.›11

typedecl o12

13

text‹To be able to model modal operators following Kripke semantics,14

we introduce a primitive type for possible worlds and assert, by axiom,15

that there is a surjective function mapping propositions to the16

boolean-valued functions acting on possible worlds. We call the result17

of applying this function to a proposition the Montague intension18

of the proposition.›19

typedecl w –‹The primtive type of possible worlds.›20

axiomatization AOT_model_do :: ‹o⇒(w⇒bool)› where21

do_surj: ‹surj AOT_model_do›22

23

text‹The axioms of PLM require the existence of a non-actual world.›24

consts w0 :: w –‹The designated actual world.›25

axiomatization where AOT_model_nonactual_world: ‹∃w . w 6= w0›26

27

text‹Validity of a proposition in a given world can now be modelled as the result28

of applying that world to the Montague intension of the proposition.›29

definition AOT_model_valid_in :: ‹w⇒o⇒bool› where30

‹AOT_model_valid_in w ϕ ≡ AOT_model_do ϕ w›31

32

text‹By construction, we can choose a proposition for any given Montague intension,33

s.t. the proposition is valid in a possible world iff the Montague intension34

evaluates to true at that world.›35

definition AOT_model_proposition_choice :: ‹(w⇒bool) ⇒ o› (binder ‹εo › 8)36

where ‹εo w. ϕ w ≡ (inv AOT_model_do) ϕ›37

lemma AOT_model_proposition_choice_simp: ‹AOT_model_valid_in w (εo w. ϕ w) = ϕ w›38

by (simp add: surj_f_inv_f[OF do_surj] AOT_model_valid_in_def39

AOT_model_proposition_choice_def)40

41

text‹Nitpick can trivially show that there are models for the axioms above.›42

lemma ‹True› nitpick[satisfy, user_axioms, expect = genuine] ..43

44

typedecl ω –‹The primtive type of ordinary objects/urelements.›45

46

text‹Validating extended relation comprehension requires a large set of47

special urelements. For simple models that do not validate extended48

relation comprehension (and consequently the predecessor axiom in the49

theory of natural numbers), it suffices to use a primitive type as @{text σ},50

i.e. @{theory_text ‹typedecl σ›}.›51

typedecl σ’52

typedef σ = ‹UNIV::((ω ⇒ w ⇒ bool) set × (ω ⇒ w ⇒ bool) set × σ’) set› ..53

123

A. Isabelle Theory

54

typedecl null – ‹Null-urelements representing non-denoting terms.›55

56

datatype υ = ωυ ω | συ σ | is_nullυ: nullυ null – ‹Type of urelements›57

58

text‹Urrelations are proposition-valued functions on urelements.59

Urrelations are required to evaluate to necessarily false propositions for60

null-urelements (note that there may be several distinct necessarily false61

propositions).›62

typedef urrel = ‹{ ϕ . ∀ x w . ¬AOT_model_valid_in w (ϕ (nullυ x)) }›63

by (rule exI[where x=‹λ x . (εo w . ¬is_nullυ x)›])64

(auto simp: AOT_model_proposition_choice_simp)65

66

text‹Abstract objects will be modelled as sets of urrelations and will67

have to be mapped surjectively into the set of special urelements.68

We show that any mapping from abstract objects to special urelements69

has to involve at least one large set of collapsed abstract objects.70

We will use this fact to extend arbitrary mappings from abstract objects71

to special urelements to surjective mappings.›72

lemma ασ_pigeonhole:73

– ‹For any arbitrary mapping @{term ασ} from sets of urrelations to special74

urelements, there exists an abstract object x, s.t. the cardinal of the set75

of special urelements is strictly smaller than the cardinal of the set of76

abstract objects that are mapped to the same urelement as x under @{term ασ}.›77

‹∃x . |UNIV::σ set| <o |{y . ασ x = ασ y}|›78

for ασ :: ‹urrel set ⇒ σ›79

proof(rule ccontr)80

have card_σ_set_set_bound: ‹|UNIV::σ set set| ≤o |UNIV::urrel set|›81

proof -82

let ?pick = ‹λu s . εo w . case u of (συ s’) ⇒ s’ ∈ s | _ ⇒ False›83

have ‹∃f :: σ set ⇒ urrel . inj f›84

proof85

show ‹inj (λs . Abs_urrel (λu . ?pick u s))›86

proof(rule injI)87

fix x y88

assume ‹Abs_urrel (λu. ?pick u x) = Abs_urrel (λu. ?pick u y)›89

hence ‹(λu. ?pick u x) = (λu. ?pick u y)›90

by (auto intro!: Abs_urrel_inject[THEN iffD1]91

simp: AOT_model_proposition_choice_simp)92

hence ‹AOT_model_valid_in w0 (?pick (συ s) x) =93

AOT_model_valid_in w0 (?pick (συ s) y)›94

for s by metis95

hence ‹(s ∈ x) = (s ∈ y)› for s96

by (auto simp: AOT_model_proposition_choice_simp)97

thus ‹x = y›98

by blast99

qed100

qed101

thus ?thesis102

by (metis card_of_image inj_imp_surj_inv)103

qed104

105

text‹Assume, for a proof by contradiction, that there is no large collapsed set.›106

assume ‹6 ∃x . |UNIV::σ set| <o |{y . ασ x = ασ y}|›107

hence A: ‹∀x . |{y . ασ x = ασ y}| ≤o |UNIV::σ set|›108

by auto109

have union_univ: ‹(
⋃

x ∈ range(inv ασ) . {y . ασ x = ασ y}) = UNIV›110

by auto (meson f_inv_into_f range_eqI)111

112

text‹We refute by case distinction: there is either finitely many or113

infinitely many special urelements and in both cases we can derive114

a contradiction from the assumption above.›115

{116

124

A.1. Model for the Logic of AOT

text‹Finite case.›117

assume finite_σ_set: ‹finite (UNIV::σ set)›118

hence finite_collapsed: ‹finite {y . ασ x = ασ y}› for x119

using A card_of_ordLeq_infinite by blast120

hence 0: ‹∀x . card {y . ασ x = ασ y} ≤ card (UNIV::σ set)›121

by (metis A finite_σ_set card_of_ordLeq inj_on_iff_card_le)122

have 1: ‹card (range (inv ασ)) ≤ card (UNIV::σ set)›123

using finite_σ_set card_image_le by blast124

hence 2: ‹finite (range (inv ασ))›125

using finite_σ_set by blast126

127

define n where ‹n = card (UNIV::urrel set set)›128

define m where ‹m = card (UNIV::σ set)›129

130

have ‹n = card (
⋃

x ∈ range(inv ασ) . {y . ασ x = ασ y})›131

unfolding n_def using union_univ by argo132

also have ‹. . . ≤ (
∑

i∈range (inv ασ). card {y. ασ i = ασ y})›133

using card_UN_le 2 by blast134

also have ‹. . . ≤ (
∑

i∈range (inv ασ). card (UNIV::σ set))›135

by (metis (no_types, lifting) 0 sum_mono)136

also have ‹. . . ≤ card (range (inv ασ)) * card (UNIV::σ set)›137

using sum_bounded_above by auto138

also have ‹. . . ≤ card (UNIV::σ set) * card (UNIV::σ set)›139

using 1 by force140

also have ‹. . . = m*m›141

unfolding m_def by blast142

finally have n_upper: ‹n ≤ m*m›.143

144

have ‹finite (
⋃

x ∈ range(inv ασ) . {y . ασ x = ασ y})›145

using 2 finite_collapsed by blast146

hence finite_αset: ‹finite (UNIV::urrel set set)›147

using union_univ by argo148

149

have ‹2ˆ2ˆm = (2::nat)ˆ(card (UNIV::σ set set))›150

by (metis Pow_UNIV card_Pow finite_σ_set m_def)151

moreover have ‹card (UNIV::σ set set) ≤ (card (UNIV::urrel set))›152

using card_σ_set_set_bound153

by (meson Finite_Set.finite_set card_of_ordLeq finite_αset154

finite_σ_set inj_on_iff_card_le)155

ultimately have ‹2ˆ2ˆm ≤ (2::nat)ˆ(card (UNIV:: urrel set))›156

by simp157

also have ‹. . . = n›158

unfolding n_def159

by (metis Finite_Set.finite_set Pow_UNIV card_Pow finite_αset)160

finally have ‹2ˆ2ˆm ≤ n› by blast161

hence ‹2ˆ2ˆm ≤ m*m› using n_upper by linarith162

moreover {163

have ‹(2::nat)ˆ(2ˆm) ≥ (2ˆ(m + 1))›164

by (metis Suc_eq_plus1 Suc_leI less_exp one_le_numeral power_increasing)165

also have ‹(2ˆ(m + 1)) = (2::nat) * 2ˆm›166

by auto167

have ‹m < 2ˆm›168

by (simp add: less_exp)169

hence ‹m*m < (2ˆm)*(2ˆm)›170

by (simp add: mult_strict_mono)171

moreover have ‹. . . = 2ˆ(m+m)›172

by (simp add: power_add)173

ultimately have ‹m*m < 2 ˆ (m + m)› by presburger174

moreover have ‹m+m ≤ 2ˆm›175

proof (induct m)176

case 0177

thus ?case by auto178

next179

125

A. Isabelle Theory

case (Suc m)180

thus ?case181

by (metis Suc_leI less_exp mult_2 mult_le_mono2 power_Suc)182

qed183

ultimately have ‹m*m < 2ˆ2ˆm›184

by (meson less_le_trans one_le_numeral power_increasing)185

}186

ultimately have False by auto187

}188

moreover {189

text‹Infinite case.›190

assume ‹infinite (UNIV::σ set)›191

hence Cinfσ: ‹Cinfinite |UNIV::σ set|›192

by (simp add: cinfinite_def)193

have 1: ‹|range (inv ασ)| ≤o |UNIV::σ set|›194

by auto195

have 2: ‹∀i∈range (inv ασ). |{y . ασ i = ασ y}| ≤o |UNIV::σ set|›196

proof197

fix i :: ‹urrel set›198

assume ‹i ∈ range (inv ασ)›199

show ‹|{y . ασ i = ασ y}| ≤o |UNIV::σ set|›200

using A by blast201

qed202

have ‹|
⋃

((λi. {y. ασ i = ασ y}) ‘ (range (inv ασ)))| ≤o203

|Sigma (range (inv ασ)) (λi. {y. ασ i = ασ y})|›204

using card_of_UNION_Sigma by blast205

hence ‹|UNIV::urrel set set| ≤o206

|Sigma (range (inv ασ)) (λi. {y. ασ i = ασ y})|›207

using union_univ by argo208

moreover have ‹|Sigma (range (inv ασ)) (λi. {y. ασ i = ασ y})| ≤o |UNIV::σ set|›209

using card_of_Sigma_ordLeq_Cinfinite[OF Cinfσ, OF 1, OF 2] by blast210

ultimately have ‹|UNIV::urrel set set| ≤o |UNIV::σ set|›211

using ordLeq_transitive by blast212

moreover {213

have ‹|UNIV::σ set| <o |UNIV::σ set set|›214

by auto215

moreover have ‹|UNIV::σ set set| ≤o |UNIV::urrel set|›216

using card_σ_set_set_bound by blast217

moreover have ‹|UNIV::urrel set| <o |UNIV::urrel set set|›218

by auto219

ultimately have ‹|UNIV::σ set| <o |UNIV::urrel set set|›220

by (metis ordLess_imp_ordLeq ordLess_ordLeq_trans)221

}222

ultimately have False223

using not_ordLeq_ordLess by blast224

}225

ultimately show False by blast226

qed227

228

text‹We introduce a mapping from abstract objects (i.e. sets of urrelations) to229

special urelements @{text ‹ασ›} that is surjective and distinguishes all230

abstract objects that are distinguished by a (not necessarily surjective)231

mapping @{text ‹ασ’›}. @{text ‹ασ’›} will be used to model extended relation232

comprehension.›233

consts ασ’ :: ‹urrel set ⇒ σ›234

consts ασ :: ‹urrel set ⇒ σ›235

236

specification(ασ)237

ασ_surj: ‹surj ασ›238

ασ_ασ’: ‹ασ x = ασ y =⇒ ασ’ x = ασ’ y›239

proof -240

obtain x where x_prop: ‹|UNIV::σ set| <o |{y. ασ’ x = ασ’ y}|›241

using ασ_pigeonhole by blast242

126

A.1. Model for the Logic of AOT

have ‹∃f :: urrel set ⇒ σ . f ‘ {y. ασ’ x = ασ’ y} = UNIV ∧ f x = ασ’ x›243

proof -244

have ‹∃f :: urrel set ⇒ σ . f ‘ {y. ασ’ x = ασ’ y} = UNIV›245

by (simp add: x_prop card_of_ordLeq2 ordLess_imp_ordLeq)246

then obtain f :: ‹urrel set ⇒ σ› where ‹f ‘ {y. ασ’ x = ασ’ y} = UNIV›247

by presburger248

moreover obtain a where ‹f a = ασ’ x› and ‹ασ’ a = ασ’ x›249

by (smt (verit, best) calculation UNIV_I image_iff mem_Collect_eq)250

ultimately have ‹(f (a := f x, x := f a)) ‘ {y. ασ’ x = ασ’ y} = UNIV ∧251

(f (a := f x, x := f a)) x = ασ’ x›252

by (auto simp: image_def)253

thus ?thesis by blast254

qed255

then obtain f where fimage: ‹f ‘ {y. ασ’ x = ασ’ y} = UNIV›256

and fx: ‹f x = ασ’ x›257

by blast258

259

define ασ :: ‹urrel set ⇒ σ› where260

‹ασ ≡ λ urrels . if ασ’ urrels = ασ’ x ∧ f urrels 6∈ range ασ’261

then f urrels262

else ασ’ urrels›263

have ‹surj ασ›264

proof -265

{266

fix s :: σ267

{268

assume ‹s ∈ range ασ’›269

hence 0: ‹ασ’ (inv ασ’ s) = s›270

by (meson f_inv_into_f)271

{272

assume ‹s = ασ’ x›273

hence ‹ασ x = s›274

using ασ_def fx by presburger275

hence ‹∃f . ασ (f s) = s›276

by auto277

}278

moreover {279

assume ‹s 6= ασ’ x›280

hence ‹ασ (inv ασ’ s) = s›281

unfolding ασ_def 0 by presburger282

hence ‹∃f . ασ (f s) = s›283

by blast284

}285

ultimately have ‹∃f . ασ (f s) = s›286

by blast287

}288

moreover {289

assume ‹s 6∈ range ασ’›290

moreover obtain urrels where ‹f urrels = s› and ‹ασ’ x = ασ’ urrels›291

by (smt (verit, best) UNIV_I fimage image_iff mem_Collect_eq)292

ultimately have ‹ασ urrels = s›293

using ασ_def by presburger294

hence ‹∃f . ασ (f s) = s›295

by (meson f_inv_into_f range_eqI)296

}297

ultimately have ‹∃f . ασ (f s) = s›298

by blast299

}300

thus ?thesis301

by (metis surj_def)302

qed303

moreover have ‹∀x y. ασ x = ασ y −→ ασ’ x = ασ’ y›304

by (metis ασ_def rangeI)305

127

A. Isabelle Theory

ultimately show ?thesis306

by blast307

qed308

309

text‹For extended models that validate extended relation comprehension310

(and consequently the predecessor axiom), we specify which311

abstract objects are distinguished by @{const ασ’}.›312

313

definition urrel_to_ωrel :: ‹urrel ⇒ (ω ⇒ w ⇒ bool)› where314

‹urrel_to_ωrel ≡ λ r u w . AOT_model_valid_in w (Rep_urrel r (ωυ u))›315

definition ωrel_to_urrel :: ‹(ω ⇒ w ⇒ bool) ⇒ urrel› where316

‹ωrel_to_urrel ≡ λ ϕ . Abs_urrel317

(λ u . εo w . case u of ωυ x ⇒ ϕ x w | _ ⇒ False)›318

319

definition AOT_urrel_ωequiv :: ‹urrel ⇒ urrel ⇒ bool› where320

‹AOT_urrel_ωequiv ≡ λ r s . ∀ u v . AOT_model_valid_in v (Rep_urrel r (ωυ u)) =321

AOT_model_valid_in v (Rep_urrel s (ωυ u))›322

323

lemma urrel_ωrel_quot: ‹Quotient3 AOT_urrel_ωequiv urrel_to_ωrel ωrel_to_urrel›324

proof(rule Quotient3I)325

show ‹urrel_to_ωrel (ωrel_to_urrel a) = a› for a326

unfolding ωrel_to_urrel_def urrel_to_ωrel_def327

apply (rule ext)328

apply (subst Abs_urrel_inverse)329

by (auto simp: AOT_model_proposition_choice_simp)330

next331

show ‹AOT_urrel_ωequiv (ωrel_to_urrel a) (ωrel_to_urrel a)› for a332

unfolding ωrel_to_urrel_def AOT_urrel_ωequiv_def333

apply (subst (1 2) Abs_urrel_inverse)334

by (auto simp: AOT_model_proposition_choice_simp)335

next336

show ‹AOT_urrel_ωequiv r s = (AOT_urrel_ωequiv r r ∧ AOT_urrel_ωequiv s s ∧337

urrel_to_ωrel r = urrel_to_ωrel s)› for r s338

proof339

assume ‹AOT_urrel_ωequiv r s›340

hence ‹AOT_model_valid_in v (Rep_urrel r (ωυ u)) =341

AOT_model_valid_in v (Rep_urrel s (ωυ u))› for u v342

using AOT_urrel_ωequiv_def by metis343

hence ‹urrel_to_ωrel r = urrel_to_ωrel s›344

unfolding urrel_to_ωrel_def345

by simp346

thus ‹AOT_urrel_ωequiv r r ∧ AOT_urrel_ωequiv s s ∧347

urrel_to_ωrel r = urrel_to_ωrel s›348

unfolding AOT_urrel_ωequiv_def349

by auto350

next351

assume ‹AOT_urrel_ωequiv r r ∧ AOT_urrel_ωequiv s s ∧352

urrel_to_ωrel r = urrel_to_ωrel s›353

hence ‹AOT_model_valid_in v (Rep_urrel r (ωυ u)) =354

AOT_model_valid_in v (Rep_urrel s (ωυ u))› for u v355

by (metis urrel_to_ωrel_def)356

thus ‹AOT_urrel_ωequiv r s›357

using AOT_urrel_ωequiv_def by presburger358

qed359

qed360

361

specification (ασ’)362

ασ_eq_ord_exts_all:363

‹ασ’ a = ασ’ b =⇒ (
∧

s . urrel_to_ωrel s = urrel_to_ωrel r =⇒ s ∈ a)364

=⇒ (
∧

s . urrel_to_ωrel s = urrel_to_ωrel r =⇒ s ∈ b)›365

ασ_eq_ord_exts_ex:366

‹ασ’ a = ασ’ b =⇒ (∃ s . s ∈ a ∧ urrel_to_ωrel s = urrel_to_ωrel r)367

=⇒ (∃s . s ∈ b ∧ urrel_to_ωrel s = urrel_to_ωrel r)›368

128

A.1. Model for the Logic of AOT

proof -369

define ασ_wit_intersection where370

‹ασ_wit_intersection ≡ λ urrels .371

{ordext . ∀urrel . urrel_to_ωrel urrel = ordext −→ urrel ∈ urrels}›372

define ασ_wit_union where373

‹ασ_wit_union ≡ λ urrels .374

{ordext . ∃urrel∈urrels . urrel_to_ωrel urrel = ordext}›375

376

let ?ασ_wit = ‹λ urrels .377

let ordexts = ασ_wit_intersection urrels in378

let ordexts’ = ασ_wit_union urrels in379

(ordexts, ordexts’, undefined)›380

define ασ_wit :: ‹urrel set ⇒ σ› where381

‹ασ_wit ≡ λ urrels . Abs_σ (?ασ_wit urrels)›382

{383

fix a b :: ‹urrel set› and r s384

assume ‹ασ_wit a = ασ_wit b›385

hence 0: ‹{ordext. ∀urrel. urrel_to_ωrel urrel = ordext −→ urrel ∈ a} =386

{ordext. ∀urrel. urrel_to_ωrel urrel = ordext −→ urrel ∈ b}›387

unfolding ασ_wit_def Let_def388

apply (subst (asm) Abs_σ_inject)389

by (auto simp: ασ_wit_intersection_def ασ_wit_union_def)390

assume ‹urrel_to_ωrel s = urrel_to_ωrel r =⇒ s ∈ a› for s391

hence ‹urrel_to_ωrel r ∈392

{ordext. ∀urrel. urrel_to_ωrel urrel = ordext −→ urrel ∈ a}›393

by auto394

hence ‹urrel_to_ωrel r ∈395

{ordext. ∀urrel. urrel_to_ωrel urrel = ordext −→ urrel ∈ b}›396

using 0 by blast397

moreover assume ‹urrel_to_ωrel s = urrel_to_ωrel r›398

ultimately have ‹s ∈ b›399

by blast400

}401

moreover {402

fix a b :: ‹urrel set› and s r403

assume ‹ασ_wit a = ασ_wit b›404

hence 0: ‹{ordext. ∃urrel ∈ a. urrel_to_ωrel urrel = ordext} =405

{ordext. ∃urrel ∈ b. urrel_to_ωrel urrel = ordext}›406

unfolding ασ_wit_def407

apply (subst (asm) Abs_σ_inject)408

by (auto simp: Let_def ασ_wit_intersection_def ασ_wit_union_def)409

assume ‹s ∈ a›410

hence ‹urrel_to_ωrel s ∈ {ordext. ∃urrel ∈ a. urrel_to_ωrel urrel = ordext}›411

by blast412

moreover assume ‹urrel_to_ωrel s = urrel_to_ωrel r›413

ultimately have ‹urrel_to_ωrel r ∈414

{ordext. ∃urrel ∈ b. urrel_to_ωrel urrel = ordext}›415

using "0" by argo416

hence ‹∃s. s ∈ b ∧ urrel_to_ωrel s = urrel_to_ωrel r›417

by blast418

}419

ultimately show ?thesis420

by (safe intro!: exI[where x=ασ_wit]; metis)421

qed422

423

text‹We enable the extended model version.›424

abbreviation (input) AOT_ExtendedModel where ‹AOT_ExtendedModel ≡ True›425

426

text‹Individual terms are either ordinary objects, represented by ordinary urelements,427

abstract objects, modelled as sets of urrelations, or null objects, used to428

represent non-denoting definite descriptions.›429

datatype κ = ωκ ω | ακ ‹urrel set› | is_nullκ: nullκ null430

431

129

A. Isabelle Theory

text‹The mapping from abstract objects to urelements can be naturally432

lifted to a surjective mapping from individual terms to urelements.›433

primrec κυ :: ‹κ⇒υ› where434

‹κυ (ωκ x) = ωυ x›435

| ‹κυ (ακ x) = συ (ασ x)›436

| ‹κυ (nullκ x) = nullυ x›437

438

lemma κυ_surj: ‹surj κυ›439

using ασ_surj by (metis κυ.simps(1) κυ.simps(2) κυ.simps(3) υ.exhaust surj_def)440

441

text‹By construction if the urelement of an individual term is exemplified by442

an urrelation, it cannot be a null-object.›443

lemma urrel_null_false:444

assumes ‹AOT_model_valid_in w (Rep_urrel f (κυ x))›445

shows ‹¬is_nullκ x›446

by (metis (mono_tags, lifting) assms Rep_urrel κ.collapse(3) κυ.simps(3)447

mem_Collect_eq)448

449

text‹AOT requires any ordinary object to be @{emph ‹possibly concrete›} and that450

there is an object that is not actually, but possibly concrete.›451

consts AOT_model_concreteω :: ‹ω ⇒ w ⇒ bool›452

specification (AOT_model_concreteω)453

AOT_model_ω_concrete_in_some_world:454

‹∃ w . AOT_model_concreteω x w›455

AOT_model_contingent_object:456

‹∃ x w . AOT_model_concreteω x w ∧ ¬AOT_model_concreteω x w0›457

by (rule exI[where x=‹λ_ w. w 6= w0›]) (auto simp: AOT_model_nonactual_world)458

459

text‹We define a type class for AOT’s terms specifying the conditions under which460

objects of that type denote and require the set of denoting terms to be461

non-empty.›462

class AOT_Term =463

fixes AOT_model_denotes :: ‹’a ⇒ bool›464

assumes AOT_model_denoting_ex: ‹∃ x . AOT_model_denotes x›465

466

text‹All types except the type of propositions involve non-denoting terms. We467

define a refined type class for those.›468

class AOT_IncompleteTerm = AOT_Term +469

assumes AOT_model_nondenoting_ex: ‹∃ x . ¬AOT_model_denotes x›470

471

text‹Generic non-denoting term.›472

definition AOT_model_nondenoting :: ‹’a::AOT_IncompleteTerm› where473

‹AOT_model_nondenoting ≡ SOME τ . ¬AOT_model_denotes τ›474

lemma AOT_model_nondenoing: ‹¬AOT_model_denotes (AOT_model_nondenoting)›475

using someI_ex[OF AOT_model_nondenoting_ex]476

unfolding AOT_model_nondenoting_def by blast477

478

text‹@{const AOT_model_denotes} can trivially be extended to products of types.›479

instantiation prod :: (AOT_Term, AOT_Term) AOT_Term480

begin481

definition AOT_model_denotes_prod :: ‹’a×’b ⇒ bool› where482

‹AOT_model_denotes_prod ≡ λ(x,y) . AOT_model_denotes x ∧ AOT_model_denotes y›483

instance proof484

show ‹∃x::’a×’b. AOT_model_denotes x›485

by (simp add: AOT_model_denotes_prod_def AOT_model_denoting_ex)486

qed487

end488

489

text‹We specify a transformation of proposition-valued functions on terms, s.t.490

the result is fully determined by @{emph ‹regular›} terms. This will be required491

for modelling n-ary relations as functions on tuples while preserving AOT’s492

definition of n-ary relation identity.›493

locale AOT_model_irregular_spec =494

130

A.1. Model for the Logic of AOT

fixes AOT_model_irregular :: ‹(’a ⇒ o) ⇒ ’a ⇒ o›495

and AOT_model_regular :: ‹’a ⇒ bool›496

and AOT_model_term_equiv :: ‹’a ⇒ ’a ⇒ bool›497

assumes AOT_model_irregular_false:498

‹¬AOT_model_valid_in w (AOT_model_irregular ϕ x)›499

assumes AOT_model_irregular_equiv:500

‹AOT_model_term_equiv x y =⇒501

AOT_model_irregular ϕ x = AOT_model_irregular ϕ y›502

assumes AOT_model_irregular_eqI:503

‹(
∧

x . AOT_model_regular x =⇒ ϕ x = ψ x) =⇒504

AOT_model_irregular ϕ x = AOT_model_irregular ψ x›505

506

text‹We introduce a type class for individual terms that specifies being regular,507

being equivalent (i.e. conceptually @{emph ‹sharing urelements›}) and the508

transformation on proposition-valued functions as specified above.›509

class AOT_IndividualTerm = AOT_IncompleteTerm +510

fixes AOT_model_regular :: ‹’a ⇒ bool›511

fixes AOT_model_term_equiv :: ‹’a ⇒ ’a ⇒ bool›512

fixes AOT_model_irregular :: ‹(’a ⇒ o) ⇒ ’a ⇒ o›513

assumes AOT_model_irregular_nondenoting:514

‹¬AOT_model_regular x =⇒ ¬AOT_model_denotes x›515

assumes AOT_model_term_equiv_part_equivp:516

‹equivp AOT_model_term_equiv›517

assumes AOT_model_term_equiv_denotes:518

‹AOT_model_term_equiv x y =⇒ (AOT_model_denotes x = AOT_model_denotes y)›519

assumes AOT_model_term_equiv_regular:520

‹AOT_model_term_equiv x y =⇒ (AOT_model_regular x = AOT_model_regular y)›521

assumes AOT_model_irregular:522

‹AOT_model_irregular_spec AOT_model_irregular AOT_model_regular523

AOT_model_term_equiv›524

525

interpretation AOT_model_irregular_spec AOT_model_irregular AOT_model_regular526

AOT_model_term_equiv527

using AOT_model_irregular .528

529

text‹Our concrete type for individual terms satisfies the type class of530

individual terms.531

Note that all unary individuals are regular. In general, an individual term532

may be a tuple and is regular, if at most one tuple element does not denote.›533

instantiation κ :: AOT_IndividualTerm534

begin535

definition AOT_model_term_equiv_κ :: ‹κ ⇒ κ ⇒ bool› where536

‹AOT_model_term_equiv_κ ≡ λ x y . κυ x = κυ y›537

definition AOT_model_denotes_κ :: ‹κ ⇒ bool› where538

‹AOT_model_denotes_κ ≡ λ x . ¬is_nullκ x›539

definition AOT_model_regular_κ :: ‹κ ⇒ bool› where540

‹AOT_model_regular_κ ≡ λ x . True›541

definition AOT_model_irregular_κ :: ‹(κ ⇒ o) ⇒ κ ⇒ o› where542

‹AOT_model_irregular_κ ≡ SOME ϕ . AOT_model_irregular_spec ϕ543

AOT_model_regular AOT_model_term_equiv›544

instance proof545

show ‹∃x :: κ. AOT_model_denotes x›546

by (rule exI[where x=‹ωκ undefined›])547

(simp add: AOT_model_denotes_κ_def)548

next549

show ‹∃x :: κ. ¬AOT_model_denotes x›550

by (rule exI[where x=‹nullκ undefined›])551

(simp add: AOT_model_denotes_κ_def AOT_model_regular_κ_def)552

next553

show "¬AOT_model_regular x =⇒ ¬ AOT_model_denotes x" for x :: κ554

by (simp add: AOT_model_regular_κ_def)555

next556

show ‹equivp (AOT_model_term_equiv :: κ ⇒ κ ⇒ bool)›557

131

A. Isabelle Theory

by (rule equivpI; rule reflpI exI sympI transpI)558

(simp_all add: AOT_model_term_equiv_κ_def)559

next560

fix x y :: κ561

show ‹AOT_model_term_equiv x y =⇒ AOT_model_denotes x = AOT_model_denotes y›562

by (metis AOT_model_denotes_κ_def AOT_model_term_equiv_κ_def κ.exhaust_disc563

κυ.simps υ.disc(1,3,5,6) is_ακ_def is_ωκ_def is_nullκ_def)564

next565

fix x y :: κ566

show ‹AOT_model_term_equiv x y =⇒ AOT_model_regular x = AOT_model_regular y›567

by (simp add: AOT_model_regular_κ_def)568

next569

have "AOT_model_irregular_spec (λ ϕ (x::κ) . εo w . False)570

AOT_model_regular AOT_model_term_equiv"571

by standard (auto simp: AOT_model_proposition_choice_simp)572

thus ‹AOT_model_irregular_spec (AOT_model_irregular::(κ⇒o) ⇒ κ ⇒ o)573

AOT_model_regular AOT_model_term_equiv›574

unfolding AOT_model_irregular_κ_def by (metis (no_types, lifting) someI_ex)575

qed576

end577

578

text‹We define relations among individuals as proposition valued functions.579

@{emph ‹Denoting›} unary relations (among @{typ κ}) will match the580

urrelations introduced above.›581

typedef ’a rel (‹<_>›) = ‹UNIV::(’a::AOT_IndividualTerm ⇒ o) set› ..582

setup_lifting type_definition_rel583

584

text‹We will use the transformation specified above to "fix" the behaviour of585

functions on irregular terms when defining @{text ‹λ›}-expressions.›586

definition fix_irregular :: ‹(’a::AOT_IndividualTerm ⇒ o) ⇒ (’a ⇒ o)› where587

‹fix_irregular ≡ λ ϕ x . if AOT_model_regular x588

then ϕ x else AOT_model_irregular ϕ x›589

lemma fix_irregular_denoting:590

‹AOT_model_denotes x =⇒ fix_irregular ϕ x = ϕ x›591

by (meson AOT_model_irregular_nondenoting fix_irregular_def)592

lemma fix_irregular_regular:593

‹AOT_model_regular x =⇒ fix_irregular ϕ x = ϕ x›594

by (meson AOT_model_irregular_nondenoting fix_irregular_def)595

lemma fix_irregular_irregular:596

‹¬AOT_model_regular x =⇒ fix_irregular ϕ x = AOT_model_irregular ϕ x›597

by (simp add: fix_irregular_def)598

599

text‹Relations among individual terms are (potentially non-denoting) terms.600

A relation denotes, if it agrees on all equivalent terms (i.e. terms sharing601

urelements), is necessarily false on all non-denoting terms and is602

well-behaved on irregular terms.›603

instantiation rel :: (AOT_IndividualTerm) AOT_IncompleteTerm604

begin605

text‹\linelabel{AOT_model_denotes_rel}›606

lift_definition AOT_model_denotes_rel :: ‹<’a> ⇒ bool› is607

‹λ ϕ . (∀ x y . AOT_model_term_equiv x y −→ ϕ x = ϕ y) ∧608

(∀ w x . AOT_model_valid_in w (ϕ x) −→ AOT_model_denotes x) ∧609

(∀ x . ¬AOT_model_regular x −→ ϕ x = AOT_model_irregular ϕ x)› .610

instance proof611

have ‹AOT_model_irregular (fix_irregular ϕ) x = AOT_model_irregular ϕ x›612

for ϕ and x :: ’a613

by (rule AOT_model_irregular_eqI) (simp add: fix_irregular_def)614

thus ‹∃ x :: <’a> . AOT_model_denotes x›615

by (safe intro!: exI[where x=‹Abs_rel (fix_irregular (λx. εo w . False))›])616

(transfer; auto simp: AOT_model_proposition_choice_simp fix_irregular_def617

AOT_model_irregular_equiv AOT_model_term_equiv_regular618

AOT_model_irregular_false)619

next620

132

A.1. Model for the Logic of AOT

show ‹∃f :: <’a> . ¬AOT_model_denotes f›621

by (rule exI[where x=‹Abs_rel (λx. εo w . True)›];622

auto simp: AOT_model_denotes_rel.abs_eq AOT_model_nondenoting_ex623

AOT_model_proposition_choice_simp)624

qed625

end626

627

text‹Auxiliary lemmata.›628

629

lemma AOT_model_term_equiv_eps:630

shows ‹AOT_model_term_equiv (Eps (AOT_model_term_equiv κ)) κ›631

and ‹AOT_model_term_equiv κ (Eps (AOT_model_term_equiv κ))›632

and ‹AOT_model_term_equiv κ κ’ =⇒633

(Eps (AOT_model_term_equiv κ)) = (Eps (AOT_model_term_equiv κ’))›634

apply (metis AOT_model_term_equiv_part_equivp equivp_def someI_ex)635

apply (metis AOT_model_term_equiv_part_equivp equivp_def someI_ex)636

by (metis AOT_model_term_equiv_part_equivp equivp_def)637

638

lemma AOT_model_denotes_Abs_rel_fix_irregularI:639

assumes ‹
∧

x y . AOT_model_term_equiv x y =⇒ ϕ x = ϕ y›640

and ‹
∧

w x . AOT_model_valid_in w (ϕ x) =⇒ AOT_model_denotes x›641

shows ‹AOT_model_denotes (Abs_rel (fix_irregular ϕ))›642

proof -643

have ‹AOT_model_irregular ϕ x = AOT_model_irregular644

(λx. if AOT_model_regular x then ϕ x else AOT_model_irregular ϕ x) x›645

if ‹¬ AOT_model_regular x›646

for x647

by (rule AOT_model_irregular_eqI) auto648

thus ?thesis649

unfolding AOT_model_denotes_rel.rep_eq650

using assms by (auto simp: AOT_model_irregular_false Abs_rel_inverse651

AOT_model_irregular_equiv fix_irregular_def652

AOT_model_term_equiv_regular)653

qed654

655

lemma AOT_model_term_equiv_rel_equiv:656

assumes ‹AOT_model_denotes x›657

and ‹AOT_model_denotes y›658

shows ‹AOT_model_term_equiv x y = (∀ Π w . AOT_model_denotes Π −→659

AOT_model_valid_in w (Rep_rel Π x) = AOT_model_valid_in w (Rep_rel Π y))›660

proof661

assume ‹AOT_model_term_equiv x y›662

thus ‹∀ Π w . AOT_model_denotes Π −→ AOT_model_valid_in w (Rep_rel Π x) =663

AOT_model_valid_in w (Rep_rel Π y)›664

by (simp add: AOT_model_denotes_rel.rep_eq)665

next666

have 0: ‹(AOT_model_denotes x’ ∧ AOT_model_term_equiv x’ y) =667

(AOT_model_denotes y’ ∧ AOT_model_term_equiv y’ y)›668

if ‹AOT_model_term_equiv x’ y’› for x’ y’669

by (metis that AOT_model_term_equiv_denotes AOT_model_term_equiv_part_equivp670

equivp_def)671

assume ‹∀ Π w . AOT_model_denotes Π −→ AOT_model_valid_in w (Rep_rel Π x) =672

AOT_model_valid_in w (Rep_rel Π y)›673

moreover have ‹AOT_model_denotes (Abs_rel (fix_irregular674

(λ x . εo w . AOT_model_denotes x ∧ AOT_model_term_equiv x y)))›675

(is "AOT_model_denotes ?r")676

by (rule AOT_model_denotes_Abs_rel_fix_irregularI)677

(auto simp: 0 AOT_model_denotes_rel.rep_eq Abs_rel_inverse fix_irregular_def678

AOT_model_proposition_choice_simp AOT_model_irregular_false)679

ultimately have ‹AOT_model_valid_in w (Rep_rel ?r x) =680

AOT_model_valid_in w (Rep_rel ?r y)› for w681

by blast682

thus ‹AOT_model_term_equiv x y›683

133

A. Isabelle Theory

by (simp add: Abs_rel_inverse AOT_model_proposition_choice_simp684

fix_irregular_denoting[OF assms(1)] AOT_model_term_equiv_part_equivp685

fix_irregular_denoting[OF assms(2)] assms equivp_reflp)686

qed687

688

text‹Denoting relations among terms of type @{typ κ} correspond to urrelations.›689

690

definition rel_to_urrel :: ‹<κ> ⇒ urrel› where691

‹rel_to_urrel ≡ λ Π . Abs_urrel (λ u . Rep_rel Π (SOME x . κυ x = u))›692

definition urrel_to_rel :: ‹urrel ⇒ <κ>› where693

‹urrel_to_rel ≡ λ ϕ . Abs_rel (λ x . Rep_urrel ϕ (κυ x))›694

definition AOT_rel_equiv :: ‹<’a::AOT_IndividualTerm> ⇒ <’a> ⇒ bool› where695

‹AOT_rel_equiv ≡ λ f g . AOT_model_denotes f ∧ AOT_model_denotes g ∧ f = g›696

697

lemma urrel_quotient3: ‹Quotient3 AOT_rel_equiv rel_to_urrel urrel_to_rel›698

proof (rule Quotient3I)699

have ‹(λu. Rep_urrel a (κυ (SOME x. κυ x = u))) = (λu. Rep_urrel a u)› for a700

by (rule ext) (metis (mono_tags, lifting) κυ_surj surj_f_inv_f verit_sko_ex’)701

thus ‹rel_to_urrel (urrel_to_rel a) = a› for a702

by (simp add: Abs_rel_inverse rel_to_urrel_def urrel_to_rel_def703

Rep_urrel_inverse)704

next705

show ‹AOT_rel_equiv (urrel_to_rel a) (urrel_to_rel a)› for a706

unfolding AOT_rel_equiv_def urrel_to_rel_def707

by transfer (simp add: AOT_model_regular_κ_def AOT_model_denotes_κ_def708

AOT_model_term_equiv_κ_def urrel_null_false)709

next710

{711

fix a712

assume ‹∀w x. AOT_model_valid_in w (a x) −→ ¬ is_nullκ x›713

hence ‹(λu. a (SOME x. κυ x = u)) ∈714

{ϕ. ∀x w. ¬ AOT_model_valid_in w (ϕ (nullυ x))}›715

by (simp; metis (mono_tags, lifting) κ.exhaust_disc κυ.simps υ.disc(1,3,5)716

υ.disc(6) is_ακ_def is_ωκ_def someI_ex)717

} note 1 = this718

{719

fix r s :: ‹κ ⇒ o›720

assume A: ‹∀x y. AOT_model_term_equiv x y −→ r x = r y›721

assume ‹∀w x. AOT_model_valid_in w (r x) −→ AOT_model_denotes x›722

hence 2: ‹(λu. r (SOME x. κυ x = u)) ∈723

{ϕ. ∀x w. ¬ AOT_model_valid_in w (ϕ (nullυ x))}›724

using 1 AOT_model_denotes_κ_def by meson725

assume B: ‹∀x y. AOT_model_term_equiv x y −→ s x = s y›726

assume ‹∀w x. AOT_model_valid_in w (s x) −→ AOT_model_denotes x›727

hence 3: ‹(λu. s (SOME x. κυ x = u)) ∈728

{ϕ. ∀x w. ¬ AOT_model_valid_in w (ϕ (nullυ x))}›729

using 1 AOT_model_denotes_κ_def by meson730

assume ‹Abs_urrel (λu. r (SOME x. κυ x = u)) =731

Abs_urrel (λu. s (SOME x. κυ x = u))›732

hence 4: ‹r (SOME x. κυ x = u) = s (SOME x::κ. κυ x = u)› for u733

unfolding Abs_urrel_inject[OF 2 3] by metis734

have ‹r x = s x› for x735

using 4[of ‹κυ x›]736

by (metis (mono_tags, lifting) A B AOT_model_term_equiv_κ_def someI_ex)737

hence ‹r = s› by auto738

}739

thus ‹AOT_rel_equiv r s = (AOT_rel_equiv r r ∧ AOT_rel_equiv s s ∧740

rel_to_urrel r = rel_to_urrel s)› for r s741

unfolding AOT_rel_equiv_def rel_to_urrel_def742

by transfer auto743

qed744

745

lemma urrel_quotient:746

134

A.1. Model for the Logic of AOT

‹Quotient AOT_rel_equiv rel_to_urrel urrel_to_rel747

(λx y. AOT_rel_equiv x x ∧ rel_to_urrel x = y)›748

using Quotient3_to_Quotient[OF urrel_quotient3] by auto749

750

text‹Unary individual terms are always regular and equipped with encoding and751

concreteness. The specification of the type class anticipates the required752

properties for deriving the axiom system.›753

class AOT_UnaryIndividualTerm =754

fixes AOT_model_enc :: ‹’a ⇒ <’a::AOT_IndividualTerm> ⇒ bool›755

and AOT_model_concrete :: ‹w ⇒ ’a ⇒ bool›756

assumes AOT_model_unary_regular:757

‹AOT_model_regular x› – ‹All unary individual terms are regular.›758

and AOT_model_enc_relid:759

‹AOT_model_denotes F =⇒760

AOT_model_denotes G =⇒761

(
∧

x . AOT_model_enc x F ←→ AOT_model_enc x G)762

=⇒ F = G›763

and AOT_model_A_objects:764

‹∃x . AOT_model_denotes x ∧765

(∀w. ¬ AOT_model_concrete w x) ∧766

(∀F. AOT_model_denotes F −→ AOT_model_enc x F = ϕ F)›767

and AOT_model_contingent:768

‹∃ x w. AOT_model_concrete w x ∧ ¬ AOT_model_concrete w0 x›769

and AOT_model_nocoder:770

‹AOT_model_concrete w x =⇒ ¬AOT_model_enc x F›771

and AOT_model_concrete_equiv:772

‹AOT_model_term_equiv x y =⇒773

AOT_model_concrete w x = AOT_model_concrete w y›774

and AOT_model_concrete_denotes:775

‹AOT_model_concrete w x =⇒ AOT_model_denotes x›776

– ‹The following are properties that will only hold in the extended models.›777

and AOT_model_enc_indistinguishable_all:778

‹AOT_ExtendedModel =⇒779

AOT_model_denotes a =⇒ ¬(∃ w . AOT_model_concrete w a) =⇒780

AOT_model_denotes b =⇒ ¬(∃ w . AOT_model_concrete w b) =⇒781

AOT_model_denotes Π =⇒782

(
∧

Π’ . AOT_model_denotes Π’ =⇒783

(
∧

v . AOT_model_valid_in v (Rep_rel Π’ a) =784

AOT_model_valid_in v (Rep_rel Π’ b))) =⇒785

(
∧

Π’ . AOT_model_denotes Π’ =⇒786

(
∧

v x . ∃ w . AOT_model_concrete w x =⇒787

AOT_model_valid_in v (Rep_rel Π’ x) =788

AOT_model_valid_in v (Rep_rel Π x)) =⇒789

AOT_model_enc a Π’) =⇒790

(
∧

Π’ . AOT_model_denotes Π’ =⇒791

(
∧

v x . ∃ w . AOT_model_concrete w x =⇒792

AOT_model_valid_in v (Rep_rel Π’ x) =793

AOT_model_valid_in v (Rep_rel Π x)) =⇒794

AOT_model_enc b Π’)›795

and AOT_model_enc_indistinguishable_ex:796

‹AOT_ExtendedModel =⇒797

AOT_model_denotes a =⇒ ¬(∃ w . AOT_model_concrete w a) =⇒798

AOT_model_denotes b =⇒ ¬(∃ w . AOT_model_concrete w b) =⇒799

AOT_model_denotes Π =⇒800

(
∧

Π’ . AOT_model_denotes Π’ =⇒801

(
∧

v . AOT_model_valid_in v (Rep_rel Π’ a) =802

AOT_model_valid_in v (Rep_rel Π’ b))) =⇒803

(∃ Π’ . AOT_model_denotes Π’ ∧ AOT_model_enc a Π’ ∧804

(∀ v x . (∃ w . AOT_model_concrete w x) −→805

AOT_model_valid_in v (Rep_rel Π’ x) =806

AOT_model_valid_in v (Rep_rel Π x))) =⇒807

(∃ Π’ . AOT_model_denotes Π’ ∧ AOT_model_enc b Π’ ∧808

(∀ v x . (∃ w . AOT_model_concrete w x) −→809

135

A. Isabelle Theory

AOT_model_valid_in v (Rep_rel Π’ x) =810

AOT_model_valid_in v (Rep_rel Π x)))›811

812

text‹Instantiate the class of unary individual terms for our concrete type of813

individual terms @{typ κ}.›814

instantiation κ :: AOT_UnaryIndividualTerm815

begin816

817

definition AOT_model_enc_κ :: ‹κ ⇒ <κ> ⇒ bool› where818

‹AOT_model_enc_κ ≡ λ x F .819

case x of ακ a ⇒ AOT_model_denotes F ∧ rel_to_urrel F ∈ a820

| _ ⇒ False›821

primrec AOT_model_concrete_κ :: ‹w ⇒ κ ⇒ bool› where822

‹AOT_model_concrete_κ w (ωκ x) = AOT_model_concreteω x w›823

| ‹AOT_model_concrete_κ w (ακ x) = False›824

| ‹AOT_model_concrete_κ w (nullκ x) = False›825

826

lemma AOT_meta_A_objects_κ:827

‹∃x :: κ. AOT_model_denotes x ∧828

(∀w. ¬ AOT_model_concrete w x) ∧829

(∀F. AOT_model_denotes F −→ AOT_model_enc x F = ϕ F)› for ϕ830

apply (rule exI[where x=‹ακ {f . ϕ (urrel_to_rel f)}›])831

apply (simp add: AOT_model_enc_κ_def AOT_model_denotes_κ_def)832

by (metis (no_types, lifting) AOT_rel_equiv_def urrel_quotient833

Quotient_rep_abs_fold_unmap)834

835

instance proof836

show ‹AOT_model_regular x› for x :: κ837

by (simp add: AOT_model_regular_κ_def)838

next839

fix F G :: ‹<κ>›840

assume ‹AOT_model_denotes F›841

moreover assume ‹AOT_model_denotes G›842

moreover assume ‹
∧

x. AOT_model_enc x F = AOT_model_enc x G›843

moreover obtain x where ‹∀G. AOT_model_denotes G −→ AOT_model_enc x G = (F = G)›844

using AOT_meta_A_objects_κ by blast845

ultimately show ‹F = G› by blast846

next847

show ‹∃x :: κ. AOT_model_denotes x ∧848

(∀w. ¬ AOT_model_concrete w x) ∧849

(∀F. AOT_model_denotes F −→ AOT_model_enc x F = ϕ F)› for ϕ850

using AOT_meta_A_objects_κ .851

next852

show ‹∃ (x::κ) w. AOT_model_concrete w x ∧ ¬ AOT_model_concrete w0 x›853

using AOT_model_concrete_κ.simps(1) AOT_model_contingent_object by blast854

next855

show ‹AOT_model_concrete w x =⇒ ¬ AOT_model_enc x F› for w and x :: κ and F856

by (metis AOT_model_concrete_κ.simps(2) AOT_model_enc_κ_def κ.case_eq_if857

κ.collapse(2))858

next859

show ‹AOT_model_concrete w x = AOT_model_concrete w y›860

if ‹AOT_model_term_equiv x y›861

for x y :: κ and w862

using that by (induct x; induct y; auto simp: AOT_model_term_equiv_κ_def)863

next864

show ‹AOT_model_concrete w x =⇒ AOT_model_denotes x› for w and x :: κ865

by (metis AOT_model_concrete_κ.simps(3) AOT_model_denotes_κ_def κ.collapse(3))866

(* Extended models only *)867

next868

fix κ κ’ :: κ and Π Π’ :: ‹<κ>› and w :: w869

assume ext: ‹AOT_ExtendedModel›870

assume ‹AOT_model_denotes κ›871

moreover assume ‹6 ∃w. AOT_model_concrete w κ›872

136

A.1. Model for the Logic of AOT

ultimately obtain a where a_def: ‹ακ a = κ›873

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)874

AOT_model_denotes_κ_def κ.discI(3) κ.exhaust_sel)875

assume ‹AOT_model_denotes κ’›876

moreover assume ‹6 ∃w. AOT_model_concrete w κ’›877

ultimately obtain b where b_def: ‹ακ b = κ’›878

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)879

AOT_model_denotes_κ_def κ.discI(3) κ.exhaust_sel)880

assume ‹AOT_model_denotes Π’ =⇒ AOT_model_valid_in w (Rep_rel Π’ κ) =881

AOT_model_valid_in w (Rep_rel Π’ κ’)› for Π’ w882

hence ‹AOT_model_valid_in w (Rep_urrel r (κυ κ)) =883

AOT_model_valid_in w (Rep_urrel r (κυ κ’))› for r884

by (metis AOT_rel_equiv_def Abs_rel_inverse Quotient3_rel_rep885

iso_tuple_UNIV_I urrel_quotient3 urrel_to_rel_def)886

hence ‹let r = (Abs_urrel (λ u . εo w . u = κυ κ)) in887

AOT_model_valid_in w (Rep_urrel r (κυ κ)) =888

AOT_model_valid_in w (Rep_urrel r (κυ κ’))›889

by presburger890

hence ασ_eq: ‹ασ a = ασ b›891

unfolding Let_def892

apply (subst (asm) (1 2) Abs_urrel_inverse)893

using AOT_model_proposition_choice_simp a_def b_def by force+894

assume Π_den: ‹AOT_model_denotes Π›895

have ‹∃r . ∀ x . Rep_rel Π (ωκ x) = Rep_urrel r (ωυ x)›896

apply (rule exI[where x=‹rel_to_urrel Π›])897

apply auto898

unfolding rel_to_urrel_def899

apply (subst Abs_urrel_inverse)900

apply auto901

apply (metis (mono_tags, lifting) AOT_model_denotes_κ_def902

AOT_model_denotes_rel.rep_eq κ.exhaust_disc κυ.simps(1,2,3)903

‹AOT_model_denotes Π› υ.disc(8,9) υ.distinct(3)904

is_ακ_def is_ωκ_def verit_sko_ex’)905

by (metis (mono_tags, lifting) AOT_model_denotes_rel.rep_eq906

AOT_model_term_equiv_κ_def κυ.simps(1) Π_den verit_sko_ex’)907

then obtain r where r_prop: ‹Rep_rel Π (ωκ x) = Rep_urrel r (ωυ x)› for x908

by blast909

assume ‹AOT_model_denotes Π’ =⇒910

(
∧

v x. ∃w. AOT_model_concrete w x =⇒911

AOT_model_valid_in v (Rep_rel Π’ x) =912

AOT_model_valid_in v (Rep_rel Π x)) =⇒ AOT_model_enc κ Π’› for Π’913

hence ‹AOT_model_denotes Π’ =⇒914

(
∧

v x. AOT_model_valid_in v (Rep_rel Π’ (ωκ x)) =915

AOT_model_valid_in v (Rep_rel Π (ωκ x))) =⇒ AOT_model_enc κ Π’› for Π’916

by (metis AOT_model_concrete_κ.simps(2) AOT_model_concrete_κ.simps(3)917

κ.exhaust_disc is_ακ_def is_ωκ_def is_nullκ_def)918

hence ‹(
∧

v x. AOT_model_valid_in v (Rep_urrel r (ωυ x)) =919

AOT_model_valid_in v (Rep_rel Π (ωκ x))) =⇒ r ∈ a› for r920

unfolding a_def[symmetric] AOT_model_enc_κ_def apply simp921

by (smt (verit, best) AOT_rel_equiv_def Abs_rel_inverse Quotient3_def922

κυ.simps(1) iso_tuple_UNIV_I urrel_quotient3 urrel_to_rel_def)923

hence ‹(
∧

v x. AOT_model_valid_in v (Rep_urrel r’ (ωυ x)) =924

AOT_model_valid_in v (Rep_urrel r (ωυ x))) =⇒ r’ ∈ a› for r’925

unfolding r_prop.926

hence ‹
∧

s. urrel_to_ωrel s = urrel_to_ωrel r =⇒ s ∈ a›927

by (metis urrel_to_ωrel_def)928

hence 0: ‹
∧

s. urrel_to_ωrel s = urrel_to_ωrel r =⇒ s ∈ b›929

using ασ_eq_ord_exts_all ασ_eq ext ασ_ασ’ by blast930

931

assume Π’_den: ‹AOT_model_denotes Π’›932

assume ‹∃w. AOT_model_concrete w x =⇒ AOT_model_valid_in v (Rep_rel Π’ x) =933

AOT_model_valid_in v (Rep_rel Π x)› for v x934

hence ‹AOT_model_valid_in v (Rep_rel Π’ (ωκ x)) =935

137

A. Isabelle Theory

AOT_model_valid_in v (Rep_rel Π (ωκ x))› for v x936

using AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)937

by presburger938

hence ‹AOT_model_valid_in v (Rep_urrel (rel_to_urrel Π’) (ωυ x)) =939

AOT_model_valid_in v (Rep_urrel r (ωυ x))› for v x940

by (smt (verit, best) AOT_rel_equiv_def Abs_rel_inverse Quotient3_def941

κυ.simps(1) iso_tuple_UNIV_I r_prop urrel_quotient3 urrel_to_rel_def Π’_den)942

hence ‹urrel_to_ωrel (rel_to_urrel Π’) = urrel_to_ωrel r›943

by (metis (full_types) AOT_urrel_ωequiv_def Quotient3_def urrel_ωrel_quot)944

hence ‹rel_to_urrel Π’ ∈ b› using 0 by blast945

thus ‹AOT_model_enc κ’ Π’›946

unfolding b_def[symmetric] AOT_model_enc_κ_def by (auto simp: Π’_den)947

next948

fix κ κ’ :: κ and Π Π’ :: ‹<κ>› and w :: w949

assume ext: ‹AOT_ExtendedModel›950

assume ‹AOT_model_denotes κ›951

moreover assume ‹6 ∃w. AOT_model_concrete w κ›952

ultimately obtain a where a_def: ‹ακ a = κ›953

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)954

AOT_model_denotes_κ_def κ.discI(3) κ.exhaust_sel)955

assume ‹AOT_model_denotes κ’›956

moreover assume ‹6 ∃w. AOT_model_concrete w κ’›957

ultimately obtain b where b_def: ‹ακ b = κ’›958

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)959

AOT_model_denotes_κ_def κ.discI(3) κ.exhaust_sel)960

assume ‹AOT_model_denotes Π’ =⇒ AOT_model_valid_in w (Rep_rel Π’ κ) =961

AOT_model_valid_in w (Rep_rel Π’ κ’)› for Π’ w962

hence ‹AOT_model_valid_in w (Rep_urrel r (κυ κ)) =963

AOT_model_valid_in w (Rep_urrel r (κυ κ’))› for r964

by (metis AOT_rel_equiv_def Abs_rel_inverse Quotient3_rel_rep965

iso_tuple_UNIV_I urrel_quotient3 urrel_to_rel_def)966

hence ‹let r = (Abs_urrel (λ u . εo w . u = κυ κ)) in967

AOT_model_valid_in w (Rep_urrel r (κυ κ)) =968

AOT_model_valid_in w (Rep_urrel r (κυ κ’))›969

by presburger970

hence ασ_eq: ‹ασ a = ασ b›971

unfolding Let_def972

apply (subst (asm) (1 2) Abs_urrel_inverse)973

using AOT_model_proposition_choice_simp a_def b_def by force+974

assume Π_den: ‹AOT_model_denotes Π›975

have ‹∃r . ∀ x . Rep_rel Π (ωκ x) = Rep_urrel r (ωυ x)›976

apply (rule exI[where x=‹rel_to_urrel Π›])977

apply auto978

unfolding rel_to_urrel_def979

apply (subst Abs_urrel_inverse)980

apply auto981

apply (metis (mono_tags, lifting) AOT_model_denotes_κ_def982

AOT_model_denotes_rel.rep_eq κ.exhaust_disc κυ.simps(1,2,3)983

‹AOT_model_denotes Π› υ.disc(8) υ.disc(9) υ.distinct(3)984

is_ακ_def is_ωκ_def verit_sko_ex’)985

by (metis (mono_tags, lifting) AOT_model_denotes_rel.rep_eq986

AOT_model_term_equiv_κ_def κυ.simps(1) Π_den verit_sko_ex’)987

then obtain r where r_prop: ‹Rep_rel Π (ωκ x) = Rep_urrel r (ωυ x)› for x988

by blast989

990

assume ‹∃Π’. AOT_model_denotes Π’ ∧991

AOT_model_enc κ Π’ ∧992

(∀v x. (∃w. AOT_model_concrete w x) −→ AOT_model_valid_in v (Rep_rel Π’ x) =993

AOT_model_valid_in v (Rep_rel Π x))›994

then obtain Π’ where995

Π’_den: ‹AOT_model_denotes Π’› and996

κ_enc_Π’: ‹AOT_model_enc κ Π’› and997

Π’_prop: ‹∃w. AOT_model_concrete w x =⇒998

138

A.1. Model for the Logic of AOT

AOT_model_valid_in v (Rep_rel Π’ x) =999

AOT_model_valid_in v (Rep_rel Π x)› for v x1000

by blast1001

have ‹AOT_model_valid_in v (Rep_rel Π’ (ωκ x)) =1002

AOT_model_valid_in v (Rep_rel Π (ωκ x))› for x v1003

by (simp add: AOT_model_ω_concrete_in_some_world Π’_prop)1004

hence 0: ‹AOT_urrel_ωequiv (rel_to_urrel Π’) (rel_to_urrel Π)›1005

unfolding AOT_urrel_ωequiv_def1006

by (smt (verit) AOT_rel_equiv_def Abs_rel_inverse Quotient3_def1007

κυ.simps(1) iso_tuple_UNIV_I urrel_quotient3 urrel_to_rel_def1008

Π_den Π’_den)1009

have ‹rel_to_urrel Π’ ∈ a›1010

and ‹urrel_to_ωrel (rel_to_urrel Π’) = urrel_to_ωrel (rel_to_urrel Π)›1011

apply (metis AOT_model_enc_κ_def κ.simps(11) κ_enc_Π’ a_def)1012

by (metis Quotient3_rel 0 urrel_ωrel_quot)1013

hence ‹∃s. s ∈ b ∧ urrel_to_ωrel s = urrel_to_ωrel (rel_to_urrel Π)›1014

using ασ_eq_ord_exts_ex ασ_eq ext ασ_ασ’ by blast1015

then obtain s where1016

s_prop: ‹s ∈ b ∧ urrel_to_ωrel s = urrel_to_ωrel (rel_to_urrel Π)›1017

by blast1018

then obtain Π” where1019

Π”_prop: ‹rel_to_urrel Π” = s› and Π”_den: ‹AOT_model_denotes Π”›1020

by (metis AOT_rel_equiv_def Quotient3_def urrel_quotient3)1021

moreover have ‹AOT_model_enc κ’ Π”›1022

by (metis AOT_model_enc_κ_def Π”_den Π”_prop κ.simps(11) b_def s_prop)1023

moreover have ‹AOT_model_valid_in v (Rep_rel Π” x) =1024

AOT_model_valid_in v (Rep_rel Π x)›1025

if ‹∃w. AOT_model_concrete w x› for v x1026

proof(insert that)1027

assume ‹∃w. AOT_model_concrete w x›1028

then obtain u where x_def: ‹x = ωκ u›1029

by (metis AOT_model_concrete_κ.simps(2,3) κ.exhaust)1030

show ‹AOT_model_valid_in v (Rep_rel Π” x) =1031

AOT_model_valid_in v (Rep_rel Π x)›1032

unfolding x_def1033

by (smt (verit, best) AOT_rel_equiv_def Abs_rel_inverse Quotient3_def1034

Π”_den Π”_prop Π_den κυ.simps(1) iso_tuple_UNIV_I s_prop1035

urrel_quotient3 urrel_to_ωrel_def urrel_to_rel_def)1036

qed1037

ultimately show ‹∃Π’. AOT_model_denotes Π’ ∧ AOT_model_enc κ’ Π’ ∧1038

(∀v x. (∃w. AOT_model_concrete w x) −→ AOT_model_valid_in v (Rep_rel Π’ x) =1039

AOT_model_valid_in v (Rep_rel Π x))›1040

apply (safe intro!: exI[where x=Π”])1041

by auto1042

qed1043

end1044

1045

text‹Products of unary individual terms and individual terms are individual terms.1046

A tuple is regular, if at most one element does not denote. I.e. a pair is1047

regular, if the first (unary) element denotes and the second is regular (i.e.1048

at most one of its recursive tuple elements does not denote), or the first does1049

not denote, but the second denotes (i.e. all its recursive tuple elements1050

denote).›1051

instantiation prod :: (AOT_UnaryIndividualTerm, AOT_IndividualTerm) AOT_IndividualTerm1052

begin1053

definition AOT_model_regular_prod :: ‹’a×’b ⇒ bool› where1054

‹AOT_model_regular_prod ≡ λ (x,y) . AOT_model_denotes x ∧ AOT_model_regular y ∨1055

¬AOT_model_denotes x ∧ AOT_model_denotes y›1056

definition AOT_model_term_equiv_prod :: ‹’a×’b ⇒ ’a×’b ⇒ bool› where1057

‹AOT_model_term_equiv_prod ≡ λ (x1,y1) (x2,y2) .1058

AOT_model_term_equiv x1 x2 ∧ AOT_model_term_equiv y1 y2›1059

function AOT_model_irregular_prod :: ‹(’a×’b ⇒ o) ⇒ ’a×’b ⇒ o› where1060

AOT_model_irregular_proj2: ‹AOT_model_denotes x =⇒1061

139

A. Isabelle Theory

AOT_model_irregular ϕ (x,y) =1062

AOT_model_irregular (λy. ϕ (SOME x’ . AOT_model_term_equiv x x’, y)) y›1063

| AOT_model_irregular_proj1: ‹¬AOT_model_denotes x ∧ AOT_model_denotes y =⇒1064

AOT_model_irregular ϕ (x,y) =1065

AOT_model_irregular (λx. ϕ (x, SOME y’ . AOT_model_term_equiv y y’)) x›1066

| AOT_model_irregular_prod_generic: ‹¬AOT_model_denotes x ∧ ¬AOT_model_denotes y =⇒1067

AOT_model_irregular ϕ (x,y) =1068

(SOME Φ . AOT_model_irregular_spec Φ AOT_model_regular AOT_model_term_equiv)1069

ϕ (x,y)›1070

by auto blast1071

termination using "termination" by blast1072

1073

instance proof1074

obtain x :: ’a and y :: ’b where1075

‹¬AOT_model_denotes x› and ‹¬AOT_model_denotes y›1076

by (meson AOT_model_nondenoting_ex AOT_model_denoting_ex)1077

thus ‹∃x::’a×’b. ¬AOT_model_denotes x›1078

by (auto simp: AOT_model_denotes_prod_def AOT_model_regular_prod_def)1079

next1080

show ‹equivp (AOT_model_term_equiv :: ’a×’b ⇒ ’a×’b ⇒ bool)›1081

by (rule equivpI; rule reflpI sympI transpI;1082

simp add: AOT_model_term_equiv_prod_def AOT_model_term_equiv_part_equivp1083

equivp_reflp prod.case_eq_if case_prod_unfold equivp_symp)1084

(metis equivp_transp[OF AOT_model_term_equiv_part_equivp])1085

next1086

show ‹¬AOT_model_regular x =⇒ ¬ AOT_model_denotes x› for x :: ‹’a×’b›1087

by (metis (mono_tags, lifting) AOT_model_denotes_prod_def case_prod_unfold1088

AOT_model_irregular_nondenoting AOT_model_regular_prod_def)1089

next1090

fix x y :: ‹’a×’b›1091

show ‹AOT_model_term_equiv x y =⇒ AOT_model_denotes x = AOT_model_denotes y›1092

by (metis (mono_tags, lifting) AOT_model_denotes_prod_def case_prod_beta1093

AOT_model_term_equiv_denotes AOT_model_term_equiv_prod_def)1094

next1095

fix x y :: ‹’a×’b›1096

show ‹AOT_model_term_equiv x y =⇒ AOT_model_regular x = AOT_model_regular y›1097

by (induct x; induct y;1098

simp add: AOT_model_term_equiv_prod_def AOT_model_regular_prod_def)1099

(meson AOT_model_term_equiv_denotes AOT_model_term_equiv_regular)1100

next1101

interpret sp: AOT_model_irregular_spec ‹λϕ (x::’a×’b) . εo w . False›1102

AOT_model_regular AOT_model_term_equiv1103

by (simp add: AOT_model_irregular_spec_def AOT_model_proposition_choice_simp)1104

have ex_spec: ‹∃ ϕ :: (’a×’b ⇒ o) ⇒ ’a×’b ⇒ o .1105

AOT_model_irregular_spec ϕ AOT_model_regular AOT_model_term_equiv›1106

using sp.AOT_model_irregular_spec_axioms by blast1107

have some_spec: ‹AOT_model_irregular_spec1108

(SOME ϕ :: (’a×’b ⇒ o) ⇒ ’a×’b ⇒ o .1109

AOT_model_irregular_spec ϕ AOT_model_regular AOT_model_term_equiv)1110

AOT_model_regular AOT_model_term_equiv›1111

using someI_ex[OF ex_spec] by argo1112

interpret sp_some: AOT_model_irregular_spec1113

‹SOME ϕ :: (’a×’b ⇒ o) ⇒ ’a×’b ⇒ o .1114

AOT_model_irregular_spec ϕ AOT_model_regular AOT_model_term_equiv›1115

AOT_model_regular AOT_model_term_equiv1116

using some_spec by blast1117

show ‹AOT_model_irregular_spec (AOT_model_irregular :: (’a×’b ⇒ o) ⇒ ’a×’b ⇒ o)1118

AOT_model_regular AOT_model_term_equiv›1119

proof1120

have ‹¬AOT_model_valid_in w (AOT_model_irregular ϕ (a, b))›1121

for w ϕ and a :: ’a and b :: ’b1122

by (induct arbitrary: ϕ rule: AOT_model_irregular_prod.induct)1123

(auto simp: AOT_model_irregular_false sp_some.AOT_model_irregular_false)1124

140

A.1. Model for the Logic of AOT

thus "¬AOT_model_valid_in w (AOT_model_irregular ϕ x)" for w ϕ and x :: ‹’a×’b›1125

by (induct x)1126

next1127

{1128

fix x1 y1 :: ’a and x2 y2 :: ’b and ϕ :: ‹’a×’b⇒o›1129

assume x1y1_equiv: ‹AOT_model_term_equiv x1 y1›1130

moreover assume x2y2_equiv: ‹AOT_model_term_equiv x2 y2›1131

ultimately have xy_equiv: ‹AOT_model_term_equiv (x1,x2) (y1,y2)›1132

by (simp add: AOT_model_term_equiv_prod_def)1133

{1134

assume ‹AOT_model_denotes x1›1135

moreover hence ‹AOT_model_denotes y1›1136

using AOT_model_term_equiv_denotes AOT_model_term_equiv_regular1137

x1y1_equiv x2y2_equiv by blast1138

ultimately have ‹AOT_model_irregular ϕ (x1,x2) =1139

AOT_model_irregular ϕ (y1,y2)›1140

using AOT_model_irregular_equiv AOT_model_term_equiv_eps(3)1141

x1y1_equiv x2y2_equiv by fastforce1142

}1143

moreover {1144

assume ‹ AOT_model_denotes x1 ∧ AOT_model_denotes x2›1145

moreover hence ‹ AOT_model_denotes y1 ∧ AOT_model_denotes y2›1146

by (meson AOT_model_term_equiv_denotes x1y1_equiv x2y2_equiv)1147

ultimately have ‹AOT_model_irregular ϕ (x1,x2) =1148

AOT_model_irregular ϕ (y1,y2)›1149

using AOT_model_irregular_equiv AOT_model_term_equiv_eps(3)1150

x1y1_equiv x2y2_equiv by fastforce1151

}1152

moreover {1153

assume denotes_x: ‹(¬AOT_model_denotes x1 ∧ ¬AOT_model_denotes x2)›1154

hence denotes_y: ‹(¬AOT_model_denotes y1 ∧ ¬AOT_model_denotes y2)›1155

by (meson AOT_model_term_equiv_denotes AOT_model_term_equiv_regular1156

x1y1_equiv x2y2_equiv)1157

have eps_eq: ‹Eps (AOT_model_term_equiv x1) = Eps (AOT_model_term_equiv y1)›1158

by (simp add: AOT_model_term_equiv_eps(3) x1y1_equiv)1159

have ‹AOT_model_irregular ϕ (x1,x2) = AOT_model_irregular ϕ (y1,y2)›1160

using denotes_x denotes_y1161

using sp_some.AOT_model_irregular_equiv xy_equiv by auto1162

}1163

moreover {1164

assume denotes_x: ‹¬AOT_model_denotes x1 ∧ AOT_model_denotes x2›1165

hence denotes_y: ‹¬AOT_model_denotes y1 ∧ AOT_model_denotes y2›1166

by (meson AOT_model_term_equiv_denotes x1y1_equiv x2y2_equiv)1167

have eps_eq: ‹Eps (AOT_model_term_equiv x2) = Eps (AOT_model_term_equiv y2)›1168

by (simp add: AOT_model_term_equiv_eps(3) x2y2_equiv)1169

have ‹AOT_model_irregular ϕ (x1,x2) = AOT_model_irregular ϕ (y1,y2)›1170

using denotes_x denotes_y1171

using AOT_model_irregular_nondenoting calculation(2) by blast1172

}1173

ultimately have ‹AOT_model_irregular ϕ (x1,x2) = AOT_model_irregular ϕ (y1,y2)›1174

using AOT_model_term_equiv_denotes AOT_model_term_equiv_regular1175

sp_some.AOT_model_irregular_equiv x1y1_equiv x2y2_equiv xy_equiv1176

by blast1177

} note 0 = this1178

show ‹AOT_model_term_equiv x y =⇒1179

AOT_model_irregular ϕ x = AOT_model_irregular ϕ y›1180

for x y :: ‹’a×’b› and ϕ1181

by (induct x; induct y; simp add: AOT_model_term_equiv_prod_def 0)1182

next1183

fix ϕ ψ :: ‹’a×’b ⇒ o›1184

assume ‹AOT_model_regular x =⇒ ϕ x = ψ x› for x1185

hence ‹ϕ (x, y) = ψ (x, y)›1186

if ‹AOT_model_denotes x ∧ AOT_model_regular y ∨1187

141

A. Isabelle Theory

¬AOT_model_denotes x ∧ AOT_model_denotes y› for x y1188

using that unfolding AOT_model_regular_prod_def by simp1189

hence ‹AOT_model_irregular ϕ (x,y) = AOT_model_irregular ψ (x,y)›1190

for x :: ’a and y :: ’b1191

proof (induct arbitrary: ψ ϕ rule: AOT_model_irregular_prod.induct)1192

case (1 x y ϕ)1193

thus ?case1194

apply simp1195

by (meson AOT_model_irregular_eqI AOT_model_irregular_nondenoting1196

AOT_model_term_equiv_denotes AOT_model_term_equiv_eps(1))1197

next1198

case (2 x y ϕ)1199

thus ?case1200

apply simp1201

by (meson AOT_model_irregular_nondenoting AOT_model_term_equiv_denotes1202

AOT_model_term_equiv_eps(1))1203

next1204

case (3 x y ϕ)1205

thus ?case1206

apply simp1207

by (metis (mono_tags, lifting) AOT_model_regular_prod_def case_prod_conv1208

sp_some.AOT_model_irregular_eqI surj_pair)1209

qed1210

thus ‹AOT_model_irregular ϕ x = AOT_model_irregular ψ x› for x :: ‹’a×’b›1211

by (metis surjective_pairing)1212

qed1213

qed1214

end1215

1216

text‹Introduction rules for term equivalence on tuple terms.›1217

lemma AOT_meta_prod_equivI:1218

shows "
∧

(a::’a::AOT_UnaryIndividualTerm) x (y :: ’b::AOT_IndividualTerm) .1219

AOT_model_term_equiv x y =⇒ AOT_model_term_equiv (a,x) (a,y)"1220

and "
∧

(x::’a::AOT_UnaryIndividualTerm) y (b :: ’b::AOT_IndividualTerm) .1221

AOT_model_term_equiv x y =⇒ AOT_model_term_equiv (x,b) (y,b)"1222

unfolding AOT_model_term_equiv_prod_def1223

by (simp add: AOT_model_term_equiv_part_equivp equivp_reflp)+1224

1225

text‹The type of propositions are trivial instances of terms.›1226

1227

instantiation o :: AOT_Term1228

begin1229

definition AOT_model_denotes_o :: ‹o ⇒ bool› where1230

‹AOT_model_denotes_o ≡ λ_. True›1231

instance proof1232

show ‹∃x::o. AOT_model_denotes x›1233

by (simp add: AOT_model_denotes_o_def)1234

qed1235

end1236

1237

text‹AOT’s variables are modelled by restricting the type of terms to those terms1238

that denote.›1239

typedef ’a AOT_var = ‹{ x :: ’a::AOT_Term . AOT_model_denotes x }›1240

morphisms AOT_term_of_var AOT_var_of_term1241

by (simp add: AOT_model_denoting_ex)1242

1243

text‹Simplify automatically generated theorems and rules.›1244

declare AOT_var_of_term_induct[induct del]1245

AOT_var_of_term_cases[cases del]1246

AOT_term_of_var_induct[induct del]1247

AOT_term_of_var_cases[cases del]1248

lemmas AOT_var_of_term_inverse = AOT_var_of_term_inverse[simplified]1249

and AOT_var_of_term_inject = AOT_var_of_term_inject[simplified]1250

142

A.1. Model for the Logic of AOT

and AOT_var_of_term_induct =1251

AOT_var_of_term_induct[simplified, induct type: AOT_var]1252

and AOT_var_of_term_cases =1253

AOT_var_of_term_cases[simplified, cases type: AOT_var]1254

and AOT_term_of_var = AOT_term_of_var[simplified]1255

and AOT_term_of_var_cases =1256

AOT_term_of_var_cases[simplified, induct pred: AOT_term_of_var]1257

and AOT_term_of_var_induct =1258

AOT_term_of_var_induct[simplified, induct pred: AOT_term_of_var]1259

and AOT_term_of_var_inverse = AOT_term_of_var_inverse[simplified]1260

and AOT_term_of_var_inject = AOT_term_of_var_inject[simplified]1261

1262

text‹Equivalence by definition is modelled as necessary equivalence.›1263

consts AOT_model_equiv_def :: ‹o ⇒ o ⇒ bool›1264

specification(AOT_model_equiv_def)1265

AOT_model_equiv_def: ‹AOT_model_equiv_def ϕ ψ = (∀ v . AOT_model_valid_in v ϕ =1266

AOT_model_valid_in v ψ)›1267

by (rule exI[where x=‹λ ϕ ψ . ∀ v . AOT_model_valid_in v ϕ =1268

AOT_model_valid_in v ψ›]) simp1269

1270

text‹Identity by definition is modelled as identity for denoting terms plus1271

co-denoting.›1272

consts AOT_model_id_def :: ‹(’b ⇒ ’a::AOT_Term) ⇒ (’b ⇒ ’a) ⇒ bool›1273

specification(AOT_model_id_def)1274

AOT_model_id_def: ‹(AOT_model_id_def τ σ) = (∀ α . if AOT_model_denotes (σ α)1275

then τ α = σ α1276

else ¬AOT_model_denotes (τ α))›1277

by (rule exI[where x="λ τ σ . ∀ α . if AOT_model_denotes (σ α)1278

then τ α = σ α1279

else ¬AOT_model_denotes (τ α)"])1280

blast1281

text‹To reduce definitions by identity without free variables to definitions1282

by identity with free variables acting on the unit type, we give the unit type1283

a trivial instantiation to @{class AOT_Term}.›1284

instantiation unit :: AOT_Term1285

begin1286

definition AOT_model_denotes_unit :: ‹unit ⇒ bool› where1287

‹AOT_model_denotes_unit ≡ λ_. True›1288

instance proof qed(simp add: AOT_model_denotes_unit_def)1289

end1290

1291

text‹Modally-strict and modally-fragile axioms are as necessary,1292

resp. actually valid propositions.›1293

definition AOT_model_axiom where1294

‹AOT_model_axiom ≡ λ ϕ . ∀ v . AOT_model_valid_in v ϕ›1295

definition AOT_model_act_axiom where1296

‹AOT_model_act_axiom ≡ λ ϕ . AOT_model_valid_in w0 ϕ›1297

1298

lemma AOT_model_axiomI:1299

assumes ‹
∧

v . AOT_model_valid_in v ϕ›1300

shows ‹AOT_model_axiom ϕ›1301

unfolding AOT_model_axiom_def using assms ..1302

1303

lemma AOT_model_act_axiomI:1304

assumes ‹AOT_model_valid_in w0 ϕ›1305

shows ‹AOT_model_act_axiom ϕ›1306

unfolding AOT_model_act_axiom_def using assms .1307

1308

(*<*)1309

end1310

(*>*)1311

143

A. Isabelle Theory

A.2. Outer Syntax Commands
(*<*)1

theory AOT_commands2

imports AOT_model "HOL-Eisbach.Eisbach_Tools"3

keywords "AOT_define" :: thy_decl4

and "AOT_theorem" :: thy_goal5

and "AOT_lemma" :: thy_goal6

and "AOT_act_theorem" :: thy_goal7

and "AOT_act_lemma" :: thy_goal8

9

and "AOT_axiom" :: thy_goal10

and "AOT_act_axiom" :: thy_goal11

12

and "AOT_assume" :: prf_asm % "proof"13

and "AOT_have" :: prf_goal % "proof"14

and "AOT_hence" :: prf_goal % "proof"15

and "AOT_modally_strict {" :: prf_open % "proof"16

and "AOT_actually {" :: prf_open % "proof"17

and "AOT_obtain" :: prf_asm_goal % "proof"18

and "AOT_show" :: prf_asm_goal % "proof"19

and "AOT_thus" :: prf_asm_goal % "proof"20

21

and "AOT_find_theorems" :: diag22

and "AOT_sledgehammer" :: diag23

and "AOT_sledgehammer_only" :: diag24

and "AOT_syntax_print_translations" :: thy_decl25

and "AOT_no_syntax_print_translations" :: thy_decl26

begin27

(*>*)28

29

section‹Outer Syntax Commands›30

31

nonterminal AOT_prop32

nonterminal ϕ33

nonterminal ϕ’34

nonterminal τ35

nonterminal τ’36

nonterminal "AOT_axiom"37

nonterminal "AOT_act_axiom"38

ML_file AOT_keys.ML39

ML_file AOT_commands.ML40

setup‹AOT_Theorems.setup›41

setup‹AOT_Definitions.setup›42

setup‹AOT_no_atp.setup›43

44

(*<*)45

end46

(*>*)47

144

A.3. Approximation of the Syntax of PLM

A.3. Approximation of the Syntax of PLM

(*<*)1

theory AOT_syntax2

imports AOT_commands3

keywords "AOT_register_variable_names" :: thy_decl4

and "AOT_register_metavariable_names" :: thy_decl5

and "AOT_register_premise_set_names" :: thy_decl6

and "AOT_register_type_constraints" :: thy_decl7

abbrevs "actually" = "A"8

and "neccessarily" = "�"9

and "possibly" = "♦"10

and "the" = "ι"11

and "lambda" = "[λ•]"12

and "being such that" = "[λ •]"13

and "forall" = "∀"14

and "exists" = "∃"15

and "equivalent" = "≡"16

and "not" = "¬"17

and "implies" = "→"18

and "equal" = "="19

and "by definition" = "df"20

and "df" = "df"21

and "denotes" = "↓"22

begin23

(*>*)24

25

section‹Approximation of the Syntax of PLM›26

27

locale AOT_meta_syntax28

begin29

notation AOT_model_valid_in ("[_ |= _]")30

notation AOT_model_axiom ("�[_]")31

notation AOT_model_act_axiom ("A[_]")32

end33

locale AOT_no_meta_syntax34

begin35

no_notation AOT_model_valid_in ("[_ |= _]")36

no_notation AOT_model_axiom ("�[_]")37

no_notation AOT_model_act_axiom ("A[_]")38

end39

40

consts AOT_denotes :: ‹’a::AOT_Term ⇒ o›41

AOT_imp :: ‹[o, o] ⇒ o›42

AOT_not :: ‹o ⇒ o›43

AOT_box :: ‹o ⇒ o›44

AOT_act :: ‹o ⇒ o›45

AOT_forall :: ‹(’a::AOT_Term ⇒ o) ⇒ o›46

AOT_eq :: ‹’a::AOT_Term ⇒ ’a::AOT_Term ⇒ o›47

AOT_desc :: ‹(’a::AOT_UnaryIndividualTerm ⇒ o) ⇒ ’a›48

AOT_exe :: ‹<’a::AOT_IndividualTerm> ⇒ ’a ⇒ o›49

AOT_lambda :: ‹(’a::AOT_IndividualTerm ⇒ o) ⇒ <’a>›50

AOT_lambda0 :: ‹o ⇒ o›51

AOT_concrete :: ‹<’a::AOT_UnaryIndividualTerm> AOT_var›52

53

nonterminal κs and Π and Π0 and α and exe_arg and exe_args54

and lambda_args and desc and free_var and free_vars55

and AOT_props and AOT_premises and AOT_world_relative_prop56

57

syntax "_AOT_process_frees" :: ‹ϕ ⇒ ϕ’› ("_")58

"_AOT_verbatim" :: ‹any ⇒ ϕ› (‹«_»›)59

"_AOT_verbatim" :: ‹any ⇒ τ› (‹«_»›)60

"_AOT_quoted" :: ‹ϕ’ ⇒ any› (‹«_»›)61

145

A. Isabelle Theory

"_AOT_quoted" :: ‹τ’ ⇒ any› (‹«_»›)62

"" :: ‹ϕ ⇒ ϕ› (‹’(_’)›)63

"_AOT_process_frees" :: ‹τ ⇒ τ’› ("_")64

"" :: ‹κs ⇒ τ› ("_")65

"" :: ‹Π ⇒ τ› ("_")66

"" :: ‹ϕ ⇒ τ› ("’(_’)")67

"_AOT_term_var" :: ‹id_position ⇒ τ› ("_")68

"_AOT_term_var" :: ‹id_position ⇒ ϕ› ("_")69

"_AOT_exe_vars" :: ‹id_position ⇒ exe_arg› ("_")70

"_AOT_lambda_vars" :: ‹id_position ⇒ lambda_args› ("_")71

"_AOT_var" :: ‹id_position ⇒ α› ("_")72

"_AOT_vars" :: ‹id_position ⇒ any›73

"_AOT_verbatim" :: ‹any ⇒ α› (‹«_»›)74

"_AOT_valid" :: ‹w ⇒ ϕ’ ⇒ bool› (‹[_ |= _]›)75

"_AOT_denotes" :: ‹τ ⇒ ϕ› (‹_↓›)76

"_AOT_imp" :: ‹[ϕ, ϕ] ⇒ ϕ› (infixl ‹→› 25)77

"_AOT_not" :: ‹ϕ ⇒ ϕ› (‹ _› [50] 50)78

"_AOT_not" :: ‹ϕ ⇒ ϕ› (‹¬_› [50] 50)79

"_AOT_box" :: ‹ϕ ⇒ ϕ› (‹�_› [49] 54)80

"_AOT_act" :: ‹ϕ ⇒ ϕ› (‹A_› [49] 54)81

"_AOT_all" :: ‹α ⇒ ϕ ⇒ ϕ› (‹∀_ _› [1,40])82

syntax (input)83

"_AOT_all_ellipse"84

:: ‹id_position ⇒ id_position ⇒ ϕ ⇒ ϕ› (‹∀_...∀_ _› [1,40])85

syntax (output)86

"_AOT_all_ellipse"87

:: ‹id_position ⇒ id_position ⇒ ϕ ⇒ ϕ› (‹∀_...∀_’(_’)› [1,40])88

syntax89

"_AOT_eq" :: ‹[τ, τ] ⇒ ϕ› (infixl ‹=› 50)90

"_AOT_desc" :: ‹α ⇒ ϕ ⇒ desc› ("ι__" [1,1000])91

"" :: ‹desc ⇒ κs› ("_")92

"_AOT_lambda" :: ‹lambda_args ⇒ ϕ ⇒ Π› (‹[λ_ _]›)93

"_explicitRelation" :: ‹τ ⇒ Π› ("[_]")94

"" :: ‹κs ⇒ exe_arg› ("_")95

"" :: ‹exe_arg ⇒ exe_args› ("_")96

"_AOT_exe_args" :: ‹exe_arg ⇒ exe_args ⇒ exe_args› ("__")97

"_AOT_exe_arg_ellipse" :: ‹id_position ⇒ id_position ⇒ exe_arg› ("_..._")98

"_AOT_lambda_arg_ellipse"99

:: ‹id_position ⇒ id_position ⇒ lambda_args› ("_..._")100

"_AOT_term_ellipse" :: ‹id_position ⇒ id_position ⇒ τ› ("_..._")101

"_AOT_exe" :: ‹Π ⇒ exe_args ⇒ ϕ› (‹__›)102

"_AOT_enc" :: ‹exe_args ⇒ Π ⇒ ϕ› (‹__›)103

"_AOT_lambda0" :: ‹ϕ ⇒ Π0› (‹[λ _]›)104

"" :: ‹Π0 ⇒ ϕ› ("_")105

"" :: ‹Π0 ⇒ τ› ("_")106

"_AOT_concrete" :: ‹Π› (‹E!›)107

"" :: ‹any ⇒ exe_arg› ("«_»")108

"" :: ‹desc ⇒ free_var› ("_")109

"" :: ‹Π ⇒ free_var› ("_")110

"_AOT_appl" :: ‹id_position ⇒ free_vars ⇒ ϕ› ("_’{_’}")111

"_AOT_appl" :: ‹id_position ⇒ free_vars ⇒ τ› ("_’{_’}")112

"_AOT_appl" :: ‹id_position ⇒ free_vars ⇒ free_vars› ("_’{_’}")113

"_AOT_appl" :: ‹id_position ⇒ free_vars ⇒ free_vars› ("_’{_’}")114

"_AOT_term_var" :: ‹id_position ⇒ free_var› ("_")115

"" :: ‹any ⇒ free_var› ("«_»")116

"" :: ‹free_var ⇒ free_vars› ("_")117

"_AOT_args" :: ‹free_var ⇒ free_vars ⇒ free_vars› ("_,_")118

"_AOT_free_var_ellipse" :: ‹id_position ⇒ id_position ⇒ free_var› ("_..._")119

syntax "_AOT_premises"120

:: ‹AOT_world_relative_prop ⇒ AOT_premises ⇒ AOT_premises› (infixr ‹,› 3)121

"_AOT_world_relative_prop" :: "ϕ ⇒ AOT_world_relative_prop" ("_")122

"" :: "AOT_world_relative_prop ⇒ AOT_premises" ("_")123

"_AOT_prop" :: ‹AOT_world_relative_prop ⇒ AOT_prop› (‹_›)124

146

A.3. Approximation of the Syntax of PLM

"" :: ‹AOT_prop ⇒ AOT_props› (‹_›)125

"_AOT_derivable" :: "AOT_premises ⇒ ϕ’ ⇒ AOT_prop" (infixl ‹`› 2)126

"_AOT_nec_derivable" :: "AOT_premises ⇒ ϕ’ ⇒ AOT_prop" (infixl ‹`�› 2)127

"_AOT_theorem" :: "ϕ’ ⇒ AOT_prop" (‹` _›)128

"_AOT_nec_theorem" :: "ϕ’ ⇒ AOT_prop" (‹`� _›)129

"_AOT_equiv_def" :: ‹ϕ ⇒ ϕ ⇒ AOT_prop› (infixl ‹≡df› 3)130

"_AOT_axiom" :: "ϕ’ ⇒ AOT_axiom" (‹_›)131

"_AOT_act_axiom" :: "ϕ’ ⇒ AOT_act_axiom" (‹_›)132

"_AOT_axiom" :: "ϕ’ ⇒ AOT_prop" (‹_ ∈ Λ�›)133

"_AOT_act_axiom" :: "ϕ’ ⇒ AOT_prop" (‹_ ∈ Λ›)134

"_AOT_id_def" :: ‹τ ⇒ τ ⇒ AOT_prop› (infixl ‹=df› 3)135

"_AOT_for_arbitrary"136

:: ‹id_position ⇒ AOT_prop ⇒ AOT_prop› (‹for arbitrary _: _› [1000,1] 1)137

syntax (output) "_lambda_args" :: ‹any ⇒ patterns ⇒ patterns› ("__")138

139

translations140

"[w |= ϕ]" => "CONST AOT_model_valid_in w ϕ"141

142

AOT_syntax_print_translations143

"[w |= ϕ]" <= "CONST AOT_model_valid_in w ϕ"144

145

ML_file AOT_syntax.ML146

147

AOT_register_type_constraints148

Individual: ‹_::AOT_UnaryIndividualTerm› ‹_::AOT_IndividualTerm› and149

Proposition: o and150

Relation: ‹<_::AOT_IndividualTerm>› and151

Term: ‹_::AOT_Term›152

153

AOT_register_variable_names154

Individual: x y z ν µ a b c d and155

Proposition: p q r s and156

Relation: F G H P Q R S and157

Term: α β γ δ158

159

AOT_register_metavariable_names160

Individual: κ and161

Proposition: ϕ ψ χ ϑ ζ ξ Θ and162

Relation: Π and163

Term: τ σ164

165

AOT_register_premise_set_names Γ ∆ Λ166

167

parse_ast_translation‹[168

(syntax_const‹_AOT_var›, K AOT_check_var),169

(syntax_const‹_AOT_exe_vars›, K AOT_split_exe_vars),170

(syntax_const‹_AOT_lambda_vars›, K AOT_split_lambda_args)171

]›172

173

translations174

"_AOT_denotes τ" => "CONST AOT_denotes τ"175

"_AOT_imp ϕ ψ" => "CONST AOT_imp ϕ ψ"176

"_AOT_not ϕ" => "CONST AOT_not ϕ"177

"_AOT_box ϕ" => "CONST AOT_box ϕ"178

"_AOT_act ϕ" => "CONST AOT_act ϕ"179

"_AOT_eq τ τ’" => "CONST AOT_eq τ τ’"180

"_AOT_lambda0 ϕ" => "CONST AOT_lambda0 ϕ"181

"_AOT_concrete" => "CONST AOT_term_of_var (CONST AOT_concrete)"182

"_AOT_lambda α ϕ" => "CONST AOT_lambda (_abs α ϕ)"183

"_explicitRelation Π" => "Π"184

185

AOT_syntax_print_translations186

"_AOT_lambda (_lambda_args x y) ϕ" <= "CONST AOT_lambda (_abs (_pattern x y) ϕ)"187

147

A. Isabelle Theory

"_AOT_lambda (_lambda_args x y) ϕ" <= "CONST AOT_lambda (_abs (_patterns x y) ϕ)"188

"_AOT_lambda x ϕ" <= "CONST AOT_lambda (_abs x ϕ)"189

"_lambda_args x (_lambda_args y z)" <= "_lambda_args x (_patterns y z)"190

"_lambda_args (x y z)" <= "_lambda_args (_tuple x (_tuple_arg (_tuple y z)))"191

192

193

AOT_syntax_print_translations194

"_AOT_imp ϕ ψ" <= "CONST AOT_imp ϕ ψ"195

"_AOT_not ϕ" <= "CONST AOT_not ϕ"196

"_AOT_box ϕ" <= "CONST AOT_box ϕ"197

"_AOT_act ϕ" <= "CONST AOT_act ϕ"198

"_AOT_all α ϕ" <= "CONST AOT_forall (_abs α ϕ)"199

"_AOT_all α ϕ" <= "CONST AOT_forall (λα. ϕ)"200

"_AOT_eq τ τ’" <= "CONST AOT_eq τ τ’"201

"_AOT_desc x ϕ" <= "CONST AOT_desc (_abs x ϕ)"202

"_AOT_desc x ϕ" <= "CONST AOT_desc (λx. ϕ)"203

"_AOT_lambda0 ϕ" <= "CONST AOT_lambda0 ϕ"204

"_AOT_concrete" <= "CONST AOT_term_of_var (CONST AOT_concrete)"205

206

translations207

"_AOT_appl ϕ (_AOT_args a b)" => "_AOT_appl (ϕ a) b"208

"_AOT_appl ϕ a" => "ϕ a"209

210

211

parse_translation‹212

[213

(syntax_const‹_AOT_var›, parseVar true),214

(syntax_const‹_AOT_vars›, parseVar false),215

(syntax_const‹_AOT_valid›, fn ctxt => fn [w,x] =>216

const‹AOT_model_valid_in› $ w $ x),217

(syntax_const‹_AOT_quoted›, fn ctxt => fn [x] => x),218

(syntax_const‹_AOT_process_frees›, fn ctxt => fn [x] => processFrees ctxt x),219

(syntax_const‹_AOT_world_relative_prop›, fn ctxt => fn [x] => let220

val (x, premises) = processFreesAndPremises ctxt x221

val (world::formulas) = Variable.variant_frees ctxt [x]222

(("v", dummyT)::(map (fn _ => ("ϕ", dummyT)) premises))223

val term = HOLogic.mk_Trueprop224

(@{const AOT_model_valid_in} $ Free world $ processFrees ctxt x)225

val term = fold (fn (premise,form) => fn trm =>226

@{const "Pure.imp"} $227

HOLogic.mk_Trueprop228

(Const (const_name‹Set.member›, dummyT) $ Free form $ premise) $229

(Term.absfree (Term.dest_Free (dropConstraints premise)) trm $ Free form)230

) (ListPair.zipEq (premises,formulas)) term231

val term = fold (fn (form) => fn trm =>232

Const (const_name‹Pure.all›, dummyT) $233

(Term.absfree form trm)234

) formulas term235

val term = Term.absfree world term236

in term end),237

(syntax_const‹_AOT_prop›, fn ctxt => fn [x] => let238

val world = case (AOT_ProofData.get ctxt) of SOME w => w239

| _ => raise Fail "Expected world to be stored in the proof state."240

in x $ world end),241

(syntax_const‹_AOT_theorem›, fn ctxt => fn [x] =>242

HOLogic.mk_Trueprop (@{const AOT_model_valid_in} $ @{const w0} $ x)),243

(syntax_const‹_AOT_axiom›, fn ctxt => fn [x] =>244

HOLogic.mk_Trueprop (@{const AOT_model_axiom} $ x)),245

(syntax_const‹_AOT_act_axiom›, fn ctxt => fn [x] =>246

HOLogic.mk_Trueprop (@{const AOT_model_act_axiom} $ x)),247

(syntax_const‹_AOT_nec_theorem›, fn ctxt => fn [trm] => let248

val world = singleton (Variable.variant_frees ctxt [trm]) ("v", @{typ w})249

val trm = HOLogic.mk_Trueprop (@{const AOT_model_valid_in} $ Free world $ trm)250

148

A.3. Approximation of the Syntax of PLM

val trm = Term.absfree world trm251

val trm = Const (const_name‹Pure.all›, dummyT) $ trm252

in trm end),253

(syntax_const‹_AOT_derivable›, fn ctxt => fn [x,y] => let254

val world = case (AOT_ProofData.get ctxt) of SOME w => w255

| _ => raise Fail "Expected world to be stored in the proof state."256

in foldPremises world x y end),257

(syntax_const‹_AOT_nec_derivable›, fn ctxt => fn [x,y] => let258

in Const (const_name‹Pure.all›, dummyT) $259

Abs ("v", dummyT, foldPremises (Bound 0) x y) end),260

(syntax_const‹_AOT_for_arbitrary›, fn ctxt => fn [_ $ var $ pos,trm] => let261

val trm = Const (const_name‹Pure.all›, dummyT) $262

(Const ("_constrainAbs", dummyT) $ Term.absfree (Term.dest_Free var) trm $ pos)263

in trm end),264

(syntax_const‹_AOT_equiv_def›, parseEquivDef),265

(syntax_const‹_AOT_exe›, parseExe),266

(syntax_const‹_AOT_enc›, parseEnc)267

]268

›269

270

parse_ast_translation‹271

[272

(syntax_const‹_AOT_exe_arg_ellipse›, parseEllipseList "_AOT_term_vars"),273

(syntax_const‹_AOT_lambda_arg_ellipse›, parseEllipseList "_AOT_vars"),274

(syntax_const‹_AOT_free_var_ellipse›, parseEllipseList "_AOT_term_vars"),275

(syntax_const‹_AOT_term_ellipse›, parseEllipseList "_AOT_term_vars"),276

(syntax_const‹_AOT_all_ellipse›, fn ctx => fn [a,b,c] =>277

Ast.mk_appl (Ast.Constant const_name‹AOT_forall›) [278

Ast.mk_appl (Ast.Constant "_abs") [parseEllipseList "_AOT_vars" ctx [a,b],c]279

])280

]281

›282

283

syntax (output)284

"_AOT_individual_term" :: ‹’a ⇒ tuple_args› ("_")285

"_AOT_individual_terms" :: ‹tuple_args ⇒ tuple_args ⇒ tuple_args› ("__")286

"_AOT_relation_term" :: ‹’a ⇒ Π›287

"_AOT_any_term" :: ‹’a ⇒ τ›288

289

290

print_ast_translation‹AOT_syntax_print_ast_translations[291

(syntax_const‹_AOT_individual_term›, AOT_print_individual_term),292

(syntax_const‹_AOT_relation_term›, AOT_print_relation_term),293

(syntax_const‹_AOT_any_term›, AOT_print_generic_term)294

]›295

296

AOT_syntax_print_translations297

"_AOT_individual_terms (_AOT_individual_term x) (_AOT_individual_terms (_tuple y z))"298

<= "_AOT_individual_terms (_tuple x (_tuple_args y z))"299

"_AOT_individual_terms (_AOT_individual_term x) (_AOT_individual_term y)"300

<= "_AOT_individual_terms (_tuple x (_tuple_arg y))"301

"_AOT_individual_terms (_tuple x y)" <= "_AOT_individual_term (_tuple x y)"302

"_AOT_exe (_AOT_relation_term Π) (_AOT_individual_term κ)" <= "CONST AOT_exe Π κ"303

"_AOT_denotes (_AOT_any_term κ)" <= "CONST AOT_denotes κ"304

305

AOT_define AOT_conj :: ‹[ϕ, ϕ] ⇒ ϕ› (infixl ‹&› 35) ‹ϕ & ψ ≡df ¬(ϕ → ¬ψ)›306

declare "AOT_conj"[AOT del, AOT_defs del]307

AOT_define AOT_disj :: ‹[ϕ, ϕ] ⇒ ϕ› (infixl ‹∨› 35) ‹ϕ ∨ ψ ≡df ¬ϕ → ψ›308

declare "AOT_disj"[AOT del, AOT_defs del]309

AOT_define AOT_equiv :: ‹[ϕ, ϕ] ⇒ ϕ› (infix ‹≡› 20) ‹ϕ ≡ ψ ≡df (ϕ → ψ) & (ψ → ϕ)›310

declare "AOT_equiv"[AOT del, AOT_defs del]311

AOT_define AOT_dia :: ‹ϕ ⇒ ϕ› (‹♦_› [49] 54) ‹♦ϕ ≡df ¬�¬ϕ›312

declare "AOT_dia"[AOT del, AOT_defs del]313

149

A. Isabelle Theory

314

context AOT_meta_syntax315

begin316

notation AOT_dia ("♦_" [49] 54)317

notation AOT_conj (infixl ‹&› 35)318

notation AOT_disj (infixl ‹∨› 35)319

notation AOT_equiv (infixl ‹≡› 20)320

end321

context AOT_no_meta_syntax322

begin323

no_notation AOT_dia ("♦_" [49] 54)324

no_notation AOT_conj (infixl ‹&› 35)325

no_notation AOT_disj (infixl ‹∨› 35)326

no_notation AOT_equiv (infixl ‹≡› 20)327

end328

329

330

print_translation ‹331

AOT_syntax_print_translations332

[333

AOT_preserve_binder_abs_tr’334

const_syntax‹AOT_forall›335

syntax_const‹_AOT_all›336

(syntax_const‹_AOT_all_ellipse›, true)337

const_name‹AOT_imp›,338

AOT_binder_trans @{theory} @{binding "AOT_forall_binder"} syntax_const‹_AOT_all›,339

Syntax_Trans.preserve_binder_abs_tr’340

const_syntax‹AOT_desc›341

syntax_const‹_AOT_desc›,342

AOT_binder_trans @{theory} @{binding "AOT_desc_binder"} syntax_const‹_AOT_desc›,343

AOT_preserve_binder_abs_tr’344

const_syntax‹AOT_lambda›345

syntax_const‹_AOT_lambda›346

(syntax_const‹_AOT_lambda_arg_ellipse›, false)347

const_name‹undefined›,348

AOT_binder_trans349

@{theory}350

@{binding "AOT_lambda_binder"}351

syntax_const‹_AOT_lambda›352

]353

›354

355

parse_translation‹356

[(syntax_const‹_AOT_id_def›, parseIdDef)]357

›358

359

parse_ast_translation‹[360

(syntax_const‹_AOT_all›,361

AOT_restricted_binder const_name‹AOT_forall› const_name‹AOT_imp›),362

(syntax_const‹_AOT_desc›,363

AOT_restricted_binder const_name‹AOT_desc› const_name‹AOT_conj›)364

]›365

366

AOT_define AOT_exists :: ‹α ⇒ ϕ ⇒ ϕ› ‹«AOT_exists ϕ» ≡df ¬∀α ¬ϕ{α}›367

declare AOT_exists[AOT del, AOT_defs del]368

syntax "_AOT_exists" :: ‹α ⇒ ϕ ⇒ ϕ› ("∃_ _" [1,40])369

370

AOT_syntax_print_translations371

"_AOT_exists α ϕ" <= "CONST AOT_exists (_abs α ϕ)"372

"_AOT_exists α ϕ" <= "CONST AOT_exists (λα. ϕ)"373

374

parse_ast_translation‹375

[(syntax_const‹_AOT_exists›,376

150

A.3. Approximation of the Syntax of PLM

AOT_restricted_binder const_name‹AOT_exists› const_name‹AOT_conj›)]377

›378

379

context AOT_meta_syntax380

begin381

notation AOT_exists (binder "∃" 8)382

end383

context AOT_no_meta_syntax384

begin385

no_notation AOT_exists (binder "∃" 8)386

end387

388

389

syntax (input)390

"_AOT_exists_ellipse" :: ‹id_position ⇒ id_position ⇒ ϕ ⇒ ϕ› (‹∃_...∃_ _› [1,40])391

syntax (output)392

"_AOT_exists_ellipse" :: ‹id_position ⇒ id_position ⇒ ϕ ⇒ ϕ› (‹∃_...∃_ ’(_’)› [1,40])393

parse_ast_translation‹[(syntax_const‹_AOT_exists_ellipse›, fn ctx => fn [a,b,c] =>394

Ast.mk_appl (Ast.Constant "AOT_exists")395

[Ast.mk_appl (Ast.Constant "_abs") [parseEllipseList "_AOT_vars" ctx [a,b],c]])]›396

print_translation‹AOT_syntax_print_translations [397

AOT_preserve_binder_abs_tr’398

const_syntax‹AOT_exists›399

syntax_const‹_AOT_exists›400

(syntax_const‹_AOT_exists_ellipse›,true) const_name‹AOT_conj›,401

AOT_binder_trans402

@{theory}403

@{binding "AOT_exists_binder"}404

syntax_const‹_AOT_exists›405

]›406

407

408

409

syntax "_AOT_DDDOT" :: "ϕ" ("...")410

syntax "_AOT_DDDOT" :: "ϕ" (". . .")411

parse_translation‹[(syntax_const‹_AOT_DDDOT›, parseDDOT)]›412

413

print_translation‹AOT_syntax_print_translations414

[(const_syntax‹Pure.all›, fn ctxt => fn [Abs (_, _,415

Const (const_syntax‹HOL.Trueprop›, _) $416

(Const (const_syntax‹AOT_model_valid_in›, _) $ Bound 0 $ y))] => let417

val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)418

in (Const (syntax_const‹_AOT_nec_theorem›, dummyT) $ y) end419

| [p as Abs (name, _,420

Const (const_syntax‹HOL.Trueprop›, _) $421

(Const (const_syntax‹AOT_model_valid_in›, _) $ w $ y))]422

=> (Const (syntax_const‹_AOT_for_arbitrary›, dummyT) $423

(Const ("_bound", dummyT) $ Free (name, dummyT)) $424

(Term.betapply (p, (Const ("_bound", dummyT) $ Free (name, dummyT)))))425

),426

427

(const_syntax‹AOT_model_valid_in›, fn ctxt =>428

fn [w as (Const ("_free", _) $ Free (v, _)), y] => let429

val is_world = (case (AOT_ProofData.get ctxt)430

of SOME (Free (w, _)) => Name.clean w = Name.clean v | _ => false)431

val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)432

in if is_world then y else Const (syntax_const‹_AOT_valid›, dummyT) $ w $ y end433

| [Const (const_syntax‹w0›, _), y] => let434

val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)435

in case (AOT_ProofData.get ctxt) of SOME (Const (const_name‹w0›, _)) => y |436

_ => Const (syntax_const‹_AOT_theorem›, dummyT) $ y end437

| [Const ("_var", _) $ _, y] => let438

val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)439

151

A. Isabelle Theory

in Const (syntax_const‹_AOT_nec_theorem›, dummyT) $ y end440

),441

(const_syntax‹AOT_model_axiom›, fn ctxt => fn [trm] =>442

Const (syntax_const‹_AOT_axiom›, dummyT) $443

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ trm)),444

(const_syntax‹AOT_model_act_axiom›, fn ctxt => fn [trm] =>445

Const (syntax_const‹_AOT_axiom›, dummyT) $446

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ trm)),447

(syntax_const‹_AOT_process_frees›, fn _ => fn [t] => let448

fun mapAppls (x as Const ("_free", _) $449

Free (_, Type ("_ignore_type", [Type ("fun", _)])))450

= (Const ("_AOT_raw_appl", dummyT) $ x)451

| mapAppls (x as Const ("_free", _) $ Free (_, Type ("fun", _)))452

= (Const ("_AOT_raw_appl", dummyT) $ x)453

| mapAppls (x as Const ("_var", _) $454

Var (_, Type ("_ignore_type", [Type ("fun", _)])))455

= (Const ("_AOT_raw_appl", dummyT) $ x)456

| mapAppls (x as Const ("_var", _) $ Var (_, Type ("fun", _)))457

= (Const ("_AOT_raw_appl", dummyT) $ x)458

| mapAppls (x $ y) = mapAppls x $ mapAppls y459

| mapAppls (Abs (x,y,z)) = Abs (x,y, mapAppls z)460

| mapAppls x = x461

in mapAppls t end462

)463

]464

›465

466

print_ast_translation‹AOT_syntax_print_ast_translations467

let468

fun handleTermOfVar x kind name = (469

let470

val _ = case kind of "_free" => () | "_var" => () | "_bound" => () | _ => raise Match471

in472

case printVarKind name473

of (SingleVariable name) => Ast.Appl [Ast.Constant kind, Ast.Variable name]474

| (Ellipses (s, e)) => Ast.Appl [Ast.Constant "_AOT_free_var_ellipse",475

Ast.Appl [Ast.Constant kind, Ast.Variable s],476

Ast.Appl [Ast.Constant kind, Ast.Variable e]477

]478

| Verbatim name => Ast.mk_appl (Ast.Constant "_AOT_quoted")479

[Ast.mk_appl (Ast.Constant "_AOT_term_of_var") [x]]480

end481

)482

fun termOfVar ctxt (Ast.Appl [Ast.Constant "_constrain",483

x as Ast.Appl [Ast.Constant kind, Ast.Variable name], _]) = termOfVar ctxt x484

| termOfVar ctxt (x as Ast.Appl [Ast.Constant kind, Ast.Variable name])485

= handleTermOfVar x kind name486

| termOfVar ctxt (x as Ast.Appl [Ast.Constant rep, y]) = (487

let488

val (restr,_) = Local_Theory.raw_theory_result (fn thy => (489

let490

val restrs = Symtab.dest (AOT_Restriction.get thy)491

val restr = List.find (fn (n,(_,Const (c,t))) => (492

c = rep orelse c = Lexicon.unmark_const rep) | _ => false) restrs493

in494

(restr,thy)495

end496

)) ctxt497

in498

case restr of SOME r => Ast.Appl [Ast.Constant (const_syntax‹AOT_term_of_var›), y]499

| _ => raise Match500

end)501

502

152

A.3. Approximation of the Syntax of PLM

in503

[(const_syntax‹AOT_term_of_var›, fn ctxt => fn [x] => termOfVar ctxt x),504

("_AOT_raw_appl", fn ctxt => fn t::a::args => let505

fun applyTermOfVar (t as Ast.Appl (Ast.Constant const_syntax‹AOT_term_of_var›::[x]))506

= (case try (termOfVar ctxt) x of SOME y => y | _ => t)507

| applyTermOfVar y = (case try (termOfVar ctxt) y of SOME x => x | _ => y)508

val ts = fold (fn a => fn b => Ast.mk_appl (Ast.Constant syntax_const‹_AOT_args›)509

[b,applyTermOfVar a]) args (applyTermOfVar a)510

in Ast.mk_appl (Ast.Constant syntax_const‹_AOT_appl›) [t,ts] end)]511

end512

›513

514

context AOT_meta_syntax515

begin516

notation AOT_denotes ("_↓")517

notation AOT_imp (infixl "→" 25)518

notation AOT_not ("¬_" [50] 50)519

notation AOT_box ("�_" [49] 54)520

notation AOT_act ("A_" [49] 54)521

notation AOT_forall (binder "∀" 8)522

notation AOT_eq (infixl "=" 50)523

notation AOT_desc (binder "ι" 100)524

notation AOT_lambda (binder "λ" 100)525

notation AOT_lambda0 ("[λ _]")526

notation AOT_exe ("(|_,_|)")527

notation AOT_model_equiv_def (infixl "≡df" 10)528

notation AOT_model_id_def (infixl "=df" 10)529

notation AOT_term_of_var ("〈_〉")530

notation AOT_concrete ("E!")531

end532

context AOT_no_meta_syntax533

begin534

no_notation AOT_denotes ("_↓")535

no_notation AOT_imp (infixl "→" 25)536

no_notation AOT_not ("¬_" [50] 50)537

no_notation AOT_box ("�_" [49] 54)538

no_notation AOT_act ("A_" [49] 54)539

no_notation AOT_forall (binder "∀" 8)540

no_notation AOT_eq (infixl "=" 50)541

no_notation AOT_desc (binder "ι" 100)542

no_notation AOT_lambda (binder "λ" 100)543

no_notation AOT_lambda0 ("[λ _]")544

no_notation AOT_exe ("(|_,_|)")545

no_notation AOT_model_equiv_def (infixl "≡df" 10)546

no_notation AOT_model_id_def (infixl "=df" 10)547

no_notation AOT_term_of_var ("〈_〉")548

no_notation AOT_concrete ("E!")549

end550

551

bundle AOT_syntax552

begin553

declare[[show_AOT_syntax=true, show_question_marks=false, eta_contract=false]]554

end555

556

bundle AOT_no_syntax557

begin558

declare[[show_AOT_syntax=false, show_question_marks=true]]559

end560

561

parse_translation‹562

[("_AOT_restriction", fn ctxt => fn [Const (name,_)] =>563

let564

val (restr, ctxt) = ctxt |> Local_Theory.raw_theory_result565

153

A. Isabelle Theory

(fn thy => (Option.map fst (Symtab.lookup (AOT_Restriction.get thy) name), thy))566

val restr = case restr of SOME x => x567

| _ => raise Fail ("Unknown restricted type: " ˆ name)568

in restr end569

)]570

›571

572

print_translation‹573

AOT_syntax_print_translations574

[575

(const_syntax‹AOT_model_equiv_def›, fn ctxt => fn [x,y] =>576

Const (syntax_const‹_AOT_equiv_def›, dummyT) $577

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ x) $578

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ y))579

]580

›581

582

print_translation‹583

AOT_syntax_print_translations [584

(const_syntax‹AOT_model_id_def›, fn ctxt =>585

fn [lhs as Abs (lhsName, lhsTy, lhsTrm), rhs as Abs (rhsName, rhsTy, rhsTrm)] =>586

let587

val (name,_) = Name.variant lhsName588

(Term.declare_term_names rhsTrm (Term.declare_term_names lhsTrm Name.context));589

val lhs = Term.betapply (lhs, Const ("_bound", dummyT) $ Free (name, lhsTy))590

val rhs = Term.betapply (rhs, Const ("_bound", dummyT) $ Free (name, rhsTy))591

in592

Const (const_syntax‹AOT_model_id_def›, dummyT) $ lhs $ rhs593

end594

| [Const (const_syntax‹case_prod›, _) $ lhs,595

Const (const_syntax‹case_prod›, _) $ rhs] =>596

Const (const_syntax‹AOT_model_id_def›, dummyT) $ lhs $ rhs597

| [Const (const_syntax‹case_unit›, _) $ lhs,598

Const (const_syntax‹case_unit›, _) $ rhs] =>599

Const (const_syntax‹AOT_model_id_def›, dummyT) $ lhs $ rhs600

| [x, y] =>601

Const (syntax_const‹_AOT_id_def›, dummyT) $602

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ x) $603

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)604

)]›605

606

text‹Special marker for printing propositions as theorems607

and for pretty-printing AOT terms.›608

definition print_as_theorem :: ‹o ⇒ bool› where609

‹print_as_theorem ≡ λ ϕ . ∀v . [v |= ϕ]›610

lemma print_as_theoremI:611

assumes ‹
∧

v . [v |= ϕ]›612

shows ‹print_as_theorem ϕ›613

using assms by (simp add: print_as_theorem_def)614

attribute_setup print_as_theorem =615

‹Scan.succeed (Thm.rule_attribute []616

(K (fn thm => thm RS @{thm print_as_theoremI})))›617

"Print as theorem."618

print_translation‹AOT_syntax_print_translations [619

(const_syntax‹print_as_theorem›, fn ctxt => fn [x] =>620

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ x))621

]›622

623

definition print_term :: ‹’a ⇒ ’a› where ‹print_term ≡ λ x . x›624

syntax "_AOT_print_term" :: ‹τ ⇒ ’a› (‹AOT’_TERM[_]›)625

translations626

"_AOT_print_term ϕ" => "CONST print_term (_AOT_process_frees ϕ)"627

print_translation‹AOT_syntax_print_translations [628

154

A.3. Approximation of the Syntax of PLM

(const_syntax‹print_term›, fn ctxt => fn [x] =>629

(Const (syntax_const‹_AOT_process_frees›, dummyT) $ x))630

]›631

632

633

(* To enable meta syntax: *)634

(* interpretation AOT_meta_syntax. *)635

(* To disable meta syntax: *)636

interpretation AOT_no_meta_syntax.637

638

(* To enable AOT syntax (takes precedence over meta syntax;639

can be done locally using "including" or "include"): *)640

unbundle AOT_syntax641

(* To disable AOT syntax (restoring meta syntax or no syntax;642

can be done locally using "including" or "include"): *)643

(* unbundle AOT_no_syntax *)644

645

(*<*)646

end647

(*>*)648

649

155

A. Isabelle Theory

A.4. Semantics

(*<*)1

theory AOT_semantics2

imports AOT_syntax3

begin4

(*>*)5

6

section‹Abstract Semantics for AOT›7

8

specification(AOT_denotes)9

– ‹Relate object level denoting to meta-denoting. AOT’s definitions of10

denoting will become derivable at each type.›11

AOT_sem_denotes: ‹[w |= τ↓] = AOT_model_denotes τ›12

by (rule exI[where x=‹λ τ . εo w . AOT_model_denotes τ›])13

(simp add: AOT_model_proposition_choice_simp)14

15

lemma AOT_sem_var_induct[induct type: AOT_var]:16

assumes AOT_denoting_term_case: ‹
∧

τ . [v |= τ↓] =⇒ [v |= ϕ{τ}]›17

shows ‹[v |= ϕ{α}]›18

by (simp add: AOT_denoting_term_case AOT_sem_denotes AOT_term_of_var)19

20

text‹\linelabel{AOT_imp_spec}›21

specification(AOT_imp)22

AOT_sem_imp: ‹[w |= ϕ → ψ] = ([w |= ϕ] −→ [w |= ψ])›23

by (rule exI[where x=‹λ ϕ ψ . εo w . ([w |= ϕ] −→ [w |= ψ])›])24

(simp add: AOT_model_proposition_choice_simp)25

26

specification(AOT_not)27

AOT_sem_not: ‹[w |= ¬ϕ] = (¬[w |= ϕ])›28

by (rule exI[where x=‹λ ϕ . εo w . ¬[w |= ϕ]›])29

(simp add: AOT_model_proposition_choice_simp)30

31

text‹\linelabel{AOT_box_spec}›32

specification(AOT_box)33

AOT_sem_box: ‹[w |= �ϕ] = (∀ w . [w |= ϕ])›34

by (rule exI[where x=‹λ ϕ . εo w . ∀ w . [w |= ϕ]›])35

(simp add: AOT_model_proposition_choice_simp)36

37

text‹\linelabel{AOT_act_spec}›38

specification(AOT_act)39

AOT_sem_act: ‹[w |= Aϕ] = [w0 |= ϕ]›40

by (rule exI[where x=‹λ ϕ . εo w . [w0 |= ϕ]›])41

(simp add: AOT_model_proposition_choice_simp)42

43

text‹Derived semantics for basic defined connectives.›44

lemma AOT_sem_conj: ‹[w |= ϕ & ψ] = ([w |= ϕ] ∧ [w |= ψ])›45

using AOT_conj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto46

lemma AOT_sem_equiv: ‹[w |= ϕ ≡ ψ] = ([w |= ϕ] = [w |= ψ])›47

using AOT_equiv AOT_sem_conj AOT_model_equiv_def AOT_sem_imp by auto48

lemma AOT_sem_disj: ‹[w |= ϕ ∨ ψ] = ([w |= ϕ] ∨ [w |= ψ])›49

using AOT_disj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto50

lemma AOT_sem_dia: ‹[w |= ♦ϕ] = (∃ w . [w |= ϕ])›51

using AOT_dia AOT_sem_box AOT_model_equiv_def AOT_sem_not by auto52

53

specification(AOT_forall)54

AOT_sem_forall: ‹[w |= ∀α ϕ{α}] = (∀ τ . [w |= τ↓] −→ [w |= ϕ{τ}])›55

by (rule exI[where x=‹λ op . εo w . ∀ τ . [w |= τ↓] −→ [w |= «op τ»]›])56

(simp add: AOT_model_proposition_choice_simp)57

58

lemma AOT_sem_exists: ‹[w |= ∃α ϕ{α}] = (∃ τ . [w |= τ↓] ∧ [w |= ϕ{τ}])›59

unfolding AOT_exists[unfolded AOT_model_equiv_def, THEN spec]60

by (simp add: AOT_sem_forall AOT_sem_not)61

156

A.4. Semantics

62

text‹\linelabel{AOT_eq_spec}›63

specification(AOT_eq)64

– ‹Relate identity to denoting identity in the meta-logic. AOT’s definitions65

of identity will become derivable at each type.›66

AOT_sem_eq: ‹[w |= τ = τ’] = ([w |= τ↓] ∧ [w |= τ’↓] ∧ τ = τ’)›67

by (rule exI[where x=‹λ τ τ’ . εo w . [w |= τ↓] ∧ [w |= τ’↓] ∧ τ = τ’›])68

(simp add: AOT_model_proposition_choice_simp)69

70

text‹\linelabel{AOT_desc_spec}›71

specification(AOT_desc)72

– ‹Descriptions denote, if there is a unique denoting object satisfying the73

matrix in the actual world.›74

AOT_sem_desc_denotes: ‹[w |= ιx(ϕ{x})↓] = (∃! κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}])›75

– ‹Denoting descriptions satisfy their matrix in the actual world.›76

AOT_sem_desc_prop: ‹[w |= ιx(ϕ{x})↓] =⇒ [w0 |= ϕ{ιx(ϕ{x})}]›77

– ‹Uniqueness of denoting descriptions.›78

AOT_sem_desc_unique: ‹[w |= ιx(ϕ{x})↓] =⇒ [w |= κ↓] =⇒ [w0 |= ϕ{κ}] =⇒79

[w |= ιx(ϕ{x}) = κ]›80

proof -81

have ‹∃x::’a . ¬AOT_model_denotes x›82

using AOT_model_nondenoting_ex83

by blast84

text‹Note that we may choose a distinct non-denoting object for each matrix.85

We do this explicitly merely to convince ourselves that our specification86

can still be satisfied.›87

then obtain nondenoting :: ‹(’a ⇒ o) ⇒ ’a› where88

nondenoting: ‹∀ ϕ . ¬AOT_model_denotes (nondenoting ϕ)›89

by fast90

define desc where91

‹desc = (λ ϕ . if (∃! κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}])92

then (THE κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}])93

else nondenoting ϕ)›94

{95

fix ϕ :: ‹’a ⇒ o›96

assume ex1: ‹∃! κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}]›97

then obtain κ where x_prop: "[w0 |= κ↓] ∧ [w0 |= ϕ{κ}]"98

unfolding AOT_sem_denotes by blast99

moreover have "(desc ϕ) = κ"100

unfolding desc_def using x_prop ex1 by fastforce101

ultimately have "[w0 |= «desc ϕ»↓] ∧ [w0 |= «ϕ (desc ϕ)»]"102

by blast103

} note 1 = this104

moreover {105

fix ϕ :: ‹’a ⇒ o›106

assume nex1: ‹6 ∃! κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}]›107

hence "(desc ϕ) = nondenoting ϕ" by (simp add: desc_def AOT_sem_denotes)108

hence "[w |= ¬«desc ϕ»↓]" for w109

by (simp add: AOT_sem_denotes nondenoting AOT_sem_not)110

}111

ultimately have desc_denotes_simp:112

‹[w |= «desc ϕ»↓] = (∃! κ . [w0 |= κ↓] ∧ [w0 |= ϕ{κ}])› for ϕ w113

by (simp add: AOT_sem_denotes desc_def nondenoting)114

have ‹(∀ϕ w. [w |= «desc ϕ»↓] = (∃!κ. [w0 |= κ↓] ∧ [w0 |= ϕ{κ}])) ∧115

(∀ϕ w. [w |= «desc ϕ»↓] −→ [w0 |= «ϕ (desc ϕ)»]) ∧116

(∀ϕ w κ. [w |= «desc ϕ»↓] −→ [w |= κ↓] −→ [w0 |= ϕ{κ}] −→117

[w |= «desc ϕ» = κ])›118

by (insert 1; auto simp: desc_denotes_simp AOT_sem_eq AOT_sem_denotes119

desc_def nondenoting)120

thus ?thesis121

by (safe intro!: exI[where x=desc]; presburger)122

qed123

124

157

A. Isabelle Theory

text‹\linelabel{AOT_exe_lambda_spec}›125

specification(AOT_exe AOT_lambda)126

– ‹Truth conditions of exemplification formulas.›127

AOT_sem_exe: ‹[w |= [Π]κ1...κn] = ([w |= Π↓] ∧ [w |= κ1...κn↓] ∧128

[w |= «Rep_rel Π κ1κn»])›129

– ‹η-conversion for denoting terms; equivalent to AOT’s axiom›130

AOT_sem_lambda_eta: ‹[w |= Π↓] =⇒ [w |= [λν1...νn [Π]ν1...νn] = Π]›131

– ‹β-conversion; equivalent to AOT’s axiom›132

AOT_sem_lambda_beta: ‹[w |= [λν1...νn ϕ{ν1...νn}]↓] =⇒ [w |= κ1...κn↓] =⇒133

[w |= [λν1...νn ϕ{ν1...νn}]κ1...κn] = [w |= ϕ{κ1...κn}]›134

– ‹Necessary and sufficient conditions for relations to denote. Equivalent135

to a theorem of AOT and used to derive the base cases of denoting relations136

(cqt.2).›137

AOT_sem_lambda_denotes: ‹[w |= [λν1...νn ϕ{ν1...νn}]↓] =138

(∀ v κ1κn κ1’κn’ . [v |= κ1...κn↓] ∧ [v |= κ1’...κn’↓] ∧139

(∀ Π v . [v |= Π↓] −→ [v |= [Π]κ1...κn] = [v |= [Π]κ1’...κn’]) −→140

[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}])›141

– ‹Equivalent to AOT’s coexistence axiom.›142

AOT_sem_lambda_coex: ‹[w |= [λν1...νn ϕ{ν1...νn}]↓] =⇒143

(∀ w κ1κn . [w |= κ1...κn↓] −→ [w |= ϕ{κ1...κn}] = [w |= ψ{κ1...κn}]) =⇒144

[w |= [λν1...νn ψ{ν1...νn}]↓]›145

– ‹Only the unary case of the following should hold, but our specification146

has to range over all types. We might move @{const AOT_exe} and147

@{const AOT_lambda} to type classes in the future to solve this.›148

AOT_sem_lambda_eq_prop_eq: ‹«[λν1...νn ϕ]» = «[λν1...νn ψ]» =⇒ ϕ = ψ›149

– ‹The following is solely required for validating n-ary relation identity150

and has the danger of implying artifactual theorems. Possibly avoidable151

by moving @{const AOT_exe} and @{const AOT_lambda} to type classes.›152

AOT_sem_exe_denoting: ‹[w |= Π↓] =⇒ AOT_exe Π κs = Rep_rel Π κs›153

– ‹The following is required for validating the base cases of denoting154

relations (cqt.2). A version of this meta-logical identity will155

become derivable in future versions of AOT, so this will ultimately not156

result in artifactual theorems.›157

AOT_sem_exe_equiv: ‹AOT_model_term_equiv x y =⇒ AOT_exe Π x = AOT_exe Π y›158

proof -159

have ‹∃ x :: <’a> . ¬AOT_model_denotes x›160

by (rule exI[where x=‹Abs_rel (λ x . εo w. True)›])161

(meson AOT_model_denotes_rel.abs_eq AOT_model_nondenoting_ex162

AOT_model_proposition_choice_simp)163

define exe :: ‹<’a> ⇒ ’a ⇒ o› where164

‹exe ≡ λ Π κs . if AOT_model_denotes Π165

then Rep_rel Π κs166

else (εo w . False)›167

define lambda :: ‹(’a⇒o) ⇒ <’a>› where168

‹lambda ≡ λ ϕ . if AOT_model_denotes (Abs_rel ϕ)169

then (Abs_rel ϕ)170

else171

if (∀ κ κ’ w . (AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ’) −→172

[w |= «ϕ κ»] = [w |= «ϕ κ’»])173

then174

Abs_rel (fix_irregular (λ x . if AOT_model_denotes x175

then ϕ (SOME y . AOT_model_term_equiv x y)176

else (εo w . False)))177

else178

Abs_rel ϕ›179

have fix_irregular_denoting_simp[simp]:180

‹fix_irregular (λx. if AOT_model_denotes x then ϕ x else ψ x) κ = ϕ κ›181

if ‹AOT_model_denotes κ›182

for κ :: ’a and ϕ ψ183

by (simp add: that fix_irregular_denoting)184

have denoting_eps_cong[cong]:185

‹[w |= «ϕ (Eps (AOT_model_term_equiv κ))»] = [w |= «ϕ κ»]›186

if ‹AOT_model_denotes κ›187

158

A.4. Semantics

and ‹∀ κ κ’. AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ’ −→188

(∀w. [w |= «ϕ κ»] = [w |= «ϕ κ’»])›189

for w :: w and κ :: ’a and ϕ :: ‹’a⇒o›190

using that AOT_model_term_equiv_eps(2) by blast191

have exe_rep_rel: ‹[w |= «exe Π κ1κn»] = ([w |= Π↓] ∧ [w |= κ1...κn↓] ∧192

[w |= «Rep_rel Π κ1κn»])› for w Π κ1κn193

by (metis AOT_model_denotes_rel.rep_eq exe_def AOT_sem_denotes194

AOT_model_proposition_choice_simp)195

moreover have ‹[w |= «Π»↓] =⇒ [w |= «lambda (exe Π)» = «Π»]› for Π w196

by (auto simp: Rep_rel_inverse lambda_def AOT_sem_denotes AOT_sem_eq197

AOT_model_denotes_rel_def Abs_rel_inverse exe_def)198

moreover have lambda_denotes_beta:199

‹[w |= «exe (lambda ϕ) κ »] = [w |= «ϕ κ»]›200

if ‹[w |= «lambda ϕ»↓]› and ‹[w |= «κ»↓]›201

for ϕ κ w202

using that unfolding exe_def AOT_sem_denotes203

by (auto simp: lambda_def Abs_rel_inverse split: if_split_asm)204

moreover have lambda_denotes_simp:205

‹[w |= «lambda ϕ»↓] = (∀ v κ1κn κ1’κn’ . [v |= κ1...κn↓] ∧ [v |= κ1’...κn’↓] ∧206

(∀ Π v . [v |= Π↓] −→ [v |= «exe Π κ1κn»] = [v |= «exe Π κ1’κn’»]) −→207

[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}])› for ϕ w208

proof209

assume ‹[w |= «lambda ϕ»↓]›210

hence ‹AOT_model_denotes (lambda ϕ)›211

unfolding AOT_sem_denotes by simp212

moreover have ‹[w |= «ϕ κ»] =⇒ [w |= «ϕ κ’»]›213

and ‹[w |= «ϕ κ’»] =⇒ [w |= «ϕ κ»]›214

if ‹AOT_model_denotes κ› and ‹AOT_model_term_equiv κ κ’›215

for w κ κ’216

by (metis (no_types, lifting) AOT_model_denotes_rel.abs_eq lambda_def217

that calculation)+218

ultimately show ‹∀ v κ1κn κ1’κn’ . [v |= κ1...κn↓] ∧ [v |= κ1’...κn’↓] ∧219

(∀ Π v . [v |= Π↓] −→ [v |= «exe Π κ1κn»] = [v |= «exe Π κ1’κn’»]) −→220

[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}]›221

unfolding AOT_sem_denotes222

by (metis (no_types) AOT_sem_denotes lambda_denotes_beta)223

next224

assume ‹∀ v κ1κn κ1’κn’ . [v |= κ1...κn↓] ∧ [v |= κ1’...κn’↓] ∧225

(∀ Π v . [v |= Π↓] −→ [v |= «exe Π κ1κn»] = [v |= «exe Π κ1’κn’»]) −→226

[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}]›227

hence ‹[w |= «ϕ κ»] = [w |= «ϕ κ’»]›228

if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧ AOT_model_term_equiv κ κ’›229

for w κ κ’230

using that231

by (auto simp: AOT_sem_denotes)232

(meson AOT_model_term_equiv_rel_equiv AOT_sem_denotes exe_rep_rel)+233

hence ‹[w |= «ϕ κ»] = [w |= «ϕ κ’»]›234

if ‹AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ’›235

for w κ κ’236

using that AOT_model_term_equiv_denotes by blast237

hence ‹AOT_model_denotes (lambda ϕ)›238

by (auto simp: lambda_def Abs_rel_inverse AOT_model_denotes_rel.abs_eq239

AOT_model_irregular_equiv AOT_model_term_equiv_eps(3)240

AOT_model_term_equiv_regular fix_irregular_def AOT_sem_denotes241

AOT_model_term_equiv_denotes AOT_model_proposition_choice_simp242

AOT_model_irregular_false243

split: if_split_asm244

intro: AOT_model_irregular_eqI)245

thus ‹[w |= «lambda ϕ»↓]›246

by (simp add: AOT_sem_denotes)247

qed248

moreover have ‹[w |= «lambda ψ»↓]›249

if ‹[w |= «lambda ϕ»↓]›250

159

A. Isabelle Theory

and ‹∀ w κ1κn . [w |= κ1...κn↓] −→ [w |= ϕ{κ1...κn}] = [w |= ψ{κ1...κn}]›251

for ϕ ψ w using that unfolding lambda_denotes_simp by auto252

moreover have ‹[w |= Π↓] =⇒ exe Π κs = Rep_rel Π κs› for Π κs w253

by (simp add: exe_def AOT_sem_denotes)254

moreover have ‹lambda (λx. p) = lambda (λx. q) =⇒ p = q› for p q255

unfolding lambda_def256

by (auto split: if_split_asm simp: Abs_rel_inject fix_irregular_def)257

(meson AOT_model_irregular_nondenoting AOT_model_denoting_ex)+258

moreover have ‹AOT_model_term_equiv x y =⇒ exe Π x = exe Π y› for x y Π259

unfolding exe_def260

by (meson AOT_model_denotes_rel.rep_eq)261

note calculation = calculation this262

show ?thesis263

apply (safe intro!: exI[where x=exe] exI[where x=lambda])264

using calculation apply simp_all265

using lambda_denotes_simp by blast+266

qed267

268

lemma AOT_model_lambda_denotes:269

‹AOT_model_denotes (AOT_lambda ϕ) = (∀ v κ κ’ .270

AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧ AOT_model_term_equiv κ κ’ −→271

[v |= «ϕ κ»] = [v |= «ϕ κ’»])›272

proof(safe)273

fix v and κ κ’ :: ’a274

assume ‹AOT_model_denotes (AOT_lambda ϕ)›275

hence 1: ‹AOT_model_denotes κ1κn ∧276

AOT_model_denotes κ1’κn’ ∧277

(∀Π v. AOT_model_denotes Π −→ [v |= [Π]κ1...κn] = [v |= [Π]κ1’...κn’]) −→278

[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}]› for κ1κn κ1’κn’ v279

using AOT_sem_lambda_denotes[simplified AOT_sem_denotes] by blast280

{281

fix v and κ1κn κ1’κn’ :: ’a282

assume d: ‹AOT_model_denotes κ1κn ∧ AOT_model_denotes κ1’κn’ ∧283

AOT_model_term_equiv κ1κn κ1’κn’›284

hence ‹∀Π w. AOT_model_denotes Π −→ [w |= [Π]κ1...κn] = [w |= [Π]κ1’...κn’]›285

by (metis AOT_sem_exe_equiv)286

hence ‹[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}]› using d 1 by auto287

}288

moreover assume ‹AOT_model_denotes κ›289

moreover assume ‹AOT_model_denotes κ’›290

moreover assume ‹AOT_model_term_equiv κ κ’›291

ultimately show ‹[v |= «ϕ κ»] =⇒ [v |= «ϕ κ’»]›292

and ‹[v |= «ϕ κ’»] =⇒ [v |= «ϕ κ»]›293

by auto294

next295

assume 0: ‹∀ v κ κ’ . AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧296

AOT_model_term_equiv κ κ’ −→ [v |= «ϕ κ»] = [v |= «ϕ κ’»]›297

{298

fix κ1κn κ1’κn’ :: ’a299

assume den: ‹AOT_model_denotes κ1κn›300

moreover assume den’: ‹AOT_model_denotes κ1’κn’›301

assume ‹∀Π v . AOT_model_denotes Π −→302

[v |= [Π]κ1...κn] = [v |= [Π]κ1’...κn’]›303

hence ‹∀Π v . AOT_model_denotes Π −→304

[v |= «Rep_rel Π κ1κn»] = [v |= «Rep_rel Π κ1’κn’»]›305

by (simp add: AOT_sem_denotes AOT_sem_exe den den’)306

hence "AOT_model_term_equiv κ1κn κ1’κn’"307

unfolding AOT_model_term_equiv_rel_equiv[OF den, OF den’]308

by argo309

hence ‹[v |= ϕ{κ1...κn}] = [v |= ϕ{κ1’...κn’}]› for v310

using den den’ 0 by blast311

}312

thus ‹AOT_model_denotes (AOT_lambda ϕ)›313

160

A.4. Semantics

unfolding AOT_sem_lambda_denotes[simplified AOT_sem_denotes]314

by blast315

qed316

317

specification (AOT_lambda0)318

AOT_sem_lambda0: "AOT_lambda0 ϕ = ϕ"319

by (rule exI[where x=‹λx. x›]) simp320

321

specification(AOT_concrete)322

AOT_sem_concrete: ‹[w |= [E!]κ] =323

AOT_model_concrete w κ›324

by (rule exI[where x=‹AOT_var_of_term (Abs_rel325

(λ x . εo w . AOT_model_concrete w x))›];326

subst AOT_var_of_term_inverse)327

(auto simp: AOT_model_unary_regular AOT_model_concrete_denotes328

AOT_model_concrete_equiv AOT_model_regular_κ_def329

AOT_model_proposition_choice_simp AOT_sem_exe Abs_rel_inverse330

AOT_model_denotes_rel_def AOT_sem_denotes)331

332

lemma AOT_sem_equiv_defI:333

assumes ‹
∧

v . [v |= ϕ] =⇒ [v |= ψ]›334

and ‹
∧

v . [v |= ψ] =⇒ [v |= ϕ]›335

shows ‹AOT_model_equiv_def ϕ ψ›336

using AOT_model_equiv_def assms by blast337

338

lemma AOT_sem_id_defI:339

assumes ‹
∧

α v . [v |= «σ α»↓] =⇒ [v |= «τ α» = «σ α»]›340

assumes ‹
∧

α v . ¬[v |= «σ α»↓] =⇒ [v |= ¬«τ α»↓]›341

shows ‹AOT_model_id_def τ σ›342

using assms343

unfolding AOT_sem_denotes AOT_sem_eq AOT_sem_not344

using AOT_model_id_def[THEN iffD2]345

by metis346

347

lemma AOT_sem_id_def2I:348

assumes ‹
∧

α β v . [v |= «σ α β»↓] =⇒ [v |= «τ α β» = «σ α β»]›349

assumes ‹
∧

α β v . ¬[v |= «σ α β»↓] =⇒ [v |= ¬«τ α β»↓]›350

shows ‹AOT_model_id_def (case_prod τ) (case_prod σ)›351

apply (rule AOT_sem_id_defI)352

using assms by (auto simp: AOT_sem_conj AOT_sem_not AOT_sem_eq AOT_sem_denotes353

AOT_model_denotes_prod_def)354

355

lemma AOT_sem_id_defE1:356

assumes ‹AOT_model_id_def τ σ›357

and ‹[v |= «σ α»↓]›358

shows ‹[v |= «τ α» = «σ α»]›359

using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)360

361

lemma AOT_sem_id_defE2:362

assumes ‹AOT_model_id_def τ σ›363

and ‹¬[v |= «σ α»↓]›364

shows ‹¬[v |= «τ α»↓]›365

using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)366

367

lemma AOT_sem_id_def0I:368

assumes ‹
∧

v . [v |= σ↓] =⇒ [v |= τ = σ]›369

and ‹
∧

v . ¬[v |= σ↓] =⇒ [v |= ¬τ↓]›370

shows ‹AOT_model_id_def (case_unit τ) (case_unit σ)›371

apply (rule AOT_sem_id_defI)372

using assms373

by (simp_all add: AOT_sem_conj AOT_sem_eq AOT_sem_not AOT_sem_denotes374

AOT_model_denotes_unit_def case_unit_Unity)375

376

161

A. Isabelle Theory

lemma AOT_sem_id_def0E1:377

assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›378

and ‹[v |= σ↓]›379

shows ‹[v |= τ = σ]›380

by (metis (full_types) AOT_sem_id_defE1 assms(1) assms(2) case_unit_Unity)381

382

lemma AOT_sem_id_def0E2:383

assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›384

and ‹¬[v |= σ↓]›385

shows ‹¬[v |= τ↓]›386

by (metis AOT_sem_id_defE2 assms(1) assms(2) case_unit_Unity)387

388

lemma AOT_sem_id_def0E3:389

assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›390

and ‹[v |= σ↓]›391

shows ‹[v |= τ↓]›392

using AOT_sem_id_def0E1[OF assms]393

by (simp add: AOT_sem_eq AOT_sem_denotes)394

395

lemma AOT_sem_ordinary_def_denotes: ‹[w |= [λx ♦[E!]x]↓]›396

unfolding AOT_sem_denotes AOT_model_lambda_denotes397

by (auto simp: AOT_sem_dia AOT_model_concrete_equiv398

AOT_sem_concrete AOT_sem_denotes)399

lemma AOT_sem_abstract_def_denotes: ‹[w |= [λx ¬♦[E!]x]↓]›400

unfolding AOT_sem_denotes AOT_model_lambda_denotes401

by (auto simp: AOT_sem_dia AOT_model_concrete_equiv402

AOT_sem_concrete AOT_sem_denotes AOT_sem_not)403

404

text‹Relation identity is constructed using an auxiliary abstract projection405

mechanism with suitable instantiations for @{typ κ} and products.›406

class AOT_RelationProjection =407

fixes AOT_sem_proj_id :: ‹’a::AOT_IndividualTerm ⇒ (’a ⇒ o) ⇒ (’a ⇒ o) ⇒ o›408

assumes AOT_sem_proj_id_prop:409

‹[v |= Π = Π’] =410

[v |= Π↓ & Π’↓ & ∀α («AOT_sem_proj_id α (λ τ . «[Π]τ») (λ τ . «[Π’]τ»)»)]›411

and AOT_sem_proj_id_refl:412

‹[v |= τ↓] =⇒ [v |= [λν1...νn ϕ{ν1...νn}] = [λν1...νn ϕ{ν1...νn}]] =⇒413

[v |= «AOT_sem_proj_id τ ϕ ϕ»]›414

415

class AOT_UnaryRelationProjection = AOT_RelationProjection +416

assumes AOT_sem_unary_proj_id:417

‹AOT_sem_proj_id κ ϕ ψ = «[λν1...νn ϕ{ν1...νn}] = [λν1...νn ψ{ν1...νn}]»›418

419

instantiation κ :: AOT_UnaryRelationProjection420

begin421

definition AOT_sem_proj_id_κ :: ‹κ ⇒ (κ ⇒ o) ⇒ (κ ⇒ o) ⇒ o› where422

‹AOT_sem_proj_id_κ κ ϕ ψ = «[λz ϕ{z}] = [λz ψ{z}]»›423

instance proof424

show ‹[v |= Π = Π’] =425

[v |= Π↓ & Π’↓ & ∀α («AOT_sem_proj_id α (λ τ . «[Π]τ») (λ τ . «[Π’]τ»)»)]›426

for v and Π Π’ :: ‹<κ>›427

unfolding AOT_sem_proj_id_κ_def428

by (simp add: AOT_sem_eq AOT_sem_conj AOT_sem_denotes AOT_sem_forall)429

(metis AOT_sem_denotes AOT_model_denoting_ex AOT_sem_eq AOT_sem_lambda_eta)430

next431

show ‹AOT_sem_proj_id κ ϕ ψ = «[λν1...νn ϕ{ν1...νn}] = [λν1...νn ψ{ν1...νn}]»›432

for κ :: κ and ϕ ψ433

unfolding AOT_sem_proj_id_κ_def ..434

next435

show ‹[v |= «AOT_sem_proj_id τ ϕ ϕ»]›436

if ‹[v |= τ↓]› and ‹[v |= [λν1...νn ϕ{ν1...νn}] = [λν1...νn ϕ{ν1...νn}]]›437

for τ :: κ and v ϕ438

using that by (simp add: AOT_sem_proj_id_κ_def AOT_sem_eq)439

162

A.4. Semantics

qed440

end441

442

instantiation prod ::443

("{AOT_UnaryRelationProjection, AOT_UnaryIndividualTerm}", AOT_RelationProjection)444

AOT_RelationProjection445

begin446

definition AOT_sem_proj_id_prod :: ‹’a×’b ⇒ (’a×’b ⇒ o) ⇒ (’a×’b ⇒ o) ⇒ o› where447

‹AOT_sem_proj_id_prod ≡ λ (x,y) ϕ ψ . «[λz «ϕ (z,y)»] = [λz «ψ (z,y)»] &448

«AOT_sem_proj_id y (λ a . ϕ (x,a)) (λ a . ψ (x,a))»»›449

instance proof450

text‹This is the main proof that allows to derive the definition of n-ary451

relation identity. We need to show that our defined projection identity452

implies relation identity for relations on pairs of individual terms.›453

fix v and Π Π’ :: ‹<’a×’b>›454

have AOT_meta_proj_denotes1: ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (z, β)))›455

if ‹AOT_model_denotes Π› for Π :: ‹<’a×’b>› and β456

using that unfolding AOT_model_denotes_rel.rep_eq457

apply (auto simp: Abs_rel_inverse AOT_meta_prod_equivI(2) AOT_sem_denotes458

that intro!: AOT_sem_exe_equiv)459

apply (metis AOT_model_denotes_prod_def AOT_sem_exe case_prodD)460

using AOT_model_unary_regular by blast461

{462

fix κ :: ’a and Π :: ‹<’a×’b>›463

assume Π_denotes: ‹AOT_model_denotes Π›464

assume α_denotes: ‹AOT_model_denotes κ›465

hence ‹AOT_exe Π (κ, x) = AOT_exe Π (κ, y)›466

if ‹AOT_model_term_equiv x y› for x y :: ’b467

by (simp add: AOT_meta_prod_equivI(1) AOT_sem_exe_equiv that)468

moreover have ‹AOT_model_denotes κ1’κn’›469

if ‹[w |= [Π]κ κ1’...κn’]› for w κ1’κn’470

by (metis that AOT_model_denotes_prod_def AOT_sem_exe471

AOT_sem_denotes case_prodD)472

moreover {473

fix x :: ’b474

assume x_irregular: ‹¬AOT_model_regular x›475

hence prod_irregular: ‹¬AOT_model_regular (κ, x)›476

by (metis (no_types, lifting) AOT_model_irregular_nondenoting477

AOT_model_regular_prod_def case_prodD)478

hence ‹(¬AOT_model_denotes κ ∨ ¬AOT_model_regular x) ∧479

(AOT_model_denotes κ ∨ ¬AOT_model_denotes x)›480

unfolding AOT_model_regular_prod_def by blast481

hence x_nonden: ‹¬AOT_model_regular x›482

by (simp add: α_denotes)483

have ‹Rep_rel Π (κ, x) = AOT_model_irregular (Rep_rel Π) (κ, x)›484

using AOT_model_denotes_rel.rep_eq Π_denotes prod_irregular by blast485

moreover have ‹AOT_model_irregular (Rep_rel Π) (κ, x) =486

AOT_model_irregular (λz. Rep_rel Π (κ, z)) x›487

using Π_denotes x_irregular prod_irregular x_nonden488

using AOT_model_irregular_prod_generic489

apply (induct arbitrary: Π x rule: AOT_model_irregular_prod.induct)490

by (auto simp: α_denotes AOT_model_irregular_nondenoting491

AOT_model_regular_prod_def AOT_meta_prod_equivI(2)492

AOT_model_denotes_rel.rep_eq AOT_model_term_equiv_eps(1)493

intro!: AOT_model_irregular_eqI)494

ultimately have495

‹AOT_exe Π (κ, x) = AOT_model_irregular (λz. AOT_exe Π (κ, z)) x›496

unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]497

by auto498

}499

ultimately have ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (κ, z)))›500

by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)501

} note AOT_meta_proj_denotes2 = this502

163

A. Isabelle Theory

{503

fix κ1’κn’ :: ’b and Π :: ‹<’a×’b>›504

assume Π_denotes: ‹AOT_model_denotes Π›505

assume β_denotes: ‹AOT_model_denotes κ1’κn’›506

hence ‹AOT_exe Π (x, κ1’κn’) = AOT_exe Π (y, κ1’κn’)›507

if ‹AOT_model_term_equiv x y› for x y :: ’a508

by (simp add: AOT_meta_prod_equivI(2) AOT_sem_exe_equiv that)509

moreover have ‹AOT_model_denotes κ›510

if ‹[w |= [Π]κ κ1’...κn’]› for w κ511

by (metis that AOT_model_denotes_prod_def AOT_sem_exe512

AOT_sem_denotes case_prodD)513

moreover {514

fix x :: ’a515

assume ‹¬AOT_model_regular x›516

hence ‹False›517

using AOT_model_unary_regular by blast518

hence519

‹AOT_exe Π (x,κ1’κn’) = AOT_model_irregular (λz. AOT_exe Π (z,κ1’κn’)) x›520

unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]521

by auto522

}523

ultimately have ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (z,κ1’κn’)))›524

by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)525

} note AOT_meta_proj_denotes1 = this526

{527

assume Π_denotes: ‹AOT_model_denotes Π›528

assume Π’_denotes: ‹AOT_model_denotes Π’›529

have Π_proj2_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π (α, z)))›530

if ‹AOT_model_denotes α› for α531

using that AOT_meta_proj_denotes2[OF Π_denotes]532

AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π_denotes] by simp533

have Π’_proj2_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π’ (α, z)))›534

if ‹AOT_model_denotes α› for α535

using that AOT_meta_proj_denotes2[OF Π’_denotes]536

AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π’_denotes] by simp537

have Π_proj1_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π (z, α)))›538

if ‹AOT_model_denotes α› for α539

using that AOT_meta_proj_denotes1[OF Π_denotes]540

AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π_denotes] by simp541

have Π’_proj1_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π’ (z, α)))›542

if ‹AOT_model_denotes α› for α543

using that AOT_meta_proj_denotes1[OF Π’_denotes]544

AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π’_denotes] by simp545

{546

fix κ :: ’a and κ1’κn’ :: ’b547

assume ‹Π = Π’›548

assume ‹AOT_model_denotes (κ,κ1’κn’)›549

hence ‹AOT_model_denotes κ› and beta_denotes: ‹AOT_model_denotes κ1’κn’›550

by (auto simp: AOT_model_denotes_prod_def)551

have ‹AOT_model_denotes «[λz [Π]z κ1’...κn’]»›552

by (rule AOT_model_lambda_denotes[THEN iffD2])553

(metis AOT_sem_exe_denoting AOT_meta_prod_equivI(2)554

AOT_model_denotes_rel.rep_eq AOT_sem_denotes555

AOT_sem_exe_denoting Π_denotes)556

moreover have ‹«[λz [Π]z κ1’...κn’]» = «[λz [Π’]z κ1’...κn’]»›557

by (simp add: ‹Π = Π’›)558

moreover have ‹[v |= «AOT_sem_proj_id κ1’κn’ (λκ1’κn’. «[Π]κ κ1’...κn’»)559

(λκ1’κn’. «[Π’]κ κ1’...κn’»)»]›560

unfolding ‹Π = Π’› using beta_denotes561

by (rule AOT_sem_proj_id_refl[unfolded AOT_sem_denotes];562

simp add: AOT_sem_denotes AOT_sem_eq AOT_model_lambda_denotes)563

(metis AOT_meta_prod_equivI(1) AOT_model_denotes_rel.rep_eq564

AOT_sem_exe AOT_sem_exe_denoting Π’_denotes)565

164

A.4. Semantics

ultimately have ‹[v |= «AOT_sem_proj_id (κ,κ1’κn’) (λ κ1κn . «[Π]κ1...κn»)566

(λ κ1κn . «[Π’]κ1...κn»)»]›567

unfolding AOT_sem_proj_id_prod_def568

by (simp add: AOT_sem_denotes AOT_sem_conj AOT_sem_eq)569

}570

moreover {571

assume ‹
∧

α . AOT_model_denotes α =⇒572

[v |= «AOT_sem_proj_id α (λ κ1κn . «[Π]κ1...κn») (λ κ1κn . «[Π’]κ1...κn»)»]›573

hence 0: ‹AOT_model_denotes κ =⇒ AOT_model_denotes κ1’κn’ =⇒574

AOT_model_denotes «[λz [Π]z κ1’...κn’]» ∧575

AOT_model_denotes «[λz [Π’]z κ1’...κn’]» ∧576

«[λz [Π]z κ1’...κn’]» = «[λz [Π’]z κ1’...κn’]» ∧577

[v |= «AOT_sem_proj_id κ1’κn’ (λκ1κn. «[Π]κ κ1...κn»)578

(λκ1κn. «[Π’]κ κ1...κn»)»]› for κ κ1’κn’579

unfolding AOT_sem_proj_id_prod_def580

by (auto simp: AOT_sem_denotes AOT_sem_conj AOT_sem_eq581

AOT_model_denotes_prod_def)582

obtain αden :: ’a and βden :: ’b where583

αden: ‹AOT_model_denotes αden› and βden: ‹AOT_model_denotes βden›584

using AOT_model_denoting_ex by metis585

{586

fix κ :: ’a587

assume αdenotes: ‹AOT_model_denotes κ›588

have 1: ‹[v |= «AOT_sem_proj_id κ1’κn’ (λκ1’κn’. «[Π]κ κ1’...κn’»)589

(λκ1’κn’. «[Π’]κ κ1’...κn’»)»]›590

if ‹AOT_model_denotes κ1’κn’› for κ1’κn’591

using that 0 using αdenotes by blast592

hence ‹[v |= «AOT_sem_proj_id β (λz. Rep_rel Π (κ, z))593

(λz. Rep_rel Π’ (κ, z))»]›594

if ‹AOT_model_denotes β› for β595

using that596

unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]597

AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π’_denotes]598

by blast599

hence ‹Abs_rel (λz. Rep_rel Π (κ, z)) = Abs_rel (λz. Rep_rel Π’ (κ, z))›600

using AOT_sem_proj_id_prop[of v ‹Abs_rel (λz. Rep_rel Π (κ, z))›601

‹Abs_rel (λz. Rep_rel Π’ (κ, z))›,602

simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall603

AOT_sem_denotes, THEN iffD2]604

Π_proj2_den[OF αdenotes] Π’_proj2_den[OF αdenotes]605

unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]606

AOT_sem_exe_denoting[simplified AOT_sem_denotes,607

OF Π_proj2_den[OF αdenotes]]608

AOT_sem_exe_denoting[simplified AOT_sem_denotes,609

OF Π’_proj2_den[OF αdenotes]]610

by (metis Abs_rel_inverse UNIV_I)611

hence "Rep_rel Π (κ,β) = Rep_rel Π’ (κ,β)" for β612

by (simp add: Abs_rel_inject[simplified]) meson613

} note αdenotes = this614

{615

fix κ1’κn’ :: ’b616

assume βden: ‹AOT_model_denotes κ1’κn’›617

have 1: ‹«[λz [Π]z κ1’...κn’]» = «[λz [Π’]z κ1’...κn’]»›618

using 0 βden AOT_model_denoting_ex by blast619

hence ‹Abs_rel (λz. Rep_rel Π (z, κ1’κn’)) =620

Abs_rel (λz. Rep_rel Π’ (z, κ1’κn’))› (is ‹?a = ?b›)621

apply (safe intro!: AOT_sem_proj_id_prop[of v ‹?a› ‹?b›,622

simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall623

AOT_sem_denotes, THEN iffD2, THEN conjunct2, THEN conjunct2]624

Π_proj1_den[OF βden] Π’_proj1_den[OF βden])625

unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]626

AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π’_denotes]627

AOT_sem_exe_denoting[simplified AOT_sem_denotes,628

165

A. Isabelle Theory

OF Π_proj1_den[OF βden]]629

AOT_sem_exe_denoting[simplified AOT_sem_denotes,630

OF Π’_proj1_den[OF βden]]631

by (subst (0 1) Abs_rel_inverse; simp?)632

(metis (no_types, lifting) AOT_model_denotes_rel.abs_eq633

AOT_model_lambda_denotes AOT_sem_denotes AOT_sem_eq634

AOT_sem_unary_proj_id Π_proj1_den[OF βden])635

hence ‹Rep_rel Π (x,κ1’κn’) = Rep_rel Π’ (x,κ1’κn’)› for x636

by (simp add: Abs_rel_inject)637

metis638

} note βdenotes = this639

{640

fix α :: ’a and β :: ’b641

assume ‹AOT_model_regular (α, β)›642

moreover {643

assume ‹AOT_model_denotes α ∧ AOT_model_regular β›644

hence ‹Rep_rel Π (α,β) = Rep_rel Π’ (α,β)›645

using αdenotes by presburger646

}647

moreover {648

assume ‹¬AOT_model_denotes α ∧ AOT_model_denotes β›649

hence ‹Rep_rel Π (α,β) = Rep_rel Π’ (α,β)›650

by (simp add: βdenotes)651

}652

ultimately have ‹Rep_rel Π (α,β) = Rep_rel Π’ (α,β)›653

by (metis (no_types, lifting) AOT_model_regular_prod_def case_prodD)654

}655

hence ‹Rep_rel Π = Rep_rel Π’›656

using Π_denotes[unfolded AOT_model_denotes_rel.rep_eq,657

THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]658

using Π’_denotes[unfolded AOT_model_denotes_rel.rep_eq,659

THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]660

using AOT_model_irregular_eqI[of ‹Rep_rel Π› ‹Rep_rel Π’› ‹(_,_)›]661

using AOT_model_irregular_nondenoting by fastforce662

hence ‹Π = Π’›663

by (rule Rep_rel_inject[THEN iffD1])664

}665

ultimately have ‹Π = Π’ = (∀ κ . AOT_model_denotes κ −→666

[v |= «AOT_sem_proj_id κ (λ κ1κn . «[Π]κ1...κn»)667

(λ κ1κn . «[Π’]κ1...κn»)»])›668

by auto669

}670

thus ‹[v |= Π = Π’] = [v |= Π↓ & Π’↓ &671

∀α («AOT_sem_proj_id α (λ κ1κn . «[Π]κ1...κn») (λ κ1κn . «[Π’]κ1...κn»)»)]›672

by (auto simp: AOT_sem_eq AOT_sem_denotes AOT_sem_forall AOT_sem_conj)673

next674

fix v and ϕ :: ‹’a×’b⇒o› and τ :: ‹’a×’b›675

assume ‹[v |= τ↓]›676

moreover assume ‹[v |= [λz1...zn «ϕ z1zn»] = [λz1...zn «ϕ z1zn»]]›677

ultimately show ‹[v |= «AOT_sem_proj_id τ ϕ ϕ»]›678

unfolding AOT_sem_proj_id_prod_def679

using AOT_sem_proj_id_refl[of v "snd τ" "λb. ϕ (fst τ, b)"]680

by (auto simp: AOT_sem_eq AOT_sem_conj AOT_sem_denotes681

AOT_model_denotes_prod_def AOT_model_lambda_denotes682

AOT_meta_prod_equivI)683

qed684

end685

686

text‹Sanity-check to verify that n-ary relation identity follows.›687

lemma ‹[v |= Π = Π’] = [v |= Π↓ & Π’↓ & ∀x∀y([λz [Π]z y] = [λz [Π’]z y] &688

[λz [Π]x z] = [λz [Π’]x z])]›689

for Π :: ‹<κ×κ>›690

by (auto simp: AOT_sem_proj_id_prop[of v Π Π’] AOT_sem_proj_id_prod_def691

166

A.4. Semantics

AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id692

AOT_model_denotes_prod_def)693

lemma ‹[v |= Π = Π’] = [v |= Π↓ & Π’↓ & ∀x1∀x2∀x3 (694

[λz [Π]z x2 x3] = [λz [Π’]z x2 x3] &695

[λz [Π]x1 z x3] = [λz [Π’]x1 z x3] &696

[λz [Π]x1 x2 z] = [λz [Π’]x1 x2 z])]›697

for Π :: ‹<κ×κ×κ>›698

by (auto simp: AOT_sem_proj_id_prop[of v Π Π’] AOT_sem_proj_id_prod_def699

AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id700

AOT_model_denotes_prod_def)701

lemma ‹[v |= Π = Π’] = [v |= Π↓ & Π’↓ & ∀x1∀x2∀x3∀x4 (702

[λz [Π]z x2 x3 x4] = [λz [Π’]z x2 x3 x4] &703

[λz [Π]x1 z x3 x4] = [λz [Π’]x1 z x3 x4] &704

[λz [Π]x1 x2 z x4] = [λz [Π’]x1 x2 z x4] &705

[λz [Π]x1 x2 x3 z] = [λz [Π’]x1 x2 x3 z])]›706

for Π :: ‹<κ×κ×κ×κ>›707

by (auto simp: AOT_sem_proj_id_prop[of v Π Π’] AOT_sem_proj_id_prod_def708

AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id709

AOT_model_denotes_prod_def)710

711

text‹n-ary Encoding is constructed using a similar mechanism as n-ary relation712

identity using an auxiliary notion of projection-encoding.›713

class AOT_Enc =714

fixes AOT_enc :: ‹’a ⇒ <’a::AOT_IndividualTerm> ⇒ o›715

and AOT_proj_enc :: ‹’a ⇒ (’a ⇒ o) ⇒ o›716

assumes AOT_sem_enc_denotes:717

‹[v |= «AOT_enc κ1κn Π»] =⇒ [v |= κ1...κn↓] ∧ [v |= Π↓]›718

assumes AOT_sem_enc_proj_enc:719

‹[v |= «AOT_enc κ1κn Π»] =720

[v |= Π↓ & «AOT_proj_enc κ1κn (λ κ1κn. «[Π]κ1...κn»)»]›721

assumes AOT_sem_proj_enc_denotes:722

‹[v |= «AOT_proj_enc κ1κn ϕ»] =⇒ [v |= κ1...κn↓]›723

assumes AOT_sem_enc_nec:724

‹[v |= «AOT_enc κ1κn Π»] =⇒ [w |= «AOT_enc κ1κn Π»]›725

assumes AOT_sem_proj_enc_nec:726

‹[v |= «AOT_proj_enc κ1κn ϕ»] =⇒ [w |= «AOT_proj_enc κ1κn ϕ»]›727

assumes AOT_sem_universal_encoder:728

‹∃ κ1κn. [v |= κ1...κn↓] ∧ (∀ Π . [v |= Π↓] −→ [v |= «AOT_enc κ1κn Π»]) ∧729

(∀ ϕ . [v |= [λz1...zn ϕ{z1...zn}]↓] −→ [v |= «AOT_proj_enc κ1κn ϕ»])›730

731

AOT_syntax_print_translations732

"_AOT_enc (_AOT_individual_term κ) (_AOT_relation_term Π)" <= "CONST AOT_enc κ Π"733

734

context AOT_meta_syntax735

begin736

notation AOT_enc ("{|_,_|}")737

end738

context AOT_no_meta_syntax739

begin740

no_notation AOT_enc ("{|_,_|}")741

end742

743

text‹Unary encoding additionally has to satisfy the axioms of unary encoding and744

the definition of property identity.›745

class AOT_UnaryEnc = AOT_UnaryIndividualTerm +746

assumes AOT_sem_enc_eq: ‹[v |= Π↓ & Π’↓ & �∀ν (ν[Π] ≡ ν[Π’]) → Π = Π’]›747

and AOT_sem_A_objects: ‹[v |= ∃x (¬♦[E!]x & ∀F (x[F] ≡ ϕ{F}))]›748

and AOT_sem_unary_proj_enc: ‹AOT_proj_enc x ψ = AOT_enc x «[λz ψ{z}]»›749

and AOT_sem_nocoder: ‹[v |= [E!]κ] =⇒ ¬[w |= «AOT_enc κ Π»]›750

and AOT_sem_ind_eq: ‹([v |= κ↓] ∧ [v |= κ’↓] ∧ κ = (κ’)) =751

(([v |= [λx ♦[E!]x]κ] ∧752

[v |= [λx ♦[E!]x]κ’] ∧753

(∀ v Π . [v |= Π↓] −→ [v |= [Π]κ] = [v |= [Π]κ’]))754

167

A. Isabelle Theory

∨ ([v |= [λx ¬♦[E!]x]κ] ∧755

[v |= [λx ¬♦[E!]x]κ’] ∧756

(∀ v Π . [v |= Π↓] −→ [v |= κ[Π]] = [v |= κ’[Π]])))›757

758

(* only extended models *)759

and AOT_sem_enc_indistinguishable_all:760

‹AOT_ExtendedModel =⇒761

[v |= [λx ¬♦[E!]x]κ] =⇒762

[v |= [λx ¬♦[E!]x]κ’] =⇒763

(
∧

Π’ . [v |= Π’↓] =⇒ (
∧

w . [w |= [Π’]κ] = [w |= [Π’]κ’])) =⇒764

[v |= Π↓] =⇒765

(
∧

Π’ . [v |= Π’↓] =⇒ (
∧

κ0 . [v |= [λx ♦[E!]x]κ0] =⇒766

(
∧

w . [w |= [Π’]κ0] = [w |= [Π]κ0])) =⇒ [v |= κ[Π’]]) =⇒767

(
∧

Π’ . [v |= Π’↓] =⇒ (
∧

κ0 . [v |= [λx ♦[E!]x]κ0] =⇒768

(
∧

w . [w |= [Π’]κ0] = [w |= [Π]κ0])) =⇒ [v |= κ’[Π’]])›769

and AOT_sem_enc_indistinguishable_ex:770

‹AOT_ExtendedModel =⇒771

[v |= [λx ¬♦[E!]x]κ] =⇒772

[v |= [λx ¬♦[E!]x]κ’] =⇒773

(
∧

Π’ . [v |= Π’↓] =⇒ (
∧

w . [w |= [Π’]κ] = [w |= [Π’]κ’])) =⇒774

[v |= Π↓] =⇒775

∃ Π’ . [v |= Π’↓] ∧ [v |= κ[Π’]] ∧776

(∀ κ0 . [v |= [λx ♦[E!]x]κ0] −→777

(∀ w . [w |= [Π’]κ0] = [w |= [Π]κ0])) =⇒778

∃ Π’ . [v |= Π’↓] ∧ [v |= κ’[Π’]] ∧779

(∀ κ0 . [v |= [λx ♦[E!]x]κ0] −→780

(∀ w . [w |= [Π’]κ0] = [w |= [Π]κ0]))›781

782

text‹We specify encoding to align with the model-construction of encoding.›783

consts AOT_sem_enc_κ :: ‹κ ⇒ <κ> ⇒ o›784

specification(AOT_sem_enc_κ)785

AOT_sem_enc_κ:786

‹[v |= «AOT_sem_enc_κ κ Π»] =787

(AOT_model_denotes κ ∧ AOT_model_denotes Π ∧ AOT_model_enc κ Π)›788

by (rule exI[where x=‹λ κ Π . εo w . AOT_model_denotes κ ∧ AOT_model_denotes Π ∧789

AOT_model_enc κ Π›])790

(simp add: AOT_model_proposition_choice_simp AOT_model_enc_κ_def κ.case_eq_if)791

792

text‹We show that @{typ κ} satisfies the generic properties of n-ary encoding.›793

instantiation κ :: AOT_Enc794

begin795

definition AOT_enc_κ :: ‹κ ⇒ <κ> ⇒ o› where796

‹AOT_enc_κ ≡ AOT_sem_enc_κ›797

definition AOT_proj_enc_κ :: ‹κ ⇒ (κ ⇒ o) ⇒ o› where798

‹AOT_proj_enc_κ ≡ λ κ ϕ . AOT_enc κ «[λz «ϕ z»]»›799

lemma AOT_enc_κ_meta:800

‹[v |= κ[Π]] = (AOT_model_denotes κ ∧ AOT_model_denotes Π ∧ AOT_model_enc κ Π)›801

for κ::κ802

using AOT_sem_enc_κ unfolding AOT_enc_κ_def by auto803

instance proof804

fix v and κ :: κ and Π805

show ‹[v |= «AOT_enc κ Π»] =⇒ [v |= κ↓] ∧ [v |= Π↓]›806

unfolding AOT_sem_denotes807

using AOT_enc_κ_meta by blast808

next809

fix v and κ :: κ and Π810

show ‹[v |= κ[Π]] = [v |= Π↓ & «AOT_proj_enc κ (λ κ’. «[Π]κ’»)»]›811

proof812

assume enc: ‹[v |= κ[Π]]›813

hence Π_denotes: ‹AOT_model_denotes Π›814

by (simp add: AOT_enc_κ_meta)815

hence Π_eta_denotes: ‹AOT_model_denotes «[λz [Π]z]»›816

using AOT_sem_denotes AOT_sem_eq AOT_sem_lambda_eta by metis817

168

A.4. Semantics

show ‹[v |= Π↓ & «AOT_proj_enc κ (λ κ. «[Π]κ»)»]›818

using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF Π_denotes]819

using Π_eta_denotes Π_denotes820

by (simp add: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_κ_def enc)821

next822

assume ‹[v |= Π↓ & «AOT_proj_enc κ (λ κ. «[Π]κ»)»]›823

hence Π_denotes: "AOT_model_denotes Π" and eta_enc: "[v |= κ[λz [Π]z]]"824

by (auto simp: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_κ_def)825

thus ‹[v |= κ[Π]]›826

using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF Π_denotes]827

by auto828

qed829

next830

show ‹[v |= «AOT_proj_enc κ ϕ»] =⇒ [v |= κ↓]› for v and κ :: κ and ϕ831

by (simp add: AOT_enc_κ_meta AOT_sem_denotes AOT_proj_enc_κ_def)832

next833

fix v w and κ :: κ and Π834

assume ‹[v |= κ[Π]]›835

thus ‹[w |= κ[Π]]›836

by (simp add: AOT_enc_κ_meta)837

next838

fix v w and κ :: κ and ϕ839

assume ‹[v |= «AOT_proj_enc κ ϕ»]›840

thus ‹[w |= «AOT_proj_enc κ ϕ»]›841

by (simp add: AOT_enc_κ_meta AOT_proj_enc_κ_def)842

next843

show ‹∃κ::κ. [v |= κ↓] ∧ (∀ Π . [v |= Π↓] −→ [v |= κ[Π]]) ∧844

(∀ ϕ . [v |= [λz ϕ{z}]↓] −→ [v |= «AOT_proj_enc κ ϕ»])› for v845

by (rule exI[where x=‹ακ UNIV›])846

(simp add: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def847

AOT_model_denotes_κ_def AOT_proj_enc_κ_def)848

qed849

end850

851

text‹We show that @{typ κ} satisfies the properties of unary encoding.›852

instantiation κ :: AOT_UnaryEnc853

begin854

instance proof855

fix v and Π Π’ :: ‹<κ>›856

show ‹[v |= Π↓ & Π’↓ & �∀ν (ν[Π] ≡ ν[Π’]) → Π = Π’]›857

apply (simp add: AOT_sem_forall AOT_sem_eq AOT_sem_imp AOT_sem_equiv858

AOT_enc_κ_meta AOT_sem_conj AOT_sem_denotes AOT_sem_box)859

using AOT_meta_A_objects_κ by fastforce860

next861

fix v and ϕ:: ‹<κ> ⇒ o›862

show ‹[v |= ∃x (¬♦[E!]x & ∀F (x[F] ≡ ϕ{F}))]›863

using AOT_model_A_objects[of "λ Π . [v |= ϕ{Π}]"]864

by (auto simp: AOT_sem_denotes AOT_sem_exists AOT_sem_conj AOT_sem_not865

AOT_sem_dia AOT_sem_concrete AOT_enc_κ_meta AOT_sem_equiv866

AOT_sem_forall)867

next868

show ‹AOT_proj_enc x ψ = AOT_enc x (AOT_lambda ψ)› for x :: κ and ψ869

by (simp add: AOT_proj_enc_κ_def)870

next871

show ‹[v |= [E!]κ] =⇒ ¬ [w |= κ[Π]]› for v w and κ :: κ and Π872

by (simp add: AOT_enc_κ_meta AOT_sem_concrete AOT_model_nocoder)873

next874

fix v and κ κ’ :: κ875

show ‹([v |= κ↓] ∧ [v |= κ’↓] ∧ κ = κ’) =876

(([v |= [λx ♦[E!]x]κ] ∧877

[v |= [λx ♦[E!]x]κ’] ∧878

(∀ v Π . [v |= Π↓] −→ [v |= [Π]κ] = [v |= [Π]κ’]))879

∨ ([v |= [λx ¬♦[E!]x]κ] ∧880

169

A. Isabelle Theory

[v |= [λx ¬♦[E!]x]κ’] ∧881

(∀ v Π . [v |= Π↓] −→ [v |= κ[Π]] = [v |= κ’[Π]])))›882

(is ‹?lhs = (?ordeq ∨ ?abseq)›)883

proof -884

{885

assume 0: ‹[v |= κ↓] ∧ [v |= κ’↓] ∧ κ = κ’›886

{887

assume ‹is_ωκ κ’›888

hence ‹[v |= [λx ♦[E!]x]κ’]›889

apply (subst AOT_sem_lambda_beta[OF AOT_sem_ordinary_def_denotes, of v κ’])890

apply (simp add: "0")891

apply (simp add: AOT_sem_dia)892

using AOT_sem_concrete AOT_model_ω_concrete_in_some_world is_ωκ_def by force893

hence ‹?ordeq› unfolding 0[THEN conjunct2, THEN conjunct2] by auto894

}895

moreover {896

assume ‹is_ακ κ’›897

hence ‹[v |= [λx ¬♦[E!]x]κ’]›898

apply (subst AOT_sem_lambda_beta[OF AOT_sem_abstract_def_denotes, of v κ’])899

apply (simp add: "0")900

apply (simp add: AOT_sem_not AOT_sem_dia)901

using AOT_sem_concrete is_ακ_def by force902

hence ‹?abseq› unfolding 0[THEN conjunct2, THEN conjunct2] by auto903

}904

ultimately have ‹?ordeq ∨ ?abseq›905

by (meson "0" AOT_sem_denotes AOT_model_denotes_κ_def κ.exhaust_disc)906

}907

moreover {908

assume ordeq: ‹?ordeq›909

hence κ_denotes: ‹[v |= κ↓]› and κ’_denotes: ‹[v |= κ’↓]›910

by (simp add: AOT_sem_denotes AOT_sem_exe)+911

hence ‹is_ωκ κ› and ‹is_ωκ κ’›912

by (metis AOT_model_concrete_κ.simps(2) AOT_model_denotes_κ_def913

AOT_sem_concrete AOT_sem_denotes AOT_sem_dia AOT_sem_lambda_beta914

AOT_sem_ordinary_def_denotes κ.collapse(2) κ.exhaust_disc ordeq)+915

have denotes: ‹[v |= [λz «εo w . κυ z = κυ κ»]↓]›916

unfolding AOT_sem_denotes AOT_model_lambda_denotes917

by (simp add: AOT_model_term_equiv_κ_def)918

hence "[v |= [λz «εo w . κυ z = κυ κ»]κ] = [v |= [λz «εo w . κυ z = κυ κ»]κ’]"919

using ordeq by (simp add: AOT_sem_denotes)920

hence ‹[v |= «κ»↓] ∧ [v |= «κ’»↓] ∧ κ = κ’›921

unfolding AOT_sem_lambda_beta[OF denotes, OF κ_denotes]922

AOT_sem_lambda_beta[OF denotes, OF κ’_denotes]923

using κ’_denotes ‹is_ωκ κ’› ‹is_ωκ κ› is_ωκ_def924

AOT_model_proposition_choice_simp by force925

}926

moreover {927

assume 0: ‹?abseq›928

hence κ_denotes: ‹[v |= κ↓]› and κ’_denotes: ‹[v |= κ’↓]›929

by (simp add: AOT_sem_denotes AOT_sem_exe)+930

hence ‹¬is_ωκ κ› and ‹¬is_ωκ κ’›931

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)932

AOT_sem_concrete AOT_sem_dia AOT_sem_exe AOT_sem_lambda_beta933

AOT_sem_not κ.collapse(1) 0)+934

hence ‹is_ακ κ› and ‹is_ακ κ’›935

by (meson AOT_sem_denotes AOT_model_denotes_κ_def κ.exhaust_disc936

κ_denotes κ’_denotes)+937

then obtain x y where κ_def: ‹κ = ακ x› and κ’_def: ‹κ’ = ακ y›938

using is_ακ_def by auto939

{940

fix r941

assume ‹r ∈ x›942

hence ‹[v |= κ[«urrel_to_rel r»]]›943

170

A.4. Semantics

unfolding κ_def944

unfolding AOT_enc_κ_meta945

unfolding AOT_model_enc_κ_def946

apply (simp add: AOT_model_denotes_κ_def)947

by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)948

hence ‹[v |= κ’[«urrel_to_rel r»]]›949

using AOT_enc_κ_meta 0 by (metis AOT_sem_enc_denotes)950

hence ‹r ∈ y›951

unfolding κ’_def952

unfolding AOT_enc_κ_meta953

unfolding AOT_model_enc_κ_def954

apply (simp add: AOT_model_denotes_κ_def)955

using Quotient_abs_rep urrel_quotient by fastforce956

}957

moreover {958

fix r959

assume ‹r ∈ y›960

hence ‹[v |= κ’[«urrel_to_rel r»]]›961

unfolding κ’_def962

unfolding AOT_enc_κ_meta963

unfolding AOT_model_enc_κ_def964

apply (simp add: AOT_model_denotes_κ_def)965

by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)966

hence ‹[v |= κ[«urrel_to_rel r»]]›967

using AOT_enc_κ_meta 0 by (metis AOT_sem_enc_denotes)968

hence ‹r ∈ x›969

unfolding κ_def970

unfolding AOT_enc_κ_meta971

unfolding AOT_model_enc_κ_def972

apply (simp add: AOT_model_denotes_κ_def)973

using Quotient_abs_rep urrel_quotient by fastforce974

}975

ultimately have "x = y" by blast976

hence ‹[v |= κ↓] ∧ [v |= κ’↓] ∧ κ = κ’›977

using κ’_def κ’_denotes κ_def by blast978

}979

ultimately show ?thesis980

unfolding AOT_sem_denotes981

by auto982

qed983

(* Only extended model *)984

next985

fix v and κ κ’ :: κ and Π Π’ :: ‹<κ>›986

assume ext: ‹AOT_ExtendedModel›987

assume ‹[v |= [λx ¬♦[E!]x]κ]›988

hence ‹is_ακ κ›989

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)990

AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia991

AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1) κ.exhaust_disc)992

hence κ_abs: ‹¬(∃ w . AOT_model_concrete w κ)›993

using is_ακ_def by fastforce994

have κ_den: ‹AOT_model_denotes κ›995

by (simp add: AOT_model_denotes_κ_def κ.distinct_disc(5) ‹is_ακ κ›)996

assume ‹[v |= [λx ¬♦[E!]x]κ’]›997

hence ‹is_ακ κ’›998

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)999

AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia1000

AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)1001

κ.exhaust_disc)1002

hence κ’_abs: ‹¬(∃ w . AOT_model_concrete w κ’)›1003

using is_ακ_def by fastforce1004

have κ’_den: ‹AOT_model_denotes κ’›1005

by (meson AOT_model_denotes_κ_def κ.distinct_disc(6) ‹is_ακ κ’›)1006

171

A. Isabelle Theory

assume ‹[v |= Π’↓] =⇒ [w |= [Π’]κ] = [w |= [Π’]κ’]› for Π’ w1007

hence indist: ‹[v |= «Rep_rel Π’ κ»] = [v |= «Rep_rel Π’ κ’»]›1008

if ‹AOT_model_denotes Π’› for Π’ v1009

by (metis AOT_sem_denotes AOT_sem_exe κ’_den κ_den that)1010

assume κ_enc_cond: ‹[v |= Π’↓] =⇒1011

(
∧

κ0 w. [v |= [λx ♦[E!]x]κ0] =⇒1012

[w |= [Π’]κ0] = [w |= [Π]κ0]) =⇒1013

[v |= κ[Π’]]› for Π’1014

assume Π_den’: ‹[v |= Π↓]›1015

hence Π_den: ‹AOT_model_denotes Π›1016

using AOT_sem_denotes by blast1017

{1018

fix Π’ :: ‹<κ>›1019

assume Π’_den: ‹AOT_model_denotes Π’›1020

hence Π’_den’: ‹[v |= Π’↓]›1021

by (simp add: AOT_sem_denotes)1022

assume 1: ‹∃w. AOT_model_concrete w x =⇒1023

[v |= «Rep_rel Π’ x»] = [v |= «Rep_rel Π x»]› for v x1024

{1025

fix κ0 :: κ and w1026

assume ‹[v |= [λx ♦[E!]x]κ0]›1027

hence ‹is_ωκ κ0›1028

by (smt (z3) AOT_model_concrete_κ.simps(2) AOT_model_denotes_κ_def1029

AOT_sem_concrete AOT_sem_denotes AOT_sem_dia AOT_sem_exe1030

AOT_sem_lambda_beta κ.exhaust_disc is_ακ_def)1031

then obtain x where x_prop: ‹κ0 = ωκ x›1032

using is_ωκ_def by blast1033

have ‹∃w . AOT_model_concrete w (ωκ x)›1034

by (simp add: AOT_model_ω_concrete_in_some_world)1035

hence ‹[v |= «Rep_rel Π’ (ωκ x)»] = [v |= «Rep_rel Π (ωκ x)»]› for v1036

using 1 by blast1037

hence ‹[w |= [Π’]κ0] = [w |= [Π]κ0]› unfolding x_prop1038

by (simp add: AOT_sem_exe AOT_sem_denotes AOT_model_denotes_κ_def1039

Π’_den Π_den)1040

} note 2 = this1041

have ‹[v |= κ[Π’]]›1042

using κ_enc_cond[OF Π’_den’, OF 2]1043

by metis1044

hence ‹AOT_model_enc κ Π’›1045

using AOT_enc_κ_meta by blast1046

} note κ_enc_cond = this1047

hence ‹AOT_model_denotes Π’ =⇒1048

(
∧

v x. ∃w. AOT_model_concrete w x =⇒1049

[v |= «Rep_rel Π’ x»] = [v |= «Rep_rel Π x»]) =⇒1050

AOT_model_enc κ Π’› for Π’1051

by blast1052

assume Π’_den’: ‹[v |= Π’↓]›1053

hence Π’_den: ‹AOT_model_denotes Π’›1054

using AOT_sem_denotes by blast1055

assume ord_indist: ‹[v |= [λx ♦[E!]x]κ0] =⇒1056

[w |= [Π’]κ0] = [w |= [Π]κ0]› for κ0 w1057

{1058

fix w and κ0 :: κ1059

assume 0: ‹∃w. AOT_model_concrete w κ0›1060

hence ‹[v |= [λx ♦[E!]x]κ0]›1061

using AOT_model_concrete_denotes AOT_sem_concrete AOT_sem_denotes AOT_sem_dia1062

AOT_sem_lambda_beta AOT_sem_ordinary_def_denotes by blast1063

hence ‹[w |= [Π’]κ0] = [w |= [Π]κ0]›1064

using ord_indist by metis1065

hence ‹[w |= «Rep_rel Π’ κ0»] = [w |= «Rep_rel Π κ0»]›1066

by (metis AOT_model_concrete_denotes AOT_sem_denotes AOT_sem_exe Π’_den Π_den 0)1067

} note ord_indist = this1068

have ‹AOT_model_enc κ’ Π’›1069

172

A.4. Semantics

using AOT_model_enc_indistinguishable_all1070

[OF ext, OF κ_den, OF κ_abs, OF κ’_den, OF κ’_abs, OF Π_den]1071

indist κ_enc_cond Π’_den ord_indist by blast1072

thus ‹[v |= κ’[Π’]]›1073

using AOT_enc_κ_meta Π’_den κ’_den by blast1074

next1075

fix v and κ κ’ :: κ and Π Π’ :: ‹<κ>›1076

assume ext: ‹AOT_ExtendedModel›1077

assume ‹[v |= [λx ¬♦[E!]x]κ]›1078

hence ‹is_ακ κ›1079

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)1080

AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia1081

AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)1082

κ.exhaust_disc)1083

hence κ_abs: ‹¬(∃ w . AOT_model_concrete w κ)›1084

using is_ακ_def by fastforce1085

have κ_den: ‹AOT_model_denotes κ›1086

by (simp add: AOT_model_denotes_κ_def κ.distinct_disc(5) ‹is_ακ κ›)1087

assume ‹[v |= [λx ¬♦[E!]x]κ’]›1088

hence ‹is_ακ κ’›1089

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)1090

AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia1091

AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)1092

κ.exhaust_disc)1093

hence κ’_abs: ‹¬(∃ w . AOT_model_concrete w κ’)›1094

using is_ακ_def by fastforce1095

have κ’_den: ‹AOT_model_denotes κ’›1096

by (meson AOT_model_denotes_κ_def κ.distinct_disc(6) ‹is_ακ κ’›)1097

assume ‹[v |= Π’↓] =⇒ [w |= [Π’]κ] = [w |= [Π’]κ’]› for Π’ w1098

hence indist: ‹[v |= «Rep_rel Π’ κ»] = [v |= «Rep_rel Π’ κ’»]›1099

if ‹AOT_model_denotes Π’› for Π’ v1100

by (metis AOT_sem_denotes AOT_sem_exe κ’_den κ_den that)1101

assume Π_den’: ‹[v |= Π↓]›1102

hence Π_den: ‹AOT_model_denotes Π›1103

using AOT_sem_denotes by blast1104

assume ‹∃Π’. [v |= Π’↓] ∧ [v |= κ[Π’]] ∧1105

(∀κ0. [v |= [λx ♦[E!]x]κ0] −→1106

(∀w. [w |= [Π’]κ0] = [w |= [Π]κ0]))›1107

then obtain Π’ where1108

Π’_den: ‹[v |= Π’↓]› and1109

Π’_enc: ‹[v |= κ[Π’]]› and1110

Π’_prop: ‹∀κ0. [v |= [λx ♦[E!]x]κ0] −→1111

(∀w. [w |= [Π’]κ0] = [w |= [Π]κ0])›1112

by blast1113

have ‹AOT_model_denotes Π’›1114

using AOT_enc_κ_meta Π’_enc by force1115

moreover have ‹AOT_model_enc κ Π’›1116

using AOT_enc_κ_meta Π’_enc by blast1117

moreover have ‹(∃w. AOT_model_concrete w κ0) =⇒1118

[v |= «Rep_rel Π’ κ0»] = [v |= «Rep_rel Π κ0»]› for κ0 v1119

proof -1120

assume 0: ‹∃w. AOT_model_concrete w κ0›1121

hence ‹[v |= [λx ♦[E!]x]κ0]› for v1122

using AOT_model_concrete_denotes AOT_sem_concrete AOT_sem_denotes AOT_sem_dia1123

