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Zusammenfassung

Modellierung der kleinskaligen Turbulenz spielt in den numerischen Wettervorhersagesystemen
eine entscheidende Rolle, denn die Turbulenz trägt zum Transport und Durchmischung
von skalaren Größen, z.B. Temperatur und Momentum, signifikant bei. Prinzipiell wird die
unaufgelöste Durchmischung in einem Modell durch die aufgelösten - und somit berechneten -
Fluidbewegungen mathematisch modelliert. Dabei werden Turbulenzmodelle basierend auf
statistischen Eigenschaften der Turbulenz formuliert und durch Experimente kalibriert. In
Abhängigkeit vom Zustand der atmosphärischen turbulenten Grenzschicht ergibt sich ein
Spektrum an Möglichkeiten ein Turbulenzmodell zu kalibrieren. Eine Herausforderung an die
Modellierung stellt somit eine sogenannte stabil geschichtete Grenzschicht dar. Markant für
diesen Zustand ist die gekühlte Erdoberfläche, die eine sogenannte intermittierende Turbulenz,
welche gegenwärtig unzureichend erforscht ist, verursacht. Ein Forschungsansatz beruht darauf,
dass die intermittierende Turbulenz mit einer Reihe von unaufgelösten Fluidbewegungen, welche
sub-mesoskalige Prozesse genannt werden, in Verbindung steht. Es wird dabei angenommen,
dass für den stabilen Zustand die Sub-Mesoskalen unabhängig von den berechneten großen
Skalen sind und somit sporadisch im Simulationsgebiet entstehen. Dabei ist das Rechengitter
des Wettervorhersagesystems zu grob, um die nötigen Prozesse aufzulösen. Die sich mit dieser
Problematik befassenden Studien zeigen sogar, dass selbst bei höheren Modellauflösungen die
Beobachtungsdaten nur in den statistischen Größen repräsentiert werden und zurzeit nicht exakt
abzubilden sind. Motivierend daraus wird in dieser Arbeit ein stochastisches Turbulenzmodell
für die Atmosphärische Stabile Grenzschicht (ASG) entwickelt, um sporadischen Ereignissen,
die eine intermittierende Durchmischung verursachen, Rechnung zu tragen. Somit befasst
sich die vorliegende Arbeit mit der Signifikanz der Sub-Mesoskalen bei der Erzeugung der
Turbulenz in der ASG. Es wird eine datengetriebene Gleichung, welche modular genug und
somit leicht mit bestehenden Reynolds-gemittelten Navier-Stokes Modellen kombinierbar ist,
entwickelt. Dafür umfasst die Arbeit die Analyse von vorhandenen Feldmessungen, die über
mehrere Monate in einem flachen Gelände gesammelt wurden. Die Messungen werden mit
einem statistischen modellbasierten Clustering-Verfahren bearbeitet. Diese Methodik erlaubt
es, die instationären Zustände in der ASG, basierend auf unterschiedlichen Skaleninteraktionen,
gleichzeitig zu modellieren und zu klassifizieren. Das Clustering-Verfahren wird dann zu einem
Multiskalen-Parametrisierungsverfahren weiterentwickelt, das zur Identifizierung der gesuchten
Gleichung aus den Daten verwendet wird. Daraus resultierend, besteht der wichtigste Beitrag
dieser Arbeit in der entwickelten stochastischen Stabilitätsgleichung, die den Prozess der
transienten Stabilitätskorrektur vorhersagt. Dieser Prozess beschreibt die Auswirkung der
statischen Stabilität der Strömung auf die gemittelten Strömungsvariablen und berücksichtigt
dabei zufällige Störungen, die hypothetisch durch die Untergitterprozesse verursacht werden.
Das vorgestellte Turbulenzmodell bietet einen allgemeinen Ansatz, um den stochastisch
erscheinenden Duschmischungseffekt von nicht aufgelösten und von der mittleren Skala
unabhängigen Prozessen zu berücksichtigen, ohne diese explizit zu modellieren.
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Abstract

Modeling small-scale turbulence is essential in numerical weather prediction systems because
turbulence contributes significantly to the transport and mixing of scalar quantities, e.g.,
temperature and momentum. In principle, the unresolved mixing in a model is mathematically
modeled based on the resolved - and thus calculated - fluid motions. Turbulence models are
formulated based on statistical flow properties and calibrated with experiments. Depending on
the state of the atmospheric turbulent boundary layer, there is a range of possible conditions
to calibrate a turbulence model. The boundary layer is particularly challenging to model in
conditions of stable stratification. The cooled surface and low wind velocity are characteristic
of this condition, which induces an insufficiently explored, so-called intermittent, turbulence.
One research approach is based on the observation that intermittent turbulence is associated
with unresolved fluid motions, called sub-mesoscale motions. The sub-mesoscales are assumed
to be independent of the large resolvable scales and thus occur sporadically in the simulation
domain. The computational grid of the weather forecasting system is too coarse to resolve
these necessary processes. The studies dealing with this problem show that with higher model
resolutions, the observational data are only represented in the statistical quantities and cannot
be predicted precisely. Motivated by this, this work develops a stochastic turbulence model
for the atmospheric Stable Boundary Layer (SBL) to account for sporadic events that cause
intermittent mixing. Thus, the present work addresses the importance of sub-mesoscales in
generating turbulence in the SBL. A data-driven equation is developed, which is modular
and easily combinable with existing Reynolds-averaged Navier-Stokes models. For this, the
work analyzes existing field measurements collected over several months in even terrain.
The measurements are processed using a statistical model-based clustering technique. This
methodology simultaneously models and classifies the nonstationary SBL based on different
scale interactions. The clustering procedure is then developed into a stochastic parameterization
method used to identify an equation from the data. Resulting from this, the main contribution
of this work is the developed stochastic stability equation that predicts the process of transient
stability correction. This process describes the effect of the static stability of the flow on
the averaged flow variables, taking into account random perturbations hypothetically caused
by the sub-grid processes. The presented turbulence model provides a general approach to
account for the stochastic mixing effects of unresolved and mean-scale independent processes
without explicitly modeling them.
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û Estimate of a turbulent scale for the nocturnal FLOSS2

dataset (≈ 1− 5 min)
s

u(t) Auxiliary process
α Limiting value for a PDF –
γ Semivariogram –
λ Eigenvalue –
µ A measure
ν Eigenvector –
ϕ Weight function –
υi Parameters of the scaling function V –
υ Production rate of the turbulent mixing length s−1

φ Latitude grad
u Streamwise velocity component in the stream-lined

coordinate system
m s−1

vg Geostrophic wind component in y direction m2 s−1

σ2
MLE Variance of the MLE –

φ Stochastic process as a convex combination of the process
ϕ and the function ϕf

–

V Variance
ϑi Stationary parameter of some SDE
v Cross-streamwise velocity component in the stream-lined

coordinate system
m s−1

xxix



Symbols

Symbol Description Unit
N̂ Number of grid points on a reduced grid –
W (t) Wiener process –
w Vertical velocity component in the stream-lined coordi-

nate system
m s−1

ξ i.i.d. process –
z0h Roughness length for heat m
z0 Grid point directly at the surface –
zp Limiting height of the stochastic fade-out layer m
z∗ z∗ = z/ztower –
zs Limiting height for the SSE m
ζ Stability parameter –
z Height coordinate m

xxx



1
Introduction

The Atmospheric Boundary Layer (ABL) is a fundamental element in agricultural and aviation
meteorology, hydrology, and is particularly important for climate and weather forecasting.
Accurate mathematical modeling of the ABL is critical for controlling and managing air quality
and predicting current and future climate threats. This thesis introduces a novel turbulence
model that improves the representation of the surface ABL.

The nature and complexity of the ABL can be intuitively explained trough one of canonical
examples from fluid dynamics, which is denoted as plate turbulence. Imagine air flowing over
a horizontal and smooth plate (see Fig. 1.1a). At a certain distance from the surface of the
plate, the air flows uniformly and at a certain velocity u∞. Nevertheless, the velocity of the
flow directly at the surface is zero. The boundary layer is the velocity vector profile u that
develops from the surface upward to a certain finite height hb.

The boundary layer becomes turbulent at high flow velocities u∞ due to the significant
vertical gradient of the velocity profile. The turbulent flow condition is characterized by a
large Reynolds number

Re = hbu∞
ν

, (1.1)

where ν is the kinematic viscosity of a fluid. Turbulence can be severely idealized as a chaotic
multitude of vortices. These eddies populate the entire boundary layer and shrink the closer
they are to the surface. As the air continues to flow across the plate the entire flow field
reaches a state of equilibrium. In such a quasi-stationary state the mean velocity of the flow
is constant, but instantaneous fluid motions remain their chaotic nature on smaller scales.
To study the flow, the velocity vector is typically decomposed by distinguishing between the
mean velocity u and the velocity of the turbulent fluctuations u′, the latter being described
statistically. Such an approach is referred to as a Reynolds decomposition (Stull, 1988, Sec.
2.3) and is applied spatially or temporally:

u = u + u′ , (1.2)
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1. Introduction

where u = (u, v, w) is the velocity vector field. Thereby, one of the assumptions is the scale
separation, which allows one to describe the influence of the turbulent eddies on the mean
velocity profile. The assumption of scale separation implies that there is a spectral gap between
the forcing scale u∞ and the fluctuations u′. The description of the effects of turbulent motions
on the mean velocity of the flow is the goal of turbulence modeling. Similarly, the boundary
layer turbulence is an essential feature of any surface-bounded flow and is necessary to capture
for the representation of the ABL (Stewart, 1979).

Compared to the plate turbulence (see Fig. 1.1a), the ABL is an overwhelmingly complex
and highly turbulent system whose Re number is on the order of 107 − 108 (see Fig. 1.1b,c).
Half of the kinetic energy loss of the atmosphere occurs in the ABL (Palmén & Newton, 1969).
Heat, moisture, momentum, and pollutants are transported at a high rate in the vertical
direction due to turbulence. The height of the boundary layer is primarily related to the size
of the turbulent eddies. Depending on the conditions, the turbulent eddies vary significantly
in size, from a few meters to kilometers (Holton, 2004; Honnert et al., 2020). For example, the
large Re number indicates that the turbulent eddies occupy a significant spectral range, hence
there is room for other processes which can interfere with turbulent eddies. The interference of
different physical processes with turbulence violates the assumption of scale separation. The
scale separation is necessary to use Reynolds decomposition for modeling turbulence and is
only valid under certain conditions (Kang & Won, 2016; Larsén et al., 2016; Muschinski et al.,
2004). The boundary layer turbulence is not the only characteristic feature of the ABL.

One of the prominent simplified representation of the ABL is the Ekman layer model. This
model balances the geostrophic winds, Coriolis force and the parameterized turbulent transport.
As a result the Ekman layer model predicts a spiral structure for the boundary layer. The
effect of the Ekman spiral is typically negligible when turbulence is strong (especially at the
surface) as it is the case for the daytime ABL. Nevertheless, at low winds and in the nighttime
the Ekman effect shows an influence on the boundary layer (Holton, 2004, Sec. 5.3.4).

In addition to the Ekman effect, the ABL is characterized by numerous local flow conditions
created by irregular ground surface or highly variable tree canopy and urban terrain (see
Fig. 1.1b,c). The resulting flow field of the ABL is strongly non-uniform, making experimental
field measurements unique and challenging to reproduce in the laboratory. Experimental
studies of the ABL are as well hampered by several environmental conditions. For instance, the
ABL is driven by the complex nonstationary flow in the upper atmosphere and thermodynamic
processes within. The solar radiation and the resulting diurnal cycle are crucial for determining
the ABL and its turbulent features. The cloud cover and the shadows cast by it, soil properties,
water content with its phase transitions significantly influence the shape of the boundary layer
profile and affect the anthropogenic and natural environment. However, the focus of this work
lies on the turbulence in the ABL.

Turbulence is one of the most complex problems and has been studied since the middle of
the 19th century when Navier and Stokes formulated the equations of hydrodynamics. It is
important to consider the simplified fluid-dynamic experiment of plate turbulence presented in
Fig. 1.1a, as it is an excellent illustrative example for the study of nonstationary ABL. From
such experiments we know, for example, that turbulence is inherently a three-dimensional
phenomenon and has a characteristic statistical properties under idealized conditions.
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The fundamental statistical properties of turbulence were developed by Kolmogorov and
are still a cornerstone of turbulence modeling today. One prominent illustration is that the
turbulent vortices form a self-similar cascade by continuously breaking apart. The stretching
of the vortices and the self-intensification of the strain field causes the breakdown of the large
vortices into smaller ones (Bos, 2021; Carbone & Bragg, 2020). This cascade has its well-known
slope of −5/3 in the power spectrum diagram. The scale range spanned in the spectrum by
this cascade is called the inertial subrange. Therefore, vortices associated with the inertial
subrange are considered turbulent and referred to as Kolmogorov-like turbulence. The entire
flow field must be in the so-called statistical equilibrium to observe Kolmogorov turbulence.
However, the ABL is seldom in this state of balance since the mechanical and thermodynamic
forcing conditions are constantly evolving. Therefore, the turbulence is continuously trying
to establish a state of equilibrium with the mean flow which results in continuously evolving
boundary layer state.

u∞

u

u′
hb

plate

Experiment Stable Boundary Layer Convective BL

hb

Pout Pin

u∞
u∞

u

u

u′

u′

hb

u∞

u∞u∞Turb. drag
Sub-mesoscales

Turb.
Conv. Turb

a) b) c)

Figure 1.1: Simplified sketch illustrates different types of boundary layers. a) An idealized
experimental setup where the fluid flows over a smooth plate inducing mechanical turbulence. An
equilibrium is established between the forcing flow u∞ and the induced turbulent drag. b) Stable
ABLs occur, for example, at night when the longwave radiation Pout cools the surface suppressing
thereby the turbulence. In the low-wind condition, the sub-mesoscales (see Sec. 1.1.2) dominate
the flow. The generation of turbulence under such conditions is currently under research. c) A
convective atmospheric boundary layer is formed during the day when the surface is heated by
solar radiation Pin. Convective turbulence induced by buoyant instabilities causes the boundary
layer to grow. This work aims to model the conditions depicted in panel b).

Turbulent eddies associated with the inertial subrange have the property of isotpopization.
Therefore, different vortex structures are found at the beginning (large wave number) of
the cascade than at the end of the cascade. The large vortices are more disorganized and
anisotropic, and the small vortices are typically isotropic. Stiperski et al. (2021) report on a
preferable and distinct mechanism of isotpopization in the atmospheric turbulence and proposes
a mathematical description of the trajectories in a two-dimensional barycentric mapping of
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the six-dimensional Reynolds stress tensor. Such dimensionally-reduced descriptions are
especially helpful for construction of turbulence models. In the inertial subrange, statistically,
the turbulence organizes large, stretched flow structures into small and solitary vortices, which
are then converted into heat. The statistical description of turbulence is a simplification, and
still a well-established modeling approach, but there are possible structure-based approaches
in research (Marusic & Monty, 2019). Looking at the interior of the boundary layer locally
in space and time, one finds a variety of different vortex configurations (Bermejo-Moreno
& Pullin, 2008; Harikrishnan et al., 2021; Robinson, 1991). These turbulent structures are
challenging to describe mathematically (Lindheim et al., 2021), especially in the ABL, where
observational data are sparse and often limited to point measurements.

Turbulence is one of the critical phenomena that constrains our ability to predict weather
and climate. To anticipate the average state variables like wind velocity, temperature, humidity
accurately, one requires to resolve the entire inertial subrange. As a practical matter, it is
computationally infeasible at this point to resolve the entire turbulent cascade in a realistic
ABL setting (Stoll et al., 2020; Voller & Porté-Agel, 2002). Instead, efficient turbulence models
are used, which, for example, exploit the statistical properties of turbulence (Meneveau, 2012;
Pope, 2000).

Depending on available computational resources and how detailed the simulation of
turbulent eddies needs to be, one can choose different strategies. Direct Numerical Simulation
(DNS) resolves all possible vortices, making it the most expensive and accurate method. This
method is mainly used in the study of turbulent flows. Then there are methods that resolve
only the dominant turbulent eddies and model the small eddies. Such approaches are called
Large Eddy Simulation (LES) and based on filtering the flow equations. The LES is used
in both research and application. The most inexpensive models are based on the idea of
modeling all possible turbulent eddies. They are based on the Reynolds decomposition and
are therefore known as Reynolds-averaged Navier–Stokes (RANS) models (also called
closure models). An atmospheric RANS model is utilized in this work and a detailed description
is given in Ch. 5. Typically, such mathematical models parameterize the mixing properties
of the turbulence within a simulation cell. The computing power limits the smallest possible
size of the cell. A comprehensive simulation domain of an ABL may have millions of these
cells, and nevertheless, there will be unresolved turbulent motions that require subgrid-scale
modeling.

1.1 Numerical Weather Prediction

The ABL is a critical component of the Numerical Weather Prediction (NWP) models. The
NWP system calculates the state of atmosphere at various temporal and spatial scales by
solving mathematical models with supercomputers. A real-time weather forecast combines
several complex numerical methods and delivers one final product. First, satellites and weather
stations collect meteorological observations. Second, in the so-called assimilation (Lorenc
et al., 2015) step, the data is processed and integrated into the solver as initial conditions.
Third, the fluid-dynamic solver simulates the state of atmospheric variables for the future
time on a numerical grid with a particular resolution. For the unresolved processes, simplified
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mathematical models are developed (also called parameterizations), calibrated and executed
for the range of a prediction. In the final step, the simulation results are further processed by
applying a statistical downscaling procedure (Tang et al., 2016). This allows the prediction of
surface temperature or precipitation on a much finer resolution than the simulation.

The Navier–Stokes equations and the mass continuity equations are the fluid-dynamic
core of the NWP models. Additional equations describing the thermodynamic processes are
tightly coupled to the dynamics of air. All equations are discretized and numerically solved
on a computational grid to predict the wind velocity, etc. The grid resolution is limited and
can only be increased by reducing the size of the entire simulation area or by increasing the
number of cores in a highly parallel algorithm. For example, Ullrich & Jablonowski (2012)
provide a detailed description of the equations and numerical methods used to solve them,
together with mesh descriptions and simulation examples.

The NWP models are utilized for short- and long-term forecasts, the latter of which is
considered in the assessment of climate. The short-range NWP models are currently run
operationally on grid cells ranging in size from 3 to 9 km, depending on the simulation area
(Beljaars et al., 2018; Lee et al., 2019b). For comparison, in the years 1990-2004, the grid cell
size of the Met Office models was 60 km for the global forecast system and 12 km for the British
model (Golding et al., 2004). The performance of NWP models has steadily improved over
the past decades. The advances in predictive capabilities result primarily from the scientific
knowledge and technological advances in high-performance computing (Bauer et al., 2015).

Advances in high-performance computing technology have also enabled the development of
scalable machine learning approaches. Schultz et al. (2021) report on recent ideas in combining
operational NWP workflows with machine learning approaches. Schultz et al. (2021) suggest
to replace the entire chain of assimilation, prediction, and statistical downscaling by a direct
mapping from observation to prediction using a deep neural network.

Nevertheless, the parameterization of unresolved processes at multiple scales and
understanding the related physical mechanisms in the ABL is an active area of research.
With the growing computing resources, it becomes possible to use more accurate numerical
simulation tools. The parameterization of turbulence is usually performed with RANS models.
On the other hand, the LES approach offers the possibility of accurately computing the large
turbulent eddies and modeling only the small vortices, thereby increasing prediction accuracy.
The LES models have the potential to be used in the NWP at regional scales in the future
(Schalkwijk et al., 2015; Stevens et al., 2020), although this is still a far reach goal.

The ABL and its spectrum of physical processes are difficult to simulate and predict due to
turbulence. The two opposing turbulence conditions in the ABL are encountered in the diurnal
cycle. During the day, the surface is being heated up, and the air begins to rise (see Fig. 1.1c).
The convectively driven air masses contribute to turbulent mixing and generate unstable or
Convective Boundary Layer (CBL). In contrast, over ice and on cloudless nights, the surface is
cooled by the radiative effect, which leads to the formation of the Stable Boundary Layer (SBL)
(Fernando & Weil, 2010) (see Fig. 1.1b). Under such conditions, the turbulent eddies have to
counteract buoyant forces due to the stratification and thus transport the colder and heavier
air from below to the higher layers. This additional work against the rotation of the turbulent
eddies weakens mixing and thus also the averaged transport properties of the turbulence. This
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typically results in a boundary layer that is much shallower than that during the day. The
representation of SBL in NWP applications is an active research area and remains a challenge
(Holtslag et al., 2013). This work focuses on improving the parametrization of the strongly
SBL over flat terrain.

1.1.1 Stable Boundary Layer Over Flat Terrain

The preferred method in modeling SBL is the RANS model. Derived from the Navier–Stokes
equations under multiple assumptions (see Sec. 5.1.1 for more details) there exist a multitude
of formulations with different complexity and number of equations involved (Stull, 1988).
The Monin–Obukhov Similarity Theory (MOST) is the established approach that is still
used today as a component of the RANS models to account for stratification effects (Monin
& Obukhov, 1954) (for a historical review see (Foken, 2006)). Derived with the help of
dimensional analysis and under certain assumptions (Garratt, 1994), the theory states that
the dimensionless mean wind shear ∂u/∂z and gradient of the mean potential temperature ∂T/∂z

in the surface layer is a function of only the stability parameter ζ.

κz

u∗

∂u

∂z
= ϕm(ζ) , κz

T∗

∂T

∂z
= ϕh(ζ) , (1.3)

where z is the height over the ground, κ the Von Kármán constant, u∗ is the friction velocity,
T∗ = −(w′T ′)0/u∗, and ζ = z/L is a non-dimensional variable in a range ζ > 0 for stable
conditions. The height above the surface z is divided by the Monin–Obukhov length L,
which combines the turbulent fluxes for momentum and heat:

L = − u∗/κ

(g/T0)(w′T ′)0
, (1.4)

where (w′T ′)0 is the turbulent heat flux at the surface (denoted with 0) and T0 a reference
potential temperature. Stability functions ϕm(ζ), ϕh(ζ) are applied to take the effect of
stratification on the vertical profiles into account. The forms of the stability functions
are determined empirically from observations, and their simplest definition is, for example
(Högström, 1996):

ϕm = 1 + 5.3ζ , ϕh = 1 + 8ζ . (1.5)

Several authors propose various similar functional forms for geographically different locations.
These functions play an important role in the design of turbulence models for SBL. The topic
of their effectiveness is extensively studied in the literature (for an overview of the available
functions, see Gryanik et al. (2020)). The MOST is a theory of the surface layer and describes
the boundary layer as a single entity. Assuming that the turbulent eddies are uniformly
distributed in space, the time-averaged quantities at the surface describe the entire boundary
layer. Nieuwstadt (1984) shows that by defining a local (surface-independent) Obukhov length,
the MOST, is also valid within the boundary layer and causes a local scaling of the turbulent
mixing.
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1.1 Numerical Weather Prediction

The SBL is also characterized by the dimensionless gradient Richardson number, which
is another widely used stability parameter:

Ri =
g

T0
∂T
∂z(

∂u
∂z

)2
+
(

∂v
∂z

)2 , (1.6)

where g is the gravitational acceleration. Compared to the ζ parameter, the Ri number is
determined from the averaged variables resolved by the model. In contrast, the parameter ζ is
a function of the turbulent sub-grid fluxes. Nieuwstadt (1984) shows in his Fig. 3 that the two
stability parameters are related as follows:

Ri = ζ
ϕh

ϕ2
m

, (1.7)

and there is a functional mapping ζ ↦→ Ri with the asymptotic value Ri ≈ 0.25. Therefore,
the stability functions ϕm, ϕh can be parameterized with the Ri number and are also used
in turbulence modeling (Cuxart et al., 2006). Regardless of the functional form or stability
parameter that is used to model the SBL, in this work, the terms ”classical” or ”traditional
scaling” refer to the concepts of MOST.

For the canonical example of turbulent flow over a flat plate introduced at the beginning
(see Fig. 1.1a), critical Ric = 0.25 means an extreme stratification, which leads to a significant
suppression and damping of the turbulent vortices (Howard, 1961; Miles, 1961). However,
this flow condition is typically transient, and turbulent mixing can be rapidly reestablished
when a disturbance is added to the flow (Donda et al., 2015). Moreover, in atmospheric SBL,
the existence of a critical Ric number is controversial, so that complete turbulence cutoff is
practically rarely observed (Galperin et al., 2007). For Ri > 0.25 a weak and intermittent
mixing is observed (Mahrt & Vickers, 2006).

The resulting characteristic feature of SBL is its unsteadiness. This can be observed from
the time evolution of the Turbulence Kinetic Energy (TKE), which is calculated from the
point measurements as follows:

e = 0.5(u′u′ + v′v′ + w′w′) . (1.8)

An observational sample is given in Fig. 1.2. By performing a spectral analysis of the
TKE signal, one can recognize the nonstationarity due to the increased energy of the high
frequencies. The nonstationarity is to be understood as a relative property. The TKE of the
neutral boundary layer (see Fig. 1.1a) is considered as the reference condition. In this state,
the turbulent vortices are continuously distributed in space (see Fig. 1.4a). Kinetic energy
is thought to be injected on one scale and transported through the vortex cascade, creating
turbulence. Therefore, the TKE value near the surface can be estimated from the velocity
of the free stream (e.g., the velocity at the top of the boundary layer). In the fundamental
modeling of turbulence, it is assumed that the TKE follows any change in the velocity of the
free stream with a specific dynamic. This assumption means that any frequency in the free
stream velocity should not induce significant harmonics in the TKE signal. According to the
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1. Introduction

measurements of the SBL, the TKE response can be intermittent (see the spikes in Fig. 1.2),
which means that there are new frequencies that are not related to the mean flow velocity.
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Figure 1.2: Measured time series of TKE. A detailed description of the dataset is given in Sec. 3.1.
The figure shows two different regimes. There is a period with strong winds and continuous
turbulence, where the turbulence is driven by the large scale and reasonably modeled with the
MOST. And there are periods of weak winds and intermittent mixing. The intermittent TKE
bursts are not represented in the RANS turbulence model. A model accounting for such bursts is
developed in this thesis.

The reasons for irregular mixing under stable conditions are under research and challenging
to unify (Mahrt & Bou-Zeid, 2020). The two prerequisites are the stratification of the
atmospheric flow and weak geostrophic winds. Both circumstances lead to boundary layers
that are decoupled from the ground in terms of turbulent transport. In the ABL at sufficiently
high wind velocities, the turbulence is generated primarily at the surface, leading to the
formation of attached boundary layers, as in the example of plate turbulence (see Fig. 1.1a). At
low forcing wind velocities, other processes with comparable kinetic energy as the background
mean flow cause additional local turbulence generation, which no longer attaches to the surface
and leads to the formation of the detached boundary layers (Acevedo et al., 2016; Lan et al.,
2018). In such a case, turbulence production is no longer associated with the surface and leads
to an underrepresentation of the turbulent transport in the RANS models.

1.1.2 Sub-mesoscale Motions and Turbulence

The unresolved processes that occur within the numerical grid of a real-time NWP model
combine diverse physical principles. For example, drainage flows (Mahrt et al., 2001), sharp
microfronts (Mahrt, 2010a, 2019), internal gravity waves (Sun et al., 2004; Zaitseva et al.,
2018), density currents (Sun et al., 2002), ducted waves propagating over several kilometers
(Viana et al., 2009), thermal sub-mesoscale fronts (Pfister et al., 2021), meandering motions
(Cava et al., 2019), ramp-like structures (Shi & Hu, 2020), top-down turbulent events (Sun
et al., 2012) that are associated with Kelvin–Helmholtz instability and wave-turbulence
interaction (Sun et al., 2015). All these processes are described in the recent literature with
the term sub-mesoscale motions (see Fig. 1.3 for an example). Mahrt (2014) defines that these
non-turbulent motions are of size less than 2 km.

Research on the systematization and study of the sub-mesoscale motions reveals the great
diversity of complex fluid-dynamic motions (Kang et al., 2015; Vercauteren et al., 2019b). One
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1.1 Numerical Weather Prediction

can specify phenomenological mechanisms behind the patterns, but a clear and comprehensive
definition is lacking. In studying the SBL, it is difficult to quantify Kolmogorov-like
turbulence and to identify sub-mesoscale motions, because the scales of motion in the spectral
domain have an overlap (Vercauteren et al., 2016). The alternative wavelet-based analysis,
sometimes used to filter out flow motions, is limited by a specific form of the basis function and
provides a criterion for fluid motions that is too restrictive. Assume that we can determine the
position of the largest turbulent eddies in the SBL at any time (e.g., the inertial sub-range).
Assume also that we can separate turbulence from the sub-mesoscale motions. Then ”the
energy-containing motions (e.g., sub-mesoscale motions) do not have a universal form brought
about by a statistical equilibrium” (Pope, 2000, Sec. 6.6). This makes the generalization of
sub-mesoscales challenging.

Figure 1.3: Observation of a sub-mesoscale flow structure at the surface through the fog. The
fog injection occurred before sunrise, when stratification was at its highest. Such flow structures
are considered non-turbulent, and their induced turbulence hypothetically leads to intermittent
mixing in the boundary layer. Such mixing events are not considered by conventional models and
are investigated in this work. Modified picture from http://submeso.org, used with permission of
Dr. Larry Mahrt.

Hypothetically, since the sub-mesoscale motions involve multiple physical processes, the
turbulence produced by each process can be assumed to be independent of the others (although
this is rather an idealization). It seems that the multitude of energetic motions produces
turbulence on several scales in the SBL. Laboratory experiments showed that the turbulence
generated with a space-filling fractal grid with different wire diameters (i.e., several multiple
scales) exhibits nontraditional equilibrium properties (Hurst & Vassilicos, 2007; Stresing et al.,
2010). For idealized canonical turbulence like the plate turbulence, the outer scale (e.g., the
largest turbulent eddy) and the dissipation scale (the smallest turbulent eddy) is proportional
to the free stream velocity (Pope, 2000, p. 186). In the fractal-generated turbulence, there is
only one relevant length scale, which can simplify the modeling approaches in certain cases. It
is not known to what extent these findings are related to the turbulence and sub-mesoscale
perturbations in the SBL.
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1. Introduction

The critical Ri number marks a theoretical value above which turbulent mixing is largely
suppressed, and the definition of this number depends on the flow configuration. The principle
of turbulence cutoff is also taken into account in the modeling. As long as some large energetic
motions are present (and these are resolved by the model), the turbulence parametrization
in the SBL remains relatively accurate. This regime is also known as the weakly SBL. The
turbulence models relying on the Ri number refer to the most significant resolved scale and
are bound to it. If the large scale looses kinetic energy (for example, due to pressure drop in
the higher atmosphere), the SBL enters a regime determined by weak winds. Consequently,
the shear of the flow at the surface decreases, the critical Ri number is exceeded, and the
turbulence model predicts the collapse of the turbulence. At this point, the critical Ri number
becomes a poor characteristic of the boundary layer state because it is constructed from
shear whose kinetic energy is of the same order of magnitude as the kinetic energy of the
sub-mesoscale motions.

As mentioned earlier, the sub-mesoscale motions typically fall within the sub-grid part
of the model, and there is a lack of information on velocity gradients at those scales. The
uncertainty in the Ri numbers results from the uncertainty in the sub-mesoscale motions. The
more the kinetic energy of the sub-mesoscale motions corresponds to that of the resolved flow,
the more undifferentiated the Ri number becomes. In addition, the velocity gradients are less
associated with the surface and more associated with localized sub-mesoscale motions away
from the surface. Consequently, the SBL is considered to be nonstationary.

To improve the representation of the SBL, this work focuses on the analysis and
systematization of the sub-mesoscale motions. Thus, a parameterization will be suggested and
developed that considers the effect of the sub-mesoscale motions in a RANS model.

1.1.3 Global Intermittency

Global intermittency is an alternate term for the nonstationary TKE dynamics introduced
earlier. Mahrt (1999) defines the global intermittency as one of the properties of the very
SBL and connects this property directly with the turbulence and not with the mean state
of the flow. Global intermittency explains a state of turbulence within the SBL in which
Kolmogorov-like vortices are absent at all scales for some regions, and an inertial subrange
cannot be sustained for long periods. Since all turbulent flow exhibits some sort of intermittent
behavior, Mahrt (1999) emphasizes that intermittency within a given vortex is a different
term and is referred to as fine-scale intermittency. In this work, ”intermittency” means global
intermittency.

In other words, the intermittency would be caused due to the external perturbation of the
flow field, where one can hypothetically associate for each perturbation process an individual
localized turbulence cascade. The average statistical properties of such flows are particularly of
significance for the modeling. In this context, external means that there is already a dominant
flow-inducing scale. A large number of such external sub-mesoscale events overlap strongly
within a specific spectral range. The turbulence and the associated intermittent mixing cannot
be considered equilibrated in such a case. Chapter 5 explains in detail how such concepts of
non-equilibrated turbulence can be expressed in a stochastic way.
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1.1 Numerical Weather Prediction

Surprising is the recent discovery that global intermittency is not exclusively a consequence
of sub-mesoscale motions. Ansorge & Mellado (2014) performed a DNS study and analysis
of the SBL at impressively large Re and Ri numbers (see Fig. 1.4). New insights are gained
by resolving all scales of fluid motions. The corresponding simulation of the Ekman flow
(which better reflects the ABL than a channel flow or a flow over a plate) shows that beyond
the critical Ri number, there exists intermittent turbulence (see Fig. 1.4b). The flow in the
numerical experiment is thereby forced by stationary boundary conditions and corresponds to
the forcing with one large scale. Ansorge & Mellado (2014) concluded that global intermittency
occurs despite the absence of external mechanisms classified as the sub-mesoscale motions.
Ansorge & Mellado (2014) are convinced and suggest:

“Global intermittency effects could be incorporated into turbulence
closures for Reynolds-averaged NWP models once its dependency on
Ri and Re is quantitatively understood – without depending strongly
on the local details of the flow such as surface heterogeneities.

”
Global intermittency directly manifests in the stability function parameterization and

causes a larger scatter in the observed data points (see Fig. 4.2). This dispersion is more
pronounced with increasing stratification. However, in a DNS study (Ansorge, 2017, Sec. 9.3),
it is shown that this dispersion can be explained. By conditioning the estimation of the relevant
variables of the MOST on the locally turbulent regions (see Fig. 1.4b blue color) within the
Ekman flow, the data points coincide for all positive values of the Ri number, supporting the
theory beyond Ric = 0.25. However, this finding has limited applicability to modeling because
the localization of turbulent regions is a posteriori possible in a DNS and practically unknown
in a NWP situation. Ansorge reports that the formation of the turbulent local areas depends
on the internal properties of the flow configuration and is thus only indirectly linked to the
external influences.

From the modeling perspective, the sub-mesoscale motions should be described stochas-
tically, as suggested by Mahrt (2014). The intermittent TKE could be modeled directly by
adding a stochastic term in one of the RANS equations. The modeling approach is motivated
by the following studies. Belušić & Güttler (2010) performed a high-resolution numerical
study (grid size 1/3 km) with a mesoscale model capable of resolving meandering motions
in mountainous terrain. For the model to represent the intended scales, the authors had to
eliminate turbulent diffusion in the horizontal direction. The variability and mean of the
velocity components appear to agree reasonably well with observations in their simulations.
However, the agreement is only in statistics, and locally predicted values of the wind differ
significantly from observations. This difference can be caused by small changes and deviations
in the model initialization. Uncertainties in the assimilation of the model affect the prediction
accuracy proportionally to this uncertainty. Therefore, above a particular model resolution,
further reduction of the grid size cannot achieve a refined representation of the observations.
Thus, Belušić & Güttler (2010) states that the incorporation of the missing sub-mesoscale
motions seems to be feasible only by reproducing meandering statistics, i.e., parameterizations.
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(a) Continuous turbulence (b) Intermittent turbulence

Figure 1.4: The magnitude of vorticity (blue color indicates high value and the white color
indicates low value). A horizontal section of an DNS of Ekman flow under two different stratification
conditions is shown, revealing the phenomenological difference of turbulent motions. (a) Neutral
stratified flow; homogeneous space-filling turbulent motions (b) Turbulence in a SBL at Ri ≈ Ric;
patchy and intermittent turbulent regions with locally laminar flow conditions. A constant
geostrophic wind drives the flow. Used with permission of Dr. Cedrick Ansorge. Figure courtesy
of Abhishek Harikrishnan.

In a similar fine-resolution numerical study, Seaman et al. (2012) also report that a numerical
model can predict realistic flow profiles, intermittent low-level jet turbulence, and submeso flow
variability. However, a tendency was absent to improve the accurate individual realizations in
observational data on finer scale by refining the resolution of the computational grid, such
that only the statistics were adequately represented.

1.1.4 Modeling Errors and Uncertainty

Errors and uncertainties exist in NWP models during the simulation of turbulent exchange
in the SBL and are one of the significant challenges in the parameterization task (Holtslag
et al., 2013). Graham et al. (2019) analyze six atmospheric reanalysis datasets over arctic
sea ice and continues to report on the known surface temperature bias associated with the
SBL. The authors emphasize that the simulation of turbulent heat fluxes is inadequately
represented and often has the wrong magnitude and/or direction. The authors explain this by
the weakly expressed temperature inversions at the surface during stable weather conditions.
The temperature profile directly responds to the turbulent mixing process, and the warm bias
results from the turbulent diffusion in the models being intentionally tuned.

Turbulent mixing is tuned in the NWP to optimally fit the model results to the data, which
is no surprise in the turbulence modeling community. Sandu et al. (2013) performed a series of
sensitivity forecasting experiments varying turbulent diffusion and shows that this affects not
only the boundary layer winds but also synoptic cyclones, anticyclones, and the planetary-scale
standing waves. The tuning of turbulent diffusion leads to two opposite effects. According to
Sandu et al. (2013) reducing diffusivity leads to improved boundary layer winds but biases the
large-scale flow and 2m temperature. Therefore, the turbulent diffusion is set to higher values
to represent the large scales adequately. The work presented in this thesis could provide an
alternative approach since the new model (see Ch. 4) maintains the averaged diffusion level of
the traditional model but increases the effective transport due to the non-Gaussian statistics
in the TKE (see Fig. 5.5).
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The correct representation of the large scales has priority over the representation of the
winds at the surface. If turbulent diffusion is intentionally set higher, the averaged temperature
transport towards the ground increases and leads to a warmer surface temperature. In contrast,
the use of appropriate values for turbulent diffusion according to MOST, which does not take
into account the additional mixing due to unresolved sub-mesoscales, leads to the collapse of
the turbulence and thus to the breakdown of the transport from the upper atmosphere to the
surface. It is important to note that heat transport in such a case is excluded from the surface
energy balance equation due to decoupling. This equation is responsible for predicting the
surface temperature. In the surface balance equation, the main counterforce to the turbulent
heat flux is radiative cooling. Since turbulence is suppressed, radiative cooling dominates
and the surface temperature decreases, leading to so-called runaway cooling issue (Jiménez &
Cuxart, 2005). Thus, the compromise is to make the boundary layer more turbulent in order
to maintain the correct representation of the large scales.

The cornerstone for the parameterization of the SBL remains the MOST with its restriction
for strongly stable condition. The breakdown of MOST is related to the divergence of the
stability function at higher stratification (see, for instance Fig. 4 in (Baklanov & Grisogono,
2007)). Optis et al. (2016) explains this problem and provides evidence that the divergence
is related to the sub-mesoscale motions, as well as a possible way to model it. Nevertheless,
Optis et al. (2016) also points out that additional reasons are the rotation of the wind vector
and surface decoupling.

1.2 Turbulence Parameterizations

The recent advances in ABL parameterization approaches cover a considerable range. They
can be broadly divided into deterministic and stochastic approaches.

1.2.1 Deterministic Parameterization

A more comprehensive understanding of stationary SBL is achieved by introducing a Turbulence
Potential Energy (TPE) equation and provides therefore a much more complete theory than
the MOST. Following Zilitinkevich et al. (2007) the TPE (Ep) is proportional to the potential
temperature fluctuations:

Ep = 1
2

(
g/T0
Nb

)2
T ′T ′ , (1.9)

where g = 9.81ms−1, T0 is a reference temperature and Nb the Brunt–Väisälä frequency. By
multiplying the prognostic equation for T ′T ′ by (·)2, an additional energy balance equation is
obtained. Zilitinkevich et al. (2009, 2007, 2013, 2008) introduce the concept of total turbulent
energy as the sum of the TKE and the TPE and emphasizes that the MOST do not account
for the critical energy exchange between these two equations through the buoyancy flux term.
Zilitinkevich et al. (2013) suggest that the relationship between the dissipation time scales
for TKE and TPE is an asymptotic constant Cρ = 0.86 as Ri → ∞, implying that at high
stratification, the dominant energy sink is in the temperature fluctuation equation and not
in the TKE as might be assumed. Therefore, to represent an appropriate energy balance at
the sub-grid level, Zilitinkevich proposes to use the so-called energy- and flux-budget closure
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models. In particular, for the NWP, a three-equation version is recommended, consisting of the
two energy balance equations and a diagnostic formulation for the vertical TKE. Kurbatskii &
Kurbatskaya (2012) studied such an approach using numerical and observational data and
confirmed the functional dependence of the ratio of potential energy to total energy as a
function of the gradient Ri number.

Building on the ideas of Zilitinkevich et al. (2013), Ďurán et al. (2014, 2018) developed a
turbulence scheme with two prognostic turbulence energies that are valid for all atmospheric
stratification conditions, taking into account moisture and phase changes. Such a scheme is
attractive because the stability parameter is independent of the local gradients due to the
two prognostic turbulence energies and becomes a predictive variable, thus circumventing
the turbulence cutoff problem. Their model can represent a more continuous evolution of
turbulent fluxes and has a deeper mixing property but tends to overestimate the cloud coverage.
However, the authors report that their model outperforms the standard Integrated Forecasting
System (IFS) model developed by the European Centre for Medium-Range Weather Forecasts
(ECMWF) in anticipating the 2-m temperature in the arctic region.

Other deterministic approaches aim to improve turbulent closures by keeping the number
of equations minimal. Such equations are formulated based on the turbulent mixing length.
This length is used in RANS models to model the turbulence diffusion coefficient, and in the
case of SBL, the turbulent miring length is controlled by the stability function. Designing the
mixing length provides flexibility for specific modeling objectives, but the general principle
is that with increasing stratification, the turbulent mixing length is decreased (Lenderink &
Holtslag, 2004).

In a series of works, Huang & Bou-Zeid (2013); Huang et al. (2013) conducted an LES
study of SBL and investigated the effects of stratification on turbulent structures. The authors
proposed a novel mixing length formulation and found the improved performance of a RANS
model for the unsteady simulation cases. Baas et al. (2018) validated a similar modeling
principle. Baas et al. (2018) presents a special scale formulation that is additionally used in
SBL and is deployed under very stable conditions. Such a model shows an improved simulation
results for the Cabauw dataset. The present work builds on a similar idea and introduces a
stochastic version of the turbulent mixing length.

1.2.2 The Gray Zone of Turbulence

The term ”gray zone” refers primarily to the physics of CBL and is a term associated with the
mesoscale modeling community. Wyngaard (2004) and Honnert et al. (2016, 2011) define the
”gray zone” as a turbulence modeling issue. It occurs when the effective model resolution is less
than or equal to the size of the prevailing Kolmogorov-like turbulence vortices. In particular,
during the day when the surface is heated, the turbulent convective eddies dominate the mean
flow and may become larger than the model grid size. Therefore, the growing vortices must
appear as resolved in the simulated domain, even though their physical origin is within the
sub-grid where they are parameterized. If we think of turbulence in terms of Kolmogorov
theory, the large eddies are strongly anisotropic. This property makes it difficult to represent
them as an independent entity.
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The term ”gray zone” has its justification for existence in the SBL community. During
stable stratification, the large turbulent eddies are reduced to a smaller size. However, the
absence of turbulence at high stratification allows sub-mesoscale motions to generate and
maintain weak turbulent mixing. The relationship between such turbulence production scales
and large-scale flow is unknown, and it is assumed that the sub-mesoscales are only transiently
present at the subgrid-scale. These non-turbulent motions are unresolved and therefore require
parameterizations. In general, as the Ri number increases, a model cannot adjust the grid
resolution to match the decreasing size of the turbulence eddies. The presence of sub-mesoscale
motions becomes progressively important for the generation of turbulence as stratification
increases. This circumstance can therefore also be considered as a gray zone issue. Unlike the
models that do not represent the turbulent convective eddies in the CBL, the models in the
SBL do not represent the sub-mesoscale motions.

To address the issue of turbulence modeling in the ”gray zone” of the CBL Zhang et al.
(2018) propose a deterministic concept based on the work of Wyngaard (2004). The novelty of
their approach is a model that combines two different ideas of turbulence parameterization.
The first scheme is the LES closure regime, where the energetic motions are resolved, and
the small, turbulent ones are parameterized according to the Smagorinsky–Lilly model.
The second scheme is a RANS approach, which is utilized to simulate mesoscale dynamics.
Zhang et al. (2018) combined both modeling strategies in a single code capable of transitioning
between an LES and an RANS mode of operation, thus adapting to convective processes.

In his review, Honnert et al. (2020) shows several additional ways to model CBL in the
gray zone. Of particular interest to this work are the mentioned stochastic approaches that
improve the prediction of daily small-scale convective rain events.

1.2.3 Stochastic Parameterization at Sub-Grid Scale

Existing stochastic parameterizations are focused on modeling turbulence above the sub-grid
scale and are mainly related to the CBL with a strong focus on diabatic processes and deep
convection. The general idea is to add random perturbations of temperature and velocity
at the smallest resolved scale level and reflect the representation of model uncertainties.
Leutbecher et al. (2017) provides an overview of the Stochastically Perturbed Parameterization
Tendency (SPPT) that is increasingly being implemented in NWP models. The SPPT method
explicitly assumes that the nature of the perturbation is multiplicative, meaning that the
added perturbations are multiplied by the physical tendencies. The multiplicative approach to
perturbations is debatable and is currently being investigated. Christensen (2020) provides
justifications for the approach and emphasizes that the stochastic perturbations should be
positively skewed to be physically realistic. Finding ways to consistently and physically
incorporate the element of randomness into NWP models is important.

Kober & Craig (2016) introduce the so-called Physically based Stochastic Perturbation
(PSP) method. The amplitude of the perturbations is linked to the turbulence parameterizations
in the sub-grid, resulting in a missing coupling mechanism between resolved and parameterized
scales. Moreover, the perturbation’s spatial and temporal correlation metrics closely mimic
the turbulent statistical properties. Hirt et al. (2019) extended the idea of the PSP method to
include the important non-divergent condition for the 3D stochastic velocity field.
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Sakradzija & Klocke (2018) presented another example where stochastic approaches are
superior to deterministic ones in predicting shallow convection. Their stochastic modeling
idea differs significantly from the principles explained above. Model-relevant quantities such
as cloud number, mass flux, and cloud lifetime are taken from assumed probability density
functions, which are made dependent on the model’s resolution. The developed sampling
procedure is uniquely adapted to the problem by incorporating two physical constraints. The
resulting numerical study by Sakradzija & Klocke (2018) of their new approach shows an
improved mean vertical structure of the cloud cover and variable profiles of the boundary layer.

The stochastic parametrization approaches in the CBL provide exciting ideas which could
be adapted to the SBL. A lot of effort goes into making the stochastic strategies physically
consistent. One component plays an essential role in this – the parameter dependence of
stochastic models on the resolved scale dynamics, which is addressed in this work.

1.2.4 Stochastic Parameterization of Intermittent Turbulence

This work focuses on stochastic modeling of nonstationary turbulence in SBL. It is, therefore,
appropriate to highlight an existing and closely related approach. This approach is not
explicitly applicable to SBL, but it has a lot of overlap with the subject and is an introduction
to stochastic turbulence modeling. In particular, the model calibration technique developed in
Ch. 2 can be used to tailor in the following mentioned stochastic model to the SBL problem.

Pope (1991) proposed a probability density function model for inhomogeneous turbulent
flows and demonstrated, using examples such as the momentumless wake and the plane mixing
layer, that the method reproduces intermittency. In particular, (Pope, 1991, Eq. 11) has
established a Stochastic Differential Equation (SDE) for the relaxation rate ω(x, t), defining it
as a mixed variable:

ω(x, t) = ϵ(x, t)/k̃(x, t) , (1.10)

where ϵ(x, t) is the local instantaneous dissipation rate and k̃(x, t) is the deterministic TKE
normalized by the averaged dissipation. The complete turbulence model is thus a stochastic
version of the k–ω two-equations model family. However, it is debatable if the model can be
applied to SBL to model global intermittency because the stochastic dissipation is defined
locally. Pope (1991) argues that the parameters of his SDE lacks an explicit dependence on
the external large-scale flow variables such as Re number and that such a dependence would
further improve the model. Chapters 4 and 5 offer an approach and an application example
how the described issue can be addressed for a certain inhomogeneous turbulent flow.

Calibration of Eq. 11 in Pope (1991) for the SBL flow using the method in Sec. 2.2.1 is
hindered by the estimation of the instantaneous dissipation rate. This variable is difficult
to estimate correctly from the time series of field measurements because of the uncertainties
associated with the required data processing steps. These steps include the Taylor hypothesis,
which is invalid for non-neutral conditions in the ABL (Cheng et al., 2017). Possible assumption
of Kolmogorov theory and associated assumption of steady-state flow conditions are violated
in SBL. Nevertheless, one possible way to incorporate Pope’s model into the SBL scenario
could be to analyze DNS data since the dissipation rate can be determined directly from the
nonstationary simulation results.
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1.3 Data-Driven Modeling of the Stable Boundary Layer

Stochastic approaches to model turbulence can also be effective tools if certain abstractions
and simplifications are agreed upon. One such example is the One-Dimensional Turbulence
model (ODT) developed by Kerstein (1999); Kerstein et al. (2001). The main idea is to replace
the complex nonlinear term in the Navier–Stokes equation with a stochastic mapping
event confined to a one-dimensional line in the simulation domain, representing thereby the
nonlinearity stochastically in the equations. The random mapping event in the ODT represents
a mathematically modeled mixing occurrence of turbulent eddies. The sampling procedure for
such events is in accordance with the principles of conservation of energy. As a result of the
approach, the turbulent statistical and averaged properties of the flow variables are recovered
by the ODT without any closure assumptions. Klein & Schmidt (2019) provides a numerical
investigation of the canonical Rayleigh–Bénard convection problem using the ODT model
and reports a valid numerical representation of the physical phenomenon. Freire & Chamecki
(2018) investigated the ABL with surface canopy using the ODT model. The canopy effect is
introduced through the energetics of stochastic vortices. The authors report that the model’s
overall performance is quantitatively accurate and emphasize that some improvements are
still possible. The method is attractive for research projects since it can simulate adequate
turbulence statistics at significantly large Re numbers with low costs.

Due to the unreproducible field measurements, the construction of stochastic, nonstationary
turbulence models for SBL requires data-driven stochastic approaches (Vercauteren & Klein,
2015; von Larcher et al., 2015). Monahan et al. (2015) applies a hidden Markov model to
partition the SBL into two dominant and highly overlapping regimes. The approach offers new
insights since their classification does not depend on a stability parameter. Instead, it considers
the temporal and cross-dimensional dependence of a three-dimensional vector time series,
which sufficiently describes the SBL. After a comprehensive analysis of nine geographically
distinct measurement sites, Abraham et al. (2019) proposed a stochastic model prototype
based on the Markov chain approach to simulate the observed stochastic regime transitions
in SBL. Further research will investigate the properties of the regime transition, including the
spatial dimension. Abraham & Monahan (2020) reports that SBLs are influenced by local
process activity and are related to topography.

