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a b s t r a c t 

Viral integration is a complex biological process, and it is 

useful to have a reference integration dataset with known 

properties to compare experimental data against, or for com- 

paring with the results from computational tools that detect 

integration. To generate these data, we developed a pipeline 

for simulating integrations of a viral or vector genome into a 

host genome. Our method reproduces more complex charac- 

teristics of vector and viral integration, including integration 

of sub-genomic fragments, structural variation of the inte- 

grated genomes, and deletions from the host genome at the 
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integration site. Our method [1] takes the form of a snake- 

make [2] pipeline, consisting of a Python [3] script using 

the Biopython [4] module that simulates integrations of a 

viral reference into a host reference. This produces a refer- 

ence containing integrations, from which sequencing reads 

are simulated using ART [5] . The IDs of the reads crossing in- 

tegration junctions are then annotated using another python 

script to produce the final output, consisting of the simulated 

reads and a table of the locations of those integrations and 

the reads crossing each integration junction. To illustrate our 

method, we provide simulated reads, integration locations, as 

well as the code required to simulate integrations using any 

virus and host reference. This simulation method was used to 

investigate the performance of viral integration tools in our 

research [6] . 

Crown Copyright © 2022 Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S

 

pecifications Table 

Subject Computational Biology 

Specific subject area Bioinformatics; Simulation 

Type of data Code 

DNA sequence (fasta) 

Next-generation sequencing reads (fastq) 

Table 

How the data were acquired Our simulation pipeline was developed using snakemake 5.27 [2] , Python 

3.7 [3] , biopython 1.76 [4] , Pysam 0.16 [7 , 8] , NumPy [9] , Pandas 1.0 [10] , 

SciPy 1.5 [11] and ART 2016.06.05 [5] . The user may make use of either 

Conda [12] or Singularity [13] to supply these dependencies automatically 

(via snakemake). Our pipeline works on Linux and MacOS, but has not 

been tested on Windows. 

In our example data, we simulated integrations of AAV2 (acquired from 

GenBank, accession NC_001401.2) into human chromosome 1 (GenBank, 

accession NC_0 0 0 0 01.11). The example data were generated on a Dell 

PowerEdge C6525 server with 512 GB of RAM and dual AMD EPYC 7543 

32-Core Processors running at 2.8 GHz with 256 MB cache. 

Data format Raw, Simulated 

Description of data collection The simulation pipeline begins by simulating integration by taking pieces 

of the viral reference and inserting them into the host reference, keeping 

track of which parts of the viral reference were integrated and where in 

the host genome the integrations occurred. This step is carried out by a 

Python script that outputs a file in fasta format containing the host 

reference with integrated viral sequences and a table containing the 

location of the integrations. The properties of these integrations can be 

adjusted by setting the number of integrations, the minimum distance 

between adjacent integrations, the probability that the whole viral genome 

will be integrated (or a sub-genomic fragment), the minimum and 

maximum length of the sub-genomic fragments (if appropriate), the 

probability that the integrated genome will contain a rearrangement or 

deletion, the probability of a gap or overlap at the host/virus junctions, 

and the probability of a deletion from the host at each integration site. 

After integration simulation, reads are generated using ART [5] . At this 

step, the user can specify a read length (we simulate paired-end reads), 

fold-coverage, mean fragment length and standard deviation, and a 

sequencing system from which an error profile is derived. 

( continued on next page )
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Next, the reads that cross each integration junction are identified by a 

Python script, and the table of integration locations is updated with this 

information. Finally, a file containing the locations in the host of the 

integration junctions which are crossed by at least one read is output in 

BED format. 

The primary outputs of the pipeline are the simulated reads (fastq format), 

the table containing information about each integration, and the table 

containing the locations of each integration with at least one supporting 

read in BED format. 

Data source location AAV2 and human chr1 references (GenBank) 

• Institution: National Centre for Biotechnology Information 

• City/Town/Region: Bethesda MD 

• Country: USA 

Data accessibility Repository name: GitHub (code only) 

Data identification number: https://doi.org/10.5281/zenodo.6403449 

Direct URL to data: 

https://github.com/aehrc/vector- integration- simulation- pipeline 

Repository name: CSIRO data access portal (code and example dataset) 

Data identification number: https://doi.org/10.25919/m529-q062 

Direct URL to data: https://data.csiro.au/collection/csiro:53212 

Related research article S. Scott, C.V. Hallwirth, F. Hartkopf, S. Grigson, Y. Jain, I.E. Alexander, D.C. 

Bauer, L.O.W. Wilson, Isling: A Tool for Detecting Integration of Wild-Type 

Viruses and Clinical Vectors, Journal of Molecular Biology. (2021) 167,408. 

https://doi.org/10.1016/j.jmb.2021.167408 . 

Value of the Data 

• Having a way to simulate integrations is useful when comparing software that detect inte-

grations, by creating a ‘ground truth’ against which outputs can be compared 

• This pipeline has been used to validate software for the detection of viral integrations [6] 

• It may also be useful for researches investigating virus or vector integrations, to compare

their results against simulated integrations 

1. Data Description 

Our data consist code to simulate integrations and create tables of their properties, consisting

of a snakemake workflow and several Python scripts, as well as an example dataset to illustrate

the method [1] . The steps in the simulation pipeline are illustrated in Fig. 1 . 

The simulated integrations can be tailored to the integration behaviour of a particular virus

or vector. Here, we simulate the integration of wild-type AAV2 (GenBank NC_001401.2) into hu-

man chromosome 1 (GRCh38, GenBank NC_0 0 0 0 01.11), with 10 0 integrations per replicate. In-

tegrations of AAV often involve sub-genomic fragments (rather than the whole virus) [15] , so

the probability of a sub-genomic fragment being integrated was 0.5, with a minimum length of

50 bp. Structural variation has also been observed in integrated AAV genomes [15 , 16] , so the

probabilities of rearrangement and deletion were both 0.1, and the mean of the Poisson distri-

bution from which the number of pieces into which the viral fragment was split during rear-

rangement or deletion was 1. There is also frequently a gap (of bases that appear to come from

neither host nor virus) or overlap (microhomology between host and vector) at the host/virus

junction [16] , so the probabilities of an overlap or gap each junction were both 0.2, with a mean

length of 1 bases involved in each junction. Finally, deletions from the host genome can occur at

integration sites [16] , so the probability of a deletion occurring at each integration site was 0.2.

If a deletion occurred, its length was drawn from a Poisson distribution with a mean of 20 bp. 

The example results obtained are hosted on the CSIRO data access portal ( https://doi.org/10.

25919/m529-q062 ). The output files are in the out/AAV2_chr1 directory: 

https://doi.org/10.5281/zenodo.6403449
https://github.com/aehrc/vector-integration-simulation-pipeline
https://doi.org/10.25919/m529-q062
https://data.csiro.au/collection/csiro:53212
https://doi.org/10.1016/j.jmb.2021.167408
https://doi.org/10.25919/m529-q062
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Fig. 1. The workflow for simulating the example data. Boxes represent steps in simulating the data, and arrows represent 

files which are output by one step and input into the next. First, integrations are simulated (simulate_integrations, aqua), 

and then reads are generated using ART (green). The resulting SAM file is sorted and coverted to BAM format (orange) 

and then the reads crossing each integration are annotated (red). The locations of the integrations across which reads 

cross are then output in BED3 format (yellow). A summary table of the integration simulation parameters is also written 

to a file (blue). The resulting summary, fastq files, and tables containing the locations of the integrations are the primary 

output of the pipeline (all, light green. This figure was generated using snakemake [2] and dot [14] . 

 

 

 

 

 

• simulation_summary.tsv: Each of the output files are have the prefix ‘condX.repY’ for con-

dition number X and replicate number Y of that condition. This file contains a table of the

parameters used for each condition and replicate 

• sim_ints: this folder contains information about the simulated integrations: 

◦ Files ending in ‘.int-info.tsv’ contain a table with the location and properties of each simu-

lated integration in the original host reference, and the newly constructed reference with

integrations. Generally, the column ‘hPos’ is of interest – this is the location of the inte-

grations in the original host reference. 
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◦ Files ending in ‘.int-info.annotated.tsv’ contain the same information as the previous file,

but additionally has the reads that cross each integration junction annotated. 

◦ Files ending in ‘int-info.bed’ contain the location of the integration junctions with sup-

porting reads in the original host genome, in BED3 format. 

◦ Files ending in ‘epi–info.tsv’ contain a table with information about the episomes that

were included in the simulation. 

• sim_reads: this folder contains the simulated reads 

◦ The files ending in ‘1.fq’ and ‘2.fq’ contain the simulated read 1 and read 2 sequences and

qualities, respectively. 

◦ Files ending in ‘sorted.bam’ contain these reads aligned to the reference containing inte-

grations (which is different to the original host reference), and the index of these files

end in ‘sorted.bam.bai’. The alignment files are coordinate-sorted. 

The rest of the files are part of the pipeline for simulation: 

• ‘README.md’: A readme containing information about the pipeline 

• ‘Snakefile’: The file specifying the snakemake workflow for simulating integrations and reads

• ‘Dockerfile’: A dockerfile for creating a docker container for the workflow. 

• ‘config/simulation.yml’: The config file used for creating the example data 

• ‘references/AAV2.fa’, ‘reference/chr1/fa’: The references used for creating the example data 

• ‘scripts/’: The scripts used for simulating integrations 

• ‘snakemake_rules’: A directory containing the rules for running the snakemake workflow 

2. Experimental Design, Materials and Methods 

The first step in simulating integrations is reading the config file and creating the conditions.

Each combination of the parameters specified in the config file is one condition, and there is

one or more replicates of each condition (with a different random seed). The conditions used

for simulation are written to a tab-separated table in a file called ‘simulation_summary.tsv’ (see

above). 

Next, a reference containing integrations is created. This is achieved using the Python3 script

‘scripts/insert_virus.py’, which randomly selects a host chromosome and viral reference, and

then adds the viral sequence to the host chromosome at a random position. This process is

repeated to produce the number of integrations set by the n_ints parameter. 

Depending on the parameters used, this might always be the whole virus (if p_whole is 1),

or a randomly-selected sub-genomic fragment. The minimum and maximum length of the in-

tegrations can be controlled by setting the max _len and min _len parameters in the config file.

Structural variation can be simulated by setting the p_rearrange and p_delete paramters to a

number greater than 0 (and less than or equal to 1). 

If the integrated viral fragment is to be rearranged or deleted, it is first split into a number

of smaller pieces. The number of pieces is an integer drawn from a Poisson distribution, with

a mean set by the parameter lambda_split . If the viral fragment is to be rearranged, two of the

pieces are swapped before integration, and if the viral fragment is to contain a deletion, one of

the pieces is removed. 

Then, the junctions between each end of the viral fragment and the host chromosome are

created – these are either a gap (containing randomly selected bases), an ‘overlap’ where the

junction contains homology between the host and vector, or a ‘clean’ junction where the host

chromosome runs straight into the viral sequence. The probability of obtaining each kind of

junction is determined by the parameters p_gap and p_overlap , and the length of the junction is

an integer drawn from a Poisson distribution, with a mean set by the parameter lambda_junction .

A deletion from the host at the integration site can also be simulated, and the probability of

this event is set by the parameter p_host_deletion . If a deletion occurs, it’s length draws from a

Poisson distribution with a mean set by the parameter lambda_host_deletion . 
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Episomal (non-integrated) viral sequences can also be included in the reference by specify-

ng a number of episomes to include ( epi_num ). If these are included, these may be subject to

earrangement or deletion, depending on the values of p_rearrange and p_delete . 

After this step, a new reference containing integrations and episomal sequences is created, as

ell as a table of information about each integration. 

Next, the reference containing integrations is use to simulate paired-end short sequencing

eads. This step is performed by art_illumina [5] , and the user can specify the read length, fold

overage, mean and standard deviation of the fragment length and sequencing system. 

After reads are simulated, the reads crossing each integration junction are identified, and a

le containing the location of integrations in the original host genome is generated. 
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R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-

riksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental
algorithms for scientific computing in python, Nat. Methods 17 (2020) 261–272, doi: 10.1038/s41592- 019- 0686- 2 . 

[12] Anaconda development team, Anaconda Software Distribution, n.d. https://anaconda.com . 
[13] G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: scientific containers for mobility of compute, PLoS ONE 12 (2017),

doi: 10.1371/journal.pone.0177459 . 
[14] S.C. North, E.R. Gansner, J.C. Ellson, Y. Hu, Dot, n.d. https://www.graphviz.org/pdf/dotguide.pdf . 

[15] R.M. Kotin, L.R. Michael, B. Kenneth, Characterization of a preferred site on human chromosome 19q for integration
of adeno-associated virus DNA by non-homologous recombination, EMBO J. 11 (1992) 5071–5078, doi: 10.1002/j.

1460-2075.1992.tb05614.x . 

[16] D.A . Dalwadi, A . Calabria, A . Tiyaboonchai, J. Posey, W.E. Naugler, E. Montini, M. Grompe, AAV integration in human
hepatocytes, Molec. Therapy (2021), doi: 10.1016/j.ymthe.2021.08.031 . 

https://doi.org/10.1093/bioinformatics/btp352
https://pysam.readthedocs.io
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://anaconda.com
https://doi.org/10.1371/journal.pone.0177459
https://www.graphviz.org/pdf/dotguide.pdf
https://doi.org/10.1002/j.1460-2075.1992.tb05614.x
https://doi.org/10.1016/j.ymthe.2021.08.031

	A bioinformatic pipeline for simulating viral integration data
	Specifications Table
	Value of the Data
	1 Data Description
	2 Experimental Design, Materials and Methods
	Ethics Statements
	CRediT Author Statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgments

	References