AOT_sem_lambda_beta AOT_sem_ordinary_def_denotes by blast1124

hence ‹∀w. [w |= [Π’]κ0] = [w |= [Π]κ0]› using Π’_prop by blast1125

thus ‹[v |= «Rep_rel Π’ κ0»] = [v |= «Rep_rel Π κ0»]›1126

by (meson "0" AOT_model_concrete_denotes AOT_sem_denotes AOT_sem_exe Π_den1127

calculation(1))1128

qed1129

ultimately have ‹∃Π’. AOT_model_denotes Π’ ∧ AOT_model_enc κ Π’ ∧1130

(∀v x. (∃w. AOT_model_concrete w x) −→1131

[v |= «Rep_rel Π’ x»] = [v |= «Rep_rel Π x»])›1132

173

A. Isabelle Theory

by blast1133

hence ‹∃Π’. AOT_model_denotes Π’ ∧ AOT_model_enc κ’ Π’ ∧1134

(∀v x. (∃w. AOT_model_concrete w x) −→1135

[v |= «Rep_rel Π’ x»] = [v |= «Rep_rel Π x»])›1136

using AOT_model_enc_indistinguishable_ex1137

[OF ext, OF κ_den, OF κ_abs, OF κ’_den, OF κ’_abs, OF Π_den]1138

indist by blast1139

then obtain Π” where1140

Π”_den: ‹AOT_model_denotes Π”›1141

and Π”_enc: ‹AOT_model_enc κ’ Π”›1142

and Π”_prop: ‹(∃w. AOT_model_concrete w x) =⇒1143

[v |= «Rep_rel Π” x»] = [v |= «Rep_rel Π x»]› for v x1144

by blast1145

have ‹[v |= Π”↓]›1146

by (simp add: AOT_sem_denotes Π”_den)1147

moreover have ‹[v |= κ’[Π”]]›1148

by (simp add: AOT_enc_κ_meta Π”_den Π”_enc κ’_den)1149

moreover have ‹[v |= [λx ♦[E!]x]κ0] =⇒1150

(∀w. [w |= [Π”]κ0] = [w |= [Π]κ0])› for κ01151

proof -1152

assume ‹[v |= [λx ♦[E!]x]κ0]›1153

hence ‹∃w. AOT_model_concrete w κ0›1154

by (metis AOT_sem_concrete AOT_sem_dia AOT_sem_exe AOT_sem_lambda_beta)1155

thus ‹∀w. [w |= [Π”]κ0] = [w |= [Π]κ0]›1156

using Π”_prop1157

by (metis AOT_sem_denotes AOT_sem_exe Π”_den Π_den)1158

qed1159

ultimately show ‹∃Π’. [v |= Π’↓] ∧ [v |= κ’[Π’]] ∧1160

(∀κ0. [v |= [λx ♦[E!]x]κ0] −→1161

(∀w. [w |= [Π’]κ0] = [w |= [Π]κ0]))›1162

by (safe intro!: exI[where x=Π”]) blast+1163

qed1164

end1165

1166

text‹Define encoding for products using projection-encoding.›1167

instantiation prod :: (AOT_UnaryEnc, AOT_Enc) AOT_Enc1168

begin1169

definition AOT_proj_enc_prod :: ‹’a×’b ⇒ (’a×’b ⇒ o) ⇒ o› where1170

‹AOT_proj_enc_prod ≡ λ (κ,κ’) ϕ . «κ[λν «ϕ (ν,κ’)»] &1171

«AOT_proj_enc κ’ (λν. ϕ (κ,ν))»»›1172

definition AOT_enc_prod :: ‹’a×’b ⇒ <’a×’b> ⇒ o› where1173

‹AOT_enc_prod ≡ λ κ Π . «Π↓ & «AOT_proj_enc κ (λ κ1’κn’. «[Π]κ1’...κn’»)»»›1174

instance proof1175

show ‹[v |= κ1...κn[Π]] =⇒ [v |= κ1...κn↓] ∧ [v |= Π↓]›1176

for v and κ1κn :: ‹’a×’b› and Π1177

unfolding AOT_enc_prod_def1178

apply (induct κ1κn; simp add: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_prod_def)1179

by (metis AOT_sem_denotes AOT_model_denotes_prod_def AOT_sem_enc_denotes1180

AOT_sem_proj_enc_denotes case_prodI)1181

next1182

show ‹[v |= κ1...κn[Π]] =1183

[v |= «Π»↓ & «AOT_proj_enc κ1κn (λ κ1κn. «[Π]κ1...κn»)»]›1184

for v and κ1κn :: ‹’a×’b› and Π1185

unfolding AOT_enc_prod_def ..1186

next1187

show ‹[v |= «AOT_proj_enc κs ϕ»] =⇒ [v |= «κs»↓]›1188

for v and κs :: ‹’a×’b› and ϕ1189

by (metis (mono_tags, lifting)1190

AOT_sem_conj AOT_sem_denotes AOT_model_denotes_prod_def1191

AOT_sem_enc_denotes AOT_sem_proj_enc_denotes1192

AOT_proj_enc_prod_def case_prod_unfold)1193

next1194

fix v w Π and κ1κn :: ‹’a×’b›1195

174

A.4. Semantics

show ‹[w |= κ1...κn[Π]]› if ‹[v |= κ1...κn[Π]]› for v w Π and κ1κn :: ‹’a×’b›1196

by (metis (mono_tags, lifting)1197

AOT_enc_prod_def AOT_sem_enc_proj_enc AOT_sem_conj AOT_sem_denotes1198

AOT_sem_proj_enc_nec AOT_proj_enc_prod_def case_prod_unfold that)1199

next1200

show ‹[w |= «AOT_proj_enc κ1κn ϕ»]› if ‹[v |= «AOT_proj_enc κ1κn ϕ»]›1201

for v w ϕ and κ1κn :: ‹’a×’b›1202

by (metis (mono_tags, lifting)1203

that AOT_sem_enc_proj_enc AOT_sem_conj AOT_sem_denotes1204

AOT_sem_proj_enc_nec AOT_proj_enc_prod_def case_prod_unfold)1205

next1206

fix v1207

obtain κ :: ’a where a_prop: ‹[v |= κ↓] ∧ (∀ Π . [v |= Π↓] −→ [v |= κ[Π]])›1208

using AOT_sem_universal_encoder by blast1209

obtain κ1’κn’ :: ’b where b_prop:1210

‹[v |= κ1’...κn’↓] ∧ (∀ ϕ . [v |= [λν1...νn «ϕ ν1νn»]↓] −→1211

[v |= «AOT_proj_enc κ1’κn’ ϕ»])›1212

using AOT_sem_universal_encoder by blast1213

have ‹AOT_model_denotes «[λν1...νn [«Π»]ν1...νn κ1’...κn’]»›1214

if ‹AOT_model_denotes Π› for Π :: ‹<’a×’b>›1215

unfolding AOT_model_lambda_denotes1216

by (metis AOT_meta_prod_equivI(2) AOT_sem_exe_equiv)1217

moreover have ‹AOT_model_denotes «[λν1...νn [«Π»]κ ν1...νn]»›1218

if ‹AOT_model_denotes Π› for Π :: ‹<’a×’b>›1219

unfolding AOT_model_lambda_denotes1220

by (metis AOT_meta_prod_equivI(1) AOT_sem_exe_equiv)1221

ultimately have 1: ‹[v |= «(κ,κ1’κn’)»↓]›1222

and 2: ‹(∀ Π . [v |= Π↓] −→ [v |= κ κ1’...κn’[Π]])›1223

using a_prop b_prop1224

by (auto simp: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def1225

AOT_model_denotes_κ_def AOT_model_denotes_prod_def1226

AOT_enc_prod_def AOT_proj_enc_prod_def AOT_sem_conj)1227

have ‹AOT_model_denotes «[λz1...zn «ϕ (z1zn, κ1’κn’)»]»›1228

if ‹AOT_model_denotes «[λz1...zm ϕ{z1...zm}]»› for ϕ :: ‹’a×’b ⇒ o›1229

using that1230

unfolding AOT_model_lambda_denotes1231

by (metis (no_types, lifting) AOT_sem_denotes AOT_model_denotes_prod_def1232

AOT_meta_prod_equivI(2) b_prop case_prodI)1233

moreover have ‹AOT_model_denotes «[λz1...zn «ϕ (κ, z1zn)»]»›1234

if ‹AOT_model_denotes «[λz1...zm ϕ{z1...zm}]»› for ϕ :: ‹’a×’b ⇒ o›1235

using that1236

unfolding AOT_model_lambda_denotes1237

by (metis (no_types, lifting) AOT_sem_denotes AOT_model_denotes_prod_def1238

AOT_meta_prod_equivI(1) a_prop case_prodI)1239

ultimately have 3:1240

‹[v |= «(κ,κ1’κn’)»↓] ∧ (∀ ϕ . [v |= [λz1...zn ϕ{z1...zn}]↓] −→1241

[v |= «AOT_proj_enc (κ,κ1’κn’) ϕ»])›1242

using a_prop b_prop1243

by (auto simp: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def1244

AOT_model_denotes_κ_def AOT_enc_prod_def AOT_proj_enc_prod_def1245

AOT_sem_conj AOT_model_denotes_prod_def)1246

show ‹∃κ1κn::’a×’b. [v |= κ1...κn↓] ∧ (∀ Π . [v |= Π↓] −→ [v |= κ1...κn[Π]]) ∧1247

(∀ ϕ . [v |= [λz1...zn «ϕ z1zn»]↓] −→1248

[v |= «AOT_proj_enc κ1κn ϕ»])›1249

apply (rule exI[where x=‹(κ,κ1’κn’)›]) using 1 2 3 by blast1250

qed1251

end1252

1253

text‹Sanity-check to verify that n-ary encoding follows.›1254

lemma ‹[v |= κ1κ2[Π]] = [v |= Π↓ & κ1[λν [Π]νκ2] & κ2[λν [Π]κ1ν]]›1255

for κ1 :: "’a::AOT_UnaryEnc" and κ2 :: "’b::AOT_UnaryEnc"1256

by (simp add: AOT_sem_conj AOT_enc_prod_def AOT_proj_enc_prod_def1257

AOT_sem_unary_proj_enc)1258

175

A. Isabelle Theory

lemma ‹[v |= κ1κ2κ3[Π]] =1259

[v |= Π↓ & κ1[λν [Π]νκ2κ3] & κ2[λν [Π]κ1νκ3] & κ3[λν [Π]κ1κ2ν]]›1260

for κ1 κ2 κ3 :: "’a::AOT_UnaryEnc"1261

by (simp add: AOT_sem_conj AOT_enc_prod_def AOT_proj_enc_prod_def1262

AOT_sem_unary_proj_enc)1263

1264

lemma AOT_sem_vars_denote: ‹[v |= α1...αn↓]›1265

by induct simp1266

1267

text‹Combine the introduced type classes and register them as1268

type constraints for individual terms.›1269

class AOT_κs = AOT_IndividualTerm + AOT_RelationProjection + AOT_Enc1270

class AOT_κ = AOT_κs + AOT_UnaryIndividualTerm +1271

AOT_UnaryRelationProjection + AOT_UnaryEnc1272

1273

instance κ :: AOT_κ by standard1274

instance prod :: (AOT_κ, AOT_κs) AOT_κs by standard1275

1276

AOT_register_type_constraints1277

Individual: ‹_::AOT_κ› ‹_::AOT_κs› and1278

Relation: ‹<_::AOT_κs>›1279

1280

text‹We define semantic predicates to capture the conditions of cqt.2 (i.e.1281

the base cases of denoting terms) on matrices of @{text λ}-expressions.›1282

definition AOT_instance_of_cqt_2 :: ‹(’a::AOT_κs ⇒ o) ⇒ bool› where1283

‹AOT_instance_of_cqt_2 ≡ λ ϕ . ∀ x y . AOT_model_denotes x ∧ AOT_model_denotes y ∧1284

AOT_model_term_equiv x y −→ ϕ x = ϕ y›1285

definition AOT_instance_of_cqt_2_exe_arg :: ‹(’a::AOT_κs ⇒ ’b::AOT_κs) ⇒ bool› where1286

‹AOT_instance_of_cqt_2_exe_arg ≡ λ ϕ . ∀ x y .1287

AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y −→1288

AOT_model_term_equiv (ϕ x) (ϕ y)›1289

1290

text‹@{text λ}-expressions with a matrix that satisfies our predicate denote.›1291

lemma AOT_sem_cqt_2:1292

assumes ‹AOT_instance_of_cqt_2 ϕ›1293

shows ‹[v |= [λν1...νn ϕ{ν1...νn}]↓]›1294

using assms1295

by (metis AOT_instance_of_cqt_2_def AOT_model_lambda_denotes AOT_sem_denotes)1296

1297

syntax AOT_instance_of_cqt_2 :: ‹id_position ⇒ AOT_prop›1298

("INSTANCE’_OF’_CQT’_2’(_’)")1299

1300

text‹Prove introduction rules for the predicates that match the natural language1301

restrictions of the axiom.›1302

named_theorems AOT_instance_of_cqt_2_intro1303

lemma AOT_instance_of_cqt_2_intros_const[AOT_instance_of_cqt_2_intro]:1304

‹AOT_instance_of_cqt_2 (λα. ϕ)›1305

by (simp add: AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes)1306

lemma AOT_instance_of_cqt_2_intros_not[AOT_instance_of_cqt_2_intro]:1307

assumes ‹AOT_instance_of_cqt_2 ϕ›1308

shows ‹AOT_instance_of_cqt_2 (λτ. «¬ϕ{τ}»)›1309

using assms1310

by (metis (no_types, lifting) AOT_instance_of_cqt_2_def)1311

lemma AOT_instance_of_cqt_2_intros_imp[AOT_instance_of_cqt_2_intro]:1312

assumes ‹AOT_instance_of_cqt_2 ϕ› and ‹AOT_instance_of_cqt_2 ψ›1313

shows ‹AOT_instance_of_cqt_2 (λτ. «ϕ{τ} → ψ{τ}»)›1314

using assms1315

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1316

AOT_model_lambda_denotes AOT_sem_imp)1317

lemma AOT_instance_of_cqt_2_intros_box[AOT_instance_of_cqt_2_intro]:1318

assumes ‹AOT_instance_of_cqt_2 ϕ›1319

shows ‹AOT_instance_of_cqt_2 (λτ. «�ϕ{τ}»)›1320

using assms1321

176

A.4. Semantics

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1322

AOT_model_lambda_denotes AOT_sem_box)1323

lemma AOT_instance_of_cqt_2_intros_act[AOT_instance_of_cqt_2_intro]:1324

assumes ‹AOT_instance_of_cqt_2 ϕ›1325

shows ‹AOT_instance_of_cqt_2 (λτ. «Aϕ{τ}»)›1326

using assms1327

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1328

AOT_model_lambda_denotes AOT_sem_act)1329

lemma AOT_instance_of_cqt_2_intros_diamond[AOT_instance_of_cqt_2_intro]:1330

assumes ‹AOT_instance_of_cqt_2 ϕ›1331

shows ‹AOT_instance_of_cqt_2 (λτ. «♦ϕ{τ}»)›1332

using assms1333

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1334

AOT_model_lambda_denotes AOT_sem_dia)1335

lemma AOT_instance_of_cqt_2_intros_conj[AOT_instance_of_cqt_2_intro]:1336

assumes ‹AOT_instance_of_cqt_2 ϕ› and ‹AOT_instance_of_cqt_2 ψ›1337

shows ‹AOT_instance_of_cqt_2 (λτ. «ϕ{τ} & ψ{τ}»)›1338

using assms1339

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1340

AOT_model_lambda_denotes AOT_sem_conj)1341

lemma AOT_instance_of_cqt_2_intros_disj[AOT_instance_of_cqt_2_intro]:1342

assumes ‹AOT_instance_of_cqt_2 ϕ› and ‹AOT_instance_of_cqt_2 ψ›1343

shows ‹AOT_instance_of_cqt_2 (λτ. «ϕ{τ} ∨ ψ{τ}»)›1344

using assms1345

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1346

AOT_model_lambda_denotes AOT_sem_disj)1347

lemma AOT_instance_of_cqt_2_intros_equib[AOT_instance_of_cqt_2_intro]:1348

assumes ‹AOT_instance_of_cqt_2 ϕ› and ‹AOT_instance_of_cqt_2 ψ›1349

shows ‹AOT_instance_of_cqt_2 (λτ. «ϕ{τ} ≡ ψ{τ}»)›1350

using assms1351

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1352

AOT_model_lambda_denotes AOT_sem_equiv)1353

lemma AOT_instance_of_cqt_2_intros_forall[AOT_instance_of_cqt_2_intro]:1354

assumes ‹
∧

α . AOT_instance_of_cqt_2 (Φ α)›1355

shows ‹AOT_instance_of_cqt_2 (λτ. «∀α Φ{α,τ}»)›1356

using assms1357

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1358

AOT_model_lambda_denotes AOT_sem_forall)1359

lemma AOT_instance_of_cqt_2_intros_exists[AOT_instance_of_cqt_2_intro]:1360

assumes ‹
∧

α . AOT_instance_of_cqt_2 (Φ α)›1361

shows ‹AOT_instance_of_cqt_2 (λτ. «∃α Φ{α,τ}»)›1362

using assms1363

by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes1364

AOT_model_lambda_denotes AOT_sem_exists)1365

lemma AOT_instance_of_cqt_2_intros_exe_arg_self[AOT_instance_of_cqt_2_intro]:1366

‹AOT_instance_of_cqt_2_exe_arg (λx. x)›1367

unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def1368

AOT_sem_lambda_denotes1369

by (auto simp: AOT_model_term_equiv_part_equivp equivp_reflp AOT_sem_denotes)1370

lemma AOT_instance_of_cqt_2_intros_exe_arg_const[AOT_instance_of_cqt_2_intro]:1371

‹AOT_instance_of_cqt_2_exe_arg (λx. κ)›1372

unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def1373

by (auto simp: AOT_model_term_equiv_part_equivp equivp_reflp1374

AOT_sem_denotes AOT_sem_lambda_denotes)1375

lemma AOT_instance_of_cqt_2_intros_exe_arg_fst[AOT_instance_of_cqt_2_intro]:1376

‹AOT_instance_of_cqt_2_exe_arg fst›1377

unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def1378

by (simp add: AOT_model_term_equiv_prod_def case_prod_beta)1379

lemma AOT_instance_of_cqt_2_intros_exe_arg_snd[AOT_instance_of_cqt_2_intro]:1380

‹AOT_instance_of_cqt_2_exe_arg snd›1381

unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def1382

by (simp add: AOT_model_term_equiv_prod_def AOT_sem_denotes AOT_sem_lambda_denotes)1383

lemma AOT_instance_of_cqt_2_intros_exe_arg_Pair[AOT_instance_of_cqt_2_intro]:1384

177

A. Isabelle Theory

assumes ‹AOT_instance_of_cqt_2_exe_arg ϕ› and ‹AOT_instance_of_cqt_2_exe_arg ψ›1385

shows ‹AOT_instance_of_cqt_2_exe_arg (λτ. Pair (ϕ τ) (ψ τ))›1386

using assms1387

unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def1388

AOT_sem_denotes AOT_sem_lambda_denotes AOT_model_term_equiv_prod_def1389

AOT_model_denotes_prod_def1390

by auto1391

lemma AOT_instance_of_cqt_2_intros_desc[AOT_instance_of_cqt_2_intro]:1392

assumes ‹
∧

z :: ’a::AOT_κ. AOT_instance_of_cqt_2 (Φ z)›1393

shows ‹AOT_instance_of_cqt_2_exe_arg (λ κ :: ’b::AOT_κ . «ιz(Φ{z,κ})»)›1394

proof -1395

have 0: ‹
∧

κ κ’. AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧1396

AOT_model_term_equiv κ κ’ =⇒1397

Φ z κ = Φ z κ’› for z1398

using assms1399

unfolding AOT_instance_of_cqt_2_def1400

AOT_sem_denotes AOT_model_lambda_denotes by force1401

{1402

fix κ κ’1403

have ‹«ιz(Φ{z,κ})» = «ιz(Φ{z,κ’})»›1404

if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧ AOT_model_term_equiv κ κ’›1405

using 0[OF that]1406

by auto1407

moreover have ‹AOT_model_term_equiv x x› for x :: ‹’a::AOT_κ›1408

by (metis AOT_instance_of_cqt_2_exe_arg_def1409

AOT_instance_of_cqt_2_intros_exe_arg_const1410

AOT_model_A_objects AOT_model_term_equiv_denotes1411

AOT_model_term_equiv_eps(1))1412

ultimately have ‹AOT_model_term_equiv «ιz(Φ{z,κ})» «ιz(Φ{z,κ’})»›1413

if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧ AOT_model_term_equiv κ κ’›1414

using that by simp1415

}1416

thus ?thesis using 01417

unfolding AOT_instance_of_cqt_2_exe_arg_def1418

by simp1419

qed1420

1421

lemma AOT_instance_of_cqt_2_intros_exe_const[AOT_instance_of_cqt_2_intro]:1422

assumes ‹AOT_instance_of_cqt_2_exe_arg κs›1423

shows ‹AOT_instance_of_cqt_2 (λx :: ’b::AOT_κs. AOT_exe Π (κs x))›1424

using assms1425

unfolding AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes1426

AOT_sem_disj AOT_sem_conj1427

AOT_sem_not AOT_sem_box AOT_sem_act AOT_instance_of_cqt_2_exe_arg_def1428

AOT_sem_equiv AOT_sem_imp AOT_sem_forall AOT_sem_exists AOT_sem_dia1429

by (auto intro!: AOT_sem_exe_equiv)1430

lemma AOT_instance_of_cqt_2_intros_exe_lam[AOT_instance_of_cqt_2_intro]:1431

assumes ‹
∧

y . AOT_instance_of_cqt_2 (λx. ϕ x y)›1432

and ‹AOT_instance_of_cqt_2_exe_arg κs›1433

shows ‹AOT_instance_of_cqt_2 (λκ1κn :: ’b::AOT_κs.1434

«[λν1...νn ϕ{κ1...κn,ν1...νn}]«κs κ1κn»»)›1435

proof -1436

{1437

fix x y :: ’b1438

assume ‹AOT_model_denotes x›1439

moreover assume ‹AOT_model_denotes y›1440

moreover assume ‹AOT_model_term_equiv x y›1441

moreover have 1: ‹ϕ x = ϕ y›1442

using assms calculation unfolding AOT_instance_of_cqt_2_def by blast1443

ultimately have ‹AOT_exe (AOT_lambda (ϕ x)) (κs x) =1444

AOT_exe (AOT_lambda (ϕ y)) (κs y)›1445

unfolding 11446

apply (safe intro!: AOT_sem_exe_equiv)1447

178

A.4. Semantics

by (metis AOT_instance_of_cqt_2_exe_arg_def assms(2))1448

}1449

thus ?thesis1450

unfolding AOT_instance_of_cqt_2_def1451

AOT_instance_of_cqt_2_exe_arg_def1452

by blast1453

qed1454

lemma AOT_instance_of_cqt_2_intro_prod[AOT_instance_of_cqt_2_intro]:1455

assumes ‹
∧

x . AOT_instance_of_cqt_2 (ϕ x)›1456

and ‹
∧

x . AOT_instance_of_cqt_2 (λ z . ϕ z x)›1457

shows ‹AOT_instance_of_cqt_2 (λ(x,y) . ϕ x y)›1458

using assms unfolding AOT_instance_of_cqt_2_def1459

by (auto simp add: AOT_model_lambda_denotes AOT_sem_denotes1460

AOT_model_denotes_prod_def1461

AOT_model_term_equiv_prod_def)1462

1463

text‹The following are already derivable semantically, but not yet added1464

to @{attribute AOT_instance_of_cqt_2_intro}. They will be added with the1465

next planned extension of axiom cqt:2.›1466

named_theorems AOT_instance_of_cqt_2_intro_next1467

definition AOT_instance_of_cqt_2_enc_arg :: ‹(’a::AOT_κs ⇒ ’b::AOT_κs) ⇒ bool› where1468

‹AOT_instance_of_cqt_2_enc_arg ≡ λ ϕ . ∀ x y z .1469

AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y −→1470

AOT_enc (ϕ x) z = AOT_enc (ϕ y) z›1471

definition AOT_instance_of_cqt_2_enc_rel :: ‹(’a::AOT_κs ⇒ <’b::AOT_κs>) ⇒ bool› where1472

‹AOT_instance_of_cqt_2_enc_rel ≡ λ ϕ . ∀ x y z .1473

AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y −→1474

AOT_enc z (ϕ x) = AOT_enc z (ϕ y)›1475

lemma AOT_instance_of_cqt_2_intros_enc[AOT_instance_of_cqt_2_intro_next]:1476

assumes ‹AOT_instance_of_cqt_2_enc_rel Π› and ‹AOT_instance_of_cqt_2_enc_arg κs›1477

shows ‹AOT_instance_of_cqt_2 (λx . AOT_enc (κs x) «[«Π x»]»)›1478

using assms1479

unfolding AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes1480

AOT_instance_of_cqt_2_enc_rel_def AOT_sem_not AOT_sem_box AOT_sem_act1481

AOT_sem_dia AOT_sem_conj AOT_sem_disj AOT_sem_equiv AOT_sem_imp1482

AOT_sem_forall AOT_sem_exists AOT_instance_of_cqt_2_enc_arg_def1483

by fastforce+1484

lemma AOT_instance_of_cqt_2_enc_arg_intro_const[AOT_instance_of_cqt_2_intro_next]:1485

‹AOT_instance_of_cqt_2_enc_arg (λx. c)›1486

unfolding AOT_instance_of_cqt_2_enc_arg_def by simp1487

lemma AOT_instance_of_cqt_2_enc_arg_intro_desc[AOT_instance_of_cqt_2_intro_next]:1488

assumes ‹
∧

z :: ’a::AOT_κ. AOT_instance_of_cqt_2 (Φ z)›1489

shows ‹AOT_instance_of_cqt_2_enc_arg (λ κ :: ’b::AOT_κ . «ιz(Φ{z,κ})»)›1490

proof -1491

have 0: ‹
∧

κ κ’. AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧1492

AOT_model_term_equiv κ κ’ =⇒1493

Φ z κ = Φ z κ’› for z1494

using assms1495

unfolding AOT_instance_of_cqt_2_def1496

AOT_sem_denotes AOT_model_lambda_denotes by force1497

{1498

fix κ κ’1499

have ‹«ιz(Φ{z,κ})» = «ιz(Φ{z,κ’})»›1500

if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ’ ∧ AOT_model_term_equiv κ κ’›1501

using 0[OF that]1502

by auto1503

}1504

thus ?thesis using 01505

unfolding AOT_instance_of_cqt_2_enc_arg_def by meson1506

qed1507

lemma AOT_instance_of_cqt_2_enc_rel_intro[AOT_instance_of_cqt_2_intro_next]:1508

assumes ‹
∧

κ’ . AOT_instance_of_cqt_2 (λκ :: ’a::AOT_κs . ϕ κ κ’)›1509

shows ‹AOT_instance_of_cqt_2_enc_rel (λκ :: ’a::AOT_κs. AOT_lambda (λκ’. ϕ κ κ’))›1510

179

A. Isabelle Theory

proof -1511

{1512

fix x y :: ’a and z ::’b1513

assume ‹AOT_model_term_equiv x y›1514

moreover assume ‹AOT_model_denotes x›1515

moreover assume ‹AOT_model_denotes y›1516

ultimately have ‹ϕ x = ϕ y›1517

using assms unfolding AOT_instance_of_cqt_2_def by blast1518

hence ‹AOT_enc z (AOT_lambda (ϕ x)) = AOT_enc z (AOT_lambda (ϕ y))›1519

by simp1520

}1521

thus ?thesis1522

unfolding AOT_instance_of_cqt_2_enc_rel_def by auto1523

qed1524

1525

text‹Further restrict unary individual variables to type @{typ κ} (rather1526

than class @{class AOT_κ} only) and define being ordinary and being abstract.›1527

AOT_register_type_constraints1528

Individual: ‹κ› ‹_::AOT_κs›1529

1530

AOT_define AOT_ordinary :: ‹Π› (‹O!›) ‹O! =df [λx ♦E!x]›1531

declare AOT_ordinary[AOT del, AOT_defs del]1532

AOT_define AOT_abstract :: ‹Π› (‹A!›) ‹A! =df [λx ¬♦E!x]›1533

declare AOT_abstract[AOT del, AOT_defs del]1534

1535

context AOT_meta_syntax1536

begin1537

notation AOT_ordinary ("O!")1538

notation AOT_abstract ("A!")1539

end1540

context AOT_no_meta_syntax1541

begin1542

no_notation AOT_ordinary ("O!")1543

no_notation AOT_abstract ("A!")1544

end1545

1546

no_translations1547

"_AOT_concrete" => "CONST AOT_term_of_var (CONST AOT_concrete)"1548

parse_translation‹1549

[(syntax_const‹_AOT_concrete›, fn _ => fn [] =>1550

Const (const_name‹AOT_term_of_var›, dummyT)1551

$ Const (const_name‹AOT_concrete›, typ‹<κ> AOT_var›))]1552

›1553

1554

text‹Auxiliary lemmata.›1555

lemma AOT_sem_ordinary: "«O!» = «[λx ♦E!x]»"1556

using AOT_ordinary[THEN AOT_sem_id_def0E1] AOT_sem_ordinary_def_denotes1557

by (auto simp: AOT_sem_eq)1558

lemma AOT_sem_abstract: "«A!» = «[λx ¬♦E!x]»"1559

using AOT_abstract[THEN AOT_sem_id_def0E1] AOT_sem_abstract_def_denotes1560

by (auto simp: AOT_sem_eq)1561

lemma AOT_sem_ordinary_denotes: ‹[w |= O!↓]›1562

by (simp add: AOT_sem_ordinary AOT_sem_ordinary_def_denotes)1563

lemma AOT_meta_abstract_denotes: ‹[w |= A!↓]›1564

by (simp add: AOT_sem_abstract AOT_sem_abstract_def_denotes)1565

lemma AOT_model_abstract_ακ: ‹∃ a . κ = ακ a› if ‹[v |= A!κ]›1566

using that[unfolded AOT_sem_abstract, simplified1567

AOT_meta_abstract_denotes[unfolded AOT_sem_abstract, THEN AOT_sem_lambda_beta,1568

OF that[simplified AOT_sem_exe, THEN conjunct2, THEN conjunct1]]]1569

apply (simp add: AOT_sem_not AOT_sem_dia AOT_sem_concrete)1570

by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)1571

AOT_model_denotes_κ_def AOT_sem_denotes AOT_sem_exe κ.exhaust_disc1572

is_ακ_def is_ωκ_def that)1573

180

A.4. Semantics

lemma AOT_model_ordinary_ωκ: ‹∃ a . κ = ωκ a› if ‹[v |= O!κ]›1574

using that[unfolded AOT_sem_ordinary, simplified1575

AOT_sem_ordinary_denotes[unfolded AOT_sem_ordinary, THEN AOT_sem_lambda_beta,1576

OF that[simplified AOT_sem_exe, THEN conjunct2, THEN conjunct1]]]1577

apply (simp add: AOT_sem_dia AOT_sem_concrete)1578

by (metis AOT_model_concrete_κ.simps(2) AOT_model_concrete_κ.simps(3)1579

κ.exhaust_disc is_ακ_def is_ωκ_def is_nullκ_def)1580

lemma AOT_model_ωκ_ordinary: ‹[v |= O!«ωκ x»]›1581

by (metis AOT_model_abstract_ακ AOT_model_denotes_κ_def AOT_sem_abstract1582

AOT_sem_denotes AOT_sem_ind_eq AOT_sem_ordinary κ.disc(7) κ.distinct(1))1583

lemma AOT_model_ακ_ordinary: ‹[v |= A!«ακ x»]›1584

by (metis AOT_model_denotes_κ_def AOT_model_ordinary_ωκ AOT_sem_abstract1585

AOT_sem_denotes AOT_sem_ind_eq AOT_sem_ordinary κ.disc(8) κ.distinct(1))1586

AOT_theorem prod_denotesE: assumes ‹«(κ1,κ2)»↓› shows ‹κ1↓ & κ2↓›1587

using assms by (simp add: AOT_sem_denotes AOT_sem_conj AOT_model_denotes_prod_def)1588

declare prod_denotesE[AOT del]1589

AOT_theorem prod_denotesI: assumes ‹κ1↓ & κ2↓› shows ‹«(κ1,κ2)»↓›1590

using assms by (simp add: AOT_sem_denotes AOT_sem_conj AOT_model_denotes_prod_def)1591

declare prod_denotesI[AOT del]1592

1593

1594

text‹Prepare the derivation of the additional axioms that are validated by1595

our extended models.›1596

locale AOT_ExtendedModel =1597

assumes AOT_ExtendedModel: ‹AOT_ExtendedModel›1598

begin1599

lemma AOT_sem_indistinguishable_ord_enc_all:1600

assumes Π_den: ‹[v |= Π↓]›1601

assumes Ax: ‹[v |= A!x]›1602

assumes Ay: ‹[v |= A!y]›1603

assumes indist: ‹[v |= ∀F �([F]x ≡ [F]y)]›1604

shows1605

‹[v |= ∀G(∀z(O!z → �([G]z ≡ [Π]z)) → x[G])] =1606

[v |= ∀G(∀z(O!z → �([G]z ≡ [Π]z)) → y[G])]›1607

proof -1608

have 0: ‹[v |= [λx ¬♦[E!]x]x]›1609

using Ax by (simp add: AOT_sem_abstract)1610

have 1: ‹[v |= [λx ¬♦[E!]x]y]›1611

using Ay by (simp add: AOT_sem_abstract)1612

{1613

assume ‹[v |= ∀G(∀z (O!z → �([G]z ≡ [Π]z)) → x[G])]›1614

hence 3: ‹[v |= ∀G(∀z([λx ♦[E!]x]z → �([G]z ≡ [Π]z)) → x[G])]›1615

by (simp add: AOT_sem_ordinary)1616

{1617

fix Π’ :: ‹<κ>›1618

assume 1: ‹[v |= Π’↓]›1619

assume 2: ‹[v |= [λx ♦[E!]x]z → �([Π’]z ≡ [Π]z)]› for z1620

have ‹[v |= x[Π’]]›1621

using 31622

by (auto simp: AOT_sem_forall AOT_sem_imp AOT_sem_box AOT_sem_denotes)1623

(metis (no_types, lifting) 1 2 AOT_term_of_var_cases AOT_sem_box1624

AOT_sem_denotes AOT_sem_imp)1625

} note 3 = this1626

fix Π’ :: ‹<κ>›1627

assume Π_den: ‹[v |= Π’↓]›1628

assume 4: ‹[v |= ∀z (O!z → �([Π’]z ≡ [Π]z))]›1629

{1630

fix κ01631

assume ‹[v |= [λx ♦[E!]x]κ0]›1632

hence ‹[v |= O!κ0]›1633

using AOT_sem_ordinary by metis1634

moreover have ‹[v |= κ0↓]›1635

using calculation by (simp add: AOT_sem_exe)1636

181

A. Isabelle Theory

ultimately have ‹[v |= �([Π’]κ0 ≡ [Π]κ0)]›1637

using 4 by (auto simp: AOT_sem_forall AOT_sem_imp)1638

} note 4 = this1639

have ‹[v |= y[Π’]]›1640

apply (rule AOT_sem_enc_indistinguishable_all[OF AOT_ExtendedModel])1641

apply (fact 0)1642

apply (auto simp: 0 1 Π_den indist[simplified AOT_sem_forall1643

AOT_sem_box AOT_sem_equiv])1644

apply (rule 3)1645

apply auto[1]1646

using 41647

by (auto simp: AOT_sem_imp AOT_sem_equiv AOT_sem_box)1648

}1649

moreover {1650

{1651

assume ‹[v |= ∀G(∀z (O!z → �([G]z ≡ [Π]z)) → y[G])]›1652

hence 3: ‹[v |= ∀G(∀z ([λx ♦[E!]x]z → �([G]z ≡ [Π]z)) → y[G])]›1653

by (simp add: AOT_sem_ordinary)1654

{1655

fix Π’ :: ‹<κ>›1656

assume 1: ‹[v |= Π’↓]›1657

assume 2: ‹[v |= [λx ♦[E!]x]z → �([Π’]z ≡ [Π]z)]› for z1658

have ‹[v |= y[Π’]]›1659

using 31660

apply (auto simp: AOT_sem_forall AOT_sem_imp AOT_sem_box AOT_sem_denotes)1661

by (metis (no_types, lifting) 1 2 AOT_model.AOT_term_of_var_cases1662

AOT_sem_box AOT_sem_denotes AOT_sem_imp)1663

} note 3 = this1664

fix Π’ :: ‹<κ>›1665

assume Π_den: ‹[v |= Π’↓]›1666

assume 4: ‹[v |= ∀z (O!z → �([Π’]z ≡ [Π]z))]›1667

{1668

fix κ01669

assume ‹[v |= [λx ♦[E!]x]κ0]›1670

hence ‹[v |= O!κ0]›1671

using AOT_sem_ordinary by metis1672

moreover have ‹[v |= κ0↓]›1673

using calculation by (simp add: AOT_sem_exe)1674

ultimately have ‹[v |= �([Π’]κ0 ≡ [Π]κ0)]›1675

using 4 by (auto simp: AOT_sem_forall AOT_sem_imp)1676

} note 4 = this1677

have ‹[v |= x[Π’]]›1678

apply (rule AOT_sem_enc_indistinguishable_all[OF AOT_ExtendedModel])1679

apply (fact 1)1680

apply (auto simp: 0 1 Π_den indist[simplified AOT_sem_forall1681

AOT_sem_box AOT_sem_equiv])1682

apply (rule 3)1683

apply auto[1]1684

using 41685

by (auto simp: AOT_sem_imp AOT_sem_equiv AOT_sem_box)1686

}1687

}1688

ultimately show ‹[v |= ∀G (∀z (O!z → �([G]z ≡ [Π]z)) → x[G])] =1689

[v |= ∀G (∀z (O!z → �([G]z ≡ [Π]z)) → y[G])]›1690

by (auto simp: AOT_sem_forall AOT_sem_imp)1691

qed1692

1693

lemma AOT_sem_indistinguishable_ord_enc_ex:1694

assumes Π_den: ‹[v |= Π↓]›1695

assumes Ax: ‹[v |= A!x]›1696

assumes Ay: ‹[v |= A!y]›1697

assumes indist: ‹[v |= ∀F �([F]x ≡ [F]y)]›1698

shows ‹[v |= ∃G(∀z (O!z → �([G]z ≡ [Π]z)) & x[G])] =1699

182

A.4. Semantics

[v |= ∃G(∀z(O!z → �([G]z ≡ [Π]z)) & y[G])]›1700

proof -1701

have Aux: ‹[v |= [λx ♦[E!]x]κ] = ([v |= [λx ♦[E!]x]κ] ∧ [v |= κ↓])› for v κ1702

using AOT_sem_exe by blast1703

AOT_modally_strict {1704

fix x y1705

AOT_assume Π_den: ‹[Π]↓›1706

AOT_assume 2: ‹∀F �([F]x ≡ [F]y)›1707

AOT_assume ‹A!x›1708

AOT_hence 0: ‹[λx ¬♦[E!]x]x›1709

by (simp add: AOT_sem_abstract)1710

AOT_assume ‹A!y›1711

AOT_hence 1: ‹[λx ¬♦[E!]x]y›1712

by (simp add: AOT_sem_abstract)1713

{1714

AOT_assume ‹∃G(∀z (O!z → �([G]z ≡ [Π]z)) & x[G])›1715

then AOT_obtain Π’1716

where Π’_den: ‹Π’↓›1717

and Π’_indist: ‹∀z (O!z → �([Π’]z ≡ [Π]z))›1718

and x_enc_Π’: ‹x[Π’]›1719

by (meson AOT_sem_conj AOT_sem_exists)1720

{1721

fix κ01722

AOT_assume ‹[λx ♦[E!]x]κ0›1723

AOT_hence ‹�([Π’]κ0 ≡ [Π]κ0)›1724

using Π’_indist1725

by (auto simp: AOT_sem_exe AOT_sem_imp AOT_sem_exists AOT_sem_conj1726

AOT_sem_ordinary AOT_sem_forall)1727

} note 3 = this1728

AOT_have ‹∀z ([λx ♦[E!]x]z → �([Π’]z ≡ [Π]z))›1729

using Π’_indist by (simp add: AOT_sem_ordinary)1730

AOT_obtain Π” where1731

Π”_den: ‹Π”↓› and1732

Π”_indist: ‹[λx ♦[E!]x]κ0 → �([Π”]κ0 ≡ [Π]κ0)› and1733

y_enc_Π”: ‹y[Π”]› for κ01734

using AOT_sem_enc_indistinguishable_ex[OF AOT_ExtendedModel,1735

OF 0, OF 1, rotated, OF Π_den,1736

OF exI[where x=Π’], OF conjI, OF Π’_den, OF conjI,1737

OF x_enc_Π’, OF allI, OF impI,1738

OF 3[simplified AOT_sem_box AOT_sem_equiv], simplified, OF1739

2[simplified AOT_sem_forall AOT_sem_equiv AOT_sem_box,1740

THEN spec, THEN mp, THEN spec], simplified]1741

unfolding AOT_sem_imp AOT_sem_box AOT_sem_equiv by blast1742

{1743

AOT_have ‹Π”↓›1744

and ‹∀x ([λx ♦[E!]x]x → �([Π”]x ≡ [Π]x))›1745

and ‹y[Π”]›1746

apply (simp add: Π”_den)1747

apply (simp add: AOT_sem_forall Π”_indist)1748

by (simp add: y_enc_Π”)1749

} note 2 = this1750

AOT_have ‹∃G(∀z (O!z → �([G]z ≡ [Π]z)) & y[G])›1751

apply (auto simp: AOT_sem_exists AOT_sem_ordinary1752

AOT_sem_imp AOT_sem_box AOT_sem_forall AOT_sem_equiv AOT_sem_conj)1753

using 2[simplified AOT_sem_box AOT_sem_equiv AOT_sem_imp AOT_sem_forall]1754

by blast1755

}1756

} note 0 = this1757

AOT_modally_strict {1758

{1759

fix x y1760

AOT_assume Π_den: ‹[Π]↓›1761

moreover AOT_assume ‹∀F �([F]x ≡ [F]y)›1762

183

A. Isabelle Theory

moreover AOT_have ‹∀F �([F]y ≡ [F]x)›1763

using calculation(2)1764

by (auto simp: AOT_sem_forall AOT_sem_box AOT_sem_equiv)1765

moreover AOT_assume ‹A!x›1766

moreover AOT_assume ‹A!y›1767

ultimately AOT_have ‹∃G (∀z (O!z → �([G]z ≡ [Π]z)) & x[G]) ≡1768

∃G (∀z (O!z → �([G]z ≡ [Π]z)) & y[G])›1769

using 0 by (auto simp: AOT_sem_equiv)1770

}1771

have 1: ‹[v |= ∀F �([F]y ≡ [F]x)]›1772

using indist1773

by (auto simp: AOT_sem_forall AOT_sem_box AOT_sem_equiv)1774

thus ‹[v |= ∃G (∀z (O!z → �([G]z ≡ [Π]z)) & x[G])] =1775

[v |= ∃G (∀z (O!z → �([G]z ≡ [Π]z)) & y[G])]›1776

using assms1777

by (auto simp: AOT_sem_imp AOT_sem_conj AOT_sem_equiv 0)1778

}1779

qed1780

end1781

1782

1783

(* Collect all theorems that are not in Main and not declared [AOT]1784

and store them in a blacklist. *)1785

setup‹setup_AOT_no_atp›1786

bundle AOT_no_atp begin declare AOT_no_atp[no_atp] end1787

(* Can be used as: "including AOT_no_atp sledgehammer" or1788

"sledgehammer(del: AOT_no_atp) *)1789

1790

(*<*)1791

end1792

(*>*)1793

184

A.5. Definitions of AOT

A.5. Definitions of AOT

theory AOT_Definitions1

imports AOT_semantics2

begin3

4

section‹Definitions of AOT›5

6

AOT_theorem "conventions:1": ‹ϕ & ψ ≡df ¬(ϕ → ¬ψ)› (18.1)7

using AOT_conj.8

AOT_theorem "conventions:2": ‹ϕ ∨ ψ ≡df ¬ϕ → ψ› (18.2)9

using AOT_disj.10

AOT_theorem "conventions:3": ‹ϕ ≡ ψ ≡df (ϕ → ψ) & (ψ → ϕ)› (18.3)11

using AOT_equiv.12

AOT_theorem "conventions:4": ‹∃α ϕ{α} ≡df ¬∀α ¬ϕ{α}› (18.4)13

using AOT_exists.14

AOT_theorem "conventions:5": ‹♦ϕ ≡df ¬�¬ϕ› (18.5)15

using AOT_dia.16

17

declare "conventions:1"[AOT_defs] "conventions:2"[AOT_defs]18

"conventions:3"[AOT_defs] "conventions:4"[AOT_defs]19

"conventions:5"[AOT_defs]20

21

notepad22

begin23

fix ϕ ψ χ24

text‹\linelabel{precedence}›25

have "conventions3[1]": ‹«ϕ → ψ ≡ ¬ψ → ¬ϕ» = «(ϕ → ψ) ≡ (¬ψ → ¬ϕ)»› (19)26

by blast27

have "conventions3[2]": ‹«ϕ & ψ → χ» = «(ϕ & ψ) → χ»› (19)28

and ‹«ϕ ∨ ψ → χ» = «(ϕ ∨ ψ) → χ»›29

by blast+30

have "conventions3[3]": ‹«ϕ ∨ ψ & χ» = «(ϕ ∨ ψ) & χ»› (19)31

and ‹«ϕ & ψ ∨ χ» = «(ϕ & ψ) ∨ χ»›32

by blast+ – ‹Note that PLM instead generally uses parenthesis in these cases.›33

end34

35

36

AOT_theorem "existence:1": ‹κ↓ ≡df ∃F [F]κ› (20.1)37

by (simp add: AOT_sem_denotes AOT_sem_exists AOT_model_equiv_def)38

(metis AOT_sem_denotes AOT_sem_exe AOT_sem_lambda_beta AOT_sem_lambda_denotes)39

AOT_theorem "existence:2": ‹Π↓ ≡df ∃x1...∃xn x1...xn[Π]› (20.2)40

using AOT_sem_denotes AOT_sem_enc_denotes AOT_sem_universal_encoder41

by (simp add: AOT_sem_denotes AOT_sem_exists AOT_model_equiv_def) blast42

AOT_theorem "existence:2[1]": ‹Π↓ ≡df ∃x x[Π]› (20.2)43

using "existence:2"[of Π] by simp44

AOT_theorem "existence:2[2]": ‹Π↓ ≡df ∃x∃y xy[Π]› (20.2)45

using "existence:2"[of Π]46

by (simp add: AOT_sem_denotes AOT_sem_exists AOT_model_equiv_def47

AOT_model_denotes_prod_def)48

AOT_theorem "existence:2[3]": ‹Π↓ ≡df ∃x∃y∃z xyz[Π]› (20.2)49

using "existence:2"[of Π]50

by (simp add: AOT_sem_denotes AOT_sem_exists AOT_model_equiv_def51

AOT_model_denotes_prod_def)52

AOT_theorem "existence:2[4]": ‹Π↓ ≡df ∃x1∃x2∃x3∃x4 x1x2x3x4[Π]› (20.2)53

using "existence:2"[of Π]54

by (simp add: AOT_sem_denotes AOT_sem_exists AOT_model_equiv_def55

AOT_model_denotes_prod_def)56

57

AOT_theorem "existence:3": ‹ϕ↓ ≡df [λx ϕ]↓› (20.3)58

by (simp add: AOT_sem_denotes AOT_model_denotes_o_def AOT_model_equiv_def59

AOT_model_lambda_denotes)60

61

185

A. Isabelle Theory

declare "existence:1"[AOT_defs] "existence:2"[AOT_defs] "existence:2[1]"[AOT_defs]62

"existence:2[2]"[AOT_defs] "existence:2[3]"[AOT_defs]63

"existence:2[4]"[AOT_defs] "existence:3"[AOT_defs]64

65

66

AOT_theorem "oa:1": ‹O! =df [λx ♦E!x]› using AOT_ordinary . (22.1)67

AOT_theorem "oa:2": ‹A! =df [λx ¬♦E!x]› using AOT_abstract . (22.2)68

69

declare "oa:1"[AOT_defs] "oa:2"[AOT_defs]70

71

AOT_theorem "identity:1": (23.1)72

‹x = y ≡df ([O!]x & [O!]y & �∀F ([F]x ≡ [F]y)) ∨73

([A!]x & [A!]y & �∀F (x[F] ≡ y[F]))›74

unfolding AOT_model_equiv_def75

using AOT_sem_ind_eq[of _ x y]76

by (simp add: AOT_sem_ordinary AOT_sem_abstract AOT_sem_conj77

AOT_sem_box AOT_sem_equiv AOT_sem_forall AOT_sem_disj AOT_sem_eq78

AOT_sem_denotes)79

80

AOT_theorem "identity:2": (23.2)81

‹F = G ≡df F↓ & G↓ & �∀x(x[F] ≡ x[G])›82

using AOT_sem_enc_eq[of _ F G]83

by (auto simp: AOT_model_equiv_def AOT_sem_imp AOT_sem_denotes AOT_sem_eq84

AOT_sem_conj AOT_sem_forall AOT_sem_box AOT_sem_equiv)85

86

AOT_theorem "identity:3[2]": (23.3)87

‹F = G ≡df F↓ & G↓ & ∀y([λz [F]zy] = [λz [G]zy] & [λz [F]yz] = [λz [G]yz])›88

by (auto simp: AOT_model_equiv_def AOT_sem_proj_id_prop[of _ F G]89

AOT_sem_proj_id_prod_def AOT_sem_conj AOT_sem_denotes90

AOT_sem_forall AOT_sem_unary_proj_id AOT_model_denotes_prod_def)91

AOT_theorem "identity:3[3]": (23.3)92

‹F = G ≡df F↓ & G↓ & ∀y1∀y2([λz [F]zy1y2] = [λz [G]zy1y2] &93

[λz [F]y1zy2] = [λz [G]y1zy2] &94

[λz [F]y1y2z] = [λz [G]y1y2z])›95

by (auto simp: AOT_model_equiv_def AOT_sem_proj_id_prop[of _ F G]96

AOT_sem_proj_id_prod_def AOT_sem_conj AOT_sem_denotes97

AOT_sem_forall AOT_sem_unary_proj_id AOT_model_denotes_prod_def)98

AOT_theorem "identity:3[4]": (23.3)99

‹F = G ≡df F↓ & G↓ & ∀y1∀y2∀y3([λz [F]zy1y2y3] = [λz [G]zy1y2y3] &100

[λz [F]y1zy2y3] = [λz [G]y1zy2y3] &101

[λz [F]y1y2zy3] = [λz [G]y1y2zy3] &102

[λz [F]y1y2y3z] = [λz [G]y1y2y3z])›103

by (auto simp: AOT_model_equiv_def AOT_sem_proj_id_prop[of _ F G]104

AOT_sem_proj_id_prod_def AOT_sem_conj AOT_sem_denotes105

AOT_sem_forall AOT_sem_unary_proj_id AOT_model_denotes_prod_def)106

AOT_theorem "identity:3": (23.3)107

‹F = G ≡df F↓ & G↓ & ∀x1...∀xn «AOT_sem_proj_id x1xn (λ τ . AOT_exe F τ)108

(λ τ . AOT_exe G τ)»›109

by (auto simp: AOT_model_equiv_def AOT_sem_proj_id_prop[of _ F G]110

AOT_sem_proj_id_prod_def AOT_sem_conj AOT_sem_denotes111

AOT_sem_forall AOT_sem_unary_proj_id AOT_model_denotes_prod_def)112

113

AOT_theorem "identity:4": (23.4)114

‹p = q ≡df p↓ & q↓ & [λx p] = [λx q]›115

by (auto simp: AOT_model_equiv_def AOT_sem_eq AOT_sem_denotes AOT_sem_conj116

AOT_model_lambda_denotes AOT_sem_lambda_eq_prop_eq)117

118

declare "identity:1"[AOT_defs] "identity:2"[AOT_defs] "identity:3[2]"[AOT_defs]119

"identity:3[3]"[AOT_defs] "identity:3[4]"[AOT_defs] "identity:3"[AOT_defs]120

"identity:4"[AOT_defs]121

122

AOT_define AOT_nonidentical :: ‹τ ⇒ τ ⇒ ϕ› (infixl "6=" 50)123

"=-infix": ‹τ 6= σ ≡df ¬(τ = σ)› (24)124

186

A.5. Definitions of AOT

125

context AOT_meta_syntax126

begin127

notation AOT_nonidentical (infixl " 6=" 50)128

end129

context AOT_no_meta_syntax130

begin131

no_notation AOT_nonidentical (infixl "6=" 50)132

end133

134

135

text‹The following are purely technical pseudo-definitions required due to136

our internal implementation of n-ary relations and ellipses using tuples.›137

AOT_theorem tuple_denotes: ‹«(τ,τ’)»↓ ≡df τ↓ & τ’↓›138

by (simp add: AOT_model_denotes_prod_def AOT_model_equiv_def139

AOT_sem_conj AOT_sem_denotes)140

AOT_theorem tuple_identity_1: ‹«(τ,τ’)» = «(σ, σ’)» ≡df (τ = σ) & (τ’ = σ’)›141

by (auto simp: AOT_model_equiv_def AOT_sem_conj AOT_sem_eq142

AOT_model_denotes_prod_def AOT_sem_denotes)143

AOT_theorem tuple_forall: ‹∀α1...∀αn ϕ{α1...αn} ≡df ∀α1(∀α2...∀αn ϕ{«(α1, α2αn)»})›144

by (auto simp: AOT_model_equiv_def AOT_sem_forall AOT_sem_denotes145

AOT_model_denotes_prod_def)146

AOT_theorem tuple_exists: ‹∃α1...∃αn ϕ{α1...αn} ≡df ∃α1(∃α2...∃αn ϕ{«(α1, α2αn)»})›147

by (auto simp: AOT_model_equiv_def AOT_sem_exists AOT_sem_denotes148

AOT_model_denotes_prod_def)149

declare tuple_denotes[AOT_defs] tuple_identity_1[AOT_defs] tuple_forall[AOT_defs]150

tuple_exists[AOT_defs]151

152

end153

154

187

A. Isabelle Theory

A.6. Axioms of AOT

(*<*)1

theory AOT_Axioms2

imports AOT_Definitions3

begin4

(*>*)5

6

section‹Axioms of PLM›7

8

AOT_axiom "pl:1": ‹ϕ → (ψ → ϕ)› (38.1)9

by (auto simp: AOT_sem_imp AOT_model_axiomI)10

AOT_axiom "pl:2": ‹(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))› (38.2)11

by (auto simp: AOT_sem_imp AOT_model_axiomI)12

AOT_axiom "pl:3": ‹(¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ)› (38.3)13

by (auto simp: AOT_sem_imp AOT_sem_not AOT_model_axiomI)14

15

AOT_axiom "cqt:1": ‹∀α ϕ{α} → (τ↓ → ϕ{τ})› (39.1)16

by (auto simp: AOT_sem_denotes AOT_sem_forall AOT_sem_imp AOT_model_axiomI)17

18

AOT_axiom "cqt:2[const_var]": ‹α↓› (39.2)19

using AOT_sem_vars_denote by (rule AOT_model_axiomI)20

AOT_axiom "cqt:2[lambda]": (39.2)21

assumes ‹INSTANCE_OF_CQT_2(ϕ)›22

shows ‹[λν1...νn ϕ{ν1...νn}]↓›23

by (auto intro!: AOT_model_axiomI AOT_sem_cqt_2[OF assms])24

AOT_axiom "cqt:2[lambda0]": (39.2)25

shows ‹[λ ϕ]↓›26

by (auto intro!: AOT_model_axiomI27

simp: AOT_sem_lambda_denotes "existence:3"[unfolded AOT_model_equiv_def])28

29

AOT_axiom "cqt:3": ‹∀α (ϕ{α} → ψ{α}) → (∀α ϕ{α} → ∀α ψ{α})› (39.3)30

by (simp add: AOT_sem_forall AOT_sem_imp AOT_model_axiomI)31

AOT_axiom "cqt:4": ‹ϕ → ∀α ϕ› (39.4)32

by (simp add: AOT_sem_forall AOT_sem_imp AOT_model_axiomI)33

AOT_axiom "cqt:5:a": ‹[Π]κ1...κn → (Π↓ & κ1...κn↓)› (39.5.a)34

by (simp add: AOT_sem_conj AOT_sem_denotes AOT_sem_exe35

AOT_sem_imp AOT_model_axiomI)36

AOT_axiom "cqt:5:a[1]": ‹[Π]κ → (Π↓ & κ↓)› (39.5.a)37

using "cqt:5:a" AOT_model_axiomI by blast38

AOT_axiom "cqt:5:a[2]": ‹[Π]κ1κ2 → (Π↓ & κ1↓ & κ2↓)› (39.5.a)39

by (rule AOT_model_axiomI)40

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes AOT_sem_exe41

AOT_sem_imp case_prodD)42

AOT_axiom "cqt:5:a[3]": ‹[Π]κ1κ2κ3 → (Π↓ & κ1↓ & κ2↓ & κ3↓)› (39.5.a)43

by (rule AOT_model_axiomI)44

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes AOT_sem_exe45

AOT_sem_imp case_prodD)46

AOT_axiom "cqt:5:a[4]": ‹[Π]κ1κ2κ3κ4 → (Π↓ & κ1↓ & κ2↓ & κ3↓ & κ4↓)› (39.5.a)47

by (rule AOT_model_axiomI)48

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes AOT_sem_exe49

AOT_sem_imp case_prodD)50

AOT_axiom "cqt:5:b": ‹κ1...κn[Π] → (Π↓ & κ1...κn↓)› (39.5.b)51

using AOT_sem_enc_denotes52

by (auto intro!: AOT_model_axiomI simp: AOT_sem_conj AOT_sem_denotes AOT_sem_imp)+53

AOT_axiom "cqt:5:b[1]": ‹κ[Π] → (Π↓ & κ↓)› (39.5.b)54

using "cqt:5:b" AOT_model_axiomI by blast55

AOT_axiom "cqt:5:b[2]": ‹κ1κ2[Π] → (Π↓ & κ1↓ & κ2↓)› (39.5.b)56

by (rule AOT_model_axiomI)57

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes58

AOT_sem_enc_denotes AOT_sem_imp case_prodD)59

AOT_axiom "cqt:5:b[3]": ‹κ1κ2κ3[Π] → (Π↓ & κ1↓ & κ2↓ & κ3↓)› (39.5.b)60

by (rule AOT_model_axiomI)61

188

A.6. Axioms of AOT

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes62

AOT_sem_enc_denotes AOT_sem_imp case_prodD)63

AOT_axiom "cqt:5:b[4]": ‹κ1κ2κ3κ4[Π] → (Π↓ & κ1↓ & κ2↓ & κ3↓ & κ4↓)› (39.5.b)64

by (rule AOT_model_axiomI)65

(metis AOT_model_denotes_prod_def AOT_sem_conj AOT_sem_denotes66

AOT_sem_enc_denotes AOT_sem_imp case_prodD)67

68

AOT_axiom "l-identity": ‹α = β → (ϕ{α} → ϕ{β})› (41)69

by (rule AOT_model_axiomI)70

(simp add: AOT_sem_eq AOT_sem_imp)71

72

AOT_act_axiom "logic-actual": ‹Aϕ → ϕ› (43)73

by (rule AOT_model_act_axiomI)74

(simp add: AOT_sem_act AOT_sem_imp)75

76

AOT_axiom "logic-actual-nec:1": ‹A¬ϕ ≡ ¬Aϕ› (44.1)77

by (rule AOT_model_axiomI)78

(simp add: AOT_sem_act AOT_sem_equiv AOT_sem_not)79

AOT_axiom "logic-actual-nec:2": ‹A(ϕ → ψ) ≡ (Aϕ → Aψ)› (44.2)80

by (rule AOT_model_axiomI)81

(simp add: AOT_sem_act AOT_sem_equiv AOT_sem_imp)82

83

AOT_axiom "logic-actual-nec:3": ‹A(∀α ϕ{α}) ≡ ∀α Aϕ{α}› (44.3)84

by (rule AOT_model_axiomI)85

(simp add: AOT_sem_act AOT_sem_equiv AOT_sem_forall AOT_sem_denotes)86

AOT_axiom "logic-actual-nec:4": ‹Aϕ ≡ AAϕ› (44.4)87

by (rule AOT_model_axiomI)88

(simp add: AOT_sem_act AOT_sem_equiv)89

90

AOT_axiom "qml:1": ‹�(ϕ → ψ) → (�ϕ → �ψ)› (45.1)91

by (rule AOT_model_axiomI)92

(simp add: AOT_sem_box AOT_sem_imp)93

AOT_axiom "qml:2": ‹�ϕ → ϕ› (45.2)94

by (rule AOT_model_axiomI)95

(simp add: AOT_sem_box AOT_sem_imp)96

AOT_axiom "qml:3": ‹♦ϕ → �♦ϕ› (45.3)97

by (rule AOT_model_axiomI)98

(simp add: AOT_sem_box AOT_sem_dia AOT_sem_imp)99

100

AOT_axiom "qml:4": ‹♦∃x (E!x & ¬AE!x)› (45.4)101

using AOT_sem_concrete AOT_model_contingent102

by (auto intro!: AOT_model_axiomI103

simp: AOT_sem_box AOT_sem_dia AOT_sem_imp AOT_sem_exists104

AOT_sem_denotes AOT_sem_conj AOT_sem_not AOT_sem_act105

AOT_sem_exe)+106

107

AOT_axiom "qml-act:1": ‹Aϕ → �Aϕ› (46.1)108

by (rule AOT_model_axiomI)109

(simp add: AOT_sem_act AOT_sem_box AOT_sem_imp)110

AOT_axiom "qml-act:2": ‹�ϕ ≡ A�ϕ› (46.2)111

by (rule AOT_model_axiomI)112

(simp add: AOT_sem_act AOT_sem_box AOT_sem_equiv)113

114

AOT_axiom descriptions: ‹x = ιx(ϕ{x}) ≡ ∀z(Aϕ{z} ≡ z = x)› (47)115

proof (rule AOT_model_axiomI)116

AOT_modally_strict {117

AOT_show ‹x = ιx(ϕ{x}) ≡ ∀z(Aϕ{z} ≡ z = x)›118

by (induct; simp add: AOT_sem_equiv AOT_sem_forall AOT_sem_act AOT_sem_eq)119

(metis (no_types, opaque_lifting) AOT_sem_desc_denotes AOT_sem_desc_prop120

AOT_sem_denotes)121

}122

qed123

124

189

A. Isabelle Theory

AOT_axiom "lambda-predicates:1": (48.1)125

‹[λν1...νn ϕ{ν1...νn}]↓ → [λν1...νn ϕ{ν1...νn}] = [λµ1...µn ϕ{µ1...µn}]›126

by (rule AOT_model_axiomI)127

(simp add: AOT_sem_denotes AOT_sem_eq AOT_sem_imp)128

AOT_axiom "lambda-predicates:1[zero]": ‹[λ p]↓ → [λ p] = [λ p]› (48.1)129

by (rule AOT_model_axiomI)130

(simp add: AOT_sem_denotes AOT_sem_eq AOT_sem_imp)131

AOT_axiom "lambda-predicates:2": (48.2)132

‹[λx1...xn ϕ{x1...xn}]↓ → ([λx1...xn ϕ{x1...xn}]x1...xn ≡ ϕ{x1...xn})›133

by (rule AOT_model_axiomI)134

(simp add: AOT_sem_equiv AOT_sem_imp AOT_sem_lambda_beta AOT_sem_vars_denote)135

AOT_axiom "lambda-predicates:3": ‹[λx1...xn [F]x1...xn] = F› (48.3)136

by (rule AOT_model_axiomI)137

(simp add: AOT_sem_lambda_eta AOT_sem_vars_denote)138

AOT_axiom "lambda-predicates:3[zero]": ‹[λ p] = p› (48.3)139

by (rule AOT_model_axiomI)140

(simp add: AOT_sem_eq AOT_sem_lambda0 AOT_sem_vars_denote)141

142

AOT_axiom "safe-ext": (49)143

‹([λν1...νn ϕ{ν1...νn}]↓ & �∀ν1...∀νn (ϕ{ν1...νn} ≡ ψ{ν1...νn})) →144

[λν1...νn ψ{ν1...νn}]↓›145

using AOT_sem_lambda_coex146

by (auto intro!: AOT_model_axiomI simp: AOT_sem_imp AOT_sem_denotes AOT_sem_conj147

AOT_sem_equiv AOT_sem_box AOT_sem_forall)148

AOT_axiom "safe-ext[2]": (49)149

‹([λν1ν2 ϕ{ν1,ν2}]↓ & �∀ν1∀ν2 (ϕ{ν1, ν2} ≡ ψ{ν1, ν2})) →150

[λν1ν2 ψ{ν1,ν2}]↓›151

using "safe-ext"[where ϕ="λ(x,y). ϕ x y"]152

by (simp add: AOT_model_axiom_def AOT_sem_denotes AOT_model_denotes_prod_def153

AOT_sem_forall AOT_sem_imp AOT_sem_conj AOT_sem_equiv AOT_sem_box)154

AOT_axiom "safe-ext[3]": (49)155

‹([λν1ν2ν3 ϕ{ν1,ν2,ν3}]↓ & �∀ν1∀ν2∀ν3 (ϕ{ν1, ν2, ν3} ≡ ψ{ν1, ν2, ν3})) →156

[λν1ν2ν3 ψ{ν1,ν2,ν3}]↓›157

using "safe-ext"[where ϕ="λ(x,y,z). ϕ x y z"]158

by (simp add: AOT_model_axiom_def AOT_model_denotes_prod_def AOT_sem_forall159

AOT_sem_denotes AOT_sem_imp AOT_sem_conj AOT_sem_equiv AOT_sem_box)160

AOT_axiom "safe-ext[4]": (49)161

‹([λν1ν2ν3ν4 ϕ{ν1,ν2,ν3,ν4}]↓ &162

�∀ν1∀ν2∀ν3∀ν4 (ϕ{ν1, ν2, ν3, ν4} ≡ ψ{ν1, ν2, ν3, ν4})) →163

[λν1ν2ν3ν4 ψ{ν1,ν2,ν3,ν4}]↓›164

using "safe-ext"[where ϕ="λ(x,y,z,w). ϕ x y z w"]165

by (simp add: AOT_model_axiom_def AOT_model_denotes_prod_def AOT_sem_forall166

AOT_sem_denotes AOT_sem_imp AOT_sem_conj AOT_sem_equiv AOT_sem_box)167

168

AOT_axiom "nary-encoding[2]": (50)169

‹x1x2[F] ≡ x1[λy [F]yx2] & x2[λy [F]x1y]›170

by (rule AOT_model_axiomI)171

(simp add: AOT_sem_conj AOT_sem_equiv AOT_enc_prod_def AOT_proj_enc_prod_def172

AOT_sem_unary_proj_enc AOT_sem_vars_denote)173

AOT_axiom "nary-encoding[3]": (50)174

‹x1x2x3[F] ≡ x1[λy [F]yx2x3] & x2[λy [F]x1yx3] & x3[λy [F]x1x2y]›175

by (rule AOT_model_axiomI)176

(simp add: AOT_sem_conj AOT_sem_equiv AOT_enc_prod_def AOT_proj_enc_prod_def177

AOT_sem_unary_proj_enc AOT_sem_vars_denote)178

AOT_axiom "nary-encoding[4]": (50)179

‹x1x2x3x4[F] ≡ x1[λy [F]yx2x3x4] &180

x2[λy [F]x1yx3x4] &181

x3[λy [F]x1x2yx4] &182

x4[λy [F]x1x2x3y]›183

by (rule AOT_model_axiomI)184

(simp add: AOT_sem_conj AOT_sem_equiv AOT_enc_prod_def AOT_proj_enc_prod_def185

AOT_sem_unary_proj_enc AOT_sem_vars_denote)186

187

190

A.6. Axioms of AOT

AOT_axiom encoding: ‹x[F] → �x[F]› (51)188

using AOT_sem_enc_nec189

by (auto intro!: AOT_model_axiomI simp: AOT_sem_imp AOT_sem_box)190

191

AOT_axiom nocoder: ‹O!x → ¬∃F x[F]› (52)192

by (auto intro!: AOT_model_axiomI193

simp: AOT_sem_imp AOT_sem_not AOT_sem_exists AOT_sem_ordinary194

AOT_sem_dia195

AOT_sem_lambda_beta[OF AOT_sem_ordinary_def_denotes,196

OF AOT_sem_vars_denote])197

(metis AOT_sem_nocoder)198

199

AOT_axiom "A-objects": ‹∃x (A!x & ∀F(x[F] ≡ ϕ{F}))› (53)200

proof(rule AOT_model_axiomI)201

AOT_modally_strict {202

AOT_obtain κ where ‹κ↓ & �¬E!κ & ∀F (κ[F] ≡ ϕ{F})›203

using AOT_sem_A_objects[of _ ϕ]204

by (auto simp: AOT_sem_imp AOT_sem_box AOT_sem_forall AOT_sem_exists205

AOT_sem_conj AOT_sem_not AOT_sem_dia AOT_sem_denotes206

AOT_sem_equiv) blast207

AOT_thus ‹∃x (A!x & ∀F(x[F] ≡ ϕ{F}))›208

unfolding AOT_sem_exists209

by (auto intro!: exI[where x=κ]210

simp: AOT_sem_lambda_beta[OF AOT_sem_abstract_def_denotes]211

AOT_sem_box AOT_sem_dia AOT_sem_not AOT_sem_denotes212

AOT_var_of_term_inverse AOT_sem_conj213

AOT_sem_equiv AOT_sem_forall AOT_sem_abstract)214

}215

qed216

217

AOT_theorem universal_closure:218

assumes ‹for arbitrary α: ϕ{α} ∈ Λ�›219

shows ‹∀α ϕ{α} ∈ Λ�›220

using assms221

by (metis AOT_term_of_var_cases AOT_model_axiom_def AOT_sem_denotes AOT_sem_forall)222

223

AOT_theorem act_closure:224

assumes ‹ϕ ∈ Λ�›225

shows ‹Aϕ ∈ Λ�›226

using assms by (simp add: AOT_model_axiom_def AOT_sem_act)227

228

AOT_theorem nec_closure:229

assumes ‹ϕ ∈ Λ�›230

shows ‹�ϕ ∈ Λ�›231

using assms by (simp add: AOT_model_axiom_def AOT_sem_box)232

233

AOT_theorem universal_closure_act:234

assumes ‹for arbitrary α: ϕ{α} ∈ Λ›235

shows ‹∀α ϕ{α} ∈ Λ›236

using assms237

by (metis AOT_term_of_var_cases AOT_model_act_axiom_def AOT_sem_denotes238

AOT_sem_forall)239

240

text‹The following are not part of PLM and only hold in the extended models.241

They are a generalization of the predecessor axiom.›242

context AOT_ExtendedModel243

begin244

AOT_axiom indistinguishable_ord_enc_all:245

‹Π↓ & A!x & A!y & ∀F �([F]x ≡ [F]y) →246

((∀G(∀z(O!z → �([G]z ≡ [Π]z)) → x[G])) ≡247

∀G(∀z(O!z → �([G]z ≡ [Π]z)) → y[G]))›248

by (rule AOT_model_axiomI)249

(auto simp: AOT_sem_equiv AOT_sem_imp AOT_sem_conj250

191

A. Isabelle Theory

AOT_sem_indistinguishable_ord_enc_all)251

AOT_axiom indistinguishable_ord_enc_ex:252

‹Π↓ & A!x & A!y & ∀F �([F]x ≡ [F]y) →253

((∃G(∀z(O!z → �([G]z ≡ [Π]z)) & x[G])) ≡254

∃G(∀z(O!z → �([G]z ≡ [Π]z)) & y[G]))›255

by (rule AOT_model_axiomI)256

(auto simp: AOT_sem_equiv AOT_sem_imp AOT_sem_conj257

AOT_sem_indistinguishable_ord_enc_ex)258

end259

260

(*<*)261

end262

(*>*)263

192

A.7. The Deductive System PLM

A.7. The Deductive System PLM

(*<*)1

theory AOT_PLM2

imports AOT_Axioms3

begin4

(*>*)5

6

section‹The Deductive System PLM›7

text‹\label{PLM: 9}›8

9

(* constrain sledgehammer to the abstraction layer *)10

unbundle AOT_no_atp11

12

subsection‹Primitive Rule of PLM: Modus Ponens›13

text‹\label{PLM: 9.1}›14

15

AOT_theorem "modus-ponens": (58)16

assumes ‹ϕ› and ‹ϕ → ψ›17

shows ‹ψ›18

(* NOTE: semantics needed *)19

using assms by (simp add: AOT_sem_imp)20

lemmas MP = "modus-ponens"21

22

subsection‹(Modally Strict) Proofs and Derivations›23

text‹\label{PLM: 9.2}›24

25

AOT_theorem "non-con-thm-thm": (62)26

assumes ‹`� ϕ›27

shows ‹` ϕ›28

using assms by simp29

30

AOT_theorem "vdash-properties:1[1]": (63.1)31

assumes ‹ϕ ∈ Λ›32

shows ‹` ϕ›33

(* NOTE: semantics needed *)34

using assms unfolding AOT_model_act_axiom_def by blast35

36

text‹Convenience attribute for instantiating modally-fragile axioms.›37

attribute_setup act_axiom_inst =38

‹Scan.succeed (Thm.rule_attribute []39

(K (fn thm => thm RS @{thm "vdash-properties:1[1]"})))›40

"Instantiate modally fragile axiom as modally fragile theorem."41

42

AOT_theorem "vdash-properties:1[2]": (63.1)43

assumes ‹ϕ ∈ Λ�›44

shows ‹`� ϕ›45

(* NOTE: semantics needed *)46

using assms unfolding AOT_model_axiom_def by blast47

48

text‹Convenience attribute for instantiating modally-strict axioms.›49

attribute_setup axiom_inst =50

‹Scan.succeed (Thm.rule_attribute []51

(K (fn thm => thm RS @{thm "vdash-properties:1[2]"})))›52

"Instantiate axiom as theorem."53

54

text‹Convenience methods and theorem sets for applying "cqt:2".›55

method cqt_2_lambda_inst_prover =56

(fast intro: AOT_instance_of_cqt_2_intro)57

method "cqt:2[lambda]" =58

(rule "cqt:2[lambda]"[axiom_inst]; cqt_2_lambda_inst_prover)59

lemmas "cqt:2" = (39.2)60

"cqt:2[const_var]"[axiom_inst] "cqt:2[lambda]"[axiom_inst]61

193

A. Isabelle Theory

AOT_instance_of_cqt_2_intro62

method "cqt:2" = (safe intro!: "cqt:2")63

64

AOT_theorem "vdash-properties:3": (63.3)65

assumes ‹`� ϕ›66

shows ‹Γ ` ϕ›67

using assms by blast68

69

AOT_theorem "vdash-properties:5": (63.5)70

assumes ‹Γ1 ` ϕ› and ‹Γ2 ` ϕ → ψ›71

shows ‹Γ1, Γ2 ` ψ›72

using MP assms by blast73

74

AOT_theorem "vdash-properties:6": (63.6)75

assumes ‹ϕ› and ‹ϕ → ψ›76

shows ‹ψ›77

using MP assms by blast78

79

AOT_theorem "vdash-properties:8": (63.8)80

assumes ‹Γ ` ϕ› and ‹ϕ ` ψ›81

shows ‹Γ ` ψ›82

using assms by argo83

84

AOT_theorem "vdash-properties:9": (63.9)85

assumes ‹ϕ›86

shows ‹ψ → ϕ›87

using MP "pl:1"[axiom_inst] assms by blast88

89

AOT_theorem "vdash-properties:10": (63.10)90

assumes ‹ϕ → ψ› and ‹ϕ›91

shows ‹ψ›92

using MP assms by blast93

lemmas "→E" = "vdash-properties:10"94

95

subsection‹Two Fundamental Metarules: GEN and RN›96

text‹\label{PLM: 9.3}›97

98

AOT_theorem "rule-gen": (66)99

assumes ‹for arbitrary α: ϕ{α}›100

shows ‹∀α ϕ{α}›101

(* NOTE: semantics needed *)102

using assms by (metis AOT_var_of_term_inverse AOT_sem_denotes AOT_sem_forall)103

lemmas GEN = "rule-gen"104

105

AOT_theorem "RN[prem]": (68)106

assumes ‹Γ `� ϕ›107

shows ‹�Γ `� �ϕ›108

by (meson AOT_sem_box assms image_iff) (* NOTE: semantics needed *)109

AOT_theorem RN: (68)110

assumes ‹`� ϕ›111

shows ‹�ϕ›112

using "RN[prem]" assms by blast113

114

subsection‹The Inferential Role of Definitions›115

text‹\label{PLM: 9.4}›116

117

AOT_axiom "df-rules-formulas[1]": (72)118

assumes ‹ϕ ≡df ψ›119

shows ‹ϕ → ψ›120

(* NOTE: semantics needed *)121

using assms122

by (auto simp: assms AOT_model_axiomI AOT_model_equiv_def AOT_sem_imp)123

AOT_axiom "df-rules-formulas[2]": (72)124

194

A.7. The Deductive System PLM

assumes ‹ϕ ≡df ψ›125

shows ‹ψ → ϕ›126

(* NOTE: semantics needed *)127

using assms128

by (auto simp: AOT_model_axiomI AOT_model_equiv_def AOT_sem_imp)129

(* NOTE: for convenience also state the above as regular theorems *)130

AOT_theorem "df-rules-formulas[3]": (72)131

assumes ‹ϕ ≡df ψ›132

shows ‹ϕ → ψ›133

using "df-rules-formulas[1]"[axiom_inst, OF assms].134

AOT_theorem "df-rules-formulas[4]": (72)135

assumes ‹ϕ ≡df ψ›136

shows ‹ψ → ϕ›137

using "df-rules-formulas[2]"[axiom_inst, OF assms].138

139

140

AOT_axiom "df-rules-terms[1]": (73)141

assumes ‹τ{α1...αn} =df σ{α1...αn}›142

shows ‹(σ{τ 1...τ n}↓ → τ{τ 1...τ n} = σ{τ 1...τ n}) &143

(¬σ{τ 1...τ n}↓ → ¬τ{τ 1...τ n}↓)›144

(* NOTE: semantics needed *)145

using assms146

by (simp add: AOT_model_axiomI AOT_sem_conj AOT_sem_imp AOT_sem_eq147

AOT_sem_not AOT_sem_denotes AOT_model_id_def)148

AOT_axiom "df-rules-terms[2]": (73)149

assumes ‹τ =df σ›150

shows ‹(σ↓ → τ = σ) & (¬σ↓ → ¬τ↓)›151

by (metis "df-rules-terms[1]" case_unit_Unity assms)152

(* NOTE: for convenience also state the above as regular theorems *)153

AOT_theorem "df-rules-terms[3]": (73)154

assumes ‹τ{α1...αn} =df σ{α1...αn}›155

shows ‹(σ{τ 1...τ n}↓ → τ{τ 1...τ n} = σ{τ 1...τ n}) &156

(¬σ{τ 1...τ n}↓ → ¬τ{τ 1...τ n}↓)›157

using "df-rules-terms[1]"[axiom_inst, OF assms].158

AOT_theorem "df-rules-terms[4]": (73)159

assumes ‹τ =df σ›160

shows ‹(σ↓ → τ = σ) & (¬σ↓ → ¬τ↓)›161

using "df-rules-terms[2]"[axiom_inst, OF assms].162

163

subsection‹The Theory of Negations and Conditionals›164

text‹\label{PLM: 9.5}›165

166

AOT_theorem "if-p-then-p": ‹ϕ → ϕ› (74)167

by (meson "pl:1"[axiom_inst] "pl:2"[axiom_inst] MP)168

169

AOT_theorem "deduction-theorem": (75)170

assumes ‹ϕ ` ψ›171

shows ‹ϕ → ψ›172

(* NOTE: semantics needed *)173

using assms by (simp add: AOT_sem_imp)174

lemmas CP = "deduction-theorem"175

lemmas "→I" = "deduction-theorem"176

177

AOT_theorem "ded-thm-cor:1": (76.1)178

assumes ‹Γ1 ` ϕ → ψ› and ‹Γ2 ` ψ → χ›179

shows ‹Γ1, Γ2 ` ϕ → χ›180

using "→E" "→I" assms by blast181

AOT_theorem "ded-thm-cor:2": (76.2)182

assumes ‹Γ1 ` ϕ → (ψ → χ)› and ‹Γ2 ` ψ›183

shows ‹Γ1, Γ2 ` ϕ → χ›184

using "→E" "→I" assms by blast185

186

AOT_theorem "ded-thm-cor:3": (76.3)187

195

A. Isabelle Theory

assumes ‹ϕ → ψ› and ‹ψ → χ›188

shows ‹ϕ → χ›189

using "→E" "→I" assms by blast190

declare "ded-thm-cor:3"[trans]191

AOT_theorem "ded-thm-cor:4": (76.4)192

assumes ‹ϕ → (ψ → χ)› and ‹ψ›193

shows ‹ϕ → χ›194

using "→E" "→I" assms by blast195

196

lemmas "Hypothetical Syllogism" = "ded-thm-cor:3"197

198

AOT_theorem "useful-tautologies:1": ‹¬¬ϕ → ϕ› (77.1)199

by (metis "pl:3"[axiom_inst] "→I" "Hypothetical Syllogism")200

AOT_theorem "useful-tautologies:2": ‹ϕ → ¬¬ϕ› (77.2)201

by (metis "pl:3"[axiom_inst] "→I" "ded-thm-cor:4")202

AOT_theorem "useful-tautologies:3": ‹¬ϕ → (ϕ → ψ)› (77.3)203

by (meson "ded-thm-cor:4" "pl:3"[axiom_inst] "→I")204

AOT_theorem "useful-tautologies:4": ‹(¬ψ → ¬ϕ) → (ϕ → ψ)› (77.4)205

by (meson "pl:3"[axiom_inst] "Hypothetical Syllogism" "→I")206

AOT_theorem "useful-tautologies:5": ‹(ϕ → ψ) → (¬ψ → ¬ϕ)› (77.5)207

by (metis "useful-tautologies:4" "Hypothetical Syllogism" "→I")208

209

AOT_theorem "useful-tautologies:6": ‹(ϕ → ¬ψ) → (ψ → ¬ϕ)› (77.6)210

by (metis "→I" MP "useful-tautologies:4")211

212

AOT_theorem "useful-tautologies:7": ‹(¬ϕ → ψ) → (¬ψ → ϕ)› (77.7)213

by (metis "→I" MP "useful-tautologies:3" "useful-tautologies:5")214

215

AOT_theorem "useful-tautologies:8": ‹ϕ → (¬ψ → ¬(ϕ → ψ))› (77.8)216

by (metis "→I" MP "useful-tautologies:5")217

218

AOT_theorem "useful-tautologies:9": ‹(ϕ → ψ) → ((¬ϕ → ψ) → ψ)› (77.9)219

by (metis "→I" MP "useful-tautologies:6")220

221

AOT_theorem "useful-tautologies:10": ‹(ϕ → ¬ψ) → ((ϕ → ψ) → ¬ϕ)› (77.10)222

by (metis "→I" MP "pl:3"[axiom_inst])223

224

AOT_theorem "dn-i-e:1": (78.1)225

assumes ‹ϕ›226

shows ‹¬¬ϕ›227

using MP "useful-tautologies:2" assms by blast228

lemmas "¬¬I" = "dn-i-e:1"229

AOT_theorem "dn-i-e:2": (78.2)230

assumes ‹¬¬ϕ›231

shows ‹ϕ›232

using MP "useful-tautologies:1" assms by blast233

lemmas "¬¬E" = "dn-i-e:2"234

235

AOT_theorem "modus-tollens:1": (79.1)236

assumes ‹ϕ → ψ› and ‹¬ψ›237

shows ‹¬ϕ›238

using MP "useful-tautologies:5" assms by blast239

AOT_theorem "modus-tollens:2": (79.2)240

assumes ‹ϕ → ¬ψ› and ‹ψ›241

shows ‹¬ϕ›242

using "¬¬I" "modus-tollens:1" assms by blast243

lemmas MT = "modus-tollens:1" "modus-tollens:2"244

245

AOT_theorem "contraposition:1[1]": (80.1)246

assumes ‹ϕ → ψ›247

shows ‹¬ψ → ¬ϕ›248

using "→I" MT(1) assms by blast249

AOT_theorem "contraposition:1[2]": (80.1)250

196

A.7. The Deductive System PLM

assumes ‹¬ψ → ¬ϕ›251

shows ‹ϕ → ψ›252

using "→I" "¬¬E" MT(2) assms by blast253

254

AOT_theorem "contraposition:2": (80.2)255

assumes ‹ϕ → ¬ψ›256

shows ‹ψ → ¬ϕ›257

using "→I" MT(2) assms by blast258

259

AOT_theorem "reductio-aa:1": (81.1)260

assumes ‹¬ϕ ` ¬ψ› and ‹¬ϕ ` ψ›261

shows ‹ϕ›262

using "→I" "¬¬E" MT(2) assms by blast263

AOT_theorem "reductio-aa:2": (81.2)264

assumes ‹ϕ ` ¬ψ› and ‹ϕ ` ψ›265

shows ‹¬ϕ›266

using "reductio-aa:1" assms by blast267

lemmas "RAA" = "reductio-aa:1" "reductio-aa:2"268

269

AOT_theorem "exc-mid": ‹ϕ ∨ ¬ϕ› (83)270

using "df-rules-formulas[4]" "if-p-then-p" MP271

"conventions:2" by blast272

273

AOT_theorem "non-contradiction": ‹¬(ϕ & ¬ϕ)› (84)274

using "df-rules-formulas[3]" MT(2) "useful-tautologies:2"275

"conventions:1" by blast276

277

AOT_theorem "con-dis-taut:1": ‹(ϕ & ψ) → ϕ› (85.1)278

by (meson "→I" "df-rules-formulas[3]" MP RAA(1) "conventions:1")279

AOT_theorem "con-dis-taut:2": ‹(ϕ & ψ) → ψ› (85.2)280

by (metis "→I" "df-rules-formulas[3]" MT(2) RAA(2)281

"¬¬E" "conventions:1")282

lemmas "Conjunction Simplification" = "con-dis-taut:1" "con-dis-taut:2"283

284

AOT_theorem "con-dis-taut:3": ‹ϕ → (ϕ ∨ ψ)› (85.3)285

by (meson "contraposition:1[2]" "df-rules-formulas[4]"286

MP "→I" "conventions:2")287

AOT_theorem "con-dis-taut:4": ‹ψ → (ϕ ∨ ψ)› (85.4)288

using "Hypothetical Syllogism" "df-rules-formulas[4]"289

"pl:1"[axiom_inst] "conventions:2" by blast290

lemmas "Disjunction Addition" = "con-dis-taut:3" "con-dis-taut:4"291

292

AOT_theorem "con-dis-taut:5": ‹ϕ → (ψ → (ϕ & ψ))› (85.5)293

by (metis "contraposition:2" "Hypothetical Syllogism" "→I"294

"df-rules-formulas[4]" "conventions:1")295

lemmas Adjunction = "con-dis-taut:5"296

297

AOT_theorem "con-dis-taut:6": ‹(ϕ & ϕ) ≡ ϕ› (85.6)298

by (metis Adjunction "→I" "df-rules-formulas[4]" MP299

"Conjunction Simplification"(1) "conventions:3")300

lemmas "Idempotence of &" = "con-dis-taut:6"301

302

AOT_theorem "con-dis-taut:7": ‹(ϕ ∨ ϕ) ≡ ϕ› (85.7)303

proof -304

{305

AOT_assume ‹ϕ ∨ ϕ›306

AOT_hence ‹¬ϕ → ϕ›307

using "conventions:2"[THEN "df-rules-formulas[3]"] MP by blast308

AOT_hence ‹ϕ› using "if-p-then-p" RAA(1) MP by blast309

}310

moreover {311

AOT_assume ‹ϕ›312

AOT_hence ‹ϕ ∨ ϕ› using "Disjunction Addition"(1) MP by blast313

197

A. Isabelle Theory

}314

ultimately AOT_show ‹(ϕ ∨ ϕ) ≡ ϕ›315

using "conventions:3"[THEN "df-rules-formulas[4]"] MP316

by (metis Adjunction "→I")317

qed318

lemmas "Idempotence of ∨" = "con-dis-taut:7"319

320

321

AOT_theorem "con-dis-i-e:1": (86.1)322

assumes ‹ϕ› and ‹ψ›323

shows ‹ϕ & ψ›324

using Adjunction MP assms by blast325

lemmas "&I" = "con-dis-i-e:1"326

327

AOT_theorem "con-dis-i-e:2:a": (86.2.a)328

assumes ‹ϕ & ψ›329

shows ‹ϕ›330

using "Conjunction Simplification"(1) MP assms by blast331

AOT_theorem "con-dis-i-e:2:b": (86.2.b)332

assumes ‹ϕ & ψ›333

shows ‹ψ›334

using "Conjunction Simplification"(2) MP assms by blast335

lemmas "&E" = "con-dis-i-e:2:a" "con-dis-i-e:2:b"336

337

AOT_theorem "con-dis-i-e:3:a": (86.3.a)338

assumes ‹ϕ›339

shows ‹ϕ ∨ ψ›340

using "Disjunction Addition"(1) MP assms by blast341

AOT_theorem "con-dis-i-e:3:b": (86.3.b)342

assumes ‹ψ›343

shows ‹ϕ ∨ ψ›344

using "Disjunction Addition"(2) MP assms by blast345

AOT_theorem "con-dis-i-e:3:c": (86.3.c)346

assumes ‹ϕ ∨ ψ› and ‹ϕ → χ› and ‹ψ → Θ›347

shows ‹χ ∨ Θ›348

by (metis "con-dis-i-e:3:a" "Disjunction Addition"(2)349

"df-rules-formulas[3]" MT(1) RAA(1)350

"conventions:2" assms)351

lemmas "∨I" = "con-dis-i-e:3:a" "con-dis-i-e:3:b" "con-dis-i-e:3:c"352

353

AOT_theorem "con-dis-i-e:4:a": (86.4.a)354

assumes ‹ϕ ∨ ψ› and ‹ϕ → χ› and ‹ψ → χ›355

shows ‹χ›356

by (metis MP RAA(2) "df-rules-formulas[3]" "conventions:2" assms)357

AOT_theorem "con-dis-i-e:4:b": (86.4.b)358

assumes ‹ϕ ∨ ψ› and ‹¬ϕ›359

shows ‹ψ›360

using "con-dis-i-e:4:a" RAA(1) "→I" assms by blast361

AOT_theorem "con-dis-i-e:4:c": (86.4.c)362

assumes ‹ϕ ∨ ψ› and ‹¬ψ›363

shows ‹ϕ›364

using "con-dis-i-e:4:a" RAA(1) "→I" assms by blast365

lemmas "∨E" = "con-dis-i-e:4:a" "con-dis-i-e:4:b" "con-dis-i-e:4:c"366

367

AOT_theorem "raa-cor:1": (87.1)368

assumes ‹¬ϕ ` ψ & ¬ψ›369

shows ‹ϕ›370

using "&E" "∨E"(3) "∨I"(2) RAA(2) assms by blast371

AOT_theorem "raa-cor:2": (87.2)372

assumes ‹ϕ ` ψ & ¬ψ›373

shows ‹¬ϕ›374

using "raa-cor:1" assms by blast375

AOT_theorem "raa-cor:3": (87.3)376

198

A.7. The Deductive System PLM

assumes ‹ϕ› and ‹¬ψ ` ¬ϕ›377

shows ‹ψ›378

using RAA assms by blast379

AOT_theorem "raa-cor:4": (87.4)380

assumes ‹¬ϕ› and ‹¬ψ ` ϕ›381

shows ‹ψ›382

using RAA assms by blast383

AOT_theorem "raa-cor:5": (87.5)384

assumes ‹ϕ› and ‹ψ ` ¬ϕ›385

shows ‹¬ψ›386

using RAA assms by blast387

AOT_theorem "raa-cor:6": (87.6)388

assumes ‹¬ϕ› and ‹ψ ` ϕ›389

shows ‹¬ψ›390

using RAA assms by blast391

392

AOT_theorem "oth-class-taut:1:a": ‹(ϕ → ψ) ≡ ¬(ϕ & ¬ψ)› (88.1.a)393

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])394

(metis "&E" "&I" "raa-cor:3" "→I" MP)395

AOT_theorem "oth-class-taut:1:b": ‹¬(ϕ → ψ) ≡ (ϕ & ¬ψ)› (88.1.b)396

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])397

(metis "&E" "&I" "raa-cor:3" "→I" MP)398

AOT_theorem "oth-class-taut:1:c": ‹(ϕ → ψ) ≡ (¬ϕ ∨ ψ)› (88.1.c)399

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])400

(metis "&I" "∨I"(1, 2) "∨E"(3) "→I" MP "raa-cor:1")401

402

AOT_theorem "oth-class-taut:2:a": ‹(ϕ & ψ) ≡ (ψ & ϕ)› (88.2.a)403

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])404

(meson "&I" "&E" "→I")405

lemmas "Commutativity of &" = "oth-class-taut:2:a"406

AOT_theorem "oth-class-taut:2:b": ‹(ϕ & (ψ & χ)) ≡ ((ϕ & ψ) & χ)› (88.2.b)407

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])408

(metis "&I" "&E" "→I")409

lemmas "Associativity of &" = "oth-class-taut:2:b"410

AOT_theorem "oth-class-taut:2:c": ‹(ϕ ∨ ψ) ≡ (ψ ∨ ϕ)› (88.2.c)411

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])412

(metis "&I" "∨I"(1, 2) "∨E"(1) "→I")413

lemmas "Commutativity of ∨" = "oth-class-taut:2:c"414

AOT_theorem "oth-class-taut:2:d": ‹(ϕ ∨ (ψ ∨ χ)) ≡ ((ϕ ∨ ψ) ∨ χ)› (88.2.d)415

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"])416

(metis "&I" "∨I"(1, 2) "∨E"(1) "→I")417

lemmas "Associativity of ∨" = "oth-class-taut:2:d"418

AOT_theorem "oth-class-taut:2:e": ‹(ϕ ≡ ψ) ≡ (ψ ≡ ϕ)› (88.2.e)419

by (rule "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"]; rule "&I";420

metis "&I" "df-rules-formulas[4]" "conventions:3" "&E"421

"Hypothetical Syllogism" "→I" "df-rules-formulas[3]")422

lemmas "Commutativity of ≡" = "oth-class-taut:2:e"423

AOT_theorem "oth-class-taut:2:f": ‹(ϕ ≡ (ψ ≡ χ)) ≡ ((ϕ ≡ ψ) ≡ χ)› (88.2.f)424

using "conventions:3"[THEN "df-rules-formulas[4]"]425

"conventions:3"[THEN "df-rules-formulas[3]"]426

"→I" "→E" "&E" "&I"427

by metis428

lemmas "Associativity of ≡" = "oth-class-taut:2:f"429

430

AOT_theorem "oth-class-taut:3:a": ‹ϕ ≡ ϕ› (88.3.a)431

using "&I" "vdash-properties:6" "if-p-then-p"432

"df-rules-formulas[4]" "conventions:3" by blast433

AOT_theorem "oth-class-taut:3:b": ‹ϕ ≡ ¬¬ϕ› (88.3.b)434

using "&I" "useful-tautologies:1" "useful-tautologies:2" "→E"435

"df-rules-formulas[4]" "conventions:3" by blast436

AOT_theorem "oth-class-taut:3:c": ‹¬(ϕ ≡ ¬ϕ)› (88.3.c)437

by (metis "&E" "→E" RAA "df-rules-formulas[3]" "conventions:3")438

439

199

A. Isabelle Theory

AOT_theorem "oth-class-taut:4:a": ‹(ϕ → ψ) → ((ψ → χ) → (ϕ → χ))› (88.4.a)440

by (metis "→E" "→I")441

AOT_theorem "oth-class-taut:4:b": ‹(ϕ ≡ ψ) ≡ (¬ϕ ≡ ¬ψ)› (88.4.b)442

using "conventions:3"[THEN "df-rules-formulas[4]"]443

"conventions:3"[THEN "df-rules-formulas[3]"]444

"→I" "→E" "&E" "&I" RAA by metis445

AOT_theorem "oth-class-taut:4:c": ‹(ϕ ≡ ψ) → ((ϕ → χ) ≡ (ψ → χ))› (88.4.c)446

using "conventions:3"[THEN "df-rules-formulas[4]"]447

"conventions:3"[THEN "df-rules-formulas[3]"]448

"→I" "→E" "&E" "&I" by metis449

AOT_theorem "oth-class-taut:4:d": ‹(ϕ ≡ ψ) → ((χ → ϕ) ≡ (χ → ψ))› (88.4.d)450

using "conventions:3"[THEN "df-rules-formulas[4]"]451

"conventions:3"[THEN "df-rules-formulas[3]"]452

"→I" "→E" "&E" "&I" by metis453

AOT_theorem "oth-class-taut:4:e": ‹(ϕ ≡ ψ) → ((ϕ & χ) ≡ (ψ & χ))› (88.4.e)454

using "conventions:3"[THEN "df-rules-formulas[4]"]455

"conventions:3"[THEN "df-rules-formulas[3]"]456

"→I" "→E" "&E" "&I" by metis457

AOT_theorem "oth-class-taut:4:f": ‹(ϕ ≡ ψ) → ((χ & ϕ) ≡ (χ & ψ))› (88.4.f)458

using "conventions:3"[THEN "df-rules-formulas[4]"]459

"conventions:3"[THEN "df-rules-formulas[3]"]460

"→I" "→E" "&E" "&I" by metis461

AOT_theorem "oth-class-taut:4:g": ‹(ϕ ≡ ψ) ≡ ((ϕ & ψ) ∨ (¬ϕ & ¬ψ))› (88.4.g)462

proof(safe intro!: "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"]463

"&I" "→I"464

dest!: "conventions:3"[THEN "df-rules-formulas[3]", THEN "→E"])465

AOT_show ‹ϕ & ψ ∨ (¬ϕ & ¬ψ)› if ‹(ϕ → ψ) & (ψ → ϕ)›466

using "&E" "∨I" "→E" "&I" "raa-cor:1" "→I" "∨E" that by metis467

next468

AOT_show ‹ψ› if ‹ϕ & ψ ∨ (¬ϕ & ¬ψ)› and ‹ϕ›469

using that "∨E" "&E" "raa-cor:3" by blast470

next471

AOT_show ‹ϕ› if ‹ϕ & ψ ∨ (¬ϕ & ¬ψ)› and ‹ψ›472

using that "∨E" "&E" "raa-cor:3" by blast473

qed474

AOT_theorem "oth-class-taut:4:h": ‹¬(ϕ ≡ ψ) ≡ ((ϕ & ¬ψ) ∨ (¬ϕ & ψ))› (88.4.h)475

proof (safe intro!: "conventions:3"[THEN "df-rules-formulas[4]", THEN "→E"]476

"&I" "→I")477

AOT_show ‹ϕ & ¬ψ ∨ (¬ϕ & ψ)› if ‹¬(ϕ ≡ ψ)›478

by (metis that "&I" "∨I"(1, 2) "→I" MT(1) "df-rules-formulas[4]"479

"raa-cor:3" "conventions:3")480

next481

AOT_show ‹¬(ϕ ≡ ψ)› if ‹ϕ & ¬ψ ∨ (¬ϕ & ψ)›482

by (metis that "&E" "∨E"(2) "→E" "df-rules-formulas[3]"483

"raa-cor:3" "conventions:3")484

qed485

AOT_theorem "oth-class-taut:5:a": ‹(ϕ & ψ) ≡ ¬(¬ϕ ∨ ¬ψ)› (88.5.a)486

using "conventions:3"[THEN "df-rules-formulas[4]"]487

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis488

AOT_theorem "oth-class-taut:5:b": ‹(ϕ ∨ ψ) ≡ ¬(¬ϕ & ¬ψ)› (88.5.b)489

using "conventions:3"[THEN "df-rules-formulas[4]"]490

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis491

AOT_theorem "oth-class-taut:5:c": ‹¬(ϕ & ψ) ≡ (¬ϕ ∨ ¬ψ)› (88.5.c)492

using "conventions:3"[THEN "df-rules-formulas[4]"]493

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis494

AOT_theorem "oth-class-taut:5:d": ‹¬(ϕ ∨ ψ) ≡ (¬ϕ & ¬ψ)› (88.5.d)495

using "conventions:3"[THEN "df-rules-formulas[4]"]496

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis497

498

lemmas DeMorgan = "oth-class-taut:5:c" "oth-class-taut:5:d"499

500

AOT_theorem "oth-class-taut:6:a": (88.6.a)501

‹(ϕ & (ψ ∨ χ)) ≡ ((ϕ & ψ) ∨ (ϕ & χ))›502

200

A.7. The Deductive System PLM

using "conventions:3"[THEN "df-rules-formulas[4]"]503

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis504

AOT_theorem "oth-class-taut:6:b": (88.6.b)505

‹(ϕ ∨ (ψ & χ)) ≡ ((ϕ ∨ ψ) & (ϕ ∨ χ))›506

using "conventions:3"[THEN "df-rules-formulas[4]"]507

"→I" "→E" "&E" "&I" "∨I" "∨E" RAA by metis508

509

AOT_theorem "oth-class-taut:7:a": ‹((ϕ & ψ) → χ) → (ϕ → (ψ → χ))› (88.7.a)510

by (metis "&I" "→E" "→I")511

lemmas Exportation = "oth-class-taut:7:a"512

AOT_theorem "oth-class-taut:7:b": ‹(ϕ → (ψ →χ)) → ((ϕ & ψ) → χ)› (88.7.b)513

by (metis "&E" "→E" "→I")514

lemmas Importation = "oth-class-taut:7:b"515

516

AOT_theorem "oth-class-taut:8:a": (88.8.a)517

‹(ϕ → (ψ → χ)) ≡ (ψ → (ϕ → χ))›518

using "conventions:3"[THEN "df-rules-formulas[4]"] "→I" "→E" "&E" "&I"519

by metis520

lemmas Permutation = "oth-class-taut:8:a"521

AOT_theorem "oth-class-taut:8:b": (88.8.b)522

‹(ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ & χ)))›523

by (metis "&I" "→E" "→I")524

lemmas Composition = "oth-class-taut:8:b"525

AOT_theorem "oth-class-taut:8:c": (88.8.c)526

‹(ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))›527

by (metis "∨E"(2) "→E" "→I" RAA(1))528

AOT_theorem "oth-class-taut:8:d": (88.8.d)529

‹((ϕ → ψ) & (χ → Θ)) → ((ϕ & χ) → (ψ & Θ))›530

by (metis "&E" "&I" "→E" "→I")531

lemmas "Double Composition" = "oth-class-taut:8:d"532

AOT_theorem "oth-class-taut:8:e": (88.8.e)533

‹((ϕ & ψ) ≡ (ϕ & χ)) ≡ (ϕ → (ψ ≡ χ))›534

by (metis "conventions:3"[THEN "df-rules-formulas[4]"]535

"conventions:3"[THEN "df-rules-formulas[3]"]536

"→I" "→E" "&E" "&I")537

AOT_theorem "oth-class-taut:8:f": (88.8.f)538

‹((ϕ & ψ) ≡ (χ & ψ)) ≡ (ψ → (ϕ ≡ χ))›539

by (metis "conventions:3"[THEN "df-rules-formulas[4]"]540

"conventions:3"[THEN "df-rules-formulas[3]"]541

"→I" "→E" "&E" "&I")542

AOT_theorem "oth-class-taut:8:g": (88.8.g)543

‹(ψ ≡ χ) → ((ϕ ∨ ψ) ≡ (ϕ ∨ χ))›544

by (metis "conventions:3"[THEN "df-rules-formulas[4]"]545

"conventions:3"[THEN "df-rules-formulas[3]"]546

"→I" "→E" "&E" "&I" "∨I" "∨E"(1))547

AOT_theorem "oth-class-taut:8:h": (88.8.h)548

‹(ψ ≡ χ) → ((ψ ∨ ϕ) ≡ (χ ∨ ϕ))›549

by (metis "conventions:3"[THEN "df-rules-formulas[4]"]550

"conventions:3"[THEN "df-rules-formulas[3]"]551

"→I" "→E" "&E" "&I" "∨I" "∨E"(1))552

AOT_theorem "oth-class-taut:8:i": (88.8.i)553

‹(ϕ ≡ (ψ & χ)) → (ψ → (ϕ ≡ χ))›554

by (metis "conventions:3"[THEN "df-rules-formulas[4]"]555

"conventions:3"[THEN "df-rules-formulas[3]"]556

"→I" "→E" "&E" "&I")557

558

AOT_theorem "intro-elim:1": (89.1)559

assumes ‹ϕ ∨ ψ› and ‹ϕ ≡ χ› and ‹ψ ≡ Θ›560

shows ‹χ ∨ Θ›561

by (metis assms "∨I"(1, 2) "∨E"(1) "→I" "→E" "&E"(1)562

"conventions:3"[THEN "df-rules-formulas[3]"])563

564

AOT_theorem "intro-elim:2": (89.2)565

201

A. Isabelle Theory

assumes ‹ϕ → ψ› and ‹ψ → ϕ›566

shows ‹ϕ ≡ ψ›567

by (meson "&I" "conventions:3" "df-rules-formulas[4]" MP assms)568

lemmas "≡I" = "intro-elim:2"569

570

AOT_theorem "intro-elim:3:a": (89.3.a)571

assumes ‹ϕ ≡ ψ› and ‹ϕ›572

shows ‹ψ›573

by (metis "∨I"(1) "→I" "∨E"(1) "intro-elim:1" assms)574

AOT_theorem "intro-elim:3:b": (89.3.b)575

assumes ‹ϕ ≡ ψ› and ‹ψ›576

shows ‹ϕ›577

using "intro-elim:3:a" "Commutativity of ≡" assms by blast578

AOT_theorem "intro-elim:3:c": (89.3.c)579

assumes ‹ϕ ≡ ψ› and ‹¬ϕ›580

shows ‹¬ψ›581

using "intro-elim:3:b" "raa-cor:3" assms by blast582

AOT_theorem "intro-elim:3:d": (89.3.d)583

assumes ‹ϕ ≡ ψ› and ‹¬ψ›584

shows ‹¬ϕ›585

using "intro-elim:3:a" "raa-cor:3" assms by blast586

AOT_theorem "intro-elim:3:e": (89.3.e)587

assumes ‹ϕ ≡ ψ› and ‹ψ ≡ χ›588

shows ‹ϕ ≡ χ›589

by (metis "≡I" "→I" "intro-elim:3:a" "intro-elim:3:b" assms)590

declare "intro-elim:3:e"[trans]591

AOT_theorem "intro-elim:3:f": (89.3.f)592

assumes ‹ϕ ≡ ψ› and ‹ϕ ≡ χ›593

shows ‹χ ≡ ψ›594

by (metis "≡I" "→I" "intro-elim:3:a" "intro-elim:3:b" assms)595

lemmas "≡E" = "intro-elim:3:a" "intro-elim:3:b" "intro-elim:3:c"596

"intro-elim:3:d" "intro-elim:3:e" "intro-elim:3:f"597

598

declare "Commutativity of ≡"[THEN "≡E"(1), sym]599

600

AOT_theorem "rule-eq-df:1": (90.1)601

assumes ‹ϕ ≡df ψ›602

shows ‹ϕ ≡ ψ›603

by (simp add: "≡I" "df-rules-formulas[3]" "df-rules-formulas[4]" assms)604

lemmas "≡Df" = "rule-eq-df:1"605

AOT_theorem "rule-eq-df:2": (90.2)606

assumes ‹ϕ ≡df ψ› and ‹ϕ›607

shows ‹ψ›608

using "≡Df" "≡E"(1) assms by blast609

lemmas "≡dfE" = "rule-eq-df:2"610

AOT_theorem "rule-eq-df:3": (90.3)611

assumes ‹ϕ ≡df ψ› and ‹ψ›612

shows ‹ϕ›613

using "≡Df" "≡E"(2) assms by blast614

lemmas "≡dfI" = "rule-eq-df:3"615

616

AOT_theorem "df-simplify:1": (91.1)617

assumes ‹ϕ ≡ (ψ & χ)› and ‹ψ›618

shows ‹ϕ ≡ χ›619

by (metis "&E"(2) "&I" "≡E"(1, 2) "≡I" "→I" assms)620

(* Note: this is a slight variation from PLM *)621

AOT_theorem "df-simplify:2": (91.2)622

assumes ‹ϕ ≡ (ψ & χ)› and ‹χ›623

shows ‹ϕ ≡ ψ›624

by (metis "&E"(1) "&I" "≡E"(1, 2) "≡I" "→I" assms)625

lemmas "≡S" = "df-simplify:1" "df-simplify:2"626

627

subsection‹The Theory of Quantification›628

202

A.7. The Deductive System PLM

text‹\label{PLM: 9.6}›629

630

AOT_theorem "rule-ui:1": (93.1)631

assumes ‹∀α ϕ{α}› and ‹τ↓›632

shows ‹ϕ{τ}›633

using "→E" "cqt:1"[axiom_inst] assms by blast634

AOT_theorem "rule-ui:2[const_var]": (93.2)635

assumes ‹∀α ϕ{α}›636

shows ‹ϕ{β}›637

by (simp add: "rule-ui:1" "cqt:2[const_var]"[axiom_inst] assms)638

AOT_theorem "rule-ui:2[lambda]": (93.2)639

assumes ‹∀F ϕ{F}› and ‹INSTANCE_OF_CQT_2(ψ)›640

shows ‹ϕ{[λν1...νn ψ{ν1...νn}]}›641

by (simp add: "rule-ui:1" "cqt:2[lambda]"[axiom_inst] assms)642

AOT_theorem "rule-ui:3": (93.3)643

assumes ‹∀α ϕ{α}›644

shows ‹ϕ{α}›645

by (simp add: "rule-ui:2[const_var]" assms)646

lemmas "∀E" = "rule-ui:1" "rule-ui:2[const_var]"647

"rule-ui:2[lambda]" "rule-ui:3"648

649

AOT_theorem "cqt-orig:1[const_var]": ‹∀α ϕ{α} → ϕ{β}› (95.1)650

by (simp add: "∀E"(2) "→I")651

AOT_theorem "cqt-orig:1[lambda]": (95.1)652

assumes ‹INSTANCE_OF_CQT_2(ψ)›653

shows ‹∀F ϕ{F} → ϕ{[λν1...νn ψ{ν1...νn}]}›654

by (simp add: "∀E"(3) "→I" assms)655

AOT_theorem "cqt-orig:2": ‹∀α (ϕ → ψ{α}) → (ϕ → ∀α ψ{α})› (95.2)656

by (metis "→I" GEN "vdash-properties:6" "∀E"(4))657

AOT_theorem "cqt-orig:3": ‹∀α ϕ{α} → ϕ{α}› (95.3)658

using "cqt-orig:1[const_var]".659

660

AOT_theorem universal: (96)661

assumes ‹for arbitrary β: ϕ{β}›662

shows ‹∀α ϕ{α}›663

using GEN assms .664

lemmas "∀I" = universal665

666

(* Generalized mechanism for ∀I followed by ∀E *)667

ML‹668

fun get_instantiated_allI ctxt varname thm = let669

val trm = Thm.concl_of thm670

val trm =671

case trm of (@{const Trueprop} $ (@{const AOT_model_valid_in} $ _ $ x)) => x672

| _ => raise Term.TERM ("Expected simple theorem.", [trm])673

fun extractVars (Const (const_name‹AOT_term_of_var›, _) $ Var v) =674

(if fst (fst v) = fst varname then [Var v] else [])675

| extractVars (t1 $ t2) = extractVars t1 @ extractVars t2676

| extractVars (Abs (_, _, t)) = extractVars t677

| extractVars _ = []678

val vars = extractVars trm679

val vars = fold Term.add_vars vars []680

val var = hd vars681

val trmty =682

case (snd var) of (Type (type_name‹AOT_var›, [t])) => (t)683

| _ => raise Term.TYPE ("Expected variable type.", [snd var], [Var var])684

val trm = Abs (Term.string_of_vname (fst var), trmty, Term.abstract_over (685

Const (const_name‹AOT_term_of_var›, Type ("fun", [snd var, trmty]))686

$ Var var, trm))687

val trm = Thm.cterm_of (Context.proof_of ctxt) trm688

val ty = hd (Term.add_tvars (Thm.prop_of @{thm "∀I"}) [])689

val typ = Thm.ctyp_of (Context.proof_of ctxt) trmty690

val allthm = Drule.instantiate_normalize (TVars.make [(ty, typ)], Vars.empty) @{thm "∀I"}691

203

A. Isabelle Theory

val phi = hd (Term.add_vars (Thm.prop_of allthm) [])692

val allthm = Drule.instantiate_normalize (TVars.empty, Vars.make [(phi,trm)]) allthm693

in694

allthm695

end696

›697

698

attribute_setup "∀I" =699

‹Scan.lift (Scan.repeat1 Args.var) » (fn args => Thm.rule_attribute []700

(fn ctxt => fn thm => fold (fn arg => fn thm =>701

thm RS get_instantiated_allI ctxt arg thm) args thm))›702

"Quantify over a variable in a theorem using GEN."703

704

attribute_setup "unvarify" =705

‹Scan.lift (Scan.repeat1 Args.var) » (fn args => Thm.rule_attribute []706

(fn ctxt => fn thm =>707

let708

fun get_inst_allI arg thm = thm RS get_instantiated_allI ctxt arg thm709

val thm = fold get_inst_allI args thm710

val thm = fold (K (fn thm => thm RS @{thm "∀E"(1)})) args thm711

in712

thm713

end))›714

"Generalize a statement about variables to a statement about denoting terms."715

716

(* Note: rereplace-lem does not apply to the embedding *)717

718

AOT_theorem "cqt-basic:1": ‹∀α∀β ϕ{α,β} ≡ ∀β∀α ϕ{α,β}› (99.1)719

by (metis "≡I" "∀E"(2) "∀I" "→I")720

721

AOT_theorem "cqt-basic:2": (99.2)722

‹∀α(ϕ{α} ≡ ψ{α}) ≡ (∀α(ϕ{α} → ψ{α}) & ∀α(ψ{α} → ϕ{α}))›723

proof (rule "≡I"; rule "→I")724

AOT_assume ‹∀α(ϕ{α} ≡ ψ{α})›725

AOT_hence ‹ϕ{α} ≡ ψ{α}› for α using "∀E"(2) by blast726

AOT_hence ‹ϕ{α} → ψ{α}› and ‹ψ{α} → ϕ{α}› for α727

using "≡E"(1,2) "→I" by blast+728

AOT_thus ‹∀α(ϕ{α} → ψ{α}) & ∀α(ψ{α} → ϕ{α})›729

by (auto intro: "&I" "∀I")730

next731

AOT_assume ‹∀α(ϕ{α} → ψ{α}) & ∀α(ψ{α} → ϕ{α})›732

AOT_hence ‹ϕ{α} → ψ{α}› and ‹ψ{α} → ϕ{α}› for α733

using "∀E"(2) "&E" by blast+734

AOT_hence ‹ϕ{α} ≡ ψ{α}› for α735

using "≡I" by blast736

AOT_thus ‹∀α(ϕ{α} ≡ ψ{α})› by (auto intro: "∀I")737

qed738

739

AOT_theorem "cqt-basic:3": ‹∀α(ϕ{α} ≡ ψ{α}) → (∀α ϕ{α} ≡ ∀α ψ{α})› (99.3)740

proof(rule "→I")741

AOT_assume ‹∀α(ϕ{α} ≡ ψ{α})›742

AOT_hence 1: ‹ϕ{α} ≡ ψ{α}› for α using "∀E"(2) by blast743

{744

AOT_assume ‹∀α ϕ{α}›745

AOT_hence ‹∀α ψ{α}› using 1 "∀I" "∀E"(4) "≡E" by metis746

}747

moreover {748

AOT_assume ‹∀α ψ{α}›749

AOT_hence ‹∀α ϕ{α}› using 1 "∀I" "∀E"(4) "≡E" by metis750

}751

ultimately AOT_show ‹∀α ϕ{α} ≡ ∀α ψ{α}›752

using "≡I" "→I" by auto753

qed754

204

A.7. The Deductive System PLM

755

AOT_theorem "cqt-basic:4": ‹∀α(ϕ{α} & ψ{α}) → (∀α ϕ{α} & ∀α ψ{α})› (99.4)756

proof(rule "→I")757

AOT_assume 0: ‹∀α(ϕ{α} & ψ{α})›758

AOT_have ‹ϕ{α}› and ‹ψ{α}› for α using "∀E"(2) 0 "&E" by blast+759

AOT_thus ‹∀α ϕ{α} & ∀α ψ{α}›760

by (auto intro: "∀I" "&I")761

qed762

763

AOT_theorem "cqt-basic:5": ‹(∀α1...∀αn(ϕ{α1...αn})) → ϕ{α1...αn}› (99.5)764

using "cqt-orig:3" by blast765

766

AOT_theorem "cqt-basic:6": ‹∀α∀α ϕ{α} ≡ ∀α ϕ{α}› (99.6)767

by (meson "≡I" "→I" GEN "cqt-orig:1[const_var]")768

769

AOT_theorem "cqt-basic:7": ‹(ϕ → ∀α ψ{α}) ≡ ∀α(ϕ → ψ{α})› (99.7)770

by (metis "→I" "vdash-properties:6" "rule-ui:3" "≡I" GEN)771

772

AOT_theorem "cqt-basic:8": ‹(∀α ϕ{α} ∨ ∀α ψ{α}) → ∀α (ϕ{α} ∨ ψ{α})› (99.8)773

by (simp add: "∨I"(3) "→I" GEN "cqt-orig:1[const_var]")774

775

AOT_theorem "cqt-basic:9": (99.9)776

‹(∀α (ϕ{α} → ψ{α}) & ∀α (ψ{α} → χ{α})) → ∀α(ϕ{α} → χ{α})›777

proof -778

{779

AOT_assume ‹∀α (ϕ{α} → ψ{α})›780

moreover AOT_assume ‹∀α (ψ{α} → χ{α})›781

ultimately AOT_have ‹ϕ{α} → ψ{α}› and ‹ψ{α} → χ{α}› for α782

using "∀E" by blast+783

AOT_hence ‹ϕ{α} → χ{α}› for α by (metis "→E" "→I")784

AOT_hence ‹∀α(ϕ{α} → χ{α})› using "∀I" by fast785

}786

thus ?thesis using "&I" "→I" "&E" by meson787

qed788

789

AOT_theorem "cqt-basic:10": (99.10)790

‹(∀α(ϕ{α} ≡ ψ{α}) & ∀α(ψ{α} ≡ χ{α})) → ∀α (ϕ{α} ≡ χ{α})›791

proof(rule "→I"; rule "∀I")792

fix β793

AOT_assume ‹∀α(ϕ{α} ≡ ψ{α}) & ∀α(ψ{α} ≡ χ{α})›794

AOT_hence ‹ϕ{β} ≡ ψ{β}› and ‹ψ{β} ≡ χ{β}› using "&E" "∀E" by blast+795

AOT_thus ‹ϕ{β} ≡ χ{β}› using "≡I" "≡E" by blast796

qed797

798

AOT_theorem "cqt-basic:11": ‹∀α(ϕ{α} ≡ ψ{α}) ≡ ∀α (ψ{α} ≡ ϕ{α})› (99.11)799

proof (rule "≡I"; rule "→I")800

AOT_assume 0: ‹∀α(ϕ{α} ≡ ψ{α})›801

{802

fix α803

AOT_have ‹ϕ{α} ≡ ψ{α}› using 0 "∀E" by blast804

AOT_hence ‹ψ{α} ≡ ϕ{α}› using "≡I" "≡E" "→I" "→E" by metis805

}806

AOT_thus ‹∀α(ψ{α} ≡ ϕ{α})› using "∀I" by fast807

next808

AOT_assume 0: ‹∀α(ψ{α} ≡ ϕ{α})›809

{810

fix α811

AOT_have ‹ψ{α} ≡ ϕ{α}› using 0 "∀E" by blast812

AOT_hence ‹ϕ{α} ≡ ψ{α}› using "≡I" "≡E" "→I" "→E" by metis813

}814

AOT_thus ‹∀α(ϕ{α} ≡ ψ{α})› using "∀I" by fast815

qed816

817

205

A. Isabelle Theory

AOT_theorem "cqt-basic:12": ‹∀α ϕ{α} → ∀α (ψ{α} → ϕ{α})› (99.12)818

by (simp add: "∀E"(2) "→I" GEN)819

820

AOT_theorem "cqt-basic:13": ‹∀α ϕ{α} ≡ ∀β ϕ{β}› (99.13)821

using "≡I" "→I" by blast822

823

AOT_theorem "cqt-basic:14": (99.14)824

‹(∀α1...∀αn (ϕ{α1...αn} → ψ{α1...αn})) →825

((∀α1...∀αn ϕ{α1...αn}) → (∀α1...∀αn ψ{α1...αn}))›826

using "cqt:3"[axiom_inst] by auto827

828

AOT_theorem "cqt-basic:15": (99.15)829

‹(∀α1...∀αn (ϕ → ψ{α1...αn})) → (ϕ → (∀α1...∀αn ψ{α1...αn}))›830

using "cqt-orig:2" by auto831

832

AOT_theorem "universal-cor": (100)833

assumes ‹for arbitrary β: ϕ{β}›834

shows ‹∀α ϕ{α}›835

using GEN assms .836

837

AOT_theorem "existential:1": (101.1)838

assumes ‹ϕ{τ}› and ‹τ↓›839

shows ‹∃α ϕ{α}›840

proof(rule "raa-cor:1")841

AOT_assume ‹¬∃α ϕ{α}›842

AOT_hence ‹∀α ¬ϕ{α}›843

using "≡dfI" "conventions:4" RAA "&I" by blast844

AOT_hence ‹¬ϕ{τ}› using assms(2) "∀E"(1) "→E" by blast845

AOT_thus ‹ϕ{τ} & ¬ϕ{τ}› using assms(1) "&I" by blast846

qed847

848

AOT_theorem "existential:2[const_var]": (101.2)849

assumes ‹ϕ{β}›850

shows ‹∃α ϕ{α}›851

using "existential:1" "cqt:2[const_var]"[axiom_inst] assms by blast852

853

AOT_theorem "existential:2[lambda]": (101.2)854

assumes ‹ϕ{[λν1...νn ψ{ν1...νn}]}› and ‹INSTANCE_OF_CQT_2(ψ)›855

shows ‹∃α ϕ{α}›856

using "existential:1" "cqt:2[lambda]"[axiom_inst] assms by blast857

lemmas "∃I" = "existential:1" "existential:2[const_var]"858

"existential:2[lambda]"859

860

AOT_theorem "instantiation": (102)861

assumes ‹for arbitrary β: ϕ{β} ` ψ› and ‹∃α ϕ{α}›862

shows ‹ψ›863

by (metis (no_types, lifting) "≡dfE" GEN "raa-cor:3" "conventions:4" assms)864

lemmas "∃E" = "instantiation"865

866

AOT_theorem "cqt-further:1": ‹∀α ϕ{α} → ∃α ϕ{α}› (103.1)867

using "∀E"(4) "∃I"(2) "→I" by metis868

869

AOT_theorem "cqt-further:2": ‹¬∀α ϕ{α} → ∃α ¬ϕ{α}› (103.2)870

using "∀I" "∃I"(2) "→I" RAA by metis871

872

AOT_theorem "cqt-further:3": ‹∀α ϕ{α} ≡ ¬∃α ¬ϕ{α}› (103.3)873

using "∀E"(4) "∃E" "→I" RAA874

by (metis "cqt-further:2" "≡I" "modus-tollens:1")875

876

AOT_theorem "cqt-further:4": ‹¬∃α ϕ{α} → ∀α ¬ϕ{α}› (103.4)877

using "∀I" "∃I"(2)"→I" RAA by metis878

879

AOT_theorem "cqt-further:5": ‹∃α (ϕ{α} & ψ{α}) → (∃α ϕ{α} & ∃α ψ{α})› (103.5)880

206

A.7. The Deductive System PLM

by (metis (no_types, lifting) "&E" "&I" "∃E" "∃I"(2) "→I")881

882

AOT_theorem "cqt-further:6": ‹∃α (ϕ{α} ∨ ψ{α}) → (∃α ϕ{α} ∨ ∃α ψ{α})› (103.6)883

by (metis (mono_tags, lifting) "∃E" "∃I"(2) "∨E"(3) "∨I"(1, 2) "→I" RAA(2))884

885

(* NOTE: vacuous in the embedding *)886

AOT_theorem "cqt-further:7": ‹∃α ϕ{α} ≡ ∃β ϕ{β}› (103.7)887

by (simp add: "oth-class-taut:3:a")888

889

AOT_theorem "cqt-further:8": (103.8)890

‹(∀α ϕ{α} & ∀α ψ{α}) → ∀α (ϕ{α} ≡ ψ{α})›891

by (metis (mono_tags, lifting) "&E" "≡I" "∀E"(2) "→I" GEN)892

893

AOT_theorem "cqt-further:9": (103.9)894

‹(¬∃α ϕ{α} & ¬∃α ψ{α}) → ∀α (ϕ{α} ≡ ψ{α})›895

by (metis (mono_tags, lifting) "&E" "≡I" "∃I"(2) "→I" GEN "raa-cor:4")896

897

AOT_theorem "cqt-further:10": (103.10)898

‹(∃α ϕ{α} & ¬∃α ψ{α}) → ¬∀α (ϕ{α} ≡ ψ{α})›899

proof(rule "→I"; rule "raa-cor:2")900

AOT_assume 0: ‹∃α ϕ{α} & ¬∃α ψ{α}›901

then AOT_obtain α where ‹ϕ{α}› using "∃E" "&E"(1) by metis902

moreover AOT_assume ‹∀α (ϕ{α} ≡ ψ{α})›903

ultimately AOT_have ‹ψ{α}› using "∀E"(4) "≡E"(1) by blast904

AOT_hence ‹∃α ψ{α}› using "∃I" by blast905

AOT_thus ‹∃α ψ{α} & ¬∃α ψ{α}› using 0 "&E"(2) "&I" by blast906

qed907

908

AOT_theorem "cqt-further:11": ‹∃α∃β ϕ{α,β} ≡ ∃β∃α ϕ{α,β}› (103.11)909

using "≡I" "→I" "∃I"(2) "∃E" by metis910

911

subsection‹Logical Existence, Identity, and Truth›912

text‹\label{PLM: 9.7}›913

914

AOT_theorem "log-prop-prop:1": ‹[λ ϕ]↓› (104.1)915

using "cqt:2[lambda0]"[axiom_inst] by auto916

917

AOT_theorem "log-prop-prop:2": ‹ϕ↓› (104.2)918

by (rule "≡dfI"[OF "existence:3"]) "cqt:2[lambda]"919

920

AOT_theorem "exist-nec": ‹τ↓ → �τ↓› (106)921

proof -922

AOT_have ‹∀β �β↓›923

by (simp add: GEN RN "cqt:2[const_var]"[axiom_inst])924

AOT_thus ‹τ↓ → �τ↓›925

using "cqt:1"[axiom_inst] "→E" by blast926

qed927

928

(* TODO: replace this mechanism by a "proof by types" command *)929

class AOT_Term_id = AOT_Term +930

assumes "t=t-proper:1"[AOT]: ‹[v |= τ = τ’ → τ↓]› (107.1)931

and "t=t-proper:2"[AOT]: ‹[v |= τ = τ’ → τ’↓]› (107.2)932

933

instance κ :: AOT_Term_id934

proof935

AOT_modally_strict {936

AOT_show ‹κ = κ’ → κ↓› for κ κ’937

proof(rule "→I")938

AOT_assume ‹κ = κ’›939

AOT_hence ‹O!κ ∨ A!κ›940

by (rule "∨I"(3)[OF "≡dfE"[OF "identity:1"]])941

(meson "→I" "∨I"(1) "&E"(1))+942

AOT_thus ‹κ↓›943

207

A. Isabelle Theory

by (rule "∨E"(1))944

(metis "cqt:5:a"[axiom_inst] "→I" "→E" "&E"(2))+945

qed946

}947

next948

AOT_modally_strict {949

AOT_show ‹κ = κ’ → κ’↓› for κ κ’950

proof(rule "→I")951

AOT_assume ‹κ = κ’›952

AOT_hence ‹O!κ’ ∨ A!κ’›953

by (rule "∨I"(3)[OF "≡dfE"[OF "identity:1"]])954

(meson "→I" "∨I" "&E")+955

AOT_thus ‹κ’↓›956

by (rule "∨E"(1))957

(metis "cqt:5:a"[axiom_inst] "→I" "→E" "&E"(2))+958

qed959

}960

qed961

962

instance rel :: (AOT_κs) AOT_Term_id963

proof964

AOT_modally_strict {965

AOT_show ‹Π = Π’ → Π↓› for Π Π’ :: ‹<’a>›966

proof(rule "→I")967

AOT_assume ‹Π = Π’›968

AOT_thus ‹Π↓› using "≡dfE"[OF "identity:3"[of Π Π’]] "&E" by blast969

qed970

}971

next972

AOT_modally_strict {973

AOT_show ‹Π = Π’ → Π’↓› for Π Π’ :: ‹<’a>›974

proof(rule "→I")975

AOT_assume ‹Π = Π’›976

AOT_thus ‹Π’↓› using "≡dfE"[OF "identity:3"[of Π Π’]] "&E" by blast977

qed978

}979

qed980

981

instance o :: AOT_Term_id982

proof983

AOT_modally_strict {984

fix ϕ ψ985

AOT_show ‹ϕ = ψ → ϕ↓›986

proof(rule "→I")987

AOT_assume ‹ϕ = ψ›988

AOT_thus ‹ϕ↓› using "≡dfE"[OF "identity:4"[of ϕ ψ]] "&E" by blast989

qed990

}991

next992

AOT_modally_strict {993

fix ϕ ψ994

AOT_show ‹ϕ = ψ → ψ↓›995

proof(rule "→I")996

AOT_assume ‹ϕ = ψ›997

AOT_thus ‹ψ↓› using "≡dfE"[OF "identity:4"[of ϕ ψ]] "&E" by blast998

qed999

}1000

qed1001

1002

instance prod :: (AOT_Term_id, AOT_Term_id) AOT_Term_id1003

proof1004

AOT_modally_strict {1005

fix τ τ’ :: ‹’a×’b›1006

208

A.7. The Deductive System PLM

AOT_show ‹τ = τ’ → τ↓›1007

proof (induct τ; induct τ’; rule "→I")1008

fix τ 1 τ 1’ :: ’a and τ 2 τ 2’ :: ’b1009

AOT_assume ‹«(τ 1, τ 2)» = «(τ 1’, τ 2’)»›1010

AOT_hence ‹(τ 1 = τ 1’) & (τ 2 = τ 2’)› by (metis "≡dfE" tuple_identity_1)1011

AOT_hence ‹τ 1↓› and ‹τ 2↓›1012

using "t=t-proper:1" "&E" "vdash-properties:10" by blast+1013

AOT_thus ‹«(τ 1, τ 2)»↓› by (metis "≡dfI" "&I" tuple_denotes)1014

qed1015

}1016

next1017

AOT_modally_strict {1018

fix τ τ’ :: ‹’a×’b›1019

AOT_show ‹τ = τ’ → τ’↓›1020

proof (induct τ; induct τ’; rule "→I")1021

fix τ 1 τ 1’ :: ’a and τ 2 τ 2’ :: ’b1022

AOT_assume ‹«(τ 1, τ 2)» = «(τ 1’, τ 2’)»›1023

AOT_hence ‹(τ 1 = τ 1’) & (τ 2 = τ 2’)› by (metis "≡dfE" tuple_identity_1)1024

AOT_hence ‹τ 1’↓› and ‹τ 2’↓›1025

using "t=t-proper:2" "&E" "vdash-properties:10" by blast+1026

AOT_thus ‹«(τ 1’, τ 2’)»↓› by (metis "≡dfI" "&I" tuple_denotes)1027

qed1028

}1029

qed1030

1031

(* This is the end of the "proof by types" and1032

makes the results available on new theorems *)1033

AOT_register_type_constraints1034

Term: ‹_::AOT_Term_id› ‹_::AOT_Term_id›1035

AOT_register_type_constraints1036

Individual: ‹κ› ‹_::{AOT_κs, AOT_Term_id}›1037

AOT_register_type_constraints1038

Relation: ‹<_::{AOT_κs, AOT_Term_id}>›1039

1040

AOT_theorem "id-rel-nec-equiv:1": (108.1)1041

‹Π = Π’ → �∀x1...∀xn ([Π]x1...xn ≡ [Π’]x1...xn)›1042

proof(rule "→I")1043

AOT_assume assumption: ‹Π = Π’›1044

AOT_hence ‹Π↓› and ‹Π’↓›1045

using "t=t-proper:1" "t=t-proper:2" MP by blast+1046

moreover AOT_have ‹∀F∀G (F = G → ((�∀x1...∀xn ([F]x1...xn ≡ [F]x1...xn)) →1047

�∀x1...∀xn ([F]x1...xn ≡ [G]x1...xn)))›1048

apply (rule GEN)+ using "l-identity"[axiom_inst] by force1049

ultimately AOT_have ‹Π = Π’ → ((�∀x1...∀xn ([Π]x1...xn ≡ [Π]x1...xn)) →1050

�∀x1...∀xn ([Π]x1...xn ≡ [Π’]x1...xn))›1051

using "∀E"(1) by blast1052

AOT_hence ‹(�∀x1...∀xn ([Π]x1...xn ≡ [Π]x1...xn)) →1053

�∀x1...∀xn ([Π]x1...xn ≡ [Π’]x1...xn)›1054

using assumption "→E" by blast1055

moreover AOT_have ‹�∀x1...∀xn ([Π]x1...xn ≡ [Π]x1...xn)›1056

by (simp add: RN "oth-class-taut:3:a" "universal-cor")1057

ultimately AOT_show ‹�∀x1...∀xn ([Π]x1...xn ≡ [Π’]x1...xn)›1058

using "→E" by blast1059

qed1060

1061

AOT_theorem "id-rel-nec-equiv:2": ‹ϕ = ψ → �(ϕ ≡ ψ)› (108.2)1062

proof(rule "→I")1063

AOT_assume assumption: ‹ϕ = ψ›1064

AOT_hence ‹ϕ↓› and ‹ψ↓›1065

using "t=t-proper:1" "t=t-proper:2" MP by blast+1066

moreover AOT_have ‹∀p∀q (p = q → ((�(p ≡ p) → �(p ≡ q))))›1067

apply (rule GEN)+ using "l-identity"[axiom_inst] by force1068

ultimately AOT_have ‹ϕ = ψ → (�(ϕ ≡ ϕ) → �(ϕ ≡ ψ))›1069

209

A. Isabelle Theory

using "∀E"(1) by blast1070

AOT_hence ‹�(ϕ ≡ ϕ) → �(ϕ ≡ ψ)›1071

using assumption "→E" by blast1072

moreover AOT_have ‹�(ϕ ≡ ϕ)›1073

by (simp add: RN "oth-class-taut:3:a" "universal-cor")1074

ultimately AOT_show ‹�(ϕ ≡ ψ)›1075

using "→E" by blast1076

qed1077

1078

AOT_theorem "rule=E": (110)1079

assumes ‹ϕ{τ}› and ‹τ = σ›1080

shows ‹ϕ{σ}›1081

proof -1082

AOT_have ‹τ↓› and ‹σ↓›1083

using assms(2) "t=t-proper:1" "t=t-proper:2" "→E" by blast+1084

moreover AOT_have ‹∀α∀β(α = β → (ϕ{α} → ϕ{β}))›1085

apply (rule GEN)+ using "l-identity"[axiom_inst] by blast1086

ultimately AOT_have ‹τ = σ → (ϕ{τ} → ϕ{σ})›1087

using "∀E"(1) by blast1088

AOT_thus ‹ϕ{σ}› using assms "→E" by blast1089

qed1090

1091

AOT_theorem "propositions-lemma:1": ‹[λ ϕ] = ϕ› (111.1)1092

proof -1093

AOT_have ‹ϕ↓› by (simp add: "log-prop-prop:2")1094

moreover AOT_have ‹∀p [λ p] = p›1095

using "lambda-predicates:3[zero]"[axiom_inst] "∀I" by fast1096

ultimately AOT_show ‹[λ ϕ] = ϕ›1097

using "∀E" by blast1098

qed1099

1100

AOT_theorem "propositions-lemma:2": ‹[λ ϕ] ≡ ϕ› (111.2)1101

proof -1102

AOT_have ‹[λ ϕ] ≡ [λ ϕ]› by (simp add: "oth-class-taut:3:a")1103

AOT_thus ‹[λ ϕ] ≡ ϕ› using "propositions-lemma:1" "rule=E" by blast1104

qed1105

1106

text‹propositions-lemma:3 through propositions-lemma:5 hold implicitly›1107

1108

AOT_theorem "propositions-lemma:6": ‹(ϕ ≡ ψ) ≡ ([λ ϕ] ≡ [λ ψ])› (111.6)1109

by (metis "≡E"(1) "≡E"(5) "Associativity of ≡" "propositions-lemma:2")1110

1111

text‹dr-alphabetic-rules holds implicitly›1112

1113

AOT_theorem "oa-exist:1": ‹O!↓› (115.1)1114

proof -1115

AOT_have ‹[λx ♦[E!]x]↓› by "cqt:2[lambda]"1116

AOT_hence 1: ‹O! = [λx ♦[E!]x]›1117

using "df-rules-terms[4]"[OF "oa:1", THEN "&E"(1)] "→E" by blast1118

AOT_show ‹O!↓› using "t=t-proper:1"[THEN "→E", OF 1] by simp1119

qed1120

1121

AOT_theorem "oa-exist:2": ‹A!↓› (115.2)1122

proof -1123

AOT_have ‹[λx ¬♦[E!]x]↓› by "cqt:2[lambda]"1124

AOT_hence 1: ‹A! = [λx ¬♦[E!]x]›1125

using "df-rules-terms[4]"[OF "oa:2", THEN "&E"(1)] "→E" by blast1126

AOT_show ‹A!↓› using "t=t-proper:1"[THEN "→E", OF 1] by simp1127

qed1128

1129

AOT_theorem "oa-exist:3": ‹O!x ∨ A!x› (115.3)1130

proof(rule "raa-cor:1")1131

AOT_assume ‹¬(O!x ∨ A!x)›1132

210

A.7. The Deductive System PLM

AOT_hence A: ‹¬O!x› and B: ‹¬A!x›1133

using "Disjunction Addition"(1) "modus-tollens:1"1134

"∨I"(2) "raa-cor:5" by blast+1135

AOT_have C: ‹O! = [λx ♦[E!]x]›1136

by (rule "df-rules-terms[4]"[OF "oa:1", THEN "&E"(1), THEN "→E"]) "cqt:2"1137

AOT_have D: ‹A! = [λx ¬♦[E!]x]›1138

by (rule "df-rules-terms[4]"[OF "oa:2", THEN "&E"(1), THEN "→E"]) "cqt:2"1139

AOT_have E: ‹¬[λx ♦[E!]x]x›1140

using A C "rule=E" by fast1141

AOT_have F: ‹¬[λx ¬♦[E!]x]x›1142

using B D "rule=E" by fast1143

AOT_have G: ‹[λx ♦[E!]x]x ≡ ♦[E!]x›1144

by (rule "lambda-predicates:2"[axiom_inst, THEN "→E"]) "cqt:2"1145

AOT_have H: ‹[λx ¬♦[E!]x]x ≡ ¬♦[E!]x›1146

by (rule "lambda-predicates:2"[axiom_inst, THEN "→E"]) "cqt:2"1147

AOT_show ‹¬♦[E!]x & ¬¬♦[E!]x› using G E "≡E" H F "≡E" "&I" by metis1148

qed1149

1150

AOT_theorem "p-identity-thm2:1": ‹F = G ≡ �∀x(x[F] ≡ x[G])› (116.1)1151

proof -1152

AOT_have ‹F = G ≡ F↓ & G↓ & �∀x(x[F] ≡ x[G])›1153

using "identity:2" "df-rules-formulas[3]" "df-rules-formulas[4]"1154

"→E" "&E" "≡I" "→I" by blast1155

moreover AOT_have ‹F↓› and ‹G↓›1156

by (auto simp: "cqt:2[const_var]"[axiom_inst])1157

ultimately AOT_show ‹F = G ≡ �∀x(x[F] ≡ x[G])›1158

using "≡S"(1) "&I" by blast1159

qed1160

1161

AOT_theorem "p-identity-thm2:2[2]": (116.2)1162

‹F = G ≡ ∀y1([λx [F]xy1] = [λx [G]xy1] & [λx [F]y1x] = [λx [G]y1x])›1163

proof -1164

AOT_have ‹F = G ≡ F↓ & G↓ &1165

∀y1([λx [F]xy1] = [λx [G]xy1] & [λx [F]y1x] = [λx [G]y1x])›1166

using "identity:3[2]" "df-rules-formulas[3]" "df-rules-formulas[4]"1167

"→E" "&E" "≡I" "→I" by blast1168

moreover AOT_have ‹F↓› and ‹G↓›1169

by (auto simp: "cqt:2[const_var]"[axiom_inst])1170

ultimately show ?thesis1171

using "≡S"(1) "&I" by blast1172

qed1173

1174

AOT_theorem "p-identity-thm2:2[3]": (116.2)1175

‹F = G ≡ ∀y1∀y2([λx [F]xy1y2] = [λx [G]xy1y2] &1176

[λx [F]y1xy2] = [λx [G]y1xy2] &1177

[λx [F]y1y2x] = [λx [G]y1y2x])›1178

proof -1179

AOT_have ‹F = G ≡ F↓ & G↓ & ∀y1∀y2([λx [F]xy1y2] = [λx [G]xy1y2] &1180

[λx [F]y1xy2] = [λx [G]y1xy2] &1181

[λx [F]y1y2x] = [λx [G]y1y2x])›1182

using "identity:3[3]" "df-rules-formulas[3]" "df-rules-formulas[4]"1183

"→E" "&E" "≡I" "→I" by blast1184

moreover AOT_have ‹F↓› and ‹G↓›1185

by (auto simp: "cqt:2[const_var]"[axiom_inst])1186

ultimately show ?thesis1187

using "≡S"(1) "&I" by blast1188

qed1189

1190

AOT_theorem "p-identity-thm2:2[4]": (116.2)1191

‹F = G ≡ ∀y1∀y2∀y3([λx [F]xy1y2y3] = [λx [G]xy1y2y3] &1192

[λx [F]y1xy2y3] = [λx [G]y1xy2y3] &1193

[λx [F]y1y2xy3] = [λx [G]y1y2xy3] &1194

[λx [F]y1y2y3x] = [λx [G]y1y2y3x])›1195

211

A. Isabelle Theory

proof -1196

AOT_have ‹F = G ≡ F↓ & G↓ & ∀y1∀y2∀y3([λx [F]xy1y2y3] = [λx [G]xy1y2y3] &1197

[λx [F]y1xy2y3] = [λx [G]y1xy2y3] &1198

[λx [F]y1y2xy3] = [λx [G]y1y2xy3] &1199

[λx [F]y1y2y3x] = [λx [G]y1y2y3x])›1200

using "identity:3[4]" "df-rules-formulas[3]" "df-rules-formulas[4]"1201

"→E" "&E" "≡I" "→I" by blast1202

moreover AOT_have ‹F↓› and ‹G↓›1203

by (auto simp: "cqt:2[const_var]"[axiom_inst])1204

ultimately show ?thesis1205

using "≡S"(1) "&I" by blast1206

qed1207

1208

AOT_theorem "p-identity-thm2:2": (116.2)1209

‹F = G ≡ ∀x1...∀xn «AOT_sem_proj_id x1xn (λ τ . «[F]τ») (λ τ . «[G]τ»)»›1210

proof -1211

AOT_have ‹F = G ≡ F↓ & G↓ &1212

∀x1...∀xn «AOT_sem_proj_id x1xn (λ τ . «[F]τ») (λ τ . «[G]τ»)»›1213

using "identity:3" "df-rules-formulas[3]" "df-rules-formulas[4]"1214

"→E" "&E" "≡I" "→I" by blast1215

moreover AOT_have ‹F↓› and ‹G↓›1216

by (auto simp: "cqt:2[const_var]"[axiom_inst])1217

ultimately show ?thesis1218

using "≡S"(1) "&I" by blast1219

qed1220

1221

AOT_theorem "p-identity-thm2:3": (116.3)1222

‹p = q ≡ [λx p] = [λx q]›1223

proof -1224

AOT_have ‹p = q ≡ p↓ & q↓ & [λx p] = [λx q]›1225

using "identity:4" "df-rules-formulas[3]" "df-rules-formulas[4]"1226

"→E" "&E" "≡I" "→I" by blast1227

moreover AOT_have ‹p↓› and ‹q↓›1228

by (auto simp: "cqt:2[const_var]"[axiom_inst])1229

ultimately show ?thesis1230

using "≡S"(1) "&I" by blast1231

qed1232

1233

class AOT_Term_id_2 = AOT_Term_id + assumes "id-eq:1": ‹[v |= α = α]› (117.1)1234

1235

instance κ :: AOT_Term_id_21236

proof1237

AOT_modally_strict {1238

fix x1239

{1240

AOT_assume ‹O!x›1241

moreover AOT_have ‹�∀F([F]x ≡ [F]x)›1242

using RN GEN "oth-class-taut:3:a" by fast1243

ultimately AOT_have ‹O!x & O!x & �∀F([F]x ≡ [F]x)› using "&I" by simp1244

}1245

moreover {1246

AOT_assume ‹A!x›1247

moreover AOT_have ‹�∀F(x[F] ≡ x[F])›1248

using RN GEN "oth-class-taut:3:a" by fast1249

ultimately AOT_have ‹A!x & A!x & �∀F(x[F] ≡ x[F])› using "&I" by simp1250

}1251

ultimately AOT_have ‹(O!x & O!x & �∀F([F]x ≡ [F]x)) ∨1252

(A!x & A!x & �∀F(x[F] ≡ x[F]))›1253

using "oa-exist:3" "∨I"(1) "∨I"(2) "∨E"(3) "raa-cor:1" by blast1254

AOT_thus ‹x = x›1255

using "identity:1"[THEN "df-rules-formulas[4]"] "→E" by blast1256

}1257

qed1258

212

A.7. The Deductive System PLM

1259

instance rel :: ("{AOT_κs,AOT_Term_id_2}") AOT_Term_id_21260

proof1261

AOT_modally_strict {1262

fix F :: "<’a> AOT_var"1263

AOT_have 0: ‹[λx1...xn [F]x1...xn] = F›1264

by (simp add: "lambda-predicates:3"[axiom_inst])1265

AOT_have ‹[λx1...xn [F]x1...xn]↓›1266

by "cqt:2[lambda]"1267

AOT_hence ‹[λx1...xn [F]x1...xn] = [λx1...xn [F]x1...xn]›1268

using "lambda-predicates:1"[axiom_inst] "→E" by blast1269

AOT_show ‹F = F› using "rule=E" 0 by force1270

}1271

qed1272

1273

instance o :: AOT_Term_id_21274

proof1275

AOT_modally_strict {1276

fix p1277

AOT_have 0: ‹[λ p] = p›1278

by (simp add: "lambda-predicates:3[zero]"[axiom_inst])1279

AOT_have ‹[λ p]↓›1280

by (rule "cqt:2[lambda0]"[axiom_inst])1281

AOT_hence ‹[λ p] = [λ p]›1282

using "lambda-predicates:1[zero]"[axiom_inst] "→E" by blast1283

AOT_show ‹p = p› using "rule=E" 0 by force1284

}1285

qed1286

1287

instance prod :: (AOT_Term_id_2, AOT_Term_id_2) AOT_Term_id_21288

proof1289

AOT_modally_strict {1290

fix α :: ‹(’a×’b) AOT_var›1291

AOT_show ‹α = α›1292

proof (induct)1293

AOT_show ‹τ = τ› if ‹τ↓› for τ :: ‹’a×’b›1294

using that1295

proof (induct τ)1296

fix τ 1 :: ’a and τ 2 :: ’b1297

AOT_assume ‹«(τ 1,τ 2)»↓›1298

AOT_hence ‹τ 1↓› and ‹τ 2↓›1299

using "≡dfE" "&E" tuple_denotes by blast+1300

AOT_hence ‹τ 1 = τ 1› and ‹τ 2 = τ 2›1301

using "id-eq:1"[unvarify α] by blast+1302

AOT_thus ‹«(τ 1, τ 2)» = «(τ 1, τ 2)»›1303

by (metis "≡dfI" "&I" tuple_identity_1)1304

qed1305

qed1306

}1307

qed1308

1309

AOT_register_type_constraints1310

Term: ‹_::AOT_Term_id_2› ‹_::AOT_Term_id_2›1311

AOT_register_type_constraints1312

Individual: ‹κ› ‹_::{AOT_κs, AOT_Term_id_2}›1313

AOT_register_type_constraints1314

Relation: ‹<_::{AOT_κs, AOT_Term_id_2}>›1315

1316

AOT_theorem "id-eq:2": ‹α = β → β = α› (117.2)1317

by (meson "rule=E" "deduction-theorem")1318

1319

AOT_theorem "id-eq:3": ‹α = β & β = γ → α = γ› (117.3)1320

using "rule=E" "→I" "&E" by blast1321

213

A. Isabelle Theory

1322

AOT_theorem "id-eq:4": ‹α = β ≡ ∀γ (α = γ ≡ β = γ)› (117.4)1323

proof (rule "≡I"; rule "→I")1324

AOT_assume 0: ‹α = β›1325

AOT_hence 1: ‹β = α› using "id-eq:2" "→E" by blast1326

AOT_show ‹∀γ (α = γ ≡ β = γ)›1327

by (rule GEN) (metis "≡I" "→I" 0 "1" "rule=E")1328

next1329

AOT_assume ‹∀γ (α = γ ≡ β = γ)›1330

AOT_hence ‹α = α ≡ β = α› using "∀E"(2) by blast1331

AOT_hence ‹α = α → β = α› using "≡E"(1) "→I" by blast1332

AOT_hence ‹β = α› using "id-eq:1" "→E" by blast1333

AOT_thus ‹α = β› using "id-eq:2" "→E" by blast1334

qed1335

1336

AOT_theorem "rule=I:1": (118.1)1337

assumes ‹τ↓›1338

shows ‹τ = τ›1339

proof -1340

AOT_have ‹∀α (α = α)›1341

by (rule GEN) (metis "id-eq:1")1342

AOT_thus ‹τ = τ› using assms "∀E" by blast1343

qed1344

1345

AOT_theorem "rule=I:2[const_var]": "α = α" (118.2)1346

using "id-eq:1".1347

1348

AOT_theorem "rule=I:2[lambda]": (118.2)1349

assumes ‹INSTANCE_OF_CQT_2(ϕ)›1350

shows "[λν1...νn ϕ{ν1...νn}] = [λν1...νn ϕ{ν1...νn}]"1351

proof -1352

AOT_have ‹∀α (α = α)›1353

by (rule GEN) (metis "id-eq:1")1354

moreover AOT_have ‹[λν1...νn ϕ{ν1...νn}]↓›1355

using assms by (rule "cqt:2[lambda]"[axiom_inst])1356

ultimately AOT_show ‹[λν1...νn ϕ{ν1...νn}] = [λν1...νn ϕ{ν1...νn}]›1357

using assms "∀E" by blast1358

qed1359

1360

lemmas "=I" = "rule=I:1" "rule=I:2[const_var]" "rule=I:2[lambda]"1361

1362

AOT_theorem "rule-id-df:1": (120.1)1363

assumes ‹τ{α1...αn} =df σ{α1...αn}› and ‹σ{τ 1...τ n}↓›1364

shows ‹τ{τ 1...τ n} = σ{τ 1...τ n}›1365

proof -1366

AOT_have ‹σ{τ 1...τ n}↓ → τ{τ 1...τ n} = σ{τ 1...τ n}›1367

using "df-rules-terms[3]" assms(1) "&E" by blast1368

AOT_thus ‹τ{τ 1...τ n} = σ{τ 1...τ n}›1369

using assms(2) "→E" by blast1370

qed1371

1372

AOT_theorem "rule-id-df:1[zero]": (120.1)1373

assumes ‹τ =df σ› and ‹σ↓›1374

shows ‹τ = σ›1375

proof -1376

AOT_have ‹σ↓ → τ = σ›1377

using "df-rules-terms[4]" assms(1) "&E" by blast1378

AOT_thus ‹τ = σ›1379

using assms(2) "→E" by blast1380

qed1381

1382

AOT_theorem "rule-id-df:2:a": (120.2.a)1383

assumes ‹τ{α1...αn} =df σ{α1...αn}› and ‹σ{τ 1...τ n}↓› and ‹ϕ{τ{τ 1...τ n}}›1384

214

A.7. The Deductive System PLM

shows ‹ϕ{σ{τ 1...τ n}}›1385

proof -1386

AOT_have ‹τ{τ 1...τ n} = σ{τ 1...τ n}› using "rule-id-df:1" assms(1,2) by blast1387

AOT_thus ‹ϕ{σ{τ 1...τ n}}› using assms(3) "rule=E" by blast1388

qed1389

1390

AOT_theorem "rule-id-df:2:a[2]": (120.2.a)1391

assumes ‹τ{«(α1,α2)»} =df σ{«(α1,α2)»}›1392

and ‹σ{«(τ 1,τ 2)»}↓›1393

and ‹ϕ{τ{«(τ 1,τ 2)»}}›1394

shows ‹ϕ{σ{«(τ 1::’a::AOT_Term_id_2,τ 2::’b::AOT_Term_id_2)»}}›1395

proof -1396

AOT_have ‹τ{«(τ 1,τ 2)»} = σ{«(τ 1,τ 2)»}›1397

using "rule-id-df:1" assms(1,2) by auto1398

AOT_thus ‹ϕ{σ{«(τ 1,τ 2)»}}› using assms(3) "rule=E" by blast1399

qed1400

1401

AOT_theorem "rule-id-df:2:a[zero]": (120.2.a)1402

assumes ‹τ =df σ› and ‹σ↓› and ‹ϕ{τ}›1403

shows ‹ϕ{σ}›1404

proof -1405

AOT_have ‹τ = σ› using "rule-id-df:1[zero]" assms(1,2) by blast1406

AOT_thus ‹ϕ{σ}› using assms(3) "rule=E" by blast1407

qed1408

1409

lemmas "=dfE" = "rule-id-df:2:a" "rule-id-df:2:a[zero]"1410

1411

AOT_theorem "rule-id-df:2:b": (120.2.b)1412

assumes ‹τ{α1...αn} =df σ{α1...αn}› and ‹σ{τ 1...τ n}↓› and ‹ϕ{σ{τ 1...τ n}}›1413

shows ‹ϕ{τ{τ 1...τ n}}›1414

proof -1415

AOT_have ‹τ{τ 1...τ n} = σ{τ 1...τ n}›1416

using "rule-id-df:1" assms(1,2) by blast1417

AOT_hence ‹σ{τ 1...τ n} = τ{τ 1...τ n}›1418

using "rule=E" "=I"(1) "t=t-proper:1" "→E" by fast1419

AOT_thus ‹ϕ{τ{τ 1...τ n}}› using assms(3) "rule=E" by blast1420

qed1421

1422

AOT_theorem "rule-id-df:2:b[2]": (120.2.b)1423

assumes ‹τ{«(α1,α2)»} =df σ{«(α1,α2)»}›1424

and ‹σ{«(τ 1,τ 2)»}↓›1425

and ‹ϕ{σ{«(τ 1,τ 2)»}}›1426

shows ‹ϕ{τ{«(τ 1::’a::AOT_Term_id_2,τ 2::’b::AOT_Term_id_2)»}}›1427

proof -1428

AOT_have ‹τ{«(τ 1,τ 2)»} = σ{«(τ 1,τ 2)»}›1429

using "=I"(1) "rule-id-df:2:a[2]" RAA(1) assms(1,2) "→I" by metis1430

AOT_hence ‹σ{«(τ 1,τ 2)»} = τ{«(τ 1,τ 2)»}›1431

using "rule=E" "=I"(1) "t=t-proper:1" "→E" by fast1432

AOT_thus ‹ϕ{τ{«(τ 1,τ 2)»}}› using assms(3) "rule=E" by blast1433

qed1434

1435

AOT_theorem "rule-id-df:2:b[zero]": (120.2.b)1436

assumes ‹τ =df σ› and ‹σ↓› and ‹ϕ{σ}›1437

shows ‹ϕ{τ}›1438

proof -1439

AOT_have ‹τ = σ› using "rule-id-df:1[zero]" assms(1,2) by blast1440

AOT_hence ‹σ = τ›1441

using "rule=E" "=I"(1) "t=t-proper:1" "→E" by fast1442

AOT_thus ‹ϕ{τ}› using assms(3) "rule=E" by blast1443

qed1444

1445

lemmas "=dfI" = "rule-id-df:2:b" "rule-id-df:2:b[zero]"1446

1447

215

A. Isabelle Theory

AOT_theorem "free-thms:1": ‹τ↓ ≡ ∃β (β = τ)› (121.1)1448

by (metis "∃E" "rule=I:1" "t=t-proper:2" "→I" "∃I"(1) "≡I" "→E")1449

1450

AOT_theorem "free-thms:2": ‹∀α ϕ{α} → (∃β (β = τ) → ϕ{τ})› (121.2)1451

by (metis "∃E" "rule=E" "cqt:2[const_var]"[axiom_inst] "→I" "∀E"(1))1452

1453

AOT_theorem "free-thms:3[const_var]": ‹∃β (β = α)› (121.3)1454

by (meson "∃I"(2) "id-eq:1")1455

1456

AOT_theorem "free-thms:3[lambda]": (121.3)1457

assumes ‹INSTANCE_OF_CQT_2(ϕ)›1458

shows ‹∃β (β = [λν1...νn ϕ{ν1...νn}])›1459

by (meson "=I"(3) assms "cqt:2[lambda]"[axiom_inst] "existential:1")1460

1461

AOT_theorem "free-thms:4[rel]": (121.4)1462

‹([Π]κ1...κn ∨ κ1...κn[Π]) → ∃β (β = Π)›1463

by (metis "rule=I:1" "&E"(1) "∨E"(1) "cqt:5:a"[axiom_inst]1464

"cqt:5:b"[axiom_inst] "→I" "∃I"(1))1465

1466

AOT_theorem "free-thms:4[vars]": (121.4)1467

‹([Π]κ1...κn ∨ κ1...κn[Π]) → ∃β1...∃βn (β1...βn = κ1...κn)›1468

by (metis "rule=I:1" "&E"(2) "∨E"(1) "cqt:5:a"[axiom_inst]1469

"cqt:5:b"[axiom_inst] "→I" "∃I"(1))1470

1471

AOT_theorem "free-thms:4[1,rel]": (121.4)1472

‹([Π]κ ∨ κ[Π]) → ∃β (β = Π)›1473

by (metis "rule=I:1" "&E"(1) "∨E"(1) "cqt:5:a"[axiom_inst]1474

"cqt:5:b"[axiom_inst] "→I" "∃I"(1))1475

AOT_theorem "free-thms:4[1,1]": (121.4)1476

‹([Π]κ ∨ κ[Π]) → ∃β (β = κ)›1477

by (metis "rule=I:1" "&E"(2) "∨E"(1) "cqt:5:a"[axiom_inst]1478

"cqt:5:b"[axiom_inst] "→I" "∃I"(1))1479

1480

AOT_theorem "free-thms:4[2,rel]": (121.4)1481

‹([Π]κ1κ2 ∨ κ1κ2[Π]) → ∃β (β = Π)›1482

by (metis "rule=I:1" "&E"(1) "∨E"(1) "cqt:5:a[2]"[axiom_inst]1483

"cqt:5:b[2]"[axiom_inst] "→I" "∃I"(1))1484

AOT_theorem "free-thms:4[2,1]": (121.4)1485

‹([Π]κ1κ2 ∨ κ1κ2[Π]) → ∃β (β = κ1)›1486

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[2]"[axiom_inst]1487

"cqt:5:b[2]"[axiom_inst] "→I" "∃I"(1))1488

AOT_theorem "free-thms:4[2,2]": (121.4)1489

‹([Π]κ1κ2 ∨ κ1κ2[Π]) → ∃β (β = κ2)›1490

by (metis "rule=I:1" "&E"(2) "∨E"(1) "cqt:5:a[2]"[axiom_inst]1491

"cqt:5:b[2]"[axiom_inst] "→I" "∃I"(1))1492

AOT_theorem "free-thms:4[3,rel]": (121.4)1493

‹([Π]κ1κ2κ3 ∨ κ1κ2κ3[Π]) → ∃β (β = Π)›1494

by (metis "rule=I:1" "&E"(1) "∨E"(1) "cqt:5:a[3]"[axiom_inst]1495

"cqt:5:b[3]"[axiom_inst] "→I" "∃I"(1))1496

AOT_theorem "free-thms:4[3,1]": (121.4)1497

‹([Π]κ1κ2κ3 ∨ κ1κ2κ3[Π]) → ∃β (β = κ1)›1498

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[3]"[axiom_inst]1499

"cqt:5:b[3]"[axiom_inst] "→I" "∃I"(1))1500

AOT_theorem "free-thms:4[3,2]": (121.4)1501

‹([Π]κ1κ2κ3 ∨ κ1κ2κ3[Π]) → ∃β (β = κ2)›1502

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[3]"[axiom_inst]1503

"cqt:5:b[3]"[axiom_inst] "→I" "∃I"(1))1504

AOT_theorem "free-thms:4[3,3]": (121.4)1505

‹([Π]κ1κ2κ3 ∨ κ1κ2κ3[Π]) → ∃β (β = κ3)›1506

by (metis "rule=I:1" "&E"(2) "∨E"(1) "cqt:5:a[3]"[axiom_inst]1507

"cqt:5:b[3]"[axiom_inst] "→I" "∃I"(1))1508

AOT_theorem "free-thms:4[4,rel]": (121.4)1509

‹([Π]κ1κ2κ3κ4 ∨ κ1κ2κ3κ4[Π]) → ∃β (β = Π)›1510

216

A.7. The Deductive System PLM

by (metis "rule=I:1" "&E"(1) "∨E"(1) "cqt:5:a[4]"[axiom_inst]1511

"cqt:5:b[4]"[axiom_inst] "→I" "∃I"(1))1512

AOT_theorem "free-thms:4[4,1]": (121.4)1513

‹([Π]κ1κ2κ3κ4 ∨ κ1κ2κ3κ4[Π]) → ∃β (β = κ1)›1514

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[4]"[axiom_inst]1515

"cqt:5:b[4]"[axiom_inst] "→I" "∃I"(1))1516

AOT_theorem "free-thms:4[4,2]": (121.4)1517

‹([Π]κ1κ2κ3κ4 ∨ κ1κ2κ3κ4[Π]) → ∃β (β = κ2)›1518

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[4]"[axiom_inst]1519

"cqt:5:b[4]"[axiom_inst] "→I" "∃I"(1))1520

AOT_theorem "free-thms:4[4,3]": (121.4)1521

‹([Π]κ1κ2κ3κ4 ∨ κ1κ2κ3κ4[Π]) → ∃β (β = κ3)›1522

by (metis "rule=I:1" "&E" "∨E"(1) "cqt:5:a[4]"[axiom_inst]1523

"cqt:5:b[4]"[axiom_inst] "→I" "∃I"(1))1524

AOT_theorem "free-thms:4[4,4]": (121.4)1525

‹([Π]κ1κ2κ3κ4 ∨ κ1κ2κ3κ4[Π]) → ∃β (β = κ4)›1526

by (metis "rule=I:1" "&E"(2) "∨E"(1) "cqt:5:a[4]"[axiom_inst]1527

"cqt:5:b[4]"[axiom_inst] "→I" "∃I"(1))1528

1529

AOT_theorem "ex:1:a": ‹∀α α↓› (123.1.a)1530

by (rule GEN) (fact "cqt:2[const_var]"[axiom_inst])1531

AOT_theorem "ex:1:b": ‹∀α∃β(β = α)› (123.1.b)1532

by (rule GEN) (fact "free-thms:3[const_var]")1533

1534

AOT_theorem "ex:2:a": ‹�α↓› (123.2.a)1535

by (rule RN) (fact "cqt:2[const_var]"[axiom_inst])1536

AOT_theorem "ex:2:b": ‹�∃β(β = α)› (123.2.b)1537

by (rule RN) (fact "free-thms:3[const_var]")1538

1539

AOT_theorem "ex:3:a": ‹�∀α α↓› (123.3.a)1540

by (rule RN) (fact "ex:1:a")1541

AOT_theorem "ex:3:b": ‹�∀α∃β(β = α)› (123.3.b)1542

by (rule RN) (fact "ex:1:b")1543

1544

AOT_theorem "ex:4:a": ‹∀α �α↓› (123.4.a)1545

by (rule GEN; rule RN) (fact "cqt:2[const_var]"[axiom_inst])1546

AOT_theorem "ex:4:b": ‹∀α�∃β(β = α)› (123.4.b)1547

by (rule GEN; rule RN) (fact "free-thms:3[const_var]")1548

1549

AOT_theorem "ex:5:a": ‹�∀α �α↓› (123.5.a)1550

by (rule RN) (simp add: "ex:4:a")1551

AOT_theorem "ex:5:b": ‹�∀α�∃β(β = α)› (123.5.b)1552

by (rule RN) (simp add: "ex:4:b")1553

1554

AOT_theorem "all-self=:1": ‹�∀α(α = α)› (124.1)1555

by (rule RN; rule GEN) (fact "id-eq:1")1556

AOT_theorem "all-self=:2": ‹∀α�(α = α)› (124.2)1557

by (rule GEN; rule RN) (fact "id-eq:1")1558

1559

AOT_theorem "id-nec:1": ‹α = β → �(α = β)› (125.1)1560

proof(rule "→I")1561

AOT_assume ‹α = β›1562

moreover AOT_have ‹�(α = α)›1563

by (rule RN) (fact "id-eq:1")1564

ultimately AOT_show ‹�(α = β)› using "rule=E" by fast1565

qed1566

1567

AOT_theorem "id-nec:2": ‹τ = σ → �(τ = σ)› (125.2)1568

proof(rule "→I")1569

AOT_assume asm: ‹τ = σ›1570

moreover AOT_have ‹τ↓›1571

using calculation "t=t-proper:1" "→E" by blast1572

moreover AOT_have ‹�(τ = τ)›1573

217

A. Isabelle Theory

using calculation "all-self=:2" "∀E"(1) by blast1574

ultimately AOT_show ‹�(τ = σ)› using "rule=E" by fast1575

qed1576

1577

AOT_theorem "term-out:1": ‹ϕ{α} ≡ ∃β (β = α & ϕ{β})› (126.1)1578

proof (rule "≡I"; rule "→I")1579

AOT_assume asm: ‹ϕ{α}›1580

AOT_show ‹∃β (β = α & ϕ{β})›1581

by (rule "∃I"(2)[where β=α]; rule "&I")1582

(auto simp: "id-eq:1" asm)1583

next1584

AOT_assume 0: ‹∃β (β = α & ϕ{β})›1585

AOT_obtain β where ‹β = α & ϕ{β}›1586

using "∃E"[rotated, OF 0] by blast1587

AOT_thus ‹ϕ{α}› using "&E" "rule=E" by blast1588

qed1589

1590

AOT_theorem "term-out:2": ‹τ↓ → (ϕ{τ} ≡ ∃α(α = τ & ϕ{α}))› (126.2)1591

proof(rule "→I")1592

AOT_assume ‹τ↓›1593

moreover AOT_have ‹∀α (ϕ{α} ≡ ∃β (β = α & ϕ{β}))›1594

by (rule GEN) (fact "term-out:1")1595

ultimately AOT_show ‹ϕ{τ} ≡ ∃α(α = τ & ϕ{α})›1596

using "∀E" by blast1597

qed1598

1599

AOT_theorem "term-out:3": (126.3)1600

‹(ϕ{α} & ∀β(ϕ{β} → β = α)) ≡ ∀β(ϕ{β} ≡ β = α)›1601

apply (rule "≡I"; rule "→I")1602

apply (frule "&E"(1))1603

apply (drule "&E"(2))1604

apply (rule GEN; rule "≡I"; rule "→I")1605

using "rule-ui:2[const_var]" "vdash-properties:5"1606

apply blast1607

apply (meson "rule=E" "id-eq:1")1608

apply (rule "&I")1609

using "id-eq:1" "≡E"(2) "rule-ui:3"1610

apply blast1611

apply (rule GEN; rule "→I")1612

using "≡E"(1) "rule-ui:2[const_var]"1613

by blast1614

1615

(* Note: generalized alphabetic variant of the last theorem. *)1616

AOT_theorem "term-out:4": (126.4)1617

‹(ϕ{β} & ∀α(ϕ{α} → α = β)) ≡ ∀α(ϕ{α} ≡ α = β)›1618

using "term-out:3" .1619

1620

(* TODO: Provide a nicer mechanism for introducing custom binders. *)1621

AOT_define AOT_exists_unique :: ‹α ⇒ ϕ ⇒ ϕ› "uniqueness:1": (127.1)1622

‹«AOT_exists_unique ϕ» ≡df ∃α (ϕ{α} & ∀β (ϕ{β} → β = α))›1623

syntax (input) "_AOT_exists_unique" :: ‹α ⇒ ϕ ⇒ ϕ› ("∃!_ _" [1,40])1624

syntax (output) "_AOT_exists_unique" :: ‹α ⇒ ϕ ⇒ ϕ› ("∃!_’(_’)" [1,40])1625

AOT_syntax_print_translations1626

"_AOT_exists_unique τ ϕ" <= "CONST AOT_exists_unique (_abs τ ϕ)"1627

syntax1628

"_AOT_exists_unique_ellipse" :: ‹id_position ⇒ id_position ⇒ ϕ ⇒ ϕ›1629

(‹∃!_...∃!_ _› [1,40])1630

parse_ast_translation‹1631

[(syntax_const‹_AOT_exists_unique_ellipse›,1632

fn ctx => fn [a,b,c] => Ast.mk_appl (Ast.Constant "AOT_exists_unique")1633

[parseEllipseList "_AOT_vars" ctx [a,b],c]),1634

(syntax_const‹_AOT_exists_unique›,1635

AOT_restricted_binder1636

218

A.7. The Deductive System PLM

const_name‹AOT_exists_unique›1637

const_syntax‹AOT_conj›)]›1638

print_translation‹AOT_syntax_print_translations [1639

AOT_preserve_binder_abs_tr’1640

const_syntax‹AOT_exists_unique›1641

syntax_const‹_AOT_exists_unique›1642

(syntax_const‹_AOT_exists_unique_ellipse›, true)1643

const_name‹AOT_conj›,1644

AOT_binder_trans1645

@{theory}1646

@{binding "AOT_exists_unique_binder"}1647

syntax_const‹_AOT_exists_unique›1648

]›1649

1650

1651

context AOT_meta_syntax1652

begin1653

notation AOT_exists_unique (binder "∃!" 20)1654

end1655

context AOT_no_meta_syntax1656

begin1657

no_notation AOT_exists_unique (binder "∃!" 20)1658

end1659

1660

AOT_theorem "uniqueness:2": ‹∃!α ϕ{α} ≡ ∃α∀β(ϕ{β} ≡ β = α)› (127.2)1661

proof(rule "≡I"; rule "→I")1662

AOT_assume ‹∃!α ϕ{α}›1663

AOT_hence ‹∃α (ϕ{α} & ∀β (ϕ{β} → β = α))›1664

using "uniqueness:1" "≡dfE" by blast1665

then AOT_obtain α where ‹ϕ{α} & ∀β (ϕ{β} → β = α)›1666

using "instantiation"[rotated] by blast1667

AOT_hence ‹∀β(ϕ{β} ≡ β = α)›1668

using "term-out:3" "≡E" by blast1669

AOT_thus ‹∃α∀β(ϕ{β} ≡ β = α)›1670

using "∃I" by fast1671

next1672

AOT_assume ‹∃α∀β(ϕ{β} ≡ β = α)›1673

then AOT_obtain α where ‹∀β (ϕ{β} ≡ β = α)›1674

using "instantiation"[rotated] by blast1675

AOT_hence ‹ϕ{α} & ∀β (ϕ{β} → β = α)›1676

using "term-out:3" "≡E" by blast1677

AOT_hence ‹∃α (ϕ{α} & ∀β (ϕ{β} → β = α))›1678

using "∃I" by fast1679

AOT_thus ‹∃!α ϕ{α}›1680

using "uniqueness:1" "≡dfI" by blast1681

qed1682

1683

AOT_theorem "uni-most": ‹∃!α ϕ{α} → ∀β∀γ((ϕ{β} & ϕ{γ}) → β = γ)› (128)1684

proof(rule "→I"; rule GEN; rule GEN; rule "→I")1685

fix β γ1686

AOT_assume ‹∃!α ϕ{α}›1687

AOT_hence ‹∃α∀β(ϕ{β} ≡ β = α)›1688

using "uniqueness:2" "≡E" by blast1689

then AOT_obtain α where ‹∀β(ϕ{β} ≡ β = α)›1690

using "instantiation"[rotated] by blast1691

moreover AOT_assume ‹ϕ{β} & ϕ{γ}›1692

ultimately AOT_have ‹β = α› and ‹γ = α›1693

using "∀E"(2) "&E" "≡E"(1,2) by blast+1694

AOT_thus ‹β = γ›1695

by (metis "rule=E" "id-eq:2" "→E")1696

qed1697

1698

AOT_theorem "nec-exist-!": ‹∀α(ϕ{α} → �ϕ{α}) → (∃!α ϕ{α} → ∃!α �ϕ{α})› (129)1699

219

A. Isabelle Theory

proof (rule "→I"; rule "→I")1700

AOT_assume a: ‹∀α(ϕ{α} → �ϕ{α})›1701

AOT_assume ‹∃!α ϕ{α}›1702

AOT_hence ‹∃α (ϕ{α} & ∀β (ϕ{β} → β = α))›1703

using "uniqueness:1" "≡dfE" by blast1704

then AOT_obtain α where ξ: ‹ϕ{α} & ∀β (ϕ{β} → β = α)›1705

using "instantiation"[rotated] by blast1706

AOT_have ‹�ϕ{α}›1707

using ξ a "&E" "∀E" "→E" by fast1708

moreover AOT_have ‹∀β (�ϕ{β} → β = α)›1709

apply (rule GEN; rule "→I")1710

using ξ[THEN "&E"(2), THEN "∀E"(2), THEN "→E"]1711

"qml:2"[axiom_inst, THEN "→E"] by blast1712

ultimately AOT_have ‹(�ϕ{α} & ∀β (�ϕ{β} → β = α))›1713

using "&I" by blast1714

AOT_thus ‹∃!α �ϕ{α}›1715

using "uniqueness:1" "≡dfI" "∃I" by fast1716

qed1717

1718

subsection‹The Theory of Actuality and Descriptions›1719

text‹\label{PLM: 9.8}›1720

1721

AOT_theorem "act-cond": ‹A(ϕ → ψ) → (Aϕ → Aψ)› (130)1722

using "→I" "≡E"(1) "logic-actual-nec:2"[axiom_inst] by blast1723

1724

AOT_theorem "nec-imp-act": ‹�ϕ → Aϕ› (131)1725

by (metis "act-cond" "contraposition:1[2]" "≡E"(4)1726

"qml:2"[THEN act_closure, axiom_inst]1727

"qml-act:2"[axiom_inst] RAA(1) "→E" "→I")1728

1729

AOT_theorem "act-conj-act:1": ‹A(Aϕ → ϕ)› (132.1)1730

using "→I" "≡E"(2) "logic-actual-nec:2"[axiom_inst]1731

"logic-actual-nec:4"[axiom_inst] by blast1732

1733

AOT_theorem "act-conj-act:2": ‹A(ϕ → Aϕ)› (132.2)1734

by (metis "→I" "≡E"(2, 4) "logic-actual-nec:2"[axiom_inst]1735

"logic-actual-nec:4"[axiom_inst] RAA(1))1736

1737

AOT_theorem "act-conj-act:3": ‹(Aϕ & Aψ) → A(ϕ & ψ)› (132.3)1738

proof -1739

AOT_have ‹�(ϕ → (ψ → (ϕ & ψ)))›1740

by (rule RN) (fact Adjunction)1741

AOT_hence ‹A(ϕ → (ψ → (ϕ & ψ)))›1742

using "nec-imp-act" "→E" by blast1743

AOT_hence ‹Aϕ → A(ψ → (ϕ & ψ))›1744

using "act-cond" "→E" by blast1745

moreover AOT_have ‹A(ψ → (ϕ & ψ)) → (Aψ → A(ϕ & ψ))›1746

by (fact "act-cond")1747

ultimately AOT_have ‹Aϕ → (Aψ → A(ϕ & ψ))›1748

using "→I" "→E" by metis1749

AOT_thus ‹(Aϕ & Aψ) → A(ϕ & ψ)›1750

by (metis Importation "→E")1751

qed1752

1753

AOT_theorem "act-conj-act:4": ‹A(Aϕ ≡ ϕ)› (132.4)1754

proof -1755

AOT_have ‹(A(Aϕ → ϕ) & A(ϕ → Aϕ)) → A((Aϕ → ϕ) & (ϕ → Aϕ))›1756

by (fact "act-conj-act:3")1757

moreover AOT_have ‹A(Aϕ → ϕ) & A(ϕ → Aϕ)›1758

using "&I" "act-conj-act:1" "act-conj-act:2" by simp1759

ultimately AOT_have ζ: ‹A((Aϕ → ϕ) & (ϕ → Aϕ))›1760

using "→E" by blast1761

AOT_have ‹A(((Aϕ → ϕ) & (ϕ → Aϕ)) → (Aϕ ≡ ϕ))›1762

220

A.7. The Deductive System PLM

using "conventions:3"[THEN "df-rules-formulas[2]",1763

THEN act_closure, axiom_inst] by blast1764

AOT_hence ‹A((Aϕ → ϕ) & (ϕ → Aϕ)) → A(Aϕ ≡ ϕ)›1765

using "act-cond" "→E" by blast1766

AOT_thus ‹A(Aϕ ≡ ϕ)› using ζ "→E" by blast1767

qed1768

1769

(* TODO: Consider introducing AOT_inductive. *)1770

inductive arbitrary_actualization for ϕ where1771

‹arbitrary_actualization ϕ «Aϕ»›1772

| ‹arbitrary_actualization ϕ «Aψ»› if ‹arbitrary_actualization ϕ ψ›1773

declare arbitrary_actualization.cases[AOT]1774

arbitrary_actualization.induct[AOT]1775

arbitrary_actualization.simps[AOT]1776

arbitrary_actualization.intros[AOT]1777

syntax arbitrary_actualization :: ‹ϕ’ ⇒ ϕ’ ⇒ AOT_prop›1778

("ARBITRARY’_ACTUALIZATION’(_,_’)")1779

1780

notepad1781

begin1782

AOT_modally_strict {1783

fix ϕ1784

AOT_have ‹ARBITRARY_ACTUALIZATION(Aϕ ≡ ϕ, A(Aϕ ≡ ϕ))›1785

using AOT_PLM.arbitrary_actualization.intros by metis1786

AOT_have ‹ARBITRARY_ACTUALIZATION(Aϕ ≡ ϕ, AA(Aϕ ≡ ϕ))›1787

using AOT_PLM.arbitrary_actualization.intros by metis1788

AOT_have ‹ARBITRARY_ACTUALIZATION(Aϕ ≡ ϕ, AAA(Aϕ ≡ ϕ))›1789

using AOT_PLM.arbitrary_actualization.intros by metis1790

}1791

end1792

1793

1794

AOT_theorem "closure-act:1": (133.1)1795

assumes ‹ARBITRARY_ACTUALIZATION(Aϕ ≡ ϕ, ψ)›1796

shows ‹ψ›1797

using assms proof(induct)1798

case 11799

AOT_show ‹A(Aϕ ≡ ϕ)›1800

by (simp add: "act-conj-act:4")1801

next1802

case (2 ψ)1803

AOT_thus ‹Aψ›1804

by (metis arbitrary_actualization.simps "≡E"(1)1805

"logic-actual-nec:4"[axiom_inst])1806

qed1807

1808

AOT_theorem "closure-act:2": ‹∀α A(Aϕ{α} ≡ ϕ{α})› (133.2)1809

by (simp add: "act-conj-act:4" "∀I")1810

1811

AOT_theorem "closure-act:3": ‹A∀α A(Aϕ{α} ≡ ϕ{α})› (133.3)1812

by (metis (no_types, lifting) "act-conj-act:4" "≡E"(1,2) "∀I"1813

"logic-actual-nec:3"[axiom_inst]1814

"logic-actual-nec:4"[axiom_inst])1815

1816

AOT_theorem "closure-act:4": ‹A∀α1...∀αn A(Aϕ{α1...αn} ≡ ϕ{α1...αn})› (133.4)1817

using "closure-act:3" .1818

1819

AOT_act_theorem "RA[1]": (134)1820

assumes ‹` ϕ›1821

shows ‹` Aϕ›1822

– ‹While this proof is rejected in PLM,1823

we merely state it as modally-fragile rule,1824

which addresses the concern in PLM.›1825

221

A. Isabelle Theory

using "¬¬E" assms "≡E"(3) "logic-actual"[act_axiom_inst]1826

"logic-actual-nec:1"[axiom_inst] "modus-tollens:2" by blast1827

AOT_theorem "RA[2]": (134)1828

assumes ‹`� ϕ›1829

shows ‹`� Aϕ›1830

– ‹This rule is in fact a consequence of RN and1831

does not require an appeal to the semantics itself.›1832

using RN assms "nec-imp-act" "vdash-properties:5" by blast1833

AOT_theorem "RA[3]":1834

assumes ‹Γ `� ϕ›1835

shows ‹AΓ `� Aϕ›1836

text‹This rule is only derivable from the semantics,1837

but apparently no proof actually relies on it.1838

If this turns out to be required, it is valid to derive it from the1839

semantics just like RN, but we refrain from doing so, unless necessary.›1840

(* using assms by (meson AOT_sem_act imageI) *)1841

oops – ‹discard the rule›1842

1843

AOT_act_theorem "ANeg:1": ‹¬Aϕ ≡ ¬ϕ› (137.1)1844

by (simp add: "RA[1]" "contraposition:1[1]" "deduction-theorem"1845

"≡I" "logic-actual"[act_axiom_inst])1846

1847

AOT_act_theorem "ANeg:2": ‹¬A¬ϕ ≡ ϕ› (137.2)1848

using "ANeg:1" "≡I" "≡E"(5) "useful-tautologies:1"1849

"useful-tautologies:2" by blast1850

1851

AOT_theorem "Act-Basic:1": ‹Aϕ ∨ A¬ϕ› (138.1)1852

by (meson "∨I"(1,2) "≡E"(2) "logic-actual-nec:1"[axiom_inst] "raa-cor:1")1853

1854

AOT_theorem "Act-Basic:2": ‹A(ϕ & ψ) ≡ (Aϕ & Aψ)› (138.2)1855

proof (rule "≡I"; rule "→I")1856

AOT_assume ‹A(ϕ & ψ)›1857

moreover AOT_have ‹A((ϕ & ψ) → ϕ)›1858

by (simp add: "RA[2]" "Conjunction Simplification"(1))1859

moreover AOT_have ‹A((ϕ & ψ) → ψ)›1860

by (simp add: "RA[2]" "Conjunction Simplification"(2))1861

ultimately AOT_show ‹Aϕ & Aψ›1862

using "act-cond"[THEN "→E", THEN "→E"] "&I" by metis1863

next1864

AOT_assume ‹Aϕ & Aψ›1865

AOT_thus ‹A(ϕ & ψ)›1866

using "act-conj-act:3" "vdash-properties:6" by blast1867

qed1868

1869

AOT_theorem "Act-Basic:3": ‹A(ϕ ≡ ψ) ≡ (A(ϕ → ψ) & A(ψ → ϕ))› (138.3)1870

proof (rule "≡I"; rule "→I")1871

AOT_assume ‹A(ϕ ≡ ψ)›1872

moreover AOT_have ‹A((ϕ ≡ ψ) → (ϕ → ψ))›1873

by (simp add: "RA[2]" "deduction-theorem" "≡E"(1))1874

moreover AOT_have ‹A((ϕ ≡ ψ) → (ψ → ϕ))›1875

by (simp add: "RA[2]" "deduction-theorem" "≡E"(2))1876

ultimately AOT_show ‹A(ϕ → ψ) & A(ψ → ϕ)›1877

using "act-cond"[THEN "→E", THEN "→E"] "&I" by metis1878

next1879

AOT_assume ‹A(ϕ → ψ) & A(ψ → ϕ)›1880

AOT_hence ‹A((ϕ → ψ) & (ψ → ϕ))›1881

by (metis "act-conj-act:3" "vdash-properties:10")1882

moreover AOT_have ‹A(((ϕ → ψ) & (ψ → ϕ)) → (ϕ ≡ ψ))›1883

by (simp add: "conventions:3" "RA[2]" "df-rules-formulas[2]"1884

"vdash-properties:1[2]")1885

ultimately AOT_show ‹A(ϕ ≡ ψ)›1886

using "act-cond"[THEN "→E", THEN "→E"] by metis1887

qed1888

222

A.7. The Deductive System PLM

1889

AOT_theorem "Act-Basic:4": ‹(A(ϕ → ψ) & A(ψ → ϕ)) ≡ (Aϕ ≡ Aψ)› (138.4)1890

proof (rule "≡I"; rule "→I")1891

AOT_assume 0: ‹A(ϕ → ψ) & A(ψ → ϕ)›1892

AOT_show ‹Aϕ ≡ Aψ›1893

using 0 "&E" "act-cond"[THEN "→E", THEN "→E"] "≡I" "→I" by metis1894

next1895

AOT_assume ‹Aϕ ≡ Aψ›1896

AOT_thus ‹A(ϕ → ψ) & A(ψ → ϕ)›1897

by (metis "→I" "logic-actual-nec:2"[axiom_inst] "≡E"(1,2) "&I")1898

qed1899

1900

AOT_theorem "Act-Basic:5": ‹A(ϕ ≡ ψ) ≡ (Aϕ ≡ Aψ)› (138.5)1901

using "Act-Basic:3" "Act-Basic:4" "≡E"(5) by blast1902

1903

AOT_theorem "Act-Basic:6": ‹Aϕ ≡ �Aϕ› (138.6)1904

by (simp add: "≡I" "qml:2"[axiom_inst] "qml-act:1"[axiom_inst])1905

1906

AOT_theorem "Act-Basic:7": ‹A�ϕ → �Aϕ› (138.7)1907

by (metis "Act-Basic:6" "→I" "→E" "≡E"(1,2) "nec-imp-act"1908

"qml-act:2"[axiom_inst])1909

1910

AOT_theorem "Act-Basic:8": ‹�ϕ → �Aϕ› (138.8)1911

using "Hypothetical Syllogism" "nec-imp-act" "qml-act:1"[axiom_inst] by blast1912

