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SUMMARY 

 

Human activity is generating environmental shifts i) at a global scale and ii) at an unprecedented 

pace. In addition to the release of greenhouse gases, largely responsible for the ongoing elevation 

of the Earth’s average surface temperature, other sources of anthropic disturbances have been 

associated with abrupt changes in the abiotic parameters of natural ecosystems. In particular, 

freshwater bodies around the globe are facing a combination of warming, eutrophication and 

pollution by a variety of man-made contaminants. Because the influence of the external 

environment can strongly dictate the outcome of host-parasite interactions, the scientific literature 

has expressed concern that the occurrence and severity of diseases may be favoured under the 

influence of such disturbances. Using a commonly occurring system of a zooplanktonic host 

(Daphnia sp.) and its fungal parasite (Metschnikowia bicuspidata), the present work examines four 

possible sources of interference between anthropogenically-derived environmental shifts and the 

performance of a highly virulent parasite in controlled infection assays. In Chapter 1, we examined 

the conjoint effects of elevated temperature and host diet quality on distinct parameters of host and 

parasite fitness. We showed that a 4°C elevation in water temperature could greatly affect the 

success of infection, though the direction of these effects varied widely across specific associations 

of host genotype and diet quality. When incorporated as major components of the host’s diet, 

cyanobacterial species generally resulted in a sharp decrease of the parasite’s reproduction. To 

follow up on these observations, Chapter 2 asked whether the putative antifungal effects of 

cyanobacteria against Metschnikowia could also apply to free-living stages of the parasite, 

independently of their consumption by the host. Here, prior incubation of infective stages to high 

concentrations of cyanobacterial extracts did not reduce the success of infection, as we suspected. 

However, we found similar occurrences of genotype-by-environment interactions, supporting that 

phytoplankton composition and host genotypic diversity are important determinants of infection 

success in this system. In Chapter 3, we explored a contemporary source of environmental 

pollution affecting freshwater bodies. We provide the first experimental evidence that polystyrene 

nanoplastic particles (≤ 100 nm) can modulate the outcome of infection in a zooplankton-

microparasite system, showing that high concentrations of nanoplastics can strongly reduce the 

parasite’s ability to produce spores within the host. Finally, to determine how climate-associated 

shifts in the phenology of co-occurring parasites could influence the dynamics of infection, 

Chapter 4 used sequential infections between our focal parasite and a competing, less virulent 

microsporidium (Ordospora colligata). We found evidence for priority effects at the within-host 

level, suggesting that prior emergence of the microsporidium in natural populations may be 

detrimental to the transmission of both parasites. Overall, these results provide only few examples 

of enhanced parasite transmission under the influence of anthropic disturbances, rather supporting 

that future environmental shifts will exert strong pressure on fitness traits of both hosts and parasites 

in this commonly occurring freshwater assemblage. 
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ZUSAMMENFASSUNG 

 

Menschliche Aktivitäten verursachen Umweltveränderungen i) auf globaler Ebene und ii) in einem 

noch nie dagewesenen Tempo. Neben der Freisetzung von Treibhausgasen, die weitgehend für den 

anhaltenden Anstieg der durchschnittlichen Oberflächentemperatur der Erde verantwortlich ist, wurden 

auch andere Quellen anthropogener Störungen mit abrupten Veränderungen der abiotischen Parameter 

natürlicher Ökosysteme in Verbindung gebracht. Vor allem Süßwasserkörper auf der ganzen Welt sind 

mit einer Kombination aus Erwärmung, Eutrophierung und Verschmutzung durch eine Vielzahl von 

anthropogenen Schadstoffen konfrontiert. Da die äußere Umgebung das Ergebnis von Wirt-Parasit-

Interaktionen stark beeinflussen kann, wurde in der wissenschaftlichen Literatur die Sorge geäußert, 

dass das Auftreten und die Schwere von Krankheiten unter dem Einfluss solcher Störungen begünstigt 

werden könnten. Anhand eines häufig vorkommenden Systems aus einem zooplanktonischen Wirt 

(Daphnia sp.) und seinem Pilzparasiten (Metschnikowia bicuspidata) werden in der vorliegenden Arbeit 

vier mögliche Störquellen zwischen anthropogen bedingten Umweltveränderungen und der Leistung 

eines hochvirulenten Parasiten in kontrollierten Infektionstests untersucht. In Kapitel 1 untersuchten 

wir die gemeinsamen Auswirkungen einer erhöhten Temperatur und der Qualität der Wirtsnahrung auf 

verschiedene Parameter der Fitness von Wirt und Parasit. Wir konnten zeigen, dass eine Erhöhung der 

Wassertemperatur um 4 °C den Erfolg der Infektion stark beeinflussen kann, obwohl die Richtung 

dieser Auswirkungen je nach Wirtsgenotyp und Nahrungsqualität stark variiert. Wenn 

Cyanobakterienarten als Hauptbestandteile der Nahrung des Wirts aufgenommen wurden, führten sie 

im Allgemeinen zu einem starken Rückgang der Reproduktion des Parasiten. Um diese Beobachtungen 

weiterzuverfolgen, wurde in Kapitel 2 die Frage gestellt, ob die mutmaßliche antimykotische Wirkung 

von Cyanobakterien gegen Metschnikowia auch für freilebende Stadien des Parasiten gelten könnte, 

unabhängig von ihrem Verzehr durch den Wirt. In diesem Fall führte die vorherige Inkubation der 

infektiösen Stadien mit hohen Konzentrationen von Cyanobakterienextrakten nicht zu einer 

Verringerung des Infektionserfolgs, wie wir vermutet hatten. Wir fanden jedoch ähnliche Interaktionen 

zwischen Genotyp und Umgebung, was darauf hindeutet, dass die Zusammensetzung des 

Phytoplanktons und die Vielfalt der Wirtsgenotypen wichtige Faktoren für den Infektionserfolg in 

diesem System sind. In Kapitel 3 untersuchten wir eine zeitgenössische Quelle der 

Umweltverschmutzung, die sich auf Süßwasserkörper auswirkt. Wir erbrachten den ersten 

experimentellen Nachweis, dass Polystyrol-Nanoplastikpartikel (≤ 100 nm) das Ergebnis der Infektion 

in einem Zooplankton-Mikroparasiten-System beeinflussen können. Wir konnten zeigen, dass hohe 

Konzentrationen von Nanoplastik die Fähigkeit des Parasiten, Sporen im Wirt zu produzieren, stark 

verringern können. Um schließlich festzustellen, wie klimabedingte Verschiebungen in der Phänologie 

von gemeinsam auftretenden Parasiten die Infektionsdynamik beeinflussen könnten, wurden in Kapitel 

4 sequenzielle Infektionen zwischen unserem Hauptparasiten und einem konkurrierenden, weniger 

virulenten Mikrosporidium (Ordospora colligata) durchgeführt. Wir fanden Belege für Prioritätseffekte 

innerhalb des Wirts, was darauf hindeutet, dass ein früheres Auftreten des Mikrosporidiums in 

natürlichen Populationen für die Übertragung beider Parasiten nachteilig sein könnte. Insgesamt liefern 

diese Ergebnisse nur wenige Beispiele für eine verstärkte Parasitenübertragung unter dem Einfluss 

anthropogener Störungen, was eher dafür spricht, dass künftige Umweltveränderungen einen starken 

Druck auf die Fitnessmerkmale sowohl der Wirte als auch der Parasiten in dieser häufig vorkommenden 

Süßwassergemeinschaft ausüben werden. 
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GENERAL INTRODUCTION 

 

 

1. Parasitism in a changing world 

 

1.1 Human activity is generating environmental shifts at a global scale 

Ever since the emergence of templated information and functionality from non-living matter (i.e. short 

peptides and proto-RNA, Lahav et al., 2001), potentially dating back to 4.28 Gya (Dodd et al., 2017), 

the primordial environmental conditions laying down the evolution of life on Earth have changed 

dramatically. While early environmental shifts initially reflected global changes of abiotic nature (e.g. 

due to the Earth’s intense volcanism and stratospheric activity), the following proliferation and 

diversification of cell-based life forms allowed for early organisms to exert their own influence on the 

surrounding environment, by implementing themselves into complex biogeochemical cycles (Trevors, 

2001; Sánchez-Baracaldo et al., 2021). One famous example – and perhaps the most commonly cited 

in this regard – is the emergence of oxygenic photosynthesis (i.e. the process of cleaving water 

molecules into molecular oxygen) in cyanobacteria and their progenitors, thus enabling the initial 

oxygenation of the atmosphere and surface oceans ca. 2.4 billion years ago (Des Marais, 2000; 

Dismukes et al., 2001; Kasting & Siefert, 2002). As the Earth’s atmosphere progressively became suited 

to the more energy-efficient process of aerobic metabolism, this biotically-driven phenomenon known 

as the Great Oxygenation Event (Lyons et al., 2014) ultimately paved the way for the emergence of 

more complex, eukaryotic life-forms (Dismukes et al., 2001). 

Throughout the remainder of its geological history and to the present day, the Earth has 

continued to experience multiple cyclical shifts in its abiotic conditions (Khairullina et al., 2019). These 

include important variations in its surface temperature and sea levels, punctuated by episodes of 

denitrification and oceanic anoxia (Melchin et al., 2013). While mostly driven by external forces, such 

as solar radiation (Budyko, 1969), stratospheric volcanism (Rohde et al., 2013; Hu et al., 2020), or 

glaciations (Delabroye & Vecoli, 2010), these environmental shifts were sometimes enhanced by the 

contribution of living species to global biogeochemical cycles. For instance, the ecological imbalance 

between the processes of carbon fixation by phototrophs and respiration by the heterotrophs led to a 

global drawdown of carbon and the burial of organic carbon within marine sediments (Holland, 2006) 

and contributed to a second major oxygenation event during the Neoproterozoic (Scott et al., 2008). In 

a similar manner, increasing levels of human activity coinciding with the first industrial revolution in 

the 1750s (Mohajan, 2019) and the resulting modification of its environment have been largely 

associated with an ongoing global climate crisis. While the aforementioned climactic events consisted 

in gradual processes, taking place over the course of several hundred Ma (Holland, 2006; Melchin et 



6 
 

al., 2013), global average temperatures have already increased by more than 1 ℃ since pre-industrial 

times (Ritchie & Roser, 2020) and are predicted to rise by an additional 2.8°C by the end of the twenty-

first century, with some hotspots of warming (e.g. the Arctic and Southern Africa) potentially reaching 

up to 4°C increases (IEA, 2021; Fan et al., 2021). 

 The main contributing factor to this phenomenon is the global increase in emissions of 

greenhouse gases, including carbon dioxide (CO2), methan (CH4), ozone (O3) and nitrous oxide 

(N2O), with minor contributions from chlorofluorocarbons and volatile organic compounds (Dalal & 

Allen, 2008). However, temperature is far from the only abiotic variable expected to shift under the 

influence of human activity. In fact, long-term variations in abiotic factors such as temperature, 

precipitations and wind patterns over the globe are collectively referred to as ‘climatic changes’ 

(Bernstein et al., 2008; Sattar et al., 2021). Aside from the much topical and heavily publicized elevation 

of the average ‘global surface temperature’ (GST), the increasing influence of anthropic activity on 

Earth has been attributed to a grand ensemble of global shifts in abiotic conditions affecting virtually 

all ecosystems, which include: increasing frequency and duration of heatwaves (Perkins et al., 2012; 

Sharma & Mujumdar, 2017), modification of the Earth’s atmospheric composition (Lamb et al., 2021), 

disruption of the nitrogen (N) and phospohorus (P) intakes in the biosphere (Glibert, 2017), resulting in 

the eutrophication of both marine and freshwater ecosystems (Callisto et al., 2014; Malone & Newton, 

2020), acidification of the oceans (Wallace et al., 2014), landscape fragmentation and loss of habitat 

(Jaeger et al., 2016; Lawrence et al., 2021), increased salinization of freshwater bodies (Castillo et al., 

2018), rising ocean and sea levels attributed to the melting of polar ice caps (Mimura, 2013; Zurbenko 

& Potrzeba-Macrina, 2021) and changes in surface humidity (Zurbenko & Luo, 2015), along with the 

concurrent occurrence of natural disasters, such as heavy rainfall, hurricanes, and forest fires (Banholzer 

et al., 2014; Wotton et al., 2010; Zurbenko & Potrzeba, 2013). In addition, human activity – in particular 

the sectors of industry and waste management – are responsible for worldwide environmental pollution, 

due to the release and gradual accumulation of pollutants such as: plastic microparticles (Karbalaei et 

al., 2018), heavy metals (Mohammed et al., 2011), endocrine disruptors (Graca et al., 2021; Ojha et al., 

2021) and pesticides (Tang et al., 2021) in both in the soil and several aquatic compartments. 

Evidently, such profound modifications of the Earth’s abiotic conditions are not without 

consequences for the biotic agents of natural ecosystems (i.e. the biosphere). The above-listed 

phenomenon – all shown to be either enhanced, accelerated or induced by human activity – have been 

responsible for shifting or reducing the ecological niche of several species (Wiens et al., 2009; Rödder 

et al., 2021; Navarro et al., 2021), generating intense selection pressure leading to rapid evolution or 

adaptations (Colautti & Barrett, 2013; Hoberg & Brooks, 2015) and favouring the introduction and 

range expansion of some invasive species (King et al., 2021; McDowell et al., 2014), all of which 

contribute to species extinctions occurring at a yet unprecedented rate (Ceballos et al., 2015). Whereas 

the previous mass extinction events recorded on Earth were attributed to natural catastrophes, this global 
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loss of biodiversity has been compared to a ‘Sixth Mass Extinction crisis’, bearing the distinction of its 

sole anthropic origin (Saupe et al., 2020; Shivanna, 2020). Thus, it is evident that despite its relatively 

recent evolutionary emergence (≤ 400 kya; Stringer, 2016) and the overall short timespan represented 

by the industrial era (1750-present) on a geological time scale, the ecological imprints of a single 

vertebrate species (Homo sapiens) are occurring both at a scale – and pace – consequent enough to 

drastically influence the ecology and evolution of virtually all other organisms on Earth. 

 

1.2 Environmental dependency of species interactions: a focus on host-parasite dynamics 

Beyond the concerning impacts of anthropogenic disturbances on the phenology, ecology or life-history 

traits of individual species, future changes in the environment are also predicted to affect species 

interactions (Gilman et al., 2010; Lord et al., 2017, Abrego et al., 2021). For instance, habitat 

disturbance due to land-use intensification can modify the overlap of temporal activity between 

predators and preys (Gálvez et al., 2021), the introduction of permanent sources of light at night disrupts 

intra-specific communication and plant-pollinator interactions in insect communities (Grubisic & van 

Grunsven, 2021), climate-induced changes in phenology enhances the competition between native and 

newly migrating species of plant (Caplat et al., 2008), while acidification of the oceans disrupts the 

perception of chemical cues and the expression of anti-predator traits in mussel populations (Jahnsen-

Guzmán et al., 2021). 

One category of species interactions that has been particularly dissected through the lens of 

climate change is parasitism (Marcogliese, 2001; Harvell et al., 2002). Indeed, a multitude of traits 

relating to the occurrence, severity and transmission of parasitic diseases have been shown to vary 

depending on environmental factors. However, in any host-pathogen interaction, the outcome of 

infection does not simply rely on the influence of external abiotic factors, but instead results from 

complex interactions between a host (serving as a living substrate or microhabitat), its parasite, and 

their shared external environment (Scholthof, 2007; Duneau et al., 2011). This concept was notably 

popularized by plant pathologist George McNew (1960), who used the analogy of a ‘disease triangle’, 

the height of which determined the amount of damage inflicted on the host by its pathogen (Box 1). For 

instance, changes in temperature can reflect on the metabolism of ectothermic host species and affect 

the efficiency of their immune responses, including processes such as phagocytosis, lymphocyte 

distribution and the production of antibodies (Rijkers et al., 1980; Truscott & White, 1990; Ainsworth 

et al., 1991; Murdock et al., 2012). Meanwhile, the survivability, infectivity and multiplication rate of 

many parasites have also been shown to fluctuate with temperature (King & Monis, 2007; Fels & Kaltz, 

2006; Ward et al., 2007; Studer et al., 2010), often following a unimodal response where infection is 

maximized at intermediate temperatures and constrained under extreme values (Shocket et al., 2019). 

Concurrently, the geographical incidence of diseases is also predicted to increase under global warming, 
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either resulting from newly suitable climate emerging in previously inaccessible areas (Kutz et al., 

2013) or pathogens benefitting from the concurrent range expansion of their vectors (Rochlin et al., 

2013; Sonenshine, 2018). This environmental-dependency of infection traits and disease risks has 

notably driven the emergence of an entire subset of the literature in epidemiology over the past two 

decades, informally referred to as the ‘warmer is sicker’ hypothesis (Martens et al., 1995; Lafferty et 

al., 2004; Lafferty & Mordecai, 2016). Using both experimental and modelling approaches, several 

studies have since attempted to determine whether a warmer world would see both the prevalence and 

severity of diseases increase under the direct influence of global warming (although these failed to reach 

a unidirectional, formal consensus; see Hall et al., 2006; Ibelings et al., 2011; Rohr & Cohen, 2020). 

 

Box 1. The disease triangle. The outcome of infection is determined by three components: the host’s 

inherent susceptibility, the parasite’s transmission potential, and the influence of their shared 

environment. Direct and indirect interactions between these components will determine the outcome 

of infection and overall amount of damage inflicted on the host, represented by the triangle’s height. 

In this example, high resource availability indirectly impairs the parasite by increasing the strength 

of its host’s immune response. However, high resource availability may also increase the parasite’s 

growth rate. The relative strength of each arrow will determine the overall outcome of infection. 

Here, the beneficial effect of resources reduce the host’s susceptibility more than it increases the 

parasite’s growth, thus resulting in a lower triangle (i.e. lower virulence and transmission success). 
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Similar to the influence of temperature on parasitic infections, complex within-host processes 

can be derived from the nutritional adequacy of the host's diet: whereas a high-quality resource may 

improve the host's immune defences (Navarro-Gonzalez et al., 2011; Sanchez-Thirion et al., 2019), 

many endoparasites derive their growth from hijacking mechanisms of resource allocation, often 

reducing host fecundity at the benefit of their own multiplication. Thus, parasites may simultaneously 

benefit from increased resource uptake, allowing them to produce a higher number of infective 

propagules (Hall et al., 2009; Schlotz et al., 2013). Several other examples of anthropogenic 

disturbances have been considered as potential drivers of diseases and suggested to increase epidemic 

risks in a variety of host-parasite assemblages, with a surprisingly high representation of aquatic biota 

in the literature: sewage wastes, metabolic products from fish cultures and pesticides have been 

associated with disease outbreaks in fishes (Snieszko, 1974; Khan & Thulin, 1991; Poulin, 1992), metal 

contamination (cadmium) was shown to reduce phagocytosis in crabs (Truscott & White, 1990), 

overfishing of predatory fish can indirectly increase epidemics of parasites that reproduce in a density-

dependent manner (Lafferty, 2004), while the development of agricultural landscapes around streams 

and ponds was positively correlated with helminthic diversity in fish populations (Hernandez et al., 

2007) and the occurrence of echinostome parasites in amphibian populations (King et al., 2010; 

Koprivnikar & Redfern, 2012). 

 

2. Freshwater zooplankton as a model for epidemiology 

 

2.1 Freshwater ecosystems: hotspots of diversity under direct threats 

Due to the historical tendency of human populations to aggregate upon large bodies of water 

(Yevjevich, 1992) and the multitude of services provided by such environments (e.g. trade routes, 

drinking water supply, fisheries, wastewater disposal and recreational activities), freshwater bodies 

present themselves as especially vulnerable to contemporary anthropic disturbances (Søndergaard & 

Jeppesen, 2007; Geist, 2011; Reid et al., 2019). Some examples include excessive nutrient loading into 

surface waters, favoured by the discharge of domestic wastes, forest clearance, urban development and 

agricultural practices (Schelske et al., 1983; Mainstone & Parr, 2002; Callisto et al., 2014), the 

increasing frequency of harmful algal blooms throughout the past century (Hallegraef, 1993; Ho et al., 

2017; Wurtsbaugh et al., 2019) or the accumulation of micro- and nanoplastics in freshwater food 

chains, driven by a combination of sewage discharge and atmospheric transportation (Chae et al., 2018; 

Meng et al., 2020; Wang et al., 2021). In addition, freshwater lakes have been subject to an abrupt 

elevation of their surface temperature over the past few decades (Schindler, 1997; Burgmer et al., 2007), 

driven by a combination of local and climate-induced phenomenon, from increases in solar radiations 

and air temperature to diminishing cloud covers (O’Reilly et al., 2015). 
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Current threats to the stability of freshwater environments are concerning from a conservation 

perspective, given the multitude of wider ecosystem and human-related services provided by these 

hotspots of diversity (Covich et al., 2004). Moreover, there is growing concern about losing some of 

these services, as a result of declining species diversity (Albert et al., 2021): despite representing less 

than 1% of the Earth’s surface, freshwater ecosystems are home to a wide diversity of organisms (close 

to 10% of all known species; Strayer & Dudgeon, 2010) involved in a complex network of 

biogeochemical cycles (Kuehn & Suberkropp, 2006; Anderson, 2018) and multi-layered species 

interactions (Bronmark et al., 1992; Kagami et al., 2014; Agha et al., 2016). In particular, phyto- and 

zooplanktonic taxa of high scientific relevance have been identified as excellent bioindicators for the 

management of aquatic pollution, eutrophication, and ecosystem health, due to their sensitivity to 

environmental stress and basal position in freshwater food chains (Jakhar, 2013; Gazonato et al., 2014). 