1.3 Data-Driven Modeling of the Stable Boundary Layer

Adequate representation of the strongly SBL in NWP remains challenging. The turbulence
responsible for the transfer of momentum, temperature, and moisture becomes intermittent at
high stratification and rarely disappears completely. Intermittent mixing events fall into the
unresolved sub-grid scale of the models and are therefore underrepresented. Crucially, some
energy-containing motions - the sub-mesoscale motions - also can fall within the subgrid-scale
of the model. These turbulence-generating processes and the turbulent mixing are difficult to
distinguish from each other. It is, therefore, unclear to what extent the sub-mesoscale motions
generate intermittent turbulence.

Stochastic modeling of ABL has become increasingly relevant in the last decade. In this
regard, the approaches in CBL differ from those in SBL. There is a clear tendency for stochastic
modeling to be more advanced in CBL than in SBL. Although the physical principles vary
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significantly between the two types of boundary layers, there is a realistic prospect that the
transfer of the stochastic approaches to SBL is feasible.

Besides the noticeable difference in the number of research articles, there is also a difference
in the general approach, which is physically motivated. The ABL in the convective regime has
a different turbulence character than in the strongly stable regime. This encourages applying
the stochastic approaches in a way that is based on some modeling principles. In comparison,
the processes and turbulence in the strong SBL are more uncertain. The application of
first-principles modeling in SBL is complicated by the numerous overlaps and interactions
between physical concepts. For this reason, the research direction in SBL relies heavily on the
use of data-driven exploratory analysis methods that aim to classify and systematize.

The relationship between the non-turbulent motions and the induced intermittent mixing
is generally unknown and not sufficiently studied. To improve the models, it is important to
address how the sub-mesoscale motions generates turbulence in strongly SBL to understand
better how it could be represented stochastically. To construct a stochastic closure for the SBL
that incorporates the effects of sub-mesoscale motions, it is important to identify a possible
set of stochastic surrogate models with time-dependent parameters. The main objective of the
research is to use appropriate inverse modeling methods to determine scaling functions from
the SBL data that map large-scale flow variables to the time-dependent parameters. This
will allow us to calibrate the stochastic mathematical model and combine it with the existing
turbulence models. Therefore, the objective is to use a suitable data-driven parameterization
approach for nonstationary time series modeling.

1.4 Summary and Research Proposition

The idea for initiating the research is to separate the SBL in terms of the regime-averaged
transport property following Vercauteren & Klein (2015). The authors propose to separate
the regimes in terms of scale interactions, which makes more physical sense in contrast to
the Ri number method. A model-based statistical clustering method is applied to identify
the regimes. Thereby, the model structure is formed by a linear combination of different
time-lagged regression variables. These variables are composed on multiple scales from the wind
speed measurements. After classification, a multiscale spectral analysis is performed to identify
the scales that produce average transport and are identifiable as turbulence (Vercauteren et al.,
2016). This analysis brings insight into the scale-wise transport properties of intermittent
turbulence within the SBL and is practiced in this work on data from a different measurement
site.

The first objective of this work is therefore:

• Analysis and classification of intermittent turbulence and sub-mesoscale motions within
regimes based on interactions at different scales following Vercauteren & Klein (2015).

To build a turbulence model that accounts for the turbulent mixing from sub-mesoscales, it
is important to understand the generating mechanisms of intermittent turbulence in the SBL.
Realistically, this goal is not achievable within the scope of this work due to the enormous
amount of processes to be analyzed and the complexity of the SBL. However, with the
clustering method, it is possible to test a more general hypothesis statistically. One of the
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known precursors of turbulence is the gradient of the stream velocity. Since we are dealing
with a model-based method, the idea is to model the measured TKE by a linear combination
of the velocity gradients. The peculiarity of the approach is that the gradients fed into
the model are calculated from the wavelet-filtered velocity at multiple scales. This should
lead to a more specific classification and modeling of the TKE. It is hypothesized that in
a regime of strongly stable stratification, the gradients of wind speed corresponding to the
scale range of sub-mesoscale motions predict a predominant fraction of the intermittent TKE
variability. Conversely, gradients of large and resolvable scale should control the regime of
weak stratification.

The second objective is therefore:

• Explore potentially suitable model structures for statistical clustering and construct a
surrogate model for the temporal evolution of the TKE at a fixed point in space for the
SBL.

The sub-mesoscale motions include a variety of different processes with unique physical
mechanisms. In particular, the relationship between these unresolved processes and large-scale
flow is unknown. Therefore, it is unclear how the sub-mesoscale motions within a sub-grid cell
of a NWP model can be predicted using the resolved scales. This means that even if a suitable
model existed that predicts the TKE from the sub-mesoscale motions, the lack of connection
to the large scale prevents us from simulating the sub-mesoscale motions in the first place.
Therefore, a model that predicts TKE solely from the sub-mesoscale motions is more suitable
for research purposes.

The two principal insights from the previous objectives are as follows. First, the sub-
mesoscale motions should be represented in a rudimentary way as a random process. Structural-
spatial properties of such a stochastic process are irrelevant in the first place, as they would
only add complexity at this stage of understanding. The only important variable is the intensity
of the noise process, which is used to represent the sub-mesoscale activity. Hypothetically,
as stratification increases and mean wind speed decreases, the importance of sub-mesoscale
motions and thus noise intensity should increase. The intensity of the turbulence diffusion
noise process is indeed related to sub-mesoscales, as reported in this work (see Fig. 4.4).

Second, the model-based statistical clustering approach applied in objective one can be used
as a parameterization tool for nonstationary stochastic equation models. The mathematical
formulation of the initially used tool has to be readjusted for this goal. The main drawbacks
are the discrete-time formulation and the linear model structure. Discrete-time models are
trained for a fixed step size given by the training data. This makes it inconvenient to integrate
such a data-driven model into a turbulence closure in the most general way. The third objective
is therefore primarily the further development of the clustering method:

• Modification of the statistical clustering algorithm for modeling time series with nonlinear
and nonstationary stochastic differential equations of continuous type.

Once a suitable turbulence parameterization tool has been developed, the next important
step is to select an appropriate variable to be modeled and to be considered for the inclusion
of random perturbations. The strategy is to look for a non-dimensional variable that is already
part of an existing RANS turbulence model structure. In conjunction with this variable, it is
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hypothesized that there exists a low-dimensional model with nonstationary, time-dependent
parameters. It is assumed that the time dependence of the parameters reflects the regime
occupation and the regime transitions within the SBL. Here, the noise process of the SDE is a
proxy that mimics the activity of the sub-mesoscale motions.

The fourth objective is therefore:

• Identify a continuous-type model structure with a small number of parameters for a
modeling variable under consideration.

The development of the stochastic closure for the SBL is divided into identifying a model
structure and the corresponding calibration with measured data. The time-varying model
parameters are re-expressed using the variables on coarser temporal scales by a so-called scaling
function. Therefore, to make the task feasible, it is essential to keep the number of parameters
small since each additional parameter requires another scaling function that is valid together
with the previous one. The fifth objective is therefore:

• Discovery of the functional forms of the scaling functions linking the time-dependent
SDE model parameters to the resolved variables of the large scale.

After a characteristic variable is modeled, parameterized, and validated, the new equation
is evaluated in a RANS model. The sixth objective is therefore:

• Incorporation of the stochastically modeled characteristic variables into a turbulence
closure and analyzing the ability to predict the strongly SBL.

The validation of the novel stochastic turbulence model is based on the button-up principle.
The predictive power of the discovered SDE, which is the central element of this work, is
validated utilizing the large scales calculated from a dataset. Thus, at the lowest level of
model validation, the representation of the characteristic stochastic variables is verified against
data independently of additional modeling assumptions. At the next level of complexity,
the stochastic equation is integrated into an autonomous turbulence closure. This stage
examines whether the desired characteristic intermittent turbulence is represented and whether
unexpected model behavior occurs. The final test would incorporate the new stochastic
equation into a NWP system, but that is left for future research.

1.5 Outline

This thesis is organized as follows. Chapter 2 discusses methods for analyzing and modeling
turbulence data, explaining the statistical discrete-time clustering method and presenting an
advanced continuous-time version of this method. Chapter 3 focuses on the analysis of SBL
using the discrete-time classification technique. Furthermore, chapter 3 emphasizes that the
clustering approach can also be used as a parameterization and modeling tool. Consequently,
in chapter 4, the version of the continuous-time clustering method developed in Ch. 2 is used to
formulate, parameterize, and validate a nonstationary stochastic stability equation that models
a characteristic turbulence variable for the SBL. Chapter 5 shows how the novel equation is
integrated into a RANS model. Several well-controlled numerical case studies are performed
to validate the novel model suitable for representing SBLs.
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2
Model-Based Nonstationary Time

Series Modeling

This work is utilizing time series measurements recorded continuously over several months.
These are multi-point measurements taken on a tower. Therefore, the spatial resolution in
the vertical direction away from the surface is sparse. The vertical transport is essential in
connecting the upper atmosphere with the surface, and is the primary research interest.

The so-called eddy covariance methods involve point measurements that record a time series
of a 3D wind velocity vector and temperature. The instruments used are sonic anemometers
with a typical sampling frequency of up to 20 or 60 Hz (Lee et al., 2004). Such temporal
resolution is sufficient to resolve the turbulent eddies contributing to transport but is insufficient
to measure the relevant turbulent dissipation rate (this variable is not in focus for this work).
As a side note, it is necessary to point out that the dissipation rate is crucial for improving the
turbulence models in the SBL; therefore, different measurement techniques must be applied
to capture this quantity. Kit et al. (2017) established a measurement setup where the sonic
anemometers were utilized to calibrate and use the hot-wire/film anemometry technique. Kit
et al. (2017) were able to resolve air motions at a temporal sampling frequency of 2 kHz and
examine fine-scale bursts of turbulence, providing insights into the entire inertial subrange of
the ABL.

The general idea of a data-driven stochastic modeling strategy is parameterization of the
unresolved degrees of freedom in a complex system. Consider a multiscale system composed of
a model representing the macroscale (RANS), while a low-dimensional model represents the
fast degrees of freedom (in this case it is the equation for the TKE). Theoretically, the fast
degrees of freedom are driven by the macroscale variables in some concealed way which one
seeks to identify. Suppose to have access to at least one measurement set for this modeling task,
including all scales forming the training data set. It is assumed that the resolved scales control
the dynamics by modulating the parameters of yet unknown low-dimensional model. One
tries to describe the fast degree of freedom with a low-dimensional model, recover its temporal
parameter modulation and re-express them by some appropriated resolved characteristic
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variable of a dynamical system. Thereby it is assumed that there is a hidden functional
relationship, which one aims to infer, between the model parameters and some resolved
deterministic variable.

This work focuses on inverse modeling of general time series data with discrete and
continuous type models and the inverse modeling will be applied to turbulence measurements
later in this work. This chapter provides a brief overview of the nonstationary linear discrete-
time statistical clustering method (Horenko, 2010b) applied in Ch. 3 to study and classify the
SBL regimes. Thus, the used model structures entails physically meaningful hypotheses that
contribute to the main objective of the clustering. Nevertheless, the central part of this chapter
is concerned with developing a statistical parameterization framework for continuous-type
nonlinear models based on the ideas of the discrete-time framework (Horenko, 2010b). The
objective in designing such a method is explicitly to model a nonstationary temporal evolution
of some relevant turbulence variable (see Ch. 4). The imposed model structure should be
modular and directly integrated into a RANS turbulence model. This integration is the subject
of Ch. 5.

2.1 Stationary Models

This section summarizes information and methods for modeling stationary time series. The
models presented are then combined with a clustering procedure to model nonstationary data.

2.1.1 Linear Discrete-Time Models

This section briefly reviews the theoretical background for discrete-time models, focusing on
one particular type. This specific model type is thus the model structure for the variational
clustering approach applied in Ch. 3. The clustering method will only be briefly described to
provide the context for further methodological development.

Consider a time series Y [n], where n = 1, 2, · · · , N is the experimental observations at
time points 0 = t0 < t1 < · · · < tN = te with a constant time step ∆t and a total number of N
observations. The square brackets indicate that this is a discrete-time variable. In particular,
this notation implies, for example, that some discretization operation of an underlying system
has already been performed and applied to the continuous counterpart variable or system. The
time series Y [n] is the target process to be modeled. Moreover, process X[n] is said to force
or control process Y [n] under a hypothetical assumption. This process acts as an exogenous
variable on the system. In such a case, a stationary linear AutoRegressive Moving Average
model with eXogenous variables (ARMAX) has the general form, characterized by the model
terms containing discrete time-lagged information, as:

Y ⋆[n] = a0 +
p∑

i=1
aiY

⋆[n− i∆t] +
q∑

j=1
bjX[n− j∆t] +

r∑
k=1

ckξ[n− k∆t] + d0 ξ[n] . (2.1)

The idea is to match a prediction process Y ⋆[n] to the observed process Y [n] by using a model
structure based on p past observables of itself, q past observation values of an external process
X together with an stochastic process ξ which is independent of Y ⋆ and also provided with
information about the past r values. The process ξ has a special meaning and will be explained
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in the following. Equation (2.1) is defined as a stationary model by assuming the parameter
values a0, ai, bj , ck, d0 to be constant within the N observations. When we attempt to fit the
model to the data, we must ensure that the process we are trying to model is stationary and
does not contradict this assumption.

Another model detail is the discrete time step ∆t, shown in Eq. (2.1) for demonstration
purposes. The time step is implicitly included in the model by processing the variables Y and
X and is not explicitly incorporated into the procedure for estimating the model parameters.
For this reason, one must always additionally specify the time step when evaluating such
models since the estimated parameters are dependent on ∆t. In later applications, Y will be a
part of a turbulence closure model to be embedded in RANS. The turbulence model may use
a different or variable time step, leading to discrepancies with the fitted ARMAX. Integrating
ARMAX into other systems requires additional care, e.g., converting them into continuous-time
models. With additional nonlinear terms, the complexity of such a transformation increases
significantly (for an approach see (Billings, 2013)).

To understand the role of the random process ξ in inverse modeling, it is helpful to introduce
the concepts of deterministic and stochastic processes. Deterministic processes are processes
that are known to have a representative system of equations. Stochastic processes are those
processes that we observe but cannot establish an exact equation. A process that we do not
understand and for which there is no descriptive equation seems entirely random to us.

During an identification process of the system from data, continuous invention and testing
of the model structure contributes to quantifying the variability, and thus the variance, of the
time series Y [n] under study (see Eq. (2.1)). Such a modeling principle is based on the Wold
representation theorem (Hannan, 1970, p. 137).

The following elementary components create Eq. (2.1). The simplest imaginable model
would consist of the variance d0 and the mean a0, which are essentially the first two statistical
moments of the time series Y . This operation is usually the first step to comprehension when
we know nothing about the data. Next, one could test a pure autoregressive (AR) model by
minimizing the L2 norm between the data and the model concerning its parameters

a∗ ∈ argmin
a


Y [n]− a0 −

p∑
i=1

aiY [n− i∆t]


2

2

 , (2.2)

where a∗ = (a0, a1, . . . , ap) is the vector of optimal model parameters. The inverse problem
is solved by forming a well-posed system known as the Yule-Walker equations. The
residual after minimization should then be the independent and identically distributed (i.i.d.)
process ξ; it must be orthogonal to the time series generated by the assumed model structure.
Furthermore, it is also preferable that the residual variance is small such that d0 → 0 in
Eq. (2.1).

If the residual is not i.i.d. and has some autocorrelation, one further refines the modeling
hypothesis and adds a deterministic variable X. The estimation of the autoregressive model
with exogenous variable (ARX) is done in a similar way by minimizing:

a∗, b∗ ∈ argmin
a,b


Y [n]− a0 −

p∑
i=1

aiY [n− i∆t]−
q∑

j=1
bjX[n− j∆t]


2

2

 , (2.3)
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The residual of the minimization should then be the i.i.d. process ξ. If the residual ξ still
significantly correlates with the system variable one models the residual ξ with a moving
average process in the final step. This stage is called error modeling and is a separate procedure
after which the ARMAX is entirely identified.

When using discrete-time models, always ensure that the residuals resemble white noise.
Otherwise, the model is biased, i.e., it is only valid for the uniquely observed data and cannot
be used for predictions with other input signals. This is an inherent property of discrete-time
models since the general model validity can be directly quantified by analyzing the residuals.

The general approach to identifying discrete-time linear models was briefly addressed.
However, a more comprehensive and far-reaching explanation can be found in (Billings, 2013).
Billings (2013) covers all relevant and advanced topics such as model structure estimation, error
modeling, estimation of nonlinear discrete-time models, the transformation of discrete-time
linear and nonlinear models to continuous-time models. The ideas of discrete-time linear
models are applied in Ch. 3 for modeling nonstationary processes; in the next section, we will
look at continuous and stationary models.

2.1.2 Nonlinear Stochastic Differential Equations (SDE)

The advantage of using SDE in modeling time series data is that they are of the continuous
type. With the specific formulation used here, they also model the nonlinear noise terms. Error
modeling is included in the estimation procedure and does not need to be performed separately
as in discrete-time models. In addition, the time step ∆t is included in the estimation procedure
so that after the identification of the SDE, direct coupling to the RANS turbulence model
can be implemented. These models are combined next with a variational clustering approach
in Sec. 2.2.1 to identify nonstationary SDEs. The whole procedure of nonstationary model
identification is then applied in Ch. 4 to develop a turbulence closure for the SBL.

The use of SDEs in the given formulation below has a disadvantage compared to the
linear discrete-time models presented in Sec. 2.1.1. The used SDEs have one time derivative;
therefore, the smoothness or regularity of the predicted time series is limited. In contrast,
the discrete-time model contains several time-delayed terms that can model a time series
with smooth wave patterns. Considering the variable to be modeled for the RANS closure
(Eqs. (5.1) - (5.3)), the regularity of the proposed SDE is sufficient and is analyzed in Sec. 4.6.3
in more details. The methodology is discussed next.

Assume a stochastic process denoted by a one-dimensional, time-dependent variable X(t).
Let X(ti) be the (experimental) measurements at the observation times 0 = t0 < t1 < ti <

tN = te. The signal is recorded at a constant sampling frequency such that ti+1 − ti = ∆t > 0
for i = 0, . . . , N . The dataset consists of N observations. Let us consider as underlying data
generating process a general one-dimensional Itô SDE of the form

dX = f(X; ϑ) dt+ g(X; ϑ) dW (t) , X(t0) = X0 , (2.4)

over a bounded time interval [0, te], te > 0. The functional form for the drift f(·; ·) and diffusion
g(·; ·) is nonlinear in X and linear in ϑ, depending on an unknown vector-valued parameter
ϑ = [ϑ1, ϑ2, . . . , ϑn] ∈ Ωϑ ⊂ Rn, where Ωϑ denotes the acceptable parameter space. The vector
ϑ includes the parameters of the drift f and diffusion term g. Furthermore, suppose W (t) is
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an admissible one-dimensional Wiener process. It is assumed that Eq. (2.4) has a unique,
strong solution for each ϑ. The goal is to estimate the parameter ϑ from given N observations
using the maximum likelihood approach. The discrete-time negative log-likelihood function is
defined as (Fuchs, 2013)

lN (ϑ) := −
N−1∑
i=0

ln [(pX(∆t,X(ti+1)|X(ti); ϑ))] , (2.5)

where pX indicates the conditional transition density function (c.t.d.f.) of the stationary
process X. From now on, we refer to lN as the fitness function to match the definition of the
variational framework of Horenko (2010a), but in general, lN is a cost function. The optimum
of the fitness function with respect to ϑ results in the parameter estimate

ϑ∗ ∈ arg min
ϑ∈Ωϑ

lN (ϑ) , (2.6)

which is the Maximum Likelihood Estimation (MLE). It is known that the MLE converges to
the true parameter ϑ0 in probability as N →∞ for a fixed ∆t. Moreover, it is consistent and
asymptotically normal and independent of the discretization (Dacunha-Castelle & Florens-
Zmirou, 1986), √

N(ϑ∗ − ϑ0)→d N (0,σ2
MLE) , (2.7)

where σ2
MLE is the variance of the MLE ϑ∗. This estimator converges in distribution →d to

the unknown parameter at a rate 1/
√
N .

For a general nonlinear SDE of the type (2.4) the conditional transition density function
is unknown but can be approximated using the closed-form expansion following Aït-Sahalia
(1999, 2002). Process X is transformed into process Z with two steps. The transition density
of process Z, namely pZ , is evaluated via Hermite polynomials, and the required density
pX is obtained by inverting the transformations. The first transformation step, Y := L(X),
standardizes the process X such that Y has unit diffusion:

dY = µ(Y ; ϑ) dt+ dW (t) , Y (t0) = Y0 , (2.8)

where the drift µ is

µ(Y ; ϑ) = f(L−1(Y ); ϑ)
g(L−1(Y ); ϑ) −

1
2
∂g(L−1(Y ); ϑ)

∂X
. (2.9)

The Lamperti transform is defined

L(X) :=
∫
g(X,ϑ)−1 dX , (2.10)

such that the inverse L−1(Y ) exists. The second transformation is introduced to normalize
process Y with respect to the step size:

Z := (Y − y0)/
√

∆t . (2.11)
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The factor 1/
√

∆t prevents that the transition density turns into a Dirac delta function for
small ∆t and the shift operation resets the initial value for the process Z to Z0 = 0 (Fuchs,
2013)[ch. 6.3]. The truncated Hermite expansion of the transition density function pZ is
defined as

pZ
(J)(∆t, z|y0; ϑ) := ϕ(z)

J∑
j=0

ηj(y0,∆t; ϑ)Hj(z) , (2.12)

where ϕ(z) = exp(−z2/2)/
√

2π is the weight function,

ηj(y0,∆t; ϑ) := (1/j!)
∫ +∞

−∞
Hj(z)pZ(∆t, z|y0; ϑ) dz (2.13)

are the coefficients and Hj(z) are the Hermite polynomials. By reverting the transformation
from Z to X, one obtains the approximated density pX

(J):

pX
(J)(∆t,X(ti+1)|X(ti); ϑ) = 1

g(X(ti+1); ϑ)
√

∆t
pZ

(J) (∆t, z|y0; ϑ) . (2.14)

Theorem 1 of Aït-Sahalia (2002) established the necessary conditions for the convergence of

pX
(J)(∆t,X(ti+1)|X(ti); ϑ)→ pX(∆t,X(ti+1)|X(ti); ϑ) as J →∞ , (2.15)

both uniformly in X(ti) and in ϑ; this yields the actual transition density function pX . To
evaluate the integral in Eq. (2.13), Aït-Sahalia (2002) proposes a Taylor series expansion in
∆t for the coefficients ηj up to the order M = 3 (see Appendix A.1). The convergence rate of
the truncation error is dependent on the choice of J :

η
(M)
j (y0|∆t; ϑ) = ηj(y0,∆t; ϑ) +O(∆tM+1) , j = 1, . . . , J ; M = J/2 . (2.16)

In this work, J = 6 is chosen as it is also used by Aït-Sahalia (2002); this is a sufficiently
accurate approximation and agrees with the proposed clustering approach presented below.

In summary, consider an abstract sketch (see Fig. 2.1) that reflects the scope of autonomous
SDE modeling. As one would expect, when an SDE with stationary parameters is used to
estimate a strongly nonstationary time series, the predictive ability could be poor outside of
the observed samples (see Fig. 2.1). In the following section, the modeling is refined with a
more detailed approximation.

2.2 Nonparametric Clustering Methods for Nonstationary
Models

This section addresses a nonparametric clustering method used to model and analyze turbulence
time series data with a pre-specified model structures.

2.2.1 Smooth Variational Clustering of SDEs

The nonparametric variational clustering method relaxes the assumptions of constant
parameters in a generally defined SDE (2.4) (see Fig. 2.1). It thus contributes to the analysis
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Observations Model fit Prediction

Approximation
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Figure 2.1: An illustration of a data-driven modeling approach with stationary SDE. In the left
diagram, the curved red lines illustrate the parameter space of a possible model for some set of
observations. Fitting an SDE with constant parameters assumes the variability of the parameters
to be time-independent, as shown in the middle cartoon. Out-of-sample prediction is inaccurate
because the parameters’ evolution is unknown outside training data, as shown in the right cartoon.

of complex and nonstationary time series. Data recorded during an experiment in the ABL is
challenging to reproduce due to uncontrollable environmental conditions. The duration of a
field measurement campaign can span several months, resulting in a single time series with a
wide range of dynamically different regimes (Mahrt, 2014; Sun et al., 2012; Vercauteren et al.,
2019b). Therefore, it is necessary to cluster the data to isolate and understand the physical
mechanisms in each of the reasonable regimes.

Clustering and modeling of transient wind measurements based on SDE with time-dependent
parameters is an excellent tool. The task of classification improves when the model structure
is adapted to the process dynamics. An improved classification allows a more accurate
understanding of the SBL regimes and thus leads to more sophisticated suggestions and
improvements of the model structure. The application of model structure design and data
classification cycle makes it possible to find scalable surrogate models.

This section addresses the technical aspects of the nonparametric variational clustering
method and the necessary steps to use it in combination with generally defined nonlinear SDE.
Thus, the goal is to estimate the following type of models:

dX = f(X; Θ(t))dt+ g(X; Θ(t))dW (t) , X(t0) = X0 , (2.17)

Θ : [0, te]→ Rn , Θ(t) = [θ1(t), θ2(t), . . . , θn(t)] ∈ ΩΘ , (2.18)

where the possibly nonlinear drift f and the nonlinear diffusion term g are linearly dependent
on an unknown time-dependent vector function Θ(t), which in this case, are also the unknown
parameters of the SDE. The vector Θ(t) summarizes the parameters of the SDE function f

and g, where the index n in Eq. (2.18) indicates the total number of parameters.
The nonparametric clustering approach with smooth regularization, introduced by Horenko

(2010a) (called Finite-Element, H1-Regularization (FEM-H1)) and further developed by
Pospisil et al. (2018), is adopted next to estimate the time-varying parameters. In general, it
is an optimization framework with a specific regularization technique. Here the abbreviation
Finite Element Method (FEM) indicates that the finite-dimensional projection space used for
regularization is constructed by following the basic principles of the FEM. Moreover, ”H1”
symbolizes that a specific smoothness condition on the functions (affiliation function) are
imposed.
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2. Model-Based Nonstationary Time Series Modeling

Here, identifying Θ(t) using FEM-H1 involves solving two different inverse problems
coupled into one estimation procedure. The first problem is determining the parameter values
for which the relevant procedure was discussed in Sec. 2.1.2. The second problem is to identify
their locations in time, which is the focus of this section. The FEM approach reduces the inverse
problem’s complexity and the computational power required to determine the parameters Θ(t).
Since the term FEM is usually associated with partial differential equations, it is emphasized
that this is not the case here.

The formulation of the fitness function (2.5) for Eq. (2.17) becomes a problem. The
problem of parameter estimation (see Eq. (2.6)) is ill-posed in such a case because one searches
for a parameter vector size equal to the length of the time series times the number of model
parameters. For the considered Fluxes Over Snow Surfaces Phase II (FLOSS2) data, this
means about 106 parameter values and is intractable. To overcome this difficulty, Horenko
proposes regularizing the fitness function by assuming that the process X(t) varies much faster
than the parameter function Θ(t). Formally, this means that the fitness function is expressed
by a convex combination of K locally-optimal fitness functions,

lN (Θ(t)) :=
N−1∑
i=0

K∑
k=1

γk(ti) ℓ(ti; θk) , K ≥ 2 , (2.19)

where ℓ(ti; θk) is the time-dependent fitness function formed by the time-averaged locally valid
parameter θk. The overbar indicates the averaged value, which is assumed to be constant on a
temporally local period. The value of K indicates the number of clusters or sub-models. The
functions γk(t) are the affiliation functions with specific properties that will be discussed below.
They are unknown and are estimated differently then the model parameters. The function
ℓ(·; ·) is close related to Eq. (2.5) and is defined as

ℓ(ti; θk) := −ln
[
pX(∆t,X(ti+1)|X(ti); θk)

]
i = 1, . . . , N − 1 , (2.20)

where the index i iterates over the samples. To simplify the implementation process, the
sample size of ℓ(·; ·) is set equal to the sample size of X(t) by setting the value at the last time
step N equal to the first ℓ(tN ; θk) = ℓ(t1; θk).

In each cluster K the function value of ℓ varies depending on a different locally-valid
parameter set θk, and therefore, when considering the particular periods in isolation, several
local minima can occur within the entire fitness function. The intention of the clustering
method is to discover local minima and thus estimate the corresponding parameter values.

The affiliation functions γk(t) encode the information about the location of the minima
for each of the k-th f(·; ·) and are stored in the so-called affiliation vector Γ(t) =
[γ1(t), γ2(t), . . . , γK(t)] ∈ RK×N . The functions γk(t) satisfy the convexity constraints and
thus form the partition of unity,

K∑
k=1

γk(t) = 1 , ∀t , (2.21)

1 ≥ γk(t) ≥ 0 , ∀t, k . (2.22)
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2.2 Nonparametric Clustering Methods for Nonstationary Models

The vector Γ(t) has several possible interpretations. It can be interpreted as a vector of time-
dependent weights. Following Pospisil et al. (2018) , the vector Γ(t) represents the activity
of a corresponding k-th SDE at given time ti. It can also be understood as a K-dimensional
time-dependent probability vector expressing the probability of observing the k-th stationary
model at time ti. For demonstrative reasons, assuming that we know in advance the affiliation
vector, the temporal evolution of a parameter function is approximated as follows

θ(t) ≈
K∑

k=1
γk(t)θk + ε(t) (2.23)

where θ(t) is approximated by K ∈ N piecewise constant θk (see Fig. 2.2) and where ε(t) is an
approximation error.

X(t)

θ(t)

t

θ1
θ1

θ2
θ2 θ2 θ2

θ3
θ3 θ3

Figure 2.2: Sketch illustrating an approximation of a time-dependent parameter function with
piecewise constant subdivisions. The upper panel shows a non-stationary time series X(t) that is
observed. The lower panel shows the time-dependent parameter of some model with a black line
for X(t) (which is not observed). The green horizontal lines indicate a possible approximation to
the black line as an example with three constant values.

Figure 2.2 illustrates as an example the approximation of a nonstationary parameter
with K = 3. The figure shows a variable position and period of the individual subdivisions,
depending on the evolution of θ(t) and the number of clusters used. This information is
contained in the Γ(t) function. For K → N , the approximation of θ(t) becomes progressively
refined. With each additional cluster added, another set of complementary parameters must
be estimated. In the limiting case, when the number of clusters is equal to the number of
points in the time series (K = N), each point should potentially be described by an equation
with its unique parameter values. For example, a SDE model with 3 parameters and a time
series of length N yields 3N parameters to be estimated. Such an approximation is interpreted
as overfitting. Another consequence is that the uncertainty for each estimate of θk increases
(see Eq. (2.7)) because the set of available data points for each cluster shrinks (i.e., for each
SDE model).

Following the definition of Horenko (2010a), the averaged clustering functional LN together
with the assumptions (2.19), (2.21), (2.22), and the fitness function Eq. (2.20) for the SDE is
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2. Model-Based Nonstationary Time Series Modeling

defined as follows,

LN (Γ(t),θ1, . . . ,θK) = −
N−1∑
i=0

K∑
k=1

γk(ti) ln
[
pX(∆t,X(ti+1)|X(ti); θk)

]
. (2.24)

Some important properties are summarized below from the corresponding literature. Metzner
et al. (2012) proved that the average cluster functional is the lower bound of the total negative
log-likelihood by using Jensen’s inequality. The functional LN (Γ(t),θ1, . . . ,θK) is privileged
over the functional lN (θ(t)) for the following rationale. Instead of estimating |θ(t)| = N × n
parameters (where n is the number of parameters in the basic model), one needs to estimate a
reduced set Θ = (θ1, . . . ,θK) with a cardinality |θ| = K × n and affiliation vector Γ(t). One
still needs to specify a hyperparameter K, but the number of parameters is reduced by several
orders of magnitude, and the optimization problem is simplified. The entire variation problem
changes to

(Γ∗(t),Θ∗) ∈ arg min
Θ∈Ωϑ

Γ∈ΩΓ

LN (Γ(t),θ1, . . . ,θK) , (2.25)

where Θ∗ = [θ∗
1,θ

∗
2, . . . ,θ

∗
K ] denotes the estimate for the reduced set of averaged parameters,

and Γ∗(t) denotes the estimate for the affiliation vector under the constraints (2.21) and (2.22).
The vector Γ∗(t) still yields irregular solutions. To achieve permanent separation of K clusters,
the problem (2.25) is further regularized by Horenko (2010a)’s Tikhonov approach,

Lϵ
N (Γ(t),Θ, ϵ2) = LN (Γ(t),Θ) + ϵ2

K∑
k=1

∫ te

0

dγk(t)
dt

dγk(t)
dt dt , (2.26)

where ϵ2 is the regularization value and, together with K, represents a hyperparameter of the
whole methodology. To find a reasonable solution vector Γ∗(t), one must specify the function
space. For example, the original authors also used bounded variation functions to model jump
transitions with γk(t); this form of bounded variation is discussed in Sec. 2.2.2.

To parameterize the SDE, the γk(t) ∈ H1 with the appropriate smoothing measure
||dγi(t)

dt ||L2 is convenient. One of the reasons for this is that the smooth change of γk(t) offers
us insights into the transition zones between the different regimes. It gives us, for example,
the possibility to determine the time of the transitions and understand the sensitivity of the
parameter excitation of the system. Smooth regime transitions are more typical in SBL.

After the construction of the functional (2.26) and the selection of the function space
for γk(t), it is relevant to discuss the discretization of Lϵ

N (·, ·, ·) by finite elements since the
introduced fitness function (2.20) requires modifications to the numerical solution of the
problem. For the initial discretization of the problem, see (Horenko, 2010a). The main focus
here is on the interpolation and reduction steps, which are new compared to the original
algorithm.

The reason for the discretization is to simplify the solution of the following quadratic
programming problem. Recall that the data is sampled with a time step ∆t. The discretization
reduces the size of the time series by a specific factor αN ∈ (0, 1). After the reduction, we work
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with a reduced time series of length N̂ < N and a new time step ∆τ > ∆t. The discretized
version of Lϵ

N (·, ·, ·) is

Lϵ
N̂

(Γ(τ),Θ, ϵ2) =
K∑

k=1

[
b(τ,θk)⊤γk(τ) + ϵ2γk(τ)⊤Aγk(τ)

]
→ min

Γ(τ),Θ
. (2.27)

where the vector Γ(τ) = [γ1(τ), γ2(τ), . . . , γK(τ)] ∈ RK×N̂ is the coarsened version of Γ(t).
Here τ denotes the reduced t-grid by a factor αN ∈ (0, 1) and distinguishes the notation of
the vector Γ(t) from Γ(τ). For more details on the FEM approximation of γk(τ) and the
construction of A, see (Horenko, 2010a) and (Metzner et al., 2012)).

The coarser and uniform mesh with its size ∆τ is a set of points (τj)0≤j≤N̂+1 with respective
intervals Tj = [τj , τj+1] with 0 = τ0 < τ1 < · · · < τ

N̂+1 = te such that the resulting number
of discretization points N̂ < N . The Lagrange P1 elements associated with the space of
globally continuous, locally linear functions for every interval ∆τ :

V∆τ = {δv∆τ ∈ C0([0, te]) : δv∆τ |Tj ∈ P1, 0 ≤ j ≤ N̂} , (2.28)

with the subspace:

V0,∆τ = {δv∆τ ∈ V∆τ : δv∆τ (0) = δv∆τ (te) = 0} . (2.29)

The first term, b(·, ·)⊤γk(·) in Eq. (2.27) is the projected version of LN (·, ·) (see Eq. (2.24))
and is formulated as a dot product. The symbol ⊤ denotes the transpose of the corresponding
vector. The vector b(τ,θk) denotes the discretized model fitness function,

b(τ,θk) =

∫ τ2

τ1
ℓ(t,θk)δv1(t)dτ, . . . ,

∫ τ
N̂

τ
N̂−1

ℓ(t,θk)δv
N̂

(t)dτ

 , (2.30)

where δv(t) is the hat function and ℓ(·, ·) the function in Eq. (2.20). The operation in Eq. (2.30)
is termed a reduction and projects a vector into the space of the finite element. Consequently,
the temporal evolution of the function value ℓ(·, ·) changes its sampling rate from ∆t to a
larger mesh size ∆τ . The second term ϵ2γk(τ)⊤Aγk(τ) penalizes the functional by controlling
the regularity of the vector Γ(τ). By selecting the P1 elements, the respective stiffness matrix
of a cluster Hk is composed as follows

Hk =



2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
... . . . ...

0 0 0 · · · 2


∈ RN̂×N̂ , k = 1, . . . ,K .
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and the total stiffness matrix of the variational problem is

A =


H1 0 · · · 0
0 H2 · · · 0
...

... . . . ...
0 0 · · · HK

 ∈ RKN̂×KN̂ .

In the literature, the regularized variational problem (2.27) is solved iteratively in two steps:

1. Fix Γ(t) and find Θ∗ by solving LN (Γ(t),Θ)→ min
Θ

(2.24)

2. Fix Θ and find Γ∗(τ) by solving Lϵ
N̂

(Γ(τ),Θ, ϵ2)→ min
Γ(τ)

(2.27)

The second step is a quadratic cost function problem involving linear equality and inequality
constraints. Equation (2.27) is reformulated by defining column vectors from K clusters. The
so-called vector of modeling errors B(τ) (Pospisil et al., 2018) is constructed using the reduced
local fitness function see Eq. (2.30),

B(τ) := [b(τ,θ1), b(τ,θ2), . . . , b(τ,θK)] ∈ RKN̂ , (2.31)

From Eq. (2.27) the block-structured Quadratic Programming (QP) problem is:

Γ∗(τ) := arg min
Γ∈ΩΓ

Lϵ
N̂

(Γ(τ),Θ, ϵ2) , (2.32)

Lϵ
N̂

:= 1
N̂

B(τ)⊤Γ(τ) + 1
N̂
ϵ2Γ(τ)⊤AΓ(τ) , (2.33)

ΩΓ := {Γ(τ) ∈ RKN̂ : Γ(τ) ≥ 0 ∧
K∑

k=1
γk(τ) = 1∀t ∈ [0, T ]} , (2.34)

Where 1/N̂ is an introduced scaling coefficient to avoid large numbers. The fitted spectral
projected gradient method developed by Pospisil et al. (2018) is applied to solve the QP.
Their approach is characterized by a high granularity of the parallelization and is suitable for
execution on Graphics Processing Unit (GPU) clusters. It is also efficient and outperforms
traditional denoising algorithms in terms of the signal-to-noise ratio.

Reducing the samples size to N̂ < N decreases the size of the QP problem and its
computational complexity. Alternatively, higher-order elements also require additional
collocation points but provide smoother approximations. However, the accuracy in determining
Θ∗ depends on the number of available observations since it scales with 1/

√
N (see Eq. (2.7))

and therefore must be calculated with the smallest available time step ∆t. If we now reduce
the size of the QP problem (see Eq. (2.30)), the accuracy of the estimate θ

∗ will decrease, and
this is undesirable. Consequently, we cannot solve both problems with the same time step
∆τ and must interpolate the solution of QP at each iteration step between ∆τ and ∆t. This
results in the following modification of the original procedure:

1. Fix Γ(t) and find Θ∗ by solving LN (Γ(t),Θ)→ min
Θ

2. reduce the fitness function to the τ -grid
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3. Fix Θ and find Γ∗(τ) by solving Lϵ
N̂

(Γ(τ),Θ, ϵ2)→ min
Γ(τ)

4. interpolate Γ∗(τ) to the t-grid step size ∆t

Algorithm 1: The adapted subspace algorithm for SDE models. The main change
to Horenko (2010a)’s algorithm is in line 9, where the functional LN is formulated for
a general SDE. Furthermore, lines 14 and 18 are added to maintain the accuracy of
the estimated Θ∗. The reduced variables are indicated by the time variable τ and the
non-reduced with t, respectively.

Input : Time series X, number of clusters K, regularization value ϵ2, and the
reduction value αN

Output : Γ∗(t) and Θ∗

1 Generate random initial Γ0(t) satisfying (2.21) and (2.22)
2 /* We need the full Γ0(t) to find Θ and the reduced Γ0(τ) to solve the QP

problem */
3 Reduce the initial vector Γ0(t) to Γ0(τ) on the coarser grid ∆τ
4 Set iteration counter j = 0 for the main optimization loop
5 /* main optimization loop */

6 while
⏐⏐⏐Lϵ

N̂
(Γj+1(τ),Θj+1

, ϵ2)− Lϵ
N (Γj(τ),Θj

, ϵ2)
⏐⏐⏐ > tol do

7 /* Estimate Θj from the full (This will ensure maximum accuracy for

the estimate of Θj) Γj(t) applying K times unconstrained
minimization */

8 for k ← 1 to K do
9 θ

j+1
k = arg min

θ
LN (γj

k(t),θ) // See Eq. (2.24).

10 end for
11 /* From the found θ

j+1
k compute the fitness functions f j+1(t,θj+1

k ) or
save it from the step in line 9 */

12 Compute f j+1(t,θj+1
k ), if not saved from line 9 //

13 /* Reduce f j+1(t,θj+1
k ) because Γ(τ) will be estimated on the coarser

grid ∆τ */

14 Compute bj+1(τ,θj+1
k ) = reduction(f j+1(t,θj+1

k ),∆τ, αN ) // See Eq. (2.30)
15 /* Apply quadratic programming to solve the constrained minimization

*/
16 Γj+1(τ) = arg min

Γ
Lϵ

N̂
(Γ(τ), bj+1(τ,θj+1

k ), ϵ2) satisfying (2.21) and (2.22)

17 /* Interpolate Γj+1(τ) onto the original grid with a scale ∆t */
18 Γj+1(t) = interpolate(Γj+1(τ),∆t)
19 /* Incrementing the counter j of the main loop */
20 j = j + 1
21 end while
22 return Γj+1(t), Θj+1

In this way, the discretization step of the theta solver (∆t) is decoupled from the
discretization step of the gamma solver (∆τ), ensuring an accurate approximation of Θ
while preserving the advantages of FEM. Algorithm 1 to solve the variational problem (2.27) is
called the subspace clustering algorithm (Horenko, 2010a) and is reproduced with the proposed
modification.
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Figure 2.3: The infographic shows the workflow to construct a self-contained prediction model by
applying additional stochastic modeling of the affiliation function with a Markov chain approach.
The stochastic predictor of the affiliation function M provides a prediction of the regime occupation
on average. For more details, see (Metzner et al., 2012).

After the successful application of the clustering method, there are several options for
further proceeding. For example, the vector Γ∗(t) provides a classifier that can be used to
analyze the quantities of interest with respect to the clusters. Instead, the idea is to use the
vector Γ∗(t) to construct stochastic closures. One difficulty here is the lack of information
about the future realization of this vector. Vector Γ∗(t) is an estimate based on the data used
in the identification. Although we assume that we have a sufficient amount of data to capture
the full spectrum of regime dynamics, we cannot make predictions of the future state of the
vector Γ(t) without additional modeling work. One can associate the affiliation function with a
Markov process under the assumption that it is homogeneous and stationary (Metzner et al.,
2012). Such assumptions are hard to imagine in SBL because the regime transitions might
depend on the larger scales and the thermodynamical processes. Alternatively, Kaiser et al.
(2017) used a neural network in the context of clustering to predict the velocity components of
internal gravity waves outside the training data set.

Here, an approach is proposed in which the clustered parameter values are traced back
to an auxiliary process u(t). This approach is attractive because the deterministic process
u(t) should live on a larger scale than the process of interest X(t). The only limitation, then,
is that it is not always possible to find such a process. In the case of existence, however, no
further assumptions are required.

The section is concluded by presenting a summarizing abstract sketch that shows the scope
of the nonparametric clustering methodology (see Fig. 2.3). The figure shows a possible further
modeling process to create a fully predictive model.
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2.2.2 Bounded Variation of Linear Discrete-Time Models

This section provides a brief overview of the clustering framework based on the Finite-Element,
Bounded-Variation, Vector AutoRegressive (X) Factor (FEM-BV-VARX) method. The FEM-
BV-VARX method is applied in this work to analyze the regimes of the SBL (see Ch. 3),
whereas the new version of this methodology, presented in Sec. 2.2.1 and referred to as Finite-
Element, H1-Regularization, Stochastic Differential Equation (FEM-H1-SDE), is primarily
used to develop the stochastic turbulence closure in Ch. 4.

The FEM-BV-VARX method (Horenko, 2010b) is widely used to study multidimensional
transient atmospheric data. For example, Franzke et al. (2015) examined the response
of Southern Hemisphere circulation trends to several external forcings and found that
anthropogenic CO2 is a more relevant driver than ozone depletion. Risbey et al. (2015)
examined mid-tropospheric flows and showed that teleconnection patterns in the Northern
Hemisphere exhibit a characteristic alternation of metastable states. O’Kane et al. (2017)
investigated the influence of memory and dimensionality related to the FEM-BV-VARX method
in defining the quasi-stationary states of the troposphere.

The mathematical formulation of the FEM-BV-VARX tool is based on the discrete-time
linear models presented in Sec. 2.1.1 and uses the basic variational clustering principle given
in Sec. 2.2.1, but with some modifications. Igdalov et al. (2019) is one of the authors who
developed the version of the FEM-BV-VARX code applied in this work.

Based on the theory presented in Sec. 2.2.1, the components characterizing the FEM-BV-
VARX method are as follows. The FEM approximation remains in operation to reduce the
size of the problem, projecting the vector of modeling errors onto the finite element basis. The
regularization is performed with a class of functions with Bounded Variation (BV), which
leads to the so-called persistence condition:

||γ||BV =
N−1∑
i=0
|γk[ti+1]− γk[ti]| ≤ Cp k = 1, . . . ,K (2.35)

where the hyperparameter Cp ≥ 0 restricts the maximum number of jumps allowed in the
affiliation vector Γ(t). By implementing such a condition in the regularization term in
Eq. (2.26), the parameter Cp replaces the functionality of the parameter ϵ2. For more details
and numerical implementation, see (Metzner et al., 2012, p. 189). The bounded variation
offers two benefits compared to the smooth regularization approach. First, the regularization is
based on the control of the hyperparameter that sets the maximum allowed regime transitions
rather than on the smoothness of the affiliation vector. Second, the affiliation function is of
the discrete type, i.e., the transitions between regimes occur as discrete switches requiring only
one discrete time step. Such an affiliation function includes smooth transitions (Metzner et al.,
2012) but does not provide detailed information about how the transition unfolds.

Despite these exciting features of the regularization with BV, the smooth regularization was
used for clustering the SDE for the following reason. The main drawback of BV regularization
is that it provides a discrete classifier. As shown in Fig. 2.13a, BV regularization obscures
vital information about the probability of observing the regimes. For example, in regime
states with probability 60% might be too uncertain, and one might exclude them from further
analysis. Similarly, if one observes a short regime state and wants to know how much of that

37



2. Model-Based Nonstationary Time Series Modeling

time was spent fading in and out. All this information is not directly available with the BV
regularization approach.

Finally, the fitness function in the FEM-BV-VARX method is in vector form. All parameters
are matrices, and therefore the procedure can be applied to multi-dimensional data. In this case,
the off-diagonal entries in the parameter matrices indicate the cross-dimensional time-delayed
interactions. The fitness function takes the form

ℓ(Y ; θ) :=

Y [n]−A0[n]−
p∑

i=1
Ai[n]Y [n− i∆t]−

q∑
j=1

Bj [n]X[n− j∆t]


P (t)

, (2.36)

with n = 0, . . . , N − 1, and where Θ = (A0,Ai,Bj) (i = 1, . . . , p and j = 1, . . . , q) is the
vector of the model parameter matrix. The bold notation indicates that the modeled time
series Y is multidimensional. Assuming the weighted norm || · ||P (t) =

√
|| · P (t),P ⊤(t) · ||2,

the norm for the least-squares problem is preserved in the essential noise dimensions. The
matrix P (t) is orthogonal and multiplied by the diagonal matrix Λ(t) to get the noise matrix

C(t) = P (t)Λ(t) . (2.37)

The matrix C(t) is the residual between the estimated model and the observed time series.
For more details, see (Horenko, 2010b). The FEM-BV-VARX method is obtained by inserting
Eq. (2.36) into Eq. (2.19) and using the functions with bounded variations in Eq. (2.26) to
express the affiliation vector.

The individual model structures of the FEM-BV-VARX are presented in the corresponding
Ch. 3, where the clustering approach is used for data analysis.

2.3 Parametrization of SDEs with an External Process

In this work, the formulation of turbulence closure is based on the determination of a functional
dependence from data between the parameters of an SDE and some arbitrary auxiliary process
u(t), which is predictable and operates on a time scale larger than the scale of the process X(t).
It is assumed that the process u(t) is known and related to the dynamics of X(t) in some way.
Otherwise, one must sequentially probe each candidate for the role of u(t). This section shows
that the classifier Γ∗(t) is a natural component for identifying functional relationships between
variables of different scales.

The classifier estimate Γ∗(t) found by the algorithm 1 is utilized to formulate a Lebesgue
integral. Then, it is shown that by conserving these integral values, one can account for a
possible mismatch of units, which would require a search for a functional relation between
some model parameters θ∗

k and u(t). Furthermore, it is shown that with an increasing number
of clusters, the resolution of the functional link between θ

∗
k and u(t) grows.

Let us denote the temporal space by T , the σ-algebra by F , which has the subsets Aj of
this space, and a measure µ which is defined on F . For the sake of simplicity and illustration,
consider only one function of the parameter vector Θ and denote it by θ : T → R. Moreover,
the auxiliary function u : T → R. To define the Lebesgue integral, consider the sets
{Aj : 1 ⩽ j ⩽ m} partitioning the space T such that. Aj ∩ Ai = ∅ for j ̸= i. Then the
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approximation reads:

I(θ) ≈
m∑

j=1
θ̃jµ(Aj) ≈

m∑
j=1

θ̃jµ(θ−1(Jj)) , (2.38)

where I(·) is the value of the integral calculated over an interval, θ̃j is the function value of θ
within the subpartition Jj , and the set Aj is the inverse image of the subpartition Jj . The
measure µ assigns a value to the quantity Aj . Increasing the number of partitions Jj improves
the approximation of the integral value. To calculate the values µ(Aj), it is necessary to define
the so-called indicator functions IAj : T → R,

IAj (t) =

1 if t ∈ Aj

0 otherwise
(2.39)

which describe the position of the set Aj in time.
Next, consider the estimated Γ∗(t), which by construction is a partition of unity and at the

same time a partition of space T . It is used to define the Lebesgue integral on the interval
[0, te]. In this context, the valuable property of Γ∗(t) is the grouping of sets Aj into K clusters.