1913

AOT_theorem "Act-Basic:9": ‹A(ϕ ∨ ψ) ≡ (Aϕ ∨ Aψ)› (138.9)1914

proof (rule "≡I"; rule "→I")1915

AOT_assume ‹A(ϕ ∨ ψ)›1916

AOT_thus ‹Aϕ ∨ Aψ›1917

proof (rule "raa-cor:3")1918

AOT_assume ‹¬(Aϕ ∨ Aψ)›1919

AOT_hence ‹¬Aϕ & ¬Aψ›1920

by (metis "≡E"(1) "oth-class-taut:5:d")1921

AOT_hence ‹A¬ϕ & A¬ψ›1922

using "logic-actual-nec:1"[axiom_inst, THEN "≡E"(2)] "&E" "&I" by metis1923

AOT_hence ‹A(¬ϕ & ¬ψ)›1924

using "≡E" "Act-Basic:2" by metis1925

moreover AOT_have ‹A((¬ϕ & ¬ψ) ≡ ¬(ϕ ∨ ψ))›1926

using "RA[2]" "≡E"(6) "oth-class-taut:3:a" "oth-class-taut:5:d" by blast1927

moreover AOT_have ‹A(¬ϕ & ¬ψ) ≡ A(¬(ϕ ∨ ψ))›1928

using calculation(2) by (metis "Act-Basic:5" "≡E"(1))1929

ultimately AOT_have ‹A(¬(ϕ ∨ ψ))› using "≡E" by blast1930

AOT_thus ‹¬A(ϕ ∨ ψ)›1931

using "logic-actual-nec:1"[axiom_inst, THEN "≡E"(1)] by auto1932

qed1933

next1934

AOT_assume ‹Aϕ ∨ Aψ›1935

AOT_thus ‹A(ϕ ∨ ψ)›1936

by (meson "RA[2]" "act-cond" "∨I"(1) "∨E"(1) "Disjunction Addition"(1,2))1937

qed1938

1939

AOT_theorem "Act-Basic:10": ‹A∃α ϕ{α} ≡ ∃α Aϕ{α}› (138.10)1940

proof -1941

AOT_have ϑ: ‹¬A∀α ¬ϕ{α} ≡ ¬∀α A¬ϕ{α}›1942

by (rule "oth-class-taut:4:b"[THEN "≡E"(1)])1943

(metis "logic-actual-nec:3"[axiom_inst])1944

AOT_have ξ: ‹¬∀α A¬ϕ{α} ≡ ¬∀α ¬Aϕ{α}›1945

by (rule "oth-class-taut:4:b"[THEN "≡E"(1)])1946

(rule "logic-actual-nec:1"[THEN universal_closure,1947

axiom_inst, THEN "cqt-basic:3"[THEN "→E"]])1948

AOT_have ‹A(∃α ϕ{α}) ≡ A(¬∀α ¬ϕ{α})›1949

using "conventions:4"[THEN "df-rules-formulas[1]",1950

THEN act_closure, axiom_inst]1951

223

A. Isabelle Theory

"conventions:4"[THEN "df-rules-formulas[2]",1952

THEN act_closure, axiom_inst]1953

"Act-Basic:4"[THEN "≡E"(1)] "&I" "Act-Basic:5"[THEN "≡E"(2)] by metis1954

also AOT_have ‹. . . ≡ ¬A∀α ¬ϕ{α}›1955

by (simp add: "logic-actual-nec:1" "vdash-properties:1[2]")1956

also AOT_have ‹. . . ≡ ¬∀α A ¬ϕ{α}› using ϑ by blast1957

also AOT_have ‹. . . ≡ ¬∀α ¬A ϕ{α}› using ξ by blast1958

also AOT_have ‹. . . ≡ ∃α A ϕ{α}›1959

using "conventions:4"[THEN "≡Df"] by (metis "≡E"(6) "oth-class-taut:3:a")1960

finally AOT_show ‹A∃α ϕ{α} ≡ ∃α Aϕ{α}› .1961

qed1962

1963

1964

AOT_theorem "Act-Basic:11": (138.11)1965

‹A∀α(ϕ{α} ≡ ψ{α}) ≡ ∀α(Aϕ{α} ≡ Aψ{α})›1966

proof(rule "≡I"; rule "→I")1967

AOT_assume ‹A∀α(ϕ{α} ≡ ψ{α})›1968

AOT_hence ‹∀αA(ϕ{α} ≡ ψ{α})›1969

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(1)] by blast1970

AOT_hence ‹A(ϕ{α} ≡ ψ{α})› for α using "∀E" by blast1971

AOT_hence ‹Aϕ{α} ≡ Aψ{α}› for α by (metis "Act-Basic:5" "≡E"(1))1972

AOT_thus ‹∀α(Aϕ{α} ≡ Aψ{α})› by (rule "∀I")1973

next1974

AOT_assume ‹∀α(Aϕ{α} ≡ Aψ{α})›1975

AOT_hence ‹Aϕ{α} ≡ Aψ{α}› for α using "∀E" by blast1976

AOT_hence ‹A(ϕ{α} ≡ ψ{α})› for α by (metis "Act-Basic:5" "≡E"(2))1977

AOT_hence ‹∀α A(ϕ{α} ≡ ψ{α})› by (rule "∀I")1978

AOT_thus ‹A∀α(ϕ{α} ≡ ψ{α})›1979

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(2)] by fast1980

qed1981

1982

AOT_act_theorem "act-quant-uniq": (139)1983

‹∀β(Aϕ{β} ≡ β = α) ≡ ∀β(ϕ{β} ≡ β = α)›1984

proof(rule "≡I"; rule "→I")1985

AOT_assume ‹∀β(Aϕ{β} ≡ β = α)›1986

AOT_hence ‹Aϕ{β} ≡ β = α› for β using "∀E" by blast1987

AOT_hence ‹ϕ{β} ≡ β = α› for β1988

using "≡I" "→I" "RA[1]" "≡E"(1,2) "logic-actual"[act_axiom_inst] "→E"1989

by metis1990

AOT_thus ‹∀β(ϕ{β} ≡ β = α)› by (rule "∀I")1991

next1992

AOT_assume ‹∀β(ϕ{β} ≡ β = α)›1993

AOT_hence ‹ϕ{β} ≡ β = α› for β using "∀E" by blast1994

AOT_hence ‹Aϕ{β} ≡ β = α› for β1995

using "≡I" "→I" "RA[1]" "≡E"(1,2) "logic-actual"[act_axiom_inst] "→E"1996

by metis1997

AOT_thus ‹∀β(Aϕ{β} ≡ β = α)› by (rule "∀I")1998

qed1999

2000

AOT_act_theorem "fund-cont-desc": ‹x = ιx(ϕ{x}) ≡ ∀z(ϕ{z} ≡ z = x)› (140)2001

using descriptions[axiom_inst] "act-quant-uniq" "≡E"(5) by fast2002

2003

AOT_act_theorem hintikka: ‹x = ιx(ϕ{x}) ≡ (ϕ{x} & ∀z (ϕ{z} → z = x))› (141)2004

using "Commutativity of ≡"[THEN "≡E"(1)] "term-out:3"2005

"fund-cont-desc" "≡E"(5) by blast2006

2007

2008

locale russell_axiom =2009

fixes ψ2010

assumes ψ_denotes_asm: "[v |= ψ{κ}] =⇒ [v |= κ↓]"2011

begin2012

AOT_act_theorem "russell-axiom": (142)2013

‹ψ{ιx ϕ{x}} ≡ ∃x(ϕ{x} & ∀z(ϕ{z} → z = x) & ψ{x})›2014

224

A.7. The Deductive System PLM

proof -2015

AOT_have b: ‹∀x (x = ιx ϕ{x} ≡ (ϕ{x} & ∀z(ϕ{z} → z = x)))›2016

using hintikka "∀I" by fast2017

show ?thesis2018

proof(rule "≡I"; rule "→I")2019

AOT_assume c: ‹ψ{ιx ϕ{x}}›2020

AOT_hence d: ‹ιx ϕ{x}↓›2021

using ψ_denotes_asm by blast2022

AOT_hence ‹∃y (y = ιx ϕ{x})›2023

by (metis "rule=I:1" "existential:1")2024

then AOT_obtain a where a_def: ‹a = ιx ϕ{x}›2025

using "instantiation"[rotated] by blast2026

moreover AOT_have ‹a = ιx ϕ{x} ≡ (ϕ{a} & ∀z(ϕ{z} → z = a))›2027

using b "∀E" by blast2028

ultimately AOT_have ‹ϕ{a} & ∀z(ϕ{z} → z = a)›2029

using "≡E" by blast2030

moreover AOT_have ‹ψ{a}›2031

proof -2032

AOT_have 1: ‹∀x∀y(x = y → y = x)›2033

by (simp add: "id-eq:2" "universal-cor")2034

AOT_have ‹a = ιx ϕ{x} → ιx ϕ{x} = a›2035

by (rule "∀E"(1)[where τ="«ιx ϕ{x}»"]; rule "∀E"(2)[where β=a])2036

(auto simp: 1 d "universal-cor")2037

AOT_thus ‹ψ{a}›2038

using a_def c "rule=E" "→E" by blast2039

qed2040

ultimately AOT_have ‹ϕ{a} & ∀z(ϕ{z} → z = a) & ψ{a}› by (rule "&I")2041

AOT_thus ‹∃x(ϕ{x} & ∀z(ϕ{z} → z = x) & ψ{x})› by (rule "∃I")2042

next2043

AOT_assume ‹∃x(ϕ{x} & ∀z(ϕ{z} → z = x) & ψ{x})›2044

then AOT_obtain b where g: ‹ϕ{b} & ∀z(ϕ{z} → z = b) & ψ{b}›2045

using "instantiation"[rotated] by blast2046

AOT_hence h: ‹b = ιx ϕ{x} ≡ (ϕ{b} & ∀z(ϕ{z} → z = b))›2047

using b "∀E" by blast2048

AOT_have ‹ϕ{b} & ∀z(ϕ{z} → z = b)› and j: ‹ψ{b}›2049

using g "&E" by blast+2050

AOT_hence ‹b = ιx ϕ{x}› using h "≡E" by blast2051

AOT_thus ‹ψ{ιx ϕ{x}}› using j "rule=E" by blast2052

qed2053

qed2054

end2055

2056

interpretation "russell-axiom[exe,1]": russell_axiom ‹λ κ . «[Π]κ»›2057

by standard (metis "cqt:5:a[1]"[axiom_inst, THEN "→E"] "&E"(2))2058

interpretation "russell-axiom[exe,2,1,1]": russell_axiom ‹λ κ . «[Π]κκ’»›2059

by standard (metis "cqt:5:a[2]"[axiom_inst, THEN "→E"] "&E")2060

interpretation "russell-axiom[exe,2,1,2]": russell_axiom ‹λ κ . «[Π]κ’κ»›2061

by standard (metis "cqt:5:a[2]"[axiom_inst, THEN "→E"] "&E"(2))2062

interpretation "russell-axiom[exe,2,2]": russell_axiom ‹λ κ . «[Π]κκ»›2063

by standard (metis "cqt:5:a[2]"[axiom_inst, THEN "→E"] "&E"(2))2064

interpretation "russell-axiom[exe,3,1,1]": russell_axiom ‹λ κ . «[Π]κκ’κ”»›2065

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E")2066

interpretation "russell-axiom[exe,3,1,2]": russell_axiom ‹λ κ . «[Π]κ’κκ”»›2067

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E")2068

interpretation "russell-axiom[exe,3,1,3]": russell_axiom ‹λ κ . «[Π]κ’κ”κ»›2069

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E"(2))2070

interpretation "russell-axiom[exe,3,2,1]": russell_axiom ‹λ κ . «[Π]κκκ’»›2071

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E")2072

interpretation "russell-axiom[exe,3,2,2]": russell_axiom ‹λ κ . «[Π]κκ’κ»›2073

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E"(2))2074

interpretation "russell-axiom[exe,3,2,3]": russell_axiom ‹λ κ . «[Π]κ’κκ»›2075

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E"(2))2076

interpretation "russell-axiom[exe,3,3]": russell_axiom ‹λ κ . «[Π]κκκ»›2077

225

A. Isabelle Theory

by standard (metis "cqt:5:a[3]"[axiom_inst, THEN "→E"] "&E"(2))2078

2079

interpretation "russell-axiom[enc,1]": russell_axiom ‹λ κ . «κ[Π]»›2080

by standard (metis "cqt:5:b[1]"[axiom_inst, THEN "→E"] "&E"(2))2081

interpretation "russell-axiom[enc,2,1]": russell_axiom ‹λ κ . «κκ’[Π]»›2082

by standard (metis "cqt:5:b[2]"[axiom_inst, THEN "→E"] "&E")2083

interpretation "russell-axiom[enc,2,2]": russell_axiom ‹λ κ . «κ’κ[Π]»›2084

by standard (metis "cqt:5:b[2]"[axiom_inst, THEN "→E"] "&E"(2))2085

interpretation "russell-axiom[enc,2,3]": russell_axiom ‹λ κ . «κκ[Π]»›2086

by standard (metis "cqt:5:b[2]"[axiom_inst, THEN "→E"] "&E"(2))2087

interpretation "russell-axiom[enc,3,1,1]": russell_axiom ‹λ κ . «κκ’κ”[Π]»›2088

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E")2089

interpretation "russell-axiom[enc,3,1,2]": russell_axiom ‹λ κ . «κ’κκ”[Π]»›2090

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E")2091

interpretation "russell-axiom[enc,3,1,3]": russell_axiom ‹λ κ . «κ’κ”κ[Π]»›2092

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E"(2))2093

interpretation "russell-axiom[enc,3,2,1]": russell_axiom ‹λ κ . «κκκ’[Π]»›2094

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E")2095

interpretation "russell-axiom[enc,3,2,2]": russell_axiom ‹λ κ . «κκ’κ[Π]»›2096

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E"(2))2097

interpretation "russell-axiom[enc,3,2,3]": russell_axiom ‹λ κ . «κ’κκ[Π]»›2098

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E"(2))2099

interpretation "russell-axiom[enc,3,3]": russell_axiom ‹λ κ . «κκκ[Π]»›2100

by standard (metis "cqt:5:b[3]"[axiom_inst, THEN "→E"] "&E"(2))2101

2102

AOT_act_theorem "!-exists:1": ‹ιx ϕ{x}↓ ≡ ∃!x ϕ{x}› (143.1)2103

proof(rule "≡I"; rule "→I")2104

AOT_assume ‹ιx ϕ{x}↓›2105

AOT_hence ‹∃y (y = ιx ϕ{x})› by (metis "rule=I:1" "existential:1")2106

then AOT_obtain a where ‹a = ιx ϕ{x}›2107

using "instantiation"[rotated] by blast2108

AOT_hence ‹ϕ{a} & ∀z (ϕ{z} → z = a)›2109

using hintikka "≡E" by blast2110

AOT_hence ‹∃x (ϕ{x} & ∀z (ϕ{z} → z = x))›2111

by (rule "∃I")2112

AOT_thus ‹∃!x ϕ{x}›2113

using "uniqueness:1"[THEN "≡dfI"] by blast2114

next2115

AOT_assume ‹∃!x ϕ{x}›2116

AOT_hence ‹∃x (ϕ{x} & ∀z (ϕ{z} → z = x))›2117

using "uniqueness:1"[THEN "≡dfE"] by blast2118

then AOT_obtain b where ‹ϕ{b} & ∀z (ϕ{z} → z = b)›2119

using "instantiation"[rotated] by blast2120

AOT_hence ‹b = ιx ϕ{x}›2121

using hintikka "≡E" by blast2122

AOT_thus ‹ιx ϕ{x}↓›2123

by (metis "t=t-proper:2" "vdash-properties:6")2124

qed2125

2126

AOT_act_theorem "!-exists:2": ‹∃y(y=ιx ϕ{x}) ≡ ∃!x ϕ{x}› (143.2)2127

using "!-exists:1" "free-thms:1" "≡E"(6) by blast2128

2129

AOT_act_theorem "y-in:1": ‹x = ιx ϕ{x} → ϕ{x}› (144.1)2130

using "&E"(1) "→I" hintikka "≡E"(1) by blast2131

2132

(* Note: generalized alphabetic variant of the last theorem *)2133

AOT_act_theorem "y-in:2": ‹z = ιx ϕ{x} → ϕ{z}› using "y-in:1". (144.2)2134

2135

AOT_act_theorem "y-in:3": ‹ιx ϕ{x}↓ → ϕ{ιx ϕ{x}}› (144.3)2136

proof(rule "→I")2137

AOT_assume ‹ιx ϕ{x}↓›2138

AOT_hence ‹∃y (y = ιx ϕ{x})›2139

by (metis "rule=I:1" "existential:1")2140

226

A.7. The Deductive System PLM

then AOT_obtain a where ‹a = ιx ϕ{x}›2141

using "instantiation"[rotated] by blast2142

moreover AOT_have ‹ϕ{a}›2143

using calculation hintikka "≡E"(1) "&E" by blast2144

ultimately AOT_show ‹ϕ{ιx ϕ{x}}› using "rule=E" by blast2145

qed2146

2147

AOT_act_theorem "y-in:4": ‹∃y (y = ιx ϕ{x}) → ϕ{ιx ϕ{x}}› (144.4)2148

using "y-in:3"[THEN "→E"] "free-thms:1"[THEN "≡E"(2)] "→I" by blast2149

2150

2151

AOT_theorem "act-quant-nec": (145)2152

‹∀β (Aϕ{β} ≡ β = α) ≡ ∀β(AAϕ{β} ≡ β = α)›2153

proof(rule "≡I"; rule "→I")2154

AOT_assume ‹∀β (Aϕ{β} ≡ β = α)›2155

AOT_hence ‹Aϕ{β} ≡ β = α› for β using "∀E" by blast2156

AOT_hence ‹AAϕ{β} ≡ β = α› for β2157

by (metis "Act-Basic:5" "act-conj-act:4" "≡E"(1) "≡E"(5))2158

AOT_thus ‹∀β(AAϕ{β} ≡ β = α)›2159

by (rule "∀I")2160

next2161

AOT_assume ‹∀β(AAϕ{β} ≡ β = α)›2162

AOT_hence ‹AAϕ{β} ≡ β = α› for β using "∀E" by blast2163

AOT_hence ‹Aϕ{β} ≡ β = α› for β2164

by (metis "Act-Basic:5" "act-conj-act:4" "≡E"(1) "≡E"(6))2165

AOT_thus ‹∀β (Aϕ{β} ≡ β = α)›2166

by (rule "∀I")2167

qed2168

2169

AOT_theorem "equi-desc-descA:1": ‹x = ιx ϕ{x} ≡ x = ιx(Aϕ{x})› (146.1)2170

proof -2171

AOT_have ‹x = ιx ϕ{x} ≡ ∀z (Aϕ{z} ≡ z = x)›2172

using descriptions[axiom_inst] by blast2173

also AOT_have ‹... ≡ ∀z (AAϕ{z} ≡ z = x)›2174

proof(rule "≡I"; rule "→I"; rule "∀I")2175

AOT_assume ‹∀z (Aϕ{z} ≡ z = x)›2176

AOT_hence ‹Aϕ{a} ≡ a = x› for a2177

using "∀E" by blast2178

AOT_thus ‹AAϕ{a} ≡ a = x› for a2179

by (metis "Act-Basic:5" "act-conj-act:4" "≡E"(1) "≡E"(5))2180

next2181

AOT_assume ‹∀z (AAϕ{z} ≡ z = x)›2182

AOT_hence ‹AAϕ{a} ≡ a = x› for a2183

using "∀E" by blast2184

AOT_thus ‹Aϕ{a} ≡ a = x› for a2185

by (metis "Act-Basic:5" "act-conj-act:4" "≡E"(1) "≡E"(6))2186

qed2187

also AOT_have ‹... ≡ x = ιx(Aϕ{x})›2188

using "Commutativity of ≡"[THEN "≡E"(1)] descriptions[axiom_inst] by fast2189

finally show ?thesis .2190

qed2191

2192

AOT_theorem "equi-desc-descA:2": ‹ιx ϕ{x}↓ → ιx ϕ{x} = ιx(Aϕ{x})› (146.2)2193

proof(rule "→I")2194

AOT_assume ‹ιx ϕ{x}↓›2195

AOT_hence ‹∃y (y = ιx ϕ{x})›2196

by (metis "rule=I:1" "existential:1")2197

then AOT_obtain a where ‹a = ιx ϕ{x}›2198

using "instantiation"[rotated] by blast2199

moreover AOT_have ‹a = ιx(Aϕ{x})›2200

using calculation "equi-desc-descA:1"[THEN "≡E"(1)] by blast2201

ultimately AOT_show ‹ιx ϕ{x} = ιx(Aϕ{x})›2202

using "rule=E" by fast2203

227

A. Isabelle Theory

qed2204

2205

AOT_theorem "nec-hintikka-scheme": (147)2206

‹x = ιx ϕ{x} ≡ Aϕ{x} & ∀z(Aϕ{z} → z = x)›2207

proof -2208

AOT_have ‹x = ιx ϕ{x} ≡ ∀z(Aϕ{z} ≡ z = x)›2209

using descriptions[axiom_inst] by blast2210

also AOT_have ‹. . . ≡ (Aϕ{x} & ∀z(Aϕ{z} → z = x))›2211

using "Commutativity of ≡"[THEN "≡E"(1)] "term-out:3" by fast2212

finally show ?thesis.2213

qed2214

2215

AOT_theorem "equiv-desc-eq:1": (148.1)2216

‹A∀x(ϕ{x} ≡ ψ{x}) → ∀x (x = ιx ϕ{x} ≡ x = ιx ψ{x})›2217

proof(rule "→I"; rule "∀I")2218

fix β2219

AOT_assume ‹A∀x(ϕ{x} ≡ ψ{x})›2220

AOT_hence ‹A(ϕ{x} ≡ ψ{x})› for x2221

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(1)] "∀E"(2) by blast2222

AOT_hence 0: ‹Aϕ{x} ≡ Aψ{x}› for x2223

by (metis "Act-Basic:5" "≡E"(1))2224

AOT_have ‹β = ιx ϕ{x} ≡ Aϕ{β} & ∀z(Aϕ{z} → z = β)›2225

using "nec-hintikka-scheme" by blast2226

also AOT_have ‹... ≡ Aψ{β} & ∀z(Aψ{z} → z = β)›2227

proof (rule "≡I"; rule "→I")2228

AOT_assume 1: ‹Aϕ{β} & ∀z(Aϕ{z} → z = β)›2229

AOT_hence ‹Aϕ{z} → z = β› for z2230

using "&E" "∀E" by blast2231

AOT_hence ‹Aψ{z} → z = β› for z2232

using 0 "≡E" "→I" "→E" by metis2233

AOT_hence ‹∀z(Aψ{z} → z = β)›2234

using "∀I" by fast2235

moreover AOT_have ‹Aψ{β}›2236

using "&E" 0[THEN "≡E"(1)] 1 by blast2237

ultimately AOT_show ‹Aψ{β} & ∀z(Aψ{z} → z = β)›2238

using "&I" by blast2239

next2240

AOT_assume 1: ‹Aψ{β} & ∀z(Aψ{z} → z = β)›2241

AOT_hence ‹Aψ{z} → z = β› for z2242

using "&E" "∀E" by blast2243

AOT_hence ‹Aϕ{z} → z = β› for z2244

using 0 "≡E" "→I" "→E" by metis2245

AOT_hence ‹∀z(Aϕ{z} → z = β)›2246

using "∀I" by fast2247

moreover AOT_have ‹Aϕ{β}›2248

using "&E" 0[THEN "≡E"(2)] 1 by blast2249

ultimately AOT_show ‹Aϕ{β} & ∀z(Aϕ{z} → z = β)›2250

using "&I" by blast2251

qed2252

also AOT_have ‹... ≡ β = ιx ψ{x}›2253

using "Commutativity of ≡"[THEN "≡E"(1)] "nec-hintikka-scheme" by blast2254

finally AOT_show ‹β = ιx ϕ{x} ≡ β = ιx ψ{x}› .2255

qed2256

2257

AOT_theorem "equiv-desc-eq:2": (148.2)2258

‹ιx ϕ{x}↓ & A∀x(ϕ{x} ≡ ψ{x}) → ιx ϕ{x} = ιx ψ{x}›2259

proof(rule "→I")2260

AOT_assume ‹ιx ϕ{x}↓ & A∀x(ϕ{x} ≡ ψ{x})›2261

AOT_hence 0: ‹∃y (y = ιx ϕ{x})› and2262

1: ‹∀x (x = ιx ϕ{x} ≡ x = ιx ψ{x})›2263

using "&E" "free-thms:1"[THEN "≡E"(1)] "equiv-desc-eq:1" "→E" by blast+2264

then AOT_obtain a where ‹a = ιx ϕ{x}›2265

using "instantiation"[rotated] by blast2266

228

A.7. The Deductive System PLM

moreover AOT_have ‹a = ιx ψ{x}›2267

using calculation 1 "∀E" "≡E"(1) by fast2268

ultimately AOT_show ‹ιx ϕ{x} = ιx ψ{x}›2269

using "rule=E" by fast2270

qed2271

2272

AOT_theorem "equiv-desc-eq:3": (148.3)2273

‹ιx ϕ{x}↓ & �∀x(ϕ{x} ≡ ψ{x}) → ιx ϕ{x} = ιx ψ{x}›2274

using "→I" "equiv-desc-eq:2"[THEN "→E", OF "&I"] "&E"2275

"nec-imp-act"[THEN "→E"] by metis2276

2277

(* Note: this is a special case of "exist-nec" *)2278

AOT_theorem "equiv-desc-eq:4": ‹ιx ϕ{x}↓ → �ιx ϕ{x}↓› (148.4)2279

proof(rule "→I")2280

AOT_assume ‹ιx ϕ{x}↓›2281

AOT_hence ‹∃y (y = ιx ϕ{x})›2282

by (metis "rule=I:1" "existential:1")2283

then AOT_obtain a where ‹a = ιx ϕ{x}›2284

using "instantiation"[rotated] by blast2285

AOT_thus ‹�ιx ϕ{x}↓›2286

using "ex:2:a" "rule=E" by fast2287

qed2288

2289

AOT_theorem "equiv-desc-eq:5": ‹ιx ϕ{x}↓ → ∃y �(y = ιx ϕ{x})› (148.5)2290

proof(rule "→I")2291

AOT_assume ‹ιx ϕ{x}↓›2292

AOT_hence ‹∃y (y = ιx ϕ{x})›2293

by (metis "rule=I:1" "existential:1")2294

then AOT_obtain a where ‹a = ιx ϕ{x}›2295

using "instantiation"[rotated] by blast2296

AOT_hence ‹�(a = ιx ϕ{x})›2297

by (metis "id-nec:2" "vdash-properties:10")2298

AOT_thus ‹∃y �(y = ιx ϕ{x})›2299

by (rule "∃I")2300

qed2301

2302

AOT_act_theorem "equiv-desc-eq2:1": (149.1)2303

‹∀x (ϕ{x} ≡ ψ{x}) → ∀x (x = ιx ϕ{x} ≡ x = ιx ψ{x})›2304

using "→I" "logic-actual"[act_axiom_inst, THEN "→E"]2305

"equiv-desc-eq:1"[THEN "→E"]2306

"RA[1]" "deduction-theorem" by blast2307

2308

AOT_act_theorem "equiv-desc-eq2:2": (149.2)2309

‹ιx ϕ{x}↓ & ∀x (ϕ{x} ≡ ψ{x}) → ιx ϕ{x} = ιx ψ{x}›2310

using "→I" "logic-actual"[act_axiom_inst, THEN "→E"]2311

"equiv-desc-eq:2"[THEN "→E", OF "&I"]2312

"RA[1]" "deduction-theorem" "&E" by metis2313

2314

context russell_axiom2315

begin2316

AOT_theorem "nec-russell-axiom": (150)2317

‹ψ{ιx ϕ{x}} ≡ ∃x(Aϕ{x} & ∀z(Aϕ{z} → z = x) & ψ{x})›2318

proof -2319

AOT_have b: ‹∀x (x = ιx ϕ{x} ≡ (Aϕ{x} & ∀z(Aϕ{z} → z = x)))›2320

using "nec-hintikka-scheme" "∀I" by fast2321

show ?thesis2322

proof(rule "≡I"; rule "→I")2323

AOT_assume c: ‹ψ{ιx ϕ{x}}›2324

AOT_hence d: ‹ιx ϕ{x}↓›2325

using ψ_denotes_asm by blast2326

AOT_hence ‹∃y (y = ιx ϕ{x})›2327

by (metis "rule=I:1" "existential:1")2328

then AOT_obtain a where a_def: ‹a = ιx ϕ{x}›2329

229

A. Isabelle Theory

using "instantiation"[rotated] by blast2330

moreover AOT_have ‹a = ιx ϕ{x} ≡ (Aϕ{a} & ∀z(Aϕ{z} → z = a))›2331

using b "∀E" by blast2332

ultimately AOT_have ‹Aϕ{a} & ∀z(Aϕ{z} → z = a)›2333

using "≡E" by blast2334

moreover AOT_have ‹ψ{a}›2335

proof -2336

AOT_have 1: ‹∀x∀y(x = y → y = x)›2337

by (simp add: "id-eq:2" "universal-cor")2338

AOT_have ‹a = ιx ϕ{x} → ιx ϕ{x} = a›2339

by (rule "∀E"(1)[where τ="«ιx ϕ{x}»"]; rule "∀E"(2)[where β=a])2340

(auto simp: d "universal-cor" 1)2341

AOT_thus ‹ψ{a}›2342

using a_def c "rule=E" "→E" by metis2343

qed2344

ultimately AOT_have ‹Aϕ{a} & ∀z(Aϕ{z} → z = a) & ψ{a}›2345

by (rule "&I")2346

AOT_thus ‹∃x(Aϕ{x} & ∀z(Aϕ{z} → z = x) & ψ{x})›2347

by (rule "∃I")2348

next2349

AOT_assume ‹∃x(Aϕ{x} & ∀z(Aϕ{z} → z = x) & ψ{x})›2350

then AOT_obtain b where g: ‹Aϕ{b} & ∀z(Aϕ{z} → z = b) & ψ{b}›2351

using "instantiation"[rotated] by blast2352

AOT_hence h: ‹b = ιx ϕ{x} ≡ (Aϕ{b} & ∀z(Aϕ{z} → z = b))›2353

using b "∀E" by blast2354

AOT_have ‹Aϕ{b} & ∀z(Aϕ{z} → z = b)› and j: ‹ψ{b}›2355

using g "&E" by blast+2356

AOT_hence ‹b = ιx ϕ{x}›2357

using h "≡E" by blast2358

AOT_thus ‹ψ{ιx ϕ{x}}›2359

using j "rule=E" by blast2360

qed2361

qed2362

end2363

2364

AOT_theorem "actual-desc:1": ‹ιx ϕ{x}↓ ≡ ∃!x Aϕ{x}› (151.1)2365

proof (rule "≡I"; rule "→I")2366

AOT_assume ‹ιx ϕ{x}↓›2367

AOT_hence ‹∃y (y = ιx ϕ{x})›2368

by (metis "rule=I:1" "existential:1")2369

then AOT_obtain a where ‹a = ιx ϕ{x}›2370

using "instantiation"[rotated] by blast2371

moreover AOT_have ‹a = ιx ϕ{x} ≡ ∀z(Aϕ{z} ≡ z = a)›2372

using descriptions[axiom_inst] by blast2373

ultimately AOT_have ‹∀z(Aϕ{z} ≡ z = a)›2374

using "≡E" by blast2375

AOT_hence ‹∃x∀z(Aϕ{z} ≡ z = x)› by (rule "∃I")2376

AOT_thus ‹∃!x Aϕ{x}›2377

using "uniqueness:2"[THEN "≡E"(2)] by fast2378

next2379

AOT_assume ‹∃!x Aϕ{x}›2380

AOT_hence ‹∃x∀z(Aϕ{z} ≡ z = x)›2381

using "uniqueness:2"[THEN "≡E"(1)] by fast2382

then AOT_obtain a where ‹∀z(Aϕ{z} ≡ z = a)›2383

using "instantiation"[rotated] by blast2384

moreover AOT_have ‹a = ιx ϕ{x} ≡ ∀z(Aϕ{z} ≡ z = a)›2385

using descriptions[axiom_inst] by blast2386

ultimately AOT_have ‹a = ιx ϕ{x}›2387

using "≡E" by blast2388

AOT_thus ‹ιx ϕ{x}↓›2389

by (metis "t=t-proper:2" "vdash-properties:6")2390

qed2391

2392

230

A.7. The Deductive System PLM

AOT_theorem "actual-desc:2": ‹x = ιx ϕ{x} → Aϕ{x}› (151.2)2393

using "&E"(1) "contraposition:1[2]" "≡E"(1) "nec-hintikka-scheme"2394

"reductio-aa:2" "vdash-properties:9" by blast2395

2396

(* Note: generalized alphabetic variant of the last theorem *)2397

AOT_theorem "actual-desc:3": ‹z = ιx ϕ{x} → Aϕ{z}› (151.3)2398

using "actual-desc:2".2399

2400

AOT_theorem "actual-desc:4": ‹ιx ϕ{x}↓ → Aϕ{ιx ϕ{x}}› (151.4)2401

proof(rule "→I")2402

AOT_assume ‹ιx ϕ{x}↓›2403

AOT_hence ‹∃y (y = ιx ϕ{x})› by (metis "rule=I:1" "existential:1")2404

then AOT_obtain a where ‹a = ιx ϕ{x}› using "instantiation"[rotated] by blast2405

AOT_thus ‹Aϕ{ιx ϕ{x}}›2406

using "actual-desc:2" "rule=E" "→E" by fast2407

qed2408

2409

AOT_theorem "actual-desc:5": ‹ιx ϕ{x} = ιx ψ{x} → A∀x(ϕ{x} ≡ ψ{x})› (151.5)2410

proof(rule "→I")2411

AOT_assume 0: ‹ιx ϕ{x} = ιx ψ{x}›2412

AOT_hence ϕ_down: ‹ιx ϕ{x}↓› and ψ_down: ‹ιx ψ{x}↓›2413

using "t=t-proper:1" "t=t-proper:2" "vdash-properties:6" by blast+2414

AOT_hence ‹∃y (y = ιx ϕ{x})› and ‹∃y (y = ιx ψ{x})›2415

by (metis "rule=I:1" "existential:1")+2416

then AOT_obtain a and b where a_eq: ‹a = ιx ϕ{x}› and b_eq: ‹b = ιx ψ{x}›2417

using "instantiation"[rotated] by metis2418

2419

AOT_have ‹∀α∀β (α = β → β = α)›2420

by (rule "∀I"; rule "∀I"; rule "id-eq:2")2421

AOT_hence ‹∀β (ιx ϕ{x} = β → β = ιx ϕ{x})›2422

using "∀E" ϕ_down by blast2423

AOT_hence ‹ιx ϕ{x} = ιx ψ{x} → ιx ψ{x} = ιx ϕ{x}›2424

using "∀E" ψ_down by blast2425

AOT_hence 1: ‹ιx ψ{x} = ιx ϕ{x}› using 02426

"→E" by blast2427

2428

AOT_have ‹Aϕ{x} ≡ Aψ{x}› for x2429

proof(rule "≡I"; rule "→I")2430

AOT_assume ‹Aϕ{x}›2431

moreover AOT_have ‹Aϕ{x} → x = a› for x2432

using "nec-hintikka-scheme"[THEN "≡E"(1), OF a_eq, THEN "&E"(2)]2433

"∀E" by blast2434

ultimately AOT_have ‹x = a›2435

using "→E" by blast2436

AOT_hence ‹x = ιx ϕ{x}›2437

using a_eq "rule=E" by blast2438

AOT_hence ‹x = ιx ψ{x}›2439

using 0 "rule=E" by blast2440

AOT_thus ‹Aψ{x}›2441

by (metis "actual-desc:3" "vdash-properties:6")2442

next2443

AOT_assume ‹Aψ{x}›2444

moreover AOT_have ‹Aψ{x} → x = b› for x2445

using "nec-hintikka-scheme"[THEN "≡E"(1), OF b_eq, THEN "&E"(2)]2446

"∀E" by blast2447

ultimately AOT_have ‹x = b›2448

using "→E" by blast2449

AOT_hence ‹x = ιx ψ{x}›2450

using b_eq "rule=E" by blast2451

AOT_hence ‹x = ιx ϕ{x}›2452

using 1 "rule=E" by blast2453

AOT_thus ‹Aϕ{x}›2454

by (metis "actual-desc:3" "vdash-properties:6")2455

231

A. Isabelle Theory

qed2456

AOT_hence ‹A(ϕ{x} ≡ ψ{x})› for x2457

by (metis "Act-Basic:5" "≡E"(2))2458

AOT_hence ‹∀x A(ϕ{x} ≡ ψ{x})›2459

by (rule "∀I")2460

AOT_thus ‹A∀x (ϕ{x} ≡ ψ{x})›2461

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(2)] by fast2462

qed2463

2464

AOT_theorem "!box-desc:1": ‹∃!x �ϕ{x} → ∀y (y = ιx ϕ{x} → ϕ{y})› (152.1)2465

proof(rule "→I")2466

AOT_assume ‹∃!x �ϕ{x}›2467

AOT_hence ζ: ‹∃x (�ϕ{x} & ∀z (�ϕ{z} → z = x))›2468

using "uniqueness:1"[THEN "≡dfE"] by blast2469

then AOT_obtain b where ϑ: ‹�ϕ{b} & ∀z (�ϕ{z} → z = b)›2470

using "instantiation"[rotated] by blast2471

AOT_show ‹∀y (y = ιx ϕ{x} → ϕ{y})›2472

proof(rule GEN; rule "→I")2473

fix y2474

AOT_assume ‹y = ιx ϕ{x}›2475

AOT_hence ‹Aϕ{y} & ∀z (Aϕ{z} → z = y)›2476

using "nec-hintikka-scheme"[THEN "≡E"(1)] by blast2477

AOT_hence ‹Aϕ{b} → b = y›2478

using "&E" "∀E" by blast2479

moreover AOT_have ‹Aϕ{b}›2480

using ϑ[THEN "&E"(1)] by (metis "nec-imp-act" "→E")2481

ultimately AOT_have ‹b = y›2482

using "→E" by blast2483

moreover AOT_have ‹ϕ{b}›2484

using ϑ[THEN "&E"(1)] by (metis "qml:2"[axiom_inst] "→E")2485

ultimately AOT_show ‹ϕ{y}›2486

using "rule=E" by blast2487

qed2488

qed2489

2490

AOT_theorem "!box-desc:2": (152.2)2491

‹∀x (ϕ{x} → �ϕ{x}) → (∃!x ϕ{x} → ∀y (y = ιx ϕ{x} → ϕ{y}))›2492

proof(rule "→I"; rule "→I")2493

AOT_assume ‹∀x (ϕ{x} → �ϕ{x})›2494

moreover AOT_assume ‹∃!x ϕ{x}›2495

ultimately AOT_have ‹∃!x �ϕ{x}›2496

using "nec-exist-!"[THEN "→E", THEN "→E"] by blast2497

AOT_thus ‹∀y (y = ιx ϕ{x} → ϕ{y})›2498

using "!box-desc:1" "→E" by blast2499

qed2500

2501

(* Note: vacuous in the embedding. *)2502

AOT_theorem "dr-alphabetic-thm": ‹ιν ϕ{ν}↓ → ιν ϕ{ν} = ιµ ϕ{µ}› (153)2503

by (simp add: "rule=I:1" "→I")2504

2505

subsection‹The Theory of Necessity›2506

text‹\label{PLM: 9.9}›2507

2508

AOT_theorem "RM:1[prem]": (156.1)2509

assumes ‹Γ `� ϕ → ψ›2510

shows ‹�Γ `� �ϕ → �ψ›2511

proof -2512

AOT_have ‹�Γ `� �(ϕ → ψ)›2513

using "RN[prem]" assms by blast2514

AOT_thus ‹�Γ `� �ϕ → �ψ›2515

by (metis "qml:1"[axiom_inst] "→E")2516

qed2517

2518

232

A.7. The Deductive System PLM

AOT_theorem "RM:1": (156.1)2519

assumes ‹`� ϕ → ψ›2520

shows ‹`� �ϕ → �ψ›2521

using "RM:1[prem]" assms by blast2522

2523

lemmas RM = "RM:1" (156)2524

2525

AOT_theorem "RM:2[prem]": (156.2)2526

assumes ‹Γ `� ϕ → ψ›2527

shows ‹�Γ `� ♦ϕ → ♦ψ›2528

proof -2529

AOT_have ‹Γ `� ¬ψ → ¬ϕ›2530

using assms2531

by (simp add: "contraposition:1[1]")2532

AOT_hence ‹�Γ `� �¬ψ → �¬ϕ›2533

using "RM:1[prem]" by blast2534

AOT_thus ‹�Γ `� ♦ϕ → ♦ψ›2535

by (meson "≡dfE" "≡dfI" "conventions:5" "→I" "modus-tollens:1")2536

qed2537

2538

AOT_theorem "RM:2": (156.2)2539

assumes ‹`� ϕ → ψ›2540

shows ‹`� ♦ϕ → ♦ψ›2541

using "RM:2[prem]" assms by blast2542

2543

lemmas "RM♦" = "RM:2"2544

2545

AOT_theorem "RM:3[prem]": (156.3)2546

assumes ‹Γ `� ϕ ≡ ψ›2547

shows ‹�Γ `� �ϕ ≡ �ψ›2548

proof -2549

AOT_have ‹Γ `� ϕ → ψ› and ‹Γ `� ψ → ϕ›2550

using assms "≡E" "→I" by metis+2551

AOT_hence ‹�Γ `� �ϕ → �ψ› and ‹�Γ `� �ψ → �ϕ›2552

using "RM:1[prem]" by metis+2553

AOT_thus ‹�Γ `� �ϕ ≡ �ψ›2554

by (simp add: "≡I")2555

qed2556

2557

AOT_theorem "RM:3": (156.3)2558

assumes ‹`� ϕ ≡ ψ›2559

shows ‹`� �ϕ ≡ �ψ›2560

using "RM:3[prem]" assms by blast2561

2562

lemmas RE = "RM:3"2563

2564

AOT_theorem "RM:4[prem]": (156.4)2565

assumes ‹Γ `� ϕ ≡ ψ›2566

shows ‹�Γ `� ♦ϕ ≡ ♦ψ›2567

proof -2568

AOT_have ‹Γ `� ϕ → ψ› and ‹Γ `� ψ → ϕ›2569

using assms "≡E" "→I" by metis+2570

AOT_hence ‹�Γ `� ♦ϕ → ♦ψ› and ‹�Γ `� ♦ψ → ♦ϕ›2571

using "RM:2[prem]" by metis+2572

AOT_thus ‹�Γ `� ♦ϕ ≡ ♦ψ›2573

by (simp add: "≡I")2574

qed2575

2576

AOT_theorem "RM:4": (156.4)2577

assumes ‹`� ϕ ≡ ψ›2578

shows ‹`� ♦ϕ ≡ ♦ψ›2579

using "RM:4[prem]" assms by blast2580

2581

233

A. Isabelle Theory

lemmas "RE♦" = "RM:4"2582

2583

AOT_theorem "KBasic:1": ‹�ϕ → �(ψ → ϕ)› (157.1)2584

by (simp add: RM "pl:1"[axiom_inst])2585

2586

AOT_theorem "KBasic:2": ‹�¬ϕ → �(ϕ → ψ)› (157.2)2587

by (simp add: RM "useful-tautologies:3")2588

2589

AOT_theorem "KBasic:3": ‹�(ϕ & ψ) ≡ (�ϕ & �ψ)› (157.3)2590

proof (rule "≡I"; rule "→I")2591

AOT_assume ‹�(ϕ & ψ)›2592

AOT_thus ‹�ϕ & �ψ›2593

by (meson RM "&I" "Conjunction Simplification"(1, 2) "→E")2594

next2595

AOT_have ‹�ϕ → �(ψ → (ϕ & ψ))›2596

by (simp add: "RM:1" Adjunction)2597

AOT_hence ‹�ϕ → (�ψ → �(ϕ & ψ))›2598

by (metis "Hypothetical Syllogism" "qml:1"[axiom_inst])2599

moreover AOT_assume ‹�ϕ & �ψ›2600

ultimately AOT_show ‹�(ϕ & ψ)›2601

using "→E" "&E" by blast2602

qed2603

2604

AOT_theorem "KBasic:4": ‹�(ϕ ≡ ψ) ≡ (�(ϕ → ψ) & �(ψ → ϕ))› (157.4)2605

proof -2606

AOT_have ϑ: ‹�((ϕ → ψ) & (ψ → ϕ)) ≡ (�(ϕ → ψ) & �(ψ → ϕ))›2607

by (fact "KBasic:3")2608

AOT_modally_strict {2609

AOT_have ‹(ϕ ≡ ψ) ≡ ((ϕ → ψ) & (ψ → ϕ))›2610

by (fact "conventions:3"[THEN "≡Df"])2611

}2612

AOT_hence ξ: ‹�(ϕ ≡ ψ) ≡ �((ϕ → ψ) & (ψ → ϕ))›2613

by (rule RE)2614

with ξ and ϑ AOT_show ‹�(ϕ ≡ ψ) ≡ (�(ϕ → ψ) & �(ψ → ϕ))›2615

using "≡E"(5) by blast2616

qed2617

2618

AOT_theorem "KBasic:5": ‹(�(ϕ → ψ) & �(ψ → ϕ)) → (�ϕ ≡ �ψ)› (157.5)2619

proof -2620

AOT_have ‹�(ϕ → ψ) → (�ϕ → �ψ)›2621

by (fact "qml:1"[axiom_inst])2622

moreover AOT_have ‹�(ψ → ϕ) → (�ψ → �ϕ)›2623

by (fact "qml:1"[axiom_inst])2624

ultimately AOT_have ‹(�(ϕ → ψ) & �(ψ → ϕ)) → ((�ϕ → �ψ) & (�ψ → �ϕ))›2625

by (metis "&I" MP "Double Composition")2626

moreover AOT_have ‹((�ϕ → �ψ) & (�ψ → �ϕ)) → (�ϕ ≡ �ψ)›2627

using "conventions:3"[THEN "≡dfI"] "→I" by blast2628

ultimately AOT_show ‹(�(ϕ → ψ) & �(ψ → ϕ)) → (�ϕ ≡ �ψ)›2629

by (metis "Hypothetical Syllogism")2630

qed2631

2632

AOT_theorem "KBasic:6": ‹�(ϕ ≡ ψ) → (�ϕ ≡ �ψ)› (157.6)2633

using "KBasic:4" "KBasic:5" "deduction-theorem" "≡E"(1) "→E" by blast2634

AOT_theorem "KBasic:7": ‹((�ϕ & �ψ) ∨ (�¬ϕ & �¬ψ)) → �(ϕ ≡ ψ)› (157.7)2635

proof (rule "→I"; drule "∨E"(1); (rule "→I")?)2636

AOT_assume ‹�ϕ & �ψ›2637

AOT_hence ‹�ϕ› and ‹�ψ› using "&E" by blast+2638

AOT_hence ‹�(ϕ → ψ)› and ‹�(ψ → ϕ)› using "KBasic:1" "→E" by blast+2639

AOT_hence ‹�(ϕ → ψ) & �(ψ → ϕ)› using "&I" by blast2640

AOT_thus ‹�(ϕ ≡ ψ)› by (metis "KBasic:4" "≡E"(2))2641

next2642

AOT_assume ‹�¬ϕ & �¬ψ›2643

AOT_hence 0: ‹�(¬ϕ & ¬ψ)› using "KBasic:3"[THEN "≡E"(2)] by blast2644

234

A.7. The Deductive System PLM

AOT_modally_strict {2645

AOT_have ‹(¬ϕ & ¬ψ) → (ϕ ≡ ψ)›2646

by (metis "&E"(1) "&E"(2) "deduction-theorem" "≡I" "reductio-aa:1")2647

}2648

AOT_hence ‹�(¬ϕ & ¬ψ) → �(ϕ ≡ ψ)›2649

by (rule RM)2650

AOT_thus ‹�(ϕ ≡ ψ)› using 0 "→E" by blast2651

qed(auto)2652

2653

AOT_theorem "KBasic:8": ‹�(ϕ & ψ) → �(ϕ ≡ ψ)› (157.8)2654

by (meson "RM:1" "&E"(1) "&E"(2) "deduction-theorem" "≡I")2655

AOT_theorem "KBasic:9": ‹�(¬ϕ & ¬ψ) → �(ϕ ≡ ψ)› (157.9)2656

by (metis "RM:1" "&E"(1) "&E"(2) "deduction-theorem" "≡I" "raa-cor:4")2657

AOT_theorem "KBasic:10": ‹�ϕ ≡ �¬¬ϕ› (157.10)2658

by (simp add: "RM:3" "oth-class-taut:3:b")2659

AOT_theorem "KBasic:11": ‹¬�ϕ ≡ ♦¬ϕ› (157.11)2660

proof (rule "≡I"; rule "→I")2661

AOT_show ‹♦¬ϕ› if ‹¬�ϕ›2662

using that "≡dfI" "conventions:5" "KBasic:10" "≡E"(3) by blast2663

next2664

AOT_show ‹¬�ϕ› if ‹♦¬ϕ›2665

using "≡dfE" "conventions:5" "KBasic:10" "≡E"(4) that by blast2666

qed2667

AOT_theorem "KBasic:12": ‹�ϕ ≡ ¬♦¬ϕ› (157.12)2668

proof (rule "≡I"; rule "→I")2669

AOT_show ‹¬♦¬ϕ› if ‹�ϕ›2670

using "¬¬I" "KBasic:11" "≡E"(3) that by blast2671

next2672

AOT_show ‹�ϕ› if ‹¬♦¬ϕ›2673

using "KBasic:11" "≡E"(1) "reductio-aa:1" that by blast2674

qed2675

AOT_theorem "KBasic:13": ‹�(ϕ → ψ) → (♦ϕ → ♦ψ)› (157.13)2676

proof -2677

AOT_have ‹ϕ → ψ `� ϕ → ψ› by blast2678

AOT_hence ‹�(ϕ → ψ) `� ♦ϕ → ♦ψ›2679

using "RM:2[prem]" by blast2680

AOT_thus ‹�(ϕ → ψ) → (♦ϕ → ♦ψ)› using "→I" by blast2681

qed2682

lemmas "K♦" = "KBasic:13"2683

AOT_theorem "KBasic:14": ‹♦�ϕ ≡ ¬�♦¬ϕ› (157.14)2684

by (meson "RE♦" "KBasic:11" "KBasic:12" "≡E"(6) "oth-class-taut:3:a")2685

AOT_theorem "KBasic:15": ‹(�ϕ ∨ �ψ) → �(ϕ ∨ ψ)› (157.15)2686

proof -2687

AOT_modally_strict {2688

AOT_have ‹ϕ → (ϕ ∨ ψ)› and ‹ψ → (ϕ ∨ ψ)›2689

by (auto simp: "Disjunction Addition"(1) "Disjunction Addition"(2))2690

}2691

AOT_hence ‹�ϕ → �(ϕ ∨ ψ)› and ‹�ψ → �(ϕ ∨ ψ)›2692

using RM by blast+2693

AOT_thus ‹(�ϕ ∨ �ψ) → �(ϕ ∨ ψ)›2694

by (metis "∨E"(1) "deduction-theorem")2695

qed2696

2697

AOT_theorem "KBasic:16": ‹(�ϕ & ♦ψ) → ♦(ϕ & ψ)› (157.16)2698

by (meson "KBasic:13" "RM:1" Adjunction "Hypothetical Syllogism"2699

Importation "→E")2700

2701

AOT_theorem "rule-sub-lem:1:a": (158.1.a)2702

assumes ‹`� �(ψ ≡ χ)›2703

shows ‹`� ¬ψ ≡ ¬χ›2704

using "qml:2"[axiom_inst, THEN "→E", OF assms]2705

"≡E"(1) "oth-class-taut:4:b" by blast2706

2707

235

A. Isabelle Theory

AOT_theorem "rule-sub-lem:1:b": (158.1.b)2708

assumes ‹`� �(ψ ≡ χ)›2709

shows ‹`� (ψ → Θ) ≡ (χ → Θ)›2710

using "qml:2"[axiom_inst, THEN "→E", OF assms]2711

using "oth-class-taut:4:c" "vdash-properties:6" by blast2712

2713

AOT_theorem "rule-sub-lem:1:c": (158.1.c)2714

assumes ‹`� �(ψ ≡ χ)›2715

shows ‹`� (Θ → ψ) ≡ (Θ → χ)›2716

using "qml:2"[axiom_inst, THEN "→E", OF assms]2717

using "oth-class-taut:4:d" "vdash-properties:6" by blast2718

2719

AOT_theorem "rule-sub-lem:1:d": (158.1.d)2720

assumes ‹for arbitrary α: `� �(ψ{α} ≡ χ{α})›2721

shows ‹`� ∀α ψ{α} ≡ ∀α χ{α}›2722

proof -2723

AOT_modally_strict {2724

AOT_have ‹∀α (ψ{α} ≡ χ{α})›2725

using "qml:2"[axiom_inst, THEN "→E", OF assms] "∀I" by fast2726

AOT_hence 0: ‹ψ{α} ≡ χ{α}› for α using "∀E" by blast2727

AOT_show ‹∀α ψ{α} ≡ ∀α χ{α}›2728

proof (rule "≡I"; rule "→I")2729

AOT_assume ‹∀α ψ{α}›2730

AOT_hence ‹ψ{α}› for α using "∀E" by blast2731

AOT_hence ‹χ{α}› for α using 0 "≡E" by blast2732

AOT_thus ‹∀α χ{α}› by (rule "∀I")2733

next2734

AOT_assume ‹∀α χ{α}›2735

AOT_hence ‹χ{α}› for α using "∀E" by blast2736

AOT_hence ‹ψ{α}› for α using 0 "≡E" by blast2737

AOT_thus ‹∀α ψ{α}› by (rule "∀I")2738

qed2739

}2740

qed2741

2742

AOT_theorem "rule-sub-lem:1:e": (158.1.e)2743

assumes ‹`� �(ψ ≡ χ)›2744

shows ‹`� [λ ψ] ≡ [λ χ]›2745

using "qml:2"[axiom_inst, THEN "→E", OF assms]2746

using "≡E"(1) "propositions-lemma:6" by blast2747

2748

AOT_theorem "rule-sub-lem:1:f": (158.1.f)2749

assumes ‹`� �(ψ ≡ χ)›2750

shows ‹`� Aψ ≡ Aχ›2751

using "qml:2"[axiom_inst, THEN "→E", OF assms, THEN "RA[2]"]2752

by (metis "Act-Basic:5" "≡E"(1))2753

2754

AOT_theorem "rule-sub-lem:1:g": (158.1.g)2755

assumes ‹`� �(ψ ≡ χ)›2756

shows ‹`� �ψ ≡ �χ›2757

using "KBasic:6" assms "vdash-properties:6" by blast2758

2759

text‹Note that instead of deriving @{text "rule-sub-lem:2"},2760

@{text "rule-sub-lem:3"}, @{text "rule-sub-lem:4"},2761

and @{text "rule-sub-nec"}, we construct substitution methods instead.›2762

2763

class AOT_subst =2764

fixes AOT_subst :: "(’a ⇒ o) ⇒ bool"2765

and AOT_subst_cond :: "’a ⇒ ’a ⇒ bool"2766

assumes AOT_subst:2767

"AOT_subst ϕ =⇒ AOT_subst_cond ψ χ =⇒ [v |= «ϕ ψ» ≡ «ϕ χ»]"2768

2769

named_theorems AOT_substI2770

236

A.7. The Deductive System PLM

2771

instantiation o :: AOT_subst2772

begin2773

2774

inductive AOT_subst_o where2775

AOT_subst_o_id[AOT_substI]:2776

‹AOT_subst_o (λϕ. ϕ)›2777

| AOT_subst_o_const[AOT_substI]:2778

‹AOT_subst_o (λϕ. ψ)›2779

| AOT_subst_o_not[AOT_substI]:2780

‹AOT_subst_o Θ =⇒ AOT_subst_o (λ ϕ. «¬Θ{ϕ}»)›2781

| AOT_subst_o_imp[AOT_substI]:2782

‹AOT_subst_o Θ =⇒ AOT_subst_o Ξ =⇒ AOT_subst_o (λ ϕ. «Θ{ϕ} → Ξ{ϕ}»)›2783

| AOT_subst_o_lambda0[AOT_substI]:2784

‹AOT_subst_o Θ =⇒ AOT_subst_o (λ ϕ. (AOT_lambda0 (Θ ϕ)))›2785

| AOT_subst_o_act[AOT_substI]:2786

‹AOT_subst_o Θ =⇒ AOT_subst_o (λ ϕ. «AΘ{ϕ}»)›2787

| AOT_subst_o_box[AOT_substI]:2788

‹AOT_subst_o Θ =⇒ AOT_subst_o (λ ϕ. «�Θ{ϕ}»)›2789

| AOT_subst_o_by_def[AOT_substI]:2790

‹(
∧

ψ . AOT_model_equiv_def (Θ ψ) (Ξ ψ)) =⇒2791

AOT_subst_o Ξ =⇒ AOT_subst_o Θ›2792

2793

2794

definition AOT_subst_cond_o where2795

‹AOT_subst_cond_o ≡ λ ψ χ . ∀ v . [v |= ψ ≡ χ]›2796

2797

instance2798

proof2799

fix ψ χ :: o and ϕ :: ‹o ⇒ o›2800

assume cond: ‹AOT_subst_cond ψ χ›2801

assume ‹AOT_subst ϕ›2802

moreover AOT_have ‹`� ψ ≡ χ›2803

using cond unfolding AOT_subst_cond_o_def by blast2804

ultimately AOT_show ‹`� ϕ{ψ} ≡ ϕ{χ}›2805

proof (induct arbitrary: ψ χ)2806

case AOT_subst_o_id2807

thus ?case2808

using "≡E"(2) "oth-class-taut:4:b" "rule-sub-lem:1:a" by blast2809

next2810

case (AOT_subst_o_const ψ)2811

thus ?case2812

by (simp add: "oth-class-taut:3:a")2813

next2814

case (AOT_subst_o_not Θ)2815

thus ?case2816

by (simp add: RN "rule-sub-lem:1:a")2817

next2818

case (AOT_subst_o_imp Θ Ξ)2819

thus ?case2820

by (meson RN "≡E"(5) "rule-sub-lem:1:b" "rule-sub-lem:1:c")2821

next2822

case (AOT_subst_o_lambda0 Θ)2823

thus ?case2824

by (simp add: RN "rule-sub-lem:1:e")2825

next2826

case (AOT_subst_o_act Θ)2827

thus ?case2828

by (simp add: RN "rule-sub-lem:1:f")2829

next2830

case (AOT_subst_o_box Θ)2831

thus ?case2832

by (simp add: RN "rule-sub-lem:1:g")2833

237

A. Isabelle Theory

next2834

case (AOT_subst_o_by_def Θ Ξ)2835

AOT_modally_strict {2836

AOT_have ‹Ξ{ψ} ≡ Ξ{χ}›2837

using AOT_subst_o_by_def by simp2838

AOT_thus ‹Θ{ψ} ≡ Θ{χ}›2839

using "≡Df"[OF AOT_subst_o_by_def(1), of _ ψ]2840

"≡Df"[OF AOT_subst_o_by_def(1), of _ χ]2841

by (metis "≡E"(6) "oth-class-taut:3:a")2842

}2843

qed2844

qed2845

end2846

2847

instantiation "fun" :: (AOT_Term_id_2, AOT_subst) AOT_subst2848

begin2849

2850

definition AOT_subst_cond_fun :: ‹(’a ⇒ ’b) ⇒ (’a ⇒ ’b) ⇒ bool› where2851

‹AOT_subst_cond_fun ≡ λ ϕ ψ . ∀ α . AOT_subst_cond (ϕ (AOT_term_of_var α))2852

(ψ (AOT_term_of_var α))›2853

2854

inductive AOT_subst_fun :: ‹((’a ⇒ ’b) ⇒ o) ⇒ bool› where2855

AOT_subst_fun_const[AOT_substI]:2856

‹AOT_subst_fun (λϕ. ψ)›2857

| AOT_subst_fun_id[AOT_substI]:2858

‹AOT_subst Π =⇒ AOT_subst_fun (λϕ. Π (ϕ (AOT_term_of_var α)))›2859

| AOT_subst_fun_all[AOT_substI]:2860

‹AOT_subst Π =⇒ (
∧

α . AOT_subst_fun (Θ (AOT_term_of_var α))) =⇒2861

AOT_subst_fun (λϕ :: ’a ⇒ ’b. Π «∀α «Θ (α::’a) ϕ»»)›2862

| AOT_subst_fun_not[AOT_substI]:2863

‹AOT_subst Π =⇒ AOT_subst_fun (λϕ. «¬«Π ϕ»»)›2864

| AOT_subst_fun_imp[AOT_substI]:2865

‹AOT_subst Π =⇒ AOT_subst Θ =⇒ AOT_subst_fun (λϕ. ««Π ϕ» → «Θ ϕ»»)›2866

| AOT_subst_fun_lambda0[AOT_substI]:2867

‹AOT_subst Θ =⇒ AOT_subst_fun (λ ϕ. (AOT_lambda0 (Θ ϕ)))›2868

| AOT_subst_fun_act[AOT_substI]:2869

‹AOT_subst Θ =⇒ AOT_subst_fun (λ ϕ. «A«Θ ϕ»»)›2870

| AOT_subst_fun_box[AOT_substI]:2871

‹AOT_subst Θ =⇒ AOT_subst_fun (λ ϕ. «�«Θ ϕ»»)›2872

| AOT_subst_fun_def[AOT_substI]:2873

‹(
∧

ϕ . AOT_model_equiv_def (Θ ϕ) (Π ϕ)) =⇒2874

AOT_subst_fun Π =⇒ AOT_subst_fun Θ›2875

2876

instance proof2877

fix ψ χ :: ‹’a ⇒ ’b› and ϕ :: ‹(’a ⇒ ’b) ⇒ o›2878

assume ‹AOT_subst ϕ›2879

moreover assume cond: ‹AOT_subst_cond ψ χ›2880

ultimately AOT_show ‹`� «ϕ ψ» ≡ «ϕ χ»›2881

proof(induct)2882

case (AOT_subst_fun_const ψ)2883

then show ?case by (simp add: "oth-class-taut:3:a")2884

next2885

case (AOT_subst_fun_id Π x)2886

then show ?case by (simp add: AOT_subst AOT_subst_cond_fun_def)2887

next2888

next2889

case (AOT_subst_fun_all Π Θ)2890

AOT_have ‹`� �(Θ{α, «ψ»} ≡ Θ{α, «χ»})› for α2891

using AOT_subst_fun_all.hyps(3) AOT_subst_fun_all.prems RN by presburger2892

thus ?case using AOT_subst[OF AOT_subst_fun_all(1)]2893

by (simp add: RN "rule-sub-lem:1:d"2894

AOT_subst_cond_fun_def AOT_subst_cond_o_def)2895

next2896

238

A.7. The Deductive System PLM

case (AOT_subst_fun_not Π)2897

then show ?case by (simp add: RN "rule-sub-lem:1:a")2898

next2899

case (AOT_subst_fun_imp Π Θ)2900

then show ?case2901

unfolding AOT_subst_cond_fun_def AOT_subst_cond_o_def2902

by (meson "≡E"(5) "oth-class-taut:4:c" "oth-class-taut:4:d" "→E")2903

next2904

case (AOT_subst_fun_lambda0 Θ)2905

then show ?case by (simp add: RN "rule-sub-lem:1:e")2906

next2907

case (AOT_subst_fun_act Θ)2908

then show ?case by (simp add: RN "rule-sub-lem:1:f")2909

next2910

case (AOT_subst_fun_box Θ)2911

then show ?case by (simp add: RN "rule-sub-lem:1:g")2912

next2913

case (AOT_subst_fun_def Θ Π)2914

then show ?case2915

by (meson "df-rules-formulas[3]" "df-rules-formulas[4]" "≡I" "≡E"(5))2916

qed2917

qed2918

end2919

2920

ML‹2921

fun prove_AOT_subst_tac ctxt = REPEAT (SUBGOAL (fn (trm,_) => let2922

fun findHeadConst (Const x) = SOME x2923

| findHeadConst (A $ _) = findHeadConst A2924

| findHeadConst _ = NONE2925

fun findDef (Const (const_name‹AOT_model_equiv_def›, _) $ lhs $ _)2926

= findHeadConst lhs2927

| findDef (A $ B) = (case findDef A of SOME x => SOME x | _ => findDef B)2928

| findDef (Abs (_,_,c)) = findDef c2929

| findDef _ = NONE2930

val const_opt = (findDef trm)2931

val defs = case const_opt of SOME const => List.filter (fn thm => let2932

val concl = Thm.concl_of thm2933

val thmconst = (findDef concl)2934

in case thmconst of SOME (c,_) => fst const = c | _ => false end)2935

(AOT_Definitions.get ctxt)2936

| _ => []2937

val tac = case defs of2938

[] => safe_step_tac (ctxt addSIs @{thms AOT_substI}) 12939

| _ => resolve_tac ctxt defs 12940

in tac end) 1)2941

fun getSubstThm ctxt reversed phi p q = let2942

val p_ty = Term.type_of p2943

val abs = HOLogic.mk_Trueprop (@{const AOT_subst(_)} $ phi)2944

val abs = Syntax.check_term ctxt abs2945

val substThm = Goal.prove ctxt [] [] abs2946

(fn {context=ctxt, prems=_} => prove_AOT_subst_tac ctxt)2947

val substThm = substThm RS @{thm AOT_subst}2948

in if reversed then let2949

val substThm = Drule.instantiate_normalize2950

(TVars.empty, Vars.make [((("χ", 0), p_ty), Thm.cterm_of ctxt p),2951

((("ψ", 0), p_ty), Thm.cterm_of ctxt q)]) substThm2952

val substThm = substThm RS @{thm "≡E"(1)}2953

in substThm end2954

else2955

let2956

val substThm = Drule.instantiate_normalize2957

(TVars.empty, Vars.make [((("ψ", 0), p_ty), Thm.cterm_of ctxt p),2958

((("χ", 0), p_ty), Thm.cterm_of ctxt q)]) substThm2959

239

A. Isabelle Theory

val substThm = substThm RS @{thm "≡E"(2)}2960

in substThm end end2961

›2962

2963

method_setup AOT_subst = ‹2964

Scan.option (Scan.lift (Args.parens (Args.$$$ "reverse"))) –2965

Scan.lift (Parse.embedded_inner_syntax – Parse.embedded_inner_syntax) –2966

Scan.option (Scan.lift (Args.$$$ "for" – Args.colon) |–2967

Scan.repeat1 (Scan.lift (Parse.embedded_inner_syntax) –2968

Scan.option (Scan.lift (Args.$$$ "::" |– Parse.embedded_inner_syntax))))2969

» (fn ((reversed,(raw_p,raw_q)),raw_bounds) => (fn ctxt =>2970

(Method.SIMPLE_METHOD (Subgoal.FOCUS (fn {context = ctxt, params = _,2971

prems = prems, asms = asms, concl = concl, schematics = _} =>2972

let2973

val thms = prems2974

val ctxt’ = ctxt2975

val ctxt = Context_Position.set_visible false ctxt2976

val raw_bounds = case raw_bounds of SOME bounds => bounds | _ => []2977

2978

val ctxt = (fold (fn (bound, ty) => fn ctxt =>2979

let2980

val bound = AOT_read_term @{nonterminal τ’} ctxt bound2981

val ty = Option.map (Syntax.read_typ ctxt) ty2982

val ctxt = case ty of SOME ty => let2983

val bound = Const ("_type_constraint_", Type ("fun", [ty,ty])) $ bound2984

val bound = Syntax.check_term ctxt bound2985

in Variable.declare_term bound ctxt end | _ => ctxt2986

in ctxt end)) raw_bounds ctxt2987

2988

val p = AOT_read_term @{nonterminal ϕ’} ctxt raw_p2989

val p = Syntax.check_term ctxt p2990

val ctxt = Variable.declare_term p ctxt2991

val q = AOT_read_term @{nonterminal ϕ’} ctxt raw_q2992

val q = Syntax.check_term ctxt q2993

val ctxt = Variable.declare_term q ctxt2994

2995

val bounds = (map (fn (bound, _) =>2996

Syntax.check_term ctxt (AOT_read_term @{nonterminal τ’} ctxt bound)2997

)) raw_bounds2998

val p = fold (fn bound => fn p =>2999

Term.abs ("α", Term.type_of bound) (Term.abstract_over (bound,p)))3000

bounds p3001

val p = Syntax.check_term ctxt p3002

val p_ty = Term.type_of p3003

3004

val pat = @{const Trueprop} $3005

(@{const AOT_model_valid_in} $ Var (("w",0), @{typ w}) $3006

(Var (("ϕ",0), Type (type_name‹fun›, [p_ty, @{typ o}])) $ p))3007

val univ = Unify.matchers (Context.Proof ctxt) [(pat, Thm.term_of concl)]3008

val univ = hd (Seq.list_of univ) (* TODO: consider all matches *)3009

val phi = the (Envir.lookup univ3010

(("ϕ",0), Type (type_name‹fun›, [p_ty, @{typ o}])))3011

3012

val q = fold (fn bound => fn q =>3013

Term.abs ("α", Term.type_of bound) (Term.abstract_over (bound,q))) bounds q3014

val q = Syntax.check_term ctxt q3015

3016

(* Reparse to report bounds as fixes. *)3017

val ctxt = Context_Position.restore_visible ctxt’ ctxt3018

val ctxt’ = ctxt3019

fun unsource str = fst (Input.source_content (Syntax.read_input str))3020

val (_,ctxt’) = Proof_Context.add_fixes (map (fn (str,_) =>3021

(Binding.make (unsource str, Position.none), NONE, Mixfix.NoSyn)) raw_bounds)3022

240

A.7. The Deductive System PLM

ctxt’3023

val _ = (map (fn (x,_) =>3024

Syntax.check_term ctxt (AOT_read_term @{nonterminal τ’} ctxt’ x)))3025

raw_bounds3026

val _ = AOT_read_term @{nonterminal ϕ’} ctxt’ raw_p3027

val _ = AOT_read_term @{nonterminal ϕ’} ctxt’ raw_q3028

val reversed = case reversed of SOME _ => true | _ => false3029

val simpThms = [@{thm AOT_subst_cond_o_def}, @{thm AOT_subst_cond_fun_def}]3030

in3031

resolve_tac ctxt [getSubstThm ctxt reversed phi p q] 13032

THEN simp_tac (ctxt addsimps simpThms) 13033

THEN (REPEAT (resolve_tac ctxt [@{thm allI}] 1))3034

THEN (TRY (resolve_tac ctxt thms 1))3035

end3036

) ctxt 1))))3037

›3038

3039

method_setup AOT_subst_def = ‹3040

Scan.option (Scan.lift (Args.parens (Args.$$$ "reverse"))) –3041

Attrib.thm3042

» (fn (reversed,fact) => (fn ctxt =>3043

(Method.SIMPLE_METHOD (Subgoal.FOCUS (fn {context = ctxt, params = _,3044

prems = prems, asms = asms, concl = concl, schematics = _} =>3045

let3046

val c = Thm.concl_of fact3047

val (lhs, rhs) = case c of (const‹Trueprop› $3048

(const‹AOT_model_equiv_def› $ lhs $ rhs)) => (lhs, rhs)3049

| _ => raise Fail "Definition expected."3050

val substCond = HOLogic.mk_Trueprop3051

(Const (const_name‹AOT_subst_cond›, dummyT) $ lhs $ rhs)3052

val substCond = Syntax.check_term3053

(Proof_Context.set_mode Proof_Context.mode_schematic ctxt)3054

substCond3055

val simpThms = [@{thm AOT_subst_cond_o_def},3056

@{thm AOT_subst_cond_fun_def},3057

fact RS @{thm "≡Df"}]3058

val substCondThm = Goal.prove ctxt [] [] substCond3059

(fn {context=ctxt, prems=prems} =>3060

(SUBGOAL (fn (trm,int) =>3061

auto_tac (ctxt addsimps simpThms)) 1))3062

val substThm = substCondThm RSN (2,@{thm AOT_subst})3063

in3064

resolve_tac ctxt [substThm RS3065

(case reversed of NONE => @{thm "≡E"(2)} | _ => @{thm "≡E"(1)})] 13066

THEN prove_AOT_subst_tac ctxt3067

THEN (TRY (resolve_tac ctxt prems 1))3068

end3069

) ctxt 1))))3070

›3071

3072

method_setup AOT_subst_thm = ‹3073

Scan.option (Scan.lift (Args.parens (Args.$$$ "reverse"))) –3074

Attrib.thm3075

» (fn (reversed,fact) => (fn ctxt =>3076

(Method.SIMPLE_METHOD (Subgoal.FOCUS (fn {context = ctxt, params = _,3077

prems = prems, asms = asms, concl = concl, schematics = _} =>3078

let3079

val c = Thm.concl_of fact3080

val (lhs, rhs) = case c of3081

(const‹Trueprop› $3082

(const‹AOT_model_valid_in› $ _ $3083

(const‹AOT_equiv› $ lhs $ rhs))) => (lhs, rhs)3084

| _ => raise Fail "Equivalence expected."3085

241

A. Isabelle Theory

3086

val substCond = HOLogic.mk_Trueprop3087

(Const (const_name‹AOT_subst_cond›, dummyT) $ lhs $ rhs)3088

val substCond = Syntax.check_term3089

(Proof_Context.set_mode Proof_Context.mode_schematic ctxt)3090

substCond3091

val simpThms = [@{thm AOT_subst_cond_o_def},3092

@{thm AOT_subst_cond_fun_def},3093

fact]3094

val substCondThm = Goal.prove ctxt [] [] substCond3095

(fn {context=ctxt, prems=prems} =>3096

(SUBGOAL (fn (trm,int) => auto_tac (ctxt addsimps simpThms)) 1))3097

val substThm = substCondThm RSN (2,@{thm AOT_subst})3098

in3099

resolve_tac ctxt [substThm RS3100

(case reversed of NONE => @{thm "≡E"(2)} | _ => @{thm "≡E"(1)})] 13101

THEN prove_AOT_subst_tac ctxt3102

THEN (TRY (resolve_tac ctxt prems 1))3103

end3104

) ctxt 1))))3105

›3106

3107

AOT_theorem "rule-sub-remark:1[1]": (160.1)3108

assumes ‹`� A!x ≡ ¬♦E!x› and ‹¬A!x›3109

shows ‹¬¬♦E!x›3110

by (AOT_subst (reverse) ‹¬♦E!x› ‹A!x›)3111

(auto simp: assms)3112

3113

AOT_theorem "rule-sub-remark:1[2]": (160.1)3114

assumes ‹`� A!x ≡ ¬♦E!x› and ‹¬¬♦E!x›3115

shows ‹¬A!x›3116

by (AOT_subst ‹A!x› ‹¬♦E!x›)3117

(auto simp: assms)3118

3119

AOT_theorem "rule-sub-remark:2[1]": (160.2)3120

assumes ‹`� [R]xy ≡ ([R]xy & ([Q]a ∨ ¬[Q]a))›3121

and ‹p → [R]xy›3122

shows ‹p → [R]xy & ([Q]a ∨ ¬[Q]a)›3123

by (AOT_subst_thm (reverse) assms(1)) (simp add: assms(2))3124

3125

AOT_theorem "rule-sub-remark:2[2]": (160.2)3126

assumes ‹`� [R]xy ≡ ([R]xy & ([Q]a ∨ ¬[Q]a))›3127

and ‹p → [R]xy & ([Q]a ∨ ¬[Q]a)›3128

shows ‹p → [R]xy›3129

by (AOT_subst_thm assms(1)) (simp add: assms(2))3130

3131

AOT_theorem "rule-sub-remark:3[1]": (160.3)3132

assumes ‹for arbitrary x: `� A!x ≡ ¬♦E!x›3133

and ‹∃x A!x›3134

shows ‹∃x ¬♦E!x›3135

by (AOT_subst (reverse) ‹¬♦E!x› ‹A!x› for: x)3136

(auto simp: assms)3137

3138

AOT_theorem "rule-sub-remark:3[2]": (160.3)3139

assumes ‹for arbitrary x: `� A!x ≡ ¬♦E!x›3140

and ‹∃x ¬♦E!x›3141

shows ‹∃x A!x›3142

by (AOT_subst ‹A!x› ‹¬♦E!x› for: x)3143

(auto simp: assms)3144

3145

AOT_theorem "rule-sub-remark:4[1]": (160.4)3146

assumes ‹`� ¬¬[P]x ≡ [P]x› and ‹A¬¬[P]x›3147

shows ‹A[P]x›3148

242

A.7. The Deductive System PLM

by (AOT_subst_thm (reverse) assms(1)) (simp add: assms(2))3149

3150

AOT_theorem "rule-sub-remark:4[2]": (160.4)3151

assumes ‹`� ¬¬[P]x ≡ [P]x› and ‹A[P]x›3152

shows ‹A¬¬[P]x›3153

by (AOT_subst_thm assms(1)) (simp add: assms(2))3154

3155

AOT_theorem "rule-sub-remark:5[1]": (160.5)3156

assumes ‹`� (ϕ → ψ) ≡ (¬ψ → ¬ϕ)› and ‹�(ϕ → ψ)›3157

shows ‹�(¬ψ → ¬ϕ)›3158

by (AOT_subst_thm (reverse) assms(1)) (simp add: assms(2))3159

3160

AOT_theorem "rule-sub-remark:5[2]": (160.5)3161

assumes ‹`� (ϕ → ψ) ≡ (¬ψ → ¬ϕ)› and ‹�(¬ψ → ¬ϕ)›3162

shows ‹�(ϕ → ψ)›3163

by (AOT_subst_thm assms(1)) (simp add: assms(2))3164

3165

AOT_theorem "rule-sub-remark:6[1]": (160.6)3166

assumes ‹`� ψ ≡ χ› and ‹�(ϕ → ψ)›3167

shows ‹�(ϕ → χ)›3168

by (AOT_subst_thm (reverse) assms(1)) (simp add: assms(2))3169

3170

AOT_theorem "rule-sub-remark:6[2]": (160.6)3171

assumes ‹`� ψ ≡ χ› and ‹�(ϕ → χ)›3172

shows ‹�(ϕ → ψ)›3173

by (AOT_subst_thm assms(1)) (simp add: assms(2))3174

3175

AOT_theorem "rule-sub-remark:7[1]": (160.7)3176

assumes ‹`� ϕ ≡ ¬¬ϕ› and ‹�(ϕ → ϕ)›3177

shows ‹�(¬¬ϕ → ϕ)›3178

by (AOT_subst_thm (reverse) assms(1)) (simp add: assms(2))3179

3180

AOT_theorem "rule-sub-remark:7[2]": (160.7)3181

assumes ‹`� ϕ ≡ ¬¬ϕ› and ‹�(¬¬ϕ → ϕ)›3182

shows ‹�(ϕ → ϕ)›3183

by (AOT_subst_thm assms(1)) (simp add: assms(2))3184

3185

AOT_theorem "KBasic2:1": ‹�¬ϕ ≡ ¬♦ϕ› (161.1)3186

by (meson "conventions:5" "contraposition:2"3187

"Hypothetical Syllogism" "df-rules-formulas[3]"3188

"df-rules-formulas[4]" "≡I" "useful-tautologies:1")3189

3190

AOT_theorem "KBasic2:2": ‹♦(ϕ ∨ ψ) ≡ (♦ϕ ∨ ♦ψ)› (161.2)3191

proof -3192

AOT_have ‹♦(ϕ ∨ ψ) ≡ ♦¬(¬ϕ & ¬ψ)›3193

by (simp add: "RE♦" "oth-class-taut:5:b")3194

also AOT_have ‹. . . ≡ ¬�(¬ϕ & ¬ψ)›3195

using "KBasic:11" "≡E"(6) "oth-class-taut:3:a" by blast3196

also AOT_have ‹. . . ≡ ¬(�¬ϕ & �¬ψ)›3197

using "KBasic:3" "≡E"(1) "oth-class-taut:4:b" by blast3198

also AOT_have ‹. . . ≡ ¬(¬♦ϕ & ¬♦ψ)›3199

using "KBasic2:1"3200

by (AOT_subst ‹�¬ϕ› ‹¬♦ϕ›; AOT_subst ‹�¬ψ› ‹¬♦ψ›;3201

auto simp: "oth-class-taut:3:a")3202

also AOT_have ‹. . . ≡ ¬¬(♦ϕ ∨ ♦ψ)›3203

using "≡E"(6) "oth-class-taut:3:b" "oth-class-taut:5:b" by blast3204

also AOT_have ‹. . . ≡ ♦ϕ ∨ ♦ψ›3205

by (simp add: "≡I" "useful-tautologies:1" "useful-tautologies:2")3206

finally show ?thesis .3207

qed3208

3209

AOT_theorem "KBasic2:3": ‹♦(ϕ & ψ) → (♦ϕ & ♦ψ)› (161.3)3210

by (metis "RM♦" "&I" "Conjunction Simplification"(1,2)3211

243

A. Isabelle Theory

"→I" "modus-tollens:1" "reductio-aa:1")3212

3213

AOT_theorem "KBasic2:4": ‹♦(ϕ → ψ) ≡ (�ϕ → ♦ψ)› (161.4)3214

proof -3215

AOT_have ‹♦(ϕ → ψ) ≡ ♦(¬ϕ ∨ ψ)›3216

by (AOT_subst ‹ϕ → ψ› ‹¬ϕ ∨ ψ›)3217

(auto simp: "oth-class-taut:1:c" "oth-class-taut:3:a")3218

also AOT_have ‹... ≡ ♦¬ϕ ∨ ♦ψ›3219

by (simp add: "KBasic2:2")3220

also AOT_have ‹... ≡ ¬�ϕ ∨ ♦ψ›3221

by (AOT_subst ‹¬�ϕ› ‹♦¬ϕ›)3222

(auto simp: "KBasic:11" "oth-class-taut:3:a")3223

also AOT_have ‹... ≡ �ϕ → ♦ψ›3224

using "≡E"(6) "oth-class-taut:1:c" "oth-class-taut:3:a" by blast3225

finally show ?thesis .3226

qed3227

3228

AOT_theorem "KBasic2:5": ‹♦♦ϕ ≡ ¬��¬ϕ› (161.5)3229

using "conventions:5"[THEN "≡Df"]3230

by (AOT_subst ‹♦ϕ› ‹¬�¬ϕ›;3231

AOT_subst ‹♦¬�¬ϕ› ‹¬�¬¬�¬ϕ›;3232

AOT_subst (reverse) ‹¬¬�¬ϕ› ‹�¬ϕ›)3233

(auto simp: "oth-class-taut:3:b" "oth-class-taut:3:a")3234

3235

3236

AOT_theorem "KBasic2:6": ‹�(ϕ ∨ ψ) → (�ϕ ∨ ♦ψ)› (161.6)3237

proof(rule "→I"; rule "raa-cor:1")3238

AOT_assume ‹�(ϕ ∨ ψ)›3239

AOT_hence ‹�(¬ϕ → ψ)›3240

using "conventions:2"[THEN "≡Df"]3241

by (AOT_subst (reverse) ‹¬ϕ → ψ› ‹ϕ ∨ ψ›) simp3242

AOT_hence 1: ‹♦¬ϕ → ♦ψ›3243

using "KBasic:13" "vdash-properties:10" by blast3244

AOT_assume ‹¬(�ϕ ∨ ♦ψ)›3245

AOT_hence ‹¬�ϕ› and ‹¬♦ψ›3246

using "&E" "≡E"(1) "oth-class-taut:5:d" by blast+3247

AOT_thus ‹♦ψ & ¬♦ψ›3248

using "&I"(1) 1[THEN "→E"] "KBasic:11" "≡E"(4) "raa-cor:3" by blast3249

qed3250

3251

AOT_theorem "KBasic2:7": ‹(�(ϕ ∨ ψ) & ♦¬ϕ) → ♦ψ› (161.7)3252

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3253

AOT_assume ‹�(ϕ ∨ ψ)›3254

AOT_hence 1: ‹�ϕ ∨ ♦ψ›3255

using "KBasic2:6" "∨I"(2) "∨E"(1) by blast3256

AOT_assume ‹♦¬ϕ›3257

AOT_hence ‹¬�ϕ› using "KBasic:11" "≡E"(2) by blast3258

AOT_thus ‹♦ψ› using 1 "∨E"(2) by blast3259

qed3260

3261

AOT_theorem "T-S5-fund:1": ‹ϕ → ♦ϕ› (162.1)3262

by (meson "≡dfI" "conventions:5" "contraposition:2"3263

"Hypothetical Syllogism" "→I" "qml:2"[axiom_inst])3264

lemmas "T♦" = "T-S5-fund:1"3265

3266

AOT_theorem "T-S5-fund:2": ‹♦�ϕ → �ϕ› (162.2)3267

proof(rule "→I")3268

AOT_assume ‹♦�ϕ›3269

AOT_hence ‹¬�♦¬ϕ›3270

using "KBasic:14" "≡E"(4) "raa-cor:3" by blast3271

moreover AOT_have ‹♦¬ϕ → �♦¬ϕ›3272

by (fact "qml:3"[axiom_inst])3273

ultimately AOT_have ‹¬♦¬ϕ›3274

244

A.7. The Deductive System PLM

using "modus-tollens:1" by blast3275

AOT_thus ‹�ϕ› using "KBasic:12" "≡E"(2) by blast3276

qed3277

lemmas "5♦" = "T-S5-fund:2"3278

3279

AOT_theorem "Act-Sub:1": ‹Aϕ ≡ ¬A¬ϕ› (163.1)3280

by (AOT_subst ‹A¬ϕ› ‹¬Aϕ›)3281

(auto simp: "logic-actual-nec:1"[axiom_inst] "oth-class-taut:3:b")3282

3283

AOT_theorem "Act-Sub:2": ‹♦ϕ ≡ A♦ϕ› (163.2)3284

using "conventions:5"[THEN "≡Df"]3285

by (AOT_subst ‹♦ϕ› ‹¬�¬ϕ›)3286

(metis "deduction-theorem" "≡I" "≡E"(1) "≡E"(2) "≡E"(3)3287

"logic-actual-nec:1"[axiom_inst] "qml-act:2"[axiom_inst])3288

3289

AOT_theorem "Act-Sub:3": ‹Aϕ → ♦ϕ› (163.3)3290

using "conventions:5"[THEN "≡Df"]3291

by (AOT_subst ‹♦ϕ› ‹¬�¬ϕ›)3292

(metis "Act-Sub:1" "→I" "≡E"(4) "nec-imp-act" "reductio-aa:2" "→E")3293

3294

AOT_theorem "Act-Sub:4": ‹Aϕ ≡ ♦Aϕ› (163.4)3295

proof (rule "≡I"; rule "→I")3296

AOT_assume ‹Aϕ›3297

AOT_thus ‹♦Aϕ› using "T♦" "vdash-properties:10" by blast3298

next3299

AOT_assume ‹♦Aϕ›3300

AOT_hence ‹¬�¬Aϕ›3301

using "≡dfE" "conventions:5" by blast3302

AOT_hence ‹¬�A¬ϕ›3303

by (AOT_subst ‹A¬ϕ› ‹¬Aϕ›)3304

(simp add: "logic-actual-nec:1"[axiom_inst])3305

AOT_thus ‹Aϕ›3306

using "Act-Basic:1" "Act-Basic:6" "∨E"(3) "≡E"(4)3307

"reductio-aa:1" by blast3308

qed3309

3310

AOT_theorem "Act-Sub:5": ‹♦Aϕ → A♦ϕ› (163.5)3311

by (metis "Act-Sub:2" "Act-Sub:3" "Act-Sub:4" "→I" "≡E"(1) "≡E"(2) "→E")3312

3313

AOT_theorem "S5Basic:1": ‹♦ϕ ≡ �♦ϕ› (164.1)3314

by (simp add: "≡I" "qml:2"[axiom_inst] "qml:3"[axiom_inst])3315

3316

AOT_theorem "S5Basic:2": ‹�ϕ ≡ ♦�ϕ› (164.2)3317

by (simp add: "T♦" "5♦" "≡I")3318

3319

AOT_theorem "S5Basic:3": ‹ϕ → �♦ϕ› (164.3)3320

using "T♦" "Hypothetical Syllogism" "qml:3"[axiom_inst] by blast3321

lemmas "B" = "S5Basic:3"3322

3323

AOT_theorem "S5Basic:4": ‹♦�ϕ → ϕ› (164.4)3324

using "5♦" "Hypothetical Syllogism" "qml:2"[axiom_inst] by blast3325

lemmas "B♦" = "S5Basic:4"3326

3327

AOT_theorem "S5Basic:5": ‹�ϕ → ��ϕ› (164.5)3328

using "RM:1" "B" "5♦" "Hypothetical Syllogism" by blast3329

lemmas "4" = "S5Basic:5"3330

3331

AOT_theorem "S5Basic:6": ‹�ϕ ≡ ��ϕ› (164.6)3332

by (simp add: "4" "≡I" "qml:2"[axiom_inst])3333

3334

AOT_theorem "S5Basic:7": ‹♦♦ϕ → ♦ϕ› (164.7)3335

using "conventions:5"[THEN "≡Df"] "oth-class-taut:3:b"3336

by (AOT_subst ‹♦♦ϕ› ‹¬�¬♦ϕ›;3337

245

A. Isabelle Theory

AOT_subst ‹♦ϕ› ‹¬�¬ϕ›;3338

AOT_subst (reverse) ‹¬¬�¬ϕ› ‹�¬ϕ›;3339

AOT_subst (reverse) ‹��¬ϕ› ‹�¬ϕ›)3340

(auto simp: "S5Basic:6" "if-p-then-p")3341

3342

lemmas "4♦" = "S5Basic:7"3343

3344

AOT_theorem "S5Basic:8": ‹♦♦ϕ ≡ ♦ϕ› (164.8)3345

by (simp add: "4♦" "T♦" "≡I")3346

3347

AOT_theorem "S5Basic:9": ‹�(ϕ ∨ �ψ) ≡ (�ϕ ∨ �ψ)› (164.9)3348

apply (rule "≡I"; rule "→I")3349

using "KBasic2:6" "5♦" "∨I"(3) "if-p-then-p" "vdash-properties:10"3350

apply blast3351

by (meson "KBasic:15" "4" "∨I"(3) "∨E"(1) "Disjunction Addition"(1)3352

"con-dis-taut:7" "intro-elim:1" "Commutativity of ∨")3353

3354

AOT_theorem "S5Basic:10": ‹�(ϕ ∨ ♦ψ) ≡ (�ϕ ∨ ♦ψ)› (164.10)3355

proof(rule "≡I"; rule "→I")3356

AOT_assume ‹�(ϕ ∨ ♦ψ)›3357

AOT_hence ‹�ϕ ∨ ♦♦ψ›3358

by (meson "KBasic2:6" "∨I"(2) "∨E"(1))3359

AOT_thus ‹�ϕ ∨ ♦ψ›3360

by (meson "B♦" "4" "4♦" "T♦" "∨I"(3))3361

next3362

AOT_assume ‹�ϕ ∨ ♦ψ›3363

AOT_hence ‹�ϕ ∨ �♦ψ›3364

by (meson "S5Basic:1" "B♦" "S5Basic:6" "T♦" "5♦" "∨I"(3) "intro-elim:1")3365

AOT_thus ‹�(ϕ ∨ ♦ψ)›3366

by (meson "KBasic:15" "∨I"(3) "∨E"(1) "Disjunction Addition"(1,2))3367

qed3368

3369

AOT_theorem "S5Basic:11": ‹♦(ϕ & ♦ψ) ≡ (♦ϕ & ♦ψ)› (164.11)3370

proof -3371

AOT_have ‹♦(ϕ & ♦ψ) ≡ ♦¬(¬ϕ ∨ ¬♦ψ)›3372

by (AOT_subst ‹ϕ & ♦ψ› ‹¬(¬ϕ ∨ ¬♦ψ)›)3373

(auto simp: "oth-class-taut:5:a" "oth-class-taut:3:a")3374

also AOT_have ‹. . . ≡ ♦¬(¬ϕ ∨ �¬ψ)›3375

by (AOT_subst ‹�¬ψ› ‹¬♦ψ›)3376

(auto simp: "KBasic2:1" "oth-class-taut:3:a")3377

also AOT_have ‹. . . ≡ ¬�(¬ϕ ∨ �¬ψ)›3378

using "KBasic:11" "≡E"(6) "oth-class-taut:3:a" by blast3379

also AOT_have ‹. . . ≡ ¬(�¬ϕ ∨ �¬ψ)›3380

using "S5Basic:9" "≡E"(1) "oth-class-taut:4:b" by blast3381

also AOT_have ‹. . . ≡ ¬(¬♦ϕ ∨ ¬♦ψ)›3382

using "KBasic2:1"3383

by (AOT_subst ‹�¬ϕ› ‹¬♦ϕ›; AOT_subst ‹�¬ψ› ‹¬♦ψ›)3384

(auto simp: "oth-class-taut:3:a")3385

also AOT_have ‹. . . ≡ ♦ϕ & ♦ψ›3386

using "≡E"(6) "oth-class-taut:3:a" "oth-class-taut:5:a" by blast3387

finally show ?thesis .3388

qed3389

3390

AOT_theorem "S5Basic:12": ‹♦(ϕ & �ψ) ≡ (♦ϕ & �ψ)› (164.12)3391

proof (rule "≡I"; rule "→I")3392

AOT_assume ‹♦(ϕ & �ψ)›3393

AOT_hence ‹♦ϕ & ♦�ψ›3394

using "KBasic2:3" "vdash-properties:6" by blast3395

AOT_thus ‹♦ϕ & �ψ›3396

using "5♦" "&I" "&E"(1) "&E"(2) "vdash-properties:6" by blast3397

next3398

AOT_assume ‹♦ϕ & �ψ›3399

moreover AOT_have ‹(��ψ & ♦ϕ) → ♦(ϕ & �ψ)›3400

246

A.7. The Deductive System PLM

by (AOT_subst ‹ϕ & �ψ› ‹�ψ & ϕ›)3401

(auto simp: "Commutativity of &" "KBasic:16")3402

ultimately AOT_show ‹♦(ϕ & �ψ)›3403

by (metis "4" "&I" "Conjunction Simplification"(1,2) "→E")3404

qed3405

3406

AOT_theorem "S5Basic:13": ‹�(ϕ → �ψ) ≡ �(♦ϕ → ψ)› (164.13)3407

proof (rule "≡I")3408

AOT_modally_strict {3409

AOT_have ‹�(ϕ → �ψ) → (♦ϕ → ψ)›3410

by (meson "KBasic:13" "B♦" "Hypothetical Syllogism" "→I")3411

}3412

AOT_hence ‹��(ϕ → �ψ) → �(♦ϕ → ψ)›3413

by (rule RM)3414

AOT_thus ‹�(ϕ → �ψ) → �(♦ϕ → ψ)›3415

using "4" "Hypothetical Syllogism" by blast3416

next3417

AOT_modally_strict {3418

AOT_have ‹�(♦ϕ → ψ) → (ϕ → �ψ)›3419

by (meson "B" "Hypothetical Syllogism" "→I" "qml:1"[axiom_inst])3420

}3421

AOT_hence ‹��(♦ϕ → ψ) → �(ϕ → �ψ)›3422

by (rule RM)3423

AOT_thus ‹�(♦ϕ → ψ) → �(ϕ → �ψ)›3424

using "4" "Hypothetical Syllogism" by blast3425

qed3426

3427

AOT_theorem "derived-S5-rules:1": (165.1)3428

assumes ‹Γ `� ♦ϕ → ψ›3429

shows ‹�Γ `� ϕ → �ψ›3430

proof -3431

AOT_have ‹�Γ `� �♦ϕ → �ψ›3432

using assms by (rule "RM:1[prem]")3433

AOT_thus ‹�Γ `� ϕ → �ψ›3434

using "B" "Hypothetical Syllogism" by blast3435

qed3436

3437

AOT_theorem "derived-S5-rules:2": (165.2)3438

assumes ‹Γ `� ϕ → �ψ›3439

shows ‹�Γ `� ♦ϕ → ψ›3440

proof -3441

AOT_have ‹�Γ `� ♦ϕ → ♦�ψ›3442

using assms by (rule "RM:2[prem]")3443

AOT_thus ‹�Γ `� ♦ϕ → ψ›3444

using "B♦" "Hypothetical Syllogism" by blast3445

qed3446

3447

AOT_theorem "BFs:1": ‹∀α �ϕ{α} → �∀α ϕ{α}› (166.1)3448

proof -3449

AOT_modally_strict {3450

AOT_have ‹♦∀α �ϕ{α} → ♦�ϕ{α}› for α3451

using "cqt-orig:3" by (rule "RM♦")3452

AOT_hence ‹♦∀α �ϕ{α} → ∀α ϕ{α}›3453

using "B♦" "∀I" "→E" "→I" by metis3454

}3455

thus ?thesis3456

using "derived-S5-rules:1" by blast3457

qed3458

lemmas "BF" = "BFs:1"3459

3460

AOT_theorem "BFs:2": ‹�∀α ϕ{α} → ∀α �ϕ{α}› (166.2)3461

proof -3462

AOT_have ‹�∀α ϕ{α} → �ϕ{α}› for α3463

247

A. Isabelle Theory

using RM "cqt-orig:3" by metis3464

thus ?thesis3465

using "cqt-orig:2"[THEN "→E"] "∀I" by metis3466

qed3467

lemmas "CBF" = "BFs:2"3468

3469

AOT_theorem "BFs:3": ‹♦∃α ϕ{α} → ∃α ♦ϕ{α}› (166.3)3470

proof(rule "→I")3471

AOT_modally_strict {3472

AOT_have ‹�∀α ¬ϕ{α} ≡ ∀α �¬ϕ{α}›3473

using BF CBF "≡I" by blast3474

} note ϑ = this3475

3476

AOT_assume ‹♦∃α ϕ{α}›3477

AOT_hence ‹¬�¬(∃α ϕ{α})›3478

using "≡dfE" "conventions:5" by blast3479

AOT_hence ‹¬�∀α ¬ϕ{α}›3480

apply (AOT_subst ‹∀α ¬ϕ{α}› ‹¬(∃α ϕ{α})›)3481

using "≡dfI" "conventions:3" "conventions:4" "&I"3482

"contraposition:2" "cqt-further:4"3483

"df-rules-formulas[3]" by blast3484

AOT_hence ‹¬∀α �¬ϕ{α}›3485

apply (AOT_subst (reverse) ‹∀α �¬ϕ{α}› ‹�∀α ¬ϕ{α}›)3486

using ϑ by blast3487

AOT_hence ‹¬∀α ¬¬�¬ϕ{α}›3488

by (AOT_subst (reverse) ‹¬¬�¬ϕ{α}› ‹�¬ϕ{α}› for: α)3489

(simp add: "oth-class-taut:3:b")3490

AOT_hence ‹∃α ¬�¬ϕ{α}›3491

by (rule "conventions:4"[THEN "≡dfI"])3492

AOT_thus ‹∃α ♦ϕ{α}›3493

using "conventions:5"[THEN "≡Df"]3494

by (AOT_subst ‹♦ϕ{α}› ‹¬�¬ϕ{α}› for: α)3495

qed3496

lemmas "BF♦" = "BFs:3"3497

3498

AOT_theorem "BFs:4": ‹∃α ♦ϕ{α} → ♦∃α ϕ{α}› (166.4)3499

proof(rule "→I")3500

AOT_assume ‹∃α ♦ϕ{α}›3501

AOT_hence ‹¬∀α ¬♦ϕ{α}›3502

using "conventions:4"[THEN "≡dfE"] by blast3503

AOT_hence ‹¬∀α �¬ϕ{α}›3504

using "KBasic2:1"3505

by (AOT_subst ‹�¬ϕ{α}› ‹¬♦ϕ{α}› for: α)3506

moreover AOT_have ‹∀α �¬ϕ{α} ≡ �∀α ¬ϕ{α}›3507

using "≡I" "BF" "CBF" by metis3508

ultimately AOT_have 1: ‹¬�∀α ¬ϕ{α}›3509

using "≡E"(3) by blast3510

AOT_show ‹♦∃α ϕ{α}›3511

apply (rule "conventions:5"[THEN "≡dfI"])3512

apply (AOT_subst ‹∃α ϕ{α}› ‹¬∀α ¬ϕ{α}›)3513

apply (simp add: "conventions:4" "≡Df")3514

apply (AOT_subst ‹¬¬∀α ¬ϕ{α}› ‹∀α ¬ϕ{α}›)3515

by (auto simp: 1 "≡I" "useful-tautologies:1" "useful-tautologies:2")3516

qed3517

lemmas "CBF♦" = "BFs:4"3518

3519

AOT_theorem "sign-S5-thm:1": ‹∃α �ϕ{α} → �∃α ϕ{α}› (167.1)3520

proof(rule "→I")3521

AOT_assume ‹∃α �ϕ{α}›3522

then AOT_obtain α where ‹�ϕ{α}› using "∃E" by metis3523

moreover AOT_have ‹�α↓›3524

by (simp add: "ex:1:a" "rule-ui:2[const_var]" RN)3525

moreover AOT_have ‹�ϕ{τ}, �τ↓ `� �∃α ϕ{α}› for τ3526

248

A.7. The Deductive System PLM

proof -3527

AOT_have ‹ϕ{τ}, τ↓ `� ∃α ϕ{α}› using "existential:1" by blast3528

AOT_thus ‹�ϕ{τ}, �τ↓ `� �∃α ϕ{α}›3529

using "RN[prem]"[where Γ="{ϕ τ, «τ↓»}", simplified] by blast3530

qed3531

ultimately AOT_show ‹�∃α ϕ{α}› by blast3532

qed3533

lemmas Buridan = "sign-S5-thm:1"3534

3535

AOT_theorem "sign-S5-thm:2": ‹♦∀α ϕ{α} → ∀α ♦ϕ{α}› (167.2)3536

proof -3537

AOT_have ‹∀α (♦∀α ϕ{α} → ♦ϕ{α})›3538

by (simp add: "RM♦" "cqt-orig:3" "∀I")3539

AOT_thus ‹♦∀α ϕ{α} → ∀α ♦ϕ{α}›3540

using "∀E"(4) "∀I" "→E" "→I" by metis3541

qed3542

lemmas "Buridan♦" = "sign-S5-thm:2"3543

3544

AOT_theorem "sign-S5-thm:3": (167.3)3545

‹♦∃α (ϕ{α} & ψ{α}) → ♦(∃α ϕ{α} & ∃α ψ{α})›3546

apply (rule "RM:2")3547

by (metis (no_types, lifting) "∃E" "&I" "&E"(1) "&E"(2) "→I" "∃I"(2))3548

3549

AOT_theorem "sign-S5-thm:4": ‹♦∃α (ϕ{α} & ψ{α}) → ♦∃α ϕ{α}› (167.4)3550

apply (rule "RM:2")3551

by (meson "instantiation" "&E"(1) "→I" "∃I"(2))3552

3553

AOT_theorem "sign-S5-thm:5": (167.5)3554

‹(�∀α (ϕ{α} → ψ{α}) & �∀α (ψ{α} → χ{α})) → �∀α (ϕ{α} → χ{α})›3555

proof -3556

{3557

fix ϕ’ ψ’ χ’3558

AOT_assume ‹`� ϕ’ & ψ’ → χ’›3559

AOT_hence ‹�ϕ’ & �ψ’ → �χ’›3560

using "RN[prem]"[where Γ="{ϕ’, ψ’}"] apply simp3561

using "&E" "&I" "→E" "→I" by metis3562

} note R = this3563

show ?thesis by (rule R; fact AOT)3564

qed3565

3566

AOT_theorem "sign-S5-thm:6": (167.6)3567

‹(�∀α (ϕ{α} ≡ ψ{α}) & �∀α(ψ{α} ≡ χ{α})) → �∀α(ϕ{α} ≡ χ{α})›3568

proof -3569

{3570

fix ϕ’ ψ’ χ’3571

AOT_assume ‹`� ϕ’ & ψ’ → χ’›3572

AOT_hence ‹�ϕ’ & �ψ’ → �χ’›3573

using "RN[prem]"[where Γ="{ϕ’, ψ’}"] apply simp3574

using "&E" "&I" "→E" "→I" by metis3575

} note R = this3576

show ?thesis by (rule R; fact AOT)3577

qed3578

3579

AOT_theorem "exist-nec2:1": ‹♦τ↓ → τ↓› (168.1)3580

using "B♦" "RM♦" "Hypothetical Syllogism" "exist-nec" by blast3581

3582

AOT_theorem "exists-nec2:2": ‹♦τ↓ ≡ �τ↓›3583

by (meson "Act-Sub:3" "Hypothetical Syllogism" "exist-nec"3584

"exist-nec2:1" "≡I" "nec-imp-act")3585

3586

AOT_theorem "exists-nec2:3": ‹¬τ↓ → �¬τ↓›3587

using "KBasic2:1" "→I" "exist-nec2:1" "≡E"(2) "modus-tollens:1" by blast3588

3589

249

A. Isabelle Theory

AOT_theorem "exists-nec2:4": ‹♦¬τ↓ ≡ �¬τ↓›3590

by (metis "Act-Sub:3" "KBasic:12" "→I" "exist-nec" "exists-nec2:3"3591

"≡I" "≡E"(4) "nec-imp-act" "reductio-aa:1")3592

3593

AOT_theorem "id-nec2:1": ‹♦α = β → α = β› (169.1)3594

using "B♦" "RM♦" "Hypothetical Syllogism" "id-nec:1" by blast3595

3596

AOT_theorem "id-nec2:2": ‹α 6= β → �α 6= β› (169.2)3597

apply (AOT_subst ‹α 6= β› ‹¬(α = β)›)3598

using "=-infix"[THEN "≡Df"] apply blast3599

using "KBasic2:1" "→I" "id-nec2:1" "≡E"(2) "modus-tollens:1" by blast3600

3601

AOT_theorem "id-nec2:3": ‹♦α 6= β → α 6= β› (169.3)3602

apply (AOT_subst ‹α 6= β› ‹¬(α = β)›)3603

using "=-infix"[THEN "≡Df"] apply blast3604

by (metis "KBasic:11" "→I" "id-nec:2" "≡E"(3) "reductio-aa:2" "→E")3605

3606

AOT_theorem "id-nec2:4": ‹♦α = β → �α = β› (169.4)3607

using "Hypothetical Syllogism" "id-nec2:1" "id-nec:1" by blast3608

3609

AOT_theorem "id-nec2:5": ‹♦α 6= β → �α 6= β› (169.5)3610

using "id-nec2:3" "id-nec2:2" "→I" "→E" by metis3611

3612

AOT_theorem "sc-eq-box-box:1": ‹�(ϕ → �ϕ) ≡ (♦ϕ → �ϕ)› (170.1)3613

apply (rule "≡I"; rule "→I")3614

using "KBasic:13" "5♦" "Hypothetical Syllogism" "→E" apply blast3615

by (metis "KBasic2:1" "KBasic:1" "KBasic:2" "S5Basic:13" "≡E"(2)3616

"raa-cor:5" "→E")3617

3618

AOT_theorem "sc-eq-box-box:2": ‹(�(ϕ → �ϕ) ∨ (♦ϕ → �ϕ)) → (♦ϕ ≡ �ϕ)› (170.2)3619

by (metis "Act-Sub:3" "KBasic:13" "5♦" "∨E"(2) "→I" "≡I"3620

"nec-imp-act" "raa-cor:2" "→E")3621

3622

AOT_theorem "sc-eq-box-box:3": ‹�(ϕ → �ϕ) → (¬�ϕ ≡ �¬ϕ)› (170.3)3623

proof (rule "→I"; rule "≡I"; rule "→I")3624

AOT_assume ‹�(ϕ → �ϕ)›3625

AOT_hence ‹♦ϕ → �ϕ› using "sc-eq-box-box:1" "≡E" by blast3626

moreover AOT_assume ‹¬�ϕ›3627

ultimately AOT_have ‹¬♦ϕ›3628

using "modus-tollens:1" by blast3629

AOT_thus ‹�¬ϕ›3630

using "KBasic2:1" "≡E"(2) by blast3631

next3632

AOT_assume ‹�(ϕ → �ϕ)›3633

moreover AOT_assume ‹�¬ϕ›3634

ultimately AOT_show ‹¬�ϕ›3635

using "modus-tollens:1" "qml:2"[axiom_inst] "→E" by blast3636

qed3637

3638

AOT_theorem "sc-eq-box-box:4": (170.4)3639

‹(�(ϕ → �ϕ) & �(ψ → �ψ)) → ((�ϕ ≡ �ψ) → �(ϕ ≡ ψ))›3640

proof(rule "→I"; rule "→I")3641

AOT_assume ϑ: ‹�(ϕ → �ϕ) & �(ψ → �ψ)›3642

AOT_assume ξ: ‹�ϕ ≡ �ψ›3643

AOT_hence ‹(�ϕ & �ψ) ∨ (¬�ϕ & ¬�ψ)›3644

using "≡E"(4) "oth-class-taut:4:g" "raa-cor:3" by blast3645

moreover {3646

AOT_assume ‹�ϕ & �ψ›3647

AOT_hence ‹�(ϕ ≡ ψ)›3648

using "KBasic:3" "KBasic:8" "≡E"(2) "vdash-properties:10" by blast3649

}3650

moreover {3651

AOT_assume ‹¬�ϕ & ¬�ψ›3652

250

A.7. The Deductive System PLM

moreover AOT_have ‹¬�ϕ ≡ �¬ϕ› and ‹¬�ψ ≡ �¬ψ›3653

using ϑ "Conjunction Simplification"(1,2)3654

"sc-eq-box-box:3" "→E" by metis+3655

ultimately AOT_have ‹�¬ϕ & �¬ψ›3656

by (metis "&I" "Conjunction Simplification"(1,2)3657

"≡E"(4) "modus-tollens:1" "raa-cor:3")3658

AOT_hence ‹�(ϕ ≡ ψ)›3659

using "KBasic:3" "KBasic:9" "≡E"(2) "→E" by blast3660

}3661

ultimately AOT_show ‹�(ϕ ≡ ψ)›3662

using "∨E"(2) "reductio-aa:1" by blast3663

qed3664

3665

AOT_theorem "sc-eq-box-box:5": (170.5)3666

‹(�(ϕ → �ϕ) & �(ψ → �ψ)) → �((ϕ ≡ ψ) → �(ϕ ≡ ψ))›3667

proof (rule "→I")3668

AOT_assume ‹(�(ϕ → �ϕ) & �(ψ → �ψ))›3669

AOT_hence ‹�(�(ϕ → �ϕ) & �(ψ → �ψ))›3670

using 4[THEN "→E"] "&E" "&I" "KBasic:3" "≡E"(2) by metis3671

moreover AOT_have ‹�(�(ϕ → �ϕ) & �(ψ → �ψ)) → �((ϕ ≡ ψ) → �(ϕ ≡ ψ))›3672

proof (rule RM; rule "→I"; rule "→I")3673

AOT_modally_strict {3674

AOT_assume A: ‹(�(ϕ → �ϕ) & �(ψ → �ψ))›3675

AOT_hence ‹ϕ → �ϕ› and ‹ψ → �ψ›3676

using "&E" "qml:2"[axiom_inst] "→E" by blast+3677

moreover AOT_assume ‹ϕ ≡ ψ›3678

ultimately AOT_have ‹�ϕ ≡ �ψ›3679

using "→E" "qml:2"[axiom_inst] "≡E" "≡I" by meson3680

moreover AOT_have ‹(�ϕ ≡ �ψ) → �(ϕ ≡ ψ)›3681

using A "sc-eq-box-box:4" "→E" by blast3682

ultimately AOT_show ‹�(ϕ ≡ ψ)› using "→E" by blast3683

}3684

qed3685

ultimately AOT_show ‹�((ϕ ≡ ψ) → �(ϕ ≡ ψ))› using "→E" by blast3686

qed3687

3688

AOT_theorem "sc-eq-box-box:6": ‹�(ϕ → �ϕ) → ((ϕ → �ψ) → �(ϕ → ψ))› (170.6)3689

proof (rule "→I"; rule "→I"; rule "raa-cor:1")3690

AOT_assume ‹¬�(ϕ → ψ)›3691

AOT_hence ‹♦¬(ϕ → ψ)›3692

by (metis "KBasic:11" "≡E"(1))3693

AOT_hence ‹♦(ϕ & ¬ψ)›3694

by (AOT_subst ‹ϕ & ¬ψ› ‹¬(ϕ → ψ)›)3695

(meson "Commutativity of ≡" "≡E"(1) "oth-class-taut:1:b")3696

AOT_hence ‹♦ϕ› and 2: ‹♦¬ψ›3697

using "KBasic2:3"[THEN "→E"] "&E" by blast+3698

moreover AOT_assume ‹�(ϕ → �ϕ)›3699

ultimately AOT_have ‹�ϕ›3700

by (metis "≡E"(1) "sc-eq-box-box:1" "→E")3701

AOT_hence ϕ3702

using "qml:2"[axiom_inst, THEN "→E"] by blast3703

moreover AOT_assume ‹ϕ → �ψ›3704

ultimately AOT_have ‹�ψ›3705

using "→E" by blast3706

moreover AOT_have ‹¬�ψ›3707

using 2 "KBasic:12" "¬¬I" "intro-elim:3:d" by blast3708

ultimately AOT_show ‹�ψ & ¬�ψ›3709

using "&I" by blast3710

qed3711

3712

AOT_theorem "sc-eq-box-box:7": ‹�(ϕ → �ϕ) → ((ϕ → Aψ) → A(ϕ → ψ))› (170.7)3713

proof (rule "→I"; rule "→I"; rule "raa-cor:1")3714

AOT_assume ‹¬A(ϕ → ψ)›3715

251

A. Isabelle Theory

AOT_hence ‹A¬(ϕ → ψ)›3716

by (metis "Act-Basic:1" "∨E"(2))3717

AOT_hence ‹A(ϕ & ¬ψ)›3718

by (AOT_subst ‹ϕ & ¬ψ› ‹¬(ϕ → ψ)›)3719

(meson "Commutativity of ≡" "≡E"(1) "oth-class-taut:1:b")3720

AOT_hence ‹Aϕ› and 2: ‹A¬ψ›3721

using "Act-Basic:2"[THEN "≡E"(1)] "&E" by blast+3722

AOT_hence ‹♦ϕ›3723

by (metis "Act-Sub:3" "→E")3724

moreover AOT_assume ‹�(ϕ → �ϕ)›3725

ultimately AOT_have ‹�ϕ›3726

by (metis "≡E"(1) "sc-eq-box-box:1" "→E")3727

AOT_hence ϕ3728

using "qml:2"[axiom_inst, THEN "→E"] by blast3729

moreover AOT_assume ‹ϕ → Aψ›3730

ultimately AOT_have ‹Aψ›3731

using "→E" by blast3732

moreover AOT_have ‹¬Aψ›3733

using 2 by (meson "Act-Sub:1" "≡E"(4) "raa-cor:3")3734

ultimately AOT_show ‹Aψ & ¬Aψ›3735

using "&I" by blast3736

qed3737

3738

AOT_theorem "sc-eq-fur:1": ‹♦Aϕ ≡ �Aϕ› (172.1)3739

using "Act-Basic:6" "Act-Sub:4" "≡E"(6) by blast3740

3741

AOT_theorem "sc-eq-fur:2": ‹�(ϕ → �ϕ) → (Aϕ ≡ ϕ)› (172.2)3742

by (metis "B♦" "Act-Sub:3" "KBasic:13" "T♦" "Hypothetical Syllogism"3743

"→I" "≡I" "nec-imp-act")3744

3745

AOT_theorem "sc-eq-fur:3": (172.3)3746

‹�∀x (ϕ{x} → �ϕ{x}) → (∃!x ϕ{x} → ιx ϕ{x}↓)›3747

proof (rule "→I"; rule "→I")3748

AOT_assume ‹�∀x (ϕ{x} → �ϕ{x})›3749

AOT_hence A: ‹∀x �(ϕ{x} → �ϕ{x})›3750

using CBF "→E" by blast3751

AOT_assume ‹∃!x ϕ{x}›3752

then AOT_obtain a where a_def: ‹ϕ{a} & ∀y (ϕ{y} → y = a)›3753

using "∃E"[rotated 1, OF "uniqueness:1"[THEN "≡dfE"]] by blast3754

moreover AOT_have ‹�ϕ{a}›3755

using calculation A "∀E"(2) "qml:2"[axiom_inst] "→E" "&E"(1) by blast3756

AOT_hence ‹Aϕ{a}›3757

using "nec-imp-act" "→E" by blast3758

moreover AOT_have ‹∀y (Aϕ{y} → y = a)›3759

proof (rule "∀I"; rule "→I")3760

fix b3761

AOT_assume ‹Aϕ{b}›3762

AOT_hence ‹♦ϕ{b}›3763

using "Act-Sub:3" "→E" by blast3764

moreover {3765

AOT_have ‹�(ϕ{b} → �ϕ{b})›3766

using A "∀E"(2) by blast3767

AOT_hence ‹♦ϕ{b} → �ϕ{b}›3768

using "KBasic:13" "5♦" "Hypothetical Syllogism" "→E" by blast3769

}3770

ultimately AOT_have ‹�ϕ{b}›3771

using "→E" by blast3772

AOT_hence ‹ϕ{b}›3773

using "qml:2"[axiom_inst] "→E" by blast3774

AOT_thus ‹b = a›3775

using a_def[THEN "&E"(2)] "∀E"(2) "→E" by blast3776

qed3777

ultimately AOT_have ‹Aϕ{a} & ∀y (Aϕ{y} → y = a)›3778

252

A.7. The Deductive System PLM

using "&I" by blast3779

AOT_hence ‹∃x (Aϕ{x} & ∀y (Aϕ{y} → y = x))›3780

using "∃I" by fast3781

AOT_hence ‹∃!x Aϕ{x}›3782

using "uniqueness:1"[THEN "≡dfI"] by fast3783

AOT_thus ‹ιx ϕ{x}↓›3784

using "actual-desc:1"[THEN "≡E"(2)] by blast3785

qed3786

3787

AOT_theorem "sc-eq-fur:4": (172.4)3788

‹�∀x (ϕ{x} → �ϕ{x}) → (x = ιx ϕ{x} ≡ (ϕ{x} & ∀z (ϕ{z} → z = x)))›3789

proof (rule "→I")3790

AOT_assume ‹�∀x (ϕ{x} → �ϕ{x})›3791

AOT_hence ‹∀x �(ϕ{x} → �ϕ{x})›3792

using CBF "→E" by blast3793

AOT_hence A: ‹Aϕ{α} ≡ ϕ{α}› for α3794

using "sc-eq-fur:2" "∀E" "→E" by fast3795

AOT_show ‹x = ιx ϕ{x} ≡ (ϕ{x} & ∀z (ϕ{z} → z = x))›3796

proof (rule "≡I"; rule "→I")3797

AOT_assume ‹x = ιx ϕ{x}›3798

AOT_hence B: ‹Aϕ{x} & ∀z (Aϕ{z} → z = x)›3799

using "nec-hintikka-scheme"[THEN "≡E"(1)] by blast3800

AOT_show ‹ϕ{x} & ∀z (ϕ{z} → z = x)›3801

proof (rule "&I"; (rule "∀I"; rule "→I")?)3802

AOT_show ‹ϕ{x}›3803

using A B[THEN "&E"(1)] "≡E"(1) by blast3804

next3805

AOT_show ‹z = x› if ‹ϕ{z}› for z3806

using that B[THEN "&E"(2)] "∀E"(2) "→E" A[THEN "≡E"(2)] by blast3807

qed3808

next3809

AOT_assume B: ‹ϕ{x} & ∀z (ϕ{z} → z = x)›3810

AOT_have ‹Aϕ{x} & ∀z (Aϕ{z} → z = x)›3811

proof(rule "&I"; (rule "∀I"; rule "→I")?)3812

AOT_show ‹Aϕ{x}›3813

using B[THEN "&E"(1)] A[THEN "≡E"(2)] by blast3814

next3815

AOT_show ‹b = x› if ‹Aϕ{b}› for b3816

using A[THEN "≡E"(1)] that3817

B[THEN "&E"(2), THEN "∀E"(2), THEN "→E"] by blast3818

qed3819

AOT_thus ‹x = ιx ϕ{x}›3820

using "nec-hintikka-scheme"[THEN "≡E"(2)] by blast3821

qed3822

qed3823

3824

AOT_theorem "id-act:1": ‹α = β ≡ Aα = β› (173.1)3825

by (meson "Act-Sub:3" "Hypothetical Syllogism"3826

"id-nec2:1" "id-nec:2" "≡I" "nec-imp-act")3827

3828

AOT_theorem "id-act:2": ‹α 6= β ≡ Aα 6= β› (173.2)3829

proof (AOT_subst ‹α 6= β› ‹¬(α = β)›)3830

AOT_modally_strict {3831

AOT_show ‹α 6= β ≡ ¬(α = β)›3832

by (simp add: "=-infix" "≡Df")3833

}3834

next3835

AOT_show ‹¬(α = β) ≡ A¬(α = β)›3836

proof (safe intro!: "≡I" "→I")3837

AOT_assume ‹¬α = β›3838

AOT_hence ‹¬Aα = β› using "id-act:1" "≡E"(3) by blast3839

AOT_thus ‹A¬α = β›3840

using "¬¬E" "Act-Sub:1" "≡E"(3) by blast3841

253

A. Isabelle Theory

next3842

AOT_assume ‹A¬α = β›3843

AOT_hence ‹¬Aα = β›3844

using "¬¬I" "Act-Sub:1" "≡E"(4) by blast3845

AOT_thus ‹¬α = β›3846

using "id-act:1" "≡E"(4) by blast3847

qed3848

qed3849

3850

AOT_theorem "A-Exists:1": ‹A∃!α ϕ{α} ≡ ∃!α Aϕ{α}› (174.1)3851

proof -3852

AOT_have ‹A∃!α ϕ{α} ≡ A∃α∀β (ϕ{β} ≡ β = α)›3853

by (AOT_subst ‹∃!α ϕ{α}› ‹∃α∀β (ϕ{β} ≡ β = α)›)3854

(auto simp add: "oth-class-taut:3:a" "uniqueness:2")3855

also AOT_have ‹. . . ≡ ∃α A∀β (ϕ{β} ≡ β = α)›3856

by (simp add: "Act-Basic:10")3857

also AOT_have ‹. . . ≡ ∃α∀β A(ϕ{β} ≡ β = α)›3858

by (AOT_subst ‹A∀β (ϕ{β} ≡ β = α)› ‹∀β A(ϕ{β} ≡ β = α)› for: α)3859

(auto simp: "logic-actual-nec:3"[axiom_inst] "oth-class-taut:3:a")3860

also AOT_have ‹. . . ≡ ∃α∀β (Aϕ{β} ≡ Aβ = α)›3861

by (AOT_subst (reverse) ‹Aϕ{β} ≡ Aβ = α›3862

‹A(ϕ{β} ≡ β = α)› for: α β :: ’a)3863

(auto simp: "Act-Basic:5" "cqt-further:7")3864

also AOT_have ‹. . . ≡ ∃α∀β (Aϕ{β} ≡ β = α)›3865

by (AOT_subst (reverse) ‹Aβ = α› ‹β = α› for: α β :: ’a)3866

(auto simp: "id-act:1" "cqt-further:7")3867

also AOT_have ‹... ≡ ∃!α Aϕ{α}›3868

using "uniqueness:2" "Commutativity of ≡"[THEN "≡E"(1)] by fast3869

finally show ?thesis.3870

qed3871

3872

AOT_theorem "A-Exists:2": ‹ιx ϕ{x}↓ ≡ A∃!x ϕ{x}› (174.2)3873

by (AOT_subst ‹A∃!x ϕ{x}› ‹∃!x Aϕ{x}›)3874

(auto simp: "actual-desc:1" "A-Exists:1")3875

3876

AOT_theorem "id-act-desc:1": ‹ιx (x = y)↓› (175.1)3877

proof(rule "existence:1"[THEN "≡dfI"]; rule "∃I")3878

AOT_show ‹[λx E!x → E!x]ιx (x = y)›3879

proof (rule "russell-axiom[exe,1].nec-russell-axiom"[THEN "≡E"(2)];3880

rule "∃I"; (rule "&I")+)3881

AOT_show ‹Ay = y› by (simp add: "RA[2]" "id-eq:1")3882

next3883

AOT_show ‹∀z (Az = y → z = y)›3884

apply (rule "∀I")3885

using "id-act:1"[THEN "≡E"(2)] "→I" by blast3886

next3887

AOT_show ‹[λx E!x → E!x]y›3888

proof (rule "lambda-predicates:2"[axiom_inst, THEN "→E", THEN "≡E"(2)])3889

AOT_show ‹[λx E!x → E!x]↓›3890

by "cqt:2[lambda]"3891

next3892

AOT_show ‹E!y → E!y›3893

by (simp add: "if-p-then-p")3894

qed3895

qed3896

next3897

AOT_show ‹[λx E!x → E!x]↓›3898

by "cqt:2[lambda]"3899

qed3900

3901

AOT_theorem "id-act-desc:2": ‹y = ιx (x = y)› (175.2)3902

by (rule descriptions[axiom_inst, THEN "≡E"(2)];3903

rule "∀I"; rule "id-act:1"[symmetric])3904

254

A.7. The Deductive System PLM

3905

AOT_theorem "pre-en-eq:1[1]": ‹x1[F] → �x1[F]› (176.1)3906

by (simp add: encoding "vdash-properties:1[2]")3907

3908

AOT_theorem "pre-en-eq:1[2]": ‹x1x2[F] → �x1x2[F]› (176.1)3909

proof (rule "→I")3910

AOT_assume ‹x1x2[F]›3911

AOT_hence ‹x1[λy [F]yx2]› and ‹x2[λy [F]x1y]›3912

using "nary-encoding[2]"[axiom_inst, THEN "≡E"(1)] "&E" by blast+3913

moreover AOT_have ‹[λy [F]yx2]↓› by "cqt:2"3914

moreover AOT_have ‹[λy [F]x1y]↓› by "cqt:2"3915

ultimately AOT_have ‹�x1[λy [F]yx2]› and ‹�x2[λy [F]x1y]›3916

using encoding[axiom_inst, unvarify F] "→E" "&I" by blast+3917

note A = this3918

AOT_hence ‹�(x1[λy [F]yx2] & x2[λy [F]x1y])›3919

using "KBasic:3"[THEN "≡E"(2)] "&I" by blast3920

AOT_thus ‹�x1x2[F]›3921

by (rule "nary-encoding[2]"[axiom_inst, THEN RN,3922

THEN "KBasic:6"[THEN "→E"],3923

THEN "≡E"(2)])3924

qed3925

3926

AOT_theorem "pre-en-eq:1[3]": ‹x1x2x3[F] → �x1x2x3[F]› (176.1)3927

proof (rule "→I")3928

AOT_assume ‹x1x2x3[F]›3929

AOT_hence ‹x1[λy [F]yx2x3]›3930

and ‹x2[λy [F]x1yx3]›3931

and ‹x3[λy [F]x1x2y]›3932

using "nary-encoding[3]"[axiom_inst, THEN "≡E"(1)] "&E" by blast+3933

moreover AOT_have ‹[λy [F]yx2x3]↓› by "cqt:2"3934

moreover AOT_have ‹[λy [F]x1yx3]↓› by "cqt:2"3935

moreover AOT_have ‹[λy [F]x1x2y]↓› by "cqt:2"3936

ultimately AOT_have ‹�x1[λy [F]yx2x3]›3937

and ‹�x2[λy [F]x1yx3]›3938

and ‹�x3[λy [F]x1x2y]›3939

using encoding[axiom_inst, unvarify F] "→E" by blast+3940

note A = this3941

AOT_have B: ‹�(x1[λy [F]yx2x3] & x2[λy [F]x1yx3] & x3[λy [F]x1x2y])›3942

by (rule "KBasic:3"[THEN "≡E"(2)] "&I" A)+3943

AOT_thus ‹�x1x2x3[F]›3944

by (rule "nary-encoding[3]"[axiom_inst, THEN RN,3945

THEN "KBasic:6"[THEN "→E"], THEN "≡E"(2)])3946

qed3947

3948

AOT_theorem "pre-en-eq:1[4]": ‹x1x2x3x4[F] → �x1x2x3x4[F]› (176.1)3949

proof (rule "→I")3950

AOT_assume ‹x1x2x3x4[F]›3951

AOT_hence ‹x1[λy [F]yx2x3x4]›3952

and ‹x2[λy [F]x1yx3x4]›3953

and ‹x3[λy [F]x1x2yx4]›3954

and ‹x4[λy [F]x1x2x3y]›3955

using "nary-encoding[4]"[axiom_inst, THEN "≡E"(1)] "&E" by metis+3956

moreover AOT_have ‹[λy [F]yx2x3x4]↓› by "cqt:2"3957

moreover AOT_have ‹[λy [F]x1yx3x4]↓› by "cqt:2"3958

moreover AOT_have ‹[λy [F]x1x2yx4]↓› by "cqt:2"3959

moreover AOT_have ‹[λy [F]x1x2x3y]↓› by "cqt:2"3960

ultimately AOT_have ‹�x1[λy [F]yx2x3x4]›3961

and ‹�x2[λy [F]x1yx3x4]›3962

and ‹�x3[λy [F]x1x2yx4]›3963

and ‹�x4[λy [F]x1x2x3y]›3964

using "→E" encoding[axiom_inst, unvarify F] by blast+3965

note A = this3966

AOT_have B: ‹�(x1[λy [F]yx2x3x4] &3967

255

A. Isabelle Theory

x2[λy [F]x1yx3x4] &3968

x3[λy [F]x1x2yx4] &3969

x4[λy [F]x1x2x3y])›3970

by (rule "KBasic:3"[THEN "≡E"(2)] "&I" A)+3971

AOT_thus ‹�x1x2x3x4[F]›3972

by (rule "nary-encoding[4]"[axiom_inst, THEN RN,3973

THEN "KBasic:6"[THEN "→E"], THEN "≡E"(2)])3974

qed3975

3976

AOT_theorem "pre-en-eq:2[1]": ‹¬x1[F] → �¬x1[F]› (176.2)3977

proof (rule "→I"; rule "raa-cor:1")3978

AOT_assume ‹¬�¬x1[F]›3979

AOT_hence ‹♦x1[F]›3980

by (rule "conventions:5"[THEN "≡dfI"])3981

AOT_hence ‹x1[F]›3982

by(rule "S5Basic:13"[THEN "≡E"(1), OF "pre-en-eq:1[1]"[THEN RN],3983

THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"])3984

moreover AOT_assume ‹¬x1[F]›3985

ultimately AOT_show ‹x1[F] & ¬x1[F]› by (rule "&I")3986

qed3987

AOT_theorem "pre-en-eq:2[2]": ‹¬x1x2[F] → �¬x1x2[F]› (176.2)3988

proof (rule "→I"; rule "raa-cor:1")3989

AOT_assume ‹¬�¬x1x2[F]›3990

AOT_hence ‹♦x1x2[F]›3991

by (rule "conventions:5"[THEN "≡dfI"])3992

AOT_hence ‹x1x2[F]›3993

by(rule "S5Basic:13"[THEN "≡E"(1), OF "pre-en-eq:1[2]"[THEN RN],3994

THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"])3995

moreover AOT_assume ‹¬x1x2[F]›3996

ultimately AOT_show ‹x1x2[F] & ¬x1x2[F]› by (rule "&I")3997

qed3998

3999

AOT_theorem "pre-en-eq:2[3]": ‹¬x1x2x3[F] → �¬x1x2x3[F]› (176.2)4000

proof (rule "→I"; rule "raa-cor:1")4001

AOT_assume ‹¬�¬x1x2x3[F]›4002

AOT_hence ‹♦x1x2x3[F]›4003

by (rule "conventions:5"[THEN "≡dfI"])4004

AOT_hence ‹x1x2x3[F]›4005

by(rule "S5Basic:13"[THEN "≡E"(1), OF "pre-en-eq:1[3]"[THEN RN],4006

THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"])4007

moreover AOT_assume ‹¬x1x2x3[F]›4008

ultimately AOT_show ‹x1x2x3[F] & ¬x1x2x3[F]› by (rule "&I")4009

qed4010

4011

AOT_theorem "pre-en-eq:2[4]": ‹¬x1x2x3x4[F] → �¬x1x2x3x4[F]› (176.2)4012

proof (rule "→I"; rule "raa-cor:1")4013

AOT_assume ‹¬�¬x1x2x3x4[F]›4014

AOT_hence ‹♦x1x2x3x4[F]›4015

by (rule "conventions:5"[THEN "≡dfI"])4016

AOT_hence ‹x1x2x3x4[F]›4017

by(rule "S5Basic:13"[THEN "≡E"(1), OF "pre-en-eq:1[4]"[THEN RN],4018

THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"])4019

moreover AOT_assume ‹¬x1x2x3x4[F]›4020

ultimately AOT_show ‹x1x2x3x4[F] & ¬x1x2x3x4[F]› by (rule "&I")4021

qed4022

4023

AOT_theorem "en-eq:1[1]": ‹♦x1[F] ≡ �x1[F]› (177.1)4024

using "pre-en-eq:1[1]"[THEN RN] "sc-eq-box-box:2" "∨I" "→E" by metis4025

AOT_theorem "en-eq:1[2]": ‹♦x1x2[F] ≡ �x1x2[F]› (177.1)4026

using "pre-en-eq:1[2]"[THEN RN] "sc-eq-box-box:2" "∨I" "→E" by metis4027

AOT_theorem "en-eq:1[3]": ‹♦x1x2x3[F] ≡ �x1x2x3[F]› (177.1)4028

using "pre-en-eq:1[3]"[THEN RN] "sc-eq-box-box:2" "∨I" "→E" by fast4029

AOT_theorem "en-eq:1[4]": ‹♦x1x2x3x4[F] ≡ �x1x2x3x4[F]› (177.1)4030

256

A.7. The Deductive System PLM

using "pre-en-eq:1[4]"[THEN RN] "sc-eq-box-box:2" "∨I" "→E" by fast4031

4032

AOT_theorem "en-eq:2[1]": ‹x1[F] ≡ �x1[F]› (177.2)4033

by (simp add: "≡I" "pre-en-eq:1[1]" "qml:2"[axiom_inst])4034

AOT_theorem "en-eq:2[2]": ‹x1x2[F] ≡ �x1x2[F]› (177.2)4035

by (simp add: "≡I" "pre-en-eq:1[2]" "qml:2"[axiom_inst])4036

AOT_theorem "en-eq:2[3]": ‹x1x2x3[F] ≡ �x1x2x3[F]› (177.2)4037

by (simp add: "≡I" "pre-en-eq:1[3]" "qml:2"[axiom_inst])4038

AOT_theorem "en-eq:2[4]": ‹x1x2x3x4[F] ≡ �x1x2x3x4[F]› (177.2)4039

by (simp add: "≡I" "pre-en-eq:1[4]" "qml:2"[axiom_inst])4040

4041

AOT_theorem "en-eq:3[1]": ‹♦x1[F] ≡ x1[F]› (177.3)4042

using "T♦" "derived-S5-rules:2"[OF "pre-en-eq:1[1]"] "≡I" by blast4043

AOT_theorem "en-eq:3[2]": ‹♦x1x2[F] ≡ x1x2[F]› (177.3)4044

using "T♦" "derived-S5-rules:2"[OF "pre-en-eq:1[2]"] "≡I" by blast4045

AOT_theorem "en-eq:3[3]": ‹♦x1x2x3[F] ≡ x1x2x3[F]› (177.3)4046

using "T♦" "derived-S5-rules:2"[OF "pre-en-eq:1[3]"] "≡I" by blast4047

AOT_theorem "en-eq:3[4]": ‹♦x1x2x3x4[F] ≡ x1x2x3x4[F]› (177.3)4048

using "T♦" "derived-S5-rules:2"[OF "pre-en-eq:1[4]"] "≡I" by blast4049

4050

AOT_theorem "en-eq:4[1]": (177.4)4051

‹(x1[F] ≡ y1[G]) ≡ (�x1[F] ≡ �y1[G])›4052

apply (rule "≡I"; rule "→I"; rule "≡I"; rule "→I")4053

using "qml:2"[axiom_inst, THEN "→E"] "≡E"(1,2) "en-eq:2[1]" by blast+4054

AOT_theorem "en-eq:4[2]": (177.4)4055

‹(x1x2[F] ≡ y1y2[G]) ≡ (�x1x2[F] ≡ �y1y2[G])›4056

apply (rule "≡I"; rule "→I"; rule "≡I"; rule "→I")4057

using "qml:2"[axiom_inst, THEN "→E"] "≡E"(1,2) "en-eq:2[2]" by blast+4058

AOT_theorem "en-eq:4[3]": (177.4)4059

‹(x1x2x3[F] ≡ y1y2y3[G]) ≡ (�x1x2x3[F] ≡ �y1y2y3[G])›4060

apply (rule "≡I"; rule "→I"; rule "≡I"; rule "→I")4061

using "qml:2"[axiom_inst, THEN "→E"] "≡E"(1,2) "en-eq:2[3]" by blast+4062

AOT_theorem "en-eq:4[4]": (177.4)4063

‹(x1x2x3x4[F] ≡ y1y2y3y4[G]) ≡ (�x1x2x3x4[F] ≡ �y1y2y3y4[G])›4064

apply (rule "≡I"; rule "→I"; rule "≡I"; rule "→I")4065

using "qml:2"[axiom_inst, THEN "→E"] "≡E"(1,2) "en-eq:2[4]" by blast+4066

4067

AOT_theorem "en-eq:5[1]": (177.5)4068

‹�(x1[F] ≡ y1[G]) ≡ (�x1[F] ≡ �y1[G])›4069

apply (rule "≡I"; rule "→I")4070

using "en-eq:4[1]"[THEN "≡E"(1)] "qml:2"[axiom_inst, THEN "→E"]4071

apply blast4072

using "sc-eq-box-box:4"[THEN "→E", THEN "→E"]4073

"&I"[OF "pre-en-eq:1[1]"[THEN RN], OF "pre-en-eq:1[1]"[THEN RN]]4074

by blast4075

AOT_theorem "en-eq:5[2]": (177.5)4076

‹�(x1x2[F] ≡ y1y2[G]) ≡ (�x1x2[F] ≡ �y1y2[G])›4077

apply (rule "≡I"; rule "→I")4078

using "en-eq:4[2]"[THEN "≡E"(1)] "qml:2"[axiom_inst, THEN "→E"]4079

apply blast4080

using "sc-eq-box-box:4"[THEN "→E", THEN "→E"]4081

"&I"[OF "pre-en-eq:1[2]"[THEN RN], OF "pre-en-eq:1[2]"[THEN RN]]4082

by blast4083

AOT_theorem "en-eq:5[3]": (177.5)4084

‹�(x1x2x3[F] ≡ y1y2y3[G]) ≡ (�x1x2x3[F] ≡ �y1y2y3[G])›4085

apply (rule "≡I"; rule "→I")4086

using "en-eq:4[3]"[THEN "≡E"(1)] "qml:2"[axiom_inst, THEN "→E"]4087

apply blast4088

using "sc-eq-box-box:4"[THEN "→E", THEN "→E"]4089

"&I"[OF "pre-en-eq:1[3]"[THEN RN], OF "pre-en-eq:1[3]"[THEN RN]]4090

by blast4091

AOT_theorem "en-eq:5[4]": (177.5)4092

‹�(x1x2x3x4[F] ≡ y1y2y3y4[G]) ≡ (�x1x2x3x4[F] ≡ �y1y2y3y4[G])›4093

257

A. Isabelle Theory

apply (rule "≡I"; rule "→I")4094

using "en-eq:4[4]"[THEN "≡E"(1)] "qml:2"[axiom_inst, THEN "→E"]4095

apply blast4096

using "sc-eq-box-box:4"[THEN "→E", THEN "→E"]4097

"&I"[OF "pre-en-eq:1[4]"[THEN RN], OF "pre-en-eq:1[4]"[THEN RN]]4098

by blast4099

4100

AOT_theorem "en-eq:6[1]": (177.6)4101

‹(x1[F] ≡ y1[G]) ≡ �(x1[F] ≡ y1[G])›4102

using "en-eq:5[1]"[symmetric] "en-eq:4[1]" "≡E"(5) by fast4103

AOT_theorem "en-eq:6[2]": (177.6)4104

‹(x1x2[F] ≡ y1y2[G]) ≡ �(x1x2[F] ≡ y1y2[G])›4105

using "en-eq:5[2]"[symmetric] "en-eq:4[2]" "≡E"(5) by fast4106

AOT_theorem "en-eq:6[3]": (177.6)4107

‹(x1x2x3[F] ≡ y1y2y3[G]) ≡ �(x1x2x3[F] ≡ y1y2y3[G])›4108

using "en-eq:5[3]"[symmetric] "en-eq:4[3]" "≡E"(5) by fast4109

AOT_theorem "en-eq:6[4]": (177.6)4110

‹(x1x2x3x4[F] ≡ y1y2y3y4[G]) ≡ �(x1x2x3x4[F] ≡ y1y2y3y4[G])›4111

using "en-eq:5[4]"[symmetric] "en-eq:4[4]" "≡E"(5) by fast4112

4113

AOT_theorem "en-eq:7[1]": ‹¬x1[F] ≡ �¬x1[F]› (177.7)4114

using "pre-en-eq:2[1]" "qml:2"[axiom_inst] "≡I" by blast4115

AOT_theorem "en-eq:7[2]": ‹¬x1x2[F] ≡ �¬x1x2[F]› (177.7)4116

using "pre-en-eq:2[2]" "qml:2"[axiom_inst] "≡I" by blast4117

AOT_theorem "en-eq:7[3]": ‹¬x1x2x3[F] ≡ �¬x1x2x3[F]› (177.7)4118

using "pre-en-eq:2[3]" "qml:2"[axiom_inst] "≡I" by blast4119

AOT_theorem "en-eq:7[4]": ‹¬x1x2x3x4[F] ≡ �¬x1x2x3x4[F]› (177.7)4120

using "pre-en-eq:2[4]" "qml:2"[axiom_inst] "≡I" by blast4121

4122

AOT_theorem "en-eq:8[1]": ‹♦¬x1[F] ≡ ¬x1[F]› (177.8)4123

using "en-eq:2[1]"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)]]4124

"KBasic:11" "≡E"(5)[symmetric] by blast4125

AOT_theorem "en-eq:8[2]": ‹♦¬x1x2[F] ≡ ¬x1x2[F]› (177.8)4126

using "en-eq:2[2]"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)]]4127

"KBasic:11" "≡E"(5)[symmetric] by blast4128

AOT_theorem "en-eq:8[3]": ‹♦¬x1x2x3[F] ≡ ¬x1x2x3[F]› (177.8)4129

using "en-eq:2[3]"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)]]4130

"KBasic:11" "≡E"(5)[symmetric] by blast4131

AOT_theorem "en-eq:8[4]": ‹♦¬x1x2x3x4[F] ≡ ¬x1x2x3x4[F]› (177.8)4132

using "en-eq:2[4]"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)]]4133

"KBasic:11" "≡E"(5)[symmetric] by blast4134

4135

AOT_theorem "en-eq:9[1]": ‹♦¬x1[F] ≡ �¬x1[F]› (177.9)4136

using "en-eq:7[1]" "en-eq:8[1]" "≡E"(5) by blast4137

AOT_theorem "en-eq:9[2]": ‹♦¬x1x2[F] ≡ �¬x1x2[F]› (177.9)4138

using "en-eq:7[2]" "en-eq:8[2]" "≡E"(5) by blast4139

AOT_theorem "en-eq:9[3]": ‹♦¬x1x2x3[F] ≡ �¬x1x2x3[F]› (177.9)4140

using "en-eq:7[3]" "en-eq:8[3]" "≡E"(5) by blast4141

AOT_theorem "en-eq:9[4]": ‹♦¬x1x2x3x4[F] ≡ �¬x1x2x3x4[F]› (177.9)4142

using "en-eq:7[4]" "en-eq:8[4]" "≡E"(5) by blast4143

4144

AOT_theorem "en-eq:10[1]": ‹Ax1[F] ≡ x1[F]› (177.10)4145

by (metis "Act-Sub:3" "deduction-theorem" "≡I" "≡E"(1)4146

"nec-imp-act" "en-eq:3[1]" "pre-en-eq:1[1]")4147

AOT_theorem "en-eq:10[2]": ‹Ax1x2[F] ≡ x1x2[F]› (177.10)4148

by (metis "Act-Sub:3" "deduction-theorem" "≡I" "≡E"(1)4149

"nec-imp-act" "en-eq:3[2]" "pre-en-eq:1[2]")4150

AOT_theorem "en-eq:10[3]": ‹Ax1x2x3[F] ≡ x1x2x3[F]› (177.10)4151

by (metis "Act-Sub:3" "deduction-theorem" "≡I" "≡E"(1)4152

"nec-imp-act" "en-eq:3[3]" "pre-en-eq:1[3]")4153

AOT_theorem "en-eq:10[4]": ‹Ax1x2x3x4[F] ≡ x1x2x3x4[F]› (177.10)4154

by (metis "Act-Sub:3" "deduction-theorem" "≡I" "≡E"(1)4155

"nec-imp-act" "en-eq:3[4]" "pre-en-eq:1[4]")4156

258

A.7. The Deductive System PLM

4157

AOT_theorem "oa-facts:1": ‹O!x → �O!x› (178.1)4158

proof(rule "→I")4159

AOT_modally_strict {4160

AOT_have ‹[λx ♦E!x]x ≡ ♦E!x›4161

by (rule "lambda-predicates:2"[axiom_inst, THEN "→E"]) "cqt:2"4162

} note ϑ = this4163

AOT_assume ‹O!x›4164

AOT_hence ‹[λx ♦E!x]x›4165

by (rule "=dfE"(2)[OF AOT_ordinary, rotated 1]) "cqt:2"4166

AOT_hence ‹♦E!x› using ϑ[THEN "≡E"(1)] by blast4167

AOT_hence ‹�♦E!x› using "qml:3"[axiom_inst, THEN "→E"] by blast4168

AOT_hence ‹�[λx ♦E!x]x›4169

by (AOT_subst ‹[λx ♦E!x]x› ‹♦E!x›)4170

(auto simp: ϑ)4171

AOT_thus ‹�O!x›4172

by (rule "=dfI"(2)[OF AOT_ordinary, rotated 1]) "cqt:2"4173

qed4174

4175

AOT_theorem "oa-facts:2": ‹A!x → �A!x› (178.2)4176

proof(rule "→I")4177

AOT_modally_strict {4178

AOT_have ‹[λx ¬♦E!x]x ≡ ¬♦E!x›4179

by (rule "lambda-predicates:2"[axiom_inst, THEN "→E"]) "cqt:2"4180

} note ϑ = this4181

AOT_assume ‹A!x›4182

AOT_hence ‹[λx ¬♦E!x]x›4183

by (rule "=dfE"(2)[OF AOT_abstract, rotated 1]) "cqt:2"4184

AOT_hence ‹¬♦E!x› using ϑ[THEN "≡E"(1)] by blast4185

AOT_hence ‹�¬E!x› using "KBasic2:1"[THEN "≡E"(2)] by blast4186

AOT_hence ‹��¬E!x› using "4"[THEN "→E"] by blast4187

AOT_hence ‹�¬♦E!x›4188

using "KBasic2:1"4189

by (AOT_subst (reverse) ‹¬♦E!x› ‹�¬E!x›) blast4190

AOT_hence ‹�[λx ¬♦E!x]x›4191

by (AOT_subst ‹[λx ¬♦E!x]x› ‹¬♦E!x›)4192

(auto simp: ϑ)4193

AOT_thus ‹�A!x›4194

by (rule "=dfI"(2)[OF AOT_abstract, rotated 1]) "cqt:2[lambda]"4195

qed4196

4197

AOT_theorem "oa-facts:3": ‹♦O!x → O!x› (178.3)4198

using "oa-facts:1" "B♦" "RM♦" "Hypothetical Syllogism" by blast4199

AOT_theorem "oa-facts:4": ‹♦A!x → A!x› (178.4)4200

using "oa-facts:2" "B♦" "RM♦" "Hypothetical Syllogism" by blast4201

4202

AOT_theorem "oa-facts:5": ‹♦O!x ≡ �O!x› (178.5)4203

by (meson "Act-Sub:3" "Hypothetical Syllogism" "≡I" "nec-imp-act"4204

"oa-facts:1" "oa-facts:3")4205

4206

AOT_theorem "oa-facts:6": ‹♦A!x ≡ �A!x› (178.6)4207

by (meson "Act-Sub:3" "Hypothetical Syllogism" "≡I" "nec-imp-act"4208

"oa-facts:2" "oa-facts:4")4209

4210

AOT_theorem "oa-facts:7": ‹O!x ≡ AO!x› (178.7)4211

by (meson "Act-Sub:3" "Hypothetical Syllogism" "≡I" "nec-imp-act"4212

"oa-facts:1" "oa-facts:3")4213

4214

AOT_theorem "oa-facts:8": ‹A!x ≡ AA!x› (178.8)4215

by (meson "Act-Sub:3" "Hypothetical Syllogism" "≡I" "nec-imp-act"4216

"oa-facts:2" "oa-facts:4")4217

4218

subsection‹The Theory of Relations›4219

259

A. Isabelle Theory

text‹\label{PLM: 9.10}›4220

4221

AOT_theorem "beta-C-meta": (179)4222

‹[λµ1...µn ϕ{µ1...µn, ν1...νn}]↓ →4223

([λµ1...µn ϕ{µ1...µn, ν1...νn}]ν1...νn ≡ ϕ{ν1...νn, ν1...νn})›4224

using "lambda-predicates:2"[axiom_inst] by blast4225

4226

AOT_theorem "beta-C-cor:1": (181.1)4227

‹(∀ν1...∀νn([λµ1...µn ϕ{µ1...µn, ν1...νn}]↓)) →4228

∀ν1...∀νn ([λµ1...µn ϕ{µ1...µn, ν1...νn}]ν1...νn ≡ ϕ{ν1...νn, ν1...νn})›4229

apply (rule "cqt-basic:14"[where ’a=’a, THEN "→E"])4230

using "beta-C-meta" "∀I" by fast4231

4232

AOT_theorem "beta-C-cor:2": (181.2)4233

‹[λµ1...µn ϕ{µ1...µn}]↓ →4234

∀ν1...∀νn ([λµ1...µn ϕ{µ1...µn}]ν1...νn ≡ ϕ{ν1...νn})›4235

apply (rule "→I"; rule "∀I")4236

using "beta-C-meta"[THEN "→E"] by fast4237

4238

(* TODO: add better syntax parsing for INSTANCE_OF_CQT_2 *)4239

theorem "beta-C-cor:3": (181.3)4240

assumes ‹
∧
ν1νn. AOT_instance_of_cqt_2 (ϕ (AOT_term_of_var ν1νn))›4241

shows ‹[v |= ∀ν1...∀νn ([λµ1...µn ϕ{ν1...νn, µ1...µn}]ν1...νn ≡4242

ϕ{ν1...νn, ν1...νn})]›4243

using "cqt:2[lambda]"[axiom_inst, OF assms]4244

"beta-C-cor:1"[THEN "→E"] "∀I" by fast4245

4246

AOT_theorem "betaC:1:a": ‹[λµ1...µn ϕ{µ1...µn}]κ1...κn `� ϕ{κ1...κn}› (182.1.a)4247

proof -4248

AOT_modally_strict {4249

AOT_assume ‹[λµ1...µn ϕ{µ1...µn}]κ1...κn›4250

moreover AOT_have ‹[λµ1...µn ϕ{µ1...µn}]↓› and ‹κ1...κn↓›4251

using calculation "cqt:5:a"[axiom_inst, THEN "→E"] "&E" by blast+4252

ultimately AOT_show ‹ϕ{κ1...κn}›4253

using "beta-C-cor:2"[THEN "→E", THEN "∀E"(1), THEN "≡E"(1)] by blast4254

}4255

qed4256

4257

AOT_theorem "betaC:1:b": ‹¬ϕ{κ1...κn} `� ¬[λµ1...µn ϕ{µ1...µn}]κ1...κn› (182.1.b)4258

using "betaC:1:a" "raa-cor:3" by blast4259

4260

lemmas "β→C" = "betaC:1:a" "betaC:1:b"4261

4262

AOT_theorem "betaC:2:a": (182.2.a)4263

‹[λµ1...µn ϕ{µ1...µn}]↓, κ1...κn↓, ϕ{κ1...κn} `�4264

[λµ1...µn ϕ{µ1...µn}]κ1...κn›4265

proof -4266

AOT_modally_strict {4267

AOT_assume 1: ‹[λµ1...µn ϕ{µ1...µn}]↓›4268

and 2: ‹κ1...κn↓›4269

and 3: ‹ϕ{κ1...κn}›4270

AOT_hence ‹[λµ1...µn ϕ{µ1...µn}]κ1...κn›4271

using "beta-C-cor:2"[THEN "→E", OF 1, THEN "∀E"(1), THEN "≡E"(2)]4272

by blast4273

}4274

AOT_thus ‹[λµ1...µn ϕ{µ1...µn}]↓, κ1...κn↓, ϕ{κ1...κn} `�4275

[λµ1...µn ϕ{µ1...µn}]κ1...κn›4276

by blast4277

qed4278

4279

AOT_theorem "betaC:2:b": (182.2.b)4280

‹[λµ1...µn ϕ{µ1...µn}]↓, κ1...κn↓, ¬[λµ1...µn ϕ{µ1...µn}]κ1...κn `�4281

¬ϕ{κ1...κn}›4282

260

A.7. The Deductive System PLM

using "betaC:2:a" "raa-cor:3" by blast4283

4284

lemmas "β←C" = "betaC:2:a" "betaC:2:b"4285

4286

AOT_theorem "eta-conversion-lemma1:1": ‹Π↓ → [λx1...xn [Π]x1...xn] = Π› (184.1)4287

using "lambda-predicates:3"[axiom_inst] "∀I" "∀E"(1) "→I" by fast4288

4289

(* Note: generalized alphabetic variant of the last theorem *)4290

AOT_theorem "eta-conversion-lemma1:2": ‹Π↓ → [λν1...νn [Π]ν1...νn] = Π› (184.2)4291

using "eta-conversion-lemma1:1".4292

4293

text‹Note: not explicitly part of PLM.›4294

AOT_theorem id_sym:4295

assumes ‹τ = τ’›4296

shows ‹τ’ = τ›4297

using "rule=E"[where ϕ="λ τ’ . «τ’ = τ»", rotated 1, OF assms]4298

"=I"(1)[OF "t=t-proper:1"[THEN "→E", OF assms]] by auto4299

declare id_sym[sym]4300

4301

text‹Note: not explicitly part of PLM.›4302

AOT_theorem id_trans:4303

assumes ‹τ = τ’› and ‹τ’ = τ”›4304

shows ‹τ = τ”›4305

using "rule=E" assms by blast4306

declare id_trans[trans]4307

4308

method "ηC" for Π :: ‹<’a::{AOT_Term_id_2,AOT_κs}>› =4309

(match conclusion in "[v |= τ{Π} = τ’{Π}]" for v τ τ’ ⇒ ‹4310

rule "rule=E"[rotated 1, OF "eta-conversion-lemma1:2"4311

[THEN "→E", of v "«[Π]»", symmetric]]›)4312

4313

AOT_theorem "sub-des-lam:1": (186.1)4314

‹[λz1...zn χ{z1...zn, ιx ϕ{x}}]↓ & ιx ϕ{x} = ιx ψ{x} →4315

[λz1...zn χ{z1...zn, ιx ϕ{x}}] = [λz1...zn χ{z1...zn, ιx ψ{x}}]›4316

proof(rule "→I")4317

AOT_assume A: ‹[λz1...zn χ{z1...zn, ιx ϕ{x}}]↓ & ιx ϕ{x} = ιx ψ{x}›4318

AOT_show ‹[λz1...zn χ{z1...zn, ιx ϕ{x}}] = [λz1...zn χ{z1...zn, ιx ψ{x}}]›4319

using "rule=E"[where ϕ="λ τ . «[λz1...zn χ{z1...zn, ιx ϕ{x}}] =4320

[λz1...zn χ{z1...zn, τ}]»",4321

OF "=I"(1)[OF A[THEN "&E"(1)]], OF A[THEN "&E"(2)]]4322

by blast4323

qed4324

4325

AOT_theorem "sub-des-lam:2": (186.2)4326

‹ιx ϕ{x} = ιx ψ{x} → χ{ιx ϕ{x}} = χ{ιx ψ{x}}› for χ :: ‹κ ⇒ o›4327

using "rule=E"[where ϕ="λ τ . «χ{ιx ϕ{x}} = χ{τ}»",4328

OF "=I"(1)[OF "log-prop-prop:2"]] "→I" by blast4329

4330

AOT_theorem "prop-equiv": ‹F = G ≡ ∀x (x[F] ≡ x[G])› (187)4331

proof(rule "≡I"; rule "→I")4332

AOT_assume ‹F = G›4333

AOT_thus ‹∀x (x[F] ≡ x[G])›4334

by (rule "rule=E"[rotated]) (fact "oth-class-taut:3:a"[THEN GEN])4335

next4336

AOT_assume ‹∀x (x[F] ≡ x[G])›4337

AOT_hence ‹x[F] ≡ x[G]› for x4338

using "∀E" by blast4339

AOT_hence ‹�(x[F] ≡ x[G])› for x4340

using "en-eq:6[1]"[THEN "≡E"(1)] by blast4341

AOT_hence ‹∀x �(x[F] ≡ x[G])›4342

by (rule GEN)4343

AOT_hence ‹�∀x (x[F] ≡ x[G])›4344

using BF[THEN "→E"] by fast4345

261

A. Isabelle Theory

AOT_thus "F = G"4346

using "p-identity-thm2:1"[THEN "≡E"(2)] by blast4347

qed4348

4349

AOT_theorem "relations:1": (189.1)4350

assumes ‹INSTANCE_OF_CQT_2(ϕ)›4351

shows ‹∃F �∀x1...∀xn ([F]x1...xn ≡ ϕ{x1...xn})›4352

apply (rule "∃I"(1)[where τ="«[λx1...xn ϕ{x1...xn}]»"])4353

using "cqt:2[lambda]"[OF assms, axiom_inst]4354

"beta-C-cor:2"[THEN "→E", THEN RN] by blast+4355

4356

AOT_theorem "relations:2": (189.2)4357

assumes ‹INSTANCE_OF_CQT_2(ϕ)›4358

shows ‹∃F �∀x ([F]x ≡ ϕ{x})›4359

using "relations:1" assms by blast4360

4361

AOT_theorem "block-paradox:1": ‹¬[λx ∃G (x[G] & ¬[G]x)]↓› (190.1)4362

proof(rule "raa-cor:2")4363

let ?K="«[λx ∃G (x[G] & ¬[G]x)]»"4364

AOT_assume A: ‹«?K»↓›4365

AOT_have ‹∃x (A!x & ∀F (x[F] ≡ F = «?K»))›4366

using "A-objects"[axiom_inst] by fast4367

then AOT_obtain a where ξ: ‹A!a & ∀F (a[F] ≡ F = «?K»)›4368

using "∃E"[rotated] by blast4369

AOT_show ‹p & ¬p› for p4370

proof (rule "∨E"(1)[OF "exc-mid"]; rule "→I")4371

AOT_assume B: ‹[«?K»]a›4372

AOT_hence ‹∃G (a[G] & ¬[G]a)›4373

using "β→C" A by blast4374

then AOT_obtain P where ‹a[P] & ¬[P]a›4375

using "∃E"[rotated] by blast4376

moreover AOT_have ‹P = [«?K»]›4377

using ξ[THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(1)]4378

calculation[THEN "&E"(1)] by blast4379

ultimately AOT_have ‹¬[«?K»]a›4380

using "rule=E" "&E"(2) by fast4381

AOT_thus ‹p & ¬p›4382

using B RAA by blast4383

next4384

AOT_assume B: ‹¬[«?K»]a›4385

AOT_hence ‹¬∃G (a[G] & ¬[G]a)›4386

using "β←C" "cqt:2[const_var]"[of a, axiom_inst] A by blast4387

AOT_hence C: ‹∀G ¬(a[G] & ¬[G]a)›4388

using "cqt-further:4"[THEN "→E"] by blast4389

AOT_have ‹∀G (a[G] → [G]a)›4390

by (AOT_subst ‹a[G] → [G]a› ‹¬(a[G] & ¬[G]a)› for: G)4391

(auto simp: "oth-class-taut:1:a" C)4392

AOT_hence ‹a[«?K»] → [«?K»]a›4393

using "∀E" A by blast4394

moreover AOT_have ‹a[«?K»]›4395

using ξ[THEN "&E"(2), THEN "∀E"(1), OF A, THEN "≡E"(2)]4396

using "=I"(1)[OF A] by blast4397

ultimately AOT_show ‹p & ¬p›4398

using B "→E" RAA by blast4399

qed4400

qed4401

4402

AOT_theorem "block-paradox:2": ‹¬∃F ∀x([F]x ≡ ∃G(x[G] & ¬[G]x))› (190.2)4403

proof(rule RAA(2))4404

AOT_assume ‹∃F ∀x ([F]x ≡ ∃G (x[G] & ¬[G]x))›4405

then AOT_obtain F where F_prop: ‹∀x ([F]x ≡ ∃G (x[G] & ¬[G]x))›4406

using "∃E"[rotated] by blast4407

AOT_have ‹∃x (A!x & ∀G (x[G] ≡ G = F))›4408

262

A.7. The Deductive System PLM

using "A-objects"[axiom_inst] by fast4409

then AOT_obtain a where ξ: ‹A!a & ∀G (a[G] ≡ G = F)›4410

using "∃E"[rotated] by blast4411

AOT_show ‹¬∃F ∀x([F]x ≡ ∃G(x[G] & ¬[G]x))›4412

proof (rule "∨E"(1)[OF "exc-mid"]; rule "→I")4413

AOT_assume B: ‹[F]a›4414

AOT_hence ‹∃G (a[G] & ¬[G]a)›4415

using F_prop[THEN "∀E"(2), THEN "≡E"(1)] by blast4416

then AOT_obtain P where ‹a[P] & ¬[P]a›4417

using "∃E"[rotated] by blast4418

moreover AOT_have ‹P = F›4419

using ξ[THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(1)]4420

calculation[THEN "&E"(1)] by blast4421

ultimately AOT_have ‹¬[F]a›4422

using "rule=E" "&E"(2) by fast4423

AOT_thus ‹¬∃F ∀x([F]x ≡ ∃G(x[G] & ¬[G]x))›4424

using B RAA by blast4425

next4426

AOT_assume B: ‹¬[F]a›4427

AOT_hence ‹¬∃G (a[G] & ¬[G]a)›4428

using "oth-class-taut:4:b"[THEN "≡E"(1),4429

OF F_prop[THEN "∀E"(2)[of _ _ a]], THEN "≡E"(1)]4430

by simp4431

AOT_hence C: ‹∀G ¬(a[G] & ¬[G]a)›4432

using "cqt-further:4"[THEN "→E"] by blast4433

AOT_have ‹∀G (a[G] → [G]a)›4434

by (AOT_subst ‹a[G] → [G]a› ‹¬(a[G] & ¬[G]a)› for: G)4435

(auto simp: "oth-class-taut:1:a" C)4436

AOT_hence ‹a[F] → [F]a›4437

using "∀E" by blast4438

moreover AOT_have ‹a[F]›4439

using ξ[THEN "&E"(2), THEN "∀E"(2), of F, THEN "≡E"(2)]4440

using "=I"(2) by blast4441

ultimately AOT_show ‹¬∃F ∀x([F]x ≡ ∃G(x[G] & ¬[G]x))›4442

using B "→E" RAA by blast4443

qed4444

qed(simp)4445

4446

AOT_theorem "block-paradox:3": ‹¬∀y [λz z = y]↓› (190.3)4447

proof(rule RAA(2))4448

AOT_assume ϑ: ‹∀y [λz z = y]↓›4449

AOT_have ‹∃x (A!x & ∀F (x[F] ≡ ∃y(F = [λz z = y] & ¬y[F])))›4450

using "A-objects"[axiom_inst] by force4451

then AOT_obtain a where4452

a_prop: ‹A!a & ∀F (a[F] ≡ ∃y (F = [λz z = y] & ¬y[F]))›4453

using "∃E"[rotated] by blast4454

AOT_have ζ: ‹a[λz z = a] ≡ ∃y ([λz z = a] = [λz z = y] & ¬y[λz z = a])›4455

using ϑ[THEN "∀E"(2)] a_prop[THEN "&E"(2), THEN "∀E"(1)] by blast4456

AOT_show ‹¬∀y [λz z = y]↓›4457

proof (rule "∨E"(1)[OF "exc-mid"]; rule "→I")4458

AOT_assume A: ‹a[λz z = a]›4459

AOT_hence ‹∃y ([λz z = a] = [λz z = y] & ¬y[λz z = a])›4460

using ζ[THEN "≡E"(1)] by blast4461

then AOT_obtain b where b_prop: ‹[λz z = a] = [λz z = b] & ¬b[λz z = a]›4462

using "∃E"[rotated] by blast4463

moreover AOT_have ‹a = a› by (rule "=I")4464

moreover AOT_have ‹[λz z = a]↓› using ϑ "∀E" by blast4465

moreover AOT_have ‹a↓› using "cqt:2[const_var]"[axiom_inst] .4466

ultimately AOT_have ‹[λz z = a]a› using "β←C" by blast4467

AOT_hence ‹[λz z = b]a› using "rule=E" b_prop[THEN "&E"(1)] by fast4468

AOT_hence ‹a = b› using "β→C" by blast4469

AOT_hence ‹b[λz z = a]› using A "rule=E" by fast4470

AOT_thus ‹¬∀y [λz z = y]↓› using b_prop[THEN "&E"(2)] RAA by blast4471

263

A. Isabelle Theory

next4472

AOT_assume A: ‹¬a[λz z = a]›4473

AOT_hence ‹¬∃y ([λz z = a] = [λz z = y] & ¬y[λz z = a])›4474

using ζ "oth-class-taut:4:b"[THEN "≡E"(1), THEN "≡E"(1)] by blast4475

AOT_hence ‹∀y ¬([λz z = a] = [λz z = y] & ¬y[λz z = a])›4476

using "cqt-further:4"[THEN "→E"] by blast4477

AOT_hence ‹¬([λz z = a] = [λz z = a] & ¬a[λz z = a])›4478

using "∀E" by blast4479

AOT_hence ‹[λz z = a] = [λz z = a] → a[λz z = a]›4480

by (metis "&I" "deduction-theorem" "raa-cor:4")4481

AOT_hence ‹a[λz z = a]› using "=I"(1) ϑ[THEN "∀E"(2)] "→E" by blast4482

AOT_thus ‹¬∀y [λz z = y]↓› using A RAA by blast4483

qed4484

qed(simp)4485

4486

AOT_theorem "block-paradox:4": ‹¬∀y ∃F ∀x([F]x ≡ x = y)› (190.4)4487

proof(rule RAA(2))4488

AOT_assume ϑ: ‹∀y ∃F ∀x([F]x ≡ x = y)›4489

AOT_have ‹∃x (A!x & ∀F (x[F] ≡ ∃z (∀y([F]y ≡ y = z) & ¬z[F])))›4490

using "A-objects"[axiom_inst] by force4491

then AOT_obtain a where4492

a_prop: ‹A!a & ∀F (a[F] ≡ ∃z (∀y([F]y ≡ y = z) & ¬z[F]))›4493

using "∃E"[rotated] by blast4494

AOT_obtain F where F_prop: ‹∀x ([F]x ≡ x = a)›4495

using ϑ[THEN "∀E"(2)] "∃E"[rotated] by blast4496

AOT_have ζ: ‹a[F] ≡ ∃z (∀y ([F]y ≡ y = z) & ¬z[F])›4497

using a_prop[THEN "&E"(2), THEN "∀E"(2)] by blast4498

AOT_show ‹¬∀y ∃F ∀x([F]x ≡ x = y)›4499

proof (rule "∨E"(1)[OF "exc-mid"]; rule "→I")4500

AOT_assume A: ‹a[F]›4501

AOT_hence ‹∃z (∀y ([F]y ≡ y = z) & ¬z[F])›4502

using ζ[THEN "≡E"(1)] by blast4503

then AOT_obtain b where b_prop: ‹∀y ([F]y ≡ y = b) & ¬b[F]›4504

using "∃E"[rotated] by blast4505

moreover AOT_have ‹[F]a›4506

using F_prop[THEN "∀E"(2), THEN "≡E"(2)] "=I"(2) by blast4507

ultimately AOT_have ‹a = b›4508

using "∀E"(2) "≡E"(1) "&E" by fast4509

AOT_hence ‹a = b›4510

using "β→C" by blast4511

AOT_hence ‹b[F]›4512

using A "rule=E" by fast4513

AOT_thus ‹¬∀y ∃F ∀x([F]x ≡ x = y)›4514

using b_prop[THEN "&E"(2)] RAA by blast4515

next4516

AOT_assume A: ‹¬a[F]›4517

AOT_hence ‹¬∃z (∀y ([F]y ≡ y = z) & ¬z[F])›4518

using ζ "oth-class-taut:4:b"[THEN "≡E"(1), THEN "≡E"(1)] by blast4519

AOT_hence ‹∀z ¬(∀y ([F]y ≡ y = z) & ¬z[F])›4520

using "cqt-further:4"[THEN "→E"] by blast4521

AOT_hence ‹¬(∀y ([F]y ≡ y = a) & ¬a[F])›4522

using "∀E" by blast4523

AOT_hence ‹∀y ([F]y ≡ y = a) → a[F]›4524

by (metis "&I" "deduction-theorem" "raa-cor:4")4525

AOT_hence ‹a[F]› using F_prop "→E" by blast4526

AOT_thus ‹¬∀y ∃F ∀x([F]x ≡ x = y)›4527

using A RAA by blast4528

qed4529

qed(simp)4530

4531

AOT_theorem "block-paradox:5": ‹¬∃F∀x∀y([F]xy ≡ y = x)› (190.5)4532

proof(rule "raa-cor:2")4533

AOT_assume ‹∃F∀x∀y([F]xy ≡ y = x)›4534

264

A.7. The Deductive System PLM

then AOT_obtain F where F_prop: ‹∀x∀y([F]xy ≡ y = x)›4535

using "∃E"[rotated] by blast4536

{4537

fix x4538

AOT_have 1: ‹∀y([F]xy ≡ y = x)›4539

using F_prop "∀E" by blast4540

AOT_have 2: ‹[λz [F]xz]↓› by "cqt:2"4541

moreover AOT_have ‹∀y([λz [F]xz]y ≡ y = x)›4542

proof(rule "∀I")4543

fix y4544

AOT_have ‹[λz [F]xz]y ≡ [F]xy›4545

using "beta-C-meta"[THEN "→E"] 2 by fast4546

also AOT_have ‹... ≡ y = x›4547

using 1 "∀E" by fast4548

finally AOT_show ‹[λz [F]xz]y ≡ y = x›.4549

qed4550

ultimately AOT_have ‹∃F∀y([F]y ≡ y = x)›4551

using "∃I" by fast4552

}4553

AOT_hence ‹∀x∃F∀y([F]y ≡ y = x)›4554

by (rule GEN)4555

AOT_thus ‹∀x∃F∀y([F]y ≡ y = x) & ¬∀x∃F∀y([F]y ≡ y = x)›4556

using "&I" "block-paradox:4" by blast4557

qed4558

4559

AOT_act_theorem "block-paradox2:1": (191.1)4560

‹∀x [G]x → ¬[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4561

proof(rule "→I"; rule "raa-cor:2")4562

AOT_assume antecedant: ‹∀x [G]x›4563

AOT_have Lemma: ‹∀x ([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x))›4564

proof(rule GEN)4565

fix x4566

AOT_have A: ‹[G]ιy (y = x & ∃H (x[H] & ¬[H]x)) ≡4567

∃!y (y = x & ∃H (x[H] & ¬[H]x))›4568

proof(rule "≡I"; rule "→I")4569

AOT_assume ‹[G]ιy (y = x & ∃H (x[H] & ¬[H]x))›4570

AOT_hence ‹ιy (y = x & ∃H (x[H] & ¬[H]x))↓›4571

using "cqt:5:a"[axiom_inst, THEN "→E", THEN "&E"(2)] by blast4572

AOT_thus ‹∃!y (y = x & ∃H (x[H] & ¬[H]x))›4573

using "!-exists:1"[THEN "≡E"(1)] by blast4574

next4575

AOT_assume A: ‹∃!y (y = x & ∃H (x[H] & ¬[H]x))›4576

AOT_obtain a where a_1: ‹a = x & ∃H (x[H] & ¬[H]x)›4577

and a_2: ‹∀z (z = x & ∃H (x[H] & ¬[H]x) → z = a)›4578

using "uniqueness:1"[THEN "≡dfE", OF A] "&E" "∃E"[rotated] by blast4579

AOT_have a_3: ‹[G]a›4580

using antecedant "∀E" by blast4581

AOT_show ‹[G]ιy (y = x & ∃H (x[H] & ¬[H]x))›4582

apply (rule "russell-axiom[exe,1].russell-axiom"[THEN "≡E"(2)])4583

apply (rule "∃I"(2))4584

using a_1 a_2 a_3 "&I" by blast4585

qed4586

also AOT_have B: ‹... ≡ ∃H (x[H] & ¬[H]x)›4587

proof (rule "≡I"; rule "→I")4588

AOT_assume A: ‹∃!y (y = x & ∃H (x[H] & ¬[H]x))›4589

AOT_obtain a where ‹a = x & ∃H (x[H] & ¬[H]x)›4590

using "uniqueness:1"[THEN "≡dfE", OF A] "&E" "∃E"[rotated] by blast4591

AOT_thus ‹∃H (x[H] & ¬[H]x)› using "&E" by blast4592

next4593

AOT_assume ‹∃H (x[H] & ¬[H]x)›4594

AOT_hence ‹x = x & ∃H (x[H] & ¬[H]x)›4595

using "id-eq:1" "&I" by blast4596

moreover AOT_have ‹∀z (z = x & ∃H (x[H] & ¬[H]x) → z = x)›4597

265

A. Isabelle Theory

by (simp add: "Conjunction Simplification"(1) "universal-cor")4598

ultimately AOT_show ‹∃!y (y = x & ∃H (x[H] & ¬[H]x))›4599

using "uniqueness:1"[THEN "≡dfI"] "&I" "∃I"(2) by fast4600

qed4601

finally AOT_show ‹([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x))› .4602

qed4603

4604

AOT_assume A: ‹[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4605

AOT_have ϑ: ‹∀x ([λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]x ≡4606

[G]ιy(y = x & ∃H (x[H] & ¬[H]x)))›4607

using "beta-C-meta"[THEN "→E", OF A] "∀I" by fast4608

AOT_have ‹∀x ([λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]x ≡ ∃H (x[H] & ¬[H]x))›4609

using ϑ Lemma "cqt-basic:10"[THEN "→E"] "&I" by fast4610

AOT_hence ‹∃F ∀x ([F]x ≡ ∃H (x[H] & ¬[H]x))›4611

using "∃I"(1) A by fast4612

AOT_thus ‹(∃F ∀x ([F]x ≡ ∃H (x[H] & ¬[H]x))) &4613

(¬∃F ∀x ([F]x ≡ ∃H (x[H] & ¬[H]x)))›4614

using "block-paradox:2" "&I" by blast4615

qed4616

4617

text‹Note: Strengthens the above to a modally-strict theorem.4618

Not explicitly part of PLM.›4619

AOT_theorem "block-paradox2:1[strict]": (191.1)4620

‹∀x A[G]x → ¬[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4621

proof(rule "→I"; rule "raa-cor:2")4622

AOT_assume antecedant: ‹∀x A[G]x›4623

AOT_have Lemma: ‹A∀x ([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x))›4624

proof(safe intro!: GEN "Act-Basic:5"[THEN "≡E"(2)]4625

"logic-actual-nec:3"[axiom_inst, THEN "≡E"(2)])4626

fix x4627

AOT_have A: ‹A[G]ιy (y = x & ∃H (x[H] & ¬[H]x)) ≡4628

∃!y A(y = x & ∃H (x[H] & ¬[H]x))›4629

proof(rule "≡I"; rule "→I")4630

AOT_assume ‹A[G]ιy (y = x & ∃H (x[H] & ¬[H]x))›4631

moreover AOT_have ‹�([G]ιy (y = x & ∃H (x[H] & ¬[H]x)) →4632

�ιy (y = x & ∃H (x[H] & ¬[H]x))↓)›4633

proof(rule RN; rule "→I")4634

AOT_modally_strict {4635

AOT_assume ‹[G]ιy (y = x & ∃H (x[H] & ¬[H]x))›4636

AOT_hence ‹ιy (y = x & ∃H (x[H] & ¬[H]x))↓›4637

using "cqt:5:a"[axiom_inst, THEN "→E", THEN "&E"(2)] by blast4638

AOT_thus ‹�ιy (y = x & ∃H (x[H] & ¬[H]x))↓›4639

using "exist-nec"[THEN "→E"] by blast4640

}4641

qed4642

ultimately AOT_have ‹A�ιy (y = x & ∃H (x[H] & ¬[H]x))↓›4643

using "act-cond"[THEN "→E", THEN "→E"] "nec-imp-act"[THEN "→E"] by blast4644

AOT_hence ‹ιy (y = x & ∃H (x[H] & ¬[H]x))↓›4645

using "Act-Sub:3" "B♦" "vdash-properties:10" by blast4646

AOT_thus ‹∃!y A(y = x & ∃H (x[H] & ¬[H]x))›4647

using "actual-desc:1"[THEN "≡E"(1)] by blast4648

next4649

AOT_assume A: ‹∃!y A(y = x & ∃H (x[H] & ¬[H]x))›4650

AOT_obtain a where a_1: ‹A(a = x & ∃H (x[H] & ¬[H]x))›4651

and a_2: ‹∀z (A(z = x & ∃H (x[H] & ¬[H]x)) → z = a)›4652

using "uniqueness:1"[THEN "≡dfE", OF A] "&E" "∃E"[rotated] by blast4653

AOT_have a_3: ‹A[G]a›4654

using antecedant "∀E" by blast4655

moreover AOT_have ‹a = ιy(y = x & ∃H (x[H] & ¬[H]x))›4656

using "nec-hintikka-scheme"[THEN "≡E"(2), OF "&I"] a_1 a_2 by auto4657

ultimately AOT_show ‹A[G]ιy (y = x & ∃H (x[H] & ¬[H]x))›4658

using "rule=E" by fast4659

qed4660

266

A.7. The Deductive System PLM

also AOT_have B: ‹... ≡ A∃H (x[H] & ¬[H]x)›4661

proof (rule "≡I"; rule "→I")4662

AOT_assume A: ‹∃!y A(y = x & ∃H (x[H] & ¬[H]x))›4663

AOT_obtain a where ‹A(a = x & ∃H (x[H] & ¬[H]x))›4664

using "uniqueness:1"[THEN "≡dfE", OF A] "&E" "∃E"[rotated] by blast4665

AOT_thus ‹A∃H (x[H] & ¬[H]x)›4666

using "Act-Basic:2"[THEN "≡E"(1), THEN "&E"(2)] by blast4667

next4668

AOT_assume ‹A∃H (x[H] & ¬[H]x)›4669

AOT_hence ‹Ax = x & A∃H (x[H] & ¬[H]x)›4670

using "id-eq:1" "&I" "RA[2]" by blast4671

AOT_hence ‹A(x = x & ∃H (x[H] & ¬[H]x))›4672

using "act-conj-act:3" "Act-Basic:2" "≡E" by blast4673

moreover AOT_have ‹∀z (A(z = x & ∃H (x[H] & ¬[H]x)) → z = x)›4674

proof(safe intro!: GEN "→I")4675

fix z4676

AOT_assume ‹A(z = x & ∃H (x[H] & ¬[H]x))›4677

AOT_hence ‹A(z = x)›4678

using "Act-Basic:2"[THEN "≡E"(1), THEN "&E"(1)] by blast4679

AOT_thus ‹z = x›4680

by (metis "id-act:1" "intro-elim:3:b")4681

qed4682

ultimately AOT_show ‹∃!y A(y = x & ∃H (x[H] & ¬[H]x))›4683

using "uniqueness:1"[THEN "≡dfI"] "&I" "∃I"(2) by fast4684

qed4685

finally AOT_show ‹(A[G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ A∃H (x[H] & ¬[H]x))›.4686

qed4687

4688

AOT_assume A: ‹[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4689

AOT_hence ‹A[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4690

using "exist-nec" "→E" "nec-imp-act"[THEN "→E"] by blast4691

AOT_hence ‹A([λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓ &4692

∀x ([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x)))›4693

using Lemma "Act-Basic:2"[THEN "≡E"(2)] "&I" by blast4694

moreover AOT_have ‹A([λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓ &4695