In freshwater ecosystems, heterotrophy (i.e. the consumption of organic sources of carbon by 

species unable to synthesize their own) is primarily ensured by an assemblage of functionally similar 

taxa of protists and small-sized animals, collectively referred to as 'zooplankton'. Occupying a central 

position in freshwater food chains, zooplankters feed upon primary producers (i.e. autotrophs, such as 

cyanobacteria and green algae) and serve as important prey items for secondary consumers, mainly 

planktivorous fish and insect larvae (Sterner, 1989; Weider & Pijanowska, 1993). While zooplankton 

community assemblages can vary between sites (Stemberger & Lazorchak, 1994), they are primarily 

dominated by ciliates, rotifers and small crustaceans in freshwater environments (Pace & Orcutt, 1981). 

Common representatives include members of the class Hexanauplia (e.g. copepods) and the superorder 

Cladocera (commonly referred to as waterfleas), both of which can dominate community composition 

in the mesoplankton (0.2 - 20mm) (Cyr & Curtis, 1999). While cladocerans alone include more than 

700 extant species (Van Damme & Kotov, 2016), over 150 of those belong to the genus Daphnia, which 

frequently dominate cladoceran communities in freshwater lakes and ponds (Perrow et al., 1999). 

Daphnia are extremely widespread around the globe (Benzie, 1987; Adamowicz et al., 2009) 

and can be found across most types of standing water bodies, from ephemeral ponds susceptible to 

complete dry-outs (Altermatt et al., 2009) to holomictic lakes and water reservoirs spanning several 

km² in superficy (Wolinska et al., 2011). Species distribution and habitat selection in Daphnia is partly 

constrained by body size: due to being more visually detectable as prey items, larger species face strong 

predation pressure in lakes, where predators are plenty (Zaret, 1980). As such, larger species have 

remained mostly confined to ponds, rock pools and small lakes where fish predation is limited (e.g. 

Daphnia magna, ≤ 5 mm), while larger water bodies are rather dominated by a variety of smaller 

Daphnia species (e.g. D. longispina, D. pulex, ≤ 2.5 mm). Due to their central position in freshwater 

food chains, Daphnia are considered keystone species, which disproportionately affect the relative 

abundance and distribution of other species in their environment (Collinge et al., 2008). Notably, 

predation by Daphnia grazers was shown to exert strong effects on the species composition of 
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freshwater phytoplankton (Sarnelle, 2005), with the potential to reduce the biomass and control the 

dominance of bloom-forming cyanobacteria (Matveev et al., 1994; Gerasimova et al., 2018). 

Conversely, sedimental records of Daphnia’s resting eggs can be used to retrace historical changes in 

the distribution as well as the contemporary abundance of planktivorous fish (Jeppesen et al., 2002). 

Besides their ecological relevance in freshwater environments, several characteristics inherent 

to the biology of Daphnia have contributed to their emergence as popular model systems in the fields 

of limnology and aquatic ecology (Reynolds, 2011; Seda & Petrusek, 2011). The propensity of Daphnia 

to reproduce asexually (Box 2) and rare occurrence of sexual reproduction under non-limiting 

laboratory conditions allows for the maintenance of clonal, iso-female lines. This is useful for 

simulating host diversity and has served to highlight strong genotypic variability in a wide array of life-

history traits (De Meester, 1991; Soares et al., 1992; Dudycha & Tessier, 1999) and physiological 

responses to environmental stress (Hietala et al., 1997; Pauwels et al., 2005; Fitzsimmons & Innes, 

2006). In addition, their small size (up to 5mm for the largest species) and short generation time (10-20 

days at 20°C) allow for the evaluation of precise, individual-based responses (e.g. Frost et al., 2010; 

Cuco et al., 2016; Ogonowski et al., 2016) and population or community-level assays, using 

experimental mesocosms (e.g. Paterson et al., 2002; Van Doorslaer, 2010; Aljaibachi et al., 2020). 

Abiotic variables such as light intensity, photoperiod, temperature, nutrient availability and pH 

can be easily manipulated in vitro, which is ideal for simulating environmental disturbances 

experimentally (Korpelainen, 1986; Hanazato, 1996; McKee et al., 2002; Bergman Filho et al., 2011). 

As ectothermic invertebrates, their entire metabolism slows down or speeds up relative to temperature 

or oxygen concentration, which directly impacts key life-traits such as longevity, body size, offspring 

production, age at maturity, and oxygen consumption (MacArthur & Baillie, 1929; Chopelet et al., 

2008). Moreover, non-trivial interactions between some of these factors have been shown to further 

influence the life-history parameters of experimental Daphnia (Orcutt & Porter,1984; Giebelhausen & 

Lampert, 2001). Because many of these variables can be directly affected by climate change, Daphnia 

already represent a model of choice when trying to simulate and interpret possible climate-driven 

changes experimentally (e.g. McKee et al., 2002; Müller et al., 2018). In addition, they are also very 

sensitive to pollutants: a direct consequence of their role as mostly non-selective filter-feeders, Daphnia 

are especially prone to acquire and bioaccumulate contaminants released by human activity in 

freshwater ecosystems, granting them an equally important role in the fields of ecotoxicology over the 

past two decades (Stark & Vargas, 2005; Han et al., 2006; Lee et al., 2019; Yuan et al., 2020). But 

perhaps even more preponderant than their role as bioindicators and school introductory models, 

Daphnia have progressively earned their place as one of the most extensively studied organisms in the 

context of host-parasite interactions, both in the field and the laboratory (Ebert, 2005; Ebert, 2008). 
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Box 2. The reproductive cycle of Daphnia. Most species of Daphnia reproduce through cyclical 

parthenogenesis: populations are dominated by diploid females, which are capable of reproducing 

asexually. Diploid eggs are produced by parthenogenesis (without fertilization) and develop in the 

dorsal brood chamber, until they are released as ‘clutches’ of up to several dozens of juveniles, which 

are genotypically identical to their mother (parthenogenetic daughters). When environmental 

conditions are unfavourable (i.e. detection of predator cues, high population density of low food 

availability), adult female Daphnia can produce diploid males (parthenogenetic sons) and haploid 

resting eggs, which are encased in an ephippium (protective structure in the brood chamber). 

Following internal fertilization by males, detachment of the ephippium upon moulting allows for 

fertilized eggs to be released into the environment. After a period of diapause, generally interrupted 

by specific environmental cues (e.g. desiccation followed by re-watering), these will then hatch into 

diploid females (sexual daughters). This process allows for genetic mixing in Daphnia populations 

and the emergence of hybrid genotypes, which can coexist with their parental lines, notably among 

the D. longispina species complex, which is widely distributed across lakes in Europe (Spaak, 1997). 
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2.2. Natural enemies of Daphnia: a variety of microparasites 

In nature, Daphnia are commonly infected by a wide variety of parasites (Ebert, 2005; Wolinska et al., 

2009). An overview of the taxonomic diversity of Daphnia parasites is represented in Box 3. Screenings 

of freshwater bodies frequently report the co-occurrence of several species of parasites in natural 

populations of Daphnia (Stirnadel & Ebert, 1997; Decaestecker et al., 2004; Wolinska et al., 2011; 

Weigl et al., 2012; Goren & Ben-Ami, 2013), and individual hosts are commonly observed to bear 

multiple infections (Decaestecker et al., 2005). Some of these parasites may have conflicting strategies 

of host exploitation and transmission (Ben-Ami et al., 2011). For instance, conflicts for optimal host 

exploitation can occur between related strains of a same parasite with varying degrees of virulence; in 

which case, faster replicating strains are usually favoured (Ben-Ami et al., 2008). By contrast, distant 

taxa of parasites may differ in more phylogenetically-constrained traits, such as their overall 

transmission mode (horizontal vs. vertical), their onset of spore release (while the host is still alive vs. 

after host death) or even colonize different niches inside the host (the body cavity vs. the gut epithelium) 

(Ebert, 2005). Endoparasites of Daphnia usually exert high virulence upon their host, often reducing 

the lifespan and fecundity of infected individuals (Ebert et al., 2000a; Haag et al., 2003; Decaestecker 

et al., 2003). However, functionally similar parasites can still vary widely in their level of virulence, 

such as intracellular parasites of the gut epithelium ranging from the relatively low-damage of 

microsporidia (Ordospora colligata, Glugoides intestinalis; Ebert et al., 2000a) to the castrating 

strategy of the ichthyosporean Caullerya mesnili (Lohr et al., 2010a). While most parasites of Daphnia 

are horizontally-transmitted, usually through the accidental consumption of spores found in the water 

column or sediment, vertical transmission from mothers to their offspring has been documented in 

microsporidia of the genus Hamiltosporidium (Haag et al., 2020). By contrast, oomycete parasites of 

Daphnia only appear to interfere with the development of embryos in the brood chamber, with no 

apparent detriment to the longevity of infected adults (Blastulidium paedophthorum, Duffy et al., 2015). 

Finally, representing opposite branches on the phylogenetic tree of life, the body cavity of Daphnia can 

be colonized by parasitic worms (Cestoda and Nematoda, Ebert, 2005) and bacterial pathogens alike 

(Spirobacillus cienkowskii, Bresciani et al., 2018; Pasteuria ramosa, Ebert et al., 1996). 
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Box 3. Cladogram representing the phylogenetic diversity of parasites infecting the genus 

Daphnia. Parasites of Daphnia can be found across a variety of Eukaryotic and Prokaryotic taxa, 

including Nematoda (1), Cestoda (2), Ichthyosporea (3-4), Ascomycota (5), Microsporidia (6-7) and 

Oomycota (8), as well as the Firmicutes (9) and Deltaproteobacteria (10). Only one representative of 

a viral pathogen has been identified so far in Daphnia: DIV-1, responsible for White Fat Cell Disease 

(Toenshoff et al., 2018). Phylogenetic relationships were reconstructed from Torruella et al., 2015. 

 

 

 

 

Adding to an already vast spectrum of endoparasites, characterized by an obligatory phase of within-

host reproduction, Daphnia are also frequently colonized by various taxa of epibionts, such as sessile 

ciliates (Vorticella sp., Kankaala & Eloranta, 1987), epizoic rotifers (Brachionus rubens, Iyer & Rao, 

1993) or the ichthyosporean Amoebidium parasiticum (Whisler, 1968; Benny & O’Donnell, 2000). 

While these usually exert a lesser impact on host fitness, ectoparasites and epibionts may also generate 

fitness reductions by impairing mobility, competing with their host for resource and influencing other 

characteristics of life history, such as population growth rates (Allen et al., 1993; Angell, 2016). 

Perhaps due to their small size and the concealed nature of their life cycle, the contribution of 

parasites to overall biochemical cycles and food chains is often undervalued; yet, they tend to play very 
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important roles at the community level (Poulin, 1999; Marcogliese, 2004). Because parasites of 

Daphnia can reach very high prevalence in natural populations (Decaestecker et al., 2005; Wolinska et 

al., 2007), they are capable of generating profound changes in the ecology of their hosts. By producing 

opaque symptoms of infection in the transparent body cavity of their hosts, infected Daphnia are often 

more easily detectable by predators (Duffy et al., 2005; Duffy, 2007). Parasites may also reduce the 

mobility of their hosts, to the point of disrupting habitat selection (such as behaviour of vertical 

migration in the water column; Fels et al., 2004). Moreover, large outbreaks of parasites have been 

shown to drive Daphnia populations to extinction (Ebert et al., 2000a; Decaestecker et al., 2005). 

Adding to the concern of environmental disturbances in freshwater ecosystems, parasitic 

infections may also interact with abiotic changes to further reduce the reproductive ability of Daphnia, 

such as epibionts delaying population growth in D. magna under high temperatures (Angell, 2016). 

Conversely, changes in temperature may favour parasite encounters by affecting body size and foraging 

rates (Shocket et al., 2018a), as most horizontally-transmitted parasites of Daphnia are recruited by 

non-selective filtering of spores in the environment (Ebert, 2005). Because pathogens have the potential 

to change the abundance of keystone species (such as Daphnia), such interactive effects between 

environmental disturbances and parasitic infections have the potential to cause major shifts in 

community composition and wider ecosystem functions (Duffy, 2007; Collinge et al., 2008). Therefore, 

understanding how climate change and other environmental disturbances of anthropic origin may 

disrupt host-parasite interactions and traits of epidemiology in this system is crucial, with possibly large 

ecological consequences within freshwater ecosystems. 

 

3. Experimental approach 

 

3.1 Our specific host-parasite system 

In order to simulate environmental disturbances under controlled experimental conditions, the present 

work will focus on a single assemblage of host and parasite, which will be used as a recurring system 

throughout the following chapters. The freshwater-dwelling species Daphnia galeata and Daphnia 

longispina are widely distributed across lakes and reservoirs in Central Europe (Giessler, 1997; Seda et 

al., 2007; Brzeziński et al., 2012) and belong to a taxonomic group or subgenus referred to as the 

Daphnia longispina complex (alternatively, “Hyalodaphnia”), which contains over 12 recognized 

distinct taxa (Adamowicz et al., 2009). These lineages differ in a number of morphological and 

physiological traits, as well as their geographical range and niche tolerance: for instance, D. galeata 

tends to inhabit warmer lakes than D. longispina, while the latter generally dominates in conditions of 

low phosphorus loads (Keller et al., 2008). The focal genotypes AMME_12 and AMME_51 (F1-hybrids 
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of D. galeata × longispina) were isolated from Ammersee, Germany (48°00'0.00" N 11°06'60.00" E) 

during two separate sampling events in the fall of 2008. These were produced sexually (see Box 2) and 

have since been maintained as parthenogenetic, iso-female lines under non-limiting laboratory 

conditions. In order to maximize the comparability of results across our experimental assays, the same 

two genotypes were used throughout most of the present work (with the notable exception of Chapter 

4, where parasite specificity constrained our choice of host species). Given the very good water quality 

of this lake, both clones are expected to have little to no historical exposure to toxicants and 

environmental contaminants (Cuco et al., 2016). However, both genotypes most likely share an ancient 

evolutionary history with a common fungal parasite of Daphnia isolated throughout the same series of 

sampling: Metschnikowia bicuspidata. 

The parasitic yeast Metschnikowia bicuspidata (hereafter referred to as Metschnikowia) will be 

used as the primary focal parasite throughout the present work. As a generalist pathogen, widely 

distributed around the globe and capable of infecting most Daphnia species, it is perhaps the best-

described fungal parasite of Daphnia (Ebert, 2005). Its reproductive cycle is typical of the Ascomycota, 

which involves the production of reproductive conidia and elongated ascospores. As a parasitic yeast, 

Metschnikowia belongs to the order Saccharomycetales, better known for the commercial and medicinal 

use of the yeast Saccharomyces cerevisiae. Other strains of M. bicuspidata were also found to infect 

brine shrimps (Codreanu & Codreanu-Balcescu, 1981), prawns (Chen et al., 2003), crabs (Bao et al., 

2021) and fish (Moore & Strom, 2003), though it appears that a complex of similar species was 

described instead (Ebert, 2005). The parasite is characterized by an obligatory-killing lifestyle: because 

it only produces one yield of spores that are simultaneously released into the environment (upon host 

death), it is defined as a semelparous parasite (i.e. limited to a single event of reproduction). This 

reproductive strategy is not unique among parasites of Daphnia, as it is notably shared by the bacterium 

Pasteuria ramosa; however, it distinguishes Metschnikowia from parasites of the digestive tract, which 

are capable of continually releasing spores throughout the lifespan of their hosts (Ebert, 2005). 

 Infective stages of the parasite (asci) present a characteristic, needle-shaped appearance; as 

such, they are easily identifiable within infected individuals and can be quantified using basic 

microscopy. This morphology is inherently tied to the parasite’s transmission strategy: spores are 

immobile, left to drift along the water currents and often accumulating as spore banks in the sediment 

(Duffy & Hunsberger, 2019). Encounters with the host are entirely passive, resulting from the accidental 

ingestion of spores by water filtration. The needle-like morphology allows infective stages to puncture 

and move past the epithelium inside the digestive tract. Infective stages initiate their reproductive cycle 

in the haemolymph, the circulatory fluid flowing through the body cavity of Daphnia. Late stages of 

infection can be observed with the naked eye, forming opaque material in the body cavity. Typical 

symptoms of infection in the Daphnia-Metschnikowia system are depicted in Box 4. 
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Box 4. a) Adult female of the hybrid Daphnia galeata × longispina (genotype AMME_51). Three 

fully-developed juveniles can be observed in the dorsal brood chamber. b) Adult female (genotype 

AMME_12) heavily infected with the parasitic yeast Metschnikowia bicuspidata (strain 

METS_AMME_2008). This individual was retrieved and fixed in formaldehyde upon its death, 17 

days following its exposure to the parasite. The dark-coloured material observed throughout the 

entire body cavity corresponds to the final reproductive stages of the fungus: elongated asci. Parasite 

spore loads generally range up to 100 000 spores per adult female in D. galeata × longispina (this 

specific individual was estimated to yield a total of 55 000 spores). Upon decomposition of the host’s 

dead body, the needle-shaped spores are released into the water column, allowing for new infections 

to develop. Photography: Florent Manzi 
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3.2 Assessing the outcome of infection under simulated environmental disturbances 

Metschnikowia is a highly virulent parasite: while not preventing reproduction completely, it usually 

reduces the number of juveniles produced per clutch (Ebert et al., 2000a) as well as reducing the lifespan 

of infected hosts (Ebert et al., 2000b), both effects contributing to a large decline in fecundity. These 

variables can be easily measured in experimental infection assays, where the complete life history of 

distinct individual Daphnia can be followed closely (i.e. life table response experiments, LTRE). The 

principle of LTRE consists of decomposing the effects of a given treatment on a dependent variable 

(for instance, growth rate) into contributions from differences in the parameters that determine this 

variable (Caswell, 2010). Thus, a combination of fixed and random effects, along with linear or 

quadratic regressions between continuous variables can be applied to assess the effects of simulated 

environmental stress (e.g. elevated temperature) on individual infection outcomes, while controlling the 

exact timing and dosage of parasite encounters. From here onward, the present work makes use of the 

term outcome of infection when referring to both i) the overall transmission success of the parasite, 

following its encounter with a susceptible host and ii) the amount of damage inflicted on individual 

hosts, measured as a reduction of host fitness traits. Thus, infection dynamics are considered from the 

point of view of both antagonists. 

 

3.2.1 Determinants of parasite fitness 

A parasite (i.e. consisting of one pool of infective spores, sharing a single genotype) may experience 

diverging success in its overall transmission depending on the realization of distinct infection steps, 

each of which can be differentially influenced by the environment (Duneau et al., 2011). For 

Metschnikowia, these include: i) encountering susceptible hosts in the environment; in nature, this 

process can be influenced by host filtering rates and habitat selection (e.g. diel vertical migration), both 

of which can be modulated by environmental factors (temperature, diet, light exposure) and intra-

specific variability (Chow-Fraser & Sprules, 1986; De Meester, 1989). Because experimental 

inoculations of Daphnia can be performed at low volume and using non-limiting spore doses, the 

successful ingestion of spores will generally be ensured in our assays. From then, ii) only a limited 

number of needle-shaped spores will successfully cross over to the target host compartment (i.e. 

entering the haemolymph via the physical barrier of the gut epithelium; Stewart Merrill & Cáceres, 

2018). This process can be influenced by clonal variation in the penetrability of the gut epithelium, 

which is further modulated by host age and body size at the time of infection (Stewart Merrill et al., 

2019). Upon germination of infective stages in the haemolymph, successful transmission of the parasite 

still requires iii) the ability to overcome the host’s immune response and iv) survival of the host until 

successful completion of the yeast’s reproductive cycle. 
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 Because the production of mature spores is a relatively slow process in the Daphnia-

Metschnikowia system, hosts that end up dying prematurely may serve as ‘infectious sinks’. Ingestion 

of spores by a host that is particularly vulnerable to environmental sources of mortality has a high 

probability of resulting in a wasted encounter, where spores are taken up from the environmental pool 

of the parasite but will not contribute to the next generation of infective stages. Thus, external sources 

of host mortality may play an important role in preventing the spread of Metschnikowia in the 

environment (Pulkkinen & Ebert, 2004). Because infections are difficult to determine before day 8-to-

10 post-infection in this system, ‘early deaths’ are often disregarded in experimental assays (e.g. Lohr 

et al., 2010b). However, beyond a purely stochastic process, early host mortality in Daphnia can result 

from harsh environmental conditions influencing host lifespan (Korpelainen, 1986; DeMott et al., 1991; 

Eltemsah & Bøhn, 2019), genetic incompatibilities between the host and parasite (Ebert et al., 2016), 

or a combination of pollution- and parasite-induced stress (Buser et al., 2012). Because multiple 

infections are frequent in Daphnia, coinfection by two virulent parasites may also result in a greater 

reduction of the host’s longevity, which could be maladaptive for our focal parasite and favour 

pathogens with shorter generation times (Lohr et al., 2010b). Thus, we propose to incorporate ‘early 

deaths’ into a measure of host viability, as a way to express non-random variations in the chances of the 

host dying prematurely, which are either exerted or mitigated by distinct environmental factors and 

contribute to the parasite’s overall transmission success. Complementarily, we measure parasite 

infectivity (defined here as the probability of producing mature spores) among experimental hosts that 

are considered ‘viable’ for infection, that is, those which survive until the earliest possible observation 

of mature spores in the Daphnia-Metschnikowia system. 

Host viability and parasite infectivity are important determinants of transmission success; 

together, they reflect the probability of the parasite successfully completing its reproductive cycle, 

following its ingestion by a potential host. Once reproduction is ensured, however, further contributions 

to the parasite’s transmission may result from quantitative variations in its spore yield (i.e. the total 

amount of infective propagules carried by an infected host at the time of its death). This variable can be 

easily determined in the Daphnia-Metschnikowia system using standard counting chambers (Ebert et 

al., 2000b) and is usually referred to as the intensity of infection. Because the totality of spores produced 

from a single infection event remain sequestrated in the host’s body cavity until its eventual demise, the 

number of mature spores found in a host at death is usually proportional to the number of secondary 

infections produced by obligate-killing parasites (Izhar & Ben-Ami, 2015; Clay et al., 2019b). 
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3.2.2 Determinants of host fitness 

In the context of experimental infection assays, the fitness of a particular host genotype (e.g. 

‘AMME_12’; ‘AMME_51’) or group of individuals assigned to the same experimental treatment (e.g. 

‘high temperature’, ‘low temperature’) can be decomposed into parameters of longevity (e.g. number 

of days survived by individual Daphnia, following their exposure to parasite spores) and fecundity (e.g. 

total number of parthenogenetic offspring produced throughout the lifespan of a single female). In 

addition, cumulative measures deriving from these variables can provide information about population 

growth, such as the per capita intrinsic rate of increase (Cuco et al., 2018). Evaluating the degree by 

which these variables differ between infected and control individuals provides a suitable proxy for 

determining a parasite’s virulence (i.e. the amount of damage incurred by the host as a result of a 

pathogenic infection). Moreover, assessing the outcome of parasitic infections on the life expectancy 

and reproductive ability of Daphnia allows us to estimate the potential impacts of disease outbreaks (as 

well as potential interactions between parasites and environmental disturbances) on the dynamics of 

host populations. In the context of increasingly frequent environmental disturbances and changing 

climate, these features present valuable interest from an economic and conservation point of view, 

relative to Daphnia’s status as freshwater keystone species. Here, we do not only aim to explore how 

likely host populations are to resist and recover from disease outbreaks; instead, we attribute equal 

importance to how suitable of an environment they can provide for parasite reproduction, depending on 

such environmental variations. Host availability is a necessary requirement for the spread of their 

parasites; thus, negative effects on zooplankton abundance – resulting from a combination of 

environmentally and parasite-induced stress – may constrain the spread of parasites in freshwater 

ecosystems, especially those that rely on density-dependent mechanisms of horizontal transmission. 

 

4. Aims and overview of the thesis 

 

Following its initial description by Elie Metschnikoff in 1884, the Daphnia-Metschnikowia system has 

since benefitted from nearly 150 years of cumulative research, including descriptive studies (Green, 

1974; Codreanu & Codreanu-Balcescu, 1981; Stewart-Merrill & Cáceres, 2018), molecular sequencing 

(Mendonça-Hagler et al., 1993), field work (Cáceres et al., 2006; Hall et al., 2009; Yin et al., 2012) and 

experimental infection trials in controlled conditions (Ebert, 2000b; Duffy, 2009; Hesse et al., 2012; 

Searle et al., 2015). While many of the features presented throughout this thesis will not revolutionize 

our general understanding of the parasite’s life cycle, the idea of investigating the environmental-

dependency of fungal infection traits in Daphnia remains a relatively recent topic, mostly emerging 

within the last two decades (e.g. Hall et al., 2009; Duffy & Hunsberger, 2019). Moreover, studies 

specifically tying the influence of the environment with concerns of climate change (Hall et al., 2006; 
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Overholt et al., 2012) and environmental pollution (Civitello et al., 2012; Cuco et al., 2020) in this 

system are still relatively scarce in the literature. Using the approach described above, this thesis will 

aim to uncover the potential impacts of temperature elevation (both direct and indirect effects) and 

environmental pollution on infections of freshwater zooplankton, focusing on four aspects of anthropic 

disturbances that had not been previously addressed in the Daphnia-microparasite system. 

Given the documented sensitivity of Daphnia to fluctuating temperatures (McMahon ,1965; 

Burns, 1969) and the importance of host diet on a multitude of infection-related traits (Hall et al., 2009), 

prior studies have already constituted a considerable body of work regarding the influence of both 

factors on infections of zooplankton (the current state of research on independent effects of host diet 

and temperature in the Daphnia-microparasite system is summarized in Table 1 and Table 2). However, 

only one study so far attempted to cross these two factors in experimental infections of Daphnia, 

showing that maternal conditions of high temperature and low food availability could increase the 

offspring’s resistance to a bacterial parasite (Garbutt et al., 2014). Because cyanobacteria respond 

positively to rising temperatures, CO2 concentrations and eutrophication (Visser et al., 2016; 

Bartosiewicz et al., 2019) and constitute a resource of poor nutritional value to zooplanktonic grazers 

(DeMott et al., 1991), global environmental shifts may indirectly reduce the availability of high-quality 

algal food in Daphnia. Moreover, cyanobacterial blooms display a temporal overlap with epidemics of 

Metschnikowia, which typically break out in the late-summer to early-autumn in temperate lakes (Duffy 

et al., 2009; Wolinska et al., 2011). For this reason, Chapter 1 attempts to reconcile the direct effects 

of elevated temperature with temporary shifts in the quality of zooplankton diets, investigating the 

potential for interactive effects between temperature, phytoplankton composition and fungal epidemics 

in our system of interest. Genotypes AMME_12 and AMME_51 were exposed to the parasite in a full-

factorial design, including one eukaryotic alga of high nutritional value and two species of toxic 

cyanobacteria with contrasting morphologies; two levels of temperature were tested, corresponding to 

a standard rearing temperature (19°C) against a predicted surface temperature elevation of 4°C. 

Experimental assays showed complex interactions between host diet, temperature and clonal identity of 

the host, demonstrating the importance of identifying concurrent sources of environmental stress in 

freshwater ecosystems. Low-quality diets strongly impaired transmission of the parasite, indicating that 

increased temperature and cyanobacterial dominance could constrain epidemics of Metschnikowia 

under predicted environmental changes. 

In a direct continuation of this thematic, Chapter 2 examines whether the release of potent 

cyanobacterial toxins during the termination of harmful algal blooms could interfere with free-living 

stages of the parasite. Here, the same two host genotypes were inoculated with spores of Metschnikowia, 

that had received prior prolonged exposure to high concentrations of cyanobacterial toxins (extracted 

from Microcystis aeruginosa) or a placebo solution. Both infection treatments were crossed with two 

levels of diet quality, returning from the previous experiment. We predicted that exposing the parasite 
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to dissolved cell content of cyanobacteria would reduce its infectivity upon later encounter with the host 

and could interact synergistically with a toxic diet, further reducing the parasite’s transmission. While 

the former hypothesis was not supported, our results restate a differential performance of 

Metschnikowia under specific associations of host diet and clonal identity. Overall, this section 

corroborates the findings of the previous chapter, while clarifying that increased cyanobacterial 

dominance may only interfere with the parasite via their consumption by zooplankton hosts, showing 

no evidence of direct interference with free-living stages. 

While experimental assays had previously examined the effects of environmental pollution on 

Metschnikowia infections, including the influence of copper (Civitello et al., 2012) and the fungicide 

tebuconazole (Cuco et al., 2017), the implications of plastic pollution on host-parasite interactions 

remains mostly unexplored in the literature (but see Hernandez-Milian et al., 2019; Buss et al., 2021). 

This apparent lack of research stands in stark contrast with a recent surge of studies examining the 

single-species implications of nanoplastics in aquatic organisms, including Daphnia (Bergami et al., 

2017; Lin et al., 2019; Auguste et al., 2020; Kelpsiene et al., 2020; Liu et al., 2021). However, besides 

recent reports on fungal infections of nematodes (Li et al., 2020) and phytoplankton (Schampera et al., 

2021), potential effects of nanoplastics on the outcome of infection were not previously investigated in 

the Daphnia-microparasite system. In Chapter 3, control and infected individuals of genotype 

AMME_51 were exposed to three possible concentrations of polystyrene nanoplastics in the culture 

medium (0 mg/L, 5 mg/L and 20 mg/L). We found evidence for a hormetic dose-response (i.e. beneficial 

effects of low contaminant concentrations) on fitness parameters of the host. While the parasite 

displayed increased infectivity at low concentrations of nanoplastics, spore production was strongly 

reduced in the high concentration treatment. This experiment provides preliminary evidence that plastic 

pollution can strongly influence the outcome of host-parasite interactions, leading the way for future 

research to consider different assemblages of host and parasite species. 

In natural populations of Daphnia, epidemics often display seasonal patterns of emergence 

(Duffy et al., 2009; Hall et al., 2011). Researchers have attempted to identify which environmental 

factors control the onset and termination of such epidemics, citing periodic variations in temperature 

and host density as potential factors controlling the seasonal emergence of fungal and microsporidian 

parasites of Daphnia (Duffy & Hunsberger, 2019; Kirk et al., 2020). While many studies have already 

investigated climate-induced shifts in the spatial distribution of parasites around the globe (Messina et 

al., 2019; Morales-Castilla et al., 2021), future climate conditions may also influence the temporal 

overlap of parasite species that are already sympatric (Clay et al., 2020). Furthermore, the order in 

which distinct parasite species emerge in the environment influences the sequence in which they 

encounter their hosts in multiple infections, generating within-host priority effects that can have strong 

implications on parasitic infections (Halliday et al., 2017; Clay et al., 2019b). While sequential 

infections involving Metschnikowia were previously carried out in Daphnia, these few studies opposed 
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Metschnikowia to parasites of comparably high virulence (see Table 3). In Chapter 4, we ask how 

changes in the sequence of infection between a relatively avirulent parasite of the digestive tract 

(Ordospora colligata) and our focal parasite (Metschnikowia bicuspidata) can influence parasite 

transmission and the overall amount of damage inflicted on the host. To accommodate for the narrow 

host range of Ordospora, this experiment was carried out on a single genotype of Daphnia magna Straus 

(genotype NO-V-7). Individual D. magna were inoculated with either one or both parasites, with two 

possible orders of arrival in sequential coinfections, to simulate prior residency of either parasite in 

Daphnia populations. We found that prior residency of the gut microsporidium – a pattern that is 

supported by the natural phenology of this parasite – strongly reduced the viability of sequentially-

infected hosts, compromising the transmission success of both species. By contrast, we found no 

differences between single and sequential infections in the treatment where Metschnikowia was 

introduced early. This final chapter denotes the importance of species succession patterns in nature, 

suggesting that future shifts in the temporality of epidemics could modulate the within-host processes 

that govern competition among parasites. 

The present work provides an overview of the many ways in which a changing world can 

influence complex processes of species interactions in freshwater communities, addressing 

environmental shifts beyond the scope of rising temperatures. Chapters 1, 2 and 4 provide specific 

examples of indirect, yet potentially impactful repercussions of climactic shifts on the spread of disease. 

Meanwhile, Chapter 3 evaluates the importance of an anthropogenically-derived source of freshwater 

pollution. Overall, we provide overarching support for constrained epidemics and suboptimal 

performance of a fungal parasite of zooplankton under an increasingly anthropic world, challenging the 

view that environmental disturbances will unanimously favour parasites over their host. The potential 

for interactive effects among global environmental shifts is discussed, with some insights into future 

conservation methods of the economically-relevant freshwater ecosystems. 
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Table 1. Summary of previous publications investigating the effects of food quantity and food 

quality on infection traits in Daphnia-parasite systems. 

 

Host 

 

Parasite 

 

Traits Effect Reference 

D. magna  Glugoides intestinalis 

 

(microsporidium)  

Parasite growth 

 

Infection rate 

LF (/) 

 

LF (↓) 

Ebert, 1995 

D. galeata  Caullerya 

mesnili 

 

(ichthyosporean) 

Parasite virulence  

 

HF (↑) Bittner et al., 2002 

D. magna  Pasteuria 

ramosa 

 

(bacterium) 

Parasite growth Maternal 

LF (↓) 

Mitchell & Read, 2005 

D. magna  Pasteuria 

ramosa 

 

(bacterium) 

Infection rate 

 

Parasite growth 

 

Host fecundity 

LF (↓) 

 

LF (↓) 

 

LF (↓) 

Frost et al., 2008 

D. dentifera  Metschnikowia 

bicuspidata  

 

(yeast) 

Spore production 

 

Transmission 

HQ (↑) 

 

HQ (↓) 

Hall et al., 2009 

D. magna  Pasteuria 

ramosa  

 

(bacterium) 

Host susceptibility Maternal 

LF (↓) 

Ben-Ami et al., 2010 

D. magna  Pasteuria 

ramosa  

 

(bacterium) 

Parasite establishment 

 

 

Parasite growth 

Maternal 

LF (↓) 

 

Maternal  

LF (↓) 

Stjernman & Little, 2011 

D. magna  

 

 

Glugoides intestinalis  

 

(microsporidium) 

Spore production LQ (/) Aalto & Pulkkinen, 2013 

D. magna  Pasteuria ramosa  

 

(bacterium) 

Offspring production 

 

 

 

 

 

Infection rate 

Current 

HQ (↑) 

 

Maternal 

HQ (↑) 

 

Maternal 

HQ (↑) 

 

Current 

HQ (↓) 

 

Schlotz et al., 2013 
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D. magna  DIV-1  

 

(virus) 

Infection rate 

 

Host survival 

 

Offpsring production 

 

Clutch size 

LQ (↓) 

 

LQ (↑) 

 

LQ (↑) 

 

LQ (↑) 

Coopman et al., 2014 

D. magna  Unicellular Gut 

Parasite (Micro1)  

Spore production in 

coinfection with DIV-1 

LQ (↓) Lange et al., 2014 

D. dentifera  Metschnikowia 

bicuspidata  

 

(yeast) 

Encounter rate (feeding 

behaviour) 

LQ (↓) Penczykowski et al., 

2014 

D. dentifera  Metschnikowia 

bicuspidata 

 

(yeast) 

Prevalence 

 

Parasite load 

 

Fecundity 

 

Host density 

HF (↑) 

 

HF (↑) 

 

HF (↑) 

 

HF (↑) 

Civitello et al., 2015 

D. longispina Caullerya mesnili 

 

(ichthyosporean) 

Host susceptibility 

 

LQ (↑) Tellenbach et al., 2016 

D. dentifera Metschnikowia 

bicuspidata 

 

(yeast) 

 

 

 

 

 

Pasteuria ramosa  

 

(bacterium) 

Infection rate 

 

Spore yield 

 

Host lifespan 

 

Host fecundity 

 

 

Infection rate 

 

Spore yield 

 

Host lifespan 

 

Host fecundity 

LQ (↓) 

 

LQ (/) 

 

LQ (/) 

 

LQ (/) 

 

 

LQ (/) 

 

LQ (↑) 

 

LQ (↑) 

 

LQ (↓) 

Sánchez et al., 2019 

 

Abbreviations:   HQ: High quality     LQ: Low quality HF: High food         LF: Low food 

 

Arrows in the ‘Effect’ column indicate that a given experimental condition (for instance, ‘High Food’) either 

decreased (↓), increased (↑), or did not have any significant effect (/) on the value of a given infection ‘Trait’. 

Maternal treatments (e.g. Mitchell & Read, 2005) indicate that different conditions of food quantity or diet 

quality were applied to the previous generation (i.e. mothers) of parthenogenetically reproducing daphnids. 
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Table 2. Summary of previous publications investigating the effects of temperature on infection 

traits in Daphnia-parasite systems.  

 

Host 

 

Parasite 

 

Traits Effect Reference 

D. magna Glugoides intestinalis 

 

(microsporidium) 

Transmission LT (↓) Ebert, 1995 

D. magna Pasteuria ramosa 

 

(bacterium) 

Virulence LT (↓) Mitchell et al., 2005 

D. magna Pasteuria ramosa 

 

(bacterium) 

Spore production 

 

 

Infection rate 

 

Fecundity 

LT (↓) 

HT (↓) 

 

LT (↓) 

 

LT (↓) 

Vale et al., 2008 

D. longispina Caullerya mesnili 

 

(microsporidium) 

Infection rate LT (↑) Schoebel et al., 2011 

D. longispina  Metschnikowia 

bicuspidata 

 

(yeast) 

Time to infection 

 

Host fecundity 

 

Life expectancy 

HT (↓) 

 

HT (↓) 

 

HT (↓) 

Cuco et al., 2018 

D. dentifera Metschnikowia 

bicuspidata 

 

(yeast) 

Size of epidemics 

 

(due to increased 

foraging rate) 

HT (↑) Shocket et al., 2018a 

D. dentifera  Metschnikowia 

bicuspidata 

 

(yeast) 

Transmission rate 

 

Foraging rate 

HT (↑) 

 

HT (↑) 

Shocket et al., 2018b 

D. magna  Ordospora colligata  

 

(microsporidium) 

Infection rate 

 

 

Infection intensity 

 

Life expectancy 

LT  (↓) 

HT (↓) 

 

HT (↓) 

 

HT (↓) 

Kirk et al., 2018 

D. dentifera Metschnikowia 

bicuspidata 

 

(yeast) 

Exposure to spores 

 

Host susceptibility 

 

Spore production 

 

Infectivity of free-

living stages 

HT (↑) 

 

HT (/) 

 

HT (↓) 

 

 

HT (↓) 

Shocket et al., 2019 

 

Abbreviations:  HT: High Temperature      LT: Low Temperature 
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Table 3. Summary of previous publications investigating the effects of sequential infections (i.e. 

prior or later residency of the focal parasite) between distinct species of parasites in Daphnia-

parasite systems. 

 

Host 

 

Parasite 

 

Traits Effect Reference 

D. galeata  Metschnikowia 

bicuspidata  

 

(yeast) 

 

 

Caullerya mesnili  

 

(ichthyosporean) 

Time to infection 

 

Spore production 

 

 

 

Time to infection 

 

Spore production 

PR (↑) 

 

PR (↓) 

 

 

 

LR (/) 

 

LR (↓) 

Lohr et al., 2010b 

D. dentifera Metschnikowia 

bicuspidata  

 

(yeast) 

 

 

Pasteuria ramosa  

 

(bacterium) 

Spore production 

 

 

 

 

 

Spore production 

LR (↑) 

 

 

 

 

 

LR (/) 

Clay et al., 2019b 

 

Abbreviations:        PR: Prior residency      LR: Late residency 
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CHAPTER 1: 

TEMPERATURE AND HOST DIET JOINTLY INFLUENCE 

THE OUTCOME OF INFECTION IN A DAPHNIA-FUNGAL 

PARASITE SYSTEM 
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Abstract
1.	 Climate change has the potential to shape the future of infectious diseases, both 

directly and indirectly. In aquatic systems, for example, elevated temperatures can 
modulate the infectivity of waterborne parasites and affect the immune response 
of zooplanktonic hosts. Moreover, lake warming causes shifts in the communities 
of primary producers towards cyanobacterial dominance, thus lowering the qual-
ity of zooplankton diet. This may further affect host fitness, resulting in subopti-
mal resources available for parasite growth.

2.	 Previous experimental studies have demonstrated the respective effects of tem-
perature and host diet on infection outcomes, using the zooplankter Daphnia and 
its microparasites as model systems. Although cyanobacteria blooms and heat 
waves are concurrent events in nature, few attempts have been made to combine 
both stressors in experimental settings.

3.	 Here, we raised the zooplankter Daphnia (two genotypes) under a full factorial 
design with varying levels of temperature (the standard 19°C and elevated 23°C), 
food quality (Scenedesmus obliquus as high-quality green algae, Microcystis aerugi-
nosa and Planktothrix agardhii as low-quality cyanobacteria) and exposed them to 
the parasitic yeast Metschnikowia bicuspidata. We recorded life history parameters 
of the host as well as parasite traits related to transmission.

4.	 The combination of low-quality cyanobacterial diets and elevated temperature re-
sulted in additive detrimental effects on host fecundity. Low-quality diets reduced 
parasite output, while temperature effects were context dependent. Overall, we argue 
that the combined effects of elevated water temperature and poor-quality diets may 
decrease epidemics of a common fungal parasite under a climate change scenario.

K E Y W O R D S

climate change, cyanobacteria, disease spread, Metschnikowia, zooplankton

1  | INTRODUC TION

Climate change may have important repercussions for the spread 
and severity of pathogenic diseases. Direct effects of temperature 

have been studied in a variety of host–parasite assemblages (re-
viewed in Altizer, Ostfeld, Johnson, Kutz, & Harvell, 2013; Lafferty 
& Mordecai, 2016), with general concern that a warmer world would 
also become a sicker world (Brooks & Hoberg, 2007; de La Rocque, 
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Rioux, & Slingenbergh, 2008). Elevated temperatures have been 
shown to modulate the intensity, timing, and transmission of infec-
tious diseases, including bacterial pathogens of nematodes (Stirling, 
1981), microsporidia infecting honeybees (Martín-Hernández et al., 
2009) and human malaria (Paaijmans et al., 2010). Further signs of 
a rapidly changing world are shifts in food-web structures: climate 
change may alter the community composition of key trophic groups 
(Petchey, McPhearson, Casey, & Morin, 1999), induce trophic mis-
match through changes in phenology (Edwards & Richardson, 2004), 
alter the primary productivity, and even reduce the total biomass 
in a food web (O'Connor, Piehler, Leech, Anton, & Bruno, 2009). 
However, in addition to temperature, diet quality and nutrient up-
take are equally important drivers of the metabolic processes gov-
erning host immunity (Landolt, 1989; Las Heras et al., 2019) and 
parasite performance (Arostegui, Hovel, & Quinn, 2018; Crompton, 
1987). For instance, protein supplementation of ruminants has been 
shown to increase resistance to gastrointestinal nematodes (Coop 
& Holmes, 1996), while experimental increases in nutrient concen-
trations enhanced the severity of different coral pathogens (Bruno, 
Petes, Drew Harvell, & Hettinger, 2003). Although hosts may benefit 
from high-quality diets in the form of enhanced immune response or 
increased fecundity, higher host densities may in turn provide para-
sites with a larger pool of potential hosts, each serving as a nutritive 
resource to their own parasite (Pike, Lythgoe, & King, 2019). Thus, 
in the context of epidemiological studies, temperature increase and 
food-web alterations are two aspects of climate change that should 
be regarded as related phenomena.

In freshwater environments, there is a tight interplay between cli-
mate change and food composition. By extending the duration of lake 
stratification periods, elevated water temperatures promote blooms 
of cyanobacteria (Paerl & Paul, 2012; Paul, 2008). Compared to 
green algae, cyanobacteria constitute a resource of poor nutritional 
quality to primary consumers (Ahlgren, Lundstedt, Brett, & Forsberg, 
1990). Indeed, cyanobacteria do not contain sterols and lack many of 
the polyunsaturated fatty acids essential to zooplankton, which must 
be acquired through their diet (Brett & Muller-Navarra, 1997; Elert, 
Martin-Creuzburg, & Coz, 2003). Moreover, cyanobacteria often dis-
play filamentous morphologies, which can cause clogging of the zoo-
plankton’s filtering apparatus and hamper nutrition (Gliwicz, 1977; 
Lampert, 1987). Finally, a number of commonly occurring cyano-
bacteria species are known to produce potent toxins, such as micro-
cystins, compromising the sanitary status of water bodies (Falconer, 
Burch, Steffensen, Choice, & Coverdale, 1994; Gholami, Mortazavi, 
& Karbassi, 2019; Lampert, 1987). As typically dominant zooplank-
ton and key herbivores in freshwater food webs (Lampert & Kinne, 
2011), waterfleas (Daphnia) are likely to be affected by these harmful 
blooms (Rohrlack, Dittmann, Henning, Börner, & Kohl, 1999).

Considering the central role of Daphnia in the trophic structure 
of aquatic food webs, any factor modulating the abundance and 
composition of zooplankton populations might lead to detrimental 
effects on the functioning of freshwater ecosystems. In addition to 
the negative effects associated with the dominance of cyanobacte-
ria, a wide range of microparasites such as microsporidia, fungi and 

bacteria represent another threat to Daphnia hosts (Ebert, 2005). 
Most of these parasites negatively affect Daphnia survival and repro-
duction (Ebert, 2005; Green, 1974) and can reduce their abundance 
to such levels that control of phytoplankton by grazing is inhibited 
(Duffy, 2007). Predicting the overall direction of Daphnia parasitism 
under a climate change scenario is challenging, as warming may trig-
ger cascading effects that modulate disease outcomes in complex 
and intricate ways. First, rising temperatures could directly alter zoo-
plankton susceptibility to infection (Mitchell, Rogers, Little, & Read, 
2005; Schoebel, Tellenbach, Spaak, & Wolinska, 2011), as well as the 
physiology of their parasites (Shocket et al., 2018; Vale, Stjernman, 
& Little, 2008). Second, the resulting proliferation and dominance of 
cyanobacteria might weaken host defences due to reduced nutrient 
uptake or cyanotoxin-induced stress. This has been suggested for 
Daphnia populations infected by the gut parasite Caullerya mesnili, 
as cyanobacterial density positively correlated with the occurrence 
of epidemics (Tellenbach et al., 2016). However, by producing anti-
biotic or antifungal effects, cyanobacteria may also interfere with 
pathogens (Abed, Dobretsov & Sudesh, 2009; Singh, Tiwari, Rai, & 
Mohapatra, 2011). Such medicinal properties have been suggested 
for the common cyanobacterium Microcystis aeruginosa against 
two parasites of Daphnia: the viral agent of white fat cell disease 
(Coopman, Muylaert, Lange, Reyserhove, & Decaestecker, 2014) 
and the yeast Metschnikowia bicuspidata (Sánchez, Huntley, Duffy, 
& Hunter, 2019). Overall, despite the substantial effort to relate the 
fitness of Daphnia parasites to single factors, such as food quality 
(Hall, Knight, et al., 2009a; Sánchez et al., 2019), nutrient availability 
(Frost, Ebert, & Smith, 2008; Narr, Ebert, Bastille-Rousseau, & Frost, 
2019) and water temperature (Cuco, Castro, Gonçalves, Wolinska, 
& Abrantes, 2018; Vale et al., 2008), the combined effects of these 
stressors remain relatively unexplored in this system (but see 
Garbutt, Scholefield, Vale, & Little, 2014). As cyanobacteria blooms 
and heat waves are concurrent phenomena in nature (Joehnk et al., 
2008), a comprehensive approach is required to make better epide-
miological predictions in freshwater ecosystems.

To explore how elevated water temperature and decreased food 
quality interact at the host-parasite interface, we used two Daphnia 
genotypes in a fully factorial design including three food sources 
of varying quality (Scenedesmus obliquus as high-quality green al-
gae/M. aeruginosa or Planktothrix agardhii as morphologically distinct, 
low-quality cyanobacteria), two levels of temperature (standard/ele-
vated) and infection by the parasitic yeast M. bicuspidata (control/ex-
posed). We recorded the proportion of successful infections following 
exposure (parasite infectivity) and the number of spores produced at 
host death (parasite reproduction). We combined those metrics into 
an estimate of parasite fitness (net parasite output, which conveys the 
expected number of transmission stages contributing to the next gen-
eration of parasites). Fitness parameters (average lifespan, fecundity, 
and body size) were measured to quantify the effects of environmen-
tal conditions and infection on Daphnia hosts. We predicted a gen-
erally enhancing effect of elevated temperature, but a detrimental 
effect of low food quality on net parasite output, which might result 
in a potential equilibrium when both stressors are combined.
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2  | METHODS

2.1 | Study system

The zooplankter Daphnia (Crustacea: Cladocera) was used as 
the focal host. Daphnia reproduce through cyclical partheno-
genesis, allowing for the inclusion of distinct clonal lines in the 
experimental design (Ebert, 2005). Two genotypes of Daphnia 
longispina × galeata hybrids (AMME_12 and AMME_51) were se-
lected randomly from a wider collection of clonal lines isolated 
from Ammersee, Germany. Hybrids belonging to the D. longispina 
species complex are common and sometimes dominant inhabit-
ants of permanent water bodies across the world (Griebel et al., 
2015; Keller, Wolinska, Manca, & Spaak, 2008), being also able to 
colonise intermediate habitats that are not shared by their respec-
tive progenitor species (Ma, Hu, Smilauer, Yin, & Wolinska, 2018). 
Daphnia were maintained in synthetic culture medium (Saebelfeld, 
Minguez, Griebel, Gessner, & Wolinska, 2017) at 19°C, under a 
12:12 light-dark photoperiod and fed three times per week with 
1 mg C/L of green alga S. obliquus.

The yeast M. bicuspidata (Ascomycota: Saccharomycetales) 
is a generalist parasite infecting several Daphnia species (Dallas, 
Holtackers, & Drake, 2016; Ebert, 2005). Infections of Daphnia 
hosts by Metschnikowia are common in nature, typically starting in 
late summer/early autumn (Wolinska, Seda, Koerner, Smilauer, & 
Petrusek, 2011) and can reach prevalence up to 60% in some lakes 
(Cáceres et al., 2006; Penczykowski, Hall, Civitello, & Duffy, 2014). 
Infection takes place upon ingestion of spores by water-filtering 
hosts. Mature, needle-shaped spores pierce the gut wall before 
reaching the haemolymph (Codreanu & Codreanu-Balcescu, 1981). 
Infection symptoms become clearly visible after 9–10 days, when 
the host's body cavity starts to fill with the ascus stage (Stewart 
Merrill & Cáceres, 2018). Spore release occurs after host death, 
once the cuticle starts to decompose, allowing for parasite spores 
to be ingested by new hosts. A single M. bicuspidata strain was used, 
also isolated from Ammersee. This strain was later propagated on 
a laboratory-reared Daphnia magna clone (Hesse, Engelbrecht, 
Laforsch, & Wolinska, 2012). Due to its low host specificity, the 
parasite can be raised on D. magna—a larger host species which con-
veniently provides high spore output upon death—and later used to 
infect other Daphnia species (Cuco et al., 2018; Hesse et al., 2012).

Three phytoplankton species were used as different food 
sources for the host: the unicellular green alga S. obliquus 
(long-standing laboratory culture used as standard food for 
Daphnia), the coccoid cyanobacterium M. aeruginosa (MaGr01, 
isolated from Greifensee in Switzerland; Tellenbach et al., 2016) 
and the filamentous cyanobacterium P. agardhii (NIVA-CYA  630, 
isolated from Lake Lyseren in Norway; https​://niva-cca.no). Both 
cyanobacteria species were selected as common bloom-forming 
taxa (Reynolds & Wakby, 1975; WHO 2009). Laboratory cultures 
of MaGr01 lost their colonial morphology, and single cells display 
an optimal size range for Daphnia ingestion. While both MaGr01 
and NIVA-CYA 630 have been confirmed to produce microcystin 

(Rohrlack et al., 2008; Tellenbach et al., 2016), Planktothrix also 
displays a filamentous morphology, which reduces its susceptibil-
ity to grazing (Gliwicz, 1977; Lampert, 1987). Scenedesmus cultures 
were maintained in WC algal medium at 19°C, while Microcystis 
and Planktothrix cultures were maintained in Z8 medium at 19°C 
and 16°C, respectively. All cultures were maintained under con-
stant light.

2.2 | Experimental setup

Prior to the start of the experiment, the two D. longispina × galeata 
genotypes were maintained for three generations under standard 
conditions (12:12 light–dark photoperiod, fed daily with 1 mg C/L 
of S. obliquus) and kept in separate incubators at 19°C (standard 
temperature) or 23°C (elevated temperature); 19°C is the stand-
ard rearing temperature of stock cultures in the laboratory and 
matches the typical August/September epilimnion temperature 
in Ammersee, when infection by Metschnikowia is usually first ob-
served (J. Wolinska, personal observation). In contrast, 23°C was 
chosen based on climate change scenarios predicting a 4°C in-
crease by the end of the century (Betts et al., 2011; New, Liverman, 
Schroder, & Anderson, 2011), with recent evidence suggesting that 
summer surface temperatures in lakes have already experienced an 
average 0.34°C increase per decade since the 1980s (O'Reilly et al., 
2015). Individual Daphnia were used in a fully factorial design in-
cluding two Daphnia genotypes (AMME_12/AMME_51), three food 
sources of varying quality (Scenedesmus/Microcystis/Planktothrix), 
two temperatures (standard/elevated) and two infection treat-
ments (control/exposed to Metschnikowia). Ten replicates were set 
up for unexposed Daphnia and 20 replicates for exposed ones, ac-
counting for a total of 360 experimental units. To establish simi-
lar exposure conditions across temperature treatments, a unit of 
physiological time was employed, namely degree-days (calculated 
as the product of real-time in days and temperature in °C). This was 
used to account for relatively faster growth at 23°C, which leads to 
higher filtration rate due to larger body sizes, and thus higher spore 
uptake (Burns, 1969; Hall et al., 2007).

Experimental Daphnia were born within a 48-hr time span, after 
which mothers were removed from the common jars. At degree-day 
95 (day 5 at 19°C/day 4 at 23°C), experimental subjects were 
transferred to individual jars containing 5  ml of fresh culture me-
dium. At degree-day 115 (day 6 at 19°C/day 5 at 23°C), all jars were 
checked for early mortality and Daphnia were replaced if needed. 
Experimental jars were then inoculated with a suspension obtained 
by crushing the same amount of tissue from either infected or unin-
fected D. magna in the exposed and control solutions, respectively. 
To maximise infection success, this exposure protocol was repeated 
after 2 days, as in Yin, Laforsch, Lohr, and Wolinska (2011) (applied 
concentrations: 700 spores/ml and 550 spores/ml for the first and 
second exposure events, respectively). To determine spore concen-
trations, the homogenised suspension was loaded twice (2 × 10 µl) 
on an Improved Neubauer counting chamber. Total spore yield was 

https://niva-cca.no
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estimated from the mean number of mature spores counted in four 
squares of 1 µl capacity, across two independent loads.

During the first few days following the onset of the experiment, 
Daphnia were fed with 1 mg C/L of S. obliquus. Food quantity was 
reduced to 0.5 mg C/L once Daphnia were transferred into individ-
ual jars. To maximise infection success, animals were not fed during 
the first day of exposure (low food density was shown to promote 
spore uptake, Hall et al., 2007). Daphnia were separated into their 
respective food treatments the day following the first exposure 
event, i.e. at degree-day 135 (day 7 at 19°C/day 6 at 23°C). In the 
Scenedesmus food treatment, animals were fed daily with 0.5  mg 
C/L of S. obliquus. In the other two treatments, a food mixture was 
used in which either Microcystis or Planktothrix contributed 75% of 
the total amount of carbon, with Scenedesmus contributing the re-
maining 25%. The correlation between optical density and carbon 
content for each phytoplankton taxon was established and used to 
prepare food suspensions accordingly. Following the second expo-
sure event, the experimental volume was raised to 15 ml (day 9 at 
19°C/day 8 at 23°C). From this point onward, individuals were trans-
ferred to fresh medium every 4 days. Neonates were counted and 
removed daily, with those from the second clutch kept frozen for 
body size determination (−20°C). All exposed individuals which died 
after 8 days post-exposure (earliest observation of infection) were 
fixed in 3% formaldehyde. As no further deaths were observed after 
27 days into the experiment, it was terminated soon after. All surviv-
ing individuals were fixed in 3% formaldehyde.

2.3 | Recorded parameters

2.3.1 | Parasite fitness

Parasite infectivity (calculated as the proportion of successfully in-
fected individuals) was assessed by checking fixed animals for the 
presence of parasite spores under a dissecting microscope (30× 
magnification). Parasite reproduction (the number of spores pro-
duced until host death, calculated individually per infected host) 
was estimated from a suspension of crushed infected Daphnia using 
a counting chamber (see Experimental setup). Conveniently, parasite 
reproduction was shown to be a good estimate of transmission rates 
in Daphnia (Izhar & Ben-Ami, 2015). To combine these intermediate 
fitness components into a single metric that encompasses parasite 
success, we devised the net parasite output. For the parasite to con-
tribute to the next generation, two conditions need to be met. First, 
the host has to survive long enough for the parasite to complete its 
infection cycle (defined here as host survival probability). Second, 
the surviving host has to become terminally infected (this probabil-
ity was conveyed as parasite infectivity). Consequently, net parasite 
output is defined as the product of host survival probability, parasite 
infectivity and parasite reproduction. Host survival and parasite in-
fectivity were computed for each combination of food quality, tem-
perature and host genotype (12 treatments), out of 20 Daphnia which 
were exposed to the parasite in each treatment (Table S1).

2.3.2 | Host fitness

Age at death was recorded for each individual Daphnia that died start-
ing from day 7 at 19°C and day 6 at 23°C (after the initial replacement 
of early deaths due to background mortality). Animals that were fixed 
in formaldehyde on the last experimental day were considered to 
have died at that time (none of these individuals were found to be in-
fected). Body size was recorded for juveniles from the second clutch 
and for adult Daphnia which were retrieved on the last experimental 
day, including those that were exposed but not infected (see Figure S1) 
and those from the control treatment (due to age differences, body 
size was otherwise not recorded for animals that died from infec-
tion). Daphnia were measured under a dissecting microscope using 
Nikon NIS Elements Basic Research software (v4.50). Body size was 
recorded by drawing a straight line from the top of the eye to the 
base of the spine. The number of offspring and timing of each clutch 
were recorded for all individuals. Per capita intrinsic rates of increase 
(r) were computed for each combination of food quality, temperature, 
and host genotype (12 treatments), following Euler–Lotka's equation:

with r as the rate of population increase (/day), x the age class in days, 
lx the probability of surviving to age x, and mx the fecundity at age x 
(Cuco et al., 2018; McCallum, 2000). Pseudovalues were generated by 
jackknifing and reassigned as individual values for each replicate in a 
given treatment (Meyer, Ingersoll, McDonald, & Boyce, 1986). Prior to 
inspection of infection status, spore yield, body size of adults and ju-
veniles, all samples were assigned random numbers and relabelled to 
ensure blind assessment.

2.4 | Data analysis

Data were analysed using R version 3.6.0 (R Core Team, 2019). 
Graphical outputs were produced using the ggplot2 (Wickham, 
2016) and Hmisc (Harrell & Harrell, 2019) packages. Analysis of vari-
ance (F-test or χ2 test) was performed with the car package (Fox et 
al., 2012) using type III sums-of-squares. Whenever no significant 
interaction was recorded or missing values led to aliased coefficients 
in a model, type II sums-of-squares were used instead. Model selec-
tion was then performed by a stepwise regression approach based 
on Akaike information criterion.

2.4.1 | Parasite fitness

Host survival until day 8 post-exposure (0 = died early, 1 = survived) 
and parasite infectivity (0 = no infection, 1 = infection) were analysed 
by performing a binary logistic regression with Food, Temperature, and 
Clone as explanatory variables. Parasite reproduction and net parasite 
output were analysed using a linear model with Food, Temperature, and 

n
∑

x=0

e
−rx

lxmx
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Clone as explanatory variables. Normal distribution and homoscedas-
ticity of the residuals were verified by visual inspection of quantile-
quantile plots and residuals against fitted values, respectively.

2.4.2 | Host fitness

Age at death, fecundity (the total number of offspring) and 
growth rate (the per capita intrinsic rate of increase, r) were an-
alysed using generalised linear models with Food, Temperature, 
Infection, and Clone as explanatory variables, assuming a nega-
tive binomial distribution (package MASS, function glm.nb) or 
γ-distribution of the residuals. Body size of adults and body size 
of juveniles (averaged per mother) were analysed using linear 
models with Food, Temperature, Infection, and Clone as explana-
tory variables. Preliminary analyses were run with all four fac-
tors (Food, Temperature, Infection, and Clone) as main effects 
only. If no significant effect of Clone was detected, this fac-
tor was deleted from the subsequent analysis and a three-way 
ANOVA was performed instead, including all interactions be-
tween the remaining factors. Since exposed Daphnia could only 

be confirmed as infected after surviving at least 8  days after 
exposure, early deaths were pooled together with terminally 
infected individuals in order to be compared with the control 
treatment (Figure S1).

3  | RESULTS

3.1 | Parasite fitness

Out of 240 Daphnia exposed to Metschnikowia spores, seven in-
dividuals were lost due to handling error and 78 individuals died 
before day 8 post-exposure (categorised as early death, see Figure 
S1). Among the 155 remaining individuals, 98 were confirmed as 
infected and 57 remained uninfected (categorised as infected and 
exposed but not infected, respectively). Host survival until day 8 
post-exposure was lowest under a Planktothrix diet (significant 
Food effect, Table 1, Figure 1a), especially under elevated temper-
ature (significant Food × Temperature interaction). Parasite infec-
tivity was generally higher on clone AMME_51 (significant Clone 
effect, Figure 1b), whereas temperature increased infectivity for 

TA B L E  1   Three-way ANOVA (F-test or χ2 test) testing for fixed effects of food quality, temperature, host genotype, and their interactions 
on life history parameters of the parasite. Model selection was performed by stepwise regression based on Akaike information criterion, and 
only the final model is reported here

Response variable
Distribution (link 
function) Explanatory variables Statistic (degrees of freedom) p-value

Host survival until day 8 
post-exposure

Binomial (link: logit) Food χ2
(2, 228) = 41.140 <0.001

Temperature χ2
(1,228) = 8.363 0.004

Clone χ2
(1, 228) = 1.639 0.201

Food × Temperature χ2
(2, 228) = 9.293 0.01

Food × Clone χ2
(2, 228) = 8.972 0.011

Temperature × Clone χ2
(1, 228) = 2.570 0.109

Parasite infectivity Binomial (link: logit) Food χ2
(2, 147) = 0.296 0.863

Temperature χ2
(1, 147) = 0.185 0.668

Clone χ2
(1, 147) = 12.130 <0.001

Food × Clone χ2
(2, 147) = 4.295 0.117

Temperature × Clone χ2
(1, 147) = 8.251 0.004

Parasite reproduction Normal Food F(2, 88) = 28.519 <0.001

Temperature F(1, 88) = 2.337 0.13

Clone F(1, 88) = 0.002 0.963

Food × Temperature F(2, 88) = 3.188 0.046

Food × Clone F(2, 88) = 5.141 0.008

Temperature × Clone F(1, 88) = 6.194 0.015

Net parasite output Normal Food F(2, 88) = 3.268 0.043

Temperature F(1, 88) = 2.044 0.156

Clone F(1, 88) = 14.992 <0.001

Food × Temperature F(2, 88) = 2.689 0.074

Food × Clone F(2, 88) = 4.650 0.012

Temperature × Clone F(1, 88) = 3.406 0.068

Food × Temperature ×Clone F(2, 88) = 3.344 0.04

Significant p-values (≤ 0.05) are highlighted in bold.
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clone AMME_12 only (significant Temperature  ×  Clone interac-
tion). Parasite reproduction within infected hosts was highest in 
the Scenedesmus treatment (significant Food effect, Figure 1c). 
However, this effect of host diet was clone dependent. For in-
stance, under a Microcystis diet, parasite reproduction was higher 
on clone AMME_51 (significant Food × Clone interaction). Net 
parasite output was generally higher when the host was main-
tained on the high-quality diet, Scenedesmus (significant Food ef-
fect, Figure 1d). However, when clone AMME_51 was exposed 
to elevated temperature under a Scenedesmus diet, net parasite 
output was greatly reduced, being surpassed by the low-quality 
Microcystis diet (significant Food  ×  Temperature ×  Clone interac-
tion). Moreover, parasite output on clone AMME_51 was higher 
than on clone AMME_12 under a Microcystis diet (significant 
Food × Clone interaction).

3.2 | Host fitness

Preliminary analyses revealed no significant effect of Daphnia gen-
otype on any of the variables related to host fitness. Consequently, 
this factor was removed from the analyses. Host lifespan was 

greatly reduced by infection (significant Infection effect, Table 2, 
Figure 2a). Higher temperature caused earlier death except for 
Daphnia kept on a Microcystis diet (significant Food × Temperature 
interaction). Infected Daphnia from the Planktothrix × 23°C treat-
ment died earliest. Host fecundity was reduced by infection, under 
elevated temperature, as well as under both cyanobacterial diets 
(significant main effects, Figure 2b). Non-exposed Daphnia pro-
duced up to five times more offspring under a Scenedesmus diet, 
compared to Microcystis or Planktothrix diets. The infection-induced 
reduction in fecundity was particularly strong under a Scenedesmus 
diet: infected Daphnia produced three to four times fewer offspring 
than unexposed conspecifics. While elevated temperature reduced 
host lifespan and fecundity, host growth rate was only influenced 
by food quality and infection (Figure 2c). Adult Daphnia grew larg-
est under a Scenedesmus diet (significant Food effect, Table S2, 
Figure S2a). However, exposed hosts maintained on a Scenedesmus 
diet, which did not become infected (exposed but not infected) 
reached smaller adult sizes than their control conspecifics (signifi-
cant Food × Infection interaction). As opposed to adult Daphnia, the 
body size of juveniles from the second clutch was highest under a 
Microcystis diet (significant Food effect, Figure S2b). Neither tem-
perature nor infection influenced the size of offspring (Table S2).

F I G U R E  1   Comparison of traits relating to infection success of the yeast parasite, Metschnikowia bicuspidata. Two Daphnia genotypes 
(AMME_12, AMME_51) were exposed to the parasite under two temperatures (19°C, 23°C) and three food treatments (Scenedesmus, 
Microcystis, Planktothrix). (a) Host survival (proportion of hosts which survived until day 8 post-exposure); (b) parasite infectivity (proportion 
of successful infections); (c) parasite reproduction (number of spores produced); (d) net parasite output (product of the previous three 
variables). Error bars represent the standard error of the mean. Due to high mortality of AMME_51 in the Planktothrix × 23°C treatment, 
parasite reproduction could not be estimated for this combination: only one individual survived until parasite inspection, but was not 
infected (Table S1)

(a) (b) (c)

(d)
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4  | DISCUSSION

By exposing Daphnia hosts to the common waterborne parasite 
Metschnikowia, our aim was to gain insight into how specific combi-
nations of temperature and diets (representing future environmental 
disturbances in warmed lakes) may affect key traits of this host–par-
asite system. To enable ecologically relevant predictions regarding 
the potential for disease spread in future environments, we chose to 
focus on two synthetic variables: the net parasite output per exposed 

host, as well as the population growth rate of the host (r), which en-
sures the renewal of new hosts for the parasite to infect.

4.1 | Parasite fitness

Food quality appeared to be the main driver of net parasite output, 
contributing to each of the intermediate conditions for transmis-
sion (most notably host survival and parasite reproduction). Indeed, 

Response variable 
(dataset)

Distribution 
(link function)

Explanatory 
variables

Statistic (degrees 
of freedom) p-value

Host lifespan (con-
trol/infected and 
early death)

Negative bino-
mial (link: log)

Food χ2 (2, 288) = 3.393 0.183

Temperature χ2 (1, 288) = 0.367 0.544

Infection χ2 (1, 288) = 94.612 <0.001

Food × Temperature χ2 (2, 283) = 25.148 <0.001

Host fecundity 
(control/infected 
and early death)

Negative bino-
mial (link: log)

Food χ2
(2, 291) = 86.358 <0.001

Temperature χ2
(1, 291) = 9.953 0.002

Infection χ2
(1, 291) = 56.941 <0.001

Host growth rate 
(r) (control/in-
fected and early 
death)

Gamma (link: 
log)

Food χ2
(2, 281) = 14.284 <0.001

Temperature χ2
(1, 281) = 1.370 0.242

Infection χ2
(1, 281) = 7.064 0.008

Significant p-values (≤ 0.05) are highlighted in bold.

TA B L E  2   Three-way ANOVA 
testing for fixed effects of food quality, 
temperature, infection, and their 
interactions on life history parameters of 
the host (two Daphnia genotypes). The 
dataset entries describe which subsets 
of data were compared as levels of the 
Infection factor (see also Figure S1). Model 
selection was performed by stepwise 
regression based on Akaike information 
criterion, and only the final model is 
reported here

F I G U R E  2   Comparison of Daphnia 
fitness components. Daphnia were 
exposed to the parasite Metschnikowia 
bicuspidata under two temperatures 
(19°C, 23°C) and three food treatments 
(Scenedesmus, Microcystis, Planktothrix). 
(a) Host lifespan (age of Daphnia at death); 
(b) fecundity (total number of offspring); 
(c) per capita intrinsic rate of increase 
(r). Results for both host genotypes are 
pooled together. Error bars represent 
the standard error of the mean. Since 
exposed Daphnia could only be confirmed 
as infected after surviving at least 
8 days post-exposure, early deaths were 
pooled together with terminally infected 
individuals as one level of Infection, which 
was compared to the control treatment

(a) (b)

(c)
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Scenedesmus led to significantly higher parasite output in all but one 
treatment. By contrast, the Planktothrix diet was consistently del-
eterious for the parasite, reflecting a combination of impaired para-
site reproduction and unreliable host survival (few hosts survived 
long enough to enable completion of the parasite cycle). Especially 
high levels of mortality were observed at 23°C, both in infected 
and uninfected hosts. This phenomenon might be attributed to in-
creased filtering rates at high temperatures (Shocket et al., 2018), 
which aggravate clogging of the host's filtering apparatus by the 
filamentous cyanobacterium, thereby limiting proper nutrition. 
Interestingly, the Microcystis diet supported parasite growth in one 
of two tested clones; under elevated temperature, this diet even re-
sulted in highest parasite output. Microcystis appeared to edge out 
the other food sources, most likely because it allowed the host to 
maintain high survivability under conditions of elevated tempera-
ture, as opposed to the other diets. This advantage of Microcystis 
over Scenedesmus was seemingly large enough to compensate for 
the moderate spore yield associated with a supposedly low-quality 
cyanobacterial diet.

The significance of food quality in our results is attributable to 
the low nutritional value of Microcystis and Planktothrix, compared 
to the green algae. Indeed, hosts feeding on a suboptimal diet are 
expected to provide fewer resources to exploiting endoparasites, re-
sulting in slower development and less efficient multiplication within 
the host (Crompton, 1987; Hall, Simonis, Nisbet, Tessier, & Cáceres, 
2009b). Similarly, spore production of Metschnikowia was hampered 
when its host was fed with field-collected, poor-quality algae as op-
posed to Ankistrodesmus falcatus (Hall, Knight, et al., 2009a), and was 
also found to be lower in lakes with high C:P ratios (Civitello et al., 
2015). In addition to food quality, restricted quantities of a standard 
resource were also found to reduce growth of another Daphnia par-
asite, the bacterium Pasteuria ramosa (Frost et al., 2008; Mitchell & 
Read, 2005; Stjernman & Little, 2011). Arguably, rather than a conse-
quence of low food quality per se (i.e. lack of sterols and long-chain 
poly-unsaturated fatty acids in cyanobacteria; Gerphagnon et al., 
2018), our results could also be partially explained by the reported 
antifungal properties of M. aeruginosa (Sánchez et al., 2019). While 
the genus Planktothrix has not been tested for its antifungal proper-
ties against Daphnia parasites, it produces a wide array of bioactive 
secondary metabolites (Kurmayer, Deng, & Entfellner, 2016), that are 
likely to be involved in the defence against fungal chytrid parasites 
(Rohrlack, Christiansen, & Kurmayer, 2013; Sønstebø & Rohrlack, 
2011).

While host diet turned out to be a preponderant driver of par-
asite fitness, the effects of temperature were less straightforward, 
manifesting mostly as complex interactions with host genotype or 
food quality, rather than as main effects. The absence of a general 
effect of temperature was surprising, as elevated temperatures are 
associated with an increase in metabolic rates (O’Connor & Bernhardt, 
2018). Thus, high temperatures may increase the filtration rate of zoo-
plankton, thereby facilitating the uptake of fungal spores (Shocket et 
al., 2018). Based on such findings, we expected both Daphnia gen-
otypes to display increased susceptibility to the fungal parasite at 

23°C. Instead, one host genotype became more easily infected when 
exposed to elevated temperature, while the other experienced com-
promised survival and reduced spore yield, leading to inferior parasite 
success. Such host genotype-specific responses to elevated tem-
perature have also been discovered for other pathogens of Daphnia 
(Garbutt et al., 2014; Schoebel et al., 2011), as well as across many 
other host-parasite systems (reviewed in Wolinska & King, 2009). 
Such clonal effects further suggest that high genetic diversity in 
host populations might be crucial to resist disease at the population 
level (Agha, Gross, Rohrlack, & Wolinska, 2018; King & Lively, 2012; 
O'Brien & Evermann, 1988; Spielman, Brook, Briscoe, & Frankham, 
2004).

In light of these results, we hypothesise a potential protec-
tive effect of cyanobacteria against infection outbreaks. Impaired 
parasite output under these suboptimal diets might reduce the 
risk of infection, slowing down the spread of the parasite in the 
environment. Although some specific scenarios relevant to cli-
mate change, such as Microcystis dominance under elevated tem-
perature, would appear to favour parasite fitness, the net parasite 
output defined here only gives an estimation of how many trans-
mission stages are expected to contribute to the next parasite 
generation. If we are to make predictions about the general epide-
miology of the parasite, it is necessary to examine how this metric 
compares to the reproductive output of the host. Virulent effects 
such as increased host mortality or reduced fecundity (reinforced 
under harsh environmental conditions) also represent a risk for 
the parasite, in so far as they limit the pool of available hosts in 
the environment.

4.2 | Host fitness

In the absence of the parasite, cyanobacterial diets severely re-
duced host growth, due to a combination of impaired offspring 
production (both cyanobacterial species) and compromised sur-
vival (Planktothrix). The combination of high levels of host fecundity 
and efficient net parasite output under a Scenedesmus diet suggest 
that high-quality, green algal diets are more likely to promote epi-
demic outbreaks than the typical cyanobacteria occurring under 
bloom conditions. Furthermore, hosts exposed to a combination of 
elevated temperatures and high densities of toxic cyanobacteria, 
such as Planktothrix, might not live long enough to ensure transmis-
sion of the parasite. If such conditions became more prevalent as 
a result of climate change (Paerl & Paul, 2012; Paul, 2008), selec-
tion for faster replicating parasite strains might arguably occur in 
the wild. While the fungal parasite used in this experiment displays 
limited genetic diversity in natural populations (Duffy & Sivars-
Becker, 2007; Searle et al., 2015; Wolinska, Giessler, & Koerner, 
2009) and did not respond to a selection experiment (Auld, Hall, 
Housley Ochs, Sebastian, & Duffy, 2014), such evolutionary re-
sponses could still apply to other parasites of Daphnia with higher 
evolutionary potentials, such as the bacterium P. ramosa (Ebert et 
al., 2016).
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5  | CONCLUSION

By investigating the main and interactive effects of temperature and 
host diet in the Daphnia–Metschnikowia system, we conclude that 
elevated temperature does not universally enhance parasite fitness. 
Instead, climate change is expected to promote the dominance of 
poor-quality algae and favour conditions of suboptimal nutrition 
in zooplanktonic hosts. This implies a reduction of exploitable re-
sources for the parasite, resulting in decreased output, as an indirect 
effect of climate change. Distinct food sources appear to modulate 
host and parasite fitness in diverging ways, depending on host geno-
type and temperature. Such discrepancies suggest that toxic blooms 
might have different consequences depending on which cyanobac-
terial taxa become dominant when outbreaks occur. However, none 
of the tested cyanobacteria seem to enhance parasite epidemics, as 
they reduced host growth rates to negligible levels. Given the com-
plex interactions that can arise between specific host diets and tem-
perature conditions, the inclusion of both environmental factors in 
future experimental or modelling work on zooplankton pathologies 
seems pertinent and necessary.
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Figure S1. Diagram illustrating the different subsets of Daphnia used for statistical analyses: 

control = animals exposed to the control solution; early death = animals exposed to spores 

which died before infection could be assessed (before day 8 post-exposure); infected = animals 

exposed to spores whose infection symptoms were confirmed by microscopic examination after 

at least day 8 post-exposure; exposed but not infected = animals which were exposed to spores 

but did not show infection symptoms. Daphnia from the early death and infected categories 

were pooled together for analyses of host fitness parameters, before being compared with the 

control treatment. 

 

 

Table S1. Number of Daphnia from each of the exposed treatments which i) survived until day 

8 post-exposure (earliest time point where infection symptoms could be observed) and ii) 

became terminally infected, among those individuals which could be inspected under the 

microscope. Discrepancies between ‘survived until day 8 post-exposure’ and ‘terminally 

infected’ are attributed to missing individuals lost due to handling error. 

 
Treatment 

(Temperature × Food × Clone) 

Survived until day 8 post-

exposure 

Terminally infected 

23°C × Microcystis × AMME_12 

 

17 out of 20 9 out of 17 

23°C × Microcystis × AMME_51 

 

18 out of 20 14 out of 17 

23°C × Planktothrix × AMME_12 

 

6 out of 20 4 out of 6 

23°C × Planktothrix × AMME_51 

 

1 out of 20 0 out of 1 

23°C × Scenedesmus × AMME_12 

 

17 out of 20 12 out of 17 

23°C × Scenedesmus × AMME_51 

 

10 out of 20 7 out of 10 

19°C × Microcystis × AMME_12 

 

14 out of 19 2 out of 13 

19°C × Microcystis × AMME_51 

 

17 out of 18 14 out of 16 

19°C × Planktothrix × AMME_12 

 

14 out of 20 6 out of 13 

19°C × Planktothrix × AMME_51 

 

12 out of 20 10 out of 12 

19°C × Scenedesmus × AMME_12 

 

18 out of 20 7 out of 18 

19°C × Scenedesmus × AMME_51 

 

15 out of 20 13 out of 15 
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Figure S2. (a) Comparison of the body size of adult Daphnia. Daphnia were exposed to two 

temperatures (19°C, 23°C) and three food treatments (Scenedesmus, Microcystis, Planktothrix). 

Results for both host genotypes are pooled together. Error bars represent the standard error of 

the mean. (b) Comparison of the body size of Daphnia juveniles from the second clutch 

(averaged per mother). Daphnia were exposed to two different temperatures (19°C, 23°C) and 

three different food treatments (Scenedesmus, Microcystis, Planktothrix). Results for both host 

genotypes and infection status are pooled together. Error bars represent the standard error of the 

mean. 

 

 

 

a) 

b) 
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Table S2. Three-way ANOVA (F-test or χ² test) testing for fixed effects of food quality, 

temperature, infection status and their interactions on the body size of adult Daphnia and the 

body size of juveniles from the second clutch (averaged per mother). The ‘dataset’ entries 

describe which subsets of data were compared as levels of the Infection factor. Model selection 

was performed by stepwise regression based on Akaike’s Information Criterion (AIC), only the 

final model is reported here. 

 

 

Response variable 

(dataset) 

Distribution 

(link function) 

Explanatory variables Statistic (degree of freedom) p-value 

Body size 

(control / exposed but 

not infected) 

 

 

 

Normal Food 

 

Temperature 

 

Infection 

 

Food × Temperature 

 

Food × Infection 

 

Temperature × Infection 

 

F(2, 87) = 6.776 

 

F(1, 87) = 3.063 

 

F(1, 87) = 6.724 

 

F(2, 87) = 2.537 

 

F(2, 87) = 7.028 

 

F(1, 87) = 2.826 

< 0.001 

 

   0.084 

 

   0.011 

 

   0.085 

 

   0.001 

 

   0.096 

Body length of 

juveniles 

(control / infected / 

exposed but not 

infected) 

 

 

Normal Food 

 

Temperature 

 

Infection 

 

Food × Infection 

 

 

F(2, 104) = 9.621 

 

F(1, 104) = 1.790 

 

F(2, 104) = 1.385 

 

F(4, 104) = 1.976 

< 0.001 

 

   0.184 

 

   0.255 

 

   0.104 
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Abstract 

Cyanobacteria periodically dominate phytoplankton composition in freshwater lakes, and produce a 

wide array of toxic secondary metabolites. Harmful blooms of cyanobacteria often coincide with late-

summer infections of zooplankton by microparasites (such as Metschnikowia bicuspidata, a parasitic 

yeast of Daphnia), and prior research has shown that cyanobacteria-based diets could mitigate fungal 

infections of the host. However, direct detrimental effects of cyanotoxins against free-living stages of 

the parasite were not previously tested in this system. Here, we inoculated two genotypes of the host 

Daphnia galeata × longispina with fungal spores, which were previously exposed either to extracts of 

the common bloom-forming cyanobacterium Microcystis aeruginosa or to a placebo solution. 

Additionally, Daphnia hosts were fed on two levels of food quality, using either green algae (high 

quality) or the same cyanobacterium (low quality). Exposing parasite spores to cyanobacterial extracts 

did not reduce their infectivity, which was against our expectations. Instead, parasite infectivity was 

increased, but only on one host genotype. Then, neither parasite reproduction nor virulence were 

influenced by an exposure to cyanobacterial extract. The effect of host diet on parasite growth was also 

host-genotype dependent, with only one Daphnia genotype showing impaired spore production under 

a toxic diet. Our results suggest that dissolved cyanobacterial compounds released during blooms do 

not exert any detrimental effect on benthic spore banks, but may still influence transmission of the 

parasite, mostly when incorporated as part of the host diet. 
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1. Introduction 

Cyanobacteria are one of the most ancient organisms on Earth (Garcia-Pichel, 1998; Sánchez‐Baracaldo 

& Cardona, 2020). With an evolutionary origin dating back to at least 2000 Ma, their photosynthetic 

and nitrogen-fixing abilities have contributed to greatly affecting the Earth’s atmospheric composition 

and carbon cycle at a global scale (Knoll, 2008). Acting as main primary producers throughout most of 

the Proterozoic, cyanobacteria have since remained important – and sometimes dominant – components 

of phytoplankton communities within both marine and freshwater ecosystems (Sergeev et al., 2002). 

The seasonal ability of cyanobacteria to proliferate and dominate phytoplankton species assemblages 

during short periods of time is commonly referred to as ‘blooms’, which have been recorded 

increasingly throughout the 20th century (Hallegraeff, 1993; Gobler, 2020) and elevated to a greater 

level of concern throughout the past three decades (Van Dolah et al., 2001; Moore et al., 2008; Grattan 

et al., 2016; Sukenik & Kaplan, 2021). In part thanks to their ancient evolutionary history, cyanobacteria 

exhibit a number of competitive traits, allowing them to outcompete other phytoplankton (such as green 

algae) when conditions are favourable. This includes their buoyancy regulation – allowing them to 

occupy superficial niches in the water column, thus optimizing light harvesting while shading 

competitors (Carey et al., 2012) – and faster growth under conditions of elevated temperatures, high 

concentrations of inorganic carbon (CO2) or replete nutrient availability (Mantzouki et al., 2016, Ji et 

al., 2017). Incidentally, such environmental conditions have been associated with contemporary 

ecological shifts of anthropogenic origin: human activity is causing harmful blooms to become more 

frequent, due to a combination of greenhouse gas effects and the eutrophication of aquatic ecosystems 

(Mantzouki et al., 2016), although increasing evidence show that cyanobacteria can also thrive in 

relatively low-nutrients environments (Reinl et al., 2021). 

In addition to the inherent phenology and population dynamics of cyanobacteria, their 

interactions with primary consumers (i.e. zooplankton) are also expected to change in a warming, 

increasingly eutrophic world (Benndorf & Henning, 1989; Ger et al., 2014). Cyanobacteria act as a 

relatively poor food source for common zooplankton taxa, such as copepods (DeMott & Moxter, 1991) 

or various species of cladocerans (Hanazato & Yasuno, 1987; Lundstedt & Brett, 1991; Smith & 

Gilbert, 1995). This is commonly imputed to low nutritional value, due to a lack of poly-unsaturated 

fatty acids (PUFAs) and/or sterols (DeMott & Müller-Navarra 1997; Ravet et al., 2003), in addition to 

their toxicity (DeMott et al., 1991). A major concern regarding the increasing occurrence of harmful 

algal blooms, cyanobacteria are renowned for their exceptional bioactivity and toxin production 

(Namikoshi & Rinehart, 1996; Huang & Zimba, 2019). Over time, cyanobacteria have evolved a variety 

of secondary metabolites and bioactive compounds (Welker & Von Döhren, 2007; Agha & Quesada, 

2014), some of which can cause adverse effects to other organisms (including humans) and have thus 

been referred to as cyanotoxins (Carmichael, 1992; Chorus, 2012). These are proposed to have evolved 

as bio-chemical defences against invertebrate grazers (Ghadouani et al., 2004; Rohrlack et al., 2004; 
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Czarnecki et al., 2006), following an evolutionary pathway akin to that of terrestrial plants (Kirk & 

Gilbert, 1992). 

In addition to their anti-grazing properties, a wider allelopathic activity was also documented 

in several compounds produced by cyanobacteria, reportedly efficient against algae and other bacteria 

(Berry et al., 2008). Associating such properties with the ancient evolutionary origin of cyanobacteria 

(Knoll, 2008), Sánchez et al. (2019) hypothesized that cyanotoxins could have evolved under the 

selective pressure of more ancestral antagonists, predating the apparition of their zooplankton (i.e. 

metazoan) grazers. Seeing as some cyanobacteria are infected by highly specialized parasites, such as 

fungi of the order Chytridiomycota (Canter, 1950) and viruses (i.e. cyanophages; Suttle, 2000), it is not 

surprising that a number of cyanobacterial secondary metabolites also display strong antifungal and 

antiviral properties (Volk & Furkert, 2006; Shishido et al., 2015; Marrez & Sultan, 2016). While the 

maintenance of cyanotoxins and other bioactive compounds may be driven by the selective pressure of 

such parasites (Rohrlack et al., 2013), several other hypotheses have been put forward regarding the 

primary biological functions of these metabolites, including: nutrient (Fe) scavenging (Utkilen & 

Giølme, 1995), protection against oxidative stress (Zilliges et al., 2011), allelopathy (von Elert & 

Jüttner, 1997; Schagerl et al., 2002; Sukenik et al., 2002, Leão et al., 2010) and quorum sensing (Kehr 

et al., 2006; Schatz et al., 2007). Given a somewhat lax binding specificity and their ability to act as 

inhibitors for a wide spectrum of enzymes (Teta et al., 2015), cyanotoxins could have later gained an 

adaptive value when competitors (prokaryotes, algae) and grazers (metazoan) emerged, thus promoting 

their conservation and diversification in some extant taxa. 

Among the many grazers involved in the consumption of cyanobacteria in freshwater 

ecosystems, cladocerans of the genus Daphnia have been suggested as a potential source of control for 

their proliferation in eutrophic ponds and lakes (Chislock et al., 2013; Urrutia-Cordero et al., 2016). As 

non-selective filter-feeders (DeMott, 1990), Daphnia are likely to feed on a mixed-diet seston, whose 

composition is expected to be dominated by cyanobacterial cells during blooms (Ferrão-Filho et al., 

2000). Of particular interest, in this regard, is the temporal co-occurrence of cyanobacterial blooms, in 

temperate lakes of the Northern hemisphere, with seasonal epidemics of the yeast Metschnikowia 

bicuspidata, a generalist parasite of Daphnia causing typical outbreaks in the late summer to early 

autumn (Duffy et al., 2009; Hall et al., 2011; Wolinska et al., 2011). Thus far, information on how 

cyanobacteria-based diets could modulate fungal infection in Daphnia have provided fairly consistent 

observations, often resulting in impaired parasite transmission (Penczykowski et al., 2014; Sánchez et 

al., 2019; Manzi et al., 2020). However, it is not always clear whether such observations stem from 

cyanobacteria’s poor nutritional value – leading to suboptimal parasite growth – or rather involve direct 

antagonistic effects, attributed to their putative antifungal properties. 
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Considering the effects of cyanobacterial diets reported thus far in the Daphnia-Metschnikowia 

system, three prospective mechanisms may be considered: i) cyanobacteria reduce the success of 

infection through indirect consequences of their low nutritional value on host growth (i.e. reduced body 

size and filtering rate), which later reflect on parasite growth and exposure; ii) cyanobacteria exert 

‘medicinal’ effects when incorporated as part of the host’s diet; for instance, digested cell content could 

affect functions of host immunity; or iii) by way of their suspected antifungal properties, secondary 

metabolites of cyanobacteria are capable of direct interference with the parasite. In the latter case, 

antagonistic processes which usually occur at the within-host level may also be replicated outside of 

the host’s internal environment. This hypothesis was not previously tested in experimental infections 

of Daphnia. Yet, a number of environmental contaminants (e.g. heavy metals) and persistent organic 

pollutants have been shown to influence the longevity and infectivity of environmental stages of 

parasites, particularly in aquatic ecosystems (reviewed in Pietrock & Marcogliese, 2003; Morley et al., 

2006). Moreover, other external factors were already shown to influence the infectivity and 

environmental survival of Metschnikowia, independently of later encounters with the host, such as solar 

radiation (Overholt et al., 2012) or extreme temperatures (Shocket et al., 2019; Duffy & Hunsberger, 

2019). 

To explore the possibility of direct antagonistic interactions between cyanobacteria and a fungal 

parasite of zooplankton, we inoculated two genotypes of the common lake hybrid Daphnia galeata × 

longispina with spore suspensions of the parasitic yeast Metschnikowia bicuspidata. Prior to their 

inoculation, fungal spores were either pre-exposed to i) cyanobacterial extracts or ii) to a placebo 

solution, consisting of cyanobacterial culture medium. Daphnia from each treatment were later 

maintained under two separate diets, one of which consisted in a high quality, green algae-based diet 

and the other in a mixture of green algae and toxic cyanobacteria. We measured three variables 

influencing the overall transmission success of the parasite. Based on the putative antifungal properties 

of the cyanobacterium, we hypothesized that i) prior exposure of the parasite to cyanobacterial toxins 

would impair the success of later infections and ii) the combined treatments of toxin-exposed parasite 

and toxic host diet would further reduce infection success. 

 

2. Methods 

2.1 Study system 

Two genotypes of Daphnia galeata × longispina hybrids (AMME_12 and AMME_51) were selected 

from a wider collection of clones isolated from Lake Ammersee, Germany; the same two host lines 

were previously used in a life-table experiment involving mixed cyanobacterial diets, which revealed 

distinct clonal responses to such treatments (Manzi et al., 2020). Within the D. longispina species 

complex, hybrid genotypes commonly occur, and sometimes even dominate community composition 
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in permanent lakes (Keller et al., 2008). Hybrids may also occupy intermediate habitats beyond the 

ecological niche of their respective progenitor species (Griebel et al., 2015; Ma et al., 2018). Daphnia 

were maintained in synthetic SSS culture medium (Saebelfeld et al., 2017) at 19°C, under a 12:12 light-

dark photoperiod and fed three times per week with 1 mg C/L of green algae Scenedesmus obliquus. 

The yeast Metschnikowia bicuspidata (hereafter referred to as Metschnikowia) is a generalist 

parasite infecting several Daphnia species (Ebert, 2005; Dallas et al., 2016). Infections of Daphnia 

hosts by Metschnikowia are common in nature. Epidemics typically start in late summer/early autumn 

(Wolinska et al., 2011) and the parasite can reach high prevalence (i.e. up to 60%) in lake Daphnia 

populations (Cáceres et al., 2006). Infection takes place upon ingestion of spores by water-filtering 

hosts. Mature, needle-shaped spores pierce the gut wall before reaching the haemolymph 

(Metschnikoff, 1884). Infection symptoms become clearly visible after 9 to 10 days; at this point, the 

parasite’s final developmental stage (elongated asci) can be seen throughout the entire body cavity 

(Stewart Merrill & Cáceres, 2018). As an obligate killer, damage to the cuticle or decomposition of the 

host’s corpse is necessary for the parasite to be released into the environment; infective stages can then 

encounter new hosts, or build up as spore banks in the sediment. During this ‘environmental’ phase of 

the parasite’s life-cycle, spores could potentially be exposed to dissolved cyanobacterial toxins. A single 

M. bicuspidata strain was used (METS_AMME_2008), isolated from the same lake as the host. This 

strain was later propagated on lab-reared Daphnia magna (clone E17:07) for long-term maintenance 

(Hesse et al., 2012). Due to its low host specificity, the parasite can be raised on D. magna – a larger 

host species, providing high spore outputs – and later used to infect other Daphnia species (Hesse et 

al., 2012; Manzi et al., 2020). 

Two phytoplankton species were used as different food sources for the host: the unicellular 

green alga Scenedesmus obliquus (long standing laboratory culture, used as standard food for Daphnia) 

and the coccoid cyanobacterium Microcystis aeruginosa (MaGr01, isolated from Greifensee, 

Switzerland; Tellenbach et al., 2016), one of the most common bloom-forming taxa in freshwater lakes 

(Reynolds & Walsby, 1975). Laboratory cultures of MaGr01 lost their colonial morphology, thus 

displaying an optimal shape and size range for Daphnia ingestion. This strain was confirmed to produce 

microcystin, with a reported concentration of 696 fg per cell (Tellenbach et al., 2016): a family of 

heptapeptides, microcystins are the main group of cyanobacterial toxins associated with the toxicity to 

vertebrates and invertebrates (Carmichael, 1992). Scenedesmus cultures were maintained in modified 

Z-medium (Zehnder & Gorham, 1960), under constant light exposure at 19°C. Microcystis were 

maintained as long-standing batch cultures in Z8 medium (Kótai, 1972), exposed to constant light at 

16°C. Prior to the experiment, a subset of Microcystis cultures were brought up to the same conditions 

as Scenedesmus (19°C) to accelerate growth and equate the rearing temperature of Daphnia. 
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2.2 Experimental setup 

Prior to the start of the experiment, the two D. galeata × longispina genotypes were maintained for two 

generations under standard conditions (19°C, 12:12 light-dark photoperiod, fed daily with 1 mg C/L of 

S. obliquus). 19°C is the standard rearing temperature of stock cultures in the laboratory and matches 

the typical August / September epilimnion temperature in Ammersee, when infection by Metschnikowia 

is usually first observed (Wolinska, personal observation). Individual Daphnia from two clonal lines 

(AMME_12 / AMME_51) were used in a full factorial design, including two food sources of varying 

quality (Scenedesmus / Microcystis), and two infection treatments (‘METS’: spores exposed to a 

placebo solution / ‘METS + Extract’: spores exposed to Microcystis extracts). Either 20 replicates 

(AMME_12) or 16 replicates (AMME_51) were set up for each combination of food and infection 

treatments, accounting for a total of 144 experimental units. All 144 jars containing individual Daphnia 

were inoculated with the parasite. 

Experimental Daphnia were born within a 48-hour time span, after which mothers were 

removed from the common jars (day 1). On day 4, spore suspensions of the fungal parasite 

Metschnikowia were prepared; to determine spore concentrations, the suspension obtained from crushed 

infected D. magna was homogenized and loaded twice (2 × 10 µL) on an Improved Neubauer counting 

chamber. Total spore yield was estimated from the number of mature spores counted in four squares of 

1 × 10−4 mL capacity, across two independent loads. Two Eppendorf tubes were prepared (each 

containing 500 000 spores in 1 mL medium), which were either completed with a Microcystis extract 

(1 mL) or with a placebo solution (Z8 medium, 1 mL). Microcystis aeruginosa (strain MaGr01) were 

taken from an exponentially-growing stock culture (OD at 750 nm = 0.181), which was then diluted 

(using Z8 medium) to reach an optical density of 0.09 in 5 mL. This whole volume was briefly 

submerged into a solution of liquid nitrogen, to induce cell lysis (Zheng et al., 2011). The solution was 

then incubated at 4°C for a period of 48 hours, to maximize extraction. Following this incubation period, 

the extracted cell content was left to thaw at room temperature for two hours and later filtrated using a 

GF/F glass fiber filter, to exclude any cell debris. From the resulting filtrate, 1 mL was added to the 

spore suspension used in the ‘METS + Extract’ treatment, while the ‘METS’ treatment received 1 mL 

of sterile Z8 medium (placebo solution). 

 Based on the level of microcystin production for strain MaGr01 assessed by Tellenbach et al. 

(2016) and the average absorbance / biomass ratio of Microcystis aeruginosa (Kaebernick et al., 2000), 

we aimed for an incubation concentration approximating 1300 µg/L of microcystin. Assuming a 50% 

to 80% extraction success granted by the liquid nitrogen method (Zheng et al., 2011), however, we 

estimated a final incubation concentration in the range of 650-1050 µg/L in the ‘METS + Extract’ 

treatment. Such a concentration exceeds usual levels of microcystin observed during blooms in open 

water (≤ 240 µg/L, Francy et al., 2015), though higher concentrations are occasionally reported upon 
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termination of large blooms in enclosed sections of freshwater bodies (≤ 1800 µg/L, Jones & Orr, 1994). 

The two spore solutions were kept at 4°C for 24h, allowing for infective stages of the parasite to be 

directly exposed to cyanobacterial cell content, prior to their encounter with the host. On day 5, all 

experimental Daphnia were transferred to individual jars containing 5 mL of fresh culture medium. 

Experimental jars were then inoculated with a dose of 1000 spores/mL (i.e. 5000 spores per individual 

Daphnia), from either of these two suspensions. As the present protocol only allowed for a single 

inoculation event, this concentration was chosen to roughly equate the amount of spores previously 

introduced in Manzi et al., 2020 (i.e. 1250 spores/mL split across two separate events of parasite 

exposure). No food was provided on the day of inoculation, as low food supplies were shown to promote 

spore uptake (Hall et al., 2007). 

Throughout the first six days of the experiment, all Daphnia were fed daily with 0.5 mg C/L of 

S. obliquus (with the exception of inoculation day, see above). On day 7, Daphnia were transferred to 

15 mL of fresh medium and split into their respective diets (Scenedesmus or Microcystis). At this point 

in time (i.e. 48 hours after inoculation), the parasite should have been able to reach and settle into the 

haemolymph (Stewart Merrill & Caceres, 2018), and the further ingestion of infective stages would not 

be possible, due to the change in medium. In the Microcystis treatment, a food mixture was used in 

which Microcystis contributed 75% of the total amount of carbon, with Scenedesmus making up the 

remaining 25% (similarly as in Manzi et al., 2020). The correlation between optical density and carbon 

content for each phytoplankton taxon was established and used to prepare food suspensions accordingly. 

According to Ferrão-Filho et al. (2000), mixed diets are a suitable approach to estimate the toxicity of 

cyanobacteria, since Daphnia are likely to feed on seston of mixed origin, even in lakes temporally 

dominated by cyanobacteria. 

Daphnia were transferred to fresh medium every four days. Neonates were counted and 

removed daily. Starting from day 12 (i.e. 7 days after parasite inoculation), all animals that died were 

fixed in 3.7% formaldehyde, to score them later for the presence of parasite spores. The earliest record 

of infection symptom in this system is day 8 (Manzi et al., 2020). As no further deaths were observed 

following 16 days after parasite inoculation, the experiment was terminated on day 21; all surviving 

individuals were then fixed for later inspection. 

 

2.3 Recorded parameters 

Parasite infectivity (calculated as the proportion of successfully infected Daphnia) was assessed by 

checking fixed animals for the presence of infection symptoms. The presence of mature spores was 

confirmed in suspensions obtained from crushed individuals (Nikon SMZ25 stereomicroscope, 200× 

magnification). Parasite reproduction (the total number of spores accumulated upon host death, 

calculated individually per infected host) was estimated from a suspension of crushed infected Daphnia 
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using a counting chamber (see Experimental setup). Age at death was recorded for each individual 

Daphnia that died starting from day 6 (one day after the introduction of the parasite); animals that were 

fixed in formaldehyde on the last experimental day were considered to have died at the age of 21 days 

(no natural death occurred on that day). 

 

2.4 Data analysis 

Data were analyzed using R version 4.1.0 (R Core Team, 2021). Graphical outputs were produced using 

the ‘ggplot2’ (Wickham, 2016) and ‘Hmisc’ (Harrell & Harrell, 2019) packages. Analysis of variance 

(F-test or χ² test) was performed with the ‘car’ package (Fox et al., 2012) using type II sums-of-squares. 

Model selection was then performed by a stepwise regression approach based on Akaike’s Information 

Criterion (AIC). 

Parasite infectivity was analyzed by performing a binomial logistic regression (0 = not infected, 

1 = infected) with Exposure, Diet and Clone as explanatory variables. Only those individuals, which 

survived until at least day 8 post-inoculation (i.e. earliest observation of fungal asci in this experiment 

and one previous study, Manzi et al., 2020) were considered for infectivity, as reliable detection of 

infection symptoms was not possible prior to that day. To control for the potential influence of host 

lifespan on the cumulative number of spores produced by the parasite, parasite growth was estimated 

as the ratio of total spore yield over the number of days survived post-inoculation. Parasite growth and 

host lifespan post-inoculation were analyzed using generalized linear models with Exposure, Diet and 

Clone as explanatory variables. Normal distribution and homoscedasticity of the residuals were verified 

by visual inspection of quantile-quantile plots and residuals against fitted values, respectively. Only 

animals which became successfully infected by the parasite were included in these analyses. 

 

3. Results 

3.1 Parasite infectivity 

Out of 144 Daphnia exposed to Metschnikowia spores, 63 individuals died before day 8 post-

inoculation (categorized as early death). As infection could only be confirmed starting from day 8 post-

inoculation, these individuals were not included in the determination of parasite infectivity. Two 

individuals were lost due to handling error, prior to their inspection under the microscope. Among the 

79 remaining individuals, 53 were confirmed infected (67.08%) and 26 remained uninfected. 

Spores which were pre-exposed to cyanobacterial toxins (‘METS + Extract’) had higher 

infectivity on clone AMME_51, as compared with the placebo treatment (‘METS’). However, no such 

effect was found on AMME_12 (significant Exposure × Clone interaction, Table 1). Specifically, pre-
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exposed spores led to 100% infection on clone AMME_51, while non-exposed spores infected less than 

60% of this genotype (Figure 1a). Otherwise, there was a tendency towards higher proportion of infected 

hosts under a Microcystis diet (Table 1, Figure 1a). 

 

3.2 Parasite growth 

Pre-exposure of Metschnikowia did not influence the parasite’s ability to produce spores (there were 

neither a main effect nor any significant interaction involving this factor, Table 1). Parasite growth was 

reduced by about two-fold when AMME_12 were fed with Microcystis, as compared with the 

Scenedesmus diet (Figure 1b). Within clone AMME_51, however, parasite reproduction was 

comparable under both diets (significant Diet × Clone interaction, Table 1). In addition, the parasite’s 

ability to produce spores under a Microcystis diet was significantly higher on clone AMME_51 than 

AMME_12 (Tukey’s HSD test, P = 0.032). 

 

3.3 Host lifespan post-inoculation 

The maximum lifespan recorded among successfully infected individuals was 15 days post-inoculation. 

Pre-exposure of the parasite did not influence the lifespan of infected hosts (Table 1). However, those 

maintained on a Microcystis diet survived on average 2 days longer, compared to the standard diet 

(Figure 1c). 
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Figure 1. Graphical representation of (a) parasite infectivity, computed as the proportion of infected hosts among 

those which survived long enough to allow for completion of the parasite’s life cycle; (b) parasite growth, 

computed as the ratio of total spore yield upon host death over the number of days survived after inoculation; and 

(c) host lifespan post-inoculation, computed as the number of days survived by the host, following introduction 

of the parasite on day 5. Two genotypes of Daphnia galeata × longispina hybrids (AMME_12; AMME_51) were 

inoculated with 1000 spores/mL of the parasitic yeast Metschnikowia bicuspidata. These spore solutions were 

previously exposed to an extract of Microcystis aeruginosa (‘METS + Extract’), or to a placebo solution 

(‘METS’). Following completion of the inoculation process, individual Daphnia were then fed either with a 

standard diet, consisting of the green alga Scenedesmus obliquus or with a mixed diet, where the cyanobacterium 

Microcystis aeruginosa contributed 75% of the total carbon content. Error bars depict the standard error of the 

mean. 
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Table 1. Three-way ANOVA (χ² test or F-test) testing for fixed effects of spore Exposure, host Diet, host Clone 

and their interactions on fitness components of the host and parasite. Model selection was performed by stepwise 

regression based on Akaike’s Information Criterion (AIC); only the final model is reported here. Significant P-

values (≤ 0.05) are highlighted in bold. 

 

Response variable Distribution 

(link function) 

Explanatory variables Statistic (df) P-value 

Parasite infectivity 

 

 

Binomial 

(link: logit) 

Exposure 

 

Diet 

 

Clone 

 

Exposure × Clone 

χ²(1, 74) = 4.649  

 

χ²(1,74) = 3.001 

 

χ²(1, 74) = 0.072 

 

χ²(1, 74) = 9.234 

     0.031 

    

     0.083 

    

     0.789 

    

     0.002 

       

Parasite growth 

 

 

Normal Exposure 

 

Diet 

 

Clone 

 

Diet × Clone 

 

F(1, 48) = 0.023 

 

F(1, 48) = 19.40 

 

F(1, 48) = 3.333 

 

F(1, 48) = 4.898 

     0.881 

 

  < 0.001 

 

     0.074 

 

     0.032 

Host lifespan post-

inoculation 

Normal Exposure 

 

Diet 

 

Clone 

F(1, 49) = 0.014 

 

F(1, 49) = 11.24 

 

F(1, 49) = 0.097 

 

     0.908 

 

     0.002 

 

     0.757 

 

 

4. Discussion 

Given the complex evolutionary history and putative antifungal properties of cyanobacteria, we 

expected isolated cyanotoxins to exert direct antagonistic effects against a fungal parasite of Daphnia, 

possibly lowering its infection success upon later encounter with the host. While our experiment was 

not the first attempt to incorporate extracted cyanobacterial toxins into infection assays, using the 

Daphnia-Metschnikowia system (Sánchez et al., 2019; Penczykowski et al., 2014), our protocol differed 

from previous studies by one key aspect. Specifically, the inclusion of cyanobacterial toxins was 

performed in such a way that would guarantee prolonged exposure of the parasite (i.e. 24 hours), while 

limiting potential adverse effects to the host. By contrast, previous studies incorporated cyanobacterial 

compounds into the host’s diet, thus exposing both antagonists at the same time. This specificity 

allowed us to test for possible negative effects of secondary metabolites against infective stages of a 

fungal parasite, independently of their consumption by infected Daphnia. 
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4.1 Effects of parasite pre-exposure 

Contrary to our expectations, pre-exposure to cyanobacterial toxins did not impair the parasite’s ability 

to infect in any treatment. Instead, we report a significant increase in infectivity for one of the tested 

genotypes (AMME_51). While the amount of cyanobacterial toxins introduced as part of the inoculate 

(i.e. about 1% of the initial jar’s volume) is unlikely to have caused direct effects to Daphnia upon 

exposure, we cannot rule out that some toxic compounds extracted from Microcystis could have adhered 

to the surface of fungal spores. Upon passing through the gut’s epithelium, lingering cyanotoxins may 

have thwarted the immune response of the host (i.e. mobilization of the haemocytes; Metschnikoff, 

1884), thus directly acting against defence mechanisms of the host, rather than ‘enhancing’ the 

infectious potential of the parasite’s propagules. Although previous studies did not report such an 

increase in host susceptibility, the apparent lack of detrimental effect on the parasite remains somewhat 

consistent with the results of Penczykowski et al. (2014): suspecting that cyanobacterial compounds 

involved in the inhibition of digestive proteases contributed to the low nutritional value of Microcystis, 

the authors artificially coated green algal cells with cyanobacterial extracts, showing no reduction in 

either the transmission rate or spore yield of Metschnikowia. 

 

4.2 Effects of the Microcystis-based diet 

Based on previous results using this system, we expected a two- to three-fold reduction in parasite 

reproduction, when the host is maintained under a sustained Microcystis diet (Manzi et al., 2020). 

Surprisingly, this effect only applied to infections of the AMME_12 genotype. In AMME_51, the 

Microcystis diet allowed the parasite to produce spores at a rate comparable to that of the high-quality 

diet. These types of host-genotype-by-environment (GH × E) interactions affecting parasitic infections 

are commonly reported in the Daphnia system, meaning that the outcome of infection can depend on 

environmental conditions, in a genotype-specific way (Wolinska & King, 2009). For instance, it was 

found that the infectivity and virulence of the bacterium Pasteuria ramosa would vary interactively 

between clonal identity of the host and either nutrition (Mitchell & Read, 2005; Little et al., 2007) or 

temperature (Mitchell et al., 2005; Little et al., 2007). Previously, we observed that the reduction in 

parasite reproduction induced by a Microcystis diet applied to both genotypes, but was stronger on 

AMME_12 than AMME_51 (Manzi et al., 2020). While the disparity was more pronounced here, it still 

reflects a similar interaction and thus remains consistent with our previous findings. 

Additionally, we observed that a Microcystis-based diet allowed infected hosts to survive 

slightly longer than the Scenedesmus treatment (by about two days). A similar increase in the longevity 

of infected hosts was previously observed on a Microcystis-based diet, although this was found 

exclusively at 23°C (Manzi et al., 2020). Paradoxically, what could be interpreted as a protective effect 

for the host might in fact increase the parasite’s transmission success: in spite of a less-nutritious diet, 
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the parasite can benefit from an extended infection time, allowing it to accumulate a higher spore yield 

upon host death; a paradox that has long been described as the virulence-transmission trade-off 

(Anderson & May, 1982; Acevedo et al., 2019). Because Microcystis strongly reduced the rate of spore 

production in AMME_12 hosts, the small increase in host longevity granted by this diet was not 

sufficient to outcompete spore outputs in the Scenedesmus treatment (Figure S1). By contrast, the 

mitigated effects of a toxic diet on AMME_51 allowed the parasite to perform equally under both levels 

of food quality (Figure S2). 

Microcystis has been reported to induce feeding inhibition in cladocerans (even when integrated 

as low as 5% of a mixed diet), which may be imputed in part to behavioural avoidance of toxic cells 

(Ferrão-Filho et al., 2000) or diet-induced reduction of the host’s body size, leading to lower filtering 

rates (Penczykowski et al., 2014). In the latter study, a drastic reduction in the infection rate of 

Metschnikowia was attributed to both behavioural and size-related effects. In our experimental assay, 

we found an opposite trend, with systematically higher proportion of infected hosts under a Microcystis 

diet, although this tendency was not statistically significant (P = 0.08). However, this was expected, 

due to a different layout in our experimental design: because the Microcystis diet was only introduced 

after parasite exposure, any potential effect of food quality on parasite encounter per se can be ruled 

out. Thus, within the context of our study, the Microcystis diet could only have influenced within-host 

processes involved in the parasite’s infectivity, such as its ability to overcome the host’s immune 

response. Our results thereby suggest that maintaining the host on a toxic diet throughout the 

progression of the parasite’s development cycle does not impair the parasite’s infectivity. Instead, the 

greatest consequence of a poor diet under natural conditions should consist of limited exposure to the 

parasite, due to behavioural and/or physiological decreases in feeding rates contributing to the overall 

success of infection (Ferrão-Filho et al., 2000; Penczykowski et al., 2014). 

 

4.3 Environmental relevance 

When cyanobacteria are incorporated as part of Daphnia’s diet, endotoxins are delivered upon digestion 

of bacterial cells, during their passage through the gut lumen (Carmichael, 1992). Considering that 

Microcystis compounds are capable of binding to (thus inhibiting) digestive proteases within the gut 

lumen of Daphnia (Agrawal et al., 2005; von Elert et al., 2012), within the context of parasitic 

infections, the digested cell content of cyanobacteria may also get in contact with ingested spores. 

Therefore, cyanobacteria are likely to interact with spores of horizontally-transmitted parasites, when 

both are consumed by the host and concurrently passing through the host’s gut. 

Throughout the course of harmful algal blooms, cell lysis of dominant cyanobacteria results in 

the release of large amounts of (otherwise intracellular) bioactive compounds in the water column 

(Jones & Orr, 1994; Ha et al., 2009). The levels of cyanotoxins released during blooms have been 
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remarked to approximate half the LC50 for Daphnia (DeMott et al., 1991; Sánchez et al., 2019), with 

concentrations of microcystins reportedly ranging from < 0.10 to 240 µg/L in freshwater lakes and 

recreational sites (Francy et al., 2015). Upon termination of a large bloom within enclosed water bodies, 

particularly high concentrations of microcystins (1300-1800 µg/L) have been noted to persist for up to 

9 days, prior to a rapid phase of degradation (Jones & Orr, 1994). Thus, such concentrations of dissolved 

compounds may be high enough for cyanobacteria to exert adverse effects on cladoceran hosts, 

independently of their consumption as live cells (Ibelings et al., 2005). As far as cyanobacterial toxins 

directly interfering with free-floating spores or spore banks in the sediment, however, the likelihood of 

such event is more difficult to infer. On the one hand, some waterborne parasites (e.g. fish helminths) 

are able to bioconcentrate chemicals and pollutants at a much higher rate than free-living species, even 

when these are present at very low concentrations in the environment (Sures, 2003; Nachev & Sures, 

2016). However, it can be argued that cyanobacteria and parasite spore banks normally occupy different 

layers in the stratified water column. While cyanobacteria’s high buoyancy allows them to maintain 

close proximity to the surface, spores of the fungal parasite Metschnikowia are commonly recruited 

from the sediment, as infected hosts tend to sink to the bottom upon their death (Cáceres et al., 2006; 

Duffy & Hunsberger, 2019). Thus, by filter-feeding onto higher parts of the water column, cladocerans 

may sequestrate large amounts of dissolved cyanobacterial toxins and prevent those from reaching the 

sediment. 

While our results did not provide support for our starting hypothesis (i.e. that the putative 

antifungal effects of Microcystis aeruginosa may not be limited to ‘medicinal effects’ but could instead 

directly interfere with the parasite, prior to their ingestion by Daphnia hosts), the specificity of our 

experimental design allowed us to raise the question of the parasite’s vulnerability to an environmental 

stress of its own. Considering that outbreaks of this parasite typically occur for the span of a few months 

(i.e. from late summer to early winter) in temperate lakes, infective propagules contributing to the next 

seasonal epidemic will remain for considerable amounts of time buried in the sediment (Decaestecker 

et al., 2004). In temporary ponds susceptible to draining, spore banks of the parasite can even survive 

extended periods of complete host absence, such as during the dry seasons (Ebert, 2005). This 

effectively means that most of the parasite’s lifespan (i.e. from release into the environment, to 

completion of a new reproductive cycle) is effectively spent outside of the host’s internal environment, 

where infective propagules of parasites may be prone to a number of environmental disturbances 

(Pietrock & Marcogliese, 2003; Sures et al., 2017). Specifically, resting stages of Metschnikowia were 

previously shown to degrade or decrease in infectivity, following their exposure to solar UV (Overholt 

et al., 2012), high temperatures (Shocket et al., 2019) or near-freezing conditions (Duffy & Hunsberger, 

2019). Such studies demonstrate that the transmission potential of this parasite can indeed be 

compromised by external environmental factors acting prior to – and independently of – its encounter 

with the host. Our results suggest, however, that exposure to dissolved cyanobacterial toxins during 
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blooms does not constitute one such mechanism. While cyanobacterial dominance may not directly 

interfere with the infectivity of fungal spore banks, other parasites of cladocerans belonging to distant 

taxa, such as the endospore-forming bacterium Pasteuria ramosa (Ebert et al., 1996) or the viral agent 

for White Fat Cell Disease (Toenshoff et al., 2018) may be worthy of investigation, in light of the wider 

allelopathic properties of cyanobacteria. 
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Figure S1. Linear regression between the total spore yield of Metschnikowia bicuspidata recorded upon host 

death, and the number of days survived by the host following inoculation of the parasite (days). Coloured bands 

depict 95% confidence intervals. Two genotypes of Daphnia galeata × longispina hybrids (AMME_12; 

AMME_51) were inoculated with 1000 spores/mL of the parasite. Individual Daphnia were fed either with a 

standard diet, consisting of the green alga Scenedesmus obliquus or with a mixed diet, where the cyanobacterium 

Microcystis aeruginosa contributed 75% of the total carbon content. The effect of diet on parasite reproduction 

differed between host genotypes: in infected individuals of the genotype AMME_12, the rate of spore production 

was greatly reduced under a Microcystis diet. However, individuals of the genotype AMME_51 displayed 

comparable rates of spore production under both levels of food quality. 
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Figure S2. Total spore yield of Metschnikowia bicuspidata (recorded per individual host), as compared across 

two levels of food quality. Error bars depict the standard error of the mean. Two genotypes of Daphnia galeata × 

longispina hybrids (AMME_12; AMME_51) were inoculated with 1000 spores/mL of the parasite. Individual 

Daphnia were fed either with a standard diet, consisting of the green alga Scenedesmus obliquus or with a mixed 

diet, where the cyanobacterium Microcystis aeruginosa contributed 75% of the total carbon content. The effect 

of diet on total spore yield differed between host genotypes: in infected individuals of the genotype AMME_12, 

total spore yield was greatly reduced under a Microcystis diet. However, individuals of the genotype AMME_51 

displayed comparable spore yields under both levels of food quality.
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Abstract 

Widely abundant micro- and nanoplastics pose a threat for aquatic ecosystems. However, despite the 

extensive knowledge on their effects at the species level, the way they affect the interaction between 

species remains largely unexplored. We studied the effects of polystyrene nanoplastics on host-parasite 

interactions using the waterflea Daphnia galeata × longispina and its parasitic yeast Metschnikowia 

bicuspidata as a model system. Although nanoplastics increased parasite infectivity, higher rates of host 

mortality cancelled out parasite advantage. Moreover, under high nanoplastic concentrations, the 

parasite’s reproductive output (i.e. spore yield measured per infected host) was strongly impaired. The 

host displayed characteristics of a hormetic effect, for instance, increased longevity and fecundity at 

low nanoplastic concentrations, supporting the idea of a dose-response model. Overall, our results 

highlight that the consequences of plastic pollution go beyond the effects on individual species, as they 

shape the outcome of host-parasite interactions.  
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1. Introduction 

 
Plastic pollution is of global concern. A considerable proportion of plastic waste eventually ends up in 

aquatic ecosystems, either by direct disposal or by natural forces. Plastics in the environment break 

down into smaller pieces through mechanical processes, biological degradation, and/or UV radiation, 

leading to microplastics (with a size < 5 mm). Microplastics are also manufactured for a broad range of 

applications, such as cosmetics and medical research (Andrady, 2011). As a result, microplastics are 

widely distributed in water bodies worldwide (Andrady, 2003; Weinstein et al., 2016). Microplastics 

themselves can break down into even smaller particles of a size ≤ 100 nm, so-called nanoplastics 

(hereafter referred as NPs; Klaine et al., 2012; Koelmans et al., 2015). Microplastics, including NPs, 

can be directly ingested by aquatic biota, eliciting an array of ecotoxicological effects (Wang et al., 

2019). For instance, NPs raise special toxicological concerns due to their unique ability to penetrate 

lipid cell membranes and their potential to alter cellular functions (Salvati et al., 2011), and cause 

inflammations (Brown et al., 2001). NPs have been shown to cause oxidative stress and inhibit 

photosynthetic growth of phytoplankton (Bhattacharya et al., 2010; Bergami et al., 2017; Wan et al., 

2018). They can also reduce body size, fecundity, and survival of zooplankton (Lin et al., 2019; 

Kelpsiene et al., 2020). NPs are not biodegradable and, consequently, they transfer and accumulate 

throughout the trophic web (Setälä et al., 2014; Chae et al., 2018). For instance, bioaccumulation of 

NPs has been shown to affect metabolism in fish and molluscs (Casado-Gavalda et al., 2013; Mattson 

et al., 2016). 

Most studies have investigated the effects of NPs at the species level (as reviewed in Mattson 

et al., 2018). However, the response of individual species is arguably a poor indicator of the ecological 

impact of NPs on ecosystem processes. Instead, the interactions between organisms (e.g. competition, 

predation, parasitism) that shape ecological processes at higher levels of biological complexity, such as 

trophic transfer and biogeochemical cycling (Lafferty et al., 2008; Valiente-Banuet et al., 2015), might 

arguably represent better endpoints when inferring the consequences of plastic pollution on ecosystem 

functioning (Segner, 2011). Nevertheless, only few studies tested so far how NPs modulate biotic 

interactions. For instance, exposure to NPs can cause behavioural changes affecting the outcome of 

predator-prey interactions (Mattson et al., 2017). Recent reports indicate that host-parasite interactions 

can also be affected; a parasitic chytrid fungus displayed lower success infecting their phytoplankton 

hosts when exposed to NPs (Schampera et al., 2021), and similar results were found for trematodes 

infecting amphibians (Buss et al., 2021). Then, the virulence of pathogenic yeast in nematode host was 

higher in the NP treatment (Li et al., 2020) whereas the virulence of the DC virus in fruit flies was not 

affected (Jimenez-Guri et al., 2021). This all suggests that effects of NPs on host-parasite interactions 

can vary from system to system. 
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Parasitism represents a ubiquitous ecological interaction and the most widespread consumer 

lifestyle in nature (Lafferty et al., 2008). Host-parasite interactions mediate a significant part of the 

trophic links in the food webs (Amundsen et al., 2009) and they act as important drivers of co-evolution 

and diversification (Combes, 2005). It is hence important to extend our knowledge on how emerging 

pollutants like NPs affect this ecological interaction. According to the classic concept of the disease 

triangle (Stevens, 1960), the outcome of an infection is determined by the reciprocal interaction between 

host, parasite, and also their common external environment, in a variety of direct and indirect ways. 

Firstly, environmental conditions, such as pollution, can suppress host immune defences and make the 

host more susceptible to infection. For example, unlike NPs, other pollutants such as pesticides are well 

studied in this respect; exposure to pesticides increases host susceptibility to infection in amphibians 

(e.g. Gendron et al., 2003), oysters (e.g. Chu & Hale, 1994), fish (e.g. Kreutz et al., 2010), and 

crustacean (e.g. Coors et al., 2008). Secondly, pollutants can also directly reduce parasite fitness via 

toxicity (Cuco et al., 2018; Ortiz-Cañavate et al., 2019). Lastly, suboptimal host conditions might result 

in decreased host densities, subsequently reducing parasite transmission (Lafferty & Holt, 2003). 

The planktonic crustacean Daphnia plays a key role in the trophic structure of aquatic food 

webs, being the principal grazer of phytoplankton and serving as main prey for planktivorous fish 

(Lampert, 2011). Moreover, their high amenability to experimentation as well as rapid responses to 

environmental changes made Daphnia an iconic model organism in physiology, ecology, toxicology, 

and evolutionary biology (Reynolds, 2011; Seda & Petrusek, 2011; Miner et al., 2012). In their natural 

environment, Daphnia are constantly attacked by a number of microparasites (Green, 1974; Ebert, 

2005; Wolinska et al., 2009) and within the last twenty years, Daphnia became additionally recognised 

as a model system for studying epidemiological questions (Ebert, 2005; Ebert, 2008). Still, while there 

have been dozens of experimental studies exploring the consequences of micro- and nanoplastic 

exposure on Daphnia fitness (e.g. Eltemsah & Bohn, 2019; Kelpsiene et al., 2020), the question of 

whether and how the exposure to NPs affects Daphnia’s susceptibility to infection is poorly 

investigated. One study has shown that Daphnia display elevated immune responses (upregulation of 

haemocytes) when exposed to microplastic particles (Sadler et al., 2019), although no exposure to 

parasites was applied. Triggered immune responses when exposed to either micro- or nanoplastics have 

also been reported in molluscs (Capolupo et al., 2018; Détrée & Gallardo-Escárate, 2018; Von Moos et 

al., 2012), fish (Veneman et al., 2017; Espinosa et al., 2017; Jin et al., 2018), sea urchin (Murano et al., 

2021), and earthworms (Rodriguez-Seijo et al., 2017), suggesting that NPs might indirectly hamper or, 

alternatively, favour infection (Auguste et al., 2020), though direct experimental tests are lacking. 

To gain more insights into the ecological consequences of plastic pollution on disease outcome 

and test the hypothesis that NP exposure will decrease infection success of the parasite, we performed 

an experimental study on water fleas (Daphnia), as a model host species. Individual Daphnia were 

exposed to two different NP concentrations or a control medium and, simultaneously, to spores of the 
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parasitic yeast Metschnikowia bicuspidata or a placebo inoculum. We evaluated parasite infectivity and 

reproductive output as proxies of parasite fitness. We also monitored life history traits of the host to test 

the prediction that Daphnia fitness will decrease when simultaneously challenged by NPs and parasites 

as multiple stressors. 

 

2. Methods 

2.1 Study organisms 

2.1.1 Parasite 

The yeast Metschnikowia bicuspidata (hereafter referred to as Metschnikowia) is an obligate parasite 

commonly infecting lake and pond Daphnia populations (Duffy et al., 2010; Wolinska et al., 2011). It 

reduces both lifespan and fecundity of its host (Cáceres et al., 2006; Lohr et al., 2010; Hesse et al., 

2012). The parasite strain (METS_AMME_2008) used in the experiment was isolated in 2008 from 

Ammersee, Germany, to be then routinely cultured on Daphnia magna, genotype E17:07 

(Metschnikowia is a generalist parasite, which makes it possible to culture on various Daphnia species; 

D. magna was used for its large size, whose infection yields a high number of parasite spores). Daphnia 

become infected by ingesting Metschnikowia spores. The needle-shaped ascospores pierce through the 

gut epithelium, from which they can reach the haemolymph in the body cavity. Once there, the fungal 

development cycle triggers, and parasite multiplication leads to an accumulation of spores all 

throughout the body cavity, which leads to host death. Decomposition or mechanical damage to the 

carapace is necessary for mature ascospores to be released into the water and infect other hosts (Green, 

1974; Metschnikoff, 1884). 

 

2.1.2 Host 

The Daphnia longispina × galeata hybrid (genotype AMME_51) was also isolated from Ammersee, in 

2008. The clonal culture was kept in synthetic SSS-medium (Saebelfeld et al., 2017) at 19°C under a 

12:12h light-dark photoperiod. Daphnia were fed three times a week (every second or third day) with 

the green algae Scenedesmus obliquus (maintained as continuous cultures at 19°C, under constant light). 

Before the experiment, Daphnia were scaled-up by daily feeding (1 mg C/L of S. obliquus; the 

correlation between optical density and carbon content was used to determine the appropriate feeding 

volumes). In order to obtain a large number of synchronised experimental juveniles, ten glasses with 

200 mL medium, each containing fifteen to twenty adult Daphnia, were kept for two generations. Every 

second day, the juveniles were counted and removed until the onset of the experiment. 
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2.2 Nanoplastic media 

Spherical polystyrene particles with a nominal diameter of 100 nm and tagged with fluorescent markers 

were purchased as a suspension in water with a concentration of 10 g/L (Micromod Partikeltechnologie 

GmbH, Germany, product code: 29-00-102, product name: micromer®-greenF). Two concentrations of 

nanoplastics were prepared in the SSS-medium as exposure treatments: 5 mg/L (i.e. “low”) and 20 mg/L 

(i.e. “high”). The control (i.e. “zero”) treatment was prepared without any addition of NPs. To allow 

for chemical equilibrium of the mixtures, the resulting media was incubated in the experimental jars at 

19°C in darkness for 24 hours prior to transferring Daphnia.  

 

2.3 Experimental design and procedures 

Daphnia juveniles born within 48 hours were collected and used as experimental individuals. On 

experimental day 1, juveniles were individually distributed across 150 experimental jars (5 mL medium 

in 30 mL glass jars) following a full-factorial design: 2 parasite treatments (inoculated with the parasite 

Metschnikowia or with a placebo) × 3 NP treatments (0 mg/L, 5 mg/L, 20 mg/L) × 25 replicates.  

On day 3 of the experiment, individual jars of the parasite treatments were inoculated with a 

concentration of 1000 spores/mL. To do so, pre-infected D. magna from the parasite stock cultures were 

crushed in SSS-medium to obtain a suspension of spores. The spore concentration was determined by 

loading 10 µl of the resulting suspension on an improved Neubauer counting chamber to estimate the 

spore concentration and calculate the inoculation volume to achieve the desired final spore 

concentration (Manzi et al., 2020). To account for any confounding effect of the added spore suspension 

(e.g. the presence of Daphnia tissue or bacteria), a placebo suspension was prepared using uninfected 

D. magna and distributed to the control treatments.  

Throughout the experiment (except for the parasite inoculation day) Daphnia were fed daily 

with 0.5 mg C/L of S. obliquus. On day 4, Daphnia were transferred to a fresh medium, and the volume 

was increased from 5 mL to 10 mL per jar. From this point onwards, Daphnia were transferred to a new 

medium every four days. Daphnia were checked daily for mortality and for the counting and removal 

of the offspring from the experimental jars. Dead Daphnia from the parasite-inoculated treatments were 

preserved from day 11 onwards; i.e. starting from day 8 post-inoculation, as mature spores cannot be 

observed earlier (Stewart-Merrill & Cáceres, 2018). The samples were fixed in 3.7% formaldehyde and 

stored at 4°C, in order to later determine the proportion of successfully infected animals and the number 

of parasite spores produced per infected individual. The animals from the Metschnikowia treatment that 

survived until the end of the experiment were also preserved. The identities of all preserved samples 

were blinded before analysis. The experiment was terminated on day 29, as no further mortality was 

observed for 5 consecutive days in any of the treatments. 
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2.4 Data analysis 

Data was analysed using R (version 4.0.3) (R Core Team, 2020). Graphical outputs were produced 

using the ggplot2 (Wickham, 2016) and ggpubr (Kassambaraype, 2017) package. Analysis of variance 

(ANOVAs) was performed with the car package (Fox et al., 2017) using type II sums-of-squares. 

ANOVA assumptions of normal distribution and homoscedasticity were verified by visual inspection 

of the residuals, using quantile-quantile plots. Effect sizes were measured as the proportion of variance 

explained by each factor. The animals that died before day 3 (parasite inoculation day) were removed 

from all analyses, as their death could not be attributed to the effect of the treatments (3 individuals). 

Individuals that were lost due to handling errors were also removed (5 individuals; Figure S1).  

 

2.4.1 Parasite fitness 

Host viability (the proportion of inoculated hosts that survived until at least day 9 post-inoculation, i.e. 

when ascospores are usually first observed), parasite infectivity (the proportion of inoculated hosts that 

became successfully infected), and parasite reproduction (number of spores upon host death per 

successfully infected host) were used to characterise parasite fitness. Host viability and parasite 

infectivity were analysed using binomial logistic regression with NP concentration as the explanatory 

variable. Parasite reproduction was analysed using a linear model with NP concentration as a fixed 

factor. All inoculated individuals were used for analysing host viability. Then, for analysing parasite 

infectivity, ‘early deaths’ (i.e. the individuals that died before day 9 post-exposure; before infection 

symptoms could be visually confirmed) were excluded, whereas for analysing parasite reproduction 

only the successfully infected individuals were selected (Figure S2). 

 

2.4.2 Host fitness 

Host lifespan (individuals which survived until the last experimental day were considered to have died 

on that day), the proportion of individuals that reached maturity, and host fecundity (i.e. total number 

of juveniles) were measured to characterise host fitness. Host lifespan and host fecundity were analysed 

using linear models with NP concentration and Infection as fixed factors. The proportion of individuals 

that reached maturity was analysed using a binomial logistic regression with both NP concentration and 

Infection as the explanatory variables. For host lifespan and maturity, individuals from the control 

treatment were compared with successfully infected ones from the infection treatments. The same 

applied for host fecundity, but only animals that reproduced at least once were included. In all analyses 

of host fitness parameters, ‘early deaths’ within the infection treatment were included with successfully 

infected Daphnia to ensure comparability of host fitness variables across the ‘infected’ and ‘control’ 
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treatments. Otherwise, excluding ‘early deaths’ from infection treatments would have resulted in an 

underestimation of parasite-related reduction of host fitness (for comparison, see Figure S3 & Figure 2). 

 

3. Results  

3.1 Parasite fitness 

Initially, 75 Daphnia were inoculated with the parasite. Three of these individuals were lost due to 

handling errors or died before parasite inoculation was completed (day 3) and thus were excluded from 

every analysis. Eight out of 72 died before day 9 post-inoculation (and were therefore categorised as 

early deaths, Figure S2). Overall, host viability decreased with increasing NP concentrations; all 

individuals from the zero-NP treatment survived until day 9 post-inoculation whereas about 25% of the 

individuals died under high-NP concentration (Figure 1A, Figure S1; significant effect of NP 

concentration, Table 1). Parasite infectivity increased under NP exposure. Less than 50% of available 

hosts became successfully infected in the zero-NP treatment, whereas about 75% and 80% of available 

individuals in the low- and high-NP treatment did (Figure 1B; significant effect of NP concentration, 

Table 1). By contrast, parasite reproduction was three-to-four times lower under the high-NP treatment, 

in comparison to the zero-NP and low-NP groups (Figure 1C; significant effect of NP concentration, 

explaining 39% of the variance, Table 1). 

 

 

Table 1. ANOVA (F-test or χ2 test) testing for fixed effects of NP concentration on life history parameters 

influencing parasite success (host viability, parasite infectivity, and reproduction). Significant P-values (< 0.05) 

are marked in bold. 

 

Response variable 

(dataset) 

Distribution (link 

function) 

Explanatory variables Statistic 

(Degrees of 

freedom) 

P-value % 

Variance 

explained 

Host viability              

(0 = died before day 9 

| 1 = survived) 

Binomial (link: 

logit) 

NP concentration χ2
 (2;69) = 10.06 < 0.001  

Parasite infectivity     

(0 = no infection | 1 = 

infection) 

Binomial (link: 

logit) 

NP concentration χ2
 (2;61) = 7.67 < 0.05  

Parasite reproduction 

(only non-zero value 

for spore yield were 

included) 

Normal NP concentration F (2;38) = 12.14 < 0.001 38.98 
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Figure 1. Parasite fitness traits under three NP concentrations: zero (0 mg/L), low (5 mg/L), and high (20 mg/L). 

A) The proportion of host Daphnia individuals that survived until day 9 post-inoculation (i.e. the earliest day 

when the parasite completed its life cycle). B) The proportion of host Daphnia individuals that were successfully 

infected by the parasite, and C) Spore yield per infected host. Error bars represent the standard error of the mean.  
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3.2 Host fitness 

Daphnia lifespan was reduced by about 10 days under the infection treatment, across all NP 

concentrations (Figure 2A; significant effect of Infection, explaining 52% of the variance, Table 2). 

Both control and infected Daphnia exposed to high-NP concentrations died about 4 to 5 days earlier 

than Daphnia exposed to low-NP concentrations (Figure 2A). The proportion of individuals that 

reached maturity was lower for infected Daphnia, but only under low- and high-NP treatments (Figure 

2B; significant NP concentration × Infection interaction, Table 2). Specifically, 100% of control 

individuals, but only about 70% of infected individuals reached maturity under low-NP exposure. These 

proportions were reduced to about 80% and 55% under high-NP treatment, respectively. Under zero-

NP condition, there were no differences in the proportion of animals reaching maturity between control 

and infected Daphnia (about 80% in both). Host fecundity was strongly reduced under the infection 

treatment across all NP concentrations; control individuals produced 8 to 12 offspring whereas infected 

ones produced 2 to 3 offspring on average (Figure 3A; Infection explained 61% of the variance, Table 

2). Within control individuals, Daphnia under low-NP treatment produced 3 to 4 offspring more than 

Daphnia under zero-NP or high-NP treatments (significant NP concentration × Infection interaction, 

Table 2). 

 

Table 2. ANOVA (F-test or χ2 test) testing for fixed effects of NP concentration, Infection, and their interaction 

on life history parameters of the host (host lifespan, maturity, and fecundity). Significant P-values (< 0.05) are 

marked in bold. 

 

Response variable (Dataset) Distribution 

(Link 

function) 

Explanatory variables Statistic 

(Degrees of 

freedom) 

P-

value 

% Variance 

explained 

Host lifespan (control/ 

successfully infected and 

early death) 

Normal 

 

NP concentration F (2;113) = 7.63 < 0.001 5.65 

Infection F (1;113) = 139.56 < 0.001 51.68 

NP × Infection F (2;113) = 1.10 0.335 0.82 

Host maturity (control/ 

successfully infected and 

early death) 
Binomial 

(link: logit) 

NP concentration χ2 
(2;113)

 = 3.77 0.15  

Infection χ2 
(1;113) = 7.73 < 0.01  

NP × Infection χ2 
(2;113) = 6.14 < 0.05  

Host fecundity (control/ 

successfully infected and 

early death 

-only those that reproduced 

at least once-) 

Normal 

NP concentration F (2;87) = 6.64 < 0.01 4.73 

Infection F (1;87) = 171.14 < 0.001 61.02 

NP × Infection F (2;87) = 4.52 < 0.05 3.23 
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Figure 2. Host fitness traits in the parasite-inoculated (Infected) and Control groups under three NP 

concentrations: zero (0 mg/L), low (5 mg/L), and high (20 mg/L). A) Age at death of the individual Daphnia, B) 

Proportion of Daphnia that reached maturity, and C) Total number of offspring produced in the lifetime of a 

Daphnia individual. Infected group consists of successfully infected individuals and those that died before day 9 

post-inoculation (as infection status could not be reliably assessed before that day). Error bars represent the 

standard error of the mean. 
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4. Discussion  

In order to characterise the true impact of pollutants on ecological processes and ecosystem functioning, 

it is necessary to look beyond their effects on the fitness of individual species and additionally 

investigate how pollutants affect the way species interact with each other. Even though the effects of 

nanoplastics (NPs) on individual species have been thoroughly investigated, their effects on biotic 

interactions remain largely unknown. Considering the importance of host-parasite interactions and their 

role in ecosystem dynamics and structure (Amundsen et al., 2009), it is crucial to include parasitism 

when examining the ecological consequences of plastic pollution. Our study demonstrates profound 

negative effects of high concentrations of NPs (i.e. 20 mg/L) on disease outcome, including a 25% 

reduction in chances of hosts surviving until successful parasite reproduction, and a four-fold reduction 

in parasite spore yield under high NP concentrations. Moreover, infected hosts additionally exposed to 

NPs showed shorter lifespans and were less likely to reach maturity than those infected in the absence 

of NPs. 

 

4.1 Parasite fitness  

In the Daphnia-Metschnikowia system, three conditions need to be met to grant parasite transmission, 

upon encounter with a susceptible host: i) the parasite needs to enter and colonise the host (i.e. reach 

the haemolymph via the gut), ii) the host has to live long enough for the parasite to complete its infection 

cycle (production of mature asci generally takes > 8 days in this system; prior death of the host does 

not allow horizontal transmission), iii) host defences have to be overcome, and the parasite has to 

successfully establish and reproduce within the host, leading to possible transmission. These three 

conditions may be differently affected by exposure to NPs, thus modulating disease dynamics and 

shifting parasite transmission. 

Firstly, significantly higher levels of early host mortality (i.e. host viability) were recorded in 

the high NP treatment. Decreased host lifespan directly correlates with the production of Metschnikowia 

spores. Specifically, if a host dies before the parasite cycle can be completed, this effectively leads to 

infection “failure” and a null spore output. If the host does survive beyond that point and the parasite 

starts to reproduce, then its reproductive output is positively correlated with host age (Ebert et al., 2004). 

Hence, negative effects of NPs on host lifespan may reflect on parasite performance, by decreasing its 

reproductive output. In other words, suboptimal conditions caused by particularly high levels of NP 

pollution might reduce the infection success and alter disease dynamics.  

Secondly, entrance and colonisation of the host are crucial for a successful infection. We 

observed higher proportion of individuals becoming successfully infected in both NP treatments, in 

comparison to controls. Other investigated stressors, such as copper, are known to increase filtering rate 
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and, thus, parasite consumption rate in Daphnia (Civitello et al., 2012). Moreover, filtering rate of 

Daphnia is known to be boosted in nutritionally stressed individuals (Lampert & Brendelberger, 1996), 

resulting in enhanced parasite spore consumption (Dallas et al., 2016). Daphnia’s digestive tract can be 

blocked when exposed to micro- or nanoplastics (De Felice et al., 2019; An et al., 2021), which may 

indeed result in nutritional stress. Accumulation of particles in the gut is further known to cause 

inflammatory responses (Silva et al., 2021; Pirsaheb et al., 2020), possibly making it easier for the 

spores to penetrate the gut. However, while the host seemed to be more prone to get infected when 

exposed to NPs, this effect was counterbalanced by a decrease in host viability, which was especially 

pronounced under the high NP concentration (20 mg/L). 

Lastly, provided that completion of the parasite’s life cycle is ensured, environmental 

conditions such as suboptimal host diet or elevated temperature may still modulate the parasite’s 

effective reproductive output (Manzi et al., 2020; Pulkkinen & Ebert, 2004). In our experiment, parasite 

spore yield was significantly reduced in the presence of the high NP concentration. A possible 

explanation could be that the parasite’s reproductive cycle inside the host might be directly disrupted 

by NP particles. The NPs can potentially penetrate the fungal spores causing toxicity, as NPs’ 

internalisation into living cells is well proven (Liu et al., 2021). Additionally, NPs in Daphnia 

haemolymph have been shown to be responsible for upregulation of haemocytes (Sadler et al., 2019), 

which is the primary mechanism of defence against Metschnikowia infections (Metschnikoff, 1884; 

Stewart Merrill & Cáceres, 2018). Assuming that NPs may enter the host haemolymph prior to parasite 

settlement, such earlier activated immune systems might affect subsequent infection in a similar manner 

to the phenomenon of immune priming caused by sequential infections (i.e. by other microparasites). 

Moreover, NPs may have promoted additional mechanisms of host immunity, which may not directly 

be involved in the defence against Metschnikowia (e.g. stimulation of phenoloxydase activity, Mucklow 

& Ebert, 2003), contributing to a dispersing of host resources that could otherwise be used by the 

parasite for its growth. 

Either way, decreased total spore production within individual hosts should lead to reduced 

parasite transmission. However, it is necessary to consider how this finding relates to natural conditions. 

Indeed, negative effects of NPs on parasite growth only occurred in the high NP treatment (20 mg/L), 

while the lower dose tested in this experiment (5 mg/L) either resulted in positive (increased infectivity) 

or neutral (spore yield) effects on the parasite’s fitness components. 

 

4.2 Host fitness  

As expected, