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Abstract 

Background: EQ‑5D health state utilities (HSU) are commonly used in health economics to compute quality‑
adjusted life years (QALYs). The EQ‑5D, which is country‑specific, can be derived directly or by mapping from self‑
reported health‑related quality of life (HRQoL) scales such as the PROMIS‑29 profile. The PROMIS‑29 from the Patient 
Reported Outcome Measures Information System is a comprehensive assessment of self‑reported health with 
excellent psychometric properties. We sought to find optimal models predicting the EQ‑5D‑5L crosswalk from the 
PROMIS‑29 in the United Kingdom, France, and Germany and compared the prediction performances with that of a 
US model.

Methods: We collected EQ‑5D‑5L and PROMIS‑29 profiles and three samples representative of the general popula‑
tions in the UK (n = 1509), France (n = 1501), and Germany (n = 1502). We used stepwise regression with backward 
selection to find the best models to predict the EQ‑5D‑5L crosswalk from all seven PROMIS‑29 domains. We investi‑
gated the agreement between the observed and predicted EQ‑5D‑5L crosswalk in all three countries using various 
indices for the prediction performance, including Bland–Altman plots to examine the performance along the HSU 
continuum.

Results: The EQ‑5D‑5L crosswalk was best predicted in France  (nRMSEFRA = 0.075,  nMAEFRA = 0.052), followed by the 
UK  (nRMSEUK = 0.076,  nMAEUK = 0.053) and Germany  (nRMSEGER = 0.079,  nMAEGER = 0.051). The Bland–Altman plots 
show that the inclusion of higher‑order effects reduced the overprediction of low HSU scores.

Conclusions: Our models provide a valid method to predict the EQ‑5D‑5L crosswalk from the PROMIS‑29 for the UK, 
France, and Germany.
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Key points

• We provide mapping from PROMIS-29 profile to 
EQ-5D-5L crosswalk in the United Kingdom, France, 
and Germany.

• Due to the country specificity of health state utility, 
mapping algorithms for health state utility should not 
be generalized across countries.

• The application of polynomial regression models that 
account for non-linearity improves the prediction 
performance, in particular for poorer health states.

• The application of foreign models should be avoided.
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Background
Quality-adjusted life years (QALYs) are routinely used 
in cost-utility analyses (CUA) to evaluate the economic 
effectiveness of health care innovations or interven-
tions [1]. QALYs are of particular importance in health 
technology assessments (HTAs) [2]. For example, the 
National Institute of Health and Clinical Excellence 
(NICE) in England and Wales has endorsed QALYs to 
compare health care interventions from an economic 
perspective [1]. In light of budget constraints in publicly 
funded health care systems, QALYs serve as a benchmark 
for the allocation of scarce resources in a way that maxi-
mizes utility to individuals and to society [2].

A QALY is defined as the product of the number of 
life years and a health state utility (HSU) score that rep-
resents the value of a particular health state. HSU values 
can at best achieve a value of 1 (full health). A value of 0 
is considered dead and health states with a negative value 
are considered worse than dead. Individual HSU scores 
are patient-reported, generic, preference-based measures 
of health-related quality of life (HRQoL) [3]. The most 
frequently used generic HRQoL measure is the EuroQoL 
EQ-5D-5L crosswalk differentiating 3125 (i.e.,  55) health 
states. The EQ-5D-5L crosswalk is the default HSU score 
for economic evaluations demanded by HTA agencies 
such as NICE [4–7].

The Patient Reported Outcome Measurement Informa-
tion System (PROMIS), on the other hand, is increasingly 
used internationally to measure clinical and condition-
specific, non-preference HRQoL for its favourable psy-
chometric properties: high validity, high reliability, high 
precision, and flexible administration [8, 9]. PROMIS is 
a common metric for a large variety of different health 
domains, aiming at comprehensive assessment, stand-
ardization and integration of different measures and 
items. It constitutes a collection of generic and condi-
tion-specific, non-preference-based patient reported 
outcome measures (PROMs) that have been developed 
using item response theory (IRT) [10]. For each PROM, 
so-called item banks have been developed comprising 
items that are highly informative regarding the PROM to 
be measured and that do not function substantially dif-
ferent across the most prominent demographic groups 
(e.g., women and men) [11, 12]. These item banks can 
be used to develop tailored short forms or for comput-
erized adaptive testing (CAT) [13]. PROMIS overcomes 
significant limitations of legacy instruments such as ceil-
ing effects and is, being translated to many languages and 
showing invariance to nationality, becoming the interna-
tional reference measurement approach to PROMs [9, 
14–16].

For economic evaluations, the preference-based EQ-
5D-5L crosswalk is best obtained directly using the 

EQ-5D-5L questionnaire. If direct assessment is not 
available, a common strategy is to estimate HSU scores by 
using a mapping algorithm from a non-preference-based 
PROM such as PROMIS [14, 17–20]. Little consensus 
exists on which mapping method is the most appropriate. 
In a recent systematic review, 147 studies mapping the 
EQ-5D were identified [17]. In more than 75% ordinary 
least squares (OLS) linear regression was used. Although 
OLS linear regression showed robust results compared 
to alternative methods, it has several drawbacks [21, 22]: 
First, predicted HSU scores may fall outside the possible 
range of the metric (i.e., values greater than one). Second, 
the relationship between non-preference-based PROM 
and HSU might be non-linear, meaning that the impact 
of health domains differs across the HSU continuum [22].

As PROMIS is increasingly used in clinical, non-prefer-
ence HRQoL measurement and the EQ-5D-5L crosswalk 
is the required HSU for economic evaluations, develop-
ing a mapping between these two would open the per-
spective to use PROMIS for economic evaluations. As 
both are multidimensional generic HRQoL measures 
covering similar dimensions or domains (EQ-5D mobility 
and EQ-5D self-care versus PROMIS physical function, 
EQ-5D pain/discomfort versus PROMIS pain interfer-
ence, EQ-5D anxiety/depression versus PROMIS anxi-
ety or PROMIS depression, EQ-5D usual activities versus 
PROMIS ability to participate in social roles and activi-
ties), we can reasonably assume conceptual overlap, as 
previous mappings have as well [19, 20].

Mapping PROMIS to EQ-5D-5L crosswalk also opens 
a perspective for the use of other PROMs in economic 
evaluations: Because of its invariance property, PROMIS 
domains can also be measured using items from a differ-
ent condition-specific measure that is anchored to the 
PROMIS metrics. For example, items from self-reported 
anxiety measured by MASQ, PANAS and GAD-7 are 
anchored on the PROMIS Anxiety metric [23]. Items 
from the BDI-2, CES-D, and PHQ-9, measuring depres-
sion, are anchored on the PROMIS Depression metric 
[24]. Therefore, mapping from PROMIS T-scores to EQ-
5D-5L crosswalk enables the mapping of a broad range of 
PROMs to the EQ-5D-5L crosswalk via PROMIS.

Using OLS linear regression on US data, Revicki (2009) 
estimated a model to predict the former EQ-5D version, 
the EQ-5D-3L index value, from five PROMIS T-scores 
[19]: physical function, fatigue, pain interference, anxi-
ety, and depression. For this PROMIS domain model, 
Revicki reports that approximately 57% (adjusted  R2) of 
the variance in EQ-5D-3L index value can be explained 
by the variables in the model, and the intraclass correla-
tion coefficient (ICC) is 0.73. Furthermore, 95% of all the 
residuals are between − 0.20 (2.5%) and 0.15 (97.5%). The 
relatively small width of these so-called empirical limits 
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of agreement (LoA) is indicative of an appropriate fitted 
model. However, Revicki also reported that the model 
does not work very well for low levels of health (EQ-
5D-3L index value < 0.40). Revicki used the EQ-5D-3L 
questionnaire and applied the US EQ-5D-3L value set by 
Shaw (2005) [25]. As health preferences differ between 
countries, the EQ-5D-3L index value is country-specific 
[26, 27]. Revicki’s model can therefore only be used to 
predict the EQ-5D-3L index value from PROMIS in the 
US.

Therefore, the primary aim of this study is to develop 
mapping functions from PROMIS-29 to the EQ-5D-5L 
crosswalk for the UK, France, and Germany so that 
PROMIS can be used for economic valuations in these 
countries. For each health domain, we explored the form 
of its relationship with the EQ-5D-5L crosswalk and 
examined whether these relationships would be the same 
across the three countries under investigation. Also, we 
aimed at improving prediction performance by including 
higher order coefficients. Furthermore, we investigated 
whether the optimal models would be structurally equiv-
alent across countries and compared prediction perfor-
mance of our models to Revicki’s model.

Methods
Samples
Data were collected online by an independent polling 
company (Ipsos) in April and May 2015. Quota sam-
pling was employed to obtain samples representative of 
the general population with respect to sex, age, occupa-
tion, region, and population density of the UK (n = 1509), 
France (n = 1501), and Germany (n = 1502). Sample 
weights were calculated using the random iterative 
method (RIM) to match the latest data available in each 
country (census 2011 for the UK and Germany, census 
2012 for France).

Participation in our general population samples was 
voluntary and data protection laws obeyed by Ipsos. If 
a respondent chose to drop out at some point, the data 
given until that point was not included. As skipping items 
was not possible, there were no missing data.

Measures
PROMIS domains and item banks
We used the PROMIS-29 v2.0 Profile to assess seven core 
domains of health, each assessed with four items: physi-
cal function, fatigue, pain interference, anxiety, depres-
sion, sleep disturbance, and the ability to participate in 
social roles and activities (referred to as participation 
in the remainder of this article) plus the visual analogue 
scale (VAS) expressing pain intensity on a scale ranging 
from 0 to 10 [28]. PROMIS-29 has, compared to other 
short forms, enough items to achieve a sufficient degree 

of precision while maintaining a reasonable response 
burden. Items are measured on five levels (e.g. “never”, 
“rarely”, “sometimes”, “often”, “always” or “not at all”, “a lit-
tle bit”, “somewhat”, “quite a bit”, “very much”) and refer 
to the past 7  days (except physical function). Answers 
yield a number from one to five, which, once fed into 
the online PROMIS converter (http://www.healt hmeas 
ures.net/score -and-inter pret/calcu late-score s), give one 
correspondent PROMIS T-Score (M = 50 ± SD = 10) per 
domain with the US general population as a reference. 
Note that due to the invariance property of IRT, T-Scores 
obtained from the PROMIS-29 are on the same metric 
as the scores Revicki used in his analysis, though these 
scores were generated using different items. For desir-
able constructs (e.g., physical function), higher T-scores 
indicate better health, whereas for undesirable domains 
(e.g., depression), higher T-scores indicate poorer health 
states.

The psychometric properties of the PROMIS-29 pro-
file, including evidence of construct and criterion validity, 
have been reported elsewhere [29–32]. An earlier analy-
sis of the data used in this study revealed that scores on 
the seven health domains of the PROMIS-29 are meas-
urement invariant across the UK, France, and Germany 
except for one item [33].

EQ‑5D‑5L crosswalk value set
The EuroQoL EQ-5D is a standardized patient-reported 
HRQoL questionnaire, measuring five health dimensions 
of health: mobility, self-care, usual activities, pain/dis-
comfort, and anxiety/depression. Its original version, the 
EQ-5D-3L, differentiates 3 levels per domain, defining  35 
or 243 health states. Its revised version, the EQ-5D-5L, 
has five levels: “No problems” (or 1), “Slight problems” 
(2), “Moderate problems” (3), “Severe problems” (4), 
and “Extreme problems” (5), defining  55 or 3125 differ-
ent health states. We chose the EQ-5D-5L question-
naire because it can differentiate more health states and 
is more sensitive. Each health state is assigned a HSU 
by different value sets, reflecting the preferences of the 
general population in the respective countries. For many 
countries, there is not yet a value set for the 5L version. 
An EQ-5D-5L crosswalk value set was developed for the 
purpose of using 3L value sets for health states described 
by the 5L version. We used these EQ-5D-5L crosswalk 
value sets as they are available for all three countries of 
our samples [4, 26, 34, 35].

The maximum HSU for the best health state of 11111 
is 1.00 or “full health” while 0.00 is considered “dead”. The 
minimum HSU of the worst health state of 55555 is nega-
tive, considered “worse than dead”: − 0.594 in the UK, 
− 0.530 in France, and − 0.205 in Germany [26].

http://www.healthmeasures.net/score-and-interpret/calculate-scores
http://www.healthmeasures.net/score-and-interpret/calculate-scores
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Statistical analysis
Relationships among individual health domains and health 
state utility across the UK, France, and Germany
To obtain a first impression of the form of the relation-
ships among individual health domains and HSU and 
to judge whether the relationships are stable across the 
three countries under investigation, we plotted the seven 
domain scores against HSU in the UK, France, and 
Germany.

Optimal models for predicting health state utility in the three 
countries
We applied stepwise regression with backward selec-
tion to find the best models to predict the EQ-5D-5L 
crosswalk for the UK, France, and Germany, starting 
with full models that incorporated linear, quadratic, 
and cubic effects for all seven PROMIS-29 domains. 
We included  polynomials up to the third degree as we 
expected that such polynomials can more flexibly  fit 
the observed data, e.g. in case of nonlinear relationships 
between predictors and outcome. We used raw poly-
nomials for linear, quadratic and cubic effects in order 

also determined the width between the 95% empirical 
limits of agreement and compared them to the 95% theo-
retical limits of agreement (i.e., ± 1.96 × SD(residuals)). 
To check the prediction performance along the HSU 
continuum, Bland–Altman plots were used.

We use cross-validation to check for overfitting [42]. 
With this in-sample cross-validation technique, the 
initial dataset is randomly split into 10 subsamples of 
approximately equal size. One of these subsamples is 
kept for validation, while the other nine subsamples are 
used for parameter estimation. This process is repeated 
ten times, and the results are averaged across repetitions. 
Overfitting would show when a model’s nRMSE is sub-
stantially smaller than the average nRMSE of the models 
of the 10 subsamples.

We used R version 3.4.1, IBM SPSS Statistics version 
23, and Microsoft Excel version 15 to run the analyses.

Impact of misspecified mapping functions on the prediction 
performance
To the best of our knowledge, as of December 2020, the 
mapping function by Revicki was the only one avail-
able for predicting the EQ-5D-3L index value from the 
PROMIS-29 T-scores [19]:

We were interested in quantifying the detrimental 
effect of applying this foreign mapping function to the 
data collected in Europe. Note that application of Rev-
icki’s model to the data collected in the UK, France and 
Germany (1) disregards the country specificity of any 
version of the EQ-5D, (2) does not utilize the potential 
predictive value of the two PROMIS-29 health domains 
not used by Revicki, (3) does not take higher-order effects 
into account, and in combination with the foregoing, (4) 
disregards country dependency of the form of relation-
ships (i.e., the specific values of the regression coefficients 
used).

Because we were also interested in which factor is 
mainly responsible for the differences in prediction per-
formance, we moved stepwise from Revicki’s model 
to our models as follows: First, we used the five health 
domains of Revicki’s model, but with regression coeffi-
cients optimized towards the data collected in each coun-
try separately. Second, we investigated the incremental 
value of adding either sleep disturbance, participation, 
or both to the prediction equation. Third, we allowed for 
incorporation of quadratic and/or cubic effects.

EQ − 5D = 1.0266+ 0.0077× Physical functioning − 0.0021× fatigue

− 0.0040× Pain interference − 0.0023× anxiety− 0.0022× depression

to obtain coefficients which can be used for prediction 
independently.

Because sociodemographic factors such as age and sex 
are known to be useful in predicting HSU, they were also 
entered as possible predictors [17]. The PROMIS pain 
intensity VAS was not included as pain is already cov-
ered by the pain interference domain, which proved to be 
superior than the VAS [36]. Also, while all other domains 
comprise of 4 items, the pain intensity domain within 
PROMIS-29 has only this single item, not measured on a 
T-Score metric.

The Bayesian information criterion (BIC) was used 
to steer the inclusion and exclusion of predictors in the 
stepwise regression analyses [37]. We chose nRMSE and 
nMAE as measures of the prediction precision and bias as 
they are preferred over either  R2 or BIC used by Revicki 
[19, 38]. The nRMSE is the normalized root of the sum 
of the squared residuals between observed and predicted 
scores and the nMAE is the normalized mean absolute 
error of the absolute residuals. Both are normalized with 
respect to the different scale ranges of the EQ-5D-5L 
crosswalk in the UK, France, and Germany [39–41]. We 
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Results
Sample characteristics
We only briefly summarize the most important differ-
ences between the three samples here. The interested 
reader is referred to Table  4 (See “Appendix” section) 
for a comprehensive overview of the marginal distribu-
tions of sex, age, educational level, occupational status, 
and income in the three samples. Participants in the Ger-
man sample (mean age = 50.0  years old) were slightly 
older than participants in the French (48.4 years old) and 
UK samples (47.8 years old). Participants in the German 
sample were more likely to have a low educational back-
ground (23.4%) than participants in the French (7.6%) 
and UK samples (8.1%). Participants in the French sam-
ple were more likely to be unemployed/inactive (48.4%) 
than participants in the German (41.5%) and UK samples 
(39.4%).

Relationships among individual health domains and health 
state utility across the UK, France, and Germany
The relationships among the seven PROMIS domains 
and HSU expressed by the EQ-5D score in the three 
European countries are displayed in Fig. 1.

A number of conclusions can be drawn from Fig.  1. 
First, with the exception of low levels of physical func-
tioning in France, the relationships among the seven 
PROMIS domains and HSU are comparable across the 
three European countries. Second, most of the curves 
are not simple straight lines and are slightly curvilinear, 
indicating that changes at severer levels have a greater 
impact on HSU. Third, all the relationships are in accord-
ance with theoretical expectations. Higher values on the 
positive PROMIS domains (participation and physical 
function) correspond to higher HSU values, and higher 
values on the five negative PROMIS domains correspond 
with lower HSU values. Fourth, participation and physi-
cal function seem to have the strongest relationship with 
HSU because these curves are the steepest.

Optimal models for predicting health state utility 
in the three countries
Recall that we used stepwise regression with backward 
selection to find optimal models for predicting HSU for 
the UK, France, and Germany. The primary models thus 
comprised linear, quadratic, and cubic effects for each 
PROMIS domain plus effects for age and sex. Effects that 

Fig. 1 Relationships among the PROMIS domains and health state utility expressed by the EQ‑5D‑5L crosswalk
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did not significantly improve the prediction performance 
were sequentially removed from these models. The coef-
ficients of the final models to optimally estimate the EQ-
5D-5L crosswalk from PROMIS-29 for the UK, France, 
and Germany can be found in Table 1.

The (unstandardized) regression coefficients of 
Table 1 can be used to compute the EQ-5D-5L crosswalk  
from the PROMIS T-scores: EQ-5D = Constant + Coef-
ficient (Age) × Age + Coefficient (Anxiety) × T-score 
(Anxiety) + ⋯ + Coefficient  (Participation3) × (T-score 
(Participation))3. However, interpretation of the regres-
sion coefficients needs to take into account two specif-
ics of polynomial regression models.

First, the regression coefficients of the higher-order 
effects appear to be much smaller than those for the lin-
ear effects, as the values of the predictor variables (with 
M = 50) are taken to the power of two for the quadratic 
effects  (M2 = 2,500) and to the power of three for the 
cubic effects  (M3 = 125,000). Hence, coefficients have a 
substantially larger impact on the scale of the criterion.

Second, the single standardized regression coeffi-
cients shown in Table 1 should not be used to infer the 
form of the relationship between the individual health 

domains and the EQ-5D-5L crosswalk because we 
have up to three effects (linear, quadratic, and cubic) 
in each health domain, and the relationship thus must 
be described by the summed effect of all three effects. 
Furthermore, not all coefficients are in agreement with 
Fig. 1 which plotted the relationship of a single health 
domain to the EQ-5D-5L crosswalk, irrespective of 
the values in all the other health domains. Instead, the 
regression coefficients are optimal given the effect of all 
the other effects already taken into account (stepwise 
procedure), which also explains why the final models 
in the three countries are so different. Age, for exam-
ple, has a positive effect on HSU in the UK, a negative 
effect on HSU in France, and no effect on HSU in Ger-
many. Although out of the 23 possible predictors twelve 
(UK and France) and ten (Germany) were kept in the 
final models, only four effects were consistently cho-
sen across countries: the linear effect of participation, 
the quadratic effect of physical functioning, and cubic 
effects of depression and pain interference.

The prediction performance of these models is summa-
rized in Table 2. HSU expressed by the EQ-5D-5L cross-
walk can be best mapped from the PROMIS-29 in France 

Table 1 Coefficients of the optimal models for the United Kingdom, France, and Germany

Coefficients are displayed as negative exponentials with four digits, beginning with the first non-zero digit of the coefficient. HSU is expressed on a scale ranging 
from − 0.594 (UK), − 0.53 (France), and − 0.205 (Germany) to 1, and the PROMIS domains are expressed as T-scores (M = 50). All the coefficients displayed differ 
significantly from zero at p < 0.01

UK France Germany

Regression 
coefficient

Standardized 
regression 
coefficient

SE Regression 
coefficient

Standardized 
regression 
coefficient

SE Regression 
coefficient

Standardized 
regression 
coefficient

SE

Constant 2.288E−0 7.874E−1 2.910E−0 5.665E−1  − 1.181E−0 3.047E−1

Age 9.590E−4 0.069 2.032E−4  − 1.372E−3  − 0.107 1.903E−4

Anxiety 1.120E−2 0.499 2.951E−3

Pain interference  − 1.773E−1  − 7.479 4.27E−2

Physical function 5.354E−2 1.881 5.24E−3  − 3.027E−1  − 9.807 3.202E−2

Depression 7.425E−3 0.404 1.664E−3

Participation 1.334E−2 0.573 4.027E−3 9.415E−2 3.719 2.660E−2 8.834E−2 4.915 1.963E−2

Anxietya  − 1.227E−4  − 0.604 2.758E−5

Pain  interferencea 3.042E−3 13.970 7.651E−4 2.122E−4 0.900 4.059E−5

Physical  functiona  − 4.853E−4  − 1.566 5.544E−5 7.506E−3 22.864 7.839E−4 5.596E−4 2.581 6.114E−5

Sleep 
 disturbancea

 − 2.390E−5  − 0.088 4.542E−6  − 1.763E−5  − 0.097 3.415E−6

Participationa  − 1.061E−4  − 0.460 3.785E−5  − 1.706E−3  − 7.104 5.465E−4  − 1.733E−3  − 9.850 4.073E−4

Anxietyb  − 1.480E−7  − 0.070 5.293E−8

Depressionb  − 3.453E−7  − 0.145 5.665E−8  − 3.487E−7  − 0.121 5.494E−8  − 8.951E−7  − 0.421 1.991E−7

Fatigueb  − 2.456E−7  − 0.088 5.782E−8

Pain  interferenceb  − 1.769E−5  − 6.852 4.460E−6  − 3.697E−6  − 1.270 5.046E−7  − 7.808E−7  − 0.421 4.198E−8

Sleep 
 disturbanceb

 − 1.860E−7  − 0.059 5.000E−8

Physical  functionb  − 5.805E−5  − 12.841 6.167E−6  − 6.865E−6  − 2.300 8.279E−7

Participationb 1.026E−5 3.471 3.670E−6 1.113E−5 4.998 2.763E−6
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 (nRMSEFRA = 0.075,  nMAEFRA = 0.052), followed by the 
UK  (nRMSEUK = 0.076,  nMAEUK = 0.053) and Germany 
 (nRMSEGER = 0.079,  nMAEGER = 0.051). Furthermore, for 
all three countries, the widths of the empirical limits of 
agreement are always smaller than the widths of the the-
oretical limits of agreement. All models were confirmed 
by tenfold cross-validation, having a marginally smaller 
nRMSE and nMAE compared the mean nRMSE and 
mean nMAE, respectively, of the 10 models of the cross-
validation subsamples.

The prediction performances of the final models along 
the HSU continuum are depicted in the Bland–Alt-
man plots in Fig. 2. Note that especially in the German 
sample, there are not many respondents with low HSU 
(EQ-5D-5L crosswalk < 0.2). Furthermore, prediction 
performance appears to be slightly better for high levels 

of HSU (EQ-5D-5L crosswalk > 0.8) than for intermediate 
or low HSU.

Impact of misspecified mapping functions 
on the prediction performance
The differences in the prediction performances between 
the applications of Revicki’s model versus our models are 
depicted in Table  3. The application of Revicki’s model 
to the European data would systematically underestimate 
the EQ-5D-5L crosswalk for the UK (− 0.10) and for 
France (− 0.09) but not for Germany. The prediction per-
formance of Revicki’s model is the best in Germany, and 
the differences in the prediction performances between 
Revicki’s and our mapping functions are smaller in Ger-
many than for the UK or for France, as indicated by the 
values of the nRMSE, nMAE, and empirical LoAs.

Table 2 Prediction performance of  the  optimal models for  the  United Kingdom, France, and  Germany and  results 
of the tenfold cross-validation

nRMSE normalized root mean square error, nMAE normalized mean absolute error, LoA levels of agreement, CV cross-validation, SD standard deviation, UK United 
Kingdom

nRMSE Mean 
nRMSE 
(CV)

SD nRMSE (CV) nMAE Mean nMAE (CV) SD nMAE (CV) 95% 
theoretical 
LoA

95% empirical LoA

UK 0.076 0.077 0.0083 0.053 0.054 0.0046  ± 0.25  − 0.20; 0.17

France 0.075 0.076 0.0062 0.052 0.053 0.0041  ± 0.23  − 0.19; 0.17

Germany 0.079 0.080 0.0096 0.051 0.051 0.0037  ± 0.19  − 0.16; 0.13

Fig. 2 Bland–Altman plots of the predicted and observed health state utility scores for the UK, France, and Germany
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The last step was to investigate which factor was 
mainly responsible for the observed differences in the 
prediction performances between Revicki’s and our 
models. The results of the application of country-spe-
cific regression coefficients for the five health domains 
specified by Revicki (first alternative model; M1), the 
incorporation of sleep disturbance and/or participa-
tion (M2c), or the incorporation of quadratic and cubic 
trends into the five-domain model specified by Revicki 
(M3) are shown in Fig.  3. The average prediction per-
formance  (nRMSEUK = 0.082,  nRMSEFRA = 0.085, and 
 nRMSEGER = 0.087) mainly improves by incorporat-
ing country-specific regression coefficients into the five 
health domain models specified by Revicki. However, 
neither this model (M1) nor the incorporation of sleep 
disturbance and/or participation (M2c) improves the 
prediction performance for low levels of HSU, but the 
incorporation of quadratic and cubic effects (M3) does 
improve the prediction performance for low levels of 
HSU. That is, overprediction of HSU is clearly reduced by 
adding these higher-order effects to the three regression 
equations.

Discussion
Summary of main findings
We developed optimal models for mapping the EQ-
5D-5L crosswalk from the PROMIS-29 in the UK, France, 
and Germany. Furthermore, we showed that the incorpo-
ration of higher-order effects into the regression equa-
tions substantially reduced overestimation of low HSU. 
The EQ-5D-5L crosswalk can therefore now be predicted 
from PROMIS-29 in three major European countries for 
QALY in CUA for HTA assessments, enabling the use of 
PROMIS for economic evaluations in Europe. This is of 
practical importance since HTA agencies demand the 
EQ-5D-5L crosswalk as HSU for QALY and PROMIS is 

more frequently used in clinical, non-preference HRQoL. 
We believe our models are highly applicable achieving 
a good degree of precision, also in lower spectrums of 
health, while at the same time avoiding high complexity 
with a manageable number of predictors. Our results in 
terms of the nRMSE and nMAE perform very well com-
pared to what is usually reported for mapping algorithms 
[17, 43–47].

The major comparator to our models is Revicki’s OLS 
linear US model, the only one predicting the EQ-5D-3L 
index value from PROMIS-29. All our models perform 
better in terms of R-squared and ICC while the LoA 
were comparable. Revicki did neither report MAE nor 
RMSE. Furthermore, Revicki’s uses the former version of 
the EQ-5D, the EQ-5D-3L with the US value set as tar-
get measure, while we use the EQ-5D-5L crosswalk value 
sets from the UK, France, and Germany, respectively. We 
demonstrated that the application of Revicki’s US model 
to European data will yield biased results, especially for 
poor health states. However, this model performs well 
in upper ranges of health. One might therefore consider 
using a foreign model with domestic data as a second-
best option to predict the EQ-5D-5L crosswalk for QALY 
in CUA if a country-specific mapping algorithm is not 
available, especially in a group of healthier patients. This 
decision might make sense, for example, when using our 
German model for Austrian data in or using Revicki’s US 
model for Canadian data, since in both cases, cultural 
proximity can reasonably be assumed.

Apart from Revicki’s model predicting the EQ-5D-3L 
index value from PROMIS-29, there is also another 
model of his, predicting the EQ-5D-3L index value from 
PROMIS Global Health (GH) items, using linear regres-
sion in a US sample [19]. Thompson (2017) mapped 
PROMIS-GH to the EQ-5D-3L index value in a US sam-
ple applying linear and equipercentile equating, treating 

Table 3 The detrimental effect of  using Revicki’s model to  predict the  EQ-5D-5L crosswalk from  the  PROMIS-29 
for the United Kingdom, France, and Germany

UK United Kingdom, adj adjusted, ICC intraclass correlation coefficient, nRMSE normalized root mean squared error, nMAE normalized mean absolute error, LoA levels 
of agreement

R2
adj ICC Bias nRMSE nMAE 95% theoretical LoA 95% empirical LoA

France

Revicki 0.61 0.78  − 0.09 0.112 0.072  − 0.38; 0.20  − 0.38; 0.08

Polynomial regression 0.72 0.85 0.00 0.075 0.052  ± 0.23  − 0.19; 0.17

Germany

Revicki 0.53 0.73 0.00 0.091 0.058  − 0.22; 0.22  − 0.18; 0.14

Polynomial regression 0.64 0.80 0.00 0.079 0.051  ± 0.19  − 0.16; 0.13

UK

Revicki 0.68 0.82  − 0.10 0.113 0.075  − 0.39; 0.19  − 0.39; 0.07

Polynomial regression 0.74 0.86 0.00 0.076 0.053  ± 0.25  − 0.20; 0.17
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PROMIS-GH items as categorical variables [20]. So com-
pared to our models, both models differ in respect of 
population, source measure, and target measure: They 
use the US value set for the EQ-5D-3L index value while 
we use the EQ-5D-5L crosswalk for the UK, France, and 
Germany, respectively. Thompson’s models addition-
ally differs in the mapping method applied. In terms of 
R-squared, our model for Germany performs at least as 
good and our models for the UK and France perform bet-
ter than both Revicki’s and Thompson’s PROMIS-GH 
models. In terms of MAE, all our models perform better. 

Despite Thompson’s the different method, low EQ-5D-3L 
index values where still overestimated [20]. Both studies 
did not report a RMSE.

Generally however, researchers should be aware that 
the consequences of working with a suboptimal mapping 
algorithm can be substantial: incremental cost-effective-
ness ratio (ICER) of costs per QALY can differ between 
British pound sterling (GBP) 18,000 and GBP 32,000 
depending on what mapping algorithm is used [48]. NICE 
has adopted a threshold of GBP 30,000 per QALY repre-
senting the public’s maximum additional willingness to 

Fig. 3 Incremental value of the country‑specific regression coefficients, additional health domains, and higher‑order effects for predicting the 
EQ‑5D‑5L crosswalk for the United Kingdom, France, and Germany
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pay for a new treatment or a new drug compared to the 
existing standard of care [49]. Consequently, imprecise 
mapping methods have a great impact on CUA in HTA 
assessments and consequently on what innovations are 
made available to patients.

Strengths and limitations
This study was conducted using three large samples rep-
resentative of the general population in three European 
countries. To ensure comparability, the sampling strate-
gies were the same across countries. This strength of our 
study is directly related to its foremost weakness: Severe 
health states are not frequently observed in the general 
population, and the proposed models therefore rely on 
few observations for low HSU. Furthermore, our models 
allowed judgement of the incremental value of incorpo-
rating two additional health domains and higher-order 
effects for HSU prediction.

Finally, some authors have argued against OLS regres-
sion as a type of mapping method even though, as out-
lined above, it is the most widely used method. First, 
arguments against that method are due to the phenom-
enon of regression to the mean. Second, linear regres-
sion models tend to predict HSU score greater than 
one, which is a value that is impossible by definition of 
HSU [22]. In our study, the risk of predicting HSU val-
ues greater than one is circumvented by incorporation of 
non-linear trends.

Directions for future research and the PROMIS preference 
score (PROPr) for QALYs
Our mapping functions should be confirmed to samples 
with a greater frequency of low HSU. Therefore, we are 
planning to replicate our findings with data collected 
from spine patients who were assessed before surgery. It 
would also be interesting whether regressing the EQ-5D 
dimensions on the PROMIS domain scores first and then 
calculating the EQ-5D-5L crosswalk from the regressed 
EQ-5D dimensions has incremental value [50].

PROMIS data can also be used to estimate a new 
preference-based HSU score: Hanmer developed the 
PROMIS Preference Score (PROPr) to compute HSU 
for QALYs directly from 7 PROMIS health domains: 
cognition, depression, fatigue, pain, physical function, 
sleep disturbance, and participation [51–55]. Note that 
these 7 PROMIS domains are not equivalent with those 
7 domains from the PROMIS-29 profile (anxiety is 
missing in the PROPr, while cognition is missing in the 
PROMIS-29) [25, 53, 56, 57].

The PROPr could potentially be used instead of the 
EQ-5D-5L crosswalk in CUA. Since many European 
HTA authorities such as NICE specifically demand the 
use of the EQ-5D-5L crosswalk to measure HSU in CUA, 
mapping the PROMIS-29 to the EQ-5D-5L crosswalk will 
still be needed [49]. Also, as of December 2020, there is 
no PROPr value set for European preferences [53, 54].

Conclusion
Our mapping functions can be used to predict the EQ-
5D-5L crosswalk from the PROMIS-29 for CUA in HTA 
for the UK, France and Germany. The inclusion of poly-
nomial regression terms decreases the prediction bias for 
lower HSU.

Our results support the assertion that mapping func-
tions are country-specific. The application of Rev-
icki’s model to the data collected in the three European 
countries leads to biased HSU estimates for the UK and 
France and to less precise estimates in all three countries. 
Estimation of country-specific regression coefficients 
for the five health domains identified by Revicki strongly 
improves the average prediction performance but does 
not remedy the overestimation of low HSU.
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Table 4 Sociodemographic characteristics of the samples

UK United Kingdom

Variable Value UK (%) France (%) Germany (%) p value

Sex Male 49.0 48.3 48.5

Female 51.0 51.7 51.5 0.918

Age 18–29 19.8 18.6 16.4

30–39 16.8 16.3 14.4

40–49 18.2 18.5 18.3

50–59 16.1 17.4 18.5

60–69 13.9 14.3 13.4

70 + 15.2 15.1 19.0 0.027

Education Low 8.1 7.6 23.4

Medium 48.6 43.2 48.2

High 43.3 49.2 28.4 < 0.001

Occupation Managers and professionals 21.2 10.8 12.5

Technicians, clerks, service workers 25.1 22.9 28.9

Workers, elementary occupations, armed forces 14.3 17.8 17.1

Inactive or unemployed 39.4 48.4 41.5 < 0.001

Income Lower income 16.8 12.8 19.2

Lower‑middle income 20.2 19.5 18.0

Higher‑middle income 30.7 27.2 21.8

Higher income 21.0 24.4 24.2

Prefer not to answer 11.3 16.2 16.8 < 0.001
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