∀x ([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x)))4696

→ A∃p (p & ¬p)›4697

proof (rule "logic-actual-nec:2"[axiom_inst, THEN "≡E"(1)];4698

rule "RA[2]"; rule "→I")4699

AOT_modally_strict {4700

AOT_assume 0: ‹[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓ &4701

∀x ([G]ιy(y = x & ∃H (x[H] & ¬[H]x)) ≡ ∃H (x[H] & ¬[H]x))›4702

AOT_have ‹∃F ∀x ([F]x ≡ ∃G (x[G] & ¬[G]x))›4703

proof(rule "∃I"(1))4704

AOT_show ‹∀x ([λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]x ≡ ∃H (x[H] & ¬[H]x))›4705

proof(safe intro!: GEN "≡I" "→I" "β←C" dest!: "β→C")4706

fix x4707

AOT_assume ‹[G]ιy(y = x & ∃H (x[H] & ¬[H]x))›4708

AOT_thus ‹∃H (x[H] & ¬[H]x)›4709

using 0 "&E" "∀E"(2) "≡E"(1) by blast4710

next4711

fix x4712

AOT_assume ‹∃H (x[H] & ¬[H]x)›4713

AOT_thus ‹[G]ιy(y = x & ∃H (x[H] & ¬[H]x))›4714

using 0 "&E" "∀E"(2) "≡E"(2) by blast4715

qed(auto intro!: 0[THEN "&E"(1)] "cqt:2")4716

next4717

AOT_show ‹[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4718

using 0 "&E"(1) by blast4719

qed4720

AOT_thus ‹∃p (p & ¬p)›4721

using "block-paradox:2" "reductio-aa:1" by blast4722

}4723

267

A. Isabelle Theory

qed4724

ultimately AOT_have ‹A∃p (p & ¬p)›4725

using "→E" by blast4726

AOT_hence ‹∃p A(p & ¬p)›4727

by (metis "Act-Basic:10" "intro-elim:3:a")4728

then AOT_obtain p where ‹A(p & ¬p)›4729

using "∃E"[rotated] by blast4730

moreover AOT_have ‹¬A(p & ¬p)›4731

using "non-contradiction"[THEN "RA[2]"]4732

by (meson "Act-Sub:1" "¬¬I" "intro-elim:3:d")4733

ultimately AOT_show ‹p & ¬p› for p4734

by (metis "raa-cor:3")4735

qed4736

4737

AOT_act_theorem "block-paradox2:2": (191.2)4738

‹∃G ¬[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4739

proof(rule "∃I"(1))4740

AOT_have 0: ‹[λx ∀p (p →p)]↓›4741

by "cqt:2[lambda]"4742

moreover AOT_have ‹∀x [λx ∀p (p →p)]x›4743

apply (rule GEN)4744

apply (rule "beta-C-cor:2"[THEN "→E", OF 0, THEN "∀E"(2), THEN "≡E"(2)])4745

using "if-p-then-p" GEN by fast4746

moreover AOT_have ‹∀G (∀x [G]x → ¬[λx [G]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓)›4747

using "block-paradox2:1" "∀I" by fast4748

ultimately AOT_show ‹¬[λx [λx ∀p (p →p)]ιy (y = x & ∃H (x[H] & ¬[H]x))]↓›4749

using "∀E"(1) "→E" by blast4750

qed("cqt:2[lambda]")4751

4752

AOT_theorem propositions: ‹∃p �(p ≡ ϕ)› (192)4753

proof(rule "∃I"(1))4754

AOT_show ‹�(ϕ ≡ ϕ)›4755

by (simp add: RN "oth-class-taut:3:a")4756

next4757

AOT_show ‹ϕ↓›4758

by (simp add: "log-prop-prop:2")4759

qed4760

4761

AOT_theorem "pos-not-equiv-ne:1": (193.1)4762

‹(♦¬∀x1...∀xn ([F]x1...xn ≡ [G]x1...xn)) → F 6= G›4763

proof (rule "→I")4764

AOT_assume ‹♦¬∀x1...∀xn ([F]x1...xn ≡ [G]x1...xn)›4765

AOT_hence ‹¬�∀x1...∀xn ([F]x1...xn ≡ [G]x1...xn)›4766

using "KBasic:11"[THEN "≡E"(2)] by blast4767

AOT_hence ‹¬(F = G)›4768

using "id-rel-nec-equiv:1" "modus-tollens:1" by blast4769

AOT_thus ‹F 6= G›4770

using "=-infix"[THEN "≡dfI"] by blast4771

qed4772

4773

AOT_theorem "pos-not-equiv-ne:2": ‹(♦¬(ϕ{F} ≡ ϕ{G})) → F 6= G› (193.2)4774

proof (rule "→I")4775

AOT_modally_strict {4776

AOT_have ‹¬(ϕ{F} ≡ ϕ{G}) → ¬(F = G)›4777

proof (rule "→I"; rule "raa-cor:2")4778

AOT_assume 1: ‹F = G›4779

AOT_hence ‹ϕ{F} → ϕ{G}›4780

using "l-identity"[axiom_inst, THEN "→E"] by blast4781

moreover {4782

AOT_have ‹G = F›4783

using 1 id_sym by blast4784

AOT_hence ‹ϕ{G} → ϕ{F}›4785

using "l-identity"[axiom_inst, THEN "→E"] by blast4786

268

A.7. The Deductive System PLM

}4787

ultimately AOT_have ‹ϕ{F} ≡ ϕ{G}›4788

using "≡I" by blast4789

moreover AOT_assume ‹¬(ϕ{F} ≡ ϕ{G})›4790

ultimately AOT_show ‹(ϕ{F} ≡ ϕ{G}) & ¬(ϕ{F} ≡ ϕ{G})›4791

using "&I" by blast4792

qed4793

}4794

AOT_hence ‹♦¬(ϕ{F} ≡ ϕ{G}) → ♦¬(F = G)›4795

using "RM:2[prem]" by blast4796

moreover AOT_assume ‹♦¬(ϕ{F} ≡ ϕ{G})›4797

ultimately AOT_have 0: ‹♦¬(F = G)› using "→E" by blast4798

AOT_have ‹♦(F 6= G)›4799

by (AOT_subst ‹F 6= G› ‹¬(F = G)›)4800

(auto simp: "=-infix" "≡Df" 0)4801

AOT_thus ‹F 6= G›4802

using "id-nec2:3"[THEN "→E"] by blast4803

qed4804

4805

AOT_theorem "pos-not-equiv-ne:2[zero]": ‹(♦¬(ϕ{p} ≡ ϕ{q})) → p 6= q› (193.2)4806

proof (rule "→I")4807

AOT_modally_strict {4808

AOT_have ‹¬(ϕ{p} ≡ ϕ{q}) → ¬(p = q)›4809

proof (rule "→I"; rule "raa-cor:2")4810

AOT_assume 1: ‹p = q›4811

AOT_hence ‹ϕ{p} → ϕ{q}›4812

using "l-identity"[axiom_inst, THEN "→E"] by blast4813

moreover {4814

AOT_have ‹q = p›4815

using 1 id_sym by blast4816

AOT_hence ‹ϕ{q} → ϕ{p}›4817

using "l-identity"[axiom_inst, THEN "→E"] by blast4818

}4819

ultimately AOT_have ‹ϕ{p} ≡ ϕ{q}›4820

using "≡I" by blast4821

moreover AOT_assume ‹¬(ϕ{p} ≡ ϕ{q})›4822

ultimately AOT_show ‹(ϕ{p} ≡ ϕ{q}) & ¬(ϕ{p} ≡ ϕ{q})›4823

using "&I" by blast4824

qed4825

}4826

AOT_hence ‹♦¬(ϕ{p} ≡ ϕ{q}) → ♦¬(p = q)›4827

using "RM:2[prem]" by blast4828

moreover AOT_assume ‹♦¬(ϕ{p} ≡ ϕ{q})›4829

ultimately AOT_have 0: ‹♦¬(p = q)› using "→E" by blast4830

AOT_have ‹♦(p 6= q)›4831

by (AOT_subst ‹p 6= q› ‹¬(p = q)›)4832

(auto simp: 0 "=-infix" "≡Df")4833

AOT_thus ‹p 6= q›4834

using "id-nec2:3"[THEN "→E"] by blast4835

qed4836

4837

AOT_theorem "pos-not-equiv-ne:3": (193.3)4838

‹(¬∀x1...∀xn ([F]x1...xn ≡ [G]x1...xn)) → F 6= G›4839

using "→I" "pos-not-equiv-ne:1"[THEN "→E"] "T♦"[THEN "→E"] by blast4840

4841

AOT_theorem "pos-not-equiv-ne:4": ‹(¬(ϕ{F} ≡ ϕ{G})) → F 6= G› (193.4)4842

using "→I" "pos-not-equiv-ne:2"[THEN "→E"] "T♦"[THEN "→E"] by blast4843

4844

AOT_theorem "pos-not-equiv-ne:4[zero]": ‹(¬(ϕ{p} ≡ ϕ{q})) → p 6= q› (193.4)4845

using "→I" "pos-not-equiv-ne:2[zero]"[THEN "→E"]4846

"T♦"[THEN "→E"] by blast4847

4848

AOT_define relation_negation :: "Π ⇒ Π" ("_-")4849

269

A. Isabelle Theory

"df-relation-negation": "[F]- =df [λx1...xn ¬[F]x1...xn]" (194)4850

4851

nonterminal ϕneg4852

syntax "" :: "ϕneg ⇒ τ" ("_")4853

syntax "" :: "ϕneg ⇒ ϕ" ("’(_’)")4854

4855

AOT_define relation_negation_0 :: ‹ϕ ⇒ ϕneg› ("’(_’)-")4856

"df-relation-negation[zero]": "(p)- =df [λ ¬p]" (194)4857

4858

AOT_theorem "rel-neg-T:1": ‹[λx1...xn ¬[Π]x1...xn]↓› (195.1)4859

by "cqt:2[lambda]"4860

4861

AOT_theorem "rel-neg-T:1[zero]": ‹[λ ¬ϕ]↓› (195.1)4862

using "cqt:2[lambda0]"[axiom_inst] by blast4863

4864

AOT_theorem "rel-neg-T:2": ‹[Π]- = [λx1...xn ¬[Π]x1...xn]› (195.2)4865

using "=I"(1)[OF "rel-neg-T:1"]4866

by (rule "=dfI"(1)[OF "df-relation-negation", OF "rel-neg-T:1"])4867

4868

AOT_theorem "rel-neg-T:2[zero]": ‹(ϕ)- = [λ ¬ϕ]› (195.2)4869

using "=I"(1)[OF "rel-neg-T:1[zero]"]4870

by (rule "=dfI"(1)[OF "df-relation-negation[zero]", OF "rel-neg-T:1[zero]"])4871

4872

AOT_theorem "rel-neg-T:3": ‹[Π]-↓› (195.3)4873

using "=dfI"(1)[OF "df-relation-negation", OF "rel-neg-T:1"]4874

"rel-neg-T:1" by blast4875

4876

AOT_theorem "rel-neg-T:3[zero]": ‹(ϕ)-↓› (195.3)4877

using "log-prop-prop:2" by blast4878

4879

AOT_theorem "thm-relation-negation:1": ‹[F]-x1...xn ≡ ¬[F]x1...xn› (197.1)4880

proof -4881

AOT_have ‹[F]-x1...xn ≡ [λx1...xn ¬[F]x1...xn]x1...xn›4882

using "rule=E"[rotated, OF "rel-neg-T:2"]4883

"rule=E"[rotated, OF "rel-neg-T:2"[THEN id_sym]]4884

"→I" "≡I" by fast4885

also AOT_have ‹... ≡ ¬[F]x1...xn›4886

using "beta-C-meta"[THEN "→E", OF "rel-neg-T:1"] by fast4887

finally show ?thesis.4888

qed4889

4890

AOT_theorem "thm-relation-negation:2": ‹¬[F]-x1...xn ≡ [F]x1...xn› (197.2)4891

apply (AOT_subst ‹[F]x1...xn› ‹¬¬[F]x1...xn›)4892

apply (simp add: "oth-class-taut:3:b")4893

apply (rule "oth-class-taut:4:b"[THEN "≡E"(1)])4894

using "thm-relation-negation:1".4895

4896

AOT_theorem "thm-relation-negation:3": ‹((p)-) ≡ ¬p› (197.3)4897

proof -4898

AOT_have ‹(p)- = [λ ¬p]› using "rel-neg-T:2[zero]" by blast4899

AOT_hence ‹((p)-) ≡ [λ ¬p]›4900

using "df-relation-negation[zero]" "log-prop-prop:2"4901

"oth-class-taut:3:a" "rule-id-df:2:a" by blast4902

also AOT_have ‹[λ ¬p] ≡ ¬p›4903

by (simp add: "propositions-lemma:2")4904

finally show ?thesis.4905

qed4906

4907

AOT_theorem "thm-relation-negation:4": ‹(¬((p)-)) ≡ p› (197.4)4908

using "thm-relation-negation:3"[THEN "≡E"(1)]4909

"thm-relation-negation:3"[THEN "≡E"(2)]4910

"≡I" "→I" RAA by metis4911

4912

270

A.7. The Deductive System PLM

AOT_theorem "thm-relation-negation:5": ‹[F] 6= [F]-› (197.5)4913

proof -4914

AOT_have ‹¬([F] = [F]-)›4915

proof (rule RAA(2))4916

AOT_show ‹[F]x1...xn → [F]x1...xn› for x1xn4917

using "if-p-then-p".4918

next4919

AOT_assume ‹[F] = [F]-›4920

AOT_hence ‹[F]- = [F]› using id_sym by blast4921

AOT_hence ‹[F]x1...xn ≡ ¬[F]x1...xn› for x1xn4922

using "rule=E" "thm-relation-negation:1" by fast4923

AOT_thus ‹¬([F]x1...xn → [F]x1...xn)› for x1xn4924

using "≡E" RAA by metis4925

qed4926

thus ?thesis4927

using "≡dfI" "=-infix" by blast4928

qed4929

4930

AOT_theorem "thm-relation-negation:6": ‹p 6= (p)-› (197.6)4931

proof -4932

AOT_have ‹¬(p = (p)-)›4933

proof (rule RAA(2))4934

AOT_show ‹p → p›4935

using "if-p-then-p".4936

next4937

AOT_assume ‹p = (p)-›4938

AOT_hence ‹(p)- = p› using id_sym by blast4939

AOT_hence ‹p ≡ ¬p›4940

using "rule=E" "thm-relation-negation:3" by fast4941

AOT_thus ‹¬(p → p)›4942

using "≡E" RAA by metis4943

qed4944

thus ?thesis4945

using "≡dfI" "=-infix" by blast4946

qed4947

4948

AOT_theorem "thm-relation-negation:7": ‹(p)- = (¬p)› (197.7)4949

apply (rule "df-relation-negation[zero]"[THEN "=dfE"(1)])4950

using "cqt:2[lambda0]"[axiom_inst] "rel-neg-T:2[zero]"4951

"propositions-lemma:1" id_trans by blast+4952

4953

AOT_theorem "thm-relation-negation:8": ‹p = q → (¬p) = (¬q)› (197.8)4954

proof(rule "→I")4955

AOT_assume ‹p = q›4956

moreover AOT_have ‹(¬p)↓› using "log-prop-prop:2".4957

moreover AOT_have ‹(¬p) = (¬p)› using calculation(2) "=I" by blast4958

ultimately AOT_show ‹(¬p) = (¬q)›4959

using "rule=E" by fast4960

qed4961

4962

AOT_theorem "thm-relation-negation:9": ‹p = q → (p)- = (q)-› (197.9)4963

proof(rule "→I")4964

AOT_assume ‹p = q›4965

AOT_hence ‹(¬p) = (¬q)› using "thm-relation-negation:8" "→E" by blast4966

AOT_thus ‹(p)- = (q)-›4967

using "thm-relation-negation:7" id_sym id_trans by metis4968

qed4969

4970

AOT_define Necessary :: ‹Π ⇒ ϕ› ("Necessary’(_’)")4971

"contingent-properties:1": (198.1)4972

‹Necessary([F]) ≡df �∀x1...∀xn [F]x1...xn›4973

4974

AOT_define Necessary0 :: ‹ϕ ⇒ ϕ› ("Necessary0’(_’)")4975

271

A. Isabelle Theory

"contingent-properties:1[zero]": (198.1)4976

‹Necessary0(p) ≡df �p›4977

4978

AOT_define Impossible :: ‹Π ⇒ ϕ› ("Impossible’(_’)")4979

"contingent-properties:2": (198.2)4980

‹Impossible([F]) ≡df F↓ & �∀x1...∀xn ¬[F]x1...xn›4981

4982

AOT_define Impossible0 :: ‹ϕ ⇒ ϕ› ("Impossible0’(_’)")4983

"contingent-properties:2[zero]": (198.2)4984

‹Impossible0(p) ≡df �¬p›4985

4986

AOT_define NonContingent :: ‹Π ⇒ ϕ› ("NonContingent’(_’)")4987

"contingent-properties:3": (198.3)4988

‹NonContingent([F]) ≡df Necessary([F]) ∨ Impossible([F])›4989

4990

AOT_define NonContingent0 :: ‹ϕ ⇒ ϕ› ("NonContingent0’(_’)")4991

"contingent-properties:3[zero]": (198.3)4992

‹NonContingent0(p) ≡df Necessary0(p) ∨ Impossible0(p)›4993

4994

AOT_define Contingent :: ‹Π ⇒ ϕ› ("Contingent’(_’)")4995

"contingent-properties:4": (198.4)4996

‹Contingent([F]) ≡df F↓ & ¬(Necessary([F]) ∨ Impossible([F]))›4997

4998

AOT_define Contingent0 :: ‹ϕ ⇒ ϕ› ("Contingent0’(_’)")4999

"contingent-properties:4[zero]": (198.4)5000

‹Contingent0(p) ≡df ¬(Necessary0(p) ∨ Impossible0(p))›5001

5002

5003

AOT_theorem "thm-cont-prop:1": ‹NonContingent([F]) ≡ NonContingent([F]-)› (200.1)5004

proof (rule "≡I"; rule "→I")5005

AOT_assume ‹NonContingent([F])›5006

AOT_hence ‹Necessary([F]) ∨ Impossible([F])›5007

using "≡dfE"[OF "contingent-properties:3"] by blast5008

moreover {5009

AOT_assume ‹Necessary([F])›5010

AOT_hence ‹�(∀x1...∀xn [F]x1...xn)›5011

using "≡dfE"[OF "contingent-properties:1"] by blast5012

moreover AOT_modally_strict {5013

AOT_assume ‹∀x1...∀xn [F]x1...xn›5014

AOT_hence ‹[F]x1...xn› for x1xn using "∀E" by blast5015

AOT_hence ‹¬[F]-x1...xn› for x1xn5016

by (meson "≡E"(6) "oth-class-taut:3:a"5017

"thm-relation-negation:2" "≡E"(1))5018

AOT_hence ‹∀x1...∀xn ¬[F]-x1...xn› using "∀I" by fast5019

}5020

ultimately AOT_have ‹�(∀x1...∀xn ¬[F]-x1...xn)›5021

using "RN[prem]"[where Γ="{«∀x1...∀xn [F]x1...xn»}", simplified] by blast5022

AOT_hence ‹Impossible([F]-)›5023

using "≡Df"[OF "contingent-properties:2", THEN "≡S"(1),5024

OF "rel-neg-T:3", THEN "≡E"(2)]5025

by blast5026

}5027

moreover {5028

AOT_assume ‹Impossible([F])›5029

AOT_hence ‹�(∀x1...∀xn ¬[F]x1...xn)›5030

using "≡Df"[OF "contingent-properties:2", THEN "≡S"(1),5031

OF "cqt:2[const_var]"[axiom_inst], THEN "≡E"(1)]5032

by blast5033

moreover AOT_modally_strict {5034

AOT_assume ‹∀x1...∀xn ¬[F]x1...xn›5035

AOT_hence ‹¬[F]x1...xn› for x1xn using "∀E" by blast5036

AOT_hence ‹[F]-x1...xn› for x1xn5037

by (meson "≡E"(6) "oth-class-taut:3:a"5038

272

A.7. The Deductive System PLM

"thm-relation-negation:1" "≡E"(1))5039

AOT_hence ‹∀x1...∀xn [F]-x1...xn› using "∀I" by fast5040

}5041

ultimately AOT_have ‹�(∀x1...∀xn [F]-x1...xn)›5042

using "RN[prem]"[where Γ="{«∀x1...∀xn ¬[F]x1...xn»}"] by blast5043

AOT_hence ‹Necessary([F]-)›5044

using "≡dfI"[OF "contingent-properties:1"] by blast5045

}5046

ultimately AOT_have ‹Necessary([F]-) ∨ Impossible([F]-)›5047

using "∨E"(1) "∨I" "→I" by metis5048

AOT_thus ‹NonContingent([F]-)›5049

using "≡dfI"[OF "contingent-properties:3"] by blast5050

next5051

AOT_assume ‹NonContingent([F]-)›5052

AOT_hence ‹Necessary([F]-) ∨ Impossible([F]-)›5053

using "≡dfE"[OF "contingent-properties:3"] by blast5054

moreover {5055

AOT_assume ‹Necessary([F]-)›5056

AOT_hence ‹�(∀x1...∀xn [F]-x1...xn)›5057

using "≡dfE"[OF "contingent-properties:1"] by blast5058

moreover AOT_modally_strict {5059

AOT_assume ‹∀x1...∀xn [F]-x1...xn›5060

AOT_hence ‹[F]-x1...xn› for x1xn using "∀E" by blast5061

AOT_hence ‹¬[F]x1...xn› for x1xn5062

by (meson "≡E"(6) "oth-class-taut:3:a"5063

"thm-relation-negation:1" "≡E"(2))5064

AOT_hence ‹∀x1...∀xn ¬[F]x1...xn› using "∀I" by fast5065

}5066

ultimately AOT_have ‹�∀x1...∀xn ¬[F]x1...xn›5067

using "RN[prem]"[where Γ="{«∀x1...∀xn [F]-x1...xn»}"] by blast5068

AOT_hence ‹Impossible([F])›5069

using "≡Df"[OF "contingent-properties:2", THEN "≡S"(1),5070

OF "cqt:2[const_var]"[axiom_inst], THEN "≡E"(2)]5071

by blast5072

}5073

moreover {5074

AOT_assume ‹Impossible([F]-)›5075

AOT_hence ‹�(∀x1...∀xn ¬[F]-x1...xn)›5076

using "≡Df"[OF "contingent-properties:2", THEN "≡S"(1),5077

OF "rel-neg-T:3", THEN "≡E"(1)]5078

by blast5079

moreover AOT_modally_strict {5080

AOT_assume ‹∀x1...∀xn ¬[F]-x1...xn›5081

AOT_hence ‹¬[F]-x1...xn› for x1xn using "∀E" by blast5082

AOT_hence ‹[F]x1...xn› for x1xn5083

using "thm-relation-negation:1"[THEN5084

"oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(1)]5085

"useful-tautologies:1"[THEN "→E"] by blast5086

AOT_hence ‹∀x1...∀xn [F]x1...xn› using "∀I" by fast5087

}5088

ultimately AOT_have ‹�(∀x1...∀xn [F]x1...xn)›5089

using "RN[prem]"[where Γ="{«∀x1...∀xn ¬[F]-x1...xn»}"] by blast5090

AOT_hence ‹Necessary([F])›5091

using "≡dfI"[OF "contingent-properties:1"] by blast5092

}5093

ultimately AOT_have ‹Necessary([F]) ∨ Impossible([F])›5094

using "∨E"(1) "∨I" "→I" by metis5095

AOT_thus ‹NonContingent([F])›5096

using "≡dfI"[OF "contingent-properties:3"] by blast5097

qed5098

5099

AOT_theorem "thm-cont-prop:2": ‹Contingent([F]) ≡ ♦∃x [F]x & ♦∃x ¬[F]x› (200.2)5100

proof -5101

273

A. Isabelle Theory

AOT_have ‹Contingent([F]) ≡ ¬(Necessary([F]) ∨ Impossible([F]))›5102

using "contingent-properties:4"[THEN "≡Df", THEN "≡S"(1),5103

OF "cqt:2[const_var]"[axiom_inst]]5104

by blast5105

also AOT_have ‹... ≡ ¬Necessary([F]) & ¬Impossible([F])›5106

using "oth-class-taut:5:d" by fastforce5107

also AOT_have ‹... ≡ ¬Impossible([F]) & ¬Necessary([F])›5108

by (simp add: "Commutativity of &")5109

also AOT_have ‹... ≡ ♦∃x [F]x & ¬Necessary([F])›5110

proof (rule "oth-class-taut:4:e"[THEN "→E"])5111

AOT_have ‹¬Impossible([F]) ≡ ¬�¬ ∃x [F]x›5112

apply (rule "oth-class-taut:4:b"[THEN "≡E"(1)])5113

apply (AOT_subst ‹∃x [F]x› ‹¬ ∀x ¬[F]x›)5114

apply (simp add: "conventions:4" "≡Df")5115

apply (AOT_subst (reverse) ‹¬¬∀x ¬[F]x› ‹∀x ¬[F]x›)5116

apply (simp add: "oth-class-taut:3:b")5117

using "contingent-properties:2"[THEN "≡Df", THEN "≡S"(1),5118

OF "cqt:2[const_var]"[axiom_inst]]5119

by blast5120

also AOT_have ‹... ≡ ♦∃x [F]x›5121

using "conventions:5"[THEN "≡Df", symmetric] by blast5122

finally AOT_show ‹¬Impossible([F]) ≡ ♦∃x [F]x› .5123

qed5124

also AOT_have ‹... ≡ ♦∃x [F]x & ♦∃x ¬[F]x›5125

proof (rule "oth-class-taut:4:f"[THEN "→E"])5126

AOT_have ‹¬Necessary([F]) ≡ ¬�¬∃x ¬[F]x›5127

apply (rule "oth-class-taut:4:b"[THEN "≡E"(1)])5128

apply (AOT_subst ‹∃x ¬[F]x› ‹¬ ∀x ¬¬[F]x›)5129

apply (simp add: "conventions:4" "≡Df")5130

apply (AOT_subst (reverse) ‹¬¬[F]x› ‹[F]x› for: x)5131

apply (simp add: "oth-class-taut:3:b")5132

apply (AOT_subst (reverse) ‹¬¬∀x [F]x› ‹∀x [F]x›)5133

by (auto simp: "oth-class-taut:3:b" "contingent-properties:1" "≡Df")5134

also AOT_have ‹... ≡ ♦∃x ¬[F]x›5135

using "conventions:5"[THEN "≡Df", symmetric] by blast5136

finally AOT_show ‹¬Necessary([F]) ≡ ♦∃x ¬[F]x›.5137

qed5138

finally show ?thesis.5139

qed5140

5141

AOT_theorem "thm-cont-prop:3": (200.3)5142

‹Contingent([F]) ≡ Contingent([F]-)› for F::‹<κ> AOT_var›5143

proof -5144

{5145

fix Π :: ‹<κ>›5146

AOT_assume ‹Π↓›5147

moreover AOT_have ‹∀F (Contingent([F]) ≡ ♦∃x [F]x & ♦∃x ¬[F]x)›5148

using "thm-cont-prop:2" GEN by fast5149

ultimately AOT_have ‹Contingent([Π]) ≡ ♦∃x [Π]x & ♦∃x ¬[Π]x›5150

using "thm-cont-prop:2" "∀E" by fast5151

} note 1 = this5152

AOT_have ‹Contingent([F]) ≡ ♦∃x [F]x & ♦∃x ¬[F]x›5153

using "thm-cont-prop:2" by blast5154

also AOT_have ‹... ≡ ♦∃x ¬[F]x & ♦∃x [F]x›5155

by (simp add: "Commutativity of &")5156

also AOT_have ‹... ≡ ♦∃x [F]-x & ♦∃x [F]x›5157

by (AOT_subst ‹[F]-x› ‹¬[F]x› for: x)5158

(auto simp: "thm-relation-negation:1" "oth-class-taut:3:a")5159

also AOT_have ‹... ≡ ♦∃x [F]-x & ♦∃x ¬[F]-x›5160

by (AOT_subst (reverse) ‹[F]x› ‹¬[F]-x› for: x)5161

(auto simp: "thm-relation-negation:2" "oth-class-taut:3:a")5162

also AOT_have ‹... ≡ Contingent([F]-)›5163

using 1[OF "rel-neg-T:3", symmetric] by blast5164

274

A.7. The Deductive System PLM

finally show ?thesis.5165

qed5166

5167

AOT_define concrete_if_concrete :: ‹Π› ("L")5168

L_def: ‹L =df [λx E!x → E!x]›5169

5170

AOT_theorem "thm-noncont-e-e:1": ‹Necessary(L)› (201.1)5171

proof -5172

AOT_modally_strict {5173

fix x5174

AOT_have ‹[λx E!x → E!x]↓› by "cqt:2[lambda]"5175

moreover AOT_have ‹x↓› using "cqt:2[const_var]"[axiom_inst] by blast5176

moreover AOT_have ‹E!x → E!x› using "if-p-then-p" by blast5177

ultimately AOT_have ‹[λx E!x → E!x]x›5178

using "β←C" by blast5179

}5180

AOT_hence 0: ‹�∀x [λx E!x → E!x]x›5181

using RN GEN by blast5182

show ?thesis5183

apply (rule "=dfI"(2)[OF L_def])5184

apply "cqt:2[lambda]"5185

by (rule "contingent-properties:1"[THEN "≡dfI", OF 0])5186

qed5187

5188

AOT_theorem "thm-noncont-e-e:2": ‹Impossible([L]-)› (201.2)5189

proof -5190

AOT_modally_strict {5191

fix x5192

5193

AOT_have 0: ‹∀F (¬[F]-x ≡ [F]x)›5194

using "thm-relation-negation:2" GEN by fast5195

AOT_have ‹¬[λx E!x → E!x]-x ≡ [λx E!x → E!x]x›5196

by (rule 0[THEN "∀E"(1)]) "cqt:2[lambda]"5197

moreover {5198

AOT_have ‹[λx E!x → E!x]↓› by "cqt:2[lambda]"5199

moreover AOT_have ‹x↓› using "cqt:2[const_var]"[axiom_inst] by blast5200

moreover AOT_have ‹E!x → E!x› using "if-p-then-p" by blast5201

ultimately AOT_have ‹[λx E!x → E!x]x›5202

using "β←C" by blast5203

}5204

ultimately AOT_have ‹¬[λx E!x → E!x]-x›5205

using "≡E" by blast5206

}5207

AOT_hence 0: ‹�∀x ¬[λx E!x → E!x]-x›5208

using RN GEN by fast5209

show ?thesis5210

apply (rule "=dfI"(2)[OF L_def])5211

apply "cqt:2[lambda]"5212

apply (rule "contingent-properties:2"[THEN "≡dfI"]; rule "&I")5213

using "rel-neg-T:3"5214

apply blast5215

using 05216

by blast5217

qed5218

5219

AOT_theorem "thm-noncont-e-e:3": ‹NonContingent(L)› (201.3)5220

using "thm-noncont-e-e:1"5221

by (rule "contingent-properties:3"[THEN "≡dfI", OF "∨I"(1)])5222

5223

AOT_theorem "thm-noncont-e-e:4": ‹NonContingent([L]-)› (201.4)5224

proof -5225

AOT_have 0: ‹∀F (NonContingent([F]) ≡ NonContingent([F]-))›5226

using "thm-cont-prop:1" "∀I" by fast5227

275

A. Isabelle Theory

moreover AOT_have 1: ‹L↓›5228

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+5229

AOT_show ‹NonContingent([L]-)›5230

using "∀E"(1)[OF 0, OF 1, THEN "≡E"(1), OF "thm-noncont-e-e:3"] by blast5231

qed5232

5233

AOT_theorem "thm-noncont-e-e:5": (201.5)5234

‹∃F ∃G (F 6= «G::<κ>» & NonContingent([F]) & NonContingent([G]))›5235

proof (rule "∃I")+5236

{5237

AOT_have ‹∀F [F] 6= [F]-›5238

using "thm-relation-negation:5" GEN by fast5239

moreover AOT_have ‹L↓›5240

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+5241

ultimately AOT_have ‹L 6= [L]-›5242

using "∀E" by blast5243

}5244

AOT_thus ‹L 6= [L]- & NonContingent(L) & NonContingent([L]-)›5245

using "thm-noncont-e-e:3" "thm-noncont-e-e:4" "&I" by metis5246

next5247

AOT_show ‹[L]-↓›5248

using "rel-neg-T:3" by blast5249

next5250

AOT_show ‹L↓›5251

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+5252

qed5253

5254

AOT_theorem "lem-cont-e:1": ‹♦∃x ([F]x & ♦¬[F]x) ≡ ♦∃x (¬[F]x & ♦[F]x)› (202.1)5255

proof -5256

AOT_have ‹♦∃x ([F]x & ♦¬[F]x) ≡ ∃x ♦([F]x & ♦¬[F]x)›5257

using "BF♦" "CBF♦" "≡I" by blast5258

also AOT_have ‹. . . ≡ ∃x (♦[F]x & ♦¬[F]x)›5259

by (AOT_subst ‹♦([F]x & ♦¬[F]x)› ‹♦[F]x & ♦¬[F]x› for: x)5260

(auto simp: "S5Basic:11" "cqt-further:7")5261

also AOT_have ‹. . . ≡ ∃x (♦¬[F]x & ♦[F]x)›5262

by (AOT_subst ‹♦¬[F]x & ♦[F]x› ‹♦[F]x & ♦¬[F]x› for: x)5263

(auto simp: "Commutativity of &" "cqt-further:7")5264

also AOT_have ‹. . . ≡ ∃x ♦(¬[F]x & ♦[F]x)›5265

by (AOT_subst ‹♦(¬[F]x & ♦[F]x)› ‹♦¬[F]x & ♦[F]x› for: x)5266

(auto simp: "S5Basic:11" "oth-class-taut:3:a")5267

also AOT_have ‹. . . ≡ ♦∃x (¬[F]x & ♦[F]x)›5268

using "BF♦" "CBF♦" "≡I" by fast5269

finally show ?thesis.5270

qed5271

5272

AOT_theorem "lem-cont-e:2": (202.2)5273

‹♦∃x ([F]x & ♦¬[F]x) ≡ ♦∃x ([F]-x & ♦¬[F]-x)›5274

proof -5275

AOT_have ‹♦∃x ([F]x & ♦¬[F]x) ≡ ♦∃x (¬[F]x & ♦[F]x)›5276

using "lem-cont-e:1".5277

also AOT_have ‹. . . ≡ ♦∃x ([F]-x & ♦¬[F]-x)›5278

apply (AOT_subst ‹¬[F]-x› ‹[F]x› for: x)5279

apply (simp add: "thm-relation-negation:2")5280

apply (AOT_subst ‹[F]-x› ‹¬[F]x› for: x)5281

apply (simp add: "thm-relation-negation:1")5282

by (simp add: "oth-class-taut:3:a")5283

finally show ?thesis.5284

qed5285

5286

AOT_theorem "thm-cont-e:1": ‹♦∃x (E!x & ♦¬E!x)› (203.1)5287

proof (rule "CBF♦"[THEN "→E"])5288

AOT_have ‹∃x ♦(E!x & ¬AE!x)›5289

using "qml:4"[axiom_inst] "BF♦"[THEN "→E"] by blast5290

276

A.7. The Deductive System PLM

then AOT_obtain a where ‹♦(E!a & ¬AE!a)›5291

using "∃E"[rotated] by blast5292

AOT_hence ϑ: ‹♦E!a & ♦¬AE!a›5293

using "KBasic2:3"[THEN "→E"] by blast5294

AOT_have ξ: ‹♦E!a & ♦A¬E!a›5295

by (AOT_subst ‹A¬E!a› ‹¬AE!a›)5296

(auto simp: "logic-actual-nec:1"[axiom_inst] ϑ)5297

AOT_have ζ: ‹♦E!a & A¬E!a›5298

by (AOT_subst ‹A¬E!a› ‹♦A¬E!a›)5299

(auto simp add: "Act-Sub:4" ξ)5300

AOT_hence ‹♦E!a & ♦¬E!a›5301

using "&E" "&I" "Act-Sub:3"[THEN "→E"] by blast5302

AOT_hence ‹♦(E!a & ♦¬E!a)›5303

using "S5Basic:11"[THEN "≡E"(2)] by simp5304

AOT_thus ‹∃x ♦(E!x & ♦¬E!x)›5305

using "∃I"(2) by fast5306

qed5307

5308

AOT_theorem "thm-cont-e:2": ‹♦∃x (¬E!x & ♦E!x)› (203.2)5309

proof -5310

AOT_have ‹∀F (♦∃x ([F]x & ♦¬[F]x) ≡ ♦∃x (¬[F]x & ♦[F]x))›5311

using "lem-cont-e:1" GEN by fast5312

AOT_hence ‹(♦∃x (E!x & ♦¬E!x) ≡ ♦∃x (¬E!x & ♦E!x))›5313

using "∀E"(2) by blast5314

thus ?thesis using "thm-cont-e:1" "≡E" by blast5315

qed5316

5317

AOT_theorem "thm-cont-e:3": ‹♦∃x E!x› (203.3)5318

proof (rule "CBF♦"[THEN "→E"])5319

AOT_obtain a where ‹♦(E!a & ♦¬E!a)›5320

using "∃E"[rotated, OF "thm-cont-e:1"[THEN "BF♦"[THEN "→E"]]] by blast5321

AOT_hence ‹♦E!a›5322

using "KBasic2:3"[THEN "→E", THEN "&E"(1)] by blast5323

AOT_thus ‹∃x ♦E!x› using "∃I" by fast5324

qed5325

5326

AOT_theorem "thm-cont-e:4": ‹♦∃x ¬E!x› (203.4)5327

proof (rule "CBF♦"[THEN "→E"])5328

AOT_obtain a where ‹♦(E!a & ♦¬E!a)›5329

using "∃E"[rotated, OF "thm-cont-e:1"[THEN "BF♦"[THEN "→E"]]] by blast5330

AOT_hence ‹♦♦¬E!a›5331

using "KBasic2:3"[THEN "→E", THEN "&E"(2)] by blast5332

AOT_hence ‹♦¬E!a›5333

using "4♦"[THEN "→E"] by blast5334

AOT_thus ‹∃x ♦¬E!x› using "∃I" by fast5335

qed5336

5337

AOT_theorem "thm-cont-e:5": ‹Contingent([E!])› (203.5)5338

proof -5339

AOT_have ‹∀F (Contingent([F]) ≡ ♦∃x [F]x & ♦∃x ¬[F]x)›5340

using "thm-cont-prop:2" GEN by fast5341

AOT_hence ‹Contingent([E!]) ≡ ♦∃x E!x & ♦∃x ¬E!x›5342

using "∀E"(2) by blast5343

thus ?thesis5344

using "thm-cont-e:3" "thm-cont-e:4" "≡E"(2) "&I" by blast5345

qed5346

5347

AOT_theorem "thm-cont-e:6": ‹Contingent([E!]-)› (203.6)5348

proof -5349

AOT_have ‹∀F (Contingent([«F::<κ>»]) ≡ Contingent([F]-))›5350

using "thm-cont-prop:3" GEN by fast5351

AOT_hence ‹Contingent([E!]) ≡ Contingent([E!]-)›5352

using "∀E"(2) by fast5353

277

A. Isabelle Theory

thus ?thesis using "thm-cont-e:5" "≡E" by blast5354

qed5355

5356

AOT_theorem "thm-cont-e:7": (203.7)5357

‹∃F∃G (Contingent([«F::<κ>»]) & Contingent([G]) & F 6= G)›5358

proof (rule "∃I")+5359

AOT_have ‹∀F [«F::<κ>»] 6= [F]-›5360

using "thm-relation-negation:5" GEN by fast5361

AOT_hence ‹[E!] 6= [E!]-›5362

using "∀E" by fast5363

AOT_thus ‹Contingent([E!]) & Contingent([E!]-) & [E!] 6= [E!]-›5364

using "thm-cont-e:5" "thm-cont-e:6" "&I" by metis5365

next5366

AOT_show ‹E!-↓›5367

by (fact AOT)5368

qed("cqt:2")5369

5370

AOT_theorem "property-facts:1": (204.1)5371

‹NonContingent([F]) → ¬∃G (Contingent([G]) & G = F)›5372

proof (rule "→I"; rule "raa-cor:2")5373

AOT_assume ‹NonContingent([F])›5374

AOT_hence 1: ‹Necessary([F]) ∨ Impossible([F])›5375

using "contingent-properties:3"[THEN "≡dfE"] by blast5376

AOT_assume ‹∃G (Contingent([G]) & G = F)›5377

then AOT_obtain G where ‹Contingent([G]) & G = F›5378

using "∃E"[rotated] by blast5379

AOT_hence ‹Contingent([F])› using "rule=E" "&E" by blast5380

AOT_hence ‹¬(Necessary([F]) ∨ Impossible([F]))›5381

using "contingent-properties:4"[THEN "≡Df", THEN "≡S"(1),5382

OF "cqt:2[const_var]"[axiom_inst], THEN "≡E"(1)] by blast5383

AOT_thus ‹(Necessary([F]) ∨ Impossible([F])) &5384

¬(Necessary([F]) ∨ Impossible([F]))›5385

using 1 "&I" by blast5386

qed5387

5388

AOT_theorem "property-facts:2": (204.2)5389

‹Contingent([F]) → ¬∃G (NonContingent([G]) & G = F)›5390

proof (rule "→I"; rule "raa-cor:2")5391

AOT_assume ‹Contingent([F])›5392

AOT_hence 1: ‹¬(Necessary([F]) ∨ Impossible([F]))›5393

using "contingent-properties:4"[THEN "≡Df", THEN "≡S"(1),5394

OF "cqt:2[const_var]"[axiom_inst], THEN "≡E"(1)] by blast5395

AOT_assume ‹∃G (NonContingent([G]) & G = F)›5396

then AOT_obtain G where ‹NonContingent([G]) & G = F›5397

using "∃E"[rotated] by blast5398

AOT_hence ‹NonContingent([F])›5399

using "rule=E" "&E" by blast5400

AOT_hence ‹Necessary([F]) ∨ Impossible([F])›5401

using "contingent-properties:3"[THEN "≡dfE"] by blast5402

AOT_thus ‹(Necessary([F]) ∨ Impossible([F])) &5403

¬(Necessary([F]) ∨ Impossible([F]))›5404

using 1 "&I" by blast5405

qed5406

5407

AOT_theorem "property-facts:3": (204.3)5408

‹L 6= [L]- & L 6= E! & L 6= E!- & [L]- 6= [E!]- & E! 6= [E!]-›5409

proof -5410

AOT_have noneqI: ‹Π 6= Π’› if ‹ϕ{Π}› and ‹¬ϕ{Π’}› for ϕ and Π Π’ :: ‹<κ>›5411

apply (rule "=-infix"[THEN "≡dfI"]; rule "raa-cor:2")5412

using "rule=E"[where ϕ=ϕ and τ=Π and σ = Π’] that "&I" by blast5413

AOT_have contingent_denotes: ‹Π↓› if ‹Contingent([Π])› for Π :: ‹<κ>›5414

using that "contingent-properties:4"[THEN "≡dfE", THEN "&E"(1)] by blast5415

AOT_have not_noncontingent_if_contingent:5416

278

A.7. The Deductive System PLM

‹¬NonContingent([Π])› if ‹Contingent([Π])› for Π :: ‹<κ>›5417

proof(rule RAA(2))5418

AOT_show ‹¬(Necessary([Π]) ∨ Impossible([Π]))›5419

using that "contingent-properties:4"[THEN "≡Df", THEN "≡S"(1),5420

OF contingent_denotes[OF that], THEN "≡E"(1)]5421

by blast5422

next5423

AOT_assume ‹NonContingent([Π])›5424

AOT_thus ‹Necessary([Π]) ∨ Impossible([Π])›5425

using "contingent-properties:3"[THEN "≡dfE"] by blast5426

qed5427

5428

show ?thesis5429

proof (safe intro!: "&I")5430

AOT_show ‹L 6= [L]-›5431

apply (rule "=dfI"(2)[OF L_def])5432

apply "cqt:2[lambda]"5433

apply (rule "∀E"(1)[where ϕ="λ Π . «Π 6= [Π]-»"])5434

apply (rule GEN) apply (fact AOT)5435

by "cqt:2[lambda]"5436

next5437

AOT_show ‹L 6= E!›5438

apply (rule noneqI)5439

using "thm-noncont-e-e:3"5440

not_noncontingent_if_contingent[OF "thm-cont-e:5"]5441

by auto5442

next5443

AOT_show ‹L 6= E!-›5444

apply (rule noneqI)5445

using "thm-noncont-e-e:3" apply fast5446

apply (rule not_noncontingent_if_contingent)5447

apply (rule "∀E"(1)[5448

where ϕ="λ Π . «Contingent([Π]) ≡ Contingent([Π]-)»",5449

rotated, OF contingent_denotes, THEN "≡E"(1), rotated])5450

using "thm-cont-prop:3" GEN apply fast5451

using "thm-cont-e:5" by fast+5452

next5453

AOT_show ‹[L]- 6= E!-›5454

apply (rule noneqI)5455

using "thm-noncont-e-e:4" apply fast5456

apply (rule not_noncontingent_if_contingent)5457

apply (rule "∀E"(1)[5458

where ϕ="λ Π . «Contingent([Π]) ≡ Contingent([Π]-)»",5459

rotated, OF contingent_denotes, THEN "≡E"(1), rotated])5460

using "thm-cont-prop:3" GEN apply fast5461

using "thm-cont-e:5" by fast+5462

next5463

AOT_show ‹E! 6= E!-›5464

apply (rule "=dfI"(2)[OF L_def])5465

apply "cqt:2[lambda]"5466

apply (rule "∀E"(1)[where ϕ="λ Π . «Π 6= [Π]-»"])5467

apply (rule GEN) apply (fact AOT)5468

by "cqt:2"5469

qed5470

qed5471

5472

AOT_theorem "thm-cont-propos:1": (205.1)5473

‹NonContingent0(p) ≡ NonContingent0(((p)-))›5474

proof(rule "≡I"; rule "→I")5475

AOT_assume ‹NonContingent0(p)›5476

AOT_hence ‹Necessary0(p) ∨ Impossible0(p)›5477

using "contingent-properties:3[zero]"[THEN "≡dfE"] by blast5478

moreover {5479

279

A. Isabelle Theory

AOT_assume ‹Necessary0(p)›5480

AOT_hence 1: ‹�p›5481

using "contingent-properties:1[zero]"[THEN "≡dfE"] by blast5482

AOT_have ‹�¬((p)-)›5483

by (AOT_subst ‹¬((p)-)› ‹p›)5484

(auto simp add: 1 "thm-relation-negation:4")5485

AOT_hence ‹Impossible0(((p)-))›5486

by (rule "contingent-properties:2[zero]"[THEN "≡dfI"])5487

}5488

moreover {5489

AOT_assume ‹Impossible0(p)›5490

AOT_hence 1: ‹�¬p›5491

by (rule "contingent-properties:2[zero]"[THEN "≡dfE"])5492

AOT_have ‹�((p)-)›5493

by (AOT_subst ‹((p)-)› ‹¬p›)5494

(auto simp: 1 "thm-relation-negation:3")5495

AOT_hence ‹Necessary0(((p)-))›5496

by (rule "contingent-properties:1[zero]"[THEN "≡dfI"])5497

}5498

ultimately AOT_have ‹Necessary0(((p)-)) ∨ Impossible0(((p)-))›5499

using "∨E"(1) "∨I" "→I" by metis5500

AOT_thus ‹NonContingent0(((p)-))›5501

using "contingent-properties:3[zero]"[THEN "≡dfI"] by blast5502

next5503

AOT_assume ‹NonContingent0(((p)-))›5504

AOT_hence ‹Necessary0(((p)-)) ∨ Impossible0(((p)-))›5505

using "contingent-properties:3[zero]"[THEN "≡dfE"] by blast5506

moreover {5507

AOT_assume ‹Impossible0(((p)-))›5508

AOT_hence 1: ‹�¬((p)-)›5509

by (rule "contingent-properties:2[zero]"[THEN "≡dfE"])5510

AOT_have ‹�p›5511

by (AOT_subst (reverse) ‹p› ‹¬((p)-)›)5512

(auto simp: 1 "thm-relation-negation:4")5513

AOT_hence ‹Necessary0(p)›5514

using "contingent-properties:1[zero]"[THEN "≡dfI"] by blast5515

}5516

moreover {5517

AOT_assume ‹Necessary0(((p)-))›5518

AOT_hence 1: ‹�((p)-)›5519

by (rule "contingent-properties:1[zero]"[THEN "≡dfE"])5520

AOT_have ‹�¬p›5521

by (AOT_subst (reverse) ‹¬p› ‹((p)-)›)5522

(auto simp: 1 "thm-relation-negation:3")5523

AOT_hence ‹Impossible0(p)›5524

by (rule "contingent-properties:2[zero]"[THEN "≡dfI"])5525

}5526

ultimately AOT_have ‹Necessary0(p) ∨ Impossible0(p)›5527

using "∨E"(1) "∨I" "→I" by metis5528

AOT_thus ‹NonContingent0(p)›5529

using "contingent-properties:3[zero]"[THEN "≡dfI"] by blast5530

qed5531

5532

AOT_theorem "thm-cont-propos:2": ‹Contingent0(ϕ) ≡ ♦ϕ & ♦¬ϕ› (205.2)5533

proof -5534

AOT_have ‹Contingent0(ϕ) ≡ ¬(Necessary0(ϕ) ∨ Impossible0(ϕ))›5535

using "contingent-properties:4[zero]"[THEN "≡Df"] by simp5536

also AOT_have ‹. . . ≡ ¬Necessary0(ϕ) & ¬Impossible0(ϕ)›5537

by (fact AOT)5538

also AOT_have ‹. . . ≡ ¬Impossible0(ϕ) & ¬Necessary0(ϕ)›5539

by (fact AOT)5540

also AOT_have ‹. . . ≡ ♦ϕ & ♦¬ϕ›5541

apply (AOT_subst ‹♦ϕ› ‹¬�¬ϕ›)5542

280

A.7. The Deductive System PLM

apply (simp add: "conventions:5" "≡Df")5543

apply (AOT_subst ‹Impossible0(ϕ)› ‹�¬ϕ›)5544

apply (simp add: "contingent-properties:2[zero]" "≡Df")5545

apply (AOT_subst (reverse) ‹♦¬ϕ› ‹¬�ϕ›)5546

apply (simp add: "KBasic:11")5547

apply (AOT_subst ‹Necessary0(ϕ)› ‹�ϕ›)5548

apply (simp add: "contingent-properties:1[zero]" "≡Df")5549

by (simp add: "oth-class-taut:3:a")5550

finally show ?thesis.5551

qed5552

5553

AOT_theorem "thm-cont-propos:3": ‹Contingent0(p) ≡ Contingent0(((p)-))› (205.3)5554

proof -5555

AOT_have ‹Contingent0(p) ≡ ♦p & ♦¬p› using "thm-cont-propos:2".5556

also AOT_have ‹. . . ≡ ♦¬p & ♦p› by (fact AOT)5557

also AOT_have ‹. . . ≡ ♦((p)-) & ♦p›5558

by (AOT_subst ‹((p)-)› ‹¬p›)5559

(auto simp: "thm-relation-negation:3" "oth-class-taut:3:a")5560

also AOT_have ‹. . . ≡ ♦((p)-) & ♦¬((p)-)›5561

by (AOT_subst ‹¬((p)-)› ‹p›)5562

(auto simp: "thm-relation-negation:4" "oth-class-taut:3:a")5563

also AOT_have ‹. . . ≡ Contingent0(((p)-))›5564

using "thm-cont-propos:2"[symmetric] by blast5565

finally show ?thesis.5566

qed5567

5568

AOT_define noncontingent_prop :: ‹ϕ› ("p0")5569

p0_def: "(p0) =df (∀x (E!x → E!x))"5570

5571

AOT_theorem "thm-noncont-propos:1": ‹Necessary0((p0))› (206.1)5572

proof(rule "contingent-properties:1[zero]"[THEN "≡dfI"])5573

AOT_show ‹�(p0)›5574

apply (rule "=dfI"(2)[OF p0_def])5575

using "log-prop-prop:2" apply simp5576

using "if-p-then-p" RN GEN by fast5577

qed5578

5579

AOT_theorem "thm-noncont-propos:2": ‹Impossible0(((p0)-))› (206.2)5580

proof(rule "contingent-properties:2[zero]"[THEN "≡dfI"])5581

AOT_show ‹�¬((p0)-)›5582

apply (AOT_subst ‹((p0)-)› ‹¬p0›)5583

using "thm-relation-negation:3" GEN "∀E"(1)[rotated, OF "log-prop-prop:2"]5584

apply fast5585

apply (AOT_subst (reverse) ‹¬¬p0› ‹p0›)5586

apply (simp add: "oth-class-taut:3:b")5587

apply (rule "=dfI"(2)[OF p0_def])5588

using "log-prop-prop:2" apply simp5589

using "if-p-then-p" RN GEN by fast5590

qed5591

5592

AOT_theorem "thm-noncont-propos:3": ‹NonContingent0((p0))› (206.3)5593

apply(rule "contingent-properties:3[zero]"[THEN "≡dfI"])5594

using "thm-noncont-propos:1" "∨I" by blast5595

5596

AOT_theorem "thm-noncont-propos:4": ‹NonContingent0(((p0)-))› (206.4)5597

apply(rule "contingent-properties:3[zero]"[THEN "≡dfI"])5598

using "thm-noncont-propos:2" "∨I" by blast5599

5600

AOT_theorem "thm-noncont-propos:5": (206.5)5601

‹∃p∃q (NonContingent0((p)) & NonContingent0((q)) & p 6= q)›5602

proof(rule "∃I")+5603

AOT_have 0: ‹ϕ 6= (ϕ)-› for ϕ5604

using "thm-relation-negation:6" "∀I"5605

281

A. Isabelle Theory

"∀E"(1)[rotated, OF "log-prop-prop:2"] by fast5606

AOT_thus ‹NonContingent0((p0)) & NonContingent0(((p0)-)) & (p0) 6= (p0)-›5607

using "thm-noncont-propos:3" "thm-noncont-propos:4" "&I" by auto5608

qed(auto simp: "log-prop-prop:2")5609

5610

AOT_act_theorem "no-cnac": ‹¬∃x(E!x & ¬AE!x)› (207)5611

proof(rule "raa-cor:2")5612

AOT_assume ‹∃x(E!x & ¬AE!x)›5613

then AOT_obtain a where a: ‹E!a & ¬AE!a›5614

using "∃E"[rotated] by blast5615

AOT_hence ‹A¬E!a›5616

using "&E" "logic-actual-nec:1"[axiom_inst, THEN "≡E"(2)] by blast5617

AOT_hence ‹¬E!a›5618

using "logic-actual"[act_axiom_inst, THEN "→E"] by blast5619

AOT_hence ‹E!a & ¬E!a›5620

using a "&E" "&I" by blast5621

AOT_thus ‹p & ¬p› for p using "raa-cor:1" by blast5622

qed5623

5624

AOT_theorem "pos-not-pna:1": ‹¬A∃x (E!x & ¬AE!x)› (208.1)5625

proof(rule "raa-cor:2")5626

AOT_assume ‹A∃x (E!x & ¬AE!x)›5627

AOT_hence ‹∃x A(E!x & ¬AE!x)›5628

using "Act-Basic:10"[THEN "≡E"(1)] by blast5629

then AOT_obtain a where ‹A(E!a & ¬AE!a)›5630

using "∃E"[rotated] by blast5631

AOT_hence 1: ‹AE!a & A¬AE!a›5632

using "Act-Basic:2"[THEN "≡E"(1)] by blast5633

AOT_hence ‹¬AAE!a›5634

using "&E"(2) "logic-actual-nec:1"[axiom_inst, THEN "≡E"(1)] by blast5635

AOT_hence ‹¬AE!a›5636

using "logic-actual-nec:4"[axiom_inst, THEN "≡E"(1)] RAA by blast5637

AOT_thus ‹p & ¬p› for p using 1[THEN "&E"(1)] "&I" "raa-cor:1" by blast5638

qed5639

5640

AOT_theorem "pos-not-pna:2": ‹♦¬∃x(E!x & ¬AE!x)› (208.2)5641

proof (rule RAA(1))5642

AOT_show ‹¬A∃x (E!x & ¬AE!x)›5643

using "pos-not-pna:1" by blast5644

next5645

AOT_assume ‹¬♦¬∃x (E!x & ¬AE!x)›5646

AOT_hence ‹�∃x (E!x & ¬AE!x)›5647

using "KBasic:12"[THEN "≡E"(2)] by blast5648

AOT_thus ‹A∃x (E!x & ¬AE!x)›5649

using "nec-imp-act"[THEN "→E"] by blast5650

qed5651

5652

AOT_theorem "pos-not-pna:3": ‹∃x (♦E!x & ¬AE!x)› (208.3)5653

proof -5654

AOT_obtain a where ‹♦(E!a & ¬AE!a)›5655

using "qml:4"[axiom_inst] "BF♦"[THEN "→E"] "∃E"[rotated] by blast5656

AOT_hence ϑ: ‹♦E!a› and ξ: ‹♦¬AE!a›5657

using "KBasic2:3"[THEN "→E"] "&E" by blast+5658

AOT_have ‹¬�AE!a›5659

using ξ "KBasic:11"[THEN "≡E"(2)] by blast5660

AOT_hence ‹¬AE!a›5661

using "Act-Basic:6"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],5662

THEN "≡E"(2)] by blast5663

AOT_hence ‹♦E!a & ¬AE!a› using ϑ "&I" by blast5664

thus ?thesis using "∃I" by fast5665

qed5666

5667

AOT_define contingent_prop :: ϕ ("q0")5668

282

A.7. The Deductive System PLM

q0_def: ‹(q0) =df (∃x (E!x & ¬AE!x))›5669

5670

AOT_theorem q0_prop: ‹♦q0 & ♦¬q0›5671

apply (rule "=dfI"(2)[OF q0_def])5672

apply (fact "log-prop-prop:2")5673

apply (rule "&I")5674

apply (fact "qml:4"[axiom_inst])5675

by (fact "pos-not-pna:2")5676

5677

AOT_theorem "basic-prop:1": ‹Contingent0((q0))› (209.1)5678

proof(rule "contingent-properties:4[zero]"[THEN "≡dfI"])5679

AOT_have ‹¬Necessary0((q0)) & ¬Impossible0((q0))›5680

proof (rule "&I";5681

rule "=dfI"(2)[OF q0_def];5682

(rule "log-prop-prop:2" | rule "raa-cor:2"))5683

AOT_assume ‹Necessary0(∃x (E!x & ¬AE!x))›5684

AOT_hence ‹�∃x (E!x & ¬AE!x)›5685

using "contingent-properties:1[zero]"[THEN "≡dfE"] by blast5686

AOT_hence ‹A∃x (E!x & ¬AE!x)›5687

using "Act-Basic:8"[THEN "→E"] "qml:2"[axiom_inst, THEN "→E"] by blast5688

AOT_thus ‹A∃x (E!x & ¬AE!x) & ¬A∃x (E!x & ¬AE!x)›5689

using "pos-not-pna:1" "&I" by blast5690

next5691

AOT_assume ‹Impossible0(∃x (E!x & ¬AE!x))›5692

AOT_hence ‹�¬(∃x (E!x & ¬AE!x))›5693

using "contingent-properties:2[zero]"[THEN "≡dfE"] by blast5694

AOT_hence ‹¬♦(∃x (E!x & ¬AE!x))›5695

using "KBasic2:1"[THEN "≡E"(1)] by blast5696

AOT_thus ‹♦(∃x (E!x & ¬AE!x)) & ¬♦(∃x (E!x & ¬AE!x))›5697

using "qml:4"[axiom_inst] "&I" by blast5698

qed5699

AOT_thus ‹¬(Necessary0((q0)) ∨ Impossible0((q0)))›5700

using "oth-class-taut:5:d" "≡E"(2) by blast5701

qed5702

5703

AOT_theorem "basic-prop:2": ‹∃p Contingent0((p))› (209.2)5704

using "∃I"(1)[rotated, OF "log-prop-prop:2"] "basic-prop:1" by blast5705

5706

AOT_theorem "basic-prop:3": ‹Contingent0(((q0)-))› (209.3)5707

apply (AOT_subst ‹((q0)-)› ‹¬q0›)5708

apply (insert "thm-relation-negation:3" "∀I"5709

"∀E"(1)[rotated, OF "log-prop-prop:2"]; fast)5710

apply (rule "contingent-properties:4[zero]"[THEN "≡dfI"])5711

apply (rule "oth-class-taut:5:d"[THEN "≡E"(2)])5712

apply (rule "&I")5713

apply (rule "contingent-properties:1[zero]"[THEN "df-rules-formulas[3]",5714

THEN "useful-tautologies:5"[THEN "→E"], THEN "→E"])5715

apply (rule "conventions:5"[THEN "≡dfE"])5716

apply (rule "=dfE"(2)[OF q0_def])5717

apply (rule "log-prop-prop:2")5718

apply (rule q0_prop[THEN "&E"(1)])5719

apply (rule "contingent-properties:2[zero]"[THEN "df-rules-formulas[3]",5720

THEN "useful-tautologies:5"[THEN "→E"], THEN "→E"])5721

apply (rule "conventions:5"[THEN "≡dfE"])5722

by (rule q0_prop[THEN "&E"(2)])5723

5724

AOT_theorem "basic-prop:4": (209.4)5725

‹∃p∃q (p 6= q & Contingent0(p) & Contingent0(q))›5726

proof(rule "∃I")+5727

AOT_have 0: ‹ϕ 6= (ϕ)-› for ϕ5728

using "thm-relation-negation:6" "∀I"5729

"∀E"(1)[rotated, OF "log-prop-prop:2"] by fast5730

AOT_show ‹(q0) 6= (q0)- & Contingent0(q0) & Contingent0(((q0)-))›5731

283

A. Isabelle Theory

using "basic-prop:1" "basic-prop:3" "&I" 0 by presburger5732

qed(auto simp: "log-prop-prop:2")5733

5734

AOT_theorem "proposition-facts:1": (210.1)5735

‹NonContingent0(p) → ¬∃q (Contingent0(q) & q = p)›5736

proof(rule "→I"; rule "raa-cor:2")5737

AOT_assume ‹NonContingent0(p)›5738

AOT_hence 1: ‹Necessary0(p) ∨ Impossible0(p)›5739

using "contingent-properties:3[zero]"[THEN "≡dfE"] by blast5740

AOT_assume ‹∃q (Contingent0(q) & q = p)›5741

then AOT_obtain q where ‹Contingent0(q) & q = p›5742

using "∃E"[rotated] by blast5743

AOT_hence ‹Contingent0(p)›5744

using "rule=E" "&E" by fast5745

AOT_thus ‹(Necessary0(p) ∨ Impossible0(p)) &5746

¬(Necessary0(p) ∨ Impossible0(p))›5747

using "contingent-properties:4[zero]"[THEN "≡dfE"] 1 "&I" by blast5748

qed5749

5750

AOT_theorem "proposition-facts:2": (210.2)5751

‹Contingent0(p) → ¬∃q (NonContingent0(q) & q = p)›5752

proof(rule "→I"; rule "raa-cor:2")5753

AOT_assume ‹Contingent0(p)›5754

AOT_hence 1: ‹¬(Necessary0(p) ∨ Impossible0(p))›5755

using "contingent-properties:4[zero]"[THEN "≡dfE"] by blast5756

AOT_assume ‹∃q (NonContingent0(q) & q = p)›5757

then AOT_obtain q where ‹NonContingent0(q) & q = p›5758

using "∃E"[rotated] by blast5759

AOT_hence ‹NonContingent0(p)›5760

using "rule=E" "&E" by fast5761

AOT_thus ‹(Necessary0(p) ∨ Impossible0(p)) &5762

¬(Necessary0(p) ∨ Impossible0(p))›5763

using "contingent-properties:3[zero]"[THEN "≡dfE"] 1 "&I" by blast5764

qed5765

5766

AOT_theorem "proposition-facts:3": (210.3)5767

‹(p0) 6= (p0)- & (p0) 6= (q0) & (p0) 6= (q0)- & (p0)- 6= (q0)- & (q0) 6= (q0)-›5768

proof -5769

{5770

fix χ ϕ ψ5771

AOT_assume ‹χ{ϕ}›5772

moreover AOT_assume ‹¬χ{ψ}›5773

ultimately AOT_have ‹¬(χ{ϕ} ≡ χ{ψ})›5774

using RAA "≡E" by metis5775

moreover {5776

AOT_have ‹∀p∀q ((¬(χ{p} ≡ χ{q})) → p 6= q)›5777

by (rule "∀I"; rule "∀I"; rule "pos-not-equiv-ne:4[zero]")5778

AOT_hence ‹((¬(χ{ϕ} ≡ χ{ψ})) → ϕ 6= ψ)›5779

using "∀E" "log-prop-prop:2" by blast5780

}5781

ultimately AOT_have ‹ϕ 6= ψ›5782

using "→E" by blast5783

} note 0 = this5784

AOT_have contingent_neg: ‹Contingent0(ϕ) ≡ Contingent0(((ϕ)-))› for ϕ5785

using "thm-cont-propos:3" "∀I"5786

"∀E"(1)[rotated, OF "log-prop-prop:2"] by fast5787

AOT_have not_noncontingent_if_contingent:5788

‹¬NonContingent0(ϕ)› if ‹Contingent0(ϕ)› for ϕ5789

apply (rule "contingent-properties:3[zero]"[THEN "≡Df",5790

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(2)])5791

using that "contingent-properties:4[zero]"[THEN "≡dfE"] by blast5792

show ?thesis5793

apply (rule "&I")+5794

284

A.7. The Deductive System PLM

using "thm-relation-negation:6" "∀I"5795

"∀E"(1)[rotated, OF "log-prop-prop:2"]5796

apply fast5797

apply (rule 0)5798

using "thm-noncont-propos:3" apply fast5799

apply (rule not_noncontingent_if_contingent)5800

apply (fact AOT)5801

apply (rule 0)5802

apply (rule "thm-noncont-propos:3")5803

apply (rule not_noncontingent_if_contingent)5804

apply (rule contingent_neg[THEN "≡E"(1)])5805

apply (fact AOT)5806

apply (rule 0)5807

apply (rule "thm-noncont-propos:4")5808

apply (rule not_noncontingent_if_contingent)5809

apply (rule contingent_neg[THEN "≡E"(1)])5810

apply (fact AOT)5811

using "thm-relation-negation:6" "∀I"5812

"∀E"(1)[rotated, OF "log-prop-prop:2"] by fast5813

qed5814

5815

AOT_define ContingentlyTrue :: ‹ϕ ⇒ ϕ› ("ContingentlyTrue’(_’)")5816

"cont-tf:1": ‹ContingentlyTrue(p) ≡df p & ♦¬p› (211.1)5817

5818

AOT_define ContingentlyFalse :: ‹ϕ ⇒ ϕ› ("ContingentlyFalse’(_’)")5819

"cont-tf:2": ‹ContingentlyFalse(p) ≡df ¬p & ♦p› (211.2)5820

5821

AOT_theorem "cont-true-cont:1": (212.1)5822

‹ContingentlyTrue((p)) → Contingent0((p))›5823

proof(rule "→I")5824

AOT_assume ‹ContingentlyTrue((p))›5825

AOT_hence 1: ‹p› and 2: ‹♦¬p› using "cont-tf:1"[THEN "≡dfE"] "&E" by blast+5826

AOT_have ‹¬Necessary0((p))›5827

apply (rule "contingent-properties:1[zero]"[THEN "≡Df",5828

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(2)])5829

using 2 "KBasic:11"[THEN "≡E"(2)] by blast5830

moreover AOT_have ‹¬Impossible0((p))›5831

apply (rule "contingent-properties:2[zero]"[THEN "≡Df",5832

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(2)])5833

apply (rule "conventions:5"[THEN "≡dfE"])5834

using "T♦"[THEN "→E", OF 1].5835

ultimately AOT_have ‹¬(Necessary0((p)) ∨ Impossible0((p)))›5836

using DeMorgan(2)[THEN "≡E"(2)] "&I" by blast5837

AOT_thus ‹Contingent0((p))›5838

using "contingent-properties:4[zero]"[THEN "≡dfI"] by blast5839

qed5840

5841

AOT_theorem "cont-true-cont:2": (212.2)5842

‹ContingentlyFalse((p)) → Contingent0((p))›5843

proof(rule "→I")5844

AOT_assume ‹ContingentlyFalse((p))›5845

AOT_hence 1: ‹¬p› and 2: ‹♦p› using "cont-tf:2"[THEN "≡dfE"] "&E" by blast+5846

AOT_have ‹¬Necessary0((p))›5847

apply (rule "contingent-properties:1[zero]"[THEN "≡Df",5848

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(2)])5849

using "KBasic:11"[THEN "≡E"(2)] "T♦"[THEN "→E", OF 1] by blast5850

moreover AOT_have ‹¬Impossible0((p))›5851

apply (rule "contingent-properties:2[zero]"[THEN "≡Df",5852

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], THEN "≡E"(2)])5853

apply (rule "conventions:5"[THEN "≡dfE"])5854

using 2.5855

ultimately AOT_have ‹¬(Necessary0((p)) ∨ Impossible0((p)))›5856

using DeMorgan(2)[THEN "≡E"(2)] "&I" by blast5857

285

A. Isabelle Theory

AOT_thus ‹Contingent0((p))›5858

using "contingent-properties:4[zero]"[THEN "≡dfI"] by blast5859

qed5860

5861

AOT_theorem "cont-true-cont:3": (212.3)5862

‹ContingentlyTrue((p)) ≡ ContingentlyFalse(((p)-))›5863

proof(rule "≡I"; rule "→I")5864

AOT_assume ‹ContingentlyTrue((p))›5865

AOT_hence 0: ‹p & ♦¬p› using "cont-tf:1"[THEN "≡dfE"] by blast5866

AOT_have 1: ‹ContingentlyFalse(¬p)›5867

apply (rule "cont-tf:2"[THEN "≡dfI"])5868

apply (AOT_subst (reverse) ‹¬¬p› p)5869

by (auto simp: "oth-class-taut:3:b" 0)5870

AOT_show ‹ContingentlyFalse(((p)-))›5871

apply (AOT_subst ‹((p)-)› ‹¬p›)5872

by (auto simp: "thm-relation-negation:3" 1)5873

next5874

AOT_assume 1: ‹ContingentlyFalse(((p)-))›5875

AOT_have ‹ContingentlyFalse(¬p)›5876

by (AOT_subst (reverse) ‹¬p› ‹((p)-)›)5877

(auto simp: "thm-relation-negation:3" 1)5878

AOT_hence ‹¬¬p & ♦¬p› using "cont-tf:2"[THEN "≡dfE"] by blast5879

AOT_hence ‹p & ♦¬p›5880

using "&I" "&E" "useful-tautologies:1"[THEN "→E"] by metis5881

AOT_thus ‹ContingentlyTrue((p))›5882

using "cont-tf:1"[THEN "≡dfI"] by blast5883

qed5884

5885

AOT_theorem "cont-true-cont:4": (212.4)5886

‹ContingentlyFalse((p)) ≡ ContingentlyTrue(((p)-))›5887

proof(rule "≡I"; rule "→I")5888

AOT_assume ‹ContingentlyFalse(p)›5889

AOT_hence 0: ‹¬p & ♦p›5890

using "cont-tf:2"[THEN "≡dfE"] by blast5891

AOT_have ‹¬p & ♦¬¬p›5892

by (AOT_subst (reverse) ‹¬¬p› p)5893

(auto simp: "oth-class-taut:3:b" 0)5894

AOT_hence 1: ‹ContingentlyTrue(¬p)›5895

by (rule "cont-tf:1"[THEN "≡dfI"])5896

AOT_show ‹ContingentlyTrue(((p)-))›5897

by (AOT_subst ‹((p)-)› ‹¬p›)5898

(auto simp: "thm-relation-negation:3" 1)5899

next5900

AOT_assume 1: ‹ContingentlyTrue(((p)-))›5901

AOT_have ‹ContingentlyTrue(¬p)›5902

by (AOT_subst (reverse) ‹¬p› ‹((p)-)›)5903

(auto simp add: "thm-relation-negation:3" 1)5904

AOT_hence 2: ‹¬p & ♦¬¬p› using "cont-tf:1"[THEN "≡dfE"] by blast5905

AOT_have ‹♦p›5906

by (AOT_subst p ‹¬¬p›)5907

(auto simp add: "oth-class-taut:3:b" 2[THEN "&E"(2)])5908

AOT_hence ‹¬p & ♦p› using 2[THEN "&E"(1)] "&I" by blast5909

AOT_thus ‹ContingentlyFalse(p)›5910

by (rule "cont-tf:2"[THEN "≡dfI"])5911

qed5912

5913

AOT_theorem "cont-true-cont:5": (212.5)5914

‹(ContingentlyTrue((p)) & Necessary0((q))) → p 6= q›5915

proof (rule "→I"; frule "&E"(1); drule "&E"(2); rule "raa-cor:1")5916

AOT_assume ‹ContingentlyTrue((p))›5917

AOT_hence ‹♦¬p›5918

using "cont-tf:1"[THEN "≡dfE"] "&E" by blast5919

AOT_hence 0: ‹¬�p› using "KBasic:11"[THEN "≡E"(2)] by blast5920

286

A.7. The Deductive System PLM

AOT_assume ‹Necessary0((q))›5921

moreover AOT_assume ‹¬(p 6= q)›5922

AOT_hence ‹p = q›5923

using "=-infix"[THEN "≡Df",5924

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],5925

THEN "≡E"(1)]5926

"useful-tautologies:1"[THEN "→E"] by blast5927

ultimately AOT_have ‹Necessary0((p))› using "rule=E" id_sym by blast5928

AOT_hence ‹�p›5929

using "contingent-properties:1[zero]"[THEN "≡dfE"] by blast5930

AOT_thus ‹�p & ¬�p› using 0 "&I" by blast5931

qed5932

5933

AOT_theorem "cont-true-cont:6": (212.6)5934

‹(ContingentlyFalse((p)) & Impossible0((q))) → p 6= q›5935

proof (rule "→I"; frule "&E"(1); drule "&E"(2); rule "raa-cor:1")5936

AOT_assume ‹ContingentlyFalse((p))›5937

AOT_hence ‹♦p›5938

using "cont-tf:2"[THEN "≡dfE"] "&E" by blast5939

AOT_hence 1: ‹¬�¬p›5940

using "conventions:5"[THEN "≡dfE"] by blast5941

AOT_assume ‹Impossible0((q))›5942

moreover AOT_assume ‹¬(p 6= q)›5943

AOT_hence ‹p = q›5944

using "=-infix"[THEN "≡Df",5945

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],5946

THEN "≡E"(1)]5947

"useful-tautologies:1"[THEN "→E"] by blast5948

ultimately AOT_have ‹Impossible0((p))› using "rule=E" id_sym by blast5949

AOT_hence ‹�¬p›5950

using "contingent-properties:2[zero]"[THEN "≡dfE"] by blast5951

AOT_thus ‹�¬p & ¬�¬p› using 1 "&I" by blast5952

qed5953

5954

AOT_act_theorem "q0cf:1": ‹ContingentlyFalse(q0)› (213.1)5955

apply (rule "cont-tf:2"[THEN "≡dfI"])5956

apply (rule "=dfI"(2)[OF q0_def])5957

apply (fact "log-prop-prop:2")5958

apply (rule "&I")5959

apply (fact "no-cnac")5960

by (fact "qml:4"[axiom_inst])5961

5962

AOT_act_theorem "q0cf:2": ‹ContingentlyTrue(((q0)-))› (213.2)5963

apply (rule "cont-tf:1"[THEN "≡dfI"])5964

apply (rule "=dfI"(2)[OF q0_def])5965

apply (fact "log-prop-prop:2")5966

apply (rule "&I")5967

apply (rule "thm-relation-negation:3"5968

[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)])5969

apply (fact "no-cnac")5970

apply (rule "rule=E"[rotated,5971

OF "thm-relation-negation:7"5972

[unvarify p, OF "log-prop-prop:2", THEN id_sym]])5973

apply (AOT_subst (reverse) ‹¬¬(∃x (E!x & ¬AE!x))› ‹∃x (E!x & ¬AE!x)›)5974

by (auto simp: "oth-class-taut:3:b" "qml:4"[axiom_inst])5975

5976

AOT_theorem "cont-tf-thm:1": ‹∃p ContingentlyTrue((p))› (215.1)5977

proof(rule "∨E"(1)[OF "exc-mid"]; rule "→I"; rule "∃I")5978

AOT_assume ‹q0›5979

AOT_hence ‹q0 & ♦¬q0› using q0_prop[THEN "&E"(2)] "&I" by blast5980

AOT_thus ‹ContingentlyTrue(q0)›5981

by (rule "cont-tf:1"[THEN "≡dfI"])5982

next5983

287

A. Isabelle Theory

AOT_assume ‹¬q0›5984

AOT_hence ‹¬q0 & ♦q0› using q0_prop[THEN "&E"(1)] "&I" by blast5985

AOT_hence ‹ContingentlyFalse(q0)›5986

by (rule "cont-tf:2"[THEN "≡dfI"])5987

AOT_thus ‹ContingentlyTrue(((q0)-))›5988

by (rule "cont-true-cont:4"[unvarify p,5989

OF "log-prop-prop:2", THEN "≡E"(1)])5990

qed(auto simp: "log-prop-prop:2")5991

5992

5993

AOT_theorem "cont-tf-thm:2": ‹∃p ContingentlyFalse((p))› (215.2)5994

proof(rule "∨E"(1)[OF "exc-mid"]; rule "→I"; rule "∃I")5995

AOT_assume ‹q0›5996

AOT_hence ‹q0 & ♦¬q0› using q0_prop[THEN "&E"(2)] "&I" by blast5997

AOT_hence ‹ContingentlyTrue(q0)›5998

by (rule "cont-tf:1"[THEN "≡dfI"])5999

AOT_thus ‹ContingentlyFalse(((q0)-))›6000

by (rule "cont-true-cont:3"[unvarify p,6001

OF "log-prop-prop:2", THEN "≡E"(1)])6002

next6003

AOT_assume ‹¬q0›6004

AOT_hence ‹¬q0 & ♦q0› using q0_prop[THEN "&E"(1)] "&I" by blast6005

AOT_thus ‹ContingentlyFalse(q0)›6006

by (rule "cont-tf:2"[THEN "≡dfI"])6007

qed(auto simp: "log-prop-prop:2")6008

6009

AOT_theorem "property-facts1:1": ‹∃F∃x ([F]x & ♦¬[F]x)› (217.1)6010

proof -6011

fix x6012

AOT_obtain p1 where ‹ContingentlyTrue((p1))›6013

using "cont-tf-thm:1" "∃E"[rotated] by blast6014

AOT_hence 1: ‹p1 & ♦¬p1› using "cont-tf:1"[THEN "≡dfE"] by blast6015

AOT_modally_strict {6016

AOT_have ‹for arbitrary p: `� ([λz p]x ≡ p)›6017

by (rule "beta-C-cor:3"[THEN "∀E"(2)]) cqt_2_lambda_inst_prover6018

AOT_hence ‹for arbitrary p: `� � ([λz p]x ≡ p)›6019

by (rule RN)6020

AOT_hence ‹∀p �([λz p]x ≡ p)› using GEN by fast6021

AOT_hence ‹�([λz p1]x ≡ p1)› using "∀E" by fast6022

} note 2 = this6023

AOT_hence ‹�([λz p1]x ≡ p1)› using "∀E" by blast6024

AOT_hence ‹[λz p1]x›6025

using 1[THEN "&E"(1)] "qml:2"[axiom_inst, THEN "→E"] "≡E"(2) by blast6026

moreover AOT_have ‹♦¬[λz p1]x›6027

using 2[THEN "qml:2"[axiom_inst, THEN "→E"]]6028

apply (AOT_subst ‹[λz p1]x› ‹p1›)6029

using 1[THEN "&E"(2)] by blast6030

ultimately AOT_have ‹[λz p1]x & ♦¬[λz p1]x› using "&I" by blast6031

AOT_hence ‹∃x ([λz p1]x & ♦¬[λz p1]x)› using "∃I"(2) by fast6032

moreover AOT_have ‹[λz p1]↓› by "cqt:2[lambda]"6033

ultimately AOT_show ‹∃F∃x ([F]x & ♦¬[F]x)› by (rule "∃I"(1))6034

qed6035

6036

AOT_theorem "property-facts1:2": ‹∃F∃x (¬[F]x & ♦[F]x)› (217.2)6037

proof -6038

fix x6039

AOT_obtain p1 where ‹ContingentlyFalse((p1))›6040

using "cont-tf-thm:2" "∃E"[rotated] by blast6041

AOT_hence 1: ‹¬p1 & ♦p1› using "cont-tf:2"[THEN "≡dfE"] by blast6042

AOT_modally_strict {6043

AOT_have ‹for arbitrary p: `� ([λz p]x ≡ p)›6044

by (rule "beta-C-cor:3"[THEN "∀E"(2)]) cqt_2_lambda_inst_prover6045

AOT_hence ‹for arbitrary p: `� (¬[λz p]x ≡ ¬p)›6046

288

A.7. The Deductive System PLM

using "oth-class-taut:4:b" "≡E" by blast6047

AOT_hence ‹for arbitrary p: `� �(¬[λz p]x ≡ ¬p)›6048

by (rule RN)6049

AOT_hence ‹∀p �(¬[λz p]x ≡ ¬p)› using GEN by fast6050

AOT_hence ‹�(¬[λz p1]x ≡ ¬p1)› using "∀E" by fast6051

} note 2 = this6052

AOT_hence ‹�(¬[λz p1]x ≡ ¬p1)› using "∀E" by blast6053

AOT_hence 3: ‹¬[λz p1]x›6054

using 1[THEN "&E"(1)] "qml:2"[axiom_inst, THEN "→E"] "≡E"(2) by blast6055

AOT_modally_strict {6056

AOT_have ‹for arbitrary p: `� ([λz p]x ≡ p)›6057

by (rule "beta-C-cor:3"[THEN "∀E"(2)]) cqt_2_lambda_inst_prover6058

AOT_hence ‹for arbitrary p: `� �([λz p]x ≡ p)›6059

by (rule RN)6060

AOT_hence ‹∀p �([λz p]x ≡ p)› using GEN by fast6061

AOT_hence ‹�([λz p1]x ≡ p1)› using "∀E" by fast6062

} note 4 = this6063

AOT_have ‹♦[λz p1]x›6064

using 4[THEN "qml:2"[axiom_inst, THEN "→E"]]6065

apply (AOT_subst ‹[λz p1]x› ‹p1›)6066

using 1[THEN "&E"(2)] by blast6067

AOT_hence ‹¬[λz p1]x & ♦[λz p1]x› using 3 "&I" by blast6068

AOT_hence ‹∃x (¬[λz p1]x & ♦[λz p1]x)› using "∃I"(2) by fast6069

moreover AOT_have ‹[λz p1]↓› by "cqt:2[lambda]"6070

ultimately AOT_show ‹∃F∃x (¬[F]x & ♦[F]x)› by (rule "∃I"(1))6071

qed6072

6073

context6074

begin6075

6076

private AOT_lemma eqnotnec_123_Aux_ζ: ‹[L]x ≡ (E!x → E!x)›6077

apply (rule "=dfI"(2)[OF L_def])6078

apply "cqt:2[lambda]"6079

apply (rule "beta-C-meta"[THEN "→E"])6080

by "cqt:2[lambda]"6081

6082

private AOT_lemma eqnotnec_123_Aux_ω: ‹[λz ϕ]x ≡ ϕ›6083

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6084

6085

private AOT_lemma eqnotnec_123_Aux_ϑ: ‹ϕ ≡ ∀x([L]x ≡ [λz ϕ]x)›6086

proof(rule "≡I"; rule "→I"; (rule "∀I")?)6087

fix x6088

AOT_assume 1: ‹ϕ›6089

AOT_have ‹[L]x ≡ (E!x → E!x)› using eqnotnec_123_Aux_ζ.6090

also AOT_have ‹. . . ≡ ϕ›6091

using "if-p-then-p" 1 "≡I" "→I" by simp6092

also AOT_have ‹. . . ≡ [λz ϕ]x›6093

using "Commutativity of ≡"[THEN "≡E"(1)] eqnotnec_123_Aux_ω by blast6094

finally AOT_show ‹[L]x ≡ [λz ϕ]x›.6095

next6096

fix x6097

AOT_assume ‹∀x([L]x ≡ [λz ϕ]x)›6098

AOT_hence ‹[L]x ≡ [λz ϕ]x› using "∀E" by blast6099

also AOT_have ‹. . . ≡ ϕ› using eqnotnec_123_Aux_ω.6100

finally AOT_have ‹ϕ ≡ [L]x›6101

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6102

also AOT_have ‹. . . ≡ E!x → E!x› using eqnotnec_123_Aux_ζ.6103

finally AOT_show ‹ϕ› using "≡E" "if-p-then-p" by fast6104

qed6105

private lemmas eqnotnec_123_Aux_ξ =6106

eqnotnec_123_Aux_ϑ[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6107

THEN "conventions:3"[THEN "≡Df", THEN "≡E"(1), THEN "&E"(1)],6108

THEN "RM♦"]6109

289

A. Isabelle Theory

private lemmas eqnotnec_123_Aux_ξ’ =6110

eqnotnec_123_Aux_ϑ[6111

THEN "conventions:3"[THEN "≡Df", THEN "≡E"(1), THEN "&E"(1)],6112

THEN "RM♦"]6113

6114

AOT_theorem "eqnotnec:1": ‹∃F∃G(∀x([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))› (219.1)6115

proof-6116

AOT_obtain p1 where ‹ContingentlyTrue(p1)›6117

using "cont-tf-thm:1" "∃E"[rotated] by blast6118

AOT_hence ‹p1 & ♦¬p1› using "cont-tf:1"[THEN "≡dfE"] by blast6119

AOT_hence ‹∀x ([L]x ≡ [λz p1]x) & ♦¬∀x([L]x ≡ [λz p1]x)›6120

apply - apply (rule "&I")6121

using "&E" eqnotnec_123_Aux_ϑ[THEN "≡E"(1)]6122

eqnotnec_123_Aux_ξ "→E" by fast+6123

AOT_hence ‹∃G (∀x([L]x ≡ [G]x) & ♦¬∀x([L]x ≡ [G]x))›6124

by (rule "∃I") "cqt:2[lambda]"6125

AOT_thus ‹∃F∃G (∀x([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))›6126

apply (rule "∃I")6127

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+6128

qed6129

6130

AOT_theorem "eqnotnec:2": ‹∃F∃G(¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))› (219.2)6131

proof-6132

AOT_obtain p1 where ‹ContingentlyFalse(p1)›6133

using "cont-tf-thm:2" "∃E"[rotated] by blast6134

AOT_hence ‹¬p1 & ♦p1› using "cont-tf:2"[THEN "≡dfE"] by blast6135

AOT_hence ‹¬∀x ([L]x ≡ [λz p1]x) & ♦∀x([L]x ≡ [λz p1]x)›6136

apply - apply (rule "&I")6137

using eqnotnec_123_Aux_ϑ[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6138

THEN "≡E"(1)]6139

"&E" eqnotnec_123_Aux_ξ’ "→E" by fast+6140

AOT_hence ‹∃G (¬∀x([L]x ≡ [G]x) & ♦∀x([L]x ≡ [G]x))›6141

by (rule "∃I") "cqt:2[lambda]"6142

AOT_thus ‹∃F∃G (¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6143

apply (rule "∃I")6144

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+6145

qed6146

6147

AOT_theorem "eqnotnec:3": ‹∃F∃G(A¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))› (219.3)6148

proof-6149

AOT_have ‹¬Aq0›6150

apply (rule "=dfI"(2)[OF q0_def])6151

apply (fact "log-prop-prop:2")6152

by (fact AOT)6153

AOT_hence ‹A¬q0›6154

using "logic-actual-nec:1"[axiom_inst, THEN "≡E"(2)] by blast6155

AOT_hence ‹A¬∀x ([L]x ≡ [λz q0]x)›6156

using eqnotnec_123_Aux_ϑ[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6157

THEN "conventions:3"[THEN "≡Df", THEN "≡E"(1), THEN "&E"(1)],6158

THEN "RA[2]", THEN "act-cond"[THEN "→E"], THEN "→E"] by blast6159

moreover AOT_have ‹♦∀x ([L]x ≡ [λz q0]x)›6160

using eqnotnec_123_Aux_ξ’[THEN "→E"] q0_prop[THEN "&E"(1)] by blast6161

ultimately AOT_have ‹A¬∀x ([L]x ≡ [λz q0]x) & ♦∀x ([L]x ≡ [λz q0]x)›6162

using "&I" by blast6163

AOT_hence ‹∃G (A¬∀x([L]x ≡ [G]x) & ♦∀x([L]x ≡ [G]x))›6164

by (rule "∃I") "cqt:2[lambda]"6165

AOT_thus ‹∃F∃G (A¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6166

apply (rule "∃I")6167

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+6168

qed6169

6170

end6171

6172

290

A.7. The Deductive System PLM

AOT_theorem "eqnotnec:4": ‹∀F∃G(∀x([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))› (219.4)6173

proof(rule GEN)6174

fix F6175

AOT_have Aux_A: ‹`� ψ → ∀x([F]x ≡ [λz [F]z & ψ]x)› for ψ6176

proof(rule "→I"; rule GEN)6177

AOT_modally_strict {6178

fix x6179

AOT_assume 0: ‹ψ›6180

AOT_have ‹[λz [F]z & ψ]x ≡ [F]x & ψ›6181

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6182

also AOT_have ‹... ≡ [F]x›6183

apply (rule "≡I"; rule "→I")6184

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0] "&E"6185

apply blast6186

using 0 "&I" by blast6187

finally AOT_show ‹[F]x ≡ [λz [F]z & ψ]x›6188

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6189

}6190

qed6191

6192

AOT_have Aux_B: ‹`� ψ → ∀x([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)› for ψ6193

proof (rule "→I"; rule GEN)6194

AOT_modally_strict {6195

fix x6196

AOT_assume 0: ‹ψ›6197

AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]x ≡ (([F]x & ψ) ∨ ¬ψ)›6198

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6199

also AOT_have ‹... ≡ [F]x›6200

apply (rule "≡I"; rule "→I")6201

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0]6202

"&E"6203

apply blast6204

apply (rule "∨I"(1)) using 0 "&I" by blast6205

finally AOT_show ‹[F]x ≡ [λz ([F]z & ψ) ∨ ¬ψ]x›6206

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6207

}6208

qed6209

6210

AOT_have Aux_C:6211

‹`� ♦¬ψ → ♦¬∀z([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)› for ψ6212

proof(rule "RM♦"; rule "→I"; rule "raa-cor:2")6213

AOT_modally_strict {6214

AOT_assume 0: ‹¬ψ›6215

AOT_assume ‹∀z ([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)›6216

AOT_hence ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6217

using "∀E" by blast6218

moreover AOT_have ‹[λz [F]z & ψ]z ≡ [F]z & ψ› for z6219

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6220

moreover AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]z ≡ (([F]z & ψ) ∨ ¬ψ)› for z6221

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6222

ultimately AOT_have ‹[F]z & ψ ≡ (([F]z & ψ) ∨ ¬ψ)› for z6223

using "Commutativity of ≡"[THEN "≡E"(1)] "≡E"(5) by meson6224

moreover AOT_have ‹(([F]z & ψ) ∨ ¬ψ)› for z using 0 "∨I" by blast6225

ultimately AOT_have ‹ψ› using "≡E" "&E" by metis6226

AOT_thus ‹ψ & ¬ψ› using 0 "&I" by blast6227

}6228

qed6229

6230

AOT_have Aux_D: ‹�∀z ([F]z ≡ [λz [F]z & ψ]z) →6231

(♦¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6232

♦¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x))› for ψ6233

proof (rule "→I")6234

AOT_assume A: ‹�∀z([F]z ≡ [λz [F]z & ψ]z)›6235

291

A. Isabelle Theory

AOT_show ‹♦¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6236

♦¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6237

proof(rule "≡I"; rule "KBasic:13"[THEN "→E"];6238

rule "RN[prem]"[where Γ="{«∀z([F]z ≡ [λz [F]z & ψ]z)»}", simplified];6239

(rule "useful-tautologies:5"[THEN "→E"]; rule "→I")?)6240

AOT_modally_strict {6241

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6242

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6243

using "∀E" by blast6244

AOT_assume ‹∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6245

AOT_hence 2: ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6246

using "∀E" by blast6247

AOT_have ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6248

using "≡E" 1 2 by meson6249

AOT_thus ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6250

by (rule GEN)6251

}6252

next6253

AOT_modally_strict {6254

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6255

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6256

using "∀E" by blast6257

AOT_assume ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6258

AOT_hence 2: ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6259

using "∀E" by blast6260

AOT_have ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6261

using 1 2 "≡E" by meson6262

AOT_thus ‹ ∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6263

by (rule GEN)6264

}6265

qed(auto simp: A)6266

qed6267

6268

AOT_obtain p1 where p1_prop: ‹p1 & ♦¬p1›6269

using "cont-tf-thm:1" "∃E"[rotated]6270

"cont-tf:1"[THEN "≡dfE"] by blast6271

{6272

AOT_assume 1: ‹�∀x([F]x ≡ [λz [F]z & p1]x)›6273

AOT_have 2: ‹∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6274

using Aux_B[THEN "→E", OF p1_prop[THEN "&E"(1)]].6275

AOT_have ‹♦¬∀x([λz [F]z & p1]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6276

using Aux_C[THEN "→E", OF p1_prop[THEN "&E"(2)]].6277

AOT_hence 3: ‹♦¬∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6278

using Aux_D[THEN "→E", OF 1, THEN "≡E"(1)] by blast6279

AOT_hence ‹∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x) &6280

♦¬∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6281

using 2 "&I" by blast6282

AOT_hence ‹∃G (∀x ([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))›6283

by (rule "∃I"(1)) "cqt:2[lambda]"6284

}6285

moreover {6286

AOT_assume 2: ‹¬�∀x([F]x ≡ [λz [F]z & p1]x)›6287

AOT_hence ‹♦¬∀x([F]x ≡ [λz [F]z & p1]x)›6288

using "KBasic:11"[THEN "≡E"(1)] by blast6289

AOT_hence ‹∀x ([F]x ≡ [λz [F]z & p1]x) & ♦¬∀x([F]x ≡ [λz [F]z & p1]x)›6290

using Aux_A[THEN "→E", OF p1_prop[THEN "&E"(1)]] "&I" by blast6291

AOT_hence ‹∃G (∀x ([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))›6292

by (rule "∃I"(1)) "cqt:2[lambda]"6293

}6294

ultimately AOT_show ‹∃G (∀x ([F]x ≡ [G]x) & ♦¬∀x([F]x ≡ [G]x))›6295

using "∨E"(1)[OF "exc-mid"] "→I" by blast6296

qed6297

6298

292

A.7. The Deductive System PLM

AOT_theorem "eqnotnec:5": ‹∀F∃G(¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))› (219.5)6299

proof(rule GEN)6300

fix F6301

AOT_have Aux_A: ‹`� ♦ψ → ♦∀x([F]x ≡ [λz [F]z & ψ]x)› for ψ6302

proof(rule "RM♦"; rule "→I"; rule GEN)6303

AOT_modally_strict {6304

fix x6305

AOT_assume 0: ‹ψ›6306

AOT_have ‹[λz [F]z & ψ]x ≡ [F]x & ψ›6307

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6308

also AOT_have ‹... ≡ [F]x›6309

apply (rule "≡I"; rule "→I")6310

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0] "&E"6311

apply blast6312

using 0 "&I" by blast6313

finally AOT_show ‹[F]x ≡ [λz [F]z & ψ]x›6314

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6315

}6316

qed6317

6318

AOT_have Aux_B: ‹`� ♦ψ → ♦∀x([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)› for ψ6319

proof (rule "RM♦"; rule "→I"; rule GEN)6320

AOT_modally_strict {6321

fix x6322

AOT_assume 0: ‹ψ›6323

AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]x ≡ (([F]x & ψ) ∨ ¬ψ)›6324

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6325

also AOT_have ‹... ≡ [F]x›6326

apply (rule "≡I"; rule "→I")6327

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0] "&E"6328

apply blast6329

apply (rule "∨I"(1)) using 0 "&I" by blast6330

finally AOT_show ‹[F]x ≡ [λz ([F]z & ψ) ∨ ¬ψ]x›6331

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6332

}6333

qed6334

6335

AOT_have Aux_C: ‹`� ¬ψ → ¬∀z([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)› for ψ6336

proof(rule "→I"; rule "raa-cor:2")6337

AOT_modally_strict {6338

AOT_assume 0: ‹¬ψ›6339

AOT_assume ‹∀z ([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)›6340

AOT_hence ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6341

using "∀E" by blast6342

moreover AOT_have ‹[λz [F]z & ψ]z ≡ [F]z & ψ› for z6343

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6344

moreover AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]z ≡ (([F]z & ψ) ∨ ¬ψ)› for z6345

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6346

ultimately AOT_have ‹[F]z & ψ ≡ (([F]z & ψ) ∨ ¬ψ)› for z6347

using "Commutativity of ≡"[THEN "≡E"(1)] "≡E"(5) by meson6348

moreover AOT_have ‹(([F]z & ψ) ∨ ¬ψ)› for z6349

using 0 "∨I" by blast6350

ultimately AOT_have ‹ψ› using "≡E" "&E" by metis6351

AOT_thus ‹ψ & ¬ψ› using 0 "&I" by blast6352

}6353

qed6354

6355

AOT_have Aux_D: ‹∀z ([F]z ≡ [λz [F]z & ψ]z) →6356

(¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6357

¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x))› for ψ6358

proof (rule "→I"; rule "≡I";6359

(rule "useful-tautologies:5"[THEN "→E"]; rule "→I")?)6360

AOT_modally_strict {6361

293

A. Isabelle Theory

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6362

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6363

using "∀E" by blast6364

AOT_assume ‹∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6365

AOT_hence 2: ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6366

using "∀E" by blast6367

AOT_have ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6368

using "≡E" 1 2 by meson6369

AOT_thus ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6370

by (rule GEN)6371

}6372

next6373

AOT_modally_strict {6374

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6375

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6376

using "∀E" by blast6377

AOT_assume ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6378

AOT_hence 2: ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6379

using "∀E" by blast6380

AOT_have ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6381

using 1 2 "≡E" by meson6382

AOT_thus ‹ ∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6383

by (rule GEN)6384

}6385

qed6386

6387

AOT_obtain p1 where p1_prop: ‹¬p1 & ♦p1›6388

using "cont-tf-thm:2" "∃E"[rotated] "cont-tf:2"[THEN "≡dfE"] by blast6389

{6390

AOT_assume 1: ‹∀x([F]x ≡ [λz [F]z & p1]x)›6391

AOT_have 2: ‹♦∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6392

using Aux_B[THEN "→E", OF p1_prop[THEN "&E"(2)]].6393

AOT_have ‹¬∀x([λz [F]z & p1]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6394

using Aux_C[THEN "→E", OF p1_prop[THEN "&E"(1)]].6395

AOT_hence 3: ‹¬∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6396

using Aux_D[THEN "→E", OF 1, THEN "≡E"(1)] by blast6397

AOT_hence ‹¬∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x) &6398

♦∀x([F]x ≡ [λz [F]z & p1 ∨ ¬p1]x)›6399

using 2 "&I" by blast6400

AOT_hence ‹∃G (¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6401

by (rule "∃I"(1)) "cqt:2[lambda]"6402

}6403

moreover {6404

AOT_assume 2: ‹¬∀x([F]x ≡ [λz [F]z & p1]x)›6405

AOT_hence ‹¬∀x([F]x ≡ [λz [F]z & p1]x)›6406

using "KBasic:11"[THEN "≡E"(1)] by blast6407

AOT_hence ‹¬∀x ([F]x ≡ [λz [F]z & p1]x) &6408

♦∀x([F]x ≡ [λz [F]z & p1]x)›6409

using Aux_A[THEN "→E", OF p1_prop[THEN "&E"(2)]] "&I" by blast6410

AOT_hence ‹∃G (¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6411

by (rule "∃I"(1)) "cqt:2[lambda]"6412

}6413

ultimately AOT_show ‹∃G (¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6414

using "∨E"(1)[OF "exc-mid"] "→I" by blast6415

qed6416

6417

AOT_theorem "eqnotnec:6": ‹∀F∃G(A¬∀x([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))› (219.6)6418

proof(rule GEN)6419

fix F6420

AOT_have Aux_A: ‹`� ♦ψ → ♦∀x([F]x ≡ [λz [F]z & ψ]x)› for ψ6421

proof(rule "RM♦"; rule "→I"; rule GEN)6422

AOT_modally_strict {6423

fix x6424

294

A.7. The Deductive System PLM

AOT_assume 0: ‹ψ›6425

AOT_have ‹[λz [F]z & ψ]x ≡ [F]x & ψ›6426

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6427

also AOT_have ‹... ≡ [F]x›6428

apply (rule "≡I"; rule "→I")6429

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0]6430

"&E"6431

apply blast6432

using 0 "&I" by blast6433

finally AOT_show ‹[F]x ≡ [λz [F]z & ψ]x›6434

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6435

}6436

qed6437

6438

AOT_have Aux_B: ‹`� ♦ψ → ♦∀x([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)› for ψ6439

proof (rule "RM♦"; rule "→I"; rule GEN)6440

AOT_modally_strict {6441

fix x6442

AOT_assume 0: ‹ψ›6443

AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]x ≡ (([F]x & ψ) ∨ ¬ψ)›6444

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6445

also AOT_have ‹... ≡ [F]x›6446

apply (rule "≡I"; rule "→I")6447

using "∨E"(3)[rotated, OF "useful-tautologies:2"[THEN "→E"], OF 0] "&E"6448

apply blast6449

apply (rule "∨I"(1)) using 0 "&I" by blast6450

finally AOT_show ‹[F]x ≡ [λz ([F]z & ψ) ∨ ¬ψ]x›6451

using "Commutativity of ≡"[THEN "≡E"(1)] by blast6452

}6453

qed6454

6455

AOT_have Aux_C:6456

‹`� A¬ψ → A¬∀z([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)› for ψ6457

proof(rule "act-cond"[THEN "→E"]; rule "RA[2]"; rule "→I"; rule "raa-cor:2")6458

AOT_modally_strict {6459

AOT_assume 0: ‹¬ψ›6460

AOT_assume ‹∀z ([λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z)›6461

AOT_hence ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6462

using "∀E" by blast6463

moreover AOT_have ‹[λz [F]z & ψ]z ≡ [F]z & ψ› for z6464

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6465

moreover AOT_have ‹[λz ([F]z & ψ) ∨ ¬ψ]z ≡ (([F]z & ψ) ∨ ¬ψ)› for z6466

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6467

ultimately AOT_have ‹[F]z & ψ ≡ (([F]z & ψ) ∨ ¬ψ)› for z6468

using "Commutativity of ≡"[THEN "≡E"(1)] "≡E"(5) by meson6469

moreover AOT_have ‹(([F]z & ψ) ∨ ¬ψ)› for z6470

using 0 "∨I" by blast6471

ultimately AOT_have ‹ψ› using "≡E" "&E" by metis6472

AOT_thus ‹ψ & ¬ψ› using 0 "&I" by blast6473

}6474

qed6475

6476

AOT_have ‹�(∀z ([F]z ≡ [λz [F]z & ψ]z) →6477

(¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6478

¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)))› for ψ6479

proof (rule RN; rule "→I")6480

AOT_modally_strict {6481

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6482

AOT_thus ‹¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6483

¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6484

apply -6485

proof(rule "≡I"; (rule "useful-tautologies:5"[THEN "→E"]; rule "→I")?)6486

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6487

295

A. Isabelle Theory

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6488

using "∀E" by blast6489

AOT_assume ‹∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6490

AOT_hence 2: ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6491

using "∀E" by blast6492

AOT_have ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6493

using "≡E" 1 2 by meson6494

AOT_thus ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6495

by (rule GEN)6496

next6497

AOT_assume ‹∀z ([F]z ≡ [λz [F]z & ψ]z)›6498

AOT_hence 1: ‹[F]z ≡ [λz [F]z & ψ]z› for z6499

using "∀E" by blast6500

AOT_assume ‹∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6501

AOT_hence 2: ‹[λz [F]z & ψ]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6502

using "∀E" by blast6503

AOT_have ‹[F]z ≡ [λz [F]z & ψ ∨ ¬ψ]z› for z6504

using 1 2 "≡E" by meson6505

AOT_thus ‹ ∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)›6506

by (rule GEN)6507

qed6508

}6509

qed6510

AOT_hence ‹A(∀z ([F]z ≡ [λz [F]z & ψ]z) →6511

(¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6512

¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x)))› for ψ6513

using "nec-imp-act"[THEN "→E"] by blast6514

AOT_hence ‹A∀z ([F]z ≡ [λz [F]z & ψ]z) →6515

A(¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6516

¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x))› for ψ6517

using "act-cond"[THEN "→E"] by blast6518

AOT_hence Aux_D: ‹A∀z ([F]z ≡ [λz [F]z & ψ]z) →6519

(A¬∀x ([λz [F]z & ψ]x ≡ [λz [F]z & ψ ∨ ¬ψ]x) ≡6520

A¬∀x ([F]x ≡ [λz [F]z & ψ ∨ ¬ψ]x))› for ψ6521

by (auto intro!: "→I" "Act-Basic:5"[THEN "≡E"(1)] dest!: "→E")6522

6523

AOT_have ‹¬Aq0›6524

apply (rule "=dfI"(2)[OF q0_def])6525

apply (fact "log-prop-prop:2")6526

by (fact AOT)6527

AOT_hence q0_prop_1: ‹A¬q0›6528

using "logic-actual-nec:1"[axiom_inst, THEN "≡E"(2)] by blast6529

{6530

AOT_assume 1: ‹A∀x([F]x ≡ [λz [F]z & q0]x)›6531

AOT_have 2: ‹♦∀x([F]x ≡ [λz [F]z & q0 ∨ ¬q0]x)›6532

using Aux_B[THEN "→E", OF q0_prop[THEN "&E"(1)]].6533

AOT_have ‹A¬∀x([λz [F]z & q0]x ≡ [λz [F]z & q0 ∨ ¬q0]x)›6534

using Aux_C[THEN "→E", OF q0_prop_1].6535

AOT_hence 3: ‹A¬∀x([F]x ≡ [λz [F]z & q0 ∨ ¬q0]x)›6536

using Aux_D[THEN "→E", OF 1, THEN "≡E"(1)] by blast6537

AOT_hence ‹A¬∀x([F]x ≡ [λz [F]z & q0 ∨ ¬q0]x) &6538

♦∀x([F]x ≡ [λz [F]z & q0 ∨ ¬q0]x)›6539

using 2 "&I" by blast6540

AOT_hence ‹∃G (A¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6541

by (rule "∃I"(1)) "cqt:2[lambda]"6542

}6543

moreover {6544

AOT_assume 2: ‹¬A∀x([F]x ≡ [λz [F]z & q0]x)›6545

AOT_hence ‹A¬∀x([F]x ≡ [λz [F]z & q0]x)›6546

using "logic-actual-nec:1"[axiom_inst, THEN "≡E"(2)] by blast6547

AOT_hence ‹A¬∀x ([F]x ≡ [λz [F]z & q0]x) & ♦∀x([F]x ≡ [λz [F]z & q0]x)›6548

using Aux_A[THEN "→E", OF q0_prop[THEN "&E"(1)]] "&I" by blast6549

AOT_hence ‹∃G (A¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6550

296

A.7. The Deductive System PLM

by (rule "∃I"(1)) "cqt:2[lambda]"6551

}6552

ultimately AOT_show ‹∃G (A¬∀x ([F]x ≡ [G]x) & ♦∀x([F]x ≡ [G]x))›6553

using "∨E"(1)[OF "exc-mid"] "→I" by blast6554

qed6555

6556

AOT_theorem "oa-contingent:1": ‹O! 6= A!› (220.1)6557

proof(rule "≡dfI"[OF "=-infix"]; rule "raa-cor:2")6558

fix x6559

AOT_assume 1: ‹O! = A!›6560

AOT_hence ‹[λx ♦E!x] = A!›6561

by (rule "=dfE"(2)[OF AOT_ordinary, rotated]) "cqt:2[lambda]"6562

AOT_hence ‹[λx ♦E!x] = [λx ¬♦E!x]›6563

by (rule "=dfE"(2)[OF AOT_abstract, rotated]) "cqt:2[lambda]"6564

moreover AOT_have ‹[λx ♦E!x]x ≡ ♦E!x›6565

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6566

ultimately AOT_have ‹[λx ¬♦E!x]x ≡ ♦E!x›6567

using "rule=E" by fast6568

moreover AOT_have ‹[λx ¬♦E!x]x ≡ ¬♦E!x›6569

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6570

ultimately AOT_have ‹♦E!x ≡ ¬♦E!x›6571

using "≡E"(6) "Commutativity of ≡"[THEN "≡E"(1)] by blast6572

AOT_thus "(♦E!x ≡ ¬♦E!x) & ¬(♦E!x ≡ ¬♦E!x)"6573

using "oth-class-taut:3:c" "&I" by blast6574

qed6575

6576

AOT_theorem "oa-contingent:2": ‹O!x ≡ ¬A!x› (220.2)6577

proof -6578

AOT_have ‹O!x ≡ [λx ♦E!x]x›6579

apply (rule "≡I"; rule "→I")6580

apply (rule "=dfE"(2)[OF AOT_ordinary])6581

apply "cqt:2[lambda]"6582

apply argo6583

apply (rule "=dfI"(2)[OF AOT_ordinary])6584

apply "cqt:2[lambda]"6585

by argo6586

also AOT_have ‹. . . ≡ ♦E!x›6587

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"6588

also AOT_have ‹. . . ≡ ¬¬♦E!x›6589

using "oth-class-taut:3:b".6590

also AOT_have ‹. . . ≡ ¬[λx ¬♦E!x]x›6591

by (rule "beta-C-meta"[THEN "→E",6592

THEN "oth-class-taut:4:b"[THEN "≡E"(1)], symmetric])6593

"cqt:2"6594

also AOT_have ‹. . . ≡ ¬A!x›6595

apply (rule "≡I"; rule "→I")6596

apply (rule "=dfI"(2)[OF AOT_abstract])6597

apply "cqt:2[lambda]"6598

apply argo6599

apply (rule "=dfE"(2)[OF AOT_abstract])6600

apply "cqt:2[lambda]"6601

by argo6602

finally show ?thesis.6603

qed6604

6605

AOT_theorem "oa-contingent:3": ‹A!x ≡ ¬O!x› (220.3)6606

by (AOT_subst ‹A!x› ‹¬¬A!x›)6607

(auto simp add: "oth-class-taut:3:b" "oa-contingent:2"[THEN6608

"oth-class-taut:4:b"[THEN "≡E"(1)], symmetric])6609

6610

AOT_theorem "oa-contingent:4": ‹Contingent(O!)› (220.4)6611

proof (rule "thm-cont-prop:2"[unvarify F, OF "oa-exist:1", THEN "≡E"(2)];6612

rule "&I")6613

297

A. Isabelle Theory

AOT_have ‹♦∃x E!x› using "thm-cont-e:3" .6614

AOT_hence ‹∃x ♦E!x› using "BF♦"[THEN "→E"] by blast6615

then AOT_obtain a where ‹♦E!a› using "∃E"[rotated] by blast6616

AOT_hence ‹[λx ♦E!x]a›6617

by (rule "beta-C-meta"[THEN "→E", THEN "≡E"(2), rotated]) "cqt:2"6618

AOT_hence ‹O!a›6619

by (rule "=dfI"(2)[OF AOT_ordinary, rotated]) "cqt:2"6620

AOT_hence ‹∃x O!x› using "∃I" by blast6621

AOT_thus ‹♦∃x O!x› using "T♦"[THEN "→E"] by blast6622

next6623

AOT_obtain a where ‹A!a›6624

using "A-objects"[axiom_inst] "∃E"[rotated] "&E" by blast6625

AOT_hence ‹¬O!a› using "oa-contingent:3"[THEN "≡E"(1)] by blast6626

AOT_hence ‹∃x ¬O!x› using "∃I" by fast6627

AOT_thus ‹♦∃x ¬O!x› using "T♦"[THEN "→E"] by blast6628

qed6629

6630

AOT_theorem "oa-contingent:5": ‹Contingent(A!)› (220.5)6631

proof (rule "thm-cont-prop:2"[unvarify F, OF "oa-exist:2", THEN "≡E"(2)];6632

rule "&I")6633

AOT_obtain a where ‹A!a›6634

using "A-objects"[axiom_inst] "∃E"[rotated] "&E" by blast6635

AOT_hence ‹∃x A!x› using "∃I" by fast6636

AOT_thus ‹♦∃x A!x› using "T♦"[THEN "→E"] by blast6637

next6638

AOT_have ‹♦∃x E!x› using "thm-cont-e:3" .6639

AOT_hence ‹∃x ♦E!x› using "BF♦"[THEN "→E"] by blast6640

then AOT_obtain a where ‹♦E!a› using "∃E"[rotated] by blast6641

AOT_hence ‹[λx ♦E!x]a›6642

by (rule "beta-C-meta"[THEN "→E", THEN "≡E"(2), rotated]) "cqt:2[lambda]"6643

AOT_hence ‹O!a›6644

by (rule "=dfI"(2)[OF AOT_ordinary, rotated]) "cqt:2[lambda]"6645

AOT_hence ‹¬A!a› using "oa-contingent:2"[THEN "≡E"(1)] by blast6646

AOT_hence ‹∃x ¬A!x› using "∃I" by fast6647

AOT_thus ‹♦∃x ¬A!x› using "T♦"[THEN "→E"] by blast6648

qed6649

6650

AOT_theorem "oa-contingent:7": ‹O!-x ≡ ¬A!-x› (220.7)6651

proof -6652

AOT_have ‹O!x ≡ ¬A!x›6653

using "oa-contingent:2" by blast6654

also AOT_have ‹. . . ≡ A!-x›6655

using "thm-relation-negation:1"[symmetric, unvarify F, OF "oa-exist:2"].6656

finally AOT_have 1: ‹O!x ≡ A!-x›.6657

6658

AOT_have ‹A!x ≡ ¬O!x›6659

using "oa-contingent:3" by blast6660

also AOT_have ‹. . . ≡ O!-x›6661

using "thm-relation-negation:1"[symmetric, unvarify F, OF "oa-exist:1"].6662

finally AOT_have 2: ‹A!x ≡ O!-x›.6663

6664

AOT_show ‹O!-x ≡ ¬A!-x›6665

using 1[THEN "oth-class-taut:4:b"[THEN "≡E"(1)]]6666

"oa-contingent:3"[of _ x] 2[symmetric]6667

"≡E"(5) by blast6668

qed6669

6670

AOT_theorem "oa-contingent:6": ‹O!- 6= A!-› (220.6)6671

proof (rule "=-infix"[THEN "≡dfI"]; rule "raa-cor:2")6672

AOT_assume 1: ‹O!- = A!-›6673

fix x6674

AOT_have ‹A!-x ≡ O!-x›6675

apply (rule "rule=E"[rotated, OF 1])6676

298

A.7. The Deductive System PLM

by (fact "oth-class-taut:3:a")6677

AOT_hence ‹A!-x ≡ ¬A!-x›6678

using "oa-contingent:7" "≡E" by fast6679

AOT_thus ‹(A!-x ≡ ¬A!-x) & ¬(A!-x ≡ ¬A!-x)›6680

using "oth-class-taut:3:c" "&I" by blast6681

qed6682

6683

AOT_theorem "oa-contingent:8": ‹Contingent(O!-)› (220.8)6684

using "thm-cont-prop:3"[unvarify F, OF "oa-exist:1", THEN "≡E"(1),6685

OF "oa-contingent:4"].6686

6687

AOT_theorem "oa-contingent:9": ‹Contingent(A!-)› (220.9)6688

using "thm-cont-prop:3"[unvarify F, OF "oa-exist:2", THEN "≡E"(1),6689

OF "oa-contingent:5"].6690

6691

AOT_define WeaklyContingent :: ‹Π ⇒ ϕ› (‹WeaklyContingent’(_’)›)6692

"df-cont-nec": (221)6693

‹WeaklyContingent([F]) ≡df Contingent([F]) & ∀x (♦[F]x → �[F]x)›6694

6695

AOT_theorem "cont-nec-fact1:1": (222.1)6696

‹WeaklyContingent([F]) ≡ WeaklyContingent([F]-)›6697

proof -6698

AOT_have ‹WeaklyContingent([F]) ≡ Contingent([F]) & ∀x (♦[F]x → �[F]x)›6699

using "df-cont-nec"[THEN "≡Df"] by blast6700

also AOT_have ‹... ≡ Contingent([F]-) & ∀x (♦[F]x → �[F]x)›6701

apply (rule "oth-class-taut:8:f"[THEN "≡E"(2)]; rule "→I")6702

using "thm-cont-prop:3".6703

also AOT_have ‹. . . ≡ Contingent([F]-) & ∀x (♦[F]-x → �[F]-x)›6704

proof (rule "oth-class-taut:8:e"[THEN "≡E"(2)];6705

rule "→I"; rule "≡I"; rule "→I"; rule GEN; rule "→I")6706

fix x6707

AOT_assume 0: ‹∀x (♦[F]x → �[F]x)›6708

AOT_assume 1: ‹♦[F]-x›6709

AOT_have ‹♦¬[F]x›6710

by (AOT_subst (reverse) ‹¬[F]x› ‹[F]-x›)6711

(auto simp add: "thm-relation-negation:1" 1)6712

AOT_hence 2: ‹¬�[F]x›6713

using "KBasic:11"[THEN "≡E"(2)] by blast6714

AOT_show ‹�[F]-x›6715

proof (rule "raa-cor:1")6716

AOT_assume 3: ‹¬�[F]-x›6717

AOT_have ‹¬�¬[F]x›6718

by (AOT_subst (reverse) ‹¬[F]x› ‹[F]-x›)6719

(auto simp add: "thm-relation-negation:1" 3)6720

AOT_hence ‹♦[F]x›6721

using "conventions:5"[THEN "≡dfI"] by simp6722

AOT_hence ‹�[F]x› using 0 "∀E" "→E" by fast6723

AOT_thus ‹�[F]x & ¬�[F]x› using "&I" 2 by blast6724

qed6725

next6726

fix x6727

AOT_assume 0: ‹∀x (♦[F]-x → �[F]-x)›6728

AOT_assume 1: ‹♦[F]x›6729

AOT_have ‹♦¬[F]-x›6730

by (AOT_subst ‹¬[F]-x› ‹[F]x›)6731

(auto simp: "thm-relation-negation:2" 1)6732

AOT_hence 2: ‹¬�[F]-x›6733

using "KBasic:11"[THEN "≡E"(2)] by blast6734

AOT_show ‹�[F]x›6735

proof (rule "raa-cor:1")6736

AOT_assume 3: ‹¬�[F]x›6737

AOT_have ‹¬�¬[F]-x›6738

by (AOT_subst ‹¬[F]-x› ‹[F]x›)6739

299

A. Isabelle Theory

(auto simp add: "thm-relation-negation:2" 3)6740

AOT_hence ‹♦[F]-x›6741

using "conventions:5"[THEN "≡dfI"] by simp6742

AOT_hence ‹�[F]-x› using 0 "∀E" "→E" by fast6743

AOT_thus ‹�[F]-x & ¬�[F]-x› using "&I" 2 by blast6744

qed6745

qed6746

also AOT_have ‹. . . ≡ WeaklyContingent([F]-)›6747

using "df-cont-nec"[THEN "≡Df", symmetric] by blast6748

finally show ?thesis.6749

qed6750

6751

AOT_theorem "cont-nec-fact1:2": (222.2)6752

‹(WeaklyContingent([F]) & ¬WeaklyContingent([G])) → F 6= G›6753

proof (rule "→I"; rule "=-infix"[THEN "≡dfI"]; rule "raa-cor:2")6754

AOT_assume 1: ‹WeaklyContingent([F]) & ¬WeaklyContingent([G])›6755

AOT_hence ‹WeaklyContingent([F])› using "&E" by blast6756

moreover AOT_assume ‹F = G›6757

ultimately AOT_have ‹WeaklyContingent([G])›6758

using "rule=E" by blast6759

AOT_thus ‹WeaklyContingent([G]) & ¬WeaklyContingent([G])›6760

using 1 "&I" "&E" by blast6761

qed6762

6763

AOT_theorem "cont-nec-fact2:1": ‹WeaklyContingent(O!)› (223.1)6764

proof (rule "df-cont-nec"[THEN "≡dfI"]; rule "&I")6765

AOT_show ‹Contingent(O!)›6766

using "oa-contingent:4".6767

next6768

AOT_show ‹∀x (♦[O!]x → �[O!]x)›6769

apply (rule GEN; rule "→I")6770

using "oa-facts:5"[THEN "≡E"(1)] by blast6771

qed6772

6773

6774

AOT_theorem "cont-nec-fact2:2": ‹WeaklyContingent(A!)› (223.2)6775

proof (rule "df-cont-nec"[THEN "≡dfI"]; rule "&I")6776

AOT_show ‹Contingent(A!)›6777

using "oa-contingent:5".6778

next6779

AOT_show ‹∀x (♦[A!]x → �[A!]x)›6780

apply (rule GEN; rule "→I")6781

using "oa-facts:6"[THEN "≡E"(1)] by blast6782

qed6783

6784

AOT_theorem "cont-nec-fact2:3": ‹¬WeaklyContingent(E!)› (223.3)6785

proof (rule "df-cont-nec"[THEN "≡Df",6786

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6787

THEN "≡E"(2)];6788

rule DeMorgan(1)[THEN "≡E"(2)]; rule "∨I"(2); rule "raa-cor:2")6789

AOT_have ‹♦∃x (E!x & ¬AE!x)› using "qml:4"[axiom_inst].6790

AOT_hence ‹∃x ♦(E!x & ¬AE!x)› using "BF♦"[THEN "→E"] by blast6791

then AOT_obtain a where ‹♦(E!a & ¬AE!a)› using "∃E"[rotated] by blast6792

AOT_hence 1: ‹♦E!a & ♦¬AE!a› using "KBasic2:3"[THEN "→E"] by simp6793

moreover AOT_assume ‹∀x (♦[E!]x → �[E!]x)›6794

ultimately AOT_have ‹�E!a› using "&E" "∀E" "→E" by fast6795

AOT_hence ‹AE!a› using "nec-imp-act"[THEN "→E"] by blast6796

AOT_hence ‹�AE!a› using "qml-act:1"[axiom_inst, THEN "→E"] by blast6797

moreover AOT_have ‹¬�AE!a›6798

using "KBasic:11"[THEN "≡E"(2)] 1[THEN "&E"(2)] by meson6799

ultimately AOT_have ‹�AE!a & ¬�AE!a› using "&I" by blast6800

AOT_thus ‹p & ¬p› for p using "raa-cor:1" by blast6801

qed6802

300

A.7. The Deductive System PLM

6803

AOT_theorem "cont-nec-fact2:4": ‹¬WeaklyContingent(L)› (223.4)6804

apply (rule "df-cont-nec"[THEN "≡Df",6805

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6806

THEN "≡E"(2)];6807

rule DeMorgan(1)[THEN "≡E"(2)]; rule "∨I"(1))6808

apply (rule "contingent-properties:4"6809

[THEN "≡Df",6810

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6811

THEN "≡E"(2)])6812

apply (rule DeMorgan(1)[THEN "≡E"(2)];6813

rule "∨I"(2);6814

rule "useful-tautologies:2"[THEN "→E"])6815

using "thm-noncont-e-e:3"[THEN "contingent-properties:3"[THEN "≡dfE"]].6816

6817

AOT_theorem "cont-nec-fact2:5": ‹O! 6= E! & O! 6= E!- & O! 6= L & O! 6= L-› (223.5)6818

proof -6819

AOT_have 1: ‹L↓›6820

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+6821

{6822

fix ϕ and Π Π’ :: ‹<κ>›6823

AOT_have A: ‹¬(ϕ{Π’} ≡ ϕ{Π})› if ‹ϕ{Π}› and ‹¬ϕ{Π’}›6824

proof (rule "raa-cor:2")6825

AOT_assume ‹ϕ{Π’} ≡ ϕ{Π}›6826

AOT_hence ‹ϕ{Π’}› using that(1) "≡E" by blast6827

AOT_thus ‹ϕ{Π’} & ¬ϕ{Π’}› using that(2) "&I" by blast6828

qed6829

AOT_have ‹Π’ 6= Π› if ‹Π↓› and ‹Π’↓› and ‹ϕ{Π}› and ‹¬ϕ{Π’}›6830

using "pos-not-equiv-ne:4"[unvarify F G, THEN "→E",6831

OF that(1,2), OF A[OF that(3, 4)]].6832

} note 0 = this6833

show ?thesis6834

apply(safe intro!: "&I"; rule 0)6835

apply "cqt:2"6836

using "oa-exist:1" apply blast6837

using "cont-nec-fact2:3" apply fast6838

apply (rule "useful-tautologies:2"[THEN "→E"])6839

using "cont-nec-fact2:1" apply fast6840

using "rel-neg-T:3" apply fast6841

using "oa-exist:1" apply blast6842

using "cont-nec-fact1:1"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6843

THEN "≡E"(1), rotated, OF "cont-nec-fact2:3"] apply fast6844

apply (rule "useful-tautologies:2"[THEN "→E"])6845

using "cont-nec-fact2:1" apply blast6846

apply (rule "=dfI"(2)[OF L_def]; "cqt:2[lambda]")6847

using "oa-exist:1" apply fast6848

using "cont-nec-fact2:4" apply fast6849

apply (rule "useful-tautologies:2"[THEN "→E"])6850

using "cont-nec-fact2:1" apply fast6851

using "rel-neg-T:3" apply fast6852

using "oa-exist:1" apply fast6853

apply (rule "cont-nec-fact1:1"[unvarify F,6854

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6855

THEN "≡E"(1), rotated, OF "cont-nec-fact2:4"])6856

apply (rule "=dfI"(2)[OF L_def]; "cqt:2[lambda]")6857

apply (rule "useful-tautologies:2"[THEN "→E"])6858

using "cont-nec-fact2:1" by blast6859

qed6860

6861

AOT_theorem "cont-nec-fact2:6": ‹A! 6= E! & A! 6= E!- & A! 6= L & A! 6= L-› (223.6)6862

proof -6863

AOT_have 1: ‹L↓›6864

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+6865

301

A. Isabelle Theory

{6866

fix ϕ and Π Π’ :: ‹<κ>›6867

AOT_have A: ‹¬(ϕ{Π’} ≡ ϕ{Π})› if ‹ϕ{Π}› and ‹¬ϕ{Π’}›6868

proof (rule "raa-cor:2")6869

AOT_assume ‹ϕ{Π’} ≡ ϕ{Π}›6870

AOT_hence ‹ϕ{Π’}› using that(1) "≡E" by blast6871

AOT_thus ‹ϕ{Π’} & ¬ϕ{Π’}› using that(2) "&I" by blast6872

qed6873

AOT_have ‹Π’ 6= Π› if ‹Π↓› and ‹Π’↓› and ‹ϕ{Π}› and ‹¬ϕ{Π’}›6874

using "pos-not-equiv-ne:4"[unvarify F G, THEN "→E",6875

OF that(1,2), OF A[OF that(3, 4)]].6876

} note 0 = this6877

show ?thesis6878

apply(safe intro!: "&I"; rule 0)6879

apply "cqt:2"6880

using "oa-exist:2" apply blast6881

using "cont-nec-fact2:3" apply fast6882

apply (rule "useful-tautologies:2"[THEN "→E"])6883

using "cont-nec-fact2:2" apply fast6884

using "rel-neg-T:3" apply fast6885

using "oa-exist:2" apply blast6886

using "cont-nec-fact1:1"[THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6887

THEN "≡E"(1), rotated, OF "cont-nec-fact2:3"] apply fast6888

apply (rule "useful-tautologies:2"[THEN "→E"])6889

using "cont-nec-fact2:2" apply blast6890

apply (rule "=dfI"(2)[OF L_def]; "cqt:2[lambda]")6891

using "oa-exist:2" apply fast6892

using "cont-nec-fact2:4" apply fast6893

apply (rule "useful-tautologies:2"[THEN "→E"])6894

using "cont-nec-fact2:2" apply fast6895

using "rel-neg-T:3" apply fast6896

using "oa-exist:2" apply fast6897

apply (rule "cont-nec-fact1:1"[unvarify F,6898

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],6899

THEN "≡E"(1), rotated, OF "cont-nec-fact2:4"])6900

apply (rule "=dfI"(2)[OF L_def]; "cqt:2[lambda]")6901

apply (rule "useful-tautologies:2"[THEN "→E"])6902

using "cont-nec-fact2:2" by blast6903

qed6904

6905

AOT_define necessary_or_contingently_false :: ‹ϕ ⇒ ϕ› ("∆_" [49] 54)6906

‹∆p ≡df �p ∨ (¬Ap & ♦p)›6907

6908

AOT_theorem sixteen: (224)6909

shows ‹∃F1∃F2∃F3∃F4∃F5∃F6∃F7∃F8∃F9∃F10∃F11∃F12∃F13∃F14∃F15∃F16 (6910

«F1::<κ>» 6= F2 & F1 6= F3 & F1 6= F4 & F1 6= F5 & F1 6= F6 & F1 6= F7 &6911

F1 6= F8 & F1 6= F9 & F1 6= F10 & F1 6= F11 & F1 6= F12 & F1 6= F13 &6912

F1 6= F14 & F1 6= F15 & F1 6= F16 &6913

F2 6= F3 & F2 6= F4 & F2 6= F5 & F2 6= F6 & F2 6= F7 & F2 6= F8 &6914

F2 6= F9 & F2 6= F10 & F2 6= F11 & F2 6= F12 & F2 6= F13 & F2 6= F14 &6915

F2 6= F15 & F2 6= F16 &6916

F3 6= F4 & F3 6= F5 & F3 6= F6 & F3 6= F7 & F3 6= F8 & F3 6= F9 & F3 6= F10 &6917

F3 6= F11 & F3 6= F12 & F3 6= F13 & F3 6= F14 & F3 6= F15 & F3 6= F16 &6918

F4 6= F5 & F4 6= F6 & F4 6= F7 & F4 6= F8 & F4 6= F9 & F4 6= F10 & F4 6= F11 &6919

F4 6= F12 & F4 6= F13 & F4 6= F14 & F4 6= F15 & F4 6= F16 &6920

F5 6= F6 & F5 6= F7 & F5 6= F8 & F5 6= F9 & F5 6= F10 & F5 6= F11 & F5 6= F12 &6921

F5 6= F13 & F5 6= F14 & F5 6= F15 & F5 6= F16 &6922

F6 6= F7 & F6 6= F8 & F6 6= F9 & F6 6= F10 & F6 6= F11 & F6 6= F12 & F6 6= F13 &6923

F6 6= F14 & F6 6= F15 & F6 6= F16 &6924

F7 6= F8 & F7 6= F9 & F7 6= F10 & F7 6= F11 & F7 6= F12 & F7 6= F13 & F7 6= F14 &6925

F7 6= F15 & F7 6= F16 &6926

F8 6= F9 & F8 6= F10 & F8 6= F11 & F8 6= F12 & F8 6= F13 & F8 6= F14 & F8 6= F15 &6927

F8 6= F16 &6928

302

A.7. The Deductive System PLM

F9 6= F10 & F9 6= F11 & F9 6= F12 & F9 6= F13 & F9 6= F14 & F9 6= F15 & F9 6= F16 &6929

F10 6= F11 & F10 6= F12 & F10 6= F13 & F10 6= F14 & F10 6= F15 & F10 6= F16 &6930

F11 6= F12 & F11 6= F13 & F11 6= F14 & F11 6= F15 & F11 6= F16 &6931

F12 6= F13 & F12 6= F14 & F12 6= F15 & F12 6= F16 &6932

F13 6= F14 & F13 6= F15 & F13 6= F16 &6933

F14 6= F15 & F14 6= F16 &6934

F15 6= F16)›6935

proof -6936

AOT_have Delta_pos: ‹∆ϕ → ♦ϕ› for ϕ6937

proof(rule "→I")6938

AOT_assume ‹∆ϕ›6939

AOT_hence ‹�ϕ ∨ (¬Aϕ & ♦ϕ)›6940

using "≡dfE"[OF necessary_or_contingently_false] by blast6941

moreover {6942

AOT_assume ‹�ϕ›6943

AOT_hence ‹♦ϕ›6944

by (metis "B♦" "T♦" "vdash-properties:10")6945

}6946

moreover {6947

AOT_assume ‹¬Aϕ & ♦ϕ›6948

AOT_hence ‹♦ϕ›6949

using "&E" by blast6950

}6951

ultimately AOT_show ‹♦ϕ›6952

by (metis "∨E"(2) "raa-cor:1")6953

qed6954

6955

AOT_have act_and_not_nec_not_delta: ‹¬∆ϕ› if ‹Aϕ› and ‹¬�ϕ› for ϕ6956

using "≡dfE" "&E"(1) "∨E"(2) necessary_or_contingently_false6957

"raa-cor:3" that(1,2) by blast6958

AOT_have act_and_pos_not_not_delta: ‹¬∆ϕ› if ‹Aϕ› and ‹♦¬ϕ› for ϕ6959

using "KBasic:11" act_and_not_nec_not_delta "≡E"(2) that(1,2) by blast6960

AOT_have impossible_delta: ‹¬∆ϕ› if ‹¬♦ϕ› for ϕ6961

using Delta_pos "modus-tollens:1" that by blast6962

AOT_have not_act_and_pos_delta: ‹∆ϕ› if ‹¬Aϕ› and ‹♦ϕ› for ϕ6963

by (meson "≡dfI" "&I" "∨I"(2) necessary_or_contingently_false that(1,2))6964

AOT_have nec_delta: ‹∆ϕ› if ‹�ϕ› for ϕ6965

using "≡dfI" "∨I"(1) necessary_or_contingently_false that by blast6966

6967

AOT_obtain a where a_prop: ‹A!a›6968

using "A-objects"[axiom_inst] "∃E"[rotated] "&E" by blast6969

AOT_obtain b where b_prop: ‹♦[E!]b & ¬A[E!]b›6970

using "pos-not-pna:3" using "∃E"[rotated] by blast6971

6972

AOT_have b_ord: ‹[O!]b›6973

proof(rule "=dfI"(2)[OF AOT_ordinary])6974

AOT_show ‹[λx ♦[E!]x]↓› by "cqt:2[lambda]"6975

next6976

AOT_show ‹[λx ♦[E!]x]b›6977

proof (rule "β←C"(1); ("cqt:2[lambda]")?)6978

AOT_show ‹b↓› by (rule "cqt:2[const_var]"[axiom_inst])6979

AOT_show ‹♦[E!]b› by (fact b_prop[THEN "&E"(1)])6980

qed6981

qed6982

6983

AOT_have nec_not_L_neg: ‹�¬[L-]x› for x6984

using "thm-noncont-e-e:2" "contingent-properties:2"[THEN "≡dfE"] "&E"6985

CBF[THEN "→E"] "∀E" by blast6986

AOT_have nec_L: ‹�[L]x› for x6987

using "thm-noncont-e-e:1" "contingent-properties:1"[THEN "≡dfE"]6988

CBF[THEN "→E"] "∀E" by blast6989

6990

AOT_have act_ord_b: ‹A[O!]b›6991

303

A. Isabelle Theory

using b_ord "≡E"(1) "oa-facts:7" by blast6992

AOT_have delta_ord_b: ‹∆[O!]b›6993

by (meson "≡dfI" b_ord "∨I"(1) necessary_or_contingently_false6994

"oa-facts:1" "→E")6995

AOT_have not_act_ord_a: ‹¬A[O!]a›6996

by (meson a_prop "≡E"(1) "≡E"(3) "oa-contingent:3" "oa-facts:7")6997

AOT_have not_delta_ord_a: ‹¬∆[O!]a›6998

by (metis Delta_pos "≡E"(4) not_act_ord_a "oa-facts:3" "oa-facts:7"6999

"reductio-aa:1" "→E")7000

7001

AOT_have not_act_abs_b: ‹¬A[A!]b›7002

by (meson b_ord "≡E"(1) "≡E"(3) "oa-contingent:2" "oa-facts:8")7003

AOT_have not_delta_abs_b: ‹¬∆[A!]b›7004

proof(rule "raa-cor:2")7005

AOT_assume ‹∆[A!]b›7006

AOT_hence ‹♦[A!]b›7007

by (metis Delta_pos "vdash-properties:10")7008

AOT_thus ‹[A!]b & ¬[A!]b›7009

by (metis b_ord "&I" "≡E"(1) "oa-contingent:2"7010

"oa-facts:4" "→E")7011

qed7012

AOT_have act_abs_a: ‹A[A!]a›7013

using a_prop "≡E"(1) "oa-facts:8" by blast7014

AOT_have delta_abs_a: ‹∆[A!]a›7015

by (metis "≡dfI" a_prop "oa-facts:2" "→E" "∨I"(1)7016

necessary_or_contingently_false)7017

7018

AOT_have not_act_concrete_b: ‹¬A[E!]b›7019

using b_prop "&E"(2) by blast7020

AOT_have delta_concrete_b: ‹∆[E!]b›7021

proof (rule "≡dfI"[OF necessary_or_contingently_false];7022

rule "∨I"(2); rule "&I")7023

AOT_show ‹¬A[E!]b› using b_prop "&E"(2) by blast7024

next7025

AOT_show ‹♦[E!]b› using b_prop "&E"(1) by blast7026

qed7027

AOT_have not_act_concrete_a: ‹¬A[E!]a›7028

proof (rule "raa-cor:2")7029

AOT_assume ‹A[E!]a›7030

AOT_hence 1: ‹♦[E!]a› by (metis "Act-Sub:3" "→E")7031

AOT_have ‹[A!]a› by (simp add: a_prop)7032

AOT_hence ‹[λx ¬♦[E!]x]a›7033

by (rule "=dfE"(2)[OF AOT_abstract, rotated]) "cqt:2"7034

AOT_hence ‹¬♦[E!]a› using "β→C"(1) by blast7035

AOT_thus ‹♦[E!]a & ¬♦[E!]a› using 1 "&I" by blast7036

qed7037

AOT_have not_delta_concrete_a: ‹¬∆[E!]a›7038

proof (rule "raa-cor:2")7039

AOT_assume ‹∆[E!]a›7040

AOT_hence 1: ‹♦[E!]a› by (metis Delta_pos "vdash-properties:10")7041

AOT_have ‹[A!]a› by (simp add: a_prop)7042

AOT_hence ‹[λx ¬♦[E!]x]a›7043

by (rule "=dfE"(2)[OF AOT_abstract, rotated]) "cqt:2[lambda]"7044

AOT_hence ‹¬♦[E!]a› using "β→C"(1) by blast7045

AOT_thus ‹♦[E!]a & ¬♦[E!]a› using 1 "&I" by blast7046

qed7047

7048

AOT_have not_act_q_zero: ‹¬Aq0›7049

by (meson "log-prop-prop:2" "pos-not-pna:1"7050

q0_def "reductio-aa:1" "rule-id-df:2:a[zero]")7051

AOT_have delta_q_zero: ‹∆q0›7052

proof(rule "≡dfI"[OF necessary_or_contingently_false];7053

rule "∨I"(2); rule "&I")7054

304

A.7. The Deductive System PLM

AOT_show ‹¬Aq0› using not_act_q_zero.7055

AOT_show ‹♦q0› by (meson "&E"(1) q0_prop)7056

qed7057

AOT_have act_not_q_zero: ‹A¬q0›7058

using "Act-Basic:1" "∨E"(2) not_act_q_zero by blast7059

AOT_have not_delta_not_q_zero: ‹¬∆¬q0›7060

using "≡dfE" "conventions:5" "Act-Basic:1" act_and_not_nec_not_delta7061

"&E"(1) "∨E"(2) not_act_q_zero q0_prop by blast7062

7063

AOT_have ‹[L-]↓› by (simp add: "rel-neg-T:3")7064

moreover AOT_have ‹¬A[L-]b & ¬∆[L-]b & ¬A[L-]a & ¬∆[L-]a›7065

proof (safe intro!: "&I")7066

AOT_show ‹¬A[L-]b›7067

by (meson "≡E"(1) "logic-actual-nec:1"[axiom_inst] "nec-imp-act"7068

nec_not_L_neg "→E")7069

AOT_show ‹¬∆[L-]b›7070

by (meson Delta_pos "KBasic2:1" "≡E"(1)7071

"modus-tollens:1" nec_not_L_neg)7072

AOT_show ‹¬A[L-]a›7073

by (meson "≡E"(1) "logic-actual-nec:1"[axiom_inst]7074

"nec-imp-act" nec_not_L_neg "→E")7075

AOT_show ‹¬∆[L-]a›7076

using Delta_pos "KBasic2:1" "≡E"(1) "modus-tollens:1"7077

nec_not_L_neg by blast7078

qed7079

ultimately AOT_obtain F0 where ‹¬A[F0]b & ¬∆[F0]b & ¬A[F0]a & ¬∆[F0]a›7080

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7081

AOT_hence ‹¬A[F0]b› and ‹¬∆[F0]b› and ‹¬A[F0]a› and ‹¬∆[F0]a›7082

using "&E" by blast+7083

note props = this7084

7085

let ?Π = "«[λy [A!]y & q0]»"7086

AOT_modally_strict {7087

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7088

} note 1 = this7089

moreover AOT_have ‹¬A[«?Π»]b & ¬∆[«?Π»]b & ¬A[«?Π»]a & ∆[«?Π»]a›7090

proof (safe intro!: "&I"; AOT_subst ‹[λy A!y & q0]x› ‹A!x & q0› for: x)7091

AOT_show ‹¬A([A!]b & q0)›7092

using "Act-Basic:2" "&E"(1) "≡E"(1) not_act_abs_b "raa-cor:3" by blast7093

next AOT_show ‹¬∆([A!]b & q0)›7094

by (metis Delta_pos "KBasic2:3" "&E"(1) "≡E"(4) not_act_abs_b7095

"oa-facts:4" "oa-facts:8" "raa-cor:3" "→E")7096

next AOT_show ‹¬A([A!]a & q0)›7097

using "Act-Basic:2" "&E"(2) "≡E"(1) not_act_q_zero7098

"raa-cor:3" by blast7099

next AOT_show ‹∆([A!]a & q0)›7100

proof (rule not_act_and_pos_delta)7101

AOT_show ‹¬A([A!]a & q0)›7102

using "Act-Basic:2" "&E"(2) "≡E"(4) not_act_q_zero7103

"raa-cor:3" by blast7104

next AOT_show ‹♦([A!]a & q0)›7105

by (metis "&I" "→E" Delta_pos "KBasic:16" "&E"(1) delta_abs_a7106

"≡E"(1) "oa-facts:6" q0_prop)7107

qed7108

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7109

ultimately AOT_obtain F1 where ‹¬A[F1]b & ¬∆[F1]b & ¬A[F1]a & ∆[F1]a›7110

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7111

AOT_hence ‹¬A[F1]b› and ‹¬∆[F1]b› and ‹¬A[F1]a› and ‹∆[F1]a›7112

using "&E" by blast+7113

note props = props this7114

7115

let ?Π = "«[λy [A!]y & ¬q0]»"7116

AOT_modally_strict {7117

305

A. Isabelle Theory

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7118

} note 1 = this7119

moreover AOT_have ‹¬A[«?Π»]b & ¬∆[«?Π»]b & A[«?Π»]a & ¬∆[«?Π»]a›7120

proof (safe intro!: "&I"; AOT_subst ‹[λy A!y & ¬q0]x› ‹A!x & ¬q0› for: x)7121

AOT_show ‹¬A([A!]b & ¬q0)›7122

using "Act-Basic:2" "&E"(1) "≡E"(1) not_act_abs_b "raa-cor:3" by blast7123

next AOT_show ‹¬∆([A!]b & ¬q0)›7124

by (meson "RM♦" Delta_pos "Conjunction Simplification"(1) "≡E"(4)7125

"modus-tollens:1" not_act_abs_b "oa-facts:4" "oa-facts:8")7126

next AOT_show ‹A([A!]a & ¬q0)›7127

by (metis "Act-Basic:1" "Act-Basic:2" act_abs_a "&I" "∨E"(2)7128

"≡E"(3) not_act_q_zero "raa-cor:3")7129

next AOT_show ‹¬∆([A!]a & ¬q0)›7130

proof (rule act_and_not_nec_not_delta)7131

AOT_show ‹A([A!]a & ¬q0)›7132

by (metis "Act-Basic:1" "Act-Basic:2" act_abs_a "&I" "∨E"(2)7133

"≡E"(3) not_act_q_zero "raa-cor:3")7134

next7135

AOT_show ‹¬�([A!]a & ¬q0)›7136

by (metis "KBasic2:1" "KBasic:3" "&E"(1) "&E"(2) "≡E"(4)7137

q0_prop "raa-cor:3")7138

qed7139

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7140

ultimately AOT_obtain F2 where ‹¬A[F2]b & ¬∆[F2]b & A[F2]a & ¬∆[F2]a›7141

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7142

AOT_hence ‹¬A[F2]b› and ‹¬∆[F2]b› and ‹A[F2]a› and ‹¬∆[F2]a›7143

using "&E" by blast+7144

note props = props this7145

7146

AOT_have abstract_prop: ‹¬A[A!]b & ¬∆[A!]b & A[A!]a & ∆[A!]a›7147

using act_abs_a "&I" delta_abs_a not_act_abs_b not_delta_abs_b7148

by presburger7149

then AOT_obtain F3 where ‹¬A[F3]b & ¬∆[F3]b & A[F3]a & ∆[F3]a›7150

using "∃I"(1)[rotated, THEN "∃E"[rotated]] "oa-exist:2" by fastforce7151

AOT_hence ‹¬A[F3]b› and ‹¬∆[F3]b› and ‹A[F3]a› and ‹∆[F3]a›7152

using "&E" by blast+7153

note props = props this7154

7155

AOT_have ‹¬A[E!]b & ∆[E!]b & ¬A[E!]a & ¬∆[E!]a›7156

by (meson "&I" delta_concrete_b not_act_concrete_a7157

not_act_concrete_b not_delta_concrete_a)7158

then AOT_obtain F4 where ‹¬A[F4]b & ∆[F4]b & ¬A[F4]a & ¬∆[F4]a›7159

using "∃I"(1)[rotated, THEN "∃E"[rotated]]7160

by fastforce7161

AOT_hence ‹¬A[F4]b› and ‹∆[F4]b› and ‹¬A[F4]a› and ‹¬∆[F4]a›7162

using "&E" by blast+7163

note props = props this7164

7165

AOT_modally_strict {7166

AOT_have ‹[λy q0]↓› by "cqt:2[lambda]"7167

} note 1 = this7168

moreover AOT_have ‹¬A[λy q0]b & ∆[λy q0]b & ¬A[λy q0]a & ∆[λy q0]a›7169

by (safe intro!: "&I"; AOT_subst ‹[λy q0]b› ‹q0› for: b)7170

(auto simp: not_act_q_zero delta_q_zero "beta-C-meta"[THEN "→E", OF 1])7171

ultimately AOT_obtain F5 where ‹¬A[F5]b & ∆[F5]b & ¬A[F5]a & ∆[F5]a›7172

using "∃I"(1)[rotated, THEN "∃E"[rotated]]7173

by fastforce7174

AOT_hence ‹¬A[F5]b› and ‹∆[F5]b› and ‹¬A[F5]a› and ‹∆[F5]a›7175

using "&E" by blast+7176

note props = props this7177

7178

let ?Π = "«[λy [E!]y ∨ ([A!]y & ¬q0)]»"7179

AOT_modally_strict {7180

306

A.7. The Deductive System PLM

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7181

} note 1 = this7182

moreover AOT_have ‹¬A[«?Π»]b & ∆[«?Π»]b & A[«?Π»]a & ¬∆[«?Π»]a›7183

proof(safe intro!: "&I";7184

AOT_subst ‹[λy E!y ∨ (A!y & ¬q0)]x› ‹E!x ∨ (A!x & ¬q0)› for: x)7185

AOT_have ‹A¬([A!]b & ¬q0)›7186

by (metis "Act-Basic:1" "Act-Basic:2" abstract_prop "&E"(1) "∨E"(2)7187

"≡E"(1) "raa-cor:3")7188

moreover AOT_have ‹¬A[E!]b›7189

using b_prop "&E"(2) by blast7190

ultimately AOT_have 2: ‹A(¬[E!]b & ¬([A!]b & ¬q0))›7191

by (metis "Act-Basic:2" "Act-Sub:1" "&I" "≡E"(3) "raa-cor:1")7192

AOT_have ‹A¬([E!]b ∨ ([A!]b & ¬q0))›7193

by (AOT_subst ‹¬([E!]b ∨ ([A!]b & ¬q0))› ‹¬[E!]b & ¬([A!]b & ¬q0)›)7194

(auto simp: "oth-class-taut:5:d" 2)7195

AOT_thus ‹¬A([E!]b ∨ ([A!]b & ¬q0))›7196

by (metis "¬¬I" "Act-Sub:1" "≡E"(4))7197

next7198

AOT_show ‹∆([E!]b ∨ ([A!]b & ¬q0))›7199

proof (rule not_act_and_pos_delta)7200

AOT_show ‹¬A([E!]b ∨ ([A!]b & ¬q0))›7201

by (metis "Act-Basic:2" "Act-Basic:9" "∨E"(2) "raa-cor:3"7202

"Conjunction Simplification"(1) "≡E"(4)7203

"modus-tollens:1" not_act_abs_b not_act_concrete_b)7204

next7205

AOT_show ‹♦([E!]b ∨ ([A!]b & ¬q0))›7206

using "KBasic2:2" b_prop "&E"(1) "∨I"(1) "≡E"(3) "raa-cor:3" by blast7207

qed7208

next AOT_show ‹A([E!]a ∨ ([A!]a & ¬q0))›7209

by (metis "Act-Basic:1" "Act-Basic:2" "Act-Basic:9" act_abs_a "&I"7210

"∨I"(2) "∨E"(2) "≡E"(3) not_act_q_zero "raa-cor:1")7211

next AOT_show ‹¬∆([E!]a ∨ ([A!]a & ¬q0))›7212

proof (rule act_and_not_nec_not_delta)7213

AOT_show ‹A([E!]a ∨ ([A!]a & ¬q0))›7214

by (metis "Act-Basic:1" "Act-Basic:2" "Act-Basic:9" act_abs_a "&I"7215

"∨I"(2) "∨E"(2) "≡E"(3) not_act_q_zero "raa-cor:1")7216

next7217

AOT_have ‹�¬[E!]a›7218

by (metis "≡dfI" "conventions:5" "&I" "∨I"(2)7219

necessary_or_contingently_false7220

not_act_concrete_a not_delta_concrete_a "raa-cor:3")7221

moreover AOT_have ‹♦¬([A!]a & ¬q0)›7222

by (metis "KBasic2:1" "KBasic:11" "KBasic:3"7223

"&E"(1,2) "≡E"(1) q0_prop "raa-cor:3")7224

ultimately AOT_have ‹♦(¬[E!]a & ¬([A!]a & ¬q0))›7225

by (metis "KBasic:16" "&I" "vdash-properties:10")7226

AOT_hence ‹♦¬([E!]a ∨ ([A!]a & ¬q0))›7227

by (metis "RE♦" "≡E"(2) "oth-class-taut:5:d")7228

AOT_thus ‹¬�([E!]a ∨ ([A!]a & ¬q0))›7229

by (metis "KBasic:12" "≡E"(1) "raa-cor:3")7230

qed7231

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7232

ultimately AOT_obtain F6 where ‹¬A[F6]b & ∆[F6]b & A[F6]a & ¬∆[F6]a›7233

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7234

AOT_hence ‹¬A[F6]b› and ‹∆[F6]b› and ‹A[F6]a› and ‹¬∆[F6]a›7235

using "&E" by blast+7236

note props = props this7237

7238

let ?Π = "«[λy [A!]y ∨ [E!]y]»"7239

AOT_modally_strict {7240

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7241

} note 1 = this7242

moreover AOT_have ‹¬A[«?Π»]b & ∆[«?Π»]b & A[«?Π»]a & ∆[«?Π»]a›7243

307

A. Isabelle Theory

proof(safe intro!: "&I"; AOT_subst ‹[λy A!y ∨ E!y]x› ‹A!x ∨ E!x› for: x)7244

AOT_show ‹¬A([A!]b ∨ [E!]b)›7245

using "Act-Basic:9" "∨E"(2) "≡E"(4) not_act_abs_b7246

not_act_concrete_b "raa-cor:3" by blast7247

next AOT_show ‹∆([A!]b ∨ [E!]b)›7248

proof (rule not_act_and_pos_delta)7249

AOT_show ‹¬A([A!]b ∨ [E!]b)›7250

using "Act-Basic:9" "∨E"(2) "≡E"(4) not_act_abs_b7251

not_act_concrete_b "raa-cor:3" by blast7252

next AOT_show ‹♦([A!]b ∨ [E!]b)›7253

using "KBasic2:2" b_prop "&E"(1) "∨I"(2) "≡E"(2) by blast7254

qed7255

next AOT_show ‹A([A!]a ∨ [E!]a)›7256

by (meson "Act-Basic:9" act_abs_a "∨I"(1) "≡E"(2))7257

next AOT_show ‹∆([A!]a ∨ [E!]a) ›7258

proof (rule nec_delta)7259

AOT_show ‹�([A!]a ∨ [E!]a)›7260

by (metis "KBasic:15" act_abs_a act_and_not_nec_not_delta7261

"Disjunction Addition"(1) delta_abs_a "raa-cor:3" "→E")7262

qed7263

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7264

ultimately AOT_obtain F7 where ‹¬A[F7]b & ∆[F7]b & A[F7]a & ∆[F7]a›7265

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7266

AOT_hence ‹¬A[F7]b› and ‹∆[F7]b› and ‹A[F7]a› and ‹∆[F7]a›7267

using "&E" by blast+7268

note props = props this7269

7270

let ?Π = "«[λy [O!]y & ¬[E!]y]»"7271

AOT_modally_strict {7272

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7273

} note 1 = this7274

moreover AOT_have ‹A[«?Π»]b & ¬∆[«?Π»]b & ¬A[«?Π»]a & ¬∆[«?Π»]a›7275

proof(safe intro!: "&I"; AOT_subst ‹[λy O!y & ¬E!y]x› ‹O!x & ¬E!x› for: x)7276

AOT_show ‹A([O!]b & ¬[E!]b)›7277

by (metis "Act-Basic:1" "Act-Basic:2" act_ord_b "&I" "∨E"(2)7278

"≡E"(3) not_act_concrete_b "raa-cor:3")7279

next AOT_show ‹¬∆([O!]b & ¬[E!]b)›7280

by (metis (no_types, opaque_lifting) "conventions:5" "Act-Sub:1" "RM:1"7281

act_and_not_nec_not_delta "act-conj-act:3"7282

act_ord_b b_prop "&I" "&E"(1) "Conjunction Simplification"(2)7283

"df-rules-formulas[3]"7284

"≡E"(3) "raa-cor:1" "→E")7285

next AOT_show ‹¬A([O!]a & ¬[E!]a)›7286

using "Act-Basic:2" "&E"(1) "≡E"(1) not_act_ord_a "raa-cor:3" by blast7287

next AOT_have ‹¬♦([O!]a & ¬[E!]a)›7288

by (metis "KBasic2:3" "&E"(1) "≡E"(4) not_act_ord_a "oa-facts:3"7289

"oa-facts:7" "raa-cor:3" "vdash-properties:10")7290

AOT_thus ‹¬∆([O!]a & ¬[E!]a)›7291

by (rule impossible_delta)7292

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7293

ultimately AOT_obtain F8 where ‹A[F8]b & ¬∆[F8]b & ¬A[F8]a & ¬∆[F8]a›7294

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7295

AOT_hence ‹A[F8]b› and ‹¬∆[F8]b› and ‹¬A[F8]a› and ‹¬∆[F8]a›7296

using "&E" by blast+7297

note props = props this7298

7299

let ?Π = "«[λy ¬[E!]y & ([O!]y ∨ q0)]»"7300

AOT_modally_strict {7301

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7302

} note 1 = this7303

moreover AOT_have ‹A[«?Π»]b & ¬∆[«?Π»]b & ¬A[«?Π»]a & ∆[«?Π»]a›7304

proof(safe intro!: "&I";7305

AOT_subst ‹[λy ¬E!y & (O!y ∨ q0)]x› ‹¬E!x & (O!x ∨ q0)› for: x)7306

308

A.7. The Deductive System PLM

AOT_show ‹A(¬[E!]b & ([O!]b ∨ q0))›7307

by (metis "Act-Basic:1" "Act-Basic:2" "Act-Basic:9" act_ord_b "&I"7308

"∨I"(1) "∨E"(2) "≡E"(3) not_act_concrete_b "raa-cor:1")7309

next AOT_show ‹¬∆(¬[E!]b & ([O!]b ∨ q0))›7310

proof (rule act_and_pos_not_not_delta)7311

AOT_show ‹A(¬[E!]b & ([O!]b ∨ q0))›7312

by (metis "Act-Basic:1" "Act-Basic:2" "Act-Basic:9" act_ord_b "&I"7313

"∨I"(1) "∨E"(2) "≡E"(3) not_act_concrete_b "raa-cor:1")7314

next7315

AOT_show ‹♦¬(¬[E!]b & ([O!]b ∨ q0))›7316

proof (AOT_subst ‹¬(¬[E!]b & ([O!]b ∨ q0))› ‹[E!]b ∨ ¬([O!]b ∨ q0)›)7317

AOT_modally_strict {7318

AOT_show ‹¬(¬[E!]b & ([O!]b ∨ q0)) ≡ [E!]b ∨ ¬([O!]b ∨ q0)›7319

by (metis "&I" "&E"(1,2) "∨I"(1,2) "∨E"(2)7320

"→I" "≡I" "reductio-aa:1")7321

}7322

next7323

AOT_show ‹♦([E!]b ∨ ¬([O!]b ∨ q0))›7324

using "KBasic2:2" b_prop "&E"(1) "∨I"(1) "≡E"(3)7325

"raa-cor:3" by blast7326

qed7327

qed7328

next7329

AOT_show ‹¬A(¬[E!]a & ([O!]a ∨ q0))›7330

using "Act-Basic:2" "Act-Basic:9" "&E"(2) "∨E"(3) "≡E"(1)7331

not_act_ord_a not_act_q_zero "reductio-aa:2" by blast7332

next7333

AOT_show ‹∆(¬[E!]a & ([O!]a ∨ q0))›7334

proof (rule not_act_and_pos_delta)7335

AOT_show ‹¬A(¬[E!]a & ([O!]a ∨ q0))›7336

by (metis "Act-Basic:2" "Act-Basic:9" "&E"(2) "∨E"(3) "≡E"(1)7337

not_act_ord_a not_act_q_zero "reductio-aa:2")7338

next7339

AOT_have ‹�¬[E!]a›7340

using "KBasic2:1" "≡E"(2) not_act_and_pos_delta not_act_concrete_a7341

not_delta_concrete_a "raa-cor:5" by blast7342

moreover AOT_have ‹♦([O!]a ∨ q0)›7343

by (metis "KBasic2:2" "&E"(1) "∨I"(2) "≡E"(3) q0_prop "raa-cor:3")7344

ultimately AOT_show ‹♦(¬[E!]a & ([O!]a ∨ q0))›7345

by (metis "KBasic:16" "&I" "vdash-properties:10")7346

qed7347

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7348

ultimately AOT_obtain F9 where ‹A[F9]b & ¬∆[F9]b & ¬A[F9]a & ∆[F9]a›7349

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7350

AOT_hence ‹A[F9]b› and ‹¬∆[F9]b› and ‹¬A[F9]a› and ‹∆[F9]a›7351

using "&E" by blast+7352

note props = props this7353

7354

AOT_modally_strict {7355

AOT_have ‹[λy ¬q0]↓› by "cqt:2[lambda]"7356

} note 1 = this7357

moreover AOT_have ‹A[λy ¬q0]b & ¬∆[λy ¬q0]b & A[λy ¬q0]a & ¬∆[λy ¬q0]a›7358

by (safe intro!: "&I"; AOT_subst ‹[λy ¬q0]x› ‹¬q0› for: x)7359

(auto simp: act_not_q_zero not_delta_not_q_zero7360

"beta-C-meta"[THEN "→E", OF 1])7361

ultimately AOT_obtain F10 where ‹A[F10]b & ¬∆[F10]b & A[F10]a & ¬∆[F10]a›7362

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7363

AOT_hence ‹A[F10]b› and ‹¬∆[F10]b› and ‹A[F10]a› and ‹¬∆[F10]a›7364

using "&E" by blast+7365

note props = props this7366

7367

AOT_modally_strict {7368

AOT_have ‹[λy ¬[E!]y]↓› by "cqt:2[lambda]"7369

309

A. Isabelle Theory

} note 1 = this7370

moreover AOT_have ‹A[λy ¬[E!]y]b & ¬∆[λy ¬[E!]y]b &7371

A[λy ¬[E!]y]a & ∆[λy ¬[E!]y]a›7372

proof (safe intro!: "&I"; AOT_subst ‹[λy ¬[E!]y]x› ‹¬[E!]x› for: x)7373

AOT_show ‹A¬[E!]b›7374

using "Act-Basic:1" "∨E"(2) not_act_concrete_b by blast7375

next AOT_show ‹¬∆¬[E!]b›7376

using "≡dfE" "conventions:5" "Act-Basic:1" act_and_not_nec_not_delta7377

b_prop "&E"(1) "∨E"(2) not_act_concrete_b by blast7378

next AOT_show ‹A¬[E!]a›7379

using "Act-Basic:1" "∨E"(2) not_act_concrete_a by blast7380

next AOT_show ‹∆¬[E!]a›7381

using "KBasic2:1" "≡E"(2) nec_delta not_act_and_pos_delta7382

not_act_concrete_a not_delta_concrete_a "reductio-aa:1"7383

by blast7384

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7385

ultimately AOT_obtain F11 where ‹A[F11]b & ¬∆[F11]b & A[F11]a & ∆[F11]a›7386

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7387

AOT_hence ‹A[F11]b› and ‹¬∆[F11]b› and ‹A[F11]a› and ‹∆[F11]a›7388

using "&E" by blast+7389

note props = props this7390

7391

AOT_have ‹A[O!]b & ∆[O!]b & ¬A[O!]a & ¬∆[O!]a›7392

by (simp add: act_ord_b "&I" delta_ord_b not_act_ord_a not_delta_ord_a)7393

then AOT_obtain F12 where ‹A[F12]b & ∆[F12]b & ¬A[F12]a & ¬∆[F12]a›7394

using "oa-exist:1" "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7395

AOT_hence ‹A[F12]b› and ‹∆[F12]b› and ‹¬A[F12]a› and ‹¬∆[F12]a›7396

using "&E" by blast+7397

note props = props this7398

7399

let ?Π = "«[λy [O!]y ∨ q0]»"7400

AOT_modally_strict {7401

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7402

} note 1 = this7403

moreover AOT_have ‹A[«?Π»]b & ∆[«?Π»]b & ¬A[«?Π»]a & ∆[«?Π»]a›7404

proof (safe intro!: "&I"; AOT_subst ‹[λy O!y ∨ q0]x› ‹O!x ∨ q0› for: x)7405

AOT_show ‹A([O!]b ∨ q0)›7406

by (meson "Act-Basic:9" act_ord_b "∨I"(1) "≡E"(2))7407

next AOT_show ‹∆([O!]b ∨ q0)›7408

by (meson "KBasic:15" b_ord "∨I"(1) nec_delta "oa-facts:1" "→E")7409

next AOT_show ‹¬A([O!]a ∨ q0)›7410

using "Act-Basic:9" "∨E"(2) "≡E"(4) not_act_ord_a7411

not_act_q_zero "raa-cor:3" by blast7412

next AOT_show ‹∆([O!]a ∨ q0)›7413

proof (rule not_act_and_pos_delta)7414

AOT_show ‹¬A([O!]a ∨ q0)›7415

using "Act-Basic:9" "∨E"(2) "≡E"(4) not_act_ord_a7416

not_act_q_zero "raa-cor:3" by blast7417

next AOT_show ‹♦([O!]a ∨ q0)›7418

using "KBasic2:2" "&E"(1) "∨I"(2) "≡E"(2) q0_prop by blast7419

qed7420

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7421

ultimately AOT_obtain F13 where ‹A[F13]b & ∆[F13]b & ¬A[F13]a & ∆[F13]a›7422

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7423

AOT_hence ‹A[F13]b› and ‹∆[F13]b› and ‹¬A[F13]a› and ‹∆[F13]a›7424

using "&E" by blast+7425

note props = props this7426

7427

let ?Π = "«[λy [O!]y ∨ ¬q0]»"7428

AOT_modally_strict {7429

AOT_have ‹[«?Π»]↓› by "cqt:2[lambda]"7430

} note 1 = this7431

moreover AOT_have ‹A[«?Π»]b & ∆[«?Π»]b & A[«?Π»]a & ¬∆[«?Π»]a›7432

310

A.7. The Deductive System PLM

proof (safe intro!: "&I"; AOT_subst ‹[λy O!y ∨ ¬q0]x› ‹O!x ∨ ¬q0› for: x)7433

AOT_show ‹A([O!]b ∨ ¬q0)›7434

by (meson "Act-Basic:9" act_not_q_zero "∨I"(2) "≡E"(2))7435

next AOT_show ‹∆([O!]b ∨ ¬q0)›7436

by (meson "KBasic:15" b_ord "∨I"(1) nec_delta "oa-facts:1" "→E")7437

next AOT_show ‹A([O!]a ∨ ¬q0)›7438

by (meson "Act-Basic:9" act_not_q_zero "∨I"(2) "≡E"(2))7439

next AOT_show ‹¬∆([O!]a ∨ ¬q0)›7440

proof(rule act_and_pos_not_not_delta)7441

AOT_show ‹A([O!]a ∨ ¬q0)›7442

by (meson "Act-Basic:9" act_not_q_zero "∨I"(2) "≡E"(2))7443

next7444

AOT_have ‹�¬[O!]a›7445

using "KBasic2:1" "≡E"(2) not_act_and_pos_delta7446

not_act_ord_a not_delta_ord_a "raa-cor:6" by blast7447

moreover AOT_have ‹♦q0›7448

by (meson "&E"(1) q0_prop)7449

ultimately AOT_have 2: ‹♦(¬[O!]a & q0)›7450

by (metis "KBasic:16" "&I" "vdash-properties:10")7451

AOT_show ‹♦¬([O!]a ∨ ¬q0)›7452

proof (AOT_subst (reverse) ‹¬([O!]a ∨ ¬q0)› ‹¬[O!]a & q0›)7453

AOT_modally_strict {7454

AOT_show ‹¬[O!]a & q0 ≡ ¬([O!]a ∨ ¬q0)›7455

by (metis "&I" "&E"(1) "&E"(2) "∨I"(1) "∨I"(2)7456

"∨E"(3) "deduction-theorem" "≡I" "raa-cor:3")7457

}7458

next7459

AOT_show ‹♦(¬[O!]a & q0)›7460

using "2" by blast7461

qed7462

qed7463

qed(auto simp: "beta-C-meta"[THEN "→E", OF 1])7464

ultimately AOT_obtain F14 where ‹A[F14]b & ∆[F14]b & A[F14]a & ¬∆[F14]a›7465

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7466

AOT_hence ‹A[F14]b› and ‹∆[F14]b› and ‹A[F14]a› and ‹¬∆[F14]a›7467

using "&E" by blast+7468

note props = props this7469

7470

AOT_have ‹[L]↓›7471

by (rule "=dfI"(2)[OF L_def]) "cqt:2[lambda]"+7472

moreover AOT_have ‹A[L]b & ∆[L]b & A[L]a & ∆[L]a›7473

proof (safe intro!: "&I")7474

AOT_show ‹A[L]b›7475

by (meson nec_L "nec-imp-act" "vdash-properties:10")7476

next AOT_show ‹∆[L]b› using nec_L nec_delta by blast7477

next AOT_show ‹A[L]a› by (meson nec_L "nec-imp-act" "→E")7478

next AOT_show ‹∆[L]a› using nec_L nec_delta by blast7479

qed7480

ultimately AOT_obtain F15 where ‹A[F15]b & ∆[F15]b & A[F15]a & ∆[F15]a›7481

using "∃I"(1)[rotated, THEN "∃E"[rotated]] by fastforce7482

AOT_hence ‹A[F15]b› and ‹∆[F15]b› and ‹A[F15]a› and ‹∆[F15]a›7483

using "&E" by blast+7484

note props = props this7485

7486

show ?thesis7487

by (rule "∃I"(2)[where β=F0]; rule "∃I"(2)[where β=F1];7488

rule "∃I"(2)[where β=F2]; rule "∃I"(2)[where β=F3];7489

rule "∃I"(2)[where β=F4]; rule "∃I"(2)[where β=F5];7490

rule "∃I"(2)[where β=F6]; rule "∃I"(2)[where β=F7];7491

rule "∃I"(2)[where β=F8]; rule "∃I"(2)[where β=F9];7492

rule "∃I"(2)[where β=F10]; rule "∃I"(2)[where β=F11];7493

rule "∃I"(2)[where β=F12]; rule "∃I"(2)[where β=F13];7494

rule "∃I"(2)[where β=F14]; rule "∃I"(2)[where β=F15];7495

311

A. Isabelle Theory

safe intro!: "&I")7496

(match conclusion in "[?v |= [F] 6= [G]]" for F G ⇒ ‹7497

match props in A: "[?v |= ¬ϕ{F}]" for ϕ ⇒ ‹7498

match (ϕ) in "λa . ?p" ⇒ ‹fail› | "λa . a" ⇒ ‹fail› | _ ⇒ ‹7499

match props in B: "[?v |= ϕ{G}]" ⇒ ‹7500

fact "pos-not-equiv-ne:4"[where F=F and G=G and ϕ=ϕ, THEN "→E",7501

OF "oth-class-taut:4:h"[THEN "≡E"(2)],7502

OF "Disjunction Addition"(2)[THEN "→E"],7503

OF "&I", OF A, OF B]››››)+7504

qed7505

7506

subsection‹The Theory of Objects›7507

text‹\label{PLM: 9.11}›7508

7509

AOT_theorem "o-objects-exist:1": ‹�∃x O!x› (225.1)7510

proof(rule RN)7511

AOT_modally_strict {7512

AOT_obtain a where ‹♦(E!a & ¬A[E!]a)›7513

using "∃E"[rotated, OF "qml:4"[axiom_inst, THEN "BF♦"[THEN "→E"]]]7514

by blast7515

AOT_hence 1: ‹♦E!a› by (metis "KBasic2:3" "&E"(1) "→E")7516

AOT_have ‹[λx ♦[E!]x]a›7517

proof (rule "β←C"(1); "cqt:2[lambda]"?)7518

AOT_show ‹a↓› using "cqt:2[const_var]"[axiom_inst] by blast7519

next7520

AOT_show ‹♦E!a› by (fact 1)7521

qed7522

AOT_hence ‹O!a› by (rule "=dfI"(2)[OF AOT_ordinary, rotated]) "cqt:2"7523

AOT_thus ‹∃x [O!]x› by (rule "∃I")7524

}7525

qed7526

7527

AOT_theorem "o-objects-exist:2": ‹�∃x A!x› (225.2)7528

proof (rule RN)7529

AOT_modally_strict {7530

AOT_obtain a where ‹[A!]a›7531

using "A-objects"[axiom_inst] "∃E"[rotated] "&E" by blast7532

AOT_thus ‹∃x A!x› using "∃I" by blast7533

}7534

qed7535

7536

AOT_theorem "o-objects-exist:3": ‹�¬∀x O!x› (225.3)7537

by (rule RN)7538

(metis (no_types, opaque_lifting) "∃E" "cqt-orig:1[const_var]"7539

"≡E"(4) "modus-tollens:1" "o-objects-exist:2" "oa-contingent:2"7540

"qml:2"[axiom_inst] "reductio-aa:2")7541

7542

AOT_theorem "o-objects-exist:4": ‹�¬∀x A!x› (225.4)7543

by (rule RN)7544

(metis (mono_tags, opaque_lifting) "∃E" "cqt-orig:1[const_var]"7545

"≡E"(1) "modus-tollens:1" "o-objects-exist:1" "oa-contingent:2"7546

"qml:2"[axiom_inst] "→E")7547

7548

AOT_theorem "o-objects-exist:5": ‹�¬∀x E!x› (225.5)7549

proof (rule RN; rule "raa-cor:2")7550

AOT_modally_strict {7551

AOT_assume ‹∀x E!x›7552

moreover AOT_obtain a where abs: ‹A!a›7553

using "o-objects-exist:2"[THEN "qml:2"[axiom_inst, THEN "→E"]]7554

"∃E"[rotated] by blast7555

ultimately AOT_have ‹E!a› using "∀E" by blast7556

AOT_hence 1: ‹♦E!a› by (metis "T♦" "→E")7557

AOT_have ‹[λy ♦E!y]a›7558

312

A.7. The Deductive System PLM

proof (rule "β←C"(1); "cqt:2[lambda]"?)7559

AOT_show ‹a↓› using "cqt:2[const_var]"[axiom_inst].7560

next7561

AOT_show ‹♦E!a› by (fact 1)7562

qed7563

AOT_hence ‹O!a›7564

by (rule "=dfI"(2)[OF AOT_ordinary, rotated]) "cqt:2[lambda]"7565

AOT_hence ‹¬A!a› by (metis "≡E"(1) "oa-contingent:2")7566

AOT_thus ‹p & ¬p› for p using abs by (metis "raa-cor:3")7567

}7568

qed7569

7570

AOT_theorem partition: ‹¬∃x (O!x & A!x)› (226)7571

proof(rule "raa-cor:2")7572

AOT_assume ‹∃x (O!x & A!x)›7573

then AOT_obtain a where ‹O!a & A!a›7574

using "∃E"[rotated] by blast7575

AOT_thus ‹p & ¬p› for p7576

by (metis "&E"(1) "Conjunction Simplification"(2) "≡E"(1)7577

"modus-tollens:1" "oa-contingent:2" "raa-cor:3")7578

qed7579

7580

AOT_define eq_E :: ‹Π› ("’(=E’)")7581

"=E": ‹(=E) =df [λxy O!x & O!y & �∀F ([F]x ≡ [F]y)]› (227)7582

7583

syntax "_AOT_eq_E_infix" :: ‹τ ⇒ τ ⇒ ϕ› (infixl "=E" 50)7584

translations7585

"_AOT_eq_E_infix κ κ’" == "CONST AOT_exe (CONST eq_E) (CONST Pair κ κ’)"7586

print_translation‹7587

AOT_syntax_print_translations7588

[(const_syntax‹AOT_exe›, fn ctxt => fn [7589

Const (const_name‹eq_E›, _),7590

Const (const_syntax‹Pair›, _) $ lhs $ rhs7591

] => Const (syntax_const‹_AOT_eq_E_infix›, dummyT) $ lhs $ rhs)]›7592

7593

text‹Note: Not explicitly mentioned as theorem in PLM.›7594

AOT_theorem "=E[denotes]": ‹[(=E)]↓› (227)7595

by (rule "=dfI"(2)[OF "=E"]) "cqt:2[lambda]"+7596

7597

AOT_theorem "=E-simple:1": ‹x =E y ≡ (O!x & O!y & �∀F ([F]x ≡ [F]y))› (230.1)7598

proof -7599

AOT_have 1: ‹[λxy [O!]x & [O!]y & �∀F ([F]x ≡ [F]y)]↓› by "cqt:2"7600

show ?thesis7601

apply (rule "=dfI"(2)[OF "=E"]; "cqt:2[lambda]"?)7602

using "beta-C-meta"[THEN "→E", OF 1, unvarify ν1νn, of "(_,_)",7603

OF tuple_denotes[THEN "≡dfI"], OF "&I",7604

OF "cqt:2[const_var]"[axiom_inst],7605

OF "cqt:2[const_var]"[axiom_inst]]7606

by fast7607

qed7608

7609

AOT_theorem "=E-simple:2": ‹x =E y → x = y› (230.2)7610

proof (rule "→I")7611

AOT_assume ‹x =E y›7612

AOT_hence ‹O!x & O!y & �∀F ([F]x ≡ [F]y)›7613

using "=E-simple:1"[THEN "≡E"(1)] by blast7614

AOT_thus ‹x = y›7615

using "≡dfI"[OF "identity:1"] "∨I" by blast7616

qed7617

7618

AOT_theorem "id-nec3:1": ‹x =E y ≡ �(x =E y)› (231.1)7619

proof (rule "≡I"; rule "→I")7620

AOT_assume ‹x =E y›7621

313

A. Isabelle Theory

AOT_hence ‹O!x & O!y & �∀F ([F]x ≡ [F]y)›7622

using "=E-simple:1" "≡E" by blast7623

AOT_hence ‹�O!x & �O!y & ��∀F ([F]x ≡ [F]y)›7624

by (metis "S5Basic:6" "&I" "&E"(1) "&E"(2) "≡E"(4)7625

"oa-facts:1" "raa-cor:3" "vdash-properties:10")7626

AOT_hence ‹�(O!x & O!y & �∀F ([F]x ≡ [F]y))›7627

by (metis "&E"(1) "&E"(2) "≡E"(2) "KBasic:3" "&I")7628

AOT_thus ‹�(x =E y)›7629

using "=E-simple:1"7630

by (AOT_subst ‹x =E y› ‹O!x & O!y & �∀F ([F]x ≡ [F]y)›) auto7631

next7632

AOT_assume ‹�(x =E y)›7633

AOT_thus ‹x =E y› using "qml:2"[axiom_inst, THEN "→E"] by blast7634

qed7635

7636

AOT_theorem "id-nec3:2": ‹♦(x =E y) ≡ x =E y› (231.2)7637

by (meson "RE♦" "S5Basic:2" "id-nec3:1" "≡E"(1,5) "Commutativity of ≡")7638

7639

AOT_theorem "id-nec3:3": ‹♦(x =E y) ≡ �(x =E y)› (231.3)7640

by (meson "id-nec3:1" "id-nec3:2" "≡E"(5))7641

7642

syntax "_AOT_non_eq_E" :: ‹Π› ("’(6=E’)")7643

translations7644

(Π) "(6=E)" == (Π) "(=E)-"7645

syntax "_AOT_non_eq_E_infix" :: ‹τ ⇒ τ ⇒ ϕ› (infixl " 6=E" 50)7646

translations7647

"_AOT_non_eq_E_infix κ κ’" ==7648

"CONST AOT_exe (CONST relation_negation (CONST eq_E)) (CONST Pair κ κ’)"7649

print_translation‹7650

AOT_syntax_print_translations7651

[(const_syntax‹AOT_exe›, fn ctxt => fn [7652

Const (const_syntax‹relation_negation›, _) $ Const (const_name‹eq_E›, _),7653

Const (const_syntax‹Pair›, _) $ lhs $ rhs7654

] => Const (syntax_const‹_AOT_non_eq_E_infix›, dummyT) $ lhs $ rhs)]›7655

AOT_theorem "thm-neg=E": ‹x 6=E y ≡ ¬(x =E y)› (233)7656

proof -7657

AOT_have ϑ: ‹[λx1...x2 ¬(=E)x1...x2]↓› by "cqt:2"7658

AOT_have ‹x 6=E y ≡ [λx1...x2 ¬(=E)x1...x2]xy›7659

by (rule "=dfI"(1)[OF "df-relation-negation", OF ϑ])7660

(meson "oth-class-taut:3:a")7661

also AOT_have ‹. . . ≡ ¬(=E)xy›7662

by (safe intro!: "beta-C-meta"[THEN "→E", unvarify ν1νn] "cqt:2"7663

tuple_denotes[THEN "≡dfI"] "&I")7664

finally show ?thesis.7665

qed7666

7667

AOT_theorem "id-nec4:1": ‹x 6=E y ≡ �(x 6=E y)› (234.1)7668

proof -7669

AOT_have ‹x 6=E y ≡ ¬(x =E y)› using "thm-neg=E".7670

also AOT_have ‹. . . ≡ ¬♦(x =E y)›7671

by (meson "id-nec3:2" "≡E"(1) "Commutativity of ≡" "oth-class-taut:4:b")7672

also AOT_have ‹. . . ≡ �¬(x =E y)›7673

by (meson "KBasic2:1" "≡E"(2) "Commutativity of ≡")7674

also AOT_have ‹. . . ≡ �(x 6=E y)›7675

by (AOT_subst (reverse) ‹¬(x =E y)› ‹x 6=E y›)7676

(auto simp: "thm-neg=E" "oth-class-taut:3:a")7677

finally show ?thesis.7678

qed7679

7680

AOT_theorem "id-nec4:2": ‹♦(x 6=E y) ≡ (x 6=E y)› (234.2)7681

by (meson "RE♦" "S5Basic:2" "id-nec4:1" "≡E"(2,5) "Commutativity of ≡")7682

7683

AOT_theorem "id-nec4:3": ‹♦(x 6=E y) ≡ �(x 6=E y)› (234.3)7684

314

A.7. The Deductive System PLM

by (meson "id-nec4:1" "id-nec4:2" "≡E"(5))7685

7686

AOT_theorem "id-act2:1": ‹x =E y ≡ Ax =E y› (235.1)7687

by (meson "Act-Basic:5" "Act-Sub:2" "RA[2]" "id-nec3:2" "≡E"(1,6))7688

AOT_theorem "id-act2:2": ‹x 6=E y ≡ Ax 6=E y› (235.2)7689

by (meson "Act-Basic:5" "Act-Sub:2" "RA[2]" "id-nec4:2" "≡E"(1,6))7690

7691

AOT_theorem "ord=Eequiv:1": ‹O!x → x =E x› (236.1)7692

proof (rule "→I")7693

AOT_assume 1: ‹O!x›7694

AOT_show ‹x =E x›7695

apply (rule "=dfI"(2)[OF "=E"]) apply "cqt:2[lambda]"7696

apply (rule "β←C"(1))7697

apply "cqt:2[lambda]"7698

apply (simp add: "&I" "cqt:2[const_var]"[axiom_inst] prod_denotesI)7699

by (simp add: "1" RN "&I" "oth-class-taut:3:a" "universal-cor")7700

qed7701

7702

AOT_theorem "ord=Eequiv:2": ‹x =E y → y =E x› (236.2)7703

proof(rule CP)7704

AOT_assume 1: ‹x =E y›7705

AOT_hence 2: ‹x = y› by (metis "=E-simple:2" "vdash-properties:10")7706

AOT_have ‹O!x› using 1 by (meson "&E"(1) "=E-simple:1" "≡E"(1))7707

AOT_hence ‹x =E x› using "ord=Eequiv:1" "→E" by blast7708

AOT_thus ‹y =E x› using "rule=E"[rotated, OF 2] by fast7709

qed7710

7711

AOT_theorem "ord=Eequiv:3": ‹(x =E y & y =E z) → x =E z› (236.3)7712

proof (rule CP)7713

AOT_assume 1: ‹x =E y & y =E z›7714

AOT_hence ‹x = y & y = z›7715

by (metis "&I" "&E"(1) "&E"(2) "=E-simple:2" "vdash-properties:6")7716

AOT_hence ‹x = z› by (metis "id-eq:3" "vdash-properties:6")7717

moreover AOT_have ‹x =E x›7718

using 1[THEN "&E"(1)] "&E"(1) "=E-simple:1" "≡E"(1)7719

"ord=Eequiv:1" "→E" by blast7720

ultimately AOT_show ‹x =E z›7721

using "rule=E" by fast7722

qed7723

7724

AOT_theorem "ord-=E=:1": ‹(O!x ∨ O!y) → �(x = y ≡ x =E y)› (237.1)7725

proof(rule CP)7726

AOT_assume ‹O!x ∨ O!y›7727

moreover {7728

AOT_assume ‹O!x›7729

AOT_hence ‹�O!x› by (metis "oa-facts:1" "vdash-properties:10")7730

moreover {7731

AOT_modally_strict {7732

AOT_have ‹O!x → (x = y ≡ x =E y)›7733

proof (rule "→I"; rule "≡I"; rule "→I")7734

AOT_assume ‹O!x›7735

AOT_hence ‹x =E x› by (metis "ord=Eequiv:1" "→E")7736

moreover AOT_assume ‹x = y›7737

ultimately AOT_show ‹x =E y› using "rule=E" by fast7738

next7739

AOT_assume ‹x =E y›7740

AOT_thus ‹x = y› by (metis "=E-simple:2" "→E")7741

qed7742

}7743

AOT_hence ‹�O!x → �(x = y ≡ x =E y)› by (metis "RM:1")7744

}7745

ultimately AOT_have ‹�(x = y ≡ x =E y)› using "→E" by blast7746

}7747

315

A. Isabelle Theory

moreover {7748

AOT_assume ‹O!y›7749

AOT_hence ‹�O!y› by (metis "oa-facts:1" "vdash-properties:10")7750

moreover {7751

AOT_modally_strict {7752

AOT_have ‹O!y → (x = y ≡ x =E y)›7753

proof (rule "→I"; rule "≡I"; rule "→I")7754

AOT_assume ‹O!y›7755

AOT_hence ‹y =E y› by (metis "ord=Eequiv:1" "→E")7756

moreover AOT_assume ‹x = y›7757

ultimately AOT_show ‹x =E y› using "rule=E" id_sym by fast7758

next7759

AOT_assume ‹x =E y›7760

AOT_thus ‹x = y› by (metis "=E-simple:2" "→E")7761

qed7762

}7763

AOT_hence ‹�O!y → �(x = y ≡ x =E y)› by (metis "RM:1")7764

}7765

ultimately AOT_have ‹�(x = y ≡ x =E y)› using "→E" by blast7766

}7767

ultimately AOT_show ‹�(x = y ≡ x =E y)› by (metis "∨E"(3) "raa-cor:1")7768

qed7769

7770

AOT_theorem "ord-=E=:2": ‹O!y → [λx x = y]↓› (237.2)7771

proof (rule "→I"; rule "safe-ext"[axiom_inst, THEN "→E"]; rule "&I")7772

AOT_show ‹[λx x =E y]↓› by "cqt:2[lambda]"7773

next7774

AOT_assume ‹O!y›7775

AOT_hence 1: ‹�(x = y ≡ x =E y)› for x7776

using "ord-=E=:1" "→E" "∨I" by blast7777

AOT_have ‹�(x =E y ≡ x = y)› for x7778

by (AOT_subst ‹x =E y ≡ x = y› ‹x = y ≡ x =E y›)7779

(auto simp add: "Commutativity of ≡" 1)7780

AOT_hence ‹∀x �(x =E y ≡ x = y)› by (rule GEN)7781

AOT_thus ‹�∀x (x =E y ≡ x = y)› by (rule BF[THEN "→E"])7782

qed7783

7784

7785

AOT_theorem "ord-=E=:3": ‹[λxy O!x & O!y & x = y]↓› (237.3)7786

proof (rule "safe-ext[2]"[axiom_inst, THEN "→E"]; rule "&I")7787

AOT_show ‹[λxy O!x & O!y & x =E y]↓› by "cqt:2[lambda]"7788

next7789

AOT_show ‹�∀x∀y ([O!]x & [O!]y & x =E y ≡ [O!]x & [O!]y & x = y)›7790

proof (rule RN; rule GEN; rule GEN; rule "≡I"; rule "→I")7791

AOT_modally_strict {7792

AOT_show ‹[O!]x & [O!]y & x = y› if ‹[O!]x & [O!]y & x =E y› for x y7793

by (metis "&I" "&E"(1) "Conjunction Simplification"(2) "=E-simple:2"7794

"modus-tollens:1" "raa-cor:1" that)7795

}7796

next7797

AOT_modally_strict {7798

AOT_show ‹[O!]x & [O!]y & x =E y› if ‹[O!]x & [O!]y & x = y› for x y7799

apply(safe intro!: "&I")7800

apply (metis that[THEN "&E"(1), THEN "&E"(1)])7801

apply (metis that[THEN "&E"(1), THEN "&E"(2)])7802

using "rule=E"[rotated, OF that[THEN "&E"(2)]]7803

"ord=Eequiv:1"[THEN "→E", OF that[THEN "&E"(1), THEN "&E"(1)]]7804

by fast7805

}7806

qed7807

qed7808

7809

AOT_theorem "ind-nec": ‹∀F ([F]x ≡ [F]y) → �∀F ([F]x ≡ [F]y)› (238)7810

316

A.7. The Deductive System PLM

proof(rule "→I")7811

AOT_assume ‹∀F ([F]x ≡ [F]y)›7812

moreover AOT_have ‹[λx �∀F ([F]x ≡ [F]y)]↓› by "cqt:2[lambda]"7813

ultimately AOT_have ‹[λx �∀F ([F]x ≡ [F]y)]x ≡ [λx �∀F ([F]x ≡ [F]y)]y›7814

using "∀E" by blast7815

moreover AOT_have ‹[λx �∀F ([F]x ≡ [F]y)]y›7816

apply (rule "β←C"(1))7817

apply "cqt:2[lambda]"7818

apply (fact "cqt:2[const_var]"[axiom_inst])7819

by (simp add: RN GEN "oth-class-taut:3:a")7820

ultimately AOT_have ‹[λx �∀F ([F]x ≡ [F]y)]x› using "≡E" by blast7821

AOT_thus ‹�∀F ([F]x ≡ [F]y)›7822

using "β→C"(1) by blast7823

qed7824

7825

AOT_theorem "ord=E:1": ‹(O!x & O!y) → (∀F ([F]x ≡ [F]y) → x =E y)› (239.1)7826

proof (rule "→I"; rule "→I")7827

AOT_assume ‹∀F ([F]x ≡ [F]y)›7828

AOT_hence ‹�∀F ([F]x ≡ [F]y)›7829

using "ind-nec"[THEN "→E"] by blast7830

moreover AOT_assume ‹O!x & O!y›7831

ultimately AOT_have ‹O!x & O!y & �∀F ([F]x ≡ [F]y)›7832

using "&I" by blast7833

AOT_thus ‹x =E y› using "=E-simple:1"[THEN "≡E"(2)] by blast7834

qed7835

7836

AOT_theorem "ord=E:2": ‹(O!x & O!y) → (∀F ([F]x ≡ [F]y) → x = y)› (239.2)7837

proof (rule "→I"; rule "→I")7838

AOT_assume ‹O!x & O!y›7839

moreover AOT_assume ‹∀F ([F]x ≡ [F]y)›7840

ultimately AOT_have ‹x =E y›7841

using "ord=E:1" "→E" by blast7842

AOT_thus ‹x = y› using "=E-simple:2"[THEN "→E"] by blast7843

qed7844

7845

AOT_theorem "ord=E2:1": (240.1)7846

‹(O!x & O!y) → (x 6= y ≡ [λz z =E x] 6= [λz z =E y])›7847

proof (rule "→I"; rule "≡I"; rule "→I";7848

rule "≡dfI"[OF "=-infix"]; rule "raa-cor:2")7849

AOT_assume 0: ‹O!x & O!y›7850

AOT_assume ‹x 6= y›7851

AOT_hence 1: ‹¬(x = y)› using "≡dfE"[OF "=-infix"] by blast7852

AOT_assume ‹[λz z =E x] = [λz z =E y]›7853

moreover AOT_have ‹[λz z =E x]x›7854

apply (rule "β←C"(1))7855

apply "cqt:2[lambda]"7856

apply (fact "cqt:2[const_var]"[axiom_inst])7857

using "ord=Eequiv:1"[THEN "→E", OF 0[THEN "&E"(1)]].7858

ultimately AOT_have ‹[λz z =E y]x› using "rule=E" by fast7859

AOT_hence ‹x =E y› using "β→C"(1) by blast7860

AOT_hence ‹x = y› by (metis "=E-simple:2" "vdash-properties:6")7861

AOT_thus ‹x = y & ¬(x = y)› using 1 "&I" by blast7862

next7863

AOT_assume ‹[λz z =E x] 6= [λz z =E y]›7864

AOT_hence 0: ‹¬([λz z =E x] = [λz z =E y])›7865

using "≡dfE"[OF "=-infix"] by blast7866

AOT_have ‹[λz z =E x]↓› by "cqt:2[lambda]"7867

AOT_hence ‹[λz z =E x] = [λz z =E x]›7868

by (metis "rule=I:1")7869

moreover AOT_assume ‹x = y›7870

ultimately AOT_have ‹[λz z =E x] = [λz z =E y]›7871

using "rule=E" by fast7872

AOT_thus ‹[λz z =E x] = [λz z =E y] & ¬([λz z =E x] = [λz z =E y])›7873

317

A. Isabelle Theory

using 0 "&I" by blast7874

qed7875

7876

AOT_theorem "ord=E2:2": (240.2)7877

‹(O!x & O!y) → (x 6= y ≡ [λz z = x] 6= [λz z = y])›7878

proof (rule "→I"; rule "≡I"; rule "→I";7879

rule "≡dfI"[OF "=-infix"]; rule "raa-cor:2")7880

AOT_assume 0: ‹O!x & O!y›7881

AOT_assume ‹x 6= y›7882

AOT_hence 1: ‹¬(x = y)› using "≡dfE"[OF "=-infix"] by blast7883

AOT_assume ‹[λz z = x] = [λz z = y]›7884

moreover AOT_have ‹[λz z = x]x›7885

apply (rule "β←C"(1))7886

apply (fact "ord-=E=:2"[THEN "→E", OF 0[THEN "&E"(1)]])7887

apply (fact "cqt:2[const_var]"[axiom_inst])7888

by (simp add: "id-eq:1")7889

ultimately AOT_have ‹[λz z = y]x› using "rule=E" by fast7890

AOT_hence ‹x = y› using "β→C"(1) by blast7891

AOT_thus ‹x = y & ¬(x = y)› using 1 "&I" by blast7892

next7893

AOT_assume 0: ‹O!x & O!y›7894

AOT_assume ‹[λz z = x] 6= [λz z = y]›7895

AOT_hence 1: ‹¬([λz z = x] = [λz z = y])›7896

using "≡dfE"[OF "=-infix"] by blast7897

AOT_have ‹[λz z = x]↓›7898

by (fact "ord-=E=:2"[THEN "→E", OF 0[THEN "&E"(1)]])7899

AOT_hence ‹[λz z = x] = [λz z = x]›7900

by (metis "rule=I:1")7901

moreover AOT_assume ‹x = y›7902

ultimately AOT_have ‹[λz z = x] = [λz z = y]›7903

using "rule=E" by fast7904

AOT_thus ‹[λz z = x] = [λz z = y] & ¬([λz z = x] = [λz z = y])›7905

using 1 "&I" by blast7906

qed7907

7908

AOT_theorem ordnecfail: ‹O!x → �¬∃F x[F]› (241)7909

by (meson "RM:1" "→I" nocoder[axiom_inst] "oa-facts:1" "→E")7910

7911

AOT_theorem "ab-obey:1": ‹(A!x & A!y) → (∀F (x[F] ≡ y[F]) → x = y)› (242.1)7912

proof (rule "→I"; rule "→I")7913

AOT_assume 1: ‹A!x & A!y›7914

AOT_assume ‹∀F (x[F] ≡ y[F])›7915

AOT_hence ‹x[F] ≡ y[F]› for F using "∀E" by blast7916

AOT_hence ‹�(x[F] ≡ y[F])› for F by (metis "en-eq:6[1]" "≡E"(1))7917

AOT_hence ‹∀F �(x[F] ≡ y[F])› by (rule GEN)7918

AOT_hence ‹�∀F (x[F] ≡ y[F])› by (rule BF[THEN "→E"])7919

AOT_thus ‹x = y›7920

using "≡dfI"[OF "identity:1", OF "∨I"(2)] 1 "&I" by blast7921

qed7922

7923

AOT_theorem "ab-obey:2": (242.2)7924

‹(∃F (x[F] & ¬y[F]) ∨ ∃F (y[F] & ¬x[F])) → x 6= y›7925

proof (rule "→I"; rule "≡dfI"[OF "=-infix"]; rule "raa-cor:2")7926

AOT_assume 1: ‹x = y›7927

AOT_assume ‹∃F (x[F] & ¬y[F]) ∨ ∃F (y[F] & ¬x[F])›7928

moreover {7929

AOT_assume ‹∃F (x[F] & ¬y[F])›7930

then AOT_obtain F where ‹x[F] & ¬y[F]›7931

using "∃E"[rotated] by blast7932

moreover AOT_have ‹y[F]›7933

using calculation[THEN "&E"(1)] 1 "rule=E" by fast7934

ultimately AOT_have ‹p & ¬p› for p7935

by (metis "Conjunction Simplification"(2) "modus-tollens:2" "raa-cor:3")7936

318

A.7. The Deductive System PLM

}7937

moreover {7938

AOT_assume ‹∃F (y[F] & ¬x[F])›7939

then AOT_obtain F where ‹y[F] & ¬x[F]›7940

using "∃E"[rotated] by blast7941

moreover AOT_have ‹¬y[F]›7942

using calculation[THEN "&E"(2)] 1 "rule=E" by fast7943

ultimately AOT_have ‹p & ¬p› for p7944

by (metis "Conjunction Simplification"(1) "modus-tollens:1" "raa-cor:3")7945

}7946

ultimately AOT_show ‹p & ¬p› for p7947

by (metis "∨E"(3) "raa-cor:1")7948

qed7949

7950

AOT_theorem "encoders-are-abstract": ‹∃F x[F] → A!x› (243)7951

by (meson "deduction-theorem" "≡E"(2) "modus-tollens:2" nocoder7952

"oa-contingent:3" "vdash-properties:1[2]")7953

7954

AOT_theorem "denote=:1": ‹∀H∃x x[H]› (244.1)7955

by (rule GEN; rule "existence:2[1]"[THEN "≡dfE"]; "cqt:2")7956

7957

AOT_theorem "denote=:2": ‹∀G∃x1...∃xn x1...xn[H]› (244.2)7958

by (rule GEN; rule "existence:2"[THEN "≡dfE"]; "cqt:2")7959

7960

AOT_theorem "denote=:2[2]": ‹∀G∃x1∃x2 x1x2[H]› (244.2)7961

by (rule GEN; rule "existence:2[2]"[THEN "≡dfE"]; "cqt:2")7962

7963

AOT_theorem "denote=:2[3]": ‹∀G∃x1∃x2∃x3 x1x2x3[H]› (244.2)7964

by (rule GEN; rule "existence:2[3]"[THEN "≡dfE"]; "cqt:2")7965

7966

AOT_theorem "denote=:2[4]": ‹∀G∃x1∃x2∃x3∃x4 x1x2x3x4[H]› (244.2)7967

by (rule GEN; rule "existence:2[4]"[THEN "≡dfE"]; "cqt:2")7968

7969

AOT_theorem "denote=:3": ‹∃x x[Π] ≡ ∃H (H = Π)› (244.3)7970

using "existence:2[1]" "free-thms:1" "≡E"(2,5)7971

"Commutativity of ≡" "≡Df" by blast7972

7973

AOT_theorem "denote=:4": ‹(∃x1...∃xn x1...xn[Π]) ≡ ∃H (H = Π)› (244.4)7974

using "existence:2" "free-thms:1" "≡E"(6) "≡Df" by blast7975

7976

AOT_theorem "denote=:4[2]": ‹(∃x1∃x2 x1x2[Π]) ≡ ∃H (H = Π)› (244.4)7977

using "existence:2[2]" "free-thms:1" "≡E"(6) "≡Df" by blast7978

7979

AOT_theorem "denote=:4[3]": ‹(∃x1∃x2∃x3 x1x2x3[Π]) ≡ ∃H (H = Π)› (244.4)7980

using "existence:2[3]" "free-thms:1" "≡E"(6) "≡Df" by blast7981

7982

AOT_theorem "denote=:4[4]": ‹(∃x1∃x2∃x3∃x4 x1x2x3x4[Π]) ≡ ∃H (H = Π)› (244.4)7983

using "existence:2[4]" "free-thms:1" "≡E"(6) "≡Df" by blast7984

7985

AOT_theorem "A-objects!": ‹∃!x (A!x & ∀F (x[F] ≡ ϕ{F}))› (247)7986

proof (rule "uniqueness:1"[THEN "≡dfI"])7987

AOT_obtain a where a_prop: ‹A!a & ∀F (a[F] ≡ ϕ{F})›7988

using "A-objects"[axiom_inst] "∃E"[rotated] by blast7989

AOT_have ‹(A!β & ∀F (β[F] ≡ ϕ{F})) → β = a› for β7990

proof (rule "→I")7991

AOT_assume β_prop: ‹[A!]β & ∀F (β[F] ≡ ϕ{F})›7992

AOT_hence ‹β[F] ≡ ϕ{F}› for F7993

using "∀E" "&E" by blast7994

AOT_hence ‹β[F] ≡ a[F]› for F7995

using a_prop[THEN "&E"(2)] "∀E" "≡E"(2,5)7996

"Commutativity of ≡" by fast7997

AOT_hence ‹∀F (β[F] ≡ a[F])› by (rule GEN)7998

AOT_thus ‹β = a›7999

319

A. Isabelle Theory

using "ab-obey:1"[THEN "→E",8000

OF "&I"[OF β_prop[THEN "&E"(1)], OF a_prop[THEN "&E"(1)]],8001

THEN "→E"] by blast8002

qed8003

AOT_hence ‹∀β ((A!β & ∀F (β[F] ≡ ϕ{F})) → β = a)› by (rule GEN)8004

AOT_thus ‹∃α ([A!]α & ∀F (α[F] ≡ ϕ{F}) &8005

∀β ([A!]β & ∀F (β[F] ≡ ϕ{F}) → β = α))›8006

using "∃I" using a_prop "&I" by fast8007

qed8008

8009

AOT_theorem "obj-oth:1": ‹∃!x (A!x & ∀F (x[F] ≡ [F]y))› (248.1)8010

using "A-objects!" by fast8011

8012

AOT_theorem "obj-oth:2": ‹∃!x (A!x & ∀F (x[F] ≡ [F]y & [F]z))› (248.2)8013

using "A-objects!" by fast8014

8015

AOT_theorem "obj-oth:3": ‹∃!x (A!x & ∀F (x[F] ≡ [F]y ∨ [F]z))› (248.3)8016

using "A-objects!" by fast8017

8018

AOT_theorem "obj-oth:4": ‹∃!x (A!x & ∀F (x[F] ≡ �[F]y))› (248.4)8019

using "A-objects!" by fast8020

8021

AOT_theorem "obj-oth:5": ‹∃!x (A!x & ∀F (x[F] ≡ F = G))› (248.5)8022

using "A-objects!" by fast8023

8024

AOT_theorem "obj-oth:6": ‹∃!x (A!x & ∀F (x[F] ≡ �∀y([G]y → [F]y)))› (248.6)8025

using "A-objects!" by fast8026

8027

AOT_theorem "A-descriptions": ‹ιx (A!x & ∀F (x[F] ≡ ϕ{F}))↓› (249)8028

by (rule "A-Exists:2"[THEN "≡E"(2)]; rule "RA[2]"; rule "A-objects!")8029

8030

AOT_act_theorem "thm-can-terms2": (251)8031

‹y = ιx(A!x & ∀F (x[F] ≡ ϕ{F})) → (A!y & ∀F (y[F] ≡ ϕ{F}))›8032

using "y-in:2" by blast8033

8034

AOT_theorem "can-ab2": ‹y = ιx(A!x & ∀F (x[F] ≡ ϕ{F})) → A!y› (252)8035

proof(rule "→I")8036

AOT_assume ‹y = ιx(A!x & ∀F (x[F] ≡ ϕ{F}))›8037

AOT_hence ‹A(A!y & ∀F (y[F] ≡ ϕ{F}))›8038

using "actual-desc:2"[THEN "→E"] by blast8039

AOT_hence ‹AA!y› by (metis "Act-Basic:2" "&E"(1) "≡E"(1))8040

AOT_thus ‹A!y› by (metis "≡E"(2) "oa-facts:8")8041

qed8042

8043

AOT_act_theorem "desc-encode:1": ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F}› (253.1)8044

proof -8045

AOT_have ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))↓›8046

by (simp add: "A-descriptions")8047

AOT_hence ‹A!ιx(A!x & ∀F (x[F] ≡ ϕ{F})) &8048

∀F(ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F})›8049

using "y-in:3"[THEN "→E"] by blast8050

AOT_thus ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F}›8051

using "&E" "∀E" by blast8052

qed8053

8054

AOT_act_theorem "desc-encode:2": ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[G] ≡ ϕ{G}› (253.2)8055

using "desc-encode:1".8056

8057

AOT_theorem "desc-nec-encode:1": (255.1)8058

‹ιx (A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ Aϕ{F}›8059

proof -8060

AOT_have 0: ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))↓›8061

by (simp add: "A-descriptions")8062

320

A.7. The Deductive System PLM

AOT_hence ‹A(A!ιx(A!x & ∀F (x[F] ≡ ϕ{F})) &8063

∀F(ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F}))›8064

using "actual-desc:4"[THEN "→E"] by blast8065

AOT_hence ‹A∀F (ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F})›8066

using "Act-Basic:2" "&E"(2) "≡E"(1) by blast8067

AOT_hence ‹∀F A(ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F})›8068

using "≡E"(1) "logic-actual-nec:3" "vdash-properties:1[2]" by blast8069

AOT_hence ‹A(ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F})›8070

using "∀E" by blast8071

AOT_hence ‹Aιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ Aϕ{F}›8072

using "Act-Basic:5" "≡E"(1) by blast8073

AOT_thus ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ Aϕ{F}›8074

using "en-eq:10[1]"[unvarify x1, OF 0] "≡E"(6) by blast8075

qed8076

8077

AOT_theorem "desc-nec-encode:2": (255.2)8078

‹ιx (A!x & ∀F (x[F] ≡ ϕ{F}))[G] ≡ Aϕ{G}›8079

using "desc-nec-encode:1".8080

8081

AOT_theorem "Box-desc-encode:1": ‹�ϕ{G} → ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G]› (256.1)8082

by (rule "→I"; rule "desc-nec-encode:2"[THEN "≡E"(2)])8083

(meson "nec-imp-act" "vdash-properties:10")8084

8085

AOT_theorem "Box-desc-encode:2": (256.2)8086

‹�ϕ{G} → �(ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G] ≡ ϕ{G})›8087

proof(rule CP)8088

AOT_assume ‹�ϕ{G}›8089

AOT_hence ‹��ϕ{G}› by (metis "S5Basic:6" "≡E"(1))8090

moreover AOT_have ‹��ϕ{G} → �(ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G] ≡ ϕ{G})›8091

proof (rule RM; rule "→I")8092

AOT_modally_strict {8093

AOT_assume 1: ‹�ϕ{G}›8094

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G]›8095

using "Box-desc-encode:1" "→E" by blast8096

moreover AOT_have ‹ϕ{G}›8097

using 1 by (meson "qml:2"[axiom_inst] "→E")8098

ultimately AOT_show ‹ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G] ≡ ϕ{G}›8099

using "→I" "≡I" by simp8100

}8101

qed8102

ultimately AOT_show ‹�(ιx(A!x & ∀F (x[F] ≡ ϕ{G}))[G] ≡ ϕ{G})›8103

using "→E" by blast8104

qed8105

8106

definition rigid_condition where8107

‹rigid_condition ϕ ≡ ∀v . [v |= ∀α (ϕ{α} → �ϕ{α})]›8108

syntax rigid_condition :: ‹id_position ⇒ AOT_prop› ("RIGID’_CONDITION’(_’)")8109

8110

AOT_theorem "strict-can:1[E]": (257.1)8111

assumes ‹RIGID_CONDITION(ϕ)›8112

shows ‹∀α (ϕ{α} → �ϕ{α})›8113

using assms[unfolded rigid_condition_def] by auto8114

8115

AOT_theorem "strict-can:1[I]": (257.1)8116

assumes ‹`� ∀α (ϕ{α} → �ϕ{α})›8117

shows ‹RIGID_CONDITION(ϕ)›8118

using assms rigid_condition_def by auto8119

8120

AOT_theorem "box-phi-a:1": (258.1)8121

assumes ‹RIGID_CONDITION(ϕ)›8122

shows ‹(A!x & ∀F (x[F] ≡ ϕ{F})) → �(A!x & ∀F (x[F] ≡ ϕ{F}))›8123

proof (rule "→I")8124

AOT_assume a: ‹A!x & ∀F (x[F] ≡ ϕ{F})›8125

321

A. Isabelle Theory

AOT_hence b: ‹�A!x›8126

by (metis "Conjunction Simplification"(1) "oa-facts:2" "→E")8127

AOT_have ‹x[F] ≡ ϕ{F}› for F8128

using a[THEN "&E"(2)] "∀E" by blast8129

moreover AOT_have ‹�(x[F] → �x[F])› for F8130

by (meson "pre-en-eq:1[1]" RN)8131

moreover AOT_have ‹�(ϕ{F} → �ϕ{F})› for F8132

using RN "strict-can:1[E]"[OF assms] "∀E" by blast8133

ultimately AOT_have ‹�(x[F] ≡ ϕ{F})› for F8134

using "sc-eq-box-box:5" "qml:2"[axiom_inst, THEN "→E"] "→E" "&I" by metis8135

AOT_hence ‹∀F �(x[F] ≡ ϕ{F})› by (rule GEN)8136

AOT_hence ‹�∀F (x[F] ≡ ϕ{F})› by (rule BF[THEN "→E"])8137

AOT_thus ‹�([A!]x & ∀F (x[F] ≡ ϕ{F}))›8138

using b "KBasic:3" "≡S"(1) "≡E"(2) by blast8139

qed8140

8141

AOT_theorem "box-phi-a:2": (258.2)8142

assumes ‹RIGID_CONDITION(ϕ)›8143

shows ‹y = ιx(A!x & ∀F (x[F] ≡ ϕ{F})) → (A!y & ∀F (y[F] ≡ ϕ{F}))›8144

proof(rule "→I")8145

AOT_assume ‹y = ιx(A!x & ∀F (x[F] ≡ ϕ{F}))›8146

AOT_hence ‹A(A!y & ∀F (y[F] ≡ ϕ{F}))›8147

using "actual-desc:2"[THEN "→E"] by fast8148

AOT_hence abs: ‹AA!y› and ‹A∀F (y[F] ≡ ϕ{F})›8149

using "Act-Basic:2" "&E" "≡E"(1) by blast+8150

AOT_hence ‹∀F A(y[F] ≡ ϕ{F})›8151

by (metis "≡E"(1) "logic-actual-nec:3" "vdash-properties:1[2]")8152

AOT_hence ‹A(y[F] ≡ ϕ{F})› for F8153

using "∀E" by blast8154

AOT_hence ‹Ay[F] ≡ Aϕ{F}› for F8155

by (metis "Act-Basic:5" "≡E"(1))8156

AOT_hence ‹y[F] ≡ ϕ{F}› for F8157

using "sc-eq-fur:2"[THEN "→E",8158

OF "strict-can:1[E]"[OF assms,8159

THEN "∀E"(2)[where β=F], THEN RN]]8160

by (metis "en-eq:10[1]" "≡E"(6))8161

AOT_hence ‹∀F (y[F] ≡ ϕ{F})› by (rule GEN)8162

AOT_thus ‹[A!]y & ∀F (y[F] ≡ ϕ{F})›8163

using abs "&I" "≡E"(2) "oa-facts:8" by blast8164

qed8165

8166

AOT_theorem "box-phi-a:3": (258.3)8167

assumes ‹RIGID_CONDITION(ϕ)›8168

shows ‹ιx(A!x & ∀F (x[F] ≡ ϕ{F}))[F] ≡ ϕ{F}›8169

using "desc-nec-encode:2"8170

"sc-eq-fur:2"[THEN "→E",8171

OF "strict-can:1[E]"[OF assms,8172

THEN "∀E"(2)[where β=F], THEN RN]]8173

"≡E"(5) by blast8174

8175

AOT_define Null :: ‹τ ⇒ ϕ› ("Null’(_’)")8176

"df-null-uni:1": ‹Null(x) ≡df A!x & ¬∃F x[F]› (260.1)8177

8178

AOT_define Universal :: ‹τ ⇒ ϕ› ("Universal’(_’)")8179

"df-null-uni:2": ‹Universal(x) ≡df A!x & ∀F x[F]› (260.2)8180

8181

AOT_theorem "null-uni-uniq:1": ‹∃!x Null(x)› (261.1)8182

proof (rule "uniqueness:1"[THEN "≡dfI"])8183

AOT_obtain a where a_prop: ‹A!a & ∀F (a[F] ≡ ¬(F = F))›8184

using "A-objects"[axiom_inst] "∃E"[rotated] by fast8185

AOT_have a_null: ‹¬a[F]› for F8186

proof (rule "raa-cor:2")8187

AOT_assume ‹a[F]›8188

322

A.7. The Deductive System PLM

AOT_hence ‹¬(F = F)› using a_prop[THEN "&E"(2)] "∀E" "≡E" by blast8189

AOT_hence ‹F = F & ¬(F = F)› by (metis "id-eq:1" "raa-cor:3")8190

AOT_thus ‹p & ¬p› for p by (metis "raa-cor:1")8191

qed8192

AOT_have ‹Null(a) & ∀β (Null(β) → β = a)›8193

proof (rule "&I")8194

AOT_have ‹¬∃F a[F]›8195

using a_null by (metis "instantiation" "reductio-aa:1")8196

AOT_thus ‹Null(a)›8197

using "df-null-uni:1"[THEN "≡dfI"] a_prop[THEN "&E"(1)] "&I" by metis8198

next8199

AOT_show ‹∀β (Null(β) → β = a)›8200

proof (rule GEN; rule "→I")8201

fix β8202

AOT_assume a: ‹Null(β)›8203

AOT_hence ‹¬∃F β[F]›8204

using "df-null-uni:1"[THEN "≡dfE"] "&E" by blast8205

AOT_hence β_null: ‹¬β[F]› for F8206

by (metis "existential:2[const_var]" "reductio-aa:1")8207

AOT_have ‹∀F (β[F] ≡ a[F])›8208

apply (rule GEN; rule "≡I"; rule CP)8209

using "raa-cor:3" β_null a_null by blast+8210

moreover AOT_have ‹A!β›8211

using a "df-null-uni:1"[THEN "≡dfE"] "&E" by blast8212

ultimately AOT_show ‹β = a›8213

using a_prop[THEN "&E"(1)] "ab-obey:1"[THEN "→E", THEN "→E"]8214

"&I" by blast8215

qed8216

qed8217

AOT_thus ‹∃α (Null(α) & ∀β (Null(β) → β = α))›8218

using "∃I"(2) by fast8219

qed8220

8221

AOT_theorem "null-uni-uniq:2": ‹∃!x Universal(x)› (261.2)8222

proof (rule "uniqueness:1"[THEN "≡dfI"])8223

AOT_obtain a where a_prop: ‹A!a & ∀F (a[F] ≡ F = F)›8224

using "A-objects"[axiom_inst] "∃E"[rotated] by fast8225

AOT_hence aF: ‹a[F]› for F using "&E" "∀E" "≡E" "id-eq:1" by fast8226

AOT_hence ‹Universal(a)›8227

using "df-null-uni:2"[THEN "≡dfI"] "&I" a_prop[THEN "&E"(1)] GEN by blast8228

moreover AOT_have ‹∀β (Universal(β) → β = a)›8229

proof (rule GEN; rule "→I")8230

fix β8231

AOT_assume ‹Universal(β)›8232

AOT_hence abs_β: ‹A!β› and ‹β[F]› for F8233

using "df-null-uni:2"[THEN "≡dfE"] "&E" "∀E" by blast+8234

AOT_hence ‹β[F] ≡ a[F]› for F8235

using aF by (metis "deduction-theorem" "≡I")8236

AOT_hence ‹∀F (β[F] ≡ a[F])› by (rule GEN)8237

AOT_thus ‹β = a›8238

using a_prop[THEN "&E"(1)] "ab-obey:1"[THEN "→E", THEN "→E"]8239

"&I" abs_β by blast8240

qed8241

ultimately AOT_show ‹∃α (Universal(α) & ∀β (Universal(β) → β = α))›8242

using "&I" "∃I" by fast8243

qed8244

8245

AOT_theorem "null-uni-uniq:3": ‹ιx Null(x)↓› (261.3)8246

using "A-Exists:2" "RA[2]" "≡E"(2) "null-uni-uniq:1" by blast8247

8248

AOT_theorem "null-uni-uniq:4": ‹ιx Universal(x)↓› (261.4)8249

using "A-Exists:2" "RA[2]" "≡E"(2) "null-uni-uniq:2" by blast8250

8251

323

A. Isabelle Theory

AOT_define Null_object :: ‹κs› (‹a∅›)8252

"df-null-uni-terms:1": ‹a∅ =df ιx Null(x)› (262.1)8253

8254

AOT_define Universal_object :: ‹κs› (‹aV›)8255

"df-null-uni-terms:2": ‹aV =df ιx Universal(x)› (262.2)8256

8257

AOT_theorem "null-uni-facts:1": ‹Null(x) → �Null(x)› (263.1)8258

proof (rule "→I")8259

AOT_assume ‹Null(x)›8260

AOT_hence x_abs: ‹A!x› and x_null: ‹¬∃F x[F]›8261

using "df-null-uni:1"[THEN "≡dfE"] "&E" by blast+8262

AOT_have ‹¬x[F]› for F using x_null8263

using "existential:2[const_var]" "reductio-aa:1"8264

by metis8265

AOT_hence ‹�¬x[F]› for F by (metis "en-eq:7[1]" "≡E"(1))8266

AOT_hence ‹∀F �¬x[F]› by (rule GEN)8267

AOT_hence ‹�∀F ¬x[F]› by (rule BF[THEN "→E"])8268

moreover AOT_have ‹�∀F ¬x[F] → �¬∃F x[F]›8269

apply (rule RM)8270

by (metis (full_types) "instantiation" "cqt:2[const_var]"[axiom_inst]8271

"→I" "reductio-aa:1" "rule-ui:1")8272

ultimately AOT_have ‹�¬∃F x[F]›8273

by (metis "→E")8274

moreover AOT_have ‹�A!x› using x_abs8275

using "oa-facts:2" "vdash-properties:10" by blast8276

ultimately AOT_have r: ‹�(A!x & ¬∃F x[F])›8277

by (metis "KBasic:3" "&I" "≡E"(3) "raa-cor:3")8278

AOT_show ‹�Null(x)›8279

by (AOT_subst ‹Null(x)› ‹A!x & ¬∃F x[F]›)8280

(auto simp: "df-null-uni:1" "≡Df" r)8281

qed8282

8283

AOT_theorem "null-uni-facts:2": ‹Universal(x) → �Universal(x)› (263.2)8284

proof (rule "→I")8285

AOT_assume ‹Universal(x)›8286

AOT_hence x_abs: ‹A!x› and x_univ: ‹∀F x[F]›8287

using "df-null-uni:2"[THEN "≡dfE"] "&E" by blast+8288

AOT_have ‹x[F]› for F using x_univ "∀E" by blast8289

AOT_hence ‹�x[F]› for F by (metis "en-eq:2[1]" "≡E"(1))8290

AOT_hence ‹∀F �x[F]› by (rule GEN)8291

AOT_hence ‹�∀F x[F]› by (rule BF[THEN "→E"])8292

moreover AOT_have ‹�A!x› using x_abs8293

using "oa-facts:2" "vdash-properties:10" by blast8294

ultimately AOT_have r: ‹�(A!x & ∀F x[F])›8295

by (metis "KBasic:3" "&I" "≡E"(3) "raa-cor:3")8296

AOT_show ‹�Universal(x)›8297

by (AOT_subst ‹Universal(x)› ‹A!x & ∀F x[F]›)8298

(auto simp add: "df-null-uni:2" "≡Df" r)8299

qed8300

8301

AOT_theorem "null-uni-facts:3": ‹Null(a∅)› (263.3)8302

apply (rule "=dfI"(2)[OF "df-null-uni-terms:1"])8303

apply (simp add: "null-uni-uniq:3")8304

using "actual-desc:4"[THEN "→E", OF "null-uni-uniq:3"]8305

"sc-eq-fur:2"[THEN "→E",8306

OF "null-uni-facts:1"[unvarify x, THEN RN, OF "null-uni-uniq:3"],8307

THEN "≡E"(1)]8308

by blast8309

8310

AOT_theorem "null-uni-facts:4": ‹Universal(aV)› (263.4)8311

apply (rule "=dfI"(2)[OF "df-null-uni-terms:2"])8312

apply (simp add: "null-uni-uniq:4")8313

using "actual-desc:4"[THEN "→E", OF "null-uni-uniq:4"]8314

324

A.7. The Deductive System PLM

"sc-eq-fur:2"[THEN "→E",8315

OF "null-uni-facts:2"[unvarify x, THEN RN, OF "null-uni-uniq:4"],8316

THEN "≡E"(1)]8317

by blast8318

8319

AOT_theorem "null-uni-facts:5": ‹a∅ 6= aV› (263.5)8320

proof (rule "=dfI"(2)[OF "df-null-uni-terms:1", OF "null-uni-uniq:3"];8321

rule "=dfI"(2)[OF "df-null-uni-terms:2", OF "null-uni-uniq:4"];8322

rule "≡dfI"[OF "=-infix"];8323

rule "raa-cor:2")8324

AOT_obtain x where nullx: ‹Null(x)›8325

by (metis "instantiation" "df-null-uni-terms:1" "existential:1"8326

"null-uni-facts:3" "null-uni-uniq:3" "rule-id-df:2:b[zero]")8327

AOT_hence act_null: ‹ANull(x)›8328

by (metis "nec-imp-act" "null-uni-facts:1" "→E")8329

AOT_assume ‹ιx Null(x) = ιx Universal(x)›8330

AOT_hence ‹A∀x(Null(x) ≡ Universal(x))›8331

using "actual-desc:5"[THEN "→E"] by blast8332

AOT_hence ‹∀x A(Null(x) ≡ Universal(x))›8333

by (metis "≡E"(1) "logic-actual-nec:3" "vdash-properties:1[2]")8334

AOT_hence ‹ANull(x) ≡ AUniversal(x)›8335

using "Act-Basic:5" "≡E"(1) "rule-ui:3" by blast8336

AOT_hence ‹AUniversal(x)› using act_null "≡E" by blast8337

AOT_hence ‹Universal(x)›8338

by (metis RN "≡E"(1) "null-uni-facts:2" "sc-eq-fur:2" "→E")8339

AOT_hence ‹∀F x[F]› using "≡dfE"[OF "df-null-uni:2"] "&E" by metis8340

moreover AOT_have ‹¬∃F x[F]›8341

using nullx "≡dfE"[OF "df-null-uni:1"] "&E" by metis8342

ultimately AOT_show ‹p & ¬p› for p8343

by (metis "cqt-further:1" "raa-cor:3" "→E")8344

qed8345

8346

AOT_theorem "null-uni-facts:6": ‹a∅ = ιx(A!x & ∀F (x[F] ≡ F 6= F))› (263.6)8347

proof (rule "ab-obey:1"[unvarify x y, THEN "→E", THEN "→E"])8348

AOT_show ‹ιx([A!]x & ∀F (x[F] ≡ F 6= F))↓›8349

by (simp add: "A-descriptions")8350

next8351

AOT_show ‹a∅↓›8352

by (rule "=dfI"(2)[OF "df-null-uni-terms:1", OF "null-uni-uniq:3"])8353

(simp add: "null-uni-uniq:3")8354

next8355

AOT_have ‹ιx([A!]x & ∀F (x[F] ≡ F 6= F))↓›8356

by (simp add: "A-descriptions")8357

AOT_hence 1: ‹ιx([A!]x & ∀F (x[F] ≡ F 6= F)) = ιx([A!]x & ∀F (x[F] ≡ F 6= F))›8358

using "rule=I:1" by blast8359

AOT_show ‹[A!]a∅ & [A!]ιx([A!]x & ∀F (x[F] ≡ F 6= F))›8360

apply (rule "=dfI"(2)[OF "df-null-uni-terms:1", OF "null-uni-uniq:3"];8361

rule "&I")8362

apply (meson "≡dfE" "Conjunction Simplification"(1)8363

"df-null-uni:1" "df-null-uni-terms:1" "null-uni-facts:3"8364

"null-uni-uniq:3" "rule-id-df:2:a[zero]" "→E")8365

using "can-ab2"[unvarify y, OF "A-descriptions", THEN "→E", OF 1].8366

next8367

AOT_show ‹∀F (a∅[F] ≡ ιx([A!]x & ∀F (x[F] ≡ F 6= F))[F])›8368

proof (rule GEN)8369

fix F8370

AOT_have ‹¬a∅[F]›8371

by (rule "=dfI"(2)[OF "df-null-uni-terms:1", OF "null-uni-uniq:3"])8372

(metis (no_types, lifting) "≡dfE" "&E"(2) "∨I"(2) "∨E"(3) "∃I"(2)8373

"df-null-uni:1" "df-null-uni-terms:1" "null-uni-facts:3"8374

"raa-cor:2" "rule-id-df:2:a[zero]"8375

"russell-axiom[enc,1].ψ_denotes_asm")8376

moreover AOT_have ‹¬ιx([A!]x & ∀F (x[F] ≡ F 6= F))[F]›8377

325

A. Isabelle Theory

proof(rule "raa-cor:2")8378

AOT_assume 0: ‹ιx([A!]x & ∀F (x[F] ≡ F 6= F))[F]›8379

AOT_hence ‹A(F 6= F)›8380

using "desc-nec-encode:2"[THEN "≡E"(1), OF 0] by blast8381

moreover AOT_have ‹¬A(F 6= F)›8382

using "≡dfE" "id-act:2" "id-eq:1" "≡E"(2)8383

"=-infix" "raa-cor:3" by blast8384

ultimately AOT_show ‹A(F 6= F) & ¬A(F 6= F)› by (rule "&I")8385

qed8386

ultimately AOT_show ‹a∅[F] ≡ ιx([A!]x & ∀F (x[F] ≡ F 6= F))[F]›8387

using "deduction-theorem" "≡I" "raa-cor:4" by blast8388

qed8389

qed8390

8391

AOT_theorem "null-uni-facts:7": ‹aV = ιx(A!x & ∀F (x[F] ≡ F = F))› (263.7)8392

proof (rule "ab-obey:1"[unvarify x y, THEN "→E", THEN "→E"])8393

AOT_show ‹ιx([A!]x & ∀F (x[F] ≡ F = F))↓›8394

by (simp add: "A-descriptions")8395

next8396

AOT_show ‹aV↓›8397

by (rule "=dfI"(2)[OF "df-null-uni-terms:2", OF "null-uni-uniq:4"])8398

(simp add: "null-uni-uniq:4")8399

next8400

AOT_have ‹ιx([A!]x & ∀F (x[F] ≡ F = F))↓›8401

by (simp add: "A-descriptions")8402

AOT_hence 1: ‹ιx([A!]x & ∀F (x[F] ≡ F = F)) = ιx([A!]x & ∀F (x[F] ≡ F = F))›8403

using "rule=I:1" by blast8404

AOT_show ‹[A!]aV & [A!]ιx([A!]x & ∀F (x[F] ≡ F = F))›8405

apply (rule "=dfI"(2)[OF "df-null-uni-terms:2", OF "null-uni-uniq:4"];8406

rule "&I")8407

apply (meson "≡dfE" "Conjunction Simplification"(1) "df-null-uni:2"8408

"df-null-uni-terms:2" "null-uni-facts:4" "null-uni-uniq:4"8409

"rule-id-df:2:a[zero]" "→E")8410

using "can-ab2"[unvarify y, OF "A-descriptions", THEN "→E", OF 1].8411

next8412

AOT_show ‹∀F (aV[F] ≡ ιx([A!]x & ∀F (x[F] ≡ F = F))[F])›8413

proof (rule GEN)8414

fix F8415

AOT_have ‹aV[F]›8416

apply (rule "=dfI"(2)[OF "df-null-uni-terms:2", OF "null-uni-uniq:4"])8417

using "≡dfE" "&E"(2) "df-null-uni:2" "df-null-uni-terms:2"8418

"null-uni-facts:4" "null-uni-uniq:4" "rule-id-df:2:a[zero]"8419

"rule-ui:3" by blast8420

moreover AOT_have ‹ιx([A!]x & ∀F (x[F] ≡ F = F))[F]›8421

using "RA[2]" "desc-nec-encode:2" "id-eq:1" "≡E"(2) by fastforce8422

ultimately AOT_show ‹aV[F] ≡ ιx([A!]x & ∀F (x[F] ≡ F = F))[F]›8423

using "deduction-theorem" "≡I" by simp8424

qed8425

qed8426

8427

AOT_theorem "aclassical:1": (265.1)8428

‹∀R∃x∃y(A!x & A!y & x 6= y & [λz [R]zx] = [λz [R]zy])›8429

proof(rule GEN)8430

fix R8431

AOT_obtain a where a_prop:8432

‹A!a & ∀F (a[F] ≡ ∃y(A!y & F = [λz [R]zy] & ¬y[F]))›8433

using "A-objects"[axiom_inst] "∃E"[rotated] by fast8434

AOT_have a_enc: ‹a[λz [R]za]›8435

proof (rule "raa-cor:1")8436

AOT_assume 0: ‹¬a[λz [R]za]›8437

AOT_hence ‹¬∃y(A!y & [λz [R]za] = [λz [R]zy] & ¬y[λz [R]za])›8438

by (rule a_prop[THEN "&E"(2), THEN "∀E"(1)[where τ="«[λz [R]za]»"],8439

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],8440

326

A.7. The Deductive System PLM

THEN "≡E"(1), rotated])8441

"cqt:2[lambda]"8442

AOT_hence ‹∀y ¬(A!y & [λz [R]za] = [λz [R]zy] & ¬y[λz [R]za])›8443

using "cqt-further:4" "vdash-properties:10" by blast8444

AOT_hence ‹¬(A!a & [λz [R]za] = [λz [R]za] & ¬a[λz [R]za])›8445

using "∀E" by blast8446

AOT_hence ‹(A!a & [λz [R]za] = [λz [R]za]) → a[λz [R]za]›8447

by (metis "&I" "deduction-theorem" "raa-cor:3")8448

moreover AOT_have ‹[λz [R]za] = [λz [R]za]›8449

by (rule "=I") "cqt:2[lambda]"8450

ultimately AOT_have ‹a[λz [R]za]›8451

using a_prop[THEN "&E"(1)] "→E" "&I" by blast8452

AOT_thus ‹a[λz [R]za] & ¬a[λz [R]za]›8453

using 0 "&I" by blast8454

qed8455

AOT_hence ‹∃y(A!y & [λz [R]za] = [λz [R]zy] & ¬y[λz [R]za])›8456

by (rule a_prop[THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(1), rotated])8457