{A(k)
j : 1 ⩽ j ⩽ mk ; 1 ⩽ k ⩽ K} , (2.40)

where index k denotes the group of sets identified as a cluster, index j denotes a set of the
cluster k, and mk is the maximum number of sets in cluster k. Using the estimated Γ∗(t), the
ordered partition of the space T is

{A(1)
1 , . . . , A(1)

m1 , A
(2)
1 , . . . , A(2)

m2 , . . . , . . . , . . . , A
(k)
1 , . . . , A(k)

mk
} k = 1, . . .K , (2.41)

such that A(k)
j ⊆ T , A(k)

j ∈ F and A
(k)
j ∩ A(p)

i = ∅ for j ̸= i and k ̸= p. To define the
nonoverlapping sets A(k)

j the Γ∗(t) is limited with a value cth ∈ (0, 1), leading to the definition
of the clustered indicator functions

I
A

(k)
j

(t) :=

1 if t ∈ A(k)
j ⇔ γk(t) > cth ,

0 otherwise .
(2.42)

The value of a Lebesgue integral is then expressed approximately as

∫
θ(t)µ(dt) ≈

K∑
k=1

mk∑
j=1

θ̃jµ(A(k)
j ) . (2.43)

It is important to note that the approximation accuracy is independent of the number of
clusters K since the corresponding sum only specifies an order in which the integral is composed.
However, the approximation quality depends on the estimate Γ∗(t) and thus on the division
of the space T . The uncertainty in γ(t), where it is < 1, indicates the deviations from the
averaged values of the clusters. For example, in transition regions between regimes or when
several clusters occupy the same period (violating the rule of non-overlapping sets in the
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2. Model-Based Nonstationary Time Series Modeling

definition of the Lebesgue integral). The threshold cth provides a way to select precisely
clustered sets Aj and reduce uncertainties.

The affiliation function enables the division of the Lebesgue integral into the individual
parts: ∫ te

0
θµ(dt) ≈

∫
A(1)

θµ(dt) +
∫

A(2)
θµ(dt), . . . ,

∫
A(k)

θµ(dt) k = 1, . . . ,K . (2.44)

Recall that the MLE (2.5) is an approximation to a time-series averaged θ
∗ and can also

be expressed as an integral. Algorithm 1 yields the decomposition of the integral value into
individual subsets with the help of the estimated affiliation function∫ te

0
θµ(dt) =

∑
k

∫
A(k) θµ(dt)∑

k

∫
A(k) µ(dt) =

∑
k

θ
∗
k k = 1, . . . ,K , (2.45)

where θ∗
k is the estimate obtained in solving the problem (2.25). To parameterize the time

dependence of θ by a deterministic process u it is demanded:∫ te

0
θµ(dt) !=

∫ te

0
uµ(dt) (2.46)

If the variables have units, at this point, the units on the left must correspond to the units on
the right. One should include problem-specific characteristic variables such as characteristic
lengths, times, or masses to resolve any unit specific inconsistencies. The trivial case is a
one-to-one relationship between the functions θ and u. In general, however, we consider
splitting the integrals and scaling the respective partial integrals by a factor sk to achieve
partial equality. The left-hand side in Eq. (2.46) is known by the estimated parameters (see
Eq. (2.25)) and given directly by algorithm 1. Accordingly, the right side is evaluated using
the vector Γ∗(t), which is used to construct the sets A(k):

θ
∗
1 + θ

∗
2+, . . . , θ∗

k = s1

∫
A(1) uµ(dt)∫
A(1) µ(dt) + s2

∫
A(2) uµ(dt)∫
A(2) µ(dt) +, . . . ,+sk

∫
A(k) uµ(dt)∫
A(k) µ(dt) k = 1, . . . ,K .

(2.47)
The quantities A(k) allow us to calculate the scaling factors sk since the corresponding

values on the left and right sides in Eq. (2.47) are known. Taking the limit over the number
of clusters k, one redefines the factors sk to a mapping S : u → θ, where u = 0 is excluded.
The rate at which the number of partitions Aj within a cluster k increases is larger than that
of the number of clusters. Or in other words, the convergence of the definition of Lebesgue
integral Eq. (2.38) must be significant to guarantee its convergence in the first place.

To construct a stochastic data-driven closure, consider performing the following procedures.
For simplicity, assume that we observe a slowly evolving, known process u(t) and a fast,
nonstationary, stochastic process X(t) described by some nonlinear SDE. Assume further
that we have expert knowledge, intuition, or a first principle approach that suggests that u(t)
controls the nonstationary process X(t) by modulating its model parameters. The approach to
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parameterization is as follows. First, one estimates the time-varying parameters of the SDE:

dX = f(X; Θ(t))dt+ g(X; Θ(t))dWt , X(t0) = X0 , (2.48)

Θ : [0, te]→ Rn , Θ(t) = [θ1(t), θ2(t), . . . , θn(t)] ∈ ΩΘ, (2.49)

using the clustering approach presented in Sec. 2.2.1, i.e., by solving the variation problem:

(Γ∗,Θ∗) ∈ arg min
Θ∈ΩΘ
Γ∈ΩΓ

Lϵ
N̂

(Γ,Θ, ϵ2) , (2.50)

where the number of clusters K ≥ 2. The functional Lϵ
N̂

is defined in Eq. (2.27).
Second, using Γ∗(t), we estimate the cluster-related values of the process u(t) by calculating

the weighted average:

uk =
∑N

i=1 u(ti)γk(ti)∑N
i=1 γk(ti)

, k = 1, . . . ,K . (2.51)

where uk denotes the averaged value of the auxiliary process u(t) in a cluster k. Recall that
γk(ti) is the affiliation function for cluster k (see Fig. 2.9a the color-coded regions). In the last
step, one performs regression analysis to parameterize the parameter variability with some
appropriate functions Sn that map the values of u(t) to θn(t):

Sn : uk → θk,n , θk = [θk,1, θk,2, . . . , θk,n], k = 1, . . . ,K n = 1, . . . ,m. (2.52)

The differentiability of the functions Sn is unconstrained. Parameterization is performed
separately for each element of the parameter vector Θ. The vector of scaling functions
S = [S1, S2, . . . , Sn] ∈ Rn defines the modulation of model parameters through a process u(t).
The complexity of the relationship depends on the application and should be investigated
individually for given problems. If all scaling functions could be retrieved, we obtain a
closed-form system to predict the process

dX = f(X; S(u(t)))dt+ g(X; S(u(t)))dWt , X(t0) = X0 , (2.53)

where u(t) is known for every t. The approach allows modeling of non-equilibrium processes
characterized by nonlinearity in f and g for those cases where the nonstationarity of the
process is challenging to understand. Figure 2.4 summarizes the idea of this concept. In
practice, it is assumed that the functional relationship between the process u(t) and the SDE’s
modulated parameters Θ(t) holds for the estimated range.

2.4 Estimation of Hyperparameters for the Clustering Frame-
work

Suitable model configuration includes the determination of the parameter ϵ2 that regulates
the smoothness of the affiliation vector, the determination of the number of clusters K, and
the selection of the functional forms f(·; ·) and g(·; ·). A variety of strategies with examples
are described in Horenko (2010a,b); Metzner et al. (2012), and are based on the Information
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Observations Model fit

K times SDE

PredictionParameterization

u(t)
u(t) u(t)

Approximation

Θ(t) = K const.
Θ1

Θ2

ΘK

Data

Parameters Auxiliary process
u

S(u)

Figure 2.4: The infographic shows a workflow for building a self-contained predictive model with
the FEM-H1-SDE method by regressing time-varying parameters on a deterministic process u(t).
The functional relationship S(u) is hidden and must be discovered a posteriori.

Criteria approaches. New methods that involve the selection of ϵ2 and K independently are
developed and tested next. The parameters are estimated independently from each other and
provide a robust estimation. The method of selecting the parameter ϵ2 takes into account the
frequency information of the auxiliary process and thus allows to establish a correspondence
between the parameters and the descriptive process u(t).

2.4.1 Optimal Regularization Parameter

Horenko (2010a) analyzed the influence of the parameter ϵ2 on the regularity of the cluster
affiliation function Γ∗(t). In summary, the optimal parameter ϵ2opt is characterized by a sharp
disjunction between the individual functions γk(t) so that the regime transitions are as short
as possible. Conversely, poor segmentation exists when two or more functions γk(t) occupy the
same period. Recall, the functions γk(t) obey the convexity condition (see Eqs. (2.21); (2.22))
and if they have the same time frame, it means that none of the model parameters fit the data
sufficiently well. Such results indicate that the number of clusters is overstated or that the
selected model structure is inappropriate for the data under consideration. Thus, a relevant
consideration in picking an appropriate value for ϵ2 is tracking the regularity of the affiliation
function Γ∗(t). Figure 2.5 shows a part of Γ∗(t) with K = 3 for a well-posed toy example.

To motivate the approach in searching for ϵ2opt, we consider Γ∗(t) for different parameter
values (see Figs. 2.5a, b, c). Consider the white regions between function values 0 and 1 which
are uncolored. The cumulative size of these regions is dissimilar in each of the panels and is
approximately the smallest at the value of ϵ2opt (panel b). If we consider the function Γ∗(t) to
be an oscillatory signal, then, to minimize the white area, we seek a Γ∗(t) with the largest
energy. One can easily calculate and plot the signal energy of the affiliation vector over ϵ2 and
find a maximum as follows.

Eγ(ϵ2) = 1
K

K∑
k=1

∫ te

0
γk(t, ϵ2)2dt , (2.54)

where γ2
k(t, ϵ2) denotes the solution of Eq. (2.27) for a given ϵ2 value. The maximum of the

curve Eγ(ϵ2) characterizes the optimal regularization value (see Fig. 2.6 color code value 0).
The current affiliation function used to generate the training data consists of clear transitions
and without any irregularities. In addition, the same SDE model is used for parameter
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Figure 2.5: Effect of the regularization value on the estimate of Γ∗(t). Each panel shows the same
time window but for different values of ϵ2. Panel a) shows weak regularization: the regime periods
are irregular and noisy. Their time scale is close to dt. Panel b) shows the optimal regularization
values: the γ1(t) and γ2(t) functions show a relatively sharp and clear separation. Panel c) shows
too strong regularization: the function γ2(t) is blurred and suppressed.

identification and training data generation. In other words, it’s a well-posed example. However,
when working with actual, unexplored data, we may, unfortunately, be unaware of the true
functional form of the SDE, or the data may exhibit measurement errors. This potentially
leads to a scenario where the functions γk(t) become indistinct and cause the curve Eγ(ϵ2) to
become less smooth and lose a pronounced maximum. To make the procedure more robust,
we investigate the frequency content of the vector Γ∗(t).

One way to emphasize the maximum of the curve Eγ(ϵ2) is to gradually eliminate the high-
frequency oscillations in Γ∗(t). The frequencies to be eliminated imply rapid state transitions.
Since the variability of the parameters would have to be tied to a slow scale, rapid state
transitions should be avoided.

Since the affiliation function takes step-like shapes in optimality, a multiresolution analysis
with wavelets is performed (Kumar & Foufoula-Georgiou, 1997; Mallat, 1999). The affiliation
vector is decomposed using the discrete wavelet transform to obtain C levels with C+1 frequency
bands. The function γk(t) is then expressed as the sum of the low-frequency component γA

k,C(t)
after C stages of transformations and the sum of the high-frequency components γD

k,c(t) over
the previous decomposition stages

γk(t) = γA
k,C(t) +

C∑
c=1

γD
k,c(t) . (2.55)

The Haar wavelet is chosen as the basis function for filtering. This wavelet accurately
represents the affiliation vector’s sharp jumps, especially when approaching the optimal
parameter value ϵ2opt. Using the orthogonality property of Haar wavelets, one substitutes
Eq. (2.55) into (2.54) and obtains

Eγ(ϵ2) = 1
K

K∑
k=1

∫ te

0

[
γA

k,C(t)
]2

dt+ 1
K

K∑
k=1

∫ te

0

[
C∑

c=1
γD

k,c(t)
]2

dt . (2.56)

The signal γk(t) is decomposed with the maximum possible number of levels C, depending
on the number of samples. The first term in Eq. (2.56) is the mean value of the entire time
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series and is irrelevant for the purpose. The property of local support of wavelets allows for
extracting out the sum sign from the integral,

Eγ(ϵ2) = 1
K

K∑
k=1

C∑
c=1

∫ ∞

−∞

[
γD

k,c(t)
]2

dt . (2.57)

To perform the filtering, the sample size of the vector γk(t) is expanded to the nearest value
2i using the reflect padding method, where i ∈ N+. The continuous integration is expressed in
a discrete form as a sum

Eγ(ϵ2) = 1
K

K∑
k=1

C∑
c=1

Cn∑
n=1

[
γD

k,c(n)
]2

∆t , (2.58)

where Cn denotes the number of coefficients at the decomposition level c. Due to the
efficient implementation of the multiresolution decomposition, the number of coefficients at
each level is reduced sequentially. With successive decomposition levels, the cutoff frequency
gets halved, and the energy of the resulting frequency bands can be canceled by setting the
corresponding filter coefficients to zero.

To magnify the optimum in the choice of the regularization parameter, the optimal cutoff
frequency can be estimated in several ways. A rational choice would be to place it at the scale
of the spectral gap between the process X(t) and u(t). A spectral gap exists when the smallest
scale of u(t) is larger than the largest scale of X(t). In this way, the scale of the process u(t)
limits the smallest possible scale of regime jumps in Θ(t).

The curve Eγ(ϵ2) naturally falls off at higher values of ϵ2 due to the over-smoothing of the
vector Γ∗(t). The shape of the smoother transitions differs from the sharper shape of the Haar
wavelet. Consequently, the wavelets stop registering energy at their respective scales. As a
result, the energy curves are plotted by successively removing the high frequencies and looking
for a maximum magnification without changing its position (see Fig. 2.6). The multiresolution
analysis is performed with the help of the Python library PyWavelets (Lee et al., 2019a).
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Figure 2.6: Estimation of the optimal regularization parameter ϵ2 by filtering the affiliation
function for a toy example with three predefined clusters. The y-axis is the cluster-averaged signal
energy of Γ∗(t) (see Eq. (2.58)). Subsequent removal of the high-frequency components from
the estimated affiliation vector highlights the maximum. This maximum indicates the optimal
parameter value. The color bar marks the number of detail coefficient levels removed with a
Discrete Wavelet Transform (DWT) (9 from the maximum 16). The zero (green line) marks the
unfiltered Γ∗(t).
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2.4.2 Optimal Number of Clusters

The approach to determine the optimal number of clusters Kopt follows the elbow method
applied in the K-means clustering approach (Yuan & Yang, 2019). The idea is to observe
an error measure for the clustering procedure over the number of clusters and look for a
characteristic ”kink” in the graph. The choice of error measure is therefore significant and
specific to the method used.

For example, a measure of compactness in K-Means clustering is defined as the sum of
Euclidean intra-cluster distances between points in a given cluster. In contrast, a different error
measure is used here because the SDE clustering method differentiates the temporal dynamics
of a time series within clusters rather than a distance in space. Two clusters can be highly
overlapping but different in terms of their induced stationary probability density functions.
Euclidean distance would be a poor choice in this case. Instead, the Kullback–Leibler
(KL) divergence is used, which is closely related to the stationary probability density of the
SDE (this is an assumption within each of the clusters):

KL(P ||Q) :=
∫
P (x) log

(
P (x)
Q(x)

)
dx . (2.59)

The KL divergence describes the information gain when switching from the distribution
with density P to the distribution with density Q. Here the P and Q denote the stationary
distributions of two different clusters classified, for example, by γ1(t) and γ2(t). The goal is
to quantify the difference between P and Q, or generally, the diversity between K stationary
distributions. The more diverse all found distributions are, the more appropriate is the number
of clusters. Because of the asymmetry of the KL divergence, the values of the opposite
divergences KL(Q||P ) are also taken into account.

Denote by p⋆
k the stationary distribution of an SDE with the estimated parameter set

θ
∗
k and the corresponding γk(t) for clusters k = 1, . . . ,K. Thus, for each cluster, we have a

different SDE model with a stationary distribution. As a measure, the weighted diversity
matrix dij ∈ RK×K is defined as

dij := KL(p⋆
i ||p⋆

j ) = νj

∫
p⋆

i log
(
p⋆

i

p⋆
j

)
dx ≥ 0 i, j = 1, . . . K , (2.60)

where νj are the weights calculated from the affiliation vector that quantify the relative
prevalence of cluster j:

νj =
∫ te

0
γj(t)dt , j = 1, . . .K . (2.61)

These weights are introduced for the following reason. By adding more clusters, the less
likely γj(t) is suppressed (see, e.g., Fig. 2.5c) and hardly reaches values equal to 1 or a cluster
has a short lifetime relative to the entire horizon te. These suppressed, less likely, inactive
regimes should therefore contain less diversity and compensate the measure. To find the
optimal number of clusters within a reasonable range 2 < K < Kmax, the diversity measure of
clustering with K clusters is defined:

WK =
K∑

i=1

K∑
j=1

dij , K = 2, 3, . . . ,Kmax , (2.62)
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where Kmax denotes the maximum of the considered clusters, assuming that 2 < Kopt < Kmax.
Reiterate that p⋆

k in Eq. (2.60) indicates the stationary distribution of the SDE model, which
is characterized by the parameter set θ

∗
k. Specifically, for the SDE model

dX = f(X; θ
∗
k))dt+ g(X; θ

∗
k))dW (t) , k = 1, . . . ,K , (2.63)

the invariant density p⋆
k is

p⋆
k(X) = Nc

g2(X; θ
∗
k)

exp
(∫ 2f(X; θ

∗
k)

g2(X; θ
∗
k)
dx

)
, k = 1, . . .K , (2.64)

where the normalization constant Nc is as follows

Nc
−1 =

∫ 1
g2(X; θ

∗
k)

exp
(∫ 2f(X; θ

∗
k)

g2(X; θ
∗
k)
dx

)
, k = 1, . . .K , (2.65)

provided all terms are well-defined (see Horsthemke (1984)[Ch. 6.1] for details).
In real-world applications, the increase in diversity WK may be prohibitively steady, making

the detection of Kopt difficult. A further extension of the elbow method to estimate Kopt is
applied.

Tibshirani et al. (2001) proposed to measure the increase in WK with respect to a so-called
zero reference distribution: a dataset with no apparent clustering pattern. In the work of
Tibshirani et al. (2001), the random distribution of points in two-dimensional space serves as
a null reference dataset suitable for clustering using the K-means method. Considering the
properties of the SDE clustering method used, the Wiener process with reflective boundaries
is chosen as the zero-reference time series. The optimal number of clusters is estimated as
the point at which the smallest distance between the measure of clustering diversity of the
analyzed data and the reference data is reached:

Gap(K) = E[log(W ∗
K)]− log(WK) , (2.66)

where W ∗
K denotes the diversity measure of the zero-reference dataset, and the expected value

E[log(W ∗
k )] is estimated by clustering B ≫ 1 different independent reference time series. The

boundaries for the reference Wiener process are limited to the domain of the analyzed process.
Sec. 2.6 demonstrates the application of the presented approach on controlled numerical
examples.

2.5 Implementation

Algorithm 1 is implemented in the C++ programming language. The core components of the
FEM framework, namely: the spectral projected gradient method for quadratic programming,
the FEM reduction and interpolation procedures, and the initial gamma generation procedure,
are reimplemented from Matlab code created by Pospisil et al. (2018).

For the solution of the theta problem (see algorithm 1 line 9), the nonlinear optimization
package NLopt (G. Johnson, 2021) is used. This interface is convenient and contains many
global and local optimization algorithms that can be probed by changing a single parameter.
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By testing different methods, a combination of Controlled Random Search with local mutation
(Price, 1977, 1983) and the gradient-free local optimization ”PRAXIS” via the ”Principal-Axis-
Method” (Richard P, 2013) proved to be the most resilient.

The code is accelerated on the GPU with the CUDA library cuSPARSE, Thrust, and
requires CUDA version 10.2. The transition density is reimplemented from a Maple code
written by Sebastian Krumscheid into the Matlab symbolic toolbox to automate export into a
C++ executable function. The Thrust template library allowed the machine-generated code
of the transition density pX (see Eq. (2.14)) to be incorporated into the main program flow,
allowing testing of various model structures.

2.6 Numerical Studies

The numerical study is composed of three examples with different complexity. The following
auxiliary process u(t) is stochastic with a smooth sampling path and with adequate scale
separation to X(t). However, when working with data obtained from real applications, the
process u(t) may instead represent a characteristic quantity of a larger dynamical system.

The numerical examples involve the stepwise generation of a synthetic time series X(t)
and identifying the underlying functional relationship between the parameters of a predefined
SDE and a process u(t). It is assumed that the process u(t) is available at each time point
and serves as a predictor for the parameter vector Θ(t).

To create the synthetic dataset X(t) for testing, the process u(t) is used together with the
functions Sn(u) to generate the evolution of the parameter vector Θ(t). Then the sample path
X(t) is modeled with the predefined SDE and Θ(t). The time series X(t) forms the dataset of
test observations from which the functions Sn(u) are recovered and compared to the function
applied in the generation step.

A stochastic dynamic system is used to define an auxiliary process that maintains
the required scale separation between X(t) and Θ(t). Following the same principle, a
realization of the auxiliary process u(t) is constructed for all examples. A four-dimensional
Ornstein–Uhlenbeck (OU) process is used by augmenting its parameters with the normalized
Butterworth polynomial coefficients

dU = − 1
Tc

ADUdt+ BdW (t) , U = [u(t), u1(t), u2(t), u3(t)] , (2.67)

where Tc > 0 controls the cutoff frequency, B > 0 is the diffusion coefficient. The auxiliary
process u(t) is then the first component of the vector U(t). The diffusion matrix B is almost
everywhere zero, and together with the drift matrix AD takes the following form:

AD =


0 1 0 0
0 0 1 0
0 0 0 1
a0 a1 a2 a3

 , B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 b0

 . (2.68)

The coefficients in the matrix AD are: [a0, a1, a2, a3] ≈ [1, 2.61, 3.41, 2.61]; b0 = 1. The effect
of the coefficients in AD is the smoothing of the first component of the vector U , which
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corresponds to filtering. The matrix AD is constructed based on the filter design theory. The
drift term in Eq. (2.67) acts like a filter on the diffusion process, which acts as an input signal.

Consider that the process u(t) can also be generated differently. One solves a one-
dimensional OU process and then processes the result with a linear filter by fixing the
cutoff frequency Tc. The filtering step gives us a sufficiently smooth time series. Alternatively,
one could specify a power spectrum density in the frequency domain and then transform it
into physical space using the inverse Fourier transform. The above approach is favorite
and straightforward because we simultaneously solve u(t) and X(t) and control the time step.
However, an analytical solution, which also exists, would be the most elegant approach.

2.6.1 Nonstationary Ornstein–Uhlenbeck Process

We begin the numerical analysis with a trivial case where the sample path X(t) is modeled by
an SDE with a linear drift term and additive noise. Let us consider the OU process of the
following form:

dX = (θ1(t)− θ2(t)X)dt+ θ3(t)dW (t) , X(t0) = 0 , (2.69)

in this case, the analytical expression for the transition density pX(·, ·) is known. Nevertheless,
the approximation with the Hermite expansion is applied to test the implementation of
the clustering framework. Figure 2.7a shows a realization of the sample path for process
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Figure 2.7: The summary of the functions to generate the nonstationary training data X(t)
according to Eq. 2.69. a) The sampling path of the process X(t). b) The temporal evolution
of the model parameters. c) The parameter auxiliary process u(t). d) The scaling functions
θn(t) = Sn(u(t)).

X(t). The SDE 2.69 is simultaneously implemented with the Eq. 2.67 and solved using the
Euler–Maruyama method. The discretization time step ∆t = 0.1. The resulting time series
has 16384 grid points and is a small size dataset. During simulation, the time step between
each 16384 samples is further reduced to a value of 10−6 to increase accuracy. The scaling
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functions are defined as follows (see Fig. 2.7d)

θ1(t) := S1(u) = 2u(t) , (2.70)

θ2(t) := S2(u) =
[
(u(t)− 1)4 + 0.1

]−1
, (2.71)

θ3(t) := S3(u) = (u(t)− 1)2 + 0.1 . (2.72)

The evolution of the vector Θ(t) (see Fig. 2.7b) and its functional relationship with the process
u(t) is hidden and unknown in real applications. The following demonstrates how to apply the
FEM-H1-SDE method to find the scaling functions Sn when the discrete values of X(t) and
u(t) are known.

One starts by estimating the hyperparameter values K and ϵ2 by going through the
optimization problem for each parameter combination. In this example, the following intervals
for K = (2, 10) and ϵ2 = (10−1, 102) are selected, the latter having 100 subdivisions on the
logarithmic scale. Theoretically, for any parameter combination (K, ϵ2), the optimization
procedure can be launched with a random initial guess Θ0 and Γ0(t). In practice, however, it
is efficient to use the optimal values from the previous run in the following way.

1. Choose a value for K

2. Start the first optimization run with the smallest or the largest value of ϵ20 together with
a random estimate for Θ0 and Γ0(t)

3. Algorithm 1 converges to a solution Θ∗
1 and Γ∗

1

4. Change the parameter value ϵ2 to the next closest value ϵ21

5. Start the optimization procedure with ϵ21 and the solution from the previous run: Θ∗
1

and Γ∗
1

6. Algorithm 1 converges to the solution Θ∗
2 and Γ∗

2

7. Solve the variational problem for all considered ϵ2 by changing its value progressively

8. Change the value of K and repeat the procedure

The approach where the initial estimation is random requires more computational time overall
than with reusable solutions. By plotting the signal energy of the affiliation vector against
the parameter ϵ2, we estimate the optimal value ϵ2opt for each value of K separately (see for
K = 6 Fig. 2.8c). According to Fig. 2.8c, the maximum energy is found at a value ϵ2opt = 20,
indicating the clearest separation of the regimes. As shown in Sec. 2.4.1, the maximum in
the curve Eγ can be further emphasized by suppressing the high frequencies in the vector
Γ∗(t). This is highlighted in Fig. 2.8c, where the index 0 represents the unfiltered result. Each
additional integer denotes the continuous reduction of the frequency content by a factor of two.
We note that the frequency suppression shows the desired effect but is unnecessary in this
example. In addition, the affiliation function was examined for each value of ϵ2 (not shown),
and it was found to have relatively small differences in its value for a wide range of the ϵ2 value.
This indicates a robust estimate and may be attributed to the simplicity of the example.
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Figure 2.8: Estimating number of clusters for the nonstationary OU example. Panel a) shows
that for K > 6, the diversity of the training data increases at approximately the same rate as in the
reference data sets. Panel b) shows the distance between the two curves in panel a). This suggests
an optimal K value of 6. (c) The estimate of the regularization parameter ϵ2 for clustering with
K = 6. The color bar encodes the successive suppression of the high-frequency bands to highlight
the maximum. The effect is minimal, and filtering is unnecessary in this example.

The procedure for estimating the optimal Kopt requires more effort than ϵ2opt. Section 2.4.2
introduced the diversity measure to quantify the incremental information gain with each
additional cluster. Figure 2.8a shows the graph of this measure (blue) for the training data
X(t) and the reference data (green). According to the original approach, the reference dataset
must be constructed to have no evident clustering. It is recalled that for this purpose, we chose
the constrained Wiener process. The boundaries are set to the boundaries of the analyzed
time series (see Fig. 2.7a) so that the Wiener process is reflected at these boundaries. This
reference process is generated B times with the same time step used in the identification step.
Clustering is repeated for each of these data sets with the value ϵ2 = 20 for the entire range of
K values. The purpose is to leave all the parameters of the framework unchanged and replace
only the data set. The whole procedure is computationally intensive, as we must repeat the
clustering B times to determine the expected value. The resulting graph of the information
gain for clustering the reference time series is shown in Figure 2.8a (green). The important
consideration is the rate at which the information gain occurs when clustering the analyzed
data compared to the rate at which the reference time series is clustered.

Figure 2.8b shows the distance between the two cluster curves. A reasonable choice is
Kopt = 6 since the curve of the analyzed data does not approach the reference curve after
that, which means that the model diversity does not increase significantly with respect to the
bounded Wiener process. The expected value is formed based on 10 reference datasets. This
number is increased in the following examples to obtain a better estimate.

The following paragraph explains the details of the internal parameters of the clustering
framework. The minimization algorithm for the gamma solver has two termination criteria,
which are as follows. The maximum number of iterations is set to 100, and the minimum
difference between successive cost function values is 10−8. The reduction value for the gamma
solver accelerates the QP problem and is set to 1/3. In the theta solver, the global optimizer is
a random search algorithm complemented by a local search algorithm. For both, the maximum
number of calls is set to 300, and the termination tolerance is 10−10. The population size
of the global optimizer is set to 3000. The final point to mention is the parameter bounds
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for the theta solver. In this example (and for clustering the reference dataset), they are
−20 < θ1 < 20; 0 < θ2 < 20; 0 < θ3 < 20. Finally, the results are discussed.

Figure 2.9a shows Γ∗(t) obtained after clustering the time series X(t) with K = 6 (see
Fig. 2.7a). The result is considered valid since a high value of γ(t) is observed almost at every
time instant. In Fig. 2.9b, the affiliation function is used to label the training data. Although
the sample path of X(t) at t ≈ 500 appears to be similar to the sample path at t ≈ 1200, the
method distinguishes a change in the parameters of the SDE. It divides these times into two
different clusters correctly.

In Figure 2.9c, the affiliation function is used to classify the auxiliary process u(t). The
duration of the regime occupation changes between clusters. It can be seen to be related to
the rate of change of the auxiliary process. If this process changes rapidly, the occupation
duration is short, and the process is nearly constant; the regime occupation is long.
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Figure 2.9: Result of clustering the nonstationary OU example in Fig. 2.7. a) The affiliation
function found when solving the variational problem (2.27) with K = 6 and ϵ2 = 57. b) The
classified time series X(t). c) The classified auxiliary process u(t). The color bar indicates the six
different regimes.

One averages the classified auxiliary process (see Fig. 2.9c) to estimate the scaling functions
and plots the values versus the estimated parameters for each cluster, respectively, using the
weighted-average approach. Figure 2.10 shows the estimated parameter values obtained with
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Figure 2.10: The estimated parameters are plotted over the cluster-averaged auxiliary process.
The model identification is performed with an optimal number of clusters, corresponding to six.
The color bar shows the different clusters as in Fig. 2.9. The dots represent the estimated parameter
values. The dashed line shows the actual scaling functions used in generating the training data.

six clusters. The corresponding six points are sufficient to estimate the hidden scaling functions.
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When working with unexplored data, the scaling functions would need to be parameterized
using the scatter plots. This step is left out here because the estimated parameters agree well
with the true functions. The largest error in this example is found for the parameter θ2 in the
cluster k = 3. This error can be explained because this cluster has the largest variability of
u(t). Please note the classified periods of u(t) for k = 3 in Fig. 2.9c. One way to improve the
results would be to consider more sample points and repeat the clustering with more clusters.

2.6.2 SDE with Two Independent Auxiliary Processes

In this example, an SDE with nonlinear drift and a multiplicative noise term is considered. In
addition, this example aims to show that the clustering method can handle the modulation by
two independent parameters with different time scales. The following functional form of the
SDE is investigated:

dX = (2− θ1(t)X − log(X2))dt+ θ2(t)XdW (t) , X(t0) = 1 , (2.73)

The relationship between the parameters and the auxiliary processes u(t) and v(t) is

θ1(t) := S1(u) = (u(t) + 1)4 + 0.1 , (2.74)

θ2(t) := S2(v) = −2v(t) + 2 , (2.75)

The only difference between u(t) and v(t) is that their cutoff scale is Tc,v = 4Tc,u (see Eq. (2.67)).
The task is to recover the scaling functions given only one realization of X(t), u(t) and v(t).
The sample size of the time series X(t) is 131072 points, which is larger than in the example
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Figure 2.11: Training data for nonstationary and nonlinear SDE where two parameters are
modulated by two independent processes with non-overlapping time scales. a) The sampling path of
the process X(t). b) The temporal evolution of the model parameters. c) The parameter auxiliary
processes u(t) and v(t). d) The parameter scaling functions θn(t) = Sn.

with the OU process (see Sec. 2.6.1). This helps the methodology to distinguish the unique
parameter pairs. (The processes u(t) and v(t) are uncorrelated, and the re-occurrence of the
unique parameter pairs in the sample path X(t) is not guaranteed. This makes identification
of the scaling functions difficult. To mitigate this problem, one must increase the number of
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clusters to improve the resolution of the scaling functions. Increasing the number of clusters
reduces the number of samples available to estimate the parameter values within a cluster.

Consequently, the sample size of the entire time series X(t) must also be increased to
maintain the accuracy of the parameter estimates. It is essential to consider the dimensions
of the parameter vector and the vector of auxiliary processes since there may be a limited
number of data points to resolve the dependencies. One can deliberately fix one of the model
parameters to compensate for overparameterization.
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Figure 2.12: Estimation of the number of clusters for the sample with two auxiliary processes (see
Fig. 2.11 and Eq. 2.73) using the gap statistics approach in a) and b). In panel a), the diversity of
the training data increases at the same rate as in the reference datasets after K = 10. This suggests
that the optimal K value is around 10. (c) The estimation of the regularization parameter ϵ2 for
clustering with K = 10. The color-coding shows the subsequent suppression of the high-frequency
bands to accentuate the maximum. The filtering is not necessary in this example.

Figure 2.11a shows the example path of the SDE (2.73) along with the auxiliary processes
u(t) and v(t) (see Fig. 2.11c) used to generate Θ(t) = [θ1(t), θ2(t)] (see Fig. 2.11b). The scaling
functions are shown in Fig. 2.11d.

The selection of the hyperparameters Kopt and ϵ2opt is performed in the same way described
in the OU process example (see Sec. 2.6.1). The corresponding graphs are shown in Fig. 2.12.

The choice of Kopt requires some clarification. The diversity measure of clustering for
process X(t) and the reference dataset is shown for comparison in Fig. 2.12a. The peak in
the evolution of diversity in the clustering of the dataset X(t) is reached approximately at
Kopt = 10. Plotting the distance between the two curves, we find that for K > 10, clustering
does not add significantly more new information than clustering the bounded Wiener process.
Selecting ϵ2opt for this example is characterized by a flat maximum (see Fig. 2.12c).

The optimal classifier Γ∗(t) and the partitioning of the auxiliary processes are shown in
Fig. 2.13, where the clustering quality can be examined. Figure 2.14 shows the estimated
parameters and the true scaling functions. Visually inspecting these results, we find a
consistent spread of estimates for the θ2 parameter, but the estimates for the θ1 parameter are
disproportionately distributed. For the estimates of θ2, it is noticeable that three parameters
appear to have been estimated twice and reside close to each other. However, the respective
cluster values for the parameter θ1 scatter apart, so that the scaling function is sampled at
significantly different points. This means that the methodology in this example distinguishes
pairs of parameters that have a single common element. The methodology classifies SDE with
at least two uncorrelated auxiliary processes.
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Figure 2.13: The result of clustering the example time series shown in Fig.2.11. a) The affiliation
function found when solving the variational problem (2.27) with K = 10 and ϵ2 = 30. b) The
classified auxiliary process u(t). c) The classified auxiliary process v(t). The figure shows 1\3 of
the training dataset.
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Figure 2.14: The estimated parameters are plotted against the cluster-averaged auxiliary processes
values. Model identification is performed with an optimal number of clusters, which is ten. The
color bar indicates the different clusters, as in Fig. 2.9. The dots represent the estimated parameter
values, and the dashed line shows the true scaling functions used in generating the training data.

2.6.3 SDE with Nonlinear Drift and Nonlinear Diffusion

In this example, we study an SDE with nonlinear drift and nonlinear diffusion. For simplicity,
we consider only one auxiliary process u(t) and two parameters: one in the drift term and one
in the diffusion term. The functional form of the SDE is

dX = (θ1(t)X −X3)dt+ θ2(t)
√

1 +X2dW (t) , X(t0) = 0 . (2.76)

It is possible to include other parameters in the model structure, for example, before the
quadratic or the cubic term. The system’s time-dependent bifurcation parameter θ1(t) causes
a continuous variation of the metastability in time. The goal is to show that the clustering
method can capture transitions in the underlying dipole potential coming from the cubic
nonlinearity of an SDE. The relationship between the parameters and the auxiliary processes is

θ1(t) ≡ S1(U1) := −0.4(U1(t)− 1)2 + 2.5 , (2.77)

θ2(t) ≡ S2(U1) := −4U1(t) + 5 . (2.78)

54



2.6 Numerical Studies

As in the previous examples, the task is to determine the scaling functions when knowing
only one realization of the process X(t) and u(t). In this section, the details of the simulation
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Figure 2.15: The example of a non-stationary process associated with Eq. (2.76). a) The sample
path of X(t). b) The time evolution of the model parameters. c) The parameter auxiliary process
u(t). d) The scaling functions Sn(u(t)) = θn(t).

of the sample path X(t) are described (see Fig. 2.15), which forms the training data for the
clustering test. The time series X(t) has 65536 samples and a constant time step ∆t = 0.01.
The sample path is obtained by solving Eq. (2.76) with the Milstein method, and the sample
path of u(t) is obtained by solving Eq. (2.67) with the Euler–Maruyama method. During
the simulation, the time step between each 65536 samples is reduced to a value of 10−4 to
obtain a more accurate representation of the sample path. The initial value for Eq. (2.76) is
set to X(t0) = 0, and for Eq. (2.67) - to U(t0) = [1, 0, 0, 0]. The parameters in Eq. (2.67) have
the following values: Tc = 15; b0 = 0.2.
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Figure 2.16: Estimating the number of clusters for the example associated with Eq. 2.76 (see
Fig. 2.15) using the gap statistics approach a) (see Eq. (2.62)) and b) (see Eq. (2.66)). In panel a),
it can be seen that after K = 4, the diversity of the zero-reference dataset increases at a constant
rate. b) The gap statistic shows Kopt = 4. c) The estimate of the regularization parameter ϵ2 for
clustering with K = 5. The color bar encodes the successive suppression of the high-frequency
bands to highlight the maximum.

In this example, the estimation of Kopt does non provide a clear result as in the previous
examples. However, it is still beneficial to analyze the tendencies of the curves in Figure 2.16a,
b.
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The goal is to recover the scaling functions, and in the case of a nonlinear scaling, one
would like to have more than two points and thus more clusters. According to the second
minimum in Fig. 2.16b, the second-best choice is Kopt = 4. Examining the curve log(Wk) in
Fig. 2.16a, we find a small characteristic change in slope at Kopt = 4. To resolve the scaling
functions, Kopt = 5 is selected for further analysis.

The following paragraph provides details on the parameters of the clustering framework.
In this example, the maximum number of iterations is set to 100, and the minimum difference
in successive evaluations of the cost function is set to 10−8. The reduction value for the
gamma solver is set to 0.1. A global optimizer is a random search algorithm with an additional
gradient-free local search algorithm for the theta solver. For both, the maximum number of
calls is set to 500, and the termination tolerance is set to 10−10. The population size of the
global optimizer is set to 1000. The bounds for the parameter limits of the theta solver (and
for the clustering of the reference dataset) are −10 < θ1 < 10; 0 < θ2 < 10.
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Figure 2.17: The clustered time series is generated using the Eq. 2.76. In a) and b), the colored
background is the estimated affiliation vector for Γ(t) > 0.8. The color bar on the right side of the
panels encodes the corresponding 5 clusters. a) The temporal evolution (black) of the diffusion
parameter and its recovered version (red). The second parameter looks similar and is not shown.
b) The simulation of the example path with the estimated parameter values compared to the
training data. Panels c) to g) show the cluster-related Probability Density Functions (PDFs): the
histograms for the training (black) and the simulation (red). The blue lines mark the steady-state
PDFs calculated from the parameter estimates. The colored circles mark the corresponding clusters.

Discussion of a solution for Kopt = 5 will follow next (see Fig. 2.17). Knowing the affiliation
function and the averaged values of the parameters, the time evolution of the model parameters
(see Fig. 2.17a) is approximated by

θ∗(t) ≈
Kopt∑
k=1

θ
∗
kγk(t) , (2.79)

where θ∗
k is a constant vector of length N . Figure 2.18a shows that the methodology reproduces

the hidden evolution of the parameters quite well. The approximation gets better as more
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clusters are used (not shown). The drawback is that the uncertainty in θ
∗ increases with the

number of clusters.
The approximated path of the model parameters (see Fig. 2.17a in red) is used to simulate

the in-sample prediction (see Fig. 2.17b in red). In this figure, the time series of the training
dataset is shifted up by 10 for better comparison. The SDE under consideration exhibits a
temporal modulation of the bifurcation. It is expected that the times with two metastable
states have different sampling paths since the local state of the system depends on the particular
realization of the Wiener process. Two distinct Wiener processes were used to generate the
training and simulation solution.

Figure 2.17b confirms the correctly captured signal dynamics. The corresponding cluster
characteristics agree well with the features of the training data and with the respective
stationary distributions computed from the parameter estimates. The cluster with index 1
shows the largest discrepancy (see Fig. 2.17c). This cluster has a life span that is too brief
to capture the regime jump in the current realization. However, the stationary distribution
calculated from the estimated parameter values shows the correct two-mode distribution (see
Fig. 2.17c).

Figure 2.17 demonstrates the performance of the model within the training data. To
construct a self-contained, nonstationary predictive model, it is shown that the scaling functions
between the auxiliary process u(t) and the parameters are also recovered (see Fig. 2.18). The
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Figure 2.18: The estimated parameters are plotted against the cluster-averaged auxiliary process
for various clusters. The dots represent the estimated parameter values, and the dashed line
shows the actual scaling functions used in generating the training data. The number of clusters is
irrelevant since all solutions are valid.

accuracy of the clustering method is sufficient to obtain the correct parameter values for a
wide range of clusters. It should be noted that the optimal number of clusters is of secondary
importance. The number of clusters should be as low as possible and high enough to identify
the scaling function. Once the figures have been obtained as Fig. 2.18, the final step is to
perform a regression analysis to parameterize the scaling behavior. This step is omitted here
as it will be specific to each application.

2.7 Discussion and Conclusion

Data-driven modeling techniques can advance the understanding of complex dynamical systems
by revealing underlying patterns or hidden rules. A particular challenge is the identification
and parameterization of nonlinear and nonstationary SDEs. System identification aims to
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determine a model structure and estimate the appropriate model parameters from the data.
After its completion, one can analyze the newly estimated model to better understand the
process and derive hidden relationships. Pure classification may not explicitly reflect these
relationships, so uncovering them will require additional research. For example, in Vercauteren
et al. (2016), the influence of non-turbulent motions on turbulence was studied after applying
a model-based data clustering method (Vercauteren & Klein, 2015). In a study of the North
Atlantic Oscillation in the climate system, Quinn et al. (2021) used clustering results to study
dynamical processes associated with atmospheric regime transitions.

The approach presented in Sec. 2.2.1 subdivides the time series into segments and models
each with an individual, locally stationary SDE. Such a decomposition of a complex dynamic
behavior may not be optimal since it is not always clear how to distinguish between a nonlinear
and nonstationary time series without knowing the underlying structure of the data generating
process. Defining a suitable model structure is, therefore, an important step. Billings (2013)
has developed an estimation algorithm for discrete-time systems that can sequentially evaluate
and collect important model terms. Following this idea, Wei et al. (2004) found an effective
model for a highly nonlinear dynamical system in the terrestrial magnetosphere. In their
framework, the time-varying parameters can be estimated using a multi-wavelet (Wei et al.,
2010) or a sliding window approach (Li et al., 2016). In comparison, variational clustering
optimally estimates all positions and time window lengths to find the locally optimal parameter
values. As shown in Fig. 2.17, the variability of the time window is essential and is associated
with the rate of change of the auxiliary process.

Section 2.2.1 illustrates the theory of the variational clustering framework, which allows
simultaneous analysis and modeling of a nonstationary time series. A framework variant
(Horenko, 2010b) is based on discretized mathematical models is also briefly discussed in
Sec. 2.2.2. To integrate an identified discrete-time model into an existing continuous-time
system such as a RANS turbulence closure, one must consider the discretization operation.
Otherwise, the solution is limited to the sampling frequency imposed by the data. One
way to overcome this problem is to preserve the frequency response of the identified model
during the transformation from a discrete system to a continuous analog system (Kuznetsov &
Clarke, 1994). This transformation is widely applied in linear systems theory and can also
be generalized to nonlinear systems (Billings, 2013)[p. 342]. The approach developed in this
chapter avoids the difficulty because the MLE used is derived from a reasonable likelihood
(fitness) function for the discrete-time observations of a continuous-type SDE.

In general, the main challenge in applying the MLE is the lack of a transition density
function, which requires, for example, a solution of the Fokker–Planck Equation for a
considered structure of the SDE. In particular, for nonlinear SDE, this function is not known
analytically and requires estimation (Fuchs, 2013). In this work, dividing the available time
series into K clusters reduces the number of available samples for estimation, leading to
uncertain estimates in each cluster. The closed-form approximation based on the Hermite
expansion provides an accurate approximation for the transition density, with O(∆t4) (Aït-
Sahalia, 2002). This accuracy makes it possible to increase the number of clusters and
improve the resolution of the hidden scaling functions, allowing accurate parameterization (see
Fig. 2.18).
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This work combines the closed-form likelihood function approach based on appropriate
Hermite expansion with the nonparametric clustering framework. In particular, the necessary
modifications to the original subspace clustering algorithm are developed to obtain accurate
estimates of the model parameters independent of the discretization of the QP problem. In
addition, an extensive numerical study validates with three controlled examples of varying
complexity both the parameterization methodology and the novel methods for estimating the
framework’s hyperparameters.

In particular, the approach to estimate the optimal number of clusters is based on measuring
the degree of model diversity and comparing it to the clustering of the reflected reference
Wiener process. The numerical experiments confirm that this approach provides sufficiently
reliable estimates. However, the associated graphs turn out to depend on the model structure
under consideration so that the decision requires a case-specific interpretation. The proposed
method is still very computationally intensive, as the clustering of the reference dataset must
be repeated several times to obtain a statistical measures.

The method for determining the optimal regularization value of the affiliation function is
shown to be robust for the test cases studied. The method is extended by filtering out the
small-scale variability from the affiliation vector to articulate the optimum. This method has
been successfully tested on a real-world data application and proven effective (see Ch. 4).

In summary, the data-driven approach of variational clustering enables modeling nonlinear
and nonstationary processes to develop models for dynamical systems with multiple scales. The
model structure of the SDE is unknown and must be specified or derived in a complementary
way. The method is accurate and provides good results on small datasets consisting of
2× 104 points. It is also scalable on the GPU, as implemented in this work. A dataset with
3× 106 points were also tested, where the computation time on a GeForce 1080 was about
24 hours. The numerical examples demonstrate the correct identification of the required
scaling functions, which allows the parameterization of a considered SDE by relating additional
auxiliary processes to the model parameters.

This work focuses on one-dimensional time series; however, it is possible to extend the
approach to a multidimensional case. One could alternatively use the closed-form likelihood
expansion for multivariate diffusion (Aït-Sahalia, 2008). A modification of the variational
clustering method is unnecessary for this purpose. In practice, however, overparameterization
problems can arise because the cross-dimensional interaction terms and their temporal
variability contribute to poorly constrained systems. One way to mitigate this is to enforce
diagonally sparse diffusion and drift matrices, as demonstrated by O’Kane et al. (2017) in a
similar application.

Another research direction is the study of multidimensional or even spatial problems.
Then it is convenient to replace the MLE with an ensemble Kalman inversion procedure
(Albers et al., 2019). The variation clustering framework is also generalized to classify spatial
parameter variability (Kaiser, 2015, p. 81). Pospisil et al. (2018) implemented this approach
in the openly available code linked in their work. The proposed methods appear promising;
however, as the dimension increases, it becomes increasingly important to estimate the correct
model terms rather than the parameter values.
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2. Model-Based Nonstationary Time Series Modeling

Another direction for future research is to extend the nonstationary data-driven learning
approach developed in this work to SDE models with (at least) two widely separated time scales,
for which the MLE is known to be asymptotically biased. The proposed methodology must be
combined with robust multiscale inference techniques (Kalliadasis et al., 2015; Krumscheid,
2018; Krumscheid et al., 2013). The approach presented here provides an ideal framework
for deriving subgrid-scale models modulated by resolved variables. The application of the
methodology is presented in Ch. 4
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3
Nonstationary Analysis of the Stable

Boundary Layer

Any attempt to divide the stable boundary layer into a few classes or states, as in
this study, is an oversimplification.

—Larry Mahrt, Stratified Atmospheric Boundary Layers (1999)

In the previous chapter, the model-based variational clustering methods were introduced
and explained. One of them is the discrete-time model-based clustering method FEM-BV-
VARX, which is applied in the following to study the nonstationary SBL in terms of a few
dynamical states characterized by distinct interactions between non-turbulent and turbulent
scales. The modeling assumption is that the nonstationarity of the SBL is encoded by the
time variation of some specific model parameters (see Ch. 2). Two model structures for
statistical clustering framework are proposed, guided by some physical considerations. The
model structure is guided by the hypothesis that turbulence is partially modulated by wave-like
fluid motions leading to localized shear generation. Moreover, the analysis focuses on the
post-processing of the classified regimes of the SBL. In addition, the predictive capabilities
of the models are also covered. The models developed in this chapter are not suitable for
constructing RANS closures because they are of discrete type. However, the next chapter
describes how a data-driven and modular stochastic extension for the RANS turbulence closure
can be constructed from the eddy-correlation data using a continuous-type clustering approach
(see Ch. 4). The exploratory data analysis and modeling experience in this chapter serves as
the groundwork for this.

The FLOSS2 dataset is examined by improving the discrete-time model structure gradually.
Since two different model structures are tested, the chapter is divided into two corresponding
sections, reporting on data processing, evaluation, and post-processing for each model. In the
first part (Sec. 3.2), a model structure following Vercauteren & Klein (2015) is used, with the
new contribution being that the dataset is different. In addition, the methodological approach
is slightly adapted from the study of Vercauteren & Klein (2015). After revising the model
used in Sec. 3.2, an improved model structure is proposed in Sec. 3.3, which aims to investigate
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the relevance of velocity gradients at the sub-mesoscale in the generation of intermittent
turbulence. The subsequently introduced diagram and cluster analysis in Sec. 3.3.7 confirm
and explain the contribution of the sub-mesoscale motions within an SBL to the intermittent
state of turbulence.

3.1 Fluxes Over Snow Surfaces II Dataset

The dataset consists of high-resolution eddy correlation data collected during the (FLOSS2)
field program. This experiment was conducted from 20 November 2002 to 4 April 2003. The
SBL eventually evolves during the night, with the most stable condition occurring before
sunrise. It is, therefore, preferable to measure in winter to increase the number of observations
of the stable regimes. The dataset is officially available and can be accessed through the Earth
Observing Laboratory (EOL data, 1999).

The experimental site is privileged for the study of SBL. The site is locally flat with variable
bush height from 0.2 m to 0.5 m (Mahrt & Vickers, 2005) (see Fig. 3.1a) and is located in the
North Park region of Colorado, near Walden. During the field campaign, a thin layer of snow
covered the ground for about 20 days. This resulted in measurements where the entire day
was in stable condition, and thus such records are of particular interest for this work. A flat
surface is important for studying scale interactions because it eliminates the flow complexity
induced by the terrain.

Seven sonic anemometers (Campbell CSAT3) recorded three wind velocity components
and temperature at heights of 1, 2, 5, 10, 15, 20, and 30 m. The instruments were attached
to a rigid truss tower that allows air masses to pass through (see Fig. 3.1b). The permeable
yet rigid structure of the tower is important because otherwise, an impermeable or flexible
body would induce large flow structures that would contaminate the signal of atmospheric
turbulence. The natural turbulence structures are of particular interest. The dataset was
quality controlled following Vickers & Mahrt (1997) and carefully prepared for clustering by
the author.