"cqt:2"8458

then AOT_obtain b where b_prop:8459

‹A!b & [λz [R]za] = [λz [R]zb] & ¬b[λz [R]za]›8460

using "∃E"[rotated] by blast8461

AOT_have ‹a 6= b›8462

apply (rule "≡dfI"[OF "=-infix"])8463

using a_enc b_prop[THEN "&E"(2)]8464

using "¬¬I" "rule=E" id_sym "≡E"(4) "oth-class-taut:3:a"8465

"raa-cor:3" "reductio-aa:1" by fast8466

AOT_hence ‹A!a & A!b & a 6= b & [λz [R]za] = [λz [R]zb]›8467

using b_prop "&E" a_prop "&I" by meson8468

AOT_hence ‹∃y (A!a & A!y & a 6= y & [λz [R]za] = [λz [R]zy])› by (rule "∃I")8469

AOT_thus ‹∃x∃y (A!x & A!y & x 6= y & [λz [R]zx] = [λz [R]zy])› by (rule "∃I")8470

qed8471

8472

AOT_theorem "aclassical:2": (265.2)8473

‹∀R∃x∃y(A!x & A!y & x 6= y & [λz [R]xz] = [λz [R]yz])›8474

proof(rule GEN)8475

fix R8476

AOT_obtain a where a_prop:8477

‹A!a & ∀F (a[F] ≡ ∃y(A!y & F = [λz [R]yz] & ¬y[F]))›8478

using "A-objects"[axiom_inst] "∃E"[rotated] by fast8479

AOT_have a_enc: ‹a[λz [R]az]›8480

proof (rule "raa-cor:1")8481

AOT_assume 0: ‹¬a[λz [R]az]›8482

AOT_hence ‹¬∃y(A!y & [λz [R]az] = [λz [R]yz] & ¬y[λz [R]az])›8483

by (rule a_prop[THEN "&E"(2), THEN "∀E"(1)[where τ="«[λz [R]az]»"],8484

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],8485

THEN "≡E"(1), rotated])8486

"cqt:2[lambda]"8487

AOT_hence ‹∀y ¬(A!y & [λz [R]az] = [λz [R]yz] & ¬y[λz [R]az])›8488

using "cqt-further:4" "vdash-properties:10" by blast8489

AOT_hence ‹¬(A!a & [λz [R]az] = [λz [R]az] & ¬a[λz [R]az])›8490

using "∀E" by blast8491

AOT_hence ‹(A!a & [λz [R]az] = [λz [R]az]) → a[λz [R]az]›8492

by (metis "&I" "deduction-theorem" "raa-cor:3")8493

moreover AOT_have ‹[λz [R]az] = [λz [R]az]›8494

by (rule "=I") "cqt:2[lambda]"8495

ultimately AOT_have ‹a[λz [R]az]›8496

using a_prop[THEN "&E"(1)] "→E" "&I" by blast8497

AOT_thus ‹a[λz [R]az] & ¬a[λz [R]az]›8498

using 0 "&I" by blast8499

qed8500

AOT_hence ‹∃y(A!y & [λz [R]az] = [λz [R]yz] & ¬y[λz [R]az])›8501

by (rule a_prop[THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(1), rotated])8502

"cqt:2"8503

327

A. Isabelle Theory

then AOT_obtain b where b_prop:8504

‹A!b & [λz [R]az] = [λz [R]bz] & ¬b[λz [R]az]›8505

using "∃E"[rotated] by blast8506

AOT_have ‹a 6= b›8507

apply (rule "≡dfI"[OF "=-infix"])8508

using a_enc b_prop[THEN "&E"(2)]8509

using "¬¬I" "rule=E" id_sym "≡E"(4) "oth-class-taut:3:a"8510

"raa-cor:3" "reductio-aa:1" by fast8511

AOT_hence ‹A!a & A!b & a 6= b & [λz [R]az] = [λz [R]bz]›8512

using b_prop "&E" a_prop "&I" by meson8513

AOT_hence ‹∃y (A!a & A!y & a 6= y & [λz [R]az] = [λz [R]yz])› by (rule "∃I")8514

AOT_thus ‹∃x∃y (A!x & A!y & x 6= y & [λz [R]xz] = [λz [R]yz])› by (rule "∃I")8515

qed8516

8517

AOT_theorem "aclassical:3": (265.3)8518

‹∀F∃x∃y(A!x & A!y & x 6= y & [λ [F]x] = [λ [F]y])›8519

proof(rule GEN)8520

fix R8521

AOT_obtain a where a_prop:8522

‹A!a & ∀F (a[F] ≡ ∃y(A!y & F = [λz [R]y] & ¬y[F]))›8523

using "A-objects"[axiom_inst] "∃E"[rotated] by fast8524

AOT_have den: ‹[λz [R]a]↓› by "cqt:2[lambda]"8525

AOT_have a_enc: ‹a[λz [R]a]›8526

proof (rule "raa-cor:1")8527

AOT_assume 0: ‹¬a[λz [R]a]›8528

AOT_hence ‹¬∃y(A!y & [λz [R]a] = [λz [R]y] & ¬y[λz [R]a])›8529

by (safe intro!: a_prop[THEN "&E"(2), THEN "∀E"(1)[where τ=‹«[λz [R]a]»›],8530

THEN "oth-class-taut:4:b"[THEN "≡E"(1)],8531

THEN "≡E"(1), rotated] "cqt:2")8532

AOT_hence ‹∀y ¬(A!y & [λz [R]a] = [λz [R]y] & ¬y[λz [R]a])›8533

using "cqt-further:4" "→E" by blast8534

AOT_hence ‹¬(A!a & [λz [R]a] = [λz [R]a] & ¬a[λz [R]a])› using "∀E" by blast8535

AOT_hence ‹(A!a & [λz [R]a] = [λz [R]a]) → a[λz [R]a]›8536

by (metis "&I" "deduction-theorem" "raa-cor:3")8537

AOT_hence ‹a[λz [R]a]›8538

using a_prop[THEN "&E"(1)] "→E" "&I"8539

by (metis "rule=I:1" den)8540

AOT_thus ‹a[λz [R]a] & ¬a[λz [R]a]› by (metis "0" "raa-cor:3")8541

qed8542

AOT_hence ‹∃y(A!y & [λz [R]a] = [λz [R]y] & ¬y[λz [R]a])›8543

by (rule a_prop[THEN "&E"(2), THEN "∀E"(1), OF den, THEN "≡E"(1), rotated])8544

then AOT_obtain b where b_prop: ‹A!b & [λz [R]a] = [λz [R]b] & ¬b[λz [R]a]›8545

using "∃E"[rotated] by blast8546

AOT_have 1: ‹a 6= b›8547

apply (rule "≡dfI"[OF "=-infix"])8548

using a_enc b_prop[THEN "&E"(2)]8549

using "¬¬I" "rule=E" id_sym "≡E"(4) "oth-class-taut:3:a"8550

"raa-cor:3" "reductio-aa:1" by fast8551

AOT_have a: ‹[λ [R]a] = ([R]a)›8552

apply (rule "lambda-predicates:3[zero]"[axiom_inst, unvarify p])8553

by (meson "log-prop-prop:2")8554

AOT_have b: ‹[λ [R]b] = ([R]b)›8555

apply (rule "lambda-predicates:3[zero]"[axiom_inst, unvarify p])8556

by (meson "log-prop-prop:2")8557

AOT_have ‹[λ [R]a] = [λ [R]b]›8558

apply (rule "rule=E"[rotated, OF a[THEN id_sym]])8559

apply (rule "rule=E"[rotated, OF b[THEN id_sym]])8560

apply (rule "identity:4"[THEN "≡dfI", OF "&I", rotated])8561

using b_prop "&E" apply blast8562

apply (safe intro!: "&I")8563

by (simp add: "log-prop-prop:2")+8564

AOT_hence ‹A!a & A!b & a 6= b & [λ [R]a] = [λ [R]b]›8565

using 1 a_prop[THEN "&E"(1)] b_prop[THEN "&E"(1), THEN "&E"(1)]8566

328

A.7. The Deductive System PLM

"&I" by auto8567

AOT_hence ‹∃y (A!a & A!y & a 6= y & [λ [R]a] = [λ [R]y])› by (rule "∃I")8568

AOT_thus ‹∃x∃y (A!x & A!y & x 6= y & [λ [R]x] = [λ [R]y])› by (rule "∃I")8569

qed8570

8571

AOT_theorem aclassical2: ‹∃x∃y (A!x & A!y & x 6= y & ∀F ([F]x ≡ [F]y))› (266)8572

proof -8573

AOT_have ‹∃x ∃y ([A!]x & [A!]y & x 6= y &8574

[λz [λxy ∀F ([F]x ≡ [F]y)]zx] =8575

[λz [λxy ∀F ([F]x ≡ [F]y)]zy])›8576

by (rule "aclassical:1"[THEN "∀E"(1)[where τ="«[λxy ∀F ([F]x ≡ [F]y)]»"]])8577

"cqt:2"8578

then AOT_obtain x where ‹∃y ([A!]x & [A!]y & x 6= y &8579

[λz [λxy ∀F ([F]x ≡ [F]y)]zx] =8580

[λz [λxy ∀F ([F]x ≡ [F]y)]zy])›8581

using "∃E"[rotated] by blast8582

then AOT_obtain y where 0: ‹([A!]x & [A!]y & x 6= y &8583

[λz [λxy ∀F ([F]x ≡ [F]y)]zx] =8584

[λz [λxy ∀F ([F]x ≡ [F]y)]zy])›8585

using "∃E"[rotated] by blast8586

AOT_have ‹[λz [λxy ∀F ([F]x ≡ [F]y)]zx]x›8587

by (auto intro!: "β←C"(1) "cqt:2";8588

simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3"8589

"oth-class-taut:3:a" "universal-cor")8590

AOT_hence ‹[λz [λxy ∀F ([F]x ≡ [F]y)]zy]x›8591

by (rule "rule=E"[rotated, OF 0[THEN "&E"(2)]])8592

AOT_hence ‹[λxy ∀F ([F]x ≡ [F]y)]xy›8593

by (rule "β→C"(1))8594

AOT_hence ‹∀F ([F]x ≡ [F]y)›8595

using "β→C"(1) old.prod.case by fast8596

AOT_hence ‹[A!]x & [A!]y & x 6= y & ∀F ([F]x ≡ [F]y)›8597

using 0 "&E" "&I" by blast8598

AOT_hence ‹∃y ([A!]x & [A!]y & x 6= y & ∀F ([F]x ≡ [F]y))› by (rule "∃I")8599

AOT_thus ‹∃x∃y ([A!]x & [A!]y & x 6= y & ∀F ([F]x ≡ [F]y))› by (rule "∃I"(2))8600

qed8601

8602

AOT_theorem "kirchner-thm:1": (268.1)8603

‹[λx ϕ{x}]↓ ≡ �∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8604

proof(rule "≡I"; rule "→I")8605

AOT_assume ‹[λx ϕ{x}]↓›8606

AOT_hence ‹�[λx ϕ{x}]↓› by (metis "exist-nec" "vdash-properties:10")8607

moreover AOT_have ‹�[λx ϕ{x}]↓ → �∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8608

proof (rule "RM:1"; rule "→I"; rule GEN; rule GEN; rule "→I")8609

AOT_modally_strict {8610

fix x y8611

AOT_assume 0: ‹[λx ϕ{x}]↓›8612

moreover AOT_assume ‹∀F([F]x ≡ [F]y)›8613

ultimately AOT_have ‹[λx ϕ{x}]x ≡ [λx ϕ{x}]y›8614

using "∀E" by blast8615

AOT_thus ‹(ϕ{x} ≡ ϕ{y})›8616

using "beta-C-meta"[THEN "→E", OF 0] "≡E"(6) by meson8617

}8618

qed8619

ultimately AOT_show ‹�∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8620

using "→E" by blast8621

next8622

AOT_have ‹�∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y})) →8623

�∀y(∃x(∀F([F]x ≡ [F]y) & ϕ{x}) ≡ ϕ{y})›8624

proof(rule "RM:1"; rule "→I"; rule GEN)8625

AOT_modally_strict {8626

AOT_assume ‹∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8627

AOT_hence indisc: ‹ϕ{x} ≡ ϕ{y}› if ‹∀F([F]x ≡ [F]y)› for x y8628

using "∀E"(2) "→E" that by blast8629

329

A. Isabelle Theory

AOT_show ‹(∃x(∀F([F]x ≡ [F]y) & ϕ{x}) ≡ ϕ{y})› for y8630

proof (rule "raa-cor:1")8631

AOT_assume ‹¬(∃x(∀F([F]x ≡ [F]y) & ϕ{x}) ≡ ϕ{y})›8632

AOT_hence ‹(∃x(∀F([F]x ≡ [F]y) & ϕ{x}) & ¬ϕ{y}) ∨8633

(¬(∃x(∀F([F]x ≡ [F]y) & ϕ{x})) & ϕ{y})›8634

using "≡E"(1) "oth-class-taut:4:h" by blast8635

moreover {8636

AOT_assume 0: ‹∃x(∀F([F]x ≡ [F]y) & ϕ{x}) & ¬ϕ{y}›8637

AOT_obtain a where ‹∀F([F]a ≡ [F]y) & ϕ{a}›8638

using "∃E"[rotated, OF 0[THEN "&E"(1)]] by blast8639

AOT_hence ‹ϕ{y}›8640

using indisc[THEN "≡E"(1)] "&E" by blast8641

AOT_hence ‹p & ¬p› for p8642

using 0[THEN "&E"(2)] "&I" "raa-cor:3" by blast8643

}8644

moreover {8645

AOT_assume 0: ‹(¬(∃x(∀F([F]x ≡ [F]y) & ϕ{x})) & ϕ{y})›8646

AOT_hence ‹∀x ¬(∀F([F]x ≡ [F]y) & ϕ{x})›8647

using "&E"(1) "cqt-further:4" "→E" by blast8648

AOT_hence ‹¬(∀F([F]y ≡ [F]y) & ϕ{y})›8649

using "∀E" by blast8650

AOT_hence ‹¬∀F([F]y ≡ [F]y) ∨ ¬ϕ{y}›8651

using "≡E"(1) "oth-class-taut:5:c" by blast8652

moreover AOT_have ‹∀F([F]y ≡ [F]y)›8653

by (simp add: "oth-class-taut:3:a" "universal-cor")8654

ultimately AOT_have ‹¬ϕ{y}› by (metis "¬¬I" "∨E"(2))8655

AOT_hence ‹p & ¬p› for p8656

using 0[THEN "&E"(2)] "&I" "raa-cor:3" by blast8657

}8658

ultimately AOT_show ‹p & ¬p› for p8659

using "∨E"(3) "raa-cor:1" by blast8660

qed8661

}8662

qed8663

moreover AOT_assume ‹�∀x∀y(∀F([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8664

ultimately AOT_have ‹�∀y(∃x(∀F([F]x ≡ [F]y) & ϕ{x}) ≡ ϕ{y})›8665

using "→E" by blast8666

AOT_thus ‹[λx ϕ{x}]↓›8667

by (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I", rotated]) "cqt:2"8668

qed8669

8670

AOT_theorem "kirchner-thm:2": (268.2)8671

‹[λx1...xn ϕ{x1...xn}]↓ ≡ �∀x1...∀xn∀y1...∀yn8672

(∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8673

proof(rule "≡I"; rule "→I")8674

AOT_assume ‹[λx1...xn ϕ{x1...xn}]↓›8675

AOT_hence ‹�[λx1...xn ϕ{x1...xn}]↓› by (metis "exist-nec" "→E")8676

moreover AOT_have ‹�[λx1...xn ϕ{x1...xn}]↓ → �∀x1...∀xn∀y1...∀yn8677

(∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8678

proof (rule "RM:1"; rule "→I"; rule GEN; rule GEN; rule "→I")8679

AOT_modally_strict {8680

fix x1xn y1yn :: ‹’a AOT_var›8681

AOT_assume 0: ‹[λx1...xn ϕ{x1...xn}]↓›8682

moreover AOT_assume ‹∀F([F]x1...xn ≡ [F]y1...yn)›8683

ultimately AOT_have ‹[λx1...xn ϕ{x1...xn}]x1...xn ≡8684

[λx1...xn ϕ{x1...xn}]y1...yn›8685

using "∀E" by blast8686

AOT_thus ‹(ϕ{x1...xn} ≡ ϕ{y1...yn})›8687

using "beta-C-meta"[THEN "→E", OF 0] "≡E"(6) by meson8688

}8689

qed8690

ultimately AOT_show ‹�∀x1...∀xn∀y1...∀yn(8691

∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn})8692

330

A.7. The Deductive System PLM

)›8693

using "→E" by blast8694

next8695

AOT_have ‹8696

�(∀x1...∀xn∀y1...∀yn8697

(∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn})))8698

→ �∀y1...∀yn8699

((∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn})) ≡8700

ϕ{y1...yn})›8701

proof(rule "RM:1"; rule "→I"; rule GEN)8702

AOT_modally_strict {8703

AOT_assume ‹∀x1...∀xn∀y1...∀yn8704

(∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8705

AOT_hence indisc: ‹ϕ{x1...xn} ≡ ϕ{y1...yn}›8706

if ‹∀F([F]x1...xn ≡ [F]y1...yn)› for x1xn y1yn8707

using "∀E"(2) "→E" that by blast8708

AOT_show ‹(∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn})) ≡8709

ϕ{y1...yn}› for y1yn8710

proof (rule "raa-cor:1")8711

AOT_assume ‹¬((∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn})) ≡8712

ϕ{y1...yn})›8713

AOT_hence ‹((∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn)8714

& ϕ{x1...xn}))8715

& ¬ϕ{y1...yn}) ∨8716

(¬(∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn}))8717

& ϕ{y1...yn})›8718

using "≡E"(1) "oth-class-taut:4:h" by blast8719

moreover {8720

AOT_assume 0: ‹(∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn}))8721

& ¬ϕ{y1...yn}›8722

AOT_obtain a1an where ‹∀F([F]a1...an ≡ [F]y1...yn) & ϕ{a1...an}›8723

using "∃E"[rotated, OF 0[THEN "&E"(1)]] by blast8724

AOT_hence ‹ϕ{y1...yn}›8725

using indisc[THEN "≡E"(1)] "&E" by blast8726

AOT_hence ‹p & ¬p› for p8727

using 0[THEN "&E"(2)] "&I" "raa-cor:3" by blast8728

}8729

moreover {8730

AOT_assume 0: ‹¬(∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn}))8731

& ϕ{y1...yn}›8732

AOT_hence ‹∀x1...∀xn ¬(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn})›8733

using "&E"(1) "cqt-further:4" "→E" by blast8734

AOT_hence ‹¬(∀F([F]y1...yn ≡ [F]y1...yn) & ϕ{y1...yn})›8735

using "∀E" by blast8736

AOT_hence ‹¬∀F([F]y1...yn ≡ [F]y1...yn) ∨ ¬ϕ{y1...yn}›8737

using "≡E"(1) "oth-class-taut:5:c" by blast8738

moreover AOT_have ‹∀F([F]y1...yn ≡ [F]y1...yn)›8739

by (simp add: "oth-class-taut:3:a" "universal-cor")8740

ultimately AOT_have ‹¬ϕ{y1...yn}›8741

by (metis "¬¬I" "∨E"(2))8742

AOT_hence ‹p & ¬p› for p8743

using 0[THEN "&E"(2)] "&I" "raa-cor:3" by blast8744

}8745

ultimately AOT_show ‹p & ¬p› for p8746

using "∨E"(3) "raa-cor:1" by blast8747

qed8748

}8749

qed8750

moreover AOT_assume ‹�∀x1...∀xn∀y1...∀yn8751

(∀F([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8752

ultimately AOT_have ‹�∀y1...∀yn8753

((∃x1...∃xn(∀F([F]x1...xn ≡ [F]y1...yn) & ϕ{x1...xn})) ≡8754

ϕ{y1...yn})›8755

331

A. Isabelle Theory

using "→E" by blast8756

AOT_thus ‹[λx1...xn ϕ{x1...xn}]↓›8757

by (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I", rotated]) "cqt:2"8758

qed8759

8760

AOT_theorem "kirchner-thm-cor:1": (269.1)8761

‹[λx ϕ{x}]↓ → ∀x∀y(∀F([F]x ≡ [F]y) → �(ϕ{x} ≡ ϕ{y}))›8762

proof(rule "→I"; rule GEN; rule GEN; rule "→I")8763

fix x y8764

AOT_assume ‹[λx ϕ{x}]↓›8765

AOT_hence ‹�∀x∀y (∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8766

by (rule "kirchner-thm:1"[THEN "≡E"(1)])8767

AOT_hence ‹∀x�∀y (∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8768

using CBF[THEN "→E"] by blast8769

AOT_hence ‹�∀y (∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8770

using "∀E" by blast8771

AOT_hence ‹∀y �(∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8772

using CBF[THEN "→E"] by blast8773

AOT_hence ‹�(∀F ([F]x ≡ [F]y) → (ϕ{x} ≡ ϕ{y}))›8774

using "∀E" by blast8775

AOT_hence ‹�∀F ([F]x ≡ [F]y) → �(ϕ{x} ≡ ϕ{y})›8776

using "qml:1"[axiom_inst] "vdash-properties:6" by blast8777

moreover AOT_assume ‹∀F([F]x ≡ [F]y)›8778

ultimately AOT_show ‹�(ϕ{x} ≡ ϕ{y})› using "→E" "ind-nec" by blast8779

qed8780

8781

AOT_theorem "kirchner-thm-cor:2": (269.2)8782

‹[λx1...xn ϕ{x1...xn}]↓ → ∀x1...∀xn∀y1...∀yn8783

(∀F([F]x1...xn ≡ [F]y1...yn) → �(ϕ{x1...xn} ≡ ϕ{y1...yn}))›8784

proof(rule "→I"; rule GEN; rule GEN; rule "→I")8785

fix x1xn y1yn8786

AOT_assume ‹[λx1...xn ϕ{x1...xn}]↓›8787

AOT_hence 0: ‹�∀x1...∀xn∀y1...∀yn8788

(∀F ([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8789

by (rule "kirchner-thm:2"[THEN "≡E"(1)])8790

AOT_have ‹∀x1...∀xn∀y1...∀yn8791

�(∀F ([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8792

proof(rule GEN; rule GEN)8793

fix x1xn y1yn8794

AOT_show ‹�(∀F ([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8795

apply (rule "RM:1"[THEN "→E", rotated, OF 0]; rule "→I")8796

using "∀E" by blast8797

qed8798

AOT_hence ‹∀y1...∀yn �(∀F ([F]x1...xn ≡ [F]y1...yn) →8799

(ϕ{x1...xn} ≡ ϕ{y1...yn}))›8800

using "∀E" by blast8801

AOT_hence ‹�(∀F ([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8802

using "∀E" by blast8803

AOT_hence ‹�(∀F ([F]x1...xn ≡ [F]y1...yn) → (ϕ{x1...xn} ≡ ϕ{y1...yn}))›8804

using "∀E" by blast8805

AOT_hence 0: ‹�∀F ([F]x1...xn ≡ [F]y1...yn) → �(ϕ{x1...xn} ≡ ϕ{y1...yn})›8806

using "qml:1"[axiom_inst] "vdash-properties:6" by blast8807

moreover AOT_assume ‹∀F([F]x1...xn ≡ [F]y1...yn)›8808

moreover AOT_have ‹[λx1...xn �∀F ([F]x1...xn ≡ [F]y1...yn)]↓› by "cqt:2"8809

ultimately AOT_have ‹[λx1...xn �∀F ([F]x1...xn ≡ [F]y1...yn)]x1...xn ≡8810

[λx1...xn �∀F ([F]x1...xn ≡ [F]y1...yn)]y1...yn›8811

using "∀E" by blast8812

moreover AOT_have ‹[λx1...xn �∀F ([F]x1...xn ≡ [F]y1...yn)]y1...yn›8813

apply (rule "β←C"(1))8814

apply "cqt:2[lambda]"8815

apply (fact "cqt:2[const_var]"[axiom_inst])8816

by (simp add: RN GEN "oth-class-taut:3:a")8817

ultimately AOT_have ‹[λx1...xn �∀F ([F]x1...xn ≡ [F]y1...yn)]x1...xn›8818

332

A.7. The Deductive System PLM

using "≡E"(2) by blast8819

AOT_hence ‹�∀F ([F]x1...xn ≡ [F]y1...yn)›8820

using "β→C"(1) by blast8821

AOT_thus ‹�(ϕ{x1...xn} ≡ ϕ{y1...yn})› using "→E" 0 by blast8822

qed8823

8824

subsection‹Propositional Properties›8825

text‹\label{PLM: 9.12}›8826

8827

AOT_define propositional :: ‹Π ⇒ ϕ› (‹Propositional’(_’)›)8828

"prop-prop1": ‹Propositional([F]) ≡df ∃p(F = [λy p])› (270)8829

8830

AOT_theorem "prop-prop2:1": ‹∀p [λy p]↓› (271.1)8831

by (rule GEN) "cqt:2[lambda]"8832

8833

AOT_theorem "prop-prop2:2": ‹[λν ϕ]↓› (271.2)8834

by "cqt:2[lambda]"8835

8836

AOT_theorem "prop-prop2:3": ‹F = [λy p] → �∀x([F]x ≡ p)› (271.3)8837

proof (rule "→I")8838

AOT_assume 0: ‹F = [λy p]›8839

AOT_show ‹�∀x([F]x ≡ p)›8840

by (rule "rule=E"[rotated, OF 0[symmetric]];8841

rule RN; rule GEN; rule "beta-C-meta"[THEN "→E"])8842

"cqt:2[lambda]"8843

qed8844

8845

AOT_theorem "prop-prop2:4": ‹Propositional([F]) → �Propositional([F])› (271.4)8846

proof(rule "→I")8847

AOT_assume ‹Propositional([F])›8848

AOT_hence ‹∃p(F = [λy p])›8849

using "≡dfE"[OF "prop-prop1"] by blast8850

then AOT_obtain p where ‹F = [λy p]›8851

using "∃E"[rotated] by blast8852

AOT_hence ‹�(F = [λy p])›8853

using "id-nec:2" "modus-tollens:1" "raa-cor:3" by blast8854

AOT_hence ‹∃p �(F = [λy p])›8855

using "∃I" by fast8856

AOT_hence 0: ‹�∃p (F = [λy p])›8857

by (metis Buridan "vdash-properties:10")8858

AOT_thus ‹�Propositional([F])›8859

using "prop-prop1"[THEN "≡Df"]8860

by (AOT_subst ‹Propositional([F])› ‹∃p (F = [λy p])›) auto8861

qed8862

8863

AOT_define indicriminate :: ‹Π ⇒ ϕ› ("Indiscriminate’(_’)")8864

"prop-indis": ‹Indiscriminate([F]) ≡df F↓ & �(∃x [F]x → ∀x [F]x)› (272)8865

8866

AOT_theorem "prop-in-thm": ‹Propositional([Π]) → Indiscriminate([Π])› (273)8867

proof(rule "→I")8868

AOT_assume ‹Propositional([Π])›8869

AOT_hence ‹∃p Π = [λy p]› using "≡dfE"[OF "prop-prop1"] by blast8870

then AOT_obtain p where Π_def: ‹Π = [λy p]› using "∃E"[rotated] by blast8871

AOT_show ‹Indiscriminate([Π])›8872

proof (rule "≡dfI"[OF "prop-indis"]; rule "&I")8873

AOT_show ‹Π↓›8874

using Π_def by (meson "t=t-proper:1" "vdash-properties:6")8875

next8876

AOT_show ‹�(∃x [Π]x → ∀x [Π]x)›8877

proof (rule "rule=E"[rotated, OF Π_def[symmetric]];8878

rule RN; rule "→I"; rule GEN)8879

AOT_modally_strict {8880

AOT_assume ‹∃x [λy p]x›8881

333

A. Isabelle Theory

then AOT_obtain a where ‹[λy p]a› using "∃E"[rotated] by blast8882

AOT_hence 0: ‹p› by (metis "β→C"(1))8883

AOT_show ‹[λy p]x› for x8884

apply (rule "β←C"(1))8885

apply "cqt:2[lambda]"8886

apply (fact "cqt:2[const_var]"[axiom_inst])8887

by (fact 0)8888

}8889

qed8890

qed8891

qed8892

8893

AOT_theorem "prop-in-f:1": ‹Necessary([F]) → Indiscriminate([F])› (274.1)8894

proof (rule "→I")8895

AOT_assume ‹Necessary([F])›8896

AOT_hence 0: ‹�∀x1...∀xn [F]x1...xn›8897

using "≡dfE"[OF "contingent-properties:1"] by blast8898

AOT_show ‹Indiscriminate([F])›8899

by (rule "≡dfI"[OF "prop-indis"])8900

(metis "0" "KBasic:1" "&I" "ex:1:a" "rule-ui:2[const_var]" "→E")8901

qed8902

8903

AOT_theorem "prop-in-f:2": ‹Impossible([F]) → Indiscriminate([F])› (274.2)8904

proof (rule "→I")8905

AOT_modally_strict {8906

AOT_have ‹∀x ¬[F]x → (∃x [F]x → ∀x [F]x)›8907

by (metis "∃E" "cqt-orig:3" "Hypothetical Syllogism" "→I" "raa-cor:3")8908

}8909

AOT_hence 0: ‹�∀x ¬[F]x → �(∃x [F]x → ∀x [F]x)›8910

by (rule "RM:1")8911

AOT_assume ‹Impossible([F])›8912

AOT_hence ‹�∀x ¬[F]x›8913

using "≡dfE"[OF "contingent-properties:2"] "&E" by blast8914

AOT_hence 1: ‹�(∃x [F]x → ∀x [F]x)›8915

using 0 "→E" by blast8916

AOT_show ‹Indiscriminate([F])›8917

by (rule "≡dfI"[OF "prop-indis"]; rule "&I")8918

(simp add: "ex:1:a" "rule-ui:2[const_var]" 1)+8919

qed8920

8921

AOT_theorem "prop-in-f:3:a": ‹¬Indiscriminate([E!])› (274.3.a)8922

proof(rule "raa-cor:2")8923

AOT_assume ‹Indiscriminate([E!])›8924

AOT_hence 0: ‹�(∃x [E!]x → ∀x [E!]x)›8925

using "≡dfE"[OF "prop-indis"] "&E" by blast8926

AOT_hence ‹♦∃x [E!]x → ♦∀x [E!]x›8927

using "KBasic:13" "vdash-properties:10" by blast8928

moreover AOT_have ‹♦∃x [E!]x›8929

by (simp add: "thm-cont-e:3")8930

ultimately AOT_have ‹♦∀x [E!]x›8931

by (metis "vdash-properties:6")8932

AOT_thus ‹p & ¬p› for p8933

by (metis "≡dfE" "conventions:5" "o-objects-exist:5" "reductio-aa:1")8934

qed8935

8936

AOT_theorem "prop-in-f:3:b": ‹¬Indiscriminate([E!]-)› (274.3.b)8937

proof (rule "rule=E"[rotated, OF "rel-neg-T:2"[symmetric]];8938

rule "raa-cor:2")8939

AOT_assume ‹Indiscriminate([λx ¬[E!]x])›8940

AOT_hence 0: ‹�(∃x [λx ¬[E!]x]x → ∀x [λx ¬[E!]x]x)›8941

using "≡dfE"[OF "prop-indis"] "&E" by blast8942

AOT_hence ‹�∃x [λx ¬[E!]x]x → �∀x [λx ¬[E!]x]x›8943

using "→E" "qml:1" "vdash-properties:1[2]" by blast8944

334

A.7. The Deductive System PLM

moreover AOT_have ‹�∃x [λx ¬[E!]x]x›8945

apply (AOT_subst ‹[λx ¬E!x]x› ‹¬E!x› for: x)8946

apply (rule "beta-C-meta"[THEN "→E"])8947

apply "cqt:2"8948

by (metis (full_types) "B♦" RN "T♦" "cqt-further:2"8949

"o-objects-exist:5" "→E")8950

ultimately AOT_have 1: ‹�∀x [λx ¬[E!]x]x›8951

by (metis "vdash-properties:6")8952

AOT_hence ‹�∀x ¬[E!]x›8953

by (AOT_subst (reverse) ‹¬[E!]x› ‹[λx ¬[E!]x]x› for: x)8954

(auto intro!: "cqt:2" "beta-C-meta"[THEN "→E"])8955

AOT_hence ‹∀x �¬[E!]x› by (metis "CBF" "vdash-properties:10")8956

moreover AOT_obtain a where abs_a: ‹O!a›8957

using "∃E" "o-objects-exist:1" "qml:2"[axiom_inst] "→E" by blast8958

ultimately AOT_have ‹�¬[E!]a› using "∀E" by blast8959

AOT_hence 2: ‹¬♦[E!]a› by (metis "≡dfE" "conventions:5" "reductio-aa:1")8960

AOT_have ‹A!a›8961

apply (rule "=dfI"(2)[OF AOT_abstract])8962

apply "cqt:2[lambda]"8963

apply (rule "β←C"(1))8964

apply "cqt:2[lambda]"8965

using "cqt:2[const_var]"[axiom_inst] apply blast8966

by (fact 2)8967

AOT_thus ‹p & ¬p› for p using abs_a8968

by (metis "≡E"(1) "oa-contingent:2" "reductio-aa:1")8969

qed8970

8971

AOT_theorem "prop-in-f:3:c": ‹¬Indiscriminate(O!)› (274.3.c)8972

proof(rule "raa-cor:2")8973

AOT_assume ‹Indiscriminate(O!)›8974

AOT_hence 0: ‹�(∃x O!x → ∀x O!x)›8975

using "≡dfE"[OF "prop-indis"] "&E" by blast8976

AOT_hence ‹�∃x O!x → �∀x O!x›8977

using "qml:1"[axiom_inst] "vdash-properties:6" by blast8978

moreover AOT_have ‹�∃x O!x›8979

using "o-objects-exist:1" by blast8980

ultimately AOT_have ‹�∀x O!x›8981

by (metis "vdash-properties:6")8982

AOT_thus ‹p & ¬p› for p8983

by (metis "o-objects-exist:3" "qml:2"[axiom_inst] "raa-cor:3" "→E")8984

qed8985

8986

AOT_theorem "prop-in-f:3:d": ‹¬Indiscriminate(A!)› (274.3.d)8987

proof(rule "raa-cor:2")8988

AOT_assume ‹Indiscriminate(A!)›8989

AOT_hence 0: ‹�(∃x A!x → ∀x A!x)›8990

using "≡dfE"[OF "prop-indis"] "&E" by blast8991

AOT_hence ‹�∃x A!x → �∀x A!x›8992

using "qml:1"[axiom_inst] "vdash-properties:6" by blast8993

moreover AOT_have ‹�∃x A!x›8994

using "o-objects-exist:2" by blast8995

ultimately AOT_have ‹�∀x A!x›8996

by (metis "vdash-properties:6")8997

AOT_thus ‹p & ¬p› for p8998

by (metis "o-objects-exist:4" "qml:2"[axiom_inst] "raa-cor:3" "→E")8999

qed9000

9001

AOT_theorem "prop-in-f:4:a": ‹¬Propositional(E!)› (274.4.a)9002

using "modus-tollens:1" "prop-in-f:3:a" "prop-in-thm" by blast9003

9004

AOT_theorem "prop-in-f:4:b": ‹¬Propositional(E!-)› (274.4.b)9005

using "modus-tollens:1" "prop-in-f:3:b" "prop-in-thm" by blast9006

9007

335

A. Isabelle Theory

AOT_theorem "prop-in-f:4:c": ‹¬Propositional(O!)› (274.4.c)9008

using "modus-tollens:1" "prop-in-f:3:c" "prop-in-thm" by blast9009

9010

AOT_theorem "prop-in-f:4:d": ‹¬Propositional(A!)› (274.4.d)9011

using "modus-tollens:1" "prop-in-f:3:d" "prop-in-thm" by blast9012

9013

AOT_theorem "prop-prop-nec:1": ‹♦∃p (F = [λy p]) → ∃p(F = [λy p])› (275.1)9014

proof(rule "→I")9015

AOT_assume ‹♦∃p (F = [λy p])›9016

AOT_hence ‹∃p ♦(F = [λy p])›9017

by (metis "BF♦" "→E")9018

then AOT_obtain p where ‹♦(F = [λy p])›9019

using "∃E"[rotated] by blast9020

AOT_hence ‹F = [λy p]›9021

by (metis "derived-S5-rules:2" emptyE "id-nec:2" "→E")9022

AOT_thus ‹∃p(F = [λy p])› by (rule "∃I")9023

qed9024

9025

AOT_theorem "prop-prop-nec:2": ‹∀p (F 6= [λy p]) → �∀p(F 6= [λy p])› (275.2)9026

proof(rule "→I")9027

AOT_assume ‹∀p (F 6= [λy p])›9028

AOT_hence ‹(F 6= [λy p])› for p9029

using "∀E" by blast9030

AOT_hence ‹�(F 6= [λy p])› for p9031

by (rule "id-nec2:2"[unvarify β, THEN "→E", rotated]) "cqt:2"9032

AOT_hence ‹∀p �(F 6= [λy p])› by (rule GEN)9033

AOT_thus ‹�∀p (F 6= [λy p])› using BF[THEN "→E"] by fast9034

qed9035

9036

AOT_theorem "prop-prop-nec:3": ‹∃p (F = [λy p]) → �∃p(F = [λy p])› (275.3)9037

proof(rule "→I")9038

AOT_assume ‹∃p (F = [λy p])›9039

then AOT_obtain p where ‹(F = [λy p])› using "∃E"[rotated] by blast9040

AOT_hence ‹�(F = [λy p])› by (metis "id-nec:2" "→E")9041

AOT_hence ‹∃p�(F = [λy p])› by (rule "∃I")9042

AOT_thus ‹�∃p(F = [λy p])› by (metis Buridan "→E")9043

qed9044

9045

AOT_theorem "prop-prop-nec:4": ‹♦∀p (F 6= [λy p]) → ∀p(F 6= [λy p])› (275.4)9046

proof(rule "→I")9047

AOT_assume ‹♦∀p (F 6= [λy p])›9048

AOT_hence ‹∀p ♦(F 6= [λy p])› by (metis "Buridan♦" "→E")9049

AOT_hence ‹♦(F 6= [λy p])› for p9050

using "∀E" by blast9051

AOT_hence ‹F 6= [λy p]› for p9052

by (rule "id-nec2:3"[unvarify β, THEN "→E", rotated]) "cqt:2"9053

AOT_thus ‹∀p (F 6= [λy p])› by (rule GEN)9054

qed9055

9056

AOT_theorem "enc-prop-nec:1": (276.1)9057

‹♦∀F (x[F] → ∃p(F = [λy p])) → ∀F(x[F] → ∃p (F = [λy p]))›9058

proof(rule "→I"; rule GEN; rule "→I")9059

fix F9060

AOT_assume ‹♦∀F (x[F] → ∃p(F = [λy p]))›9061

AOT_hence ‹∀F ♦(x[F] → ∃p(F = [λy p]))›9062

using "Buridan♦" "vdash-properties:10" by blast9063

AOT_hence 0: ‹♦(x[F] → ∃p(F = [λy p]))› using "∀E" by blast9064

AOT_assume ‹x[F]›9065

AOT_hence ‹�x[F]› by (metis "en-eq:2[1]" "≡E"(1))9066

AOT_hence ‹♦∃p(F = [λy p])›9067

using 0 by (metis "KBasic2:4" "≡E"(1) "vdash-properties:10")9068

AOT_thus ‹∃p(F = [λy p])›9069

using "prop-prop-nec:1"[THEN "→E"] by blast9070

336

A.7. The Deductive System PLM

qed9071

9072

AOT_theorem "enc-prop-nec:2": (276.2)9073

‹∀F (x[F] → ∃p(F = [λy p])) → �∀F(x[F] → ∃p (F = [λy p]))›9074

using "derived-S5-rules:1"[where Γ="{}", simplified, OF "enc-prop-nec:1"]9075

by blast9076

9077

(*<*)9078

end9079

(*>*)9080

337

A. Isabelle Theory

A.8. Basic Logical Objects

(*<*)1

theory AOT_BasicLogicalObjects2

imports AOT_PLM3

begin4

(*>*)5

6

section‹Basic Logical Objects›7

(* Note: so far only the parts required for possible world theory are implemented *)8

9

AOT_define TruthValueOf :: ‹τ ⇒ ϕ ⇒ ϕ› (‹TruthValueOf’(_,_’)›)10

"tv-p": ‹TruthValueOf(x,p) ≡df A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q]))› (281)11

12

AOT_theorem "p-has-!tv:1": ‹∃x TruthValueOf(x,p)› (283.1)13

using "tv-p"[THEN "≡Df"]14

by (AOT_subst ‹TruthValueOf(x,p)›15

‹A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q]))› for: x)16

(simp add: "A-objects"[axiom_inst])17

18

19

AOT_theorem "p-has-!tv:2": ‹∃!x TruthValueOf(x,p)› (283.2)20

using "tv-p"[THEN "≡Df"]21

by (AOT_subst ‹TruthValueOf(x,p)›22

‹A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q]))› for: x)23

(simp add: "A-objects!")24

25

26

AOT_theorem "uni-tv": ‹ιx TruthValueOf(x,p)↓› (284)27

using "A-Exists:2" "RA[2]" "≡E"(2) "p-has-!tv:2" by blast28

29

AOT_define TheTruthValueOf :: ‹ϕ ⇒ κs› (‹◦_› [100] 100)30

"the-tv-p": ‹◦p =df ιx TruthValueOf(x,p)› (285)31

32

AOT_define PropEnc :: ‹τ ⇒ ϕ ⇒ ϕ› (infixl ‹Σ› 40)33

"prop-enc": ‹xΣp ≡df x↓ & x[λy p]› (286)34

35

AOT_theorem "tv-id:1": ‹◦p = ιx (A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q])))› (287.1)36

proof -37

AOT_have ‹�∀x(TruthValueOf(x,p) ≡ A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q])))›38

by (rule RN; rule GEN; rule "tv-p"[THEN "≡Df"])39

AOT_hence ‹ιx TruthValueOf(x,p) = ιx (A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q])))›40

using "equiv-desc-eq:3"[THEN "→E", OF "&I", OF "uni-tv"] by simp41

thus ?thesis42

using "=dfI"(1)[OF "the-tv-p", OF "uni-tv"] by fast43

qed44

45

AOT_theorem "tv-id:2": ‹◦pΣp› (287.2)46

proof -47

AOT_modally_strict {48

AOT_have ‹(p ≡ p) & [λy p] = [λy p]›49

by (auto simp: "prop-prop2:2" "rule=I:1" intro!: "≡I" "→I" "&I")50

AOT_hence ‹∃q ((q ≡ p) & [λy p] = [λy q])›51

using "∃I" by fast52

}53

AOT_hence ‹A∃q ((q ≡ p) & [λy p] = [λy q])›54

using "RA[2]" by blast55

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q])))[λy p]›56

by (safe intro!: "desc-nec-encode:1"[unvarify F, THEN "≡E"(2)] "cqt:2")57

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q])))Σp›58

by (safe intro!: "prop-enc"[THEN "≡dfI"] "&I" "A-descriptions")59

AOT_thus ‹◦pΣp›60

by (rule "rule=E"[rotated, OF "tv-id:1"[symmetric]])61

338

A.8. Basic Logical Objects

qed62

63

(* TODO more theorems *)64

65

AOT_theorem "TV-lem1:1": (292.1)66

‹p ≡ ∀F(∃q (q & F = [λy q]) ≡ ∃q((q ≡ p) & F = [λy q]))›67

proof(safe intro!: "≡I" "→I" GEN)68

fix F69

AOT_assume ‹∃q (q & F = [λy q])›70

then AOT_obtain q where ‹q & F = [λy q]› using "∃E"[rotated] by blast71

moreover AOT_assume p72

ultimately AOT_have ‹(q ≡ p) & F = [λy q]›73

by (metis "&I" "&E"(1) "&E"(2) "deduction-theorem" "≡I")74

AOT_thus ‹∃q ((q ≡ p) & F = [λy q])› by (rule "∃I")75

next76

fix F77

AOT_assume ‹∃q ((q ≡ p) & F = [λy q])›78

then AOT_obtain q where ‹(q ≡ p) & F = [λy q]› using "∃E"[rotated] by blast79

moreover AOT_assume p80

ultimately AOT_have ‹q & F = [λy q]›81

by (metis "&I" "&E"(1) "&E"(2) "≡E"(2))82

AOT_thus ‹∃q (q & F = [λy q])› by (rule "∃I")83

next84

AOT_assume ‹∀F (∃q (q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›85

AOT_hence ‹∃q (q & [λy p] = [λy q]) ≡ ∃q ((q ≡ p) & [λy p] = [λy q])›86

using "∀E"(1)[rotated, OF "prop-prop2:2"] by blast87

moreover AOT_have ‹∃q ((q ≡ p) & [λy p] = [λy q])›88

by (rule "∃I"(2)[where β=p])89

(simp add: "rule=I:1" "&I" "oth-class-taut:3:a" "prop-prop2:2")90

ultimately AOT_have ‹∃q (q & [λy p] = [λy q])› using "≡E"(2) by blast91

then AOT_obtain q where ‹q & [λy p] = [λy q]› using "∃E"[rotated] by blast92

AOT_thus ‹p›93

using "rule=E" "&E"(1) "&E"(2) id_sym "≡E"(2) "p-identity-thm2:3" by fast94

qed95

96

AOT_theorem "TV-lem1:2": (292.2)97

‹¬p ≡ ∀F(∃q (¬q & F = [λy q]) ≡ ∃q((q ≡ p) & F = [λy q]))›98

proof(safe intro!: "≡I" "→I" GEN)99

fix F100

AOT_assume ‹∃q (¬q & F = [λy q])›101

then AOT_obtain q where ‹¬q & F = [λy q]› using "∃E"[rotated] by blast102

moreover AOT_assume ‹¬p›103

ultimately AOT_have ‹(q ≡ p) & F = [λy q]›104

by (metis "&I" "&E"(1) "&E"(2) "deduction-theorem" "≡I" "raa-cor:3")105

AOT_thus ‹∃q ((q ≡ p) & F = [λy q])› by (rule "∃I")106

next107

fix F108

AOT_assume ‹∃q ((q ≡ p) & F = [λy q])›109

then AOT_obtain q where ‹(q ≡ p) & F = [λy q]› using "∃E"[rotated] by blast110

moreover AOT_assume ‹¬p›111

ultimately AOT_have ‹¬q & F = [λy q]›112

by (metis "&I" "&E"(1) "&E"(2) "≡E"(1) "raa-cor:3")113

AOT_thus ‹∃q (¬q & F = [λy q])› by (rule "∃I")114

next115

AOT_assume ‹∀F (∃q (¬q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›116

AOT_hence ‹∃q (¬q & [λy p] = [λy q]) ≡ ∃q ((q ≡ p) & [λy p] = [λy q])›117

using "∀E"(1)[rotated, OF "prop-prop2:2"] by blast118

moreover AOT_have ‹∃q ((q ≡ p) & [λy p] = [λy q])›119

by (rule "∃I"(2)[where β=p])120

(simp add: "rule=I:1" "&I" "oth-class-taut:3:a" "prop-prop2:2")121

ultimately AOT_have ‹∃q (¬q & [λy p] = [λy q])› using "≡E"(2) by blast122

then AOT_obtain q where ‹¬q & [λy p] = [λy q]› using "∃E"[rotated] by blast123

AOT_thus ‹¬p›124

339

A. Isabelle Theory

using "rule=E" "&E"(1) "&E"(2) id_sym "≡E"(2) "p-identity-thm2:3" by fast125

qed126

127

128

AOT_define TruthValue :: ‹τ ⇒ ϕ› (‹TruthValue’(_’)›)129

"T-value": ‹TruthValue(x) ≡df ∃p (TruthValueOf(x,p))› (293)130

131

(* TODO more theorems *)132

133

AOT_act_theorem "T-lem:1": ‹TruthValueOf(◦p, p)› (290.1)134

proof -135

AOT_have ϑ: ‹◦p = ιx TruthValueOf(x, p)›136

using "rule-id-df:1" "the-tv-p" "uni-tv" by blast137

moreover AOT_have ‹◦p↓›138

using "t=t-proper:1" calculation "vdash-properties:10" by blast139

ultimately show ?thesis by (metis "rule=E" id_sym "vdash-properties:10" "y-in:3")140

qed141

142

AOT_act_theorem "T-lem:2": ‹∀F (◦p[F] ≡ ∃q((q ≡ p) & F = [λy q]))› (290.2)143

using "T-lem:1"[THEN "tv-p"[THEN "≡dfE"], THEN "&E"(2)].144

145

AOT_act_theorem "T-lem:3": ‹◦pΣr ≡ (r ≡ p)› (290.3)146

proof -147

AOT_have ϑ: ‹◦p[λy r] ≡ ∃q ((q ≡ p) & [λy r] = [λy q])›148

using "T-lem:2"[THEN "∀E"(1), OF "prop-prop2:2"].149

show ?thesis150

proof(rule "≡I"; rule "→I")151

AOT_assume ‹◦pΣr›152

AOT_hence ‹◦p[λy r]› by (metis "≡dfE" "&E"(2) "prop-enc")153

AOT_hence ‹∃q ((q ≡ p) & [λy r] = [λy q])› using ϑ "≡E"(1) by blast154

then AOT_obtain q where ‹(q ≡ p) & [λy r] = [λy q]› using "∃E"[rotated] by blast155

moreover AOT_have ‹r = q› using calculation156

using "&E"(2) "≡E"(2) "p-identity-thm2:3" by blast157

ultimately AOT_show ‹r ≡ p›158

by (metis "rule=E" "&E"(1) "≡E"(6) "oth-class-taut:3:a")159

next160

AOT_assume ‹r ≡ p›161

moreover AOT_have ‹[λy r] = [λy r]›162

by (simp add: "rule=I:1" "prop-prop2:2")163

ultimately AOT_have ‹(r ≡ p) & [λy r] = [λy r]› using "&I" by blast164

AOT_hence ‹∃q ((q ≡ p) & [λy r] = [λy q])› by (rule "∃I"(2)[where β=r])165

AOT_hence ‹◦p[λy r]› using ϑ "≡E"(2) by blast166

AOT_thus ‹◦pΣr›167

by (metis "≡dfI" "&I" "prop-enc" "russell-axiom[enc,1].ψ_denotes_asm")168

qed169

qed170

171

AOT_act_theorem "T-lem:4": ‹TruthValueOf(x, p) ≡ x = ◦p› (290.4)172

proof -173

AOT_have ‹∀x (x = ιx TruthValueOf(x, p) ≡ ∀z (TruthValueOf(z, p) ≡ z = x))›174

by (simp add: "fund-cont-desc" GEN)175

moreover AOT_have ‹◦p↓›176

using "≡dfE" "tv-id:2" "&E"(1) "prop-enc" by blast177

ultimately AOT_have178

‹(◦p = ιx TruthValueOf(x, p)) ≡ ∀z (TruthValueOf(z, p) ≡ z = ◦p)›179

using "∀E"(1) by blast180

AOT_hence ‹∀z (TruthValueOf(z, p) ≡ z = ◦p)›181

using "≡E"(1) "rule-id-df:1" "the-tv-p" "uni-tv" by blast182

AOT_thus ‹TruthValueOf(x, p) ≡ x = ◦p› using "∀E"(2) by blast183

qed184

185

186

(* TODO more theorems *)187

340

A.8. Basic Logical Objects

188

AOT_theorem "TV-lem2:1": (295.1)189

‹(A!x & ∀F (x[F] ≡ ∃q (q & F = [λy q]))) → TruthValue(x)›190

proof(safe intro!: "→I" "T-value"[THEN "≡dfI"] "tv-p"[THEN "≡dfI"]191

"∃I"(1)[rotated, OF "log-prop-prop:2"])192

AOT_assume ‹[A!]x & ∀F (x[F] ≡ ∃q (q & F = [λy q]))›193

AOT_thus ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ (∀p (p → p))) & F = [λy q]))›194

apply (AOT_subst ‹∃q ((q ≡ (∀p (p → p))) & F = [λy q])›195

‹∃q (q & F = [λy q])› for: F :: ‹<κ>›)196

apply (AOT_subst ‹q ≡ ∀p (p →p)› ‹q› for: q)197

apply (metis (no_types, lifting) "→I" "≡I" "≡E"(2) GEN)198

by (auto simp: "cqt-further:7")199

qed200

201

AOT_theorem "TV-lem2:2": (295.2)202

‹(A!x & ∀F (x[F] ≡ ∃q (¬q & F = [λy q]))) → TruthValue(x)›203

proof(safe intro!: "→I" "T-value"[THEN "≡dfI"] "tv-p"[THEN "≡dfI"]204

"∃I"(1)[rotated, OF "log-prop-prop:2"])205

AOT_assume ‹[A!]x & ∀F (x[F] ≡ ∃q (¬q & F = [λy q]))›206

AOT_thus ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ (∃p (p & ¬p))) & F = [λy q]))›207

apply (AOT_subst ‹∃q ((q ≡ (∃p (p & ¬p))) & F = [λy q])›208

‹∃q (¬q & F = [λy q])› for: F :: ‹<κ>›)209

apply (AOT_subst ‹q ≡ ∃p (p & ¬p)› ‹¬q› for: q)210

apply (metis (no_types, lifting)211

"→I" "∃E" "≡E"(1) "≡I" "raa-cor:1" "raa-cor:3")212

by (auto simp add: "cqt-further:7")213

qed214

215

AOT_define TheTrue :: κs (‹>›)216

"the-true:1": ‹> =df ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))› (296.1)217

AOT_define TheFalse :: κs (‹⊥›)218

"the-true:2": ‹⊥ =df ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))› (296.2)219

220

221

AOT_theorem "the-true:3": ‹> 6= ⊥› (296.3)222

proof(safe intro!: "ab-obey:2"[unvarify x y, THEN "→E", rotated 2, OF "∨I"(1)]223

"∃I"(1)[where τ=‹«[λx ∀q(q → q)]»›] "&I" "prop-prop2:2")224

AOT_have false_def: ‹⊥ = ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))›225

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:2")226

moreover AOT_show false_den: ‹⊥↓›227

by (meson "→E" "t=t-proper:1" "A-descriptions"228

"rule-id-df:1[zero]" "the-true:2")229

ultimately AOT_have false_prop: ‹A(A!⊥ & ∀F (⊥[F] ≡ ∃p(¬p & F = [λy p])))›230

using "nec-hintikka-scheme"[unvarify x, THEN "≡E"(1), THEN "&E"(1)] by blast231

AOT_hence ‹A∀F (⊥[F] ≡ ∃p(¬p & F = [λy p]))›232

using "Act-Basic:2" "&E"(2) "≡E"(1) by blast233

AOT_hence ‹∀F A(⊥[F] ≡ ∃p(¬p & F = [λy p]))›234

using "≡E"(1) "logic-actual-nec:3"[axiom_inst] by blast235

AOT_hence false_enc_cond:236

‹A(⊥[λx ∀q(q → q)] ≡ ∃p(¬p & [λx ∀q(q → q)] = [λy p]))›237

using "∀E"(1)[rotated, OF "prop-prop2:2"] by blast238

239

AOT_have true_def: ‹> = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›240

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")241

moreover AOT_show true_den: ‹>↓›242

by (meson "t=t-proper:1" "A-descriptions" "rule-id-df:1[zero]" "the-true:1" "→E")243

ultimately AOT_have true_prop: ‹A(A!> & ∀F (>[F] ≡ ∃p(p & F = [λy p])))›244

using "nec-hintikka-scheme"[unvarify x, THEN "≡E"(1), THEN "&E"(1)] by blast245

AOT_hence ‹A∀F (>[F] ≡ ∃p(p & F = [λy p]))›246

using "Act-Basic:2" "&E"(2) "≡E"(1) by blast247

AOT_hence ‹∀F A(>[F] ≡ ∃p(p & F = [λy p]))›248

using "≡E"(1) "logic-actual-nec:3"[axiom_inst] by blast249

AOT_hence ‹A(>[λx ∀q(q → q)] ≡ ∃p(p & [λx ∀q(q → q)] = [λy p]))›250

341

A. Isabelle Theory

using "∀E"(1)[rotated, OF "prop-prop2:2"] by blast251

moreover AOT_have ‹A∃p(p & [λx ∀q(q → q)] = [λy p])›252

by (safe intro!: "nec-imp-act"[THEN "→E"] RN "∃I"(1)[where τ="«∀q(q → q)»"] "&I"253

GEN "→I" "log-prop-prop:2" "rule=I:1" "prop-prop2:2")254

ultimately AOT_have ‹A(>[λx ∀q(q → q)])›255

using "Act-Basic:5" "≡E"(1,2) by blast256

AOT_thus ‹>[λx ∀q(q → q)]›257

using "en-eq:10[1]"[unvarify x1 F, THEN "≡E"(1)] true_den "prop-prop2:2" by blast258

259

AOT_show ‹¬⊥[λx ∀q(q → q)]›260

proof(rule "raa-cor:2")261

AOT_assume ‹⊥[λx ∀q(q → q)]›262

AOT_hence ‹A⊥[λx ∀q(q → q)]›263

using "en-eq:10[1]"[unvarify x1 F, THEN "≡E"(2)]264

false_den "prop-prop2:2" by blast265

AOT_hence ‹A∃p(¬p & [λx ∀q(q → q)] = [λy p])›266

using false_enc_cond "Act-Basic:5" "≡E"(1) by blast267

AOT_hence ‹∃p A(¬p & [λx ∀q(q → q)] = [λy p])›268

using "Act-Basic:10" "≡E"(1) by blast269

then AOT_obtain p where p_prop: ‹A(¬p & [λx ∀q(q → q)] = [λy p])›270

using "∃E"[rotated] by blast271

AOT_hence ‹A[λx ∀q(q → q)] = [λy p]›272

by (metis "Act-Basic:2" "&E"(2) "≡E"(1))273

AOT_hence ‹[λx ∀q(q → q)] = [λy p]›274

using "id-act:1"[unvarify α β, THEN "≡E"(2)] "prop-prop2:2" by blast275

AOT_hence ‹(∀q(q → q)) = p›276

using "p-identity-thm2:3"[unvarify p, THEN "≡E"(2)]277

"log-prop-prop:2" by blast278

moreover AOT_have ‹A¬p› using p_prop279

using "Act-Basic:2" "&E"(1) "≡E"(1) by blast280

ultimately AOT_have ‹A¬∀q(q → q)›281

by (metis "Act-Sub:1" "≡E"(1,2) "raa-cor:3" "rule=E")282

moreover AOT_have ‹¬A¬∀q(q → q)›283

by (meson "Act-Sub:1" "RA[2]" "if-p-then-p" "≡E"(1) "universal-cor")284

ultimately AOT_show ‹A¬∀q(q → q) & ¬A¬∀q(q → q)›285

using "&I" by blast286

qed287

qed288

289

AOT_act_theorem "T-T-value:1": ‹TruthValue(>)› (297.1)290

proof -291

AOT_have true_def: ‹> = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›292

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")293

AOT_hence true_den: ‹>↓›294

using "t=t-proper:1" "vdash-properties:6" by blast295

AOT_show ‹TruthValue(>)›296

using "y-in:2"[unvarify z, OF true_den, THEN "→E", OF true_def]297

"TV-lem2:1"[unvarify x, OF true_den, THEN "→E"] by blast298

qed299

300

AOT_act_theorem "T-T-value:2": ‹TruthValue(⊥)› (297.2)301

proof -302

AOT_have false_def: ‹⊥ = ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))›303

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:2")304

AOT_hence false_den: ‹⊥↓›305

using "t=t-proper:1" "vdash-properties:6" by blast306

AOT_show ‹TruthValue(⊥)›307

using "y-in:2"[unvarify z, OF false_den, THEN "→E", OF false_def]308

"TV-lem2:2"[unvarify x, OF false_den, THEN "→E"] by blast309

qed310

311

AOT_theorem "two-T": ‹∃x∃y(TruthValue(x) & TruthValue(y) & x 6= y & (298)312

∀z (TruthValue(z) → z = x ∨ z = y))›313

342

A.8. Basic Logical Objects

proof -314

AOT_obtain a where a_prop: ‹A!a & ∀F (a[F] ≡ ∃p (p & F = [λy p]))›315

using "A-objects"[axiom_inst] "∃E"[rotated] by fast316

AOT_obtain b where b_prop: ‹A!b & ∀F (b[F] ≡ ∃p (¬p & F = [λy p]))›317

using "A-objects"[axiom_inst] "∃E"[rotated] by fast318

AOT_obtain p where p: p319

by (metis "log-prop-prop:2" "raa-cor:3" "rule-ui:1" "universal-cor")320

show ?thesis321

proof(rule "∃I"(2)[where β=a]; rule "∃I"(2)[where β=b];322

safe intro!: "&I" GEN "→I")323

AOT_show ‹TruthValue(a)›324

using "TV-lem2:1" a_prop "vdash-properties:10" by blast325

next326

AOT_show ‹TruthValue(b)›327

using "TV-lem2:2" b_prop "vdash-properties:10" by blast328

next329

AOT_show ‹a 6= b›330

proof(rule "ab-obey:2"[THEN "→E", OF "∨I"(1)])331

AOT_show ‹∃F (a[F] & ¬b[F])›332

proof(rule "∃I"(1)[where τ="«[λy p]»"]; rule "&I" "prop-prop2:2")333

AOT_show ‹a[λy p]›334

by(safe intro!: "∃I"(2)[where β=p] "&I" p "rule=I:1"[OF "prop-prop2:2"]335

a_prop[THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(2), OF "prop-prop2:2"])336

next337

AOT_show ‹¬b[λy p]›338

proof (rule "raa-cor:2")339

AOT_assume ‹b[λy p]›340

AOT_hence ‹∃q (¬q & [λy p] = [λy q])›341

using "∀E"(1)[rotated, OF "prop-prop2:2", THEN "≡E"(1)]342

b_prop[THEN "&E"(2)] by fast343

then AOT_obtain q where ‹¬q & [λy p] = [λy q]›344

using "∃E"[rotated] by blast345

AOT_hence ‹¬p›346

by (metis "rule=E" "&E"(1) "&E"(2) "deduction-theorem" "≡I"347

"≡E"(2) "p-identity-thm2:3" "raa-cor:3")348

AOT_thus ‹p & ¬p› using p "&I" by blast349

qed350

qed351

qed352

next353

fix z354

AOT_assume ‹TruthValue(z)›355

AOT_hence ‹∃p (TruthValueOf(z, p))›356

by (metis "≡dfE" "T-value")357

then AOT_obtain p where ‹TruthValueOf(z, p)› using "∃E"[rotated] by blast358

AOT_hence z_prop: ‹A!z & ∀F (z[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›359

using "≡dfE" "tv-p" by blast360

{361

AOT_assume p: ‹p›362

AOT_have ‹z = a›363

proof(rule "ab-obey:1"[THEN "→E", THEN "→E", OF "&I",364

OF z_prop[THEN "&E"(1)], OF a_prop[THEN "&E"(1)]];365

rule GEN)366

fix G367

AOT_have ‹z[G] ≡ ∃q ((q ≡ p) & G = [λy q])›368

using z_prop[THEN "&E"(2)] "∀E"(2) by blast369

also AOT_have ‹∃q ((q ≡ p) & G = [λy q]) ≡ ∃q (q & G = [λy q])›370

using "TV-lem1:1"[THEN "≡E"(1), OF p, THEN "∀E"(2)[where β=G], symmetric].371

also AOT_have ‹. . . ≡ a[G]›372

using a_prop[THEN "&E"(2), THEN "∀E"(2)[where β=G], symmetric].373

finally AOT_show ‹z[G] ≡ a[G]›.374

qed375

AOT_hence ‹z = a ∨ z = b› by (rule "∨I")376

343

A. Isabelle Theory

}377

moreover {378

AOT_assume notp: ‹¬p›379

AOT_have ‹z = b›380

proof(rule "ab-obey:1"[THEN "→E", THEN "→E", OF "&I",381

OF z_prop[THEN "&E"(1)], OF b_prop[THEN "&E"(1)]];382

rule GEN)383

fix G384

AOT_have ‹z[G] ≡ ∃q ((q ≡ p) & G = [λy q])›385

using z_prop[THEN "&E"(2)] "∀E"(2) by blast386

also AOT_have ‹∃q ((q ≡ p) & G = [λy q]) ≡ ∃q (¬q & G = [λy q])›387

using "TV-lem1:2"[THEN "≡E"(1), OF notp, THEN "∀E"(2), symmetric].388

also AOT_have ‹. . . ≡ b[G]›389

using b_prop[THEN "&E"(2), THEN "∀E"(2), symmetric].390

finally AOT_show ‹z[G] ≡ b[G]›.391

qed392

AOT_hence ‹z = a ∨ z = b› by (rule "∨I")393

}394

ultimately AOT_show ‹z = a ∨ z = b›395

by (metis "reductio-aa:1")396

qed397

qed398

399

AOT_act_theorem "valueof-facts:1": ‹TruthValueOf(x, p) → (p ≡ x = >)› (299.1)400

proof(safe intro!: "→I" dest!: "tv-p"[THEN "≡dfE"])401

AOT_assume ϑ: ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›402

AOT_have a: ‹A!>›403

using "∃E" "T-T-value:1" "T-value" "&E"(1) "≡dfE" "tv-p" by blast404

AOT_have true_def: ‹> = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›405

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")406

AOT_hence true_den: ‹>↓›407

using "t=t-proper:1" "vdash-properties:6" by blast408

AOT_have b: ‹∀F (>[F] ≡ ∃q (q & F = [λy q]))›409

using "y-in:2"[unvarify z, OF true_den, THEN "→E", OF true_def] "&E" by blast410

AOT_show ‹p ≡ x = >›411

proof(safe intro!: "≡I" "→I")412

AOT_assume p413

AOT_hence ‹∀F (∃q (q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›414

using "TV-lem1:1"[THEN "≡E"(1)] by blast415

AOT_hence ‹∀F(>[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›416

using b "cqt-basic:10"[THEN "→E", OF "&I", OF b] by fast417

AOT_hence c: ‹∀F(∃q((q ≡ p) & F = [λy q]) ≡ >[F])›418

using "cqt-basic:11"[THEN "≡E"(1)] by fast419

AOT_hence ‹∀F (x[F] ≡ >[F])›420

using "cqt-basic:10"[THEN "→E", OF "&I", OF ϑ[THEN "&E"(2)]] by fast421

AOT_thus ‹x = >›422

by (rule "ab-obey:1"[unvarify y, OF true_den, THEN "→E", THEN "→E",423

OF "&I", OF ϑ[THEN "&E"(1)], OF a])424

next425

AOT_assume ‹x = >›426

AOT_hence d: ‹∀F (>[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›427

using "rule=E" ϑ[THEN "&E"(2)] by fast428

AOT_have ‹∀F (∃q (q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›429

using "cqt-basic:10"[THEN "→E", OF "&I",430

OF b[THEN "cqt-basic:11"[THEN "≡E"(1)]], OF d].431

AOT_thus p using "TV-lem1:1"[THEN "≡E"(2)] by blast432

qed433

qed434

435

AOT_act_theorem "valueof-facts:2": ‹TruthValueOf(x, p) → (¬p ≡ x = ⊥)› (299.2)436

proof(safe intro!: "→I" dest!: "tv-p"[THEN "≡dfE"])437

AOT_assume ϑ: ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›438

AOT_have a: ‹A!⊥›439

344

A.8. Basic Logical Objects

using "∃E" "T-T-value:2" "T-value" "&E"(1) "≡dfE" "tv-p" by blast440

AOT_have false_def: ‹⊥ = ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))›441

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:2")442

AOT_hence false_den: ‹⊥↓›443

using "t=t-proper:1" "vdash-properties:6" by blast444

AOT_have b: ‹∀F (⊥[F] ≡ ∃q (¬q & F = [λy q]))›445

using "y-in:2"[unvarify z, OF false_den, THEN "→E", OF false_def] "&E" by blast446

AOT_show ‹¬p ≡ x = ⊥›447

proof(safe intro!: "≡I" "→I")448

AOT_assume ‹¬p›449

AOT_hence ‹∀F (∃q (¬q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›450

using "TV-lem1:2"[THEN "≡E"(1)] by blast451

AOT_hence ‹∀F(⊥[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›452

using b "cqt-basic:10"[THEN "→E", OF "&I", OF b] by fast453

AOT_hence c: ‹∀F(∃q((q ≡ p) & F = [λy q]) ≡ ⊥[F])›454

using "cqt-basic:11"[THEN "≡E"(1)] by fast455

AOT_hence ‹∀F (x[F] ≡ ⊥[F])›456

using "cqt-basic:10"[THEN "→E", OF "&I", OF ϑ[THEN "&E"(2)]] by fast457

AOT_thus ‹x = ⊥›458

by (rule "ab-obey:1"[unvarify y, OF false_den, THEN "→E", THEN "→E",459

OF "&I", OF ϑ[THEN "&E"(1)], OF a])460

next461

AOT_assume ‹x = ⊥›462

AOT_hence d: ‹∀F (⊥[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›463

using "rule=E" ϑ[THEN "&E"(2)] by fast464

AOT_have ‹∀F (∃q (¬q & F = [λy q]) ≡ ∃q ((q ≡ p) & F = [λy q]))›465

using "cqt-basic:10"[THEN "→E", OF "&I",466

OF b[THEN "cqt-basic:11"[THEN "≡E"(1)]], OF d].467

AOT_thus ‹¬p› using "TV-lem1:2"[THEN "≡E"(2)] by blast468

qed469

qed470

471

AOT_act_theorem "q-True:1": ‹p ≡ (◦p = >)› (300.1)472

apply (rule "valueof-facts:1"[unvarify x, THEN "→E", rotated, OF "T-lem:1"])473

using "≡dfE" "tv-id:2" "&E"(1) "prop-enc" by blast474

475

AOT_act_theorem "q-True:2": ‹¬p ≡ (◦p = ⊥)› (300.2)476

apply (rule "valueof-facts:2"[unvarify x, THEN "→E", rotated, OF "T-lem:1"])477

using "≡dfE" "tv-id:2" "&E"(1) "prop-enc" by blast478

479

AOT_act_theorem "q-True:3": ‹p ≡ >Σp› (300.3)480

proof(safe intro!: "≡I" "→I")481

AOT_assume p482

AOT_hence ‹◦p = >› by (metis "≡E"(1) "q-True:1")483

moreover AOT_have ‹◦pΣp›484

by (simp add: "tv-id:2")485

ultimately AOT_show ‹>Σp›486

using "rule=E" "T-lem:4" by fast487

next488

AOT_have true_def: ‹> = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›489

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")490

AOT_hence true_den: ‹>↓›491

using "t=t-proper:1" "vdash-properties:6" by blast492

AOT_have b: ‹∀F (>[F] ≡ ∃q (q & F = [λy q]))›493

using "y-in:2"[unvarify z, OF true_den, THEN "→E", OF true_def] "&E" by blast494

495

AOT_assume ‹>Σp›496

AOT_hence ‹>[λy p]› by (metis "≡dfE" "&E"(2) "prop-enc")497

AOT_hence ‹∃q (q & [λy p] = [λy q])›498

using b[THEN "∀E"(1), OF "prop-prop2:2", THEN "≡E"(1)] by blast499

then AOT_obtain q where ‹q & [λy p] = [λy q]› using "∃E"[rotated] by blast500

AOT_thus ‹p›501

using "rule=E" "&E"(1) "&E"(2) id_sym "≡E"(2) "p-identity-thm2:3" by fast502

345

A. Isabelle Theory

qed503

504

505

AOT_act_theorem "q-True:5": ‹¬p ≡ ⊥Σp› (300.5)506

proof(safe intro!: "≡I" "→I")507

AOT_assume ‹¬p›508

AOT_hence ‹◦p = ⊥› by (metis "≡E"(1) "q-True:2")509

moreover AOT_have ‹◦pΣp›510

by (simp add: "tv-id:2")511

ultimately AOT_show ‹⊥Σp›512

using "rule=E" "T-lem:4" by fast513

next514

AOT_have false_def: ‹⊥ = ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))›515

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:2")516

AOT_hence false_den: ‹⊥↓›517

using "t=t-proper:1" "vdash-properties:6" by blast518

AOT_have b: ‹∀F (⊥[F] ≡ ∃q (¬q & F = [λy q]))›519

using "y-in:2"[unvarify z, OF false_den, THEN "→E", OF false_def] "&E" by blast520

521

AOT_assume ‹⊥Σp›522

AOT_hence ‹⊥[λy p]› by (metis "≡dfE" "&E"(2) "prop-enc")523

AOT_hence ‹∃q (¬q & [λy p] = [λy q])›524

using b[THEN "∀E"(1), OF "prop-prop2:2", THEN "≡E"(1)] by blast525

then AOT_obtain q where ‹¬q & [λy p] = [λy q]› using "∃E"[rotated] by blast526

AOT_thus ‹¬p›527

using "rule=E" "&E"(1) "&E"(2) id_sym "≡E"(2) "p-identity-thm2:3" by fast528

qed529

530

AOT_act_theorem "q-True:4": ‹p ≡ ¬(⊥Σp)› (300.4)531

using "q-True:5"532

by (metis "deduction-theorem" "≡I" "≡E"(2) "≡E"(4) "raa-cor:3")533

534

AOT_act_theorem "q-True:6": ‹¬p ≡ ¬(>Σp)› (300.6)535

using "≡E"(1) "oth-class-taut:4:b" "q-True:3" by blast536

537

AOT_define ExtensionOf :: ‹τ ⇒ ϕ ⇒ ϕ› (‹ExtensionOf’(_,_’)›)538

"exten-p": ‹ExtensionOf(x,p) ≡df A!x & (301)539

∀F (x[F] → Propositional([F])) &540

∀q ((xΣq) ≡ (q ≡ p))›541

542

AOT_theorem "extof-e": ‹ExtensionOf(x, p) ≡ TruthValueOf(x, p)› (302)543

proof (safe intro!: "≡I" "→I" "tv-p"[THEN "≡dfI"] "exten-p"[THEN "≡dfI"]544

dest!: "tv-p"[THEN "≡dfE"] "exten-p"[THEN "≡dfE"])545

AOT_assume 1: ‹[A!]x & ∀F (x[F] → Propositional([F])) & ∀q (x Σ q ≡ (q ≡ p))›546

AOT_hence ϑ: ‹[A!]x & ∀F (x[F] → ∃q(F = [λy q])) & ∀q (x Σ q ≡ (q ≡ p))›547

by (AOT_subst ‹∃q(F = [λy q])› ‹Propositional([F])› for: F :: ‹<κ>›)548

(auto simp add: "df-rules-formulas[3]" "df-rules-formulas[4]"549

"≡I" "prop-prop1")550

AOT_show ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›551

proof(safe intro!: "&I" GEN 1[THEN "&E"(1), THEN "&E"(1)] "≡I" "→I")552

fix F553

AOT_assume 0: ‹x[F]›554

AOT_hence ‹∃q (F = [λy q])›555

using ϑ[THEN "&E"(1), THEN "&E"(2)] "∀E"(2) "→E" by blast556

then AOT_obtain q where q_prop: ‹F = [λy q]› using "∃E"[rotated] by blast557

AOT_hence ‹x[λy q]› using 0 "rule=E" by blast558

AOT_hence ‹xΣq› by (metis "≡dfI" "&I" "ex:1:a" "prop-enc" "rule-ui:3")559

AOT_hence ‹q ≡ p› using ϑ[THEN "&E"(2)] "∀E"(2) "≡E"(1) by blast560

AOT_hence ‹(q ≡ p) & F = [λy q]› using q_prop "&I" by blast561

AOT_thus ‹∃q ((q ≡ p) & F = [λy q])› by (rule "∃I")562

next563

fix F564

AOT_assume ‹∃q ((q ≡ p) & F = [λy q])›565

346

A.8. Basic Logical Objects

then AOT_obtain q where q_prop: ‹(q ≡ p) & F = [λy q]›566

using "∃E"[rotated] by blast567

AOT_hence ‹xΣq› using ϑ[THEN "&E"(2)] "∀E"(2) "&E" "≡E"(2) by blast568

AOT_hence ‹x[λy q]› by (metis "≡dfE" "&E"(2) "prop-enc")569

AOT_thus ‹x[F]› using q_prop[THEN "&E"(2), symmetric] "rule=E" by blast570

qed571

next572

AOT_assume 0: ‹[A!]x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q]))›573

AOT_show ‹[A!]x & ∀F (x[F] → Propositional([F])) & ∀q (x Σ q ≡ (q ≡ p))›574

proof(safe intro!: "&I" 0[THEN "&E"(1)] GEN "→I")575

fix F576

AOT_assume ‹x[F]›577

AOT_hence ‹∃q ((q ≡ p) & F = [λy q])›578

using 0[THEN "&E"(2)] "∀E"(2) "≡E"(1) by blast579

then AOT_obtain q where ‹(q ≡ p) & F = [λy q]›580

using "∃E"[rotated] by blast581

AOT_hence ‹F = [λy q]› using "&E"(2) by blast582

AOT_hence ‹∃q F = [λy q]› by (rule "∃I")583

AOT_thus ‹Propositional([F])› by (metis "≡dfI" "prop-prop1")584

next585

AOT_show ‹xΣr ≡ (r ≡ p)› for r586

proof(rule "≡I"; rule "→I")587

AOT_assume ‹xΣr›588

AOT_hence ‹x[λy r]› by (metis "≡dfE" "&E"(2) "prop-enc")589

AOT_hence ‹∃q ((q ≡ p) & [λy r] = [λy q])›590

using 0[THEN "&E"(2), THEN "∀E"(1), OF "prop-prop2:2", THEN "≡E"(1)] by blast591

then AOT_obtain q where ‹(q ≡ p) & [λy r] = [λy q]›592

using "∃E"[rotated] by blast593

AOT_thus ‹r ≡ p›594

by (metis "rule=E" "&E"(1,2) id_sym "≡E"(2) "Commutativity of ≡"595

"p-identity-thm2:3")596

next597

AOT_assume ‹r ≡ p›598

AOT_hence ‹(r ≡ p) & [λy r] = [λy r]›599

by (metis "rule=I:1" "≡S"(1) "≡E"(2) "Commutativity of &" "prop-prop2:2")600

AOT_hence ‹∃q ((q ≡ p) & [λy r] = [λy q])› by (rule "∃I")601

AOT_hence ‹x[λy r]›602

using 0[THEN "&E"(2), THEN "∀E"(1), OF "prop-prop2:2", THEN "≡E"(2)] by blast603

AOT_thus ‹xΣr› by (metis "≡dfI" "&I" "ex:1:a" "prop-enc" "rule-ui:3")604

qed605

qed606

qed607

608

AOT_theorem "ext-p-tv:1": ‹∃!x ExtensionOf(x, p)› (303.1)609

by (AOT_subst ‹ExtensionOf(x, p)› ‹TruthValueOf(x, p)› for: x)610

(auto simp: "extof-e" "p-has-!tv:2")611

612

AOT_theorem "ext-p-tv:2": ‹ιx(ExtensionOf(x, p))↓› (303.2)613

using "A-Exists:2" "RA[2]" "ext-p-tv:1" "≡E"(2) by blast614

615

AOT_theorem "ext-p-tv:3": ‹ιx(ExtensionOf(x, p)) = ◦p› (303.3)616

proof -617

AOT_have 0: ‹A∀x(ExtensionOf(x, p) ≡ TruthValueOf(x,p))›618

by (rule "RA[2]"; rule GEN; rule "extof-e")619

AOT_have 1: ‹◦p = ιx TruthValueOf(x,p)›620

using "rule-id-df:1" "the-tv-p" "uni-tv" by blast621

show ?thesis622

apply (rule "equiv-desc-eq:1"[THEN "→E", OF 0, THEN "∀E"(1)[where τ=‹«◦p»›],623

THEN "≡E"(2), symmetric])624

using "1" "t=t-proper:1" "vdash-properties:10" apply blast625

by (fact 1)626

qed627

347

A. Isabelle Theory

(*<*)end(*>*)628

629

348

A.9. Restricted Variables

A.9. Restricted Variables

(*<*)1

theory AOT_RestrictedVariables2

imports AOT_PLM3

keywords "AOT_register_rigid_restricted_type" :: thy_goal4

and "AOT_register_restricted_type" :: thy_goal5

begin6

(*>*)7

8

section‹Restricted Variables›9

10

locale AOT_restriction_condition =11

fixes ψ :: ‹’a::AOT_Term_id_2 ⇒ o›12

assumes "res-var:2"[AOT]: ‹[v |= ∃α ψ{α}]› (330.2)13

assumes "res-var:3"[AOT]: ‹[v |= ψ{τ} → τ↓]› (330.3)14

15

ML‹16

fun register_restricted_type (name:string, restriction:string) thy =17

let18

val ctxt = thy19

val ctxt = setupStrictWorld ctxt20

val trm = Syntax.check_term ctxt (AOT_read_term @{nonterminal ϕ’} ctxt restriction)21

val free = case (Term.add_frees trm []) of [f] => f |22

_ => raise Term.TERM ("Expected single free variable.", [trm])23

val trm = Term.absfree free trm24

val localeTerm = Const (const_name‹AOT_restriction_condition›, dummyT) $ trm25

val localeTerm = Syntax.check_term ctxt localeTerm26

fun after_qed thms thy = let27

val st = Interpretation.global_interpretation28

(([(@{locale AOT_restriction_condition}, ((name, true),29

(Expression.Named [("ψ", trm)], [])))], [])) [] thy30

val st = Proof.refine_insert (flat thms) st31

val thy = Proof.global_immediate_proof st32

33

val thy = Local_Theory.background_theory34

(AOT_Constraints.map (Symtab.update35

(name, (term_of (snd free), term_of (snd free))))) thy36

val thy = Local_Theory.background_theory37

(AOT_Restriction.map (Symtab.update38

(name, (trm, Const (const_name‹AOT_term_of_var›, dummyT))))) thy39

40

in thy end41

in42

Proof.theorem NONE after_qed [[(HOLogic.mk_Trueprop localeTerm, [])]] ctxt43

end44

45

val _ =46

Outer_Syntax.command47

command_keyword‹AOT_register_restricted_type›48

"Register a restricted type."49

(((Parse.short_ident –| Parse.$$$ ":") – Parse.term) »50

(Toplevel.local_theory_to_proof NONE NONE o register_restricted_type));51

›52

53

locale AOT_rigid_restriction_condition = AOT_restriction_condition +54

assumes rigid[AOT]: ‹[v |= ∀α(ψ{α} → �ψ{α})]›55

begin56

lemma rigid_condition[AOT]: ‹[v |= �(ψ{α} → �ψ{α})]›57

using rigid[THEN "∀E"(2)] RN by simp58

lemma type_set_nonempty[AOT_no_atp, no_atp]: ‹∃x . x ∈ { α . [w0 |= ψ{α}]}›59

by (metis "instantiation" mem_Collect_eq "res-var:2")60

end61

349

A. Isabelle Theory

62

locale AOT_restricted_type = AOT_rigid_restriction_condition +63

fixes Rep and Abs64

assumes AOT_restricted_type_definition[AOT_no_atp]:65

‹type_definition Rep Abs { α . [w0 |= ψ{α}]}›66

begin67

68

AOT_theorem restricted_var_condition: ‹ψ{«AOT_term_of_var (Rep α)»}›69

proof -70

interpret type_definition Rep Abs "{ α . [w0 |= ψ{α}]}"71

using AOT_restricted_type_definition.72

AOT_actually {73

AOT_have ‹«AOT_term_of_var (Rep α)»↓› and ‹ψ{«AOT_term_of_var (Rep α)»}›74

using AOT_sem_imp Rep "res-var:3" by auto75

}76

moreover AOT_actually {77

AOT_have ‹ψ{α} → �ψ{α}› for α78

using AOT_sem_box rigid_condition by presburger79

AOT_hence ‹ψ{τ} → �ψ{τ}› if ‹τ↓› for τ80

by (metis AOT_model.AOT_term_of_var_cases AOT_sem_denotes that)81

}82

ultimately AOT_show ‹ψ{«AOT_term_of_var (Rep α)»}›83

using AOT_sem_box AOT_sem_imp by blast84

qed85

lemmas "ψ" = restricted_var_condition86

87

AOT_theorem GEN: assumes ‹for arbitrary α: ϕ{«AOT_term_of_var (Rep α)»}›88

shows ‹∀α (ψ{α} → ϕ{α})›89

proof(rule GEN; rule "→I")90

interpret type_definition Rep Abs "{ α . [w0 |= ψ{α}]}"91

using AOT_restricted_type_definition.92

fix α93

AOT_assume ‹ψ{α}›94

AOT_hence ‹Aψ{α}›95

by (metis AOT_model_axiom_def AOT_sem_box AOT_sem_imp act_closure rigid_condition)96

hence 0: ‹[w0 |= ψ{α}]› by (metis AOT_sem_act)97

{98

fix τ99

assume α_def: ‹α = Rep τ›100

AOT_have ‹ϕ{α}›101

unfolding α_def102

using assms by blast103

}104

AOT_thus ‹ϕ{α}›105

using Rep_cases[simplified, OF 0]106

by blast107

qed108

lemmas "∀I" = GEN109

110

end111

112

113

lemma AOT_restricted_type_intro[AOT_no_atp, no_atp]:114

assumes ‹type_definition Rep Abs { α . [w0 |= ψ{α}]}›115

and ‹AOT_rigid_restriction_condition ψ›116

shows ‹AOT_restricted_type ψ Rep Abs›117

by (auto intro!: assms AOT_restricted_type_axioms.intro AOT_restricted_type.intro)118

119

120

121

ML‹122

fun register_rigid_restricted_type (name:string, restriction:string) thy =123

let124

350

A.9. Restricted Variables

val ctxt = thy125

val ctxt = setupStrictWorld ctxt126

val trm = Syntax.check_term ctxt (AOT_read_term @{nonterminal ϕ’} ctxt restriction)127

val free = case (Term.add_frees trm []) of [f] => f128

| _ => raise Term.TERM ("Expected single free variable.", [trm])129

val trm = Term.absfree free trm130

val localeTerm = HOLogic.mk_Trueprop131

(Const (const_name‹AOT_rigid_restriction_condition›, dummyT) $ trm)132

val localeTerm = Syntax.check_prop ctxt localeTerm133

val int_bnd = Binding.concealed (Binding.qualify true "internal" (Binding.name name))134

val bnds = {Rep_name = Binding.qualify true name (Binding.name "Rep"),135

Abs_name = Binding.qualify true "Abs" int_bnd,136

type_definition_name = Binding.qualify true "type_definition" int_bnd}137

138

fun after_qed witts thy = let139

val thms = (map (Element.conclude_witness ctxt) (flat witts))140

141

val typeset = HOLogic.mk_Collect ("α", dummyT,142

const‹AOT_model_valid_in› $ const‹w0› $143

(trm $ (Const (const_name‹AOT_term_of_var›, dummyT) $ Bound 0)))144

val typeset = Syntax.check_term thy typeset145

val nonempty_thm = Drule.OF146

(@{thm AOT_rigid_restriction_condition.type_set_nonempty}, thms)147

148

val ((_,st),thy) = Typedef.add_typedef {overloaded=true}149

(Binding.name name, [], Mixfix.NoSyn) typeset (SOME bnds)150

(fn ctxt => (Tactic.resolve_tac ctxt ([nonempty_thm]) 1)) thy151

val ({rep_type = _, abs_type = _, Rep_name = Rep_name, Abs_name = Abs_name,152

axiom_name = _},153

{inhabited = _, type_definition = type_definition, Rep = _,154

Rep_inverse = _, Abs_inverse = _, Rep_inject = _, Abs_inject = _,155

Rep_cases = _, Abs_cases = _, Rep_induct = _, Abs_induct = _}) = st156

157

val locale_thm = Drule.OF (@{thm AOT_restricted_type_intro}, type_definition::thms)158

159

val st = Interpretation.global_interpretation (([(@{locale AOT_restricted_type},160

((name, true), (Expression.Named [161

("ψ", trm),162

("Rep", Const (Rep_name, dummyT)),163

("Abs", Const (Abs_name, dummyT))], [])))164

], [])) [] thy165

166

val st = Proof.refine_insert [locale_thm] st167

val thy = Proof.global_immediate_proof st168

169

val thy = Local_Theory.background_theory (AOT_Constraints.map (170

Symtab.update (name, (term_of (snd free), term_of (snd free))))) thy171

val thy = Local_Theory.background_theory (AOT_Restriction.map (172

Symtab.update (name, (trm, Const (Rep_name, dummyT))))) thy173

174

in thy end175

in176

Element.witness_proof after_qed [[localeTerm]] thy177

end178

179

val _ =180

Outer_Syntax.command181

command_keyword‹AOT_register_rigid_restricted_type›182

"Register a restricted type."183

(((Parse.short_ident –| Parse.$$$ ":") – Parse.term) »184

(Toplevel.local_theory_to_proof NONE NONE o register_rigid_restricted_type));185

›186

187

351

A. Isabelle Theory

(* Generalized mechanism for "AOT_restricted_type.∀I" followed by ∀E *)188

ML‹189

fun get_instantiated_allI ctxt varname thm = let190

val trm = Thm.concl_of thm191

val trm = case trm of (@{const Trueprop} $ (@{const AOT_model_valid_in} $ _ $ x)) => x192

| _ => raise Term.TERM ("Expected simple theorem.", [trm])193

fun extractVars (Const (const_name‹AOT_term_of_var›, t) $ (Const rep $ Var v)) =194

(if fst (fst v) = fst varname195

then [Const (const_name‹AOT_term_of_var›, t) $ (Const rep $ Var v)]196

else []) (* TODO: care about the index *)197

| extractVars (t1 $ t2) = extractVars t1 @ extractVars t2198

| extractVars (Abs (_, _, t)) = extractVars t199

| extractVars _ = []200

val vars = extractVars trm201

val vartrm = hd vars202

val vars = fold Term.add_vars vars []203

val var = hd vars204

val trmty = (case vartrm of (Const (_, Type ("fun", [_, ty])) $ _) => ty205

| _ => raise Match)206

val varty = snd var207

val tyname = fst (Term.dest_Type varty)208

val b = tynameˆ".∀I" (* TODO: better way to find the theorem *)209

val thms = fst (Context.map_proof_result (fn ctxt => (Attrib.eval_thms ctxt210

[(Facts.Named ((b,Position.none),NONE),[])], ctxt)) ctxt)211

val allthm = (case thms of (thm::_) => thm212

| _ => raise Fail "Unknown restricted type.")213

val trm = Abs (Term.string_of_vname (fst var), trmty, Term.abstract_over (vartrm, trm))214

val trm = Thm.cterm_of (Context.proof_of ctxt) trm215

val phi = hd (Term.add_vars (Thm.prop_of allthm) [])216

val allthm = Drule.instantiate_normalize (TVars.empty, Vars.make [(phi,trm)]) allthm217

in218

allthm219

end220

›221

222

(* TODO: unconstraining multiple variables does not work yet *)223

attribute_setup "unconstrain" =224

‹Scan.lift (Scan.repeat1 Args.var) » (fn args => Thm.rule_attribute []225

(fn ctxt => fn thm =>226

let227

val thm = fold (fn arg => fn thm => thm RS get_instantiated_allI ctxt arg thm)228

args thm229

val thm = fold (fn _ => fn thm => thm RS @{thm "∀E"(2)}) args thm230

in231

thm232

end))›233

"Generalize a statement about restricted variables to a statement about234

unrestricted variables with explicit restriction condition."235

236

237

238

context AOT_restricted_type239

begin240

241

AOT_theorem "rule-ui": (93)242

assumes ‹∀α(ψ{α} → ϕ{α})›243

shows ‹ϕ{«AOT_term_of_var (Rep α)»}›244

proof -245

AOT_have ‹ϕ{α}› if ‹ψ{α}› for α using assms[THEN "∀E"(2), THEN "→E"] that by blast246

moreover AOT_have ‹ψ{«AOT_term_of_var (Rep α)»}›247

by (auto simp: ψ)248

ultimately show ?thesis by blast249

qed250

352

A.9. Restricted Variables

lemmas "∀E" = "rule-ui"251

252

AOT_theorem "instantiation": (102)253

assumes ‹for arbitrary β: ϕ{«AOT_term_of_var (Rep β)»} ` χ› and ‹∃α (ψ{α} & ϕ{α})›254

shows ‹χ›255

proof -256

AOT_have ‹ϕ{«AOT_term_of_var (Rep α)»} → χ› for α257

using assms(1)258

by (simp add: "deduction-theorem")259

AOT_hence 0: ‹∀α (ψ{α} → (ϕ{α} → χ))›260

using GEN by simp261

moreover AOT_obtain α where ‹ψ{α} & ϕ{α}› using assms(2) "∃E"[rotated] by blast262

ultimately AOT_show ‹χ› using "AOT_PLM.∀E"(2)[THEN "→E", THEN "→E"] "&E" by fast263

qed264

lemmas "∃E" = "instantiation"265

266

AOT_theorem existential: assumes ‹ϕ{«AOT_term_of_var (Rep β)»}› (101)267

shows ‹∃ α (ψ{α} & ϕ{α})›268

by (meson AOT_restricted_type.ψ AOT_restricted_type_axioms assms269

"&I" "existential:2[const_var]")270

lemmas "∃I" = existential271

end272

273

274

context AOT_rigid_restriction_condition275

begin276

277

AOT_theorem "res-var-bound-reas[1]": (334)278

‹∀α(ψ{α} → ∀β ϕ{α, β}) ≡ ∀β∀α (ψ{α} → ϕ{α, β})›279

proof(safe intro!: "≡I" "→I" GEN)280

fix β α281

AOT_assume ‹∀α (ψ{α} → ∀β ϕ{α, β})›282

AOT_hence ‹ψ{α} → ∀β ϕ{α, β}› using "∀E"(2) by blast283

moreover AOT_assume ‹ψ{α}›284

ultimately AOT_have ‹∀β ϕ{α, β}› using "→E" by blast285

AOT_thus ‹ϕ{α, β}› using "∀E"(2) by blast286

next287

fix α β288

AOT_assume ‹∀β∀α(ψ{α} → ϕ{α, β})›289

AOT_hence ‹∀α(ψ{α} → ϕ{α, β})› using "∀E"(2) by blast290

AOT_hence ‹ψ{α} → ϕ{α, β}› using "∀E"(2) by blast291

moreover AOT_assume ‹ψ{α}›292

ultimately AOT_show ‹ϕ{α, β}› using "→E" by blast293

qed294

295

AOT_theorem "res-var-bound-reas[BF]": (334)296

‹∀α(ψ{α} → �ϕ{α}) → �∀α(ψ{α} → ϕ{α})›297

proof(safe intro!: "→I")298

AOT_assume ‹∀α(ψ{α} → �ϕ{α})›299

AOT_hence ‹ψ{α} → �ϕ{α}› for α300

using "∀E"(2) by blast301

AOT_hence ‹�(ψ{α} → ϕ{α})› for α302

by (metis "sc-eq-box-box:6" rigid_condition "vdash-properties:6")303

AOT_hence ‹∀α �(ψ{α} → ϕ{α})›304

by (rule GEN)305

AOT_thus ‹�∀α (ψ{α} → ϕ{α})›306

by (metis "BF" "vdash-properties:6")307

qed308

309

AOT_theorem "res-var-bound-reas[CBF]": (334)310

‹�∀α(ψ{α} → ϕ{α}) → ∀α(ψ{α} → �ϕ{α})›311

proof(safe intro!: "→I" GEN)312

fix α313

353

A. Isabelle Theory

AOT_assume ‹�∀α (ψ{α} → ϕ{α})›314

AOT_hence ‹∀α �(ψ{α} → ϕ{α})›315

by (metis "CBF" "vdash-properties:6")316

AOT_hence 1: ‹�(ψ{α} → ϕ{α})›317

using "∀E"(2) by blast318

AOT_assume ‹ψ{α}›319

AOT_hence ‹�ψ{α}›320

by (metis "B♦" "T♦" rigid_condition "vdash-properties:6")321

AOT_thus ‹�ϕ{α}›322

using 1 "qml:1"[axiom_inst, THEN "→E", THEN "→E"] by blast323

qed324

325

AOT_theorem "res-var-bound-reas[2]": (334)326

‹∀α (ψ{α} → Aϕ{α}) → A∀α (ψ{α} → ϕ{α})›327

proof(safe intro!: "→I")328

AOT_assume ‹∀α (ψ{α} → Aϕ{α})›329

AOT_hence ‹ψ{α} → Aϕ{α}› for α330

using "∀E"(2) by blast331

AOT_hence ‹A(ψ{α} → ϕ{α})› for α332

by (metis "sc-eq-box-box:7" rigid_condition "vdash-properties:6")333

AOT_hence ‹∀α A(ψ{α} → ϕ{α})›334

by (rule GEN)335

AOT_thus ‹A∀α(ψ{α} → ϕ{α})›336

by (metis "≡E"(2) "logic-actual-nec:3"[axiom_inst])337

qed338

339

340

AOT_theorem "res-var-bound-reas[3]": (334)341

‹A∀α (ψ{α} → ϕ{α}) → ∀α (ψ{α} → Aϕ{α})›342

proof(safe intro!: "→I" GEN)343

fix α344

AOT_assume ‹A∀α (ψ{α} → ϕ{α})›345

AOT_hence ‹∀α A(ψ{α} → ϕ{α})›346

by (metis "≡E"(1) "logic-actual-nec:3"[axiom_inst])347

AOT_hence 1: ‹A(ψ{α} → ϕ{α})› by (metis "rule-ui:3")348

AOT_assume ‹ψ{α}›349

AOT_hence ‹Aψ{α}›350

by (metis "nec-imp-act" "qml:2"[axiom_inst] rigid_condition "→E")351

AOT_thus ‹Aϕ{α}›352

using 1 by (metis "act-cond" "→E")353

qed354

355

AOT_theorem "res-var-bound-reas[Buridan]": (334)356

‹∃α (ψ{α} & �ϕ{α}) → �∃α (ψ{α} & ϕ{α})›357

proof (rule "→I")358

AOT_assume ‹∃α (ψ{α} & �ϕ{α})›359

then AOT_obtain α where ‹ψ{α} & �ϕ{α}›360

using "∃E"[rotated] by blast361

AOT_hence ‹�(ψ{α} & ϕ{α})›362

by (metis "KBasic:11" "KBasic:3" "T♦" "&I" "&E"(1) "&E"(2)363

"≡E"(2) "reductio-aa:1" rigid_condition "vdash-properties:6")364

AOT_hence ‹∃α �(ψ{α} & ϕ{α})›365

by (rule "∃I")366

AOT_thus ‹�∃α (ψ{α} & ϕ{α})›367

by (rule Buridan[THEN "→E"])368

qed369

370

AOT_theorem "res-var-bound-reas[BF♦]": (334)371

‹♦∃α (ψ{α} & ϕ{α}) → ∃α (ψ{α} & ♦ϕ{α})›372

proof(rule "→I")373

AOT_assume ‹♦∃α (ψ{α} & ϕ{α})›374

AOT_hence ‹∃α ♦(ψ{α} & ϕ{α})›375

using "BF♦"[THEN "→E"] by blast376

354

A.9. Restricted Variables

then AOT_obtain α where ‹♦(ψ{α} & ϕ{α})›377

using "∃E"[rotated] by blast378

AOT_hence ‹♦ψ{α}› and ‹♦ϕ{α}›379

using "KBasic2:3" "&E" "→E" by blast+380

moreover AOT_have ‹ψ{α}›381

using calculation rigid_condition by (metis "B♦" "K♦" "→E")382

ultimately AOT_have ‹ψ{α} & ♦ϕ{α}›383

using "&I" by blast384

AOT_thus ‹∃α (ψ{α} & ♦ϕ{α})›385

by (rule "∃I")386

qed387

388

AOT_theorem "res-var-bound-reas[CBF♦]": (334)389

‹∃α (ψ{α} & ♦ϕ{α}) → ♦∃α (ψ{α} & ϕ{α})›390

proof(rule "→I")391

AOT_assume ‹∃α (ψ{α} & ♦ϕ{α})›392

then AOT_obtain α where ‹ψ{α} & ♦ϕ{α}›393

using "∃E"[rotated] by blast394

AOT_hence ‹�ψ{α}› and ‹♦ϕ{α}›395

using rigid_condition[THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"] "&E" by blast+396

AOT_hence ‹♦(ψ{α} & ϕ{α})›397

by (metis "KBasic:16" "con-dis-taut:5" "→E")398

AOT_hence ‹∃α ♦(ψ{α} & ϕ{α})›399

by (rule "∃I")400

AOT_thus ‹♦∃α (ψ{α} & ϕ{α})›401

using "CBF♦"[THEN "→E"] by fast402

qed403

404

AOT_theorem "res-var-bound-reas[A-Exists:1]": (334)405

‹A∃!α (ψ{α} & ϕ{α}) ≡ ∃!α (ψ{α} & Aϕ{α})›406

proof(safe intro!: "≡I" "→I")407

AOT_assume ‹A∃!α (ψ{α} & ϕ{α})›408

AOT_hence ‹∃!α A(ψ{α} & ϕ{α})›409

using "A-Exists:1"[THEN "≡E"(1)] by blast410

AOT_hence ‹∃!α (Aψ{α} & Aϕ{α})›411

apply(AOT_subst ‹Aψ{α} & Aϕ{α}› ‹A(ψ{α} & ϕ{α})› for: α)412

apply (meson "Act-Basic:2" "intro-elim:3:f" "oth-class-taut:3:a")413

by simp414

AOT_thus ‹∃!α (ψ{α} & Aϕ{α})›415

apply (AOT_subst ‹ψ{α}› ‹Aψ{α}› for: α)416

using "Commutativity of ≡" "intro-elim:3:b" "sc-eq-fur:2"417

"→E" rigid_condition by blast418

next419

AOT_assume ‹∃!α (ψ{α} & Aϕ{α})›420

AOT_hence ‹∃!α (Aψ{α} & Aϕ{α})›421

apply (AOT_subst ‹Aψ{α}› ‹ψ{α}› for: α)422

apply (meson "sc-eq-fur:2" "→E" rigid_condition)423

by simp424

AOT_hence ‹∃!α A(ψ{α} & ϕ{α})›425

apply (AOT_subst ‹A(ψ{α} & ϕ{α})› ‹Aψ{α} & Aϕ{α}› for: α)426

using "Act-Basic:2" apply presburger427

by simp428

AOT_thus ‹A∃!α (ψ{α} & ϕ{α})›429

by (metis "A-Exists:1" "intro-elim:3:b")430

qed431

432

end433

434

(*<*)435

end436

(*>*)437

355

A. Isabelle Theory

A.10. Extended Relation Comprehension

theory AOT_ExtendedRelationComprehension1

imports AOT_RestrictedVariables2

begin3

4

section‹Extended Relation Comprehension›5

6

text‹This theory depends on choosing extended models.›7

interpretation AOT_ExtendedModel by (standard; auto)8

9

text‹Auxiliary lemma: negations of denoting relations denote.›10

AOT_theorem negation_denotes: ‹[λx ϕ{x}]↓ → [λx ¬ϕ{x}]↓›11

proof(rule "→I")12

AOT_assume 0: ‹[λx ϕ{x}]↓›13

AOT_show ‹[λx ¬ϕ{x}]↓›14

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])15

AOT_show ‹[λx ¬[λx ϕ{x}]x]↓› by "cqt:2"16

next17

AOT_have ‹�[λx ϕ{x}]↓›18

using 0 "exist-nec"[THEN "→E"] by blast19

moreover AOT_have ‹�[λx ϕ{x}]↓ → �∀x (¬[λx ϕ{x}]x ≡ ¬ϕ{x})›20

by(rule RM; safe intro!: GEN "≡I" "→I" "β→C"(2) "β←C"(2) "cqt:2")21

ultimately AOT_show ‹�∀x (¬[λx ϕ{x}]x ≡ ¬ϕ{x})›22

using "→E" by blast23

qed24

qed25

26

text‹Auxiliary lemma: conjunctions of denoting relations denote.›27

AOT_theorem conjunction_denotes: ‹[λx ϕ{x}]↓ & [λx ψ{x}]↓ → [λx ϕ{x} & ψ{x}]↓›28

proof(rule "→I")29

AOT_assume 0: ‹[λx ϕ{x}]↓ & [λx ψ{x}]↓›30

AOT_show ‹[λx ϕ{x} & ψ{x}]↓›31

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])32

AOT_show ‹[λx [λx ϕ{x}]x & [λx ψ{x}]x]↓› by "cqt:2"33

next34

AOT_have ‹�([λx ϕ{x}]↓ & [λx ψ{x}]↓)›35

using 0 "exist-nec"[THEN "→E"] "&E"36

"KBasic:3" "df-simplify:2" "intro-elim:3:b" by blast37

moreover AOT_have38

‹�([λx ϕ{x}]↓ & [λx ψ{x}]↓) → �∀x ([λx ϕ{x}]x & [λx ψ{x}]x ≡ ϕ{x} & ψ{x})›39

by(rule RM; auto intro!: GEN "≡I" "→I" "cqt:2" "&I"40

intro: "β←C"41

dest: "&E" "β→C")42

ultimately AOT_show ‹�∀x ([λx ϕ{x}]x & [λx ψ{x}]x ≡ ϕ{x} & ψ{x})›43

using "→E" by blast44

qed45

qed46

47

AOT_register_rigid_restricted_type48

Ordinary: ‹O!κ›49

proof50

AOT_modally_strict {51

AOT_show ‹∃x O!x›52

by (meson "B♦" "T♦" "o-objects-exist:1" "→E")53

}54

next55

AOT_modally_strict {56

AOT_show ‹O!κ → κ↓› for κ57

by (simp add: "→I" "cqt:5:a[1]"[axiom_inst, THEN "→E", THEN "&E"(2)])58

}59

next60

AOT_modally_strict {61

356

A.10. Extended Relation Comprehension

AOT_show ‹∀α(O!α → �O!α)›62

by (simp add: GEN "oa-facts:1")63

}64

qed65

66

AOT_register_variable_names67

Ordinary: u v r t s68

69

text‹In PLM this is defined in the Natural Numbers chapter,70

but since it is helpful for stating the comprehension principles,71

we already define it here.›72

AOT_define eqE :: ‹τ ⇒ τ ⇒ ϕ› (infixl ‹≡E› 50)73

eqE: ‹F ≡E G ≡df F↓ & G↓ & ∀u ([F]u ≡ [G]u)› (738)74

75

text‹Derive existence claims about relations from the axioms.›76

AOT_theorem denotes_all: ‹[λx ∀G (�G ≡E F → x[G])]↓›77

and denotes_all_neg: ‹[λx ∀G (�G ≡E F → ¬x[G])]↓›78

proof -79

AOT_have Aux: ‹∀F (�F ≡E G → (x[F] ≡ x[G])), ¬(x[G] ≡ y[G])80

`� ∃F([F]x & ¬[F]y)› for x y G81

proof -82

AOT_modally_strict {83

AOT_assume 0: ‹∀F (�F ≡E G → (x[F] ≡ x[G]))›84

AOT_assume G_prop: ‹¬(x[G] ≡ y[G])›85

{86

AOT_assume ‹¬∃F([F]x & ¬[F]y)›87

AOT_hence 0: ‹∀F ¬([F]x & ¬[F]y)›88

by (metis "cqt-further:4" "→E")89

AOT_have ‹∀F ([F]x ≡ [F]y)›90

proof (rule GEN; rule "≡I"; rule "→I")91

fix F92

AOT_assume ‹[F]x›93

moreover AOT_have ‹¬([F]x & ¬[F]y)›94

using 0[THEN "∀E"(2)] by blast95

ultimately AOT_show ‹[F]y›96

by (metis "&I" "raa-cor:1")97

next98

fix F99

AOT_assume ‹[F]y›100

AOT_hence ‹¬[λx ¬[F]x]y›101

by (metis "¬¬I" "β→C"(2))102

moreover AOT_have ‹¬([λx ¬[F]x]x & ¬[λx ¬[F]x]y)›103

apply (rule 0[THEN "∀E"(1)]) by "cqt:2[lambda]"104

ultimately AOT_have 1: ‹¬[λx ¬[F]x]x›105

by (metis "&I" "raa-cor:3")106

{107

AOT_assume ‹¬[F]x›108

AOT_hence ‹[λx ¬[F]x]x›109

by (auto intro!: "β←C"(1) "cqt:2")110

AOT_hence ‹p & ¬p› for p111

using 1 by (metis "raa-cor:3")112

}113

AOT_thus ‹[F]x› by (metis "raa-cor:1")114

qed115

AOT_hence ‹�∀F ([F]x ≡ [F]y)›116

using "ind-nec"[THEN "→E"] by blast117

AOT_hence ‹∀F �([F]x ≡ [F]y)›118

by (metis "CBF" "→E")119

} note indistI = this120

{121

AOT_assume G_prop: ‹x[G] & ¬y[G]›122

AOT_hence Ax: ‹A!x›123

using "&E"(1) "∃I"(2) "→E" "encoders-are-abstract" by blast124

357

A. Isabelle Theory

125

{126

AOT_assume Ay: ‹A!y›127

{128

fix F129

{130

AOT_assume ‹∀u�([F]u ≡ [G]u)›131

AOT_hence ‹�∀u([F]u ≡ [G]u)›132

using "Ordinary.res-var-bound-reas[BF]"[THEN "→E"] by simp133

AOT_hence ‹�F ≡E G›134

by (AOT_subst ‹F ≡E G› ‹∀u ([F]u ≡ [G]u)›)135

(auto intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")136

AOT_hence ‹x[F] ≡ x[G]›137

using 0[THEN "∀E"(2)] "≡E" "→E" by meson138

AOT_hence ‹x[F]›139

using G_prop "&E" "≡E" by blast140

}141

AOT_hence ‹∀u�([F]u ≡ [G]u) → x[F]›142

by (rule "→I")143

}144

AOT_hence xprop: ‹∀F(∀u�([F]u ≡ [G]u) → x[F])›145

by (rule GEN)146

moreover AOT_have yprop: ‹¬∀F(∀u�([F]u ≡ [G]u) → y[F])›147

proof (rule "raa-cor:2")148

AOT_assume ‹∀F(∀u�([F]u ≡ [G]u) → y[F])›149

AOT_hence ‹∀F(�∀u([F]u ≡ [G]u) → y[F])›150

apply (AOT_subst ‹�∀u([F]u ≡ [G]u)› ‹∀u�([F]u ≡ [G]u)› for: F)151

using "Ordinary.res-var-bound-reas[BF]"152

"Ordinary.res-var-bound-reas[CBF]"153

"intro-elim:2" apply presburger154

by simp155

AOT_hence A: ‹∀F(�F ≡E G → y[F])›156

by (AOT_subst ‹F ≡E G› ‹∀u ([F]u ≡ [G]u)› for: F)157

(auto intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")158

moreover AOT_have ‹�G ≡E G›159

by (auto intro!: "eqE"[THEN "≡dfI"] "cqt:2" RN "&I" GEN "→I" "≡I")160

ultimately AOT_have ‹y[G]› using "∀E"(2) "→E" by blast161

AOT_thus ‹p & ¬p› for p using G_prop "&E" by (metis "raa-cor:3")162

qed163

AOT_have ‹∃F([F]x & ¬[F]y)›164

proof(rule "raa-cor:1")165

AOT_assume ‹¬∃F([F]x & ¬[F]y)›166

AOT_hence indist: ‹∀F �([F]x ≡ [F]y)› using indistI by blast167

AOT_have ‹∀F(∀u�([F]u ≡ [G]u) → y[F])›168

using indistinguishable_ord_enc_all[axiom_inst, THEN "→E", OF "&I",169

OF "&I", OF "&I", OF "cqt:2[const_var]"[axiom_inst],170

OF Ax, OF Ay, OF indist, THEN "≡E"(1), OF xprop].171

AOT_thus ‹∀F(∀u�([F]u ≡ [G]u) → y[F]) & ¬∀F(∀u�([F]u ≡ [G]u) → y[F])›172

using yprop "&I" by blast173

qed174

}175

moreover {176

AOT_assume notAy: ‹¬A!y›177

AOT_have ‹∃F([F]x & ¬[F]y)›178

apply (rule "∃I"(1)[where τ=‹«A!»›])179

using Ax notAy "&I" apply blast180

by (simp add: "oa-exist:2")181

}182

ultimately AOT_have ‹∃F([F]x & ¬[F]y)›183

by (metis "raa-cor:1")184

}185

moreover {186

AOT_assume G_prop: ‹¬x[G] & y[G]›187

358

A.10. Extended Relation Comprehension

AOT_hence Ay: ‹A!y›188

by (meson "&E"(2) "encoders-are-abstract" "existential:2[const_var]" "→E")189

AOT_hence notOy: ‹¬O!y›190

using "≡E"(1) "oa-contingent:3" by blast191

{192

AOT_assume Ax: ‹A!x›193

{194

fix F195

{196

AOT_assume ‹�∀u([F]u ≡ [G]u)›197

AOT_hence ‹�F ≡E G›198

by (AOT_subst ‹F ≡E G› ‹∀u([F]u ≡ [G]u)›)199

(auto intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")200

AOT_hence ‹x[F] ≡ x[G]›201

using 0[THEN "∀E"(2)] "≡E" "→E" by meson202

AOT_hence ‹¬x[F]›203

using G_prop "&E" "≡E" by blast204

}205

AOT_hence ‹�∀u([F]u ≡ [G]u) → ¬x[F]›206

by (rule "→I")207

}208

AOT_hence x_prop: ‹∀F(�∀u([F]u ≡ [G]u) → ¬x[F])›209

by (rule GEN)210

AOT_have x_prop: ‹¬∃F(∀u�([F]u ≡ [G]u) & x[F])›211

proof (rule "raa-cor:2")212

AOT_assume ‹∃F(∀u �([F]u ≡ [G]u) & x[F])›213

then AOT_obtain F where F_prop: ‹∀u �([F]u ≡ [G]u) & x[F]›214

using "∃E"[rotated] by blast215

AOT_have ‹�([F]u ≡ [G]u)› for u216

using F_prop[THEN "&E"(1), THEN "Ordinary.∀E"].217

AOT_hence ‹∀u �([F]u ≡ [G]u)›218

by (rule Ordinary.GEN)219

AOT_hence ‹�∀u([F]u ≡ [G]u)›220

by (metis "Ordinary.res-var-bound-reas[BF]" "→E")221

AOT_hence ‹¬x[F]›222

using x_prop[THEN "∀E"(2), THEN "→E"] by blast223

AOT_thus ‹p & ¬p› for p224

using F_prop[THEN "&E"(2)] by (metis "raa-cor:3")225

qed226

AOT_have y_prop: ‹∃F(∀u �([F]u ≡ [G]u) & y[F])›227

proof (rule "raa-cor:1")228

AOT_assume ‹¬∃F (∀u �([F]u ≡ [G]u) & y[F])›229

AOT_hence 0: ‹∀F ¬(∀u �([F]u ≡ [G]u) & y[F])›230

using "cqt-further:4"[THEN "→E"] by blast231

{232

fix F233

{234

AOT_assume ‹∀u �([F]u ≡ [G]u)›235

AOT_hence ‹¬y[F]›236

using 0[THEN "∀E"(2)] "&I" "raa-cor:1" by meson237

}238

AOT_hence ‹(∀u �([F]u ≡ [G]u) → ¬y[F])›239

by (rule "→I")240

}241

AOT_hence A: ‹∀F(∀u �([F]u ≡ [G]u) → ¬y[F])›242

by (rule GEN)243

moreover AOT_have ‹∀u �([G]u ≡ [G]u)›244

by (simp add: RN "oth-class-taut:3:a" "universal-cor" "→I")245

ultimately AOT_have ‹¬y[G]›246

using "∀E"(2) "→E" by blast247

AOT_thus ‹p & ¬p› for p248

using G_prop "&E" by (metis "raa-cor:3")249

qed250

359

A. Isabelle Theory

AOT_have ‹∃F([F]x & ¬[F]y)›251

proof(rule "raa-cor:1")252

AOT_assume ‹¬∃F([F]x & ¬[F]y)›253

AOT_hence indist: ‹∀F �([F]x ≡ [F]y)›254

using indistI by blast255

AOT_thus ‹∃F(∀u �([F]u ≡ [G]u) & x[F]) & ¬∃F(∀u �([F]u ≡ [G]u) & x[F])›256

using indistinguishable_ord_enc_ex[axiom_inst, THEN "→E", OF "&I",257

OF "&I", OF "&I", OF "cqt:2[const_var]"[axiom_inst],258

OF Ax, OF Ay, OF indist, THEN "≡E"(2), OF y_prop]259

x_prop "&I" by blast260

qed261

}262

moreover {263

AOT_assume notAx: ‹¬A!x›264

AOT_hence Ox: ‹O!x›265

using "∨E"(3) "oa-exist:3" by blast266

AOT_have ‹∃F([F]x & ¬[F]y)›267

apply (rule "∃I"(1)[where τ=‹«O!»›])268

using Ox notOy "&I" apply blast269

by (simp add: "oa-exist:1")270

}271

ultimately AOT_have ‹∃F([F]x & ¬[F]y)›272

by (metis "raa-cor:1")273

}274

ultimately AOT_show ‹∃F([F]x & ¬[F]y)›275

using G_prop by (metis "&I" "→I" "≡I" "raa-cor:1")276

}277

qed278

279

AOT_modally_strict {280

fix x y281

AOT_assume indist: ‹∀F ([F]x ≡ [F]y)›282

AOT_hence nec_indist: ‹�∀F ([F]x ≡ [F]y)›283

using "ind-nec" "vdash-properties:10" by blast284

AOT_hence indist_nec: ‹∀F �([F]x ≡ [F]y)›285

using "CBF" "vdash-properties:10" by blast286

AOT_assume 0: ‹∀G (�G ≡E F → x[G])›287

AOT_hence 1: ‹∀G (�∀u ([G]u ≡ [F]u) → x[G])›288

by (AOT_subst (reverse) ‹∀u ([G]u ≡ [F]u)› ‹G ≡E F› for: G)289

(auto intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")290

AOT_have ‹x[F]›291

by (safe intro!: 1[THEN "∀E"(2), THEN "→E"] GEN "→I" RN "≡I")292

AOT_have ‹∀G (�G ≡E F → y[G])›293

proof(rule "raa-cor:1")294

AOT_assume ‹¬∀G (�G ≡E F → y[G])›295

AOT_hence ‹∃G ¬(�G ≡E F → y[G])›296

using "cqt-further:2" "→E" by blast297

then AOT_obtain G where G_prop: ‹¬(�G ≡E F → y[G])›298

using "∃E"[rotated] by blast299

AOT_hence 1: ‹�G ≡E F & ¬y[G]›300

by (metis "≡E"(1) "oth-class-taut:1:b")301

AOT_have xG: ‹x[G]›302

using 0[THEN "∀E"(2), THEN "→E"] 1[THEN "&E"(1)] by blast303

AOT_hence ‹x[G] & ¬y[G]›304

using 1[THEN "&E"(2)] "&I" by blast305

AOT_hence B: ‹¬(x[G] ≡ y[G])›306

using "&E"(2) "≡E"(1) "reductio-aa:1" xG by blast307

{308

fix H309

{310

AOT_assume ‹�H ≡E G›311

AOT_hence ‹�(H ≡E G & G ≡E F)›312

using 1 by (metis "KBasic:3" "con-dis-i-e:1" "con-dis-i-e:2:a"313

360

A.10. Extended Relation Comprehension

"intro-elim:3:b")314

moreover AOT_have ‹�(H ≡E G & G ≡E F) → �(H ≡E F)›315

proof(rule RM)316

AOT_modally_strict {317

AOT_show ‹H ≡E G & G ≡E F → H ≡E F›318

proof (safe intro!: "→I" "eqE"[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN)319

fix u320

AOT_assume ‹H ≡E G & G ≡E F›321

AOT_hence ‹∀u ([H]u ≡ [G]u)› and ‹∀u ([G]u ≡ [F]u)›322

using "eqE"[THEN "≡dfE"] "&E" by blast+323

AOT_thus ‹[H]u ≡ [F]u›324

by (auto dest!: "Ordinary.∀E" dest: "≡E")325

qed326

}327

qed328

ultimately AOT_have ‹�(H ≡E F)›329

using "→E" by blast330

AOT_hence ‹x[H]›331

using 0[THEN "∀E"(2)] "→E" by blast332

AOT_hence ‹x[H] ≡ x[G]›333

using xG "≡I" "→I" by blast334

}335

AOT_hence ‹�H ≡E G → (x[H] ≡ x[G])› by (rule "→I")336

}337

AOT_hence A: ‹∀H(�H ≡E G → (x[H] ≡ x[G]))›338

by (rule GEN)339

then AOT_obtain F where F_prop: ‹[F]x & ¬[F]y›340

using Aux[OF A, OF B] "∃E"[rotated] by blast341

moreover AOT_have ‹[F]y›342

using indist[THEN "∀E"(2), THEN "≡E"(1), OF F_prop[THEN "&E"(1)]].343

AOT_thus ‹p & ¬p› for p344

using F_prop[THEN "&E"(2)] by (metis "raa-cor:3")345

qed346

} note 0 = this347

AOT_modally_strict {348

fix x y349

AOT_assume ‹∀F ([F]x ≡ [F]y)›350

moreover AOT_have ‹∀F ([F]y ≡ [F]x)›351

by (metis calculation "cqt-basic:11" "≡E"(2))352

ultimately AOT_have ‹∀G (�G ≡E F → x[G]) ≡ ∀G (�G ≡E F → y[G])›353

using 0 "≡I" "→I" by auto354

} note 1 = this355

AOT_show ‹[λx ∀G (�G ≡E F → x[G])]↓›356

by (safe intro!: RN GEN "→I" 1 "kirchner-thm:2"[THEN "≡E"(2)])357

358

AOT_modally_strict {359

fix x y360

AOT_assume indist: ‹∀F ([F]x ≡ [F]y)›361

AOT_hence nec_indist: ‹�∀F ([F]x ≡ [F]y)›362

using "ind-nec" "vdash-properties:10" by blast363

AOT_hence indist_nec: ‹∀F �([F]x ≡ [F]y)›364

using "CBF" "vdash-properties:10" by blast365

AOT_assume 0: ‹∀G (�G ≡E F → ¬x[G])›366

AOT_hence 1: ‹∀G (�∀u ([G]u ≡ [F]u) → ¬x[G])›367

by (AOT_subst (reverse) ‹∀u ([G]u ≡ [F]u)› ‹G ≡E F› for: G)368

(auto intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")369

AOT_have ‹¬x[F]›370

by (safe intro!: 1[THEN "∀E"(2), THEN "→E"] GEN "→I" RN "≡I")371

AOT_have ‹∀G (�G ≡E F → ¬y[G])›372

proof(rule "raa-cor:1")373

AOT_assume ‹¬∀G (�G ≡E F → ¬y[G])›374

AOT_hence ‹∃G ¬(�G ≡E F → ¬y[G])›375

using "cqt-further:2" "→E" by blast376

361

A. Isabelle Theory

then AOT_obtain G where G_prop: ‹¬(�G ≡E F → ¬y[G])›377

using "∃E"[rotated] by blast378

AOT_hence 1: ‹�G ≡E F & ¬¬y[G]›379

by (metis "≡E"(1) "oth-class-taut:1:b")380

AOT_hence yG: ‹y[G]›381

using G_prop "→I" "raa-cor:3" by blast382

moreover AOT_hence 12: ‹¬x[G]›383

using 0[THEN "∀E"(2), THEN "→E"] 1[THEN "&E"(1)] by blast384

ultimately AOT_have ‹¬x[G] & y[G]›385

using "&I" by blast386

AOT_hence B: ‹¬(x[G] ≡ y[G])›387

by (metis "12" "≡E"(3) "raa-cor:3" yG)388

{389

fix H390

{391

AOT_assume 3: ‹�H ≡E G›392

AOT_hence ‹�(H ≡E G & G ≡E F)›393

using 1394

by (metis "KBasic:3" "con-dis-i-e:1" "→I" "intro-elim:3:b"395

"reductio-aa:1" G_prop)396

moreover AOT_have ‹�(H ≡E G & G ≡E F) → �(H ≡E F)›397

proof (rule RM)398

AOT_modally_strict {399

AOT_show ‹H ≡E G & G ≡E F → H ≡E F›400

proof (safe intro!: "→I" "eqE"[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN)401

fix u402

AOT_assume ‹H ≡E G & G ≡E F›403

AOT_hence ‹∀u ([H]u ≡ [G]u)› and ‹∀u ([G]u ≡ [F]u)›404

using "eqE"[THEN "≡dfE"] "&E" by blast+405

AOT_thus ‹[H]u ≡ [F]u›406

by (auto dest!: "Ordinary.∀E" dest: "≡E")407

qed408

}409

qed410

ultimately AOT_have ‹�(H ≡E F)›411

using "→E" by blast412

AOT_hence ‹¬x[H]›413

using 0[THEN "∀E"(2)] "→E" by blast414

AOT_hence ‹x[H] ≡ x[G]›415

using 12 "≡I" "→I" by (metis "raa-cor:3")416

}417

AOT_hence ‹�H ≡E G → (x[H] ≡ x[G])›418

by (rule "→I")419

}420

AOT_hence A: ‹∀H(�H ≡E G → (x[H] ≡ x[G]))›421

by (rule GEN)422

then AOT_obtain F where F_prop: ‹[F]x & ¬[F]y›423

using Aux[OF A, OF B] "∃E"[rotated] by blast424

moreover AOT_have ‹[F]y›425

using indist[THEN "∀E"(2), THEN "≡E"(1), OF F_prop[THEN "&E"(1)]].426

AOT_thus ‹p & ¬p› for p427

using F_prop[THEN "&E"(2)] by (metis "raa-cor:3")428

qed429

} note 0 = this430

AOT_modally_strict {431

fix x y432

AOT_assume ‹∀F ([F]x ≡ [F]y)›433

moreover AOT_have ‹∀F ([F]y ≡ [F]x)›434

by (metis calculation "cqt-basic:11" "≡E"(2))435

ultimately AOT_have ‹∀G (�G ≡E F → ¬x[G]) ≡ ∀G (�G ≡E F → ¬y[G])›436

using 0 "≡I" "→I" by auto437

} note 1 = this438

AOT_show ‹[λx ∀G (�G ≡E F → ¬x[G])]↓›439

362

A.10. Extended Relation Comprehension

by (safe intro!: RN GEN "→I" 1 "kirchner-thm:2"[THEN "≡E"(2)])440

qed441

442

text‹Reformulate the existence claims in terms of their negations.›443

444

AOT_theorem denotes_ex: ‹[λx ∃G (�G ≡E F & x[G])]↓›445

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])446

AOT_show ‹[λx ¬∀G (�G ≡E F → ¬x[G])]↓›447

using denotes_all_neg[THEN negation_denotes[THEN "→E"]].448

next449

AOT_show ‹�∀x (¬∀G (�G ≡E F → ¬x[G]) ≡ ∃G (�G ≡E F & x[G]))›450

by (AOT_subst ‹�G ≡E F & x[G]› ‹¬(�G ≡E F → ¬x[G])› for: G x)451

(auto simp: "conventions:1" "rule-eq-df:1"452

intro: "oth-class-taut:4:b"[THEN "≡E"(2)]453

"intro-elim:3:f"[OF "cqt-further:3", OF "oth-class-taut:3:b"]454

intro!: RN GEN)455

qed456

457

AOT_theorem denotes_ex_neg: ‹[λx ∃G (�G ≡E F & ¬x[G])]↓›458

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])459

AOT_show ‹[λx ¬∀G (�G ≡E F → x[G])]↓›460

using denotes_all[THEN negation_denotes[THEN "→E"]].461

next462

AOT_show ‹�∀x (¬∀G (�G ≡E F → x[G]) ≡ ∃G (�G ≡E F & ¬x[G]))›463

by (AOT_subst (reverse) ‹�G ≡E F & ¬x[G]› ‹¬(�G ≡E F → x[G])› for: G x)464

(auto simp: "oth-class-taut:1:b"465

intro: "oth-class-taut:4:b"[THEN "≡E"(2)]466

"intro-elim:3:f"[OF "cqt-further:3", OF "oth-class-taut:3:b"]467

intro!: RN GEN)468

qed469

470

text‹Derive comprehension principles.›471

472

AOT_theorem Comprehension_1:473

shows ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∃F (ϕ{F} & x[F])]↓›474

proof(rule "→I")475

AOT_assume assm: ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G}))›476

AOT_modally_strict {477

fix x y478

AOT_assume 0: ‹∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G}))›479

AOT_assume indist: ‹∀F ([F]x ≡ [F]y)›480

AOT_assume x_prop: ‹∃F (ϕ{F} & x[F])›481

then AOT_obtain F where F_prop: ‹ϕ{F} & x[F]›482

using "∃E"[rotated] by blast483

AOT_hence ‹�F ≡E F & x[F]›484

by (auto intro!: RN eqE[THEN "≡dfI"] "&I" "cqt:2" GEN "≡I" "→I" dest: "&E")485

AOT_hence ‹∃G(�G ≡E F & x[G])›486

by (rule "∃I")487

AOT_hence ‹[λx ∃G(�G ≡E F & x[G])]x›488

by (safe intro!: "β←C" denotes_ex "cqt:2")489

AOT_hence ‹[λx ∃G(�G ≡E F & x[G])]y›490

using indist[THEN "∀E"(1), OF denotes_ex, THEN "≡E"(1)] by blast491

AOT_hence ‹∃G(�G ≡E F & y[G])›492

using "β→C" by blast493

then AOT_obtain G where ‹�G ≡E F & y[G]›494

using "∃E"[rotated] by blast495

AOT_hence ‹ϕ{G} & y[G]›496

using 0[THEN "∀E"(2), THEN "∀E"(2), THEN "→E", THEN "≡E"(1)]497

F_prop[THEN "&E"(1)] "&E" "&I" by blast498

AOT_hence ‹∃F (ϕ{F} & y[F])›499

by (rule "∃I")500

} note 1 = this501

AOT_modally_strict {502

363

A. Isabelle Theory

AOT_assume 0: ‹∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G}))›503

{504

fix x y505

{506

AOT_assume ‹∀F ([F]x ≡ [F]y)›507

moreover AOT_have ‹∀F ([F]y ≡ [F]x)›508

by (metis calculation "cqt-basic:11" "≡E"(1))509

ultimately AOT_have ‹∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F])›510

using 0 1[OF 0] "≡I" "→I" by simp511

}512

AOT_hence ‹∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F]))›513

using "→I" by blast514

}515

AOT_hence ‹∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F])))›516

by (auto intro!: GEN)517

} note 1 = this518

AOT_hence ‹`� ∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) →519

∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F])))›520

by (rule "→I")521

AOT_hence ‹�∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) →522

�∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F])))›523

by (rule RM)524

AOT_hence ‹�∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & x[F]) ≡ ∃F (ϕ{F} & y[F])))›525

using "→E" assm by blast526

AOT_thus ‹[λx ∃F (ϕ{F} & x[F])]↓›527

by (safe intro!: "kirchner-thm:2"[THEN "≡E"(2)])528

qed529

530

AOT_theorem Comprehension_2:531

shows ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∃F (ϕ{F} & ¬x[F])]↓›532

proof(rule "→I")533

AOT_assume assm: ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G}))›534

AOT_modally_strict {535

fix x y536

AOT_assume 0: ‹∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G}))›537

AOT_assume indist: ‹∀F ([F]x ≡ [F]y)›538

AOT_assume x_prop: ‹∃F (ϕ{F} & ¬x[F])›539

then AOT_obtain F where F_prop: ‹ϕ{F} & ¬x[F]›540

using "∃E"[rotated] by blast541

AOT_hence ‹�F ≡E F & ¬x[F]›542

by (auto intro!: RN eqE[THEN "≡dfI"] "&I" "cqt:2" GEN "≡I" "→I" dest: "&E")543

AOT_hence ‹∃G(�G ≡E F & ¬x[G])›544

by (rule "∃I")545

AOT_hence ‹[λx ∃G(�G ≡E F & ¬x[G])]x›546

by (safe intro!: "β←C" denotes_ex_neg "cqt:2")547

AOT_hence ‹[λx ∃G(�G ≡E F & ¬x[G])]y›548

using indist[THEN "∀E"(1), OF denotes_ex_neg, THEN "≡E"(1)] by blast549

AOT_hence ‹∃G(�G ≡E F & ¬y[G])›550

using "β→C" by blast551

then AOT_obtain G where ‹�G ≡E F & ¬y[G]›552

using "∃E"[rotated] by blast553

AOT_hence ‹ϕ{G} & ¬y[G]›554

using 0[THEN "∀E"(2), THEN "∀E"(2), THEN "→E", THEN "≡E"(1)]555

F_prop[THEN "&E"(1)] "&E" "&I" by blast556

AOT_hence ‹∃F (ϕ{F} & ¬y[F])›557

by (rule "∃I")558

} note 1 = this559

AOT_modally_strict {560

AOT_assume 0: ‹∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G}))›561

{562

fix x y563

{564

AOT_assume ‹∀F ([F]x ≡ [F]y)›565

364

A.10. Extended Relation Comprehension

moreover AOT_have ‹∀F ([F]y ≡ [F]x)›566

by (metis calculation "cqt-basic:11" "≡E"(1))567

ultimately AOT_have ‹∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F])›568

using 0 1[OF 0] "≡I" "→I" by simp569

}570

AOT_hence ‹∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F]))›571

using "→I" by blast572

}573

AOT_hence ‹∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F])))›574

by (auto intro!: GEN)575

} note 1 = this576

AOT_hence ‹`� ∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) →577

∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F])))›578

by (rule "→I")579

AOT_hence ‹�∀F∀G (�G ≡E F → (ϕ{F} ≡ ϕ{G})) →580

�∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F])))›581

by (rule RM)582

AOT_hence ‹�∀x∀y(∀F ([F]x ≡ [F]y) → (∃F (ϕ{F} & ¬x[F]) ≡ ∃F (ϕ{F} & ¬y[F])))›583

using "→E" assm by blast584

AOT_thus ‹[λx ∃F (ϕ{F} & ¬x[F])]↓›585

by (safe intro!: "kirchner-thm:2"[THEN "≡E"(2)])586

qed587

588

text‹Derived variants of the comprehension principles above.›589

590

AOT_theorem Comprehension_1’:591

shows ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∀F (x[F] → ϕ{F})]↓›592

proof(rule "→I")593

AOT_assume ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G}))›594

AOT_hence 0: ‹�∀F∀G(�G ≡E F → (¬ϕ{F} ≡ ¬ϕ{G}))›595

by (AOT_subst (reverse) ‹¬ϕ{F} ≡ ¬ϕ{G}› ‹ϕ{F} ≡ ϕ{G}› for: F G)596

(auto simp: "oth-class-taut:4:b")597

AOT_show ‹[λx ∀F (x[F] → ϕ{F})]↓›598

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])599

AOT_show ‹[λx ¬∃F(¬ϕ{F} & x[F])]↓›600

using Comprehension_1[THEN "→E", OF 0, THEN negation_denotes[THEN "→E"]].601

next602

AOT_show ‹�∀x (¬∃F (¬ϕ{F} & x[F]) ≡ ∀F (x[F] → ϕ{F}))›603

by (AOT_subst (reverse) ‹¬ϕ{F} & x[F]› ‹¬(x[F] → ϕ{F})› for: F x)604

(auto simp: "oth-class-taut:1:b"[THEN "intro-elim:3:e",605

OF "oth-class-taut:2:a"]606

intro: "intro-elim:3:f"[OF "cqt-further:3", OF "oth-class-taut:3:a",607

symmetric]608

intro!: RN GEN)609

qed610

qed611

612

AOT_theorem Comprehension_2’:613

shows ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∀F (ϕ{F} → x[F])]↓›614

proof(rule "→I")615

AOT_assume 0: ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G}))›616

AOT_show ‹[λx ∀F (ϕ{F} → x[F])]↓›617

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])618

AOT_show ‹[λx ¬∃F(ϕ{F} & ¬x[F])]↓›619

using Comprehension_2[THEN "→E", OF 0, THEN negation_denotes[THEN "→E"]].620

next621

AOT_show ‹�∀x (¬∃F (ϕ{F} & ¬x[F]) ≡ ∀F (ϕ{F} → x[F]))›622

by (AOT_subst (reverse) ‹ϕ{F} & ¬x[F]› ‹¬(ϕ{F} → x[F])› for: F x)623

(auto simp: "oth-class-taut:1:b"624

intro: "intro-elim:3:f"[OF "cqt-further:3", OF "oth-class-taut:3:a",625

symmetric]626

intro!: RN GEN)627

qed628

365

A. Isabelle Theory

qed629

630

text‹Derive a combined comprehension principles.›631

632

AOT_theorem Comprehension_3:633

‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G})) → [λx ∀F (x[F] ≡ ϕ{F})]↓›634

proof(rule "→I")635

AOT_assume 0: ‹�∀F∀G(�G ≡E F → (ϕ{F} ≡ ϕ{G}))›636

AOT_show ‹[λx ∀F (x[F] ≡ ϕ{F})]↓›637

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])638

AOT_show ‹[λx ∀F (x[F] → ϕ{F}) & ∀F (ϕ{F} → x[F])]↓›639

by (safe intro!: conjunction_denotes[THEN "→E", OF "&I"]640

Comprehension_1’[THEN "→E"]641

Comprehension_2’[THEN "→E"] 0)642

next643

AOT_show ‹�∀x (∀F (x[F] → ϕ{F}) & ∀F (ϕ{F} → x[F]) ≡ ∀F (x[F] ≡ ϕ{F}))›644

by (auto intro!: RN GEN "≡I" "→I" "&I" dest: "&E" "∀E"(2) "→E" "≡E"(1,2))645

qed646

qed647

648

notepad649

begin650

text‹Verify that the original axioms are equivalent to @{thm denotes_ex}651

and @{thm denotes_ex_neg}.›652

AOT_modally_strict {653

fix x y H654

AOT_have ‹A!x & A!y & ∀F �([F]x ≡ [F]y) →655

(∀G (∀z (O!z → �([G]z ≡ [H]z)) → x[G]) ≡656

∀G (∀z (O!z → �([G]z ≡ [H]z)) → y[G]))›657

proof(rule "→I")658

{659

fix x y660

AOT_assume ‹A!x›661

AOT_assume ‹A!y›662

AOT_assume indist: ‹∀F �([F]x ≡ [F]y)›663

AOT_assume ‹∀G (∀u �([G]u ≡ [H]u) → x[G])›664

AOT_hence ‹∀G (�∀u ([G]u ≡ [H]u) → x[G])›665

using "Ordinary.res-var-bound-reas[BF]" "Ordinary.res-var-bound-reas[CBF]"666

"intro-elim:2"667

by (AOT_subst ‹�∀u ([G]u ≡ [H]u)› ‹∀u �([G]u ≡ [H]u)› for: G) auto668

AOT_hence ‹∀G (�G ≡E H → x[G])›669

by (AOT_subst ‹G ≡E H› ‹∀u ([G]u ≡ [H]u)› for: G)670

(safe intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")671

AOT_hence ‹¬∃G (�G ≡E H & ¬x[G])›672

by (AOT_subst (reverse) ‹(�G ≡E H & ¬x[G])› ‹¬(�G ≡E H → x[G])› for: G)673

(auto simp: "oth-class-taut:1:b" "cqt-further:3"[THEN "≡E"(1)])674

AOT_hence ‹¬[λx ∃G (�G ≡E H & ¬x[G])]x›675

by (auto intro: "β→C")676

AOT_hence ‹¬[λx ∃G (�G ≡E H & ¬x[G])]y›677

using indist[THEN "∀E"(1), OF denotes_ex_neg,678

THEN "qml:2"[axiom_inst, THEN "→E"],679

THEN "≡E"(3)] by blast680

AOT_hence ‹¬∃G (�G ≡E H & ¬y[G])›681

by (safe intro!: "β←C" denotes_ex_neg "cqt:2")682

AOT_hence ‹∀G ¬(�G ≡E H & ¬y[G])›683

using "cqt-further:4"[THEN "→E"] by blast684

AOT_hence ‹∀G(�G ≡E H → y[G])›685

by (AOT_subst ‹�G ≡E H → y[G]› ‹¬(�G ≡E H & ¬y[G])› for: G)686

(auto simp: "oth-class-taut:1:a")687

AOT_hence ‹∀G (�∀u([G]u ≡ [H]u) → y[G])›688

by (AOT_subst (reverse) ‹∀u ([G]u ≡ [H]u)› ‹G ≡E H› for: G)689

(safe intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")690

AOT_hence ‹∀G (∀u �([G]u ≡ [H]u) → y[G])›691

366

A.10. Extended Relation Comprehension

using "Ordinary.res-var-bound-reas[BF]" "Ordinary.res-var-bound-reas[CBF]"692

"intro-elim:2"693

by (AOT_subst ‹∀u �([G]u ≡ [H]u)› ‹�∀u ([G]u ≡ [H]u)› for: G) auto694

} note 0 = this695

AOT_assume ‹A!x & A!y & ∀F �([F]x ≡ [F]y)›696

AOT_hence ‹A!x› and ‹A!y› and ‹∀F �([F]x ≡ [F]y)›697

using "&E" by blast+698

moreover AOT_have ‹∀F �([F]y ≡ [F]x)›699

using calculation(3)700

apply (safe intro!: CBF[THEN "→E"] dest!: BF[THEN "→E"])701

using "RM:3" "cqt-basic:11" "intro-elim:3:b" by fast702

ultimately AOT_show ‹∀G (∀u �([G]u ≡ [H]u) → x[G]) ≡703

∀G (∀u �([G]u ≡ [H]u) → y[G])›704

using 0 by (auto intro!: "≡I" "→I")705

qed706

707

AOT_have ‹A!x & A!y & ∀F �([F]x ≡ [F]y) →708

(∃G (∀z (O!z → �([G]z ≡ [H]z)) & x[G]) ≡ ∃G (∀z (O!z → �([G]z ≡ [H]z)) & y[G]))›709

proof(rule "→I")710

{711

fix x y712

AOT_assume ‹A!x›713

AOT_assume ‹A!y›714

AOT_assume indist: ‹∀F �([F]x ≡ [F]y)›715

AOT_assume x_prop: ‹∃G (∀u �([G]u ≡ [H]u) & x[G])›716

AOT_hence ‹∃G (�∀u ([G]u ≡ [H]u) & x[G])›717

using "Ordinary.res-var-bound-reas[BF]" "Ordinary.res-var-bound-reas[CBF]"718

"intro-elim:2"719

by (AOT_subst ‹�∀u ([G]u ≡ [H]u)› ‹∀u �([G]u ≡ [H]u)› for: G) auto720

AOT_hence ‹∃G (�G ≡E H & x[G])›721

by (AOT_subst ‹G ≡E H› ‹∀u ([G]u ≡ [H]u)› for: G)722

(safe intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")723

AOT_hence ‹[λx ∃G (�G ≡E H & x[G])]x›724

by (safe intro!: "β←C" denotes_ex "cqt:2")725

AOT_hence ‹[λx ∃G (�G ≡E H & x[G])]y›726

using indist[THEN "∀E"(1), OF denotes_ex,727

THEN "qml:2"[axiom_inst, THEN "→E"],728

THEN "≡E"(1)] by blast729

AOT_hence ‹∃G (�G ≡E H & y[G])›730

by (rule "β→C")731

AOT_hence ‹∃G (�∀u ([G]u ≡ [H]u) & y[G])›732

by (AOT_subst (reverse) ‹∀u ([G]u ≡ [H]u)› ‹G ≡E H› for: G)733

(safe intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")734

AOT_hence ‹∃G (∀u �([G]u ≡ [H]u) & y[G])›735

using "Ordinary.res-var-bound-reas[BF]"736

"Ordinary.res-var-bound-reas[CBF]"737

"intro-elim:2"738

by (AOT_subst ‹∀u �([G]u ≡ [H]u)› ‹�∀u ([G]u ≡ [H]u)› for: G) auto739

} note 0 = this740

AOT_assume ‹A!x & A!y & ∀F �([F]x ≡ [F]y)›741

AOT_hence ‹A!x› and ‹A!y› and ‹∀F �([F]x ≡ [F]y)›742

using "&E" by blast+743

moreover AOT_have ‹∀F �([F]y ≡ [F]x)›744

using calculation(3)745

apply (safe intro!: CBF[THEN "→E"] dest!: BF[THEN "→E"])746

using "RM:3" "cqt-basic:11" "intro-elim:3:b" by fast747

ultimately AOT_show ‹∃G (∀u �([G]u ≡ [H]u) & x[G]) ≡748

∃G (∀u �([G]u ≡ [H]u) & y[G])›749

using 0 by (auto intro!: "≡I" "→I")750

qed751

}752

end753

end754

367

A. Isabelle Theory

A.11. Possible Worlds

(*<*)1

theory AOT_PossibleWorlds2

imports AOT_PLM AOT_BasicLogicalObjects AOT_RestrictedVariables3

begin4

(*>*)5

6

section‹Possible Worlds›7

8

AOT_define Situation :: ‹τ ⇒ ϕ› (‹Situation’(_’)›)9

situations: ‹Situation(x) ≡df A!x & ∀F (x[F] → Propositional([F]))› (456)10

11

AOT_theorem "T-sit": ‹TruthValue(x) → Situation(x)› (457)12

proof(rule "→I")13

AOT_assume ‹TruthValue(x)›14

AOT_hence ‹∃p TruthValueOf(x,p)›15

using "T-value"[THEN "≡dfE"] by blast16

then AOT_obtain p where ‹TruthValueOf(x,p)› using "∃E"[rotated] by blast17

AOT_hence ϑ: ‹A!x & ∀F (x[F] ≡ ∃q((q ≡ p) & F = [λy q]))›18

using "tv-p"[THEN "≡dfE"] by blast19

AOT_show ‹Situation(x)›20

proof(rule situations[THEN "≡dfI"]; safe intro!: "&I" GEN "→I" ϑ[THEN "&E"(1)])21

fix F22

AOT_assume ‹x[F]›23

AOT_hence ‹∃q((q ≡ p) & F = [λy q])›24

using ϑ[THEN "&E"(2), THEN "∀E"(2)[where β=F], THEN "≡E"(1)] by argo25

then AOT_obtain q where ‹(q ≡ p) & F = [λy q]› using "∃E"[rotated] by blast26

AOT_hence ‹∃p F = [λy p]› using "&E"(2) "∃I"(2) by metis27

AOT_thus ‹Propositional([F])›28

by (metis "≡dfI" "prop-prop1")29

qed30

qed31

32

AOT_theorem "possit-sit:1": ‹Situation(x) ≡ �Situation(x)› (458.1)33

proof(rule "≡I"; rule "→I")34

AOT_assume ‹Situation(x)›35

AOT_hence 0: ‹A!x & ∀F (x[F] → Propositional([F]))›36

using situations[THEN "≡dfE"] by blast37

AOT_have 1: ‹�(A!x & ∀F (x[F] → Propositional([F])))›38

proof(rule "KBasic:3"[THEN "≡E"(2)]; rule "&I")39

AOT_show ‹�A!x› using 0[THEN "&E"(1)] by (metis "oa-facts:2"[THEN "→E"])40

next41

AOT_have ‹∀F (x[F] → Propositional([F])) → �∀F (x[F] → Propositional([F]))›42

by (AOT_subst ‹Propositional([F])› ‹∃p (F = [λy p])› for: F :: ‹<κ>›)43

(auto simp: "prop-prop1" "≡Df" "enc-prop-nec:2")44

AOT_thus ‹�∀F (x[F] → Propositional([F]))›45

using 0[THEN "&E"(2)] "→E" by blast46

qed47

AOT_show ‹�Situation(x)›48

by (AOT_subst ‹Situation(x)› ‹A!x & ∀F (x[F] → Propositional([F]))›)49

(auto simp: 1 "≡Df" situations)50

next51

AOT_show ‹Situation(x)› if ‹�Situation(x)›52

using "qml:2"[axiom_inst, THEN "→E", OF that].53

qed54

55

AOT_theorem "possit-sit:2": ‹♦Situation(x) ≡ Situation(x)› (458.2)56

using "possit-sit:1"57

by (metis "RE♦" "S5Basic:2" "≡E"(1) "≡E"(5) "Commutativity of ≡")58

59

AOT_theorem "possit-sit:3": ‹♦Situation(x) ≡ �Situation(x)› (458.3)60

using "possit-sit:1" "possit-sit:2" by (meson "≡E"(5))61

368

A.11. Possible Worlds

62

AOT_theorem "possit-sit:4": ‹ASituation(x) ≡ Situation(x)› (458.4)63

by (meson "Act-Basic:5" "Act-Sub:2" "RA[2]" "≡E"(1) "≡E"(6) "possit-sit:2")64

65

AOT_theorem "possit-sit:5": ‹Situation(◦p)› (458.5)66

proof (safe intro!: situations[THEN "≡dfI"] "&I" GEN "→I" "prop-prop1"[THEN "≡dfI"])67

AOT_have ‹∃F ◦p[F]›68

using "tv-id:2"[THEN "prop-enc"[THEN "≡dfE"], THEN "&E"(2)]69

"existential:1" "prop-prop2:2" by blast70

AOT_thus ‹A!◦p›71

by (safe intro!: "encoders-are-abstract"[unvarify x, THEN "→E"]72

"t=t-proper:2"[THEN "→E", OF "ext-p-tv:3"])73

next74

fix F75

AOT_assume ‹◦p[F]›76

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ∃q ((q ≡ p) & F = [λy q])))[F]›77

using "tv-id:1" "rule=E" by fast78

AOT_hence ‹A∃q ((q ≡ p) & F = [λy q])›79

using "≡E"(1) "desc-nec-encode:1" by fast80

AOT_hence ‹∃q A((q ≡ p) & F = [λy q])›81

by (metis "Act-Basic:10" "≡E"(1))82

then AOT_obtain q where ‹A((q ≡ p) & F = [λy q])› using "∃E"[rotated] by blast83

AOT_hence ‹AF = [λy q]› by (metis "Act-Basic:2" "con-dis-i-e:2:b" "intro-elim:3:a")84

AOT_hence ‹F = [λy q]›85

using "id-act:1"[unvarify β, THEN "≡E"(2)] by (metis "prop-prop2:2")86

AOT_thus ‹∃p F = [λy p]›87

using "∃I" by fast88

qed89

90

AOT_theorem "possit-sit:6": ‹Situation(>)› (458.6)91

proof -92

AOT_have true_def: ‹`� > = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›93

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")94

AOT_hence true_den: ‹`� >↓›95

using "t=t-proper:1" "vdash-properties:6" by blast96

AOT_have ‹ATruthValue(>)›97

using "actual-desc:2"[unvarify x, OF true_den, THEN "→E", OF true_def]98

using "TV-lem2:1"[unvarify x, OF true_den, THEN "RA[2]",99

THEN "act-cond"[THEN "→E"], THEN "→E"]100

by blast101

AOT_hence ‹ASituation(>)›102

using "T-sit"[unvarify x, OF true_den, THEN "RA[2]",103

THEN "act-cond"[THEN "→E"], THEN "→E"] by blast104

AOT_thus ‹Situation(>)›105

using "possit-sit:4"[unvarify x, OF true_den, THEN "≡E"(1)] by blast106

qed107

108

AOT_theorem "possit-sit:7": ‹Situation(⊥)› (458.7)109

proof -110

AOT_have true_def: ‹`� ⊥ = ιx (A!x & ∀F (x[F] ≡ ∃p(¬p & F = [λy p])))›111

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:2")112

AOT_hence true_den: ‹`� ⊥↓›113

using "t=t-proper:1" "vdash-properties:6" by blast114

AOT_have ‹ATruthValue(⊥)›115

using "actual-desc:2"[unvarify x, OF true_den, THEN "→E", OF true_def]116

using "TV-lem2:2"[unvarify x, OF true_den, THEN "RA[2]",117

THEN "act-cond"[THEN "→E"], THEN "→E"]118

by blast119

AOT_hence ‹ASituation(⊥)›120

using "T-sit"[unvarify x, OF true_den, THEN "RA[2]",121

THEN "act-cond"[THEN "→E"], THEN "→E"] by blast122

AOT_thus ‹Situation(⊥)›123

using "possit-sit:4"[unvarify x, OF true_den, THEN "≡E"(1)] by blast124

369

A. Isabelle Theory

qed125

126

AOT_register_rigid_restricted_type127

Situation: ‹Situation(κ)›128

proof129

AOT_modally_strict {130

fix p131

AOT_obtain x where ‹TruthValueOf(x,p)›132

by (metis "instantiation" "p-has-!tv:1")133

AOT_hence ‹∃p TruthValueOf(x,p)› by (rule "∃I")134

AOT_hence ‹TruthValue(x)› by (metis "≡dfI" "T-value")135

AOT_hence ‹Situation(x)› using "T-sit"[THEN "→E"] by blast136

AOT_thus ‹∃x Situation(x)› by (rule "∃I")137

}138

next139

AOT_modally_strict {140

AOT_show ‹Situation(κ) → κ↓› for κ141

proof (rule "→I")142

AOT_assume ‹Situation(κ)›143

AOT_hence ‹A!κ› by (metis "≡dfE" "&E"(1) situations)144

AOT_thus ‹κ↓› by (metis "russell-axiom[exe,1].ψ_denotes_asm")145

qed146

}147

next148

AOT_modally_strict {149

AOT_show ‹∀α(Situation(α) → �Situation(α))›150

using "possit-sit:1"[THEN "conventions:3"[THEN "≡dfE"],151

THEN "&E"(1)] GEN by fast152

}153

qed154

155

AOT_register_variable_names156

Situation: s157

158

AOT_define TruthInSituation :: ‹τ ⇒ ϕ ⇒ ϕ› ("(_ |=/ _)" [100, 40] 100)159

"true-in-s": ‹s |= p ≡df sΣp› (459)160

161

notepad162

begin163

(* Verify precedence. *)164

fix x p q165

have ‹«x |= p → q» = «(x |= p) → q»›166

by simp167

have ‹«x |= p & q» = «(x |= p) & q»›168

by simp169

have ‹«x |= ¬p» = «x |= (¬p)»›170

by simp171

have ‹«x |= �p» = «x |= (�p)»›172

by simp173

have ‹«x |= Ap» = «x |= (Ap)»›174

by simp175

have ‹«�x |= p» = «�(x |= p)»›176

by simp177

have ‹«¬x |= p» = «¬(x |= p)»›178

by simp179

end180

181

182

AOT_theorem lem1: ‹Situation(x) → (x |= p ≡ x[λy p])› (460)183

proof (rule "→I"; rule "≡I"; rule "→I")184

AOT_assume ‹Situation(x)›185

AOT_assume ‹x |= p›186

AOT_hence ‹xΣp›187

370

A.11. Possible Worlds

using "true-in-s"[THEN "≡dfE"] "&E" by blast188

AOT_thus ‹x[λy p]› using "prop-enc"[THEN "≡dfE"] "&E" by blast189

next190

AOT_assume 1: ‹Situation(x)›191

AOT_assume ‹x[λy p]›192

AOT_hence ‹xΣp›193

using "prop-enc"[THEN "≡dfI", OF "&I", OF "cqt:2"(1)] by blast194

AOT_thus ‹x |= p›195

using "true-in-s"[THEN "≡dfI"] 1 "&I" by blast196

qed197

198

AOT_theorem "lem2:1": ‹s |= p ≡ �s |= p› (462.1)199

proof -200

AOT_have sit: ‹Situation(s)›201

by (simp add: Situation.ψ)202

AOT_have ‹s |= p ≡ s[λy p]›203

using lem1[THEN "→E", OF sit] by blast204

also AOT_have ‹. . . ≡ �s[λy p]›205

by (rule "en-eq:2[1]"[unvarify F]) "cqt:2[lambda]"206

also AOT_have ‹. . . ≡ �s |= p›207

using lem1[THEN RM, THEN "→E", OF "possit-sit:1"[THEN "≡E"(1), OF sit]]208

by (metis "KBasic:6" "≡E"(2) "Commutativity of ≡" "→E")209

finally show ?thesis.210

qed211

212

AOT_theorem "lem2:2": ‹♦s |= p ≡ s |= p› (462.2)213

proof -214

AOT_have ‹�(s |= p → �s |= p)›215

using "possit-sit:1"[THEN "≡E"(1), OF Situation.ψ]216

"lem2:1"[THEN "conventions:3"[THEN "≡dfE", THEN "&E"(1)]]217

RM[OF "→I", THEN "→E"] by blast218

thus ?thesis by (metis "B♦" "S5Basic:13" "T♦" "≡I" "≡E"(1) "→E")219

qed220

221

AOT_theorem "lem2:3": ‹♦s |= p ≡ �s |= p› (462.3)222

using "lem2:1" "lem2:2" by (metis "≡E"(5))223

224

AOT_theorem "lem2:4": ‹A(s |= p) ≡ s |= p› (462.4)225

proof -226

AOT_have ‹�(s |= p → �s |= p)›227

using "possit-sit:1"[THEN "≡E"(1), OF Situation.ψ]228

"lem2:1"[THEN "conventions:3"[THEN "≡dfE", THEN "&E"(1)]]229

RM[OF "→I", THEN "→E"] by blast230

thus ?thesis231

using "sc-eq-fur:2"[THEN "→E"] by blast232

qed233

234

AOT_theorem "lem2:5": ‹¬s |= p ≡ �¬s |= p› (462.5)235

by (metis "KBasic2:1" "contraposition:1[2]" "→I" "≡I" "≡E"(3) "≡E"(4) "lem2:2")236

237

AOT_theorem "sit-identity": ‹s = s’ ≡ ∀p(s |= p ≡ s’ |= p)› (463)238

proof(rule "≡I"; rule "→I")239

AOT_assume ‹s = s’›240

moreover AOT_have ‹∀p(s |= p ≡ s |= p)›241

by (simp add: "oth-class-taut:3:a" "universal-cor")242

ultimately AOT_show ‹∀p(s |= p ≡ s’ |= p)›243

using "rule=E" by fast244

next245

AOT_assume a: ‹∀p (s |= p ≡ s’ |= p)›246

AOT_show ‹s = s’›247

proof(safe intro!: "ab-obey:1"[THEN "→E", THEN "→E"] "&I" GEN "≡I" "→I")248

AOT_show ‹A!s› using Situation.ψ "≡dfE" "&E"(1) situations by blast249

next250

371

A. Isabelle Theory

AOT_show ‹A!s’› using Situation.ψ "≡dfE" "&E"(1) situations by blast251

next252

fix F253

AOT_assume 0: ‹s[F]›254

AOT_hence ‹∃p (F = [λy p])›255

using Situation.ψ[THEN situations[THEN "≡dfE"], THEN "&E"(2),256

THEN "∀E"(2)[where β=F], THEN "→E"]257

"prop-prop1"[THEN "≡dfE"] by blast258

then AOT_obtain p where F_def: ‹F = [λy p]›259

using "∃E" by metis260

AOT_hence ‹s[λy p]›261

using 0 "rule=E" by blast262

AOT_hence ‹s |= p›263

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(2)] by blast264

AOT_hence ‹s’ |= p›265

using a[THEN "∀E"(2)[where β=p], THEN "≡E"(1)] by blast266

AOT_hence ‹s’[λy p]›267

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(1)] by blast268

AOT_thus ‹s’[F]›269

using F_def[symmetric] "rule=E" by blast270

next271

fix F272

AOT_assume 0: ‹s’[F]›273

AOT_hence ‹∃p (F = [λy p])›274

using Situation.ψ[THEN situations[THEN "≡dfE"], THEN "&E"(2),275

THEN "∀E"(2)[where β=F], THEN "→E"]276

"prop-prop1"[THEN "≡dfE"] by blast277

then AOT_obtain p where F_def: ‹F = [λy p]›278

using "∃E" by metis279

AOT_hence ‹s’[λy p]›280

using 0 "rule=E" by blast281

AOT_hence ‹s’ |= p›282

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(2)] by blast283

AOT_hence ‹s |= p›284

using a[THEN "∀E"(2)[where β=p], THEN "≡E"(2)] by blast285

AOT_hence ‹s[λy p]›286

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(1)] by blast287

AOT_thus ‹s[F]›288

using F_def[symmetric] "rule=E" by blast289

qed290

qed291

292

AOT_define PartOfSituation :: ‹τ ⇒ τ ⇒ ϕ› (infixl ‹E› 80)293

"sit-part-whole": ‹s E s’ ≡df ∀p (s |= p → s’ |= p)› (464)294

295

AOT_theorem "part:1": ‹s E s› (465.1)296

by (rule "sit-part-whole"[THEN "≡dfI"])297

(safe intro!: "&I" Situation.ψ GEN "→I")298

299

AOT_theorem "part:2": ‹s E s’ & s 6= s’ → ¬(s’ E s)› (465.2)300

proof(rule "→I"; frule "&E"(1); drule "&E"(2); rule "raa-cor:2")301

AOT_assume 0: ‹s E s’›302

AOT_hence a: ‹s |= p → s’ |= p› for p303

using "∀E"(2) "sit-part-whole"[THEN "≡dfE"] "&E" by blast304

AOT_assume ‹s’ E s›305

AOT_hence b: ‹s’ |= p → s |= p› for p306

using "∀E"(2) "sit-part-whole"[THEN "≡dfE"] "&E" by blast307

AOT_have ‹∀p (s |= p ≡ s’ |= p)›308

using a b by (simp add: "≡I" "universal-cor")309

AOT_hence 1: ‹s = s’›310

using "sit-identity"[THEN "≡E"(2)] by metis311

AOT_assume ‹s 6= s’›312

AOT_hence ‹¬(s = s’)›313

372

A.11. Possible Worlds

by (metis "≡dfE" "=-infix")314

AOT_thus ‹s = s’ & ¬(s = s’)›315

using 1 "&I" by blast316

qed317

318

AOT_theorem "part:3": ‹s E s’ & s’ E s” → s E s”› (465.3)319

proof(rule "→I"; frule "&E"(1); drule "&E"(2);320

safe intro!: "&I" GEN "→I" "sit-part-whole"[THEN "≡dfI"] Situation.ψ)321

fix p322

AOT_assume ‹s |= p›323

moreover AOT_assume ‹s E s’›324

ultimately AOT_have ‹s’ |= p›325

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2),326

THEN "∀E"(2)[where β=p], THEN "→E"] by blast327

moreover AOT_assume ‹s’ E s”›328

ultimately AOT_show ‹s” |= p›329

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2),330

THEN "∀E"(2)[where β=p], THEN "→E"] by blast331

qed332

333

AOT_theorem "sit-identity2:1": ‹s = s’ ≡ s E s’ & s’ E s› (466.1)334

proof (safe intro!: "≡I" "&I" "→I")335

AOT_show ‹s E s’› if ‹s = s’›336

using "rule=E" "part:1" that by blast337

next338

AOT_show ‹s’ E s› if ‹s = s’›339

using "rule=E" "part:1" that[symmetric] by blast340

next341

AOT_assume ‹s E s’ & s’ E s›342

AOT_thus ‹s = s’› using "part:2"[THEN "→E", OF "&I"]343

by (metis "≡dfI" "&E"(1) "&E"(2) "=-infix" "raa-cor:3")344

qed345

346

AOT_theorem "sit-identity2:2": ‹s = s’ ≡ ∀s” (s” E s ≡ s” E s’)› (466.2)347

proof(safe intro!: "≡I" "→I" Situation.GEN "sit-identity"[THEN "≡E"(2)]348

GEN[where ’a=o])349

AOT_show ‹s” E s’› if ‹s” E s› and ‹s = s’› for s”350

using "rule=E" that by blast351

next352

AOT_show ‹s” E s› if ‹s” E s’› and ‹s = s’› for s”353

using "rule=E" id_sym that by blast354

next355

AOT_show ‹s’ |= p› if ‹s |= p› and ‹∀s” (s” E s ≡ s” E s’)› for p356

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2),357

OF that(2)[THEN "Situation.∀E", THEN "≡E"(1), OF "part:1"],358

THEN "∀E"(2), THEN "→E", OF that(1)].359

next360

AOT_show ‹s |= p› if ‹s’ |= p› and ‹∀s” (s” E s ≡ s” E s’)› for p361

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2),362

OF that(2)[THEN "Situation.∀E", THEN "≡E"(2), OF "part:1"],363

THEN "∀E"(2), THEN "→E", OF that(1)].364

qed365

366

AOT_define Persistent :: ‹ϕ ⇒ ϕ› (‹Persistent’(_’)›)367

persistent: ‹Persistent(p) ≡df ∀s (s |= p → ∀s’ (s E s’ → s’ |= p))› (467)368

369

AOT_theorem "pers-prop": ‹∀p Persistent(p)› (468)370

by (safe intro!: GEN[where ’a=o] Situation.GEN persistent[THEN "≡dfI"] "→I")371

(simp add: "sit-part-whole"[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"])372

373

AOT_define NullSituation :: ‹τ ⇒ ϕ› (‹NullSituation’(_’)›)374

"df-null-trivial:1": ‹NullSituation(s) ≡df ¬∃p s |= p› (469.1)375

376

373

A. Isabelle Theory

AOT_define TrivialSituation :: ‹τ ⇒ ϕ› (‹TrivialSituation’(_’)›)377

"df-null-trivial:2": ‹TrivialSituation(s) ≡df ∀p s |= p› (469.2)378

379

AOT_theorem "thm-null-trivial:1": ‹∃!x NullSituation(x)› (470.1)380

proof (AOT_subst ‹NullSituation(x)› ‹A!x & ∀F (x[F] ≡ F 6= F)› for: x)381

AOT_modally_strict {382

AOT_show ‹NullSituation(x) ≡ A!x & ∀F (x[F] ≡ F 6= F)› for x383

proof (safe intro!: "≡I" "→I" "df-null-trivial:1"[THEN "≡dfI"]384

dest!: "df-null-trivial:1"[THEN "≡dfE"])385

AOT_assume 0: ‹Situation(x) & ¬∃p x |= p›386

AOT_have 1: ‹A!x›387

using 0[THEN "&E"(1), THEN situations[THEN "≡dfE"], THEN "&E"(1)].388

AOT_have 2: ‹x[F] → ∃p F = [λy p]› for F389

using 0[THEN "&E"(1), THEN situations[THEN "≡dfE"],390

THEN "&E"(2), THEN "∀E"(2)]391

by (metis "≡dfE" "→I" "prop-prop1" "→E")392

AOT_show ‹A!x & ∀F (x[F] ≡ F 6= F)›393

proof (safe intro!: "&I" 1 GEN "≡I" "→I")394

fix F395

AOT_assume ‹x[F]›396

moreover AOT_obtain p where ‹F = [λy p]›397

using calculation 2[THEN "→E"] "∃E"[rotated] by blast398

ultimately AOT_have ‹x[λy p]›399

by (metis "rule=E")400

AOT_hence ‹x |= p›401

using lem1[THEN "→E", OF 0[THEN "&E"(1)], THEN "≡E"(2)] by blast402

AOT_hence ‹∃p (x |= p)›403

by (rule "∃I")404

AOT_thus ‹F 6= F›405

using 0[THEN "&E"(2)] "raa-cor:1" "&I" by blast406

next407

fix F :: ‹<κ> AOT_var›408

AOT_assume ‹F 6= F›409

AOT_hence ‹¬(F = F)› by (metis "≡dfE" "=-infix")410

moreover AOT_have ‹F = F›411

by (simp add: "id-eq:1")412

ultimately AOT_show ‹x[F]› using "&I" "raa-cor:1" by blast413

qed414

next415

AOT_assume 0: ‹A!x & ∀F (x[F] ≡ F 6= F)›416

AOT_hence ‹x[F] ≡ F 6= F› for F417

using "∀E" "&E" by blast418

AOT_hence 1: ‹¬x[F]› for F419

using "≡dfE" "id-eq:1" "=-infix" "reductio-aa:1" "≡E"(1) by blast420

AOT_show ‹Situation(x) & ¬∃p x |= p›421

proof (safe intro!: "&I" situations[THEN "≡dfI"] 0[THEN "&E"(1)] GEN "→I")422

AOT_show ‹Propositional([F])› if ‹x[F]› for F423

using that 1 "&I" "raa-cor:1" by fast424

next425

AOT_show ‹¬∃p x |= p›426

proof(rule "raa-cor:2")427

AOT_assume ‹∃p x |= p›428

then AOT_obtain p where ‹x |= p› using "∃E"[rotated] by blast429

AOT_hence ‹x[λy p]›430

using "≡dfE" "&E"(1) "≡E"(1) lem1 "modus-tollens:1"431

"raa-cor:3" "true-in-s" by fast432

moreover AOT_have ‹¬x[λy p]›433

by (rule 1[unvarify F]) "cqt:2[lambda]"434

ultimately AOT_show ‹p & ¬p› for p using "&I" "raa-cor:1" by blast435

qed436

qed437

qed438

}439

374

A.11. Possible Worlds

next440

AOT_show ‹∃!x ([A!]x & ∀F (x[F] ≡ F 6= F))›441

by (simp add: "A-objects!")442

qed443

444

445

AOT_theorem "thm-null-trivial:2": ‹∃!x TrivialSituation(x)› (470.2)446

proof (AOT_subst ‹TrivialSituation(x)› ‹A!x & ∀F (x[F] ≡ ∃p F = [λy p])› for: x)447

AOT_modally_strict {448

AOT_show ‹TrivialSituation(x) ≡ A!x & ∀F (x[F] ≡ ∃p F = [λy p])› for x449

proof (safe intro!: "≡I" "→I" "df-null-trivial:2"[THEN "≡dfI"]450

dest!: "df-null-trivial:2"[THEN "≡dfE"])451

AOT_assume 0: ‹Situation(x) & ∀p x |= p›452

AOT_have 1: ‹A!x›453

using 0[THEN "&E"(1), THEN situations[THEN "≡dfE"], THEN "&E"(1)].454

AOT_have 2: ‹x[F] → ∃p F = [λy p]› for F455

using 0[THEN "&E"(1), THEN situations[THEN "≡dfE"],456

THEN "&E"(2), THEN "∀E"(2)]457

by (metis "≡dfE" "deduction-theorem" "prop-prop1" "→E")458

AOT_show ‹A!x & ∀F (x[F] ≡ ∃p F = [λy p])›459

proof (safe intro!: "&I" 1 GEN "≡I" "→I" 2)460

fix F461

AOT_assume ‹∃p F = [λy p]›462

then AOT_obtain p where ‹F = [λy p]›463

using "∃E"[rotated] by blast464

moreover AOT_have ‹x |= p›465

using 0[THEN "&E"(2)] "∀E" by blast466

ultimately AOT_show ‹x[F]›467

by (metis 0 "rule=E" "&E"(1) id_sym "≡E"(2) lem1468

"Commutativity of ≡" "→E")469

qed470

next471

AOT_assume 0: ‹A!x & ∀F (x[F] ≡ ∃p F = [λy p])›472

AOT_hence 1: ‹x[F] ≡ ∃p F = [λy p]› for F473

using "∀E" "&E" by blast474

AOT_have 2: ‹Situation(x)›475

proof (safe intro!: "&I" situations[THEN "≡dfI"] 0[THEN "&E"(1)] GEN "→I")476

AOT_show ‹Propositional([F])› if ‹x[F]› for F477

using 1[THEN "≡E"(1), OF that]478

by (metis "≡dfI" "prop-prop1")479

qed480

AOT_show ‹Situation(x) & ∀p (x |= p)›481

proof (safe intro!: "&I" 2 0[THEN "&E"(1)] GEN "→I")482

AOT_have ‹x[λy p] ≡ ∃q [λy p] = [λy q]› for p483

by (rule 1[unvarify F, where τ="«[λy p]»"]) "cqt:2[lambda]"484

moreover AOT_have ‹∃q [λy p] = [λy q]› for p485

by (rule "∃I"(2)[where β=p])486

(simp add: "rule=I:1" "prop-prop2:2")487

ultimately AOT_have ‹x[λy p]› for p by (metis "≡E"(2))488

AOT_thus ‹x |= p› for p489

by (metis "2" "≡E"(2) lem1 "→E")490

qed491

qed492

}493

next494

AOT_show ‹∃!x ([A!]x & ∀F (x[F] ≡ ∃p F = [λy p]))›495

by (simp add: "A-objects!")496

qed497

498

AOT_theorem "thm-null-trivial:3": ‹ιx NullSituation(x)↓› (470.3)499

by (meson "A-Exists:2" "RA[2]" "≡E"(2) "thm-null-trivial:1")500

501

AOT_theorem "thm-null-trivial:4": ‹ιx TrivialSituation(x)↓› (470.4)502

375

A. Isabelle Theory

using "A-Exists:2" "RA[2]" "≡E"(2) "thm-null-trivial:2" by blast503

504

AOT_define TheNullSituation :: ‹κs› (‹s∅›)505

"df-the-null-sit:1": ‹s∅ =df ιx NullSituation(x)› (471.1)506

507

AOT_define TheTrivialSituation :: ‹κs› (‹sV›)508

"df-the-null-sit:2": ‹sV =df ιx TrivialSituation(x)› (471.2)509

510

AOT_theorem "null-triv-sc:1": ‹NullSituation(x) → �NullSituation(x)› (472.1)511

proof(safe intro!: "→I" dest!: "df-null-trivial:1"[THEN "≡dfE"];512

frule "&E"(1); drule "&E"(2))513

AOT_assume 1: ‹¬∃p (x |= p)›514

AOT_assume 0: ‹Situation(x)›515

AOT_hence ‹�Situation(x)› by (metis "≡E"(1) "possit-sit:1")516

moreover AOT_have ‹�¬∃p (x |= p)›517

proof(rule "raa-cor:1")518

AOT_assume ‹¬�¬∃p (x |= p)›519

AOT_hence ‹♦∃p (x |= p)›520

by (metis "≡dfI" "conventions:5")521

AOT_hence ‹∃p ♦(x |= p)› by (metis "BF♦" "→E")522

then AOT_obtain p where ‹♦(x |= p)› using "∃E"[rotated] by blast523

AOT_hence ‹x |= p›524

by (metis "≡E"(1) "lem2:2"[unconstrain s, THEN "→E", OF 0])525

AOT_hence ‹∃p x |= p› using "∃I" by fast526

AOT_thus ‹∃p x |= p & ¬∃p x |= p› using 1 "&I" by blast527

qed528

ultimately AOT_have 2: ‹�(Situation(x) & ¬∃p x |= p)›529

by (metis "KBasic:3" "&I" "≡E"(2))530

AOT_show ‹�NullSituation(x)›531

by (AOT_subst ‹NullSituation(x)› ‹Situation(x) & ¬∃p x |= p›)532

(auto simp: "df-null-trivial:1" "≡Df" 2)533

qed534

535

536

AOT_theorem "null-triv-sc:2": ‹TrivialSituation(x) → �TrivialSituation(x)› (472.2)537

proof(safe intro!: "→I" dest!: "df-null-trivial:2"[THEN "≡dfE"];538

frule "&E"(1); drule "&E"(2))539

AOT_assume 0: ‹Situation(x)›540

AOT_hence 1: ‹�Situation(x)› by (metis "≡E"(1) "possit-sit:1")541

AOT_assume ‹∀p x |= p›542

AOT_hence ‹x |= p› for p543

using "∀E" by blast544

AOT_hence ‹�x |= p› for p545

using 0 "≡E"(1) "lem2:1"[unconstrain s, THEN "→E"] by blast546

AOT_hence ‹∀p �x |= p›547

by (rule GEN)548

AOT_hence ‹�∀p x |= p›549

by (rule BF[THEN "→E"])550

AOT_hence 2: ‹�(Situation(x) & ∀p x |= p)›551

using 1 by (metis "KBasic:3" "&I" "≡E"(2))552

AOT_show ‹�TrivialSituation(x)›553

by (AOT_subst ‹TrivialSituation(x)› ‹Situation(x) & ∀p x |= p›)554

(auto simp: "df-null-trivial:2" "≡Df" 2)555

qed556

557

AOT_theorem "null-triv-sc:3": ‹NullSituation(s∅)› (472.3)558

by (safe intro!: "df-the-null-sit:1"[THEN "=dfI"(2)] "thm-null-trivial:3"559

"rule=I:1"[OF "thm-null-trivial:3"]560

"!box-desc:2"[THEN "→E", THEN "→E", rotated, OF "thm-null-trivial:1",561

OF "∀I", OF "null-triv-sc:1", THEN "∀E"(1), THEN "→E"])562

563

AOT_theorem "null-triv-sc:4": ‹TrivialSituation(sV)› (472.4)564

by (safe intro!: "df-the-null-sit:2"[THEN "=dfI"(2)] "thm-null-trivial:4"565

376

A.11. Possible Worlds

"rule=I:1"[OF "thm-null-trivial:4"]566

"!box-desc:2"[THEN "→E", THEN "→E", rotated, OF "thm-null-trivial:2",567

OF "∀I", OF "null-triv-sc:2", THEN "∀E"(1), THEN "→E"])568

569

AOT_theorem "null-triv-facts:1": ‹NullSituation(x) ≡ Null(x)› (473.1)570

proof (safe intro!: "≡I" "→I" "df-null-uni:1"[THEN "≡dfI"]571

"df-null-trivial:1"[THEN "≡dfI"]572

dest!: "df-null-uni:1"[THEN "≡dfE"] "df-null-trivial:1"[THEN "≡dfE"])573

AOT_assume 0: ‹Situation(x) & ¬∃p x |= p›574

AOT_have 1: ‹x[F] → ∃p F = [λy p]› for F575

using 0[THEN "&E"(1), THEN situations[THEN "≡dfE"], THEN "&E"(2), THEN "∀E"(2)]576

by (metis "≡dfE" "deduction-theorem" "prop-prop1" "→E")577

AOT_show ‹A!x & ¬∃F x[F]›578

proof (safe intro!: "&I" 0[THEN "&E"(1), THEN situations[THEN "≡dfE"],579

THEN "&E"(1)];580

rule "raa-cor:2")581

AOT_assume ‹∃F x[F]›582

then AOT_obtain F where F_prop: ‹x[F]›583

using "∃E"[rotated] by blast584

AOT_hence ‹∃p F = [λy p]›585

using 1[THEN "→E"] by blast586

then AOT_obtain p where ‹F = [λy p]›587

using "∃E"[rotated] by blast588

AOT_hence ‹x[λy p]›589

by (metis "rule=E" F_prop)590

AOT_hence ‹x |= p›591

using lem1[THEN "→E", OF 0[THEN "&E"(1)], THEN "≡E"(2)] by blast592

AOT_hence ‹∃p x |= p›593

by (rule "∃I")594

AOT_thus ‹∃p x |= p & ¬∃p x |= p›595

using 0[THEN "&E"(2)] "&I" by blast596

qed597

next598

AOT_assume 0: ‹A!x & ¬∃F x[F]›599

AOT_have ‹Situation(x)›600

apply (rule situations[THEN "≡dfI", OF "&I", OF 0[THEN "&E"(1)]]; rule GEN)601

using 0[THEN "&E"(2)] by (metis "→I" "existential:2[const_var]" "raa-cor:3")602

moreover AOT_have ‹¬∃p x |= p›603

proof (rule "raa-cor:2")604

AOT_assume ‹∃p x |= p›605

then AOT_obtain p where ‹x |= p› by (metis "instantiation")606

AOT_hence ‹x[λy p]› by (metis "≡dfE" "&E"(2) "prop-enc" "true-in-s")607

AOT_hence ‹∃F x[F]› by (rule "∃I") "cqt:2[lambda]"608

AOT_thus ‹∃F x[F] & ¬∃F x[F]› using 0[THEN "&E"(2)] "&I" by blast609

qed610

ultimately AOT_show ‹Situation(x) & ¬∃p x |= p› using "&I" by blast611

qed612

613

AOT_theorem "null-triv-facts:2": ‹s∅ = a∅› (473.2)614

apply (rule "=dfI"(2)[OF "df-the-null-sit:1"])615

apply (fact "thm-null-trivial:3")616

apply (rule "=dfI"(2)[OF "df-null-uni-terms:1"])617

apply (fact "null-uni-uniq:3")618

apply (rule "equiv-desc-eq:3"[THEN "→E"])619

apply (rule "&I")620

apply (fact "thm-null-trivial:3")621

by (rule RN; rule GEN; rule "null-triv-facts:1")622

623

AOT_theorem "null-triv-facts:3": ‹sV 6= aV› (473.3)624

proof(rule "=-infix"[THEN "≡dfI"])625

AOT_have ‹Universal(aV)›626

by (simp add: "null-uni-facts:4")627

AOT_hence 0: ‹aV[A!]›628

377

A. Isabelle Theory

using "df-null-uni:2"[THEN "≡dfE"] "&E" "∀E"(1)629

by (metis "cqt:5:a" "vdash-properties:10" "vdash-properties:1[2]")630

moreover AOT_have 1: ‹¬sV[A!]›631

proof(rule "raa-cor:2")632

AOT_have ‹Situation(sV)›633

using "≡dfE" "&E"(1) "df-null-trivial:2" "null-triv-sc:4" by blast634

AOT_hence ‹∀F (sV[F] → Propositional([F]))›635

by (metis "≡dfE" "&E"(2) situations)636

moreover AOT_assume ‹sV[A!]›637

ultimately AOT_have ‹Propositional(A!)›638

using "∀E"(1)[rotated, OF "oa-exist:2"] "→E" by blast639

AOT_thus ‹Propositional(A!) & ¬Propositional(A!)›640

using "prop-in-f:4:d" "&I" by blast641

qed642

AOT_show ‹¬(sV = aV)›643

proof (rule "raa-cor:2")644

AOT_assume ‹sV = aV›645

AOT_hence ‹sV[A!]› using 0 "rule=E" id_sym by fast646

AOT_thus ‹sV[A!] & ¬sV[A!]› using 1 "&I" by blast647

qed648

qed649

650

definition ConditionOnPropositionalProperties :: ‹(<κ> ⇒ o) ⇒ bool› where651

"cond-prop": ‹ConditionOnPropositionalProperties ≡ λ ϕ . ∀ v . (474)652

[v |= ∀F (ϕ{F} → Propositional([F]))]›653

654

syntax ConditionOnPropositionalProperties :: ‹id_position ⇒ AOT_prop›655

("CONDITION’_ON’_PROPOSITIONAL’_PROPERTIES’(_’)")656

657

AOT_theorem "cond-prop[E]": (474)658

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›659

shows ‹∀F (ϕ{F} → Propositional([F]))›660

using assms[unfolded "cond-prop"] by auto661

662

AOT_theorem "cond-prop[I]": (474)663

assumes ‹`� ∀F (ϕ{F} → Propositional([F]))›664

shows ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›665

using assms "cond-prop" by metis666

667

AOT_theorem "pre-comp-sit": (475)668

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›669

shows ‹(Situation(x) & ∀F (x[F] ≡ ϕ{F})) ≡ (A!x & ∀F (x[F] ≡ ϕ{F}))›670

proof(rule "≡I"; rule "→I")671

AOT_assume ‹Situation(x) & ∀F (x[F] ≡ ϕ{F})›672

AOT_thus ‹A!x & ∀F (x[F] ≡ ϕ{F})›673

using "&E" situations[THEN "≡dfE"] "&I" by blast674

next675

AOT_assume 0: ‹A!x & ∀F (x[F] ≡ ϕ{F})›676

AOT_show ‹Situation(x) & ∀F (x[F] ≡ ϕ{F})›677

proof (safe intro!: situations[THEN "≡dfI"] "&I")678

AOT_show ‹A!x› using 0[THEN "&E"(1)].679

next680

AOT_show ‹∀F (x[F] → Propositional([F]))›681

proof(rule GEN; rule "→I")682

fix F683

AOT_assume ‹x[F]›684

AOT_hence ‹ϕ{F}›685

using 0[THEN "&E"(2)] "∀E" "≡E" by blast686

AOT_thus ‹Propositional([F])›687

using "cond-prop[E]"[OF assms] "∀E" "→E" by blast688

qed689

next690

AOT_show ‹∀F (x[F] ≡ ϕ{F})› using 0 "&E" by blast691

378

A.11. Possible Worlds

qed692

qed693

694

AOT_theorem "comp-sit:1": (476.1)695

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›696

shows ‹∃s ∀F(s[F] ≡ ϕ{F})›697

by (AOT_subst ‹Situation(x) & ∀F(x[F] ≡ ϕ{F})› ‹A!x & ∀F (x[F] ≡ ϕ{F})› for: x)698

(auto simp: "pre-comp-sit"[OF assms] "A-objects"[where ϕ=ϕ, axiom_inst])699

700

AOT_theorem "comp-sit:2": (476.2)701

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›702

shows ‹∃!s ∀F(s[F] ≡ ϕ{F})›703

by (AOT_subst ‹Situation(x) & ∀F(x[F] ≡ ϕ{F})› ‹A!x & ∀F (x[F] ≡ ϕ{F})› for: x)704

(auto simp: assms "pre-comp-sit" "pre-comp-sit"[OF assms] "A-objects!")705

706

AOT_theorem "can-sit-desc:1": (477.1)707

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›708

shows ‹ιs(∀F (s[F] ≡ ϕ{F}))↓›709

using "comp-sit:2"[OF assms] "A-Exists:2" "RA[2]" "≡E"(2) by blast710

711

AOT_theorem "can-sit-desc:2": (477.2)712

assumes ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›713

shows ‹ιs(∀F (s[F] ≡ ϕ{F})) = ιx(A!x & ∀F (x[F] ≡ ϕ{F}))›714

by (auto intro!: "equiv-desc-eq:2"[THEN "→E", OF "&I",715

OF "can-sit-desc:1"[OF assms]]716

"RA[2]" GEN "pre-comp-sit"[OF assms])717

718

AOT_theorem "strict-sit": (478)719

assumes ‹RIGID_CONDITION(ϕ)›720

and ‹CONDITION_ON_PROPOSITIONAL_PROPERTIES(ϕ)›721

shows ‹y = ιs(∀F (s[F] ≡ ϕ{F})) → ∀F (y[F] ≡ ϕ{F})›722

using "rule=E"[rotated, OF "can-sit-desc:2"[OF assms(2), symmetric]]723

"box-phi-a:2"[OF assms(1)] "→E" "→I" "&E" by fast724

725

(* TODO: exercise (479) sit-lit *)726

727

AOT_define actual :: ‹τ ⇒ ϕ› (‹Actual’(_’)›) (481)728

‹Actual(s) ≡df ∀p (s |= p → p)›729

730

AOT_theorem "act-and-not-pos": ‹∃s (Actual(s) & ♦¬Actual(s))› (482)731

proof -732

AOT_obtain q1 where q1_prop: ‹q1 & ♦¬q1›733

by (metis "≡dfE" "instantiation" "cont-tf:1" "cont-tf-thm:1")734

AOT_have ‹∃s (∀F (s[F] ≡ F = [λy q1]))›735

proof (safe intro!: "comp-sit:1" "cond-prop[I]" GEN "→I")736

AOT_modally_strict {737

AOT_show ‹Propositional([F])› if ‹F = [λy q1]› for F738

using "≡dfI" "existential:2[const_var]" "prop-prop1" that by fastforce739

}740

qed741

then AOT_obtain s1 where s_prop: ‹∀F (s1[F] ≡ F = [λy q1])›742

using "Situation.∃E"[rotated] by meson743

AOT_have ‹Actual(s1)›744

proof(safe intro!: actual[THEN "≡dfI"] "&I" GEN "→I" s_prop Situation.ψ)745

fix p746

AOT_assume ‹s1 |= p›747

AOT_hence ‹s1[λy p]›748

by (metis "≡dfE" "&E"(2) "prop-enc" "true-in-s")749

AOT_hence ‹[λy p] = [λy q1]›750

by (rule s_prop[THEN "∀E"(1), THEN "≡E"(1), rotated]) "cqt:2[lambda]"751

AOT_hence ‹p = q1› by (metis "≡E"(2) "p-identity-thm2:3")752

AOT_thus ‹p› using q1_prop[THEN "&E"(1)] "rule=E" id_sym by fast753

qed754

379

A. Isabelle Theory

moreover AOT_have ‹♦¬Actual(s1)›755

proof(rule "raa-cor:1"; drule "KBasic:12"[THEN "≡E"(2)])756

AOT_assume ‹�Actual(s1)›757

AOT_hence ‹�(Situation(s1) & ∀p (s1 |= p → p))›758

using actual[THEN "≡Df", THEN "conventions:3"[THEN "≡dfE"],759

THEN "&E"(1), THEN RM, THEN "→E"] by blast760

AOT_hence ‹�∀p (s1 |= p → p)›761

by (metis "RM:1" "Conjunction Simplification"(2) "→E")762

AOT_hence ‹∀p �(s1 |= p → p)›763

by (metis "CBF" "vdash-properties:10")764

AOT_hence ‹�(s1 |= q1 → q1)›765

using "∀E" by blast766

AOT_hence ‹�s1 |= q1 → �q1›767

by (metis "→E" "qml:1" "vdash-properties:1[2]")768

moreover AOT_have ‹s1 |= q1›769

using s_prop[THEN "∀E"(1), THEN "≡E"(2),770

THEN lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(2)]]771

"rule=I:1" "prop-prop2:2" by blast772

ultimately AOT_have ‹�q1›773

using "≡dfE" "&E"(1) "≡E"(1) "lem2:1" "true-in-s" "→E" by fast774

AOT_thus ‹♦¬q1 & ¬♦¬q1›775

using "KBasic:12"[THEN "≡E"(1)] q1_prop[THEN "&E"(2)] "&I" by blast776

qed777

ultimately AOT_have ‹(Actual(s1) & ♦¬Actual(s1))›778

using s_prop "&I" by blast779

thus ?thesis780

by (rule "Situation.∃I")781

qed782

783

AOT_theorem "actual-s:1": ‹∃s Actual(s)› (484.1)784

proof -785

AOT_obtain s where ‹(Actual(s) & ♦¬Actual(s))›786

using "act-and-not-pos" "Situation.∃E"[rotated] by meson787

AOT_hence ‹Actual(s)› using "&E" "&I" by metis788

thus ?thesis by (rule "Situation.∃I")789

qed790

791

AOT_theorem "actual-s:2": ‹∃s ¬Actual(s)› (484.2)792

proof(rule "∃I"(1)[where τ=‹«sV»›]; (rule "&I")?)793

AOT_show ‹Situation(sV)›794

using "≡dfE" "&E"(1) "df-null-trivial:2" "null-triv-sc:4" by blast795

next796

AOT_show ‹¬Actual(sV)›797

proof(rule "raa-cor:2")798

AOT_assume 0: ‹Actual(sV)›799

AOT_obtain p1 where notp1: ‹¬p1›800

by (metis "∃E" "∃I"(1) "log-prop-prop:2" "non-contradiction")801

AOT_have ‹sV |= p1›802

using "null-triv-sc:4"[THEN "≡dfE"[OF "df-null-trivial:2"], THEN "&E"(2)]803

"∀E" by blast804

AOT_hence ‹p1›805

using 0[THEN actual[THEN "≡dfE"], THEN "&E"(2), THEN "∀E"(2), THEN "→E"]806

by blast807

AOT_thus ‹p & ¬p› for p using notp1 by (metis "raa-cor:3")808

qed809

next810

AOT_show ‹sV↓›811

using "df-the-null-sit:2" "rule-id-df:2:b[zero]" "thm-null-trivial:4" by blast812

qed813

814

AOT_theorem "actual-s:3": ‹∃p∀s(Actual(s) → ¬s |= p)› (484.3)815

proof -816

AOT_obtain p1 where notp1: ‹¬p1›817

380

A.11. Possible Worlds

by (metis "∃E" "∃I"(1) "log-prop-prop:2" "non-contradiction")818

AOT_have ‹∀s (Actual(s) → ¬(s |= p1))›819

proof (rule Situation.GEN; rule "→I"; rule "raa-cor:2")820

fix s821

AOT_assume ‹Actual(s)›822

moreover AOT_assume ‹s |= p1›823

ultimately AOT_have ‹p1›824

using actual[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"] by blast825

AOT_thus ‹p1 & ¬p1›826

using notp1 "&I" by simp827

qed828

thus ?thesis by (rule "∃I")829

qed830

831

AOT_theorem comp: (485)832

‹∃s (s’ E s & s” E s & ∀s”’ (s’ E s”’ & s” E s”’ → s E s”’))›833

proof -834

have cond_prop: ‹ConditionOnPropositionalProperties (λ Π . «s’[Π] ∨ s”[Π]»)›835

proof(safe intro!: "cond-prop[I]" GEN "oth-class-taut:8:c"[THEN "→E", THEN "→E"];836

rule "→I")837

AOT_modally_strict {838

fix F839

AOT_have ‹Situation(s’)›840

by (simp add: Situation.restricted_var_condition)841

AOT_hence ‹s’[F] → Propositional([F])›842

using "situations"[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2)] by blast843

moreover AOT_assume ‹s’[F]›844

ultimately AOT_show ‹Propositional([F])›845

using "→E" by blast846

}847

next848

AOT_modally_strict {849

fix F850

AOT_have ‹Situation(s”)›851

by (simp add: Situation.restricted_var_condition)852

AOT_hence ‹s”[F] → Propositional([F])›853

using "situations"[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2)] by blast854

moreover AOT_assume ‹s”[F]›855

ultimately AOT_show ‹Propositional([F])›856

using "→E" by blast857

}858

qed859

AOT_obtain s3 where ϑ: ‹∀F (s3[F] ≡ s’[F] ∨ s”[F])›860

using "comp-sit:1"[OF cond_prop] "Situation.∃E"[rotated] by meson861

AOT_have ‹s’ E s3 & s” E s3 & ∀s”’ (s’ E s”’ & s” E s”’ → s3 E s”’)›862

proof(safe intro!: "&I" "≡dfI"[OF "true-in-s"] "≡dfI"[OF "prop-enc"]863

"Situation.GEN" "GEN"[where ’a=o] "→I"864

"sit-part-whole"[THEN "≡dfI"]865

Situation.ψ "cqt:2[const_var]"[axiom_inst])866

fix p867

AOT_assume ‹s’ |= p›868

AOT_hence ‹s’[λx p]›869

by (metis "&E"(2) "prop-enc" "≡dfE" "true-in-s")870

AOT_thus ‹s3[λx p]›871

using ϑ[THEN "∀E"(1),OF "prop-prop2:2", THEN "≡E"(2), OF "∨I"(1)] by blast872

next873

fix p874

AOT_assume ‹s” |= p›875

AOT_hence ‹s”[λx p]›876

by (metis "&E"(2) "prop-enc" "≡dfE" "true-in-s")877

AOT_thus ‹s3[λx p]›878

using ϑ[THEN "∀E"(1),OF "prop-prop2:2", THEN "≡E"(2), OF "∨I"(2)] by blast879

next880

381

A. Isabelle Theory

fix s p881

AOT_assume 0: ‹s’ E s & s” E s›882

AOT_assume ‹s3 |= p›883

AOT_hence ‹s3[λx p]›884

by (metis "&E"(2) "prop-enc" "≡dfE" "true-in-s")885

AOT_hence ‹s’[λx p] ∨ s”[λx p]›886

using ϑ[THEN "∀E"(1),OF "prop-prop2:2", THEN "≡E"(1)] by blast887

moreover {888

AOT_assume ‹s’[λx p]›889

AOT_hence ‹s’ |= p›890

by (safe intro!: "prop-enc"[THEN "≡dfI"] "true-in-s"[THEN "≡dfI"] "&I"891

Situation.ψ "cqt:2[const_var]"[axiom_inst])892

moreover AOT_have ‹s’ |= p → s |= p›893

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2)] 0[THEN "&E"(1)]894

"∀E"(2) by blast895

ultimately AOT_have ‹s |= p›896

using "→E" by blast897

AOT_hence ‹s[λx p]›898

using "true-in-s"[THEN "≡dfE"] "prop-enc"[THEN "≡dfE"] "&E" by blast899

}900

moreover {901

AOT_assume ‹s”[λx p]›902

AOT_hence ‹s” |= p›903

by (safe intro!: "prop-enc"[THEN "≡dfI"] "true-in-s"[THEN "≡dfI"] "&I"904

Situation.ψ "cqt:2[const_var]"[axiom_inst])905

moreover AOT_have ‹s” |= p → s |= p›906

using "sit-part-whole"[THEN "≡dfE", THEN "&E"(2)] 0[THEN "&E"(2)]907

"∀E"(2) by blast908

ultimately AOT_have ‹s |= p›909

using "→E" by blast910

AOT_hence ‹s[λx p]›911

using "true-in-s"[THEN "≡dfE"] "prop-enc"[THEN "≡dfE"] "&E" by blast912

}913

ultimately AOT_show ‹s[λx p]›914

by (metis "∨E"(1) "→I")915

qed916

thus ?thesis917

using "Situation.∃I" by fast918

qed919

920

AOT_theorem "act-sit:1": ‹Actual(s) → (s |= p → [λy p]s)› (486.1)921

proof (safe intro!: "→I")922

AOT_assume ‹Actual(s)›923

AOT_hence p if ‹s |= p›924

using actual[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"] that by blast925

moreover AOT_assume ‹s |= p›926

ultimately AOT_have p by blast927

AOT_thus ‹[λy p]s›928

by (safe intro!: "β←C"(1) "cqt:2")929

qed930

931

AOT_theorem "act-sit:2": (486.2)932

‹(Actual(s’) & Actual(s”)) → ∃x (Actual(x) & s’ E x & s” E x)›933

proof(rule "→I"; frule "&E"(1); drule "&E"(2))934

AOT_assume act_s’: ‹Actual(s’)›935

AOT_assume act_s”: ‹Actual(s”)›936

have "cond-prop": ‹ConditionOnPropositionalProperties (474)937

(λ Π . «∃p (Π = [λy p] & (s’ |= p ∨ s” |= p))»)›938

proof (safe intro!: "cond-prop[I]" "∀I" "→I" "prop-prop1"[THEN "≡dfI"])939

AOT_modally_strict {940

fix β941

AOT_assume ‹∃p (β = [λy p] & (s’ |= p ∨ s” |= p))›942

then AOT_obtain p where ‹β = [λy p]› using "∃E"[rotated] "&E" by blast943

382

A.11. Possible Worlds

AOT_thus ‹∃p β = [λy p]› by (rule "∃I")944

}945

qed946

have rigid: ‹rigid_condition (λ Π . «∃p (Π = [λy p] & (s’ |= p ∨ s” |= p))»)›947

proof(safe intro!: "strict-can:1[I]" "→I" GEN)948

AOT_modally_strict {949

fix F950

AOT_assume ‹∃p (F = [λy p] & (s’ |= p ∨ s” |= p))›951

then AOT_obtain p1 where p1_prop: ‹F = [λy p1] & (s’ |= p1 ∨ s” |= p1)›952

using "∃E"[rotated] by blast953

AOT_hence ‹�(F = [λy p1])›954

using "&E"(1) "id-nec:2" "vdash-properties:10" by blast955

moreover AOT_have ‹�(s’ |= p1 ∨ s” |= p1)›956

proof(rule "∨E"; (rule "→I"; rule "KBasic:15"[THEN "→E"])?)957

AOT_show ‹s’ |= p1 ∨ s” |= p1› using p1_prop "&E" by blast958

next959

AOT_show ‹�s’ |= p1 ∨ �s” |= p1› if ‹s’ |= p1›960

apply (rule "∨I"(1))961

using "≡dfE" "&E"(1) "≡E"(1) "lem2:1" that "true-in-s" by blast962

next963

AOT_show ‹�s’ |= p1 ∨ �s” |= p1› if ‹s” |= p1›964

apply (rule "∨I"(2))965

using "≡dfE" "&E"(1) "≡E"(1) "lem2:1" that "true-in-s" by blast966

qed967

ultimately AOT_have ‹�(F = [λy p1] & (s’ |= p1 ∨ s” |= p1))›968

by (metis "KBasic:3" "&I" "≡E"(2))969

AOT_hence ‹∃p �(F = [λy p] & (s’ |= p ∨ s” |= p))› by (rule "∃I")970

AOT_thus ‹�∃p (F = [λy p] & (s’ |= p ∨ s” |= p))›971

using Buridan[THEN "→E"] by fast972

}973

qed974

975

AOT_have desc_den: ‹ιs(∀F (s[F] ≡ ∃p (F = [λy p] & (s’ |= p ∨ s” |= p))))↓›976

by (rule "can-sit-desc:1"[OF "cond-prop"])977

AOT_obtain x0978

where x0_prop1: ‹x0 = ιs(∀F (s[F] ≡ ∃p (F = [λy p] & (s’ |= p ∨ s” |= p))))›979

by (metis (no_types, lifting) "∃E" "rule=I:1" desc_den "∃I"(1) id_sym)980

AOT_hence x0_sit: ‹Situation(x0)›981

using "actual-desc:3"[THEN "→E"] "Act-Basic:2" "&E"(1) "≡E"(1)982

"possit-sit:4" by blast983

984

AOT_have 1: ‹∀F (x0[F] ≡ ∃p (F = [λy p] & (s’ |= p ∨ s” |= p)))›985

using "strict-sit"[OF rigid, OF "cond-prop", THEN "→E", OF x0_prop1].986

AOT_have 2: ‹(x0 |= p) ≡ (s’ |= p ∨ s” |= p)› for p987

proof (rule "≡I"; rule "→I")988

AOT_assume ‹x0 |= p›989

AOT_hence ‹x0[λy p]› using lem1[THEN "→E", OF x0_sit, THEN "≡E"(1)] by blast990

then AOT_obtain q where ‹[λy p] = [λy q] & (s’ |= q ∨ s” |= q)›991

using 1[THEN "∀E"(1)[where τ="«[λy p]»"], OF "prop-prop2:2", THEN "≡E"(1)]992

"∃E"[rotated] by blast993

AOT_thus ‹s’ |= p ∨ s” |= p›994

by (metis "rule=E" "&E"(1) "&E"(2) "∨I"(1) "∨I"(2)995

"∨E"(1) "deduction-theorem" id_sym "≡E"(2) "p-identity-thm2:3")996

next997

AOT_assume ‹s’ |= p ∨ s” |= p›998

AOT_hence ‹[λy p] = [λy p] & (s’ |= p ∨ s” |= p)›999

by (metis "rule=I:1" "&I" "prop-prop2:2")1000

AOT_hence ‹∃q ([λy p] = [λy q] & (s’ |= q ∨ s” |= q))›1001

by (rule "∃I")1002

AOT_hence ‹x0[λy p]›1003

using 1[THEN "∀E"(1), OF "prop-prop2:2", THEN "≡E"(2)] by blast1004

AOT_thus ‹x0 |= p›1005

by (metis "≡dfI" "&I" "ex:1:a" "prop-enc" "rule-ui:2[const_var]"1006

383

A. Isabelle Theory

x0_sit "true-in-s")1007

qed1008

1009

AOT_have ‹Actual(x0) & s’ E x0 & s” E x0›1010

proof(safe intro!: "→I" "&I" "∃I"(1) actual[THEN "≡dfI"] x0_sit GEN1011

"sit-part-whole"[THEN "≡dfI"])1012

fix p1013

AOT_assume ‹x0 |= p›1014

AOT_hence ‹s’ |= p ∨ s” |= p›1015

using 2 "≡E"(1) by metis1016

AOT_thus ‹p›1017

using act_s’ act_s”1018

actual[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"]1019

by (metis "∨E"(3) "reductio-aa:1")1020

next1021

AOT_show ‹x0 |= p› if ‹s’ |= p› for p1022

using 2[THEN "≡E"(2), OF "∨I"(1), OF that].1023

next1024

AOT_show ‹x0 |= p› if ‹s” |= p› for p1025

using 2[THEN "≡E"(2), OF "∨I"(2), OF that].1026

next1027

AOT_show ‹Situation(s’)›1028

using act_s’[THEN actual[THEN "≡dfE"]] "&E" by blast1029

next1030

AOT_show ‹Situation(s”)›1031

using act_s”[THEN actual[THEN "≡dfE"]] "&E" by blast1032

qed1033

AOT_thus ‹∃x (Actual(x) & s’ E x & s” E x)›1034

by (rule "∃I")1035

qed1036

1037

AOT_define Consistent :: ‹τ ⇒ ϕ› (‹Consistent’(_’)›)1038

cons: ‹Consistent(s) ≡df ¬∃p (s |= p & s |= ¬p)› (487)1039

1040

AOT_theorem "sit-cons": ‹Actual(s) → Consistent(s)› (489)1041

proof(safe intro!: "→I" cons[THEN "≡dfI"] "&I" Situation.ψ1042

dest!: actual[THEN "≡dfE"]; frule "&E"(1); drule "&E"(2))1043

AOT_assume 0: ‹∀p (s |= p → p)›1044

AOT_show ‹¬∃p (s |= p & s |= ¬p)›1045

proof (rule "raa-cor:2")1046

AOT_assume ‹∃p (s |= p & s |= ¬p)›1047

then AOT_obtain p where ‹s |= p & s |= ¬p›1048

using "∃E"[rotated] by blast1049

AOT_hence ‹p & ¬p›1050

using 0[THEN "∀E"(1)[where τ=‹«¬p»›, THEN "→E"], OF "log-prop-prop:2"]1051

0[THEN "∀E"(2)[where β=p], THEN "→E"] "&E" "&I" by blast1052

AOT_thus ‹p & ¬p› for p by (metis "raa-cor:1")1053

qed1054

qed1055

1056

AOT_theorem "cons-rigid:1": ‹¬Consistent(s) ≡ �¬Consistent(s)› (490.1)1057

proof (rule "≡I"; rule "→I")1058

AOT_assume ‹¬Consistent(s)›1059

AOT_hence ‹∃p (s |= p & s |= ¬p)›1060

using cons[THEN "≡dfI", OF "&I", OF Situation.ψ]1061

by (metis "raa-cor:3")1062

then AOT_obtain p where p_prop: ‹s |= p & s |= ¬p›1063

using "∃E"[rotated] by blast1064

AOT_hence ‹�s |= p›1065

using "&E"(1) "≡E"(1) "lem2:1" by blast1066

moreover AOT_have ‹�s |= ¬p›1067

using p_prop "T♦" "&E" "≡E"(1)1068

"modus-tollens:1" "raa-cor:3" "lem2:3"[unvarify p]1069

384

A.11. Possible Worlds

"log-prop-prop:2" by metis1070

ultimately AOT_have ‹�(s |= p & s |= ¬p)›1071

by (metis "KBasic:3" "&I" "≡E"(2))1072

AOT_hence ‹∃p �(s |= p & s |= ¬p)›1073

by (rule "∃I")1074

AOT_hence ‹�∃p(s |= p & s |= ¬p)›1075

by (metis Buridan "vdash-properties:10")1076

AOT_thus ‹�¬Consistent(s)›1077

apply (rule "qml:1"[axiom_inst, THEN "→E", THEN "→E", rotated])1078

apply (rule RN)1079

using "≡dfE" "&E"(2) cons "deduction-theorem" "raa-cor:3" by blast1080

next1081

AOT_assume ‹�¬Consistent(s)›1082

AOT_thus ‹¬Consistent(s)› using "qml:2"[axiom_inst, THEN "→E"] by auto1083

qed1084

1085

AOT_theorem "cons-rigid:2": ‹♦Consistent(x) ≡ Consistent(x)› (490.2)1086

proof(rule "≡I"; rule "→I")1087

AOT_assume 0: ‹♦Consistent(x)›1088

AOT_have ‹♦(Situation(x) & ¬∃p (x |= p & x |= ¬p))›1089

apply (AOT_subst ‹Situation(x) & ¬∃p (x |= p & x |= ¬p)› ‹Consistent(x)›)1090

using cons "≡E"(2) "Commutativity of ≡" "≡Df" apply blast1091

by (simp add: 0)1092

AOT_hence ‹♦Situation(x)› and 1: ‹♦¬∃p (x |= p & x |= ¬p)›1093

using "RM♦" "Conjunction Simplification"(1) "Conjunction Simplification"(2)1094

"modus-tollens:1" "raa-cor:3" by blast+1095

AOT_hence 2: ‹Situation(x)› by (metis "≡E"(1) "possit-sit:2")1096

AOT_have 3: ‹¬�∃p (x |= p & x |= ¬p)›1097

using 2 using 1 "KBasic:11" "≡E"(2) by blast1098

AOT_show ‹Consistent(x)›1099

proof (rule "raa-cor:1")1100

AOT_assume ‹¬Consistent(x)›1101

AOT_hence ‹∃p (x |= p & x |= ¬p)›1102

using 0 "≡dfE" "conventions:5" 2 "cons-rigid:1"[unconstrain s, THEN "→E"]1103

"modus-tollens:1" "raa-cor:3" "≡E"(4) by meson1104

then AOT_obtain p where ‹x |= p› and 4: ‹x |= ¬p›1105

using "∃E"[rotated] "&E" by blast1106

AOT_hence ‹�x |= p›1107

by (metis "2" "≡E"(1) "lem2:1"[unconstrain s, THEN "→E"])1108

moreover AOT_have ‹�x |= ¬p›1109

using 4 "lem2:1"[unconstrain s, unvarify p, THEN "→E"]1110

by (metis 2 "≡E"(1) "log-prop-prop:2")1111

ultimately AOT_have ‹�(x |= p & x |= ¬p)›1112

by (metis "KBasic:3" "&I" "≡E"(3) "raa-cor:3")1113

AOT_hence ‹∃p �(x |= p & x |= ¬p)›1114

by (metis "existential:1" "log-prop-prop:2")1115

AOT_hence ‹�∃p (x |= p & x |= ¬p)›1116

by (metis Buridan "vdash-properties:10")1117

AOT_thus ‹p & ¬p› for p1118

using 3 "&I" by (metis "raa-cor:3")1119

qed1120

next1121

AOT_show ‹♦Consistent(x)› if ‹Consistent(x)›1122

using "T♦" that "vdash-properties:10" by blast1123

qed1124

1125

AOT_define possible :: ‹τ ⇒ ϕ› (‹Possible’(_’)›)1126

pos: ‹Possible(s) ≡df ♦Actual(s)› (491)1127

1128

AOT_theorem "sit-pos:1": ‹Actual(s) → Possible(s)› (492.1)1129

apply(rule "→I"; rule pos[THEN "≡dfI"]; rule "&I")1130

apply (meson "≡dfE" actual "&E"(1))1131

using "T♦" "vdash-properties:10" by blast1132

385

A. Isabelle Theory

1133

AOT_theorem "sit-pos:2": ‹∃p ((s |= p) & ¬♦p) → ¬Possible(s)› (492.2)1134

proof(rule "→I")1135

AOT_assume ‹∃p ((s |= p) & ¬♦p)›1136

then AOT_obtain p where a: ‹(s |= p) & ¬♦p›1137

using "∃E"[rotated] by blast1138

AOT_hence ‹�(s |= p)›1139

using "&E" by (metis "T♦" "≡E"(1) "lem2:3" "vdash-properties:10")1140

moreover AOT_have ‹�¬p›1141

using a[THEN "&E"(2)] by (metis "KBasic2:1" "≡E"(2))1142

ultimately AOT_have ‹�(s |= p & ¬p)›1143

by (metis "KBasic:3" "&I" "≡E"(3) "raa-cor:3")1144

AOT_hence ‹∃p �(s |= p & ¬p)›1145

by (rule "∃I")1146

AOT_hence 1: ‹�∃q (s |= q & ¬q)›1147

by (metis Buridan "vdash-properties:10")1148

AOT_have ‹�¬∀q (s |= q → q)›1149

apply (AOT_subst ‹s |= q → q› ‹¬(s |= q & ¬q)› for: q)1150

apply (simp add: "oth-class-taut:1:a")1151

apply (AOT_subst ‹¬∀q ¬(s |= q & ¬q)› ‹∃q (s |= q & ¬q)›)1152

by (auto simp: "conventions:4" "df-rules-formulas[3]" "df-rules-formulas[4]" "≡I" 1)1153

AOT_hence 0: ‹¬♦∀q (s |= q → q)›1154

by (metis "≡dfE" "conventions:5" "raa-cor:3")1155

AOT_show ‹¬Possible(s)›1156

apply (AOT_subst ‹Possible(s)› ‹Situation(s) & ♦Actual(s)›)1157

apply (simp add: pos "≡Df")1158

apply (AOT_subst ‹Actual(s)› ‹Situation(s) & ∀q (s |= q → q)›)1159

using actual "≡Df" apply presburger1160

by (metis "0" "KBasic2:3" "&E"(2) "raa-cor:3" "vdash-properties:10")1161

qed1162

1163

AOT_theorem "pos-cons-sit:1": ‹Possible(s) → Consistent(s)› (493.1)1164

by (auto simp: "sit-cons"[THEN "RM♦", THEN "→E",1165

THEN "cons-rigid:2"[THEN "≡E"(1)]]1166

intro!: "→I" dest!: pos[THEN "≡dfE"] "&E"(2))1167

1168

AOT_theorem "pos-cons-sit:2": ‹∃s (Consistent(s) & ¬Possible(s))› (493.2)1169

proof -1170

AOT_obtain q1 where ‹q1 & ♦¬q1›1171

using "≡dfE" "instantiation" "cont-tf:1" "cont-tf-thm:1" by blast1172

have "cond-prop": ‹ConditionOnPropositionalProperties (474)1173

(λ Π . «Π = [λy q1 & ¬q1]»)›1174

by (auto intro!: "cond-prop[I]" GEN "→I" "prop-prop1"[THEN "≡dfI"]1175

"∃I"(1)[where τ=‹«q1 & ¬q1»›, rotated, OF "log-prop-prop:2"])1176

have rigid: ‹rigid_condition (λ Π . «Π = [λy q1 & ¬q1]»)›1177

by (auto intro!: "strict-can:1[I]" GEN "→I" simp: "id-nec:2"[THEN "→E"])1178

1179

AOT_obtain x where x_prop: ‹x = ιs (∀F (s[F] ≡ F = [λy q1 & ¬q1]))›1180

using "ex:1:b"[THEN "∀E"(1), OF "can-sit-desc:1", OF "cond-prop"]1181

"∃E"[rotated] by blast1182

AOT_hence 0: ‹A(Situation(x) & ∀F (x[F] ≡ F = [λy q1 & ¬q1]))›1183

using "→E" "actual-desc:2" by blast1184

AOT_hence ‹A(Situation(x))› by (metis "Act-Basic:2" "&E"(1) "≡E"(1))1185

AOT_hence s_sit: ‹Situation(x)› by (metis "≡E"(1) "possit-sit:4")1186

AOT_have s_enc_prop: ‹∀F (x[F] ≡ F = [λy q1 & ¬q1])›1187

using "strict-sit"[OF rigid, OF "cond-prop", THEN "→E", OF x_prop].1188

AOT_hence ‹x[λy q1 & ¬q1]›1189

using "∀E"(1)[rotated, OF "prop-prop2:2"]1190

"rule=I:1"[OF "prop-prop2:2"] "≡E" by blast1191

AOT_hence ‹x |= (q1 & ¬q1)›1192

using lem1[THEN "→E", OF s_sit, unvarify p, THEN "≡E"(2), OF "log-prop-prop:2"]1193

by blast1194

AOT_hence ‹�(x |= (q1 & ¬q1))›1195

386

A.11. Possible Worlds

using "lem2:1"[unconstrain s, THEN "→E", OF s_sit, unvarify p,1196

OF "log-prop-prop:2", THEN "≡E"(1)] by blast1197

moreover AOT_have ‹�(x |= (q1 & ¬q1) → ¬Actual(x))›1198

proof(rule RN; rule "→I"; rule "raa-cor:2")1199

AOT_modally_strict {1200

AOT_assume ‹Actual(x)›1201

AOT_hence ‹∀p (x |= p → p)›1202

using actual[THEN "≡dfE", THEN "&E"(2)] by blast1203

moreover AOT_assume ‹x |= (q1 & ¬q1)›1204

ultimately AOT_show ‹q1 & ¬q1›1205

using "∀E"(1)[rotated, OF "log-prop-prop:2"] "→E" by metis1206

}1207

qed1208

ultimately AOT_have nec_not_actual_s: ‹�¬Actual(x)›1209

using "qml:1"[axiom_inst, THEN "→E", THEN "→E"] by blast1210

AOT_have 1: ‹¬∃p (x |= p & x |= ¬p)›1211

proof (rule "raa-cor:2")1212

AOT_assume ‹∃p (x |= p & x |= ¬p)›1213

then AOT_obtain p where ‹x |= p & x |= ¬p›1214

using "∃E"[rotated] by blast1215

AOT_hence ‹x[λy p] & x[λy ¬p]›1216

using lem1[unvarify p, THEN "→E", OF "log-prop-prop:2",1217

OF s_sit, THEN "≡E"(1)] "&I" "&E" by metis1218

AOT_hence ‹[λy p] = [λy q1 & ¬q1]› and ‹[λy ¬p] = [λy q1 & ¬q1]›1219

by (auto intro!: "prop-prop2:2" s_enc_prop[THEN "∀E"(1), THEN "≡E"(1)]1220

elim: "&E")1221

AOT_hence i: ‹[λy p] = [λy ¬p]› by (metis "rule=E" id_sym)1222

{1223

AOT_assume 0: ‹p›1224

AOT_have ‹[λy p]x› for x1225

by (auto intro!: "β←C"(1) "cqt:2" 0)1226

AOT_hence ‹[λy ¬p]x› for x using i "rule=E" by fast1227

AOT_hence ‹¬p›1228

using "β→C"(1) by auto1229

}1230

moreover {1231

AOT_assume 0: ‹¬p›1232

AOT_have ‹[λy ¬p]x› for x1233

by (auto intro!: "β←C"(1) "cqt:2" 0)1234

AOT_hence ‹[λy p]x› for x using i[symmetric] "rule=E" by fast1235

AOT_hence ‹p›1236

using "β→C"(1) by auto1237

}1238

ultimately AOT_show ‹p & ¬p› for p by (metis "raa-cor:1" "raa-cor:3")1239

qed1240

AOT_have 2: ‹¬Possible(x)›1241

proof(rule "raa-cor:2")1242

AOT_assume ‹Possible(x)›1243

AOT_hence ‹♦Actual(x)›1244

by (metis "≡dfE" "&E"(2) pos)1245

moreover AOT_have ‹¬♦Actual(x)› using nec_not_actual_s1246

using "≡dfE" "conventions:5" "reductio-aa:2" by blast1247

ultimately AOT_show ‹♦Actual(x) & ¬♦Actual(x)› by (rule "&I")1248

qed1249

show ?thesis1250

by(rule "∃I"(2)[where β=x]; safe intro!: "&I" 2 s_sit cons[THEN "≡dfI"] 1)1251

qed1252

1253

AOT_theorem "sit-classical:1": ‹∀p (s |= p ≡ p) → ∀q(s |= ¬q ≡ ¬s |= q)› (494.1)1254

proof(rule "→I"; rule GEN)1255

fix q1256

AOT_assume ‹∀p (s |= p ≡ p)›1257

AOT_hence ‹s |= q ≡ q› and ‹s |= ¬q ≡ ¬q›1258

387

A. Isabelle Theory

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1259

AOT_thus ‹s |= ¬q ≡ ¬s |= q›1260

by (metis "deduction-theorem" "≡I" "≡E"(1) "≡E"(2) "≡E"(4))1261

qed1262

1263

AOT_theorem "sit-classical:2": (494.2)1264

‹∀p (s |= p ≡ p) → ∀q∀r((s |= (q → r)) ≡ (s |= q → s |= r))›1265

proof(rule "→I"; rule GEN; rule GEN)1266

fix q r1267

AOT_assume ‹∀p (s |= p ≡ p)›1268

AOT_hence ϑ: ‹s |= q ≡ q› and ξ: ‹s |= r ≡ r› and ζ: ‹(s |= (q → r)) ≡ (q → r)›1269

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1270

AOT_show ‹(s |= (q → r)) ≡ (s |= q → s |= r)›1271

proof (safe intro!: "≡I" "→I")1272

AOT_assume ‹s |= (q → r)›1273

moreover AOT_assume ‹s |= q›1274

ultimately AOT_show ‹s |= r›1275

using ϑ ξ ζ by (metis "≡E"(1) "≡E"(2) "vdash-properties:10")1276

next1277

AOT_assume ‹s |= q → s |= r›1278

AOT_thus ‹s |= (q → r)›1279

using ϑ ξ ζ by (metis "deduction-theorem" "≡E"(1) "≡E"(2) "→E")1280

qed1281

qed1282

1283

AOT_theorem "sit-classical:3": (494.3)1284

‹∀p (s |= p ≡ p) → ((s |= ∀α ϕ{α}) ≡ ∀α s |= ϕ{α})›1285

proof (rule "→I")1286

AOT_assume ‹∀p (s |= p ≡ p)›1287

AOT_hence ϑ: ‹s |= ϕ{α} ≡ ϕ{α}› and ξ: ‹s |= ∀α ϕ{α} ≡ ∀α ϕ{α}› for α1288

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1289

AOT_show ‹s |= ∀α ϕ{α} ≡ ∀α s |= ϕ{α}›1290

proof (safe intro!: "≡I" "→I" GEN)1291

fix α1292

AOT_assume ‹s |= ∀α ϕ{α}›1293

AOT_hence ‹ϕ{α}› using ξ "∀E"(2) "≡E"(1) by blast1294

AOT_thus ‹s |= ϕ{α}› using ϑ "≡E"(2) by blast1295

next1296

AOT_assume ‹∀α s |= ϕ{α}›1297

AOT_hence ‹s |= ϕ{α}› for α using "∀E"(2) by blast1298

AOT_hence ‹ϕ{α}› for α using ϑ "≡E"(1) by blast1299

AOT_hence ‹∀α ϕ{α}› by (rule GEN)1300

AOT_thus ‹s |= ∀α ϕ{α}› using ξ "≡E"(2) by blast1301

qed1302

qed1303

1304

AOT_theorem "sit-classical:4": ‹∀p (s |= p ≡ p) → ∀q (s |= �q → �s |= q)› (494.4)1305

proof(rule "→I"; rule GEN; rule "→I")1306

fix q1307

AOT_assume ‹∀p (s |= p ≡ p)›1308

AOT_hence ϑ: ‹s |= q ≡ q› and ξ: ‹s |= �q ≡ �q›1309

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1310

AOT_assume ‹s |= �q›1311

AOT_hence ‹�q› using ξ "≡E"(1) by blast1312

AOT_hence ‹q› using "qml:2"[axiom_inst, THEN "→E"] by blast1313

AOT_hence ‹s |= q› using ϑ "≡E"(2) by blast1314

AOT_thus ‹�s |= q› using "≡dfE" "&E"(1) "≡E"(1) "lem2:1" "true-in-s" by blast1315

qed1316

1317

AOT_theorem "sit-classical:5": (494.5)1318

‹∀p (s |= p ≡ p) → ∃q(�(s |= q) & ¬(s |= � q))›1319

proof (rule "→I")1320

AOT_obtain r where A: ‹r› and ‹♦¬r›1321

388

A.11. Possible Worlds

by (metis "&E"(1) "&E"(2) "≡dfE" "instantiation" "cont-tf:1" "cont-tf-thm:1")1322

AOT_hence B: ‹¬�r›1323

using "KBasic:11" "≡E"(2) by blast1324

moreover AOT_assume asm: ‹∀ p (s |= p ≡ p)›1325

AOT_hence ‹s |= r›1326

using "∀E"(2) A "≡E"(2) by blast1327

AOT_hence 1: ‹�s |= r›1328

using "≡dfE" "&E"(1) "≡E"(1) "lem2:1" "true-in-s" by blast1329

AOT_have ‹s |= ¬�r›1330

using asm[THEN "∀E"(1)[rotated, OF "log-prop-prop:2"], THEN "≡E"(2)] B by blast1331

AOT_hence ‹¬s |= �r›1332

using "sit-classical:1"[THEN "→E", OF asm,1333

THEN "∀E"(1)[rotated, OF "log-prop-prop:2"], THEN "≡E"(1)] by blast1334

AOT_hence ‹�s |= r & ¬s |= �r›1335

using 1 "&I" by blast1336

AOT_thus ‹∃r (�s |= r & ¬s |= �r)›1337

by (rule "∃I")1338

qed1339

1340

AOT_theorem "sit-classical:6": (494.6)1341

‹∃s ∀p (s |= p ≡ p)›1342

proof -1343

have "cond-prop": ‹ConditionOnPropositionalProperties (474)1344

(λ Π . «∃q (q & Π = [λy q])»)›1345

proof (safe intro!: "cond-prop[I]" GEN "→I")1346

fix F1347

AOT_modally_strict {1348

AOT_assume ‹∃q (q & F = [λy q])›1349

then AOT_obtain q where ‹q & F = [λy q]›1350

using "∃E"[rotated] by blast1351

AOT_hence ‹F = [λy q]›1352

using "&E" by blast1353

AOT_hence ‹∃q F = [λy q]›1354

by (rule "∃I")1355

AOT_thus ‹Propositional([F])›1356

by (metis "≡dfI" "prop-prop1")1357

}1358

qed1359

AOT_have ‹∃s ∀F (s[F] ≡ ∃q (q & F = [λy q]))›1360

using "comp-sit:1"[OF "cond-prop"].1361

then AOT_obtain s0 where s0_prop: ‹∀F (s0[F] ≡ ∃q (q & F = [λy q]))›1362

using "Situation.∃E"[rotated] by meson1363

AOT_have ‹∀p (s0 |= p ≡ p)›1364

proof(safe intro!: GEN "≡I" "→I")1365

fix p1366

AOT_assume ‹s0 |= p›1367

AOT_hence ‹s0[λy p]›1368

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(1)] by blast1369

AOT_hence ‹∃q (q & [λy p] = [λy q])›1370

using s0_prop[THEN "∀E"(1)[rotated, OF "prop-prop2:2"], THEN "≡E"(1)] by blast1371

then AOT_obtain q1 where q1_prop: ‹q1 & [λy p] = [λy q1]›1372

using "∃E"[rotated] by blast1373

AOT_hence ‹p = q1›1374

by (metis "&E"(2) "≡E"(2) "p-identity-thm2:3")1375

AOT_thus ‹p›1376

using q1_prop[THEN "&E"(1)] "rule=E" id_sym by fast1377

next1378

fix p1379

AOT_assume ‹p›1380

moreover AOT_have ‹[λy p] = [λy p]›1381

by (simp add: "rule=I:1"[OF "prop-prop2:2"])1382

ultimately AOT_have ‹p & [λy p] = [λy p]›1383

using "&I" by blast1384

389

A. Isabelle Theory

AOT_hence ‹∃q (q & [λy p] = [λy q])›1385

by (rule "∃I")1386

AOT_hence ‹s0[λy p]›1387

using s0_prop[THEN "∀E"(1)[rotated, OF "prop-prop2:2"], THEN "≡E"(2)] by blast1388

AOT_thus ‹s0 |= p›1389

using lem1[THEN "→E", OF Situation.ψ, THEN "≡E"(2)] by blast1390

qed1391

AOT_hence ‹∀p (s0 |= p ≡ p)›1392

using "&I" by blast1393

AOT_thus ‹∃s ∀p (s |= p ≡ p)›1394

by (rule "Situation.∃I")1395

qed1396

1397

AOT_define PossibleWorld :: ‹τ ⇒ ϕ› (‹PossibleWorld’(_’)›)1398

"world:1": ‹PossibleWorld(x) ≡df Situation(x) & ♦∀p(x |= p ≡ p)› (496.1)1399

1400

AOT_theorem "world:2": ‹∃x PossibleWorld(x)› (496.2)1401

proof -1402

AOT_obtain s where s_prop: ‹∀p (s |= p ≡ p)›1403

using "sit-classical:6" "Situation.∃E"[rotated] by meson1404

AOT_have ‹∀p (s |= p ≡ p)›1405

proof(safe intro!: GEN "≡I" "→I")1406

fix p1407

AOT_assume ‹s |= p›1408

AOT_thus ‹p›1409

using s_prop[THEN "∀E"(2), THEN "≡E"(1)] by blast1410

next1411

fix p1412

AOT_assume ‹p›1413

AOT_thus ‹s |= p›1414

using s_prop[THEN "∀E"(2), THEN "≡E"(2)] by blast1415

qed1416

AOT_hence ‹♦∀p (s |= p ≡ p)›1417

by (metis "T♦"[THEN "→E"])1418

AOT_hence ‹♦∀p (s |= p ≡ p)›1419

using s_prop "&I" by blast1420

AOT_hence ‹PossibleWorld(s)›1421

using "world:1"[THEN "≡dfI"] Situation.ψ "&I" by blast1422

AOT_thus ‹∃x PossibleWorld(x)›1423

by (rule "∃I")1424

qed1425

1426

AOT_theorem "world:3": ‹PossibleWorld(κ) → κ↓› (496.3)1427

proof (rule "→I")1428

AOT_assume ‹PossibleWorld(κ)›1429

AOT_hence ‹Situation(κ)›1430

using "world:1"[THEN "≡dfE"] "&E" by blast1431

AOT_hence ‹A!κ›1432

by (metis "≡dfE" "&E"(1) situations)1433

AOT_thus ‹κ↓›1434

by (metis "russell-axiom[exe,1].ψ_denotes_asm")1435

qed1436

1437

AOT_theorem "rigid-pw:1": ‹PossibleWorld(x) ≡ �PossibleWorld(x)› (497.1)1438

proof(safe intro!: "≡I" "→I")1439

AOT_assume ‹PossibleWorld(x)›1440

AOT_hence ‹Situation(x) & ♦∀p(x |= p ≡ p)›1441

using "world:1"[THEN "≡dfE"] by blast1442

AOT_hence ‹�Situation(x) & �♦∀p(x |= p ≡ p)›1443

by (metis "S5Basic:1" "&I" "&E"(1) "&E"(2) "≡E"(1) "possit-sit:1")1444

AOT_hence 0: ‹�(Situation(x) & ♦∀p(x |= p ≡ p))›1445

by (metis "KBasic:3" "≡E"(2))1446

AOT_show ‹�PossibleWorld(x)›1447

390

A.11. Possible Worlds

by (AOT_subst ‹PossibleWorld(x)› ‹Situation(x) & ♦∀p(x |= p ≡ p)›)1448

(auto simp: "≡Df" "world:1" 0)1449

next1450

AOT_show ‹PossibleWorld(x)› if ‹�PossibleWorld(x)›1451

using that "qml:2"[axiom_inst, THEN "→E"] by blast1452

qed1453

1454

AOT_theorem "rigid-pw:2": ‹♦PossibleWorld(x) ≡ PossibleWorld(x)› (497.2)1455

using "rigid-pw:1"1456

by (meson "RE♦" "S5Basic:2" "≡E"(2) "≡E"(6) "Commutativity of ≡")1457

1458

AOT_theorem "rigid-pw:3": ‹♦PossibleWorld(x) ≡ �PossibleWorld(x)› (497.3)1459

using "rigid-pw:1" "rigid-pw:2" by (meson "≡E"(5))1460

1461

AOT_theorem "rigid-pw:4": ‹APossibleWorld(x) ≡ PossibleWorld(x)› (497.4)1462

by (metis "Act-Sub:3" "→I" "≡I" "≡E"(6) "nec-imp-act" "rigid-pw:1" "rigid-pw:2")1463

1464

AOT_register_rigid_restricted_type1465

PossibleWorld: ‹PossibleWorld(κ)›1466

proof1467

AOT_modally_strict {1468

AOT_show ‹∃x PossibleWorld(x)› using "world:2".1469

}1470

next1471

AOT_modally_strict {1472

AOT_show ‹PossibleWorld(κ) → κ↓› for κ using "world:3".1473

}1474

next1475

AOT_modally_strict {1476

AOT_show ‹∀α(PossibleWorld(α) → �PossibleWorld(α))›1477

by (meson GEN "→I" "≡E"(1) "rigid-pw:1")1478

}1479

qed1480

AOT_register_variable_names1481

PossibleWorld: w1482

1483

AOT_theorem "world-pos": ‹Possible(w)› (500)1484

proof (safe intro!: "≡dfE"[OF "world:1", OF PossibleWorld.ψ, THEN "&E"(1)]1485

pos[THEN "≡dfI"] "&I")1486

AOT_have ‹♦∀p (w |= p ≡ p)›1487

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ, THEN "&E"(2)].1488

AOT_hence ‹♦∀p (w |= p → p)›1489

proof (rule "RM♦"[THEN "→E", rotated]; safe intro!: "→I" GEN)1490

AOT_modally_strict {1491

fix p1492

AOT_assume ‹∀p (w |= p ≡ p)›1493

AOT_hence ‹w |= p ≡ p› using "∀E"(2) by blast1494

moreover AOT_assume ‹w |= p›1495

ultimately AOT_show p using "≡E"(1) by blast1496

}1497

qed1498

AOT_hence 0: ‹♦(Situation(w) & ∀p (w |= p → p))›1499

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ, THEN "&E"(1),1500

THEN "possit-sit:1"[THEN "≡E"(1)]]1501

by (metis "KBasic:16" "&I" "vdash-properties:10")1502

AOT_show ‹♦Actual(w)›1503

by (AOT_subst ‹Actual(w)› ‹Situation(w) & ∀p (w |= p → p)›)1504

(auto simp: actual "≡Df" 0)1505

qed1506

1507

AOT_theorem "world-cons:1": ‹Consistent(w)› (501.1)1508

using "world-pos"1509

using "pos-cons-sit:1"[unconstrain s, THEN "→E", THEN "→E"]1510

391

A. Isabelle Theory

by (meson "≡dfE" "&E"(1) pos)1511

1512

AOT_theorem "world-cons:2": ‹¬TrivialSituation(w)› (501.2)1513

proof(rule "raa-cor:2")1514

AOT_assume ‹TrivialSituation(w)›1515

AOT_hence ‹Situation(w) & ∀p w |= p›1516

using "df-null-trivial:2"[THEN "≡dfE"] by blast1517

AOT_hence 0: ‹�w |= (∃p (p & ¬p))›1518

using "&E"1519

by (metis "Buridan♦" "T♦" "&E"(2) "≡E"(1) "lem2:3"[unconstrain s, THEN "→E"]1520

"log-prop-prop:2" "rule-ui:1" "universal-cor" "→E")1521

AOT_have ‹♦∀p (w |= p ≡ p)›1522

using PossibleWorld.ψ "world:1"[THEN "≡dfE", THEN "&E"(2)] by metis1523

AOT_hence ‹∀p ♦(w |= p ≡ p)›1524

using "Buridan♦"[THEN "→E"] by blast1525

AOT_hence ‹♦(w |= (∃p (p & ¬p)) ≡ (∃p (p & ¬p)))›1526

by (metis "log-prop-prop:2" "rule-ui:1")1527

AOT_hence ‹♦(w |= (∃p (p & ¬p)) → (∃p (p & ¬p)))›1528

using "RM♦"[THEN "→E"] "→I" "≡E"(1) by meson1529

AOT_hence ‹♦(∃p (p & ¬p))› using 01530

by (metis "KBasic2:4" "≡E"(1) "→E")1531

moreover AOT_have ‹¬♦(∃p (p & ¬p))›1532

by (metis "instantiation" "KBasic2:1" RN "≡E"(1) "raa-cor:2")1533

ultimately AOT_show ‹♦(∃p (p & ¬p)) & ¬♦(∃p (p & ¬p))›1534

using "&I" by blast1535

qed1536

1537

AOT_theorem "rigid-truth-at:1": ‹w |= p ≡ �w |= p› (502.1)1538

using "lem2:1"[unconstrain s, THEN "→E",1539

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)]].1540

1541

AOT_theorem "rigid-truth-at:2": ‹♦w |= p ≡ w |= p› (502.2)1542

using "lem2:2"[unconstrain s, THEN "→E",1543

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)]].1544

1545

AOT_theorem "rigid-truth-at:3": ‹♦w |= p ≡ �w |= p› (502.3)1546

using "lem2:3"[unconstrain s, THEN "→E",1547

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)]].1548

1549

AOT_theorem "rigid-truth-at:4": ‹Aw |= p ≡ w |= p› (502.4)1550

using "lem2:4"[unconstrain s, THEN "→E",1551

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)]].1552

1553

AOT_theorem "rigid-truth-at:5": ‹¬w |= p ≡ �¬w |= p› (502.5)1554

using "lem2:5"[unconstrain s, THEN "→E",1555

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)]].1556

1557

AOT_define Maximal :: ‹τ ⇒ ϕ› (‹Maximal’(_’)›)1558

max: ‹Maximal(s) ≡df ∀p (s |= p ∨ s |= ¬p)› (503)1559

1560

AOT_theorem "world-max": ‹Maximal(w)› (504)1561

proof(safe intro!: PossibleWorld.ψ[THEN "≡dfE"[OF "world:1"], THEN "&E"(1)]1562

GEN "≡dfI"[OF max] "&I")1563

fix q1564

AOT_have ‹♦(w |= q ∨ w |= ¬q)›1565

proof(rule "RM♦"[THEN "→E"]; (rule "→I")?)1566

AOT_modally_strict {1567

AOT_assume ‹∀p (w |= p ≡ p)›1568

AOT_hence ‹w |= q ≡ q› and ‹w |= ¬q ≡ ¬q›1569

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1570

AOT_thus ‹w |= q ∨ w |= ¬q›1571

by (metis "∨I"(1) "∨I"(2) "≡E"(3) "reductio-aa:1")1572

}1573

392

A.11. Possible Worlds

next1574

AOT_show ‹♦∀p (w |= p ≡ p)›1575

using PossibleWorld.ψ[THEN "≡dfE"[OF "world:1"], THEN "&E"(2)].1576

qed1577

AOT_hence ‹♦w |= q ∨ ♦w |= ¬q›1578

using "KBasic2:2"[THEN "≡E"(1)] by blast1579

AOT_thus ‹w |= q ∨ w |= ¬q›1580

using "lem2:2"[unconstrain s, THEN "→E", unvarify p,1581

OF PossibleWorld.ψ[THEN "≡dfE"[OF "world:1"], THEN "&E"(1)],1582

THEN "≡E"(1), OF "log-prop-prop:2"]1583

by (metis "∨I"(1) "∨I"(2) "∨E"(3) "raa-cor:2")1584

qed1585

1586

AOT_theorem "world=maxpos:1": ‹Maximal(x) → �Maximal(x)› (505.1)1587

proof (AOT_subst ‹Maximal(x)› ‹Situation(x) & ∀p (x |= p ∨ x |= ¬p)›;1588

safe intro!: max "≡Df" "→I"; frule "&E"(1); drule "&E"(2))1589

AOT_assume sit_x: ‹Situation(x)›1590

AOT_hence nec_sit_x: ‹�Situation(x)›1591

by (metis "≡E"(1) "possit-sit:1")1592

AOT_assume ‹∀p (x |= p ∨ x |= ¬p)›1593

AOT_hence ‹x |= p ∨ x |= ¬p› for p1594

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast1595

AOT_hence ‹�x |= p ∨ �x |= ¬p› for p1596

using "lem2:1"[unconstrain s, THEN "→E", OF sit_x, unvarify p,1597

OF "log-prop-prop:2", THEN "≡E"(1)]1598

by (metis "∨I"(1) "∨I"(2) "∨E"(2) "raa-cor:1")1599

AOT_hence ‹�(x |= p ∨ x |= ¬p)› for p1600

by (metis "KBasic:15" "→E")1601

AOT_hence ‹∀p �(x |= p ∨ x |= ¬p)›1602

by (rule GEN)1603

AOT_hence ‹�∀p (x |= p ∨ x |= ¬p)›1604

by (rule BF[THEN "→E"])1605

AOT_thus ‹�(Situation(x) & ∀p (x |= p ∨ x |= ¬p))›1606

using nec_sit_x by (metis "KBasic:3" "&I" "≡E"(2))1607

qed1608

1609

AOT_theorem "world=maxpos:2": ‹PossibleWorld(x) ≡ Maximal(x) & Possible(x)› (505.2)1610

proof(safe intro!: "≡I" "→I" "&I" "world-pos"[unconstrain w, THEN "→E"]1611

"world-max"[unconstrain w, THEN "→E"];1612

frule "&E"(2); drule "&E"(1))1613

AOT_assume pos_x: ‹Possible(x)›1614

AOT_have ‹♦(Situation(x) & ∀p(x |= p → p))›1615

apply (AOT_subst (reverse) ‹Situation(x) & ∀p(x |= p → p)› ‹Actual(x)›)1616

using actual "≡Df" apply presburger1617

using "≡dfE" "&E"(2) pos pos_x by blast1618

AOT_hence 0: ‹♦∀p(x |= p → p)›1619

by (metis "KBasic2:3" "&E"(2) "vdash-properties:6")1620

AOT_assume max_x: ‹Maximal(x)›1621

AOT_hence sit_x: ‹Situation(x)› by (metis "≡dfE" max_x "&E"(1) max)1622

AOT_have ‹�Maximal(x)› using "world=maxpos:1"[THEN "→E", OF max_x] by simp1623

moreover AOT_have ‹�Maximal(x) → �(∀p(x |= p → p) → ∀p (x |= p ≡ p))›1624

proof(safe intro!: "→I" RM GEN)1625

AOT_modally_strict {1626

fix p1627

AOT_assume 0: ‹Maximal(x)›1628

AOT_assume 1: ‹∀p (x |= p → p)›1629

AOT_show ‹x |= p ≡ p›1630

proof(safe intro!: "≡I" "→I" 1[THEN "∀E"(2), THEN "→E"]; rule "raa-cor:1")1631

AOT_assume ‹¬x |= p›1632

AOT_hence ‹x |= ¬p›1633

using 0[THEN "≡dfE"[OF max], THEN "&E"(2), THEN "∀E"(2)]1634

1 by (metis "∨E"(2))1635

AOT_hence ‹¬p›1636

393

A. Isabelle Theory

using 1[THEN "∀E"(1), OF "log-prop-prop:2", THEN "→E"] by blast1637

moreover AOT_assume p1638

ultimately AOT_show ‹p & ¬p› using "&I" by blast1639

qed1640

}1641

qed1642

ultimately AOT_have ‹�(∀p(x |= p → p) → ∀p (x |= p ≡ p))›1643

using "→E" by blast1644

AOT_hence ‹♦∀p(x |= p → p) → ♦∀p(x |= p ≡ p)›1645

by (metis "KBasic:13"[THEN "→E"])1646

AOT_hence ‹♦∀p(x |= p ≡ p)›1647

using 0 "→E" by blast1648

AOT_thus ‹PossibleWorld(x)›1649

using "≡dfI"[OF "world:1", OF "&I", OF sit_x] by blast1650

qed1651

1652

AOT_define NecImpl :: ‹ϕ ⇒ ϕ ⇒ ϕ› (infixl ‹⇒› 26)1653

"nec-impl-p:1": ‹p ⇒ q ≡df �(p → q)› (507.1)1654

AOT_define NecEquiv :: ‹ϕ ⇒ ϕ ⇒ ϕ› (infixl ‹⇔› 21)1655

"nec-impl-p:2": ‹p ⇔ q ≡df (p ⇒ q) & (q ⇒ p)› (507.2)1656

1657

AOT_theorem "nec-equiv-nec-im": ‹p ⇔ q ≡ �(p ≡ q)› (508)1658

proof(safe intro!: "≡I" "→I")1659

AOT_assume ‹p ⇔ q›1660

AOT_hence ‹(p ⇒ q)› and ‹(q ⇒ p)›1661

using "nec-impl-p:2"[THEN "≡dfE"] "&E" by blast+1662

AOT_hence ‹�(p → q)› and ‹�(q → p)›1663

using "nec-impl-p:1"[THEN "≡dfE"] by blast+1664

AOT_thus ‹�(p ≡ q)› by (metis "KBasic:4" "&I" "≡E"(2))1665

next1666

AOT_assume ‹�(p ≡ q)›1667

AOT_hence ‹�(p → q)› and ‹�(q → p)›1668

using "KBasic:4" "&E" "≡E"(1) by blast+1669

AOT_hence ‹(p ⇒ q)› and ‹(q ⇒ p)›1670

using "nec-impl-p:1"[THEN "≡dfI"] by blast+1671

AOT_thus ‹p ⇔ q›1672

using "nec-impl-p:2"[THEN "≡dfI"] "&I" by blast1673

qed1674

1675

(* TODO: PLM: discuss these; still not in PLM *)1676

AOT_theorem world_closed_lem_1_a:1677

‹(s |= (ϕ & ψ)) → (∀p (s |= p ≡ p) → (s |= ϕ & s |= ψ))›1678

proof(safe intro!: "→I")1679

AOT_assume ‹∀ p (s |= p ≡ p)›1680

AOT_hence ‹s |= (ϕ & ψ) ≡ (ϕ & ψ)› and ‹s |= ϕ ≡ ϕ› and ‹s |= ψ ≡ ψ›1681

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+1682

moreover AOT_assume ‹s |= (ϕ & ψ)›1683

ultimately AOT_show ‹s |= ϕ & s |= ψ›1684

by (metis "&I" "&E"(1) "&E"(2) "≡E"(1) "≡E"(2))1685

qed1686

1687

AOT_theorem world_closed_lem_1_b:1688

‹(s |= ϕ & (ϕ → q)) → (∀p (s |= p ≡ p) → s |= q)›1689

proof(safe intro!: "→I")1690

AOT_assume ‹∀ p (s |= p ≡ p)›1691

AOT_hence ‹s |= ϕ ≡ ϕ› for ϕ1692

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast1693

moreover AOT_assume ‹s |= ϕ & (ϕ → q)›1694

ultimately AOT_show ‹s |= q›1695

by (metis "&E"(1) "&E"(2) "≡E"(1) "≡E"(2) "→E")1696

qed1697

1698

AOT_theorem world_closed_lem_1_c:1699

394

A.11. Possible Worlds

‹(s |= ϕ & s |= (ϕ → ψ)) → (∀p (s |= p ≡ p) → s |= ψ)›1700

proof(safe intro!: "→I")1701

AOT_assume ‹∀ p (s |= p ≡ p)›1702

AOT_hence ‹s |= ϕ ≡ ϕ› for ϕ1703

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast1704

moreover AOT_assume ‹s |= ϕ & s |= (ϕ → ψ)›1705

ultimately AOT_show ‹s |= ψ›1706

by (metis "&E"(1) "&E"(2) "≡E"(1) "≡E"(2) "→E")1707

qed1708

1709

AOT_theorem "world-closed-lem:1[0]": (509.1)1710

‹q → (∀p (s |= p ≡ p) → s |= q)›1711

by (meson "→I" "≡E"(2) "log-prop-prop:2" "rule-ui:1")1712

1713

AOT_theorem "world-closed-lem:1[1]": (509.1)1714

‹s |= p1 & (p1 → q) → (∀p (s |= p ≡ p) → s |= q)›1715

using world_closed_lem_1_b.1716

1717

AOT_theorem "world-closed-lem:1[2]": (509.1)1718

‹s |= p1 & s |= p2 & ((p1 & p2) → q) → (∀p (s |= p ≡ p) → s |= q)›1719

using world_closed_lem_1_b world_closed_lem_1_a1720

by (metis (full_types) "&I" "&E" "→I" "→E")1721

1722

AOT_theorem "world-closed-lem:1[3]": (509.1)1723

‹s |= p1 & s |= p2 & s |= p3 & ((p1 & p2 & p3) → q) → (∀p (s |= p ≡ p) → s |= q)›1724

using world_closed_lem_1_b world_closed_lem_1_a1725

by (metis (full_types) "&I" "&E" "→I" "→E")1726

1727

AOT_theorem "world-closed-lem:1[4]": (509.1)1728

‹s |= p1 & s |= p2 & s |= p3 & s |= p4 & ((p1 & p2 & p3 & p4) → q) →1729

(∀p (s |= p ≡ p) → s |= q)›1730

using world_closed_lem_1_b world_closed_lem_1_a1731

by (metis (full_types) "&I" "&E" "→I" "→E")1732

1733

AOT_theorem "coherent:1": ‹w |= ¬p ≡ ¬w |= p› (512.1)1734

proof(safe intro!: "≡I" "→I")1735

AOT_assume 1: ‹w |= ¬p›1736

AOT_show ‹¬w |= p›1737

proof(rule "raa-cor:2")1738

AOT_assume ‹w |= p›1739

AOT_hence ‹w |= p & w |= ¬p› using 1 "&I" by blast1740

AOT_hence ‹∃q (w |= q & w |= ¬q)› by (rule "∃I")1741

moreover AOT_have ‹¬∃q (w |= q & w |= ¬q)›1742

using "world-cons:1"[THEN "≡dfE"[OF cons], THEN "&E"(2)].1743

ultimately AOT_show ‹∃q (w |= q & w |= ¬q) & ¬∃q (w |= q & w |= ¬q)›1744

using "&I" by blast1745

qed1746

next1747

AOT_assume ‹¬w |= p›1748

AOT_thus ‹w |= ¬p›1749

using "world-max"[THEN "≡dfE"[OF max], THEN "&E"(2)]1750

by (metis "∨E"(2) "log-prop-prop:2" "rule-ui:1")1751

qed1752

1753

AOT_theorem "coherent:2": ‹w |= p ≡ ¬w |= ¬p› (512.2)1754

by (metis "coherent:1" "deduction-theorem" "≡I" "≡E"(1) "≡E"(2) "raa-cor:3")1755

1756

AOT_theorem "act-world:1": ‹∃w ∀p (w |= p ≡ p)› (514.1)1757

proof -1758

AOT_obtain s where s_prop: ‹∀p (s |= p ≡ p)›1759

using "sit-classical:6" "Situation.∃E"[rotated] by meson1760

AOT_hence ‹♦∀p (s |= p ≡ p)›1761

by (metis "T♦" "vdash-properties:10")1762

395

A. Isabelle Theory

AOT_hence ‹PossibleWorld(s)›1763

using "world:1"[THEN "≡dfI"] Situation.ψ "&I" by blast1764

AOT_hence ‹PossibleWorld(s) & ∀p (s |= p ≡ p)›1765

using "&I" s_prop by blast1766

thus ?thesis by (rule "∃I")1767

qed1768

1769

AOT_theorem "act-world:2": ‹∃!w Actual(w)› (514.2)1770

proof -1771

AOT_obtain w where w_prop: ‹∀p (w |= p ≡ p)›1772

using "act-world:1" "PossibleWorld.∃E"[rotated] by meson1773

AOT_have sit_s: ‹Situation(w)›1774

using PossibleWorld.ψ "world:1"[THEN "≡dfE", THEN "&E"(1)] by blast1775

show ?thesis1776

proof (safe intro!: "uniqueness:1"[THEN "≡dfI"] "∃I"(2) "&I" GEN "→I"1777

PossibleWorld.ψ actual[THEN "≡dfI"] sit_s1778

"sit-identity"[unconstrain s, unconstrain s’, THEN "→E",1779

THEN "→E", THEN "≡E"(2)] "≡I"1780

w_prop[THEN "∀E"(2), THEN "≡E"(1)])1781

AOT_show ‹PossibleWorld(w)› using PossibleWorld.ψ.1782

next1783

AOT_show ‹Situation(w)›1784

by (simp add: sit_s)1785

next1786

fix y p1787

AOT_assume w_asm: ‹PossibleWorld(y) & Actual(y)›1788

AOT_assume ‹w |= p›1789

AOT_hence p: ‹p›1790

using w_prop[THEN "∀E"(2), THEN "≡E"(1)] by blast1791

AOT_show ‹y |= p›1792

proof(rule "raa-cor:1")1793

AOT_assume ‹¬y |= p›1794

AOT_hence ‹y |= ¬p›1795

by (metis "coherent:1"[unconstrain w, THEN "→E"] "&E"(1) "≡E"(2) w_asm)1796

AOT_hence ‹¬p›1797

using w_asm[THEN "&E"(2), THEN actual[THEN "≡dfE"], THEN "&E"(2),1798

THEN "∀E"(1), rotated, OF "log-prop-prop:2"]1799

"→E" by blast1800

AOT_thus ‹p & ¬p› using p "&I" by blast1801

qed1802

next1803

AOT_show ‹w |= p› if ‹y |= p› and ‹PossibleWorld(y) & Actual(y)› for p y1804

using that(2)[THEN "&E"(2), THEN actual[THEN "≡dfE"], THEN "&E"(2),1805

THEN "∀E"(2), THEN "→E", OF that(1)]1806

w_prop[THEN "∀E"(2), THEN "≡E"(2)] by blast1807

next1808

AOT_show ‹Situation(y)› if ‹PossibleWorld(y) & Actual(y)› for y1809

using that[THEN "&E"(1)] "world:1"[THEN "≡dfE", THEN "&E"(1)] by blast1810

next1811

AOT_show ‹Situation(w)›1812

using sit_s by blast1813

qed(simp)1814

qed1815

1816

AOT_theorem "pre-walpha": ‹ιw Actual(w)↓› (516)1817

using "A-Exists:2" "RA[2]" "act-world:2" "≡E"(2) by blast1818

1819

AOT_define TheActualWorld :: ‹κs› (‹wα›)1820

"w-alpha": ‹wα =df ιw Actual(w)› (517)1821

1822

(* TODO: not in PLM *)1823

AOT_theorem true_in_truth_act_true: ‹> |= p ≡ Ap›1824

proof(safe intro!: "≡I" "→I")1825

396

A.11. Possible Worlds

AOT_have true_def: ‹`� > = ιx (A!x & ∀F (x[F] ≡ ∃p(p & F = [λy p])))›1826

by (simp add: "A-descriptions" "rule-id-df:1[zero]" "the-true:1")1827

AOT_hence true_den: ‹`� >↓›1828

using "t=t-proper:1" "vdash-properties:6" by blast1829

{1830

AOT_assume ‹> |= p›1831

AOT_hence ‹>[λy p]›1832

by (metis "≡dfE" "con-dis-i-e:2:b" "prop-enc" "true-in-s")1833

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ∃q (q & F = [λy q])))[λy p]›1834

using "rule=E" true_def true_den by fast1835

AOT_hence ‹A∃q (q & [λy p] = [λy q])›1836

using "≡E"(1) "desc-nec-encode:1"[unvarify F] "prop-prop2:2" by fast1837

AOT_hence ‹∃q A(q & [λy p] = [λy q])›1838

by (metis "Act-Basic:10" "≡E"(1))1839

then AOT_obtain q where ‹A(q & [λy p] = [λy q])›1840

using "∃E"[rotated] by blast1841

AOT_hence actq: ‹Aq› and ‹A[λy p] = [λy q]›1842

using "Act-Basic:2" "intro-elim:3:a" "&E" by blast+1843

AOT_hence ‹[λy p] = [λy q]›1844

using "id-act:1"[unvarify α β, THEN "≡E"(2)] "prop-prop2:2" by blast1845

AOT_hence ‹p = q›1846

by (metis "intro-elim:3:b" "p-identity-thm2:3")1847

AOT_thus ‹Ap›1848

using actq "rule=E" id_sym by blast1849

}1850

{1851

AOT_assume ‹Ap›1852

AOT_hence ‹A(p & [λy p] = [λy p])›1853

by (auto intro!: "Act-Basic:2"[THEN "≡E"(2)] "&I"1854

intro: "RA[2]" "=I"(1)[OF "prop-prop2:2"])1855

AOT_hence ‹∃q A(q & [λy p] = [λy q])›1856

using "∃I" by fast1857

AOT_hence ‹A∃q (q & [λy p] = [λy q])›1858

by (metis "Act-Basic:10" "≡E"(2))1859

AOT_hence ‹ιx(A!x & ∀F (x[F] ≡ ∃q (q & F = [λy q])))[λy p]›1860

using "≡E"(2) "desc-nec-encode:1"[unvarify F] "prop-prop2:2" by fast1861

AOT_hence ‹>[λy p]›1862

using "rule=E" true_def true_den id_sym by fast1863

AOT_thus ‹> |= p›1864

by (safe intro!: "true-in-s"[THEN "≡dfI"] "&I" "possit-sit:6"1865

"prop-enc"[THEN "≡dfI"] true_den)1866

}1867

qed1868

1869

AOT_theorem "T-world": ‹> = wα› (518)1870

proof -1871

AOT_have true_den: ‹`� >↓›1872

using "Situation.res-var:3" "possit-sit:6" "→E" by blast1873

AOT_have ‹A∀p (> |= p → p)›1874

proof (safe intro!: "logic-actual-nec:3"[axiom_inst, THEN "≡E"(2)] GEN1875

"logic-actual-nec:2"[axiom_inst, THEN "≡E"(2)] "→I")1876

fix p1877

AOT_assume ‹A> |= p›1878

AOT_hence ‹> |= p›1879

using "lem2:4"[unconstrain s, unvarify β, OF true_den,1880

THEN "→E", OF "possit-sit:6"] "≡E"(1) by blast1881

AOT_thus ‹Ap› using true_in_truth_act_true "≡E"(1) by blast1882

qed1883

moreover AOT_have ‹A(Situation(κ) & ∀p (κ |= p → p)) → AActual(κ)› for κ1884

using actual[THEN "≡Df", THEN "conventions:3"[THEN "≡dfE", THEN "&E"(2)],1885

THEN "RA[2]", THEN "act-cond"[THEN "→E"]].1886

ultimately AOT_have act_act_true: ‹AActual(>)›1887

using "possit-sit:4"[unvarify x, OF true_den, THEN "≡E"(2), OF "possit-sit:6"]1888

397

A. Isabelle Theory

"Act-Basic:2"[THEN "≡E"(2), OF "&I"] "→E" by blast1889

AOT_hence ‹♦Actual(>)› by (metis "Act-Sub:3" "vdash-properties:10")1890

AOT_hence ‹Possible(>)›1891

by (safe intro!: pos[THEN "≡dfI"] "&I" "possit-sit:6")1892

moreover AOT_have ‹Maximal(>)›1893

proof (safe intro!: max[THEN "≡dfI"] "&I" "possit-sit:6" GEN)1894

fix p1895

AOT_have ‹Ap ∨ A¬p›1896

by (simp add: "Act-Basic:1")1897

moreover AOT_have ‹> |= p› if ‹Ap›1898

using that true_in_truth_act_true[THEN "≡E"(2)] by blast1899

moreover AOT_have ‹> |= ¬p› if ‹A¬p›1900

using that true_in_truth_act_true[unvarify p, THEN "≡E"(2)]1901

"log-prop-prop:2" by blast1902

ultimately AOT_show ‹> |= p ∨ > |= ¬p›1903

using "∨I"(3) "→I" by blast1904

qed1905

ultimately AOT_have ‹PossibleWorld(>)›1906

by (safe intro!: "world=maxpos:2"[unvarify x, OF true_den, THEN "≡E"(2)] "&I")1907

AOT_hence ‹APossibleWorld(>)›1908

using "rigid-pw:4"[unvarify x, OF true_den, THEN "≡E"(2)] by blast1909

AOT_hence 1: ‹A(PossibleWorld(>) & Actual(>))›1910

using act_act_true "Act-Basic:2" "df-simplify:2" "intro-elim:3:b" by blast1911

AOT_have ‹wα = ιw(Actual(w))›1912

using "rule-id-df:1[zero]"[OF "w-alpha", OF "pre-walpha"] by simp1913

moreover AOT_have w_act_den: ‹wα↓›1914

using calculation "t=t-proper:1" "→E" by blast1915

ultimately AOT_have ‹∀z (A(PossibleWorld(z) & Actual(z)) → z = wα)›1916

using "nec-hintikka-scheme"[unvarify x] "≡E"(1) "&E" by blast1917

AOT_thus ‹> = wα›1918

using "∀E"(1)[rotated, OF true_den] 1 "→E" by blast1919

qed1920

1921

AOT_act_theorem "truth-at-alpha:1": ‹p ≡ wα = ιx (ExtensionOf(x, p))› (519.1)1922

by (metis "rule=E" "T-world" "deduction-theorem" "ext-p-tv:3" id_sym "≡I"1923

"≡E"(1) "≡E"(2) "q-True:1")1924

1925

AOT_act_theorem "truth-at-alpha:2": ‹p ≡ wα |= p› (519.2)1926

proof -1927

AOT_have ‹PossibleWorld(wα)›1928

using "&E"(1) "pre-walpha" "rule-id-df:2:b[zero]" "→E"1929

"w-alpha" "y-in:3" by blast1930

AOT_hence sit_w_alpha: ‹Situation(wα)›1931

by (metis "≡dfE" "&E"(1) "world:1")1932

AOT_have w_alpha_den: ‹wα↓›1933

using "pre-walpha" "rule-id-df:2:b[zero]" "w-alpha" by blast1934

AOT_have ‹p ≡ >Σp›1935

using "q-True:3" by force1936

moreover AOT_have ‹> = wα›1937

using "T-world" by auto1938

ultimately AOT_have ‹p ≡ wαΣp›1939

using "rule=E" by fast1940

moreover AOT_have ‹wα Σ p ≡ wα |= p›1941

using lem1[unvarify x, OF w_alpha_den, THEN "→E", OF sit_w_alpha]1942

using "≡S"(1) "≡E"(1) "Commutativity of ≡" "≡Df" sit_w_alpha "true-in-s" by blast1943

ultimately AOT_show ‹p ≡ wα |= p›1944

by (metis "≡E"(5))1945

qed1946

1947

AOT_theorem "alpha-world:1": ‹PossibleWorld(wα)› (520.1)1948

proof -1949

AOT_have 0: ‹wα = ιw Actual(w)›1950

using "pre-walpha" "rule-id-df:1[zero]" "w-alpha" by blast1951

398

A.11. Possible Worlds

AOT_hence walpha_den: ‹wα↓›1952

by (metis "t=t-proper:1" "vdash-properties:6")1953

AOT_have ‹A(PossibleWorld(wα) & Actual(wα))›1954

by (rule "actual-desc:2"[unvarify x, OF walpha_den, THEN "→E"]) (fact 0)1955

AOT_hence ‹APossibleWorld(wα)›1956

by (metis "Act-Basic:2" "&E"(1) "≡E"(1))1957

AOT_thus ‹PossibleWorld(wα)›1958

using "rigid-pw:4"[unvarify x, OF walpha_den, THEN "≡E"(1)]1959

by blast1960

qed1961

1962

AOT_theorem "alpha-world:2": ‹Maximal(wα)› (520.2)1963

proof -1964

AOT_have ‹wα↓›1965

using "pre-walpha" "rule-id-df:2:b[zero]" "w-alpha" by blast1966

then AOT_obtain x where x_def: ‹x = wα›1967

by (metis "instantiation" "rule=I:1" "existential:1" id_sym)1968

AOT_hence ‹PossibleWorld(x)› using "alpha-world:1" "rule=E" id_sym by fast1969

AOT_hence ‹Maximal(x)› by (metis "world-max"[unconstrain w, THEN "→E"])1970

AOT_thus ‹Maximal(wα)› using x_def "rule=E" by blast1971

qed1972

1973

AOT_theorem "t-at-alpha-strict": ‹wα |= p ≡ Ap› (521)1974

proof -1975

AOT_have 0: ‹wα = ιw Actual(w)›1976

using "pre-walpha" "rule-id-df:1[zero]" "w-alpha" by blast1977

AOT_hence walpha_den: ‹wα↓›1978

by (metis "t=t-proper:1" "vdash-properties:6")1979

AOT_have 1: ‹A(PossibleWorld(wα) & Actual(wα))›1980

by (rule "actual-desc:2"[unvarify x, OF walpha_den, THEN "→E"]) (fact 0)1981

AOT_have walpha_sit: ‹Situation(wα)›1982

by (meson "≡dfE" "alpha-world:2" "&E"(1) max)1983

{1984

fix p1985

AOT_have 2: ‹Situation(x) → (Ax |= p ≡ x |= p)› for x1986

using "lem2:4"[unconstrain s] by blast1987

AOT_assume ‹wα |= p›1988

AOT_hence ϑ: ‹Awα |= p›1989

using 2[unvarify x, OF walpha_den, THEN "→E", OF walpha_sit, THEN "≡E"(2)]1990

by argo1991

AOT_have 3: ‹AActual(wα)›1992

using "1" "Act-Basic:2" "&E"(2) "≡E"(1) by blast1993

AOT_have ‹A(Situation(wα) & ∀q(wα |= q → q))›1994

apply (AOT_subst (reverse) ‹Situation(wα) & ∀q(wα |= q → q)› ‹Actual(wα)›)1995

using actual "≡Df" apply blast1996

by (fact 3)1997

AOT_hence ‹A∀q(wα |= q → q)› by (metis "Act-Basic:2" "&E"(2) "≡E"(1))1998

AOT_hence ‹∀q A(wα |= q → q)›1999

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(1)] by blast2000

AOT_hence ‹A(wα |= p → p)› using "∀E"(2) by blast2001

AOT_hence ‹A(wα |= p) → Ap› by (metis "act-cond" "vdash-properties:10")2002

AOT_hence ‹Ap› using ϑ "→E" by blast2003

}2004

AOT_hence 2: ‹wα |= p → Ap› for p by (rule "→I")2005

AOT_have walpha_sit: ‹Situation(wα)›2006

using "≡dfE" "alpha-world:2" "&E"(1) max by blast2007

show ?thesis2008

proof(safe intro!: "≡I" "→I" 2)2009

AOT_assume actp: ‹Ap›2010

AOT_show ‹wα |= p›2011

proof(rule "raa-cor:1")2012

AOT_assume ‹¬wα |= p›2013

AOT_hence ‹wα |= ¬p›2014

399

A. Isabelle Theory

using "alpha-world:2"[THEN max[THEN "≡dfE"], THEN "&E"(2),2015

THEN "∀E"(1), OF "log-prop-prop:2"]2016

by (metis "∨E"(2))2017

AOT_hence ‹A¬p›2018

using 2[unvarify p, OF "log-prop-prop:2", THEN "→E"] by blast2019

AOT_hence ‹¬Ap› by (metis "¬¬I" "Act-Sub:1" "≡E"(4))2020

AOT_thus ‹Ap & ¬Ap› using actp "&I" by blast2021

qed2022

qed2023

qed2024

2025

AOT_act_theorem "not-act": ‹w 6= wα → ¬Actual(w)› (522)2026

proof (rule "→I"; rule "raa-cor:2")2027

AOT_assume ‹w 6= wα›2028

AOT_hence 0: ‹¬(w = wα)› by (metis "≡dfE" "=-infix")2029

AOT_have walpha_den: ‹wα↓›2030

using "pre-walpha" "rule-id-df:2:b[zero]" "w-alpha" by blast2031

AOT_have walpha_sit: ‹Situation(wα)›2032

using "≡dfE" "alpha-world:2" "&E"(1) max by blast2033

AOT_assume act_w: ‹Actual(w)›2034

AOT_hence w_sit: ‹Situation(w)› by (metis "≡dfE" actual "&E"(1))2035

AOT_have sid: ‹Situation(x’) → (w = x’ ≡ ∀p (w |= p ≡ x’ |= p))› for x’2036

using "sit-identity"[unconstrain s’, unconstrain s, THEN "→E", OF w_sit]2037

by blast2038

AOT_have ‹w = wα›2039

proof(safe intro!: GEN sid[unvarify x’, OF walpha_den, THEN "→E",2040

OF walpha_sit, THEN "≡E"(2)] "≡I" "→I")2041

fix p2042

AOT_assume ‹w |= p›2043

AOT_hence ‹p›2044

using actual[THEN "≡dfE", OF act_w, THEN "&E"(2), THEN "∀E"(2), THEN "→E"]2045

by blast2046

AOT_hence ‹Ap›2047

by (metis "RA[1]")2048

AOT_thus ‹wα |= p›2049

using "t-at-alpha-strict"[THEN "≡E"(2)] by blast2050

next2051

fix p2052

AOT_assume ‹wα |= p›2053

AOT_hence ‹Ap›2054

using "t-at-alpha-strict"[THEN "≡E"(1)] by blast2055

AOT_hence p: ‹p›2056

using "logic-actual"[act_axiom_inst, THEN "→E"] by blast2057

AOT_show ‹w |= p›2058

proof(rule "raa-cor:1")2059

AOT_assume ‹¬w |= p›2060

AOT_hence ‹w |= ¬p›2061

by (metis "coherent:1" "≡E"(2))2062

AOT_hence ‹¬p›2063

using actual[THEN "≡dfE", OF act_w, THEN "&E"(2), THEN "∀E"(1),2064

OF "log-prop-prop:2", THEN "→E"] by blast2065

AOT_thus ‹p & ¬p› using p "&I" by blast2066

qed2067

qed2068

AOT_thus ‹w = wα & ¬(w = wα)› using 0 "&I" by blast2069

qed2070

2071

AOT_act_theorem "w-alpha-part": ‹Actual(s) ≡ s E wα› (523)2072

proof(safe intro!: "≡I" "→I" "sit-part-whole"[THEN "≡dfI"] "&I" GEN2073

dest!: "sit-part-whole"[THEN "≡dfE"])2074

AOT_show ‹Situation(s)› if ‹Actual(s)›2075

using "≡dfE" actual "&E"(1) that by blast2076

next2077

400

A.11. Possible Worlds

AOT_show ‹Situation(wα)›2078

using "≡dfE" "alpha-world:2" "&E"(1) max by blast2079

next2080

fix p2081

AOT_assume ‹Actual(s)›2082

moreover AOT_assume ‹s |= p›2083

ultimately AOT_have ‹p›2084

using actual[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"] by blast2085

AOT_thus ‹wα |= p›2086

by (metis "≡E"(1) "truth-at-alpha:2")2087

next2088

AOT_assume 0: ‹Situation(s) & Situation(wα) & ∀p (s |= p → wα |= p)›2089

AOT_hence ‹s |= p → wα |= p› for p2090

using "&E" "∀E"(2) by blast2091

AOT_hence ‹s |= p → p› for p2092

by (metis "→I" "≡E"(2) "truth-at-alpha:2" "→E")2093

AOT_hence ‹∀p (s |= p → p)› by (rule GEN)2094

AOT_thus ‹Actual(s)›2095

using actual[THEN "≡dfI", OF "&I", OF 0[THEN "&E"(1), THEN "&E"(1)]] by blast2096

qed2097

2098

AOT_act_theorem "act-world2:1": ‹wα |= p ≡ [λy p]wα› (524.1)2099

apply (AOT_subst ‹[λy p]wα› p)2100

apply (rule "beta-C-meta"[THEN "→E", OF "prop-prop2:2", unvarify ν1νn])2101

using "pre-walpha" "rule-id-df:2:b[zero]" "w-alpha" apply blast2102

using "≡E"(2) "Commutativity of ≡" "truth-at-alpha:2" by blast2103

2104

AOT_act_theorem "act-world2:2": ‹p ≡ wα |= [λy p]wα› (524.2)2105

proof -2106

AOT_have ‹p ≡ [λy p]wα›2107

apply (rule "beta-C-meta"[THEN "→E", OF "prop-prop2:2",2108

unvarify ν1νn, symmetric])2109

using "pre-walpha" "rule-id-df:2:b[zero]" "w-alpha" by blast2110

also AOT_have ‹. . . ≡ wα |= [λy p]wα›2111

by (meson "log-prop-prop:2" "rule-ui:1" "truth-at-alpha:2" "universal-cor")2112

finally show ?thesis.2113

qed2114

2115

AOT_theorem "fund-lem:1": ‹♦p → ♦∃w (w |= p)› (525.1)2116

proof (rule "RM♦"; rule "→I"; rule "raa-cor:1")2117

AOT_modally_strict {2118

AOT_obtain w where w_prop: ‹∀q (w |= q ≡ q)›2119

using "act-world:1" "PossibleWorld.∃E"[rotated] by meson2120

AOT_assume p: ‹p›2121

AOT_assume 0: ‹¬∃w (w |= p)›2122

AOT_have ‹∀w ¬(w |= p)›2123

apply (AOT_subst ‹PossibleWorld(x) → ¬x |= p›2124

‹¬(PossibleWorld(x) & x |= p)› for: x)2125

apply (metis "&I" "&E"(1) "&E"(2) "→I" "≡I" "modus-tollens:2")2126

using "0" "cqt-further:4" "vdash-properties:10" by blast2127

AOT_hence ‹¬(w |= p)›2128

using PossibleWorld.ψ "rule-ui:3" "→E" by blast2129

AOT_hence ‹¬p›2130

using w_prop[THEN "∀E"(2), THEN "≡E"(2)]2131

by (metis "raa-cor:3")2132

AOT_thus ‹p & ¬p›2133

using p "&I" by blast2134

}2135

qed2136

2137

AOT_theorem "fund-lem:2": ‹♦∃w (w |= p) → ∃w (w |= p)› (525.2)2138

proof (rule "→I")2139

AOT_assume ‹♦∃w (w |= p)›2140

401

A. Isabelle Theory

AOT_hence ‹∃w ♦(w |= p)›2141

using "PossibleWorld.res-var-bound-reas[BF♦]"[THEN "→E"] by auto2142

then AOT_obtain w where ‹♦(w |= p)›2143

using "PossibleWorld.∃E"[rotated] by meson2144

moreover AOT_have ‹Situation(w)›2145

by (metis "≡dfE" "&E"(1) pos "world-pos")2146

ultimately AOT_have ‹w |= p›2147

using "lem2:2"[unconstrain s, THEN "→E"] "≡E" by blast2148

AOT_thus ‹∃w w |= p›2149

by (rule "PossibleWorld.∃I")2150

qed2151

2152

AOT_theorem "fund-lem:3": ‹p → ∀s(∀q (s |= q ≡ q) → s |= p)› (525.3)2153

proof(safe intro!: "→I" Situation.GEN)2154

fix s2155

AOT_assume ‹p›2156

moreover AOT_assume ‹∀q (s |= q ≡ q)›2157

ultimately AOT_show ‹s |= p›2158

using "∀E"(2) "≡E"(2) by blast2159

qed2160

2161

AOT_theorem "fund-lem:4": ‹�p → �∀s(∀q (s |= q ≡ q) → s |= p)› (525.4)2162

using "fund-lem:3" by (rule RM)2163

2164

AOT_theorem "fund-lem:5": ‹�∀s ϕ{s} → ∀s �ϕ{s}› (525.5)2165

proof(safe intro!: "→I" Situation.GEN)2166

fix s2167

AOT_assume ‹�∀s ϕ{s}›2168

AOT_hence ‹∀s �ϕ{s}›2169

using "Situation.res-var-bound-reas[CBF]"[THEN "→E"] by blast2170

AOT_thus ‹�ϕ{s}›2171

using "Situation.∀E" by fast2172

qed2173

2174

text‹Note: not explicit in PLM.›2175

AOT_theorem "fund-lem:5[world]": ‹�∀w ϕ{w} → ∀w �ϕ{w}› (525.5)2176

proof(safe intro!: "→I" PossibleWorld.GEN)2177

fix w2178

AOT_assume ‹�∀w ϕ{w}›2179

AOT_hence ‹∀w �ϕ{w}›2180

using "PossibleWorld.res-var-bound-reas[CBF]"[THEN "→E"] by blast2181

AOT_thus ‹�ϕ{w}›2182

using "PossibleWorld.∀E" by fast2183

qed2184

2185

AOT_theorem "fund-lem:6": ‹∀w w |= p → �∀w w |= p› (525.6)2186

proof(rule "→I")2187

AOT_assume ‹∀w (w |= p)›2188

AOT_hence 1: ‹PossibleWorld(w) → (w |= p)› for w2189

using "∀E"(2) by blast2190

AOT_show ‹�∀w w |= p›2191

proof(rule "raa-cor:1")2192

AOT_assume ‹¬�∀w w |= p›2193

AOT_hence ‹♦¬∀w w |= p›2194

by (metis "KBasic:11" "≡E"(1))2195

AOT_hence ‹♦∃x (¬(PossibleWorld(x) → x |= p))›2196

apply (rule "RM♦"[THEN "→E", rotated])2197

by (simp add: "cqt-further:2")2198

AOT_hence ‹∃x ♦(¬(PossibleWorld(x) → x |= p))›2199

by (metis "BF♦" "vdash-properties:10")2200

then AOT_obtain x where x_prop: ‹♦¬(PossibleWorld(x) → x |= p)›2201

using "∃E"[rotated] by blast2202

AOT_have ‹♦(PossibleWorld(x) & ¬x |= p)›2203

402

A.11. Possible Worlds

apply (AOT_subst ‹PossibleWorld(x) & ¬x |= p›2204

‹¬(PossibleWorld(x) → x |= p)›)2205

apply (meson "≡E"(6) "oth-class-taut:1:b" "oth-class-taut:3:a")2206

by(fact x_prop)2207

AOT_hence 2: ‹♦PossibleWorld(x) & ♦¬x |= p›2208

by (metis "KBasic2:3" "vdash-properties:10")2209

AOT_hence ‹PossibleWorld(x)›2210

using "&E"(1) "≡E"(1) "rigid-pw:2" by blast2211

AOT_hence ‹�(x |= p)›2212

using 2[THEN "&E"(2)] 1[unconstrain w, THEN "→E"] "→E"2213

"rigid-truth-at:1"[unconstrain w, THEN "→E"]2214

by (metis "≡E"(1))2215

moreover AOT_have ‹¬�(x |= p)›2216

using 2[THEN "&E"(2)] by (metis "¬¬I" "KBasic:12" "≡E"(4))2217

ultimately AOT_show ‹p & ¬p› for p2218

by (metis "raa-cor:3")2219

qed2220

qed2221

2222

AOT_theorem "fund-lem:7": ‹�∀w(w |= p) → �p› (525.7)2223

proof(rule RM; rule "→I")2224

AOT_modally_strict {2225

AOT_obtain w where w_prop: ‹∀p (w |= p ≡ p)›2226

using "act-world:1" "PossibleWorld.∃E"[rotated] by meson2227

AOT_assume ‹∀w (w |= p)›2228

AOT_hence ‹w |= p›2229

using "PossibleWorld.∀E" by fast2230

AOT_thus ‹p›2231

using w_prop[THEN "∀E"(2), THEN "≡E"(1)] by blast2232

}2233

qed2234

2235

AOT_theorem "fund:1": ‹♦p ≡ ∃w w |= p› (526.1)2236

proof (rule "≡I"; rule "→I")2237

AOT_assume ‹♦p›2238

AOT_thus ‹∃w w |= p›2239

by (metis "fund-lem:1" "fund-lem:2" "→E")2240

next2241

AOT_assume ‹∃w w |= p›2242

then AOT_obtain w where w_prop: ‹w |= p›2243

using "PossibleWorld.∃E"[rotated] by meson2244

AOT_hence ‹♦∀p (w |= p ≡ p)›2245

using "world:1"[THEN "≡dfE", THEN "&E"(2)] PossibleWorld.ψ "&E" by blast2246

AOT_hence ‹∀p ♦(w |= p ≡ p)›2247

by (metis "Buridan♦" "→E")2248

AOT_hence 1: ‹♦(w |= p ≡ p)›2249

by (metis "log-prop-prop:2" "rule-ui:1")2250

AOT_have ‹♦((w |= p → p) & (p → w |= p))›2251

apply (AOT_subst ‹(w |= p → p) & (p → w |= p)› ‹w |= p ≡ p›)2252

apply (meson "conventions:3" "≡E"(6) "oth-class-taut:3:a" "≡Df")2253

by (fact 1)2254

AOT_hence ‹♦(w |= p → p)›2255

by (metis "RM♦" "Conjunction Simplification"(1) "→E")2256

moreover AOT_have ‹�(w |= p)›2257

using w_prop by (metis "≡E"(1) "rigid-truth-at:1")2258

ultimately AOT_show ‹♦p›2259

by (metis "KBasic2:4" "≡E"(1) "→E")2260

qed2261

2262

AOT_theorem "fund:2": ‹�p ≡ ∀w (w |= p)› (526.2)2263

proof -2264

AOT_have 0: ‹∀w (w |= ¬p ≡ ¬w |= p)›2265

apply (rule PossibleWorld.GEN)2266

403

A. Isabelle Theory

using "coherent:1" by blast2267

AOT_have ‹♦¬p ≡ ∃w (w |= ¬p)›2268

using "fund:1"[unvarify p, OF "log-prop-prop:2"] by blast2269

also AOT_have ‹. . . ≡ ∃w ¬(w |= p)›2270

proof(safe intro!: "≡I" "→I")2271

AOT_assume ‹∃w w |= ¬p›2272

then AOT_obtain w where w_prop: ‹w |= ¬p›2273

using "PossibleWorld.∃E"[rotated] by meson2274

AOT_hence ‹¬w |= p›2275

using 0[THEN "PossibleWorld.∀E", THEN "≡E"(1)] "&E" by blast2276

AOT_thus ‹∃w ¬w |= p›2277

by (rule "PossibleWorld.∃I")2278

next2279

AOT_assume ‹∃w ¬w |= p›2280

then AOT_obtain w where w_prop: ‹¬w |= p›2281

using "PossibleWorld.∃E"[rotated] by meson2282

AOT_hence ‹w |= ¬p›2283

using 0[THEN "∀E"(2), THEN "→E", THEN "≡E"(1)] "&E"2284

by (metis "coherent:1" "≡E"(2))2285

AOT_thus ‹∃w w |= ¬p›2286

by (rule "PossibleWorld.∃I")2287

qed2288

finally AOT_have ‹¬♦¬p ≡ ¬∃w ¬w |= p›2289

by (meson "≡E"(1) "oth-class-taut:4:b")2290

AOT_hence ‹�p ≡ ¬∃w ¬w |= p›2291

by (metis "KBasic:12" "≡E"(5))2292

also AOT_have ‹. . . ≡ ∀w w |= p›2293

proof(safe intro!: "≡I" "→I")2294

AOT_assume ‹¬∃w ¬w |= p›2295

AOT_hence 0: ‹∀x (¬(PossibleWorld(x) & ¬x |= p))›2296

by (metis "cqt-further:4" "→E")2297

AOT_show ‹∀w w |= p›2298

apply (AOT_subst ‹PossibleWorld(x) → x |= p›2299

‹¬(PossibleWorld(x) & ¬x |= p)› for: x)2300

using "oth-class-taut:1:a" apply presburger2301

by (fact 0)2302

next2303

AOT_assume 0: ‹∀w w |= p›2304

AOT_have ‹∀x (¬(PossibleWorld(x) & ¬x |= p))›2305

by (AOT_subst (reverse) ‹¬(PossibleWorld(x) & ¬x |= p)›2306

‹PossibleWorld(x) → x |= p› for: x)2307

(auto simp: "oth-class-taut:1:a" 0)2308

AOT_thus ‹¬∃w ¬w |= p›2309

by (metis "∃E" "raa-cor:3" "rule-ui:3")2310

qed2311

finally AOT_show ‹�p ≡ ∀w w |= p›.2312

qed2313

2314

AOT_theorem "fund:3": ‹¬♦p ≡ ¬∃w w |= p› (526.3)2315

by (metis (full_types) "contraposition:1[1]" "→I" "fund:1" "≡I" "≡E"(1,2))2316

2317

AOT_theorem "fund:4": ‹¬�p ≡ ∃w ¬w |=p› (526.4)2318

apply (AOT_subst ‹∃w ¬w |= p› ‹¬ ∀w w |= p›)2319

apply (AOT_subst ‹PossibleWorld(x) → x |= p›2320

‹¬(PossibleWorld(x) & ¬x |= p)› for: x)2321

by (auto simp add: "oth-class-taut:1:a" "conventions:4" "≡Df" RN2322

"fund:2" "rule-sub-lem:1:a")2323

2324

AOT_theorem "nec-dia-w:1": ‹�p ≡ ∃w w |= �p› (527.1)2325

proof -2326

AOT_have ‹�p ≡ ♦�p›2327

using "S5Basic:2" by blast2328

also AOT_have ‹... ≡ ∃w w |= �p›2329

404

A.11. Possible Worlds

using "fund:1"[unvarify p, OF "log-prop-prop:2"] by blast2330

finally show ?thesis.2331

qed2332

2333

AOT_theorem "nec-dia-w:2": ‹�p ≡ ∀w w |= �p› (527.2)2334

proof -2335

AOT_have ‹�p ≡ ��p›2336

using 4 "qml:2"[axiom_inst] "≡I" by blast2337

also AOT_have ‹... ≡ ∀w w |= �p›2338

using "fund:2"[unvarify p, OF "log-prop-prop:2"] by blast2339

finally show ?thesis.2340

qed2341

2342

AOT_theorem "nec-dia-w:3": ‹♦p ≡ ∃w w |= ♦p› (527.3)2343

proof -2344

AOT_have ‹♦p ≡ ♦♦p›2345

by (simp add: "4♦" "T♦" "≡I")2346

also AOT_have ‹... ≡ ∃w w |= ♦p›2347

using "fund:1"[unvarify p, OF "log-prop-prop:2"] by blast2348

finally show ?thesis.2349

qed2350

2351

AOT_theorem "nec-dia-w:4": ‹♦p ≡ ∀w w |= ♦p› (527.4)2352

proof -2353

AOT_have ‹♦p ≡ �♦p›2354

by (simp add: "S5Basic:1")2355

also AOT_have ‹... ≡ ∀w w |= ♦p›2356

using "fund:2"[unvarify p, OF "log-prop-prop:2"] by blast2357

finally show ?thesis.2358

qed2359

2360

AOT_theorem "conj-dist-w:1": ‹w |= (p & q) ≡ ((w |= p) & (w |= q))› (528.1)2361

proof(safe intro!: "≡I" "→I")2362

AOT_assume ‹w |= (p & q)›2363

AOT_hence 0: ‹�w |= (p & q)›2364

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2365

by blast2366

AOT_modally_strict {2367

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (ϕ & ψ)) → (w |= ϕ & w |= ψ))› for w ϕ ψ2368

proof(safe intro!: "→I")2369

AOT_assume ‹∀ p (w |= p ≡ p)›2370

AOT_hence ‹w |= (ϕ & ψ) ≡ (ϕ & ψ)› and ‹w |= ϕ ≡ ϕ› and ‹w |= ψ ≡ ψ›2371

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+2372

moreover AOT_assume ‹w |= (ϕ & ψ)›2373

ultimately AOT_show ‹w |= ϕ & w |= ψ›2374

by (metis "&I" "&E"(1) "&E"(2) "≡E"(1) "≡E"(2))2375

qed2376

}2377

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (ϕ & ψ) → w |= ϕ & w |= ψ)› for w ϕ ψ2378

by (rule "RM♦")2379

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2380

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2381

ultimately AOT_have ‹♦(w |= (p & q) → w |= p & w |= q)› using "→E" by blast2382

AOT_hence ‹♦(w |= p) & ♦(w |= q)›2383

by (metis 0 "KBasic2:3" "KBasic2:4" "≡E"(1) "vdash-properties:10")2384

AOT_thus ‹w |= p & w |= q›2385

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2386

"&E" "&I" by meson2387

next2388

AOT_assume ‹w |= p & w |= q›2389

AOT_hence ‹�w |= p & �w |= q›2390

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2391

"&E" "&I" by blast2392

405

A. Isabelle Theory

AOT_hence 0: ‹�(w |= p & w |= q)›2393

by (metis "KBasic:3" "≡E"(2))2394

AOT_modally_strict {2395

AOT_have ‹∀p (w |= p ≡ p) → ((w |= ϕ & w |= ψ) → (w |= (ϕ & ψ)))› for w ϕ ψ2396

proof(safe intro!: "→I")2397

AOT_assume ‹∀ p (w |= p ≡ p)›2398

AOT_hence ‹w |= (ϕ & ψ) ≡ (ϕ & ψ)› and ‹w |= ϕ ≡ ϕ› and ‹w |= ψ ≡ ψ›2399

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+2400

moreover AOT_assume ‹w |= ϕ & w |= ψ›2401

ultimately AOT_show ‹w |= (ϕ & ψ)›2402

by (metis "&I" "&E"(1) "&E"(2) "≡E"(1) "≡E"(2))2403

qed2404

}2405

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((w |= ϕ & w |= ψ) → w |= (ϕ & ψ))› for w ϕ ψ2406

by (rule "RM♦")2407

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2408

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2409

ultimately AOT_have ‹♦((w |= p & w |= q) → w |= (p & q))›2410

using "→E" by blast2411

AOT_hence ‹♦(w |= (p & q))›2412

by (metis 0 "KBasic2:4" "≡E"(1) "vdash-properties:10")2413

AOT_thus ‹w |= (p & q)›2414

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2415

by blast2416

qed2417

2418

AOT_theorem "conj-dist-w:2": ‹w |= (p → q) ≡ ((w |= p) → (w |= q))› (528.2)2419

proof(safe intro!: "≡I" "→I")2420

AOT_assume ‹w |= (p → q)›2421

AOT_hence 0: ‹�w |= (p → q)›2422

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2423

by blast2424

AOT_assume ‹w |= p›2425

AOT_hence 1: ‹�w |= p›2426

by (metis "T♦" "≡E"(1) "rigid-truth-at:3" "→E")2427

AOT_modally_strict {2428

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (ϕ → ψ)) → (w |= ϕ → w |= ψ))› for w ϕ ψ2429

proof(safe intro!: "→I")2430

AOT_assume ‹∀ p (w |= p ≡ p)›2431

AOT_hence ‹w |= (ϕ → ψ) ≡ (ϕ → ψ)› and ‹w |= ϕ ≡ ϕ› and ‹w |= ψ ≡ ψ›2432

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+2433

moreover AOT_assume ‹w |= (ϕ → ψ)›2434

moreover AOT_assume ‹w |= ϕ›2435

ultimately AOT_show ‹w |= ψ›2436

by (metis "≡E"(1) "≡E"(2) "→E")2437

qed2438

}2439

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (ϕ → ψ) → (w |= ϕ → w |= ψ))› for w ϕ ψ2440

by (rule "RM♦")2441

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2442

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2443

ultimately AOT_have ‹♦(w |= (p → q) → (w |= p → w |= q))›2444

using "→E" by blast2445

AOT_hence ‹♦(w |= p → w |= q)›2446

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2447

AOT_hence ‹♦w |= q›2448

by (metis 1 "KBasic2:4" "≡E"(1) "→E")2449

AOT_thus ‹w |= q›2450

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2451

"&E" "&I" by meson2452

next2453

AOT_assume ‹w |= p → w |= q›2454

AOT_hence ‹¬(w |= p) ∨ w |= q›2455

406

A.11. Possible Worlds

by (metis "∨I"(1) "∨I"(2) "reductio-aa:1" "→E")2456

AOT_hence ‹w |= ¬p ∨ w |= q›2457

by (metis "coherent:1" "∨I"(1) "∨I"(2) "∨E"(2) "≡E"(2) "reductio-aa:1")2458

AOT_hence 0: ‹�(w |= ¬p ∨ w |= q)›2459

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2460

by (metis "KBasic:15" "∨I"(1) "∨I"(2) "∨E"(2) "reductio-aa:1" "→E")2461

AOT_modally_strict {2462

AOT_have ‹∀p (w |= p ≡ p) → ((w |= ¬ϕ ∨ w |= ψ) → (w |= (ϕ → ψ)))› for w ϕ ψ2463

proof(safe intro!: "→I")2464

AOT_assume ‹∀ p (w |= p ≡ p)›2465

moreover AOT_assume ‹w |= ¬ϕ ∨ w |= ψ›2466

ultimately AOT_show ‹w |= (ϕ → ψ)›2467

by (metis "∨E"(2) "→I" "≡E"(1) "≡E"(2) "log-prop-prop:2"2468

"reductio-aa:1" "rule-ui:1")2469

qed2470

}2471

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((w |= ¬ϕ ∨ w |= ψ) → w |= (ϕ → ψ))› for w ϕ ψ2472

by (rule "RM♦")2473

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2474

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2475

ultimately AOT_have ‹♦((w |= ¬p ∨ w |= q) → w |= (p → q))›2476

using "→E" by blast2477

AOT_hence ‹♦(w |= (p → q))›2478

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2479

AOT_thus ‹w |= (p → q)›2480

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2481

by blast2482

qed2483

2484

AOT_theorem "conj-dist-w:3": ‹w |= (p ∨ q) ≡ ((w |= p) ∨ (w |= q))› (528.3)2485

proof(safe intro!: "≡I" "→I")2486

AOT_assume ‹w |= (p ∨ q)›2487

AOT_hence 0: ‹�w |= (p ∨ q)›2488

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2489

by blast2490

AOT_modally_strict {2491

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (ϕ ∨ ψ)) → (w |= ϕ ∨ w |= ψ))› for w ϕ ψ2492

proof(safe intro!: "→I")2493

AOT_assume ‹∀ p (w |= p ≡ p)›2494

AOT_hence ‹w |= (ϕ ∨ ψ) ≡ (ϕ ∨ ψ)› and ‹w |= ϕ ≡ ϕ› and ‹w |= ψ ≡ ψ›2495

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+2496

moreover AOT_assume ‹w |= (ϕ ∨ ψ)›2497

ultimately AOT_show ‹w |= ϕ ∨ w |= ψ›2498

by (metis "∨I"(1) "∨I"(2) "∨E"(3) "≡E"(1) "≡E"(2) "reductio-aa:1")2499

qed2500

}2501

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (ϕ ∨ ψ) → (w |= ϕ ∨ w |= ψ))› for w ϕ ψ2502

by (rule "RM♦")2503

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2504

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2505

ultimately AOT_have ‹♦(w |= (p ∨ q) → (w |= p ∨ w |= q))› using "→E" by blast2506

AOT_hence ‹♦(w |= p ∨ w |= q)›2507

by (metis 0 "KBasic2:4" "≡E"(1) "vdash-properties:10")2508

AOT_hence ‹♦w |= p ∨ ♦w |= q›2509

using "KBasic2:2"[THEN "≡E"(1)] by blast2510

AOT_thus ‹w |= p ∨ w |= q›2511

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2512

by (metis "∨I"(1) "∨I"(2) "∨E"(2) "reductio-aa:1")2513

next2514

AOT_assume ‹w |= p ∨ w |= q›2515

AOT_hence 0: ‹�(w |= p ∨ w |= q)›2516

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2517

by (metis "KBasic:15" "∨I"(1) "∨I"(2) "∨E"(2) "reductio-aa:1" "→E")2518

407

A. Isabelle Theory

AOT_modally_strict {2519

AOT_have ‹∀p (w |= p ≡ p) → ((w |= ϕ ∨ w |= ψ) → (w |= (ϕ ∨ ψ)))› for w ϕ ψ2520

proof(safe intro!: "→I")2521

AOT_assume ‹∀ p (w |= p ≡ p)›2522

moreover AOT_assume ‹w |= ϕ ∨ w |= ψ›2523

ultimately AOT_show ‹w |= (ϕ ∨ ψ)›2524

by (metis "∨I"(1) "∨I"(2) "∨E"(2) "≡E"(1) "≡E"(2)2525

"log-prop-prop:2" "reductio-aa:1" "rule-ui:1")2526

qed2527

}2528

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((w |= ϕ ∨ w |= ψ) → w |= (ϕ ∨ ψ))› for w ϕ ψ2529

by (rule "RM♦")2530

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2531

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2532

ultimately AOT_have ‹♦((w |= p ∨ w |= q) → w |= (p ∨ q))›2533

using "→E" by blast2534

AOT_hence ‹♦(w |= (p ∨ q))›2535

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2536

AOT_thus ‹w |= (p ∨ q)›2537

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2538

by blast2539

qed2540

2541

AOT_theorem "conj-dist-w:4": ‹w |= (p ≡ q) ≡ ((w |= p) ≡ (w |= q))› (528.4)2542

proof(rule "≡I"; rule "→I")2543

AOT_assume ‹w |= (p ≡ q)›2544

AOT_hence 0: ‹�w |= (p ≡ q)›2545

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2546

by blast2547

AOT_modally_strict {2548

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (ϕ ≡ ψ)) → (w |= ϕ ≡ w |= ψ))› for w ϕ ψ2549

proof(safe intro!: "→I")2550

AOT_assume ‹∀ p (w |= p ≡ p)›2551

AOT_hence ‹w |= (ϕ ≡ ψ) ≡ (ϕ ≡ ψ)› and ‹w |= ϕ ≡ ϕ› and ‹w |= ψ ≡ ψ›2552

using "∀E"(1)[rotated, OF "log-prop-prop:2"] by blast+2553

moreover AOT_assume ‹w |= (ϕ ≡ ψ)›2554

ultimately AOT_show ‹w |= ϕ ≡ w |= ψ›2555

by (metis "≡E"(2) "≡E"(5) "Commutativity of ≡")2556

qed2557

}2558

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (ϕ ≡ ψ) → (w |= ϕ ≡ w |= ψ))› for w ϕ ψ2559

by (rule "RM♦")2560

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2561

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2562

ultimately AOT_have ‹♦(w |= (p ≡ q) → (w |= p ≡ w |= q))›2563

using "→E" by blast2564

AOT_hence 1: ‹♦(w |= p ≡ w |= q)›2565

by (metis 0 "KBasic2:4" "≡E"(1) "vdash-properties:10")2566

AOT_have ‹♦((w |= p → w |= q) & (w |= q → w |= p))›2567

apply (AOT_subst ‹(w |= p → w |= q) & (w |= q → w |= p)› ‹w |= p ≡ w |= q›)2568

apply (meson "≡dfE" "conventions:3" "→I" "df-rules-formulas[4]" "≡I")2569

by (fact 1)2570

AOT_hence 2: ‹♦(w |= p → w |= q) & ♦(w |= q → w |= p)›2571

by (metis "KBasic2:3" "vdash-properties:10")2572

AOT_have ‹♦(¬w |= p ∨ w |= q)› and ‹♦(¬w |= q ∨ w |= p)›2573

apply (AOT_subst (reverse) ‹¬w |= p ∨ w |= q› ‹w |= p → w |= q›)2574

apply (simp add: "oth-class-taut:1:c")2575

apply (fact 2[THEN "&E"(1)])2576

apply (AOT_subst (reverse) ‹¬w |= q ∨ w |= p› ‹w |= q → w |= p›)2577

apply (simp add: "oth-class-taut:1:c")2578

by (fact 2[THEN "&E"(2)])2579

AOT_hence ‹♦(¬w |= p) ∨ ♦w |= q› and ‹♦¬w |= q ∨ ♦w |= p›2580

using "KBasic2:2" "≡E"(1) by blast+2581

408

A.11. Possible Worlds

AOT_hence ‹¬�w |= p ∨ ♦w |= q› and ‹¬�w |= q ∨ ♦w |= p›2582

by (metis "KBasic:11" "∨I"(1) "∨I"(2) "∨E"(2) "≡E"(2) "raa-cor:1")+2583

AOT_thus ‹w |= p ≡ w |= q›2584

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2585

by (metis "¬¬I" "T♦" "∨E"(2) "→I" "≡I" "≡E"(1) "rigid-truth-at:3")2586

next2587

AOT_have ‹�PossibleWorld(w)›2588

using "≡E"(1) "rigid-pw:1" PossibleWorld.ψ by blast2589

moreover {2590

fix p2591

AOT_modally_strict {2592

AOT_have ‹PossibleWorld(w) → (w |= p → �w |= p)›2593

using "rigid-truth-at:1" "→I"2594

by (metis "≡E"(1))2595

}2596

AOT_hence ‹�PossibleWorld(w) → �(w |= p → �w |= p)›2597

by (rule RM)2598

}2599

ultimately AOT_have 1: ‹�(w |= p → �w |= p)› for p2600

by (metis "→E")2601

AOT_assume ‹w |= p ≡ w |= q›2602

AOT_hence 0: ‹�(w |= p ≡ w |= q)›2603

using "sc-eq-box-box:5"[THEN "→E", THEN "qml:2"[axiom_inst, THEN "→E"],2604

THEN "→E", OF "&I"]2605

by (metis "1")2606

AOT_modally_strict {2607

AOT_have ‹∀p (w |= p ≡ p) → ((w |= ϕ ≡ w |= ψ) → (w |= (ϕ ≡ ψ)))› for w ϕ ψ2608

proof(safe intro!: "→I")2609

AOT_assume ‹∀ p (w |= p ≡ p)›2610

moreover AOT_assume ‹w |= ϕ ≡ w |= ψ›2611

ultimately AOT_show ‹w |= (ϕ ≡ ψ)›2612

by (metis "≡E"(2) "≡E"(6) "log-prop-prop:2" "rule-ui:1")2613

qed2614

}2615

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((w |= ϕ ≡ w |= ψ) → w |= (ϕ ≡ ψ))› for w ϕ ψ2616

by (rule "RM♦")2617

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2618

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2619

ultimately AOT_have ‹♦((w |= p ≡ w |= q) → w |= (p ≡ q))›2620

using "→E" by blast2621

AOT_hence ‹♦(w |= (p ≡ q))›2622

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2623

AOT_thus ‹w |= (p ≡ q)›2624

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2625

by blast2626

qed2627

2628

AOT_theorem "conj-dist-w:5": ‹w |= (∀α ϕ{α}) ≡ (∀ α (w |= ϕ{α}))› (528.5)2629

proof(safe intro!: "≡I" "→I" GEN)2630

AOT_assume ‹w |= (∀α ϕ{α})›2631

AOT_hence 0: ‹�w |= (∀α ϕ{α})›2632

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2633

by blast2634

AOT_modally_strict {2635

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (∀α ϕ{α})) → (∀α w |= ϕ{α}))› for w2636

proof(safe intro!: "→I" GEN)2637

AOT_assume ‹∀p (w |= p ≡ p)›2638

moreover AOT_assume ‹w |= (∀α ϕ{α})›2639

ultimately AOT_show ‹w |= ϕ{α}› for α2640

by (metis "≡E"(1) "≡E"(2) "log-prop-prop:2" "rule-ui:1" "rule-ui:3")2641

qed2642

}2643

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (∀α ϕ{α}) → (∀α w |= ϕ{α}))› for w2644

409

A. Isabelle Theory

by (rule "RM♦")2645

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2646

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2647

ultimately AOT_have ‹♦(w |= (∀α ϕ{α}) → (∀α w |= ϕ{α}))› using "→E" by blast2648

AOT_hence ‹♦(∀α w |= ϕ{α})›2649

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2650

AOT_hence ‹∀α ♦w |= ϕ{α}›2651

by (metis "Buridan♦" "→E")2652

AOT_thus ‹w |= ϕ{α}› for α2653

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2654

"∀E"(2) by blast2655

next2656

AOT_assume ‹∀α w |= ϕ{α}›2657

AOT_hence ‹w |= ϕ{α}› for α using "∀E"(2) by blast2658

AOT_hence ‹�w |= ϕ{α}› for α2659

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2660

"&E" "&I" by blast2661

AOT_hence ‹∀α �w |= ϕ{α}› by (rule GEN)2662

AOT_hence 0: ‹�∀α w |= ϕ{α}› by (rule BF[THEN "→E"])2663

AOT_modally_strict {2664

AOT_have ‹∀p (w |= p ≡ p) → ((∀α w |= ϕ{α}) → (w |= (∀α ϕ{α})))› for w2665

proof(safe intro!: "→I")2666

AOT_assume ‹∀ p (w |= p ≡ p)›2667

moreover AOT_assume ‹∀α w |= ϕ{α}›2668

ultimately AOT_show ‹w |= (∀α ϕ{α})›2669

by (metis "≡E"(1) "≡E"(2) "log-prop-prop:2" "rule-ui:1"2670

"rule-ui:3" "universal-cor")2671

qed2672

}2673

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((∀α w |= ϕ{α}) → w |= (∀α ϕ{α}))› for w2674

by (rule "RM♦")2675

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2676

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2677

ultimately AOT_have ‹♦((∀α w |= ϕ{α}) → w |= (∀α ϕ{α}))›2678

using "→E" by blast2679

AOT_hence ‹♦(w |= (∀α ϕ{α}))›2680

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2681

AOT_thus ‹w |= (∀α ϕ{α})›2682

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2683

by blast2684

qed2685

2686

AOT_theorem "conj-dist-w:6": ‹w |= (∃α ϕ{α}) ≡ (∃ α (w |= ϕ{α}))› (528.6)2687

proof(safe intro!: "≡I" "→I" GEN)2688

AOT_assume ‹w |= (∃α ϕ{α})›2689

AOT_hence 0: ‹�w |= (∃α ϕ{α})›2690

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2691

by blast2692

AOT_modally_strict {2693

AOT_have ‹∀p (w |= p ≡ p) → ((w |= (∃α ϕ{α})) → (∃α w |= ϕ{α}))› for w2694

proof(safe intro!: "→I" GEN)2695

AOT_assume ‹∀p (w |= p ≡ p)›2696

moreover AOT_assume ‹w |= (∃α ϕ{α})›2697

ultimately AOT_show ‹∃ α (w |= ϕ{α})›2698

by (metis "∃E" "∃I"(2) "≡E"(1,2) "log-prop-prop:2" "rule-ui:1")2699

qed2700

}2701

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦(w |= (∃α ϕ{α}) → (∃α w |= ϕ{α}))› for w2702

by (rule "RM♦")2703

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2704

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2705

ultimately AOT_have ‹♦(w |= (∃α ϕ{α}) → (∃α w |= ϕ{α}))› using "→E" by blast2706

AOT_hence ‹♦(∃α w |= ϕ{α})›2707

410

A.11. Possible Worlds

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2708

AOT_hence ‹∃α ♦w |= ϕ{α}›2709

by (metis "BF♦" "→E")2710

then AOT_obtain α where ‹♦w |= ϕ{α}›2711

using "∃E"[rotated] by blast2712

AOT_hence ‹w |= ϕ{α}›2713

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"] by blast2714

AOT_thus ‹∃ α w |= ϕ{α}› by (rule "∃I")2715

next2716

AOT_assume ‹∃α w |= ϕ{α}›2717

then AOT_obtain α where ‹w |= ϕ{α}› using "∃E"[rotated] by blast2718

AOT_hence ‹�w |= ϕ{α}›2719

using "rigid-truth-at:1"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2720

"&E" "&I" by blast2721

AOT_hence ‹∃α �w |= ϕ{α}›2722

by (rule "∃I")2723

AOT_hence 0: ‹�∃α w |= ϕ{α}›2724

by (metis Buridan "→E")2725

AOT_modally_strict {2726

AOT_have ‹∀p (w |= p ≡ p) → ((∃α w |= ϕ{α}) → (w |= (∃α ϕ{α})))› for w2727

proof(safe intro!: "→I")2728

AOT_assume ‹∀ p (w |= p ≡ p)›2729

moreover AOT_assume ‹∃α w |= ϕ{α}›2730

then AOT_obtain α where ‹w |= ϕ{α}›2731

using "∃E"[rotated] by blast2732

ultimately AOT_show ‹w |= (∃α ϕ{α})›2733

by (metis "∃I"(2) "≡E"(1,2) "log-prop-prop:2" "rule-ui:1")2734

qed2735

}2736

AOT_hence ‹♦∀p (w |= p ≡ p) → ♦((∃α w |= ϕ{α}) → w |= (∃α ϕ{α}))› for w2737

by (rule "RM♦")2738

moreover AOT_have pos: ‹♦∀p (w |= p ≡ p)› (491)2739

using "world:1"[THEN "≡dfE", OF PossibleWorld.ψ] "&E" by blast2740

ultimately AOT_have ‹♦((∃α w |= ϕ{α}) → w |= (∃α ϕ{α}))›2741

using "→E" by blast2742

AOT_hence ‹♦(w |= (∃α ϕ{α}))›2743

by (metis 0 "KBasic2:4" "≡E"(1) "→E")2744

AOT_thus ‹w |= (∃α ϕ{α})›2745

using "rigid-truth-at:2"[unvarify p, THEN "≡E"(1), OF "log-prop-prop:2"]2746

by blast2747

qed2748

2749

AOT_theorem "conj-dist-w:7": ‹(w |= �p) → �w |= p› (528.7)2750

proof(rule "→I")2751

AOT_assume ‹w |= �p›2752

AOT_hence ‹∃w w |= �p› by (rule "PossibleWorld.∃I")2753

AOT_hence ‹♦�p› using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)]2754

by blast2755

AOT_hence ‹�p›2756

by (metis "5♦" "→E")2757

AOT_hence 1: ‹��p›2758

by (metis "S5Basic:6" "≡E"(1))2759

AOT_have ‹�∀w w |= p›2760

by (AOT_subst (reverse) ‹∀w w |= p› ‹�p›)2761

(auto simp add: "fund:2" 1)2762

AOT_hence ‹∀w �w |= p›2763

using "fund-lem:5[world]"[THEN "→E"] by simp2764

AOT_thus ‹�w |= p›2765

using "→E" "PossibleWorld.∀E" by fast2766

qed2767

2768

AOT_theorem "conj-dist-w:8": ‹∃w∃p((�w |= p) & ¬w |= �p)› (528.8)2769

proof -2770

411

A. Isabelle Theory

AOT_obtain r where A: r and ‹♦¬r›2771

by (metis "&E"(1) "&E"(2) "≡dfE" "∃E" "cont-tf:1" "cont-tf-thm:1")2772

AOT_hence B: ‹¬�r›2773

by (metis "KBasic:11" "≡E"(2))2774

AOT_have ‹♦r›2775

using A "T♦"[THEN "→E"] by simp2776

AOT_hence ‹∃w w |= r›2777

using "fund:1"[THEN "≡E"(1)] by blast2778

then AOT_obtain w where w: ‹w |= r›2779

using "PossibleWorld.∃E"[rotated] by meson2780

AOT_hence ‹�w |= r›2781

by (metis "T♦" "≡E"(1) "rigid-truth-at:3" "vdash-properties:10")2782

moreover AOT_have ‹¬w |= �r›2783

proof(rule "raa-cor:2")2784

AOT_assume ‹w |= �r›2785

AOT_hence ‹∃w w |= �r›2786

by (rule "PossibleWorld.∃I")2787

AOT_hence ‹�r›2788

by (metis "≡E"(2) "nec-dia-w:1")2789

AOT_thus ‹�r & ¬�r›2790

using B "&I" by blast2791

qed2792

ultimately AOT_have ‹�w |= r & ¬w |= �r›2793

by (rule "&I")2794

AOT_hence ‹∃p (�w |= p & ¬w |= �p)›2795

by (rule "∃I")2796

thus ?thesis2797

by (rule "PossibleWorld.∃I")2798

qed2799

2800

AOT_theorem "conj-dist-w:9": ‹(♦w |= p) → w |= ♦p› (528.9)2801

proof(rule "→I"; rule "raa-cor:1")2802

AOT_assume ‹♦w |= p›2803

AOT_hence 0: ‹w |= p›2804

by (metis "≡E"(1) "rigid-truth-at:2")2805

AOT_assume ‹¬w |= ♦p›2806

AOT_hence 1: ‹w |= ¬♦p›2807

using "coherent:1"[unvarify p, THEN "≡E"(2), OF "log-prop-prop:2"] by blast2808

moreover AOT_have ‹w |= (¬♦p → ¬p)›2809

using "T♦"[THEN "contraposition:1[1]", THEN RN]2810

"fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1), THEN "∀E"(2),2811

THEN "→E", rotated, OF PossibleWorld.ψ]2812

by blast2813

ultimately AOT_have ‹w |= ¬p›2814

using "conj-dist-w:2"[unvarify p q, OF "log-prop-prop:2", OF "log-prop-prop:2",2815

THEN "≡E"(1), THEN "→E"]2816

by blast2817

AOT_hence ‹w |= p & w |= ¬p› using 0 "&I" by blast2818

AOT_thus ‹p & ¬p›2819

by (metis "coherent:1" "Conjunction Simplification"(1,2) "≡E"(4)2820

"modus-tollens:1" "raa-cor:3")2821

qed2822

2823

AOT_theorem "conj-dist-w:10": ‹∃w∃p((w |= ♦p) & ¬♦w |= p)› (528.10)2824

proof -2825

AOT_obtain w where w: ‹∀p (w |= p ≡ p)›2826

using "act-world:1" "PossibleWorld.∃E"[rotated] by meson2827

AOT_obtain r where ‹¬r› and ‹♦r›2828

using "cont-tf-thm:2" "cont-tf:2"[THEN "≡dfE"] "&E" "∃E"[rotated] by metis2829

AOT_hence ‹w |= ¬r› and 0: ‹w |= ♦r›2830

using w[THEN "∀E"(1), OF "log-prop-prop:2", THEN "≡E"(2)] by blast+2831

AOT_hence ‹¬w |= r› using "coherent:1"[THEN "≡E"(1)] by blast2832

AOT_hence ‹¬♦w |= r› by (metis "≡E"(4) "rigid-truth-at:2")2833

412

A.11. Possible Worlds

AOT_hence ‹w |= ♦r & ¬♦w |= r› using 0 "&I" by blast2834

AOT_hence ‹∃p (w |= ♦p & ¬♦w |= p)› by (rule "∃I")2835

thus ?thesis by (rule "PossibleWorld.∃I")2836

qed2837

2838

AOT_theorem "two-worlds-exist:1": ‹∃p(ContingentlyTrue(p)) → ∃w (¬Actual(w))› (530.1)2839

proof(rule "→I")2840

AOT_assume ‹∃p ContingentlyTrue(p)›2841

then AOT_obtain p where ‹ContingentlyTrue(p)›2842

using "∃E"[rotated] by blast2843

AOT_hence p: ‹p & ♦¬p›2844

by (metis "≡dfE" "cont-tf:1")2845

AOT_hence ‹∃w w |= ¬p›2846

using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] "&E" by blast2847

then AOT_obtain w where w: ‹w |= ¬p›2848

using "PossibleWorld.∃E"[rotated] by meson2849

AOT_have ‹¬Actual(w)›2850

proof(rule "raa-cor:2")2851

AOT_assume ‹Actual(w)›2852

AOT_hence ‹w |= p›2853

using p[THEN "&E"(1)] actual[THEN "≡dfE", THEN "&E"(2)]2854

by (metis "log-prop-prop:2" "raa-cor:3" "rule-ui:1" "→E" w)2855

moreover AOT_have ‹¬(w |= p)›2856

by (metis "coherent:1" "≡E"(4) "reductio-aa:2" w)2857

ultimately AOT_show ‹w |= p & ¬(w |= p)›2858

using "&I" by blast2859

qed2860

AOT_thus ‹∃w ¬Actual(w)›2861

by (rule "PossibleWorld.∃I")2862

qed2863

2864

2865

AOT_theorem "two-worlds-exist:2": ‹∃p(ContingentlyFalse(p)) → ∃w (¬Actual(w))› (530.2)2866

proof(rule "→I")2867

AOT_assume ‹∃p ContingentlyFalse(p)›2868

then AOT_obtain p where ‹ContingentlyFalse(p)›2869

using "∃E"[rotated] by blast2870

AOT_hence p: ‹¬p & ♦p›2871

by (metis "≡dfE" "cont-tf:2")2872

AOT_hence ‹∃w w |= p›2873

using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] "&E" by blast2874

then AOT_obtain w where w: ‹w |= p›2875

using "PossibleWorld.∃E"[rotated] by meson2876

moreover AOT_have ‹¬Actual(w)›2877

proof(rule "raa-cor:2")2878

AOT_assume ‹Actual(w)›2879

AOT_hence ‹w |= ¬p›2880

using p[THEN "&E"(1)] actual[THEN "≡dfE", THEN "&E"(2)]2881

by (metis "log-prop-prop:2" "raa-cor:3" "rule-ui:1" "→E" w)2882

moreover AOT_have ‹¬(w |= p)›2883

using calculation by (metis "coherent:1" "≡E"(4) "reductio-aa:2")2884

AOT_thus ‹w |= p & ¬(w |= p)›2885

using "&I" w by metis2886

qed2887

AOT_thus ‹∃w ¬Actual(w)›2888

by (rule "PossibleWorld.∃I")2889

qed2890

2891

AOT_theorem "two-worlds-exist:3": ‹∃w ¬Actual(w)› (530.3)2892

using "cont-tf-thm:1" "two-worlds-exist:1" "→E" by blast2893

2894

AOT_theorem "two-worlds-exist:4": ‹∃w∃w’(w 6= w’)› (530.4)2895

proof -2896

413

A. Isabelle Theory

AOT_obtain w where w: ‹Actual(w)›2897

using "act-world:2"[THEN "uniqueness:1"[THEN "≡dfE"],2898

THEN "cqt-further:5"[THEN "→E"]]2899

"PossibleWorld.∃E"[rotated] "&E"2900

by blast2901

moreover AOT_obtain w’ where w’: ‹¬Actual(w’)›2902

using "two-worlds-exist:3" "PossibleWorld.∃E"[rotated] by meson2903

AOT_have ‹¬(w = w’)›2904

proof(rule "raa-cor:2")2905

AOT_assume ‹w = w’›2906

AOT_thus ‹p & ¬p› for p2907

using w w’ "&E" by (metis "rule=E" "raa-cor:3")2908

qed2909

AOT_hence ‹w 6= w’›2910

by (metis "≡dfI" "=-infix")2911

AOT_hence ‹∃w’ w 6= w’›2912

by (rule "PossibleWorld.∃I")2913

thus ?thesis2914

by (rule "PossibleWorld.∃I")2915

qed2916

2917

(* TODO: more theorems *)2918

2919

AOT_theorem "w-rel:1": ‹[λx ϕ{x}]↓ → [λx w |= ϕ{x}]↓› (552.1)2920

proof(rule "→I")2921

AOT_assume ‹[λx ϕ{x}]↓›2922

AOT_hence ‹�[λx ϕ{x}]↓›2923

by (metis "exist-nec" "→E")2924

moreover AOT_have2925

‹�[λx ϕ{x}]↓ → �∀x∀y(∀F([F]x ≡ [F]y) → ((w |= ϕ{x}) ≡ (w |= ϕ{y})))›2926

proof (rule RM; rule "→I"; rule GEN; rule GEN; rule "→I")2927

AOT_modally_strict {2928

fix x y2929

AOT_assume ‹[λx ϕ{x}]↓›2930

AOT_hence ‹∀x∀y (∀F ([F]x ≡ [F]y) → �(ϕ{x} ≡ ϕ{y}))›2931

using "&E" "kirchner-thm-cor:1"[THEN "→E"] by blast2932

AOT_hence ‹∀F ([F]x ≡ [F]y) → �(ϕ{x} ≡ ϕ{y})›2933

using "∀E"(2) by blast2934

moreover AOT_assume ‹∀F ([F]x ≡ [F]y)›2935

ultimately AOT_have ‹�(ϕ{x} ≡ ϕ{y})›2936

using "→E" by blast2937

AOT_hence ‹∀w (w |= (ϕ{x} ≡ ϕ{y}))›2938

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast2939

AOT_hence ‹w |= (ϕ{x} ≡ ϕ{y})›2940

using "∀E"(2) using PossibleWorld.ψ "→E" by blast2941

AOT_thus ‹(w |= ϕ{x}) ≡ (w |= ϕ{y})›2942

using "conj-dist-w:4"[unvarify p q, OF "log-prop-prop:2",2943

OF "log-prop-prop:2", THEN "≡E"(1)] by blast2944

}2945

qed2946

ultimately AOT_have ‹�∀x∀y(∀F([F]x ≡ [F]y) → ((w |= ϕ{x}) ≡ (w |= ϕ{y})))›2947

using "→E" by blast2948

AOT_thus ‹[λx w |= ϕ{x}]↓›2949

using "kirchner-thm:1"[THEN "≡E"(2)] by fast2950

qed2951

2952

AOT_theorem "w-rel:2": ‹[λx1...xn ϕ{x1...xn}]↓ → [λx1...xn w |= ϕ{x1...xn}]↓› (552.2)2953

proof(rule "→I")2954

AOT_assume ‹[λx1...xn ϕ{x1...xn}]↓›2955

AOT_hence ‹�[λx1...xn ϕ{x1...xn}]↓›2956

by (metis "exist-nec" "→E")2957

moreover AOT_have ‹�[λx1...xn ϕ{x1...xn}]↓ → �∀x1...∀xn∀y1...∀yn(2958

∀F([F]x1...xn ≡ [F]y1...yn) → ((w |= ϕ{x1...xn}) ≡ (w |= ϕ{y1...yn})))›2959

414

A.11. Possible Worlds

proof (rule RM; rule "→I"; rule GEN; rule GEN; rule "→I")2960

AOT_modally_strict {2961

fix x1xn y1yn2962

AOT_assume ‹[λx1...xn ϕ{x1...xn}]↓›2963

AOT_hence ‹∀x1...∀xn∀y1...∀yn (2964

∀F ([F]x1...xn ≡ [F]y1...yn) → �(ϕ{x1...xn} ≡ ϕ{y1...yn}))›2965

using "&E" "kirchner-thm-cor:2"[THEN "→E"] by blast2966

AOT_hence ‹∀F ([F]x1...xn ≡ [F]y1...yn) → �(ϕ{x1...xn} ≡ ϕ{y1...yn})›2967

using "∀E"(2) by blast2968

moreover AOT_assume ‹∀F ([F]x1...xn ≡ [F]y1...yn)›2969

ultimately AOT_have ‹�(ϕ{x1...xn} ≡ ϕ{y1...yn})›2970

using "→E" by blast2971

AOT_hence ‹∀w (w |= (ϕ{x1...xn} ≡ ϕ{y1...yn}))›2972

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast2973

AOT_hence ‹w |= (ϕ{x1...xn} ≡ ϕ{y1...yn})›2974

using "∀E"(2) using PossibleWorld.ψ "→E" by blast2975

AOT_thus ‹(w |= ϕ{x1...xn}) ≡ (w |= ϕ{y1...yn})›2976

using "conj-dist-w:4"[unvarify p q, OF "log-prop-prop:2",2977

OF "log-prop-prop:2", THEN "≡E"(1)] by blast2978

}2979

qed2980

ultimately AOT_have ‹�∀x1...∀xn∀y1...∀yn(2981

∀F([F]x1...xn ≡ [F]y1...yn) → ((w |= ϕ{x1...xn}) ≡ (w |= ϕ{y1...yn})))›2982

using "→E" by blast2983

AOT_thus ‹[λx1...xn w |= ϕ{x1...xn}]↓›2984

using "kirchner-thm:2"[THEN "≡E"(2)] by fast2985

qed2986

2987

AOT_theorem "w-rel:3": ‹[λx1...xn w |= [F]x1...xn]↓› (552.3)2988

by (rule "w-rel:2"[THEN "→E"]) "cqt:2[lambda]"2989

2990

AOT_define WorldIndexedRelation :: ‹Π ⇒ τ ⇒ Π› (‹__›)2991

"w-index": ‹[F]w =df [λx1...xn w |= [F]x1...xn]› (553)2992

2993

AOT_define Rigid :: ‹τ ⇒ ϕ› (‹Rigid’(_’)›)2994

"df-rigid-rel:1": (554.1)2995

‹Rigid(F) ≡df F↓ & �∀x1...∀xn([F]x1...xn → �[F]x1...xn)›2996

2997

AOT_define Rigidifies :: ‹τ ⇒ τ ⇒ ϕ› (‹Rigidifies’(_,_’)›)2998

"df-rigid-rel:2": (554.2)2999

‹Rigidifies(F, G) ≡df Rigid(F) & ∀x1...∀xn([F]x1...xn ≡ [G]x1...xn)›3000

3001

AOT_theorem "rigid-der:1": ‹[[F]w]x1...xn ≡ w |= [F]x1...xn› (556.1)3002

apply (rule "rule-id-df:2:b[2]"[where τ="λ (Π, κ). «[Π]κ»" and3003

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3004

simplified, OF "w-index"])3005

apply (fact "w-rel:3")3006

apply (rule "beta-C-meta"[THEN "→E"])3007

by (fact "w-rel:3")3008

3009

AOT_theorem "rigid-der:2": ‹Rigid([G]w)› (556.2)3010

proof(safe intro!: "≡dfI"[OF "df-rigid-rel:1"] "&I")3011

AOT_show ‹[G]w↓›3012

by (rule "rule-id-df:2:b[2]"[where τ="λ (Π, κ). «[Π]κ»" and3013

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3014

simplified, OF "w-index"])3015

(fact "w-rel:3")+3016

next3017

AOT_have ‹�∀x1...∀xn ([[G]w]x1...xn → �[[G]w]x1...xn)›3018

proof(rule RN; safe intro!: "→I" GEN)3019

AOT_modally_strict {3020

AOT_have assms: ‹PossibleWorld(w)› using PossibleWorld.ψ.3021

AOT_hence nec_pw_w: ‹�PossibleWorld(w)›3022

415

A. Isabelle Theory

using "≡E"(1) "rigid-pw:1" by blast3023

fix x1xn3024

AOT_assume ‹[[G]w]x1...xn›3025

AOT_hence ‹[λx1...xn w |= [G]x1...xn]x1...xn›3026

using "rule-id-df:2:a[2]"[where τ="λ (Π, κ). «[Π]κ»" and3027

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3028

simplified, OF "w-index", OF "w-rel:3"]3029

by fast3030

AOT_hence ‹w |= [G]x1...xn›3031

by (metis "β→C"(1))3032

AOT_hence ‹�w |= [G]x1...xn›3033

using "rigid-truth-at:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)]3034

by blast3035

moreover AOT_have ‹�w |= [G]x1...xn → �[λx1...xn w |= [G]x1...xn]x1...xn›3036

proof (rule RM; rule "→I")3037

AOT_modally_strict {3038

AOT_assume ‹w |= [G]x1...xn›3039

AOT_thus ‹[λx1...xn w |= [G]x1...xn]x1...xn›3040

by (auto intro!: "β←C"(1) simp: "w-rel:3" "cqt:2")3041

}3042

qed3043

ultimately AOT_have 1: ‹�[λx1...xn w |= [G]x1...xn]x1...xn›3044

using "→E" by blast3045

AOT_show ‹�[[G]w]x1...xn›3046

by (rule "rule-id-df:2:b[2]"[where τ="λ (Π, κ). «[Π]κ»" and3047

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3048

simplified, OF "w-index"])3049

(auto simp: 1 "w-rel:3")3050

}3051

qed3052

AOT_thus ‹�∀x1...∀xn ([[G]w]x1...xn → �[[G]w]x1...xn)›3053

using "→E" by blast3054

qed3055

3056

AOT_theorem "rigid-der:3": ‹∃F Rigidifies(F, G)› (556.3)3057

proof -3058

AOT_obtain w where w: ‹∀p (w |= p ≡ p)›3059

using "act-world:1" "PossibleWorld.∃E"[rotated] by meson3060

show ?thesis3061

proof (rule "∃I"(1)[where τ=‹«[G]w»›])3062

AOT_show ‹Rigidifies([G]w, [G])›3063

proof(safe intro!: "≡dfI"[OF "df-rigid-rel:2"] "&I" GEN)3064

AOT_show ‹Rigid([G]w)›3065

using "rigid-der:2" by blast3066

next3067

fix x1xn3068

AOT_have ‹[[G]w]x1...xn ≡ [λx1...xn w |= [G]x1...xn]x1...xn›3069

proof(rule "≡I"; rule "→I")3070

AOT_assume ‹[[G]w]x1...xn›3071

AOT_thus ‹[λx1...xn w |= [G]x1...xn]x1...xn›3072

by (rule "rule-id-df:2:a[2]"3073

[where τ="λ (Π, κ). «[Π]κ»" and3074

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3075

simplified, OF "w-index", OF "w-rel:3"])3076

next3077

AOT_assume ‹[λx1...xn w |= [G]x1...xn]x1...xn›3078

AOT_thus ‹[[G]w]x1...xn›3079

by (rule "rule-id-df:2:b[2]"3080

[where τ="λ (Π, κ). «[Π]κ»" and3081

σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3082

simplified, OF "w-index", OF "w-rel:3"])3083

qed3084

also AOT_have ‹. . . ≡ w |= [G]x1...xn›3085

416

A.11. Possible Worlds

by (rule "beta-C-meta"[THEN "→E"])3086

(fact "w-rel:3")3087

also AOT_have ‹. . . ≡ [G]x1...xn›3088

using w[THEN "∀E"(1), OF "log-prop-prop:2"] by blast3089

finally AOT_show ‹[[G]w]x1...xn ≡ [G]x1...xn›.3090

qed3091

next3092

AOT_show ‹[G]w↓›3093

by (rule "rule-id-df:2:b[2]"[where τ="λ (Π, κ). «[Π]κ»"3094

and σ="λ(Π, κ). «[λx1...xn κ |= [Π]x1...xn]»",3095

simplified, OF "w-index"])3096

(auto simp: "w-rel:3")3097

qed3098

qed3099

3100

AOT_theorem "rigid-rel-thms:1": (557.1)3101

‹�(∀x1...∀xn ([F]x1...xn → �[F]x1...xn)) ≡ ∀x1...∀xn(♦[F]x1...xn → �[F]x1...xn)›3102

proof(safe intro!: "≡I" "→I" GEN)3103

fix x1xn3104

AOT_assume ‹�∀x1...∀xn ([F]x1...xn → �[F]x1...xn)›3105

AOT_hence ‹∀x1...∀xn �([F]x1...xn → �[F]x1...xn)›3106

by (metis "→E" GEN RM "cqt-orig:3")3107

AOT_hence ‹�([F]x1...xn → �[F]x1...xn)›3108

using "∀E"(2) by blast3109

AOT_hence ‹♦[F]x1...xn → �[F]x1...xn›3110

by (metis "≡E"(1) "sc-eq-box-box:1")3111

moreover AOT_assume ‹♦[F]x1...xn›3112

ultimately AOT_show ‹�[F]x1...xn›3113

using "→E" by blast3114

next3115

AOT_assume ‹∀x1...∀xn (♦[F]x1...xn → �[F]x1...xn)›3116

AOT_hence ‹♦[F]x1...xn → �[F]x1...xn› for x1xn3117

using "∀E"(2) by blast3118

AOT_hence ‹�([F]x1...xn → �[F]x1...xn)› for x1xn3119

by (metis "≡E"(2) "sc-eq-box-box:1")3120

AOT_hence 0: ‹∀x1...∀xn �([F]x1...xn → �[F]x1...xn)›3121

by (rule GEN)3122

AOT_thus ‹�(∀x1...∀xn ([F]x1...xn → �[F]x1...xn))›3123

using "BF" "vdash-properties:10" by blast3124

qed3125

3126

AOT_theorem "rigid-rel-thms:2": (557.2)3127

‹�(∀x1...∀xn ([F]x1...xn → �[F]x1...xn)) ≡ ∀x1...∀xn(�[F]x1...xn ∨ �¬[F]x1...xn)›3128

proof(safe intro!: "≡I" "→I")3129

AOT_assume ‹�(∀x1...∀xn ([F]x1...xn → �[F]x1...xn))›3130

AOT_hence 0: ‹∀x1...∀xn �([F]x1...xn → �[F]x1...xn)›3131

using CBF[THEN "→E"] by blast3132

AOT_show ‹∀x1...∀xn(�[F]x1...xn ∨ �¬[F]x1...xn)›3133

proof(rule GEN)3134

fix x1xn3135

AOT_have 1: ‹�([F]x1...xn → �[F]x1...xn)›3136

using 0[THEN "∀E"(2)].3137

AOT_hence 2: ‹♦[F]x1...xn → [F]x1...xn›3138

using "B♦" "Hypothetical Syllogism" "K♦" "vdash-properties:10" by blast3139

AOT_have ‹[F]x1...xn ∨ ¬[F]x1...xn›3140

using "exc-mid".3141

moreover {3142

AOT_assume ‹[F]x1...xn›3143

AOT_hence ‹�[F]x1...xn›3144

using 1[THEN "qml:2"[axiom_inst, THEN "→E"], THEN "→E"] by blast3145

}3146

moreover {3147

AOT_assume 3: ‹¬[F]x1...xn›3148

417

A. Isabelle Theory

AOT_have ‹�¬[F]x1...xn›3149

proof(rule "raa-cor:1")3150

AOT_assume ‹¬�¬[F]x1...xn›3151

AOT_hence ‹♦[F]x1...xn›3152

by (AOT_subst_def "conventions:5")3153

AOT_hence ‹[F]x1...xn› using 2[THEN "→E"] by blast3154

AOT_thus ‹[F]x1...xn & ¬[F]x1...xn›3155

using 3 "&I" by blast3156

qed3157

}3158

ultimately AOT_show ‹�[F]x1...xn ∨ �¬[F]x1...xn›3159

by (metis "∨I"(1,2) "raa-cor:1")3160

qed3161

next3162

AOT_assume 0: ‹∀x1...∀xn(�[F]x1...xn ∨ �¬[F]x1...xn)›3163

{3164

fix x1xn3165

AOT_have ‹�[F]x1...xn ∨ �¬[F]x1...xn› using 0[THEN "∀E"(2)] by blast3166

moreover {3167

AOT_assume ‹�[F]x1...xn›3168

AOT_hence ‹��[F]x1...xn›3169

using "S5Basic:6"[THEN "≡E"(1)] by blast3170

AOT_hence ‹�([F]x1...xn → �[F]x1...xn)›3171

using "KBasic:1"[THEN "→E"] by blast3172

}3173

moreover {3174

AOT_assume ‹�¬[F]x1...xn›3175

AOT_hence ‹�([F]x1...xn → �[F]x1...xn)›3176

using "KBasic:2"[THEN "→E"] by blast3177

}3178

ultimately AOT_have ‹�([F]x1...xn → �[F]x1...xn)›3179

using "con-dis-i-e:4:b" "raa-cor:1" by blast3180

}3181

AOT_hence ‹∀x1...∀xn �([F]x1...xn → �[F]x1...xn)›3182

by (rule GEN)3183

AOT_thus ‹�(∀x1...∀xn ([F]x1...xn → �[F]x1...xn))›3184

using BF[THEN "→E"] by fast3185

qed3186

3187

AOT_theorem "rigid-rel-thms:3": ‹Rigid(F) ≡ ∀x1...∀xn (�[F]x1...xn ∨ �¬[F]x1...xn)› (557.3)3188

by (AOT_subst_thm "df-rigid-rel:1"[THEN "≡Df", THEN "≡S"(1), OF "cqt:2"(1)];3189

AOT_subst_thm "rigid-rel-thms:2")3190

(simp add: "oth-class-taut:3:a")3191

3192

(*<*)3193

end3194

(*>*)3195

3196

418

A.12. Natural Numbers

A.12. Natural Numbers

(*<*)1

theory AOT_NaturalNumbers2

imports AOT_PossibleWorlds AOT_ExtendedRelationComprehension3

abbrevs one-to-one = ‹1-1›4

and onto = ‹onto›5

begin6

(*>*)7

8

section‹Natural Numbers›9

10

AOT_define CorrelatesOneToOne :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ 1-1←→ _›)11

"1-1-cor": ‹R |: F 1-1←→ G ≡df R↓ & F↓ & G↓ & (723)12

∀x ([F]x → ∃!y([G]y & [R]xy)) &13

∀y ([G]y → ∃!x([F]x & [R]xy))›14

15

AOT_define MapsTo :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ −→ _›)16

"fFG:1": ‹R |: F −→ G ≡df R↓ & F↓ & G↓ & ∀x ([F]x → ∃!y([G]y & [R]xy))› (725.1)17

18

AOT_define MapsToOneToOne :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ 1-1−→ _›)19

"fFG:2": ‹R |: F 1-1−→ G ≡df (725.2)20

R |: F −→ G & ∀x∀y∀z (([F]x & [F]y & [G]z) → ([R]xz & [R]yz → x = y))›21

22

AOT_define MapsOnto :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ −→onto _›)23

"fFG:3": ‹R |: F −→onto G ≡df R |: F −→ G & ∀y ([G]y → ∃x([F]x & [R]xy))› (725.3)24

25

AOT_define MapsOneToOneOnto :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ 1-1−→onto _›)26

"fFG:4": ‹R |: F 1-1−→onto G ≡df R |: F 1-1−→ G & R |: F −→onto G› (725.4)27

28

AOT_theorem "eq-1-1": ‹R |: F 1-1←→ G ≡ R |: F 1-1−→onto G› (726)29

proof(rule "≡I"; rule "→I")30

AOT_assume ‹R |: F 1-1←→ G›31

AOT_hence A: ‹∀x ([F]x → ∃!y([G]y & [R]xy))›32

and B: ‹∀y ([G]y → ∃!x([F]x & [R]xy))›33

using "≡dfE"[OF "1-1-cor"] "&E" by blast+34

AOT_have C: ‹R |: F −→ G›35

proof (rule "≡dfI"[OF "fFG:1"]; rule "&I")36

AOT_show ‹R↓ & F↓ & G↓›37

using "cqt:2[const_var]"[axiom_inst] "&I" by metis38

next39

AOT_show ‹∀x ([F]x → ∃!y([G]y & [R]xy))› by (rule A)40

qed41

AOT_show ‹R |: F 1-1−→onto G›42

proof (rule "≡dfI"[OF "fFG:4"]; rule "&I")43

AOT_show ‹R |: F 1-1−→ G›44

proof (rule "≡dfI"[OF "fFG:2"]; rule "&I")45

AOT_show ‹R |: F −→ G› using C.46

next47

AOT_show ‹∀x∀y∀z ([F]x & [F]y & [G]z → ([R]xz & [R]yz → x = y))›48

proof(rule GEN; rule GEN; rule GEN; rule "→I"; rule "→I")49

fix x y z50

AOT_assume 1: ‹[F]x & [F]y & [G]z›51

moreover AOT_assume 2: ‹[R]xz & [R]yz›52

ultimately AOT_have 3: ‹∃!x ([F]x & [R]xz)›53

using B "&E" "∀E" "→E" by fast54

AOT_show ‹x = y›55

by (rule "uni-most"[THEN "→E", OF 3, THEN "∀E"(2)[where β=x],56

THEN "∀E"(2)[where β=y], THEN "→E"])57

(metis "&I" "&E" 1 2)58

qed59

qed60

next61

419

A. Isabelle Theory

AOT_show ‹R |: F −→onto G›62

proof (rule "≡dfI"[OF "fFG:3"]; rule "&I")63

AOT_show ‹R |: F −→ G› using C.64

next65

AOT_show ‹∀y ([G]y → ∃x ([F]x & [R]xy))›66

proof(rule GEN; rule "→I")67

fix y68

AOT_assume ‹[G]y›69

AOT_hence ‹∃!x ([F]x & [R]xy)›70

using B[THEN "∀E"(2), THEN "→E"] by blast71

AOT_hence ‹∃x ([F]x & [R]xy & ∀β (([F]β & [R]βy) → β = x))›72

using "uniqueness:1"[THEN "≡dfE"] by blast73

then AOT_obtain x where ‹[F]x & [R]xy›74

using "∃E"[rotated] "&E" by blast75

AOT_thus ‹∃x ([F]x & [R]xy)› by (rule "∃I")76

qed77

qed78

qed79

next80

AOT_assume ‹R |: F 1-1−→onto G›81

AOT_hence ‹R |: F 1-1−→ G› and ‹R |: F −→onto G›82

using "≡dfE"[OF "fFG:4"] "&E" by blast+83

AOT_hence C: ‹R |: F −→ G›84

and D: ‹∀x∀y∀z ([F]x & [F]y & [G]z → ([R]xz & [R]yz → x = y))›85

and E: ‹∀y ([G]y → ∃x ([F]x & [R]xy))›86

using "≡dfE"[OF "fFG:2"] "≡dfE"[OF "fFG:3"] "&E" by blast+87

AOT_show ‹R |: F 1-1←→ G›88

proof(rule "1-1-cor"[THEN "≡dfI"]; safe intro!: "&I" "cqt:2[const_var]"[axiom_inst])89

AOT_show ‹∀x ([F]x → ∃!y ([G]y & [R]xy))›90

using "≡dfE"[OF "fFG:1", OF C] "&E" by blast91

next92

AOT_show ‹∀y ([G]y → ∃!x ([F]x & [R]xy))›93

proof (rule "GEN"; rule "→I")94

fix y95

AOT_assume 0: ‹[G]y›96

AOT_hence ‹∃x ([F]x & [R]xy)›97

using E "∀E" "→E" by fast98

then AOT_obtain a where a_prop: ‹[F]a & [R]ay›99

using "∃E"[rotated] by blast100

moreover AOT_have ‹∀z ([F]z & [R]zy → z = a)›101

proof (rule GEN; rule "→I")102

fix z103

AOT_assume ‹[F]z & [R]zy›104

AOT_thus ‹z = a›105

using D[THEN "∀E"(2)[where β=z], THEN "∀E"(2)[where β=a],106

THEN "∀E"(2)[where β=y], THEN "→E", THEN "→E"]107

a_prop 0 "&E" "&I" by metis108

qed109

ultimately AOT_have ‹∃x ([F]x & [R]xy & ∀z ([F]z & [R]zy → z = x))›110

using "&I" "∃I"(2) by fast111

AOT_thus ‹∃!x ([F]x & [R]xy)›112

using "uniqueness:1"[THEN "≡dfI"] by fast113

qed114

qed115

qed116

117

text‹We have already introduced the restricted type of Ordinary objects in the118

Extended Relation Comprehension theory. However, make sure all variable names119

are defined as expected (avoiding conflicts with situations120

of possible world theory).›121

AOT_register_variable_names122

Ordinary: u v r t s123

124

420

A.12. Natural Numbers

AOT_theorem "equi:1": ‹∃!u ϕ{u} ≡ ∃u (ϕ{u} & ∀v (ϕ{v} → v =E u))› (729.1)125

proof(rule "≡I"; rule "→I")126

AOT_assume ‹∃!u ϕ{u}›127

AOT_hence ‹∃!x (O!x & ϕ{x})›.128

AOT_hence ‹∃x (O!x & ϕ{x} & ∀β (O!β & ϕ{β} → β = x))›129

using "uniqueness:1"[THEN "≡dfE"] by blast130

then AOT_obtain x where x_prop: ‹O!x & ϕ{x} & ∀β (O!β & ϕ{β} → β = x)›131

using "∃E"[rotated] by blast132

{133

fix β134

AOT_assume beta_ord: ‹O!β›135

moreover AOT_assume ‹ϕ{β}›136

ultimately AOT_have ‹β = x›137

using x_prop[THEN "&E"(2), THEN "∀E"(2)[where β=β]] "&I" "→E" by blast138

AOT_hence ‹β =E x›139

using "ord-=E=:1"[THEN "→E", OF "∨I"(1)[OF beta_ord],140

THEN "qml:2"[axiom_inst, THEN "→E"],141

THEN "≡E"(1)]142

by blast143

}144

AOT_hence ‹(O!β → (ϕ{β} → β =E x))› for β145

using "→I" by blast146

AOT_hence ‹∀β(O!β → (ϕ{β} → β =E x))›147

by (rule GEN)148

AOT_hence ‹O!x & ϕ{x} & ∀y (O!y → (ϕ{y} → y =E x))›149

using x_prop[THEN "&E"(1)] "&I" by blast150

AOT_hence ‹O!x & (ϕ{x} & ∀y (O!y → (ϕ{y} → y =E x)))›151

using "&E" "&I" by meson152

AOT_thus ‹∃u (ϕ{u} & ∀v (ϕ{v} → v =E u))›153

using "∃I" by fast154

next155

AOT_assume ‹∃u (ϕ{u} & ∀v (ϕ{v} → v =E u))›156

AOT_hence ‹∃x (O!x & (ϕ{x} & ∀y (O!y → (ϕ{y} → y =E x))))›157

by blast158

then AOT_obtain x where x_prop: ‹O!x & (ϕ{x} & ∀y (O!y → (ϕ{y} → y =E x)))›159

using "∃E"[rotated] by blast160

AOT_have ‹∀y ([O!]y & ϕ{y} → y = x)›161

proof(rule GEN; rule "→I")162

fix y163

AOT_assume ‹O!y & ϕ{y}›164

AOT_hence ‹y =E x›165

using x_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2)[where β=y]]166

"→E" "&E" by blast167

AOT_thus ‹y = x›168

using "ord-=E=:1"[THEN "→E", OF "∨I"(2)[OF x_prop[THEN "&E"(1)]],169

THEN "qml:2"[axiom_inst, THEN "→E"], THEN "≡E"(2)] by blast170

qed171

AOT_hence ‹[O!]x & ϕ{x} & ∀y ([O!]y & ϕ{y} → y = x)›172

using x_prop "&E" "&I" by meson173

AOT_hence ‹∃x ([O!]x & ϕ{x} & ∀y ([O!]y & ϕ{y} → y = x))›174

by (rule "∃I")175

AOT_hence ‹∃!x (O!x & ϕ{x})›176

by (rule "uniqueness:1"[THEN "≡dfI"])177

AOT_thus ‹∃!u ϕ{u}›.178

qed179

180

AOT_define CorrelatesEOneToOne :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› (‹_ |: _ 1-1←→E _›)181

"equi:2": ‹R |: F 1-1←→E G ≡df R↓ & F↓ & G↓ & (729.2)182

∀u ([F]u → ∃!v([G]v & [R]uv)) &183

∀v ([G]v → ∃!u([F]u & [R]uv))›184

185

AOT_define EquinumerousE :: ‹τ ⇒ τ ⇒ ϕ› (infixl "≈E" 50)186

"equi:3": ‹F ≈E G ≡df ∃R (R |: F 1-1←→E G)› (729.3)187

421

A. Isabelle Theory

188

text‹Note: not explicitly in PLM.›189

AOT_theorem eq_den_1: ‹Π↓› if ‹Π ≈E Π’›190

proof -191

AOT_have ‹∃R (R |: Π 1-1←→E Π’)›192

using "equi:3"[THEN "≡dfE"] that by blast193

then AOT_obtain R where ‹R |: Π 1-1←→E Π’›194

using "∃E"[rotated] by blast195

AOT_thus ‹Π↓›196

using "equi:2"[THEN "≡dfE"] "&E" by blast197

qed198

199

text‹Note: not explicitly in PLM.›200

AOT_theorem eq_den_2: ‹Π’↓› if ‹Π ≈E Π’›201

proof -202

AOT_have ‹∃R (R |: Π 1-1←→E Π’)›203

using "equi:3"[THEN "≡dfE"] that by blast204

then AOT_obtain R where ‹R |: Π 1-1←→E Π’›205

using "∃E"[rotated] by blast206

AOT_thus ‹Π’↓›207

using "equi:2"[THEN "≡dfE"] "&E" by blast+208

qed209

210

AOT_theorem "eq-part:1": ‹F ≈E F› (730.1)211

proof (safe intro!: "&I" GEN "→I" "cqt:2[const_var]"[axiom_inst]212

"≡dfI"[OF "equi:3"] "≡dfI"[OF "equi:2"] "∃I"(1))213

fix x214

AOT_assume 1: ‹O!x›215

AOT_assume 2: ‹[F]x›216

AOT_show ‹∃!v ([F]v & x =E v)›217

proof(rule "equi:1"[THEN "≡E"(2)];218

rule "∃I"(2)[where β=x];219

safe dest!: "&E"(2)220

intro!: "&I" "→I" 1 2 Ordinary.GEN "ord=Eequiv:1"[THEN "→E", OF 1])221

AOT_show ‹v =E x› if ‹x =E v› for v222

by (metis that "ord=Eequiv:2"[THEN "→E"])223

qed224

next225

fix y226

AOT_assume 1: ‹O!y›227

AOT_assume 2: ‹[F]y›228

AOT_show ‹∃!u ([F]u & u =E y)›229

by(safe dest!: "&E"(2)230

intro!: "equi:1"[THEN "≡E"(2)] "∃I"(2)[where β=y]231

"&I" "→I" 1 2 GEN "ord=Eequiv:1"[THEN "→E", OF 1])232

qed(auto simp: "=E[denotes]")233

234

235

AOT_theorem "eq-part:2": ‹F ≈E G → G ≈E F› (730.2)236

proof (rule "→I")237

AOT_assume ‹F ≈E G›238

AOT_hence ‹∃R R |: F 1-1←→E G›239

using "equi:3"[THEN "≡dfE"] by blast240

then AOT_obtain R where ‹R |: F 1-1←→E G›241

using "∃E"[rotated] by blast242

AOT_hence 0: ‹R↓ & F↓ & G↓ & ∀u ([F]u → ∃!v([G]v & [R]uv)) &243

∀v ([G]v → ∃!u([F]u & [R]uv))›244

using "equi:2"[THEN "≡dfE"] by blast245

246

AOT_have ‹[λxy [R]yx]↓ & G↓ & F↓ & ∀u ([G]u → ∃!v([F]v & [λxy [R]yx]uv)) &247

∀v ([F]v → ∃!u([G]u & [λxy [R]yx]uv))›248

proof (AOT_subst ‹[λxy [R]yx]yx› ‹[R]xy› for: x y;249

(safe intro!: "&I" "cqt:2[const_var]"[axiom_inst] 0[THEN "&E"(2)]250

422

A.12. Natural Numbers

0[THEN "&E"(1), THEN "&E"(2)]; "cqt:2[lambda]")?)251

AOT_modally_strict {252

AOT_have ‹[λxy [R]yx]xy› if ‹[R]yx› for y x253

by (auto intro!: "β←C"(1) "cqt:2"254

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3" that)255

moreover AOT_have ‹[R]yx› if ‹[λxy [R]yx]xy› for y x256

using "β→C"(1)[where ϕ="λ(x,y). _ (x,y)" and κ1κn="(_,_)",257

simplified, OF that, simplified].258

ultimately AOT_show ‹[λxy [R]yx]αβ ≡ [R]βα› for α β259

by (metis "deduction-theorem" "≡I")260

}261

qed262

AOT_hence ‹[λxy [R]yx] |: G 1-1←→E F›263

using "equi:2"[THEN "≡dfI"] by blast264

AOT_hence ‹∃R R |: G 1-1←→E F›265

by (rule "∃I"(1)) "cqt:2[lambda]"266

AOT_thus ‹G ≈E F›267

using "equi:3"[THEN "≡dfI"] by blast268

qed269

270

text‹Note: not explicitly in PLM.›271

AOT_theorem "eq-part:2[terms]": ‹Π ≈E Π’ → Π’ ≈E Π› (730.2)272

using "eq-part:2"[unvarify F G] eq_den_1 eq_den_2 "→I" by meson273

declare "eq-part:2[terms]"[THEN "→E", sym]274

275

AOT_theorem "eq-part:3": ‹(F ≈E G & G ≈E H) → F ≈E H› (730.3)276

proof (rule "→I")277

AOT_assume ‹F ≈E G & G ≈E H›278

then AOT_obtain R1 and R2 where279

‹R1 |: F 1-1←→E G›280

and ‹R2 |: G 1-1←→E H›281

using "equi:3"[THEN "≡dfE"] "&E" "∃E"[rotated] by metis282

AOT_hence ϑ: ‹∀u ([F]u → ∃!v([G]v & [R1]uv)) & ∀v ([G]v → ∃!u([F]u & [R1]uv))›283

and ξ: ‹∀u ([G]u → ∃!v([H]v & [R2]uv)) & ∀v ([H]v → ∃!u([G]u & [R2]uv))›284

using "equi:2"[THEN "≡dfE", THEN "&E"(2)]285

"equi:2"[THEN "≡dfE", THEN "&E"(1), THEN "&E"(2)]286

"&I" by blast+287

AOT_have ‹∃R R = [λxy O!x & O!y & ∃v ([G]v & [R1]xv & [R2]vy)]›288

by (rule "free-thms:3[lambda]") cqt_2_lambda_inst_prover289

then AOT_obtain R where R_def: ‹R = [λxy O!x & O!y & ∃v ([G]v & [R1]xv & [R2]vy)]›290

using "∃E"[rotated] by blast291

AOT_have 1: ‹∃!v (([H]v & [R]uv))› if a: ‹[O!]u› and b: ‹[F]u› for u292

proof (rule "≡E"(2)[OF "equi:1"])293

AOT_obtain b where294

b_prop: ‹[O!]b & ([G]b & [R1]ub & ∀v ([G]v & [R1]uv → v =E b))›295

using ϑ[THEN "&E"(1), THEN "∀E"(2), THEN "→E", THEN "→E",296

OF a b, THEN "≡E"(1)[OF "equi:1"]]297

"∃E"[rotated] by blast298

AOT_obtain c where299

c_prop: "[O!]c & ([H]c & [R2]bc & ∀v ([H]v & [R2]bv → v =E c))"300

using ξ[THEN "&E"(1), THEN "∀E"(2)[where β=b], THEN "→E",301

OF b_prop[THEN "&E"(1)], THEN "→E",302

OF b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)],303

THEN "≡E"(1)[OF "equi:1"]]304

"∃E"[rotated] by blast305

AOT_show ‹∃v ([H]v & [R]uv & ∀v’ ([H]v’ & [R]uv’ → v’ =E v))›306

proof (safe intro!: "&I" GEN "→I" "∃I"(2)[where β=c])307

AOT_show ‹O!c› using c_prop "&E" by blast308

next309

AOT_show ‹[H]c› using c_prop "&E" by blast310

next311

AOT_have 0: ‹[O!]u & [O!]c & ∃v ([G]v & [R1]uv & [R2]vc)›312

by (safe intro!: "&I" a c_prop[THEN "&E"(1)] "∃I"(2)[where β=b]313

423

A. Isabelle Theory

b_prop[THEN "&E"(1)] b_prop[THEN "&E"(2), THEN "&E"(1)]314

c_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)])315

AOT_show ‹[R]uc›316

by (auto intro: "rule=E"[rotated, OF R_def[symmetric]]317

intro!: "β←C"(1) "cqt:2"318

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3" 0)319

next320

fix x321

AOT_assume ordx: ‹O!x›322

AOT_assume ‹[H]x & [R]ux›323

AOT_hence hx: ‹[H]x› and ‹[R]ux› using "&E" by blast+324

AOT_hence ‹[λxy O!x & O!y & ∃v ([G]v & [R1]xv & [R2]vy)]ux›325

using "rule=E"[rotated, OF R_def] by fast326

AOT_hence ‹O!u & O!x & ∃v ([G]v & [R1]uv & [R2]vx)›327

by (rule "β→C"(1)[where ϕ="λ(κ,κ’). _ κ κ’" and κ1κn="(_,_)", simplified])328

then AOT_obtain z where z_prop: ‹O!z & ([G]z & [R1]uz & [R2]zx)›329

using "&E" "∃E"[rotated] by blast330

AOT_hence ‹z =E b›331

using b_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2)[where β=z]]332

using "&E" "→E" by metis333

AOT_hence ‹z = b›334

by (metis "=E-simple:2"[THEN "→E"])335

AOT_hence ‹[R2]bx›336

using z_prop[THEN "&E"(2), THEN "&E"(2)] "rule=E" by fast337

AOT_thus ‹x =E c›338

using c_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2)[where β=x],339

THEN "→E", THEN "→E", OF ordx]340

hx "&I" by blast341

qed342

qed343

AOT_have 2: ‹∃!u (([F]u & [R]uv))› if a: ‹[O!]v› and b: ‹[H]v› for v344

proof (rule "≡E"(2)[OF "equi:1"])345

AOT_obtain b where346

b_prop: ‹[O!]b & ([G]b & [R2]bv & ∀u ([G]u & [R2]uv → u =E b))›347

using ξ[THEN "&E"(2), THEN "∀E"(2), THEN "→E", THEN "→E",348

OF a b, THEN "≡E"(1)[OF "equi:1"]]349

"∃E"[rotated] by blast350

AOT_obtain c where351

c_prop: "[O!]c & ([F]c & [R1]cb & ∀v ([F]v & [R1]vb → v =E c))"352

using ϑ[THEN "&E"(2), THEN "∀E"(2)[where β=b], THEN "→E",353

OF b_prop[THEN "&E"(1)], THEN "→E",354

OF b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)],355

THEN "≡E"(1)[OF "equi:1"]]356

"∃E"[rotated] by blast357

AOT_show ‹∃u ([F]u & [R]uv & ∀v’ ([F]v’ & [R]v’v → v’ =E u))›358

proof (safe intro!: "&I" GEN "→I" "∃I"(2)[where β=c])359

AOT_show ‹O!c› using c_prop "&E" by blast360

next361

AOT_show ‹[F]c› using c_prop "&E" by blast362

next363

AOT_have ‹[O!]c & [O!]v & ∃u ([G]u & [R1]cu & [R2]uv)›364

by (safe intro!: "&I" a "∃I"(2)[where β=b]365

c_prop[THEN "&E"(1)] b_prop[THEN "&E"(1)]366

b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)]367

b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)]368

c_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)])369

AOT_thus ‹[R]cv›370

by (auto intro: "rule=E"[rotated, OF R_def[symmetric]]371

intro!: "β←C"(1) "cqt:2"372

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3")373

next374

fix x375

AOT_assume ordx: ‹O!x›376

424

A.12. Natural Numbers

AOT_assume ‹[F]x & [R]xv›377

AOT_hence hx: ‹[F]x› and ‹[R]xv› using "&E" by blast+378

AOT_hence ‹[λxy O!x & O!y & ∃v ([G]v & [R1]xv & [R2]vy)]xv›379

using "rule=E"[rotated, OF R_def] by fast380

AOT_hence ‹O!x & O!v & ∃u ([G]u & [R1]xu & [R2]uv)›381

by (rule "β→C"(1)[where ϕ="λ(κ,κ’). _ κ κ’" and κ1κn="(_,_)", simplified])382

then AOT_obtain z where z_prop: ‹O!z & ([G]z & [R1]xz & [R2]zv)›383

using "&E" "∃E"[rotated] by blast384

AOT_hence ‹z =E b›385

using b_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2)[where β=z]]386

using "&E" "→E" "&I" by metis387

AOT_hence ‹z = b›388

by (metis "=E-simple:2"[THEN "→E"])389

AOT_hence ‹[R1]xb›390

using z_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)] "rule=E" by fast391

AOT_thus ‹x =E c›392

using c_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2)[where β=x],393

THEN "→E", THEN "→E", OF ordx]394

hx "&I" by blast395

qed396

qed397

AOT_show ‹F ≈E H›398

apply (rule "equi:3"[THEN "≡dfI"])399

apply (rule "∃I"(2)[where β=R])400

by (auto intro!: 1 2 "equi:2"[THEN "≡dfI"] "&I" "cqt:2[const_var]"[axiom_inst]401

Ordinary.GEN "→I" Ordinary.ψ)402

qed403

404

text‹Note: not explicitly in PLM.›405

AOT_theorem "eq-part:3[terms]": ‹Π ≈E Π”› if ‹Π ≈E Π’› and ‹Π’ ≈E Π”› (730.3)406

using "eq-part:3"[unvarify F G H, THEN "→E"] eq_den_1 eq_den_2 "→I" "&I"407

by (metis that(1) that(2))408

declare "eq-part:3[terms]"[trans]409

410

AOT_theorem "eq-part:4": ‹F ≈E G ≡ ∀H (H ≈E F ≡ H ≈E G)› (730.4)411

proof(rule "≡I"; rule "→I")412

AOT_assume 0: ‹F ≈E G›413

AOT_hence 1: ‹G ≈E F› using "eq-part:2"[THEN "→E"] by blast414

AOT_show ‹∀H (H ≈E F ≡ H ≈E G)›415

proof (rule GEN; rule "≡I"; rule "→I")416

AOT_show ‹H ≈E G› if ‹H ≈E F› for H using 0417

by (meson "&I" "eq-part:3" that "vdash-properties:6")418

next419

AOT_show ‹H ≈E F› if ‹H ≈E G› for H using 1420

by (metis "&I" "eq-part:3" that "vdash-properties:6")421

qed422

next423

AOT_assume ‹∀H (H ≈E F ≡ H ≈E G)›424

AOT_hence ‹F ≈E F ≡ F ≈E G› using "∀E" by blast425

AOT_thus ‹F ≈E G› using "eq-part:1" "≡E" by blast426

qed427

428

AOT_define MapsE :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› ("_ |: _ −→E _")429

"equi-rem:1": (731.1)430

‹R |: F −→E G ≡df R↓ & F↓ & G↓ & ∀u ([F]u → ∃!v ([G]v & [R]uv))›431

432

AOT_define MapsEOneToOne :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› ("_ |: _ 1-1−→E _")433

"equi-rem:2": (731.2)434

‹R |: F 1-1−→E G ≡df435

R |: F −→E G & ∀t∀u∀v (([F]t & [F]u & [G]v) → ([R]tv & [R]uv → t =E u))›436

437

AOT_define MapsEOnto :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› ("_ |: _ −→ontoE _")438

"equi-rem:3": (731.3)439

425

A. Isabelle Theory

‹R |: F −→ontoE G ≡df R |: F −→E G & ∀v ([G]v → ∃u ([F]u & [R]uv))›440

441

AOT_define MapsEOneToOneOnto :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› ("_ |: _ 1-1−→ontoE _")442

"equi-rem:4": (731.4)443

‹R |: F 1-1−→ontoE G ≡df R |: F 1-1−→E G & R |: F −→ontoE G›444

445

AOT_theorem "equi-rem-thm": (732)446

‹R |: F 1-1←→E G ≡ R |: F 1-1−→ontoE G›447

proof -448

AOT_have ‹R |: F 1-1←→E G ≡ R |: [λx O!x & [F]x] 1-1←→ [λx O!x & [G]x]›449

proof(safe intro!: "≡I" "→I" "&I")450

AOT_assume ‹R |: F 1-1←→E G›451

AOT_hence ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›452

and ‹∀v ([G]v → ∃!u ([F]u & [R]uv))›453

using "equi:2"[THEN "≡dfE"] "&E" by blast+454

AOT_hence a: ‹([F]u → ∃!v ([G]v & [R]uv))›455

and b: ‹([G]v → ∃!u ([F]u & [R]uv))› for u v456

using "Ordinary.∀E" by fast+457

AOT_have ‹([λx [O!]x & [F]x]x → ∃!y ([λx [O!]x & [G]x]y & [R]xy))› for x458

apply (AOT_subst ‹[λx [O!]x & [F]x]x› ‹[O!]x & [F]x›)459

apply (rule "beta-C-meta"[THEN "→E"])460

apply "cqt:2[lambda]"461

apply (AOT_subst ‹[λx [O!]x & [G]x]x› ‹[O!]x & [G]x› for: x)462

apply (rule "beta-C-meta"[THEN "→E"])463

apply "cqt:2[lambda]"464

apply (AOT_subst ‹O!y & [G]y & [R]xy› ‹O!y & ([G]y & [R]xy)› for: y)465

apply (meson "≡E"(6) "Associativity of &" "oth-class-taut:3:a")466

apply (rule "→I") apply (frule "&E"(1)) apply (drule "&E"(2))467

by (fact a[unconstrain u, THEN "→E", THEN "→E", of x])468

AOT_hence A: ‹∀x ([λx [O!]x & [F]x]x → ∃!y ([λx [O!]x & [G]x]y & [R]xy))›469

by (rule GEN)470

AOT_have ‹([λx [O!]x & [G]x]y → ∃!x ([λx [O!]x & [F]x]x & [R]xy))› for y471

apply (AOT_subst ‹[λx [O!]x & [G]x]y› ‹[O!]y & [G]y›)472

apply (rule "beta-C-meta"[THEN "→E"])473

apply "cqt:2[lambda]"474

apply (AOT_subst ‹[λx [O!]x & [F]x]x› ‹[O!]x & [F]x› for: x)475

apply (rule "beta-C-meta"[THEN "→E"])476

apply "cqt:2[lambda]"477

apply (AOT_subst ‹O!x & [F]x & [R]xy› ‹O!x & ([F]x & [R]xy)› for: x)478

apply (meson "≡E"(6) "Associativity of &" "oth-class-taut:3:a")479

apply (rule "→I") apply (frule "&E"(1)) apply (drule "&E"(2))480

by (fact b[unconstrain v, THEN "→E", THEN "→E", of y])481

AOT_hence B: ‹∀y ([λx [O!]x & [G]x]y → ∃!x ([λx [O!]x & [F]x]x & [R]xy))›482

by (rule GEN)483

AOT_show ‹R |: [λx [O!]x & [F]x] 1-1←→ [λx [O!]x & [G]x]›484

by (safe intro!: "1-1-cor"[THEN "≡dfI"] "&I"485

"cqt:2[const_var]"[axiom_inst] A B)486

"cqt:2[lambda]"+487

next488

AOT_assume ‹R |: [λx [O!]x & [F]x] 1-1←→ [λx [O!]x & [G]x]›489

AOT_hence a: ‹([λx [O!]x & [F]x]x → ∃!y ([λx [O!]x & [G]x]y & [R]xy))› and490

b: ‹([λx [O!]x & [G]x]y → ∃!x ([λx [O!]x & [F]x]x & [R]xy))› for x y491

using "1-1-cor"[THEN "≡dfE"] "&E" "∀E"(2) by blast+492

AOT_have ‹[F]u → ∃!v ([G]v & [R]uv)› for u493

proof (safe intro!: "→I")494

AOT_assume fu: ‹[F]u›495

AOT_have 0: ‹[λx [O!]x & [F]x]u›496

by (auto intro!: "β←C"(1) "cqt:2" "cqt:2[const_var]"[axiom_inst]497

Ordinary.ψ fu "&I")498

AOT_show ‹∃!v ([G]v & [R]uv)›499

apply (AOT_subst ‹[O!]x & ([G]x & [R]ux)›500

‹([O!]x & [G]x) & [R]ux› for: x)501

apply (simp add: "Associativity of &")502

426

A.12. Natural Numbers

apply (AOT_subst (reverse) ‹[O!]x & [G]x›503

‹[λx [O!]x & [G]x]x› for: x)504

apply (rule "beta-C-meta"[THEN "→E"])505

apply "cqt:2[lambda]"506

using a[THEN "→E", OF 0] by blast507

qed508

AOT_hence A: ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›509

by (rule Ordinary.GEN)510

AOT_have ‹[G]v → ∃!u ([F]u & [R]uv)› for v511

proof (safe intro!: "→I")512

AOT_assume gu: ‹[G]v›513

AOT_have 0: ‹[λx [O!]x & [G]x]v›514

by (auto intro!: "β←C"(1) "cqt:2" "cqt:2[const_var]"[axiom_inst]515

Ordinary.ψ gu "&I")516

AOT_show ‹∃!u ([F]u & [R]uv)›517

apply (AOT_subst ‹[O!]x & ([F]x & [R]xv)› ‹([O!]x & [F]x) & [R]xv› for: x)518

apply (simp add: "Associativity of &")519

apply (AOT_subst (reverse) ‹[O!]x & [F]x›‹[λx [O!]x & [F]x]x› for: x)520

apply (rule "beta-C-meta"[THEN "→E"])521

apply "cqt:2[lambda]"522

using b[THEN "→E", OF 0] by blast523

qed524

AOT_hence B: ‹∀v ([G]v → ∃!u ([F]u & [R]uv))› by (rule Ordinary.GEN)525

AOT_show ‹R |: F 1-1←→E G›526

by (safe intro!: "equi:2"[THEN "≡dfI"] "&I" A B "cqt:2[const_var]"[axiom_inst])527

qed528

also AOT_have ‹. . . ≡ R |: F 1-1−→ontoE G›529

proof(safe intro!: "≡I" "→I" "&I")530

AOT_assume ‹R |: [λx [O!]x & [F]x] 1-1←→ [λx [O!]x & [G]x]›531

AOT_hence a: ‹([λx [O!]x & [F]x]x → ∃!y ([λx [O!]x & [G]x]y & [R]xy))› and532

b: ‹([λx [O!]x & [G]x]y → ∃!x ([λx [O!]x & [F]x]x & [R]xy))› for x y533

using "1-1-cor"[THEN "≡dfE"] "&E" "∀E"(2) by blast+534

AOT_show ‹R |: F 1-1−→ontoE G›535

proof (safe intro!: "equi-rem:4"[THEN "≡dfI"] "&I" "equi-rem:3"[THEN "≡dfI"]536

"equi-rem:2"[THEN "≡dfI"] "equi-rem:1"[THEN "≡dfI"]537

"cqt:2[const_var]"[axiom_inst] Ordinary.GEN "→I")538

fix u539

AOT_assume fu: ‹[F]u›540

AOT_have 0: ‹[λx [O!]x & [F]x]u›541

by (auto intro!: "β←C"(1) "cqt:2" "cqt:2[const_var]"[axiom_inst]542

Ordinary.ψ fu "&I")543

AOT_hence 1: ‹∃!y ([λx [O!]x & [G]x]y & [R]uy)›544

using a[THEN "→E"] by blast545

AOT_show ‹∃!v ([G]v & [R]uv)›546

apply (AOT_subst ‹[O!]x & ([G]x & [R]ux)› ‹([O!]x & [G]x) & [R]ux› for: x)547

apply (simp add: "Associativity of &")548

apply (AOT_subst (reverse) ‹[O!]x & [G]x› ‹[λx [O!]x & [G]x]x› for: x)549

apply (rule "beta-C-meta"[THEN "→E"])550

apply "cqt:2[lambda]"551

by (fact 1)552

next553

fix t u v554

AOT_assume ‹[F]t & [F]u & [G]v› and rtv_tuv: ‹[R]tv & [R]uv›555

AOT_hence oft: ‹[λx O!x & [F]x]t› and556

ofu: ‹[λx O!x & [F]x]u› and557

ogv: ‹[λx O!x & [G]x]v›558

by (auto intro!: "β←C"(1) "cqt:2" "&I"559

simp: Ordinary.ψ dest: "&E")560

AOT_hence ‹∃!x ([λx [O!]x & [F]x]x & [R]xv)›561

using b[THEN "→E"] by blast562

then AOT_obtain a where563

a_prop: ‹[λx [O!]x & [F]x]a & [R]av &564

∀x (([λx [O!]x & [F]x]x & [R]xv) → x = a)›565

427

A. Isabelle Theory

using "uniqueness:1"[THEN "≡dfE"] "∃E"[rotated] by blast566

AOT_hence ua: ‹u = a›567

using ofu rtv_tuv[THEN "&E"(2)] "∀E"(2) "→E" "&I" "&E"(2) by blast568

moreover AOT_have ta: ‹t = a›569

using a_prop oft rtv_tuv[THEN "&E"(1)] "∀E"(2) "→E" "&I" "&E"(2) by blast570

ultimately AOT_have ‹t = u› by (metis "rule=E" id_sym)571

AOT_thus ‹t =E u›572

using "rule=E" id_sym "ord=Eequiv:1" Ordinary.ψ ta ua "→E" by fast573

next574

fix u575

AOT_assume ‹[F]u›576

AOT_hence ‹[λx O!x & [F]x]u›577

by (auto intro!: "β←C"(1) "cqt:2" "&I"578

simp: "cqt:2[const_var]"[axiom_inst] Ordinary.ψ)579

AOT_hence ‹∃!y ([λx [O!]x & [G]x]y & [R]uy)›580

using a[THEN "→E"] by blast581

then AOT_obtain a where582

a_prop: ‹[λx [O!]x & [G]x]a & [R]ua &583

∀x (([λx [O!]x & [G]x]x & [R]ux) → x = a)›584

using "uniqueness:1"[THEN "≡dfE"] "∃E"[rotated] by blast585

AOT_have ‹O!a & [G]a›586

by (rule "β→C"(1)) (auto simp: a_prop[THEN "&E"(1), THEN "&E"(1)])587

AOT_hence ‹O!a› and ‹[G]a› using "&E" by blast+588

moreover AOT_have ‹∀v ([G]v & [R]uv → v =E a)›589

proof(safe intro!: Ordinary.GEN "→I"; frule "&E"(1); drule "&E"(2))590

fix v591

AOT_assume ‹[G]v› and ruv: ‹[R]uv›592

AOT_hence ‹[λx [O!]x & [G]x]v›593

by (auto intro!: "β←C"(1) "cqt:2" "&I" simp: Ordinary.ψ)594

AOT_hence ‹v = a›595

using a_prop[THEN "&E"(2), THEN "∀E"(2), THEN "→E", OF "&I"] ruv by blast596

AOT_thus ‹v =E a›597

using "rule=E" "ord=Eequiv:1" Ordinary.ψ "→E" by fast598

qed599

ultimately AOT_have ‹O!a & ([G]a & [R]ua & ∀v’ ([G]v’ & [R]uv’ → v’ =E a))›600

using "∃I" "&I" a_prop[THEN "&E"(1), THEN "&E"(2)] by simp601

AOT_hence ‹∃v ([G]v & [R]uv & ∀v’ ([G]v’ & [R]uv’ → v’ =E v))›602

by (rule "∃I")603

AOT_thus ‹∃!v ([G]v & [R]uv)›604

by (rule "equi:1"[THEN "≡E"(2)])605

next606

fix v607

AOT_assume ‹[G]v›608

AOT_hence ‹[λx O!x & [G]x]v›609

by (auto intro!: "β←C"(1) "cqt:2" "&I" Ordinary.ψ)610

AOT_hence ‹∃!x ([λx [O!]x & [F]x]x & [R]xv)›611

using b[THEN "→E"] by blast612

then AOT_obtain a where613

a_prop: ‹[λx [O!]x & [F]x]a & [R]av &614

∀y ([λx [O!]x & [F]x]y & [R]yv → y = a)›615

using "uniqueness:1"[THEN "≡dfE", THEN "∃E"[rotated]] by blast616

AOT_have ‹O!a & [F]a›617

by (rule "β→C"(1)) (auto simp: a_prop[THEN "&E"(1), THEN "&E"(1)])618

AOT_hence ‹O!a & ([F]a & [R]av)›619

using a_prop[THEN "&E"(1), THEN "&E"(2)] "&E" "&I" by metis620

AOT_thus ‹∃u ([F]u & [R]uv)›621

by (rule "∃I")622

qed623

next624

AOT_assume ‹R |: F 1-1−→ontoE G›625

AOT_hence 1: ‹R |: F 1-1−→E G›626

and 2: ‹R |: F −→ontoE G›627

using "equi-rem:4"[THEN "≡dfE"] "&E" by blast+628

428

A.12. Natural Numbers

AOT_hence 3: ‹R |: F −→E G›629

and A: ‹∀t ∀u ∀v ([F]t & [F]u & [G]v → ([R]tv & [R]uv → t =E u))›630

using "equi-rem:2"[THEN "≡dfE", OF 1] "&E" by blast+631

AOT_hence B: ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›632

using "equi-rem:1"[THEN "≡dfE"] "&E" by blast633

AOT_have C: ‹∀v ([G]v → ∃u ([F]u & [R]uv))›634

using "equi-rem:3"[THEN "≡dfE", OF 2] "&E" by blast635

AOT_show ‹R |: [λx [O!]x & [F]x] 1-1←→ [λx [O!]x & [G]x]›636

proof (rule "1-1-cor"[THEN "≡dfI"];637

safe intro!: "&I" "cqt:2" GEN "→I")638

fix x639

AOT_assume 1: ‹[λx [O!]x & [F]x]x›640

AOT_have ‹O!x & [F]x›641

by (rule "β→C"(1)) (auto simp: 1)642

AOT_hence ‹∃!v ([G]v & [R]xv)›643

using B[THEN "∀E"(2), THEN "→E", THEN "→E"] "&E" by blast644

then AOT_obtain y where645

y_prop: ‹O!y & ([G]y & [R]xy & ∀u ([G]u & [R]xu → u =E y))›646

using "equi:1"[THEN "≡E"(1)] "∃E"[rotated] by fastforce647

AOT_hence ‹[λx O!x & [G]x]y›648

by (auto intro!: "β←C"(1) "cqt:2" "&I" dest: "&E")649

moreover AOT_have ‹∀z ([λx O!x & [G]x]z & [R]xz → z = y)›650

proof(safe intro!: GEN "→I"; frule "&E"(1); drule "&E"(2))651

fix z652

AOT_assume 1: ‹[λx [O!]x & [G]x]z›653

AOT_have 2: ‹O!z & [G]z›654

by (rule "β→C"(1)) (auto simp: 1)655

moreover AOT_assume ‹[R]xz›656

ultimately AOT_have ‹z =E y›657

using y_prop[THEN "&E"(2), THEN "&E"(2), THEN "∀E"(2),658

THEN "→E", THEN "→E", rotated, OF "&I"] "&E"659

by blast660

AOT_thus ‹z = y›661

using 2[THEN "&E"(1)] by (metis "=E-simple:2" "→E")662

qed663

ultimately AOT_have ‹[λx O!x & [G]x]y & [R]xy &664

∀z ([λx O!x & [G]x]z & [R]xz → z = y)›665

using y_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)] "&I" by auto666

AOT_hence ‹∃y ([λx O!x & [G]x]y & [R]xy &667

∀z ([λx O!x & [G]x]z & [R]xz → z = y))›668

by (rule "∃I")669

AOT_thus ‹∃!y ([λx [O!]x & [G]x]y & [R]xy)›670

using "uniqueness:1"[THEN "≡dfI"] by fast671

next672

fix y673

AOT_assume 1: ‹[λx [O!]x & [G]x]y›674

AOT_have oy_gy: ‹O!y & [G]y›675

by (rule "β→C"(1)) (auto simp: 1)676

AOT_hence ‹∃u ([F]u & [R]uy)›677

using C[THEN "∀E"(2), THEN "→E", THEN "→E"] "&E" by blast678

then AOT_obtain x where x_prop: ‹O!x & ([F]x & [R]xy)›679

using "∃E"[rotated] by blast680

AOT_hence ofx: ‹[λx O!x & [F]x]x›681

by (auto intro!: "β←C"(1) "cqt:2" "&I" dest: "&E")682

AOT_have ‹∃α ([λx [O!]x & [F]x]α & [R]αy &683

∀β ([λx [O!]x & [F]x]β & [R]βy → β = α))›684

proof (safe intro!: "∃I"(2)[where β=x] "&I" GEN "→I")685

AOT_show ‹[λx O!x & [F]x]x› using ofx.686

next687

AOT_show ‹[R]xy› using x_prop[THEN "&E"(2), THEN "&E"(2)].688

next689

fix z690

AOT_assume 1: ‹[λx [O!]x & [F]x]z & [R]zy›691

429

A. Isabelle Theory

AOT_have oz_fz: ‹O!z & [F]z›692

by (rule "β→C"(1)) (auto simp: 1[THEN "&E"(1)])693

AOT_have ‹z =E x›694

using A[THEN "∀E"(2)[where β=z], THEN "→E", THEN "∀E"(2)[where β=x],695

THEN "→E", THEN "∀E"(2)[where β=y], THEN "→E",696

THEN "→E", THEN "→E", OF oz_fz[THEN "&E"(1)],697

OF x_prop[THEN "&E"(1)], OF oy_gy[THEN "&E"(1)], OF "&I", OF "&I",698

OF oz_fz[THEN "&E"(2)], OF x_prop[THEN "&E"(2), THEN "&E"(1)],699

OF oy_gy[THEN "&E"(2)], OF "&I", OF 1[THEN "&E"(2)],700

OF x_prop[THEN "&E"(2), THEN "&E"(2)]].701

AOT_thus ‹z = x›702

by (metis "=E-simple:2" "vdash-properties:10")703

qed704

AOT_thus ‹∃!x ([λx [O!]x & [F]x]x & [R]xy)›705

by (rule "uniqueness:1"[THEN "≡dfI"])706

qed707

qed708

finally show ?thesis.709

qed710

711

AOT_theorem "empty-approx:1": ‹(¬∃u [F]u & ¬∃v [H]v) → F ≈E H› (733.1)712

proof(rule "→I"; frule "&E"(1); drule "&E"(2))713

AOT_assume 0: ‹¬∃u [F]u› and 1: ‹¬∃v [H]v›714

AOT_have ‹∀u ([F]u → ∃!v ([H]v & [R]uv))› for R715

proof(rule Ordinary.GEN; rule "→I"; rule "raa-cor:1")716

fix u717

AOT_assume ‹[F]u›718

AOT_hence ‹∃u [F]u› using "Ordinary.∃I" "&I" by fast719

AOT_thus ‹∃u [F]u & ¬∃u [F]u› using "&I" 0 by blast720

qed721

moreover AOT_have ‹∀v ([H]v → ∃!u ([F]u & [R]uv))› for R722

proof(rule Ordinary.GEN; rule "→I"; rule "raa-cor:1")723

fix v724

AOT_assume ‹[H]v›725

AOT_hence ‹∃v [H]v› using "Ordinary.∃I" "&I" by fast726

AOT_thus ‹∃v [H]v & ¬∃v [H]v› using 1 "&I" by blast727

qed728

ultimately AOT_have ‹R |: F 1-1←→E H› for R729

apply (safe intro!: "equi:2"[THEN "≡dfI"] "&I" GEN "cqt:2[const_var]"[axiom_inst])730

using "∀E" by blast+731

AOT_hence ‹∃R R |: F 1-1←→E H› by (rule "∃I")732

AOT_thus ‹F ≈E H›733

by (rule "equi:3"[THEN "≡dfI"])734

qed735

736

AOT_theorem "empty-approx:2": ‹(∃u [F]u & ¬∃v [H]v) → ¬(F ≈E H)› (733.2)737

proof(rule "→I"; frule "&E"(1); drule "&E"(2); rule "raa-cor:2")738

AOT_assume 1: ‹∃u [F]u› and 2: ‹¬∃v [H]v›739

AOT_obtain b where b_prop: ‹O!b & [F]b›740

using 1 "∃E"[rotated] by blast741

AOT_assume ‹F ≈E H›742

AOT_hence ‹∃R R |: F 1-1←→E H›743

by (rule "equi:3"[THEN "≡dfE"])744

then AOT_obtain R where ‹R |: F 1-1←→E H›745

using "∃E"[rotated] by blast746

AOT_hence ϑ: ‹∀u ([F]u → ∃!v ([H]v & [R]uv))›747

using "equi:2"[THEN "≡dfE"] "&E" by blast+748

AOT_have ‹∃!v ([H]v & [R]bv)› for u749

using ϑ[THEN "∀E"(2)[where β=b], THEN "→E", THEN "→E",750

OF b_prop[THEN "&E"(1)], OF b_prop[THEN "&E"(2)]].751

AOT_hence ‹∃v ([H]v & [R]bv & ∀u ([H]u & [R]bu → u =E v))›752

by (rule "equi:1"[THEN "≡E"(1)])753

then AOT_obtain x where ‹O!x & ([H]x & [R]bx & ∀u ([H]u & [R]bu → u =E x))›754

430

A.12. Natural Numbers

using "∃E"[rotated] by blast755

AOT_hence ‹O!x & [H]x› using "&E" "&I" by blast756

AOT_hence ‹∃v [H]v› by (rule "∃I")757

AOT_thus ‹∃v [H]v & ¬∃v [H]v› using 2 "&I" by blast758

qed759

760

761

AOT_define FminusU :: ‹Π ⇒ τ ⇒ Π› ("_-_")762

"F-u": ‹[F]-x =df [λz [F]z & z 6=E x]› (734)763

764

text‹Note: not explicitly in PLM.›765

AOT_theorem "F-u[den]": ‹[F]-x↓› (734)766

by (rule "=dfI"(1)[OF "F-u", where τ 1τ n="(_,_)", simplified]; "cqt:2[lambda]")767

AOT_theorem "F-u[equiv]": ‹[[F]-x]y ≡ ([F]y & y 6=E x)› (734)768

by (auto intro: "F-u"[THEN "=dfI"(1), where τ 1τ n="(_,_)", simplified]769

intro!: "cqt:2" "beta-C-cor:2"[THEN "→E", THEN "∀E"(2)])770

771

AOT_theorem eqP’: ‹F ≈E G & [F]u & [G]v → [F]-u ≈E [G]-v› (735)772

proof (rule "→I"; frule "&E"(2); drule "&E"(1); frule "&E"(2); drule "&E"(1))773

AOT_assume ‹F ≈E G›774

AOT_hence ‹∃R R |: F 1-1←→E G›775

using "equi:3"[THEN "≡dfE"] by blast776

then AOT_obtain R where R_prop: ‹R |: F 1-1←→E G›777

using "∃E"[rotated] by blast778

AOT_hence A: ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›779

and B: ‹∀v ([G]v → ∃!u ([F]u & [R]uv))›780

using "equi:2"[THEN "≡dfE"] "&E" by blast+781

AOT_have ‹R |: F 1-1−→ontoE G›782

using "equi-rem-thm"[THEN "≡E"(1), OF R_prop].783

AOT_hence ‹R |: F 1-1−→E G & R |: F −→ontoE G›784

using "equi-rem:4"[THEN "≡dfE"] by blast785

AOT_hence C: ‹∀t∀u∀v (([F]t & [F]u & [G]v) → ([R]tv & [R]uv → t =E u))›786

using "equi-rem:2"[THEN "≡dfE"] "&E" by blast787

AOT_assume fu: ‹[F]u›788

AOT_assume gv: ‹[G]v›789

AOT_have ‹[λz [Π]z & z 6=E κ]↓› for Π κ790

by "cqt:2[lambda]"791

note Π_minus_κI = "rule-id-df:2:b[2]"[792

where τ=‹(λ(Π, κ). «[Π]-κ»)›, simplified, OF "F-u", simplified, OF this]793

and Π_minus_κE = "rule-id-df:2:a[2]"[794

where τ=‹(λ(Π, κ). «[Π]-κ»)›, simplified, OF "F-u", simplified, OF this]795

AOT_have Π_minus_κ_den: ‹[Π]-κ↓› for Π κ796

by (rule Π_minus_κI) "cqt:2[lambda]"+797

{798

fix R799

AOT_assume R_prop: ‹R |: F 1-1←→E G›800

AOT_hence A: ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›801

and B: ‹∀v ([G]v → ∃!u ([F]u & [R]uv))›802

using "equi:2"[THEN "≡dfE"] "&E" by blast+803

AOT_have ‹R |: F 1-1−→ontoE G›804

using "equi-rem-thm"[THEN "≡E"(1), OF R_prop].805

AOT_hence ‹R |: F 1-1−→E G & R |: F −→ontoE G›806

using "equi-rem:4"[THEN "≡dfE"] by blast807

AOT_hence C: ‹∀t∀u∀v (([F]t & [F]u & [G]v) → ([R]tv & [R]uv → t =E u))›808

using "equi-rem:2"[THEN "≡dfE"] "&E" by blast809

810

AOT_assume Ruv: ‹[R]uv›811

AOT_have ‹R |: [F]-u
1-1←→E [G]-v›812

proof(safe intro!: "equi:2"[THEN "≡dfI"] "&I" "cqt:2[const_var]"[axiom_inst]813

Π_minus_κ_den Ordinary.GEN "→I")814

fix u’815

AOT_assume ‹[[F]-u]u’›816

AOT_hence 0: ‹[λz [F]z & z 6=E u]u’›817

431

A. Isabelle Theory

using Π_minus_κE by fast818

AOT_have 0: ‹[F]u’ & u’ 6=E u›819

by (rule "β→C"(1)[where κ1κn="AOT_term_of_var (Ordinary.Rep u’)"]) (fact 0)820

AOT_have ‹∃!v ([G]v & [R]u’v)›821

using A[THEN "Ordinary.∀E"[where α=u’], THEN "→E", OF 0[THEN "&E"(1)]].822

then AOT_obtain v’ where823

v’_prop: ‹[G]v’ & [R]u’v’ & ∀ t ([G]t & [R]u’t → t =E v’)›824

using "equi:1"[THEN "≡E"(1)] "Ordinary.∃E"[rotated] by fastforce825

826

AOT_show ‹∃!v’ ([[G]-v]v’ & [R]u’v’)›827

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "Ordinary.∃I"[where β=v’]828

"&I" Ordinary.GEN "→I")829

AOT_show ‹[[G]-v]v’›830

proof (rule Π_minus_κI;831

safe intro!: "β←C"(1) "cqt:2" "&I" "thm-neg=E"[THEN "≡E"(2)])832

AOT_show ‹[G]v’› using v’_prop "&E" by blast833

next834

AOT_show ‹¬v’ =E v›835

proof (rule "raa-cor:2")836

AOT_assume ‹v’ =E v›837

AOT_hence ‹v’ = v› by (metis "=E-simple:2" "→E")838

AOT_hence Ruv’: ‹[R]uv’› using "rule=E" Ruv id_sym by fast839

AOT_have ‹u’ =E u›840

by (rule C[THEN "Ordinary.∀E", THEN "Ordinary.∀E",841

THEN "Ordinary.∀E"[where α=v’], THEN "→E", THEN "→E"])842

(safe intro!: "&I" 0[THEN "&E"(1)] fu843

v’_prop[THEN "&E"(1), THEN "&E"(1)]844

Ruv’ v’_prop[THEN "&E"(1), THEN "&E"(2)])845

moreover AOT_have ‹¬(u’ =E u)›846

using "0" "&E"(2) "≡E"(1) "thm-neg=E" by blast847

ultimately AOT_show ‹u’ =E u & ¬u’ =E u› using "&I" by blast848

qed849

qed850

next851

AOT_show ‹[R]u’v’› using v’_prop "&E" by blast852

next853

fix t854

AOT_assume t_prop: ‹[[G]-v]t & [R]u’t›855

AOT_have gt_t_noteq_v: ‹[G]t & t 6=E v›856

apply (rule "β→C"(1)[where κ1κn="AOT_term_of_var (Ordinary.Rep t)"])857

apply (rule Π_minus_κE)858

by (fact t_prop[THEN "&E"(1)])859

AOT_show ‹t =E v’›860

using v’_prop[THEN "&E"(2), THEN "Ordinary.∀E", THEN "→E",861

OF "&I", OF gt_t_noteq_v[THEN "&E"(1)],862

OF t_prop[THEN "&E"(2)]].863

qed864

next865

fix v’866

AOT_assume G_minus_v_v’: ‹[[G]-v]v’›867

AOT_have gt_t_noteq_v: ‹[G]v’ & v’ 6=E v›868

apply (rule "β→C"(1)[where κ1κn="AOT_term_of_var (Ordinary.Rep v’)"])869

apply (rule Π_minus_κE)870

by (fact G_minus_v_v’)871

AOT_have ‹∃!u([F]u & [R]uv’)›872

using B[THEN "Ordinary.∀E", THEN "→E", OF gt_t_noteq_v[THEN "&E"(1)]].873

then AOT_obtain u’ where874

u’_prop: ‹[F]u’ & [R]u’v’ & ∀t ([F]t & [R]tv’ → t =E u’)›875

using "equi:1"[THEN "≡E"(1)] "Ordinary.∃E"[rotated] by fastforce876

AOT_show ‹∃!u’ ([[F]-u]u’ & [R]u’v’)›877

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "Ordinary.∃I"[where β=u’] "&I"878

u’_prop[THEN "&E"(1), THEN "&E"(2)] Ordinary.GEN "→I")879

AOT_show ‹[[F]-u]u’›880

432

A.12. Natural Numbers

proof (rule Π_minus_κI;881

safe intro!: "β←C"(1) "cqt:2" "&I" "thm-neg=E"[THEN "≡E"(2)]882

u’_prop[THEN "&E"(1), THEN "&E"(1)]; rule "raa-cor:2")883

AOT_assume u’_eq_u: ‹u’ =E u›884

AOT_hence ‹u’ = u›885

using "=E-simple:2" "vdash-properties:10" by blast886

AOT_hence Ru’v: ‹[R]u’v› using "rule=E" Ruv id_sym by fast887

AOT_have ‹v’ 6=E v›888

using "&E"(2) gt_t_noteq_v by blast889

AOT_hence v’_noteq_v: ‹¬(v’ =E v)› by (metis "≡E"(1) "thm-neg=E")890

AOT_have ‹∃u ([G]u & [R]u’u & ∀v ([G]v & [R]u’v → v =E u))›891

using A[THEN "Ordinary.∀E", THEN "→E",892

OF u’_prop[THEN "&E"(1), THEN "&E"(1)],893

THEN "equi:1"[THEN "≡E"(1)]].894

then AOT_obtain t where895

t_prop: ‹[G]t & [R]u’t & ∀v ([G]v & [R]u’v → v =E t)›896

using "Ordinary.∃E"[rotated] by meson897

AOT_have ‹v =E t› if ‹[G]v› and ‹[R]u’v› for v898

using t_prop[THEN "&E"(2), THEN "Ordinary.∀E", THEN "→E",899

OF "&I", OF that].900

AOT_hence ‹v’ =E t› and ‹v =E t›901

by (auto simp: gt_t_noteq_v[THEN "&E"(1)] Ru’v gv902

u’_prop[THEN "&E"(1), THEN "&E"(2)])903

AOT_hence ‹v’ =E v›904

using "rule=E" "=E-simple:2" id_sym "→E" by fast905

AOT_thus ‹v’ =E v & ¬v’ =E v›906

using v’_noteq_v "&I" by blast907

qed908

next909

fix t910

AOT_assume 0: ‹[[F]-u]t & [R]tv’›911

moreover AOT_have ‹[F]t & t 6=E u›912

apply (rule "β→C"(1)[where κ1κn="AOT_term_of_var (Ordinary.Rep t)"])913

apply (rule Π_minus_κE)914

by (fact 0[THEN "&E"(1)])915

ultimately AOT_show ‹t =E u’›916

using u’_prop[THEN "&E"(2), THEN "Ordinary.∀E", THEN "→E", OF "&I"]917

"&E" by blast918

qed919

qed920

AOT_hence ‹∃R R |: [F]-u
1-1←→E [G]-v›921

by (rule "∃I")922

} note 1 = this923

moreover {924

AOT_assume not_Ruv: ‹¬[R]uv›925

AOT_have ‹∃!v ([G]v & [R]uv)›926

using A[THEN "Ordinary.∀E", THEN "→E", OF fu].927

then AOT_obtain b where928

b_prop: ‹O!b & ([G]b & [R]ub & ∀t([G]t & [R]ut → t =E b))›929

using "equi:1"[THEN "≡E"(1)] "∃E"[rotated] by fastforce930

AOT_hence ob: ‹O!b› and gb: ‹[G]b› and Rub: ‹[R]ub›931

using "&E" by blast+932

AOT_have ‹O!t → ([G]t & [R]ut → t =E b)› for t933

using b_prop "&E"(2) "∀E"(2) by blast934

AOT_hence b_unique: ‹t =E b› if ‹O!t› and ‹[G]t› and ‹[R]ut› for t935

by (metis Adjunction "modus-tollens:1" "reductio-aa:1" that)936

AOT_have not_v_eq_b: ‹¬(v =E b)›937

proof(rule "raa-cor:2")938

AOT_assume ‹v =E b›939

AOT_hence 0: ‹v = b›940

by (metis "=E-simple:2" "→E")941

AOT_have ‹[R]uv›942

using b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)]943

433

A. Isabelle Theory

"rule=E"[rotated, OF 0[symmetric]] by fast944

AOT_thus ‹[R]uv & ¬[R]uv›945

using not_Ruv "&I" by blast946

qed947

AOT_have not_b_eq_v: ‹¬(b =E v)›948

using "modus-tollens:1" not_v_eq_b "ord=Eequiv:2" by blast949

AOT_have ‹∃!u ([F]u & [R]uv)›950

using B[THEN "Ordinary.∀E", THEN "→E", OF gv].951

then AOT_obtain a where952

a_prop: ‹O!a & ([F]a & [R]av & ∀t([F]t & [R]tv → t =E a))›953

using "equi:1"[THEN "≡E"(1)] "∃E"[rotated] by fastforce954

AOT_hence Oa: ‹O!a› and fa: ‹[F]a› and Rav: ‹[R]av›955

using "&E" by blast+956

AOT_have ‹O!t → ([F]t & [R]tv → t =E a)› for t957

using a_prop "&E" "∀E"(2) by blast958

AOT_hence a_unique: ‹t =E a› if ‹O!t› and ‹[F]t› and ‹[R]tv› for t959

by (metis Adjunction "modus-tollens:1" "reductio-aa:1" that)960

AOT_have not_u_eq_a: ‹¬(u =E a)›961

proof(rule "raa-cor:2")962

AOT_assume ‹u =E a›963

AOT_hence 0: ‹u = a›964

by (metis "=E-simple:2" "→E")965

AOT_have ‹[R]uv›966

using a_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)]967

"rule=E"[rotated, OF 0[symmetric]] by fast968

AOT_thus ‹[R]uv & ¬[R]uv›969

using not_Ruv "&I" by blast970

qed971

AOT_have not_a_eq_u: ‹¬(a =E u)›972

using "modus-tollens:1" not_u_eq_a "ord=Eequiv:2" by blast973

let ?R = ‹«[λu’v’ (u’ 6=E u & v’ 6=E v & [R]u’v’) ∨974

(u’ =E a & v’ =E b) ∨975

(u’ =E u & v’ =E v)]»›976

AOT_have ‹[«?R»]↓› by "cqt:2[lambda]"977

AOT_hence ‹∃ β β = [«?R»]›978

using "free-thms:1" "≡E"(1) by fast979

then AOT_obtain R1 where R1_def: ‹R1 = [«?R»]›980

using "∃E"[rotated] by blast981

AOT_have Rxy1: ‹[R]xy› if ‹[R1]xy› and ‹x 6=E u› and ‹x 6=E a› for x y982

proof -983

AOT_have 0: ‹[«?R»]xy›984

by (rule "rule=E"[rotated, OF R1_def]) (fact that(1))985

AOT_have ‹(x 6=E u & y 6=E v & [R]xy) ∨ (x =E a & y =E b) ∨ (x =E u & y =E v)›986

using "β→C"(1)[OF 0] by simp987

AOT_hence ‹x 6=E u & y 6=E v & [R]xy› using that(2,3)988

by (metis "∨E"(3) "Conjunction Simplification"(1) "≡E"(1)989

"modus-tollens:1" "thm-neg=E")990

AOT_thus ‹[R]xy› using "&E" by blast+991

qed992

AOT_have Rxy2: ‹[R]xy› if ‹[R1]xy› and ‹y 6=E v› and ‹y 6=E b› for x y993

proof -994

AOT_have 0: ‹[«?R»]xy›995

by (rule "rule=E"[rotated, OF R1_def]) (fact that(1))996

AOT_have ‹(x 6=E u & y 6=E v & [R]xy) ∨ (x =E a & y =E b) ∨ (x =E u & y =E v)›997

using "β→C"(1)[OF 0] by simp998

AOT_hence ‹x 6=E u & y 6=E v & [R]xy›999

using that(2,3)1000

by (metis "∨E"(3) "Conjunction Simplification"(2) "≡E"(1)1001

"modus-tollens:1" "thm-neg=E")1002

AOT_thus ‹[R]xy› using "&E" by blast+1003

qed1004

AOT_have R1xy: ‹[R1]xy› if ‹[R]xy› and ‹x 6=E u› and ‹y 6=E v› for x y1005

by (rule "rule=E"[rotated, OF R1_def[symmetric]])1006

434

A.12. Natural Numbers

(auto intro!: "β←C"(1) "cqt:2"1007

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3" that "∨I"(1))1008

AOT_have R1ab: ‹[R1]ab›1009

apply (rule "rule=E"[rotated, OF R1_def[symmetric]])1010

apply (safe intro!: "β←C"(1) "cqt:2" prod_denotesI "&I")1011

by (meson a_prop b_prop "&I" "&E"(1) "∨I"(1) "∨I"(2) "ord=Eequiv:1" "→E")1012

AOT_have R1uv: ‹[R1]uv›1013

apply (rule "rule=E"[rotated, OF R1_def[symmetric]])1014

apply (safe intro!: "β←C"(1) "cqt:2" prod_denotesI "&I")1015

by (meson "&I" "∨I"(2) "ord=Eequiv:1" Ordinary.ψ "→E")1016

moreover AOT_have ‹R1 |: F 1-1←→E G›1017

proof (safe intro!: "equi:2"[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN "→I")1018

fix u’1019

AOT_assume fu’: ‹[F]u’›1020

{1021

AOT_assume not_u’_eq_u: ‹¬(u’ =E u)› and not_u’_eq_a: ‹¬(u’ =E a)›1022

AOT_hence u’_noteq_u: ‹u’ 6=E u› and u’_noteq_a: ‹u’ 6=E a›1023

by (metis "≡E"(2) "thm-neg=E")+1024

AOT_have ‹∃!v ([G]v & [R]u’v)›1025

using A[THEN "Ordinary.∀E", THEN "→E", OF fu’].1026

AOT_hence ‹∃v ([G]v & [R]u’v & ∀t ([G]t & [R]u’t → t =E v))›1027

using "equi:1"[THEN "≡E"(1)] by simp1028

then AOT_obtain v’ where1029

v’_prop: ‹[G]v’ & [R]u’v’ & ∀t ([G]t & [R]u’t → t =E v’)›1030

using "Ordinary.∃E"[rotated] by meson1031

AOT_hence gv’: ‹[G]v’› and Ru’v’: ‹[R]u’v’›1032

using "&E" by blast+1033

AOT_have not_v’_eq_v: ‹¬v’ =E v›1034

proof (rule "raa-cor:2")1035

AOT_assume ‹v’ =E v›1036

AOT_hence ‹v’ = v›1037

by (metis "=E-simple:2" "→E")1038

AOT_hence Ru’v: ‹[R]u’v›1039

using "rule=E" Ru’v’ by fast1040

AOT_have ‹u’ =E a›1041

using a_unique[OF Ordinary.ψ, OF fu’, OF Ru’v].1042

AOT_thus ‹u’ =E a & ¬u’ =E a›1043

using not_u’_eq_a "&I" by blast1044

qed1045

AOT_hence v’_noteq_v: ‹v’ 6=E v›1046

using "≡E"(2) "thm-neg=E" by blast1047

AOT_have ‹∀t ([G]t & [R]u’t → t =E v’)›1048

using v’_prop "&E" by blast1049

AOT_hence ‹[G]t & [R]u’t → t =E v’› for t1050

using "Ordinary.∀E" by meson1051

AOT_hence v’_unique: ‹t =E v’› if ‹[G]t› and ‹[R]u’t› for t1052

by (metis "&I" that "→E")1053

1054

AOT_have ‹[G]v’ & [R1]u’v’ & ∀t ([G]t & [R1]u’t → t =E v’)›1055

proof (safe intro!: "&I" gv’ R1xy Ru’v’ u’_noteq_u u’_noteq_a "→I"1056

Ordinary.GEN "thm-neg=E"[THEN "≡E"(2)] not_v’_eq_v)1057

fix t1058

AOT_assume 1: ‹[G]t & [R1]u’t›1059

AOT_have ‹[R]u’t›1060

using Rxy1[OF 1[THEN "&E"(2)], OF u’_noteq_u, OF u’_noteq_a].1061

AOT_thus ‹t =E v’›1062

using v’_unique 1[THEN "&E"(1)] by blast1063

qed1064

AOT_hence ‹∃v ([G]v & [R1]u’v & ∀t ([G]t & [R1]u’t → t =E v))›1065

by (rule "Ordinary.∃I")1066

AOT_hence ‹∃!v ([G]v & [R1]u’v)›1067

by (rule "equi:1"[THEN "≡E"(2)])1068

}1069

435

A. Isabelle Theory

moreover {1070

AOT_assume 0: ‹u’ =E u›1071

AOT_hence u’_eq_u: ‹u’ = u›1072

using "=E-simple:2" "→E" by blast1073

AOT_have ‹∃!v ([G]v & [R1]u’v)›1074

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "Ordinary.∃I"[where β=v]1075

"&I" Ordinary.GEN "→I" gv)1076

AOT_show ‹[R1]u’v›1077

apply (rule "rule=E"[rotated, OF R1_def[symmetric]])1078

apply (safe intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI)1079

by (safe intro!: "∨I"(2) "&I" 0 "ord=Eequiv:1"[THEN "→E", OF Ordinary.ψ])1080

next1081

fix v’1082

AOT_assume ‹[G]v’ & [R1]u’v’›1083

AOT_hence 0: ‹[R1]uv’›1084

using "rule=E"[rotated, OF u’_eq_u] "&E"(2) by fast1085

AOT_have 1: ‹[«?R»]uv’›1086

by (rule "rule=E"[rotated, OF R1_def]) (fact 0)1087

AOT_have 2: ‹(u 6=E u & v’ 6=E v & [R]uv’) ∨1088

(u =E a & v’ =E b) ∨1089

(u =E u & v’ =E v)›1090

using "β→C"(1)[OF 1] by simp1091

AOT_have ‹¬u 6=E u›1092

using "≡E"(4) "modus-tollens:1" "ord=Eequiv:1" Ordinary.ψ1093

"reductio-aa:2" "thm-neg=E" by blast1094

AOT_hence ‹¬((u 6=E u & v’ 6=E v & [R]uv’) ∨ (u =E a & v’ =E b))›1095

using not_u_eq_a1096

by (metis "∨E"(2) "Conjunction Simplification"(1)1097

"modus-tollens:1" "reductio-aa:1")1098

AOT_hence ‹(u =E u & v’ =E v)›1099

using 2 by (metis "∨E"(2))1100

AOT_thus ‹v’ =E v›1101

using "&E" by blast1102

qed1103

}1104

moreover {1105

AOT_assume 0: ‹u’ =E a›1106

AOT_hence u’_eq_a: ‹u’ = a›1107

using "=E-simple:2" "→E" by blast1108

AOT_have ‹∃!v ([G]v & [R1]u’v)›1109

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "∃I"(2)[where β=b] "&I"1110

Ordinary.GEN "→I" b_prop[THEN "&E"(1)]1111

b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)])1112

AOT_show ‹[R1]u’b›1113

apply (rule "rule=E"[rotated, OF R1_def[symmetric]])1114

apply (safe intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI)1115

apply (rule "∨I"(1); rule "∨I"(2); rule "&I")1116

apply (fact 0)1117

using b_prop "&E"(1) "ord=Eequiv:1" "→E" by blast1118

next1119

fix v’1120

AOT_assume gv’_R1u’v’: ‹[G]v’ & [R1]u’v’›1121

AOT_hence 0: ‹[R1]av’›1122

using u’_eq_a by (meson "rule=E" "&E"(2))1123

AOT_have 1: ‹[«?R»]av’›1124

by (rule "rule=E"[rotated, OF R1_def]) (fact 0)1125

AOT_have ‹(a 6=E u & v’ 6=E v & [R]av’) ∨1126

(a =E a & v’ =E b) ∨1127

(a =E u & v’ =E v)›1128

using "β→C"(1)[OF 1] by simp1129

moreover {1130

AOT_assume 0: ‹a 6=E u & v’ 6=E v & [R]av’›1131

AOT_have ‹∃!v ([G]v & [R]u’v)›1132

436

A.12. Natural Numbers

using A[THEN "Ordinary.∀E", THEN "→E", OF fu’].1133

AOT_hence ‹∃!v ([G]v & [R]av)›1134

using u’_eq_a "rule=E" by fast1135

AOT_hence ‹∃v ([G]v & [R]av & ∀t ([G]t & [R]at → t =E v))›1136

using "equi:1"[THEN "≡E"(1)] by fast1137

then AOT_obtain s where1138

s_prop: ‹[G]s & [R]as & ∀t ([G]t & [R]at → t =E s)›1139

using "Ordinary.∃E"[rotated] by meson1140

AOT_have ‹v’ =E s›1141

using s_prop[THEN "&E"(2), THEN "Ordinary.∀E"]1142

gv’_R1u’v’[THEN "&E"(1)] 0[THEN "&E"(2)]1143

by (metis "&I" "vdash-properties:10")1144

moreover AOT_have ‹v =E s›1145

using s_prop[THEN "&E"(2), THEN "Ordinary.∀E"] gv Rav1146

by (metis "&I" "→E")1147

ultimately AOT_have ‹v’ =E v›1148

by (metis "&I" "ord=Eequiv:2" "ord=Eequiv:3" "→E")1149

moreover AOT_have ‹¬(v’ =E v)›1150

using 0[THEN "&E"(1), THEN "&E"(2)]1151

by (metis "≡E"(1) "thm-neg=E")1152

ultimately AOT_have ‹v’ =E b›1153

by (metis "raa-cor:3")1154

}1155

moreover {1156

AOT_assume ‹a =E u & v’ =E v›1157

AOT_hence ‹v’ =E b›1158

by (metis "&E"(1) not_a_eq_u "reductio-aa:1")1159

}1160

ultimately AOT_show ‹v’ =E b›1161

by (metis "&E"(2) "∨E"(3) "reductio-aa:1")1162

qed1163

}1164

ultimately AOT_show ‹∃!v ([G]v & [R1]u’v)›1165

by (metis "raa-cor:1")1166

next1167

fix v’1168

AOT_assume gv’: ‹[G]v’›1169

{1170

AOT_assume not_v’_eq_v: ‹¬(v’ =E v)›1171

and not_v’_eq_b: ‹¬(v’ =E b)›1172

AOT_hence v’_noteq_v: ‹v’ 6=E v›1173

and v’_noteq_b: ‹v’ 6=E b›1174

by (metis "≡E"(2) "thm-neg=E")+1175

AOT_have ‹∃!u ([F]u & [R]uv’)›1176

using B[THEN "Ordinary.∀E", THEN "→E", OF gv’].1177

AOT_hence ‹∃u ([F]u & [R]uv’ & ∀t ([F]t & [R]tv’ → t =E u))›1178

using "equi:1"[THEN "≡E"(1)] by simp1179

then AOT_obtain u’ where1180

u’_prop: ‹[F]u’ & [R]u’v’ & ∀t ([F]t & [R]tv’ → t =E u’)›1181

using "Ordinary.∃E"[rotated] by meson1182

AOT_hence fu’: ‹[F]u’› and Ru’v’: ‹[R]u’v’›1183

using "&E" by blast+1184

AOT_have not_u’_eq_u: ‹¬u’ =E u›1185

proof (rule "raa-cor:2")1186

AOT_assume ‹u’ =E u›1187

AOT_hence ‹u’ = u›1188

by (metis "=E-simple:2" "→E")1189

AOT_hence Ruv’: ‹[R]uv’›1190

using "rule=E" Ru’v’ by fast1191

AOT_have ‹v’ =E b›1192

using b_unique[OF Ordinary.ψ, OF gv’, OF Ruv’].1193

AOT_thus ‹v’ =E b & ¬v’ =E b›1194

using not_v’_eq_b "&I" by blast1195

437

A. Isabelle Theory

qed1196

AOT_hence u’_noteq_u: ‹u’ 6=E u›1197

using "≡E"(2) "thm-neg=E" by blast1198

AOT_have ‹∀t ([F]t & [R]tv’ → t =E u’)›1199

using u’_prop "&E" by blast1200

AOT_hence ‹[F]t & [R]tv’ → t =E u’› for t1201

using "Ordinary.∀E" by meson1202

AOT_hence u’_unique: ‹t =E u’› if ‹[F]t› and ‹[R]tv’› for t1203

by (metis "&I" that "→E")1204

1205

AOT_have ‹[F]u’ & [R1]u’v’ & ∀t ([F]t & [R1]tv’ → t =E u’)›1206

proof (safe intro!: "&I" gv’ R1xy Ru’v’ u’_noteq_u Ordinary.GEN "→I"1207

"thm-neg=E"[THEN "≡E"(2)] not_v’_eq_v fu’)1208

fix t1209

AOT_assume 1: ‹[F]t & [R1]tv’›1210

AOT_have ‹[R]tv’›1211

using Rxy2[OF 1[THEN "&E"(2)], OF v’_noteq_v, OF v’_noteq_b].1212

AOT_thus ‹t =E u’›1213

using u’_unique 1[THEN "&E"(1)] by blast1214

qed1215

AOT_hence ‹∃u ([F]u & [R1]uv’ & ∀t ([F]t & [R1]tv’ → t =E u))›1216

by (rule "Ordinary.∃I")1217

AOT_hence ‹∃!u ([F]u & [R1]uv’)›1218

by (rule "equi:1"[THEN "≡E"(2)])1219

}1220

moreover {1221

AOT_assume 0: ‹v’ =E v›1222

AOT_hence u’_eq_u: ‹v’ = v›1223

using "=E-simple:2" "→E" by blast1224

AOT_have ‹∃!u ([F]u & [R1]uv’)›1225

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "Ordinary.∃I"[where β=u]1226

"&I" Ordinary.GEN "→I" fu)1227

AOT_show ‹[R1]uv’›1228

by (rule "rule=E"[rotated, OF R1_def[symmetric]])1229

(safe intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI Ordinary.ψ1230

"∨I"(2) 0 "ord=Eequiv:1"[THEN "→E"])1231

next1232

fix u’1233

AOT_assume ‹[F]u’ & [R1]u’v’›1234

AOT_hence 0: ‹[R1]u’v›1235

using "rule=E"[rotated, OF u’_eq_u] "&E"(2) by fast1236

AOT_have 1: ‹[«?R»]u’v›1237

by (rule "rule=E"[rotated, OF R1_def]) (fact 0)1238

AOT_have 2: ‹(u’ 6=E u & v 6=E v & [R]u’v) ∨1239

(u’ =E a & v =E b) ∨1240

(u’ =E u & v =E v)›1241

using "β→C"(1)[OF 1, simplified] by simp1242

AOT_have ‹¬v 6=E v›1243

using "≡E"(4) "modus-tollens:1" "ord=Eequiv:1" Ordinary.ψ1244

"reductio-aa:2" "thm-neg=E" by blast1245

AOT_hence ‹¬((u’ 6=E u & v 6=E v & [R]u’v) ∨ (u’ =E a & v =E b))›1246

by (metis "&E"(1) "&E"(2) "∨E"(3) not_v_eq_b "raa-cor:3")1247

AOT_hence ‹(u’ =E u & v =E v)›1248

using 2 by (metis "∨E"(2))1249

AOT_thus ‹u’ =E u›1250

using "&E" by blast1251

qed1252

}1253

moreover {1254

AOT_assume 0: ‹v’ =E b›1255

AOT_hence v’_eq_b: ‹v’ = b›1256

using "=E-simple:2" "→E" by blast1257

AOT_have ‹∃!u ([F]u & [R1]uv’)›1258

438

A.12. Natural Numbers

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "∃I"(2)[where β=a] "&I"1259

Ordinary.GEN "→I" b_prop[THEN "&E"(1)] Oa fa1260

b_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)])1261

AOT_show ‹[R1]av’›1262

apply (rule "rule=E"[rotated, OF R1_def[symmetric]])1263

apply (safe intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI)1264

apply (rule "∨I"(1); rule "∨I"(2); rule "&I")1265

using Oa "ord=Eequiv:1" "→E" apply blast1266

using "0" by blast1267

next1268

fix u’1269

AOT_assume fu’_R1u’v’: ‹[F]u’ & [R1]u’v’›1270

AOT_hence 0: ‹[R1]u’b›1271

using v’_eq_b by (meson "rule=E" "&E"(2))1272

AOT_have 1: ‹[«?R»]u’b›1273

by (rule "rule=E"[rotated, OF R1_def]) (fact 0)1274

AOT_have ‹(u’ 6=E u & b 6=E v & [R]u’b) ∨1275

(u’ =E a & b =E b) ∨1276

(u’ =E u & b =E v)›1277

using "β→C"(1)[OF 1, simplified] by simp1278

moreover {1279

AOT_assume 0: ‹u’ 6=E u & b 6=E v & [R]u’b›1280

AOT_have ‹∃!u ([F]u & [R]uv’)›1281

using B[THEN "Ordinary.∀E", THEN "→E", OF gv’].1282

AOT_hence ‹∃!u ([F]u & [R]ub)›1283

using v’_eq_b "rule=E" by fast1284

AOT_hence ‹∃u ([F]u & [R]ub & ∀t ([F]t & [R]tb → t =E u))›1285

using "equi:1"[THEN "≡E"(1)] by fast1286

then AOT_obtain s where1287

s_prop: ‹[F]s & [R]sb & ∀t ([F]t & [R]tb → t =E s)›1288

using "Ordinary.∃E"[rotated] by meson1289

AOT_have ‹u’ =E s›1290

using s_prop[THEN "&E"(2), THEN "Ordinary.∀E"]1291

fu’_R1u’v’[THEN "&E"(1)] 0[THEN "&E"(2)]1292

by (metis "&I" "→E")1293

moreover AOT_have ‹u =E s›1294

using s_prop[THEN "&E"(2), THEN "Ordinary.∀E"] fu Rub1295

by (metis "&I" "→E")1296

ultimately AOT_have ‹u’ =E u›1297

by (metis "&I" "ord=Eequiv:2" "ord=Eequiv:3" "→E")1298

moreover AOT_have ‹¬(u’ =E u)›1299

using 0[THEN "&E"(1), THEN "&E"(1)] by (metis "≡E"(1) "thm-neg=E")1300

ultimately AOT_have ‹u’ =E a›1301

by (metis "raa-cor:3")1302

}1303

moreover {1304

AOT_assume ‹u’ =E u & b =E v›1305

AOT_hence ‹u’ =E a›1306

by (metis "&E"(2) not_b_eq_v "reductio-aa:1")1307

}1308

ultimately AOT_show ‹u’ =E a›1309

by (metis "&E"(1) "∨E"(3) "reductio-aa:1")1310

qed1311

}1312

ultimately AOT_show ‹∃!u ([F]u & [R1]uv’)›1313

by (metis "raa-cor:1")1314

qed1315

ultimately AOT_have ‹∃R R |: [F]-u
1-1←→E [G]-v›1316

using 1 by blast1317

}1318

ultimately AOT_have ‹∃R R |: [F]-u
1-1←→E [G]-v›1319

using R_prop by (metis "reductio-aa:2")1320

AOT_thus ‹[F]-u ≈E [G]-v›1321

439

A. Isabelle Theory

by (rule "equi:3"[THEN "≡dfI"])1322

qed1323

1324

1325

AOT_theorem "P’-eq": ‹[F]-u ≈E [G]-v & [F]u & [G]v → F ≈E G› (736)1326

proof(safe intro!: "→I"; frule "&E"(1); drule "&E"(2);1327

frule "&E"(1); drule "&E"(2))1328

AOT_have ‹[λz [Π]z & z 6=E κ]↓› for Π κ by "cqt:2[lambda]"1329

note Π_minus_κI = "rule-id-df:2:b[2]"[1330

where τ=‹(λ(Π, κ). «[Π]-κ»)›, simplified, OF "F-u", simplified, OF this]1331

and Π_minus_κE = "rule-id-df:2:a[2]"[1332

where τ=‹(λ(Π, κ). «[Π]-κ»)›, simplified, OF "F-u", simplified, OF this]1333

AOT_have Π_minus_κ_den: ‹[Π]-κ↓› for Π κ1334

by (rule Π_minus_κI) "cqt:2[lambda]"+1335

1336

AOT_have Π_minus_κE1: ‹[Π]κ’›1337

and Π_minus_κE2: ‹κ’ 6=E κ› if ‹[[Π]-κ]κ’› for Π κ κ’1338

proof -1339

AOT_have ‹[λz [Π]z & z 6=E κ]κ’›1340

using Π_minus_κE that by fast1341

AOT_hence ‹[Π]κ’ & κ’ 6=E κ›1342

by (rule "β→C"(1))1343

AOT_thus ‹[Π]κ’› and ‹κ’ 6=E κ›1344

using "&E" by blast+1345

qed1346

AOT_have Π_minus_κI’: ‹[[Π]-κ]κ’› if ‹[Π]κ’› and ‹κ’ 6=E κ› for Π κ κ’1347

proof -1348

AOT_have κ’_den: ‹κ’↓›1349

by (metis "russell-axiom[exe,1].ψ_denotes_asm" that(1))1350

AOT_have ‹[λz [Π]z & z 6=E κ]κ’›1351

by (safe intro!: "β←C"(1) "cqt:2" κ’_den "&I" that)1352

AOT_thus ‹[[Π]-κ]κ’›1353

using Π_minus_κI by fast1354

qed1355

1356

AOT_assume Gv: ‹[G]v›1357

AOT_assume Fu: ‹[F]u›1358

AOT_assume ‹[F]-u ≈E [G]-v›1359

AOT_hence ‹∃R R |: [F]-u
1-1←→E [G]-v›1360

using "equi:3"[THEN "≡dfE"] by blast1361

then AOT_obtain R where R_prop: ‹R |: [F]-u
1-1←→E [G]-v›1362

using "∃E"[rotated] by blast1363

AOT_hence Fact1: ‹∀r([[F]-u]r → ∃!s ([[G]-v]s & [R]rs))›1364

and Fact1’: ‹∀s([[G]-v]s → ∃!r ([[F]-u]r & [R]rs))›1365

using "equi:2"[THEN "≡dfE"] "&E" by blast+1366

AOT_have ‹R |: [F]-u
1-1−→ontoE [G]-v›1367

using "equi-rem-thm"[unvarify F G, OF Π_minus_κ_den, OF Π_minus_κ_den,1368

THEN "≡E"(1), OF R_prop].1369

AOT_hence ‹R |: [F]-u
1-1−→E [G]-v & R |: [F]-u −→ontoE [G]-v›1370

using "equi-rem:4"[THEN "≡dfE"] by blast1371

AOT_hence Fact2:1372

‹∀r∀s∀t(([[F]-u]r & [[F]-u]s & [[G]-v]t) → ([R]rt & [R]st → r =E s))›1373

using "equi-rem:2"[THEN "≡dfE"] "&E" by blast1374

1375

let ?R = ‹«[λxy ([[F]-u]x & [[G]-v]y & [R]xy) ∨ (x =E u & y =E v)]»›1376

AOT_have R_den: ‹«?R»↓› by "cqt:2[lambda]"1377

1378

AOT_show ‹F ≈E G›1379

proof(safe intro!: "equi:3"[THEN "≡dfI"] "∃I"(1)[where τ="?R"] R_den1380

"equi:2"[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN "→I")1381

fix r1382

AOT_assume Fr: ‹[F]r›1383

{1384

440

A.12. Natural Numbers

AOT_assume not_r_eq_u: ‹¬(r =E u)›1385

AOT_hence r_noteq_u: ‹r 6=E u›1386

using "≡E"(2) "thm-neg=E" by blast1387

AOT_have ‹[[F]-u]r›1388

by(rule Π_minus_κI; safe intro!: "β←C"(1) "cqt:2" "&I" Fr r_noteq_u)1389

AOT_hence ‹∃!s ([[G]-v]s & [R]rs)›1390

using Fact1[THEN "∀E"(2)] "→E" Ordinary.ψ by blast1391

AOT_hence ‹∃s ([[G]-v]s & [R]rs & ∀t ([[G]-v]t & [R]rt → t =E s))›1392

using "equi:1"[THEN "≡E"(1)] by simp1393

then AOT_obtain s where s_prop: ‹[[G]-v]s & [R]rs & ∀t ([[G]-v]t & [R]rt → t =E s)›1394

using "Ordinary.∃E"[rotated] by meson1395

AOT_hence G_minus_v_s: ‹[[G]-v]s› and Rrs: ‹[R]rs›1396

using "&E" by blast+1397

AOT_have s_unique: ‹t =E s› if ‹[[G]-v]t› and ‹[R]rt› for t1398

using s_prop[THEN "&E"(2), THEN "Ordinary.∀E", THEN "→E", OF "&I", OF that].1399

AOT_have Gs: ‹[G]s›1400

using Π_minus_κE1[OF G_minus_v_s].1401

AOT_have s_noteq_v: ‹s 6=E v›1402

using Π_minus_κE2[OF G_minus_v_s].1403

AOT_have ‹∃s ([G]s & [«?R»]rs & (∀t ([G]t & [«?R»]rt → t =E s)))›1404

proof(safe intro!: "Ordinary.∃I"[where β=s] "&I" Gs Ordinary.GEN "→I")1405

AOT_show ‹[«?R»]rs›1406

by (auto intro!: "β←C"(1) "cqt:2" "&I" "∨I"(1) Π_minus_κI’ Fr Gs1407

s_noteq_v Rrs r_noteq_u1408

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3")1409

next1410

fix t1411

AOT_assume 0: ‹[G]t & [«?R»]rt›1412

AOT_hence ‹([[F]-u]r & [[G]-v]t & [R]rt) ∨ (r =E u & t =E v)›1413

using "β→C"(1)[OF 0[THEN "&E"(2)], simplified] by blast1414

AOT_hence 1: ‹[[F]-u]r & [[G]-v]t & [R]rt›1415

using not_r_eq_u by (metis "&E"(1) "∨E"(3) "reductio-aa:1")1416

AOT_show ‹t =E s› using s_unique 1 "&E" by blast1417

qed1418

}1419

moreover {1420

AOT_assume r_eq_u: ‹r =E u›1421

AOT_have ‹∃s ([G]s & [«?R»]rs & (∀t ([G]t & [«?R»]rt → t =E s)))›1422

proof(safe intro!: "Ordinary.∃I"[where β=v] "&I" Gv Ordinary.GEN "→I")1423

AOT_show ‹[«?R»]rv›1424

by (auto intro!: "β←C"(1) "cqt:2" "&I" "∨I"(2) Π_minus_κI’ Fr r_eq_u1425

"ord=Eequiv:1"[THEN "→E"] Ordinary.ψ1426

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3")1427

next1428

fix t1429

AOT_assume 0: ‹[G]t & [«?R»]rt›1430

AOT_hence ‹([[F]-u]r & [[G]-v]t & [R]rt) ∨ (r =E u & t =E v)›1431

using "β→C"(1)[OF 0[THEN "&E"(2)], simplified] by blast1432

AOT_hence ‹r =E u & t =E v›1433

using r_eq_u Π_minus_κE21434

by (metis "&E"(1) "∨E"(2) "≡E"(1) "reductio-aa:1" "thm-neg=E")1435

AOT_thus ‹t =E v› using "&E" by blast1436

qed1437

}1438

ultimately AOT_show ‹∃!s ([G]s & [«?R»]rs)›1439

using "reductio-aa:2" "equi:1"[THEN "≡E"(2)] by fast1440

next1441

fix s1442

AOT_assume Gs: ‹[G]s›1443

1444

{1445

AOT_assume not_s_eq_v: ‹¬(s =E v)›1446

AOT_hence s_noteq_v: ‹s 6=E v›1447

441

A. Isabelle Theory

using "≡E"(2) "thm-neg=E" by blast1448

AOT_have ‹[[G]-v]s›1449

by (rule Π_minus_κI; auto intro!: "β←C"(1) "cqt:2" "&I" Gs s_noteq_v)1450

AOT_hence ‹∃!r ([[F]-u]r & [R]rs)›1451

using Fact1’[THEN "Ordinary.∀E"] "→E" by blast1452

AOT_hence ‹∃r ([[F]-u]r & [R]rs & ∀t ([[F]-u]t & [R]ts → t =E r))›1453

using "equi:1"[THEN "≡E"(1)] by simp1454

then AOT_obtain r where1455

r_prop: ‹[[F]-u]r & [R]rs & ∀t ([[F]-u]t & [R]ts → t =E r)›1456

using "Ordinary.∃E"[rotated] by meson1457

AOT_hence F_minus_u_r: ‹[[F]-u]r› and Rrs: ‹[R]rs›1458

using "&E" by blast+1459

AOT_have r_unique: ‹t =E r› if ‹[[F]-u]t› and ‹[R]ts› for t1460

using r_prop[THEN "&E"(2), THEN "Ordinary.∀E",1461

THEN "→E", OF "&I", OF that].1462

AOT_have Fr: ‹[F]r›1463

using Π_minus_κE1[OF F_minus_u_r].1464

AOT_have r_noteq_u: ‹r 6=E u›1465

using Π_minus_κE2[OF F_minus_u_r].1466

AOT_have ‹∃r ([F]r & [«?R»]rs & (∀t ([F]t & [«?R»]ts → t =E r)))›1467

proof(safe intro!: "Ordinary.∃I"[where β=r] "&I" Fr Ordinary.GEN "→I")1468

AOT_show ‹[«?R»]rs›1469

by (auto intro!: "β←C"(1) "cqt:2" "&I" "∨I"(1) Π_minus_κI’ Fr1470

Gs s_noteq_v Rrs r_noteq_u1471

simp: "&I" "ex:1:a" prod_denotesI "rule-ui:3")1472

next1473

fix t1474

AOT_assume 0: ‹[F]t & [«?R»]ts›1475

AOT_hence ‹([[F]-u]t & [[G]-v]s & [R]ts) ∨ (t =E u & s =E v)›1476

using "β→C"(1)[OF 0[THEN "&E"(2)], simplified] by blast1477

AOT_hence 1: ‹[[F]-u]t & [[G]-v]s & [R]ts›1478

using not_s_eq_v by (metis "&E"(2) "∨E"(3) "reductio-aa:1")1479

AOT_show ‹t =E r› using r_unique 1 "&E" by blast1480

qed1481

}1482

moreover {1483

AOT_assume s_eq_v: ‹s =E v›1484

AOT_have ‹∃r ([F]r & [«?R»]rs & (∀t ([F]t & [«?R»]ts → t =E r)))›1485

proof(safe intro!: "Ordinary.∃I"[where β=u] "&I" Fu Ordinary.GEN "→I")1486

AOT_show ‹[«?R»]us›1487

by (auto intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI "∨I"(2)1488

Π_minus_κI’ Gs s_eq_v Ordinary.ψ1489

"ord=Eequiv:1"[THEN "→E"])1490

next1491

fix t1492

AOT_assume 0: ‹[F]t & [«?R»]ts›1493

AOT_hence 1: ‹([[F]-u]t & [[G]-v]s & [R]ts) ∨ (t =E u & s =E v)›1494

using "β→C"(1)[OF 0[THEN "&E"(2)], simplified] by blast1495

moreover AOT_have ‹¬([[F]-u]t & [[G]-v]s & [R]ts)›1496

proof (rule "raa-cor:2")1497

AOT_assume ‹([[F]-u]t & [[G]-v]s & [R]ts)›1498

AOT_hence ‹[[G]-v]s› using "&E" by blast1499

AOT_thus ‹s =E v & ¬(s =E v)›1500

by (metis Π_minus_κE2 "≡E"(4) "reductio-aa:1" s_eq_v "thm-neg=E")1501

qed1502

ultimately AOT_have ‹t =E u & s =E v›1503

by (metis "∨E"(2))1504

AOT_thus ‹t =E u› using "&E" by blast1505

qed1506

}1507

ultimately AOT_show ‹∃!r ([F]r & [«?R»]rs)›1508

using "≡E"(2) "equi:1" "reductio-aa:2" by fast1509

qed1510

442

A.12. Natural Numbers

qed1511

1512

1513

AOT_theorem "approx-cont:1": ‹∃F∃G ♦(F ≈E G & ♦¬F ≈E G)› (737.1)1514

proof -1515

let ?P = ‹«[λx E!x & ¬AE!x]»›1516

AOT_have ‹♦q0 & ♦¬q0› by (metis q0_prop)1517

AOT_hence 1: ‹♦∃x(E!x & ¬AE!x) & ♦¬∃x(E!x & ¬AE!x)›1518

by (rule q0_def[THEN "=dfE"(2), rotated])1519

(simp add: "log-prop-prop:2")1520

AOT_have ϑ: ‹♦∃x [«?P»]x & ♦¬∃x [«?P»]x›1521

apply (AOT_subst ‹[«?P»]x› ‹E!x & ¬AE!x› for: x)1522

apply (rule "beta-C-meta"[THEN "→E"]; "cqt:2[lambda]")1523

by (fact 1)1524

show ?thesis1525

proof (rule "∃I"(1))+1526

AOT_have ‹♦[L]- ≈E [«?P»] & ♦¬[L]- ≈E [«?P»]›1527

proof (rule "&I"; rule "RM♦"[THEN "→E"]; (rule "→I")?)1528

AOT_modally_strict {1529

AOT_assume A: ‹¬∃x [«?P»]x›1530

AOT_show ‹[L]- ≈E [«?P»]›1531

proof (safe intro!: "empty-approx:1"[unvarify F H, THEN "→E"]1532

"rel-neg-T:3" "&I")1533

AOT_show ‹[«?P»]↓› by "cqt:2[lambda]"1534

next1535

AOT_show ‹¬∃u [L-]u›1536

proof (rule "raa-cor:2")1537

AOT_assume ‹∃u [L-]u›1538

then AOT_obtain u where ‹[L-]u›1539

using "Ordinary.∃E"[rotated] by blast1540

moreover AOT_have ‹¬[L-]u›1541

using "thm-noncont-e-e:2"[THEN "contingent-properties:2"[THEN "≡dfE"],1542

THEN "&E"(2)]1543

by (metis "qml:2"[axiom_inst] "rule-ui:3" "→E")1544

ultimately AOT_show ‹p & ¬p› for p1545

by (metis "raa-cor:3")1546

qed1547

next1548

AOT_show ‹¬∃v [«?P»]v›1549

proof (rule "raa-cor:2")1550

AOT_assume ‹∃v [«?P»]v›1551

then AOT_obtain u where ‹[«?P»]u›1552

using "Ordinary.∃E"[rotated] by blast1553

AOT_hence ‹[«?P»]u›1554

using "&E" by blast1555

AOT_hence ‹∃x [«?P»]x›1556

by (rule "∃I")1557

AOT_thus ‹∃x [«?P»]x & ¬∃x [«?P»]x›1558

using A "&I" by blast1559

qed1560

qed1561

}1562

next1563

AOT_show ‹♦¬∃x [«?P»]x›1564

using ϑ "&E" by blast1565

next1566

AOT_modally_strict {1567

AOT_assume A: ‹∃x [«?P»]x›1568

AOT_have B: ‹¬[«?P»] ≈E [L]-›1569

proof (safe intro!: "empty-approx:2"[unvarify F H, THEN "→E"]1570

"rel-neg-T:3" "&I")1571

AOT_show ‹[«?P»]↓›1572

by "cqt:2[lambda]"1573

443

A. Isabelle Theory

next1574

AOT_obtain x where Px: ‹[«?P»]x›1575

using A "∃E" by blast1576

AOT_hence ‹E!x & ¬AE!x›1577

by (rule "β→C"(1))1578

AOT_hence 1: ‹♦E!x›1579

by (metis "T♦" "&E"(1) "vdash-properties:10")1580

AOT_have ‹[λx ♦E!x]x›1581

by (auto intro!: "β←C"(1) "cqt:2" 1)1582

AOT_hence ‹O!x›1583

by (rule AOT_ordinary[THEN "=dfI"(2), rotated]) "cqt:2[lambda]"1584

AOT_hence ‹O!x & [«?P»]x›1585

using Px "&I" by blast1586

AOT_thus ‹∃u [«?P»]u›1587

by (rule "∃I")1588

next1589

AOT_show ‹¬∃u [L-]u›1590

proof (rule "raa-cor:2")1591

AOT_assume ‹∃u [L-]u›1592

then AOT_obtain u where ‹[L-]u›1593

using "Ordinary.∃E"[rotated] by blast1594

moreover AOT_have ‹¬[L-]u›1595

using "thm-noncont-e-e:2"[THEN "contingent-properties:2"[THEN "≡dfE"]]1596

by (metis "qml:2"[axiom_inst] "rule-ui:3" "→E" "&E"(2))1597

ultimately AOT_show ‹p & ¬p› for p1598

by (metis "raa-cor:3")1599

qed1600

qed1601

AOT_show ‹¬[L]- ≈E [«?P»]›1602

proof (rule "raa-cor:2")1603

AOT_assume ‹[L]- ≈E [«?P»]›1604

AOT_hence ‹[«?P»] ≈E [L]-›1605

apply (rule "eq-part:2"[unvarify F G, THEN "→E", rotated 2])1606

apply "cqt:2[lambda]"1607

by (simp add: "rel-neg-T:3")1608

AOT_thus ‹[«?P»] ≈E [L]- & ¬[«?P»] ≈E [L]-›1609

using B "&I" by blast1610

qed1611

}1612

next1613

AOT_show ‹♦∃x [«?P»]x›1614

using ϑ "&E" by blast1615

qed1616

AOT_thus ‹♦([L]- ≈E [«?P»] & ♦¬[L]- ≈E [«?P»])›1617

using "S5Basic:11" "≡E"(2) by blast1618

next1619

AOT_show ‹[λx [E!]x & ¬A[E!]x]↓›1620

by "cqt:2"1621

next1622

AOT_show ‹[L]-↓›1623

by (simp add: "rel-neg-T:3")1624

qed1625

qed1626

1627

1628

AOT_theorem "approx-cont:2": (737.2)1629

‹∃F∃G ♦([λz A[F]z] ≈E G & ♦¬[λz A[F]z] ≈E G)›1630

proof -1631

let ?P = ‹«[λx E!x & ¬AE!x]»›1632

AOT_have ‹♦q0 & ♦¬q0› by (metis q0_prop)1633

AOT_hence 1: ‹♦∃x(E!x & ¬AE!x) & ♦¬∃x(E!x & ¬AE!x)›1634

by (rule q0_def[THEN "=dfE"(2), rotated])1635

(simp add: "log-prop-prop:2")1636

444

A.12. Natural Numbers

AOT_have ϑ: ‹♦∃x [«?P»]x & ♦¬∃x [«?P»]x›1637

apply (AOT_subst ‹[«?P»]x› ‹E!x & ¬AE!x› for: x)1638

apply (rule "beta-C-meta"[THEN "→E"]; "cqt:2")1639

by (fact 1)1640

show ?thesis1641

proof (rule "∃I"(1))+1642

AOT_have ‹♦[λz A[L-]z] ≈E [«?P»] & ♦¬[λz A[L-]z] ≈E [«?P»]›1643

proof (rule "&I"; rule "RM♦"[THEN "→E"]; (rule "→I")?)1644

AOT_modally_strict {1645

AOT_assume A: ‹¬∃x [«?P»]x›1646

AOT_show ‹[λz A[L-]z] ≈E [«?P»]›1647

proof (safe intro!: "empty-approx:1"[unvarify F H, THEN "→E"]1648

"rel-neg-T:3" "&I")1649

AOT_show ‹[«?P»]↓› by "cqt:2"1650

next1651

AOT_show ‹¬∃u [λz A[L-]z]u›1652

proof (rule "raa-cor:2")1653

AOT_assume ‹∃u [λz A[L-]z]u›1654

then AOT_obtain u where ‹[λz A[L-]z]u›1655

using "Ordinary.∃E"[rotated] by blast1656

AOT_hence ‹A[L-]u›1657

using "β→C"(1) "&E" by blast1658

moreover AOT_have ‹�¬[L-]u›1659

using "thm-noncont-e-e:2"[THEN "contingent-properties:2"[THEN "≡dfE"]]1660

by (metis RN "qml:2"[axiom_inst] "rule-ui:3" "→E" "&E"(2))1661

ultimately AOT_show ‹p & ¬p› for p1662

by (metis "Act-Sub:3" "KBasic2:1" "≡E"(1) "raa-cor:3" "→E")1663

qed1664

next1665

AOT_show ‹¬∃v [«?P»]v›1666

proof (rule "raa-cor:2")1667

AOT_assume ‹∃v [«?P»]v›1668

then AOT_obtain u where ‹[«?P»]u›1669

using "Ordinary.∃E"[rotated] by blast1670

AOT_hence ‹[«?P»]u›1671

using "&E" by blast1672

AOT_hence ‹∃x [«?P»]x›1673

by (rule "∃I")1674

AOT_thus ‹∃x [«?P»]x & ¬∃x [«?P»]x›1675

using A "&I" by blast1676

qed1677

next1678

AOT_show ‹[λz A[L-]z]↓› by "cqt:2"1679

qed1680

}1681

next1682

AOT_show ‹♦¬∃x [«?P»]x› using ϑ "&E" by blast1683

next1684

AOT_modally_strict {1685

AOT_assume A: ‹∃x [«?P»]x›1686

AOT_have B: ‹¬[«?P»] ≈E [λz A[L-]z]›1687

proof (safe intro!: "empty-approx:2"[unvarify F H, THEN "→E"]1688

"rel-neg-T:3" "&I")1689

AOT_show ‹[«?P»]↓› by "cqt:2"1690

next1691

AOT_obtain x where Px: ‹[«?P»]x›1692

using A "∃E" by blast1693

AOT_hence ‹E!x & ¬AE!x›1694

by (rule "β→C"(1))1695

AOT_hence ‹♦E!x›1696

by (metis "T♦" "&E"(1) "→E")1697

AOT_hence ‹[λx ♦E!x]x›1698

by (auto intro!: "β←C"(1) "cqt:2")1699

445

A. Isabelle Theory

AOT_hence ‹O!x›1700

by (rule AOT_ordinary[THEN "=dfI"(2), rotated]) "cqt:2"1701

AOT_hence ‹O!x & [«?P»]x›1702

using Px "&I" by blast1703

AOT_thus ‹∃u [«?P»]u›1704

by (rule "∃I")1705

next1706

AOT_show ‹¬∃u [λz A[L-]z]u›1707

proof (rule "raa-cor:2")1708

AOT_assume ‹∃u [λz A[L-]z]u›1709

then AOT_obtain u where ‹[λz A[L-]z]u›1710

using "Ordinary.∃E"[rotated] by blast1711

AOT_hence ‹A[L-]u›1712

using "β→C"(1) "&E" by blast1713

moreover AOT_have ‹�¬[L-]u›1714

using "thm-noncont-e-e:2"[THEN "contingent-properties:2"[THEN "≡dfE"]]1715

by (metis RN "qml:2"[axiom_inst] "rule-ui:3" "→E" "&E"(2))1716

ultimately AOT_show ‹p & ¬p› for p1717

by (metis "Act-Sub:3" "KBasic2:1" "≡E"(1) "raa-cor:3" "→E")1718

qed1719

next1720

AOT_show ‹[λz A[L-]z]↓› by "cqt:2"1721

qed1722

AOT_show ‹¬[λz A[L-]z] ≈E [«?P»]›1723

proof (rule "raa-cor:2")1724

AOT_assume ‹[λz A[L-]z] ≈E [«?P»]›1725

AOT_hence ‹[«?P»] ≈E [λz A[L-]z]›1726

by (rule "eq-part:2"[unvarify F G, THEN "→E", rotated 2])1727

"cqt:2"+1728

AOT_thus ‹[«?P»] ≈E [λz A[L-]z] & ¬[«?P»] ≈E [λz A[L-]z]›1729

using B "&I" by blast1730

qed1731

}1732

next1733

AOT_show ‹♦∃x [«?P»]x›1734

using ϑ "&E" by blast1735

qed1736

AOT_thus ‹♦([λz A[L-]z] ≈E [«?P»] & ♦¬[λz A[L-]z] ≈E [«?P»])›1737

using "S5Basic:11" "≡E"(2) by blast1738

next1739

AOT_show ‹[λx [E!]x & ¬A[E!]x]↓› by "cqt:2"1740

next1741

AOT_show ‹[L]-↓›1742

by (simp add: "rel-neg-T:3")1743

qed1744

qed1745

1746

notepad1747

begin1748

text‹We already have defined being equivalent on the ordinary objects in the1749

Extended Relation Comprehension theory.›1750

AOT_have ‹F ≡E G ≡df F↓ & G↓ & ∀u ([F]u ≡ [G]u)› for F G1751

using eqE by blast1752

end1753

1754

AOT_theorem "apE-eqE:1": ‹F ≡E G → F ≈E G› (739.1)1755

proof(rule "→I")1756

AOT_assume 0: ‹F ≡E G›1757

AOT_have ‹∃R R |: F 1-1←→E G›1758

proof (safe intro!: "∃I"(1)[where τ="«(=E)»"] "equi:2"[THEN "≡dfI"] "&I"1759

"=E[denotes]" "cqt:2[const_var]"[axiom_inst] Ordinary.GEN1760

"→I" "equi:1"[THEN "≡E"(2)])1761

fix u1762

446

A.12. Natural Numbers

AOT_assume Fu: ‹[F]u›1763

AOT_hence Gu: ‹[G]u›1764

using "≡dfE"[OF eqE, OF 0, THEN "&E"(2),1765

THEN "Ordinary.∀E"[where α=u], THEN "≡E"(1)]1766

Ordinary.ψ Fu by blast1767

AOT_show ‹∃v ([G]v & u =E v & ∀v’ ([G]v’ & u =E v’ → v’ =E v))›1768

by (safe intro!: "Ordinary.∃I"[where β=u] "&I" GEN "→I" Ordinary.ψ Gu1769

"ord=Eequiv:1"[THEN "→E", OF Ordinary.ψ]1770

"ord=Eequiv:2"[THEN "→E"] dest!: "&E"(2))1771

next1772

fix v1773

AOT_assume Gv: ‹[G]v›1774

AOT_hence Fv: ‹[F]v›1775

using "≡dfE"[OF eqE, OF 0, THEN "&E"(2),1776

THEN "Ordinary.∀E"[where α=v], THEN "≡E"(2)]1777

Ordinary.ψ Gv by blast1778

AOT_show ‹∃u ([F]u & u =E v & ∀v’ ([F]v’ & v’ =E v → v’ =E u))›1779

by (safe intro!: "Ordinary.∃I"[where β=v] "&I" GEN "→I" Ordinary.ψ Fv1780

"ord=Eequiv:1"[THEN "→E", OF Ordinary.ψ]1781

"ord=Eequiv:2"[THEN "→E"] dest!: "&E"(2))1782

qed1783

AOT_thus ‹F ≈E G›1784

by (rule "equi:3"[THEN "≡dfI"])1785

qed1786

1787

AOT_theorem "apE-eqE:2": ‹(F ≈E G & G ≡E H) → F ≈E H› (739.2)1788

proof(rule "→I")1789

AOT_assume ‹F ≈E G & G ≡E H›1790

AOT_hence ‹F ≈E G› and ‹G ≈E H›1791

using "apE-eqE:1"[THEN "→E"] "&E" by blast+1792

AOT_thus ‹F ≈E H›1793

by (metis Adjunction "eq-part:3" "vdash-properties:10")1794

qed1795

1796

1797

AOT_act_theorem "eq-part-act:1": ‹[λz A[F]z] ≡E F› (740.1)1798

proof (safe intro!: eqE[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN "→I")1799

fix u1800

AOT_have ‹[λz A[F]z]u ≡ A[F]u›1801

by (rule "beta-C-meta"[THEN "→E"]) "cqt:2[lambda]"1802

also AOT_have ‹. . . ≡ [F]u›1803

using "act-conj-act:4" "logic-actual"[act_axiom_inst, THEN "→E"] by blast1804

finally AOT_show ‹[λz A[F]z]u ≡ [F]u›.1805

qed1806

1807

AOT_act_theorem "eq-part-act:2": ‹[λz A[F]z] ≈E F› (740.2)1808

by (safe intro!: "apE-eqE:1"[unvarify F, THEN "→E"] "eq-part-act:1") "cqt:2"1809

1810

1811

AOT_theorem "actuallyF:1": ‹A(F ≈E [λz A[F]z])› (741.1)1812

proof -1813

AOT_have 1: ‹A([F]x ≡ A[F]x)› for x1814

by (meson "Act-Basic:5" "act-conj-act:4" "≡E"(2) "Commutativity of ≡")1815

AOT_have ‹A([F]x ≡ [λz A[F]z]x)› for x1816

apply (AOT_subst ‹[λz A[F]z]x› ‹A[F]x›)1817

apply (rule "beta-C-meta"[THEN "→E"])1818

apply "cqt:2[lambda]"1819

by (fact 1)1820

AOT_hence ‹O!x → A([F]x ≡ [λz A[F]z]x)› for x1821

by (metis "→I")1822

AOT_hence ‹∀u A([F]u ≡ [λz A[F]z]u)›1823

using "∀I" by fast1824

AOT_hence 1: ‹A∀u ([F]u ≡ [λz A[F]z]u)›1825

447

A. Isabelle Theory

by (metis "Ordinary.res-var-bound-reas[2]" "→E")1826

AOT_modally_strict {1827

AOT_have ‹[λz A[F]z]↓› by "cqt:2"1828

} note 2 = this1829

AOT_have ‹A(F ≡E [λz A[F]z])›1830

apply (AOT_subst ‹F ≡E [λz A[F]z]› ‹∀u ([F]u ≡ [λz A[F]z]u)›)1831

using eqE[THEN "≡Df", THEN "≡S"(1), OF "&I",1832

OF "cqt:2[const_var]"[axiom_inst], OF 2]1833

by (auto simp: 1)1834

moreover AOT_have ‹A(F ≡E [λz A[F]z] → F ≈E [λz A[F]z])›1835

using "apE-eqE:1"[unvarify G, THEN "RA[2]", OF 2] by metis1836

ultimately AOT_show ‹AF ≈E [λz A[F]z]›1837

by (metis "act-cond" "→E")1838

qed1839

1840

AOT_theorem "actuallyF:2": ‹Rigid([λz A[F]z])› (741.2)1841

proof(safe intro!: GEN "→I" "df-rigid-rel:1"[THEN "≡dfI"] "&I")1842

AOT_show ‹[λz A[F]z]↓› by "cqt:2"1843

next1844

AOT_show ‹�∀x ([λz A[F]z]x → �[λz A[F]z]x)›1845

proof(rule RN; rule GEN; rule "→I")1846

AOT_modally_strict {1847

fix x1848

AOT_assume ‹[λz A[F]z]x›1849

AOT_hence ‹A[F]x›1850

by (rule "β→C"(1))1851

AOT_hence 1: ‹�A[F]x› by (metis "Act-Basic:6" "≡E"(1))1852

AOT_show ‹�[λz A[F]z]x›1853

apply (AOT_subst ‹[λz A[F]z]x› ‹A[F]x›)1854

apply (rule "beta-C-meta"[THEN "→E"])1855

apply "cqt:2[lambda]"1856

by (fact 1)1857

}1858

qed1859

qed1860

1861

AOT_theorem "approx-nec:1": ‹Rigid(F) → F ≈E [λz A[F]z]› (742.1)1862

proof(rule "→I")1863

AOT_assume ‹Rigid([F])›1864

AOT_hence A: ‹�∀x ([F]x → �[F]x)›1865

using "df-rigid-rel:1"[THEN "≡dfE", THEN "&E"(2)] by blast1866

AOT_hence 0: ‹∀x �([F]x → �[F]x)›1867

using CBF[THEN "→E"] by blast1868

AOT_hence 1: ‹∀x ([F]x → �[F]x)›1869

using A "qml:2"[axiom_inst, THEN "→E"] by blast1870

AOT_have act_F_den: ‹[λz A[F]z]↓›1871

by "cqt:2"1872

AOT_show ‹F ≈E [λz A[F]z]›1873

proof (safe intro!: "apE-eqE:1"[unvarify G, THEN "→E"] eqE[THEN "≡dfI"] "&I"1874

"cqt:2" act_F_den Ordinary.GEN "→I" "≡I")1875

fix u1876

AOT_assume ‹[F]u›1877

AOT_hence ‹�[F]u›1878

using 1[THEN "∀E"(2), THEN "→E"] by blast1879

AOT_hence act_F_u: ‹A[F]u›1880

by (metis "nec-imp-act" "→E")1881

AOT_show ‹[λz A[F]z]u›1882

by (auto intro!: "β←C"(1) "cqt:2" act_F_u)1883

next1884

fix u1885

AOT_assume ‹[λz A[F]z]u›1886

AOT_hence ‹A[F]u›1887

by (rule "β→C"(1))1888

448

A.12. Natural Numbers

AOT_thus ‹[F]u›1889

using 0[THEN "∀E"(2)]1890

by (metis "≡E"(1) "sc-eq-fur:2" "→E")1891

qed1892

qed1893

1894

1895

AOT_theorem "approx-nec:2": (742.2)1896

‹F ≈E G ≡ ∀H ([λz A[H]z] ≈E F ≡ [λz A[H]z] ≈E G)›1897

proof(rule "≡I"; rule "→I")1898

AOT_assume 0: ‹F ≈E G›1899

AOT_assume 0: ‹F ≈E G›1900

AOT_hence ‹∀H (H ≈E F ≡ H ≈E G)›1901

using "eq-part:4"[THEN "≡E"(1), OF 0] by blast1902

AOT_have ‹[λz A[H]z] ≈E F ≡ [λz A[H]z] ≈E G› for H1903

by (rule "∀E"(1)[OF "eq-part:4"[THEN "≡E"(1), OF 0]]) "cqt:2"1904

AOT_thus ‹∀H ([λz A[H]z] ≈E F ≡ [λz A[H]z] ≈E G)›1905

by (rule GEN)1906

next1907

AOT_assume 0: ‹∀H ([λz A[H]z] ≈E F ≡ [λz A[H]z] ≈E G)›1908

AOT_obtain H where ‹Rigidifies(H,F)›1909

using "rigid-der:3" "∃E" by metis1910

AOT_hence H: ‹Rigid(H) & ∀x ([H]x ≡ [F]x)›1911

using "df-rigid-rel:2"[THEN "≡dfE"] by blast1912

AOT_have H_rigid: ‹�∀x ([H]x → �[H]x)›1913

using H[THEN "&E"(1), THEN "df-rigid-rel:1"[THEN "≡dfE"], THEN "&E"(2)].1914

AOT_hence ‹∀x �([H]x → �[H]x)›1915

using "CBF" "vdash-properties:10" by blast1916

AOT_hence ‹�([H]x → �[H]x)› for x using "∀E"(2) by blast1917

AOT_hence rigid: ‹[H]x ≡ A[H]x› for x1918

by (metis "≡E"(6) "oth-class-taut:3:a" "sc-eq-fur:2" "→E")1919

AOT_have ‹H ≡E F›1920

proof (safe intro!: eqE[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN "→I")1921

AOT_show ‹[H]u ≡ [F]u› for u using H[THEN "&E"(2)] "∀E"(2) by fast1922

qed1923

AOT_hence ‹H ≈E F›1924

by (rule "apE-eqE:2"[THEN "→E", OF "&I", rotated])1925

(simp add: "eq-part:1")1926

AOT_hence F_approx_H: ‹F ≈E H›1927

by (metis "eq-part:2" "→E")1928

moreover AOT_have H_eq_act_H: ‹H ≡E [λz A[H]z]›1929

proof (safe intro!: eqE[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN "→I")1930

AOT_show ‹[H]u ≡ [λz A[H]z]u› for u1931

apply (AOT_subst ‹[λz A[H]z]u› ‹A[H]u›)1932

apply (rule "beta-C-meta"[THEN "→E"])1933

apply "cqt:2[lambda]"1934

using rigid by blast1935

qed1936

AOT_have a: ‹F ≈E [λz A[H]z]›1937

apply (rule "apE-eqE:2"[unvarify H, THEN "→E"])1938

apply "cqt:2[lambda]"1939

using F_approx_H H_eq_act_H "&I" by blast1940

AOT_hence ‹[λz A[H]z] ≈E F›1941

apply (rule "eq-part:2"[unvarify G, THEN "→E", rotated])1942

by "cqt:2[lambda]"1943

AOT_hence b: ‹[λz A[H]z] ≈E G›1944

by (rule 0[THEN "∀E"(1), THEN "≡E"(1), rotated]) "cqt:2"1945

AOT_show ‹F ≈E G›1946

by (rule "eq-part:3"[unvarify G, THEN "→E", rotated, OF "&I", OF a, OF b])1947

"cqt:2"1948

qed1949

1950

AOT_theorem "approx-nec:3": (742.3)1951

449

A. Isabelle Theory

‹(Rigid(F) & Rigid(G)) → �(F ≈E G → �F ≈E G)›1952

proof (rule "→I")1953

AOT_assume ‹Rigid(F) & Rigid(G)›1954

AOT_hence ‹�∀x([F]x → �[F]x)› and ‹�∀x([G]x → �[G]x)›1955

using "df-rigid-rel:1"[THEN "≡dfE", THEN "&E"(2)] "&E" by blast+1956

AOT_hence ‹�(�∀x([F]x → �[F]x) & �∀x([G]x → �[G]x))›1957

using "KBasic:3" "4" "&I" "≡E"(2) "vdash-properties:10" by meson1958

moreover AOT_have ‹�(�∀x([F]x → �[F]x) & �∀x([G]x → �[G]x)) →1959

�(F ≈E G → �F ≈E G)›1960

proof(rule RM; rule "→I"; rule "→I")1961

AOT_modally_strict {1962

AOT_assume ‹�∀x([F]x → �[F]x) & �∀x([G]x → �[G]x)›1963

AOT_hence ‹�∀x([F]x → �[F]x)› and ‹�∀x([G]x → �[G]x)›1964

using "&E" by blast+1965

AOT_hence ‹∀x�([F]x → �[F]x)› and ‹∀x�([G]x → �[G]x)›1966

using CBF[THEN "→E"] by blast+1967

AOT_hence F_nec: ‹�([F]x → �[F]x)›1968

and G_nec: ‹�([G]x → �[G]x)› for x1969

using "∀E"(2) by blast+1970

AOT_assume ‹F ≈E G›1971

AOT_hence ‹∃R R |: F 1-1←→E G›1972

by (metis "≡dfE" "equi:3")1973

then AOT_obtain R where ‹R |: F 1-1←→E G›1974

using "∃E"[rotated] by blast1975

AOT_hence C1: ‹∀u ([F]u → ∃!v ([G]v & [R]uv))›1976

and C2: ‹∀v ([G]v → ∃!u ([F]u & [R]uv))›1977

using "equi:2"[THEN "≡dfE"] "&E" by blast+1978

AOT_obtain R’ where ‹Rigidifies(R’, R)›1979

using "rigid-der:3" "∃E"[rotated] by blast1980

AOT_hence 1: ‹Rigid(R’) & ∀x1...∀xn ([R’]x1...xn ≡ [R]x1...xn)›1981

using "df-rigid-rel:2"[THEN "≡dfE"] by blast1982

AOT_hence ‹�∀x1...∀xn ([R’]x1...xn → �[R’]x1...xn)›1983

using "df-rigid-rel:1"[THEN "≡dfE"] "&E" by blast1984

AOT_hence ‹∀x1...∀xn (♦[R’]x1...xn → �[R’]x1...xn)›1985

using "≡E"(1) "rigid-rel-thms:1" by blast1986

AOT_hence D: ‹∀x1∀x2 (♦[R’]x1x2 → �[R’]x1x2)›1987

using tuple_forall[THEN "≡dfE"] by blast1988

AOT_have E: ‹∀x1∀x2 ([R’]x1x2 ≡ [R]x1x2)›1989

using tuple_forall[THEN "≡dfE", OF 1[THEN "&E"(2)]] by blast1990

AOT_have ‹∀u �([F]u → ∃!v ([G]v & [R’]uv))›1991

and ‹∀v �([G]v → ∃!u ([F]u & [R’]uv))›1992

proof (safe intro!: Ordinary.GEN "→I")1993

fix u1994

AOT_show ‹�([F]u → ∃!v ([G]v & [R’]uv))›1995

proof (rule "raa-cor:1")1996

AOT_assume ‹¬�([F]u → ∃!v ([G]v & [R’]uv))›1997

AOT_hence 1: ‹♦¬([F]u → ∃!v ([G]v & [R’]uv))›1998

using "KBasic:11" "≡E"(1) by blast1999

AOT_have ‹♦([F]u & ¬∃!v ([G]v & [R’]uv))›2000

apply (AOT_subst ‹[F]u & ¬∃!v ([G]v & [R’]uv)›2001

‹¬([F]u → ∃!v ([G]v & [R’]uv))›)2002

apply (meson "≡E"(6) "oth-class-taut:1:b" "oth-class-taut:3:a")2003

by (fact 1)2004

AOT_hence A: ‹♦[F]u & ♦¬∃!v ([G]v & [R’]uv)›2005

using "KBasic2:3" "→E" by blast2006

AOT_hence ‹�[F]u›2007

using F_nec "&E"(1) "≡E"(1) "sc-eq-box-box:1" "→E" by blast2008

AOT_hence ‹[F]u›2009

by (metis "qml:2"[axiom_inst] "→E")2010

AOT_hence ‹∃!v ([G]v & [R]uv)›2011

using C1[THEN "Ordinary.∀E", THEN "→E"] by blast2012

AOT_hence ‹∃v ([G]v & [R]uv & ∀v’ ([G]v’ & [R]uv’ → v’ =E v))›2013

using "equi:1"[THEN "≡E"(1)] by auto2014

450

A.12. Natural Numbers

then AOT_obtain a where2015

a_prop: ‹O!a & ([G]a & [R]ua & ∀v’ ([G]v’ & [R]uv’ → v’ =E a))›2016

using "∃E"[rotated] by blast2017

AOT_have ‹∃v �([G]v & [R’]uv & ∀v’ ([G]v’ & [R’]uv’ → v’ =E v))›2018

proof(safe intro!: "∃I"(2)[where β=a] "&I" a_prop[THEN "&E"(1)]2019

"KBasic:3"[THEN "≡E"(2)])2020

AOT_show ‹�[G]a›2021

using a_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)]2022

by (metis G_nec "qml:2"[axiom_inst] "→E")2023

next2024

AOT_show ‹�[R’]ua›2025

using D[THEN "∀E"(2), THEN "∀E"(2), THEN "→E"]2026

E[THEN "∀E"(2), THEN "∀E"(2), THEN "≡E"(2),2027

OF a_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)]]2028

by (metis "T♦" "→E")2029

next2030

AOT_have ‹∀v’ �([G]v’ & [R’]uv’ → v’ =E a)›2031

proof (rule Ordinary.GEN; rule "raa-cor:1")2032

fix v’2033

AOT_assume ‹¬�([G]v’ & [R’]uv’ → v’ =E a)›2034

AOT_hence ‹♦¬([G]v’ & [R’]uv’ → v’ =E a)›2035

by (metis "KBasic:11" "≡E"(1))2036

AOT_hence ‹♦([G]v’ & [R’]uv’ & ¬v’ =E a)›2037

by (AOT_subst ‹[G]v’ & [R’]uv’ & ¬v’ =E a›2038

‹¬([G]v’ & [R’]uv’ → v’ =E a)›)2039

(meson "≡E"(6) "oth-class-taut:1:b" "oth-class-taut:3:a")2040

AOT_hence 1: ‹♦[G]v’› and 2: ‹♦[R’]uv’› and 3: ‹♦¬v’ =E a›2041

using "KBasic2:3"[THEN "→E", THEN "&E"(1)]2042

"KBasic2:3"[THEN "→E", THEN "&E"(2)] by blast+2043

AOT_have Gv’: ‹[G]v’› using G_nec 12044

by (meson "B♦" "KBasic:13" "→E")2045

AOT_have ‹�[R’]uv’›2046

using 2 D[THEN "∀E"(2), THEN "∀E"(2), THEN "→E"] by blast2047

AOT_hence R’uv’: ‹[R’]uv’›2048

by (metis "B♦" "T♦" "→E")2049

AOT_hence ‹[R]uv’›2050

using E[THEN "∀E"(2), THEN "∀E"(2), THEN "≡E"(1)] by blast2051

AOT_hence ‹v’ =E a›2052

using a_prop[THEN "&E"(2), THEN "&E"(2), THEN "Ordinary.∀E",2053

THEN "→E", OF "&I", OF Gv’] by blast2054

AOT_hence ‹�(v’ =E a)›2055

by (metis "id-nec3:1" "≡E"(4) "raa-cor:3")2056

moreover AOT_have ‹¬�(v’ =E a)›2057

using 3 "KBasic:11" "≡E"(2) by blast2058

ultimately AOT_show ‹�(v’ =E a) & ¬�(v’ =E a)›2059

using "&I" by blast2060

qed2061

AOT_thus ‹�∀v’([G]v’ & [R’]uv’ → v’ =E a)›2062

using "Ordinary.res-var-bound-reas[BF]" "→E" by fast2063

qed2064

AOT_hence ‹�∃v ([G]v & [R’]uv & ∀v’ ([G]v’ & [R’]uv’ → v’ =E v))›2065

using "Ordinary.res-var-bound-reas[Buridan]" "→E" by fast2066

AOT_hence ‹�∃!v ([G]v & [R’]uv)›2067

by (AOT_subst_thm "equi:1")2068

moreover AOT_have ‹¬�∃!v ([G]v & [R’]uv)›2069

using A[THEN "&E"(2)] "KBasic:11"[THEN "≡E"(2)] by blast2070

ultimately AOT_show ‹�∃!v ([G]v & [R’]uv) & ¬�∃!v ([G]v & [R’]uv)›2071

by (rule "&I")2072

qed2073

next2074

fix v2075

AOT_show ‹�([G]v → ∃!u ([F]u & [R’]uv))›2076

proof (rule "raa-cor:1")2077

451

A. Isabelle Theory

AOT_assume ‹¬�([G]v → ∃!u ([F]u & [R’]uv))›2078

AOT_hence 1: ‹♦¬([G]v → ∃!u ([F]u & [R’]uv))›2079

using "KBasic:11" "≡E"(1) by blast2080

AOT_hence ‹♦([G]v & ¬∃!u ([F]u & [R’]uv))›2081

by (AOT_subst ‹[G]v & ¬∃!u ([F]u & [R’]uv)›2082

‹¬([G]v → ∃!u ([F]u & [R’]uv))›)2083

(meson "≡E"(6) "oth-class-taut:1:b" "oth-class-taut:3:a")2084

AOT_hence A: ‹♦[G]v & ♦¬∃!u ([F]u & [R’]uv)›2085

using "KBasic2:3" "→E" by blast2086

AOT_hence ‹�[G]v›2087

using G_nec "&E"(1) "≡E"(1) "sc-eq-box-box:1" "→E" by blast2088

AOT_hence ‹[G]v› by (metis "qml:2"[axiom_inst] "→E")2089

AOT_hence ‹∃!u ([F]u & [R]uv)›2090

using C2[THEN "Ordinary.∀E", THEN "→E"] by blast2091

AOT_hence ‹∃u ([F]u & [R]uv & ∀u’ ([F]u’ & [R]u’v → u’ =E u))›2092

using "equi:1"[THEN "≡E"(1)] by auto2093

then AOT_obtain a where2094

a_prop: ‹O!a & ([F]a & [R]av & ∀u’ ([F]u’ & [R]u’v → u’ =E a))›2095

using "∃E"[rotated] by blast2096

AOT_have ‹∃u �([F]u & [R’]uv & ∀u’ ([F]u’ & [R’]u’v → u’ =E u))›2097

proof(safe intro!: "∃I"(2)[where β=a] "&I" a_prop[THEN "&E"(1)]2098

"KBasic:3"[THEN "≡E"(2)])2099

AOT_show ‹�[F]a›2100

using a_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(1)]2101

by (metis F_nec "qml:2"[axiom_inst] "→E")2102

next2103

AOT_show ‹�[R’]av›2104

using D[THEN "∀E"(2), THEN "∀E"(2), THEN "→E"]2105

E[THEN "∀E"(2), THEN "∀E"(2), THEN "≡E"(2),2106

OF a_prop[THEN "&E"(2), THEN "&E"(1), THEN "&E"(2)]]2107

by (metis "T♦" "→E")2108

next2109

AOT_have ‹∀u’ �([F]u’ & [R’]u’v → u’ =E a)›2110

proof (rule Ordinary.GEN; rule "raa-cor:1")2111

fix u’2112

AOT_assume ‹¬�([F]u’ & [R’]u’v → u’ =E a)›2113

AOT_hence ‹♦¬([F]u’ & [R’]u’v → u’ =E a)›2114

by (metis "KBasic:11" "≡E"(1))2115

AOT_hence ‹♦([F]u’ & [R’]u’v & ¬u’ =E a)›2116

by (AOT_subst ‹[F]u’ & [R’]u’v & ¬u’ =E a›2117

‹¬([F]u’ & [R’]u’v → u’ =E a)›)2118

(meson "≡E"(6) "oth-class-taut:1:b" "oth-class-taut:3:a")2119

AOT_hence 1: ‹♦[F]u’› and 2: ‹♦[R’]u’v› and 3: ‹♦¬u’ =E a›2120

using "KBasic2:3"[THEN "→E", THEN "&E"(1)]2121

"KBasic2:3"[THEN "→E", THEN "&E"(2)] by blast+2122

AOT_have Fu’: ‹[F]u’› using F_nec 12123

by (meson "B♦" "KBasic:13" "→E")2124

AOT_have ‹�[R’]u’v›2125

using 2 D[THEN "∀E"(2), THEN "∀E"(2), THEN "→E"] by blast2126

AOT_hence R’u’v: ‹[R’]u’v›2127

by (metis "B♦" "T♦" "→E")2128

AOT_hence ‹[R]u’v›2129

using E[THEN "∀E"(2), THEN "∀E"(2), THEN "≡E"(1)] by blast2130

AOT_hence ‹u’ =E a›2131

using a_prop[THEN "&E"(2), THEN "&E"(2), THEN "Ordinary.∀E",2132

THEN "→E", OF "&I", OF Fu’] by blast2133

AOT_hence ‹�(u’ =E a)›2134

by (metis "id-nec3:1" "≡E"(4) "raa-cor:3")2135

moreover AOT_have ‹¬�(u’ =E a)›2136

using 3 "KBasic:11" "≡E"(2) by blast2137

ultimately AOT_show ‹�(u’ =E a) & ¬�(u’ =E a)›2138

using "&I" by blast2139

qed2140

452

A.12. Natural Numbers

AOT_thus ‹�∀u’([F]u’ & [R’]u’v → u’ =E a)›2141

using "Ordinary.res-var-bound-reas[BF]" "→E" by fast2142

qed2143

AOT_hence 1: ‹�∃u ([F]u & [R’]uv & ∀u’ ([F]u’ & [R’]u’v → u’ =E u))›2144

using "Ordinary.res-var-bound-reas[Buridan]" "→E" by fast2145

AOT_hence ‹�∃!u ([F]u & [R’]uv)›2146

by (AOT_subst_thm "equi:1")2147

moreover AOT_have ‹¬�∃!u ([F]u & [R’]uv)›2148

using A[THEN "&E"(2)] "KBasic:11"[THEN "≡E"(2)] by blast2149

ultimately AOT_show ‹�∃!u ([F]u & [R’]uv) & ¬�∃!u ([F]u & [R’]uv)›2150

by (rule "&I")2151

qed2152

qed2153

AOT_hence ‹�∀u ([F]u → ∃!v ([G]v & [R’]uv))›2154

and ‹�∀v ([G]v → ∃!u ([F]u & [R’]uv))›2155

using "Ordinary.res-var-bound-reas[BF]"[THEN "→E"] by auto2156

moreover AOT_have ‹�[R’]↓› and ‹�[F]↓› and ‹�[G]↓›2157

by (simp_all add: "ex:2:a")2158

ultimately AOT_have ‹�([R’]↓ & [F]↓ & [G]↓ & ∀u ([F]u → ∃!v ([G]v & [R’]uv)) &2159

∀v ([G]v → ∃!u ([F]u & [R’]uv)))›2160

using "KBasic:3" "&I" "≡E"(2) by meson2161

AOT_hence ‹�R’ |: F 1-1←→E G›2162

by (AOT_subst_def "equi:2")2163

AOT_hence ‹∃R �R |: F 1-1←→E G›2164

by (rule "∃I"(2))2165

AOT_hence ‹�∃R R |: F 1-1←→E G›2166

by (metis Buridan "→E")2167

AOT_thus ‹�F ≈E G›2168

by (AOT_subst_def "equi:3")2169

}2170

qed2171

ultimately AOT_show ‹�(F ≈E G → �F ≈E G)›2172

using "→E" by blast2173

qed2174

2175

2176

AOT_define numbers :: ‹τ ⇒ τ ⇒ ϕ› (‹Numbers’(_,_’)›) (744)2177

‹Numbers(x,G) ≡df A!x & G↓ & ∀F(x[F] ≡ [λz A[F]z] ≈E G)›2178

2179

AOT_theorem "numbers[den]": (744)2180

‹Π↓ → (Numbers(κ, Π) ≡ A!κ & ∀F(κ[F] ≡ [λz A[F]z] ≈E Π))›2181

apply (safe intro!: numbers[THEN "≡dfI"] "&I" "≡I" "→I" "cqt:2"2182

dest!: numbers[THEN "≡dfE"])2183

using "&E" by blast+2184

2185

AOT_theorem "num-tran:1": (745.1)2186

‹G ≈E H → (Numbers(x, G) ≡ Numbers(x, H))›2187

proof (safe intro!: "→I" "≡I")2188

AOT_assume 0: ‹G ≈E H›2189

AOT_assume ‹Numbers(x, G)›2190

AOT_hence Ax: ‹A!x› and ϑ: ‹∀F (x[F] ≡ [λz A[F]z] ≈E G)›2191

using numbers[THEN "≡dfE"] "&E" by blast+2192

AOT_show ‹Numbers(x, H)›2193

proof(safe intro!: numbers[THEN "≡dfI"] "&I" Ax "cqt:2" GEN)2194

fix F2195

AOT_have ‹x[F] ≡ [λz A[F]z] ≈E G›2196

using ϑ[THEN "∀E"(2)].2197

also AOT_have ‹. . . ≡ [λz A[F]z] ≈E H›2198

using 0 "approx-nec:2"[THEN "≡E"(1), THEN "∀E"(2)] by metis2199

finally AOT_show ‹x[F] ≡ [λz A[F]z] ≈E H›.2200

qed2201

next2202

AOT_assume ‹G ≈E H›2203

453

A. Isabelle Theory

AOT_hence 0: ‹H ≈E G›2204

by (metis "eq-part:2" "→E")2205

AOT_assume ‹Numbers(x, H)›2206

AOT_hence Ax: ‹A!x› and ϑ: ‹∀F (x[F] ≡ [λz A[F]z] ≈E H)›2207

using numbers[THEN "≡dfE"] "&E" by blast+2208

AOT_show ‹Numbers(x, G)›2209

proof(safe intro!: numbers[THEN "≡dfI"] "&I" Ax "cqt:2" GEN)2210

fix F2211

AOT_have ‹x[F] ≡ [λz A[F]z] ≈E H›2212

using ϑ[THEN "∀E"(2)].2213

also AOT_have ‹. . . ≡ [λz A[F]z] ≈E G›2214

using 0 "approx-nec:2"[THEN "≡E"(1), THEN "∀E"(2)] by metis2215

finally AOT_show ‹x[F] ≡ [λz A[F]z] ≈E G›.2216

qed2217

qed2218

2219

AOT_theorem "num-tran:2": (745.2)2220

‹(Numbers(x, G) & Numbers(x,H)) → G ≈E H›2221

proof (rule "→I"; frule "&E"(1); drule "&E"(2))2222

AOT_assume ‹Numbers(x,G)›2223

AOT_hence ‹∀F (x[F] ≡ [λz A[F]z] ≈E G)›2224

using numbers[THEN "≡dfE"] "&E" by blast2225

AOT_hence 1: ‹x[F] ≡ [λz A[F]z] ≈E G› for F2226

using "∀E"(2) by blast2227

AOT_assume ‹Numbers(x,H)›2228

AOT_hence ‹∀F (x[F] ≡ [λz A[F]z] ≈E H)›2229

using numbers[THEN "≡dfE"] "&E" by blast2230

AOT_hence ‹x[F] ≡ [λz A[F]z] ≈E H› for F2231

using "∀E"(2) by blast2232

AOT_hence ‹[λz A[F]z] ≈E G ≡ [λz A[F]z] ≈E H› for F2233

by (metis "1" "≡E"(6))2234

AOT_thus ‹G ≈E H›2235

using "approx-nec:2"[THEN "≡E"(2), OF GEN] by blast2236

qed2237

2238

AOT_theorem "num-tran:3": (745.3)2239

‹G ≡E H → (Numbers(x, G) ≡ Numbers(x, H))›2240

using "apE-eqE:1" "Hypothetical Syllogism" "num-tran:1" by blast2241

2242

AOT_theorem "pre-Hume": (746)2243

‹(Numbers(x,G) & Numbers(y,H)) → (x = y ≡ G ≈E H)›2244

proof(safe intro!: "→I" "≡I"; frule "&E"(1); drule "&E"(2))2245

AOT_assume ‹Numbers(x, G)›2246

moreover AOT_assume ‹x = y›2247

ultimately AOT_have ‹Numbers(y, G)› by (rule "rule=E")2248

moreover AOT_assume ‹Numbers(y, H)›2249

ultimately AOT_show ‹G ≈E H› using "num-tran:2" "→E" "&I" by blast2250

next2251

AOT_assume ‹Numbers(x, G)›2252

AOT_hence Ax: ‹A!x› and xF: ‹∀F (x[F] ≡ [λz A[F]z] ≈E G)›2253

using numbers[THEN "≡dfE"] "&E" by blast+2254

AOT_assume ‹Numbers(y, H)›2255

AOT_hence Ay: ‹A!y› and yF: ‹∀F (y[F] ≡ [λz A[F]z] ≈E H)›2256

using numbers[THEN "≡dfE"] "&E" by blast+2257

AOT_assume G_approx_H: ‹G ≈E H›2258

AOT_show ‹x = y›2259

proof(rule "ab-obey:1"[THEN "→E", THEN "→E", OF "&I", OF Ax, OF Ay]; rule GEN)2260

fix F2261

AOT_have ‹x[F] ≡ [λz A[F]z] ≈E G›2262

using xF[THEN "∀E"(2)].2263

also AOT_have ‹. . . ≡ [λz A[F]z] ≈E H›2264

using "approx-nec:2"[THEN "≡E"(1), OF G_approx_H, THEN "∀E"(2)].2265

also AOT_have ‹. . . ≡ y[F]›2266

454

A.12. Natural Numbers

using yF[THEN "∀E"(2), symmetric].2267

finally AOT_show ‹x[F] ≡ y[F]›.2268

qed2269

qed2270

2271

AOT_theorem "two-num-not": (748)2272

‹∃u∃v(u 6= v) → ∃x∃G∃H(Numbers(x,G) & Numbers(x, H) & ¬G ≡E H)›2273

proof (rule "→I")2274

AOT_have eqE_den: ‹[λx x =E y]↓› for y by "cqt:2"2275

AOT_assume ‹∃u∃v(u 6= v)›2276

then AOT_obtain c where Oc: ‹O!c› and ‹∃v (c 6= v)›2277

using "&E" "∃E"[rotated] by blast2278

then AOT_obtain d where Od: ‹O!d› and c_noteq_d: ‹c 6= d›2279

using "&E" "∃E"[rotated] by blast2280

AOT_hence c_noteqE_d: ‹c 6=E d›2281

using "=E-simple:2"[THEN "→E"] "=E-simple:2" "≡E"(2) "modus-tollens:1"2282

"=-infix" "≡dfE" "thm-neg=E" by fast2283

AOT_hence not_c_eqE_d: ‹¬c =E d›2284

using "≡E"(1) "thm-neg=E" by blast2285

AOT_have ‹∃x (A!x & ∀F (x[F] ≡ [λz A[F]z] ≈E [λx x =E c]))›2286

by (simp add: "A-objects"[axiom_inst])2287

then AOT_obtain a where a_prop: ‹A!a & ∀F (a[F] ≡ [λz A[F]z] ≈E [λx x =E c])›2288

using "∃E"[rotated] by blast2289

AOT_have ‹∃x (A!x & ∀F (x[F] ≡ [λz A[F]z] ≈E [λx x =E d]))›2290

by (simp add: "A-objects" "vdash-properties:1[2]")2291

then AOT_obtain b where b_prop: ‹A!b & ∀F (b[F] ≡ [λz A[F]z] ≈E [λx x =E d])›2292

using "∃E"[rotated] by blast2293

AOT_have num_a_eq_c: ‹Numbers(a, [λx x =E c])›2294

by (safe intro!: numbers[THEN "≡dfI"] "&I" a_prop[THEN "&E"(1)]2295

a_prop[THEN "&E"(2)]) "cqt:2"2296

moreover AOT_have num_b_eq_d: ‹Numbers(b, [λx x =E d])›2297

by (safe intro!: numbers[THEN "≡dfI"] "&I" b_prop[THEN "&E"(1)]2298

b_prop[THEN "&E"(2)]) "cqt:2"2299

moreover AOT_have ‹[λx x =E c] ≈E [λx x =E d]›2300

proof (rule "equi:3"[THEN "≡dfI"])2301

let ?R = ‹«[λxy (x =E c & y =E d)]»›2302

AOT_have Rcd: ‹[«?R»]cd›2303

by (auto intro!: "β←C"(1) "cqt:2" "&I" prod_denotesI2304

"ord=Eequiv:1"[THEN "→E"] Od Oc)2305

AOT_show ‹∃R R |: [λx x =E c] 1-1←→E [λx x =E d]›2306

proof (safe intro!: "∃I"(1)[where τ=‹?R›] "equi:2"[THEN "≡dfI"] "&I"2307

eqE_den Ordinary.GEN "→I")2308

AOT_show ‹«?R»↓› by "cqt:2"2309

next2310

fix u2311

AOT_assume ‹[λx x =E c]u›2312

AOT_hence ‹u =E c›2313

by (metis "β→C"(1))2314

AOT_hence u_is_c: ‹u = c›2315

by (metis "=E-simple:2" "→E")2316

AOT_show ‹∃!v ([λx x =E d]v & [«?R»]uv)›2317

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "∃I"(2)[where β=d] "&I"2318

Od Ordinary.GEN "→I")2319

AOT_show ‹[λx x =E d]d›2320

by (auto intro!: "β←C"(1) "cqt:2" "ord=Eequiv:1"[THEN "→E", OF Od])2321

next2322

AOT_show ‹[«?R»]ud›2323

using u_is_c[symmetric] Rcd "rule=E" by fast2324

next2325

fix v2326

AOT_assume ‹[λx x =E d]v & [«?R»]uv›2327

AOT_thus ‹v =E d›2328

by (metis "β→C"(1) "&E"(1))2329

455

A. Isabelle Theory

qed2330

next2331

fix v2332

AOT_assume ‹[λx x =E d]v›2333

AOT_hence ‹v =E d›2334

by (metis "β→C"(1))2335

AOT_hence v_is_d: ‹v = d›2336

by (metis "=E-simple:2" "→E")2337

AOT_show ‹∃!u ([λx x =E c]u & [«?R»]uv)›2338

proof (safe intro!: "equi:1"[THEN "≡E"(2)] "∃I"(2)[where β=c] "&I"2339

Oc Ordinary.GEN "→I")2340

AOT_show ‹[λx x =E c]c›2341

by (auto intro!: "β←C"(1) "cqt:2" "ord=Eequiv:1"[THEN "→E", OF Oc])2342

next2343

AOT_show ‹[«?R»]cv›2344

using v_is_d[symmetric] Rcd "rule=E" by fast2345

next2346

fix u2347

AOT_assume ‹[λx x =E c]u & [«?R»]uv›2348

AOT_thus ‹u =E c›2349

by (metis "β→C"(1) "&E"(1))2350

qed2351

next2352

AOT_show ‹«?R»↓›2353

by "cqt:2"2354

qed2355

qed2356

ultimately AOT_have ‹a = b›2357

using "pre-Hume"[unvarify G H, OF eqE_den, OF eqE_den, THEN "→E",2358

OF "&I", THEN "≡E"(2)] by blast2359

AOT_hence num_a_eq_d: ‹Numbers(a, [λx x =E d])›2360

using num_b_eq_d "rule=E" id_sym by fast2361

AOT_have not_equiv: ‹¬[λx x =E c] ≡E [λx x =E d]›2362

proof (rule "raa-cor:2")2363

AOT_assume ‹[λx x =E c] ≡E [λx x =E d]›2364

AOT_hence ‹[λx x =E c]c ≡ [λx x =E d]c›2365

using eqE[THEN "≡dfE", THEN "&E"(2), THEN "∀E"(2), THEN "→E"] Oc by blast2366

moreover AOT_have ‹[λx x =E c]c›2367

by (auto intro!: "β←C"(1) "cqt:2" "ord=Eequiv:1"[THEN "→E", OF Oc])2368

ultimately AOT_have ‹[λx x =E d]c›2369

using "≡E"(1) by blast2370

AOT_hence ‹c =E d›2371

by (rule "β→C"(1))2372

AOT_thus ‹c =E d & ¬c =E d›2373

using not_c_eqE_d "&I" by blast2374

qed2375

AOT_show ‹∃x ∃G ∃H (Numbers(x,G) & Numbers(x,H) & ¬G ≡E H)›2376

apply (rule "∃I"(2)[where β=a])2377

apply (rule "∃I"(1)[where τ=‹«[λx x =E c]»›])2378

apply (rule "∃I"(1)[where τ=‹«[λx x =E d]»›])2379

by (safe intro!: eqE_den "&I" num_a_eq_c num_a_eq_d not_equiv)2380

qed2381

2382

AOT_theorem "num:1": ‹∃x Numbers(x,G)› (749.1)2383

by (AOT_subst ‹Numbers(x,G)› ‹[A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)› for: x)2384

(auto simp: "numbers[den]"[THEN "→E", OF "cqt:2[const_var]"[axiom_inst]]2385

"A-objects"[axiom_inst])2386

2387

AOT_theorem "num:2": ‹∃!x Numbers(x,G)› (749.2)2388

by (AOT_subst ‹Numbers(x,G)› ‹[A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)› for: x)2389

(auto simp: "numbers[den]"[THEN "→E", OF "cqt:2[const_var]"[axiom_inst]]2390

"A-objects!")2391

2392

456

A.12. Natural Numbers

AOT_theorem "num-cont:1": (750.1)2393

‹∃x∃G(Numbers(x, G) & ¬�Numbers(x, G))›2394

proof -2395

AOT_have ‹∃F∃G ♦([λz A[F]z] ≈E G & ♦¬[λz A[F]z] ≈E G)›2396

using "approx-cont:2".2397

then AOT_obtain F where ‹∃G ♦([λz A[F]z] ≈E G & ♦¬[λz A[F]z] ≈E G)›2398

using "∃E"[rotated] by blast2399

then AOT_obtain G where ‹♦([λz A[F]z] ≈E G & ♦¬[λz A[F]z] ≈E G)›2400

using "∃E"[rotated] by blast2401

AOT_hence ϑ: ‹♦[λz A[F]z] ≈E G› and ζ: ‹♦¬[λz A[F]z] ≈E G›2402

using "KBasic2:3"[THEN "→E"] "&E" "4♦"[THEN "→E"] by blast+2403

AOT_obtain a where ‹Numbers(a, G)›2404

using "num:1" "∃E"[rotated] by blast2405

moreover AOT_have ‹¬�Numbers(a, G)›2406

proof (rule "raa-cor:2")2407

AOT_assume ‹�Numbers(a, G)›2408

AOT_hence ‹�([A!]a & G↓ & ∀F (a[F] ≡ [λz A[F]z] ≈E G))›2409

by (AOT_subst_def (reverse) numbers)2410

AOT_hence ‹�A!a› and ‹�∀F (a[F] ≡ [λz A[F]z] ≈E G)›2411

using "KBasic:3"[THEN "≡E"(1)] "&E" by blast+2412

AOT_hence ‹∀F �(a[F] ≡ [λz A[F]z] ≈E G)›2413

using CBF[THEN "→E"] by blast2414

AOT_hence ‹�(a[F] ≡ [λz A[F]z] ≈E G)›2415

using "∀E"(2) by blast2416

AOT_hence A: ‹�(a[F] → [λz A[F]z] ≈E G)›2417

and B: ‹�([λz A[F]z] ≈E G → a[F])›2418

using "KBasic:4"[THEN "≡E"(1)] "&E" by blast+2419

AOT_have ‹�(¬[λz A[F]z] ≈E G → ¬a[F])›2420

apply (AOT_subst ‹¬[λz A[F]z] ≈E G → ¬a[F]› ‹a[F] → [λz A[F]z] ≈E G›)2421

using "≡I" "useful-tautologies:4" "useful-tautologies:5" apply presburger2422

by (fact A)2423

AOT_hence ‹♦¬a[F]›2424

by (metis "KBasic:13" ζ "→E")2425

AOT_hence ‹¬a[F]›2426

by (metis "KBasic:11" "en-eq:2[1]" "≡E"(2) "≡E"(4))2427

AOT_hence ‹¬♦a[F]›2428

by (metis "en-eq:3[1]" "≡E"(4))2429

moreover AOT_have ‹♦a[F]›2430

by (meson B ϑ "KBasic:13" "→E")2431

ultimately AOT_show ‹♦a[F] & ¬♦a[F]›2432

using "&I" by blast2433

qed2434

2435

ultimately AOT_have ‹Numbers(a, G) & ¬�Numbers(a, G)›2436

using "&I" by blast2437

AOT_hence ‹∃G (Numbers(a, G) & ¬�Numbers(a, G))›2438

by (rule "∃I")2439

AOT_thus ‹∃x∃G (Numbers(x, G) & ¬�Numbers(x, G))›2440

by (rule "∃I")2441

qed2442

2443

AOT_theorem "num-cont:2": (750.2)2444

‹Rigid(G) → �∀x(Numbers(x,G) → �Numbers(x,G))›2445

proof(rule "→I")2446

AOT_assume ‹Rigid(G)›2447

AOT_hence ‹�∀z([G]z → �[G]z)›2448

using "df-rigid-rel:1"[THEN "≡dfE", THEN "&E"(2)] by blast2449

AOT_hence ‹��∀z([G]z → �[G]z)› by (metis "S5Basic:6" "≡E"(1))2450

moreover AOT_have ‹��∀z([G]z → �[G]z) → �∀x(Numbers(x,G) → �Numbers(x,G))›2451

proof(rule RM; safe intro!: "→I" GEN)2452

AOT_modally_strict {2453

AOT_have act_den: ‹[λz A[F]z]↓› for F by "cqt:2[lambda]"2454

fix x2455

457

A. Isabelle Theory

AOT_assume G_nec: ‹�∀z([G]z → �[G]z)›2456

AOT_hence G_rigid: ‹Rigid(G)›2457

using "df-rigid-rel:1"[THEN "≡dfI", OF "&I"] "cqt:2"2458

by blast2459

AOT_assume ‹Numbers(x, G)›2460

AOT_hence ‹[A!]x & G↓ & ∀F (x[F] ≡ [λz A[F]z] ≈E G)›2461

using numbers[THEN "≡dfE"] by blast2462

AOT_hence Ax: ‹[A!]x› and ‹∀F (x[F] ≡ [λz A[F]z] ≈E G)›2463

using "&E" by blast+2464

AOT_hence ‹x[F] ≡ [λz A[F]z] ≈E G› for F2465

using "∀E"(2) by blast2466

moreover AOT_have ‹�([λz A[F]z] ≈E G → �[λz A[F]z] ≈E G)› for F2467

using "approx-nec:3"[unvarify F, OF act_den, THEN "→E", OF "&I",2468

OF "actuallyF:2", OF G_rigid].2469

moreover AOT_have ‹�(x[F] → �x[F])› for F2470

by (simp add: RN "pre-en-eq:1[1]")2471

ultimately AOT_have ‹�(x[F] ≡ [λz A[F]z] ≈E G)› for F2472

using "sc-eq-box-box:5" "→E" "qml:2"[axiom_inst] "&I" by meson2473

AOT_hence ‹∀F �(x[F] ≡ [λz A[F]z] ≈E G)›2474

by (rule "∀I")2475

AOT_hence 1: ‹�∀F (x[F] ≡ [λz A[F]z] ≈E G)›2476

using BF[THEN "→E"] by fast2477

AOT_have ‹�G↓›2478

by (simp add: "ex:2:a")2479

moreover AOT_have ‹�[A!]x›2480

using Ax "oa-facts:2" "→E" by blast2481

ultimately AOT_have ‹�(A!x & G↓)›2482

by (metis "KBasic:3" "&I" "≡E"(2))2483

AOT_hence ‹�(A!x & G↓ & ∀F (x[F] ≡ [λz A[F]z] ≈E G))›2484

using 1 "KBasic:3" "&I" "≡E"(2) by fast2485

AOT_thus ‹�Numbers(x, G)›2486

by (AOT_subst_def numbers)2487

}2488

qed2489

ultimately AOT_show ‹�∀x(Numbers(x,G) → �Numbers(x,G))›2490

using "→E" by blast2491

qed2492

2493

AOT_theorem "num-cont:3": (750.3)2494

‹�∀x(Numbers(x, [λz A[G]z]) → �Numbers(x, [λz A[G]z]))›2495

by (rule "num-cont:2"[unvarify G, THEN "→E"];2496

("cqt:2[lambda]" | rule "actuallyF:2"))2497

2498

AOT_theorem "num-uniq": ‹ιx Numbers(x, G)↓› (751)2499

using "≡E"(2) "A-Exists:2" "RA[2]" "num:2" by blast2500

2501

AOT_define num :: ‹τ ⇒ κs› (‹#_› [100] 100)2502

"num-def:1": ‹#G =df ιx Numbers(x, G)› (752.1)2503

2504

AOT_theorem "num-def:2": ‹#G↓› (752.2)2505

using "num-def:1"[THEN "=dfI"(1)] "num-uniq" by simp2506

2507

AOT_theorem "num-can:1": (753.1)2508

‹#G = ιx(A!x & ∀F (x[F] ≡ [λz A[F]z] ≈E G))›2509

proof -2510

AOT_have ‹�∀x(Numbers(x,G) ≡ [A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G))›2511

by (safe intro!: RN GEN "numbers[den]"[THEN "→E"] "cqt:2")2512

AOT_hence ‹ιx Numbers(x, G) = ιx([A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G))›2513

using "num-uniq" "equiv-desc-eq:3"[THEN "→E", OF "&I"] by auto2514

thus ?thesis2515

by (rule "=dfI"(1)[OF "num-def:1", OF "num-uniq"])2516

qed2517

2518

458

A.12. Natural Numbers

AOT_theorem "num-can:2": ‹#G = ιx(A!x & ∀F (x[F] ≡ F ≈E G))› (753.2)2519

proof (rule id_trans[OF "num-can:1"]; rule "equiv-desc-eq:2"[THEN "→E"];2520

safe intro!: "&I" "A-descriptions" GEN "Act-Basic:5"[THEN "≡E"(2)]2521

"logic-actual-nec:3"[axiom_inst, THEN "≡E"(2)])2522

AOT_have act_den: ‹`� [λz A[F]z]↓› for F2523

by "cqt:2"2524

AOT_have "eq-part:3[terms]": ‹`� F ≈E G & F ≈E H → G ≈E H› for F G H (730.3)2525

by (metis "&I" "eq-part:2" "eq-part:3" "→I" "&E" "→E")2526

fix x2527

{2528

fix F2529

AOT_have ‹A(F ≈E [λz A[F]z])›2530

by (simp add: "actuallyF:1")2531

moreover AOT_have ‹A((F ≈E [λz A[F]z]) → ([λz A[F]z] ≈E G ≡ F ≈E G))›2532

by (auto intro!: "RA[2]" "→I" "≡I"2533

simp: "eq-part:3"[unvarify G, OF act_den, THEN "→E", OF "&I"]2534

"eq-part:3[terms]"[unvarify G, OF act_den, THEN "→E", OF "&I"])2535

ultimately AOT_have ‹A([λz A[F]z] ≈E G ≡ F ≈E G)›2536

using "logic-actual-nec:2"[axiom_inst, THEN "≡E"(1), THEN "→E"] by blast2537

2538

AOT_hence ‹A[λz A[F]z] ≈E G ≡ AF ≈E G›2539

by (metis "Act-Basic:5" "≡E"(1))2540

AOT_hence 0: ‹(Ax[F] ≡ A[λz A[F]z] ≈E G) ≡ (Ax[F] ≡ AF ≈E G)›2541

by (auto intro!: "≡I" "→I" elim: "≡E")2542

AOT_have ‹A(x[F] ≡ [λz A[F]z] ≈E G) ≡ (Ax[F] ≡ A[λz A[F]z] ≈E G)›2543

by (simp add: "Act-Basic:5")2544

also AOT_have ‹. . . ≡ (Ax[F] ≡ AF ≈E G)› using 0.2545

also AOT_have ‹. . . ≡ A((x[F] ≡ F ≈E G))›2546

by (meson "Act-Basic:5" "≡E"(6) "oth-class-taut:3:a")2547

finally AOT_have 0: ‹A(x[F] ≡ [λz A[F]z] ≈E G) ≡ A((x[F] ≡ F ≈E G))›.2548

} note 0 = this2549

AOT_have ‹A∀F (x[F] ≡ [λz A[F]z] ≈E G) ≡ ∀F A(x[F] ≡ [λz A[F]z] ≈E G)›2550

using "logic-actual-nec:3" "vdash-properties:1[2]" by blast2551

also AOT_have ‹. . . ≡ ∀F A((x[F] ≡ F ≈E G))›2552

apply (safe intro!: "≡I" "→I" GEN)2553

using 0 "≡E"(1) "≡E"(2) "rule-ui:3" by blast+2554

also AOT_have ‹. . . ≡ A(∀F (x[F] ≡ F ≈E G))›2555

using "≡E"(6) "logic-actual-nec:3"[axiom_inst] "oth-class-taut:3:a" by fast2556

finally AOT_have 0: ‹A∀F (x[F] ≡ [λz A[F]z] ≈E G) ≡ A(∀F (x[F] ≡ F ≈E G))›.2557

AOT_have ‹A([A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)) ≡2558

(AA!x & A∀F (x[F] ≡ [λz A[F]z] ≈E G))›2559

by (simp add: "Act-Basic:2")2560

also AOT_have ‹. . . ≡ A[A!]x & A(∀F (x[F] ≡ F ≈E G))›2561

using 0 "oth-class-taut:4:f" "→E" by blast2562

also AOT_have ‹. . . ≡ A(A!x & ∀F (x[F] ≡ F ≈E G))›2563

using "Act-Basic:2" "≡E"(6) "oth-class-taut:3:a" by blast2564

finally AOT_show ‹A([A!]x & ∀F (x[F] ≡ [λz A[F]z] ≈E G)) ≡2565

A([A!]x & ∀F (x[F] ≡ F ≈E G))›.2566

qed2567

2568

AOT_define NaturalCardinal :: ‹τ ⇒ ϕ› (‹NaturalCardinal’(_’)›)2569

card: ‹NaturalCardinal(x) ≡df ∃G(x = #G)› (755)2570

2571

AOT_theorem "natcard-nec": ‹NaturalCardinal(x) → �NaturalCardinal(x)› (756)2572

proof(rule "→I")2573

AOT_assume ‹NaturalCardinal(x)›2574

AOT_hence ‹∃G(x = #G)› using card[THEN "≡dfE"] by blast2575

then AOT_obtain G where ‹x = #G› using "∃E"[rotated] by blast2576

AOT_hence ‹�x = #G› by (metis "id-nec:2" "→E")2577

AOT_hence ‹∃G �x = #G› by (rule "∃I")2578

AOT_hence ‹�∃G x = #G› by (metis Buridan "→E")2579

AOT_thus ‹�NaturalCardinal(x)›2580

by (AOT_subst_def card)2581

459

A. Isabelle Theory

qed2582

2583

AOT_act_theorem "hume:1": ‹Numbers(#G, G)› (757.1)2584

apply (rule "=dfI"(1)[OF "num-def:1"])2585

apply (simp add: "num-uniq")2586

using "num-uniq" "vdash-properties:10" "y-in:3" by blast2587

2588

AOT_act_theorem "hume:2": ‹#F = #G ≡ F ≈E G› (757.2)2589

by (safe intro!: "pre-Hume"[unvarify x y, OF "num-def:2",2590

OF "num-def:2", THEN "→E"] "&I" "hume:1")2591

2592

AOT_act_theorem "hume:3": ‹#F = #G ≡ ∃R (R |: F 1-1−→ontoE G)› (757.3)2593

using "equi-rem-thm"2594

apply (AOT_subst (reverse) ‹R |: F 1-1−→ontoE G›2595

‹R |: F 1-1←→E G› for: R :: ‹<κ×κ>›)2596

using "equi:3" "hume:2" "≡E"(5) "≡Df" by blast2597

2598

AOT_act_theorem "hume:4": ‹F ≡E G → #F = #G› (757.4)2599

by (metis "apE-eqE:1" "deduction-theorem" "hume:2" "≡E"(2) "→E")2600

2601

AOT_theorem "hume-strict:1": (758.1)2602

‹∃x (Numbers(x, F) & Numbers(x, G)) ≡ F ≈E G›2603

proof(safe intro!: "≡I" "→I")2604

AOT_assume ‹∃x (Numbers(x, F) & Numbers(x, G))›2605

then AOT_obtain a where ‹Numbers(a, F) & Numbers(a, G)›2606

using "∃E"[rotated] by blast2607

AOT_thus ‹F ≈E G›2608

using "num-tran:2" "→E" by blast2609

next2610

AOT_assume 0: ‹F ≈E G›2611

moreover AOT_obtain b where num_b_F: ‹Numbers(b, F)›2612

by (metis "instantiation" "num:1")2613

moreover AOT_have num_b_G: ‹Numbers(b, G)›2614

using calculation "num-tran:1"[THEN "→E", THEN "≡E"(1)] by blast2615

ultimately AOT_have ‹Numbers(b, F) & Numbers(b, G)›2616

by (safe intro!: "&I")2617

AOT_thus ‹∃x (Numbers(x, F) & Numbers(x, G))›2618

by (rule "∃I")2619

qed2620

2621

AOT_theorem "hume-strict:2": (758.2)2622

‹∃x∃y (Numbers(x, F) &2623

∀z(Numbers(z,F) → z = x) &2624

Numbers(y, G) &2625

∀z (Numbers(z, G) → z = y) &2626

x = y) ≡2627

F ≈E G›2628

proof(safe intro!: "≡I" "→I")2629

AOT_assume ‹∃x∃y (Numbers(x, F) & ∀z(Numbers(z,F) → z = x) &2630

Numbers(y, G) & ∀z (Numbers(z, G) → z = y) & x = y)›2631

then AOT_obtain x where2632

‹∃y (Numbers(x, F) & ∀z(Numbers(z,F) → z = x) & Numbers(y, G) &2633

∀z (Numbers(z, G) → z = y) & x = y)›2634

using "∃E"[rotated] by blast2635

then AOT_obtain y where2636

‹Numbers(x, F) & ∀z(Numbers(z,F) → z = x) & Numbers(y, G) &2637

∀z (Numbers(z, G) → z = y) & x = y›2638

using "∃E"[rotated] by blast2639

AOT_hence ‹Numbers(x, F)› and ‹Numbers(y,G)› and ‹x = y›2640

using "&E" by blast+2641

AOT_hence ‹Numbers(y, F) & Numbers(y, G)›2642

using "&I" "rule=E" by fast2643

AOT_hence ‹∃y (Numbers(y, F) & Numbers(y, G))›2644

460

A.12. Natural Numbers

by (rule "∃I")2645

AOT_thus ‹F ≈E G›2646

using "hume-strict:1"[THEN "≡E"(1)] by blast2647

next2648

AOT_assume ‹F ≈E G›2649

AOT_hence ‹∃x (Numbers(x, F) & Numbers(x, G))›2650

using "hume-strict:1"[THEN "≡E"(2)] by blast2651

then AOT_obtain x where ‹Numbers(x, F) & Numbers(x, G)›2652

using "∃E"[rotated] by blast2653

moreover AOT_have ‹∀z (Numbers(z, F) → z = x)›2654

and ‹∀z (Numbers(z, G) → z = x)›2655

using calculation2656

by (auto intro!: GEN "→I" "pre-Hume"[THEN "→E", OF "&I", THEN "≡E"(2),2657

rotated 2, OF "eq-part:1"] dest: "&E")2658

ultimately AOT_have ‹Numbers(x, F) & ∀z(Numbers(z,F) → z = x) &2659

Numbers(x, G) & ∀z (Numbers(z, G) → z = x) & x = x›2660

by (auto intro!: "&I" "id-eq:1" dest: "&E")2661

AOT_thus ‹∃x∃y (Numbers(x, F) & ∀z(Numbers(z,F) → z = x) & Numbers(y, G) &2662

∀z (Numbers(z, G) → z = y) & x = y)›2663

by (auto intro!: "∃I")2664

qed2665

2666

AOT_theorem unotEu: ‹¬∃y[λx O!x & x 6=E x]y› (759)2667

proof(rule "raa-cor:2")2668

AOT_assume ‹∃y[λx O!x & x 6=E x]y›2669

then AOT_obtain y where ‹[λx O!x & x 6=E x]y›2670

using "∃E"[rotated] by blast2671

AOT_hence 0: ‹O!y & y 6=E y›2672

by (rule "β→C"(1))2673

AOT_hence ‹¬(y =E y)›2674

using "&E"(2) "≡E"(1) "thm-neg=E" by blast2675

moreover AOT_have ‹y =E y›2676

by (metis 0[THEN "&E"(1)] "ord=Eequiv:1" "→E")2677

ultimately AOT_show ‹p & ¬p› for p2678

by (metis "raa-cor:3")2679

qed2680

2681

AOT_define zero :: ‹κs› (‹0›)2682

"zero:1": ‹0 =df #[λx O!x & x 6=E x]› (760.1)2683

2684

AOT_theorem "zero:2": ‹0↓› (760.2)2685

by (rule "=dfI"(2)[OF "zero:1"]; rule "num-def:2"[unvarify G]; "cqt:2")2686

2687

AOT_theorem "zero-card": ‹NaturalCardinal(0)› (761)2688

apply (rule "=dfI"(2)[OF "zero:1"])2689

apply (rule "num-def:2"[unvarify G]; "cqt:2")2690

apply (rule card[THEN "≡dfI"])2691

apply (rule "∃I"(1)[where τ=‹«[λx [O!]x & x 6=E x]»›])2692

apply (rule "rule=I:1"; rule "num-def:2"[unvarify G]; "cqt:2")2693

by "cqt:2"2694

2695

AOT_theorem "eq-num:1": (762.1)2696

‹ANumbers(x, G) ≡ Numbers(x,[λz A[G]z])›2697

proof -2698

AOT_have act_den: ‹`� [λz A[F]z]↓› for F by "cqt:2"2699

AOT_have ‹�(∃x(Numbers(x, G) & Numbers(x,[λz A[G]z])) ≡ G ≈E [λz A[G]z])›2700

using "hume-strict:1"[unvarify G, OF act_den, THEN RN].2701

AOT_hence ‹A(∃x(Numbers(x, G) & Numbers(x,[λz A[G]z])) ≡ G ≈E [λz A[G]z])›2702

using "nec-imp-act"[THEN "→E"] by fast2703

AOT_hence ‹A(∃x(Numbers(x, G) & Numbers(x,[λz A[G]z])))›2704

using "actuallyF:1" "Act-Basic:5" "≡E"(1) "≡E"(2) by fast2705

AOT_hence ‹∃x A((Numbers(x, G) & Numbers(x,[λz A[G]z])))›2706

by (metis "Act-Basic:10" "intro-elim:3:a")2707

461

A. Isabelle Theory

then AOT_obtain a where ‹A(Numbers(a, G) & Numbers(a,[λz A[G]z]))›2708

using "∃E"[rotated] by blast2709

AOT_hence act_a_num_G: ‹ANumbers(a, G)›2710

and act_a_num_actG: ‹ANumbers(a,[λz A[G]z])›2711

using "Act-Basic:2" "&E" "≡E"(1) by blast+2712

AOT_hence num_a_act_g: ‹Numbers(a, [λz A[G]z])›2713

using "num-cont:2"[unvarify G, OF act_den, THEN "→E", OF "actuallyF:2",2714

THEN CBF[THEN "→E"], THEN "∀E"(2)]2715

by (metis "≡E"(1) "sc-eq-fur:2" "vdash-properties:6")2716

AOT_have 0: ‹`� Numbers(x, G) & Numbers(y, G) → x = y› for y2717

using "pre-Hume"[THEN "→E", THEN "≡E"(2), rotated, OF "eq-part:1"]2718

"→I" by blast2719

show ?thesis2720

proof(safe intro!: "≡I" "→I")2721

AOT_assume ‹ANumbers(x, G)›2722

AOT_hence ‹Ax = a›2723

using 0[THEN "RA[2]", THEN "act-cond"[THEN "→E"], THEN "→E",2724

OF "Act-Basic:2"[THEN "≡E"(2)], OF "&I"]2725

act_a_num_G by blast2726

AOT_hence ‹x = a› by (metis "id-act:1" "≡E"(2))2727

AOT_hence ‹a = x› using id_sym by auto2728

AOT_thus ‹Numbers(x, [λz A[G]z])›2729

using "rule=E" num_a_act_g by fast2730

next2731

AOT_assume ‹Numbers(x, [λz A[G]z])›2732

AOT_hence ‹a = x›2733

using "pre-Hume"[unvarify G H, THEN "→E", OF act_den, OF act_den, OF "&I",2734

OF num_a_act_g, THEN "≡E"(2)]2735

"eq-part:1"[unvarify F, OF act_den] by blast2736

AOT_thus ‹ANumbers(x, G)›2737

using act_a_num_G "rule=E" by fast2738

qed2739

qed2740

2741

AOT_theorem "eq-num:2": ‹Numbers(x,[λz A[G]z]) ≡ x = #G› (762.2)2742

proof -2743

AOT_have 0: ‹`� x = ιx Numbers(x, G) ≡ ∀y (Numbers(y, [λz A[G]z]) ≡ y = x)› for x2744

by (AOT_subst (reverse) ‹Numbers(x, [λz A[G]z])› ‹ANumbers(x, G)› for: x)2745

(auto simp: "eq-num:1" descriptions[axiom_inst])2746

AOT_have ‹#G = ιx Numbers(x, G) ≡ ∀y (Numbers(y, [λz A[G]z]) ≡ y = #G)›2747

using 0[unvarify x, OF "num-def:2"].2748

moreover AOT_have ‹#G = ιx Numbers(x, G)›2749

using "num-def:1" "num-uniq" "rule-id-df:1" by blast2750

ultimately AOT_have ‹∀y (Numbers(y, [λz A[G]z]) ≡ y = #G)›2751

using "≡E" by blast2752

thus ?thesis using "∀E"(2) by blast2753

qed2754

2755

AOT_theorem "eq-num:3": ‹Numbers(#G, [λy A[G]y])› (762.3)2756

proof -2757

AOT_have ‹#G = #G›2758

by (simp add: "rule=I:1" "num-def:2")2759

thus ?thesis2760

using "eq-num:2"[unvarify x, OF "num-def:2", THEN "≡E"(2)] by blast2761

qed2762

2763

AOT_theorem "eq-num:4": (762.4)2764

‹A!#G & ∀F (#G[F] ≡ [λz A[F]z] ≈E [λz A[G]z])›2765

by (auto intro!: "&I" "eq-num:3"[THEN numbers[THEN "≡dfE"],2766

THEN "&E"(1), THEN "&E"(1)]2767

"eq-num:3"[THEN numbers[THEN "≡dfE"], THEN "&E"(2)])2768

2769

AOT_theorem "eq-num:5": ‹#G[G]› (762.5)2770

462

A.12. Natural Numbers

by (auto intro!: "eq-num:4"[THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(2)]2771

"eq-part:1"[unvarify F] simp: "cqt:2")2772

2773

AOT_theorem "eq-num:6": ‹Numbers(x, G) → NaturalCardinal(x)› (762.6)2774

proof(rule "→I")2775

AOT_have act_den: ‹`� [λz A[F]z]↓› for F2776

by "cqt:2"2777

AOT_obtain F where ‹Rigidifies(F, G)›2778

by (metis "instantiation" "rigid-der:3")2779

AOT_hence ϑ: ‹Rigid(F)› and ‹∀x([F]x ≡ [G]x)›2780

using "df-rigid-rel:2"[THEN "≡dfE", THEN "&E"(2)]2781

"df-rigid-rel:2"[THEN "≡dfE", THEN "&E"(1)]2782

by blast+2783

AOT_hence ‹F ≡E G›2784

by (auto intro!: eqE[THEN "≡dfI"] "&I" "cqt:2" GEN "→I" elim: "∀E"(2))2785

moreover AOT_assume ‹Numbers(x, G)›2786

ultimately AOT_have ‹Numbers(x, F)›2787

using "num-tran:3"[THEN "→E", THEN "≡E"(2)] by blast2788

moreover AOT_have ‹F ≈E [λz A[F]z]›2789

using ϑ "approx-nec:1" "→E" by blast2790

ultimately AOT_have ‹Numbers(x, [λz A[F]z])›2791

using "num-tran:1"[unvarify H, OF act_den, THEN "→E", THEN "≡E"(1)] by blast2792

AOT_hence ‹x = #F›2793

using "eq-num:2"[THEN "≡E"(1)] by blast2794

AOT_hence ‹∃F x = #F›2795

by (rule "∃I")2796

AOT_thus ‹NaturalCardinal(x)›2797

using card[THEN "≡dfI"] by blast2798

qed2799

2800

AOT_theorem "eq-df-num": ‹∃G (x = #G) ≡ ∃G (Numbers(x,G))› (763)2801

proof(safe intro!: "≡I" "→I")2802

AOT_assume ‹∃G (x = #G)›2803

then AOT_obtain P where ‹x = #P›2804

using "∃E"[rotated] by blast2805

AOT_hence ‹Numbers(x,[λz A[P]z])›2806

using "eq-num:2"[THEN "≡E"(2)] by blast2807

moreover AOT_have ‹[λz A[P]z]↓› by "cqt:2"2808

ultimately AOT_show ‹∃G(Numbers(x,G))› by (rule "∃I")2809

next2810

AOT_assume ‹∃G (Numbers(x,G))›2811

then AOT_obtain Q where ‹Numbers(x,Q)›2812

using "∃E"[rotated] by blast2813

AOT_hence ‹NaturalCardinal(x)›2814

using "eq-num:6"[THEN "→E"] by blast2815

AOT_thus ‹∃G (x = #G)›2816

using card[THEN "≡dfE"] by blast2817

qed2818

2819

AOT_theorem "card-en": ‹NaturalCardinal(x) → ∀F(x[F] ≡ x = #F)› (764)2820

proof(rule "→I"; rule GEN)2821

AOT_have act_den: ‹`� [λz A[F]z]↓› for F by "cqt:2"2822

fix F2823

AOT_assume ‹NaturalCardinal(x)›2824

AOT_hence ‹∃F x = #F›2825

using card[THEN "≡dfE"] by blast2826

then AOT_obtain P where x_def: ‹x = #P›2827

using "∃E"[rotated] by blast2828

AOT_hence num_x_act_P: ‹Numbers(x,[λz A[P]z])›2829

using "eq-num:2"[THEN "≡E"(2)] by blast2830

AOT_have ‹#P[F] ≡ [λz A[F]z] ≈E [λz A[P]z]›2831

using "eq-num:4"[THEN "&E"(2), THEN "∀E"(2)] by blast2832

AOT_hence ‹x[F] ≡ [λz A[F]z] ≈E [λz A[P]z]›2833

463

A. Isabelle Theory

using x_def[symmetric] "rule=E" by fast2834

also AOT_have ‹. . . ≡ Numbers(x, [λz A[F]z])›2835

using "num-tran:1"[unvarify G H, OF act_den, OF act_den]2836

using "num-tran:2"[unvarify G H, OF act_den, OF act_den]2837

by (metis "&I" "deduction-theorem" "≡I" "≡E"(2) num_x_act_P)2838

also AOT_have ‹. . . ≡ x = #F›2839

using "eq-num:2" by blast2840

finally AOT_show ‹x[F] ≡ x = #F›.2841

qed2842

2843

AOT_theorem "0F:1": ‹¬∃u [F]u ≡ Numbers(0, F)› (765.1)2844

proof -2845

AOT_have unotEu_act_ord: ‹¬∃v[λx O!x & Ax 6=E x]v›2846

proof(rule "raa-cor:2")2847

AOT_assume ‹∃v[λx O!x & Ax 6=E x]v›2848

then AOT_obtain y where ‹[λx O!x & Ax 6=E x]y›2849

using "∃E"[rotated] "&E" by blast2850

AOT_hence 0: ‹O!y & Ay 6=E y›2851

by (rule "β→C"(1))2852

AOT_have ‹A¬(y =E y)›2853

apply (AOT_subst ‹¬(y =E y)› ‹y 6=E y›)2854

apply (meson "≡E"(2) "Commutativity of ≡" "thm-neg=E")2855

by (fact 0[THEN "&E"(2)])2856

AOT_hence ‹¬(y =E y)›2857

by (metis "¬¬I" "Act-Sub:1" "id-act2:1" "≡E"(4))2858

moreover AOT_have ‹y =E y›2859

by (metis 0[THEN "&E"(1)] "ord=Eequiv:1" "→E")2860

ultimately AOT_show ‹p & ¬p› for p2861

by (metis "raa-cor:3")2862

qed2863

AOT_have ‹Numbers(0, [λy A[λx O!x & x 6=E x]y])›2864

apply (rule "=dfI"(2)[OF "zero:1"])2865

apply (rule "num-def:2"[unvarify G]; "cqt:2")2866

apply (rule "eq-num:3"[unvarify G])2867

by "cqt:2[lambda]"2868

AOT_hence numbers0: ‹Numbers(0, [λx [O!]x & Ax 6=E x])›2869

proof (rule "num-tran:3"[unvarify x G H, THEN "→E", THEN "≡E"(1), rotated 4])2870

AOT_show ‹[λy A[λx O!x & x 6=E x]y] ≡E [λx [O!]x & Ax 6=E x]›2871

proof (safe intro!: eqE[THEN "≡dfI"] "&I" Ordinary.GEN "→I" "cqt:2")2872

fix u2873

AOT_have ‹[λy A[λx O!x & x 6=E x]y]u ≡ A[λx O!x & x 6=E x]u›2874

by (rule "beta-C-meta"[THEN "→E"]; "cqt:2[lambda]")2875

also AOT_have ‹. . . ≡ A(O!u & u 6=E u)›2876

apply (AOT_subst ‹[λx O!x & x 6=E x]u› ‹O!u & u 6=E u›)2877

apply (rule "beta-C-meta"[THEN "→E"]; "cqt:2[lambda]")2878

by (simp add: "oth-class-taut:3:a")2879

also AOT_have ‹. . . ≡ (AO!u & Au 6=E u)›2880

by (simp add: "Act-Basic:2")2881

also AOT_have ‹. . . ≡ (O!u & Au 6=E u)›2882

by (metis Ordinary.ψ "&I" "&E"(2) "→I" "≡I" "≡E"(1) "oa-facts:7")2883

also AOT_have ‹. . . ≡ [λx [O!]x & Ax 6=E x]u›2884

by (rule "beta-C-meta"[THEN "→E", symmetric]; "cqt:2[lambda]")2885

finally AOT_show ‹[λy A[λx O!x & x 6=E x]y]u ≡ [λx [O!]x & Ax 6=E x]u›.2886

qed2887

qed(fact "zero:2" | "cqt:2")+2888

show ?thesis2889

proof(safe intro!: "≡I" "→I")2890

AOT_assume ‹¬∃u [F]u›2891

moreover AOT_have ‹¬∃v [λx [O!]x & Ax 6=E x]v›2892

using unotEu_act_ord.2893

ultimately AOT_have 0: ‹F ≈E [λx [O!]x & Ax 6=E x]›2894

by (rule "empty-approx:1"[unvarify H, THEN "→E", rotated, OF "&I"]) "cqt:2"2895

AOT_thus ‹Numbers(0, F)›2896

464

A.12. Natural Numbers

by (rule "num-tran:1"[unvarify x H, THEN "→E",2897

THEN "≡E"(2), rotated, rotated])2898

(fact "zero:2" numbers0 | "cqt:2[lambda]")+2899

next2900

AOT_assume ‹Numbers(0, F)›2901

AOT_hence 1: ‹F ≈E [λx [O!]x & Ax 6=E x]›2902

by (rule "num-tran:2"[unvarify x H, THEN "→E", rotated 2, OF "&I"])2903

(fact numbers0 "zero:2" | "cqt:2[lambda]")+2904

AOT_show ‹¬∃u [F]u›2905

proof(rule "raa-cor:2")2906

AOT_have 0: ‹[λx [O!]x & Ax 6=E x]↓› by "cqt:2[lambda]"2907

AOT_assume ‹∃u [F]u›2908

AOT_hence ‹¬(F ≈E [λx [O!]x & Ax 6=E x])›2909

by (rule "empty-approx:2"[unvarify H, OF 0, THEN "→E", OF "&I"])2910

(rule unotEu_act_ord)2911

AOT_thus ‹F ≈E [λx [O!]x & Ax 6=E x] & ¬(F ≈E [λx [O!]x & Ax 6=E x])›2912

using 1 "&I" by blast2913

qed2914

qed2915

qed2916

2917

AOT_theorem "0F:2": ‹¬∃u A[F]u ≡ #F = 0› (765.2)2918

proof(rule "≡I"; rule "→I")2919

AOT_assume 0: ‹¬∃u A[F]u›2920

AOT_have ‹¬∃u [λz A[F]z]u›2921

proof(rule "raa-cor:2")2922

AOT_assume ‹∃u [λz A[F]z]u›2923

then AOT_obtain u where ‹[λz A[F]z]u›2924

using "Ordinary.∃E"[rotated] by blast2925

AOT_hence ‹A[F]u›2926

by (metis "betaC:1:a")2927

AOT_hence ‹∃u A[F]u›2928

by (rule "Ordinary.∃I")2929

AOT_thus ‹∃u A[F]u & ¬∃u A[F]u›2930

using 0 "&I" by blast2931

qed2932

AOT_hence ‹Numbers(0,[λz A[F]z])›2933

by (safe intro!: "0F:1"[unvarify F, THEN "≡E"(1)]) "cqt:2"2934

AOT_hence ‹0 = #F›2935

by (rule "eq-num:2"[unvarify x, OF "zero:2", THEN "≡E"(1)])2936

AOT_thus ‹#F = 0› using id_sym by blast2937

next2938

AOT_assume ‹#F = 0›2939

AOT_hence ‹0 = #F› using id_sym by blast2940

AOT_hence ‹Numbers(0,[λz A[F]z])›2941

by (rule "eq-num:2"[unvarify x, OF "zero:2", THEN "≡E"(2)])2942

AOT_hence 0: ‹¬∃u [λz A[F]z]u›2943

by (safe intro!: "0F:1"[unvarify F, THEN "≡E"(2)]) "cqt:2"2944

AOT_show ‹¬∃u A[F]u›2945

proof(rule "raa-cor:2")2946

AOT_assume ‹∃u A[F]u›2947

then AOT_obtain u where ‹A[F]u›2948

using "Ordinary.∃E"[rotated] by meson2949

AOT_hence ‹[λz A[F]z]u›2950

by (auto intro!: "β←C" "cqt:2")2951

AOT_hence ‹∃u [λz A[F]z]u›2952

using "Ordinary.∃I" by blast2953

AOT_thus ‹∃u [λz A[F]z]u & ¬∃u [λz A[F]z]u›2954

using "&I" 0 by blast2955

qed2956

qed2957

2958

AOT_theorem "0F:3": ‹�¬∃u [F]u → #F = 0› (765.3)2959

465

A. Isabelle Theory

proof(rule "→I")2960

AOT_assume ‹�¬∃u [F]u›2961

AOT_hence 0: ‹¬♦∃u [F]u›2962

using "KBasic2:1" "≡E"(1) by blast2963

AOT_have ‹¬∃u [λz A[F]z]u›2964

proof(rule "raa-cor:2")2965

AOT_assume ‹∃u [λz A[F]z]u›2966

then AOT_obtain u where ‹[λz A[F]z]u›2967

using "Ordinary.∃E"[rotated] by blast2968

AOT_hence ‹A[F]u›2969

by (metis "betaC:1:a")2970

AOT_hence ‹♦[F]u›2971

by (metis "Act-Sub:3" "→E")2972

AOT_hence ‹∃u ♦[F]u›2973

by (rule "Ordinary.∃I")2974

AOT_hence ‹♦∃u [F]u›2975

using "Ordinary.res-var-bound-reas[CBF♦]"[THEN "→E"] by blast2976

AOT_thus ‹♦∃u [F]u & ¬♦∃u [F]u›2977

using 0 "&I" by blast2978

qed2979

AOT_hence ‹Numbers(0,[λz A[F]z])›2980

by (safe intro!: "0F:1"[unvarify F, THEN "≡E"(1)]) "cqt:2"2981

AOT_hence ‹0 = #F›2982

by (rule "eq-num:2"[unvarify x, OF "zero:2", THEN "≡E"(1)])2983

AOT_thus ‹#F = 0› using id_sym by blast2984

qed2985

2986

AOT_theorem "0F:4": ‹w |= ¬∃u [F]u ≡ #[F]w = 0› (765.4)2987

proof (rule "rule-id-df:2:b"[OF "w-index", where τ 1τ n="(_,_)", simplified])2988

AOT_show ‹[λx1...xn w |= [F]x1...xn]↓›2989

by (simp add: "w-rel:3")2990

next2991

AOT_show ‹w |= ¬∃u [F]u ≡ #[λx w |= [F]x] = 0›2992

proof (rule "≡I"; rule "→I")2993

AOT_assume ‹w |= ¬∃u [F]u›2994

AOT_hence 0: ‹¬w |= ∃u [F]u›2995

using "coherent:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast2996

AOT_have ‹¬∃u A[λx w |= [F]x]u›2997

proof(rule "raa-cor:2")2998

AOT_assume ‹∃u A[λx w |= [F]x]u›2999

then AOT_obtain u where ‹A[λx w |= [F]x]u›3000

using "Ordinary.∃E"[rotated] by meson3001

AOT_hence ‹Aw |= [F]u›3002

by (AOT_subst (reverse) ‹w |= [F]u› ‹[λx w |= [F]x]u›;3003

safe intro!: "beta-C-meta"[THEN "→E"] "w-rel:1"[THEN "→E"])3004

"cqt:2"3005

AOT_hence 1: ‹w |= [F]u›3006

using "rigid-truth-at:4"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)]3007

by blast3008

AOT_have ‹�([F]u → ∃u [F]u)›3009

using "Ordinary.∃I" "→I" RN by simp3010

AOT_hence ‹w |= ([F]u → ∃u [F]u)›3011

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)]3012

"PossibleWorld.∀E" by fast3013

AOT_hence ‹w |= ∃u [F]u›3014

using 1 "conj-dist-w:2"[unvarify p q, OF "log-prop-prop:2",3015

OF "log-prop-prop:2", THEN "≡E"(1),3016

THEN "→E"] by blast3017

AOT_thus ‹w |= ∃u [F]u & ¬w |= ∃u [F]u›3018

using 0 "&I" by blast3019

qed3020

AOT_thus ‹#[λx w |= [F]x] = 0›3021

by (safe intro!: "0F:2"[unvarify F, THEN "≡E"(1)] "w-rel:1"[THEN "→E"])3022

466

A.12. Natural Numbers

"cqt:2"3023

next3024

AOT_assume ‹#[λx w |= [F]x] = 0›3025

AOT_hence 0: ‹¬∃u A[λx w |= [F]x]u›3026

by (safe intro!: "0F:2"[unvarify F, THEN "≡E"(2)] "w-rel:1"[THEN "→E"])3027

"cqt:2"3028

AOT_have ‹¬w |= ∃u [F]u›3029

proof (rule "raa-cor:2")3030

AOT_assume ‹w |= ∃u [F]u›3031

AOT_hence ‹∃x w |= (O!x & [F]x)›3032

using "conj-dist-w:6"[THEN "≡E"(1)] by fast3033

then AOT_obtain x where ‹w |= (O!x & [F]x)›3034

using "∃E"[rotated] by blast3035

AOT_hence ‹w |= O!x› and Fx_in_w: ‹w |= [F]x›3036

using "conj-dist-w:1"[unvarify p q] "≡E"(1) "log-prop-prop:2"3037

"&E" by blast+3038

AOT_hence ‹♦O!x›3039

using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)]3040

"PossibleWorld.∃I" by simp3041

AOT_hence ord_x: ‹O!x›3042

using "oa-facts:3"[THEN "→E"] by blast3043

AOT_have ‹Aw |= [F]x›3044

using "rigid-truth-at:4"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)]3045

Fx_in_w by blast3046

AOT_hence ‹A[λx w |= [F]x]x›3047

by (AOT_subst ‹[λx w |= [F]x]x› ‹w |= [F]x›;3048

safe intro!: "beta-C-meta"[THEN "→E"] "w-rel:1"[THEN "→E"]) "cqt:2"3049

AOT_hence ‹O!x & A[λx w |= [F]x]x›3050

using ord_x "&I" by blast3051

AOT_hence ‹∃x (O!x & A[λx w |= [F]x]x)›3052

using "∃I" by fast3053

AOT_thus ‹∃u (A[λx w |= [F]x]u) & ¬∃u A[λx w |= [F]x]u›3054

using 0 "&I" by blast3055

qed3056

AOT_thus ‹w |= ¬∃u[F]u›3057

using "coherent:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)] by blast3058

qed3059

qed3060

3061

AOT_act_theorem "zero=:1": (766.1)3062

‹NaturalCardinal(x) → ∀F (x[F] ≡ Numbers(x, F))›3063

proof(safe intro!: "→I" GEN)3064

fix F3065

AOT_assume ‹NaturalCardinal(x)›3066

AOT_hence ‹∀F (x[F] ≡ x = #F)›3067

by (metis "card-en" "→E")3068

AOT_hence 1: ‹x[F] ≡ x = #F›3069

using "∀E"(2) by blast3070

AOT_have 2: ‹x[F] ≡ x = ιy(Numbers(y, F))›3071

by (rule "num-def:1"[THEN "=dfE"(1)])3072

(auto simp: 1 "num-uniq")3073

AOT_have ‹x = ιy(Numbers(y, F)) → Numbers(x, F)›3074

using "y-in:1" by blast3075

moreover AOT_have ‹Numbers(x, F) → x = ιy(Numbers(y, F))›3076

proof(rule "→I")3077

AOT_assume 1: ‹Numbers(x, F)›3078

moreover AOT_obtain z where z_prop: ‹∀y (Numbers(y, F) → y = z)›3079

using "num:2"[THEN "uniqueness:1"[THEN "≡dfE"]] "∃E"[rotated] "&E" by blast3080

ultimately AOT_have ‹x = z›3081

using "∀E"(2) "→E" by blast3082

AOT_hence ‹∀y (Numbers(y, F) → y = x)›3083

using z_prop "rule=E" id_sym by fast3084

AOT_thus ‹x = ιy(Numbers(y,F))›3085

467

A. Isabelle Theory

by (rule hintikka[THEN "≡E"(2), OF "&I", rotated])3086

(fact 1)3087

qed3088

ultimately AOT_have ‹x = ιy(Numbers(y, F)) ≡ Numbers(x, F)›3089

by (metis "≡I")3090

AOT_thus ‹x[F] ≡ Numbers(x, F)›3091

using 2 by (metis "≡E"(5))3092

qed3093

3094

AOT_act_theorem "zero=:2": ‹0[F] ≡ ¬∃u[F]u› (766.2)3095

proof -3096

AOT_have ‹0[F] ≡ Numbers(0, F)›3097

using "zero=:1"[unvarify x, OF "zero:2", THEN "→E",3098

OF "zero-card", THEN "∀E"(2)].3099

also AOT_have ‹. . . ≡ ¬∃u[F]u›3100

using "0F:1"[symmetric].3101

finally show ?thesis.3102

qed3103

3104

AOT_act_theorem "zero=:3": ‹¬∃u[F]u ≡ #F = 0› (766.3)3105

proof -3106

AOT_have ‹¬∃u[F]u ≡ 0[F]› using "zero=:2"[symmetric].3107

also AOT_have ‹. . . ≡ 0 = #F›3108

using "card-en"[unvarify x, OF "zero:2", THEN "→E",3109

OF "zero-card", THEN "∀E"(2)].3110

also AOT_have ‹. . . ≡ #F = 0›3111

by (simp add: "deduction-theorem" id_sym "≡I")3112

finally show ?thesis.3113

qed3114

3115

AOT_define Hereditary :: ‹τ ⇒ τ ⇒ ϕ› (‹Hereditary’(_,_’)›)3116

"hered:1": (767.1)3117

‹Hereditary(F, R) ≡df R↓ & F↓ & ∀x∀y([R]xy → ([F]x → [F]y))›3118

3119

AOT_theorem "hered:2": (767.2)3120

‹[λxy ∀F((∀z([R]xz → [F]z) & Hereditary(F,R)) → [F]y)]↓›3121

by "cqt:2[lambda]"3122

3123

AOT_define StrongAncestral :: ‹τ ⇒ Π› (‹_*›)3124

"ances-df": (768)3125

‹R* =df [λxy ∀F((∀z([R]xz → [F]z) & Hereditary(F,R)) → [F]y)]›3126

3127

AOT_theorem "ances": (769)3128

‹[R*]xy ≡ ∀F((∀z([R]xz → [F]z) & Hereditary(F,R)) → [F]y)›3129

apply (rule "=dfI"(1)[OF "ances-df"])3130

apply "cqt:2[lambda]"3131

apply (rule "beta-C-meta"[THEN "→E", OF "hered:2", unvarify ν1νn,3132

where τ=‹(_,_)›, simplified])3133

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")3134

3135

AOT_theorem "anc-her:1": (770.1)3136

‹[R]xy → [R*]xy›3137

proof (safe intro!: "→I" ances[THEN "≡E"(2)] GEN)3138

fix F3139

AOT_assume ‹∀z ([R]xz → [F]z) & Hereditary(F, R)›3140

AOT_hence ‹[R]xy → [F]y›3141

using "∀E"(2) "&E" by blast3142

moreover AOT_assume ‹[R]xy›3143

ultimately AOT_show ‹[F]y›3144

using "→E" by blast3145

qed3146

3147

AOT_theorem "anc-her:2": (770.2)3148

468

A.12. Natural Numbers

‹([R*]xy & ∀z([R]xz → [F]z) & Hereditary(F,R)) → [F]y›3149

proof(rule "→I"; (frule "&E"(1); drule "&E"(2))+)3150

AOT_assume ‹[R*]xy›3151

AOT_hence ‹(∀z([R]xz → [F]z) & Hereditary(F,R)) → [F]y›3152

using ances[THEN "≡E"(1)] "∀E"(2) by blast3153

moreover AOT_assume ‹∀z([R]xz → [F]z)›3154

moreover AOT_assume ‹Hereditary(F,R)›3155

ultimately AOT_show ‹[F]y›3156

using "→E" "&I" by blast3157

qed3158

3159

AOT_theorem "anc-her:3": (770.3)3160

‹([F]x & [R*]xy & Hereditary(F, R)) → [F]y›3161

proof(rule "→I"; (frule "&E"(1); drule "&E"(2))+)3162

AOT_assume 1: ‹[F]x›3163

AOT_assume 2: ‹Hereditary(F, R)›3164

AOT_hence 3: ‹∀x ∀y ([R]xy → ([F]x → [F]y))›3165

using "hered:1"[THEN "≡dfE"] "&E" by blast3166

AOT_have ‹∀z ([R]xz → [F]z)›3167

proof (rule GEN; rule "→I")3168

fix z3169

AOT_assume ‹[R]xz›3170

moreover AOT_have ‹[R]xz → ([F]x → [F]z)›3171

using 3 "∀E"(2) by blast3172

ultimately AOT_show ‹[F]z›3173

using 1 "→E" by blast3174

qed3175

moreover AOT_assume ‹[R*]xy›3176

ultimately AOT_show ‹[F]y›3177

by (auto intro!: 2 "anc-her:2"[THEN "→E"] "&I")3178

qed3179

3180

AOT_theorem "anc-her:4": ‹([R]xy & [R*]yz) → [R*]xz› (770.4)3181

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3182

AOT_assume 0: ‹[R*]yz› and 1: ‹[R]xy›3183

AOT_show ‹[R*]xz›3184

proof(safe intro!: ances[THEN "≡E"(2)] GEN "&I" "→I";3185

frule "&E"(1); drule "&E"(2))3186

fix F3187

AOT_assume ‹∀z ([R]xz → [F]z)›3188

AOT_hence 1: ‹[F]y›3189

using 1 "∀E"(2) "→E" by blast3190

AOT_assume 2: ‹Hereditary(F,R)›3191

AOT_show ‹[F]z›3192

by (rule "anc-her:3"[THEN "→E"]; auto intro!: "&I" 1 2 0)3193

qed3194

qed3195

3196

AOT_theorem "anc-her:5": ‹[R*]xy → ∃z [R]zy› (770.5)3197

proof (rule "→I")3198

AOT_have 0: ‹[λy ∃x [R]xy]↓› by "cqt:2"3199

AOT_assume 1: ‹[R*]xy›3200

AOT_have ‹[λy∃x [R]xy]y›3201

proof(rule "anc-her:2"[unvarify F, OF 0, THEN "→E"];3202

safe intro!: "&I" GEN "→I" "hered:1"[THEN "≡dfI"] "cqt:2" 0)3203

AOT_show ‹[R*]xy› using 1.3204

next3205

fix z3206

AOT_assume ‹[R]xz›3207

AOT_hence ‹∃x [R]xz› by (rule "∃I")3208

AOT_thus ‹[λy∃x [R]xy]z›3209

by (auto intro!: "β←C"(1) "cqt:2")3210

next3211

469

A. Isabelle Theory

fix x y3212

AOT_assume ‹[R]xy›3213

AOT_hence ‹∃x [R]xy› by (rule "∃I")3214

AOT_thus ‹[λy ∃x [R]xy]y›3215

by (auto intro!: "β←C"(1) "cqt:2")3216

qed3217

AOT_thus ‹∃z [R]zy›3218

by (rule "β→C"(1))3219

qed3220

3221

AOT_theorem "anc-her:6": ‹([R*]xy & [R*]yz) → [R*]xz› (770.6)3222

proof (rule "→I"; frule "&E"(1); drule "&E"(2))3223

AOT_assume ‹[R*]xy›3224

AOT_hence ϑ: ‹∀z ([R]xz → [F]z) & Hereditary(F,R) → [F]y› for F3225

using "∀E"(2) ances[THEN "≡E"(1)] by blast3226

AOT_assume ‹[R*]yz›3227

AOT_hence ξ: ‹∀z ([R]yz → [F]z) & Hereditary(F,R) → [F]z› for F3228

using "∀E"(2) ances[THEN "≡E"(1)] by blast3229

AOT_show ‹[R*]xz›3230

proof (rule ances[THEN "≡E"(2)]; safe intro!: GEN "→I")3231

fix F3232

AOT_assume ζ: ‹∀z ([R]xz → [F]z) & Hereditary(F,R)›3233

AOT_show ‹[F]z›3234

proof (rule ξ[THEN "→E", OF "&I"])3235

AOT_show ‹Hereditary(F,R)›3236

using ζ[THEN "&E"(2)].3237

next3238

AOT_show ‹∀z ([R]yz → [F]z)›3239

proof(rule GEN; rule "→I")3240

fix z3241

AOT_assume ‹[R]yz›3242

moreover AOT_have ‹[F]y›3243

using ϑ[THEN "→E", OF ζ].3244

ultimately AOT_show ‹[F]z›3245

using ζ[THEN "&E"(2), THEN "hered:1"[THEN "≡dfE"],3246

THEN "&E"(2), THEN "∀E"(2), THEN "∀E"(2),3247

THEN "→E", THEN "→E"]3248

by blast3249

qed3250

qed3251

qed3252

qed3253

3254

AOT_define OneToOne :: ‹τ ⇒ ϕ› (‹1-1’(_’)›)3255

"df-1-1:1": ‹1-1(R) ≡df R↓ & ∀x∀y∀z([R]xz & [R]yz → x = y)› (772.1)3256

3257

AOT_define RigidOneToOne :: ‹τ ⇒ ϕ› (‹Rigid1-1’(_’)›)3258

"df-1-1:2": ‹Rigid1-1(R) ≡df 1-1(R) & Rigid(R)› (772.2)3259

3260

AOT_theorem "df-1-1:3": ‹Rigid1-1(R) → �1-1(R)› (772.3)3261

proof(rule "→I")3262

AOT_assume ‹Rigid1-1(R)›3263

AOT_hence ‹1-1(R)› and RigidR: ‹Rigid(R)›3264

using "df-1-1:2"[THEN "≡dfE"] "&E" by blast+3265

AOT_hence 1: ‹[R]xz & [R]yz → x = y› for x y z3266

using "df-1-1:1"[THEN "≡dfE"] "&E"(2) "∀E"(2) by blast3267

AOT_have 1: ‹[R]xz & [R]yz → �x = y› for x y z3268

by (AOT_subst (reverse) ‹�x = y› ‹x = y›)3269

(auto simp: 1 "id-nec:2" "≡I" "qml:2"[axiom_inst])3270

AOT_have ‹�∀x1...∀xn ([R]x1...xn → �[R]x1...xn)›3271

using "df-rigid-rel:1"[THEN "≡dfE", OF RigidR] "&E" by blast3272

AOT_hence ‹∀x1...∀xn �([R]x1...xn → �[R]x1...xn)›3273

using "CBF"[THEN "→E"] by fast3274

470

A.12. Natural Numbers

AOT_hence ‹∀x1∀x2 �([R]x1x2 → �[R]x1x2)›3275

using tuple_forall[THEN "≡dfE"] by blast3276

AOT_hence ‹�([R]xy → �[R]xy)› for x y3277

using "∀E"(2) by blast3278

AOT_hence ‹�(([R]xz → �[R]xz) & ([R]yz → �[R]yz))› for x y z3279

by (metis "KBasic:3" "&I" "≡E"(3) "raa-cor:3")3280

moreover AOT_have ‹�(([R]xz → �[R]xz) & ([R]yz → �[R]yz)) →3281

�(([R]xz & [R]yz) → �([R]xz & [R]yz))› for x y z3282

by (rule RM) (metis "→I" "KBasic:3" "&I" "&E"(1) "&E"(2) "≡E"(2) "→E")3283

ultimately AOT_have 2: ‹�(([R]xz & [R]yz) → �([R]xz & [R]yz))› for x y z3284

using "→E" by blast3285

AOT_hence 3: ‹�([R]xz & [R]yz → x = y)› for x y z3286

using "sc-eq-box-box:6"[THEN "→E", THEN "→E", OF 2, OF 1] by blast3287

AOT_hence 4: ‹�∀x∀y∀z([R]xz & [R]yz → x = y)›3288

by (safe intro!: GEN BF[THEN "→E"] 3)3289

AOT_thus ‹�1-1(R)›3290

by (AOT_subst_thm "df-1-1:1"[THEN "≡Df", THEN "≡S"(1),3291

OF "cqt:2[const_var]"[axiom_inst]])3292

qed3293

3294

AOT_theorem "df-1-1:4": ‹∀R(Rigid1-1(R) → �Rigid1-1(R))› (772.4)3295

proof(rule GEN;rule "→I")3296

AOT_modally_strict {3297

fix R3298

AOT_assume 0: ‹Rigid1-1(R)›3299

AOT_hence 1: ‹R↓›3300

by (meson "≡dfE" "&E"(1) "df-1-1:1" "df-1-1:2")3301

AOT_hence 2: ‹�R↓›3302

using "exist-nec" "→E" by blast3303

AOT_have 4: ‹�1-1(R)›3304

using "df-1-1:3"[unvarify R, OF 1, THEN "→E", OF 0].3305

AOT_have ‹Rigid(R)›3306

using 0 "≡dfE"[OF "df-1-1:2"] "&E" by blast3307

AOT_hence ‹�∀x1...∀xn ([R]x1...xn → �[R]x1...xn)›3308

using "df-rigid-rel:1"[THEN "≡dfE"] "&E" by blast3309

AOT_hence ‹��∀x1...∀xn ([R]x1...xn → �[R]x1...xn)›3310

by (metis "S5Basic:6" "≡E"(1))3311

AOT_hence ‹�Rigid(R)›3312

apply (AOT_subst_def "df-rigid-rel:1")3313

using 2 "KBasic:3" "≡S"(2) "≡E"(2) by blast3314

AOT_thus ‹�Rigid1-1(R)›3315

apply (AOT_subst_def "df-1-1:2")3316

using 4 "KBasic:3" "≡S"(2) "≡E"(2) by blast3317

}3318

qed3319

3320

AOT_define InDomainOf :: ‹τ ⇒ τ ⇒ ϕ› (‹InDomainOf’(_,_’)›)3321

"df-1-1:5": ‹InDomainOf(x, R) ≡df ∃y [R]xy› (772.5)3322

3323

AOT_register_rigid_restricted_type3324

RigidOneToOneRelation: ‹Rigid1-1(Π)›3325

proof3326

AOT_modally_strict {3327

AOT_show ‹∃α Rigid1-1(α)›3328

proof (rule "∃I"(1)[where τ=‹«(=E)»›])3329

AOT_show ‹Rigid1-1((=E))›3330

proof (safe intro!: "df-1-1:2"[THEN "≡dfI"] "&I" "df-1-1:1"[THEN "≡dfI"]3331

GEN "→I" "df-rigid-rel:1"[THEN "≡dfI"] "=E[denotes]")3332

fix x y z3333

AOT_assume ‹x =E z & y =E z›3334

AOT_thus ‹x = y›3335

by (metis "rule=E" "&E"(1) "Conjunction Simplification"(2)3336

"=E-simple:2" id_sym "→E")3337

471

A. Isabelle Theory

next3338

AOT_have ‹∀x∀y �(x =E y → �x =E y)›3339

proof(rule GEN; rule GEN)3340

AOT_show ‹�(x =E y → �x =E y)› for x y3341

by (meson RN "deduction-theorem" "id-nec3:1" "≡E"(1))3342

qed3343

AOT_hence ‹∀x1...∀xn �([(=E)]x1...xn → �[(=E)]x1...xn)›3344

by (rule tuple_forall[THEN "≡dfI"])3345

AOT_thus ‹�∀x1...∀xn ([(=E)]x1...xn → �[(=E)]x1...xn)›3346

using BF[THEN "→E"] by fast3347

qed3348

qed(fact "=E[denotes]")3349

}3350

next3351

AOT_modally_strict {3352

AOT_show ‹Rigid1-1(Π) → Π↓› for Π3353

proof(rule "→I")3354

AOT_assume ‹Rigid1-1(Π)›3355

AOT_hence ‹1-1(Π)›3356

using "df-1-1:2"[THEN "≡dfE"] "&E" by blast3357

AOT_thus ‹Π↓›3358

using "df-1-1:1"[THEN "≡dfE"] "&E" by blast3359

qed3360

}3361

next3362

AOT_modally_strict {3363

AOT_show ‹∀F(Rigid1-1(F) → �Rigid1-1(F))›3364

by (safe intro!: GEN "df-1-1:4"[THEN "∀E"(2)])3365

}3366

qed3367

AOT_register_variable_names3368

RigidOneToOneRelation: R S3369

3370

AOT_define IdentityRestrictedToDomain :: ‹τ ⇒ Π› (‹’(=_’)›)3371

"id-d-R": ‹(=R) =df [λxy ∃z ([R]xz & [R]yz)]› (773)3372

3373

syntax "_AOT_id_d_R_infix" :: ‹τ ⇒ τ ⇒ τ ⇒ ϕ› ("(_ =_/ _)" [50, 51, 51] 50)3374

translations3375

"_AOT_id_d_R_infix κ Π κ’" ==3376

"CONST AOT_exe (CONST IdentityRestrictedToDomain Π) (κ,κ’)"3377

3378

AOT_theorem "id-R-thm:1": ‹x =R y ≡ ∃z ([R]xz & [R]yz)› (774.1)3379

proof -3380

AOT_have 0: ‹[λxy ∃z ([R]xz & [R]yz)]↓› by "cqt:2"3381

show ?thesis3382

apply (rule "=dfI"(1)[OF "id-d-R"])3383

apply (fact 0)3384

apply (rule "beta-C-meta"[THEN "→E", OF 0, unvarify ν1νn,3385

where τ=‹(_,_)›, simplified])3386

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")3387

qed3388

3389

AOT_theorem "id-R-thm:2": (774.2)3390

‹x =R y → (InDomainOf(x, R) & InDomainOf(y, R))›3391

proof(rule "→I")3392

AOT_assume ‹x =R y›3393

AOT_hence ‹∃z ([R]xz & [R]yz)›3394

using "id-R-thm:1"[THEN "≡E"(1)] by simp3395

then AOT_obtain z where z_prop: ‹[R]xz & [R]yz›3396

using "∃E"[rotated] by blast3397

AOT_show ‹InDomainOf(x, R) & InDomainOf(y, R)›3398

proof (safe intro!: "&I" "df-1-1:5"[THEN "≡dfI"])3399

AOT_show ‹∃y [R]xy›3400

472

A.12. Natural Numbers

using z_prop[THEN "&E"(1)] "∃I" by fast3401

next3402

AOT_show ‹∃z [R]yz›3403

using z_prop[THEN "&E"(2)] "∃I" by fast3404

qed3405

qed3406

3407

AOT_theorem "id-R-thm:3": ‹x =R y → x = y› (774.3)3408

proof(rule "→I")3409

AOT_assume ‹x =R y›3410

AOT_hence ‹∃z ([R]xz & [R]yz)›3411

using "id-R-thm:1"[THEN "≡E"(1)] by simp3412

then AOT_obtain z where z_prop: ‹[R]xz & [R]yz›3413

using "∃E"[rotated] by blast3414

AOT_thus ‹x = y›3415

using "df-1-1:3"[THEN "→E", OF RigidOneToOneRelation.ψ,3416

THEN "qml:2"[axiom_inst, THEN "→E"],3417

THEN "≡dfE"[OF "df-1-1:1"], THEN "&E"(2),3418

THEN "∀E"(2), THEN "∀E"(2),3419

THEN "∀E"(2), THEN "→E"]3420

by blast3421

qed3422

3423

AOT_theorem "id-R-thm:4": (774.4)3424

‹(InDomainOf(x, R) ∨ InDomainOf(y, R)) → (x =R y ≡ x = y)›3425

proof (rule "→I")3426

AOT_assume ‹InDomainOf(x, R) ∨ InDomainOf(y, R)›3427

moreover {3428

AOT_assume ‹InDomainOf(x, R)›3429

AOT_hence ‹∃z [R]xz›3430

by (metis "≡dfE" "df-1-1:5")3431

then AOT_obtain z where z_prop: ‹[R]xz›3432

using "∃E"[rotated] by blast3433

AOT_have ‹x =R y ≡ x = y›3434

proof(safe intro!: "≡I" "→I" "id-R-thm:3"[THEN "→E"])3435

AOT_assume ‹x = y›3436

AOT_hence ‹[R]yz›3437

using z_prop "rule=E" by fast3438

AOT_hence ‹[R]xz & [R]yz›3439

using z_prop "&I" by blast3440

AOT_hence ‹∃z ([R]xz & [R]yz)›3441

by (rule "∃I")3442

AOT_thus ‹x =R y›3443

using "id-R-thm:1" "≡E"(2) by blast3444

qed3445

}3446

moreover {3447

AOT_assume ‹InDomainOf(y, R)›3448

AOT_hence ‹∃z [R]yz›3449

by (metis "≡dfE" "df-1-1:5")3450

then AOT_obtain z where z_prop: ‹[R]yz›3451

using "∃E"[rotated] by blast3452

AOT_have ‹x =R y ≡ x = y›3453

proof(safe intro!: "≡I" "→I" "id-R-thm:3"[THEN "→E"])3454

AOT_assume ‹x = y›3455

AOT_hence ‹[R]xz›3456

using z_prop "rule=E" id_sym by fast3457

AOT_hence ‹[R]xz & [R]yz›3458

using z_prop "&I" by blast3459

AOT_hence ‹∃z ([R]xz & [R]yz)›3460

by (rule "∃I")3461

AOT_thus ‹x =R y›3462

using "id-R-thm:1" "≡E"(2) by blast3463

473

A. Isabelle Theory

qed3464

}3465

ultimately AOT_show ‹x =R y ≡ x = y›3466

by (metis "∨E"(2) "raa-cor:1")3467

qed3468

3469

AOT_theorem "id-R-thm:5": ‹InDomainOf(x, R) → x =R x› (774.5)3470

proof (rule "→I")3471

AOT_assume ‹InDomainOf(x, R)›3472

AOT_hence ‹∃z [R]xz›3473

by (metis "≡dfE" "df-1-1:5")3474

then AOT_obtain z where z_prop: ‹[R]xz›3475

using "∃E"[rotated] by blast3476

AOT_hence ‹[R]xz & [R]xz›3477

using "&I" by blast3478

AOT_hence ‹∃z ([R]xz & [R]xz)›3479

using "∃I" by fast3480

AOT_thus ‹x =R x›3481

using "id-R-thm:1" "≡E"(2) by blast3482

qed3483

3484

AOT_theorem "id-R-thm:6": ‹x =R y → y =R x› (774.6)3485

proof(rule "→I")3486

AOT_assume 0: ‹x =R y›3487

AOT_hence 1: ‹InDomainOf(x,R) & InDomainOf(y,R)›3488

using "id-R-thm:2"[THEN "→E"] by blast3489

AOT_hence ‹x =R y ≡ x = y›3490

using "id-R-thm:4"[THEN "→E", OF "∨I"(1)] "&E" by blast3491

AOT_hence ‹x = y›3492

using 0 by (metis "≡E"(1))3493

AOT_hence ‹y = x›3494

using id_sym by blast3495

moreover AOT_have ‹y =R x ≡ y = x›3496

using "id-R-thm:4"[THEN "→E", OF "∨I"(2)] 1 "&E" by blast3497

ultimately AOT_show ‹y =R x›3498

by (metis "≡E"(2))3499

qed3500

3501

AOT_theorem "id-R-thm:7": ‹x =R y & y =R z → x =R z› (774.7)3502

proof (rule "→I"; frule "&E"(1); drule "&E"(2))3503

AOT_assume 0: ‹x =R y›3504

AOT_hence 1: ‹InDomainOf(x,R) & InDomainOf(y,R)›3505

using "id-R-thm:2"[THEN "→E"] by blast3506

AOT_hence ‹x =R y ≡ x = y›3507

using "id-R-thm:4"[THEN "→E", OF "∨I"(1)] "&E" by blast3508

AOT_hence x_eq_y: ‹x = y›3509

using 0 by (metis "≡E"(1))3510

AOT_assume 2: ‹y =R z›3511

AOT_hence 3: ‹InDomainOf(y,R) & InDomainOf(z,R)›3512

using "id-R-thm:2"[THEN "→E"] by blast3513

AOT_hence ‹y =R z ≡ y = z›3514

using "id-R-thm:4"[THEN "→E", OF "∨I"(1)] "&E" by blast3515

AOT_hence ‹y = z›3516

using 2 by (metis "≡E"(1))3517

AOT_hence x_eq_z: ‹x = z›3518

using x_eq_y id_trans by blast3519

AOT_have ‹InDomainOf(x,R) & InDomainOf(z,R)›3520

using 1 3 "&I" "&E" by meson3521

AOT_hence ‹x =R z ≡ x = z›3522

using "id-R-thm:4"[THEN "→E", OF "∨I"(1)] "&E" by blast3523

AOT_thus ‹x =R z›3524

using x_eq_z "≡E"(2) by blast3525

qed3526

474

A.12. Natural Numbers

3527

AOT_define WeakAncestral :: ‹Π ⇒ Π› (‹_+›)3528

"w-ances-df": ‹[R]+ =df [λxy [R]*xy ∨ x =R y]› (775)3529

3530

AOT_theorem "w-ances-df[den1]": ‹[λxy [Π]*xy ∨ x =Π y]↓› (775)3531

by "cqt:2"3532

AOT_theorem "w-ances-df[den2]": ‹[Π]+↓› (775)3533

using "w-ances-df[den1]" "=dfI"(1)[OF "w-ances-df"] by blast3534

3535

AOT_theorem "w-ances": ‹[R]+xy ≡ ([R]*xy ∨ x =R y)› (776)3536

proof -3537

AOT_have 0: ‹[λxy [R*]xy ∨ x =R y]↓›3538

by "cqt:2"3539

AOT_have 1: ‹«(AOT_term_of_var x,AOT_term_of_var y)»↓›3540

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")3541

have 2: ‹«[λµ1...µn [R*]µ1...µn ∨ [(=R)]µ1...µn]xy» =3542

«[λxy [R*]xy ∨ [(=R)]xy]xy»›3543

by (simp add: cond_case_prod_eta)3544

show ?thesis3545

apply (rule "=dfI"(1)[OF "w-ances-df"])3546

apply (fact "w-ances-df[den1]")3547

using "beta-C-meta"[THEN "→E", OF 0, unvarify ν1νn,3548

where τ=‹(_,_)›, simplified, OF 1] 2 by simp3549

qed3550

3551

AOT_theorem "w-ances-her:1": ‹[R]xy → [R]+xy›3552

proof(rule "→I")3553

AOT_assume ‹[R]xy›3554

AOT_hence ‹[R]*xy›3555

using "anc-her:1"[THEN "→E"] by blast3556

AOT_thus ‹[R]+xy›3557

using "w-ances"[THEN "≡E"(2)] "∨I" by blast3558

qed3559

3560

AOT_theorem "w-ances-her:2":3561

‹[F]x & [R]+xy & Hereditary(F, R) → [F]y›3562

proof(rule "→I"; (frule "&E"(1); drule "&E"(2))+)3563

AOT_assume 0: ‹[F]x›3564

AOT_assume 1: ‹Hereditary(F, R)›3565

AOT_assume ‹[R]+xy›3566

AOT_hence ‹[R]*xy ∨ x =R y›3567

using "w-ances"[THEN "≡E"(1)] by simp3568

moreover {3569

AOT_assume ‹[R]*xy›3570

AOT_hence ‹[F]y›3571

using "anc-her:3"[THEN "→E", OF "&I", OF "&I"] 0 1 by blast3572

}3573

moreover {3574

AOT_assume ‹x =R y›3575

AOT_hence ‹x = y›3576

using "id-R-thm:3"[THEN "→E"] by blast3577

AOT_hence ‹[F]y›3578

using 0 "rule=E" by blast3579

}3580

ultimately AOT_show ‹[F]y›3581

by (metis "∨E"(3) "raa-cor:1")3582

qed3583

3584

AOT_theorem "w-ances-her:3": ‹([R]+xy & [R]yz) → [R]*xz›3585

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3586

AOT_assume ‹[R]+xy›3587

moreover AOT_assume Ryz: ‹[R]yz›3588

ultimately AOT_have ‹[R]*xy ∨ x =R y›3589

475

A. Isabelle Theory

using "w-ances"[THEN "≡E"(1)] by metis3590

moreover {3591

AOT_assume R_star_xy: ‹[R]*xy›3592

AOT_have ‹[R]*xz›3593

proof (safe intro!: ances[THEN "≡E"(2)] "→I" GEN)3594

fix F3595

AOT_assume 0: ‹∀z ([R]xz → [F]z) & Hereditary(F,R)›3596

AOT_hence ‹[F]y›3597

using R_star_xy ances[THEN "≡E"(1), OF R_star_xy,3598

THEN "∀E"(2), THEN "→E"] by blast3599

AOT_thus ‹[F]z›3600

using "hered:1"[THEN "≡dfE", OF 0[THEN "&E"(2)], THEN "&E"(2)]3601

"∀E"(2) "→E" Ryz by blast3602

qed3603

}3604

moreover {3605

AOT_assume ‹x =R y›3606

AOT_hence ‹x = y›3607

using "id-R-thm:3"[THEN "→E"] by blast3608

AOT_hence ‹[R]xz›3609

using Ryz "rule=E" id_sym by fast3610

AOT_hence ‹[R]*xz›3611

by (metis "anc-her:1"[THEN "→E"])3612

}3613

ultimately AOT_show ‹[R]*xz›3614

by (metis "∨E"(3) "raa-cor:1")3615

qed3616

3617

AOT_theorem "w-ances-her:4": ‹([R]*xy & [R]yz) → [R]+xz›3618

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3619

AOT_assume ‹[R]*xy›3620

AOT_hence ‹[R]*xy ∨ x =R y›3621

using "∨I" by blast3622

AOT_hence ‹[R]+xy›3623

using "w-ances"[THEN "≡E"(2)] by blast3624

moreover AOT_assume ‹[R]yz›3625

ultimately AOT_have ‹[R]*xz›3626

using "w-ances-her:3"[THEN "→E", OF "&I"] by simp3627

AOT_hence ‹[R]*xz ∨ x =R z›3628

using "∨I" by blast3629

AOT_thus ‹[R]+xz›3630

using "w-ances"[THEN "≡E"(2)] by blast3631

qed3632

3633

AOT_theorem "w-ances-her:5": ‹([R]xy & [R]+yz) → [R]*xz›3634

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3635

AOT_assume 0: ‹[R]xy›3636

AOT_assume ‹[R]+yz›3637

AOT_hence ‹[R]*yz ∨ y =R z›3638

by (metis "≡E"(1) "w-ances")3639

moreover {3640

AOT_assume ‹[R]*yz›3641

AOT_hence ‹[R]*xz›3642

using 0 by (metis "anc-her:4" Adjunction "→E")3643

}3644

moreover {3645

AOT_assume ‹y =R z›3646

AOT_hence ‹y = z›3647

by (metis "id-R-thm:3" "→E")3648

AOT_hence ‹[R]xz›3649

using 0 "rule=E" by fast3650

AOT_hence ‹[R]*xz›3651

by (metis "anc-her:1" "→E")3652

476

A.12. Natural Numbers

}3653

ultimately AOT_show ‹[R]*xz› by (metis "∨E"(2) "reductio-aa:1")3654

qed3655

3656

AOT_theorem "w-ances-her:6": ‹([R]+xy & [R]+yz) → [R]+xz›3657

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3658

AOT_assume 0: ‹[R]+xy›3659

AOT_hence 1: ‹[R]*xy ∨ x =R y›3660

by (metis "≡E"(1) "w-ances")3661

AOT_assume 2: ‹[R]+yz›3662

{3663

AOT_assume ‹x =R y›3664

AOT_hence ‹x = y›3665

by (metis "id-R-thm:3" "→E")3666

AOT_hence ‹[R]+xz›3667

using 2 "rule=E" id_sym by fast3668

}3669

moreover {3670

AOT_assume ‹¬(x =R y)›3671

AOT_hence 3: ‹[R]*xy›3672

using 1 by (metis "∨E"(3))3673

AOT_have ‹[R]*yz ∨ y =R z›3674

using 2 by (metis "≡E"(1) "w-ances")3675

moreover {3676

AOT_assume ‹[R]*yz›3677

AOT_hence ‹[R]*xz›3678

using 3 by (metis "anc-her:6" Adjunction "→E")3679

AOT_hence ‹[R]+xz›3680

by (metis "∨I"(1) "≡E"(2) "w-ances")3681

}3682

moreover {3683

AOT_assume ‹y =R z›3684

AOT_hence ‹y = z›3685

by (metis "id-R-thm:3" "→E")3686

AOT_hence ‹[R]+xz›3687

using 0 "rule=E" id_sym by fast3688

}3689

ultimately AOT_have ‹[R]+xz›3690

by (metis "∨E"(3) "reductio-aa:1")3691

}3692

ultimately AOT_show ‹[R]+xz›3693

by (metis "reductio-aa:1")3694

qed3695

3696

AOT_theorem "w-ances-her:7": ‹[R]*xy → ∃z([R]+xz & [R]zy)›3697

proof(rule "→I")3698

AOT_assume 0: ‹[R]*xy›3699

AOT_have 1: ‹∀z ([R]xz → [Π]z) & Hereditary(Π,R) → [Π]y› if ‹Π↓› for Π3700

using ances[THEN "≡E"(1), THEN "∀E"(1), OF 0] that by blast3701

AOT_have ‹[λy ∃z([R]+xz & [R]zy)]y›3702

proof (rule 1[THEN "→E"]; "cqt:2[lambda]"?;3703

safe intro!: "&I" GEN "→I" "hered:1"[THEN "≡dfI"] "cqt:2")3704

fix z3705

AOT_assume 0: ‹[R]xz›3706

AOT_hence ‹∃z [R]xz› by (rule "∃I")3707

AOT_hence ‹InDomainOf(x, R)› by (metis "≡dfI" "df-1-1:5")3708

AOT_hence ‹x =R x› by (metis "id-R-thm:5" "→E")3709

AOT_hence ‹[R]+xx› by (metis "∨I"(2) "≡E"(2) "w-ances")3710

AOT_hence ‹[R]+xx & [R]xz› using 0 "&I" by blast3711

AOT_hence ‹∃y ([R]+xy & [R]yz)› by (rule "∃I")3712

AOT_thus ‹[λy ∃z ([R]+xz & [R]zy)]z›3713

by (auto intro!: "β←C"(1) "cqt:2")3714

next3715

477

A. Isabelle Theory

fix x’ y3716

AOT_assume Rx’y: ‹[R]x’y›3717

AOT_assume ‹[λy ∃z ([R]+xz & [R]zy)]x’›3718

AOT_hence ‹∃z ([R]+xz & [R]zx’)›3719

using "β→C"(1) by blast3720

then AOT_obtain c where c_prop: ‹[R]+xc & [R]cx’›3721

using "∃E"[rotated] by blast3722

AOT_hence ‹[R]*xx’›3723

by (meson Rx’y "anc-her:1" "anc-her:6" Adjunction "→E" "w-ances-her:3")3724

AOT_hence ‹[R]*xx’ ∨ x =R x’› by (rule "∨I")3725

AOT_hence ‹[R]+xx’› by (metis "≡E"(2) "w-ances")3726

AOT_hence ‹[R]+xx’ & [R]x’y› using Rx’y by (metis "&I")3727

AOT_hence ‹∃z ([R]+xz & [R]zy)› by (rule "∃I")3728

AOT_thus ‹[λy ∃z ([R]+xz & [R]zy)]y›3729

by (auto intro!: "β←C"(1) "cqt:2")3730

qed3731

AOT_thus ‹∃z([R]+xz & [R]zy)›3732

using "β→C"(1) by fast3733

qed3734

3735

AOT_theorem "1-1-R:1": ‹([R]xy & [R]*zy) → [R]+zx› (778.1)3736

proof(rule "→I"; frule "&E"(1); drule "&E"(2))3737

AOT_assume ‹[R]*zy›3738

AOT_hence ‹∃x ([R]+zx & [R]xy)›3739

using "w-ances-her:7"[THEN "→E"] by simp3740

then AOT_obtain a where a_prop: ‹[R]+za & [R]ay›3741

using "∃E"[rotated] by blast3742

moreover AOT_assume ‹[R]xy›3743

ultimately AOT_have ‹x = a›3744

using "df-1-1:2"[THEN "≡dfE", OF RigidOneToOneRelation.ψ, THEN "&E"(1),3745

THEN "≡dfE"[OF "df-1-1:1"], THEN "&E"(2), THEN "∀E"(2),3746

THEN "∀E"(2), THEN "∀E"(2), THEN "→E", OF "&I"]3747

"&E" by blast3748

AOT_thus ‹[R]+zx›3749

using a_prop[THEN "&E"(1)] "rule=E" id_sym by fast3750

qed3751

3752

AOT_theorem "1-1-R:2": ‹[R]xy → (¬[R]*xx → ¬[R]*yy)› (778.2)3753

proof(rule "→I"; rule "useful-tautologies:5"[THEN "→E"]; rule "→I")3754

AOT_assume 0: ‹[R]xy›3755

moreover AOT_assume ‹[R]*yy›3756

ultimately AOT_have ‹[R]+yx›3757

using "1-1-R:1"[THEN "→E", OF "&I"] by blast3758

AOT_thus ‹[R]*xx›3759

using 0 by (metis "&I" "→E" "w-ances-her:5")3760

qed3761

3762

AOT_theorem "1-1-R:3": ‹¬[R]*xx → ([R]+xy → ¬[R]*yy)› (778.3)3763

proof(safe intro!: "→I")3764

AOT_have 0: ‹[λz ¬[R]*zz]↓› by "cqt:2"3765

AOT_assume 1: ‹¬[R]*xx›3766

AOT_assume 2: ‹[R]+xy›3767

AOT_have ‹[λz ¬[R]*zz]y›3768

proof(rule "w-ances-her:2"[unvarify F, OF 0, THEN "→E"];3769

safe intro!: "&I" "hered:1"[THEN "≡dfI"] "cqt:2" GEN "→I")3770

AOT_show ‹[λz ¬[R]*zz]x›3771

by (auto intro!: "β←C"(1) "cqt:2" simp: 1)3772

next3773

AOT_show ‹[R]+xy› by (fact 2)3774

next3775

fix x y3776

AOT_assume ‹[λz ¬[R*]zz]x›3777

AOT_hence ‹¬[R]*xx› by (rule "β→C"(1))3778

478

A.12. Natural Numbers

moreover AOT_assume ‹[R]xy›3779

ultimately AOT_have ‹¬[R]*yy›3780

using "1-1-R:2"[THEN "→E", THEN "→E"] by blast3781

AOT_thus ‹[λz ¬[R*]zz]y›3782

by (auto intro!: "β←C"(1) "cqt:2")3783

qed3784

AOT_thus ‹¬[R]*yy›3785

using "β→C"(1) by blast3786

qed3787

3788

AOT_theorem "1-1-R:4": ‹[R]*xy → InDomainOf(x,R)› (778.4)3789

proof(rule "→I"; rule "df-1-1:5"[THEN "≡dfI"])3790

AOT_assume 1: ‹[R]*xy›3791

AOT_have ‹[λz [R*]xz → ∃y [R]xy]y›3792

proof (safe intro!: "anc-her:2"[unvarify F, THEN "→E"];3793

safe intro!: "cqt:2" "&I" GEN "→I" "hered:1"[THEN "≡dfI"])3794

AOT_show ‹[R]*xy› by (fact 1)3795

next3796

fix z3797

AOT_assume ‹[R]xz›3798

AOT_thus ‹[λz [R*]xz → ∃y [R]xy]z›3799

by (safe intro!: "β←C"(1) "cqt:2")3800

(meson "→I" "existential:2[const_var]")3801

next3802

fix x’ y3803

AOT_assume Rx’y: ‹[R]x’y›3804

AOT_assume ‹[λz [R*]xz → ∃y [R]xy]x’›3805

AOT_hence 0: ‹[R*]xx’ → ∃y [R]xy› by (rule "β→C"(1))3806

AOT_have 1: ‹[R*]xy → ∃y [R]xy›3807

proof(rule "→I")3808

AOT_assume ‹[R]*xy›3809

AOT_hence ‹[R]+xx’› by (metis Rx’y "&I" "1-1-R:1" "→E")3810

AOT_hence ‹[R]*xx’ ∨ x =R x’› by (metis "≡E"(1) "w-ances")3811

moreover {3812

AOT_assume ‹[R]*xx’›3813

AOT_hence ‹∃y [R]xy› using 0 by (metis "→E")3814

}3815

moreover {3816

AOT_assume ‹x =R x’›3817

AOT_hence ‹x = x’› by (metis "id-R-thm:3" "→E")3818

AOT_hence ‹[R]xy› using Rx’y "rule=E" id_sym by fast3819

AOT_hence ‹∃y [R]xy› by (rule "∃I")3820

}3821

ultimately AOT_show ‹∃y [R]xy›3822

by (metis "∨E"(3) "reductio-aa:1")3823

qed3824

AOT_show ‹[λz [R*]xz → ∃y [R]xy]y›3825

by (auto intro!: "β←C"(1) "cqt:2" 1)3826

qed3827

AOT_hence ‹[R*]xy → ∃y [R]xy› by (rule "β→C"(1))3828

AOT_thus ‹∃y [R]xy› using 1 "→E" by blast3829

qed3830

3831

AOT_theorem "1-1-R:5": ‹[R]+xy → InDomainOf(x,R)› (778.5)3832

proof (rule "→I")3833

AOT_assume ‹[R]+xy›3834

AOT_hence ‹[R]*xy ∨ x =R y›3835

by (metis "≡E"(1) "w-ances")3836

moreover {3837

AOT_assume ‹[R]*xy›3838

AOT_hence ‹InDomainOf(x,R)›3839

using "1-1-R:4" "→E" by blast3840

}3841

479

A. Isabelle Theory

moreover {3842

AOT_assume ‹x =R y›3843

AOT_hence ‹InDomainOf(x,R)›3844

by (metis "Conjunction Simplification"(1) "id-R-thm:2" "→E")3845

}3846

ultimately AOT_show ‹InDomainOf(x,R)›3847

by (metis "∨E"(3) "reductio-aa:1")3848

qed3849

3850

AOT_theorem "pre-ind": (779)3851

‹([F]z & ∀x∀y(([R]+zx & [R]+zy) → ([R]xy → ([F]x → [F]y)))) →3852

∀x ([R]+zx → [F]x)›3853

proof(safe intro!: "→I" GEN)3854

AOT_have den: ‹[λy [F]y & [R]+zy]↓› by "cqt:2"3855

fix x3856

AOT_assume ϑ: ‹[F]z & ∀x∀y(([R]+zx & [R]+zy) → ([R]xy → ([F]x → [F]y)))›3857

AOT_assume 0: ‹[R]+zx›3858

3859

AOT_have ‹[λy [F]y & [R]+zy]x›3860

proof (rule "w-ances-her:2"[unvarify F, OF den, THEN "→E"]; safe intro!: "&I")3861

AOT_show ‹[λy [F]y & [R]+zy]z›3862

proof (safe intro!: "β←C"(1) "cqt:2" "&I")3863

AOT_show ‹[F]z› using ϑ "&E" by blast3864

next3865

AOT_show ‹[R]+zz›3866

by (rule "w-ances"[THEN "≡E"(2), OF "∨I"(2)])3867

(meson "0" "id-R-thm:5" "1-1-R:5" "→E")3868

qed3869

next3870

AOT_show ‹[R]+zx› by (fact 0)3871

next3872

AOT_show ‹Hereditary([λy [F]y & [R]+zy],R)›3873

proof (safe intro!: "hered:1"[THEN "≡dfI"] "&I" "cqt:2" GEN "→I")3874

fix x’ y3875

AOT_assume 1: ‹[R]x’y›3876

AOT_assume ‹[λy [F]y & [R]+zy]x’›3877

AOT_hence 2: ‹[F]x’ & [R]+zx’› by (rule "β→C"(1))3878

AOT_have ‹[R]*zy› using 1 2[THEN "&E"(2)]3879

by (metis Adjunction "modus-tollens:1" "reductio-aa:1" "w-ances-her:3")3880

AOT_hence 3: ‹[R]+zy› by (metis "∨I"(1) "≡E"(2) "w-ances")3881

AOT_show ‹[λy [F]y & [R]+zy]y›3882

proof (safe intro!: "β←C"(1) "cqt:2" "&I" 3)3883

AOT_show ‹[F]y›3884

proof (rule ϑ[THEN "&E"(2), THEN "∀E"(2), THEN "∀E"(2),3885

THEN "→E", THEN "→E", THEN "→E"])3886

AOT_show ‹[R]+zx’ & [R]+zy›3887

using 2 3 "&E" "&I" by blast3888

next3889

AOT_show ‹[R]x’y› by (fact 1)3890

next3891

AOT_show ‹[F]x’› using 2 "&E" by blast3892

qed3893

qed3894

qed3895

qed3896

AOT_thus ‹[F]x› using "β→C"(1) "&E"(1) by fast3897

qed3898

3899

text‹The following is not part of PLM, but a theorem of AOT.3900

It states that the predecessor relation coexists with numbering a property.3901

We will use this fact to derive the predecessor axiom, which asserts that the3902

predecessor relation denotes, from the fact that our models validate that3903

numbering a property denotes.›3904

480

A.12. Natural Numbers

AOT_theorem pred_coex:3905

‹[λxy ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))]↓ ≡ ∀F ([λx Numbers(x,F)]↓)›3906

proof(safe intro!: "≡I" "→I" GEN)3907

fix F3908

let ?P = ‹«[λxy ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))]»›3909

AOT_assume ‹[«?P»]↓›3910

AOT_hence ‹�[«?P»]↓›3911

using "exist-nec" "→E" by blast3912

moreover AOT_have3913

‹�[«?P»]↓ → �(∀x∀y(∀F([F]x ≡ [F]y) → (Numbers(x,F) ≡ Numbers(y,F))))›3914

proof(rule RM; safe intro!: "→I" GEN)3915

AOT_modally_strict {3916

fix x y3917

AOT_assume pred_den: ‹[«?P»]↓›3918

AOT_hence pred_equiv:3919

‹[«?P»]xy ≡ ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))› for x y3920

by (safe intro!: "beta-C-meta"[unvarify ν1νn, where τ=‹(_,_)›, THEN "→E",3921

rotated, OF pred_den, simplified]3922

tuple_denotes[THEN "≡dfI"] "&I" "cqt:2")3923

text‹We show as a subproof that any natural cardinal that is not zero3924

has a predecessor.›3925

AOT_have CardinalPredecessor:3926

‹∃y [«?P»]yx› if card_x: ‹NaturalCardinal(x)› and x_nonzero: ‹x 6= 0› for x3927

proof -3928

AOT_have ‹∃G x = #G›3929

using card[THEN "≡dfE", OF card_x].3930

AOT_hence ‹∃G Numbers(x,G)›3931

using "eq-df-num"[THEN "≡E"(1)] by blast3932

then AOT_obtain G’ where numxG’: ‹Numbers(x,G’)›3933

using "∃E"[rotated] by blast3934

AOT_obtain G where ‹Rigidifies(G,G’)›3935

using "rigid-der:3" "∃E"[rotated] by blast3936

3937

AOT_hence H: ‹Rigid(G) & ∀x ([G]x ≡ [G’]x)›3938

using "df-rigid-rel:2"[THEN "≡dfE"] by blast3939

AOT_have H_rigid: ‹�∀x ([G]x → �[G]x)›3940

using H[THEN "&E"(1), THEN "df-rigid-rel:1"[THEN "≡dfE"], THEN "&E"(2)].3941

AOT_hence ‹∀x �([G]x → �[G]x)›3942

using "CBF" "→E" by blast3943

AOT_hence R: ‹�([G]x → �[G]x)› for x using "∀E"(2) by blast3944

AOT_hence rigid: ‹[G]x ≡ A[G]x› for x3945

by (metis "≡E"(6) "oth-class-taut:3:a" "sc-eq-fur:2" "→E")3946

AOT_have ‹G ≡E G’›3947

proof (safe intro!: eqE[THEN "≡dfI"] "&I" "cqt:2" GEN "→I")3948

AOT_show ‹[G]x ≡ [G’]x› for x using H[THEN "&E"(2)] "∀E"(2) by fast3949

qed3950

AOT_hence ‹G ≈E G’›3951

by (rule "apE-eqE:2"[THEN "→E", OF "&I", rotated])3952

(simp add: "eq-part:1")3953

AOT_hence numxG: ‹Numbers(x,G)›3954

using "num-tran:1"[THEN "→E", THEN "≡E"(2)] numxG’ by blast3955

3956

{3957

AOT_assume ‹¬∃y(y 6= x & [«?P»]yx)›3958

AOT_hence ‹∀y ¬(y 6= x & [«?P»]yx)›3959

using "cqt-further:4" "→E" by blast3960

AOT_hence ‹¬(y 6= x & [«?P»]yx)› for y3961

using "∀E"(2) by blast3962

AOT_hence 0: ‹¬y 6= x ∨ ¬[«?P»]yx› for y3963

using "¬¬E" "intro-elim:3:c" "oth-class-taut:5:a" by blast3964

{3965

fix y3966

AOT_assume ‹[«?P»]yx›3967

481

A. Isabelle Theory

AOT_hence ‹¬y 6= x›3968

using 0 "¬¬I" "con-dis-i-e:4:c" by blast3969

AOT_hence ‹y = x›3970

using "=-infix" "≡dfI" "raa-cor:4" by blast3971

} note Pxy_imp_eq = this3972

AOT_have ‹[«?P»]xx›3973

proof(rule "raa-cor:1")3974

AOT_assume notPxx: ‹¬[«?P»]xx›3975

AOT_hence ‹¬∃F∃u([F]u & Numbers(x,F) & Numbers(x,[F]-u))›3976

using pred_equiv "intro-elim:3:c" by blast3977

AOT_hence ‹∀F ¬∃u([F]u & Numbers(x,F) & Numbers(x,[F]-u))›3978

using "cqt-further:4"[THEN "→E"] by blast3979

AOT_hence ‹¬∃u([F]u & Numbers(x,F) & Numbers(x,[F]-u))› for F3980

using "∀E"(2) by blast3981

AOT_hence ‹∀y ¬(O!y & ([F]y & Numbers(x,F) & Numbers(x,[F]-y)))› for F3982

using "cqt-further:4"[THEN "→E"] by blast3983

AOT_hence 0: ‹¬(O!u & ([F]u & Numbers(x,F) & Numbers(x,[F]-u)))› for F u3984

using "∀E"(2) by blast3985

AOT_have ‹�¬∃u [G]u›3986

proof(rule "raa-cor:1")3987

AOT_assume ‹¬�¬∃u [G]u›3988

AOT_hence ‹♦∃u [G]u›3989

using "≡dfI" "conventions:5" by blast3990

AOT_hence ‹∃u ♦[G]u›3991

by (metis "Ordinary.res-var-bound-reas[BF♦]"[THEN "→E"])3992

then AOT_obtain u where posGu: ‹♦[G]u›3993

using "Ordinary.∃E"[rotated] by meson3994

AOT_hence Gu: ‹[G]u›3995

by (meson "B♦" "K♦" "→E" R)3996

AOT_have ‹¬([G]u & Numbers(x,G) & Numbers(x,[G]-u))›3997

using 0 Ordinary.ψ3998

by (metis "con-dis-i-e:1" "raa-cor:1")3999

AOT_hence notnumx: ‹¬Numbers(x,[G]-u)›4000

using Gu numxG "con-dis-i-e:1" "raa-cor:5" by metis4001

AOT_obtain y where numy: ‹Numbers(y,[G]-u)›4002

using "num:1"[unvarify G, OF "F-u[den]"] "∃E"[rotated] by blast4003

AOT_hence ‹[G]u & Numbers(x,G) & Numbers(y,[G]-u)›4004

using Gu numxG "&I" by blast4005

AOT_hence ‹∃u ([G]u & Numbers(x,G) & Numbers(y,[G]-u))›4006

by (rule "Ordinary.∃I")4007

AOT_hence ‹∃G∃u ([G]u & Numbers(x,G) & Numbers(y,[G]-u))›4008

by (rule "∃I")4009

AOT_hence ‹[«?P»]yx›4010

using pred_equiv[THEN "≡E"(2)] by blast4011

AOT_hence ‹y = x› using Pxy_imp_eq by blast4012

AOT_hence ‹Numbers(x,[G]-u)›4013

using numy "rule=E" by fast4014

AOT_thus ‹p & ¬p› for p using notnumx "reductio-aa:1" by blast4015

qed4016

AOT_hence ‹¬∃u [G]u›4017

using "qml:2"[axiom_inst, THEN "→E"] by blast4018

AOT_hence num0G: ‹Numbers(0, G)›4019

using "0F:1"[THEN "≡E"(1)] by blast4020

AOT_hence ‹x = 0›4021

using "pre-Hume"[unvarify x, THEN "→E", OF "zero:2", OF "&I",4022

THEN "≡E"(2), OF num0G, OF numxG, OF "eq-part:1"]4023

id_sym by blast4024

moreover AOT_have ‹¬x = 0›4025

using x_nonzero4026

using "=-infix" "≡dfE" by blast4027

ultimately AOT_show ‹p & ¬p› for p using "reductio-aa:1" by blast4028

qed4029

}4030

482

A.12. Natural Numbers

AOT_hence ‹[«?P»]xx ∨ ∃y (y 6= x & [«?P»]yx)›4031

using "con-dis-i-e:3:a" "con-dis-i-e:3:b" "raa-cor:1" by blast4032

moreover {4033

AOT_assume ‹[«?P»]xx›4034

AOT_hence ‹∃y [«?P»]yx›4035

by (rule "∃I")4036

}4037

moreover {4038

AOT_assume ‹∃y (y 6= x & [«?P»]yx)›4039

then AOT_obtain y where ‹y 6= x & [«?P»]yx›4040

using "∃E"[rotated] by blast4041

AOT_hence ‹[«?P»]yx›4042

using "&E" by blast4043

AOT_hence ‹∃y [«?P»]yx›4044

by (rule "∃I")4045

}4046

ultimately AOT_show ‹∃y [«?P»]yx›4047

using "∨E"(1) "→I" by blast4048

qed4049

4050

text‹Given above lemma, we can show that if one of two indistinguishable objects4051

numbers a property, the other one numbers this property as well.›4052

AOT_assume indist: ‹∀F([F]x ≡ [F]y)›4053

AOT_assume numxF: ‹Numbers(x,F)›4054

AOT_hence 0: ‹NaturalCardinal(x)›4055

by (metis "eq-num:6" "vdash-properties:10")4056

text‹We show by case distinction that x equals y.4057

As first case we consider x to be non-zero.›4058

{4059

AOT_assume ‹¬(x = 0)›4060

AOT_hence ‹x 6= 0›4061

by (metis "=-infix" "≡dfI")4062

AOT_hence ‹∃y [«?P»]yx›4063

using CardinalPredecessor 0 by blast4064

then AOT_obtain z where Pxz: ‹[«?P»]zx›4065

using "∃E"[rotated] by blast4066

AOT_hence ‹[λy [«?P»]zy]x›4067

by (safe intro!: "β←C" "cqt:2")4068

AOT_hence ‹[λy [«?P»]zy]y›4069

by (safe intro!: indist[THEN "∀E"(1), THEN "≡E"(1)] "cqt:2")4070

AOT_hence Pyz: ‹[«?P»]zy›4071

using "β→C"(1) by blast4072

AOT_hence ‹∃F∃u ([F]u & Numbers(y,F) & Numbers(z,[F]-u))›4073

using Pyz pred_equiv[THEN "≡E"(1)] by blast4074

then AOT_obtain F1 where ‹∃u ([F1]u & Numbers(y,F1) & Numbers(z,[F1]-u))›4075

using "∃E"[rotated] by blast4076

then AOT_obtain u where u_prop: ‹[F1]u & Numbers(y,F1) & Numbers(z,[F1]-u)›4077

using "Ordinary.∃E"[rotated] by meson4078

AOT_have ‹∃F∃u ([F]u & Numbers(x,F) & Numbers(z,[F]-u))›4079

using Pxz pred_equiv[THEN "≡E"(1)] by blast4080

then AOT_obtain F2 where ‹∃u ([F2]u & Numbers(x,F2) & Numbers(z,[F2]-u))›4081

using "∃E"[rotated] by blast4082

then AOT_obtain v where v_prop: ‹[F2]v & Numbers(x,F2) & Numbers(z,[F2]-v)›4083

using "Ordinary.∃E"[rotated] by meson4084

AOT_have ‹[F2]-v ≈E [F1]-u›4085

using "hume-strict:1"[unvarify F G, THEN "≡E"(1), OF "F-u[den]",4086

OF "F-u[den]", OF "∃I"(2)[where β=z], OF "&I"]4087

v_prop u_prop "&E" by blast4088

AOT_hence ‹F2 ≈E F1›4089

using "P’-eq"[THEN "→E", OF "&I", OF "&I"]4090

u_prop v_prop "&E" by meson4091

AOT_hence ‹x = y›4092

using "pre-Hume"[THEN "→E", THEN "≡E"(2), OF "&I"]4093

483

A. Isabelle Theory

v_prop u_prop "&E" by blast4094

}4095

text‹The second case handles x being equal to zero.›4096

moreover {4097

fix u4098

AOT_assume x_is_zero: ‹x = 0›4099

moreover AOT_have ‹Numbers(0,[λz z =E u]-u)›4100

proof (safe intro!: "0F:1"[unvarify F, THEN "≡E"(1)] "cqt:2" "raa-cor:2"4101

"F-u[den]"[unvarify F])4102

AOT_assume ‹∃v [[λz z =E u]-u]v›4103

then AOT_obtain v where ‹[[λz z =E u]-u]v›4104

using "Ordinary.∃E"[rotated] by meson4105

AOT_hence ‹[λz z =E u]v & v 6=E u›4106

by (auto intro: "F-u"[THEN "=dfE"(1), where τ 1τ n="(_,_)", simplified]4107

intro!: "cqt:2" "F-u[equiv]"[unvarify F, THEN "≡E"(1)]4108

"F-u[den]"[unvarify F])4109

AOT_thus ‹p & ¬p› for p4110

using "β→C" "thm-neg=E"[THEN "≡E"(1)] "&E" "&I"4111

"raa-cor:3" by fast4112

qed4113

ultimately AOT_have 0: ‹Numbers(x,[λz z =E u]-u)›4114

using "rule=E" id_sym by fast4115

AOT_have ‹∃y Numbers(y,[λz z =E u])›4116

by (safe intro!: "num:1"[unvarify G] "cqt:2")4117

then AOT_obtain z where ‹Numbers(z,[λz z =E u])›4118

using "∃E" by metis4119

moreover AOT_have ‹[λz z=E u]u›4120

by (safe intro!: "β←C" "cqt:2" "ord=Eequiv:1"[THEN "→E"] Ordinary.ψ)4121

ultimately AOT_have4122

1: ‹[λz z=E u]u & Numbers(z,[λz z=E u]) & Numbers(x,[λz z=E u]-u)›4123

using 0 "&I" by auto4124

AOT_hence ‹∃v([λz z=E u]v & Numbers(z,[λz z =E u]) & Numbers(x,[λz z=E u]-v))›4125

by (rule "Ordinary.∃I")4126

AOT_hence ‹∃F∃u([F]u & Numbers(z,[F]) & Numbers(x,[F]-u))›4127

by (rule "∃I"; "cqt:2")4128

AOT_hence Px1: ‹[«?P»]xz›4129

using "beta-C-cor:2"[THEN "→E", OF pred_den,4130

THEN tuple_forall[THEN "≡dfE"], THEN "∀E"(2),4131

THEN "∀E"(2), THEN "≡E"(2)] by simp4132

AOT_hence ‹[λy [«?P»]yz]x›4133

by (safe intro!: "β←C" "cqt:2")4134

AOT_hence ‹[λy [«?P»]yz]y›4135

by (safe intro!: indist[THEN "∀E"(1), THEN "≡E"(1)] "cqt:2")4136

AOT_hence Py1: ‹[«?P»]yz›4137

using "β→C" by blast4138

AOT_hence ‹∃F∃u([F]u & Numbers(z,[F]) & Numbers(y,[F]-u))›4139

using "β→C" by fast4140

then AOT_obtain G where ‹∃u([G]u & Numbers(z,[G]) & Numbers(y,[G]-u))›4141

using "∃E"[rotated] by blast4142

then AOT_obtain v where 2: ‹[G]v & Numbers(z,[G]) & Numbers(y,[G]-v)›4143

using "Ordinary.∃E"[rotated] by meson4144

with 1 2 AOT_have ‹[λz z =E u] ≈E G›4145

by (auto intro!: "hume-strict:1"[unvarify F, THEN "≡E"(1), rotated,4146

OF "∃I"(2)[where β=z], OF "&I"] "cqt:2"4147

dest: "&E")4148

AOT_hence 3: ‹[λz z =E u]-u ≈E [G]-v›4149

using 1 24150

by (safe_step intro!: "eqP’"[unvarify F, THEN "→E"])4151

(auto dest: "&E" intro!: "cqt:2" "&I")4152

with 1 2 AOT_have ‹x = y›4153

by (auto intro!: "pre-Hume"[unvarify G H, THEN "→E",4154

THEN "≡E"(2), rotated 3, OF 3]4155

"F-u[den]"[unvarify F] "cqt:2" "&I"4156

484

A.12. Natural Numbers

dest: "&E")4157

}4158

ultimately AOT_have ‹x = y›4159

using "∨E"(1) "→I" "reductio-aa:1" by blast4160

text‹Now since x numbers F, so does y.›4161

AOT_hence ‹Numbers(y,F)›4162

using numxF "rule=E" by fast4163

} note 0 = this4164

text‹The only thing left is to generalize this result to a biconditional.›4165

AOT_modally_strict {4166

fix x y4167

AOT_assume ‹[«?P»]↓›4168

moreover AOT_assume ‹∀F([F]x ≡ [F]y)›4169

moreover AOT_have ‹∀F([F]y ≡ [F]x)›4170

by (metis "cqt-basic:11" "intro-elim:3:a" calculation(2))4171

ultimately AOT_show ‹Numbers(x,F) ≡ Numbers(y,F)›4172

using 0 "≡I" "→I" by auto4173

}4174

qed4175

ultimately AOT_show ‹[λx Numbers(x,F)]↓›4176

using "kirchner-thm:1"[THEN "≡E"(2)] "→E" by fast4177

next4178

text‹The converse can be shown by coexistence.›4179

AOT_assume ‹∀F [λx Numbers(x,F)]↓›4180

AOT_hence ‹[λx Numbers(x,F)]↓› for F4181

using "∀E"(2) by blast4182

AOT_hence ‹�[λx Numbers(x,F)]↓› for F4183

using "exist-nec"[THEN "→E"] by blast4184

AOT_hence ‹∀F �[λx Numbers(x,F)]↓›4185

by (rule GEN)4186

AOT_hence ‹�∀F [λx Numbers(x,F)]↓›4187

using BF[THEN "→E"] by fast4188

moreover AOT_have4189

‹�∀F [λx Numbers(x,F)]↓ →4190

�∀x ∀y (∃F ∃u ([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x) ≡4191

∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u)))›4192

proof(rule RM; safe intro!: "→I" GEN)4193

AOT_modally_strict {4194

fix x y4195

AOT_assume 0: ‹∀F [λx Numbers(x,F)]↓›4196

AOT_show ‹∃F ∃u ([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x) ≡4197

∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4198

proof(safe intro!: "≡I" "→I")4199

AOT_assume ‹∃F ∃u ([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x)›4200

then AOT_obtain F where4201

‹∃u ([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x)›4202

using "∃E"[rotated] by blast4203

then AOT_obtain u where ‹[F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x›4204

using "Ordinary.∃E"[rotated] by meson4205

AOT_hence ‹[F]u & Numbers(y,F) & Numbers(x,[F]-u)›4206

by (auto intro!: "&I" dest: "&E" "β→C")4207

AOT_thus ‹∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4208

using "∃I" "Ordinary.∃I" by fast4209

next4210

AOT_assume ‹∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4211

then AOT_obtain F where ‹∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4212

using "∃E"[rotated] by blast4213

then AOT_obtain u where ‹[F]u & Numbers(y,F) & Numbers(x,[F]-u)›4214

using "Ordinary.∃E"[rotated] by meson4215

AOT_hence ‹[F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x›4216

by (auto intro!: "&I" "β←C" 0[THEN "∀E"(1)] "F-u[den]"4217

dest: "&E" intro: "cqt:2")4218

AOT_hence ‹∃u([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x)›4219

485

A. Isabelle Theory

by (rule "Ordinary.∃I")4220

AOT_thus ‹∃F∃u([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x)›4221

by (rule "∃I")4222

qed4223

}4224

qed4225

ultimately AOT_have4226

‹�∀x ∀y (∃F ∃u ([F]u & [λz Numbers(z,F)]y & [λz Numbers(z,[F]-u)]x) ≡4227

∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u)))›4228

using "→E" by blast4229

AOT_thus ‹[λxy ∃F ∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))]↓›4230

by (rule "safe-ext[2]"[axiom_inst, THEN "→E", OF "&I", rotated]) "cqt:2"4231

qed4232

4233

text‹The following is not part of PLM, but a consequence of extended relation4234

comprehension and can be used to @{emph ‹derive›} the predecessor axiom.›4235

AOT_theorem numbers_prop_den: ‹[λx Numbers(x,G)]↓›4236

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])4237

AOT_show ‹[λx A!x & [λx ∀F (x[F] ≡ [λz A[F]z] ≈E G)]x]↓›4238

by "cqt:2"4239

next4240

AOT_have 0: ‹`� [λx ∀F (x[F] ≡ [λz A[F]z] ≈E G)]↓›4241

proof(safe intro!: Comprehension_3[THEN "→E"] "→I" RN GEN)4242

AOT_modally_strict {4243

fix F H4244

AOT_assume ‹�H ≡E F›4245

AOT_hence ‹�∀u ([H]u ≡ [F]u)›4246

by (AOT_subst (reverse) ‹∀u ([H]u ≡ [F]u)› ‹H ≡E F›)4247

(safe intro!: "eqE"[THEN "≡Df", THEN "≡S"(1), OF "&I"] "cqt:2")4248

AOT_hence ‹∀u �([H]u ≡ [F]u)›4249

by (metis "Ordinary.res-var-bound-reas[CBF]" "→E")4250

AOT_hence ‹�([H]u ≡ [F]u)› for u4251

using "Ordinary.∀E" by fast4252

AOT_hence ‹A([H]u ≡ [F]u)› for u4253

by (metis "nec-imp-act" "→E")4254

AOT_hence ‹A([F]u ≡ [H]u)› for u4255

by (metis "Act-Basic:5" "Commutativity of ≡" "intro-elim:3:b")4256

AOT_hence ‹[λz A[F]z] ≡E [λz A[H]z]›4257

by (safe intro!: "eqE"[THEN "≡dfI"] "&I" "cqt:2" Ordinary.GEN;4258

AOT_subst ‹[λz A[F]z]u› ‹A[F]u› for: u F)4259

(auto intro!: "beta-C-meta"[THEN "→E"] "cqt:2"4260

"Act-Basic:5"[THEN "≡E"(1)])4261

AOT_hence ‹[λz A[F]z] ≈E [λz A[H]z]›4262

by (safe intro!: "apE-eqE:1"[unvarify F G, THEN "→E"] "cqt:2")4263

AOT_thus ‹[λz A[F]z] ≈E G ≡ [λz A[H]z] ≈E G›4264

using "≡I" "eq-part:2[terms]" "eq-part:3[terms]" "→E" "→I"4265

by metis4266

}4267

qed4268

AOT_show ‹�∀x (A!x & [λx ∀F (x[F] ≡ [λz A[F]z] ≈E G)]x ≡ Numbers(x,G))›4269

proof (safe intro!: RN GEN)4270

AOT_modally_strict {4271

fix x4272

AOT_show ‹A!x & [λx ∀F (x[F] ≡ [λz A[F]z] ≈E G)]x ≡ Numbers(x,G)›4273

by (AOT_subst_def numbers; AOT_subst_thm "beta-C-meta"[THEN "→E", OF 0])4274

(auto intro!: "beta-C-meta"[THEN "→E", OF 0] "≡I" "→I" "&I" "cqt:2"4275

dest: "&E")4276

}4277

qed4278

qed4279

4280

text‹The two theorems above allow us to derive4281

the predecessor axiom of PLM as theorem.›4282

486

A.12. Natural Numbers

4283

AOT_theorem pred: ‹[λxy ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))]↓› (782)4284

using pred_coex numbers_prop_den["∀I" G] "≡E" by blast4285

4286

AOT_define Predecessor :: ‹Π› (‹P›)4287

"pred-thm:1": (783.1)4288

‹P =df [λxy ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))]›4289

4290

AOT_theorem "pred-thm:2": ‹P↓› (783.2)4291

using pred "pred-thm:1" "rule-id-df:2:b[zero]" by blast4292

4293

AOT_theorem "pred-thm:3": (783.3)4294

‹[P]xy ≡ ∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4295

by (auto intro!: "beta-C-meta"[unvarify ν1νn, where τ=‹(_,_)›, THEN "→E",4296

rotated, OF pred, simplified]4297

tuple_denotes[THEN "≡dfI"] "&I" "cqt:2" pred4298

intro: "=dfI"(2)[OF "pred-thm:1"])4299

4300

AOT_theorem "pred-1-1:1": ‹[P]xy → �[P]xy› (784.1)4301

proof(rule "→I")4302

AOT_assume ‹[P]xy›4303

AOT_hence ‹∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4304

using "≡E"(1) "pred-thm:3" by fast4305

then AOT_obtain F where ‹∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4306

using "∃E"[rotated] by blast4307

then AOT_obtain u where props: ‹[F]u & Numbers(y,F) & Numbers(x,[F]-u)›4308

using "Ordinary.∃E"[rotated] by meson4309

AOT_obtain G where Ridigifies_G_F: ‹Rigidifies(G, F)›4310

by (metis "instantiation" "rigid-der:3")4311

AOT_hence ξ: ‹�∀x([G]x → �[G]x)› and ζ: ‹∀x([G]x ≡ [F]x)›4312

using "df-rigid-rel:2"[THEN "≡dfE", THEN "&E"(1),4313

THEN "≡dfE"[OF "df-rigid-rel:1"], THEN "&E"(2)]4314

"df-rigid-rel:2"[THEN "≡dfE", THEN "&E"(2)] by blast+4315

4316

AOT_have rigid_num_nec: ‹Numbers(x,F) & Rigidifies(G,F) → �Numbers(x,G)›4317

for x G F4318

proof(rule "→I"; frule "&E"(1); drule "&E"(2))4319

fix G F x4320

AOT_assume Numbers_xF: ‹Numbers(x,F)›4321

AOT_assume ‹Rigidifies(G,F)›4322

AOT_hence ξ: ‹Rigid(G)› and ζ: ‹∀x([G]x ≡ [F]x)›4323

using "df-rigid-rel:2"[THEN "≡dfE"] "&E" by blast+4324

AOT_thus ‹�Numbers(x,G)›4325

proof (safe intro!:4326

"num-cont:2"[THEN "→E", OF ξ, THEN "qml:2"[axiom_inst, THEN "→E"],4327

THEN "∀E"(2), THEN "→E"]4328

"num-tran:3"[THEN "→E", THEN "≡E"(1), rotated, OF Numbers_xF]4329

eqE[THEN "≡dfI"]4330

"&I" "cqt:2[const_var]"[axiom_inst] Ordinary.GEN "→I")4331

AOT_show ‹[F]u ≡ [G]u› for u4332

using ζ[THEN "∀E"(2)] by (metis "≡E"(6) "oth-class-taut:3:a")4333

qed4334

qed4335

AOT_have ‹�Numbers(y,G)›4336

using rigid_num_nec[THEN "→E", OF "&I", OF props[THEN "&E"(1), THEN "&E"(2)],4337

OF Ridigifies_G_F].4338

moreover {4339

AOT_have ‹Rigidifies([G]-u, [F]-u)›4340

proof (safe intro!: "df-rigid-rel:1"[THEN "≡dfI"] "df-rigid-rel:2"[THEN "≡dfI"]4341

"&I" "F-u[den]" GEN "≡I" "→I")4342

AOT_have ‹�∀x([G]x → �[G]x) → �∀x([[G]-u]x → �[[G]-u]x)›4343

proof (rule RM; safe intro!: "→I" GEN)4344

AOT_modally_strict {4345

487

A. Isabelle Theory

fix x4346

AOT_assume 0: ‹∀x([G]x → �[G]x)›4347

AOT_assume 1: ‹[[G]-u]x›4348

AOT_have ‹[λx [G]x & x 6=E u]x›4349

apply (rule "F-u"[THEN "=dfE"(1), where τ 1τ n="(_,_)", simplified])4350

apply "cqt:2[lambda]"4351

by (fact 1)4352

AOT_hence ‹[G]x & x 6=E u›4353

by (rule "β→C"(1))4354

AOT_hence 2: ‹�[G]x› and 3: ‹�x 6=E u›4355

using "&E" 0[THEN "∀E"(2), THEN "→E"] "id-nec4:1" "≡E"(1) by blast+4356

AOT_show ‹�[[G]-u]x›4357

apply (AOT_subst ‹[[G]-u]x› ‹[G]x & x 6=E u›)4358

apply (rule "F-u"[THEN "=dfI"(1), where τ 1τ n="(_,_)", simplified])4359

apply "cqt:2[lambda]"4360

apply (rule "beta-C-meta"[THEN "→E"])4361

apply "cqt:2[lambda]"4362

using 2 3 "KBasic:3" "≡S"(2) "≡E"(2) by blast4363

}4364

qed4365

AOT_thus ‹�∀x([[G]-u]x → �[[G]-u]x)› using ξ "→E" by blast4366

next4367

fix x4368

AOT_assume ‹[[G]-u]x›4369

AOT_hence ‹[λx [G]x & x 6=E u]x›4370

by (auto intro: "F-u"[THEN "=dfE"(1), where τ 1τ n="(_,_)", simplified]4371

intro!: "cqt:2")4372

AOT_hence ‹[G]x & x 6=E u›4373

by (rule "β→C"(1))4374

AOT_hence ‹[F]x & x 6=E u›4375

using ζ "&I" "&E"(1) "&E"(2) "≡E"(1) "rule-ui:3" by blast4376

AOT_hence ‹[λx [F]x & x 6=E u]x›4377

by (auto intro!: "β←C"(1) "cqt:2")4378

AOT_thus ‹[[F]-u]x›4379

by (auto intro: "F-u"[THEN "=dfI"(1), where τ 1τ n="(_,_)", simplified]4380

intro!: "cqt:2")4381

next4382

fix x4383

AOT_assume ‹[[F]-u]x›4384

AOT_hence ‹[λx [F]x & x 6=E u]x›4385

by (auto intro: "F-u"[THEN "=dfE"(1), where τ 1τ n="(_,_)", simplified]4386

intro!: "cqt:2")4387

AOT_hence ‹[F]x & x 6=E u›4388

by (rule "β→C"(1))4389

AOT_hence ‹[G]x & x 6=E u›4390

using ζ "&I" "&E"(1) "&E"(2) "≡E"(2) "rule-ui:3" by blast4391

AOT_hence ‹[λx [G]x & x 6=E u]x›4392

by (auto intro!: "β←C"(1) "cqt:2")4393

AOT_thus ‹[[G]-u]x›4394

by (auto intro: "F-u"[THEN "=dfI"(1), where τ 1τ n="(_,_)", simplified]4395

intro!: "cqt:2")4396

qed4397

AOT_hence ‹�Numbers(x,[G]-u)›4398

using rigid_num_nec[unvarify F G, OF "F-u[den]", OF "F-u[den]", THEN "→E",4399

OF "&I", OF props[THEN "&E"(2)]] by blast4400

}4401

moreover AOT_have ‹�[G]u›4402

using props[THEN "&E"(1), THEN "&E"(1), THEN ζ[THEN "∀E"(2), THEN "≡E"(2)]]4403

ξ[THEN "qml:2"[axiom_inst, THEN "→E"], THEN "∀E"(2), THEN "→E"]4404

by blast4405

ultimately AOT_have ‹�([G]u & Numbers(y,G) & Numbers(x,[G]-u))›4406

by (metis "KBasic:3" "&I" "≡E"(2))4407

AOT_hence ‹∃u (�([G]u & Numbers(y,G) & Numbers(x,[G]-u)))›4408

488

A.12. Natural Numbers

by (rule "Ordinary.∃I")4409

AOT_hence ‹�∃u ([G]u & Numbers(y,G) & Numbers(x,[G]-u))›4410

using "Ordinary.res-var-bound-reas[Buridan]" "→E" by fast4411

AOT_hence ‹∃F �∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4412

by (rule "∃I")4413

AOT_hence 0: ‹�∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4414

using Buridan "vdash-properties:10" by fast4415

AOT_show ‹�[P]xy›4416

by (AOT_subst ‹[P]xy› ‹∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›;4417

simp add: "pred-thm:3" 0)4418

qed4419

4420

AOT_theorem "pred-1-1:2": ‹Rigid(P)› (784.2)4421

by (safe intro!: "df-rigid-rel:1"[THEN "≡dfI"] "pred-thm:2" "&I"4422

RN tuple_forall[THEN "≡dfI"];4423

safe intro!: GEN "pred-1-1:1")4424

4425

AOT_theorem "pred-1-1:3": ‹1-1(P)› (784.3)4426

proof (safe intro!: "df-1-1:1"[THEN "≡dfI"] "pred-thm:2" "&I" GEN "→I";4427

frule "&E"(1); drule "&E"(2))4428

fix x y z4429

AOT_assume ‹[P]xz›4430

AOT_hence ‹∃F∃u ([F]u & Numbers(z,F) & Numbers(x,[F]-u))›4431

using "pred-thm:3"[THEN "≡E"(1)] by blast4432

then AOT_obtain F where ‹∃u ([F]u & Numbers(z,F) & Numbers(x,[F]-u))›4433

using "∃E"[rotated] by blast4434

then AOT_obtain u where u_prop: ‹[F]u & Numbers(z,F) & Numbers(x,[F]-u)›4435

using "Ordinary.∃E"[rotated] by meson4436

AOT_assume ‹[P]yz›4437

AOT_hence ‹∃F∃u ([F]u & Numbers(z,F) & Numbers(y,[F]-u))›4438

using "pred-thm:3"[THEN "≡E"(1)] by blast4439

then AOT_obtain G where ‹∃u ([G]u & Numbers(z,G) & Numbers(y,[G]-u))›4440

using "∃E"[rotated] by blast4441

then AOT_obtain v where v_prop: ‹[G]v & Numbers(z,G) & Numbers(y,[G]-v)›4442

using "Ordinary.∃E"[rotated] by meson4443

AOT_show ‹x = y›4444

proof (rule "pre-Hume"[unvarify G H, OF "F-u[den]", OF "F-u[den]",4445

THEN "→E", OF "&I", THEN "≡E"(2)])4446

AOT_show ‹Numbers(x, [F]-u)›4447

using u_prop "&E" by blast4448

next4449

AOT_show ‹Numbers(y, [G]-v)›4450

using v_prop "&E" by blast4451

next4452

AOT_have ‹F ≈E G›4453

using u_prop[THEN "&E"(1), THEN "&E"(2)]4454

using v_prop[THEN "&E"(1), THEN "&E"(2)]4455

using "num-tran:2"[THEN "→E", OF "&I"] by blast4456

AOT_thus ‹[F]-u ≈E [G]-v›4457

using u_prop[THEN "&E"(1), THEN "&E"(1)]4458

using v_prop[THEN "&E"(1), THEN "&E"(1)]4459

using eqP’[THEN "→E", OF "&I", OF "&I"]4460

by blast4461

qed4462

qed4463

4464

AOT_theorem "pred-1-1:4": ‹Rigid1-1(P)› (784.4)4465

by (meson "≡dfI" "&I" "df-1-1:2" "pred-1-1:2" "pred-1-1:3")4466

4467

AOT_theorem "assume-anc:1": (785.1)4468

‹[P]* = [λxy ∀F((∀z([P]xz → [F]z) & Hereditary(F,P)) → [F]y)]›4469

apply (rule "=dfI"(1)[OF "ances-df"])4470

apply "cqt:2[lambda]"4471

489

A. Isabelle Theory

apply (rule "=I"(1))4472

by "cqt:2[lambda]"4473

4474

AOT_theorem "assume-anc:2": ‹P*↓› (785.2)4475

using "t=t-proper:1" "assume-anc:1" "vdash-properties:10" by blast4476

4477

AOT_theorem "assume-anc:3": (785.3)4478

‹[P*]xy ≡ ∀F((∀z([P]xz → [F]z) & ∀x’∀y’([P]x’y’ → ([F]x’ → [F]y’))) → [F]y)›4479

proof -4480

AOT_have prod_den: ‹`� «(AOT_term_of_var x1,AOT_term_of_var x2)»↓›4481

for x1 x2 :: ‹κ AOT_var›4482

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")4483

AOT_have den: ‹[λxy ∀F((∀z([P]xz → [F]z) & Hereditary(F,P)) → [F]y)]↓›4484

by "cqt:2[lambda]"4485

AOT_have 1: ‹[P*]xy ≡ ∀F((∀z([P]xz → [F]z) & Hereditary(F,P)) → [F]y)›4486

apply (rule "rule=E"[rotated, OF "assume-anc:1"[symmetric]])4487

by (rule "beta-C-meta"[unvarify ν1νn, OF prod_den, THEN "→E",4488

simplified, OF den, simplified])4489

show ?thesis4490

apply (AOT_subst (reverse) ‹∀x’∀y’ ([P]x’y’ → ([F]x’ → [F]y’))›4491

‹Hereditary(F,P)› for: F :: ‹<κ>›)4492

using "hered:1"[THEN "≡Df", THEN "≡S"(1), OF "&I", OF "pred-thm:2",4493

OF "cqt:2[const_var]"[axiom_inst]] apply blast4494

by (fact 1)4495

qed4496

4497

AOT_theorem "no-pred-0:1": ‹¬∃x [P]x 0› (786.1)4498

proof(rule "raa-cor:2")4499

AOT_assume ‹∃x [P]x 0›4500

then AOT_obtain a where ‹[P]a 0›4501

using "∃E"[rotated] by blast4502

AOT_hence ‹∃F∃u ([F]u & Numbers(0, F) & Numbers(a, [F]-u))›4503

using "pred-thm:3"[unvarify y, OF "zero:2", THEN "≡E"(1)] by blast4504

then AOT_obtain F where ‹∃u ([F]u & Numbers(0, F) & Numbers(a, [F]-u))›4505

using "∃E"[rotated] by blast4506

then AOT_obtain u where ‹[F]u & Numbers(0, F) & Numbers(a, [F]-u)›4507

using "Ordinary.∃E"[rotated] by meson4508

AOT_hence ‹[F]u› and num0_F: ‹Numbers(0, F)›4509

using "&E" "&I" by blast+4510

AOT_hence ‹∃u [F]u›4511

using "Ordinary.∃I" by fast4512

moreover AOT_have ‹¬∃u [F]u›4513

using num0_F "≡E"(2) "0F:1" by blast4514

ultimately AOT_show ‹p & ¬p› for p4515

by (metis "raa-cor:3")4516

qed4517

4518

AOT_theorem "no-pred-0:2": ‹¬∃x [P*]x 0› (786.2)4519

proof(rule "raa-cor:2")4520

AOT_assume ‹∃x [P*]x 0›4521

then AOT_obtain a where ‹[P*]a 0›4522

using "∃E"[rotated] by blast4523

AOT_hence ‹∃z [P]z 0›4524

using "anc-her:5"[unvarify R y, OF "zero:2",4525

OF "pred-thm:2", THEN "→E"] by auto4526

AOT_thus ‹∃z [P]z 0 & ¬∃z [P]z 0›4527

by (metis "no-pred-0:1" "raa-cor:3")4528

qed4529

4530

AOT_theorem "no-pred-0:3": ‹¬[P*]0 0› (786.3)4531

by (metis "existential:1" "no-pred-0:2" "reductio-aa:1" "zero:2")4532

4533

AOT_theorem "assume1:1": ‹(=P) = [λxy ∃z ([P]xz & [P]yz)]› (787.1)4534

490

A.12. Natural Numbers

apply (rule "=dfI"(1)[OF "id-d-R"])4535

apply "cqt:2[lambda]"4536

apply (rule "=I"(1))4537

by "cqt:2[lambda]"4538

4539

AOT_theorem "assume1:2": ‹x =P y ≡ ∃z ([P]xz & [P]yz)› (787.2)4540

proof (rule "rule=E"[rotated, OF "assume1:1"[symmetric]])4541

AOT_have prod_den: ‹`� «(AOT_term_of_var x1,AOT_term_of_var x2)»↓›4542

for x1 x2 :: ‹κ AOT_var›4543

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")4544

AOT_have 1: ‹[λxy ∃z ([P]xz & [P]yz)]↓›4545

by "cqt:2"4546

AOT_show ‹[λxy ∃z ([P]xz & [P]yz)]xy ≡ ∃z ([P]xz & [P]yz)›4547

using "beta-C-meta"[THEN "→E", OF 1, unvarify ν1νn,4548

OF prod_den, simplified] by blast4549

qed4550

4551

AOT_theorem "assume1:3": ‹[P]+ = [λxy [P]*xy ∨ x =P y]› (787.3)4552

apply (rule "=dfI"(1)[OF "w-ances-df"])4553

apply (simp add: "w-ances-df[den1]")4554

apply (rule "rule=E"[rotated, OF "assume1:1"[symmetric]])4555

apply (rule "=dfI"(1)[OF "id-d-R"])4556

apply "cqt:2[lambda]"4557

apply (rule "=I"(1))4558

by "cqt:2[lambda]"4559

4560

AOT_theorem "assume1:4": ‹[P]+↓› (787.4)4561

using "w-ances-df[den2]".4562

4563

AOT_theorem "assume1:5": ‹[P]+xy ≡ [P]*xy ∨ x =P y› (787.5)4564

proof -4565

AOT_have 0: ‹[λxy [P]*xy ∨ x =P y]↓› by "cqt:2"4566

AOT_have prod_den: ‹`� «(AOT_term_of_var x1, AOT_term_of_var x2)»↓›4567

for x1 x2 :: ‹κ AOT_var›4568

by (simp add: "&I" "ex:1:a" prod_denotesI "rule-ui:3")4569

show ?thesis4570

apply (rule "rule=E"[rotated, OF "assume1:3"[symmetric]])4571

using "beta-C-meta"[THEN "→E", OF 0, unvarify ν1νn, OF prod_den, simplified]4572

by (simp add: cond_case_prod_eta)4573

qed4574

4575

AOT_define NaturalNumber :: ‹τ› (‹N›)4576

"nnumber:1": ‹N =df [λx [P]+0x]› (788.1)4577

4578

AOT_theorem "nnumber:2": ‹N↓› (788.2)4579

by (rule "=dfI"(2)[OF "nnumber:1"]; "cqt:2[lambda]")4580

4581

AOT_theorem "nnumber:3": ‹[N]x ≡ [P]+0x› (788.3)4582

apply (rule "=dfI"(2)[OF "nnumber:1"])4583

apply "cqt:2[lambda]"4584

apply (rule "beta-C-meta"[THEN "→E"])4585

by "cqt:2[lambda]"4586

4587

AOT_theorem "0-n": ‹[N]0› (789)4588

proof (safe intro!: "nnumber:3"[unvarify x, OF "zero:2", THEN "≡E"(2)]4589

"assume1:5"[unvarify x y, OF "zero:2", OF "zero:2", THEN "≡E"(2)]4590

"∨I"(2) "assume1:2"[unvarify x y, OF "zero:2", OF "zero:2", THEN "≡E"(2)])4591

fix u4592

AOT_have den: ‹[λx O!x & x =E u]↓› by "cqt:2[lambda]"4593

AOT_obtain a where a_prop: ‹Numbers(a, [λx O!x & x =E u])›4594

using "num:1"[unvarify G, OF den] "∃E"[rotated] by blast4595

AOT_have ‹[P]0a›4596

proof (safe intro!: "pred-thm:3"[unvarify x, OF "zero:2", THEN "≡E"(2)]4597

491

A. Isabelle Theory

"∃I"(1)[where τ=‹«[λx O!x & x =E u]»›]4598

"Ordinary.∃I"[where β=u] "&I" den4599

"0F:1"[unvarify F, OF "F-u[den]", unvarify F,4600

OF den, THEN "≡E"(1)])4601

AOT_show ‹[λx [O!]x & x =E u]u›4602

by (auto intro!: "β←C"(1) "cqt:2" "&I" "ord=Eequiv:1"[THEN "→E"]4603

Ordinary.ψ)4604

next4605

AOT_show ‹Numbers(a,[λx [O!]x & x =E u])›4606

using a_prop.4607

next4608

AOT_show ‹¬∃v [[λx [O!]x & x =E u]-u]v›4609

proof(rule "raa-cor:2")4610

AOT_assume ‹∃v [[λx [O!]x & x =E u]-u]v›4611

then AOT_obtain v where ‹[[λx [O!]x & x =E u]-u]v›4612

using "Ordinary.∃E"[rotated] "&E" by blast4613

AOT_hence ‹[λz [λx [O!]x & x =E u]z & z 6=E u]v›4614

apply (rule "F-u"[THEN "=dfE"(1), where τ 1τ n="(_,_)", simplified, rotated])4615

by "cqt:2[lambda]"4616

AOT_hence ‹[λx [O!]x & x =E u]v & v 6=E u›4617

by (rule "β→C"(1))4618

AOT_hence ‹v =E u› and ‹v 6=E u›4619

using "β→C"(1) "&E" by blast+4620

AOT_hence ‹v =E u & ¬(v =E u)›4621

by (metis "≡E"(4) "reductio-aa:1" "thm-neg=E")4622

AOT_thus ‹p & ¬p› for p4623

by (metis "raa-cor:1")4624

qed4625

qed4626

AOT_thus ‹∃z ([P]0z & [P]0z)›4627

by (safe intro!: "&I" "∃I"(2)[where β=a])4628

qed4629

4630

AOT_theorem "mod-col-num:1": ‹[N]x → �[N]x› (790.1)4631

proof(rule "→I")4632

AOT_have nec0N: ‹[λx �[N]x]0›4633

by (auto intro!: "β←C"(1) "cqt:2" simp: "zero:2" RN "0-n")4634

AOT_have 1: ‹[λx �[N]x]0 &4635

∀x∀y ([[P]+]0x & [[P]+]0y → ([P]xy → ([λx �[N]x]x → [λx �[N]x]y))) →4636

∀x ([[P]+]0x → [λx �[N]x]x)›4637

by (auto intro!: "cqt:2"4638

intro: "pre-ind"[unconstrain R, unvarify β, OF "pred-thm:2",4639

THEN "→E", OF "pred-1-1:4", unvarify z, OF "zero:2",4640

unvarify F])4641

AOT_have ‹∀x ([[P]+]0x → [λx �[N]x]x)›4642

proof (rule 1[THEN "→E"]; safe intro!: "&I" GEN "→I" nec0N;4643

frule "&E"(1); drule "&E"(2))4644

fix x y4645

AOT_assume ‹[P]xy›4646

AOT_hence 0: ‹�[P]xy›4647

by (metis "pred-1-1:1" "→E")4648

AOT_assume ‹[λx �[N]x]x›4649

AOT_hence ‹�[N]x›4650

by (rule "β→C"(1))4651

AOT_hence ‹�([P]xy & [N]x)›4652

by (metis "0" "KBasic:3" Adjunction "≡E"(2) "→E")4653

moreover AOT_have ‹�([P]xy & [N]x) → �[N]y›4654

proof (rule RM; rule "→I"; frule "&E"(1); drule "&E"(2))4655

AOT_modally_strict {4656

AOT_assume 0: ‹[P]xy›4657

AOT_assume ‹[N]x›4658

AOT_hence 1: ‹[[P]+]0x›4659

by (metis "≡E"(1) "nnumber:3")4660

492

A.12. Natural Numbers

AOT_show ‹[N]y›4661

apply (rule "nnumber:3"[THEN "≡E"(2)])4662

apply (rule "assume1:5"[unvarify x, OF "zero:2", THEN "≡E"(2)])4663

apply (rule "∨I"(1))4664

apply (rule "w-ances-her:3"[unconstrain R, unvarify β, OF "pred-thm:2",4665

THEN "→E", OF "pred-1-1:4", unvarify x,4666

OF "zero:2", THEN "→E"])4667

apply (rule "&I")4668

apply (fact 1)4669

by (fact 0)4670

}4671

qed4672

ultimately AOT_have ‹�[N]y›4673

by (metis "→E")4674

AOT_thus ‹[λx �[N]x]y›4675

by (auto intro!: "β←C"(1) "cqt:2")4676

qed4677

AOT_hence 0: ‹[[P]+]0x → [λx �[N]x]x›4678

using "∀E"(2) by blast4679

AOT_assume ‹[N]x›4680

AOT_hence ‹[[P]+]0x›4681

by (metis "≡E"(1) "nnumber:3")4682

AOT_hence ‹[λx �[N]x]x›4683

using 0[THEN "→E"] by blast4684

AOT_thus ‹�[N]x›4685

by (rule "β→C"(1))4686

qed4687

4688

AOT_theorem "mod-col-num:2": ‹Rigid(N)› (790.2)4689

by (safe intro!: "df-rigid-rel:1"[THEN "≡dfI"] "&I" RN GEN4690

"mod-col-num:1" "nnumber:2")4691

4692

AOT_register_rigid_restricted_type4693

Number: ‹[N]κ›4694

proof4695

AOT_modally_strict {4696

AOT_show ‹∃x [N]x›4697

by (rule "∃I"(1)[where τ=‹«0»›]; simp add: "0-n" "zero:2")4698

}4699

next4700

AOT_modally_strict {4701

AOT_show ‹[N]κ → κ↓› for κ4702

by (simp add: "→I" "cqt:5:a[1]"[axiom_inst, THEN "→E", THEN "&E"(2)])4703

}4704

next4705

AOT_modally_strict {4706

AOT_show ‹∀x([N]x → �[N]x)›4707

by (simp add: GEN "mod-col-num:1")4708

}4709

qed4710

AOT_register_variable_names4711

Number: m n k i j4712

4713

AOT_theorem "0-pred": ‹¬∃n [P]n 0› (791)4714

proof (rule "raa-cor:2")4715

AOT_assume ‹∃n [P]n 0›4716

then AOT_obtain n where ‹[P]n 0›4717

using "Number.∃E"[rotated] by meson4718

AOT_hence ‹∃x [P]x 0›4719

using "&E" "∃I" by fast4720

AOT_thus ‹∃x [P]x 0 & ¬∃x [P]x 0›4721

using "no-pred-0:1" "&I" by auto4722

qed4723

493

A. Isabelle Theory

4724

AOT_theorem "no-same-succ": (792)4725

‹∀n∀m∀k([P]nk & [P]mk → n = m)›4726

proof(safe intro!: Number.GEN "→I")4727

fix n m k4728

AOT_assume ‹[P]nk & [P]mk›4729

AOT_thus ‹n = m›4730

by (safe intro!: "cqt:2[const_var]"[axiom_inst] "df-1-1:3"[4731

unvarify R, OF "pred-thm:2",4732

THEN "→E", OF "pred-1-1:4", THEN "qml:2"[axiom_inst, THEN "→E"],4733

THEN "≡dfE"[OF "df-1-1:1"], THEN "&E"(2), THEN "∀E"(1), THEN "∀E"(1),4734

THEN "∀E"(1)[where τ=‹AOT_term_of_var (Number.Rep k)›], THEN "→E"])4735

qed4736

4737

AOT_theorem induction: (793)4738

‹∀F([F]0 & ∀n∀m([P]nm → ([F]n → [F]m)) → ∀n[F]n)›4739

proof (safe intro!: GEN[where ’a=‹<κ>›] Number.GEN "&I" "→I";4740

frule "&E"(1); drule "&E"(2))4741

fix F n4742

AOT_assume F0: ‹[F]0›4743

AOT_assume 0: ‹∀n∀m([P]nm → ([F]n → [F]m))›4744

{4745

fix x y4746

AOT_assume ‹[[P]+]0x & [[P]+]0y›4747

AOT_hence ‹[N]x› and ‹[N]y›4748

using "&E" "≡E"(2) "nnumber:3" by blast+4749

moreover AOT_assume ‹[P]xy›4750

moreover AOT_assume ‹[F]x›4751

ultimately AOT_have ‹[F]y›4752

using 0[THEN "∀E"(2), THEN "→E", THEN "∀E"(2), THEN "→E",4753

THEN "→E", THEN "→E"] by blast4754

} note 1 = this4755

AOT_have 0: ‹[[P]+]0n›4756

by (metis "≡E"(1) "nnumber:3" Number.ψ)4757

AOT_show ‹[F]n›4758

apply (rule "pre-ind"[unconstrain R, unvarify β, THEN "→E", OF "pred-thm:2",4759

OF "pred-1-1:4", unvarify z, OF "zero:2", THEN "→E",4760

THEN "∀E"(2), THEN "→E"];4761

safe intro!: 0 "&I" GEN "→I" F0)4762

using 1 by blast4763

qed4764

4765

AOT_theorem "suc-num:1": ‹[P]nx → [N]x› (794.1)4766

proof(rule "→I")4767

AOT_have ‹[[P]+]0 n›4768

by (meson Number.ψ "≡E"(1) "nnumber:3")4769

moreover AOT_assume ‹[P]nx›4770

ultimately AOT_have ‹[[P]*]0 x›4771

using "w-ances-her:3"[unconstrain R, unvarify β, OF "pred-thm:2", THEN "→E",4772

OF "pred-1-1:4", unvarify x, OF "zero:2",4773

THEN "→E", OF "&I"]4774

by blast4775

AOT_hence ‹[[P]+]0 x›4776

using "assume1:5"[unvarify x, OF "zero:2", THEN "≡E"(2), OF "∨I"(1)]4777

by blast4778

AOT_thus ‹[N]x›4779

by (metis "≡E"(2) "nnumber:3")4780

qed4781

4782

AOT_theorem "suc-num:2": ‹[[P]*]nx → [N]x› (794.2)4783

proof(rule "→I")4784

AOT_have ‹[[P]+]0 n›4785

using Number.ψ "≡E"(1) "nnumber:3" by blast4786

494

A.12. Natural Numbers

AOT_assume ‹[[P]*]n x›4787

AOT_hence ‹∀F (∀z ([P]nz → [F]z) & ∀x’∀y’ ([P]x’y’ → ([F]x’ → [F]y’)) → [F]x)›4788

using "assume-anc:3"[THEN "≡E"(1)] by blast4789

AOT_hence ϑ: ‹∀z ([P]nz → [N]z) & ∀x’∀y’ ([P]x’y’ → ([N]x’ → [N]y’)) → [N]x›4790

using "∀E"(1) "nnumber:2" by blast4791

AOT_show ‹[N]x›4792

proof (safe intro!: ϑ[THEN "→E"] GEN "→I" "&I")4793

AOT_show ‹[N]z› if ‹[P]nz› for z4794

using Number.ψ "suc-num:1" that "→E" by blast4795

next4796

AOT_show ‹[N]y› if ‹[P]xy› and ‹[N]x› for x y4797

using "suc-num:1"[unconstrain n, THEN "→E"] that "→E" by blast4798

qed4799

qed4800

4801

AOT_theorem "suc-num:3": ‹[P]+nx → [N]x› (794.3)4802

proof (rule "→I")4803

AOT_assume ‹[P]+nx›4804

AOT_hence ‹[P]*nx ∨ n =P x›4805

by (metis "assume1:5" "≡E"(1))4806

moreover {4807

AOT_assume ‹[P]*nx›4808

AOT_hence ‹[N]x›4809

by (metis "suc-num:2" "→E")4810

}4811

moreover {4812

AOT_assume ‹n =P x›4813

AOT_hence ‹n = x›4814

using "id-R-thm:3"[unconstrain R, unvarify β, OF "pred-thm:2",4815

THEN "→E", OF "pred-1-1:4", THEN "→E"] by blast4816

AOT_hence ‹[N]x›4817

by (metis "rule=E" Number.ψ)4818

}4819

ultimately AOT_show ‹[N]x›4820

by (metis "∨E"(3) "reductio-aa:1")4821

qed4822

4823

AOT_theorem "pred-num": ‹[P]xn → [N]x› (795)4824

proof (rule "→I")4825

AOT_assume 0: ‹[P]xn›4826

AOT_have ‹[[P]+]0 n›4827

using Number.ψ "≡E"(1) "nnumber:3" by blast4828

AOT_hence ‹[[P]*]0 n ∨ 0 =P n›4829

using "assume1:5"[unvarify x, OF "zero:2"] by (metis "≡E"(1))4830

moreover {4831

AOT_assume ‹0 =P n›4832

AOT_hence ‹∃z ([P]0z & [P]nz)›4833

using "assume1:2"[unvarify x, OF "zero:2", THEN "≡E"(1)] by blast4834

then AOT_obtain a where ‹[P]0a & [P]na› using "∃E"[rotated] by blast4835

AOT_hence ‹0 = n›4836

using "pred-1-1:3"[THEN "df-1-1:1"[THEN "≡dfE"], THEN "&E"(2),4837

THEN "∀E"(1), OF "zero:2", THEN "∀E"(2),4838

THEN "∀E"(2), THEN "→E"] by blast4839

AOT_hence ‹[P]x 0›4840

using 0 "rule=E" id_sym by fast4841

AOT_hence ‹∃x [P]x 0›4842

by (rule "∃I")4843

AOT_hence ‹∃x [P]x 0 & ¬∃x [P]x 0›4844

by (metis "no-pred-0:1" "raa-cor:3")4845

}4846

ultimately AOT_have ‹[[P]*]0n›4847

by (metis "∨E"(3) "raa-cor:1")4848

AOT_hence ‹∃z ([[P]+]0z & [P]zn)›4849

495

A. Isabelle Theory

using "w-ances-her:7"[unconstrain R, unvarify β, OF "pred-thm:2",4850

THEN "→E", OF "pred-1-1:4", unvarify x,4851

OF "zero:2", THEN "→E"] by blast4852

then AOT_obtain b where b_prop: ‹[[P]+]0b & [P]bn›4853

using "∃E"[rotated] by blast4854

AOT_hence ‹[N]b›4855

by (metis "&E"(1) "≡E"(2) "nnumber:3")4856

moreover AOT_have ‹x = b›4857

using "pred-1-1:3"[THEN "df-1-1:1"[THEN "≡dfE"], THEN "&E"(2),4858

THEN "∀E"(2), THEN "∀E"(2), THEN "∀E"(2), THEN "→E",4859

OF "&I", OF 0, OF b_prop[THEN "&E"(2)]].4860

ultimately AOT_show ‹[N]x›4861

using "rule=E" id_sym by fast4862

qed4863

4864

AOT_theorem "nat-card": ‹[N]x → NaturalCardinal(x)› (796)4865

proof(rule "→I")4866

AOT_assume ‹[N]x›4867

AOT_hence ‹[[P]+]0x›4868

by (metis "≡E"(1) "nnumber:3")4869

AOT_hence ‹[[P]*]0x ∨ 0 =P x›4870

using "assume1:5"[unvarify x, OF "zero:2", THEN "≡E"(1)] by blast4871

moreover {4872

AOT_assume ‹[[P]*]0x›4873

then AOT_obtain a where ‹[P]ax›4874

using "anc-her:5"[unvarify R x, OF "zero:2", OF "pred-thm:2", THEN "→E"]4875

"∃E"[rotated] by blast4876

AOT_hence ‹∃F∃u ([F]u & Numbers(x,F) & Numbers(a,[F]-u))›4877

using "pred-thm:3"[THEN "≡E"(1)] by blast4878

then AOT_obtain F where ‹∃u ([F]u & Numbers(x,F) & Numbers(a,[F]-u))›4879

using "∃E"[rotated] by blast4880

then AOT_obtain u where ‹[F]u & Numbers(x,F) & Numbers(a,[F]-u)›4881

using "Ordinary.∃E"[rotated] by meson4882

AOT_hence ‹NaturalCardinal(x)›4883

using "eq-num:6"[THEN "→E"] "&E" by blast4884

}4885

moreover {4886

AOT_assume ‹0 =P x›4887

AOT_hence ‹0 = x›4888

using "id-R-thm:3"[unconstrain R, unvarify β, OF "pred-thm:2",4889

THEN "→E", OF "pred-1-1:4", unvarify x,4890

OF "zero:2", THEN "→E"] by blast4891

AOT_hence ‹NaturalCardinal(x)›4892

by (metis "rule=E" "zero-card")4893

}4894

ultimately AOT_show ‹NaturalCardinal(x)›4895

by (metis "∨E"(2) "raa-cor:1")4896

qed4897

4898

AOT_theorem "pred-func:1": ‹[P]xy & [P]xz → y = z› (797.1)4899

proof (rule "→I"; frule "&E"(1); drule "&E"(2))4900

AOT_assume ‹[P]xy›4901

AOT_hence ‹∃F∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4902

using "pred-thm:3"[THEN "≡E"(1)] by blast4903

then AOT_obtain F where ‹∃u ([F]u & Numbers(y,F) & Numbers(x,[F]-u))›4904

using "∃E"[rotated] by blast4905

then AOT_obtain a where4906

Oa: ‹O!a›4907

and a_prop: ‹[F]a & Numbers(y,F) & Numbers(x,[F]-a)›4908

using "∃E"[rotated] "&E" by blast4909

AOT_assume ‹[P]xz›4910

AOT_hence ‹∃F∃u ([F]u & Numbers(z,F) & Numbers(x,[F]-u))›4911

using "pred-thm:3"[THEN "≡E"(1)] by blast4912

496

A.12. Natural Numbers

then AOT_obtain G where ‹∃u ([G]u & Numbers(z,G) & Numbers(x,[G]-u))›4913

using "∃E"[rotated] by blast4914

then AOT_obtain b where Ob: ‹O!b›4915

and b_prop: ‹[G]b & Numbers(z,G) & Numbers(x,[G]-b)›4916

using "∃E"[rotated] "&E" by blast4917

AOT_have ‹[F]-a ≈E [G]-b›4918

using "num-tran:2"[unvarify G H, OF "F-u[den]", OF "F-u[den]",4919

THEN "→E", OF "&I", OF a_prop[THEN "&E"(2)],4920

OF b_prop[THEN "&E"(2)]].4921

AOT_hence ‹F ≈E G›4922

using "P’-eq"[unconstrain u, THEN "→E", OF Oa, unconstrain v, THEN "→E",4923

OF Ob, THEN "→E", OF "&I", OF "&I"]4924

a_prop[THEN "&E"(1), THEN "&E"(1)]4925

b_prop[THEN "&E"(1), THEN "&E"(1)] by blast4926

AOT_thus ‹y = z›4927

using "pre-Hume"[THEN "→E", THEN "≡E"(2), OF "&I",4928

OF a_prop[THEN "&E"(1), THEN "&E"(2)],4929

OF b_prop[THEN "&E"(1), THEN "&E"(2)]]4930

by blast4931

qed4932

4933

AOT_theorem "pred-func:2": ‹[P]nm & [P]nk → m = k› (797.2)4934

using "pred-func:1".4935

4936

AOT_theorem being_number_of_den: ‹[λx x = #G]↓›4937

proof (rule "safe-ext"[axiom_inst, THEN "→E"]; safe intro!: "&I" GEN RN)4938

AOT_show ‹[λx Numbers(x,[λz A[G]z])]↓›4939

by (rule numbers_prop_den[unvarify G]) "cqt:2[lambda]"4940

next4941

AOT_modally_strict {4942

AOT_show ‹Numbers(x,[λz A[G]z]) ≡ x = #G› for x4943

using "eq-num:2".4944

}4945

qed4946

4947

axiomatization ω_nat :: ‹ω ⇒ nat› where ω_nat: ‹surj ω_nat›4948

text‹Unfortunately, since the axiom requires the type @{typ ω}4949

to have an infinite domain, @{command nitpick} can only find a potential model4950

and no genuine model.4951

However, since we could trivially choose @{typ ω} as a copy of @{typ nat},4952

we can still be assured that above axiom is consistent.›4953

lemma ‹True› nitpick[satisfy, user_axioms, card nat=1, expect = potential] ..4954

4955

AOT_axiom "modal-axiom": (798)4956

‹∃x([N]x & x = #G) → ♦∃y([E!]y & ∀u (A[G]u → u 6=E y))›4957

proof(rule AOT_model_axiomI) AOT_modally_strict {4958

text‹The actual extension on the ordinary objects of a property is the4959

set of ordinary urelements that exemplifies the property in the4960

designated actual world.›4961

define act_ωext :: ‹<κ> ⇒ ω set› where4962

‹act_ωext ≡ λ Π . {x :: ω . [w0 |= [Π]«ωκ x»]}›4963

text‹Encoding a property with infinite actual extension on the ordinary objects4964

denotes a property by extended relation comprehension.›4965

AOT_have enc_finite_act_ωext_den:4966

‹`� [λx ∃F(¬«εo w. finite (act_ωext F)» & x[F])]↓›4967

proof(safe intro!: Comprehension_1[THEN "→E"] RN GEN "→I")4968

AOT_modally_strict {4969

fix F G4970

AOT_assume ‹�G ≡E F›4971

AOT_hence ‹AG ≡E F›4972

using "nec-imp-act"[THEN "→E"] by blast4973

AOT_hence ‹A(G↓ & F↓ & ∀u([G]u ≡ [F]u))›4974

by (AOT_subst_def (reverse) eqE)4975

497

A. Isabelle Theory

hence ‹[w0 |= [G]«ωκ x»] = [w0 |= [F]«ωκ x»]› for x4976

by (auto dest!: "∀E"(1) "→E"4977

simp: AOT_model_denotes_κ_def AOT_sem_denotes AOT_sem_conj4978

AOT_model_ωκ_ordinary AOT_sem_act AOT_sem_equiv)4979

AOT_thus ‹¬«εo w. finite (act_ωext (AOT_term_of_var F))» ≡4980

¬«εo w. finite (act_ωext (AOT_term_of_var G))»›4981

by (simp add: AOT_sem_not AOT_sem_equiv act_ωext_def4982

AOT_model_proposition_choice_simp)4983

}4984

qed4985

text‹By coexistence, encoding only properties with finite actual extension4986

on the ordinary objects denotes.›4987

AOT_have ‹[λx ∀F(x[F] → «εo w. finite (act_ωext F)»)]↓›4988

proof(rule "safe-ext"[axiom_inst, THEN "→E"]; safe intro!: "&I" RN GEN)4989

AOT_show ‹[λx ¬[λx ∃F(¬«εo w. finite (act_ωext F)» & x[F])]x]↓›4990

by "cqt:2"4991

next4992

AOT_modally_strict {4993

fix x4994

AOT_show ‹¬[λx ∃F (¬«εo w. finite (act_ωext F)» & x[F])]x ≡4995

∀F(x[F] → «εo w. finite (act_ωext F)»)›4996

by (AOT_subst ‹[λx ∃F (¬«εo w. finite (act_ωext F)» & x[F])]x›4997

‹∃F (¬«εo w. finite (act_ωext F)» & x[F])›;4998

(rule "beta-C-meta"[THEN "→E"])?)4999

(auto simp: enc_finite_act_ωext_den AOT_sem_equiv AOT_sem_not5000

AOT_sem_forall AOT_sem_imp AOT_sem_conj AOT_sem_exists)5001

}5002

qed5003

text‹We show by induction that any property encoded by a natural number5004

has a finite actual extension on the ordinary objects.›5005

AOT_hence ‹[λx ∀F(x[F] → «εo w. finite (act_ωext F)»)]n› for n5006

proof(rule induction[THEN "∀E"(1), THEN "→E", THEN "Number.∀E"];5007

safe intro!: "&I" "Number.GEN" "β←C" "zero:2" "→I" "cqt:2"5008

dest!: "β→C")5009

AOT_show ‹∀F(0[F] → «εo w. finite (act_ωext F)»)›5010

proof(safe intro!: GEN "→I")5011

fix F5012

AOT_assume ‹0[F]›5013

AOT_actually {5014

AOT_hence ‹¬∃u [F]u›5015

using "zero=:2" "intro-elim:3:a" AOT_sem_enc_nec by blast5016

AOT_hence ‹∀x ¬(O!x & [F]x)›5017

using "cqt-further:4" "vdash-properties:10" by blast5018

hence ‹¬([w0 |= [F]«ωκ x»])› for x5019

by (auto dest!: "∀E"(1)[where τ=‹ωκ x›]5020

simp: AOT_sem_not AOT_sem_conj AOT_model_ωκ_ordinary5021

"russell-axiom[exe,1].ψ_denotes_asm")5022

}5023

AOT_thus ‹«εo w. finite (act_ωext (AOT_term_of_var F))»›5024

by (auto simp: AOT_model_proposition_choice_simp act_ωext_def)5025

qed5026

next5027

fix n m5028

AOT_assume ‹[P]nm›5029

AOT_hence ‹∃F∃u ([F]u & Numbers(m,F) & Numbers(n,[F]-u))›5030

using "pred-thm:3"[THEN "≡E"(1)] by blast5031

then AOT_obtain G where ‹∃u ([G]u & Numbers(m,G) & Numbers(n,[G]-u))›5032

using "∃E"[rotated] by blast5033

then AOT_obtain u where 0: ‹[G]u & Numbers(m,G) & Numbers(n,[G]-u)›5034

using "Ordinary.∃E"[rotated] by meson5035

5036

AOT_assume n_prop: ‹∀F(n[F] → «εo w. finite (act_ωext F)»)›5037

AOT_show ‹∀F(m[F] → «εo w. finite (act_ωext F)»)›5038

498

A.12. Natural Numbers

proof(safe intro!: GEN "→I")5039

fix F5040

AOT_assume ‹m[F]›5041

AOT_hence 1: ‹[λx A[F]x] ≈E G›5042

using 0[THEN "&E"(1), THEN "&E"(2), THEN numbers[THEN "≡dfE"],5043

THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(1)] by auto5044

AOT_show ‹«εo w. finite (act_ωext (AOT_term_of_var F))»›5045

proof(rule "raa-cor:1")5046

AOT_assume ‹¬«εo w. finite (act_ωext (AOT_term_of_var F))»›5047

hence inf: ‹infinite (act_ωext (AOT_term_of_var F))›5048

by (auto simp: AOT_sem_not AOT_model_proposition_choice_simp)5049

then AOT_obtain v where act_F_v: ‹A[F]v›5050

unfolding AOT_sem_act act_ωext_def5051

by (metis AOT_term_of_var_cases AOT_model_ωκ_ordinary5052

AOT_model_denotes_κ_def Ordinary.Rep_cases κ.disc(7)5053

mem_Collect_eq not_finite_existsD)5054

AOT_hence ‹[λx A[F]x]v›5055

by (safe intro!: "β←C" "cqt:2")5056

AOT_hence ‹[λx A[F]x]-v ≈E [G]-u›5057

by (safe intro!: eqP’[unvarify F, THEN "→E"] "&I" "cqt:2" 15058

0[THEN "&E"(1), THEN "&E"(1)])5059

moreover AOT_have ‹[λx A[F]x]-v ≈E [λx A[λy [F]y & y 6=E v]x]›5060

proof(safe intro!: "apE-eqE:1"[unvarify F G, THEN "→E"] "cqt:2"5061

"F-u[den]"[unvarify F] eqE[THEN "≡dfI"] "&I"5062

Ordinary.GEN)5063

fix u5064

AOT_have ‹[λx [λx A[F]x]x & x 6=E v]u ≡ [λx A[F]x]u & u 6=E v›5065

by (safe intro!: "beta-C-meta"[THEN "→E"] "cqt:2")5066

also AOT_have ‹[λx A[F]x]u & u 6=E v ≡ A[F]u & u 6=E v›5067

by (AOT_subst ‹[λx A[F]x]u› ‹A[F]u›)5068

(safe intro!: "beta-C-meta"[THEN "→E"] "cqt:2"5069

"oth-class-taut:3:a")5070

also AOT_have ‹A[F]u & u 6=E v ≡ A([F]u & u 6=E v)›5071

using "id-act2:2" AOT_sem_conj AOT_sem_equiv AOT_sem_act by auto5072

also AOT_have ‹A([F]u & u 6=E v) ≡ A[λy [F]y & y 6=E v]u›5073

by (AOT_subst ‹[λy [F]y & y 6=E v]u› ‹[F]u & u 6=E v›)5074

(safe intro!: "beta-C-meta"[THEN "→E"] "cqt:2"5075

"oth-class-taut:3:a")5076

also AOT_have ‹A[λy [F]y & y 6=E v]u ≡ [λx A[λy [F]y & y 6=E v]x]u›5077

by (safe intro!: "beta-C-meta"[THEN "→E", symmetric] "cqt:2")5078

finally AOT_show ‹[[λx A[F]x]-v]u ≡ [λx A[λy [F]y & y 6=E v]x]u›5079

by (auto intro!: "cqt:2"5080

intro: "rule-id-df:2:b"[OF "F-u", where τ 1τ n=‹(_,_)›, simplified])5081

qed5082

ultimately AOT_have ‹[λx A[λy [F]y & y 6=E v]x] ≈E [G]-u›5083

using "eq-part:2[terms]" "eq-part:3[terms]" "→E" by blast5084

AOT_hence ‹n[λy [F]y & y 6=E v]›5085

by (safe intro!: 0[THEN "&E"(2), THEN numbers[THEN "≡dfE"],5086

THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(2)] "cqt:2")5087

hence finite: ‹finite (act_ωext «[λy [F]y & y 6=E v]»)›5088

by (safe intro!: n_prop[THEN "∀E"(1), THEN "→E",5089

simplified AOT_model_proposition_choice_simp]5090

"cqt:2")5091

obtain y where y_def: ‹ωκ y = AOT_term_of_var (Ordinary.Rep v)›5092

by (metis AOT_model_ordinary_ωκ Ordinary.restricted_var_condition)5093

AOT_actually {5094

fix x5095

AOT_assume ‹[λy [F]y & y 6=E v]«ωκ x»›5096

AOT_hence ‹[F]«ωκ x»›5097

by (auto dest!: "β→C" "&E"(1))5098

}5099

moreover AOT_actually {5100

AOT_have ‹[F]«ωκ y»›5101

499

A. Isabelle Theory

unfolding y_def using act_F_v AOT_sem_act by blast5102

}5103

moreover AOT_actually {5104

fix x5105

assume noteq: ‹x 6= y›5106

AOT_assume ‹[F]«ωκ x»›5107

moreover AOT_have ωκ_x_den: ‹«ωκ x»↓›5108

using AOT_sem_exe calculation by blast5109

moreover {5110

AOT_have ‹¬(«ωκ x» =E v)›5111

proof(rule "raa-cor:2")5112

AOT_assume ‹«ωκ x» =E v›5113

AOT_hence ‹«ωκ x» = v›5114

using "=E-simple:2"[unvarify x, THEN "→E", OF ωκ_x_den]5115

by blast5116

hence ‹ωκ x = ωκ y›5117

unfolding y_def AOT_sem_eq5118

by meson5119

hence ‹x = y›5120

by blast5121

AOT_thus ‹p & ¬p› for p using noteq by blast5122

qed5123

AOT_hence ‹«ωκ x» 6=E v›5124

by (safe intro!: "thm-neg=E"[unvarify x, THEN "≡E"(2)] ωκ_x_den)5125

}5126

ultimately AOT_have ‹[λy [F]y & y 6=E v]«ωκ x»›5127

by (auto intro!: "β←C" "cqt:2" "&I")5128

}5129

ultimately have ‹(insert y (act_ωext «[λy [F]y & y 6=E v]»)) =5130

(act_ωext (AOT_term_of_var F))›5131

unfolding act_ωext_def5132

by auto5133

hence ‹finite (act_ωext (AOT_term_of_var F))›5134

using finite finite.insertI by metis5135

AOT_thus ‹p & ¬p› for p5136

using inf by blast5137

qed5138

qed5139

qed5140

AOT_hence nat_enc_finite: ‹∀F(n[F] → «εo w. finite (act_ωext F)»)› for n5141

using "β→C"(1) by blast5142

5143

text‹The main proof can now generate a witness, since we required5144

the domain of ordinary objects to be infinite.›5145

AOT_show ‹∃x ([N]x & x = #G) → ♦∃y (E!y & ∀u (A[G]u → u 6=E y))›5146

proof(safe intro!: "→I")5147

AOT_assume ‹∃x ([N]x & x = #G)›5148

then AOT_obtain n where ‹n = #G›5149

using "Number.∃E"[rotated] by meson5150

AOT_hence ‹Numbers(n,[λx A[G]x])›5151

using "eq-num:3" "rule=E" id_sym by fast5152

AOT_hence ‹n[G]›5153

by (auto intro!: numbers[THEN "≡dfE", THEN "&E"(2),5154

THEN "∀E"(2), THEN "≡E"(2)]5155

"eq-part:1"[unvarify F] "cqt:2")5156

AOT_hence ‹«εo w. finite (act_ωext (AOT_term_of_var G))»›5157

using nat_enc_finite[THEN "∀E"(2), THEN "→E"] by blast5158

hence finite: ‹finite (act_ωext (AOT_term_of_var G))›5159

by (auto simp: AOT_model_proposition_choice_simp)5160

AOT_have ‹∃u ¬A[G]u›5161

proof(rule "raa-cor:1")5162

AOT_assume ‹¬∃u ¬A[G]u›5163

AOT_hence ‹∀x ¬(O!x & ¬A[G]x)›5164

500

A.12. Natural Numbers

by (metis "cqt-further:4" "→E")5165

AOT_hence ‹A[G]x› if ‹O!x› for x5166

using "∀E"(2) AOT_sem_conj AOT_sem_not that by blast5167

hence ‹[w0 |= [G]«ωκ x»]› for x5168

by (metis AOT_term_of_var_cases AOT_model_ωκ_ordinary5169

AOT_model_denotes_κ_def AOT_sem_act κ.disc(7))5170

hence ‹(act_ωext (AOT_term_of_var G)) = UNIV›5171

unfolding act_ωext_def by auto5172

moreover have ‹infinite (UNIV::ω set)›5173

by (metis ω_nat finite_imageI infinite_UNIV_char_0)5174

ultimately have ‹infinite (act_ωext (AOT_term_of_var G))›5175

by simp5176

AOT_thus ‹p & ¬p› for p using finite by blast5177

qed5178

then AOT_obtain x where x_prop: ‹O!x & ¬A[G]x›5179

using "∃E"[rotated] by blast5180

AOT_hence ‹♦E!x›5181

by (metis "betaC:1:a" "con-dis-i-e:2:a" AOT_sem_ordinary)5182

moreover AOT_have ‹�∀u (A[G]u → u 6=E x)›5183

proof(safe intro!: RN GEN "→I")5184

AOT_modally_strict {5185

fix y5186

AOT_assume ‹O!y›5187

AOT_assume 0: ‹A[G]y›5188

AOT_show ‹y 6=E x›5189

proof (safe intro!: "thm-neg=E"[THEN "≡E"(2)] "raa-cor:2")5190

AOT_assume ‹y =E x›5191

AOT_hence ‹y = x›5192

by (metis "=E-simple:2" "vdash-properties:10")5193

hence ‹y = x›5194

by (simp add: AOT_sem_eq AOT_term_of_var_inject)5195

AOT_hence ‹¬A[G]y›5196

using x_prop "&E" AOT_sem_not AOT_sem_act by metis5197

AOT_thus ‹A[G]y & ¬A[G]y›5198

using 0 "&I" by blast5199

qed5200

}5201

qed5202

ultimately AOT_have ‹♦(∀u (A[G]u → u 6=E x) & E!x)›5203

using "KBasic:16"[THEN "→E", OF "&I"] by blast5204

AOT_hence ‹♦(E!x & ∀u (A[G]u → u 6=E x))›5205

by (AOT_subst ‹E!x & ∀u (A[G]u → u 6=E x)› ‹∀u (A[G]u → u 6=E x) & E!x›)5206

(auto simp: "oth-class-taut:2:a")5207

AOT_hence ‹∃y ♦(E!y & ∀u (A[G]u → u 6=E y))›5208

using "∃I" by fast5209

AOT_thus ‹♦∃y (E!y & ∀u (A[G]u → u 6=E y))›5210

using "CBF♦"[THEN "→E"] by fast5211

qed5212

} qed5213

5214

AOT_theorem "modal-lemma": (800)5215

‹♦∀u(A[G]u → u 6=E v) → ∀u(A[G]u → u 6=E v)›5216

proof(safe intro!: "→I" Ordinary.GEN)5217

AOT_modally_strict {5218

fix u5219

AOT_assume act_Gu: ‹A[G]u›5220

AOT_have ‹∀u (A[G]u → u 6=E v) → u 6=E v›5221

proof(rule "→I")5222

AOT_assume ‹∀u (A[G]u → u 6=E v)›5223

AOT_hence ‹A[G]u → u 6=E v›5224

using "Ordinary.∀E" by fast5225

AOT_thus ‹u 6=E v›5226

using act_Gu "→E" by blast5227

501

A. Isabelle Theory

qed5228

} note 0 = this5229

AOT_have ϑ: ‹�(∀u (A[G]u → u 6=E v) → u 6=E v)› if ‹�A[G]u› for u5230

proof -5231

AOT_have ‹�A[G]u → �(∀u (A[G]u → u 6=E v) → u 6=E v)›5232

apply (rule RM) using 0 "&E" "→I" by blast5233

thus ?thesis using that "→E" by blast5234

qed5235

fix u5236

AOT_assume 1: ‹♦∀u(A[G]u → u 6=E v)›5237

AOT_assume ‹A[G]u›5238

AOT_hence ‹�A[G]u›5239

by (metis "Act-Basic:6" "≡E"(1))5240

AOT_hence ‹�(∀u (A[G]u → u 6=E v) → u 6=E v)›5241

using Ordinary.ψ ϑ by blast5242

AOT_hence ‹♦u 6=E v›5243

using 1 "K♦"[THEN "→E", THEN "→E"] by blast5244

AOT_thus ‹u 6=E v›5245

by (metis "id-nec4:2" "≡E"(1))5246

qed5247

5248

AOT_theorem "th-succ": ‹∀n∃!m [P]nm› (801)5249

proof(safe intro!: Number.GEN "→I" "uniqueness:1"[THEN "≡dfI"])5250

fix n5251

AOT_have ‹NaturalCardinal(n)›5252

by (metis "nat-card" Number.ψ "→E")5253

AOT_hence ‹∃G(n = #G)›5254

by (metis "≡dfE" card)5255

then AOT_obtain G where n_num_G: ‹n = #G›5256

using "∃E"[rotated] by blast5257

AOT_hence ‹∃n (n = #G)›5258

by (rule "Number.∃I")5259

AOT_hence ‹♦∃y ([E!]y & ∀u(A[G]u → u 6=E y))›5260

using "modal-axiom"[axiom_inst, THEN "→E"] by blast5261

AOT_hence ‹∃y ♦([E!]y & ∀u(A[G]u → u 6=E y))›5262

using "BF♦"[THEN "→E"] by auto5263

then AOT_obtain y where ‹♦([E!]y & ∀u(A[G]u → u 6=E y))›5264

using "∃E"[rotated] by blast5265

AOT_hence ‹♦E!y› and 2: ‹♦∀u(A[G]u → u 6=E y)›5266

using "KBasic2:3" "&E" "→E" by blast+5267

AOT_hence Oy: ‹O!y›5268

by (auto intro!: "β←C"(1) "cqt:2" intro: AOT_ordinary[THEN "=dfI"(2)])5269

AOT_have 0: ‹∀u(A[G]u → u 6=E y)›5270

using 2 "modal-lemma"[unconstrain v, THEN "→E", OF Oy, THEN "→E"] by simp5271

AOT_have 1: ‹[λx A[G]x ∨ x =E y]↓›5272

by "cqt:2"5273

AOT_obtain b where b_prop: ‹Numbers(b, [λx A[G]x ∨ x =E y])›5274

using "num:1"[unvarify G, OF 1] "∃E"[rotated] by blast5275

AOT_have Pnb: ‹[P]nb›5276

proof(safe intro!: "pred-thm:3"[THEN "≡E"(2)]5277

"∃I"(1)[where τ=‹«[λx A[G]x ∨ x =E y]»›]5278

1 "∃I"(2)[where β=y] "&I" Oy b_prop)5279

AOT_show ‹[λx A[G]x ∨ x =E y]y›5280

by (auto intro!: "β←C"(1) "cqt:2" "∨I"(2)5281

"ord=Eequiv:1"[THEN "→E", OF Oy])5282

next5283

AOT_have equinum: ‹[λx A[G]x ∨ x =E y]-y ≈E [λx A[G]x]›5284

proof(rule "apE-eqE:1"[unvarify F G, THEN "→E"];5285

("cqt:2[lambda]" | rule "F-u[den]"[unvarify F]; "cqt:2[lambda]")?)5286

AOT_show ‹[λx A[G]x ∨ x =E y]-y ≡E [λx A[G]x]›5287

proof (safe intro!: eqE[THEN "≡dfI"] "&I" "F-u[den]"[unvarify F]5288

Ordinary.GEN "→I"; "cqt:2"?)5289

fix u5290

502

A.12. Natural Numbers

AOT_have ‹[[λx A[G]x ∨ [(=E)]xy]-y]u ≡ ([λx A[G]x ∨ x =E y]u) & u 6=E y›5291

apply (rule "F-u"[THEN "=dfI"(1)[where τ 1τ n=‹(_,_)›], simplified]; "cqt:2"?)5292

by (rule "beta-C-cor:2"[THEN "→E", THEN "∀E"(2)]; "cqt:2")5293

also AOT_have ‹. . . ≡ (A[G]u ∨ u =E y) & u 6=E y›5294

apply (AOT_subst ‹[λx A[G]x ∨ [(=E)]xy]u› ‹A[G]u ∨ u =E y›)5295

apply (rule "beta-C-cor:2"[THEN "→E", THEN "∀E"(2)]; "cqt:2")5296

using "oth-class-taut:3:a" by blast5297

also AOT_have ‹. . . ≡ A[G]u›5298

proof(safe intro!: "≡I" "→I")5299

AOT_assume ‹(A[G]u ∨ u =E y) & u 6=E y›5300

AOT_thus ‹A[G]u›5301

by (metis "&E"(1) "&E"(2) "∨E"(3) "≡E"(1) "thm-neg=E")5302

next5303

AOT_assume ‹A[G]u›5304

AOT_hence ‹u 6=E y› and ‹A[G]u ∨ u =E y›5305

using 0[THEN "∀E"(2), THEN "→E", OF Ordinary.ψ, THEN "→E"]5306

"∨I" by blast+5307

AOT_thus ‹(A[G]u ∨ u =E y) & u 6=E y›5308

using "&I" by simp5309

qed5310

also AOT_have ‹. . . ≡ [λx A[G]x]u›5311

by (rule "beta-C-cor:2"[THEN "→E", THEN "∀E"(2), symmetric]; "cqt:2")5312

finally AOT_show ‹[[λx A[G]x ∨ [(=E)]xy]-y]u ≡ [λx A[G]x]u›.5313

qed5314

qed5315

AOT_have 2: ‹[λx A[G]x]↓› by "cqt:2[lambda]"5316

AOT_show ‹Numbers(n,[λx A[G]x ∨ x =E y]-y)›5317

using "num-tran:1"[unvarify G H, OF 2, OF "F-u[den]"[unvarify F, OF 1],5318

THEN "→E", OF equinum, THEN "≡E"(2),5319

OF "eq-num:2"[THEN "≡E"(2), OF n_num_G]].5320

qed5321

AOT_show ‹∃α ([N]α & [P]nα & ∀β ([N]β & [P]nβ → β = α))›5322

proof(safe intro!: "∃I"(2)[where β=b] "&I" Pnb "→I" GEN)5323

AOT_show ‹[N]b› using "suc-num:1"[THEN "→E", OF Pnb].5324

next5325

fix y5326

AOT_assume 0: ‹[N]y & [P]ny›5327

AOT_show ‹y = b›5328

apply (rule "pred-func:1"[THEN "→E"])5329

using 0[THEN "&E"(2)] Pnb "&I" by blast5330

qed5331

qed5332

5333

(* Note the use of a bold ’. *)5334

AOT_define Successor :: ‹τ ⇒ κs› (‹_’’› [100] 100)5335

"def-suc": ‹n’ =df ιm([P]nm)› (804)5336

5337

text‹Note: not explicitly in PLM›5338

AOT_theorem "def-suc[den1]": ‹ιm([P]nm)↓› (804)5339

using "A-Exists:2" "RA[2]" "≡E"(2) "th-succ"[THEN "Number.∀E"] by blast5340

text‹Note: not explicitly in PLM›5341

AOT_theorem "def-suc[den2]": shows ‹n’↓› (804)5342

by (rule "def-suc"[THEN "=dfI"(1)])5343

(auto simp: "def-suc[den1]")5344

5345

(* TODO: not in PLM *)5346

AOT_theorem suc_eq_desc: ‹n’ = ιm([P]nm)›5347

by (rule "def-suc"[THEN "=dfI"(1)])5348

(auto simp: "def-suc[den1]" "rule=I:1")5349

5350

AOT_theorem "suc-fact": ‹n = m → n’ = m’› (805)5351

proof (rule "→I")5352

AOT_assume 0: ‹n = m›5353

503

A. Isabelle Theory

AOT_show ‹n’ = m’›5354

apply (rule "rule=E"[rotated, OF 0])5355

by (rule "=I"(1)[OF "def-suc[den2]"])5356

qed5357

5358

AOT_theorem "ind-gnd": ‹m = 0 ∨ ∃n(m = n’)› (806)5359

proof -5360

AOT_have ‹[[P]+]0m›5361

using Number.ψ "≡E"(1) "nnumber:3" by blast5362

AOT_hence ‹[[P]*]0m ∨ 0 =P m›5363

using "assume1:5"[unvarify x, OF "zero:2", THEN "≡E"(1)] by blast5364

moreover {5365

AOT_assume ‹[[P]*]0m›5366

AOT_hence ‹∃z ([[P]+]0z & [P]zm)›5367

using "w-ances-her:7"[unconstrain R, unvarify β x, OF "zero:2",5368

OF "pred-thm:2", THEN "→E", OF "pred-1-1:4",5369

THEN "→E"]5370

by blast5371

then AOT_obtain z where ϑ: ‹[[P]+]0z› and ξ: ‹[P]zm›5372

using "&E" "∃E"[rotated] by blast5373

AOT_have Nz: ‹[N]z›5374

using ϑ "≡E"(2) "nnumber:3" by blast5375

moreover AOT_have ‹m = z’›5376

proof (rule "def-suc"[THEN "=dfI"(1)];5377

safe intro!: "def-suc[den1]"[unconstrain n, THEN "→E", OF Nz]5378

"nec-hintikka-scheme"[THEN "≡E"(2)] "&I"5379

GEN "→I" "Act-Basic:2"[THEN "≡E"(2)])5380

AOT_show ‹A[N]m› using Number.ψ5381

by (meson "mod-col-num:1" "nec-imp-act" "→E")5382

next5383

AOT_show ‹A[P]zm› using ξ5384

by (meson "nec-imp-act" "pred-1-1:1" "→E")5385

next5386

fix y5387

AOT_assume ‹A([N]y & [P]zy)›5388

AOT_hence ‹A[N]y› and ‹A[P]zy›5389

using "Act-Basic:2" "&E" "≡E"(1) by blast+5390

AOT_hence 0: ‹[P]zy›5391

by (metis RN "≡E"(1) "pred-1-1:1" "sc-eq-fur:2" "→E")5392

AOT_thus ‹y = m›5393

using "pred-func:1"[THEN "→E", OF "&I"] ξ by metis5394

qed5395

ultimately AOT_have ‹[N]z & m = z’›5396

by (rule "&I")5397

AOT_hence ‹∃n m = n’›5398

by (rule "∃I")5399

hence ?thesis5400

by (rule "∨I")5401

}5402

moreover {5403

AOT_assume ‹0 =P m›5404

AOT_hence ‹0 = m›5405

using "id-R-thm:3"[unconstrain R, unvarify β x, OF "zero:2", OF "pred-thm:2",5406

THEN "→E", OF "pred-1-1:4", THEN "→E"]5407

by auto5408

hence ?thesis using id_sym "∨I" by blast5409

}5410

ultimately show ?thesis5411

by (metis "∨E"(2) "raa-cor:1")5412

qed5413

5414

AOT_theorem "suc-thm": ‹[P]n n’› (807)5415

proof -5416

504

A.12. Natural Numbers

AOT_obtain x where m_is_n: ‹x = n’›5417

using "free-thms:1"[THEN "≡E"(1), OF "def-suc[den2]"]5418

using "∃E" by metis5419

AOT_have ‹A([N]n’ & [P]n n’)›5420

apply (rule "rule=E"[rotated, OF suc_eq_desc[symmetric]])5421

apply (rule "actual-desc:4"[THEN "→E"])5422

by (simp add: "def-suc[den1]")5423

AOT_hence ‹A[N]n’› and ‹A[P]n n’›5424

using "Act-Basic:2" "≡E"(1) "&E" by blast+5425

AOT_hence ‹A[P]nx›5426

using m_is_n[symmetric] "rule=E" by fast+5427

AOT_hence ‹[P]nx›5428

by (metis RN "≡E"(1) "pred-1-1:1" "sc-eq-fur:2" "→E")5429

thus ?thesis5430

using m_is_n "rule=E" by fast5431

qed5432

5433

AOT_define Numeral1 :: ‹κs› ("1")5434

"numerals:1": ‹1 =df 0’› (808.1)5435

5436

AOT_theorem "prec-facts:1": ‹[P]0 1› (809.1)5437

by (auto intro: "numerals:1"[THEN "rule-id-df:2:b[zero]",5438

OF "def-suc[den2]"[unconstrain n, unvarify β,5439

OF "zero:2", THEN "→E", OF "0-n"]]5440

"suc-thm"[unconstrain n, unvarify β, OF "zero:2",5441

THEN "→E", OF "0-n"])5442

5443

(* TODO: more theorems *)5444

5445

(* Note: we forgo restricted variables for natural cardinals. *)5446

AOT_define Finite :: ‹τ ⇒ ϕ› (‹Finite’(_’)›)5447

"inf-card:1": ‹Finite(x) ≡df NaturalCardinal(x) & [N]x› (901.1)5448

AOT_define Infinite :: ‹τ ⇒ ϕ› (‹Infinite’(_’)›)5449

"inf-card:2": ‹Infinite(x) ≡df NaturalCardinal(x) & ¬Finite(x)› (901.2)5450

5451

AOT_theorem "inf-card-exist:1": ‹NaturalCardinal(#O!)› (902.1)5452

by (safe intro!: card[THEN "≡dfI"] "∃I"(1)[where τ=‹«O!»›] "=I"5453

"num-def:2"[unvarify G] "oa-exist:1")5454

5455

AOT_theorem "inf-card-exist:2": ‹Infinite(#O!)› (902.2)5456

proof (safe intro!: "inf-card:2"[THEN "≡dfI"] "&I" "inf-card-exist:1")5457

AOT_show ‹¬Finite(#O!)›5458

proof(rule "raa-cor:2")5459

AOT_assume ‹Finite(#O!)›5460

AOT_hence 0: ‹[N]#O!›5461

using "inf-card:1"[THEN "≡dfE"] "&E"(2) by blast5462

AOT_have ‹Numbers(#O!, [λz AO!z])›5463

using "eq-num:3"[unvarify G, OF "oa-exist:1"].5464

AOT_hence ‹#O! = #O!›5465

using "eq-num:2"[unvarify x G, THEN "≡E"(1), OF "oa-exist:1",5466

OF "num-def:2"[unvarify G], OF "oa-exist:1"]5467

by blast5468

AOT_hence ‹[N]#O! & #O! = #O!›5469

using 0 "&I" by blast5470

AOT_hence ‹∃x ([N]x & x = #O!)›5471

using "num-def:2"[unvarify G, OF "oa-exist:1"] "∃I"(1) by fast5472

AOT_hence ‹♦∃y ([E!]y & ∀u (A[O!]u → u 6=E y))›5473

using "modal-axiom"[axiom_inst, unvarify G, THEN "→E", OF "oa-exist:1"] by blast5474

AOT_hence ‹∃y ♦([E!]y & ∀u (A[O!]u → u 6=E y))›5475

using "BF♦"[THEN "→E"] by blast5476

then AOT_obtain b where ‹♦([E!]b & ∀u (A[O!]u → u 6=E b))›5477

using "∃E"[rotated] by blast5478

AOT_hence ‹♦[E!]b› and 2: ‹♦∀u (A[O!]u → u 6=E b)›5479

505

A. Isabelle Theory

using "KBasic2:3"[THEN "→E"] "&E" by blast+5480

AOT_hence ‹[λx ♦[E!]x]b›5481

by (auto intro!: "β←C"(1) "cqt:2")5482

moreover AOT_have ‹O! = [λx ♦[E!]x]›5483

by (rule "rule-id-df:1[zero]"[OF "oa:1"]) "cqt:2"5484

ultimately AOT_have b_ord: ‹O!b›5485

using "rule=E" id_sym by fast5486

AOT_hence ‹AO!b›5487

by (meson "≡E"(1) "oa-facts:7")5488

moreover AOT_have 2: ‹∀u (A[O!]u → u 6=E b)›5489

using "modal-lemma"[unvarify G, unconstrain v, OF "oa-exist:1",5490

THEN "→E", OF b_ord, THEN "→E", OF 2].5491

ultimately AOT_have ‹b 6=E b›5492

using "Ordinary.∀E"[OF 2, unconstrain α, THEN "→E",5493

OF b_ord, THEN "→E"] by blast5494

AOT_hence ‹¬(b =E b)›5495

by (metis "≡E"(1) "thm-neg=E")5496

moreover AOT_have ‹b =E b›5497

using "ord=Eequiv:1"[THEN "→E", OF b_ord].5498

ultimately AOT_show ‹p & ¬p› for p5499

by (metis "raa-cor:3")5500

qed5501

qed5502

5503

5504

5505

(*<*)5506

end5507

(*>*)5508

5509

506

A.13. Additional Theorems

A.13. Additional Theorems

theory AOT_misc1

imports AOT_NaturalNumbers2

begin3

4

AOT_theorem PossiblyNumbersEmptyPropertyImpliesZero:5

‹♦Numbers(x,[λz O!z & z 6=E z]) → x = 0›6

proof(rule "→I")7

AOT_have ‹Rigid([λz O!z & z 6=E z])›8

proof (safe intro!: "df-rigid-rel:1"[THEN "≡dfI"] "&I" "cqt:2";9

rule RN; safe intro!: GEN "→I")10

AOT_modally_strict {11

fix x12

AOT_assume ‹[λz O!z & z 6=E z]x›13

AOT_hence ‹O!x & x 6=E x› by (rule "β→C")14

moreover AOT_have ‹x =E x› using calculation[THEN "&E"(1)]15

by (metis "ord=Eequiv:1" "vdash-properties:10")16

ultimately AOT_have ‹x =E x & ¬x =E x›17

by (metis "con-dis-i-e:1" "con-dis-i-e:2:b" "intro-elim:3:a" "thm-neg=E")18

AOT_thus ‹�[λz O!z & z 6=E z]x› using "raa-cor:1" by blast19

}20

qed21

AOT_hence ‹�∀x (Numbers(x,[λz O!z & z 6=E z]) → �Numbers(x,[λz O!z & z 6=E z]))›22

by (safe intro!: "num-cont:2"[unvarify G, THEN "→E"] "cqt:2")23

AOT_hence ‹∀x �(Numbers(x,[λz O!z & z 6=E z]) → �Numbers(x,[λz O!z & z 6=E z]))›24

using "BFs:2"[THEN "→E"] by blast25

AOT_hence ‹�(Numbers(x,[λz O!z & z 6=E z]) → �Numbers(x,[λz O!z & z 6=E z]))›26

using "∀E"(2) by auto27

moreover AOT_assume ‹♦Numbers(x,[λz O!z & z 6=E z])›28

ultimately AOT_have ‹ANumbers(x,[λz O!z & z 6=E z])›29

using "sc-eq-box-box:1"[THEN "≡E"(1), THEN "→E", THEN "nec-imp-act"[THEN "→E"]]30

by blast31

AOT_hence ‹Numbers(x,[λz A[λz O!z & z 6=E z]z])›32

by (safe intro!: "eq-num:1"[unvarify G, THEN "≡E"(1)] "cqt:2")33

AOT_hence ‹x = #[λz O!z & z 6=E z]›34

by (safe intro!: "eq-num:2"[unvarify G, THEN "≡E"(1)] "cqt:2")35

AOT_thus ‹x = 0›36

using "cqt:2"(1) "rule-id-df:2:b[zero]" "rule=E" "zero:1" by blast37

qed38

39

AOT_define Numbers’ :: ‹τ ⇒ τ ⇒ ϕ› (‹Numbers”’(_,_’)›)40

‹Numbers’(x, G) ≡df A!x & G↓ & ∀F (x[F] ≡ F ≈E G)›41

AOT_theorem Numbers’equiv: ‹Numbers’(x,G) ≡ A!x & ∀F (x[F] ≡ F ≈E G)›42

by (AOT_subst_def Numbers’)43

(auto intro!: "≡I" "→I" "&I" "cqt:2" dest: "&E")44

45

AOT_theorem Numbers’DistinctZeroes:46

‹∃x∃y (♦Numbers’(x,[λz O!z & z 6=E z]) & ♦Numbers’(y,[λz O!z & z 6=E z]) & x 6= y)›47

proof -48

AOT_obtain w1 where ‹∃w w1 6= w›49

using "two-worlds-exist:4" "PossibleWorld.∃E"[rotated] by fast50

then AOT_obtain w2 where distinct_worlds: ‹w1 6= w2›51

using "PossibleWorld.∃E"[rotated] by blast52

AOT_obtain x where x_prop:53

‹A!x & ∀F (x[F] ≡ w1 |= F ≈E [λz O!z & z 6=E z])›54

using "A-objects"[axiom_inst] "∃E"[rotated] by fast55

moreover AOT_obtain y where y_prop:56

‹A!y & ∀F (y[F] ≡ w2 |= F ≈E [λz O!z & z 6=E z])›57

using "A-objects"[axiom_inst] "∃E"[rotated] by fast58

moreover {59

fix x w60

AOT_assume x_prop: ‹A!x & ∀F (x[F] ≡ w |= F ≈E [λz O!z & z 6=E z])›61

507

A. Isabelle Theory

AOT_have ‹∀F w |= (x[F] ≡ F ≈E [λz O!z & z 6=E z])›62

proof(safe intro!: GEN "conj-dist-w:4"[unvarify p q, OF "log-prop-prop:2",63

OF "log-prop-prop:2",THEN "≡E"(2)] "≡I" "→I")64

fix F65

AOT_assume ‹w |= x[F]›66

AOT_hence ‹♦x[F]›67

using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2),68

OF "PossibleWorld.∃I"] by blast69

AOT_hence ‹x[F]›70

by (metis "en-eq:3[1]" "intro-elim:3:a")71

AOT_thus ‹w |= (F ≈E [λz O!z & z 6=E z])›72

using x_prop[THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(1)] by blast73

next74

fix F75

AOT_assume ‹w |= (F ≈E [λz O!z & z 6=E z])›76

AOT_hence ‹x[F]›77

using x_prop[THEN "&E"(2), THEN "∀E"(2), THEN "≡E"(2)] by blast78

AOT_hence ‹�x[F]›79

using "pre-en-eq:1[1]"[THEN "→E"] by blast80

AOT_thus ‹w |= x[F]›81

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)]82

"PossibleWorld.∀E" by fast83

qed84

AOT_hence ‹w |= ∀F (x[F] ≡ F ≈E [λz O!z & z 6=E z])›85

using "conj-dist-w:5"[THEN "≡E"(2)] by fast86

moreover {87

AOT_have ‹�[λz O!z & z 6=E z]↓›88

by (safe intro!: RN "cqt:2")89

AOT_hence ‹w |= [λz O!z & z 6=E z]↓›90

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1),91

THEN "PossibleWorld.∀E"] by blast92

}93

moreover {94

AOT_have ‹�A!x›95

using x_prop[THEN "&E"(1)] by (metis "oa-facts:2" "→E")96

AOT_hence ‹w |= A!x›97

using "fund:2"[unvarify p, OF "log-prop-prop:2",98

THEN "≡E"(1), THEN "PossibleWorld.∀E"] by blast99

}100

ultimately AOT_have ‹w |= (A!x & [λz O!z & z 6=E z]↓ &101

∀F (x[F] ≡ F ≈E [λz O!z & z 6=E z]))›102

using "conj-dist-w:1"[unvarify p q, OF "log-prop-prop:2",103

OF "log-prop-prop:2", THEN "≡E"(2), OF "&I"] by auto104

AOT_hence ‹∃w w |= (A!x & [λz O!z & z 6=E z]↓ &105

∀F (x[F] ≡ F ≈E [λz O!z & z 6=E z]))›106

using "PossibleWorld.∃I" by auto107

AOT_hence ‹♦(A!x & [λz O!z & z 6=E z]↓ & ∀F (x[F] ≡ F ≈E [λz O!z & z 6=E z]))›108

using "fund:1"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(2)] by blast109

AOT_hence ‹♦Numbers’(x,[λz O!z & z 6=E z])›110

by (AOT_subst_def Numbers’)111

}112

ultimately AOT_have ‹♦Numbers’(x,[λz O!z & z 6=E z])›113

and ‹♦Numbers’(y,[λz O!z & z 6=E z])›114

by auto115

moreover AOT_have ‹x 6= y›116

proof (rule "ab-obey:2"[THEN "→E"])117

AOT_have ‹�¬∃u [λz O!z & z 6=E z]u›118

proof (safe intro!: RN "raa-cor:2")119

AOT_modally_strict {120

AOT_assume ‹∃u [λz O!z & z 6=E z]u›121

then AOT_obtain u where ‹[λz O!z & z 6=E z]u›122

using "Ordinary.∃E"[rotated] by blast123

AOT_hence ‹O!u & u 6=E u›124

508

A.13. Additional Theorems

by (rule "β→C")125

AOT_hence ‹¬(u =E u)›126

by (metis "con-dis-taut:2" "intro-elim:3:d" "modus-tollens:1"127

"raa-cor:3" "thm-neg=E")128

AOT_hence ‹u =E u & ¬u =E u›129

by (metis "modus-tollens:1" "ord=Eequiv:1" "raa-cor:3" Ordinary.ψ)130

AOT_thus ‹p & ¬p› for p131

by (metis "raa-cor:1")132

}133

qed134

AOT_hence nec_not_ex: ‹∀w w |= ¬∃u [λz O!z & z 6=E z]u›135

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast136

AOT_have ‹�([λy p]x ≡ p)› for x p137

by (safe intro!: RN "beta-C-meta"[THEN "→E"] "cqt:2")138

AOT_hence ‹∀w w |= ([λy p]x ≡ p)› for x p139

using "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast140

AOT_hence world_prop_beta: ‹∀w (w |= [λy p]x ≡ w |= p)› for x p141

using "conj-dist-w:4"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)]142

"PossibleWorld.∀E" "PossibleWorld.∀I" by meson143

144

AOT_have ‹∃p (w1 |= p & ¬w2 |= p)›145

proof(rule "raa-cor:1")146

AOT_assume 0: ‹¬∃p (w1 |= p & ¬w2 |= p)›147

AOT_have 1: ‹w1 |= p → w2 |= p› for p148

proof(safe intro!: GEN "→I")149

AOT_assume ‹w1 |= p›150

AOT_thus ‹w2 |= p›151

using 0 "con-dis-i-e:1" "∃I"(2) "raa-cor:4" by fast152

qed153

moreover AOT_have ‹w2 |= p → w1 |= p› for p154

proof(safe intro!: GEN "→I")155

AOT_assume ‹w2 |= p›156

AOT_hence ‹¬w2 |= ¬p›157

using "coherent:2" "intro-elim:3:a" by blast158

AOT_hence ‹¬w1 |= ¬p›159

using 1["∀I" p, THEN "∀E"(1), OF "log-prop-prop:2"]160

by (metis "modus-tollens:1")161

AOT_thus ‹w1 |= p›162

using "coherent:1" "intro-elim:3:b" "reductio-aa:1" by blast163

qed164

ultimately AOT_have ‹w1 |= p ≡ w2 |= p› for p165

by (metis "intro-elim:2")166

AOT_hence ‹w1 = w2›167

using "sit-identity"[unconstrain s, THEN "→E",168

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)],169

unconstrain s’, THEN "→E",170

OF PossibleWorld.ψ[THEN "world:1"[THEN "≡dfE"], THEN "&E"(1)],171

THEN "≡E"(2)] GEN by fast172

AOT_thus ‹w1 = w2 & ¬w1 = w2›173

using "=-infix" "≡dfE" "con-dis-i-e:1" distinct_worlds by blast174

qed175

then AOT_obtain p where 0: ‹w1 |= p & ¬w2 |= p›176

using "∃E"[rotated] by blast177

AOT_have ‹y[λy p]›178

proof (safe intro!: y_prop[THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(2)] "cqt:2")179

AOT_show ‹w2 |= [λy p] ≈E [λz O!z & z 6=E z]›180

proof (safe intro!: "cqt:2" "empty-approx:1"[unvarify F H, THEN RN,181

THEN "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)],182

THEN "PossibleWorld.∀E",183

THEN "conj-dist-w:2"[unvarify p q, OF "log-prop-prop:2",184

OF "log-prop-prop:2", THEN "≡E"(1)],185

THEN "→E"]186

"conj-dist-w:1"[unvarify p q, OF "log-prop-prop:2",187

509

A. Isabelle Theory

OF "log-prop-prop:2", THEN "≡E"(2)] "&I")188

AOT_have ‹¬w2 |= ∃u [λy p]u›189

proof (rule "raa-cor:2")190

AOT_assume ‹w2 |= ∃u [λy p]u›191

AOT_hence ‹∃x w2 |= (O!x & [λy p]x)›192

by (metis "conj-dist-w:6" "intro-elim:3:a")193

then AOT_obtain x where ‹w2 |= (O!x & [λy p]x)›194

using "∃E"[rotated] by blast195

AOT_hence ‹w2 |= [λy p]x›196

using "conj-dist-w:1"[unvarify p q, OF "log-prop-prop:2",197

OF "log-prop-prop:2", THEN "≡E"(1), THEN "&E"(2)] by blast198

AOT_hence ‹w2 |= p›199

using world_prop_beta[THEN "PossibleWorld.∀E", THEN "≡E"(1)] by blast200

AOT_thus ‹w2 |= p & ¬w2 |= p›201

using 0[THEN "&E"(2)] "&I" by blast202

qed203

AOT_thus ‹w2 |= ¬∃u [λy p]u›204

by (safe intro!: "coherent:1"[unvarify p, OF "log-prop-prop:2",205

THEN "≡E"(2)])206

next207

AOT_show ‹w2 |= ¬∃v [λz O!z & z 6=E z]v›208

using nec_not_ex[THEN "PossibleWorld.∀E"] by blast209

qed210

qed211

moreover AOT_have ‹¬x[λy p]›212

proof(rule "raa-cor:2")213

AOT_assume ‹x[λy p]›214

AOT_hence "w1 |= [λy p] ≈E [λz O!z & z 6=E z]"215

using x_prop[THEN "&E"(2), THEN "∀E"(1), THEN "≡E"(1)]216

"prop-prop2:2" by blast217

AOT_hence "¬w1 |= ¬[λy p] ≈E [λz O!z & z 6=E z]"218

using "coherent:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)] by blast219

moreover AOT_have "w1 |= ¬([λy p] ≈E [λz O!z & z 6=E z])"220

proof (safe intro!: "cqt:2" "empty-approx:2"[unvarify F H, THEN RN,221

THEN "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)],222

THEN "PossibleWorld.∀E",223

THEN "conj-dist-w:2"[unvarify p q, OF "log-prop-prop:2",224

OF "log-prop-prop:2", THEN "≡E"(1)], THEN "→E"]225

"conj-dist-w:1"[unvarify p q, OF "log-prop-prop:2",226

OF "log-prop-prop:2", THEN "≡E"(2)] "&I")227

fix u228

AOT_have ‹w1 |= O!u›229

using Ordinary.ψ[THEN RN,230

THEN "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "≡E"(1)],231

THEN "PossibleWorld.∀E"] by simp232

moreover AOT_have ‹w1 |= [λy p]u›233

by (safe intro!: world_prop_beta[THEN "PossibleWorld.∀E", THEN "≡E"(2)]234

0[THEN "&E"(1)])235

ultimately AOT_have ‹w1 |= (O!u & [λy p]u)›236

using "conj-dist-w:1"[unvarify p q, OF "log-prop-prop:2",237

OF "log-prop-prop:2", THEN "≡E"(2),238

OF "&I"] by blast239

AOT_hence ‹∃x w1 |= (O!x & [λy p]x)›240

by (rule "∃I")241

AOT_thus ‹w1 |= ∃u [λy p]u›242

by (metis "conj-dist-w:6" "intro-elim:3:b")243

next244

AOT_show ‹w1 |= ¬∃v [λz O!z & z 6=E z]v›245

using "PossibleWorld.∀E" nec_not_ex by fastforce246

qed247

ultimately AOT_show ‹p & ¬p› for p248

using "raa-cor:3" by blast249

qed250

510

A.13. Additional Theorems

ultimately AOT_have ‹y[λy p] & ¬x[λy p]›251

using "&I" by blast252

AOT_hence ‹∃F (y[F] & ¬x[F])›253

by (metis "existential:1" "prop-prop2:2")254

AOT_thus ‹∃F (x[F] & ¬y[F]) ∨ ∃F (y[F] & ¬x[F])›255

by (rule "∨I")256

qed257

ultimately AOT_have ‹♦Numbers’(x,[λz O!z & z 6=E z]) &258

♦Numbers’(y,[λz O!z & z 6=E z]) & x 6= y›259

using "&I" by blast260

AOT_thus ‹∃x∃y (♦Numbers’(x,[λz O!z & z 6=E z]) &261

♦Numbers’(y,[λz O!z & z 6=E z]) & x 6= y)›262

using "∃I"(2)[where β=x] "∃I"(2)[where β=y] by auto263

qed264

265

AOT_theorem restricted_identity:266

‹x =R y ≡ (InDomainOf(x,R) & InDomainOf(y,R) & x = y)›267

by (auto intro!: "≡I" "→I" "&I"268

dest: "id-R-thm:2"[THEN "→E"] "&E"269

"id-R-thm:3"[THEN "→E"]270

"id-R-thm:4"[THEN "→E", OF "∨I"(1), THEN "≡E"(2)])271

272

AOT_theorem induction’: ‹∀F ([F]0 & ∀n([F]n → [F]n’) → ∀n [F]n)›273

proof(rule GEN; rule "→I")274

fix F n275

AOT_assume A: ‹[F]0 & ∀n([F]n → [F]n’)›276

AOT_have ‹∀n∀m([P]nm → ([F]n → [F]m))›277

proof(safe intro!: "Number.GEN" "→I")278

fix n m279

AOT_assume ‹[P]nm›280

moreover AOT_have ‹[P]n n’›281

using "suc-thm".282

ultimately AOT_have m_eq_suc_n: ‹m = n’›283

using "pred-func:1"[unvarify z, OF "def-suc[den2]", THEN "→E", OF "&I"]284

by blast285

AOT_assume ‹[F]n›286

AOT_hence ‹[F]n’›287

using A[THEN "&E"(2), THEN "Number.∀E", THEN "→E"] by blast288

AOT_thus ‹[F]m›289

using m_eq_suc_n[symmetric] "rule=E" by fast290

qed291

AOT_thus ‹∀n[F]n›292

using induction[THEN "∀E"(2), THEN "→E", OF "&I", OF A[THEN "&E"(1)]]293

by simp294

qed295

296

AOT_define ExtensionOf :: ‹τ ⇒ Π ⇒ ϕ› (‹ExtensionOf’(_,_’)›)297

"exten-property:1": ‹ExtensionOf(x,[G]) ≡df A!x & G↓ & ∀F(x[F] ≡ ∀z([F]z ≡ [G]z))› (307.1)298

299

AOT_define OrdinaryExtensionOf :: ‹τ ⇒ Π ⇒ ϕ› (‹OrdinaryExtensionOf’(_,_’)›)300

‹OrdinaryExtensionOf(x,[G]) ≡df A!x & G↓ & ∀F(x[F] ≡ ∀z(O!z → ([F]z ≡ [G]z)))›301

302

AOT_theorem BeingOrdinaryExtensionOfDenotes:303

‹[λx OrdinaryExtensionOf(x,[G])]↓›304

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])305

AOT_show ‹[λx A!x & G↓ & [λx ∀F(x[F] ≡ ∀z(O!z → ([F]z ≡ [G]z)))]x]↓›306

by "cqt:2"307

next308

AOT_show ‹�∀x (A!x & G↓ & [λx ∀F (x[F] ≡ ∀z (O!z → ([F]z ≡ [G]z)))]x ≡309

OrdinaryExtensionOf(x,[G]))›310

proof(safe intro!: RN GEN)311

AOT_modally_strict {312

fix x313

511

A. Isabelle Theory

AOT_modally_strict {314

AOT_have ‹[λx ∀F (x[F] ≡ ∀z (O!z → ([F]z ≡ [G]z)))]↓›315

proof (safe intro!: "Comprehension_3"[THEN "→E"] RN GEN316

"→I" "≡I" Ordinary.GEN)317

AOT_modally_strict {318

fix F H u319

AOT_assume ‹�H ≡E F›320

AOT_hence ‹∀u([H]u ≡ [F]u)›321

using eqE[THEN "≡dfE", THEN "&E"(2)] "qml:2"[axiom_inst, THEN "→E"]322

by blast323

AOT_hence 0: ‹[H]u ≡ [F]u› using "Ordinary.∀E" by fast324

{325

AOT_assume ‹∀u([F]u ≡ [G]u)›326

AOT_hence 1: ‹[F]u ≡ [G]u› using "Ordinary.∀E" by fast327

AOT_show ‹[G]u› if ‹[H]u› using 0 1 "≡E"(1) that by blast328

AOT_show ‹[H]u› if ‹[G]u› using 0 1 "≡E"(2) that by blast329

}330

{331

AOT_assume ‹∀u([H]u ≡ [G]u)›332

AOT_hence 1: ‹[H]u ≡ [G]u› using "Ordinary.∀E" by fast333

AOT_show ‹[G]u› if ‹[F]u› using 0 1 "≡E"(1,2) that by blast334

AOT_show ‹[F]u› if ‹[G]u› using 0 1 "≡E"(1,2) that by blast335

}336

}337

qed338

}339

AOT_thus ‹(A!x & G↓ & [λx ∀F (x[F] ≡ ∀z (O!z → ([F]z ≡ [G]z)))]x) ≡340

OrdinaryExtensionOf(x,[G])›341

apply (AOT_subst_def OrdinaryExtensionOf)342

apply (AOT_subst ‹[λx ∀F (x[F] ≡ ∀z (O!z → ([F]z ≡ [G]z)))]x›343

‹∀F (x[F] ≡ ∀z (O!z → ([F]z ≡ [G]z)))›)344

by (auto intro!: "beta-C-meta"[THEN "→E"] simp: "oth-class-taut:3:a")345

}346

qed347

qed348

349

text‹Fragments of PLM’s theory of Concepts.›350

351

AOT_define FimpG :: ‹Π ⇒ Π ⇒ ϕ› (infixl ‹⇒› 50)352

"F-imp-G": ‹[G] ⇒ [F] ≡df F↓ & G↓ & �∀x ([G]x → [F]x)› (432)353

354

AOT_define concept :: ‹Π› (‹C!›)355

concepts: ‹C! =df A!› (593)356

357

AOT_register_rigid_restricted_type358

Concept: ‹C!κ›359

proof360

AOT_modally_strict {361

AOT_have ‹∃x A!x›362

using "o-objects-exist:2" "qml:2"[axiom_inst] "→E" by blast363

AOT_thus ‹∃x C!x›364

using "rule-id-df:1[zero]"[OF concepts, OF "oa-exist:2"] "rule=E" id_sym365

by fast366

}367

next368

AOT_modally_strict {369

AOT_show ‹C!κ → κ↓› for κ370

using "cqt:5:a"[axiom_inst, THEN "→E", THEN "&E"(2)] "→I"371

by blast372

}373

next374

AOT_modally_strict {375

AOT_have ‹∀x(A!x → �A!x)›376

512

A.13. Additional Theorems

by (simp add: "oa-facts:2" GEN)377

AOT_thus ‹∀x(C!x → �C!x)›378

using "rule-id-df:1[zero]"[OF concepts, OF "oa-exist:2"] "rule=E" id_sym379

by fast380

}381

qed382

383

AOT_register_variable_names384

Concept: c d e385

386

AOT_theorem "concept-comp:1": ‹∃x(C!x & ∀F(x[F] ≡ ϕ{F}))› (595.1)387

using concepts[THEN "rule-id-df:1[zero]", OF "oa-exist:2", symmetric]388

"A-objects"[axiom_inst]389

"rule=E" by fast390

391

AOT_theorem "concept-comp:2": ‹∃!x(C!x & ∀F(x[F] ≡ ϕ{F}))› (595.2)392

using concepts[THEN "rule-id-df:1[zero]", OF "oa-exist:2", symmetric]393

"A-objects!"394

"rule=E" by fast395

396

AOT_theorem "concept-comp:3": ‹ιx(C!x & ∀F(x[F] ≡ ϕ{F}))↓› (595.3)397

using "concept-comp:2" "A-Exists:2"[THEN "≡E"(2)] "RA[2]" by blast398

399

AOT_theorem "concept-comp:4": (595.4)400

‹ιx(C!x & ∀F(x[F] ≡ ϕ{F})) = ιx(A!x & ∀F(x[F] ≡ ϕ{F}))›401

using "=I"(1)[OF "concept-comp:3"]402

"rule=E"[rotated]403

concepts[THEN "rule-id-df:1[zero]", OF "oa-exist:2"]404

by fast405

406

AOT_define conceptInclusion :: ‹τ ⇒ τ ⇒ ϕ› (infixl ‹4› 100)407

"con:1": ‹c 4 d ≡df ∀F(c[F] → d[F])› (605.1)408

409

410

AOT_define conceptOf :: ‹τ ⇒ τ ⇒ ϕ› (‹ConceptOf’(_,_’)›)411

"concept-of-G": ‹ConceptOf(c,G) ≡df G↓ & ∀F (c[F] ≡ [G] ⇒ [F])› (651)412

413

AOT_theorem ConceptOfOrdinaryProperty: ‹([H] ⇒ O!) → [λx ConceptOf(x,H)]↓›414

proof(rule "→I")415

AOT_assume ‹[H] ⇒ O!›416

AOT_hence ‹�∀x([H]x → O!x)›417

using "F-imp-G"[THEN "≡dfE"] "&E" by blast418

AOT_hence ‹��∀x([H]x → O!x)›419

using "S5Basic:6"[THEN "≡E"(1)] by blast420

moreover AOT_have ‹��∀x([H]x → O!x) →421

�∀F∀G(�(G ≡E F) → ([H] ⇒ [F] ≡ [H] ⇒ [G]))›422

proof(rule RM; safe intro!: "→I" GEN "≡I")423

AOT_modally_strict {424

fix F G425

AOT_assume 0: ‹�∀x([H]x → O!x)›426

AOT_assume ‹�G ≡E F›427

AOT_hence 1: ‹�∀u([G]u ≡ [F]u)›428

by (AOT_subst_thm eqE[THEN "≡Df", THEN "≡S"(1), OF "&I",429

OF "cqt:2[const_var]"[axiom_inst],430

OF "cqt:2[const_var]"[axiom_inst], symmetric])431

{432

AOT_assume ‹[H] ⇒ [F]›433

AOT_hence ‹�∀x([H]x → [F]x)›434

using "F-imp-G"[THEN "≡dfE"] "&E" by blast435

moreover AOT_modally_strict {436

AOT_assume ‹∀x([H]x → O!x)›437

moreover AOT_assume ‹∀u([G]u ≡ [F]u)›438

moreover AOT_assume ‹∀x([H]x → [F]x)›439

513

A. Isabelle Theory

ultimately AOT_have ‹[H]x → [G]x› for x440

by (auto intro!: "→I" dest!: "∀E"(2) dest: "→E" "≡E")441

AOT_hence ‹∀x([H]x → [G]x)›442

by (rule GEN)443

}444

ultimately AOT_have ‹�∀x([H]x → [G]x)›445

using "RN[prem]"[where446

Γ="{«∀x([H]x → O!x)», «∀u([G]u ≡ [F]u)», «∀x([H]x → [F]x)»}"]447

using 0 1 by fast448

AOT_thus ‹[H] ⇒ [G]›449

by (AOT_subst_def "F-imp-G")450

(safe intro!: "cqt:2" "&I")451

}452

{453

AOT_assume ‹[H] ⇒ [G]›454

AOT_hence ‹�∀x([H]x → [G]x)›455

using "F-imp-G"[THEN "≡dfE"] "&E" by blast456

moreover AOT_modally_strict {457

AOT_assume ‹∀x([H]x → O!x)›458

moreover AOT_assume ‹∀u([G]u ≡ [F]u)›459

moreover AOT_assume ‹∀x([H]x → [G]x)›460

ultimately AOT_have ‹[H]x → [F]x› for x461

by (auto intro!: "→I" dest!: "∀E"(2) dest: "→E" "≡E")462

AOT_hence ‹∀x([H]x → [F]x)›463

by (rule GEN)464

}465

ultimately AOT_have ‹�∀x([H]x → [F]x)›466

using "RN[prem]"[where467

Γ="{«∀x([H]x → O!x)», «∀u([G]u ≡ [F]u)», «∀x([H]x → [G]x)»}"]468

using 0 1 by fast469

AOT_thus ‹[H] ⇒ [F]›470

by (AOT_subst_def "F-imp-G")471

(safe intro!: "cqt:2" "&I")472

}473

}474

qed475

ultimately AOT_have ‹�∀F∀G(�(G ≡E F) → ([H] ⇒ [F] ≡ [H] ⇒ [G]))›476

using "→E" by blast477

AOT_hence 0: ‹[λx ∀F(x[F] ≡ ([H] ⇒ [F]))]↓›478

using Comprehension_3[THEN "→E"] by blast479

AOT_show ‹[λx ConceptOf(x,H)]↓›480

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])481

AOT_show ‹[λx C!x & [λx ∀F(x[F] ≡ ([H] ⇒ [F]))]x]↓› by "cqt:2"482

next483

AOT_show ‹�∀x (C!x & [λx ∀F (x[F] ≡ [H] ⇒ [F])]x ≡ ConceptOf(x,H))›484

proof (rule "RN[prem]"[where Γ=‹{«[λx ∀F(x[F] ≡ ([H] ⇒ [F]))]↓»}›, simplified])485

AOT_modally_strict {486

AOT_assume 0: ‹[λx ∀F (x[F] ≡ [H] ⇒ [F])]↓›487

AOT_show ‹∀x (C!x & [λx ∀F (x[F] ≡ [H] ⇒ [F])]x ≡ ConceptOf(x,H))›488

proof(safe intro!: GEN "≡I" "→I" "&I")489

fix x490

AOT_assume ‹C!x & [λx ∀F (x[F] ≡ [H] ⇒ [F])]x›491

AOT_thus ‹ConceptOf(x,H)›492

by (AOT_subst_def "concept-of-G")493

(auto intro!: "&I" "cqt:2" dest: "&E" "β→C")494

next495

fix x496

AOT_assume ‹ConceptOf(x,H)›497

AOT_hence ‹C!x & (H↓ & ∀F(x[F] ≡ [H] ⇒ [F]))›498

by (AOT_subst_def (reverse) "concept-of-G")499

AOT_thus ‹C!x› and ‹[λx ∀F(x[F] ≡ [H] ⇒ [F])]x›500

by (auto intro!: "β←C" 0 "cqt:2" dest: "&E")501

qed502

514

A.13. Additional Theorems

}503

next504

AOT_show ‹�[λx ∀F(x[F] ≡ ([H] ⇒ [F]))]↓›505

using "exist-nec"[THEN "→E"] 0 by blast506

qed507

qed508

qed509

510

AOT_theorem "con-exists:1": ‹∃c ConceptOf(c,G)› (652.1)511

proof -512

AOT_obtain c where ‹∀F (c[F] ≡ [G] ⇒ [F])›513

using "concept-comp:1" "Concept.∃E"[rotated] by meson514

AOT_hence ‹ConceptOf(c,G)›515

by (auto intro!: "concept-of-G"[THEN "≡dfI"] "&I" "cqt:2" Concept.ψ)516

thus ?thesis by (rule "Concept.∃I")517

qed518

519

AOT_theorem "con-exists:2": ‹∃!c ConceptOf(c,G)› (652.2)520

proof -521

AOT_have ‹∃!c ∀F (c[F] ≡ [G] ⇒ [F])›522

using "concept-comp:2" by simp523

moreover {524

AOT_modally_strict {525

fix x526

AOT_assume ‹∀F (x[F] ≡ [G] ⇒ [F])›527

moreover AOT_have ‹[G] ⇒ [G]›528

by (safe intro!: "F-imp-G"[THEN "≡dfI"] "&I" "cqt:2" RN GEN "→I")529

ultimately AOT_have ‹x[G]›530

using "∀E"(2) "≡E" by blast531

AOT_hence ‹A!x›532

using "encoders-are-abstract"[THEN "→E", OF "∃I"(2)] by simp533

AOT_hence ‹C!x›534

using concepts[THEN "rule-id-df:1[zero]", OF "oa-exist:2", symmetric]535

"rule=E"[rotated]536

by fast537

}538

}539

ultimately show ?thesis540

by (AOT_subst ‹ConceptOf(c,G)› ‹∀F (c[F] ≡ [G] ⇒ [F])› for: c;541

AOT_subst_def "concept-of-G")542

(auto intro!: "≡I" "→I" "&I" "cqt:2" Concept.ψ dest: "&E")543

qed544

545

AOT_theorem "con-exists:3": ‹ιc ConceptOf(c,G)↓› (652.3)546

by (safe intro!: "A-Exists:2"[THEN "≡E"(2)] "con-exists:2"[THEN "RA[2]"])547

548

549

AOT_define theConceptOfG :: ‹τ ⇒ κs› (‹c_›)550

"concept-G": ‹cG =df ιc ConceptOf(c, G)› (653)551

552

AOT_theorem "concept-G[den]": ‹cG↓› (653)553

by (auto intro!: "rule-id-df:1"[OF "concept-G"]554

"t=t-proper:1"[THEN "→E"]555

"con-exists:3")556

557

558

AOT_theorem "concept-G[concept]": ‹C!cG› (653)559

proof -560

AOT_have ‹A(C!cG & ConceptOf(cG, G))›561

by (auto intro!: "actual-desc:2"[unvarify x, THEN "→E"]562

"rule-id-df:1"[OF "concept-G"]563

"concept-G[den]"564

"con-exists:3")565

515

A. Isabelle Theory

AOT_hence ‹AC!cG›566

by (metis "Act-Basic:2" "con-dis-i-e:2:a" "intro-elim:3:a")567

AOT_hence ‹AA!cG›568

using "rule-id-df:1[zero]"[OF concepts, OF "oa-exist:2"]569

"rule=E" by fast570

AOT_hence ‹A!cG›571

using "oa-facts:8"[unvarify x, THEN "≡E"(2)] "concept-G[den]" by blast572

thus ?thesis573

using "rule-id-df:1[zero]"[OF concepts, OF "oa-exist:2", symmetric]574

"rule=E" by fast575

qed576

577

AOT_theorem "conG-strict": ‹cG = ιc ∀F(c[F] ≡ [G] ⇒ [F])› (654)578

proof (rule "id-eq:3"[unvarify α β γ, THEN "→E"])579

AOT_have ‹�∀x (C!x & ConceptOf(x,G) ≡ C!x & ∀F (x[F] ≡ [G] ⇒ [F]))›580

by (auto intro!: "concept-of-G"[THEN "≡dfI"] RN GEN "≡I" "→I" "&I" "cqt:2"581

dest: "&E";582

auto dest: "∀E"(2) "≡E"(1,2) dest!: "&E"(2) "concept-of-G"[THEN "≡dfE"])583

AOT_thus ‹cG = ιc ConceptOf(c, G) & ιc ConceptOf(c, G) = ιc ∀F(c[F] ≡ [G] ⇒ [F])›584

by (auto intro!: "&I" "rule-id-df:1"[OF "concept-G"] "con-exists:3"585

"equiv-desc-eq:3"[THEN "→E"])586

qed(auto simp: "concept-G[den]" "con-exists:3" "concept-comp:3")587

588

589

AOT_theorem "conG-lemma:1": ‹∀F(cG[F] ≡ [G] ⇒ [F])› (655.1)590

proof(safe intro!: GEN "≡I" "→I")591

fix F592

AOT_have ‹A∀F(cG[F] ≡ [G] ⇒ [F])›593

using "actual-desc:4"[THEN "→E", OF "concept-comp:3",594

THEN "Act-Basic:2"[THEN "≡E"(1)],595

THEN "&E"(2)]596

"conG-strict"[symmetric] "rule=E" by fast597

AOT_hence ‹A(cG[F] ≡ [G] ⇒ [F])›598

using "logic-actual-nec:3"[axiom_inst, THEN "≡E"(1)] "∀E"(2)599

by blast600

AOT_hence 0: ‹AcG[F] ≡ A[G] ⇒ [F]›601

using "Act-Basic:5"[THEN "≡E"(1)] by blast602

{603

AOT_assume ‹cG[F]›604

AOT_hence ‹AcG[F]›605

by(safe intro!: "en-eq:10[1]"[unvarify x1, THEN "≡E"(2)]606

"concept-G[den]")607

AOT_hence ‹A[G] ⇒ [F]›608

using 0[THEN "≡E"(1)] by blast609

AOT_hence ‹A(F↓ & G↓ & �∀x([G]x → [F]x))›610

by (AOT_subst_def (reverse) "F-imp-G")611

AOT_hence ‹A�∀x([G]x → [F]x)›612

using "Act-Basic:2"[THEN "≡E"(1)] "&E" by blast613

AOT_hence ‹�∀x([G]x → [F]x)›614

using "qml-act:2"[axiom_inst, THEN "≡E"(2)] by simp615

AOT_thus ‹[G] ⇒ [F]›616

by (AOT_subst_def "F-imp-G"; auto intro!: "&I" "cqt:2")617

}618

{619

AOT_assume ‹[G] ⇒ [F]›620

AOT_hence ‹�∀x([G]x → [F]x)›621

by (safe dest!: "F-imp-G"[THEN "≡dfE"] "&E"(2))622

AOT_hence ‹A�∀x([G]x → [F]x)›623

using "qml-act:2"[axiom_inst, THEN "≡E"(1)] by simp624

AOT_hence ‹A(F↓ & G↓ & �∀x([G]x → [F]x))›625

by (auto intro!: "Act-Basic:2"[THEN "≡E"(2)] "&I" "cqt:2"626

intro: "RA[2]")627

AOT_hence ‹A([G] ⇒ [F])›628

516

A.13. Additional Theorems

by (AOT_subst_def "F-imp-G")629

AOT_hence ‹AcG[F]›630

using 0[THEN "≡E"(2)] by blast631

AOT_thus ‹cG[F]›632

by(safe intro!: "en-eq:10[1]"[unvarify x1, THEN "≡E"(1)]633

"concept-G[den]")634

}635

qed636

637

AOT_theorem conH_enc_ord:638

‹([H] ⇒ O!) → �∀F ∀G (�G ≡E F → (cH[F] ≡ cH[G]))›639

proof(rule "→I")640

AOT_assume 0: ‹[H] ⇒ O!›641

AOT_have 0: ‹�([H] ⇒ O!)›642

apply (AOT_subst_def "F-imp-G")643

using 0[THEN "≡dfE"[OF "F-imp-G"]]644

by (auto intro!: "KBasic:3"[THEN "≡E"(2)] "&I" "exist-nec"[THEN "→E"]645

dest: "&E" 4[THEN "→E"])646

moreover AOT_have ‹�([H] ⇒ O!) → �∀F ∀G (�G ≡E F → (cH[F] ≡ cH[G]))›647

proof(rule RM; safe intro!: "→I" GEN)648

AOT_modally_strict {649

fix F G650

AOT_assume ‹[H] ⇒ O!›651

AOT_hence 0: ‹�∀x ([H]x → O!x)›652

by (safe dest!: "F-imp-G"[THEN "≡dfE"] "&E"(2))653

AOT_assume 1: ‹�G ≡E F›654

AOT_assume ‹cH[F]›655

AOT_hence ‹[H] ⇒ [F]›656

using "conG-lemma:1"[THEN "∀E"(2), THEN "≡E"(1)] by simp657

AOT_hence 2: ‹�∀x ([H]x → [F]x)›658

by (safe dest!: "F-imp-G"[THEN "≡dfE"] "&E"(2))659

AOT_modally_strict {660

AOT_assume 0: ‹∀x ([H]x → O!x)›661

AOT_assume 1: ‹∀x ([H]x → [F]x)›662

AOT_assume 2: ‹G ≡E F›663

AOT_have ‹∀x ([H]x → [G]x)›664

proof(safe intro!: GEN "→I")665

fix x666

AOT_assume ‹[H]x›667

AOT_hence ‹O!x› and ‹[F]x›668

using 0 1 "∀E"(2) "→E" by blast+669

AOT_thus ‹[G]x›670

using 2[THEN eqE[THEN "≡dfE"], THEN "&E"(2)]671

"∀E"(2) "→E" "≡E"(2) calculation by blast672

qed673

}674

AOT_hence ‹�∀x ([H]x → [G]x)›675

using "RN[prem]"[where Γ=‹{«∀x ([H]x → O!x)»,676

«∀x ([H]x → [F]x)»,677

«G ≡E F»}›, simplified] 0 1 2 by fast678

AOT_hence ‹[H] ⇒ [G]›679

by (safe intro!: "F-imp-G"[THEN "≡dfI"] "&I" "cqt:2")680

AOT_hence ‹cH[G]›681

using "conG-lemma:1"[THEN "∀E"(2), THEN "≡E"(2)] by simp682

} note 0 = this683

AOT_modally_strict {684

fix F G685

AOT_assume ‹[H] ⇒ O!›686

moreover AOT_assume ‹�G ≡E F›687

moreover AOT_have ‹�F ≡E G›688

by (AOT_subst ‹F ≡E G› ‹G ≡E F›)689

(auto intro!: calculation(2)690

eqE[THEN "≡dfI"]691

517

A. Isabelle Theory

"≡I" "→I" "&I" "cqt:2" Ordinary.GEN692

dest!: eqE[THEN "≡dfE"] "&E"(2)693

dest: "≡E"(1,2) "Ordinary.∀E")694

ultimately AOT_show ‹(cH[F] ≡ cH[G])›695

using 0 "≡I" "→I" by auto696

}697

qed698

ultimately AOT_show ‹�∀F ∀G (�G ≡E F → (cH[F] ≡ cH[G]))›699

using "→E" by blast700

qed701

702

AOT_theorem concept_inclusion_denotes_1:703

‹([H] ⇒ O!) → [λx cH 4 x]↓›704

proof(rule "→I")705

AOT_assume 0: ‹[H] ⇒ O!›706

AOT_show ‹[λx cH 4 x]↓›707

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])708

AOT_show ‹[λx C!x & ∀F(cH[F] → x[F])]↓›709

by (safe intro!: conjunction_denotes[THEN "→E", OF "&I"]710

Comprehension_2’[THEN "→E"]711

conH_enc_ord[THEN "→E", OF 0]) "cqt:2"712

next713

AOT_show ‹�∀x (C!x & ∀F (cH[F] → x[F]) ≡ cH 4 x)›714

by (safe intro!: RN GEN; AOT_subst_def "con:1")715

(auto intro!: "≡I" "→I" "&I" "concept-G[concept]" dest: "&E")716

qed717

qed718

719

AOT_theorem concept_inclusion_denotes_2:720

‹([H] ⇒ O!) → [λx x 4 cH]↓›721

proof(rule "→I")722

AOT_assume 0: ‹[H] ⇒ O!›723

AOT_show ‹[λx x 4 cH]↓›724

proof(rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])725

AOT_show ‹[λx C!x & ∀F(x[F] → cH[F])]↓›726

by (safe intro!: conjunction_denotes[THEN "→E", OF "&I"]727

Comprehension_1’[THEN "→E"]728

conH_enc_ord[THEN "→E", OF 0]) "cqt:2"729

next730

AOT_show ‹�∀x (C!x & ∀F (x[F] → cH[F]) ≡ x 4 cH)›731

by (safe intro!: RN GEN; AOT_subst_def "con:1")732

(auto intro!: "≡I" "→I" "&I" "concept-G[concept]" dest: "&E")733

qed734

qed735

736

AOT_define ThickForm :: ‹τ ⇒ τ ⇒ ϕ› (‹FormOf’(_,_’)›)737

"tform-of": ‹FormOf(x,G) ≡df A!x & G↓ & ∀F(x[F] ≡ [G] ⇒ [F])› (434)738

739

AOT_theorem FormOfOrdinaryProperty: ‹([H] ⇒ O!) → [λx FormOf(x,H)]↓›740

proof(rule "→I")741

AOT_assume 0: ‹[H] ⇒ [O!]›742

AOT_show ‹[λx FormOf(x,H)]↓›743

proof (rule "safe-ext"[axiom_inst, THEN "→E", OF "&I"])744

AOT_show ‹[λx ConceptOf(x,H)]↓›745

using 0 ConceptOfOrdinaryProperty[THEN "→E"] by blast746

AOT_show ‹�∀x (ConceptOf(x,H) ≡ FormOf(x,H))›747

proof(safe intro!: RN GEN)748

AOT_modally_strict {749

fix x750

AOT_modally_strict {751

AOT_have ‹A!x ≡ A!x›752

by (simp add: "oth-class-taut:3:a")753

AOT_hence ‹C!x ≡ A!x›754

518

A.13. Additional Theorems

using "rule-id-df:1[zero]"[OF concepts, OF "oa-exist:2"]755

"rule=E" id_sym by fast756

}757

AOT_thus ‹ConceptOf(x,H) ≡ FormOf(x,H)›758

by (AOT_subst_def "tform-of";759

AOT_subst_def "concept-of-G";760

AOT_subst ‹C!x› ‹A!x›)761

(auto intro!: "≡I" "→I" "&I" dest: "&E")762

}763

qed764

qed765

qed766

767

AOT_theorem equal_E_rigid_one_to_one: ‹Rigid1-1((=E))›768

proof (safe intro!: "df-1-1:2"[THEN "≡dfI"] "&I" "df-1-1:1"[THEN "≡dfI"]769

GEN "→I" "df-rigid-rel:1"[THEN "≡dfI"] "=E[denotes]")770

fix x y z771

AOT_assume ‹x =E z & y =E z›772

AOT_thus ‹x = y›773

by (metis "rule=E" "&E"(1) "Conjunction Simplification"(2)774

"=E-simple:2" id_sym "→E")775

next776

AOT_have ‹∀x∀y �(x =E y → �x =E y)›777

proof(rule GEN; rule GEN)778

AOT_show ‹�(x =E y → �x =E y)› for x y779

by (meson RN "deduction-theorem" "id-nec3:1" "≡E"(1))780

qed781

AOT_hence ‹∀x1...∀xn �([(=E)]x1...xn → �[(=E)]x1...xn)›782

by (rule tuple_forall[THEN "≡dfI"])783

AOT_thus ‹�∀x1...∀xn ([(=E)]x1...xn → �[(=E)]x1...xn)›784

using BF[THEN "→E"] by fast785

qed786

787

AOT_theorem equal_E_domain: ‹InDomainOf(x,(=E)) ≡ O!x›788

proof(safe intro!: "≡I" "→I")789

AOT_assume ‹InDomainOf(x,(=E))›790

AOT_hence ‹∃y x =E y›791

by (metis "≡dfE" "df-1-1:5")792

then AOT_obtain y where ‹x =E y›793

using "∃E"[rotated] by blast794

AOT_thus ‹O!x›795

using "=E-simple:1"[THEN "≡E"(1)] "&E" by blast796

next797

AOT_assume ‹O!x›798

AOT_hence ‹x =E x›799

by (metis "ord=Eequiv:1"[THEN "→E"])800

AOT_hence ‹∃y x =E y›801

using "∃I"(2) by fast802

AOT_thus ‹InDomainOf(x,(=E))›803

by (metis "≡dfI" "df-1-1:5")804

qed805

806

AOT_theorem shared_urelement_projection_identity:807

assumes ‹∀y [λx (y[λz [R]zx])]↓›808

shows ‹∀F([F]a ≡ [F]b) → [λz [R]za] = [λz [R]zb]›809

proof(rule "→I")810

AOT_assume 0: ‹∀F([F]a ≡ [F]b)›811

{812

fix z813

AOT_have ‹[λx (z[λz [R]zx])]↓›814

using assms[THEN "∀E"(2)].815

AOT_hence 1: ‹∀x ∀y (∀F ([F]x ≡ [F]y) → �(z[λz [R]zx] ≡ z[λz [R]zy]))›816

using "kirchner-thm-cor:1"[THEN "→E"]817

519

A. Isabelle Theory

by blast818

AOT_have ‹�(z[λz [R]za] ≡ z[λz [R]zb])›819

using 1[THEN "∀E"(2), THEN "∀E"(2), THEN "→E", OF 0] by blast820

}821

AOT_hence ‹∀z �(z[λz [R]za] ≡ z[λz [R]zb])›822

by (rule GEN)823

AOT_hence ‹�∀z(z[λz [R]za] ≡ z[λz [R]zb])›824

by (rule BF[THEN "→E"])825

AOT_thus ‹[λz [R]za] = [λz [R]zb]›826

by (AOT_subst_def "identity:2")827

(auto intro!: "&I" "cqt:2")828

qed829

830

AOT_theorem shared_urelement_exemplification_identity:831

assumes ‹∀y [λx (y[λz [G]x])]↓›832

shows ‹∀F([F]a ≡ [F]b) → ([G]a) = ([G]b)›833

proof(rule "→I")834

AOT_assume 0: ‹∀F([F]a ≡ [F]b)›835

{836

fix z837

AOT_have ‹[λx (z[λz [G]x])]↓›838

using assms[THEN "∀E"(2)].839

AOT_hence 1: ‹∀x ∀y (∀F ([F]x ≡ [F]y) → �(z[λz [G]x] ≡ z[λz [G]y]))›840

using "kirchner-thm-cor:1"[THEN "→E"]841

by blast842

AOT_have ‹�(z[λz [G]a] ≡ z[λz [G]b])›843

using 1[THEN "∀E"(2), THEN "∀E"(2), THEN "→E", OF 0] by blast844

}845

AOT_hence ‹∀z �(z[λz [G]a] ≡ z[λz [G]b])›846

by (rule GEN)847

AOT_hence ‹�∀z(z[λz [G]a] ≡ z[λz [G]b])›848

by (rule BF[THEN "→E"])849

AOT_hence ‹[λz [G]a] = [λz [G]b]›850

by (AOT_subst_def "identity:2")851

(auto intro!: "&I" "cqt:2")852

AOT_thus ‹([G]a) = ([G]b)›853

by (safe intro!: "identity:4"[THEN "≡dfI"] "&I" "log-prop-prop:2")854

qed855

856

text‹The assumptions of the theorems above are derivable, if the additional857

introduction rules for the upcoming extension of @{thm "cqt:2[lambda]"}858

are explicitly allowed (while they are currently not part of the859

abstraction layer).›860

notepad861

begin862

AOT_modally_strict {863

AOT_have ‹∀R∀y [λx (y[λz [R]zx])]↓›864

by (safe intro!: GEN "cqt:2" AOT_instance_of_cqt_2_intro_next)865

AOT_have ‹∀G∀y [λx (y[λz [G]x])]↓›866

by (safe intro!: GEN "cqt:2" AOT_instance_of_cqt_2_intro_next)867

}868

end869

870

end871

872

520

References

[1] Jesse Alama, Paul E. Oppenheimer, and Edward N. Zalta. “Automating Leibniz’s
Theory of Concepts”. In: Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Pro-
ceedings. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in
Computer Science. Springer, 2015, pp. 73–97. doi: 10.1007/978-3-319-21401-6.

[2] Christoph Benzmüller. “Universal (Meta-)Logical Reasoning: Recent Successes”.
In: Science of Computer Programming 172 (2019), pp. 48–62. doi: 10.1016/j.scico.
2018.10.008.

[3] Christoph Benzmüller, Maximilian Claus, and Nik Sultana. “Systematic Verifica-
tion of the Modal Logic Cube in Isabelle/HOL”. In: PxTP 2015. Ed. by Cezary
Kaliszyk and Andrei Paskevich. Vol. 186. Berlin, Germany: EPTCS, 2015, pp. 27–
41. doi: 10.4204/EPTCS.186.5.

[4] Christoph Benzmüller and David Fuenmayor. “Computer-supported Analysis of
Positive Properties, Ultrafilters and Modal Collapse in Variants of Gödel’s Onto-
logical Argument”. In: Bulletin of the Section of Logic 49.2 (2020), pp. 127–148.
doi: 10.18778/0138-0680.2020.08.

[5] Christoph Benzmüller, Xavier Parent, and Leendert van der Torre. “Designing nor-
mative theories for ethical and legal reasoning: LogiKEy framework, methodology,
and tool support”. In: Artificial Intelligence 287 (2020), p. 103348. issn: 0004-3702.
doi: 10.1016/j.artint.2020.103348.

[6] Christoph Benzmüller and Lawrence Paulson. “Quantified Multimodal Logics in
Simple Type Theory”. In: Logica Universalis (Special Issue on Multimodal Logics)
7.1 (2013), pp. 7–20. doi: 10.1007/s11787-012-0052-y.

[7] Christoph Benzmüller and Sebastian Reiche. Modeling and Automating Public An-
nouncement Logic with Relativized Common Knowledge as a Fragment of HOL in
LogiKEy. 2021. arXiv: 2111.01654 [cs.AI].

[8] Christoph Benzmüller and Bruno Woltzenlogel Paleo. “Automating Gödel’s Onto-
logical Proof of God’s Existence with Higher-order Automated Theorem Provers”.
In: ECAI 2014. Ed. by Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan.
Vol. 263. Frontiers in Artificial Intelligence and Applications. IOS Press, 2014,
pp. 93–98. doi: 10.3233/978-1-61499-419-0-93.

[9] Christoph Benzmüller and Bruno Woltzenlogel Paleo. “Higher-Order Modal Logics:
Automation and Applications”. In: July 2015. isbn: 978-3-319-21767-3. doi: 10.
1007/978-3-319-21768-0_2.

521

https://doi.org/10.1007/978-3-319-21401-6
https://doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.4204/EPTCS.186.5
https://doi.org/10.18778/0138-0680.2020.08
https://doi.org/10.1016/j.artint.2020.103348
https://doi.org/10.1007/s11787-012-0052-y
https://arxiv.org/abs/2111.01654
https://doi.org/10.3233/978-1-61499-419-0-93
https://doi.org/10.1007/978-3-319-21768-0_2
https://doi.org/10.1007/978-3-319-21768-0_2

References

[10] Christoph Benzmüller et al. “LogiKEy workbench: Deontic logics, logic combina-
tions and expressive ethical and legal reasoning (Isabelle/HOL dataset)”. In: Data
in Brief 33 (2020), p. 106409. issn: 2352-3409. doi: 10.1016/j.dib.2020.106409.

[11] Patrick Blackburn and Johan van Benthem. “Modal logic: a semantic perspective”.
In: Handbook of Modal Logic. Ed. by Patrick Blackburn, Johan Van Benthem, and
Frank Wolter. Vol. 3. Studies in Logic and Practical Reasoning. Elsevier, 2007,
pp. 1–84. doi: 10.1016/S1570-2464(07)80004-8.

[12] Jasmin Christian Blanchette and Tobias Nipkow. “Nitpick: A Counterexample
Generator for Higher-Order Logic Based on a Relational Model Finder”. In: Inter-
active Theorem Proving. Ed. by Matt Kaufmann and Lawrence C. Paulson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 131–146. isbn: 978-3-642-14052-
5. doi: 10.1007/978-3-642-14052-5_11.

[13] Sascha Böhme and Tjark Weber. “Fast LCF-Style Proof Reconstruction for Z3”. In:
Interactive Theorem Proving. Ed. by Matt Kaufmann and Lawrence C. Paulson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 179–194. isbn: 978-3-642-
14052-5. doi: 10.1007/978-3-642-14052-5_14.

[14] George Boolos. “The Consistency of Frege’s Foundations of Arithmetic”. In: On
Being and Saying: Essays in Honor of Richard Cartwright. Ed. by J. Thomson.
Cambridge: MIT Press, 1987, pp. 3–20.

[15] Thomas Bouton et al. “veriT: An Open, Trustable and Efficient SMT-Solver”. In:
Automated Deduction – CADE-22. Ed. by Renate A. Schmidt. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 151–156. isbn: 978-3-642-02959-2. doi: 10.
1007/978-3-642-02959-2_12.

[16] N.G de Bruijn. “Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem”.
In: Indagationes Mathematicae (Proceedings) 75.5 (1972), pp. 381–392. issn: 1385-
7258. doi: 10.1016/1385-7258(72)90034-0.

[17] Branden Fitelson and Edward N. Zalta. “Steps Toward a Computational Meta-
physics”. In: Journal Philosophical Logic 36.2 (2007), pp. 227–247. doi: 10.1007/
s10992-006-9038-7.

[18] Melvin Fitting. “A tableau system for propositional S5.” In: Notre Dame Journal
of Formal Logic 18.2 (1977), pp. 292–294. doi: 10.1305/ndjfl/1093887933.

[19] Mathias Fleury and Hans-Jörg Schurr. “Reconstructing veriT Proofs in Isabelle/HOL”.
In: Electronic Proceedings in Theoretical Computer Science 301 (Aug. 2019), pp. 36–
50. issn: 2075-2180. doi: 10.4204/eptcs.301.6.

[20] David Fuenmayor and Christoph Benzmüller. “A Case Study On Computational
Hermeneutics: E. J. Lowe’s Modal Ontological Argument”. In: Beyond Faith and
Rationality: Essays on Logic, Religion and Philosophy. Ed. by Ricardo Silvestre et
al. Vol. 34. Sophia Studies in Cross-cultural Philosophy of Traditions and Cultures.
Springer Nature Switzerland AG, 2020. Chap. 12. doi: 10.1007/978-3-030-43535-
6_12.

522

https://doi.org/10.1016/j.dib.2020.106409
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/s10992-006-9038-7
https://doi.org/10.1007/s10992-006-9038-7
https://doi.org/10.1305/ndjfl/1093887933
https://doi.org/10.4204/eptcs.301.6
https://doi.org/10.1007/978-3-030-43535-6_12
https://doi.org/10.1007/978-3-030-43535-6_12

[21] Daniel Gallin. Intensional and Higher-Order Modal Logic: With Applications to
Montague Semantics. North-Holland Mathematics Studies: Volume 19, 1975.

[22] Jeremy Gibbons and Nicolas Wu. “Folding Domain-Specific Languages: Deep and
Shallow Embeddings (Functional Pearl)”. In: SIGPLAN Not. 49.9 (Aug. 2014),
pp. 339–347. issn: 0362-1340. doi: 10.1145/2692915.2628138.

[23] Patrick Grim and Daniel Singer. “Computational Philosophy”. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2020. Metaphysics Re-
search Lab, Stanford University, 2020. url: https://plato.stanford.edu/archives/
spr2020/entries/computational-philosophy/ (visited on 11/20/2021).

[24] John Harrison. “HOL Light: An Overview”. In: Theorem Proving in Higher Order
Logics. Ed. by Stefan Berghofer et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 60–66. isbn: 978-3-642-03359-9. doi: 10.1007/978-3-642-03359-
9_4.

[25] Brian Huffman and Ondej Kunar. “Lifting and Transfer: A Modular Design for
Quotients in Isabelle/HOL”. In: Certified Programs and Proofs. Ed. by Georges
Gonthier and Michael Norrish. Cham: Springer International Publishing, 2013,
pp. 131–146. isbn: 978-3-319-03545-1. doi: 10.1007/978-3-319-03545-1_9.

[26] Maciej Janowicz et al. “Application of Automated Theorem-Proving to Philosoph-
ical Thought: Spinoza’s Ethics”. In: Information Science and Applications 2017.
Ed. by Kuinam Kim and Nikolai Joukov. Singapore: Springer Singapore, 2017,
pp. 512–518. isbn: 978-981-10-4154-9. doi: 10.1007/978-981-10-4154-9_59.

[27] Daniel Kirchner. Embedding of Abstract Object Theory in Isabelle/HOL. Full sources.
url: https://github.com/ekpyron/AOT/tree/dissertation (visited on 12/14/2021).

[28] Daniel Kirchner. Embedding of Abstract Object Theory in Isabelle/HOL. Variant
counting equivalence classes of objects. url: https://github.com/ekpyron/AOT/
tree/classes (visited on 12/14/2021).

[29] Daniel Kirchner. “Representation and Partial Automation of the Principia Logico-
Metaphysica in Isabelle/HOL”. In: Archive of Formal Proofs (Sept. 2017). Formal
proof development. issn: 2150-914x. url: http://isa-afp.org/entries/PLM.html
(visited on 11/20/2021).

[30] Daniel Kirchner, Christoph Benzmüller, and Edward N. Zalta. “Computer Science
and Metaphysics: A Cross-Fertilization”. In: Open Philosophy 2.1 (2019), pp. 230–
251. doi: 10.1515/opphil-2019-0015.

[31] Daniel Kirchner, Christoph Benzmüller, and Edward N. Zalta. “Mechanizing Prin-
cipia Logico-Metaphysica in functional type-theory”. In: The Review of Symbolic
Logic 13.1 (2020), pp. 206–218. doi: 10.1017/S1755020319000297.

[32] Saul A. Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philosophica
Fennica 16 (1963), pp. 83–94.

523

https://doi.org/10.1145/2692915.2628138
https://plato.stanford.edu/archives/spr2020/entries/computational-philosophy/
https://plato.stanford.edu/archives/spr2020/entries/computational-philosophy/
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-981-10-4154-9_59
https://github.com/ekpyron/AOT/tree/dissertation
https://github.com/ekpyron/AOT/tree/classes
https://github.com/ekpyron/AOT/tree/classes
http://isa-afp.org/entries/PLM.html
https://doi.org/10.1515/opphil-2019-0015
https://doi.org/10.1017/S1755020319000297

References

[33] Hannes Leitgeb, Uri Nodelman, and Edward N. Zalta. A Defense of Logicism.
url: http://mally.stanford.edu/papers/logicism.pdf (visited on 12/14/2021). In
preparation.

[34] W. McCune. “Prover9 and Mace4”. 2005–2010. url: http://www.cs.unm.edu/
~mccune/prover9/ (visited on 11/20/2021).

[35] Elliott Mendelson. “The Propositional Calculus”. In: Introduction to Mathematical
Logic. Boston, MA: Springer US, 1987, pp. 10–40. isbn: 978-1-4615-7288-6. doi:
10.1007/978-1-4615-7288-6_2.

[36] Christopher Menzel. “The Proper Treatment of Predication in Fine-Grained Inten-
sional Logic”. In: Philosophical Perspectives 7 (1993), pp. 61–87. issn: 15208583,
17582245. doi: 10.2307/2214116.

[37] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ra-
makrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24.

[38] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. A Proof Assistant
for Higher-Order Logic. url: https://isabelle. in.tum.de/website-Isabelle2021-
1/dist/Isabelle2021-1/doc/tutorial.pdf (visited on 12/14/2021).

[39] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer, 2002. doi:
10.1007/3-540-45949-9.

[40] Steven Obua. “Partizan Games in Isabelle/HOLZF”. In: Theoretical Aspects of
Computing - ICTAC 2006. Ed. by Kamel Barkaoui, Ana Cavalcanti, and Antonio
Cerone. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 272–286. isbn:
978-3-540-48816-3. doi: 10.1007/11921240_19.

[41] Paul E. Oppenheimer and Edward N. Zalta. “A Computationally-Discovered Sim-
plification of the Ontological Argument”. In: Australasian Journal of Philosophy
89.2 (2011), pp. 333–349. doi: 10.1080/00048401003674482.

[42] Paul E. Oppenheimer and Edward N. Zalta. “On the Logic of the Ontological
Argument”. In: Philosophical Perspectives 5 (1991), pp. 509–529.

[43] Paul E. Oppenheimer and Edward N. Zalta. “Relations Versus Functions at the
Foundations of Logic: Type-Theoretic Considerations”. In: Journal of Logic and
Computation 21 (2011), pp. 351–374. doi: 10.1093/logcom/exq017.

[44] Lawrence Paulson. “Three Years of Experience with Sledgehammer, a Practical
Link between Automatic and Interactive Theorem Provers”. In: PAAR-2010: Pro-
ceedings of the 2nd Workshop on Practical Aspects of Automated Reasoning. Ed.
by Renate A. Schmidt, Stephan Schulz, and Boris Konev. Vol. 9. EPiC Series in
Computing. EasyChair, 2012, pp. 1–10. doi: 10.29007/tnfd.

[45] Lawrence C. Paulson. Isabelle’s Logics. url: https://isabelle.in.tum.de/website-
Isabelle2021-1/dist/Isabelle2021-1/doc/logics.pdf (visited on 12/14/2021).

524

http://mally.stanford.edu/papers/logicism.pdf
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-1-4615-7288-6_2
https://doi.org/10.2307/2214116
https://doi.org/10.1007/978-3-540-78800-3_24
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/tutorial.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/tutorial.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/11921240_19
https://doi.org/10.1080/00048401003674482
https://doi.org/10.1093/logcom/exq017
https://doi.org/10.29007/tnfd
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/logics.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/logics.pdf

[46] Francis J. Pelletier and Edward N. Zalta. “How to Say Goodbye to the Third Man”.
In: Noûs 34.2 (2000), pp. 165–202. doi: 10.1111/0029-4624.00207.

[47] William Joseph Rapaport. “Intentionality and the Structure of Existence”. PhD
thesis. Indiana University, 1976. url: https://cse.buffalo.edu/~rapaport/Papers/
rapaport1976-PhD-Diss.pdf (visited on 11/20/2021).

[48] Stephan Schulz, Simon Cruanes, and Petar Vukmirovi. “Faster, Higher, Stronger:
E 2.3”. In: Proc. of the 27th CADE, Natal, Brasil. Ed. by Pascal Fontaine. LNAI
11716. Springer, 2019, pp. 495–507. doi: 10.1007/978-3-030-29436-6_29.

[49] Herbert A. Simon. Models of My Life. Cambridge: MIT Press, 1996. isbn: 978-0-
262-69185-7.

[50] The Coq Development Team. The Coq Proof Assistant. Version 8.14. Oct. 2021.
doi: 10.5281/zenodo.5704840.

[51] Christoph Weidenbach. “Combining Superposition, Sorts and Splitting”. In: Hand-
book of Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov. Hand-
book of Automated Reasoning. Amsterdam: North-Holland, 2001, pp. 1965–2013.
isbn: 978-0-444-50813-3. doi: 10.1016/B978-044450813-3/50029-1.

[52] Makarius Wenzel. “Interaction with Formal Mathematical Documents in Isabelle/PIDE”.
In: Intelligent Computer Mathematics. Ed. by Cezary Kaliszyk et al. Cham: Springer
International Publishing, 2019, pp. 1–15. isbn: 978-3-030-23250-4. doi: 10.1007/
978-3-030-23250-4_1.

[53] Makarius Wenzel. The Isabelle System Manual. url: https : // isabelle . in . tum.
de / website - Isabelle2021 - 1 / dist / Isabelle2021 - 1 / doc / system . pdf (visited on
12/14/2021).

[54] Makarius Wenzel. The Isabelle/Isar Implementation. url: https://isabelle.in.tum.
de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/implementation.pdf (visited
on 12/14/2021).

[55] Makarius Wenzel. The Isabelle/Isar Reference Manual. url: https://isabelle.in.
tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/isar-ref.pdf (visited on
12/14/2021).

[56] Edward N. Zalta. Abstract Objects: An Introduction to Axiomatic Metaphysics.
Synthese Library. Springer, 1983. isbn: 9789027714749. doi: 10.1007/978-94-009-
6980-3.

[57] Edward N. Zalta. “Freges Theorem and Foundations for Arithmetic”. In: The
Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2021. Meta-
physics Research Lab, Stanford University, 2021. url: https://plato.stanford.edu/
archives/fall2021/entries/frege-theorem/ (visited on 11/29/2021).

[58] Edward N. Zalta. Further Explanation of the Objectives of the Theory. url: http:
//mally.stanford.edu/objectives.html (visited on 12/14/2021).

[59] Edward N. Zalta. Intensional Logic and the Metaphysics of Intentionality. A Brad-
ford book. MIT Press, 1988. isbn: 9780262240277.

525

https://doi.org/10.1111/0029-4624.00207
https://cse.buffalo.edu/~rapaport/Papers/rapaport1976-PhD-Diss.pdf
https://cse.buffalo.edu/~rapaport/Papers/rapaport1976-PhD-Diss.pdf
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.5281/zenodo.5704840
https://doi.org/10.1016/B978-044450813-3/50029-1
https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-030-23250-4_1
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/system.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/system.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/implementation.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/implementation.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/isar-ref.pdf
https://isabelle.in.tum.de/website-Isabelle2021-1/dist/Isabelle2021-1/doc/isar-ref.pdf
https://doi.org/10.1007/978-94-009-6980-3
https://doi.org/10.1007/978-94-009-6980-3
https://plato.stanford.edu/archives/fall2021/entries/frege-theorem/
https://plato.stanford.edu/archives/fall2021/entries/frege-theorem/
http://mally.stanford.edu/objectives.html
http://mally.stanford.edu/objectives.html

References

[60] Edward N. Zalta. “Natural Numbers and Natural Cardinals as Abstract Objects:
A Partial Reconstruction of Frege’s Grundgesetze in Object Theory”. In: Journal
of Philosophical Logic 28.6 (1999), pp. 619–660. doi: 10.1023/A:1004330128910.

[61] Edward N. Zalta. “Neo-Logicism? An Ontological Reduction of Mathematics to
Metaphysics”. In: Erkenntnis 53.1 (Sept. 2000), pp. 219–265. issn: 1572-8420. doi:
10.1023/A:1005614102033.

[62] Edward N. Zalta. Principia Logico-Metaphysica. [Draft/Excerpt; continuously up-
dated current version]. url: http://mally.stanford.edu/principia.pdf (visited on
11/20/2021).

[63] Edward N. Zalta. Principia Logico-Metaphysica. [Draft/Excerpt; dated October
13, 2021]. url: http://mally.stanford.edu/principia-2021-10-13.pdf (visited on
11/20/2021).

[64] Edward N. Zalta. Principia Logico-Metaphysica. [Draft/Excerpt; dated October
28, 2016]. url: https://mally.stanford.edu/principia-2016-10-28.pdf (visited on
11/20/2021).

[65] Edward N. Zalta. “Twenty-Five Basic Theorems in Situation and World The-
ory”. In: Journal of Philosophical Logic 22.4 (1993), pp. 385–428. doi: 10.1007/
BF01052533.

526

https://doi.org/10.1023/A:1004330128910
https://doi.org/10.1023/A:1005614102033
http://mally.stanford.edu/principia.pdf
http://mally.stanford.edu/principia-2021-10-13.pdf
https://mally.stanford.edu/principia-2016-10-28.pdf
https://doi.org/10.1007/BF01052533
https://doi.org/10.1007/BF01052533

Zusammenfassung der Ergebnisse

Wir präsentieren die Implementierung einer metaphysischen Grundlagentheorie in einem
automatischen Theorembeweiser mit Hilfe einer Erweiterung des Prinzips von shallow
semantic embeddings (SSEs) in klassischer Logik höherer Stufe. Insbesondere kommen
wir zu folgenden Ergebnissen:

• SSEs sind skalierbar und können nicht nur für die Analyse einzelner Argumente
verwendet werden, sondern können auch auf komplette metaphysische Theorien
angewendet werden, und deren Axiome und Deduktionssysteme präzise darstellen.

• Eine solche Implementierung ist kein rein technisches Unterfangen, sondern kann
zu einem fruchtbaren Austausch führen, der in unserem Fall einerseits zu signifikan-
ten Verbesserungen der analysierten Theorie geführt hat und andererseits neues
Licht auf die technischen Möglichkeiten und Einschränkungen von SSEs werfen
konnte.

• Es ist nicht nur möglich, die Logik eines komplexen Zielsystems technisch zu re-
produzieren, sondern auch eine nahezu transparente Darstellung von Syntax und
Beweisführung im Zielsystem zu erreichen, was einen effizienten und einfachen Aus-
tausch von Ergebnissen zwischen traditioneller Beweisführung von Hand und der
computerbasierten Implementierung ermöglicht.

• Die Automatisierungsverfahren von Isabelle/HOL bleiben dabei erhalten und kön-
nen dazu verwendet werden, Beweise im Zielsystem zu konstruieren, die allein
den Deduktionsregeln des Zielsystems folgen. Dadurch erreichen wir effektiv einen
dedizierten Theorembeweiser für unser Zielsystem auf der Grundlage einer veri-
fizierbar konsistenten metalogischen Konstruktion.

• Unser Zielsystem Abstract Object Theory (AOT) selbst kann seinem Anspruch
gerecht werden, eine philosophisch fundierte Konstruktion und Analyse der natür-
lichen Zahlen bieten zu können. Insbesondere können wir bestätigen, dass Frege’s
Konstruktion der natürlichen Zahlen in AOT konsistent reproduziert werden kann.
Darüber hinaus konnten wir signifikant zur Weiterentwicklung der Konstruktion
beitragen und können zusätzliche Erkenntnisse über die benötigten Axiome und
über mögliche Varianten der Konstruktion beisteuern.

Interessanterweise stützen unsere Ergebnisse einerseits die Verwendung von klassischer
Logik höherer Stufe als universale Metalogik, nachdem wir demonstrieren konnten, dass
mit Hilfe der SSE Methode selbst herausfordernde logische Fundamentaltheorien präzise
einbettbar sind, während wir andererseits die Position unseres Zielsystems AOT als
metaphysische Fundamentaltheorie stärken, nachdem wir bestätigen können, dass es
eine philosophisch fundierte Konstruktion mathematischer Objekte erlaubt. In diesem
Zusammenhang bilden die Implementierung und Analyse des vollen typen-theoretischen
Systems höherer Ordnung von AOT mit Hilfe der SSE Methode, sowie die Analyse der
relativen Stärke dieses Systems im Vergleich zu HOL und ZF faszinierende Themen für
zukünftige Forschungsarbeit.

527

	Introduction
	Motivation
	Prior Work
	Contributions and Structure of the Thesis
	Verified Document Generation and Conventions

	Shallow Semantic Embeddings
	Embeddings of Domain-Specific Languages
	SSEs as Universal Reasoning Tools
	SSE of Quantified Higher-Order Modal Logic
	SSEs with Abstraction Layers
	Isabelle's Native Abstraction Mechanisms
	Implicit Interpretation and Assignment Functions in SSEs
	Reproducing the Syntax of the Target Theory

	Abstract Object Theory
	Overview
	The Language
	The Axiom System
	The Deductive System
	Interesting Theorems of AOT
	Avoiding Known Paradoxes
	Extending AOT's Free Logic to Relations
	Further Properties of AOT

	SSE of AOT in Isabelle/HOL
	Model Construction
	Syntax of the Target Theory
	Extending Isabelle's Outer Syntax
	Representation of an Abstract Semantics of AOT
	Specifications and the Hilbert-Epsilon-Operator
	Axiom System and Deductive System
	Meta Theorems
	Artifactual Theorems
	Discussion

	Natural Numbers in AOT
	General Idea of the Construction
	Equinumerosity of Relations
	The Number of Fs and Hume's Theorem
	The Number Zero
	Counting in Possible Worlds
	Ancestral Relations and Transitive Closures
	Weak Ancestral Relations
	Generalized Induction
	The Predecessor Relation
	Natural Numbers
	Zero is a Natural Number
	Being a Natural Number is Rigid
	Zero Has No Predecessor
	No Two Natural Numbers have the Same Successor
	Mathematical Induction
	Properties of the Predecessor Relation and Natural Numbers
	Possible Richness of Objects
	Every Number has a Unique Successor
	The Predecessor Axiom in Detail
	Modelling Possible Richness of Objects
	Prospect of an Enhanced Version of the Construction
	Summary

	Higher-Order Object Theory
	Overview of Higher-Order Object Theory
	Applications to Theoretical Mathematics
	Bounded Models
	Abstract Objects in Unbounded Models

	Conclusion
	Isabelle Theory
	Model for the Logic of AOT
	Outer Syntax Commands
	Approximation of the Syntax of PLM
	Semantics
	Definitions of AOT
	Axioms of AOT
	The Deductive System PLM
	Basic Logical Objects
	Restricted Variables
	Extended Relation Comprehension
	Possible Worlds
	Natural Numbers
	Additional Theorems

	References