When working with temperature data, one must be aware of uncorrected bias. The bias
manifests itself in the deviation from the averaged temperature variables due to the influence of
humidity on the sonic anemometers. In a personal communication, Danijel Belušić suggested
an approximate correction:

Tbias = [0,−0.2991, 0.0897,−0.1781,−0.0155,−0.0951,−0.1026][T] , (3.1)

where the first value in the series corresponds to the lowest measurement height. The correction
is determined by the method of deviations from the expected constant potential temperature
profile at near-neutral conditions. Alternatively, if humidity measurements are available, one
can correct for the sensible heat flux following (Foken, 2017, Section 4.2.3.5). This work focuses
mainly on modeling turbulent momentum transport, so the turbulent heat flux is of secondary
importance. However, for a SBL, the mentioned errors are of minor importance (Mahrt, 2011).
Despite the temperature bias, the excellent quality and continuity of the dataset are reported,
which is essential for the data analysis methods applied.
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(a) The surface properties (b) The measure-
ment tower

Figure 3.1: (a) The site of the FLOSS2 experiment. (b) The 30 m high measurement tower with
seven mounted sonic anemometers. ©2021 UCAR.

3.2 Classifying Vertical Turbulent Velocity Fluctuations

The section covers the following topics: Data preprocessing, preparing the modeling variables,
performing the model-based clustering, evaluating the model’s prediction on the training data,
and post-processing the identified SBL regimes.

The model structure used below follows the design of Vercauteren & Klein (2015), where the
variable of interest is the vertical turbulent velocity fluctuations, and the exogenous variable is
the sub-mesoscale wind speed. The aim is to investigate whether a data-driven analysis of a
nonstationary time series can identify periods in which non-turbulent motions and small-scale
turbulence interact differently. Vercauteren & Klein (2015) performed such an analysis using
the Snow-Horizontal Array Turbulence Study dataset collected over Plaine Morte Glacier. The
goal of this study is to reproduce the modeling results using the FLOSS2 dataset. Vercauteren
et al. (2019b) report on the comparison of the clustering results of these two datasets by
analyzing and comparing the statistical properties of the non-turbulent structures within the
identified regime.

3.2.1 Data Preprocessing and Scales

The SBL must be selected from the continuously recorded measurements. For this, the data
are restricted to the night time between 18:00 and 07:00 local time. To maximize the continuity
of a time series, several data-reduction steps are performed. Nights with missing periods
(probably due to iced instruments) in the time series longer than 80 minutes in a single night
(which equals 12 nights in total) are removed. Such long data gaps are exceptions, so the
resulting nights have gaps with smaller periods (≈ 3 min); these were linearly interpolated.
Fifty-one nights with periods where the mean wind vector approaches the instruments through
the tower structure for longer than a total of 5 min were removed to minimize the tower’s
influence. This results in 68 nights for the further analysis.

Next, two relevant variables are prepared for the clustering procedure. For this study, only
the time series at the 2 m level is considered. Following Mahrt (2010b), the submeso velocity
scale for one velocity component is

X∗ := [X]1min − [X]30min , (3.2)
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where the square brackets denote the time-averaging operator, and the superscript number
indicates the time window. The 1-min scale is assumed to be the turbulent scale for the
strongly SBL of the FLOSS2 dataset. This scale is dependent on the Ri number. However, to
simplify the analysis, the scale is fixed to be valid in the strongly stable regime. Reestimation
of this scale value after clustering in Sec. 3.2.5 confirms this assumption (see Fig. 3.10).

Consider the modeling variables next. The first variable (being the forcing for the turbulence
to be modeled) is the strength of the submeso horizontal motions defined as:

Us :=
√

(u∗)2 + (v∗)2 . (3.3)

As conjectured by Mahrt (2010b), the value Us vanishes in the neutral steady-state flow
limit. This aspect is investigated in a separate clustering study using an extended model
structure (see Sec. 3.3). Moreover, Sec. 3.3.7 quantifies how the turbulence energy changes
when approaching such a limit of low submeso activity (see Fig. 3.25).

The second variable in the analysis, which is classified based on its interaction with Us,
is the standard deviation of the vertical turbulent fluctuations σw and is estimated with
Reynolds averaging using a scale of 1 min.

w′ = w − [w]1min , (3.4)

σw =
√

[w′w′]1min . (3.5)

The vertical component (σw) of the TKE is accounted for by giving priority to vertical transport
in the boundary layer. However, the entire TKE is modeled in Sec. 3.3.5. Next, the model
structure is assembled by assuming that the variable Us drives the variable σw in strongly
SBL.

3.2.2 Model Formulation for Clustering

Given the one-dimensional time series of variables σw and Us with a sampling rate of 1 cycle
per hour for the considered 68 nights, the goal is to estimate the temporal parameter variation
of the following model. The fitness function (lloc) includes the proposed model structure (see
Sec. 2.1.1 to comprehend the structure of the model):

lloc(σw; θ) :=

σw[n]− a0[n]−
q∑

j=0
bj [n]Us [n− j∆t]


2

n = 0, . . . , N − 1 , (3.6)

where N is the length of the time series, q is the memory depth, and at the same time a
hyperparameter of the FEM-BV-VARX method. The parentheses [·] emphasize the discrete-
time formulation of the model. The brackets || · ||2 denote the Euclidean distance and
Θ = (a0[n], bj [n]) denotes the vector of unknown time-dependent parameters. These parameters
are obtained by minimizing the functional

L(Θ,Γ[n]) =
K∑

k=1

N−1∑
n=0

γk[n]lloc(σw; Θ)→ min
Θ,Γ[n]

, (3.7)
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with the methodology presented in Sec. (2.2.2) under the constraints (2.21), (2.22) for the
affiliation vector Γ[n] together with the bounded variation approach (see Sec. 2.2.2). The
hyperparameter Cp from the bounded variation defines the maximum allowed number of
regime transitions and prevents the algorithm from overfitting the temporal variability of the
parameter Θ. The hyperparameter K defines the number of sub-models (clusters/regimes) to
resolve the temporal variation of Θ.

Excluding the autoregressive terms in the model (3.6), the time series is explicitly tested
for the Granger causal relationship between σw and Us as a way to assess if σw evolves
according to the dynamics of Us. Such a selective model structure uses the smallest set of
model parameters and, in particular, tests the hypothesis of whether sub-mesoscale variability
is critical for predicting the part of the TKE responsible for vertical transport.

Nevertheless, the autoregressive terms could improve the ability of the model to predict
the variance of the variable σw. This was tested but is not reported. The results show
that the residual of the clustering remains significantly non-Gaussian, suggesting that the
representation of the dynamics in the variable σw with linear models is incomplete and
requires further improvement. However, the goal of the following analysis is classification, and
improvement of the model structure is addressed in the follow up study.

3.2.3 Estimation of the Persistence Parameter

The search for the optimal persistence parameter Cp of the FEM-BV-VARX method (see
Sec. 2.2.2) is related to the search for a global minimum of the clustering functional. The
minimization of (3.7) is difficult in this case because the variables σw and Us are subject to
different underlying distribution types. In the limiting case of strong stratification, the variable
σw resembles an exponential distribution, and Us resembles a Gaussian distribution. The
assumption that the relationship between σw and Us holds primarily in the strong SBL is
insufficient to estimate reproducible regime segmentation and requires the development of an
adapted global search algorithm.

The assumption that for the model (3.6) the residuals are Gaussian after parameter
estimation is not met, as the study shows, and it is better to transform the variable before
clustering (as it is done in Sec. 3.3.5). Moreover, the forcing variable oscillates around a mean
value, while σw, in contrast, follows an extreme value distribution with exponential peaks and
decays. Therefore, it is questionable whether the oscillatory patterns in Us are present in the
σw variable. The listed discrepancies also lead to difficulties in estimating the optimal number
of clusters K. However, in this section, it is shown how to improve the solution procedure of
the FEM-BV-VARX framework when one encounters difficulties finding reproducible solutions
for the affiliation function Γ(t).

The following study evaluates the reproducibility of the solution and suggests an optimal
Cp value for a fixed value of K. One starts by measuring the goodness of the fit with a norm
of the residual:

∥r∥2 = ∥xs − xm∥22 , (3.8)

where xs is the data and xm is the signal modeled by FEM-BV-VARX. The residual decreases
as Cp increases. The following experiments are performed with the variables σw and Us, setting
the memory depth of the model (3.6) to q = 3 and K = 4 for the rest of the study.
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In practice, it is common to run a minimization procedure several times to explore the
search space and to identify the global minimum. Based on this idea, a small experiment
is performed below to evaluate whether a similar solution can be observed repeatedly and
how different it might be. In the experiment, the entire set of FEM-BV-VARX calls is
divided into several blocks. Each block contains 500 individual realizations. Each run in a
block is performed with a randomly generated initial value Γ0(t). The best result of a block,
corresponding to the smallest residual, is shown in Fig. 3.2 for demonstration purposes.

1 2 3 4 5 6 7 8 9 10

460

470

480

490

block

‖r‖2

Figure 3.2: The residual value of the best solution is found in 500 consecutive runs and grouped
into a block. The method FEM-BV-VARX is called 5000 times. The variability of the residual
indicates uncertainty in the particular affiliation function identified.

The residuals of the best results over 10 blocks are in the range [455, 490]. The significance
of this scatter is challenging to assess but suggests that each solution preferably represents
a local minimum. As shown in Fig. 3.2, it is not straightforward to find a solution that has
similar residual values every time. The vector Γ(t) differs slightly for each of these solutions.
So the question is: how much dissimilarity in the optimal solution Γ(t) should one tolerate?
This question is answered after analyzing the discrepancy between solutions. For this purpose,
Fig. 3.3 shows the difference between the two best solutions found after 500.
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Figure 3.3: A plot of the estimated function Γ(t) for the first (top panel) and second (bottom
panel) best solutions from a pool of 500 solutions selected based on the residual value. Black is the
signal of interest (σw); white is the modeled signal. The colors indicate the cluster states. Only a
portion of the entire time series is shown. The entire time series is 54000 min long.

Comparing the results in Fig. 3.3, one can see some agreement between the γi(t) functions.
Indeed, the yellow clusters at t = 0.2, the green ones at t = 0.45; t = 0.6; t = 0.77, and the
red ones at t = 0.9 are sufficiently similar. However, the transition sequences between these
long clusters show dissimilarities. For example, at t = 0.65, the mean of the cluster states is
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the same in both solutions, but the duration is different. This discrepancy in the duration
of the cluster states can be tolerated because the resulting change in sample size within the
cluster states is negligible for further statistical analysis. More importantly, the sequence of
cluster states in the function γi(t) remains the same between the different clustering results
(see Fig. 3.3 at t = 0.65). In contrast, the shape of the cluster states at the following time
points is clearly dissimilar: t = 0.11; t = 0.25; t = 0.5, which is undesirable and a sign of
inconsistency.

Next, the correlation of the regime paths between two solutions is investigated. This allows
the examination and estimation of uniqueness for a set of solutions. The format of the vector
Γ(t) ∈ ZK×N is a binary vector. Multiplying it by the vector [1, 2, . . . ,K] from the left-hand
side, one obtains a labeled path vector. The correspondence between the path vectors of
different solutions is directly evaluated by counting the matching elements and calculating
the percentage in relation to the total sample size. For example, comparing the first six best
affiliation functions of a solution block, the following path correlation matrix is obtained:



1 2 3 4 5 6
1 100 69 73 72 59 72
2 − 100 65 68 65 71
3 − − 100 73 56 76
4 − − − 100 57 72
5 − − − − 100 59
6 − − − − − 100


The two optimal solutions with the lowest residual value are marked red and match to 71%.

This example shows that selecting solutions based on residual value alone does not guarantee
that one will get unique solutions. For example, the most similarity is found between solution
3 and 6; their overlap is 76%. When working with the FEM-BV-VARX framework provided by
the original authors, one can observe the following. When searching for the parameter range
of Cp, the solver starts with the lowest Cp, i.e., long and steady states are identified. After
finding the best solution within a block, the function Γ(t) is used as the initial condition for
the next block. This new block then contains the solutions found with the subsequent increase
in the Cp value. By continuously increasing the Cp parameter, one will find that the lowest
residual in most cases contains the solution of the previous best model (see Fig. 3.4). The
idea of such an approach is to follow the path of the best solution found at the low value Cp

by letting the solution incrementally explore the neighborhood for better solutions at a less
restrictive regularization value.

However, in a series of experiments, it is shown that this strategy does not work optimally
for the considered variables, since the subsequent increase of the parameter Cp alone does not
cause the algorithm to find a better optimum on the path of Cp, and thus leads to a waste of
computation time. This means that the best solution found at the lowest value of Cp remains
the best, regardless of the change in Cp. This behavior is obvious because it is much more
difficult to estimate a solution from a random guess at Cp = 100 than to propagate the best
solution from Cp = 5, which is equivalent to refining the solution. This is illustrated in Fig. 3.5.

The black dots on the right side of the graph show the residual of a solution found by
running the algorithm with a random initial guess for Cp = 100 (a total of 7300 minimizations
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Cp Cp Cp Cp Cp

best annealing step
with the smallest residuum
in block B1

pass found Γ
as initial value

Figure 3.4: A sketch illustrating an approach to find an optimum using the FEM-BV-VARX
method by varying the Cp value. In this example, each block has five annealing steps. The only
frame parameter that changes between blocks is the regularization parameter Cp that controls the
maximum number of jumps. The cross indicates the best solution with the lowest residual value.
The first pass in a successive block is started with the optimal solution of the previous block.

were performed to produce the best four solutions in the figure). Consider the descending
colored lines for comparison. These lines represent the path by which the best solution
propagates from Cp = 3 to Cp = 100, producing a much better result. The procedure for
obtaining such results is described below.

persistence parameter Cp

brute force approach
with Cp = const

Figure 3.5: Residual value and consistency of the estimated affiliation vector plotted against the
persistence parameter Cp. The colored solid lines refer to the left axis and denote the residual value
obtained by the method shown in Fig. 3.6. The right axis shows the consistency of the estimated
affiliation vector (dotted black line), which is measured as the percentage overlap between four
solutions (marked with colored solid lines). The brute force approach denoted with the red circle
cannot obtain lower residual values.

The procedure for finding a better solution is optimized by strengthening the search for
the best solution at the smallest values of Cp. The idea is to find the solution with the
smallest possible residual for small Cp values and propagate the Γ(t) to the higher Cp values
by transferring the optimal solution as an initial estimate only once. The procedure is outlined
in Fig. 3.6. The phase in which the algorithm searches for the best solution with a fixed low
value of Cp is called the search state, in which the best solution is found. In the subsequent
confirmation state, the algorithm cannot find an improved solution for several blocks. Therefore,
for the confirmation state, one specifies a limited number of blocks, after which the parameter
Cp is incremented. By applying the above scheme, one obtains the solution shown in Fig. 3.5
with the left axis and the colored lines.
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continue until no better solution is found after n blocks

search phase confirmation phase

Cp Cp Cp Cp

Cp Cp Cp Cp

continuebest in B1 better than in B1 the best stays the best

Figure 3.6: A sketch illustrating the modified algorithm for obtaining a better solution starting
from the solutions at lower Cp values. The sketch demonstrates how to find the best possible
solution with a lower Cp value and gradually increase the Cp parameter.

The pre-run routine provides a better solution in terms of residuals and is also faster. Most
of the time is spent calculating the pre-run. In this example, a block contains 20 solutions,
and to terminate the pre-run, the confirmation phase is set to be 50 blocks long.

Evaluation of several experiments showed that a better solution at a low Cp value did not
lead to a better-propagated solution at higher values of Cp (see the colored lines in Fig. 3.5,
which show four similar experiments.

The pre-run approach produces more consistent results. To investigate how the uniqueness
of the solution changes with respect to Cp, we consider the consistency of clustering in all four
pre-run solutions, labeled with different colors in Fig. 3.5. The respective consistency graph
for the four minimizations is shown with a second y-axis in Fig. 3.5. The consistency of the
solution improves by propagating the best solution. Compared to the local search approach,
the per-run approach increases the consistency of a solution Γ(t) from 34% to 78% at the
value Cp = 100.

Figure 3.7 shows a similar experiment where the residual of the pre-run is included and
the maximum Cp is set to 425.

pre-run

Cp = const

Figure 3.7: Analysis of the pre-run consistency. The colors indicate four repetitive calculations.
The dotted line corresponds to the right axis. The right axis shows the consistency of the estimated
membership vector (dotted black line), measured as the percentage overlap between four solutions
(marked with colored solid lines).
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The different color indicates four evaluations of the global search algorithm. In this case,
the x-axis indicates the model number characterized by a Cp value. The drop in consistency at
the beginning of the minimization procedure in Fig. 3.5 and 3.7 indicates that a good solution
in the pre-run does not provide higher consistency for further propagation of the Γ(t) result.
This means that it is not necessary to stay in the pre-run state for a long time. Note that the
solution has converged in the pre-run since the consistency is almost equal to one.

In summary, the pre-run approach provides a way to find the solution of Eq. (3.7) faster and
with higher consistency in the regime transition path compared to the brute force approach.
Moreover, the asymptotic convergence of the consistency measure provides the necessary
criteria for selecting the parameter Cp when the residual does not provide relevant changes for
that. The optimal Cp is chosen at the point where the consistency has reached a steady state.
The method presented above is applied in the following section.

3.2.4 Clustering and Modeling Results

The results are based on a carefully conducted and extensive study by selecting the
hyperparameters of the FEM-BV-VARX framework using the model (3.6). Namely, the
number of clusters K, the regularization parameter Cp, and the memory depth q. Before using
the framework, the memory depth is estimated by evaluating the partial cross-correlation
function (Brockwell & Davis, 2002), averaged over 68 nights, between the variables σw and Us.
The analysis of the pacf shows that the memory size q = 6 (corresponding to 6 min for this
analysis) is adequate. The parameter Cp = 150 and the optimal clustering solution is selected
based on the procedure developed in Sec. 3.2.3 by examining the range Cp = [2, 302].

Selecting the optimal parameter K for this particular analysis is challenging. This may be
due to the weak relationship between σw and Us during dominantly present, weakly stable
regimes. Consequently, the estimated regime affiliation function is ambiguous and subject
to variations in the duration of each regime state. The Akaike and Bayesian information
criteria generally used to determine the optimal K (Metzner et al., 2012) are ineffective in this
example. A range of K = 2, 3, 4, 5, 6, 7 values was tested, and the information criteria did not
indicate a minimum with respect to K, and thus did not indicate an optimal K. Instead, the
information criteria plot shows asymptotic behavior (not shown), suggesting that the optimum
could only be found beyond K = 10 and is inappropriately complex for post-analysis.

A solution with a significantly large number of clusters is, however, plausible if the following
property of the variables σm and Us is considered. As reported by Vercauteren & Klein (2015),
the relationship between σm and Us is significant in a smaller study with mostly very stable
conditions. In contrast, the amount of very SBL regimes in the selected 68 FLOSS2 nights
was found to be low. Therefore, the periods with a correlation between σm and Us are sparse
relative to the entire time series.

Finding an appropriate number of clusters in such a case is problematic. There is a lack
of significant correlation between σw and Us due to weakly stable regimes. Therefore, the
FEM-BV-VARX distinguishes the clusters based on their mean value. However, one of these
clusters is the strongly stable regime (the regime of interest), in which the relationship between
σw and Us is relevant. In this regime, the respective parameter values of the model are
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3.2 Classifying Vertical Turbulent Velocity Fluctuations

non-zero, which gives more weight to the functional compared to the regimes with weakly
stable conditions, where only the parameter of the mean dominates.

Given the above data configuration, the FEM-BV-VARX method attempts to resolve
precisely those regimes for which the given model structure provides the most significant
responses to the clustering functional. However, to resolve the SBL in multiple meaningful
regimes, the method must first split the existing weakly stable regimes into multiple clusters.
As a result, the information criterion exhibits asymptotic behavior as the functional value falls
faster than the penalty term increases as a function of K.

This problem is circumvented by the recursive application of the FEM-BV-VARX method.
In the first clustering step, the time series is clustered with K = 3, resulting in clusters labeled
C1, C2, Cs. Then, the strongly stable regime (Cs) is selected and clustered again with K = 2,
leading to the clusters labeled with C3, C4. The second clustering is not biased by the weakly
stable regimes and is therefore driven by the relationship between σw and Us rather than the
mean cluster value.

In this study, the bulk Richardson number is used as an indicator for the stability of the
flow

Rib = ∆z(T (z2)− T (z1))(g/T0)
(U(z2)− U(z1))2 , (3.9)

where U =
√

([u]1h)2 + ([v]1h)2 and T = [T ]1h are averaged on a time scale of 1 h. The
resulting classified distribution of the Rib is reported in Fig. 3.8. The histogram confirms
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Figure 3.8: Histogram of bulk Richardson numbers in the clustered flow regimes. The vertical lines
represent the median of the underlying distribution. From left to right, the values are Rib(C1)=0.03,
Rib(C2)=0.07, Rib(C3)=0.14, Rib(crit)=0.25, Rib(C4)=0.59. The x-axis shows a maximum Rib(C1)=2
to zoom in on the distributions because the long tail of the cluster C4 extends to Rib(C1)=6. This
also explains the abnormal median value.

that periods with Rib > 0.25 are rare in the selected 68 nights. The distribution of the most
stable regime C4 shows a long tail that persists for values Rib > 0.25. Because of this tail, the
median of the cluster is 0.59. An abnormal median value in C4 indicates that the strongly
SBL should probably be free of turbulent mixing on average. Nevertheless, the distribution of
the Rib number shows that the maximum value of the histogram is below Ric = 0.25 when
considering the most probable Rib number, symbolizing probable weak mixing.

The performance of the model is presented in Fig. 3.9. The middle panel shows an example
from the 68 nights, with the σw variable denoted in black and the prediction of this variable by
the FEM-BV-VARX model colored in red. The middle panel also shows the clustered regime
states by the background color. During the first clustering step, the time series is divided into
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Figure 3.9: Classification and modeling of the 68 nights with the model defined in section 3.2.2,
where the sub-mesoscales force the vertical fluctuations of the turbulent scales σw. The blue insets
in the middle panel describe the recursive clustering result of the strongly stable regime discovered
in the first clustering step. Only a fraction of the data is displayed.

three clusters. Then the periods highlighted in white are clustered again with K = 2. The
result of the second clustering is shown in the top and bottom panels.

Looking closely at the insets in Fig. 3.9, one can see that the model can capture an
oscillating pattern in the variable σw induced by the forcing variable Us. This is particularly
evident in the lower-left panel. Comparing regime C4 with the weakly stable regimes C1, C2,
we find that these regimes have less variance and are mainly explained by the mean. Next, we
analyze the scale iterations of the FLOSS2 dataset as a function of the four estimated regimes.

3.2.5 Regime-Dependent Multiresolution Decomposition

Multiresolution Decomposition (MRD) is a valuable technique for studying turbulent fluxes.
In particular, when analyzing SBLs, turbulent momentum and heat fluxes decomposed into
multiple dyadic scales with MRD provide insight into scale-averaged transport statistics.
Examining turbulent transport with MRD allows us to identify the averaged turbulent time
scale and thus evaluate the choice of scale in Reynolds averaging. In the previous section, the
nonstationarity of turbulent mixing was divided into four regimes based on scale interactions,
resulting in an ordered classification of the SBL. By applying MRD analysis in each regime,
the nonstationary scale interactions are revealed, and their dependence on the flow stability is
clarified.

In the following, the MRD is estimated according to Vickers & Mahrt (2003) using a
wavelet basis set. The statistics of the MR spectra are obtained by evaluating MR spectra
across multiple time windows. The MR spectrum estimated with wavelets is more accurate
than one calculated with the Fourier basis (Howell & Mahrt, 1997). The reason for this is
the presence of sub-mesoscale events in the SBL. These events are localized in time and are
therefore better captured with a wavelet approach.

The MRD calculation is performed within the clusters indicated by the respective Rib
number: C1(Rib = 0.03), C2(Rib = 0.07), C3(Rib = 0.14),C4(Rib = 0.59) (see Fig. 3.8).
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3.2 Classifying Vertical Turbulent Velocity Fluctuations

Regimes C1 and C2 are close to the neutral condition and serve as references rather than
being the focus of the analysis. Therefore, the most interesting regime is C4, which exhibits
supercritical stratification.

The calculation of the MR spectra in combination with the estimated regime affiliation
vector Γ(t) requires a detailed explanation. Consider the lower-left panel in Fig. 3.9, where
the regime states of clusters C3 and C4 are shown with gray colors. The duration of some
regime states for cluster C3 is shorter than the size of the processing window of the MRD, in
this case, 30 min. On the other hand, the duration of the regime states in cluster C4 may
span a few integer values of 30 min windows, leaving periods < 30 min unconnected.

Therefore, the length of the cluster states is taken into account when calculating the MR
spectra. Cluster states shorter than 30 min are excluded. Parts corresponding to multiples of
the 30 min window are taken from the more persistent states. Such a procedure avoids time
series jumps that would artificially occur if the regime states were collected sequentially in a
single array from a cluster.

Figure 3.10 shows the MRD of the heat flux for three heights (horizontal fields corresponding
to 2, 15, and 30 m) and four clusters from C1 to C4 (vertical panels from weakly to strongly
stable conditions). Cospectras are calculated over a window length of about 30 min. Boxplots
are used for each scale to show the respective cluster statistics over several windows.
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Figure 3.10: Multiresolution cospectra of the heat flux. Viewed from top to bottom, each row
of panels corresponds to heights of 30 m, 15 m, and 2 m, respectively. Viewed from left to right,
each column of panels corresponds to regimes C1-C4. Here C1 is a weakly stable regime and C4
is a strongly stable regime. The regime-corresponding Ri number is given in Fig. 3.8. The large
dashed vertical lines in each panel mark the 1-min scale. Each box contains 17 boxplots, each
representing the distribution of heat flux on a corresponding scale. The boxes represent the 25th
and 75th percentiles, with whiskers connected by a solid line across the scales. The horizontal line
in each box indicates the median.

The vertical dashed line in each of the panels in Fig. 3.10 represents the selected turbulent
length scale equal to 1 min. The Reynolds averaging at this scale captures the relevant part
of the average turbulent transport in all four regimes and satisfies the MOST assumptions only
for the weakly stable regime. The TKE in weakly stable regimes is slightly underrepresented.
Above the 1-min scale, the average turbulent heat transport flattens out in the clusters. This
means that the average effect of this scale (on a scale of several days) is zero. Nevertheless,
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the variance of the distributions at scales larger than 1-min suggests that these sub-mesoscale
motions are active and can contribute locally (on a scale of hours) to a positive or negative
heat flux.

The importance of sub-mesoscale activity can be assessed by relating the variance of scales
> 1 min to the median of scales < 1 min in Fig. 3.10. The reason for this is that the primary
mechanism of sustained heat transport is Kolmogorov-like turbulence. These are the scales
that cause sustained transport (scales < 1 min). For example, consider the lowest panel in
the left column (C1 regime at the height of 2 m). In this case, the turbulence generated by
the shear produced at the surface is responsible for the main transport. The sub-mesoscale
variance is relatively small and may not contribute significantly to the transport; however,
with increasing altitude (consider the C1 regime at 30 m heights in the upper left column),
the sub-mesoscale variability increases so that sporadic events may contribute more strongly
to the Kolmogorov-like turbulent mixing (on scale of hours).

Consider that the flow stability affects the Kolmogorov-like turbulent vortices so that
they are suppressed. This becomes clear in the cospectra as we move from the weakly stable
regime C1 to the strongly stable regime C4. Here, the averaged turbulent transport decreases
on scales < 1 min, but not the variance on scales > 1 min. Since the effect of stability is not
proportional along the scale spectrum, the sporadic sub-mesoscale variability dominates the
heat transport at higher stabilities. This leads to intermittency as the sub-mesoscales are
random with respect to the mean flow, and the Kolmogorov-like turbulent eddies are absent.
Similar cospectra are shown by the MRD of the momentum flux in Fig. 3.11. The figure shows
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Figure 3.11: Multiresolution cospectra of the vertical momentum flux. Viewed from top to
bottom, each row of panels corresponds to heights of 30 m, 15 m, and 2 m, respectively. Viewed
from left to right, each column of panels corresponds to regimes C1-C4. Here C1 is a weakly
stable regime and C4 is a strongly stable regime. The regime corresponding Ri number is given in
Fig. 3.8. The large dashed vertical lines in each panel mark the 1-min scale. Each box contains
17 boxplots, each representing the distribution of heat flux on a corresponding scale. The boxes
represent the 25th and 75th percentiles, with whiskers connected by a solid line across the scales.
The horizontal line in each box indicates the median.

that in C2, C3, and C4, choosing a 1-min averaging scale is a good approximation. However,
the TKE calculated in cluster C1 is slightly underrepresented in higher altitudes.
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3.3 Classifying Turbulence Kinetic Energy

The clustering analysis in the previous section shows a systematic classification of regimes
based on a statistical regression model that allows granular segmentation of the turbulent scale
versus the flow stability (see Fig. 3.8). The core assumption of such a model is the interaction
between the sub-mesoscale wind speed and the integrated vertical turbulent mixing.

Analysis of the clustered data provides valuable insight into the turbulence within the
detected regimes. The model in the previous section confirms a valid relationship between
σw and Us, but the variance explained by the model should be improved. Therefore, the next
step towards turbulence closure is to improve the predictive capability within the regimes
by constructing an advanced model structure to use in the FEM-BV-VARX framework.
Accordingly, building on the ideas of the previous section, the TKE will replace the σw variable,
and the forcing variable is replaced by the vertical derivative of the wind speed filtered into
different scales. In addition, the TKE is log-transformed to reflect the assumptions of the
clustering framework better.

This section discusses both the modeling and analysis of the SBL resulting from an improved
model structure, and it is organized as follows. The first step is to separate the velocity vector
into the mean, jet, and submeso scales using wavelet filtering. Then, the most characteristic
transient nights are analyzed to answer how the mean, jet, and sub-mesoscales resemble
turbulence intensity and local stability.

The selected nights illustrate a typical case of complex multiscale interactions in nocturnal
boundary layer flows. The three most characteristic nights were selected as examples from the
entire dataset and ordered by decreasing mean wind to visualize the dynamics of the SBL.
The rest of the nights (not shown) are an irregular mixture of the dynamics of the selected
nights (Figs. 3.17, 3.18, 3.19). The height coordinate is normalized by the tower height (30
m) z∗ = z/ztower and the time coordinate is normalized to the length of the night (15.38 h)
t∗ = t/tnight.

The model structure is introduced next. In contrast to the previous section, multiple heights
are modeled but classified independently. Moreover, the estimated parameters in the boundary
layer show and quantify the relationship between the vertical gradient of the considered scales
and the turbulence response. The prediction performance of the FEM-BV-VARX model with
the observed TKE confirms a well-explained variance.

A Turbulence-Submeso-Intensity (TSI) diagram is introduced to unify the analysis of scale
interactions. The TSI diagram plots the normalized turbulent scales as a function of the
normalized sub-mesoscales. The normalization factor here is the mean wind. The appropriate
subdivision of the scales using wavelet filtering is unique to the dataset and is motivated by
the classification results from the previous study (see Sec. 3.2).

To develop a better understanding of the TSI diagram, it is examined in terms of several
variables. For example, the regions characterized by the values of ζ and the shape of the mean
wind profile provide information about the boundary layer structure and classify the phase
space of the TSI diagram into physically meaningful regions. Moreover, the point cloud of
the TSI diagram is classified by relating it to the stability value ζ and the statistical classifier
obtained with the applied FEM-BV-VARX model. Table 3.3 relates the stability value ζ to

75



3. Nonstationary Analysis of the Stable Boundary Layer

the statistical classifier by summarizing the regime-dependent statistics of of stability for each
measurement height.

The study of the statistical clustering of the flux-profile relationship (see Sec. 3.3.8) led to
ideas for developing the turbulence model presented in Ch. 5.

3.3.1 Data Preprocessing Strategy

The data preprocessing steps are described in the order in which they are performed. This
order is important to minimize the adverse effects of filtering in the boundary regions between
the selected nights. These boundary regions occur when stable conditions are extracted from
continuous records.

The data processing workflow for this study is summarized in Fig. 3.12. The total dataset
contains 132 days of continuously recorded time series. In individual cases, the instruments
were covered with ice and therefore did not register any records, resulting in long data gaps
(on the order of several hours). The days with these long periods and those with unrealistically
large velocity gradients were removed, leaving 102 days for analysis. The remaining shorter
minute-scale data gaps (quality control results) were linearly interpolated in time to increase
continuity for the FEM-BV-VARX clustering method.

The periods during which the flow passes through the tower have been preserved compared
to the previous study (see Sec. 3.2.1). This is justified by the fact that the vortices induced by
the tower are of the same order of magnitude as the truss rods (about 10 cm). It is assumed that
the fluctuation energy induced by the truss rods is small compared to the 1-min turbulent scale
of the boundary layer. Removing the periods when the flow crosses the tower for comparison,
as was done in Sec. 3.2.1, results in a smaller dataset of 68 days, which unfortunately excludes
relevant parts with strongly stable periods. Therefore, 102 nights are considered in this analysis.
Here, the velocity vector is rotated in the mean wind direction twice using a sliding window
approach. The natural mean wind direction used here is calculated from the 30 m sonic
anemometer using a moving average on a scale of one hour.

The velocity vector is separated into several scales using two filtering methods. First, a
running time average is applied to estimate the Reynolds stress and turbulent heat flux.
Then, the larger scales are filtered into different scale ranges using the DWT (see Sec. 3.3.3).
The nighttime is then selected based on the average negative heat flux, where the average
is based on 24-hour records (see Fig. 3.13). Nighttime is selected after wavelet filtering to
mitigate the boundary effects of the wavelet transform, known as the cone of influence of
a mother wavelet (Torrence & Compo, 1998). Vertical gradients are computed with finite
differences: central differences within the boundary layer and one-sided at the lowest and
highest measurement points. The unequal mesh size is taken into account. In the next step,
the applied clustering procedure uses the estimated gradients as exogenous variables in the
model structure. After performing the clustering of the TKE, the resulting affiliation function
is used to classify the TSI diagram and the flux-profile relationship.

The following section defines the scales for the analysis in question. Details on the filter
techniques follow in the next section.
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Figure 3.12: Data analysis flowchart. The gray rectangles show the results of the individual
processing steps. The blue horizontal section lines mark the processing steps. The flux-profile
relationship and the TSI diagram are presented in Sec. 3.3.7 and Sec. 3.3.8, respectively. The non-
turbulent scales at the beginning of the middle diagram column are assumed to be non-turbulent.
The chosen Reynolds scale is adjusted for the stable regime. To asses the error for the neutral
state, see Fig. 3.11.

3.3.2 Definition of Scales

Figure 3.14 proposes the separation of scales for the analysis. The idea is first to apply
Reynolds averaging to separate the Kolmogorov-like turbulent scales. The resulting mean
scale after Reynolds averaging is further decomposed by wavelet filtering. The reason for the
mixed filtering is that the turbulent eddies are continuously present, and therefore one does not
require information about their temporal location. In contrast, the (assumed) non-turbulent
motions are transient and not present every night, so wavelet filtering is better suited to filter
them out accurately.

In the previous section, a turbulence scale was suggested based on the calculated momentum
and heat flux cospectra (see Fig. 3.10). The analysis indicates that scales below one minute
correspond mainly to turbulence in the nighttime FLOSS2 dataset; accordingly, this threshold
is used here in the first step of the Reynolds averaging. In the following, the resulting
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Figure 3.13: Average heat flux of the FLOSS2 dataset based on 24-hour records. The solid thick
black line is the median. The gray area marks the interquartile range. This plot is used to identify
the time series with stable conditions for clustering analysis. The stars mark the beginning and
end of the unstable conditions, which are removed.

Reynolds-averaged mean signal is divided into three frequency bands, which are then used for
the clustering procedure (see Sec. 3.3.5). The turbulent fluctuations are then u′ = u− û, where
(̂ ) denotes a dataset specific estimated turbulent scale. Next, û is filtered into different scales
and then used to estimate the vertical gradients. Linear filters constructed in the Fourier
domain may not filter û correctly due to the nonstationarity of the non-turbulent scales. The
DWT, implemented as a filter bank in the Python package of Lee et al. (2019a), is used to
perform the filtering.

mean (·) jet ˜̃(·) submeso (̃·)

Figure 3.14: Illustration of the defined scales for the analysis of the FLOSS2 dataset and the
filtering methods used. The vertical dashed lines from left to right indicate the frequencies of 3 h,
1 h, and 1 min. The 1 min scale is estimated in Fig. 3.10.

Filtering with DWT further divides the velocity vector into three scale ranges û = u+ ˜̃u+ ũ
(see Sec. 3.3.3 and for an example see Fig. 3.16). The sub-mesoscale motions ũ = (ũ, ṽ, w̃)
occupies the period from one minute to one hour, the jet scale ˜̃u = (˜̃u, ˜̃v, ˜̃w) occupies the
range from one to three hours, and the mean scale u = (u, v, w) is three hours and above (see
Fig. 3.14).

A three-hour mean scale is selected because it is large enough to provide a logarithmic
wind profile from the surface to 30 m. The jet scale was introduced for several reasons. This
scale has enough energy to create turbulence close to the ground but not enough to create a
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logarithmic profile up to 30 m. Also, the jet scale adds inflection points to the mean wind
profile, changing the height at which a maximum wind speed is observed. DWT filtering aims
to find a mean scale where the highest measurement point (30 m) corresponds to a wind
maximum, and thus the MOST is applicable. Any fluctuations faster than three hours are
considered as unknown fluctuations. Therefore, the scaling velocity for the following analysis
is

u∞(t) :=
√
u(z = 30, t)2 + v(z = 30, t)2 , (3.10)

with a band limit of three hours (see Fig. 3.14). By normalizing with u∞(t), unknown
fluctuations faster than 3 h are examined in terms of the well-known similarity theory. On the
scale of 3 h, the boundary layer structure for the dataset with the respective measurement
height of 30 m shows canonical boundary layer behavior.

The presented scale separation is valid only for the considered dataset because, as mentioned
before, the mean scale depends on the measurement height. Therefore, the exact definition of
the mean scale may be different in each study. However, the objective judgment is to choose
the mean scale for a controlled height, such that the boundary layer follows the MOST. The
following section describes the filtering methods.

3.3.3 Filtering Methods

The decomposition of the scales is done in two filtering steps. In the first step, the turbulent
fluctuations are separated using the running time average:

X̂(t) = 1
2te

∫ t+te

t−te

X(t⋆)G(t⋆)dt⋆ , (3.11)

where 2te equals 60 seconds, so ·̂ denotes the time average on a scale of one minute. The
filtered velocity component is denoted with X(t), and G is the convolution kernel equal to 1
(i.e., this corresponds to the block averages). The turbulent fluctuations are then u′ = u− û,
where u = (u, v, w) is the measured wind vector. Suppose the boundary layer is in the weakly
stable region with typically larger turbulent eddies. In that case, the 1-min average will result
in an underestimated TKE because the filter scale is not matched to the turbulence scale. A
moving variance is used to calculate the TKE:

X̂ ′X ′ = 1
2te

∫ t+te

t−te

X ′(t⋆)X ′(t⋆)dt⋆ , (3.12)

where 2te is equal to 60 seconds and the mean has been removed before (see Eq. (3.11)).
Consequently, the turbulent kinetic energy e := 0.5(û′u′ + v̂′v′ + ŵ′w′). The running-window
statistics allow the selection of the sampling frequency for the subsequent analysis. After
filtering with Eq. (3.11) and (3.12), the sampling frequency of e, û is unchanged (fs = 60 Hz),
but the frequency content has changed. The highest frequency in û is 60 cycles/hour and is the
band limit fb of a signal. According to Billings (2013, p.476), Shannon’s theorem states that
to recover all information in a signal band limited to fb Hz, the signal should be sampled at
least with 2fb Hz. For parameter estimates, a sampling rate of about 5fb/2 is often sufficient.
Consequently, the variables: e, û, ŵ′T ′ are down sampled from fs = 60 Hz to 180 cycles/hour,
resolving the 1-min fluctuation with three points. This sampling rate is important for extracting
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statistical relationships between scales when using the FEM-BV-VARX clustering approach
(see Sec. 3.3.5).

In the second step, wavelet filtering is performed. A Daubechies wavelet of order 20 is
chosen as the mother wavelet (ψ). It forms an orthonormal basis:

∫
ψi,j(t)ψn,k(t)dt = δinδjk ψi,j(t) = 1√

2i
ψ

(
t− j2i

2i

)
, (3.13)

where δij is the Kronecker delta function, i is the dilation, and j is the translation index of
the dyadic scale. Thus, functions can be approximated by a linear combination with arbitrary
accuracy if the basis is chosen appropriately. The coefficients of a wavelet transform are:

Di,j = ⟨f, ψi,j⟩ ≡
∫ ∞

−∞
f(t)ψi,j(t)dt , (3.14)

where f(t) stands for the analyzed function. The dyadic scale discretization with wavelets
allows a sparse representation of a signal in 1D and provides a time scale representation of a
process (Kumar & Foufoula-Georgiou, 1997):

f(t) =
∞∑

i=−∞

∞∑
j=−∞

Di,jψi,j(t) . (3.15)

The reason for using a dyadic filter bank is efficiency. The basic idea is to construct
a cascade of high and low-pass filters (Mallat, 1999). After a decomposition stage, the
output consists of approximation coefficients (low-frequency band) and detail coefficients
(high-frequency band). Then the approximation coefficients are reduced by a factor of two and
the discrete convolutions with low-pass and high-pass filters are repeated. The filter bank can
have multiple decomposition levels, and by back-transforming the cascade, the signal is fully
reconstructed. By setting the wavelet coefficients at a decomposition level to zero, the user
removes unwanted scales and thus can extract those of interest. According to the Nyquist
sampling theorem, the highest frequency of the signal is 180/2 c/h = 90 c/h. After the first
stage of the decomposition, the detail coefficients contain frequencies between 45 − 90 c/h.
The complete filter bank cascade consists of nine stages and is summarized in Tab. 3.1.

The choice of a wavelet basis depends on the time series being analyzed. A suitable basis
must represent most of the signal’s energy content with the least number of wavelet coefficients
(Kumar & Foufoula-Georgiou, 1997). The Shannon measure of entropy can be used to find a
basis from the considered library of wavelets, as shown by Katul & Vidakovic (1996). Here,
different reasoning is used.

The scales (u, ˜̃u, ũ) need to be separated in physical space since the study aims to investigate
from which scales the TKE is triggered. To separate scales, a basis with strong localization
properties in the frequency domain is needed. Weak localization properties are characterized
in particular by a smooth frequency response function. The function extends into the adjacent
bands beyond the predefined cutoff in the spectral domain. This results in energy loss across
scales. This weakness of the DWT is referred to as spectral leakage (Qiu et al., 1995). The
sensitivity study of Peng et al. (2009) shows that this problem can be mitigated by selecting
a higher order mother wavelet, resulting in a sharper spectral cutoff. Higher-order wavelets
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require a higher temporal resolution of the signal. The selected sampling frequency of 180 c/h
in this analysis supports these requirements.

Table 3.1: Definition of the discrete-wavelet-filter-bank cascade.

Level Frequency [cph] Scale label Time scale

0 <60 turbulence
1 60− 45 sub-mesoscale 1 min
2 45− 22.5 sub-mesoscale
3 22.5− 11.2 sub-mesoscale
4 11.2− 5.6 sub-mesoscale
5 5.6− 2.8 sub-mesoscale
6 2.8− 1.4 sub-mesoscale 1 h
7 1.4− 0.7 jet
8 0.7− 0.35 jet 3 h
9 >0.35 mean

To analyze the scale interactions with a TSI diagram (see Sec. 3.3.7) the definition of
Turbulence Intensity (TI) (Pope, 2000) is

TI := 1
u∞

√
1
3(û′u′ + v̂′v′ + ŵ′w′ , (3.16)

and the Submeso Intensity (SI) is defined analogically as

SI := 1
u∞

√
1
3(ũ2 + ṽ2 + w̃2) , (3.17)

denoting the energy content of the sub-mesoscales. The jet intensity is not analyzed because it
is expected to generate turbulence mainly due to ground shear, similar to the mean scale. The
horizontal wind speed for the mean, jet, and sub-mesoscale bands is defined respectively as:
U =

√
u2 + v2, ˜̃U =

√˜̃u2 + ˜̃v2, Ũ =
√
ũ2 + ṽ2.

TKE
U˜̃U
Ũ

Figure 3.15: An example of an intermittent mixing events and scale activity. The TKE is
calculated on the scale of 1 min. The scales are defined in Fig. 3.14. The value of the mean wind
is too low to sustain turbulence. However, it is interesting to note that the sub-mesoscale activity
is consistent with the intermittent bursts in the TKE signal, but not with the jet scale.

The choice of filtering is based on the following consideration. A possible alternative would
be to use the DWT to filter the entire spectrum. But in this case, the choice of wavelet basis is
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3. Nonstationary Analysis of the Stable Boundary Layer

not obvious. As noted by Kumar & Foufoula-Georgiou (1997), the Haar wavelet is a good and
simple choice for applications where the process has sharp fluctuations. In the inertial subrange,
for example, this would be a reasonable basis. A high-order Daubechies is more appropriate
outside the turbulence cascade, where sub-mesoscale motions are reported as smoother signals.
As the scale changes from turbulent to submeso to jet to mean scale, the wavelet basis should
continuously change from Haar wavelet to Daubechies. As mentioned earlier, the localization
property of wavelets is only important for the sub-mesoscales. Therefore, it is easier to filter
the turbulent scales with Reynolds averaging.
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Figure 3.16: Example demonstrating the filtering results of the û component with the DWT
following the scales definition in Fig. 3.14.

3.3.4 Scalewise Visualization of the Wind Profiles

In this section, the results of wavelet filtering are presented by plotting wind profiles at different
scales for three specific nights. The objective here is to visualize the variety of scale interaction
patterns.

The observational study begins by evaluating the scale activity for a night (see Fig. 3.17)
with a moderate averaged wind speed of E(u∞) = 5.7 m s−1. Within FLOSS2, nights with
u∞ > 6 m s−1 unmistakably show a well-developed logarithmic mean wind profile along with a
canonical TKE profile. The profiles are related to the neutral or weakly stable regime and do
not show any interesting dynamics relevant to this study and therefore serving as a reference.
Similarly, a critical wind speed of 5-7 m s−1 was found by Van de Wiel et al. (2012) above
which turbulence is active in a classical manner, for clear sky conditions.

Intermittency is weakly present in the weakly stable conditions, where the local stability
exhibits weak spatio-temporal (vertical space) variations (see Fig. 3.17e, where t∗ ∈ (0.3, 0.5)
and t∗ ∈ (0.8, 1.0)). The mean velocity profile during this night is well pronounced and appears
to be relatively stable (see Fig. 3.17a). The TI is on average 0.1 and shows an extreme
only at t∗ = 0.4 (see Fig. 3.17d). This peak coincides with increased sub-mesoscale and
jet-scale activity (see Figs. 3.17b,c). Looking more closely at the scale fluctuations of the
submeso motions (see Fig. 3.17c), we detect an increase in relative magnitude at t∗ ∈ (0.1, 0.2)
and t∗ ∈ (0.7, 0.9). For the time t∗ ∈ (0.7, 0.9), the fluctuation of the sub-mesoscale band
visually matches the streaky pattern in the TI, while the jet-scale band is less pronounced. In
contrast, the jet scale during t∗ ∈ (0.1, 0.2) slows down t∗ ∈ (0.1, 0.15) and then accelerates at
t∗ ∈ (0.15, 0.2). At this point, the TI is responding to the temporal evolution of the jet rather
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˜̃u

ũ

Figure 3.17: Scale activity and turbulence response for a night with moderate wind. The wind
speed averaged over this night is E(u∞) = 5.7 m s−1. The panels show: a) the mean wind profile,
b) the jet scale, c) the sub-mesoscale, d) the TI, and e) ζ. For the jet and sub-mesoscales, only the
component in the direction of flow is shown to identify the times of deceleration. The component
across the flow behaves similarly.

than the sub-mesoscale (see Fig. 3.17d with t∗ ∈ (0.1, 0.2)). The spatio-temporal structure
of the TI exhibits weak vertical variation. No significant variability in height is observed in
either the jet or sub-mesoscales. It can be concluded that, on average, this night is in a weakly
stable condition with insignificant departures as confirmed by the stability parameter (see
Fig. 3.17e).

Figure 3.18 shows a night with an averaged velocity magnitude of E(u∞) = 2.7 m s−1 and
significant deviations in the profile of the mean wind (see Fig. 3.18a). The mean velocity
profile during this night is unsteady and shows at the beginning t∗ ∈ (0.1, 0.3) and at the end
of the night t∗ ∈ (0.8, 1.0) rather a laminar profile. Irregularities in the profile exist in the
middle of the night t∗ ∈ (0.4, 0.7).

The ζ value confirms the complex evolution of the boundary layer (see Fig. 3.18e). The
stability parameter indicates a shallow boundary layer at t∗ ∈ (0.05, 0.1), followed by a sequence
of fully to partially neutral states t∗ ∈ (0, 1, 0, 3). This is followed by an irregular variation
from neutral to strongly stable states at t∗ ∈ (0.3, 0.5) and the boundary layer decouples from
the ground. This dynamics of ζ is then accompanied by high-frequency noise in ζ throughout
the range of stability values between unstable and stable states (see t∗ ∈ (0.5, 0.9) Fig. 3.18e).
In the first half of the night (t∗ ∈ (0.3, 0.5)), the ζ response occurs more on a larger scale; in
the second part of the night, ζ resembles more small-scale dynamics. The average relative
magnitude (estimate from the figure) of the jet and sub-mesoscale (see Fig. 3.18b,c) is about
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˜̃u

ũ

Figure 3.18: Scale activity and turbulence response for a night with weak wind. The wind
velocity averaged over this night is E(u∞) = 2.7 m s−1. The panels show: a) the mean wind profile,
b) the jet scale, c) the sub-mesoscales, d) the TI, and e) ζ. For jet and sub-mesoscales, only the
streamwise component is displayed to identify times of deceleration. Cross-stream component
behaves similarly.

0.5 times that of u∞. In the second half of the night, the jet and submeso scales are more
pronounced than in the first half of the night because of the lower mean-scale energy. Sharp
peaks in turbulence intensity at t∗ ∈ (0.5, 0.6) and t∗ ∈ (0.7, 0.8) correspond to increased
absolute values of the jet and submeso scales along with a relatively comparable shape of the
mean wind profile t∗ ∈ (0.4, 0.8).

The variability of the jet and sub-mesoscales with respect to height becomes more evident
at night with the lower mean wind (compare above in Fig. 3.18b,c with fig. 3.19b,c). The
significance of the vertical gradients increases and therefore is used later in the construction
of a model structure for the clustering analysis. At both scales, the sporadic accelerations
occupy significant portions of the boundary layer. In general, the TI is intermittent in time
and shows evidence of a pronounced dependence on height (see Fig. 3.19d; t∗ ∈ (0.3, 0.4)). For
wind speeds below E(u∞) = 2.7 m s−1 the energetically largest scale should be the jet scale.

Figure 3.19 shows a night with an averaged velocity magnitude of E(u∞) = 1.3 m s−1. The
variability of the sub-mesoscales is of the order of 1 m s−1. The profile of the mean scale is
irregular (see Fig. 3.19a). The TI responds more to the sub-mesoscale band than to the jet
scale. This response can be inferred from the patterns (see Figs. 3.19c,d). Because of their
chaotic behavior, it is difficult to derive structural information from these profiles. There is a
noticeable artifact at the end of the night (t∗ = (0.9, 1.0)) that is likely due to filtering.
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˜̃u

ũ

Figure 3.19: Scale activity and turbulence response for a night with almost no mean wind. The
wind velocity averaged over this night is E(u∞) = 1.3 m s−1. The panels show: a) the mean wind
profile, b) the jet scale, c) the sub-mesoscales, d) the TI, and e) ζ. For jet and sub-mesoscales, only
the streamwise component is displayed to identify times of deceleration. Cross-stream component
behaves similarly.

We studied three nights with a wide range of scale interactions. The vertical gradients of the
jet and sub-mesoscale wind profiles become more pronounced as the mean wind decreases. For
the following model construction, it is assumed that these gradients contribute to the generation
of the TKE. Therefore, the nonstationary modeling is performed with this assumption next.
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3.3.5 Model Formulation for Clustering

Recall, that the clustering method (see Sec. 2.2.2) aims to describes the nonstationary time
series as a combination of K > 1 stationary sub-models that alternate in time. The difference
between the individual models is in their parameter values. Each set of parameters of the
Kth model is constant for an a priori unknown period. A statistical learning algorithm
determines this period and the model parameters. This section establishes a one-dimensional
autoregressive factor model with exogenous variables to model the TKE.

More precisely, the goal is to test a hypothesis that consists in obtaining a Granger
causal relationship (Granger, 1988) between the measured TKE (eM ) and the gradients of
the prefiltered scales (exogenous variable): FM = ∂U/∂z; ˜̃FM = ∂ ˜̃U/∂z; F̃M = ∂Ũ/∂z (for more
details on the scale definition see Sec. 3.3.2). When the causal relationship changes in time,
the clustering method identifies a regime switch. The variables are temporarily marked with a
subscript (M) to indicate that they will be rescaled.

Rescaling of variables is considered to improve the model identification. The type of
rescaling should be carefully selected depending on the research task. On the one hand,
statistical rescaling is preferred when the clustering aspect of the methodology is of interest.
On the other hand, physically meaningful scaling should be applied when the modeling
aspect is important (the trained model should be used for out-of-sample prediction). However,
nondimensionalization of an unknown system is not always possible in exploratory data analysis
because little knowledge about the model structure is available. Since the focus is on clustering
the statistical scaling is preferred (see Eq. (3.18) below). In the case of strong causality, the
variance of the data explained by the model should be high and, therefore, should also confirm
the choice of the model structure.

Removing the detectable nonlinearity a priori in the data benefits clustering. Since the
statistical model will be linear, the algorithm does not need to learn the nonlinearity. Otherwise,
the model would require more clusters. According to the previous study in Sec. 3.2, the TKE has
a heavy tail distribution in the strongly stable condition. Consequently, taking the logarithm
of the TKE: e = ln(eM ) and making the distribution more Gaussian efficiently reduces the
number of clusters needed to describe the intermittent regime. Otherwise, clustering was found
to separate cases based on mean σw values rather than dynamic interactions with the imposed
exogenous variables.

In the following, the variables are standardized with:

Z = ZM − E[ZM ]√
V[ZM ]

, (3.18)

where ZM is ln(eM ) , FM , ˜̃FM , F̃M and Z in this section stands for e , F , ˜̃F , F̃ . The clustering
framework is generalized to multiple dimensions and can be used with all seven measurement
heights of the FLOSS2 dataset. Unfortunately, this leads to a large number of parameters.
Therefore, the one-dimensional model is estimated separately for each height to keep the
parameter space small. The structure of the linear time-delayed model is:

et = µ(t) +
p∑

n=1
an(t)et−n +

q∑
m=0

bn(t)F t−m +
q∑
˜̃m=0

˜̃b ˜̃m(t) ˜̃F
t− ˜̃m +

q∑
m̃=0

b̃m̃(t)F̃t−m̃ + ε(t), (3.19)
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where p and q are memory lags of the statistical process, the index t denotes the discrete-time
step, and Θ(t) = {µ(t),A(t),B(t), ε(t)} denotes the parameter set. The first parameter of the
set Θ(t) is an offset µ(t), which becomes a constant mean of a cluster under the assumptions
of the clustering method. The vector A(t) = [a1(t), . . . , ap(t)] consists of the coefficients of
the autoregression and B(t) = [b1(t), . . . , bp(t), ˜̃b1(t), . . . , ˜̃bp(t), b̃1(t), . . . , b̃p(t)] consist of the
coefficients of the exogenous variables. The last parameter of the set Θ(t) is the residual error
ε(t) between TKE (et) and the linear model.

The model fitness function is defined by the least square residual norm:

ℓ(et,Θ) = ||et −
p∑

n=1
an(t)et−n −

q∑
m=0

bn(t)F t−m −
q∑
˜̃m=0

˜̃b ˜̃m(t) ˜̃F
t− ˜̃m −

q∑
m̃=0

b̃m̃(t)F̃t−m̃||, (3.20)

The average clustering functional takes the form:

L[Θ,Γ(t)] =
K∑

k=1

T∑
t=0

γk(t)ℓ(et,Θk)→ min
Θ,Γ

, (3.21)

The solution of such a functional is described in Sec. 2.1 and 2.2. Next, consider the model
performance.

3.3.6 Clustering and Modeling Results

In this section, the TKE (or the corresponding non-dimensional variable TI see Eq. (3.16)) is
modeled using the FEM-BV-VARX method, with the model structure given in Sec. 3.3.5. The
clustering method is associated with several hyperparameters that are estimated a posteriori.
The number of clusters is set to three to resolve weakly, moderately, and strongly stable
regimes (see Tab. 3.3). Test runs with two, and four clusters were performed. Two clusters did
not separate the right hand side branch of the TSI diagram (see Fig. 3.23), and four clusters
resolved the intermediate regime into two. Moreover, more clusters added complexity to the
data analysis, and no additional relevant insights were obtained. To select an optimal memory
size, several minimizations studies were performed for a fixed value K = 3 over a range of
Cp = (4, 200). After several tests, the parameters p > 3 and q > 10 provide no significant
improvement in model performance.

The optimal parameter Cp for the maximum number of regime transitions is selected based
on the adjusted coefficient of determination R2 (Lewis-Beck & Lewis-Beck, 2015): as:

R2 := 1− unexplained variance
total variance = 1−

∑K
k=1

∑Tk
i=1 ε

2
k,i∑K

k=1
∑Tk

i=1(ek,i − E[ek,i])2
, (3.22)

where E[·] is the expected value and Tk is the number of samples in the cluster k.
The coefficient of determination R2 represents the relative explained variance. This

coefficient serves as a performance indicator for the model. If one plots its value above the
persistence threshold, an optimal value Copt (see Fig. 3.20) is indicated by a maximum. The
left panel of this figure shows that the largest variance explained by the model is at the
surface. Rescaling the graphs for each altitude shows that the optimal value of Cp is slightly
dependent on altitude. The averaged value of Cp over all heights is 103. The parameter Copt

87



3. Nonstationary Analysis of the Stable Boundary Layer

experiences scatter when the minimization of the functional is repeated. This is because the
global optimum is approached from different, random initial conditions. The variability of
Copt is of order ten (± regime jumps for 102 nights), and therefore the locations of regime
jumps in the affiliation function differ between solution marginal. The balance between the
number of minimization trials and solution accuracy is considered acceptable for this study.

Cp Cp Cp

Figure 3.20: Coefficient of determination over regime persistence parameter Cp. a) R2 at each
height, b) R2 normalized to emphasize the maximum, and c) the mean R2 for all seven heights.
The peak of a curve indicates the optimal parameter Cp.

The R2 value is summarized in Tab. 3.2 for each height and regime. Overall, the variance
explained by the model ranges from 0.8 to 0.93 and is considered satisfactory. The model
performs consistently in the weak and intermediate clusters with respect to the modeled height.
A steady decrease in R2 with increasing height is observed (see Tab. 3.2 row: weakly and
intermediate). This is because in the weakly stable regime the turbulence is well described by
the mechanical shear generation at the ground. In contrast, the strongly stable regime has a
lower value.

Table 3.2: R2 values for each identified regime for each height.

Stability regime 1 m 2 m 5 m 10 m 15 m 20 m 30 m

Weak 0.93 0.90 0.90 0.88 0.89 0.85 0.80
Intermediate 0.92 0.93 0.92 0.91 0.88 0.82 0.80
Strong 0.88 0.81 0.81 0.84 0.86 0.88 0.85

Figure 3.21 shows the modeled and measured TI for the intermittent night shown in
Fig. 3.18. The large deviation of the model is found at z∗ = 0.4. The small-scale details at
the top of the boundary layer are captured, but do not extend deep enough towards ground,
mainly because the model does not account for spatial correlation. The temporal evolution of
the TI is plotted for z∗ = 1.9 (see Fig. 3.21c). The model reproduces the main trend, but with
lower variance.

Figure 3.22 illustrates the statistical causality between the TKE and the vertical gradients
of the jet and sub-mesoscales in terms of regression coefficients. The absolute values of the
parameters cannot be compared between regimes because the averaged value of the TKE is
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Figure 3.21: In-sample prediction of TI by the estimated model for the night shown in Fig. 3.18.
Panel a) shows the measured TI and panel b) the predicted one. The solid black line in a) and
b) marks a sample height of interest. Panel c) shows the time series of TI at that height. TI is
linearly interpolated in height.

different in these regimes. However, a comparison between the coefficients of the exogenous
variables is justified within a cluster at one altitude. In Fig. 3.22, the right column of panels
shows the strongly stable regime (intermittent). At the height of one meter (see Fig. 3.22i),
the memory effect (more time delays are important) is more significant than at 15 m (see
Fig. 3.22f) and 30 m (see Fig. 3.22c). A comparison of the color-coded regions shows that the
contribution of each scale to the TKE is approximately equal at ground level (see Fig. 3.22i).
The influence of the gradients of the jet and sub-mesoscales on the TKE becomes smaller with
increasing altitude (see Figs. 3.22f,c). The expected behavior is seen in the detected weakly
stable regime (see Figs. 3.22a,d,g). Near the ground (see Fig. 3.22g), the gradient of the mean
scale is the dominant factor. At greater distance from the ground (see Fig. 3.22a), the jet scale
and the mean scale are dominant. The intermediate regime (see Figs. 3.22b,e,h) indicates a
contribution of the jet scale at all three altitudes.
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Figure 3.22: Stack plots of the parameter values for the forcing terms only, where |Bk| is the
sorted absolute parameter vector of the forcing variables, where k = 3; B1 = sort(|b1|, . . . , |b11|)
and holds parameters for the lagged ∂U/∂z. B2 = sort(|̃̃b1|, . . . , |̃̃b11|) and holds parameters for
the lagged ∂ ˜̃U/∂z. B3 = sort(|̃b1|, . . . , |̃b11|) and holds parameters for the lagged ∂Ũ/∂z. From
left to right, the columns are the: weak (a, d, g), intermediate (b, e, h), and strong (c, f, i) stability
regimes. Each row is representing the heights: 30 m (a, b, c), 15 m (d, e, f) and 1 m (g, h, i).
Each panel shows 11 parameter values for each forcing variable, with the absolute values of the
parameters sorted in decreasing order. The occupied volume represents the explanatory power of
each forcing variable relative to the other variables within each panel.
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3.3.7 Regime-Dependent Turbulence-Submeso-Intensity Diagram

The Turbulence-Submeso-Intensity (TSI) diagram illustrates the relationship between the
energy of the sub-mesoscales and the energy of the turbulent scales. It is expressed relative to
the mean flow so that it has a common denominator (u∞). Looking only at the scatter plot,
one can conclude that the value of TI at some region is correlated with SI (see Fig. 3.23a,
where SI > 10−1). This dependence is of particular concern since the slope is almost unity.
One could not trust the simple scatter plot because of a possible self-correlation (Kim, 1999)
for SI > 10−1. On the other hand, there is a visible change at SI ≈ 10−1 from no correlation
to almost 1 : 1, which contradicts the self-correlation problem.

The goal is to analyze the energy distribution between sub-mesoscale and turbulence scales
in the phase space spanned by TI and SI (see Fig. 3.25). It is helpful to know whether some
regions can be associated with specific stability values or the mean wind profile shape to
understand the TSI diagram better.

The stability parameter and the shape of the wind profile are inherently connected. For
example, damping of turbulence changes the shape of the mean wind profile from logarithmic
towards linear. Such properties of the boundary layer can be quantified by the shape factor
H = δ1/δ2, where δ1 [m] is the displacement thickness and δ2 [m] is the momentum thickness
(Schlichting & Gersten, 2017) and are defined as follows:

δ1 =
∫ 30

0

(
1− U

u∞

)
dz , δ2 =

∫ 30

0

U

u∞

(
1− U

u∞

)
dz . (3.23)

The characteristic values are: H = 2.3 for a laminar profile and H = 1.3− 1.4 for a turbulent
profile. The value H quantifies the boundary layer types in different regimes based on their
shape.

To investigate the relationship between the values of TI and SI, it is reliable to use several
factors such as the stability threshold ζ, the clustering method, and the shape factor H of
the boundary layer, each of which partitions the scatter plot in different ways based on the
stability, the Granger causality between TKE and the gradients of the filtered wind speed
(see Sec. 3.3.5), and the type of boundary layer profile. With all these indicators, the TSI
diagram can be estimated more reliably.

Figure 3.23 shows the TSI diagram for three heights: 1, 15, and 30 m (column-wise from
left to right), where each point is color-coded with the stability (see Figs. 3.23a, b, c) and
shape factor (see Figs. 3.23d, e, f). First, it can be observed that the data points change their
basic outer shape, indicating a height dependence. Second, the average turbulence level (TI =
0.11; see Fig. 3.23a, left corner of the point cloud) within the weak stability condition (ζ < 0.5)
for the height of 1 m is evident. The shape factor (see Fig. 3.23d) has low values in this region
and is an additional confirmation that the boundary layer profile is turbulent.

Periods of strongly stable stratification (ζ > 1) are observed more frequently (darker area)
near the ground (see Fig. 3.23c) than at the surface (see Fig. 3.23a). With increasing altitude,
the left corner of the point cloud (an indicator of average TI) decreases in value and merges
with the center. Detection of the average TI is complicated by the increasing scatter at the
left edge of the point cloud (see Fig. 3.23c). The shape factor indicates that the left corner of
the cloud is mostly in a state of developed turbulence (see Fig. 3.23f).
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Table 3.3: Statistics of stability parameter ζ for each identified regime and height. Q1 denotes
the 0.25 quantile, Q2 denotes the median and Q3 denotes the 0.75 quantile.

Height Stability regime
Weak Intermediate Strong

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
1 m 0.01 0.02 0.07 0.02 0.11 0.48 0.02 0.12 0.53
2 m 0.02 0.04 0.09 0.05 0.16 0.52 0.04 0.20 0.78
5 m 0.03 0.07 0.17 0.10 0.23 0.58 0.01 0.41 1.42
10 m 0.05 0.14 0.34 0.18 0.57 1.43 −0.04 0.50 1.83
15 m 0.08 0.21 0.52 0.13 0.64 1.84 0.00 0.77 2.51
20 m 0.09 0.25 0.59 0.17 0.70 1.83 0.00 0.83 2.80
30 m 0.12 0.35 0.86 0.17 0.81 2.02 −0.22 1.05 3.85

An additional benefit of the shape factor is that the upper right corner of the point cloud
can be partially distinguished as a more laminar profile in the TSI diagram (see Fig. 3.23d,e,f).
Near the ground (see Fig. 3.23f), H shows the region with high SI and TI as a more laminar
profile (H ≈ 2) and low SI and TI as a turbulent profile (H ≈ 1.65). A contrasting separation
of the TSI diagram is unobserved utilizing ζ (see Fig. 3.23c). A possible explanation for this is
that the average value of ζ (see Fig. 3.24f) better fits the separation by the shape factor (see
Fig. 3.23f). It is likely that one observes high values of ζ at low values of TI.
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Figure 3.23: TSI diagram for three heights: 1 m, 15 m, 30 m. In (a,b,c) the points are coded with
value of ζ and in (d,e,f) with the shape factor H. The scatter plots contain a set of points where:
0 < ζ < 10 and 1.3 < H < 2.3. The points with a higher value of ζ and H are plotted on top of
the points with a lower value (they are sorted). H = 2.3 is for laminar profile and H = 1.3− 1.4
for turbulent.

Figure 3.24 shows the classification of the TSI diagram according to the threshold ζ. The
subcritical cluster 0 < ζ < 1 is shown in the top row and the supercritical cluster 1 < ζ < 10
is shown in the bottom row for three heights of interest. In addition, the subfigures show the
PDF for the limited sets of points.

92



3.3 Classifying Turbulence Kinetic Energy

For subcritical stability, the densest region shows a decrease in TI with height, as expected
(see Fig. 3.24a,b,c). A barely noticeable decrease in the sub-mesoscale energy across the
boundary layer height is present (note the shift of the densest region to the left). At supercritical
stability, the elliptical shape of the densest region changes its location and orientation in
the TSI diagram (see Fig. 3.24d,e,f). In the supercritical region, the SI decreases stronger
with height than in the subcritical region. At ground level, the high-density regions for the
subcritical (see Fig. 3.24a) and supercritical (see Fig. 3.24d) regimes are separate, but near
ground level they overlap (see Fig. 3.24c,f).
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Figure 3.24: Classified TSI diagram by limiting with ζ value for three heights: 1 m, 15 m, 30 m.
Subcritical stability 0 < ζ < 1 (a,b,c) and supercritical stability 1 < ζ < 10 (d,e,f). For each set of
points, an PDF is estimated and plotted. Each column of subfigures represents a height.

Figure 3.25 shows the classification of the TSI diagram by the FEM-BV-VARX model (see
Sec. 3.3.5) into weakly, intermediate, and strongly stable regimes for three heights: 1, 15, and
30 m, respectively. Both classifiers: ζ and FEM-BV-VARX show almost identical PDFs. in the
TSI diagram for the weakly stable regime (compare 3.24a,b,c with 3.25g,d,a). The evaluated ζ
value within the regimes supports this observation within the FEM-BV-VARX regimes (see
Tab. 3.3). The strongly stable regime in Fig. 3.25i,f,c shows more stretched density functions.
With increasing height, the shape changes from an angular feather-like structure to an ellipse.
At 30 m height, there is a high probability of observing variability in TI values in the range
(1.1× 10−2, 1.1× 10−1) (see Fig. 3.25c). This variability is smaller in the weakly stable regime
(see Figs. 3.25a,d,g).

Using the TSI diagram, it is shown that FEM-BV-VARX characterizes the SBL differently
compared to the classification with ζ (see Fig. 3.26). In Fig. 3.26, the high-density regions are
estimated using the method of Hyndman (1996).

Hyndman defines the regions as follows. For a density function f(x) of a random variable
X, the 100(1− α) % region of high density is the subset R(fα) of the sample space of X such
that R(fα) = {x : f(x) ≥ fα}, where fα is the largest constant, so that P (X ∈ R(fα)) ≥ 1−α.
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Figure 3.25: Classified TSI diagram with FEM-BV-VARX method. Weakly stable (a,d,g),
medium (b,e,h) and strongly stable (c,f,i). The stability value of these regimes is given in Tab. 3.3.
Three heights are presented: 30 m (a,b,c), 15 m (d,e,f), and 1 m (g,h,i). For each set of points, an
PDF is estimated and plotted.

So fα is the α quantile of f(X). Selecting regions in this way allows us to see the bimodality
of the distribution even in higher dimensional space.

Compare the strongly stable regime estimated with FEM-BV-VARX to the regime selected
with 1 < ζ < 10 for a value α = 0.85 (see Fig. 3.26). This α threshold means that all PDFs in
the subfigures have a 15 % volume and are bounded from below by a plane.

The statistical clustering method identifies a larger region in the TSI diagram than the ζ
classifier (see Fig. 3.26a, b, c with Fig. 3.26d, e, f). The intervening cluster (see Fig. 3.25h, e,
b) is also part of the set 1 < ζ < 10. Nevertheless, clustering based on the relationship between
turbulence and velocity gradients shows a more intense relationship between turbulence and
sub-mesoscale motion in the TSI diagram. Interestingly, the local ζ value can indicate a range
of TI at high stability (see Fig. 3.23c), but only highlights a reduced low value on average
(see Fig. 3.26c). Surprisingly, the clustering method finds an additional state of TI (compare
Fig. 3.26f with Fig. 3.26c), thereby forming a dipole. The metastable states indicate that
the value jumps between a state with low TKE and low sub-mesoscale activity and a state
with high TKE and high sub-mesoscale activity. Such a dipole structure is comparable to
the intermittent nature of the SBL. At each altitude, the statistical classifier finds a more
elongated relationship. The ζ classifier selects more concentrated patches and failing to detect
the increased TI values at higher stabilities, suggesting that the temporal dependence of the
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sub-mesoscale motions plays an essential role in describing the intermittent turbulence within
the SBL.
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Figure 3.26: Comparison of the ζ-classifier (a,b,c) with the FEM-BV-VARX classifier (d,e,f) for
the strongly stable regime only. The heights represent columnwise 1, 15, and 30 m. A PDF is
estimated in each subgraph. The PDFs are limited to indicate the regions with the highest density.
The threshold is chosen so that the projected region of maximum density corresponds to 15% of
the total volume of the PDF.

The findings on the interaction between turbulence and sub-mesoscale motions are
summarized in an abstract sketch from the analysis of the TSI diagrams (see Fig. 3.27)
based on figures 3.26, 3.25, and 3.24. Ground shear is not the only source of turbulence,
as other scales generate additional turbulence above the mean level (see Fig. 3.27a, right
red ellipse). The situation changes with increasing altitude (see Fig. 3.27b). The mean wind
speed is low; consequently, the gradient of the mean wind speed over the ground is close to
zero, resulting in no mechanical generation of turbulence. In addition to the low wind speed,
stratification suppresses turbulence. Therefore, the overlap of the intermittent (red) region
with the non-intermittent region is less distinct (see Fig. 3.27b). As a result, the turbulence is
driven more by the sub-mesoscale than by the gradient of the mean wind speed.
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Figure 3.27: A sketch of a TSI diagram illustrating the intermittent turbulence states in the
FLOSS2 dataset. The weak and strong stability regimes are marked with blue and red, respectively,
TIave is the averaged value of TI; TIcrit = 1 if the energy of the mean wind speed is equivalent
to the TKE and SIcrit = 1 if the energy of the mean wind speed is equal the energy of the
sub-mesoscale motions.
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3.3.8 Regime-Dependent Flux–Profile Relationship

The MOST is commonly used in single-column models (He et al., 2019; Rodrigo & Anderson,
2013), but fails as stratification increases due to greater dispersion in the data points. The
estimated regime classifier Γ(t) is used (see Eq. (3.21)) to examine the flux-profile relationship
for momentum in three different clusters. Table 3.3 shows the relationship between the detected
clusters and the stability parameter ζ. To avoid self-correlation in the flux–profile relationship,
a different normalization factor is chosen

ϕmϕ
−1
w = κz

σw

∂U

∂z
(3.24)

following Grachev et al. (2018), where the friction velocity is replaced by the standard deviation
of the vertical velocity component σw. The quantity ϕmϕ

−1
w is expressed as a function of

stability ζ = z/L.
Figure 3.28 displays the flux–profile relationship for each cluster. Recall that the cluster

stabilities have different origins than in MOST and are grouped based on the model affiliation
function Γ(t) that is determined by solving the minimization problem (3.21). Equation 3.19
prescribes the rule that is used to identify a cluster. For each regime, a PDF is estimated,
and the high-density region is constrained with α = 0.32. The three flux–profile relationships
show substantial overlap with increasing scatter. The strong stability regime (see Fig. 3.28c)
reveals an outbreak towards the horizontal axis, which means more sustained turbulence. The
maximum error (the distance between the black curve and the edge of the color coded PDF)
relative to the MOST can be found in the intermittent cluster approximately at ζ ≈ 2. The
error decreases for higher ζ. This observation is not sensitive to the value of the PDF threshold
α. Besides calculating the flux–profile relationship with the gradient of the mean scale, the
flux–profile relationship constructed with the gradients of the jet and sub-mesoscale, revealed
substantial scatter regardless of the classified regimes and, therefore, are omitted.
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Figure 3.28: Classified flux–profile relationship with FEM-BV-VARX method. a) Weakly, b)
intermediate, and c) strongly stable regimes. A PDF is estimated and limited to 68 % of the total
volume. The gray points relate to the remaining 32% volume of the PDF. A modified stability
function is fitted on the points within the limited probability density.
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3.4 Discussion and Conclusion

In this chapter, a detailed study of the SBL is conducted by modeling the nonstationary time
series using a model-based statistical clustering approach and analyzing the scale interactions
within the detected clusters.

In the first part of the chapter (see Sec. 3.2), an adapted clustering strategy of Vercauteren
& Klein (2015) is applied to analyze the FLOSS2 dataset. Difficulties were encountered in
applying the FEM-BV-VARX method in terms of reproducibility and selection of the regime
persistence parameter. This is attributed to the proposed model structure, which is slightly
different from the one used by Vercauteren & Klein (2015). Namely, it only includes the
interactions between the vertical turbulent fluctuation energy and the sub-mesoscale motions,
thereby excluding the autoregressive terms. In addition, the FLOSS2 dataset was subjected
to rigorous preprocessing, which resulted in a significant reduction in the number of strongly
stable conditions. These two factors made the application of the FEM-BV-VARX challenging.
However, an improved algorithm for determining the persistence parameter of the framework
(see Sec. 3.2.3) and the recursive clustering procedure (see Sec. 3.2.4) enabled a reasonable
classification. The resulting multiresolution analysis of the classified wind data (see Fig. 3.2.5)
provided the necessary estimate of the stability-dependent time scale of the turbulent motions
for the FLOSS2 dataset.

In the second part of the chapter (see Sec. 3.3), an improved model for clustering the TKE
in the FLOSS2 dataset is presented. Robust classification results are obtained due to the
logarithmic transformation of the TKE. Moreover, the variance of the modeled TKE is ≈ 80%.
Such good predictive skill is attributed to the gradients of the sub-mean scales used to force
the TKE.

Section 3.3.4 demonstrates scale decomposition utilizing the DWT. The activity of the
sub-mean scales and their spatio-temporal interaction with the TKE and stability becomes
nonstationary in the SBL. There is a time-averaging scale long enough for the considered
maximum observation height of 30 m to obtain the logarithmic profile for the mean wind speed,
corresponding to 3 hours. The variation in the mean wind profile that does not maintain the
logarithmic shape is considered a deviation from the MOST. In the Sec. 3.3.2, the choice of
sub-mean scales is subjective and is used to visualize the scales acting on the turbulence under
stable conditions. The profiles studied show that intermittent turbulence is associated with
decoupled boundary layers (Lan et al., 2018) and that top-down intermittency (Sun et al.,
2012) is related to the activity of sub-mesoscale.

The improved statistical model 3.3.5 reproduces the value of TI (see Fig. 3.21) within the
training data. While accounting for altitude correlation in the model would further improve
performance, using this model to predict TKE under stable conditions is inappropriate for
several reasons. The model requires the gradients of the sub-mean scales and the affiliation
function, but these quantities are unknown in NWP models. In particular, the regime affiliation
function needs to be parameterized. In addition, the number of parameters must be reduced
(for the model 3.3.5 one has 42 parameters). In the following chapter, the sub-mean scales
are modeled as a stochastic process, and the regime affiliation is parameterized with the Ri
number.
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Section 3.3.7 presents the TSI diagram showing how the sub-mesoscales are related to
turbulence intensity using the ζ classifier and statistical clustering. The largest differences
between these classifiers are found in the very stable region (ζ > 1). The clustering method
detects states in the TSI diagram with the interscale relationship because the clustering is
based on Granger causality between the vertical gradients of the wind at multiple scales and
the TKE. In contrast, the stability parameter ζ does not find these intermittent states.

The probability density function of the TSI diagram is analyzed for the regime of strong
stability for seven available heights. The gradient-based classification yields a bimodal
distribution (see Figs. d, e, f). Still, the bimodality is weak, and to separate the modes,
one must select the high-density region containing 1% of the total PDF volume. The results
show how the two modes change position as a function of altitude. In a strong SBL, a mode
corresponding to high TI and SI values are found to be associated with a state transition
to a higher TKE level due to sub-mesoscale motions. The TSI diagram shows the relative
importance of sub-mesoscale motions in generating turbulence in terms of stability and height
(see Fig. 3.25). Indeed, it is not known whether the footprint in the TSI diagram would look
different at a different location. The footprint also cannot be thoroughly investigated with the
stability parameter ζ because it does not take into account the important temporal dependence
between sub-mesoscale of motions and the TKE, as shown in Fig. 3.26, leading to a significant
underrepresentation of the SBL regimes.

This chapter presents an application of the FEM-BV-VARX method, where classification
and modeling are performed simultaneously with discrete-time linear models. Using a different
model structure compared to the previous approach of Vercauteren & Klein (2015), as shown
in Sec. 3.2 and Sec. 3.3, improves both aspects: Clustering and prediction, leading to a better
understanding of SBLs. The analysis of the classified flux-profile relationship in Sec. 3.3.8
suggests an idea to construct a stochastic RANS model. Since the main modeling variable
in this chapter was the TKE, a better variable would be the nondimensional flux-correction
variable ϕ. The following chapter explains the modeling procedure by utilizing specially for
this aim developed FEM-H1-SDE method (see Sec. 2.2.1).
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4
Stochastic Stability Equation

In the last chapter, a detailed analysis of the nocturnal boundary layer is performed to
investigate the scale interactions using different approaches. The study is conducted within the
distinct clusters identified by the FEM-BV-VARX method (see Sec. 2.2.2), with less attention
paid to the predictive capabilities of the framework. Two main ideas for further research on
modeling intermittent turbulence from the previous chapter are summarized below.

The first idea is to understand the nonstationarity of the boundary layer in terms of
assumed hypothetical statistical functional relationships between variables at different scales.
A detailed analysis of the statistics within the clusters proves the validity of the assumed
correlations. The second important idea is that the proposed extension of the discrete model
structure leads to an improved representation of the modeled TKE (see Fig. 3.21).

The previous modeling results naturally suggest using the model-based cluster framework
for the construction of a stochastic turbulence closure. For this reason, the methodology
developed in Sec. 2.2.1 is, in general, an essential step towards embedding data-driven non-
stationary stochastic models into deterministic multi-scale dynamical systems. Several modeling
opportunities arise when the framework is seen as an application-specific parameterization tool
rather than a general data analysis method. The new FEM-H1-SDE framework is suitable
for developing stochastic surrogate models of a continuous type and allows for time-varying
parameterization of the noise term, which is required to generalize the effect of sub-mesoscales.
In contrast, noise modeling is not addressed by the FEM-BV-VARX method.

The traditional scaling relationships used in the parameterization of the SBL (see Sec. 1.1.1)
are limited by the assumptions of stationarity and homogeneity imposed on turbulence. In
particular, the MOST assumes a persistent geostrophic wind that drives the boundary layer
with significant kinetic energy. For such boundary layers, the MOST provides the necessary
scaling of turbulent diffusion as a function of the static stability of the flow. In this work, the
MOST concept is extended from a functional relation to a formulation that uses a SDE whose
parameters also follow a scaling relationship. Correcting for turbulent diffusion using an SDE
allows us to relax the stationarity assumption and introduce perturbations that represent the
net effect of sub-mesoscales that are unresolved by a RANS closure. This concept enables us

101



4. Stochastic Stability Equation

to express the mean impact of static flow stability on the wind profile and include intermittent
deviations and nonstationary mixing due to turbulence generated by sub-mean scales.

Finding a stochastic model for the TKE, as treated in Ch. 3, is suboptimal because
the intermittency is indistinguishable from the mean turbulence level, which is already well
predicted by RANS models in weakly stable regimes. As tested (but not reported) in this
work, it is possible to estimate a valid nonstationary and nonlinear stochastic surrogate
model for the evolution of the TKE using Stuart-Landau type models. Unfortunately, such
modeling ideas induce more research questions than answers. In particular, it is not clear
how to define the reference level of TKE based on which the stochastic extension should
contribute missing TKE from sub-mesoscale activity. This means that by using different
RANS formulations with pre-tuned parameters will yield different reference levels of TKE and
therefore result in other parameter estimates of the stochastic model part from the same data.
Therefore, the data-driven identification of a stochastic extension would depend highly on the
particular parameterization of the RANS model and thus would lack modularity. Another
critical aspect is that due to the stochastic modeling of the TKE, the vertical correlation of the
turbulence intermittency is unclear. This results in the need for further research to develop
the FEM-H1-SDE method to classify spatial parameter modulations.

The above problems are avoided by selecting an appropriate variable for modeling. A
promising direction is to find a nondimensional variable, which in this case is the stability
correction variable. By stochastically modeling this variable, the turbulent diffusion coefficient
becomes a stochastic process. Moreover, the Kolmogorov assumptions in modeling the
dissipation term in a RANS closure are conserved because the stochastic modification of the
turbulent mixing length influence the production and dissipation terms respectively without
changing their proportion. Moreover, the stability correction variable is sufficiently isolated
from the basic structure of the RANS closure and can be added in a highly modular fashion.
This chapter shows how to motivate, construct, parameterize, and validate an SDE that
extends the canonical stability function. The resulting SDE can be integrated into existing
atmospheric RANS closures up to order 1.5. Surprisingly, the proposed SDE was found to be
locally valid and thus independent of z up to a height of 30 m, suggesting a description of
the vertical correlation structure of the stochastic perturbations. The proposed formulation
captures stochastic spatial perturbations in height - practical suggestions for adjusting and
tuning the stochastic model are provided as well.

Modeling of the stochastic stability equation is initiated by defining the averaging scales
and variables. Then, the modeling steps to deduce the stochastic equation’s functional form are
given and supported with a corresponding, short data analysis. A sensitivity study is provided
to ensure the right choice of the model structure by comparing the performance of a less or
more complex model structure in a data-driven fashion. After establishing the model structure,
its parameterization is performed, which provides the necessary functions to connect the
stochastic model to a RANS closure. The first parametrization attempt is intentionally used
on the complete dataset to check if the overall concept of stochastic parametrization is working
and the relevant scaling functions are, in fact, present. The second attempt is a more optimized
parametrization study on a reduced training dataset. The carefully selected validation data is
used to test the model in predicting the stability correction variable. Investigation of the spatial
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covariance is conducted to enable a valid spatial-temporal prediction (vertical). The classified
variability of the spatial covariance is also parametrized based on stability and included in
the formulation of the stochastic model. In the final part of the chapter, the validation is
carried out by comparing the stochastic stability equation’s prediction against the data in the
previously selected validation dataset. An approach to tune the stochastic stability equation is
shown. The final sections cover the analysis of the stochastic equation.

4.1 Definition of Variables and Temporal Scales

Typically, a single-column RANS turbulence model of order 1.5 (Stull, 1988) is formulated for
the SBL by prescribing, among other things, the kinematic eddy-viscosity coefficient which
models the momentum diffusion due to turbulent eddies:

Km = αlm
√
e , (4.1)

where α is a modeling constant, lm is the turbulent mixing length for momentum, and e is the
TKE. Similarly, the eddy heat conductivity coefficient Kh responsible for the heat diffusion due
to turbulence should be specified to achieve a complete closure. Here, the stochastic modeling
focuses only on the coefficient Km by assuming a constant value for the turbulent Prandtl
number Prt = Km/Kh.

Before modeling the variable lm, it is convenient to examine several time scales, where
the Reynolds-averaging operator is applied in the following. Figure 4.1 shows a sketch
introducing the variables with their associated scale.
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Figure 4.1: A sketch of the scales and associated variables defined for the stable conditions of
the FLOSS2 dataset to identify the SSE. For strong wind conditions, the inertial subrange extends
into the defined scale band 1 h - 3 min. For stable conditions and weak winds, this scale band
is filled with sub-mesoscales. The turbulence averaging scale of 3 min is larger than the inertial
subrange because it is estimated based on an entire dataset with averaged MRD and therefore the
turbulence scale may differ locally.

For this study of the FLOSS2 dataset, the long-time average (·) is set to 1 h. The long-time
average should be considered as the time scale at which the MOST is valid. This means that the
mean wind energy is sufficient to maintain a substantial amount of continuous Kolmogorov-
like turbulence connecting the boundary layer to the ground throughout. More rigorous
considerations would also require logarithmic scaling of the mean wind profile. However, to
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avoid further complications in the modeling of jet dynamics (see Fig. 3.18), it is assumed that
the 1-h mean is sufficient and that this scale is adequately represented with an appropriate
RANS formulation.

The definition of the short-time mean scale is related to the averaged integral scale of
turbulence in the stably stratified condition. Based on the previous multiresolution analysis
(see Sec. 3.2.5), the short-time mean (̂·) is set to 3 min. The integral scale of turbulence
scales with the Re number (Pope, 2000). In contrast, the uncertainty of the integral scale
is assumed to increase with increasing Ri number because, in the strongly stable regime,
the sub-mesoscales begin to dominate over the mean scale in the generation of turbulence
(see Fig. 3.3.7). The 3 min period is dataset-specific and has an averaged value that suits
nighttime. From the definition of the long- and short-time averages, it follows that a scale
band corresponding to sub-mesoscale motions exists between 1 h and 3 min. The horizontal
velocity components in this band are referred to as ũ and ṽ.

Referencing the introduced scales map in Fig. 4.1, the variable lm (Mahrt & Vickers, 2003)
is defined as:

lm := û∗

∂U/∂z
= κz

ϕf
, (4.2)

where û∗ = (û′w′2 + v̂′w′2)1/4 is the friction velocity estimated on the short-time scale, κ
= 0.4 is the Von Kármán constant, z is the height coordinate, ϕf is the momentum stability
correction function following the MOST, and U =

√
u2 + v2 is the mean horizontal wind speed,

where the overline denotes the 1-h moving average. The function ϕf is determined from the
flux–profile analysis and reduces turbulent mixing in a turbulence closure scheme of order
1.5. In the following only the mixing length for momentum is modeled stochastically. The
stochastic process representing momentum stability correction is:

ϕ(t) := κz|∂U/∂z|
û∗

, (4.3)

and will be modeled next. The interpretation of the definition is as follows. The scale inequality
between the definition of û∗ and |∂U/∂z| excludes in the long-time averaging operator (·) the
sub-mesoscale variations. Importantly, the scale inequality between the definition of û∗ and
|∂U/∂z| includes in the short-term averaging operator (̂·) the turbulent mixing generated by
the sub-mesoscales. Therefore, the scale inequality introduces uncertainty in the ϕ variable
related to the scale gap involving the sub-mesoscales. It is assumed that the sub-mesoscale
motions induce transient changes in the mixture length, and to represent those, the uncertainty
in ϕ is modeled with an SDE.

An essential assumption in the above formulation is that the sub-mesoscale is independent
of the mean scale for any flow stability. This assumption does not hold in the weakly stable
regime, especially when the geostrophic wind value is immense because the sub-mesoscale band
exhibits an inertial subrange which is dependent on the mean wind (Kolmogorov turbulence).
As the subsequent analysis of the model shows (see Fig. 5.1 and Fig. 5.10), violation of this
assumption leads to an artificial variance at high winds in weakly stable conditions and shows
that the stochastic term in the SDE must be penalized by the Re number.

104



4.2 Modeling Strategy

4.2 Modeling Strategy

The objective is to establish a SDE for the temporal evolution of the variable ϕ which is
denoted as the Stochastic Stability Equation (SSE). The parameters of this new stochastic
equation depend on the Ri number as discovered in the study. The functional form of the
equation and the functions that map the Ri number to the parameter values are specified
in the modeling process. The former is derived from MOST, and the latter is subject to
parameter estimation using the methodology developed in (see Sec. 2.2.1). In the following
steps, the strategy is formulated for determining the functional form of SDE.

1. Substituting the function ϕf with an Ordinary Differential Equation (ODE) under the
condition that the steady state of the ODE obeys the function ϕf .

2. Conversion of the ODE into a SSE by perturbing one of its parameters.

3. Fitting the proposed SSE with nonstationary parameters to the FLOSS2 data and
identifying the scaling of the parameters with the Ri number.

To begin identifying the model structure, we consider the weakly stable regime and the strongly
stable regime. Both characterize the SBL and highlight specific scale activity. In the weakly
stable regime, the mean scale drives turbulent diffusion due to mechanical shear at the surface.
In the strongly stable regime, the stochastic sub-mesoscale motions govern the intermittent
turbulent mixing (see Sec. 3.3.4). The data used for modeling is pre-processed following
Sec. 3.3.1.

4.2.1 Two Distinct Scale-Driven Regimes

It is known that turbulence is preserved under idealized conditions up to a certain critical
value Ric = 0.25 (Galperin et al., 2007). Up to this value, the integral scale of turbulence
may be associated with a large scale of turbulence production. However, in the presence of
other non-turbulent scales (as it is the case in the SBL), the separation and quantification of
the integral scale are ambiguous since, at high values of the Ri number, there exist multiple
overlapping scales in physical space. One of the reasons for this is that the velocity gradients
used in forming the Ri number may be associated with different processes (see Sec. 1.1.2).
The energetic levels of these processes are close to each other, so they are challenging to
differentiate. As a result the turbulence is sustained way beyond the Ric constructed with the
mean scale (Mahrt, 2010b; Mahrt & Vickers, 2006).

Instead of considering some limiting Ri number as a transition value, the SBL is roughly
divided into two limiting regions: the weakly stable region (Ri ≈ 0.05) and the strongly stable
region (Ri ≈ 1) (the values given are indicative). The continuous unsteady dynamics of the
SBL across Ric becomes visible after the parameterization of the stochastic stability equation
(see Fig. 4.10). By the weakly stable regime, it is understood that the solution of the SSE is
in agreement with the MOST. In particular, this condition is characterized by equilibrated
turbulence when the mean wind energy is the dominant origin of energy injection. In terms of
Ri number, the weakly stable regime is associated with the value Ri < Ric. In contrast, the
strongly stable regime characterizes turbulence driven by the sub-mesoscale motions. This
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regime is associated with a value of Ri > Ric. The transition between the two regimes is
controlled by the stratification, the mean wind scale, and the sub-mesoscales.
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Figure 4.2: Comparison of different stability correction functions with the steady state of the
ODE proposed in Sec. 4.2.2. The FLOSS2 dataset is partitioned according to the wind threshold 8
ms−1. Panel a) shows the weakly stable regime in which the classical scaling ϕf (Cuxart et al.,
2006) is present up to the Ric number marked by the vertical red dashed line. c) The nonlinearity
parameter (β = 2, 3/2, 5/2) of the three ODEs 4.7 is set so that the steady state scales accordingly
with R̂i (3 min scale). The color encodes the height of the measurements. Panel b) shows the data
part that does not fully follow the scaling and is modeled below.

We examine some existing stability functions that parameterize the SBL in some operational
models. The most straightforward stability function ϕf (Ri) is linear since it provides a simple
tuning procedure. The function is estimated to significantly suppress turbulent mixing near
Ric. However, due to the sub-mean scales, some models apply a mild cut so that some mixing
prevails beyond the critical value (see Fig. 4.2a). Following the comparative study of Cuxart
et al. (2006), 4.2a and 4.2b show several functions: the ECMWF model, the model of the
Met Office institution in the United Kingdom (MetOffice), and the Meteorological Service of
Canada (MSC) model. Sandu et al. (2013) provides a historical overview of the functional forms
considered in the ECMWF model. They all obey a similar structure with some modifications
considering turbulence cut-off characteristics.

In Fig. 4.2, the data of the FLOSS2 experiment are separated exemplary using the mean
wind threshold 8 m s−1 to illustrate two regimes and to motivate the stochastic modeling. The
two regimes are the weakly stable regime (see Fig. 4.2a), in which classical scaling theory applies,
and the strongly stable regime (see Fig. 4.2b) with intermittent and unsteady turbulence. The
functions shown in Figs. 4.2a, b have been plotted as they can be found in the literature and
are not adapted to the data under consideration. Furthermore, no specific partitioning of the
data into the individual regimes is performed. Good extraction of periods with constant mean
winds reduces the scatter in the plots. Such pre-processing of nonstationarity is unnecessary
in the proposed stochastic parameterization since the procedure already takes it into account.

Figure 4.2 shows the trend of the FLOSS2 datasets and that this trend is captured by the
parameterization of the considered models for the weakly stable regime. However, at low mean
wind speeds, the scaling deviates from the observations in the strongly stable condition (see
Fig. 4.2b). To capture that variability (see Fig. 4.2b) and the transition into this regime, the
intention is to model the nonstationary and nonlinear time series of the variable ϕ with a SDE.
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4.2.2 Construction of the Model Structure

The goal is to create an initial model structure that will form the basis for further development.
Thus, the modeling procedure begins by replacing the stability function with an ODE to open
the possibility of capturing the temporal dynamics of the process ϕ. To my knowledge, there
is no functional form of such an equation with respect to the Ri number. As mentioned earlier,
the first step requires that the steady-state of the ODE reflects the scaling trend of the data
in the weakly stable regime.

Starting with a simple candidate and adapting it to the design goal, consider:

ϕ̇ = R̂i ϕ− ϕ2 , (4.4)

where R̂i is the gradient Richardson number at a scale of 3 min (the scale where the inertial
range is approximated for the FLOSS2 dataset, see Sec. 3.2.5). This parameter changes the
steady-state solution and ϕ is the stability correction variable defined in Eq. (4.3). The dot
notation denotes the time derivative. Equilibrium occurs at Eq(ϕ, R̂i) := R̂i ϕ− ϕ2 = 0 and is
equal to (0, R̂i). Linear scaling is present, indicating that the structure is suitable.

Next, a rationale for considering nonlinear terms is given. The slow increase of the flow
stability causes a linear increase of ϕ and thus a suppression of turbulence at the mean scale
of the flow. At higher stabilities, the sub-mesoscales induce turbulent mixing faster than the
mean scale because of their rapid impact on the boundary layer. To represent such dynamics,
the reduction term should therefore be larger and is consequently quadratic. The quadratic
term acts against the linear suppression term and generates turbulence. Depending on the
stability and sub-mesoscale activity, the relationship between these terms must change. This
is estimated later from data with the method presented in Sec. 2.2.1.

To ensure that the found states are attractive and not repelling, one can perform a
bifurcation analysis. The stability of the equilibrium points is obtained by analyzing dEq/dϕ

at these points. The bifurcation diagram of Eq. (4.4) is shown in Fig. 4.3, left panel. The
equilibrium branches exchange stability at R̂i = 0. The goal is to parameterize the SBL; the
parameter range R̂i > 0 is of interest since the equilibrium points start to scale linearly with
R̂i, as in the MOST.

Currently, only the model structure is investigated, but further analysis includes non-
stationary parameter estimation. Therefore, one would like to reduce the model complexity
by possibly exploring appropriate nonlinearity terms. To do this, one may consider that the
scaling of the steady-state does not strictly follow a linear trend in the data. To change the
scaling rate, one can modify the exponent in the second term:

ϕ̇ = R̂i ϕ− ϕβ , (4.5)

where two parameter values are of interest: β = 3/2 and β = 5/4. The equilibrium points are
(0, R̂i2) and (0, R̂i4), respectively. The bifurcation diagrams are shown in the middle panel of
Figure 4.3. The equilibrium branches exchange their stability at R̂i = 0 and now the stable
branch scales faster for R̂i > 0 than in the case β = 2. These model structures should be
considered as the data can support them in the further identification process. At this stage, it
is unclear how nonstationarity affects the steady-state, and it is, therefore, useful to consider a
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Figure 4.3: Bifurcation diagrams for the considered ODEs, showing the stationary solutions. The
left panel shows the steady states of the Eq. (4.5) with β = 2. Decreasing the exponent to the
value one increases the scaling rate of the steady state, as in the middle panel. The right panel
shows the shifted steady state of Eq. (4.6) converging to the value 1 when R̂i→ 0.

range of feasible model structures and later exclude those that are not supported by the data
(see Sec. 4.3).

One further tailors the model structure by including properties of the RANS model
characteristic to the neutral state. It is known that lm = κz in the neutral condition and
thus requires ϕ→ 1 as R̂i→ 0 from +∞. For the differential equation, this means that the
equilibrium branch must be shifted up by a value equal to one:

ϕ̇ = 1 + R̂i ϕ− ϕβ . (4.6)

To allow greater flexibility in fitting the ODE equilibrium to the data so that the critical Ric
is adequately approached, one introduces a parameter before the second term.

ϕ̇ = 1 + R̂i ϕ− bϕβ , b > 0 . (4.7)

This parameter is understood as a shift of the stable brunch along the x-axis in the log-linear
plot (see Fig. 4.3). Moreover, the value of b must be positive for stable solutions of ODE.

The equilibrium points for β = 2 are (R̂i ±
√
R̂i

2 + 4b)/2b). For β = 3/2, 5/4 there is only
one real stable brunch, which for R̂i > 0 can be approximated by R̂i2/b2 + 1 and R̂i

4
/b4 + 1,

respectively. In the following, it is shown that the considered values of β cover a plausible
range for ϕ in the regime where the classical stability correction of turbulence works.

The steady-state is estimated for the three nonlinear ODEs such that the solution branch
follows the trend in the data (see Fig. 4.2c). The three hypothetically suitable equations are:

ϕ̇ = 1 + R̂i ϕ− b ϕβ; β = 2, 3
2 ,

5
4; b = 0.1, 0.08, 0.07 . (4.8)

The stable branch of these equations does not follow an asymptote at Ric, but becomes
asymptotically better in the approximation when β → 1. These three equations form the
basis for parameter estimation and provide a reasonable collection of models to test with the
clustering method (see Sec. 4.3). The variations of the parameter b are introduced here to
show that the ODE obeys the traditional scaling theory in the stationary, unperturbed limiting
case.
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In the next step, the effects of sub-mesoscale motions are included. It is known that their
importance for turbulence generation becomes relevant at low wind speeds and large values of
the Ri number (see Fig. 3.26).

4.2.3 Parameter Perturbation Approach

The stochastic parameter perturbation approach and the resulting structural change in Eq. (4.7)
require a foundation. Therefore, the following hypothesis is investigated. The sub-mesoscale
motions induce changes in the stratification and should be reflected in the local Ri gradient
number. In particular, the perturbations of the velocity profile in the scale band bounded by
the largest turbulent eddy and the mean scale should correlate with the fluctuation of the Ri
number in the same scale band. In what follows, we examine whether the variance of the Ri
number correlates with the sub-mesoscale motion’s variance. This relationship provides us
with a crudely simplified motivation of the parameter perturbation approach. The temporal
averaging scales are discussed next.

The temporal evolution of the gradient Richardson number at a scale of 3 min is denoted
with R̂i. It refers to the scale of the largest turbulent eddy (Kolmogorov-like). This value is
subject to some variability because the integral scale estimate is based on the entire dataset
average. It is, therefore, possible that the integral scale varies locally.

This uncertainty of R̂i is measured as a variance by calculating the running variance at
the scale of 1 h. This is a convenient operation since the variable R̂i has no fluctuations
shorter than the period of 3 min, and providing an approximation to the fluctuation intensity
R̃i := R̂iR̂i of the Ri number related to the frequency band between 3 min and 1 h.

Next, we consider the sub-mesoscale motions, denoted by ũ and ṽ. These velocity
components are separated with a bandpass filter using the DWT (see Sec. 3.3.3), selecting
the wind oscillations in the scale range between 3 min and 1 h. The non-dimensional variable
rendering the variability of the sub-mesoscale motions is defined as:

σ̃(t) := 1
2U2 (ũũ+ ṽṽ) , (4.9)

where U is used to nondimensionalize the running 1 h variance of the sub-mesoscales. The
factor 2 averages the two components.

The correlation between σ̃ and R̃i is not present in a scatter plot. The Pearson’s
correlation coefficient (Rodgers & Nicewander, 1988; Scott, 2015) quantifies this judgment
for each observation level (see Fig. 4.4, right panel). An important assumption is that the
Pearson coefficient applies to normally distributed variables and tests for linear correlation.

However, the Spearman’s correlation coefficient (Scott, 2015) analyzes the strength of the
monotonic nonlinear scaling (see Fig. 4.4 right panel) between two random variables. Indeed,
it is found that the considered variables σ̃ and R̃i are nonlinearly related. A value of ≈ 0.8
indicates a nonlinear relationship over the entire measurement height.

A linear relationship can be achieved if the random variables are logarithmically transformed.
In this case, the variability of the natural logarithm of the R̂i number R̃iln := ln(R̂i)ln(R̂i)
and ln(σ̃) is considered. A scatter plot of these variables for the height of 10 m is shown as
an example in the left panel of Fig. 4.4. After logarithmic transformation, Pearson’s and
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Spearman’s correlation coefficients show almost the same values for the total measured height
(see Fig. 4.4 right panel). The interpretation of Fig. 4.4 left panel is improved by conditioning
the points on the value of the mean wind. The results show that, especially for the strongly
stable regime (U < 3ms−1), the value of the two variables σ̃ and R̃i increases.

The above analysis reasons that in the spectral sub-mesoscale band, an increase in the
variance of the Ri number can be observed with an increased relative variance of the sub-
mesoscale motions. However, no conclusions about the causality can be drawn from the
analysis. It could be bidirectional: strong stratification produces the sub-mesoscale motions or
the opposite. However, the necessary conclusion is that the variability of the R̃i parameter
for the strongly stable regime (see Fig. 4.4 left panel) arises together with the variability of
the sub-mesoscale motions σ̃. This observation supports the perturbation approach used to
motivate the SSE below.
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Figure 4.4: Association between the variability of the R̃i number and the non-dimensional
sub-mesoscale variability for the scales 3 m - 1 h (see Fig. 4.1). The left panel shows the scatter
in a log-log plot for 10 m measurement by a wind value 3 ms−1. For mean wind values below 3
ms−1, the variability in both variables increases, suggesting the perturbation approach Eq. (4.10).
The right panel compares the Pearson and Spearman correlation coefficients between the two
variables for each measurement height, with the data being untransformed and log-transformed.

Consider a fixed value of parameters b and β in the proposed ODE (4.8) and focus on
parameter R̂i. The macroscopic time scale of evolution τmacro for this equation is inversely
proportional to the R̂i value (τmacro = R̂i

−1)(Horsthemke, 1984, Sec. 6.4). Let us assume that
the boundary layer undergoes a typical radiative cooling process, as it usually occurs during
the night. Accordingly, the mean value of the parameter R̂i oscillates slowly, say with a scale
of 1 h. With a continuously increasing absolute value of the R̂i number, the time scale τmacro

of the dynamical system (4.8) becomes small.
Next, we assume that the sub-mesoscale motions act permanently and randomly in the

boundary layer (see Fig. 4.4 left panel). With their time scale τperturb, these motions represent
the perturbation of the dynamical system. The important question is how the dynamical
system reacts when the two scales (τmacro and τperturb) are close or farther apart?

At small values of R̂i (τmacro ≫ τperturb), near the neutral state, the temporal fluctuation
scale of the system is large. Meaning that the large scale of the boundary layer drives the
turbulence; the wind profile is fully developed and is logarithmic. By consistently increasing
the stratification, the macroscopic time scale of the evolution of Eq. (4.8) now decreases and
becomes sensitive to the fast-scale perturbations (τmacro ≈ τperturb). The sporadic processes in
the sub-mesoscale region can now affect the R̂i number (see left panel in Fig. 4.4) and change
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the evolution of the system (see Eq. (4.8)). Therefore, it is assumed that the perturbation of
the system occurs through the R̂i parameter. Additionally, decorrelation time scales of the
following Eq. (4.11) as a function of the R̂i number is examined in Sec. 4.6.3 Fig. 4.15 and
supports the perturbation approach. Therefore, the parameter is perturbed as:

R̂i = Ri+ σpεt , (4.10)

where the value R̂i is perturbed from its mean Ri (the overline denotes the 1-h mean) with a
i.i.d. random process εt that mirrors the effect of random turbulent mixing assumed to be
related to the sporadic processes in the sub-mesoscale band (see Fig. 4.1). The intensity of
perturbation is denoted with σp and is modeling the variable σ̃ (see Fig. 4.4).

The disturbance type in this study is limited to pure white noise (i.i.d.). However, it is more
accurate to expect a process whose energy spectrum is non-flat (colored noise), band-limited,
and has a particular regularity value. The decomposition approach Eq. (4.10) is the simplest
possible and can be replaced by a more reasonable modeling hypothesis.

The selected parameter perturbation is included in the Eq. 4.8. Thereby, the process εt

is defined to be the time derivative of the Wiener process dW (t)/ dt. The SSE takes the
following structure.

dϕ =
(
1 +Riϕ− b ϕβ

)
dt+ σpϕ dW (t) , ϕ(0) = ϕ0 , (4.11)

where ϕ is the stochastic correction of the turbulent mixing length for the momentum under
the influence of stratification and the random external perturbations of intensity σp. The
stochastic forcing term σpϕ dW (t) is a multiplicative type obtained by inserting Eq. (4.10)
into Eq. (4.8).

Equation (4.11) is different from its unperturbed form (4.8), and therefore it would be wrong
to interpret the parameters in the same way. After parameter perturbation, the interpretation
of how the R̂i number changes the steady-state of the solution is altered by the noise. To
investigate this, one can perform a stochastic bifurcation analysis (Stuart & Ord, 1994). Such
study is of secondary importance because the parameters are estimated from data, and the
steady-state properties can change significantly due to nonstationarity. It is the task of the
model-based clustering method (see Sec. 2.2.1) to resolve the nonstationarity and identify the
hidden relationships with the resolved scales. Accordingly, the model to be estimated is:

dϕ =
[
1 + a1(t)ϕ− a2(t)ϕβ

]
dt+ a3(t)ϕ dW (t) , ϕ(0) = ϕ0 , (4.12)

where the total time-varying parameter vector Θ(t) = [a1(t), a2(t), a3(t)] is subject to
parameterization via data. The parameter β is constant; it is investigated in the following
analysis. Thus, the time-varying parameters are assumed to be characterized by the Ri number
to construct a closed-form model for a RANS closure.

4.2.4 Variation of the Model Complexity

The parameter estimation procedure (see Sec. 2.2.1) is applied to various model structures
to investigate if a simpler or more appropriate model than the one given in the previous
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section (see Eq. (4.11) with β = 2, 5/4, 3/2) can be found. Additional models are constructed
by changing the degree of nonlinearity and the complexity of the noise. Testing of different
models is considered as another validation experiment that turns out to support the choice of
Eq. (4.11) as it is determined next.

The following list summarizes the suggested model variants:

1. dϕ = (a1 − a2ϕ)dt+ a3dW (t) (simplification)

2. dϕ = (a1 − a2ϕ)dt+ a3ϕdW (t) (simplification)

3. dϕ = (1 + a1ϕ− a2ϕ
5/4)dt+ a3ϕdW (t) (base)

4. dϕ = (1 + a1ϕ− a2ϕ
3/2)dt+ a3ϕdW (t) (base)

5. dϕ = (1 + a1ϕ− a2ϕ
2)dt+ a3ϕdW (t) (base)

6. dϕ = (1 + a1ϕ− a2ϕ
3)dt+ a3ϕdW (t) (complication)

The model parameters are considered to be time-dependent. Even more model structures
have been tested and are listed in the appendix A along with a brief description of their
performance.

Consider the models labeled with index 3 - 5. The constant 1 is justified in Sec. 4.2.2.
However, it was also tested whether the clustering method can identify this constant value 1
by the parameter estimation procedure. The results show that the value cannot be identified
together with other parameters. A plausible reason could be an overparameterization of the
model. This suggests investigating a model where the parameter of nonlinearity is constant.
Namely, to estimate:

dϕ =
[
a1(t) + a2(t)ϕ− ϕβ

]
dt+ a3(t)ϕ dW (t) , ϕ(0) = ϕ0 , (4.13)

Under the condition that the parameter a1(t) converges to 1 and a3(t) is close to zero in the
neutral state (Ri = 0). This model structure could be tested in further studies. In the next
section, the selected models are estimated and compared in terms of their likelihood.

4.3 Data-Driven Rejection of Model Alternatives

Although the models induced by the perturbation approach seem reasonable, it is common
practice to review different models. For this purpose, a collection of models to work with was
presented in Sec. 4.2.4. The models proposed in Sec. 4.2.2 are estimated using the clustering
procedure to identify an appropriate model structure and possible scaling of the nonstationary
parameters. In this section, the model performance is examined in terms of the likelihood
value:

J =
K∑

k=1

N∑
i=0

γk(ti)ln
[
pϕ(∆t, ϕ(ti+1)|ϕ(ti); θ

∗
k)
]
, (4.14)

where pϕ is the transition probability density function of a particular model (for its computation
see Sec. 2.1.2), ϕ the analyzed stability correction process, γk(ti) and θ

∗
k are the identified

regime affiliation and regime model parameters with the FEM-H1-SDE method (see Sec. 2.2.1).
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Note, that the cost is unpenalized, because the considered models have an equal number of
parameters. Typically, the information criteria used in model selection have a penalty to
compensate for the models’ complexity (Burnham et al., 2002). The number of clusters K
changes the complexity of the models as well. Therefore, the models’ cost is compared over a
reasonable fixed range of hyperparameter K.

Multiple definitions of the Bayesian information criteria for the variational framework
(Gerber & Horenko, 2014; Horenko, 2010b; Metzner et al., 2012) were tested on controlled
numerical examples (see Sec. 2.6). They were found to be inconsistent in estimating the
optimal number of clusters for different models structures (probably due to the nonlinearity of
the models). The parameter ϵ2opt of the clustering framework is estimated using the procedure
introduced in Sec. 2.4.1. Then, all fluctuations of the function γk faster than 1 h are removed
with a discrete wavelet filtering approach using Haar wavelet bases. This ensures that the
regimes do not switch faster than 1 h, which is the averaging scale of the RANS model.

This section uses data initially preprocessed according to Sec. 3.3.1. The vertically averaged
value of ϕ is examined to identify the optimal model structure:

⟨ϕ⟩ = 1
z30 − z1

∫ z30

z1
ϕ(t, z) dz , (4.15)

where z30 = 30 m is the height of the highest measurement and z1 = 1 m is the height of the
lowest. Once the model structure is established in the following analysis, the clustering is
repeated for different heights.

Figure 4.5 shows the change in model likelihood according to Eq. (4.14) over the number
of clusters used up to 10. This is more than sufficient to understand which model structure is
the most appropriate. The y-axis shows the scaled model cost according to Eq. (4.14). The
scaling between 0 and 1 is subject to the absolute minimum and maximum values and is done
here for a visual purpose. The lower the value, the better the model approximates the data.

To estimate an appropriate value for the number of clusters, the cost tradeoff is analyzed
and combined with the information gain measure introduced in Sec. 2.4.2. Since the cost and
information gain are not normalized, the tradeoff and the resulting number of clusters must
be well-considered.

In Figure 4.6, the cost (red) and the information gain (blue) are plotted on the dual axis so
that they overlap graphically. This allows us to assess whether the two curves are approaching
an asymptotic value, and to find a range for the number of clusters where the improvement
of the fit in terms of information gain is justified. The green areas in the figure 4.6 mark a
plausible range for the choice of the hyperparameter K for each of the models considered.

From Figure 4.6, it can be seen that the proposed range for the number of clusters K is
between 4 and 7 and that the range is insensitive to the model structure. The results in Fig. 4.5
show that within the considered range, the best model is type 5, which has multiplicative
noise and quadratic nonlinearity. The worst model is labeled with index 0 and has linear
structure and additive noise, where the absolute fitness value is so insufficient that it is not
even considered in the figure due to the significant cost values (compare the absolute cost value
in Fig. 4.6). Moreover, according to Fig. 4.5, the inclusion of cubic nonlinearity (model type 6)
leads to an increase in the cost value. Reducing to linear drift while retaining multiplicative
noise (model type 1) also does not improve performance.
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Figure 4.5: Selection of the best fitting model from a considered pool of models based on the
model fitness function (see Eq. (4.14)). The likelihood value is plotted against the number of
clusters used to resolve the time-varying parameters. The y-axis is rescaled for better illustration.
The model structure with quadratic nonlinearity performs best over almost the entire range of
clusters used. The simplest model structure: dϕ = (a1 − a2ϕ)dt+ a3dW (t) is not shown because
its fitness value is significantly higher than the value of the displayed models (see Fig. 4.6).

The formed sensitivity study is a plausibility check for the derivation of the model structure
Eq. (4.13). The data-driven testing of different model structures confirms that the quadratic
nonlinearity and multiplicative noise (Eq. (4.12)) is the correct candidate for the simplest
possible model structure within the considered dataset.

Finally, it should be noted that an attempt was made to simplify the quadratic model so
that the parameter a1(t) scales linearly with Ri. In addition, when identifying the parameter
scaling, an attempt was made to express one of the parameters by another to obtain a model
with effectively two parameters. None of the above approaches lead to a reasonable stochastic
closure.

4.4 Identification of Local Parameter Scaling

The SSE is defined as follows and one strives to obtain a closed-form as a function of Ri:

dϕ =
[
1 + λ(t)ϕ− υ(t)ϕ2

]
dt+ σp(t)ϕ dW (t) , ϕ(0) = ϕ0 , (4.16)

where λ(t) is the suppression rate of the turbulent mixing length lm ∼ 1/ϕ due to processes
above the mean scale, υ(t) is the production rate of the turbulent mixing, which becomes
relevant at larger values of the Ri number, and σp(t) is assumingly the perturbation intensity
of the turbulent mixing as a result of random sub-grid processes not resolved by the RANS
model (e.g., sub-mesoscales). The unknown time-dependent parameters λ(t), υ(t), σp(t) are
assumed to relate to the Ri number formed from the local gradients of wind and temperature
at the mean scale (marked with an overline and equal to 1 h in this study). Therefore, the
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Figure 4.6: Estimated optimal number of clusters for each of the considered model types. As
a trade-off between the optimal (low) fitness value and the information gain. The green color
indicates a proposed trade-off region. Each box represents one model type. The information gain
is estimated with Eq. (2.62), and logarithmically transformed.

objective is to determine the following scaling functions:

λ(t) = Λ(Ri) , (4.17)

υ(t) = V(Ri) , (4.18)

σp(t) = Σ(Ri) . (4.19)

The assumption that such function exists is sensible to the choice of the model structure.
For that reason, close attention is given in Sec. 4.3 to determine a pool of suitable model
structures. Furthermore, in general, the number of free parameters (here 3) demands to be small.
Otherwise, it becomes unlikely to identify all scaling functions due to over-parameterization.

Furthermore, the parameters λ(t), υ(t), and σp(t) are assumed to be independent of height,
and as the results show, this is indeed the case (see Fig. 4.8). Since the variable ϕ is estimated
independently at each height, and the stochastic model is independent of z by construction,
information about the vertical correlation of the process W (t) is missing and assessed later.

The vertical correlation is studied a posteriori. Physically, the sub-mesoscale motions
are non-uniformly distributed throughout the boundary layer and depend on height. In the
parameter identification, the sub-mesoscale motions are assumed to occur vertically with equal
probability in the observed boundary layer. In other words, they are modeled by a stochastic
process that is homogeneous in height. This is a strict assumption that must be made because
of the one-dimensional form of the parameterization method (see Sec. 2.2.1).

The study aims to investigate the scaling of the parameters of the model and is performed
twice. In the first experiment, the entire dataset is used for training. Since the results proved
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promising, the second estimation is performed on a reduced data set with higher estimation
accuracy and cross-validated with an excluded period. The very stable period excluded from
the training is carefully selected to form a validation dataset. Therefore, both experiments
differ in the amount of training data, estimation accuracy, and parameter parametrization.

In the first experiment, where the complete dataset is modeled, piecewise scaling functions
are proposed. Such a definition provides fine control over the shape of the stationary distribution
that the model predicts within the specific stability regions. The second parameterization is
practiced based on a reduced dataset. The scaling functions are designed to parameterize the
entire stability range continuously. It is worthwhile to consider both studies to investigate the
sensitivity of the parameterization.

After applying the model-based clustering method, the scaling of the model parameters
with Ri is examined using the estimated regime classifier (see Fig. 4.8). The cluster-averaged
value of the Ri number is calculated using the following equation for each height and cluster
individually:

Rik =
∑N

i=0 log10(Ri(ti))γ∗
k(ti)∑N

i=0 γ
∗
k(ti)

, k = 1, . . .K , (4.20)

where γ∗
k is the estimated model affiliation function from the vector Γ∗ obtained with the

FEM-H1-SDE method (see Sec. 2.2.1). The above equation can be recognized as a weighted
arithmetic mean, where the weights are the model affiliation function due to the imposed
constraints (2.21) and (2.22).

The scaling of the model parameters was also investigated with the mean local wind
and temperature gradients in different combinations. This investigation did not result in an
appropriate parametrization and hence is unreported.

4.4.1 Piecewise Parameterization Based on Entire Dataset

This identification study is performed by resolving the nonstationarity with 4 clusters for each
height by determining the regularization parameter of the cluster method a posteriori using
the procedure presented in (see Sec. 2.4.1). The 200 evaluations of the clustering method
ensure the adequate exploration of the cost function landscape in searching for the global
optimum. The regularization parameter varies between minimization attempts. The optimal
solutions of the classifier are used as initial estimates for optimization with the next closest
regularization parameter in some realistic range to estimate a reasonable parameter.

The results are summarized below, with Fig. 4.7 showing the scatter plots of the estimated
parameters over the Rik number along with the proposed scaling functions that quantify the
scaling relationships.

The parameter of the linear term is parameterized with (red line in Fig. 4.7a):

Λ(Ri) = λ1 tanh[λ2 log10(Ri)] + λ3 , (4.21)
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Figure 4.7: Local scaling of the time-dependent model parameters λ(t), υ(t), σp(t) in Eq. (4.16)
and their respective piecewise parametrization functions identified utilizing entire stably stratified
FLOSS2 dataset for training. The estimation of the parameter values is performed from a time
series with sampling rate units cycles/hour. Resulting units of the linear and quadratic terms are
in hours. The units of the diffusion parameter is balancing the units of dW (t)/dt [1/√

h] to result
in [1/h]. The scatter points represent the seven clustered time series from the respective heights. In
the left panel the orange points are removed from the calibration procedure of the scaling function.
The blue dashed line is a linear function extrapolating towards the limiting value such that ϕ = 1.

with λ = (9.5266, 0.9401, 8.4955). The parameter of the nonlinear term is parameterized with
(see Fig. 4.7b):

V(Ri) =


υ1 log10(Ri) + υ2 if Ri < 0.0088 ,
υ3 log10(Ri) + υ4 if Ri ∈ [0.0088, 0.2] ,

υ5 [log10(Ri) + υ6]2 + υ7 if Ri > 0.2 ,
(4.22)

where υ = (0.0532, 0.3193, 0.1505, 0.5192, 1.1930, 0.6990, 0.4140). The diffusion parameter is
parameterized by (see Fig. 4.7c):

Σ(Ri) =
{

σ1 log10(Ri) + σ2 if Ri < 0.0088 ,
σ3 tanh[σ4 log10(Ri)] + σ5 if Ri > 0.0088 ,

(4.23)

where σ = (0.0959, 0.5757, 3.4704, 0.5795, 3.2621).
This parameterization approach describes several regions with different functions. For all

three parameter values of SDE, the values are bounded within Ri ∈ [0, 01, 10]. The dispersion
of the parameter values takes for Ri > 1. Extrapolation beyond Ri = 10 should be done with
caution. In contrast, extrapolation to the limit Ri = 0 is reliable and is based on the following
physical consideration.

The expected value of the SSE should converge to 1 when Ri→ 0, which represents the
neutral boundary layer. The most sensible parameters for this condition are those of the drift
term. The limiting values of the parameters at Ri = 0.0001 are determined here by trial
and error after tuning some fitted values. An extended analytical investigation can improve
the parameter estimation values by incorporating the limiting states as a condition in an
estimation procedure. Such an investigation is omitted because the following parameterization
approach (see Sec. 4.4.2) finds the limiting value resulting from a regression analysis without
tuning.
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All three panels of the Fig. 4.7 lack point estimates for the limits of the Ri number range.
The scaling function is set so that the regime-dependent stationary PDF of Eq. (4.16) (see
Fig. 4.10) obeys the Gaussian distribution in the neutral condition. The range Ri ∈ [0.0088, 0.2]
in the parameter υ is described with an individual linear function. For the range Ri > 0.2 the
parameter υ follows a quadratic scaling.

The proposed piecewise parameterization provides a physically reasonable separation of
the x-axis at the Ric number. The piecewise description of the pre- and post-critical regions
controls the quality of the resulting stationary probability density of the SDE (see Fig. 4.10).
However, the drawback is the increased complexity. It is challenging to obtain the correct
smooth transient PDF and the correct limit state at Ri = 0. Moreover, the total number of
parameters in this approach is 17 and is considered too large. The following identification study
aims to reduce this number. A scaling function for an SDE parameter and the appropriate
limit state at Ri = 0 are identified next without any post-tuning.

4.4.2 Continuous Parametrization Based on Reduced Dataset

Four clusters were used to resolve the nonstationarity in the previous section to test the overall
stochastic parameterization procedure. Now, the clustering is repeated in more detail on a
reduced dataset to obtain the best possible estimates. Table 4.1 summarizes the estimated
hyperparameters for this study. The estimate of the affiliation function (not shown) is
insensitive to the choice of the ϵ2 parameter. For each height, the shape of the affiliation
function shows marginal differences concerning the slight change in ϵ2. The regime occupation
time was investigated to see if it matches across the boundary layer height and found to depend
on the height z. This is mainly because shallow boundary layers can be intermittent at the
top and neutral at the surface.

The optimal number of clusters is selected in this study based on the idea of the best
tradeoff between the functional cost value and the information gain. A summary figure can be
found in the appendix A.1. According to this figure, the resolution of nonstationarity with 5
clusters is sufficient. Subsequent analysis suggests that this number is rather too high, as the
affiliation function shows more suppressed transition regimes than clustering with K = 3, 4
(not shown). Nevertheless, the following results are based on K = 5.

Table 4.1: The estimated hyperparameters (Kopt, ϵ2opt) for each height of the model structure
Eq. (4.16).

1 m 2 m 5 m 10 m 15 m 20 m 30 m
Kopt 6 5 5 5 5 5 5
ϵ2opt 15 10 21.5 14.6 68.1 46.4 21.5

The parameterization of Eq. (4.16) is shown in Fig. 4.8. The results show a sufficiently
reliable scaling where the entire parameter range is described by a continuous function (see
Tab. 4.2). It is plausible to logarithmically transform both axes in the case of the nonlinear
terms (see Fig. 4.8b) and the diffusion parameter (see Fig. 4.8c), since these parameter values
must always be positive. The parameter values of the nonlinear term seem to have a larger
scatter. A sensitivity study has shown that a slight change in the slope of the parameterized
function leads to only a marginal change in the curves for the moments of the PDF (see
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Figure 4.8: Local scaling of the time-dependent model parameters λ(t), ν(t), σp(t) in Eq. (4.16)
and their respective continuous parametrization functions. The color bar is valid for each of the
panels and labels the seven heights. The estimation of the parameter values is performed from a
time series with sampling rate units cycles/hour. Resulting units of the linear and quadratic terms
are [1/h]. The units of the diffusion parameter [1/√

h] is balancing the units of dW (t)/dt [1/√
h] to

result in [1/h].

Fig. 4.11). However, the greatest sensitivity is observed in the parameterization of the linear
term (see Fig. 4.8a). Changes in this parameter have a large impact on the scaling properties
of the expected value of the PDF.

Studying the function in Fig. 4.8a one may wonder why the tangens hyperbolicus was
chosen, considering that the function for Ri > 1 does not obey the trend of the data. Several
variants of different polynomials were also tested to find a more straightforward function. It
turns out that they cannot accurately capture the scaling in the essential range Ri ∈ [0, 01, 1].
The inappropriate scaling problems in the presence of extreme turbulence suppression are
illustrated by the PDF in Fig. 4.34), especially for the considered range of Ri numbers (this
effect is not shown graphically). The tail of the scaling function for Ri > 1 is an inappropriate
suggestion for extrapolation. Furthermore, it is important to note that the scatter increases
for Ri > 1.0. Up to this value, there is a relatively moderate, persistent uncertainty in the
parameters, including the transition across the Ric. The lack of increased uncertainty in the
parameter values at Ric indicates a robust representation of the statistical properties of the
variable ϕ.

Table 4.2: Continuous scaling functions for the SSE parameters as a function of the local gradient
Ri number. The parameter values (indexed by 1, 2, 3, 4) of the descriptive function are estimated
with regression analysis. The parameter σs controls the noise intensity independently of the
stratification and is therefore useful for tuning. Value σs = 0 corresponds to the FLOSS2 dataset.

Param. Descriptive function 1 2 3 4

λ(t, z) Λ(Ri) = λ1 tanh
[
λ2 log10(Ri)− λ3

]
+ λ4 9.3212 0.9088 0.0738 8.3220

υ(t, z) V(Ri) = 10(υ1 log10(Ri)+υ2) 0.4294 0.1749 – –

σp(t, z) Σ(Ri) = 10(σ1 tanh[σ2 log10(Ri)−σ3]+σs) 0.8069 0.6044 0.8368 σs = 0

It is also worth mentioning that, unlike the previous parameterization approach (see
Sec. 4.4.1), the parameter values of the scaling function (see Sec. 4.2) are determined by
least-squares estimation. As mentioned earlier, the important target is to obtain a PDF with
an expected value equal to one when the number Ri approaches zero. The regression analysis
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naturally yields the correct values, so this condition is satisfied (see Fig. 4.8) without any
additional modification of the parameter estimates.

The diffusion term parameter (see Fig. 4.8c) cannot be set to zero in the neutral state and
must approach a small value. Otherwise, the stationary probability distribution function is
considered non-computable. This does not mean that the strong solution of SDE does not
exist. The fact that the stationary distribution is not computable for some finite, small values
of σp can be attributed to the numerical computation. The most important observation related
to the diffusion parameter is the ability to control the scaling of the noise and adjust it as
needed. Since the intensity of the noise reflects the activity of the sub-mesoscale motions, the
ability to prescribe it is beneficial when incorporating the SSE into a turbulence model.

It is found that the expected value of the stationary PDF (see Fig. 4.8) does not change
significantly when the function Σ(Ri) is replaced by a suitable linear function in the log-log
representation. A log-log linear scaling is less favorable for the FLOSS2 dataset than the
proposed one but still valid. The Σ(Ri) function can be adjusted along the y-axis with the
parameter σs to enhance or suppress the occurrence of the sub-mesoscale motions regardless
the stratification.

The identification study presented achieves the goal of finding a simpler parameterization
of the SSE. Compared to the approach in Sec. 4.4.1, a reduced dataset is used. The splitting
of the dataset into training and validation cannot be generalized by a percentage rule (Xu,
2018). The main reason for this is that the set of highly intermittent regimes (which are of
interest) is present at the beginning of the dataset. Since the research interest is in modeling
these regimes, one must choose the validation dataset wisely. For the identification study here,
≈ 5% of the dataset is used as validation. The data selected consists mainly of intermittent
regimens, as the goal is to validate these dynamics. This removes the most important data
from the training. A rough estimate is that ≈ 20% of the highly intermittent regimes is
removed from the training data. It could already be seen that there are some differences in the
parameterization of the scaling functions (see Fig. 4.7 and Fig. 4.8). In the following section
on validation, the differences are shown more clearly. However, they are relatively acceptable
and should give a sense of how sensible the parameterization is.

4.5 Vertical Covariance Structure of the Modeled Variable

The previous section shows that the parameter values of the SSE scale with the local value of
the Ri number. These results suggest that the proposed equation is suitable for prediction
within the first 30 m of the SBL. The spatial correlation of ϕ is expected to be a consequence
for spatially coherent sub-mesoscale motions affecting the local mixing length over an area.

It is assumed that the scaling of the parameters occurs as a logical consequence of the
nondimensionalization with the height variable z in Eq. 4.3 occurs. This nondimensionalization
is known for the neutral boundary layer from the logarithmic law. The more surprising results
imply that this nondimensionalization also holds for highly stratified boundary layers with
intermittent mixing. The important detail assisting to explain the surprising scaling properties
is the study of the vertical correlation of the process ϕ.
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This section examines the significance of the vertical covariance as a function of different Ri
numbers. The results of this section, as well as the validation of the spatio-temporal simulation
of the SSE (see Sec. 4.6.2), suggest that the scaling of the parameters of the stochastic models
is likely due to the minimum possible correlation length of the variable ϕ, which is, on average,
slightly smaller than the measurement height during highly stratified regimes. The vertical
covariance of the noise term would be characteristic of the measurement area. It should
therefore be accounted for by incorporating the SDE model into the existing RANS model
(see Ch. 5). In particular, attention in combining RANS and the SSE is mandatory to avoid
excessive mixing due to sub-mesoscale motions in the upper boundary layer ( z > 100 m)

Understanding the vertical covariance of the ϕ process is essential in facing the task of
turbulence modeling. To incorporate the prediction of ϕ via the SSE into a turbulence model,
one must specify the vertical covariance in the increments of the Wiener process. There
are two primary purposes for the previous. The first has to do with the numerical coupling
between the solution of the RANS model and the SDE. The turbulence model has derivatives
in height and consequently imposes those constraints on the solution of SDE. Accordingly, the
solution of SDE must have at least one derivative in height so the RANS model will stay stable.
For further details, the reader is referred to Ch. 5. The second reason is purely physical. Since
the sub-mesoscale motions are structures in space, the turbulent mixing generated should also
be spatially correlated to some degree.

The FLOSS2 dataset has seven measurement points, and this set of points is not sufficient
to obtain a valid estimate for the Autocorrelation Function (ACF) by inspecting the lagged
distance of the variables ϕ. Instead, spatial correlation is examined using a semivariogram
(Journel & Huijbregts, 1978; Matheron, 1963; Olea, 1999) given by an unbiased estimator:

γ(∆z) = 1
2N

N∑
i=1

(ϕ(zi + ∆z)− ϕ(zi))2 , (4.24)

where N is the length of the time series and ∆z = [1, 4, 9, 14, 19, 29] m. The semivariogram is
widely used in geostatistics and helps to deduce the autocorrelation structure for the process ϕ.

For the analysis of the nonstationary ACF, the spatially integrated variable ⟨ϕ⟩ is clustered
with the model (see Eq. 4.16 ) using the variational approach from Sec. 2.2.1 and the model
4.16 by resolving nonstationarity with four clusters. Within each cluster, a semivariogram is
estimated. It is found that in all clusters, the γ(∆z) is adequately represented by a Gaussian
model:

γ(∆z) ∼ a1(1− ρ(z)) , (4.25)

ρ(z) = exp(−(z/lz)2), (4.26)

where ρ(z) is the Gaussian ACF, lz is the correlation length parameter of the variable ϕ in
height. The parameter a1 is introduced to rescale the semivariogram to the range [0, 1]. The
value 1 in Eq. (4.25) is the transformation between the functional form of the semivariogram
and the ACF. The parameter estimates a∗

1 and lz∗ are obtained using the least squares estimator
and are reported in Tab. 4.3 along the identified regimes. The resulting ACF and the scaling
of the variable lz with Ri are shown in Fig. 4.9. Figure 4.9a shows a clear separation into the
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Table 4.3: Regime-dependent estimates of a Gaussian model for the vertical ACF. The indexed
columns denote the clusters and the rows the parameters.

1 2 3 4

lz
∗ 21 34 2736 3323

a∗
1 14 34 33905 35775
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Figure 4.9: Estimation of the regime-dependent vertical correlation function ρ(z, lz) for the
process ϕ. Each autocorrelation function ρ(z) = exp(−(z/lz)2) in panel (a) is estimated using
the variogram data (not shown). The data are then rescaled to the form shown in (a). Panel
(b) shows the regime-dependent estimates of length lz as a function of wind speed at the highest
measurement point of z = 30 m. Clusters 3 and 4 are the strongly stable regimes.

two regimes. Clusters one and two show that the variable ϕ is strongly correlated within the
first 30m. The estimated correlation length for these regimes is a result of extrapolation and
cannot be considered true. A reasonable interpretation is that a fully spatially connected ϕ is
typical for the neutral boundary layer at large Re numbers and low Ri numbers.

Clusters three and four in Fig. 4.9 show that the correlation length is within the measurement
height. Examining the change in lz over the mean wind speed at 30m height, we find evidence
of scaling (see Fig. 4.9b). Given the maximum available height, it is reasonable to conclude
that there is a log-linear relationship in FLOSS2 between the variables examined in Fig. 4.9b.

4.6 Model Validation

The identified SDE (4.16) is validated in three different ways. Comparison of the conditional
probability density function of ϕ between data and model shows us how adequately the
latter captures the long-term statistics. Simulating the sample evolution of the SDE and
comparing it to the evolution of the measured ϕ provides insight into how adequately it reflects
nonstationarity and thus interference in a localized space-time domain. Finally, examination
of the temporal ACF provides insight into the dynamic memory effects present in the data
and how well the model captures them. The given SDE validation tests aim to examine the
performance of the identified model to recognize its weaknesses. The tests are also intended to
provide a basis to support the embedding of the SDE model in a RANS closure.

122



4.6 Model Validation

4.6.1 Stationary Probability Density Function

For a fixed parameter Ri, the SSE (4.16) will reach a stationary behavior after a some time.
This behavior is described by a time-independent probability density function ps(ϕ,Ri) of the
stationary stochastic process ϕ. Although ps(ϕ,Ri = const) is fixed, individual realizations of
this process continue to fluctuate, so that individual observations ϕ(t0, Ri) and ϕ(t0 + ∆t, Ri)
belong to the density ps(ϕ,Ri).

Stationary statistical properties such as the expected value E[ϕ] and the most probable
value M[ϕ] can be calculated directly from ps. The difference

I(Ri) := E[ϕ]−M[ϕ] (4.27)

is a function of Ri and is defined as the measure of global intermittency for the SBL. The most
significant parameter affecting the objectivity of the measure I is the two averaging scales in
Eq. (4.3). However, this choice is determined to some extent by the multiresolution analysis
(see Fig. 3.10).

The measure I is interpreted as follows. In the neutral state, I ≈ 0 and ps(ϕ,Ri) represents
a Gaussian distribution. As Ri, increases the expected value diverge from the mode, the
measure I increases, and the shape of ps(ϕ,Ri) changes toward an extreme value distribution.

The function ps(ϕ,Ri) is computed from an Itô one-dimensional SDE assuming natural
boundary conditions (Horsthemke, 1984):

ps(ϕ,Ri) = Q

g2(ϕ,Ri)
exp

(∫ 2f(ϕ,Ri)
g2(ϕ,Ri)

dϕ

)
, (4.28)

where the normalization constant Q is:

Q−1 =
∫ ∞

0

1
g2(ϕ,Ri)

exp
(∫ 2f(ϕ,Ri)

g2(ϕ,Ri)
dϕ

)
dϕ . (4.29)

The drift term is f(ϕ,Ri) = 1 + Λ(Ri)ϕ − V(Ri)ϕ2 and the diffusion term is g(ϕ,Ri) =
Σ(Ri)ϕ. To my knowledge, there is no closed-form solution for the normalization constant,
and therefore it is evaluated numerically. However, given the constant Q a solution for the
stationary density is found, which is:

ps(ϕ,Ri,Q) = Q

Σ2(Ri)
exp

(
−2ϕ

2V(Ri) + 1
ϕΣ2(Ri)

)
ϕ2[Λ(Ri)/Σ2(Ri)−1] . (4.30)

Next, the stationary distributions of the different parameterization strategies are examined.
Recall that two parameterizations are performed. The piecewise parameterization (see
Sec. 4.4.1) is denoted with P-parameterization, and the continuous parameterization (see
Sec. 4.4.2) is denoted with C-parameterization. It is also important to remember that C
parameterization is obtained from a reduced dataset and has nine parameters, and the P-
parameterization has 17 parameters. The differences between the two approaches are discussed
below.

Figure 4.10 shows the scatter plot for the measured quantities ϕ and Ri from all seven
heights. The resulting ps of the model is shown with solid contour lines. For comparison, the
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stability function of the MSC atmospheric model is plotted with a dashed black line. The value
of the Ric number is shown with a dashed red line. The expected value and distribution’s
mode are plotted above the Ri number to perceive the distribution type better. The color of
the data points indicates the height. The model captures the structure of the distribution (see

height [m]

ϕ

Ri

PDF
E(ϕ)
M(ϕ)
Ric

MSC

Figure 4.10: Stationary PDF for the variable ϕ calculated from SSE parameterized with the
piecewise functions (see Sec. 4.4.1). The measured values are presented as a scatter plot, with the
height color coded. The color code has a transparency factor of 0.2. The solid black lines show the
contour lines of the ps(ϕ,Ri) calculated from the model. The solid red line shows the expected
value of the stationary PDF and the solid yellow line - the mode.

Fig. 4.10) as the data points fall into the distributional shape. The characteristic limit state
Ri→ 0 obeys a Gaussian distribution with expected value 1 and decreasing variance, which is
also perceived by the reduced dispersion. The distribution for Ri = 10−5 apparently cannot be
computed because the intensity of diffusion exceeds a possible minimum value. The expected
value in the limit of small noise intensity is meaningful only for the parameter values of the
drift term. In the limit, Ri→ 0 the diffusion parameter does not change the expected value.
This observation is obtained here empirically but should be studied analytically in the future.
The analytical study will be beneficial if the proposed SDE is confirmed to some extent on
more than one dataset.

It can be seen in the Fig. 4.10 that as the Ric number is approached from the left, the
expected value begins to diverge from the mode of the distribution. Due to this divergence,
the time evolution in a prediction of stability correction destabilizes over time and loses its
equilibrium so that the coefficient of turbulent mixing exhibits intermittency.

The expected value starts to decrease after the Ric number (see Fig. 4.10 and Fig. 4.11
is more quantitative), which implies a relative increase in turbulent mixing. This behavior
is not expected and represents the largest difference from traditional scaling. Such a large
contrast is created by the nonstationary events in the mean wind profile. These events are
considered in the identification of SDE. As noted in the multiscale analysis, the 1-hour mean
wind profile loses its logarithmic shape (see Sec. 3.3.4). The velocity profile is prone to jet-like
accelerations and decelerations (see Fig. 3.18). This energy of jet-like dynamics dominates the
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flow. The activity of jet-like motions may be the reason for the increased averaged turbulent
mixing captured by stochastic parametrization.

These results indicate that the effects of the sub-mesoscale motions are modeled on a scale
from 3 min to 1 h along with the jet-like dynamics > 1 h. Quantification of the contribution
of the sub-mesoscale motions is not possible with this stochastic modeling approach. On the
other hand, it should be noted that the noise intensity of the stochastic model increases with
the Ri number (see Fig. 4.8c). As shown in the multiscale analysis, the sub-mesoscale motion
band has a specific energy limit (see Ch. 3). Therefore, the noise intensity associated with
the sub-mesoscale motions should also be limited. Consequently, it is reasonable to assume
that in the context of the stochastic model (see Eq. (4.16)), the intensity of the noise exceeds
a suitable limit representative of sub-mesoscale motions. After exceeding this threshold, the
noise intensity should be physically related to the jet scale representation. Further research is
needed to investigate this hypothesis.

The result that the model describes the more or less correct distribution of ϕ as the
combined effect of the jet and sub-mesoscale motion is an indication that a more accurate
period selection without the jet scales may yield a different limiting distribution for supercritical
regimes 10 > Ri > 1. Further research on the classification of the motion scales is needed to
gain a better understanding of the physics involved for the regime quantified by the SDE for
10 > Ri > 1. The isolation of the jet-like motions should eventually lead to the curve of the
expected value in Fig. 4.10 following the traditional scaling. For practical reasons, one should
consider a particular RANS model in parallel when parameterizing the SSE. If a RANS model
predicts the jet dynamics, the stochastic model can be mixed with the traditional scaling for
supercritical stabilities.

Some conclusions for the P-parameterization in Fig. 4.10. One has fine control over the
stationary distribution for each stability regime of interest, with the drawback of having too
many parameters for the scaling functions. In addition, adjusting particular predictions is
difficult due to the large number of parameters. A more general parameterization is presented
below to overcome the mentioned complications.

For a proper evaluation of the C-parameterization, where the scaling function is given
by (see Tab. 4.2), the conditional density of the data is computed as a reference. Figure
4.11 shows in the upper panel the conditional probability density estimated with a Kernel
Density Estimation (KDE) method using the training data. All seven heights are used for this
purpose. The expected value and mode of the distribution are estimated from the density. A
characteristic divergence of the mode and expected value is present after the critical value of
Ri. The distribution of the model is shown in Fig. 4.11 in the bottom panel and is largely
similar to the distribution found in the data. The main difference is how the expected value
deviates from the model. In the data, both statistical measures stay close to each other
over a longer range of the Ri number, and then, at the critical value, they diverge abruptly.
According to the SSE model, the divergence is more uniform across the Ri number. It is
important to note that the conditional PDF of the data was also examined separately for each
measurement height. It was found (not shown) that some individual heights exhibit the same
type of moment divergence as given by the SSE model. Therefore, the discrepancy can be
attributed to averaging effect over height. It is also likely that the logarithmic spacing of the
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Figure 4.11: Stationary PDF for the variable ϕ calculated from SSE parameterized with continuous
functions. The parametrization is performed on a reduced training dataset which is used in the
upper panel. The stationary PDF conditional on Ri is estimated from the training data (top
panel). The distribution predicted by the model is shown in the lower panel. The expected value
(red) and mode (yellow) are plotted as a function of Ri for better comparison. The four panels on
the right show the distributions for fixed values of Ri, indicated by dashed vertical lines in the left
panels. The parameterization function of the MSC model is given in the left panels for reference.

measurements introduces some bias, as the region with higher wind gradients is sampled more
frequently than the upper boundary layer.

The right panel in Fig. 4.11 compares the distributions of observed and modeled probability
density of ϕ for four fixed Ri values, represented by the vertical dashed lines in the panels
on the left. The neutral, pre-critical, and post-critical regimes are adequately captured. The
distributions for 0.05 > Ri > 0.1 of the model have a more pronounced right tail of the
distribution. The left tail of the distribution is captured quite well. Attempts were made to
better represent the model’s distribution; for that, the scaling functions were slightly modified
but without significant improvement. Therefore, the solution found by estimating the scaling
functions using the least-squares estimation method is optimal.

As a concluding remark, both parameterization approaches produce reasonable results.
The C-parameterization is closer to the data statistics and consists of a simple set of functions
and is therefore preferable for use in a RANS closure.

4.6.2 Out-Of-Sample Forecast

The simulated time evolution of ϕ is validated on data excluded from training. The setup of
the numerical experiment is to compute sample paths of the SSE by providing the evolution of
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the Ri number estimated from data. To do this, one needs the gradients of mean wind and
temperature. To obtain these, Reynolds averaging is applied on a time scale of 1 h, separating
the mean from the fluctuations ui = ui − u′

i and T = T − T ′. Then, at each time step, a
least-squares fit of the log-linear equation following (Nieuwstadt, 1984) is performed:

f(z) = a1z + a2ln(z) + a3, (4.31)

where f(z) denotes U =
√
u2 + v2 or T . Local gradients are easily obtained via:

∂f

∂z
= a1 + a2

z
. (4.32)

Then the predictor variable is estimated from data:

Ri =
g

T0
∂T
∂z(

∂u
∂z

)2
+
(

∂v
∂z

)2 , (4.33)

where the overbar highligts the averaging scale of 1 h. The Ri is used to solve the SSE:

dϕ =
[
1 + Λ(Ri)ϕ− V(Ri)ϕ2

]
dt+ Σ(Ri)ϕ dW (t) , ϕ(0) = ϕ0 , (4.34)

where the parameter functions (Λ,V,Σ) are given in Tab. 4.2.
It remains to specify the sampling procedure of the Wiener process. Recall that Eq. (4.34)

is locally valid since the parameters are expressed by the local value of the Ri number. Thus,
for a one-dimensional SDE in a numerical discretization procedure, the discrete-time increment
of the Wiener process ∆W = W (t+ ∆t)−W (t) is i.i.d. random variable with expected value
zero and variance ∆t: (N (0,∆t)) (Horsthemke, 1984). To combine the variable ϕ with a RANS
model, it is required to prescribe the correlation structure ρ(z) of ∆W in height such that the
vertical gradients of ϕ exist. Moreover, the reference data show some correlation patterns in
the intermittent regime that need to be modeled appropriately (see Fig. 4.13b). The spatial
covariance is excluded from the classification analysis, so the obtained parameter scaling
depends on the preprocessed nondimensionalization with height z (see Eq. (4.3)). Introducing
a spatial covariance into ∆W requires a strong assumption that the spatial structure of ∆W
is independent of the parameter-scaling function Σ.

The sampling method for the variable ∆W that is independent in time but correlated in
the vertical direction is discussed next. For the numerical solution of Eq. (4.34), a stationary
Gaussian process with zero mean and a spatial covariance function ρ must be sampled such
that the samples are independent. This is achieved by using the circulant embedding method
of Lord et al. (2014), which is an exact sampling method and is discussed below.

Let us denote the vector of samples, which represents the spatially correlated perturbations
in height z by X,

X := [X(z1), X(z2), . . . , X(zN−1)]⊤ , (4.35)

with uniformly spaced sample points zn = n∆z for n = 0, . . . , N − 1 on a space interval
z = [1, 30] m.
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The vector X must be sampled such that the autocovariance Cov(X,X) = E(X − E(X))2

obeys a parametric covariance function ρ(z). For a given covariance function ρ(z), there is an
associated real-valued, symmetric, nonnegative definite and circulant covariance matrix P ∈
RN×N . The function ρ(z) evaluated on a discrete grid is the first column ρ1 = [ρ0, ρ1, . . . , ρN−1]
of P. Given the specific matrix P (for more details see Lord et al. (2014)), two time-independent
samples X(t), X(t + ∆t) can be sampled from N (0,P) applying the discrete Karhunen–
Loeve expansion:

Z = X(t) +
√
−1 X(t+ ∆t) = FD1/2ξ =

N∑
i=1

νi

√
λi ξi, (4.36)

where Z is a complex-valued Gaussian vector and F is a Fourier matrix typically used in
the discrete Fourier transform. Together with the spectral decomposition of:

P = FD1/2D1/2F ∗ , (4.37)

the symbol D denotes the diagonal matrix with eigenvalues νi. The columns of F are
orthonormal eigenvectors ν1,ν2, . . . ,νN and ξ = [ξ1, ξ2, . . . , ξN ]⊤ ∼ N (0,1N ). The matrix
F ∗ is the complex conjugate of F . The multiplication of F by D1/2ξ in Eq. (4.36) is formally
the operation of the discrete Fourier transform. To use the Eq. (4.36) in practice, the
circulant matrix P is constructed following the Fourier representation of circulant matrices
(see Proposition 6.45 in Lord et al. (2014)[p.243]), the diagonal entries of D are given by the
inverse discrete Fourier transform of the first column of the matrix P:

ν :=
√
NF ∗ρ1 . (4.38)

Finally, two time-independent samples X(t, z), X(t+ ∆t, z) are obtained using Algorithm 6.7
of Lord et al. (2014) with the following steps:

1. Evaluate ρ(z) on a discrete grid to obtain the vector ρ1

2. Compute ν = N F ∗ρ1

3. Compute y = ν1/2ξ, where ξ ∼ CN (0, 2 · 1N ) is complex-valued

4. Compute Z = (Fy)/
√
N

5. Get the real and imaginary parts: X(t, z) = Re(Z), X(t+ ∆t, z) = Im(Z)

Now that we know how to sample the spatially correlated perturbation, we are ready
to solve Eq. (4.34). The first simulation is examined using the P -parametrization, with the
corresponding conditional probability distribution in Fig. 4.10 and the parameter functions
(Λ,V,Σ) are given by Eqs. 4.21, 4.22, 4.23. The covariance function of the perturbations is
a Matérn covariance (Lord et al., 2014) with a constant correlation length of 15 m as an
example. The actual correlation function of the dataset is examined in Sec. 4.5.

Figure 4.12 shows the measured and simulated profiles of the variable ϕ throughout 100
hours within the training data. The sampling frequency is 1 min for both variables. The
right panel shows the statistics averaged over the period (shown with the boxplots) and
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time [hour]
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ϕ

Figure 4.12: In-sample prediction comparison using the piecewise parameterized SSE with
Matérn covariance function for the vertical dimension. The top panel shows the prediction of the
model within the training data shown in the bottom panel. The right panel compares the total
statistics profile found in the data (boxplots) and those predicted by the model (solid lines).

the model (marked with solid lines) for the height considered. The vertical red line is the
median and closely follows the median of the boxplots. The black solid lines represent the
percentiles 5% 25% 75% and 95% of the distributions. It is noticeable that the percentiles 5%
25% are in excellent agreement with the respective quantiles of the box plots. The 75% and
95% percentiles are noticeably larger than the data. The overall evolution of the simulated ϕ

adequately captures the highly intermittent period around time frame 40 h. The model resolves
the fine structure in the upper height, which is difficult to see in the measured variable due to
larger spacing intervals. On average, the real data show a more regular, uniform development
pattern within neutral conditions. In addition, the model predicts some intermittent local
patches of increased mixing over the ground, which the data do not confirm. A possible
explanation would be that the disturbance changes its correlation length as a function of
stability conditions. The P-parameterization approach reproduces the ϕ trend. It is also
important to recall that the period considered is part of the training data set and is expected
to be valid in terms of record-averaged statistics.

Next, we compare the evolution of the ϕ profiles using the C-parameterization (see Sec. 4.4.2)
within the validation data not used in the clustering procedure. The input variable is the Ri
number estimated on a scale of one hour. Equation (4.16) is solved using the parameterization
functions in Tab. 4.2. The vertical correlation structure of the Wiener process is given by the
estimates in Fig. 4.9. The correlation length lz is given by the scaling found in the data and is
calculated from the value of the mean wind at the highest point U30 as

log10(lz) = 0.06U30 + 1.23 . (4.39)

The parameters of the previous function are estimated using only the values of the weak
wind regimes (see Fig. 4.9). The correlation length for the strong wind regime is considered
unreliable because it exceeds the measurement height.

Equation 4.16 is solved numerically using the Milstein method with a time step ∆t =
1.6 · 10−4 and then downsampled to ∆t = 1.6 · 10−2. The spatial height coordinate is resolved
using 32 points. However, the spatial resolution does not affect the solution since there are
no gradients in the current formulation. The spatial resolution is set to resolve the smallest
possible correlation length about 10 m.

The predictor variable Ri varies on a time scale slower than 1 h. Since the traditional
scaling law for predicting ϕ is a static function, its time evolution is also slower than 1 hour
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(ϕ = 1 + 12Ri). Solving Eq. (4.16) yields a ϕ with stochastic fluctuations much faster than
1 hour. Therefore, for comparison, the modeled variable ϕ is temporarily averaged with a
moving window of length 1 hour (ϕ).

The circular embedding method generates the spatially correlated perturbation patterns
with a Gaussian correlation function. Since the method is based on periodic functions, the
size of the circulant matrix here is set ten times larger than the number of spatial grid points.
This avoids the undesirable effect of a pattern entering the area from another side due to the
periodic boundary conditions.

Figure 4.13a shows the evolution of the Ri number and Fig. 4.13b shows the corresponding
evolution of ϕ for several nights of the validation dataset. The maximum value of Ri in the
forecast is limited to 10. The color bar in Fig. 4.13a is set so that the white areas indicate the
critical value Ric = 0.25. Accordingly, the red color indicates the neutral conditions and the
blue color indicates the highly stratified conditions. The color bar in Figure 4.13b is set so
that the white areas denote ϕ = 1, which corresponds to neutral conditions. Accordingly, the
blue color denotes the suppressed turbulence level ϕ≫ 1 and the red regions represent the
enhanced mixing due to turbulence ϕ < 1. Different flow conditions are marked with a red
frame as an example. It can be seen that for the intermittent conditions with high values of
Ri (see Fig. 4.13a), the variable ϕ (see Fig. 4.13b) shows extreme mixing events. Recall that ϕ
represents the relative deviation of turbulent mixing as a function of the mean wind gradient.
For the intermittent conditions in Fig. 4.13, the gradient of the mean wind is lower compared
to the other two marked regimes.

The performance of the stochastic model is analyzed on the selected data by simulating
ϕ using the evolution of Ri calculated from the data (see Figs. 4.13c,d,e). The solution in
the three panels differs by a model parameter σs, representing the sub-mesoscale motion’s
intensity. This parameter is defined in Tab. 4.2 in the function that parameterizes the scaling
of the noise process in the SSE. The identification study (see Sec. 4.4.2) showed that σs = 0
is optimal based on the training dataset. However, the parameter σs = 0 is not optimal for
the validation dataset since the observations show a slightly weaker sub-mesoscale activity.
Based on the found optimum σs = 0, it is easy to adjust the simulation of the model to the
considered realization of the measured ϕ.

The activity of the sub-mesoscale motions is controlled by changing the value of the
parameter σs that shifts the scaling function (see Fig. 4.8c) along the y-axis. Consequently,
it is easy to suppress the intensity of the sub-mesoscale motions by decreasing the value of
σs. This is done in Fig. 4.13d,e. Figure 4.13a shows the solution of the stochastic equation
with the identified parameter σs = 0. Comparing this solution to the data within the selected
regimes (see Figure 4.13b), we find that the intensity of the extreme mixing events is too
high. Figure 4.13d shows a slightly adjusted value of σs = −0.07, which lowers the intensity of
the extreme events to a reasonable level for all three regimes considered. More quantitative
analysis for fitting the σs parameter is presented later in this section.

A further decrease in the value of the parameter σs provides an even stronger elimination
of fast perturbations (see Fig. 4.13e). This limit is interesting because one can wonder how the
model behaves in the regimes of precritical stability. To analyze this question, one can examine
the evolution of ϕ given by traditional scaling (compare Fig. 4.13e with 4.13f). It is assumed
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Figure 4.13: Comparison of the profile evolution of the modeled ϕ on the validation dataset. a)
Evolution of Ri number is calculated on a scale of one hour (·) and is used to predict ϕ evolving
on a scale of three minutes. b) Observed variable ϕ in the validation dataset. c) Prediction of ϕ
with the C-parameterized model (see Eq. 4.34). d) Prediction of ϕ with empirically fitted noise
level (σs = −0.07). e) Prediction of ϕ with the suppressed noise level. f) Prediction of ϕ with
traditional scaling. The red frames mark dynamically different regimes.

that the stochastic model in the limiting case without small-scale perturbations should converge
against the classical scaling for Ri < Ric. Comparing the weakly and strongly stable conditions
(Figs. 4.13e with 4.13f), we find that ϕ of the stochastic model resembles the classical scaling
prediction. It also captures the main tendency by evolving from the weakly stable to the
strongly stable regime. However, it appears that classical scaling performs favorably with
respect to observations in the weakly and strongly stable regimes (compare Fig. 4.13f with
4.13b). The comparison suggests that the stochastic model is not sensitive enough to the
vertical gradient of the Ri number in the limiting case of low small-scale perturbation. This is
because the expected value of the invariant measure starts to fall after criticality (see Fig. 4.11).
However, if we compare the intermittent regime (see Fig. 4.13e with 4.13f), the stochastic
model with parameter σs = −1 yields a finite turbulence suppression level, while the classical
theory predicts the absence of turbulence.

In summary, the stochastic model captures the full range of regimes in the nighttime
boundary layer exceptionally well. The model reproduces the spatio-temporal patterns in the
data. In addition, the intensity of the sub-mesoscale motions will be adjusted by changing a
parameter value. How the adjustment of this parameter can be controlled and quantified is
explained below.

Consider the selected regimes in Fig. 4.13 (red frames). One way to understand the effects
of parameter σs is to compare the distributions of the vertically averaged variables ϕ. The
distributions are compared quantile-wise in a so-called quantile-quantile plot (see Fig. 4.14).
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Figure 4.14: Quantile comparison of height-averaged PDFs of the model within selected periods
in Figure 4.13. a) Selected weakly stable state. b) Selected strongly stable state. (c) Selected
intermittent state. The solid red line in each box represents the quantiles of the data distribution
for reference. The distribution is recovered when the points lie on this line. The solid gray line is
the median of the data. The dashed gray lines mark the respective upper and lower quartiles that
make up the interquartile range on each axis. Points above the red line indicate weaker mixing,
those below indicate stronger mixing than found in the data per quantile. Regions outside the
interquartile range can be interpreted as rare mixing events.

The red reference curve in all three panels is created by plotting the quantiles of the data
distribution against itself. Any other distribution that is to be compared to the reference is
plotted in terms of its quantiles over the quantiles of the reference distribution. If the points
on the reference line coincide, then the model captures the data distribution well. Another
useful feature of such a plot is the derivation of the effects of turbulent mixing. Points below
the red line indicate intense mixing, and points above indicate too weak mixing. Depending
on how far the points are from the median (in all three plots, the medium is represented by
the solid gray line on both axes), one can judge how rare the extreme events are and whether
they cause stronger or weaker mixing than the observations.

In the following, we investigate the effect of changing the intensity of the sub-mesoscale
motions of the model. The originally parameterized model with parameter σs = 0 produces
too much mixing for the considered validation dataset (the quantile marked in black is below
the red reference line (see Fig. 4.14). For all three regimes, reducing the parameter value from
σs = 0 to σs = −0.07 is beneficial because the quantiles are closer to the reference line (see
Figs. 4.14a, b, c), with the best estimate found in the intermittent regime. The median of the
weakly and strongly stable periods is overestimated and underestimated, respectively. The
right tail of the modeled distribution σs = −0.07 shows that extreme events cause slightly less
mixing. In contrast, the model σs = −0.07 in the strongly stable period tends to overestimate
mixing in general but is better than the model with σs = 0. Overall, fitting the parameter
leads to improved performance; however, it is important to remember that the plots represent
one realization of the solution. Indeed, the quantiles are different in another realization but
still obey the trends described above with respect to the change in σs.

4.6.3 Temporal Autocorrelation and Self-Similarity

The temporal ACF is estimated exemplary only for the height of 15 m, although more heights
are available. The study is based on the results of clustering the time series of ϕ with Eq. (4.16)
using five clusters. The research interest aims to understand the time evolution dynamics in
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the identified clusters and the relationship with the Ri number. It is also of interest whether
the proposed SDE reproduces the temporal ACF of the data. The temporal ACF is defined as:

Rϕϕ := E[ϕ(t)ϕ(t+ τ)] , (4.40)

assuming that the process ϕ is stationary. The assumption of stationarity is justified within
each identified cluster by the stationary parameter values of the underlying SDE. However,
constant parameter values of a SDE do not directly imply a stationary behavior of the process.
Since the considered SDE is nonlinear, the sample path and data still exhibit some degree of
nonstationarity within each cluster, especially for higher values of Ri number.

Moreover, the regime affiliation function shows that the transitions between regimes are
sometimes quite long. Accurate quantification of regime states is questionable during transient
states. Therefore, the time series evolution and the corresponding ACFs are expected to
experience some variability within the identified regimes.

To account for this variation, the ACF within each regime are consequently estimated
several times and then averaged. Because the total occupation time of the regimes varies
across regimes, the number of ACFs available to estimate the average also varies. However,
the estimated confidence intervals reflect a sufficient number of observations within each
regime. The left column of panels in Fig. 4.15 shows the regime-based ACF for the data and
model, labeled with the median Ri number for each. Panels are sorted from top to bottom by
increasing Ri number.

For reference, an exponential ACF is estimated from the data ACF (blue) and normalized
by its variance. The variance within each regime is known indirectly through the identified
function (see Fig. 4.8c). The ACF is computed with a maximum lag of 3 hours and normalized
by 1 hour. This is a reasonable choice since the mean wind profile is on this scale. The window
for estimating ACF is set to 6 hours to account for the large lag values. The light blue areas
in Fig. 4.15 show the confidence intervals.

According to Fig. 4.15, the autocorrelation function for ϕ follows an exponential decay only
for the first few lags in the data. Moreover, the decorrelation time shrinks as the Ri number
increases (see the panels from top to bottom). Above a specific value, the autocorrelation
deviates from the exponential curve and begins to decay more slowly. This behavior indicates
the presence of some long-lasting memory effects. The observed delay in the decay rate of ACF
is present in all regimes. A comparison of the model results shows that the found kink in ACF
is not captured in any of the regimes. However, the model reproduces the decorrelation time
(where the autocorrelation meets the x-axis) relatively well with respect to the Ri number.
However, the decorrelation time in each regime is shorter than in the data. The confidence
intervals at the bottom of each panel indicate the standard deviation and variability of the
ACF number. The largest variability is found at Ri = 0.56, shown in the middle panel.

According to the Wiener–Chintschin theorem (Leibovich & Barkai, 2015), the Fourier
transform of the ACF gives the power spectral density of the process ϕ and is shown in the
right column in Fig. 4.15. The frequency is constrained on the x-axis between 0.3 and 30
cycles per hour. The spectral energy decay follows a power law with an exponent value of
−0.75 and is reproduced by the model in each range. These results suggest that the process
is ϕ self-similar, assuming the proposed model structure. The model structure may bias the
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Figure 4.15: The left column shows the regime-averaged temporal autocorrelation function of
the variable ϕ for a time series modeled at height 15 m. Blue labels the observations, and red
color labels the ACF of the model. The right column shows the regime-dependent Power Spectral
Density (PSD) of the data and the model. The slope is marked in each panel with a gray triangle.

classification. For example, a linear model may model the time series better than the proposed
one at low Ri number. Therefore, it is possible that the optimal model structure depends on
the Ri number and consequently leads to different spectral densities.

4.7 Conclusion and Discussion

In this chapter, a stochastic model is introduced and validated to parameterize the intermittent
turbulence in SBL. The approach accounts for turbulent mixing arising from the sub-mesoscale
of motions. This is achieved by formulating a SDE based on the existing scaling relation in
combination with a parameter perturbation approach. The validity of the adopted functional
form of the SDE is confirmed by comparing several closely related functional forms. The
complexity of the proposed functional form is shown to be simplest way to achieve a valid
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representation of the dynamics for the considered variable ϕ. However, further simplifications
of the functional form are possible. In this work, the SDE has three nonstationary parameters
and a quadratic nonlinearity.

The proposed SDE parameterization is achieved using the developed model-based clustering
method (see Sec. 2.2.1). The methodology discovers a suitable scaling of the stochastic model
parameters with the local Ri number (see Fig. 4.8), which allows application in a RANS
turbulence model. These results support that the SDE is suitable to model the entire regime
range. The parameter estimation procedure shows that nonstationarity is captured; additional
isolated regime studies should be performed concerning the SSE. In particular, numerical
or wind tunnel experiments can provide controlled case studies, for example, by perturbing
the stable SBL at a constant Ri number with small momentum injections. Under controlled
conditions, the SSE can be fitted in time assuming constant parameters. Such parameterization
studies are more accessible to perform than applying the model-based clustering method to
field measurements.

The SSE model adequately captures the invariant density and the resulting dispersion
of the stability correction variables. The observation of non-Gaussian statistics can explain
the intermittent behavior as follows. Global intermittency is explained by the increased
divergence of the expected value from the distribution mode. For sufficiently large observation
periods, such as months and years, the expected value corresponds to the degree of turbulence
suppression (see red line in Fig. 4.11). However, if we start observing in a short time frame
such as hours or nights, the most likely value is the mode of the distribution (see yellow line in
Fig. 4.11), and thus turbulent mixing is present.

In this study, only one data set was analyzed. A broader validity of the stochastic
equation is questionable and should be explored in other field experiments. The important
question to investigate is: How general is the functional form of the stochastic model? As
geostrophic conditions change from place to place, flow patterns also change, and therefore
the parameterization functions of the SDE can be expected to change. If a particular
parameterization design is fixed, the identification of the parameters can be made directly by
adjusting the PDF moments of the process ϕ, thereby avoiding the clustering method.

It is shown that the out-of-sample prediction of the variable ϕ is a good approximation
of the spatio-temporal evolution of the data (see Fig. 4.13). The presented stochastic model
can be tuned to optimize the intensity of intermittent turbulent mixing by changing one
parameter. The stochastic activity is also present in the weakly stable regimes and may be
undesirable when modeled with the RANS model. However, the induced variability in the
mixing is Gaussian and does not change the long-term behavior. To suppress the variability in
the weakly stable regime, one must change the presented parameterization of the diffusion
term in the desired Ri range. A discontinuity in the scaling is possible and might be exploited.
However, when changing parameters rapidly, one wants to account for the delay required for
equilibration. Consequently, discontinuity of the parameters of the SSE should be treated
carefully.

A detailed examination of the temporal ACF revealed a characteristic kink that causes a
longer decaying correlation compared to an exponential decaying ACF. The stochastic model
cannot represent the kink observed in data but captures the decorrelation time scale correctly.
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Some additional observations arising from unreported observations of the model performance
analysis are summarized next. The C-parameterization (see Tab. 4.2) appears to be too over
diffusive compared to the P-parameterization (see Sec. 4.4.1). This is mainly because the
divergence of the moments is too smooth. Another reason could be that the data from the
training was excluded for validation – also, the integral scale changes with the Ri number.
The integral scale is a constant averaged value within the strongly stable regime. Fixing
the integral scale leads to increased variance of ϕ for the weakly stable regime present in
the C-parameterization. It is possible to improve this problem by integrating the temporal
variability of the turbulent scale into the pre-analysis step for estimating ϕ. To recover the
temporal variability of the integral scale, one must perform its estimation within each identified
regime and reconstruct its temporal evolution using the affiliation function (see Fig. 2.17).
Once the time-dependent integral scale is known, Reynolds-averaging is repeated with a
time-dependent scale. Such time-dependent averaging results in a more accurate estimation of
the ϕ signal for the weak and neutral conditions.
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5
Stochastically Unsteady

Reynolds-Averaged Navier–Stokes
Equations

This work aims to model intermittent turbulence by identifying and developing a data-driven
surrogate model. Previous chapter defines and validates the SSE (4.33) that models the
momentum stability correction in the SBL as a stochastic process. This process represents
a non-dimensional quantity by which turbulent diffusion is suppressed due to stratification.
The SSE accounts for the random turbulent mixing phenomena likely to be generated by
non-turbulent sub-mesoscale motions (see Ch. 3).

In chapter 4, the SSE is validated in a restricted setting where only the modeled variable
is examined. Although the results anticipate promising applications, one would like to
understand how to use the stochastic equation in predicting SBLs. To complete the data-
driven development cycle of an intermittent turbulence closure, the SSE is coupled with a 1.5
order RANS turbulence model.

An innovative turbulent mixing length is introduced to combine a RANS model with the
SSE model. Details of the numerical discretization are presented, using a blending procedure to
combine the deterministic and stochastic system structures. The resulting turbulence closure is
termed Stochastically Unsteady Reynolds-averaged Navier–Stokes Equations (SURANS)
because the introduced sub-grid perturbations prevent the model from reaching an equilibrium
state.

The overall modeling concept is critically evaluated against a turbulence model without
stochasticity. Several numerical experiments are performed to assess the solution properties of
the SURANS closure in simulating neutral and strongly stable regimes. A simulation with
varying forcings is also performed to evaluate the transient dynamics of the model. In addition,
the effect of non-turbulent sub-mesoscale motions on the temperature inversion within the
SBL is investigated. This chapter provides insights into the numerical implementation and
numerical stability, performance, and validation of the SURANS model. The results provide a
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solid foundation for further research questions and may even motivate testing the SSE in a
global circulation model.

5.1 Model Formulation

5.1.1 Extending a Reynods-Averaged Navier–Stokes Model

The SURANS model is a set of prognostic equations for simulating intermittent SBL. The
main difference to the RANS model is an added SSE representing the evolution of a stability
correction variable. The SSE is limited at this stage of research to the surface boundary layer,
and hence the effect of intermittent mixing is modeled to a certain maximum height above the
surface because the SSE is calibrated based on measurements up to 30 m.

Consider the following assumptions for a classical RANS to simulate a SBL. It is assumed
that the Boussinesq approximation and the geostrophic balance holds. The coordinate system
is aligned with the direction of the geostrophic wind. The surface is considered to be flat.
The turbulence is assumed to be homogeneous in the horizontal plane, and the dissipation
is in balance with the production. The vertical turbulent fluxes are more relevant than the
horizontal ones. The flow is incompressible, the humidity and the air viscosity are neglected.
A more detailed derivation of the RANS model can be found in (Stull, 1988). Hence, the set
of equations for the SURANS model is:

∂u

∂t
= (v − vg)fc + ∂

∂z

(
Km(ϕ)∂u

∂z

)
−Nu (5.1)

∂v

∂t
= −(u− ug)fc + ∂

∂z

(
Km(ϕ)∂v

∂z

)
−Nv (5.2)

∂e

∂t
= ∂

∂z

(
Km(ϕ)∂e

∂z

)
+Km(ϕ)

[(
∂u

∂z

)2
+
(
∂v

∂z

)2]
− g

T0
Kh(ϕ)∂T

∂z
− (αεe)3/2

lm(ϕ) (5.3)

∂ϕ = τh
−1(1 + Λ(Ri)ϕ− V(Ri)ϕ2)∂t+ τh

−1/2Σ(Ri)ϕ∂W (t) (5.4)
∂T

∂t
= ∂

∂z

(
Kh(ϕ)∂T

∂z

)
(5.5)

dTg

dt = 1
Cg

(Rn −H0)− κm(Tg − Ts) (5.6)

Equation (5.5) provides the evolution of the temperature without radiative effects. The
surface temperature Tg is the boundary condition of Eq. (5.5) and is modeled utilizing the
force-restore method (Garratt, 1994; Stull, 1988, Ch. 7) in formulation given by Acevedo et al.
(2021). The thermal capacity of the soil is denoted with Cg. The resulting soil heat transfer
coefficient κm = 1.18ω is parametrized relating the Earth’s angular frequency. The term H0

denotes the turbulent sensible heat flux and is in more detail explained in Sec. 5.1.3; Rn is
the net radiation and incorporates, among others, the effect of cloud cover. More detailed
parametrization of this term is used by (Maroneze et al., 2019). The temperature below the
surface Ts at some finite depth is nearly constant and fluctuates on a seasonal scale. It is,
therefore, deemed fixed for the simulation of individual nights.

Equation (5.4) is the novel contribution to the classical RANS model and is detailed next.
Equation (5.1) and (5.2) are the Reynolds-averaged momentum equations in geostrophic
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balance forced by the mean geostrophic wind components (ug, vg). The profile of these
components is uniform in height. The wind vector components are denoted with (u, v), t is
time in seconds, z is height in meters, and fc is the Coriolis parameter. The kinematic
turbulent fluxes for momentum and heat are modeled according the eddy-viscosity theory
(w′u′ = −Km

∂u
∂z , w

′v′ = −Km
∂v
∂z , w

′T ′ = −Kh
∂T
∂z ). The turbulent Prandtl number Prt = Km

Kh

is for simplicity set to one. (Although stochastic modeling of Kh is possible with additional
data analysis, and even as a coupled 2D system for Kh and Km, this numerical study focuses
solely on modeling Km). Relaxation term Nu = (u− ug)/τr and Nv = (v − vg)/τr, where τr is
the relaxation time, forces the solution over the entire column towards the geostrophic wind
(Vignon et al., 2018). The relaxation terms are a trade-off to suppress the inertial oscillations
(detailed explanation is provided in Sec. 5.1.4). The value of τr [h] is set in a range of 3− 6
hours, such that the solution is dictated by (5.1) and (5.6) rather than by the geostrophic
forcing (ug, vg). A study with changing geostrophic wind is conducted in Sec 5.3.3.

The prognostic Eq. 5.3 describes the evolution of the TKE denoted with e, where g = 9, 81
[m s−2] is the gravitational acceleration, T0 = 300 [K] is the reference potential temperature,
αε = 0.1 is the modeling constant of the dissipation, and lm is the turbulent mixing length.
The first production term includes the vertical gradient of the wind components. The third
buoyancy term is in this work always positive (stable stratification) and hence functions as a
sink. The last term in Eq. (5.3) is the parametrized turbulence dissipation rate. Furthermore,
it is assumed that the diffusion coefficient of the Laplace operator in Eq. (5.3) is equal to Km.
The reader is referred to Rodrigo & Anderson (2013) for more details on the parametrization
of the TKE equation. Next, the gradient Ri number is used:

Ri =
g

T0
∂T
∂z(

∂u
∂z

)2
+
(

∂v
∂z

)2 , (5.7)

where its value is confined in the range [10−5, 10]. The essential closure elements of the model
are explained next. The first one being the kinematic eddy-viscosity coefficient, which is
modeled as:

Km = αlm
√
e , (5.8)

where α = 0.46 is a modeling constant for neutral boundary layer (Rodrigo & Anderson, 2013).
The turbulent mixing length is:

lm = κz

φ(t, Ri) + κz
λb

, (5.9)

where φ(t, Ri) is a nondimensional stochastic process as a convex combination of the process ϕ
and function ϕf that corrects the turbulent mixing length of stratified flow depending on the
Ri number. Variable φ is defined later in text. Also, this process accounts for the variation
of the mixing length induced by the sum of different non-turbulent sub-mesoscale mixing
events. The term κz

λb
is the Blackadar’s extension (Blackadar, 1962). Following Rodrigo

& Anderson (2013), the value λb, which restrains the size of the largest turbulent eddies in
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neutral stratification is parametrized as:

λb = 2.7× 10−4 ug

|fc|
, (5.10)

where fc = 2ω sin(φ), with φ = 40◦N and ω = 7.27× 10−5s−1. The stochastic process ϕ is
expressed by the prognostic Eq. (5.4) with the scaling functions obtained in Ch. 4:

Λ(Ri) = 9.3 tanh [0.9 log10(Ri)− 0.1] + 8.3 , (5.11)

V(Ri) = 10(0.4 log10(Ri)+0.2) , (5.12)

Σ(Ri) = 10(0.8 tanh[0.6 log10(Ri)−0.8]+σs) , (5.13)

where σs (see Eq. (5.13)) regulates the intensity of the stochastic turbulent diffusion assumed
to be related to sub-mesoscale motions. The parameter σs can be adjusted in the range [−1, 0].
The value −1 equals to the considerably low intensity of the noise, such that the solution of
Eq. (5.4) becomes nearly deterministic. The value 0 corresponds to the level of the FLOSS2
dataset and models relatively intense perturbations. Parameter values obtained for FLOSS2
are given in Tab. 4.2 . The identification of the scaling function is performed from tower data
(see Ch. 4).

The following critical assumption is implicitly asserted. Consider first that the scales
of motions smaller than the geostrophic wind influence the model’s local mixing length
stochastically. The noise term in Eq. (5.4) imitates this circumstance. Then it is assumed that
for each sub-mesoscale type of motion, the Kolmogorov theory of inertial subrange holds
locally in space, and the parametrization of the dissipation is identical to the neutral case.
Essentially, each non-turbulent sub-mesoscale motion cascades to the dissipative eddies raising
Kolmogorov-like turbulence. However, this assumption is rather doubtful and demands
further research. For instance, based on experimental and numerical studies, Zilitinkevich
et al. (2019) find that the dissipation rate depends on the stratification and propose a stability-
dependent parametrization. Another example of nontraditional scaling of the dissipation rate
is observed in turbulence produced at multiple scales by a space-filling fractal grid. Laizet &
Vassilicos (2011) provide evidence that this kind of homogeneous isotropic turbulence decays
characterized by a single length scale. It is unclear how to model the dissipation rate in the
stochastic formulation of the mixing length for the SBL, especially at critical Ri numbers,
where the distribution of the value ϕ is non-Gaussian.

Another important detail is the necessity to adjust the units of time between the Eq. (5.4)
and the rest of the model. Recall that the Eq. 5.4 is estimated from data based on a sampling
frequency with units cycles/hour. Hence the unit of the parameters is hours. The constant
τh = 3600 in Eq. (5.4) transforms the units of the equation into seconds. Consider that
due to E(dW (t))2 = dt, the process dW (t) has the units of

√
time (Horsthemke, 1984), and

hence the transformation of units for the noise (stochastic) term is different than in the drift
(deterministic) term. The detailed formulation of the stochastic process ϕ is discussed next.
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5.1.2 Stochastic Hybrid Formulation of the Turbulent Mixing Length

The turbulent mixing length for momentum is constructed using a mixture of deterministic
and stochastic formalism. Equation (5.4) predicts the correction value ϕ from the surface up
to some chosen height zs. After which z > zs the traditional scaling function ϕf (Ri) is in
operation taken from (Cuxart et al., 2006):

ϕf (Ri) = 1 + 12Ri for z > zs . (5.14)

The parametrization of Eq. (5.4) is based on the height captured by the measurement tower,
which is equal to 30 m. Therefore, with a slightly larger cut-off height, zs = 50 m is set to
consider the following blending zone between the deterministic (ϕf ) and stochastic correction
value (ϕ). Finally, both descriptions are joined utilizing the logistic sigmoid function:

sig(z) = 1
1 + exp(−ks(z − zs)) , (5.15)

where zs is the sigmoid’s midpoint, and ks = 0.1 is the steepness of the curve, which regulates
the sharpness of transition from ϕ to ϕf at the height zs. Then the linear-convex composite is
defined:

φ(t, Ri) = ϕf (Ri)sig(z) + ϕ(t, Ri)(1− sig(z)) , (5.16)

and is inserted into (5.9). Due to the stochasticity of φ the mixing length lm and hence the
entire turbulence closure becomes stochastic. It is necessary to analyze how the expected value
E(lm) and the variance V(lm) varies as a function of the Ri number and the geostrophic wind
ug. By estimating these measures, one attains a general idea of how the mixed formulation
operates concerning the two main forcing variables.

Following the work of Elandt-Johnson et al. (1980); Lee & Forthofer (2006); Stuart & Ord
(1994) the expected value (E) of a quotient of two random variables (X and Y ) is determined
with a first-order Taylor series approximation

E(X/Y ) ≈ E(X)/E(Y ) . (5.17)

The variance of a quotient of two random variables as a first-order approximation is:

V(X/Y ) ≈ (E(X))2

(E(Y ))2

[ V(X)
(E(X))2 − 2Cov(X,Y )

E(X)E(Y ) + V(Y )
(E(Y ))2

]
, (5.18)

One obtains the following estimates for the mixing length by applying the formulas (5.17),
(5.18) to (5.9):

E(lm) ≈ κz

E(φ) + κz
λb

, (5.19)

V(lm) ≈ (κz)2[
E(φ) + κz

λb

]4V(φ) . (5.20)

Figure 5.1 shows the values of E(lm) (left column), and V(lm) (right column) computed
exemplary for three heights. To comprehend the physically possible values of E(lm) and V(lm),
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Figure 5.1: The expected value (left panels, calculated with Eq. (5.19)) and variance (right
panels, calculated with Eq. (5.20)) of the stochastic mixed length for the three measured heights 30,
15, 1 m as a function of Ri number and ug. The orange dots show observed lm values for (Ri, ug)
to capture physically meaningful ranges. The proposed SURANS model should not operate outside
the point cloud. The points visualize physically plausible regions for the variable lm. The red
dashed horizontal line is Ric = 0.25. The red dashed vertical line is a proposed critical ug = 9 m
s−1. Above this critical wind, the SSE should operate in the lower right quadrant.
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the orange coded points represent observed values at (Ri , ug) in the FLOSS2 dataset. The
value ug for the data points is selected at the tower height 30 m.

Figure 5.1 also suggests according to the model that at low wind speeds and overcritical
values of the Ri number, turbulent mixing is persevered. The overcritical values of the Ri
number represent a state of the boundary layer where the energy of the mean wind becomes
approximately equal to the energy of the sub-mesoscale motions (see Sec. 3.3.7). The separation
between the sub-mesoscale motions and the mean wind is non-trivial. Hence the computation
of the Ri is sensible to the choice of the temporal averaging scale.

The horizontal dashed line represents the Ric number, and the vertical dashed line represents
some suggested ug = 9 ms−1 which separates the wind limit after which the SBL is weakly
stratified. The dashed lines separate the phase-space into four quadrants. The primary remark
is focused on the upper right quadrant, which corresponds to high wind and high stability.
The orange data points suggest that there are no observations with such characteristics. This
is not surprising as at high values of the geostrophic wind, the heat transport is enhanced and
the temperature profile becomes mixed relatively rapidly.

The present stochastic formulation shows an undesired performance in the upper right
quadrant region. The value of V(lm) (see Fig. 5.1 right column) is boundless in that quadrant
and continues to grow with increasing Ri and ug. This is somehow contradicting the physical
understanding. It is expected that the V(lm) takes some limiting value because lm becomes fully
linked to the scale of the geostrophic wind. The undesired increase in variance is discovered
after identifying Eq. (5.4) in Ch. 4. This analysis suggests that the noise term in (5.4) should
additionally be dependent on the value of the geostrophic wind. Consider that the scales of
motions are always related in the physical domain. Especially in the neutral condition, the
assumption that the sub-mesoscale motions are independent of the mean scale does not hold.
This performance is qualitatively unveiled in the numerical study (see Sec. 5.3.3). Therefore,
the noise term in the SSE requires an additional constrain to limit the noise intensity by the
Re number or some critical mean wind speed value. This aspect is not analyzed in this work
and future work should incorporate the value of the geostrophic wind into the parametrization
of the noise intensity.

5.1.3 Initial and Boundary Conditions

Appropriated initial conditions for Eqs. (5.1) – (5.6) are required to initialize the boundary-
layer state at the start of the simulation. Depending on the contour of the initial profiles, the
solver’s time to reach the quasi-stationary solution varies. To decrease this time, the profiles of
neutral conditions are imposed. Under the assumption that the coordinate system is aligned
with the geostrophic wind vector and applying the law of the wall, the initial turbulent profiles
for one velocity component is:

u(z, t = 0) = u∗,init
κ

ln(z/z0), (5.21)

v(z, t = 0) = 0 , (5.22)

where u∗,init = (0.5Cf ug
2)1/2. Here Cf ≈ 4× 10−4 is a tuning parameter and is adjusted such

that at the domain top, the value ug is justified. An appropriated profile of the v-component
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is challenging to define. Hence this profile is set to zero since its magnitude is smaller than the
one of the u-component. The initial profile for e is estimated following Parente et al. (2011):

e(z, t = 0) = a1ln(z) + a2 (5.23)

The coefficients a1 and a2 are estimated using the following boundary values:

e(z = z0, t = 0) = u2
∗,init (0.087)−1/2, (5.24)

e(z = H, t = 0) = 0 , (5.25)

where H is the domain height. The initial profile of the potential temperature is constant
T0 = 300 K up to a certain height Hc = 200 m and then increases according to the atmospheric
lapse rate Γ = 0.01 K m−1 as used by Sorbjan (2012):

T (z, t = 0) =


T0, for z ≤ Hc ,

T0 + Γz, for z ≥ Hc .

(5.26)

The boundary conditions are discussed next. For the wind components no-slip conditions
(Dirichlet condition) are set at the surface. At the top boundary, the vertical gradients are
set to zero (Neumann condition):

u(z = z0) = v(z = z0) = 0, (5.27)
∂u

∂z
(z = H) = ∂v

∂z
(z = H) = 0 . (5.28)

For the TKE and temperature, the boundary conditions are set following Želi et al. (2019):

e(z = z0) = C
−1/2
fm u∗,z0

2 (5.29)

e(z = H) = 0 , (5.30)

where H is defined large enough, such that the boundary layer height fits within the domain
and Cfm = 0.087 is chosen following Želi et al. (2019). The value u∗,z0 is estimated according
to the logarithmic law:

u∗,z0 = κ

ln(z1/z0)

√
u(z1)2 + v(z1)2 , (5.31)

where z1 = z0 + ∆t is the next grid point. The upper boundary condition of the potential
temperature is dictated by the lapse rate:

∂T

∂z
(z = H) = Γ . (5.32)

The potential temperature at the surface Tg = T (z = z0) results from the surface energy
balance and is modeled with (5.6). The term responsible for the coupling of the surface
temperature and the turbulent diffusion of heat is the surface sensible-heat flux H0. It is
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defined following Želi et al. (2019):

H0 = ρa cP w′T ′
z0
Prt,z0

κ
ln z0
z0h

, (5.33)

where ρa is the air density, cP the specific heat of air at constant pressure. The turbulent
Prandtl number at the surface is set constant Prt,z0 = 0.75 following Želi et al. (2019). The
roughness length for heat is a sensible variable z0h = 0.1z0 and is set following the work of
Sanz Rodrigo et al. (2017). This roughness length is known to vary with the wind speed and
to depend on vegetation (Brutsaert, 1982; Malhi, 1996). The heat flux at the surface is

w′T ′
z0 = −Kh(z0)

(
∂T

∂z

)
z0

. (5.34)

The initial conditions presented are used to determine valid steady-state solutions for
further simulations. The solver simulates neutral stratification over ten hours to obtain quasi-
stationary profiles with the initial conditions presented above. This solution is then used as
the initial condition for subsequent studies to analyze different stratification and sub-mesoscale
intensities.

5.1.4 Inertial Oscillations

The nudging term in Eq. (5.1) and Eq. (5.2) has an important purpose in the considered
boundary layer model. Absence of the nudging terms leads to unwanted inertial oscillations.
These undamped oscillations occur in the velocity components around the equilibrium wind
vector with a period of 2π/fc. The amplitude of the oscillations equals the difference between
the magnitudes of the initial wind profile vector and the imposed forcing by the geostrophic
find vector (ug, vg) (Van de Wiel et al., 2010). Since the initial profiles substantially differ from
the wanted wind profiles in stable stratification, the oscillations in the present implementation
show amplitudes that cannot be ignored. Furthermore, their undamped nature makes it
difficult to obtain a steady, equilibrated wind profile even after > 50 hours simulation. The
oscillations develop as soon the geostrophic vector is changed during the simulation time, even
though one may start with an adequate initial profile. The absence of turbulent diffusion
in the outer layer appears to be rarely observed in nature (Drüe & Heinemann, 2007). The
absence of damping in the model hampers the numerical study. Why do those oscillations
occur, and how physically correct is the phenomenon?

The inertial oscillations emerge from the model formulation, but it is more due to the
over-simplistic representation of the true atmosphere rather than the modeling assumptions.
The full system of equations (see Eqs. (5.1) - (5.6)) can be understood to be centered on the
turbulent diffusion. Under strongly stable stratification, the boundary layer height shrinks
and becomes smaller than the resolved domain height. In such a scenario, the solution above
the boundary layer shows diminishing vertical gradients of the wind and a turbulent diffusion
coefficient close to zero. Consequently, the solution above the boundary layer is only governed
by the Coriolis terms (see Eq. (5.1) and Eq. (5.2)), resulting in an undamped oscillatory
system. Limiting the turbulent diffusion by the value of the molecular diffusion did not resolved
the issue.
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Another important aspect worth considering is that the nighttime (12 hour) is often
too short to encounter an entire oscillation period (Baas et al., 2012). The TKE can be
produced through the variation of the geostrophic wind speed or the inertial oscillations. The
interpretation of the results is then difficult with the newly developed stochastic extension of
the model. To diminish misinterpretations, nudging terms are applied. Their relaxation time
is set to five hours, such that the solver has enough time to develop its own dynamics and
still be forcible with a varying geostrophic wind vector. The nudging strategy offers a good
compromise, such that the desired study can be performed with a relatively simple model
setup.

Nevertheless, inertial oscillations are physically likely. Baas et al. (2012) finds these
oscillations in the Cabauw measurement site and demonstrates that the idealized RANS model
correctly represents those, at least almost one cycle with an, unfortunately, large case-to-case
variability. According to the study above, the conditions needed to observe such oscillations
are rather infrequent. Baas et al. (2012) found only 28 nights within a time period of ten years
of continuous observations.

The oscillation events are also related to the low-level jet problem (Wang et al., 2007).
Although the characteristic nocturnal low-level jet is known to be associated with the inertial
oscillations (Davis, 2000) one should also keep in mind that low-level jets induced by other
phenomena (Banta, 2008; Lundquist, 2003; Ostdiek & Blumen, 1997) are also observed in
the ABL. These several causes make it therefore difficult to differentiate the associated shear-
induced turbulence within isolated numerical studies. For instance internal oscillations were
also found by Ansorge (2017) in a DNS of the stably stratified boundary layer at high Re and
Ri numbers.

5.2 Numerics

This section treats the implementation and calibration of the stochastic single-column model.

5.2.1 Discretization with the Finite Element Method

Equations 5.1, 5.2, 5.3, and 5.5 are discretized and solved utilizing the FEM library FEniCS
(Alnæs et al., 2015; Logg et al., 2012). Dunbar et al. (2008) also applied the FEM to simulate
the SBL and showed that an adaptive grid refinement approach significantly increases the
accuracy of the solution. Nevertheless, the adaptive grid technique is not used here. Instead, a
finer grid resolution is set and found to be affordable for the single-column study done here.

The spatial discretization is performed with Lagrangian P1 elements where the error in
the H1 norm scales as O(∆t) and in the L2 norm as O((∆t)2) (Quarteroni, 2017, p. 98).
The temporal derivative is discretized with the implicit Euler method. Solver stability and
short computation time are prioritized over accuracy because the goal is to investigate the
performance of the stochastic extension and analyze ensemble predictions. Nevertheless, P2
elements were tested and the solution did not show any qualitative difference in the shape of
the stationary profiles.

The advantage of working with FEniCS is that the library performs the discretization
of the nonlinear system and assembles the resulting matrices. For that, the library requires
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writing the equations in a weak form, which is explained next. Consider the following short
notation for the system of Partial Differential Equations (PDEs) :

∂v
∂t

= ∂

∂z

(
Km

∂v
∂z

)
+ F . (5.35)

The cumulative variable vector v = (u, v, T, e) holds the four unknowns. The forcing vector is

F =
(
(v − vg)fc −Nu(u), −(u− ug)fc −Nv(v), P (u, v, T,Km)− E(ϕ, e), 0

)
, (5.36)

The turbulent diffusion coefficient Km(ϕ, e) = Kh depends on the stochastic variable ϕ and
the deterministic variable e. The TKE production term consists of

P (u, v, T,Km) = Km

[(
∂u

∂z

)2
+
(
∂v

∂z

)2]
− g

T0
Km

∂T

∂z
, (5.37)

and is unbounded from below causing numerical instabilities in stable conditions. Therefore
the value e is reset to 10−4 if negative values appear. The dissipation is

E(ϕ, e) = (αεe)3/2

lm(ϕ) . (5.38)

Let superscript n denote a quantity at a time tn. The time-discrete version of the PDE system
applying the implicit Euler method is:

vn+1 − vn

∆t = ∂

∂z

(
Km(ϕn, en+1)∂vn+1

∂z

)
+ Fn+1 (5.39)

where stochastic variable ϕn of the turbulent diffusion coefficient and turbulent dissipation is
dependent on the current time step tn and the TKE on the future time step tn+1. In such a
formulation, the solution of Eq. (5.39) is segregated from the solution of the stochastic Eq. (5.4).
The benefit of a segregated solution is a simple approach to introduce the sampling method
(see Sec. 4.6.2) for the spatially correlated noise into the FEniCS framework. Furthermore,
the variable ϕ is resolved on a different grid than the other four variables, and the solution is
interpolated in between. The stochastic Eq. (5.4) is solved with a fast sampling method, where
the grid is required to be equidistant to exploit the efficiency of the fast Fourier transform
(see Sec. 4.6.2). In contrast, the grid for the other four prognostic Eq. (5.39) is non-equidistant
and is much finer at the surface than at the top. The objective of this grid is to resolve the
gradients. Due to the discrepancies in the numerical grid, it is not possible to construct a
entirely coupled system because the stochastic model dictates the grid spacing. Hence, the
segregated solution proposed above requires to repeat in each time step the evaluation of the
right-hand side of the Eq. (5.4) and Eq. (5.39) iteratively until convergence of the the total
system is reached. Such a procedure ensures the coupling between the segregated solutions and
demands additional computational overhead. The following Fig. 5.2 investigates the relative
error within one time step with respect to the number of coupled solution calls.

For example, consider the evaluation of two sub-iterations for one time step tn → tn+1.

1. use ϕn, un, vn, Tn, en as initial values
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2. solve Eq. (5.39) with ϕn, un, vn, Tn, en to obtain: u1, v1, T 1, e1

3. solve Eq. (5.4) using u1, v1, T 1 to obtain ϕ1

4. solve Eq. (5.39) again, but now with ϕ1, un, vn, Tn, en to obtain u2, v2, T 2, e2

5. solve Eq. (5.4) using u2, v2, T 2 to obtain ϕ2

6. for more iterations repeat steps 4 and 5

7. exit the sub iterations, where the last iteration provides ϕn+1, un+1, vn+1, Tn+1, en+1

Note that steps 1 to 3 are the natural procedure for obtaining the system update for the
next step. It is the following steps 4 and 5 which improve the coupling strength between
the deterministic and stochastic equations. However, Fig 5.2 suggests and validates that the
system is already sufficiently coupled and additional sub-iterations are unnecessary because
the relative error is negligible.
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Figure 5.2: Coupling strength of the deterministic and stochastic equations of the SURANS
model solved with a segregated approach. Convergence of the relative error for the variable ϕ
as a function of the recursive evaluations of the deterministic and stochastic parts of the overall
SURANS system. The solution of the SSE is segregated from the solution of the RANS model and
may not adapt quickly enough to the update t+ ∆t. Low error values indicate that the solutions
of the RANS model and the SSE model are in equilibrium with each other within a discrete time
step. The first point on the left shows an error relative to the solution of the previous time step. It
should be large since it is the time update from ∆t. The second point from the left shows the error
when the RANS model and the SSE model are updated twice in a sequence recursive, starting
with t. The following points represent the relative error, defined as

⏐⏐⏐⏐(ϕi − ϕi+1)/ϕi
⏐⏐⏐⏐

2, where i
denotes subsequent sub-iterations for a time step ∆t.

In figure 5.2, we observe a relative difference of 10−3 if we use one additional sub-iteration
within a time step. Approximately for the next, 100 sub iteration steps, the relative error stays
almost constant and then starts decreasing rapidly to the defined precision of the Newton
solver, which solves the Eq. (5.39).

Next, one converts the Eq. (5.39) into weak form by multiplying them with the test function
vector w = (δu, δv, δT, δk) ∈ V̂ and integrate second derivatives by parts over the domain
Ω× [z0, H], where H is the height of the domain is given in meters. The test functions belong
to the so-called test space V̂ and the vector of interest v belongs to the so-called trial space Ṽ .
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The trial and test spaces are defined as:

Ṽ = {v ∈ H1(Ω)} , (5.40)

V̂ = {w ∈ H1(Ω) : w = 0 on ∂Ω} , (5.41)

where H1(Ω) is the Sobolev space and ∂Ω the boundary of the domain. The weak form of
the system reads:
∫

Ω

vn+1 − vn

∆t w dz = −
∫

Ω
Km(ϕn, en+1)∂vn+1

∂z

∂w
∂z

dz +
∫

Ω
Fn+1 w dz +

∫
∂Ω

B ds , (5.42)

where B = (0, 0, 0,Km
∂T
∂z δT ) is the Neumann boundary condition vector at z = H introducing

the atmospheric lapse rate for the temperature equation (Km
∂T
∂z = Γ). Equation 5.42 is solved

utilizing the Newton method implemented within the FEniCS framework.
Equation 5.6, which solves for the boundary condition of the temperature equation, is

discretized with the explicit Euler method in time. The stochastic Eq. (5.4) is discretized
with the Milstein method in time (Lord et al., 2014). Next, the numerical grid is addressed.

5.2.2 Numerical Grid

The system of Eqs. (5.1) – (5.6) is solved with two different numerical grids. For the variables
u, v, T , and e, a power-three transform on the z-axis is imposed to improve the resolution of
the gradients in the vicinity of the surface. Such a non-equidistant grid cannot be used to
solve the stochastic Eq. (5.4) due to the sampling algorithm (see Sec. 4.6.2), which utilizes the
Fourier transform. Furthermore, since the stochastic perturbations are included in the lower
portion of the boundary layer (z < 50 m) the stochastic grid is confined to some height. This
limiting of the grid saves computational resources and improves the vertical resolution of the
stochastic perturbations.

Figure 5.3 shows the description of the numerical grids along with the computation steps
to obtain the hybrid stochastic mixing length correction φ defined by (5.16).

The total domain is organized into three sub-layers, as indicated on the left in Fig. 5.3.
The stochastic layer reaches up to the height zs = 50 m. In this sub-domain, the dynamic
of the stability correction variable is entirely determined by the SDE (5.4). From the height
of zs up to the height 1.2zs < zp < 2.0zs, the stochastic fade-out layer is defined. The layer
is responsible for the smooth transition from the stochastic to the deterministic value. The
transition layer is also responsible for providing sufficient buffer length needed by the sampling
algorithm to obtain random structures which do not re-enter the domain at the surface s0.
(If we do not use a buffer layer, the stochastic structures will re-enter at the surface due to
periodic assumptions of the Fourier transform.)

The s grid is per construction bounded to the size of the spatial step of the z grid at the
surface (indicated by the ∆z1 in Fig. 5.3). To ensure proper interpolation of the Ri value
from the z to s grid the grid step ∆s1 < ∆z1. The value of the stochastic variable ϕ at the
time step tn+1 is computed on the s grid and then interpolated back to the z grid within
the stochastic fade-out layer (z < zp; see Fig. 5.3). The residual values, which correspond to
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Figure 5.3: The computation of the hybrid stochastic mixed length correction φ using two
different grids. The z-grid in red is non-equidistant and is used to solve the variables u, v, T, e. The
s-grid in blue is equidistant and is used to solve the stochastic variables ϕ. The circled numbers
below mark the five steps to calculate the value of φ. 1) Calculate the Ri number on the grid z.
2) Interpolate the Ri number on the equidistant s-grid. 3) Evolve the stochastic variable ϕ to
the next time step by solving the SSE. 4) Interpolate ϕ to the non-equidistant grid within the
height zp. 5) Compute the liner-convex combination between the deterministic ϕf and stochastic
ϕ variables on the z grid using the sigmoid function sig(z) (see Eq. (5.15)).

z > zp, are filled with the value 1. This artificial value is a placeholder and never enters the
solution because of subsequent application of the blending function sig(z).

In the final step 5 a linear-convex combination is performed between the stochastic ϕ and
the deterministic ϕf variables (see Eq. (5.16); also marked in Fig. 5.3 with the step 5). The
height zs = 50 m characterizes the smooth blending between stochastic ϕ and the deterministic
ϕf variables. Its value is set slightly larger than the measurement tower, which was used to
calibrate the stochastic part of the model. Hence, only the lowest 50 m of the simulations have
a randomized stability correction in the application of MOST.

5.2.3 Model Calibration

The model calibration is separated into three categories: the parameters of the TKE equation,
the parameters of the stochastic perturbation equation, and the one of the soil properties.
Almost every parameter value related to the turbulence closure is set according to Rodrigo
& Anderson (2013) where different SBL regimes were simulated with a single-column RANS
model. There model was calibrated on the data from the Clean Air Sector of the British
Antarctic Survey’s Halley Research Station.

The parameters of the stochastic Eq. (5.4) are entirely based on the estimation from the
FLOSS2 dataset described in Ch. 3.1. The calibration of the Eq. (5.4) is described in Ch. 4.
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Although the equation has numerous parameters, practically, one parameter is responsible for
the perturbation intensity.

The study conducted by Acevedo et al. (2021) is utilized to calibrate the soil parameters,
based partially on the FLOSS2 dataset. Acevedo et al. (2021) studied the external controls
of the temperature inversion within the SBL and found a linear relationship between the net
radiation and the regime transition wind speed. The soil parameters such as the thermal
capacity Cg, net radiation Rn, and the soil heat transfer coefficient are tested and slightly
adapted for the case studies. Similar parameter values may also be found in (Stull, 1988).

Furthermore, the given value of the dissipation constant by Rodrigo & Anderson (2013)
is slightly adapted such that the unperturbed TKE value at the surface is close to the value
found in the study of Acevedo et al. (2021). The values of parameters for the entire SURANS
model are summarized in Tab. 5.1.

5.3 Numerical Analysis of the Stochastic Turbulence Model

The following study analyzes the implemented SURANS model and studies its differences
to the classical 1.5 order closure. Comparison of the model with real observations is not
performed for several reasons. Due to the lack of geostrophic wind measurements, reanalysis
data needs to be incorporated. Although reanalysis data is accessible, the model is missing
cloud parameterizations, for instance. Clouds drastically influence the net radiation and,
therefore, the entire boundary layer state. Missing components in the physics parametrization
are expected to cause deviations from the observations and require specific period selection
and model tuning.

It is important to have a reduced setup at the current model development state to validate
the numerical stability first. Furthermore, the outcome of the stochastic perturbations is
adequately comprehended with an isolated, low-complexity model.

Several numerical experiments are performed to study the consequence of the perturbations
applied to represent the impact of sub-mesoscale motions in comparison to the unperturbed
model. The neutral stratification is studied first. This study is a validation case because,
per construction, the ensemble mean of the SURANS model must match the RANS model
in neutral stratification. Next, the strongly SBL with intermittent mixing is analyzed. The
SURANS model reproduces intermittent TKE state. By analyzing this state the ensemble
mean is not a representative measure due to non-Gaussian statistics. A more appropriated
measure is the central tendency (the most probable value), and its evolution is used to evaluate
the performance of the models.

The two studies introduced above are performed for a quasi-stationary case, where the
geostrophic forcing and the soil properties are constant in time. However, the stochastic
perturbations may also alter the solution under conditions with variable forcing. Therefore,
this aspect is analyzed in a separate study. Finally, the consequence of the sub-mesoscale
turbulent diffusion on the temperature inversion is analyzed. The results show the response in
the inversion shape as a function of the perturbations.

Table 5.1 summarizes the parameter settings of the SURANS model. Empty parameter
values indicate that they will be adjusted for each case studies individually.
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Table 5.1: Summary of the settings of the SURANS solver. The parameters marked with ’–’ are
given individually in the following case studies. The symbols in this table are those used in the
program code.

Description Symbol Value Source

Total simulation time [h] T_end_h – set

Timestep [s] dt – tuned

Grid resolution (z grid) Nz 100 set

Roughness length [m] z0 0.044 Acevedo et al. (2021)

Roughness length for heat [m] z0h z0 × 0.1 Sanz Rodrigo et al. (2017)

Domain height [m] H 300 set

Restoring temperature [K] theta_m 290 set

Reference pot. Temperature [K] T_ref 300 set

Air density [kg/m3] rho 1.225 set

Air spec. heat capacity [J/kg/K] C_p – set

Soil heat capacity[J/m2/K] C_g as in Acevedo et al. (2021)

Net radiation R_n -60 – 0 Acevedo et al. (2021)

Geostrophic wind [m/s] U_top – set

Geostrophic wind [m/s] V_top 0 set

Latitude [◦N] latitude 40 FLOSS2 dataset

Coriolis parameter [rads/s] f_c 9.34e-05 FLOSS2 dataset

Atmospheric lapse rate [K/m] gamma 0.01 Rodrigo & Anderson (2013)

Relaxation time scale [s] tau 3600 × 5 tuned

Minimum TKE level [m2/s2] min_tke 10−4 tuned

Turbulent Prandtl number for BC Pr_t 0.85 Želi et al. (2019)

Eddy viscosity constant [–] alpha 0.46 Rodrigo & Anderson (2013)

Dissipation constant [–] alpha_e 0.1 tuned

Sub-mesoscale intensity [–] d -0.07 FLOSS2 dataset (ref)

Stochastic model height [m] z_l 50 FLOSS2 dataset

Covariance length [m] lz 20 FLOSS2 dataset

Von Karman’s constant [–] kappa 0.41 Rodrigo & Anderson (2013)

5.3.1 Neutral Boundary Layer

The neutral boundary layer is the first experiment which validates that the central tendency
of the SURANS model is equivalent to the RANS solution. The initial conditions are given in
Sec. 5.1.3 and the simulation period is set to 15 hours. The solver specific settings for this
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experiment are given in Tab. 5.2 and the rest in Tab. 5.1. The forcing parameters are set to
be constant.

Table 5.2: Relevant solver settings for the numerical study of the neutral layer.

Description Symbol Value

Total simulation time [h] T_end_h 15

Time step [s] dt 10

Grid resolution (z grid) Nz 100

Domain height [m] H 300

Restoring temperature [K] theta_m 300

Reference pot. Temperature [K] T_ref 300

Net radiation R_n 0

Geostrophic wind [m/s] U_top 5

The stratification is controlled with two parameters of the surface balance in Eq. (5.6). The
first one is net radiation. One of the effective physical mechanisms behind the term is the cloud
cover. To stimulate neutral conditions the net radiation is turned off. The second parameter
is the restoring temperature in Eq. (5.6). This is the temperature of the soil below the surface
in some finite depth. Depending on the conditions, the restoring temperature is varying slower
than the diurnal cycle. Therefore, it is expected that some difference between the soil and
air temperature is present after the sunset provoking at least weakly stable boundary layers.
Hence, a less realistic condition is imposed by setting the difference between the soil and air
temperature to zero, mainly for validation purposes. This condition ensures strictly neutral
stratification.

Figure 5.4 shows the comparison of the TKE at three different heights among the model runs
with and without the stochastic mixing. A quasi steady-state solution is reached approximately
after six hours with the RANS model . The central tendency of the SURANS model, which
is estimated from 100 realizations, is nearly identical to the solution of the RANS model.
The regularity of the sample paths (indicated with the thin colored lines) varies across the
height. More rapid changes are found closer to the surface (sample paths in gray), and smooth
oscillations with smaller variances occur at z = 150 m (sample path in green). The stochastic
mixing length equation is only active up to the height z = 100 m. As indicated by the sample
paths in green (z = 170 m), the variability induced at the surface is propagating into the upper
boundary layer. The MOST operates in the the upper boundary layer.

We find that the distributions of the TKE from the 100 SURANS simulations are close
to being Gaussian, but more importantly, symmetrical. This symmetry indicates that the
modeled type of turbulence is in statistical equilibrium, and the perturbations maintain their
path around the central tendency, which is the mean value. The physical interpretation of
the stochastic oscillations is that the integral scale of turbulence is draining energy not only
from the mean scale (heir one hour and more) but also obtain stochastically added effect from
unresolved random mixing events. Since the scale of the perturbation is smaller than the mean
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Figure 5.4: Comparison of the predicted TKE by the SURANS and RANS models in the condition
of neutral stratification (Ri = 0) for three heights (z = 0.5, 70, 150 m). The evolution of TKE
is shown in (a) and the corresponding color legend is given in (b). Panel (a) shows the RANS
solution with a solid black line. The many lines in different colors indicate the 100 realizations of
the SURANS model for their heights. The central tendency of the SURANS model is indicated by
a dashed red line. The respective probability distribution of the TKE ensemble at t = 14 h is given
in panel (b).

scale the central tendency coincides with the expected value. The equation of the TKE is
in stable statistical equilibrium. As shown later, the equilibrium becomes weaker and more
sensible to the perturbations at a larger Ri number leading to intermittency.

5.3.2 Stably Stratified Boundary Layer

By far the most interesting results are associated with the stably stratified boundary layer in
the presents of random mixing events. As in the previous section, the initial conditions are
given in Sec. 5.1.3, and the simulation period is set to 15 hours. The solver-specific settings
for this experiment are given in Tab. 5.3 and the rest in Tab. 5.1. The forcing parameters are
set to be constant.

The stratification is imposed with two mechanisms and is likely to be found in real
observations. The first mechanism of stratification is the difference between the restoring (soil)
temperature of 290 K and the potential temperature of the air 300 K. Such condition arises
during the transition from day to night time. Imagine that the air is heated up in the daytime
before the night, but the deep soil temperature remains unchanged from the previous cold
and snowy week. In addition, the second mechanism of radiative cooling also enhances the
stratification. The net radiation of −30 W m−2 is selected from (Acevedo et al., 2021) and
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Table 5.3: Relevant solver settings for the numerical study of the stably stratified boundary layer.

Description Symbol Value

Total simulation time [h] T_end_h 15

Time step [s] dt 5

Grid resolution (z grid) Nz 100

Domain height [m] H 300

Restoring temperature [K] theta_m 290

Reference pot. Temperature [K] T_ref 300

Net radiation R_n -30

Geostrophic wind [m/s] U_top 5

considered as the FLOSS2 dataset average value. This setup may describe a possible cloud-free
night in springtime.

Figure 5.5 illustrates the solution of the SURANS model. The TKE at the height z = 20 m
is compared against the solution of the RANS model using several statistical metrics. The
Fig. 5.5a shows in blue a characteristic signature of intermittent TKE simulated with the
SURANS model. Thin gray lines display other realizations. Note the two different types of
spikes found at t = 6 h and t = 10 h. Their magnitude is significantly larger than the ensemble
mean (solid yellow) and the central tendency (solid red). The duration of these events is
approximately one hour and falls within the characteristic range of sub-mesoscale motions.

Consider Fig. 5.5b, which shows the TKE’s distribution of 100 model runs at t = 14 h.
The solid black line represents the prediction of the RANS model for comparison. The solid
yellow line is the ensemble mean of the SURANS model, and the solid red line is the central
tendency. The central tendency is estimated from the PDF, which is fitted to the histogram
by applying the KDE method (Scott, 2015). The estimation is poor because it violates the
boundary condition on the left side. Nevertheless, the KDE is a time-efficient method to
approximate the most probable value. The histogram indicates a smaller value of the central
tendency than the estimated one. A better estimation can be achieved if a specific distribution
type is assumed. However, one should keep in mind that the distribution type should depend
on the stratification. This dependence makes the fitting task less trivial. Therefore, the study
is refrained from using more complex estimation approaches for studying the distributions of
the TKE.

The first statistic in Fig. 5.5a for comparison is the ensemble mean, and it is slightly above
the RANS prediction. However, the central tendency is significantly smaller and indicates
that it is likely to observe an absence of turbulent mixing. The heavy tail in the ensembles
distributions is significant and induces sporadic rare events. Some realizations of the model
(not shown) predict a low TKE level throughout the entire simulation period. The wide variety
of TKE signatures favors the representative capabilities of the model.

Figure 5.6 shows a clearly intermittent profile that has several characteristics. The largest
intensity of each burst is found at the surface. Recall that the stochastic correction of the
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Figure 5.5: Comparison of SURANS and RANS models predicted TKE under the condition of
strongly stable stratification (mass Ri ≈ 0.6) for height z = 20 m. For the visualization of the Ri
number profiles, see Fig. 5.9. The evolution of the TKE is shown in (a). The ensemble distribution
of 100 sample paths of the SURANS model at t = 14 h is shown in panel (b) along with the fitted
probability density function (solid gray line) using a KDE method. The thin gray lines show the
100 realizations of the SURANS model.

turbulent diffusion is detached from the ground (see Fig. 4.13). Still, we cannot find any
turbulent patches that are clearly aloft, which is typical for observations (see Fig. 3.18). The
bursts are absent aloft because the turbulent diffusion is multiplied with the gradient of the
mean wind, and hence the spatial distribution of the TKE is intrinsically constraint by the
wind gradient.

A slight inclination (as somebody brushed it from left to right) in the bursts is also present.
Some events show that some turbulence is still maintained aloft from the surface (see Fig. 5.6a
t = 3.5 h and t = 5 h). The model is representing the decoupled TKE from the surface after a
burst, but only as a consequence and not as a source. Important to add to this observation is
that the flow is forced with a steady mean wind. Changing the forcing changes the gradient
and hence provide room for the stochastic perturbations to appear. It is not clear if such
scenario represents observational data.

Next, we investigate the capability of the models to transport the temperature (see Fig. 5.7).
It is evident that in the case of stochastic perturbations, the mixing is performed faster. The
mixing rate is higher, and the temperature inversion is also shifted up and is less abrupt. The
temperature profile changes its shape in an unsteady way (compare Fig. 5.7a to 5.7b), which
can be related to the activity of the intermittent burst periods (see Fig. 5.6a). The stochastic
model shows a qualitatively different solution of the temperature inversion. Considering the
humidity (which is excluded from the model), the cloud and fog formation prediction will
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Figure 5.6: Temporal evolution of the profiles of TKE for a realization of the SURANS (a) and
RANS (b) models. The color bar applies to both panels.
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Figure 5.7: Temporal evolution of the temperature profiles for one realization of the SURANS
(a) and RANS (b) models. The color bar is valid for both panels.

experience a significant difference from the unperturbed model. A dedicated case study should
investigate the performance against observational data.

Finally, we analyze the profiles of the dominant wind velocity component u to comprehend
the boundary layer height (see Fig. 5.8). In Fig. 5.8a we can recognize the repeating pattern
of the TKE bursts (compare Fig. 5.6a). The dominant stochastic turbulent diffusion dictates
the boundary layer shape as a consequence of random mixing events.

Figure 5.9 shows the evolution of the profiles for the Ri number. The SURANS model
predicts the strongly unsteady Ri number, but the bulk Ri number is computed for the layer
between the z0 level and z = 80 m. Deviations are found during random mixing events when
the temperature profile is mixed sporadically, reducing the local bulk Ri number (compare
with Fig. 5.7).

5.3.3 Variable Geostrophic Wind and Net Radiation

In previous examples, a stationary forcing of the model is considered. However, predicting real
weather conditions implies continuously changing forces. Hence the intention is to investigate
if the stochastic perturbations change the solutions during the transient states. Such states
are characterized by some rate of change in the forcing variables.
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Figure 5.8: Temporal evolution of the wind profiles (u component) for one realization of the
SURANS and RANS models. The color bar is valid for both panels.
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Figure 5.9: Temporal evolution of the Ri number profile for a realization of the SURANS (a)
and RANS (b). The color bar applies to panels (a) and (b). Panel (c) shows the bulk Ri number
calculated from the surface to z = 80 m.

The initial conditions are given in Sec. 5.1.3, and the simulation period is set to 30 hours,
which is longer than the average nighttime. In this experiment, the focus lies on computing
the transitions between weakly and strongly SBL, as in (Acevedo et al., 2021; Maroneze et al.,
2019). The novelty of this study provide predictions of the regime transitions with random
sub-grid mixing events.

The setting of the nonstationary forcing is discussed next. Since the nudging time scale
is set to five hours, the rate of change in the geostrophic wind is slow. In combination with
the change of the radiative cooling, we will cover within one simulation four possible forcing
combinations. The solver-specific settings for this experiment are given in Tab. 5.4 and the
rest in Tab. 5.1.

To answer some questions, consider Fig. 5.10 first. The forcing of the model is given in
Fig. 5.10a, the temporal evolution of the TKE at the height of z = 9 m and the profiles for
the variables e, T, U =

√
u2 + v2 at three different times (note the arrows in Fig. 5.10b). The

quantities to compare in Fig. 5.10 are:

• The 100 realizations of the SURANS model (gray, thin lines).
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Figure 5.10: Solution of the SURANS model with variable forcing parameters Rn (net radiation)
and the geostrophic wind ug. The total simulation period is 30 hours. The nudging time scale is
set to 5 hours. Panel (b) shows the evolution of TKE at 9 m for 100 realizations, marked with gray
lines. The zoom area highlights the transition to stable stratification in weak winds by increasing
net radiation. The evolution of the forcing is shown in a). The sub-images in b) show profiles of
the variables at 3 different times marked with black dots in b). The SURANS profiles represent
the central tendency, with the gray area showing the quantile range. The boundary layer height
zbl used for normalization is 50, 200, 240 m.
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Table 5.4: Relevant solver settings for the numerical study with unsteady forcing variables.

Description Symbol Value

Total simulation time [h] T_end_h 30

Time step [s] dt 2

Grid resolution (z grid) Nz 100

Domain height [m] H 300

Restoring temperature [K] theta_m 300

Reference pot. Temperature [K] T_ref 300

Net radiation R_n variable (see Fig. 5.10a)

Geostrophic wind [m/s] U_top variable (see Fig. 5.10a)

• The central tendency (solid red), estimated as the most probable value from the fitted
distribution (see Fig. 5.5).

• The noise-free limit of the SURANS model. In this case, the stochastic equation is solved
once with a sufficiently low value of the noise, such that the dynamical evolution can be
considered deterministic (solid yellow line). The noise-free limit is introduced to eliminate
the effect of the difference between the MOST stability function and the deterministic
steady-state of the prognostic Eq. (5.4) (the expected value). One realization of the
SURANS model is provided to comprehend the rare events during the stable low-wind
conditions (solid black line).

• The prediction of the RANS model (solid blue line).

In the following, we cover some questions to learn more about the stochastic model. First
of all, what is the resulting difference in the central tendencies due to perturbations? For
that, we compare a solution of SURANS in the noise-free limit with the central tendency
estimated from the 100 noise-present realizations (see yellow and red lines in Fig. 5.10). There
are no significant differences in terms of the considered quantities for the TKE (see 5.10b
and the corresponding profiles). However, there is a substantially different temperature and
velocity profile. The temperature is transported more effectively within the stable condition
and surprisingly above the average boundary layer height (see Fig. 5.10 panel (1)). The central
tendency of the velocity profile experiences a deceleration. The unsteady profile shape is, in
fact, the consequence of the solution and is not a side effect of grid interpolation. The blending
height between the stochastic and deterministic quantity is 50 m above the analyzed profiles
in Fig. 5.10 panels (1). This means that for higher geostrophic winds, the perturbation of
the turbulent diffusion is propagated to the top of the boundary layer (200 m), although the
actual perturbations are limited at 50 m.

What is the difference between the central tendencies of the SURANS and the RANS
models? Asking this question, we are confronting the differences under the circumstance
of the parametrization effort. This issue is related to the approach one decides to follow.
The stochastic approach is more complex than fitting a function to the data (MOST) but is
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accurate and predicts the uncertainties. By comparing the RANS solution (blue line) to the
central tendency (red line) predicted by the SURANS model, we find that RANS is predicting
higher levels of TKE throughout the entire simulation. In comparison, the SURANS model is
predicting lower levels of TKE but controversially more enhanced transport of temperature
and velocity (see Fig. 5.10 panels (1)). This nontrivial effect may result from non-equilibrium
statistics in the stochastic formulation of the turbulent mixing length. Consider the next
question.

Is there something unique in the uncertainty of the prognostic variable’s profile? In Figure
5.10, the lower panels show the profiles, and the gray area represents the 0.05− 0.95 quantile
range constraining the variability of the 100 different model runs. Thereby the central tendency
is given by the solid red line. For stable stratification (see Fig. 5.10 panels (1)), the quantile
range for the TKE is asymmetrical, showing the largest spread at the surface. In neutral
conditions, the quantile range is symmetrical (see Fig. 5.10 panels (3)). The shape of the gray
area (the uncertainty) and its change with the height in the TKE are significantly different
than in the temperature and velocity profiles. The largest uncertainty is found in the middle
of the boundary layer , and its value decreases at the surface and the boundary layer top.

What is the noise impact on the transient states? The influence of the noise is manifested
in terms of the possible solution paths which the solver predicts (see Fig. 5.10b thin gray lines).
Following the inset in Fig. 5.10b, we observe a transition from neutral to stable stratification
induced by the increase in net radiation. The central tendency and the noise-free limit of the
SURANS model overlap. However, multiple individual realizations (thin gray lines) show a
pronounced tendency to lag the transition rather than induce early transition. In contrast, by
transitioning from low wind to high wind (see Fig. 5.10b from t = 15 to t = 20), the solution
path can show both fast and delayed transitions.

Is the variance of the TKE represented adequately? The variance is bounded, responds to
the stratification, and to the geostrophic wind speed change. Figure 5.10b demonstrates one
skeptical point, as ug increases, the variance in the TKE increases as well. This relation is
plausible since the largest turbulent eddies develop with the value of geostrophic wind. To
what extend the variance should grow is not bounded by the stratification only. The proposed
model does not have any mechanisms that link the stochastic perturbations’ variance with the
large scale. Physically there is a connection because of the sub-mesoscale dependence on a large
scale. Figure 5.10b demonstrates that the variance reduces to some lower value as soon the
stratification is applied (see t = 25 h). The results indicate that under high stratification and
high wind, the model experience unusual variance. The reason for this is the parametrization
of the noise term in the stochastic equation. Besides the Ri number, a dependence on the
geostrophic wind speed should be considered.

What is the relative difference between the SURANS and RANS solutions? This question
is interesting because one would prefer to identify the areas where a significant change is
expected. In this question, it is important to differentiate the following two cases.

Given the data of the correction variable ϕf , what is the difference between the
parametrization strategies in terms of the profiles (see Fig. 5.11)? We would like to compare
the usual parameterization approach (MOST), which leads to the RANS solution against the
stochastic approach, which fits the nonstationary SDE instead and leads to the SURANS model.
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Figure 5.11: The relative difference in profiles between the SURANS (the central tendency of
100 realizations) and the RANS model according to the numerical study in Fig. 5.10. The red
color denotes the area where the variables of the SURANS model have larger magnitude than
those of the RANS model. The white color denotes no differences. Panel (a) shows the TKE, (b)
the temperature (−2 [K] < (T − 300)[K] < 0 [K]), and (c) the dominant u component of the
wind. The forcing variables change with time and are shown in Fig. 5.10a. Condition of stable
stratification for t ∈ (5, 15) h and condition of high wind pressure for t ∈ (5, 15) h.

The SURANS model provides an adequate representation of the intermittent turbulence than
the RANS model, because it also takes into account the effect of the unresolved small scale
mixing processes that are independent of the mean wind at high Ri number.

Figure 5.11a shows the relative difference in the TKE. The relative abrupt transition from
blue to white color indicates approximately the boundary layer height. The boundary layer
grows after t = 15 as the geostrophic wind is increased. For the time t > 25 h the net radiation
is turned off, and the central tendency of the SURANS model becomes equal to the RANS
solution. For the time t > 6 h the value of the TKE predicted by the SURANS model is
50% smaller than predicted by RANS on average, indicating a shallower boundary layer (see
Fig. 5.10 the TKE profiles for additional comprehension)

Figure 5.11b shows the relative difference in the temperature. Within the boundary layer
(this is the region between the x-axis and the bright blue and red spots) the differences in the
models are insignificant. Contrary, the SURANS model shows a deviation from the RANS
solution at the boundary layer top. For the stable conditions ( t ∈ (5, 15) in Fig. 5.11b),
the central tendency of the SURANS solution predicts almost a 200% lower value of the
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Figure 5.12: The relative difference between noise-free limit SURANS (σs ≈ −1) and the noise
present SURANS models (central tendency of 100 realizations) simulation. These differences
represent the pure effect of the noise on the central tendencies and are invariable to the choice of
the stability function. In this example −2 [K] < (T − 300)[K] < 0 [K]. Panel (a) shows the TKE,
(b) the temperature and (c) the dominant u component of the wind. The forcing variables are
changing in time and can be found in Fig. 5.10a.

temperature than the RANS model for a large area above the boundary layer (see the blue
area in Fig. 5.11b). At the same time, the differences at the surface are relatively small.
This can be explained by the enhanced transport due to intermittent turbulence. Recall, per
construction, the stochastic perturbations start to decay for z > 50 m. At the same time, the
boundary layer height is approximately 25 m. Such that the stochastic mixing determines the
boundary layer height. This observation can also be found in Fig. 5.10(1) in the profiles of
TKE. In that figure, the uncertainty (gray color) is above the boundary layer height.

The red area at the top of the boundary layer in Fig. 5.11b for t > 17 h (the high-wind
regime) means that the central tendency of the SURANS model is predicting an increased value
of the relative temperature. Hence, the errors produced in the stable regime (5 < t < 15 h)
are propagated into the high-wind regime (t > 20 h) at the boundary layer top. This findings
suggest that the different transport of temperature and moisture (not in this model) may
impact the creation of clouds in the early morning with large geostrophic winds.

One would also like to know how the noise influences the solution and under which
circumstances the differences emerge? To answer this question, we cannot compare the
SURANS and RANS models because steady-state solution of the SDE does not exactly match
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the static, linear parametrization function ϕf (Ri). Mainly because the steady-state of the
SDE is implicitly determined from the time series dynamics and the function ϕf (Ri) from a
scatter plot.

For that reason, Fig. 5.12 compares the noise-free limit of the SURANS model with the
central tendency of the noise-present cases. The results indicate that the largest differences
in the TKE and temperature appears above the boundary layer. The internal profile of the
temperature (see Fig. 5.12b) is mostly unchanged, where the internal profile of the TKE (see
Fig. 5.12a) shows deviations on a finer scale. The velocity profile (see Fig. 5.12c) shows
that the added noise reduces the magnitude almost in the entire boundary layer. Patchy,
intermittent accelerations can be detected near the surface.

In summary, the noise perturbations induce large differences at the boundary layer top.
Parametrization of the intermittent diffusion by using a SDE is costly in term of number of
parameters but shows significantly different profile characteristics. One of the model’s known
biases is the warm temperature at the surface (see Sec. 1.1.4). Particularly for climate models,
the first boundary layer node, representing the surface, may be at the height of z = 50 due to
coarse resolution. In such a case, the shallow boundary layer lies within and is unresolved.
As the comparison shows (see Fig. 5.12b and Fig. 5.11b), the SURANS model predicts a
relative temperature which is by 200% smaller than the traditional RANS model. These results
demonstrate that the new model can reduce the warm bias in an isolated setting.

In the next section, we investigate the stochastic impact of the sub-mesoscale turbulent
diffusion on the temperature inversion.

5.3.4 Diffusion-Induced Transitions of Temperature Inversion

The temperature inversion at the surface is studied in terms of a wind-dependent temperature
difference (Van de Wiel et al., 2017). This difference is typically constructed by using
temperature values at two different location close to the surface and plotting it against the
geostrophic wind (van der Linden et al., 2017) or the internal boundary layer velocity (Baas
et al., 2019). Although the variables used to study the a temperature inversion in each study
undergoes slight variations a prominent characteristic is common to all of them.

Based on the inversion strength, there exist two regimes. A strong temperature inversion
regime occurs for low winds and substantial radiative cooling. High values of geostrophic
wind speeds characterize the second regime. The increased turbulent transport resists the
radiative cooling, and a weak inversion is formed. The sharpness of the transition between the
mentioned regimes depends on multiple factors such as thermal properties of the soil, turbulent
mixing, and the sub-mesoscale intensity, as will be discussed next.

Baas et al. (2019) identified the dominating processes that drive the transitions and the
inversion strength. The authors find that the major formation of the inversion is induced
mainly by the change in geostrophic wind speed and by the large-scale subsidence in a specific
field study. Furthermore, from the analysis of the momentum and temperature budgets, the
authors find that the heat flux divergence plays an important role in the transition from
the regime of large to small temperature inversion. This transition is called erosion. As
highlighted above, large-scale processes control the formation or erosion of the temperature
inversion. It is, however, not known, if the random mixing events from non-turbulent processes
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can induce regime transitions. Abraham et al. (2019) showed that while the onset of the
vary SBL can be stochastically predicted, the erosions during a night happens apparently
randomly, suggesting relevance of local processes This aspect is analyzed next with the help of
the developed SURANS model.

In the following experiment, we analyze the inversion in four ways, where the turbulent
properties differ. By changing the turbulent properties of the heat transfer towards (we analyze
only stable conditions), the surface will differ and hence resist the radiative cooling depending
on the intensity of the turbulence. The solver-specific settings for this experiment are given in
Tab. 5.5 and the rest in Tab. 5.1. The initial conditions for this experiment are constructed
by running the model for ten hours in neutral conditions. The profiles at the final time step
form the initial conditions.

Table 5.5: Relevant solver settings for numerical study of the temperature inversion.

Description Symbol Value

Total simulation time [h] T_end_h 5

Time step [s] dt 1

Grid resolution (z grid) Nz 200

Domain height [m] H 800

Restoring temperature [K] theta_m 290

Reference pot. Temperature [K] T_ref 300

Net radiation R_n -55

Geostrophic wind [m/s] U_top variable (see Fig. 5.13)

The idea of the experiment is to run 100 realizations starting from neutral conditions by
imposing strong stratification. Each realization experience various stochastic perturbations
of the turbulent diffusion due to random sub-mesoscale activity. For each fixed geostrophic
wind, 100 realizations of the SURANS models are constructed to investigate temperature
inversion. After five hours of simulation time, the temperature inversion will be different in
each realization due to the stochastic nature of the sub-mesoscale motions. By constructing a
scatter plot from all realizations, we discover the possible transition diagrams as a function of
sub-mesoscale intensity and geostrophic wind speed (see Fig. 5.13).
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Figure 5.13: Modeled relationship between 50-m temperature inversion and wind speed under
the influence of assumed sub-mesoscale turbulent diffusion and various stability functions. The
temperature difference on the y axis is constructed using the surface temperature Ts measured at
the height z0. The legend entries ”short tail” (ϕ = 1 + 12Ri) and ”long tail” (ϕ = 1 + 4Ri) denote
the temperature inversion generated by the RANS model. For comparison, the ”noise-free” mark
denotes the solution of the SURANS model, where the intensity of the noise is set to a negligible
value to be considered deterministic (σs = −1). The scatter points denote the SURANS solutions
corresponding to the noise intensity found in the FLOSS2 dataset (σs = 0). The color of the points
encodes the geostrophic wind value. The model SURANS is evaluated 100 times to produce the
scatter plot. Each point is another realization of the noise. The colored dashed lines mark solutions
with constant ug but a different realization value of the Wiener process. For high ug values, the
inversion is independent of the noise because the colored stripes are horizontally aligned. For low
values of ug, the strength of the inversion is determined by the local realization of the noise process.
A characteristic S-curve (Van de Wiel et al., 2017) in the current simulation setting can only be
imagined if certain scattering points, corresponding to different noise realizations, are selectively
plotted (as indicated by the dashed green line).

Figure 5.13 shows the temperature inversion produced with several configurations of the
turbulence model. The modification of the turbulence is realized by changing the stability
correction function in the RANS model and varying the noise intensity in the SURANS
model. The red squares and the red line mark the long-tail model, meaning more turbulence
is maintained at a higher Ri number. The blue dots and the blue line mark the short-tail
model, where the turbulence is suppressed rapidly with increasing Ri number. The black
diamonds and the black line show the noise-free solution of the SURANS model, meaning that
the level of the noise is significantly low, such that the SURANS solution is considered almost
deterministic. The scattered data points represent the multitude of noise-induced solutions of
the SURANS model. The color bar labels the value of the geostrophic wind forcing.
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5.3 Numerical Analysis of the Stochastic Turbulence Model

The change in the curves (see Fig. 5.13) from long-tail to short-tail model is the increased
temperature inversion at the critical wind speed of 5 ms−1. Such an increase is expected
because reducing the turbulence level reduces the resistance of the radiative cooling (see Eq.
5.6). If we compare the rate at which the temperature transition is happening at the critical
wind speed of 5 ms−1, we find that it is almost unchanged in the long-tail and short-tail models.
The difference between the long-tail and short-tail models is the slope of the stability function.
Hence, this slope is not responsible for the rate d ∆T

dU50m
(U50m = 5). Regarding this aspect, the

noise-free SURANS model provides a different solution. The temperature inversion is weaker
and smoother. The critical wind speed is less pronounced because the rate d ∆T

dU50m
at which

the black line (see Fig. 5.13) changes is smaller in comparison to the short-tail model. The
differences between the noise-free SURANS and the RANS model are due to the implicitly
determined nonlinear scaling function of the stability correction variable (see the red solid line
in Fig. 4.11). This nonlinear function is implicit because it results from the estimation of the
SDE from the time series. In contrast, the short-tail is directly fitted to the scatter plot. The
estimation of the SDE makes a more reliable representation because the approach captures
the dynamical properties of the variable ϕ.

In the analysis of the temperature inversion with the SURANS model, the starting point is
the noise-free solutions (see black line in Fig. 5.13). In addition, the colored scattered points
represent the various noise-induced solutions. We find that the solutions manifest a specific
organizational pattern in the form of strips. The start of the stripes is marked with black
diamonds, which symbolize the noise-free limit. Starting from the noise-free limit, the increase
of the noise intensity is associated with the direction of the stripes towards the lower values
of ∆T . The path from the noise-free limit towards reducing the temperature inversion is
associated with the increased level of sub-mesoscale activity and goes through the respective
values of the RANS solution (relate the black squares and blue circles in Fig. 5.13). The
sub-mesoscale activity assumingly induces turbulent mixing and hence resists radiative cooling.
This observation coincides with the findings that a long-tail model is reducing the temperature
inversion.

A more interesting finding, which supports the conceptual validity of the SURANS model is
the inclination of the scatter point stripes. As the geostrophic wind increases, the strips take a
more horizontal orientation. This means that along each stripe, the change in the temperature
inversion with respect to U50m reduces. This means that the temperature inversion is insensible
to the sub-mesoscale perturbations at high geostrophic wind speeds. This makes sense since
large geostrophic winds dictate the formation of the boundary layer. In contrary, at low
geostrophic winds, the strips take almost vertical positions, indicating that the temperature
inversion is highly responsive to the perturbation of the turbulent mixing.

In the presented setting above (see Fig. 5.13), a critical wind speed may be defined as the
value at which the largest variability V(∆T ) and V(U50m) in both variables arises (V denotes
variance). Due to the perturbations, the simultaneous increase in both variables’ variability
indicates a sensible response of the entire turbulence model. The two contrasting regimes
are then defined as V(∆T ) > V(U50m) for the regime of strong temperature inversion and
V(∆T ) < V(U50m) for the regime of weak temperature inversion. For the considered example,
the critical geostrophic wind speed, estimated from the scatter plot, is 6 ms−1.
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5. Stochastically Unsteady Reynolds-Averaged Navier–Stokes Equations

5.4 Conclusions

This chapter provides the formulation and numerical analysis of a SURANS model for a
stably stratified atmospheric boundary layer. To improve the representation of intermittent
turbulence in regimes of low geostrophic wind speeds and increased sub-mesoscale activity.
The new finding is summarized in the following points.

• The SURANS model adequately represents the intermittent TKE patterns within the
regime of strong stratification (see Fig. 5.6).

• The SURANS model shows enhanced mixing properties in comparison to a RANS with a
linear stability correction function (see Fig. 5.7). The temperature profile is mixed faster
and reaches over larger heights. In comparison to the RANS solution, the stochastic
model, predicts lower temperature value just above the shallow, stably stratified boundary
layer (see Fig 5.12).

• The SURANS model shows that in the regime of stable stratification the boundary layer
height is unsteady and is dictated by the stochastic events (see Fig. 5.8).

• The stochastic perturbation in the SURANS model is parameterized based on the local
gradient Ri number. Therefore, the regime-dependent intermittent statistical properties
of the TKE are captured continuously as a function of flow stability (see Fig. 5.10).

• The analysis results suggest that in the condition of weak stratification and large
geostrophic wind speeds the SURANS model appears to show disproportionally enhanced
variance (see Fig. 5.10a). Therefore, besides parameterizing the noise term in Eq. (5.4)
with the Ri number one needs to investigate and constrain the variance of the noise with
the value of geostrophic wind speed.

• The stochastic equation is confined to the surface portion of the boundary layer and
needs to be blended with the deterministic part of the system. It is unknown if the
proposed closure is locally valid in the outer boundary layer.

• In comparison with the RANS model, the SURANS model show significant differences
in the solution, which is located at the boundary layer top (see Fig. 5.11).

• The SURANS model allowed to investigate the solution states of the temperature
inversion diagram induced by stochastic turbulent diffusion Sec. 5.3.4).

• Although the stochastic correction variable show detached mixing events from the surface,
the intermittency in the turbulence remains bounded to the surface for the considered
case studies. This is because the origin of the intermittent bursts in the TKE are always
constrained by the gradient of the mean wind due to multiplication. Stochastic diffusion
will act in places where a wind gradient is present. Hence, the SURANS is able to
simulate detached TKE if the gradient of the mean wind is detached from the surface as
well.
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5.4 Conclusions

• The effect of stochastic diffusion reaches beyond the boundary layer height as well
as beyond the limiting height of the perturbations (see Fig. 5.7). This results in
qualitatively different profiles compared to the RANS solutions in the outer boundary
layer. Furthermore, the boundary layer height becomes highly variable in strongly SBL
and is determined by the random turbulent mixing events.

The presented SURANS model shows the potential to be used as an exploratory or even
predictive tool. To investigate the use of the SSE for less idealized setups, future studies should
validate the performance of the SURANS against observational data.
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6
Conclusion

This work presents a Reynolds-averaged Navier–Stokes (RANS) type stochastic turbulence
closure developed based on the Fluxes Over Snow Surfaces Phase II (FLOSS2) dataset for
simulating the surface atmospheric Stable Boundary Layer (SBL) up to a height of 50 m. The
turbulence closure covers a stability range 0 < Ri < 10 and represents intermittent turbulent
mixing events. The intermittency of turbulence beyond the critical Ric = 0.25 number is
assumed to be caused by physical processes occurring at scales unresolved by the RANS model.
These unresolved, so-called sub-mesoscale motions determine turbulent mixing in conditions
of high stratification and low mean wind speed. The non-turbulent sub-mesoscale motions
initiate at the model’s subgrid-scale and are independent of the geostrophic wind forcing for
Ri > Ric. Therefore, small-scale turbulence resulting from sub-mesoscales is assumed to occur
randomly in a RANS model. The following sections provide a detailed summary and future
research directions.

6.1 Summary

Parameterization of the SBL is essential for the Numerical Weather Prediction (NWP) systems.
The NWP models depend on the processes at the surface responsible for the transport of
scalar quantities such as temperature and moisture. Turbulence, which is the most important
transport phenomenon in the surface Atmospheric Boundary Layer (ABL), links the large-scale
flow of the upper atmosphere with properties of the Earth surface. Turbulence modeling is
challenging especially in the SBL, partly because of the influence of unresolved sub-mesoscale
motions.

The sub-mesoscale motions summarize significant processes in the nonstationary SBL.
Analysis of the nonstationarity and scale interactions in the FLOSS2 dataset shows that the
intermittency of the turbulent scales is related to the increase in sub-mesoscale energy. The
relationship between these two scales of motion is investigated utilizing Granger causality.
Granger causality evaluates whether the sub-mesoscale can effectively predict the Turbulence
Kinetic Energy (TKE) in the strongly SBL by exploiting the statistical memory effects in the
time-series dynamics. The study shows that vertical gradients of sub-mesoscale wind speed
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are a better predictor of TKE than sub-mesoscale wind speed alone. The modeling results
suggest that there is remaining residual variability in the TKE that is unpredicted by the
vertical gradient of the sub-mesoscale wind. Therefore, the modeling results suggest that
other turbulence-generating mechanisms such as gravity wave breaking or rotational shear are
important.

In this work, the SBL is classified in different ways to analyze the nonstationary scale
interactions. Usually, the SBL is classified by limiting a stability parameter (e.g., Ri, ζ).
This approach is compared with the performance of classifying SBL with statistical models.
Clustering with statistical models allows to include hypothetical relationships for the analyzed
variables. Therefore, such classification provides a tool for discovering novel approaches to
analyze the nonstationary SBL. This study shows that model-based statistical classification
identifies an intermittent regime. This regime is characterized by the Turbulence-Submeso-
Intensity (TSI) diagram, which indicates the relative contributions of sub-mesoscale and
turbulence intensity. The TSI diagram shows a weakly bimodal distribution representative of
an intermittent boundary layer, while the stability parameters do not reveal a similar pattern
(see Fig. 3.26). The reason for this difference is that the stability parameters lack the scale
interactions between the sub-mesoscale motions and the TKE. The observed differences in
the performance of the regime classifiers suggest that the sub-mesoscales are essential in the
strongly SBL. The stability parameter should account for the effect of the sub-mesoscale
processes to improve the RANS models.

The classified cospectra of the scale activities, are investigated as a function of stability to
conclude the relevance of the sub-mesoscales in the SBL. The classified flux cospectra (see
Fig. 3.10) highlights dissimilarities between the transport properties of the sub-mesoscales and
the Kolmogorov-like turbulence. The small-scale turbulence provides sustained averaged
transport, while the sub-mesoscale exhibits zero average transport over time. With increasing
stability of the flow, the scale variability in the flux cospectra for the sub-mesoscale range
increases. In combination with low-wind conditions, the production of small-scale turbulence
becomes more related to the sub-mesoscale than to the mean wind. Chapter 3 details the
above mentioned findings, where the main tool to obtain them is the Finite-Element, Bounded-
Variation, Vector AutoRegressive (X) Factor (FEM-BV-VARX) clustering method.

The FEM-BV-VARX method is used in the first step of this work to analyze the
SBL. In the next step, the FEM-BV-VARX method is further developed to the Finite-
Element, H1-Regularization, Stochastic Differential Equation (FEM-H1-SDE) variant. The
novelty here is the combination of an existing FEM-H1-variational clustering method with
an existing Maximum Likelihood Estimation (MLE) approach for nonlinear Stochastic
Differential Equations (SDEs). The FEM-H1-SDE method models the nonstationary turbulence
measurements with nonlinear one-dimensional SDEs. The method provides an option to work
with generally defined SDEs with appropriate nonlinear drift and nonlinear diffusion terms.
Including estimation of the time-dependent parameters of nonlinear diffusion makes the
FEM-H1-SDE method more suitable for parameterization approaches in turbulence than the
FEM-BV-VARX method, since the FEM-H1-SDE method explicitly models the noise of a
system. In addition, the FEM-H1-SDE method uses a continuous-type mathematical model,
which makes it possible to transfer the identified models from data into other continuous
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systems, being a RANS model one of them. In contrast, the noise of a discrete-time system
must be modeled a posteriori in the FEM-BV-VARX method. The disadvantage of the
FEM-H1-SDE method is that it is limited to one dimension and does not take into account the
memory effect. The FEM-BV-VARX method models memory effects and works with multiple
dimensions, so this tool is better suited for exploratory data analysis.

The main objective of this work is fulfilled by utilizing the FEM-H1-SDE method in
modeling turbulence measurements of the FLOSS2 dataset. Data-driven parameterization
of intermittent turbulence in atmospheric SBL is achieved by modeling the nondimensional
stability correction variable ϕ. In a RANS closure, the variable ϕ modifies the turbulent
mixing length of the momentum to suppress turbulent mixing with increasing flow stability
according to the Monin–Obukhov Similarity Theory (MOST). In this work, the variable ϕ is
considered as a time-dependent stochastic process that reflects the variety of mixing events,
including those, assumingly, induced by the sub-mesoscale motions. The model structure
for the stochastic process ϕ is postulated following the scaling of the MOST (see Sec. 4.2).
The model structure for ϕ is further developed into a SDE using a parameter perturbation
approach. Data analysis is performed to justify the parameter perturbation, which suggests
that the sporadic turbulent mixing events perturb the ϕ system through the Ri number. The
resulting SDE for modeling the evolution of ϕ is referred to as Stochastic Stability Equation
(SSE). The proposed SSE calibration is investigated on the FLOSS2 dataset using the FEM-
H1-SDE method along with other model alternatives of varying complexity. Examination of
the multiple models showed that the proposed SSE performs better than the alternatives and,
most importantly, provides the ability to parameterize the nonstationary parameter values
with the vertically local value of the gradient Ri number. The discovered scaling functions
(see Fig. 4.8) provide the closed-form expression for the stochastic process ϕ, so that the SSE
can be directly integrated into an atmospheric RANS model.

The advantage of using SSE to model intermittent SBL is that the effect of random mixing
events is controlled by one parameter: noise intensity. Since the noise intensity scales with
the flow stability, the respective scaling function can be shifted to enhance or eliminate the
random perturbations. By completely suppressing the noise intensity, the steady-state of the
SSE converges to the MOST scaling for the sub-critical range 0 < Ri < 0.25. Such a property
originates purely from the identified scaling function using the FEM-H1-SDE method and
justifies the initial choice of model structure, yet there may be better alternatives. For the
overcritical regime 0.25 < Ri < 10, the SSE in the limit of zero perturbations shows on average
low turbulent mixing, which is a consequence of the parameter calibration procedure with
the FEM-H1-SDE method. Simulating the variable ϕ in the 0.25 < Ri < 10 regime with
perturbations of finite intensity shows intermittent dynamic. The parameterized SSE provides
a measure to quantify the intermittency of the flow. The proposed SSE induces a Probability
Density Function (PDF) for ϕ as a function of flow stability. With increasing flow stability,
the type of the PDF transforms from a Gaussian distribution to an extreme value distribution.
Together with the transformation of the PDF’s shape the moments become a function of
stability. With increasing stability the expected value of the PDF diverges from the most
probable value of the PDF. The divergence of the expected value from the most likely value is
a measure of global intermittency for the stratified flow (see Fig. 4.11).
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6. Conclusion

The SSE is combined with a general atmospheric RANS model to investigate and validate
the utility of the SSE. The FLOSS2 dataset is not used to validate the stochastic RANS
model directly. The numerical studies yielded a reasonable qualitative representation of the
intermittent dynamics of the TKE in the strongly stable regime (see Fig. 5.5). Moreover, the
study demonstrated that the parametrization of the noise term in the SSE requires additional
parameter to properly model the weakly stable regimes. By construction of the SSE, the
perturbations are independent of the mean wind forcing scale. This modeling assumption
is true for the strongly stable condition and invalid for the weakly stable condition. In the
weakly stable condition, the inertial subrange becomes larger than the operational time scale
of the SSE. This means that the inertial subrange overlaps with the sub-mesoscales so that the
Kolmogorov turbulence dominates. The resulting drawback of the SSE parameterization
is the unconstrained variance in condition of a large geostrophic wind paired with weakly
stable stratification. This shortcoming is highlighted in Fig. 5.10. It can be remedied by
constraining the noise term in SSE with a limiting geostrophic wind value. Such a value can
be approximated from the flux cospectras, where the scale activity is tracked. Additionally,
the limiting geostrophic wind value is directly readable from Fig. 5.1.

6.2 Outlook

Future research directions may include several topics including: further development of the
FEM-H1-SDE clustering method, investigation of the scaling functions for the SSE, further
extension of the stochastic parameterization to include the turbulent mixing length for heat,
and inclusion of the regime-dependent integral scale of turbulence in the SSE.

The FEM-H1-SDE is expandable to classify spatially varying parameters of a model.
Details of the corresponding literature is provided in Sec. 2.7. A practical first goal would be
to identify vertically varying parameters of the SSE. This becomes relevant when considering
boundary layers in complex terrain because the scaling coordinate of the variable lm is no
longer linear and may depend on local topography. Therefore, the local topography changes the
turbulent patterns and can lead to different spatial scaling laws. These laws can be discovered
by learning the spatial parameter variability from data. In the present work, this aspect is
eliminated because, for a flat surface, the vertical scaling is known (lm = κz) and is directly
incorporated into the preprocessing step of the variable ϕ so that FEM-H1-SDE method does
not need to discover it.

The parameter scaling functions of SSE in this work are proposed based on the FLOSS2
dataset. More data needs to be examined to validate the discovered scaling. It is also of
interest to investigate the general validity of the parameter scaling. Since the parameter
scaling depends on the model structure, it is beneficial to look for a model structure with two
time-dependent parameters by simplifying the SSE structure further. In addition, any work
dealing with the derivation of the model structure using first principle approaches would be
constructive.

Another interesting research direction is the development of a 2D system of SSEs that
combines the effects of the kinematic eddy-viscosity (Km) and eddy heat conductivity (Kh)
coefficients under the effect of sub-mesoscales. By using an additional SSE for the Kh coefficient
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in a coupled system with the Km coefficient, a stochastic model could be obtained for the Prt

as a function of random mixing events in the subgrid-scale for the conditions Ri > Ric.
The regularity of SSE solution and thus memory is not investigated in this study. The

identification of memory effects can be integrated into the FEM-H1-SDE framework. This
aspect is useful in identifying continuous systems with memory for the variable ϕ. The variable
ϕ will require memory if a regime-dependent turbulence averaging scale is utilized to model
the stochastic process ϕ. The regime-dependent integral scale of turbulence can be calculated
directly from the results of this study. The estimated model affiliation function can be used
in combination with Multiresolution Decomposition (MRD) to estimate the time-varying
turbulent averaging scale.

Finally, it would be interesting to study the consequences of the SSE in a larger NWP
system. The numerical study (see Sec. 5.3.3) has shown that the random perturbations within
the boundary layer induce the most important changes at the top of the boundary layer.
Moreover, the induced differences at the top of the boundary layer are propagated into the
weakly stable regime in case of increasing wind forcing (see Fig. 5.12). Hypothetically, this
could influence cloud formation in the morning hours. The effects of SSE in a NWP system
are inconclusive without further research.
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A
In Section 4.2.2 the Ordinary Differential Equation (ODE) is introduced to model the stability
correction variable ϕ. In the follow up section this ODE is perturbed through the one of its
parameters.

Estimation of the number of cluster to determine the scaling function in section 4.4.2 is
presented in the following figure A.1

Figure A.1: Estimation of the number of clusters K for the identification study in section 4.4.2.
Each box shows the tradeoff between minimization cost and gain in cluster diversity. The 1 height
index denotes the 1 m height above the surface, and the 7 height index represents the 30 m height.
The red curve shows a decreasing fitness function value with the number of clusters. The blue
curve shows the diversity added with each new cluster. A good choice (highlighted with a green
stripe) for K is when the change rate of both measures reduces simultaneously. The information
gain is the logarithmically transformed diversity measure.
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A.1 Coefficients of the Hermite Expansion

The coefficients ηj in Eq. (2.12) are approximated with a truncated Taylor series of length
M = J/2 as:

η
(3)
0 = 1 ,

η
(3)
1 = −µh1/2 − 2µµ′ + µ′′

4 h3/2 − 4µµ′2 + 4µ2µ′′ + 6µ′µ′′ + 4µµ(3) + µ(4)

24 h5/2 ,

η
(3)
2 = µ2 + µ′

2 h+ 6µ2µ′ + 4(µ′)2 + 7µµ′′ + 2µ(3)

12 h2 + 1
96
(
28µ2(µ′)2 + 28µ2µ(3)

+ 16(µ′)3 + 16µ3µ′′ + 88µµ′µ′′ + 21(µ′′)2 + 32µ′µ(3) + 16µµ(4) + 3µ(5)
)
h3 ,

η
(3)
3 = −µ

3 + 3µµ′ + µ′′

6 h3/2 − 1
48
(
12µ3µ′ + 28µ(µ′)2 + 22µ2µ′′ + 24µ′µ′′

+ 14µµ(3) + 3µ(4)
)
h5/2 ,

η
(3)
4 = µ4 + 6µ2µ′ + 3(µ′)2 + 4µµ′′ + µ(3)

24 h2 + 1
240

(
20µ4µ′ + 50µ3µ′′ + 100µ2(µ′)2

+ 50µ2µ(3) + 23µµ(4) + 180µµ′µ′′ + 40(µ′)3 + 34(µ′′)2 + 52µ′µ(3) + 4µ(5)
)
h3 ,

η
(3)
5 = −µ

5 + 10µ3µ′ + 15µ(µ′)2 + 10µ2µ′′ + 10µ′µ′′ + 5µµ(3) + µ(4)

120 h5/2 ,

η
(3)
6 = 1

720
(
µ6 + 15µ4µ′ + 15(µ′)3 + 20µ3µ′′ + 15µ′µ(3) + 45µ2(µ′)2 + 10(µ′′)2

+ 15µ2µ(3) + 60µµ′µ′′ + 6µµ(4) + µ(5)
)
h3 ,

where µ is the drift of the Y process evaluated at y0 (see Eq. (2.11)), ”′” denotes a derivative and
h = ∆t. The Hermite polynomials for the expansion are: H0(z) = 1, H1(z) = −z,H2(z) =
−1 + z2, H3(z) = 3z − z3, H4(z) = 3 − 6z2 + z4, H5(z) = −15z + 10z3 − z5, H6(z) = −15 +
45z2 − 15z4 + z6.
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A.1 Coefficients of the Hermite Expansion

Table A.1: The SDE model library is tested on the data to validate the model structure. The
starting point is the favored model structures given in section 4.2.2. The degree of nonlinearity
(parameter β) of the noise term is systematically varied. It is assumed that all parameters are
time-varying. The model structure is presented in a short notation by denoting the noise term
with dWt.

Perturbation type Explanation

additive noise

β = 1 a1 − a2ϕ+ s1d Invalid because ϕ < 0

β = 5/4 1 + a2ϕ− a2ϕ
5/4 + s1dWt Unstable after identification

β = 3/2 1 + a1ϕ− a2ϕ
3/2 + s1dWt Unstable after identification

β = 2 1 + a1ϕ− a2ϕ
2 + s1dWt Unstable after identification

β = 3 1 + a1ϕ− a2ϕ
3 + s1dWt Unstable after identification

Linear term

β = 1 a1 − a2ϕ+ s1ϕdWt Poor performance

β = 5/4 1 + a1ϕ− a2ϕ
5/4 + s1ϕdWt Favorite

β = 3/2 1 + a1ϕ− a2ϕ
3/2 + s1ϕdWt Favorite

β = 2 1 + a1ϕ− a2ϕ
2 + s1ϕdWt Favorite

β = 3 1 + a1ϕ− a2ϕ
3 + s1ϕdWt Poor param. scaling

Nonlinear term

β = 1 –

β = 5/4 1 + a1ϕ− a2ϕ
5/4 + s1ϕ

5/4 dWt Parameters unidentifiable

β = 3/2 1 + a1ϕ− a2ϕ
3/2 + s1ϕ

3/2 dWt Parameters unidentifiable

β = 2 1 + a1ϕ− a2ϕ
2 + s1ϕ

2 dWt Parameters unidentifiable

β = 3 1 + a1ϕ− a2ϕ
3 + s1ϕ

3 dWt Parameters unidentifiable

Other diffusion types

β = 3 1 + a1ϕ− a2ϕ
3 +

√
s1 + s2ϕ2 dWt No scaling function for a2

Amplitude equation of Stuart-Landau type –

b+ a0ϕ+ ϕ
∑2

k=1 ak|ϕ|2k +
√
s1 + s2ϕ2 dWt Unstable after identification
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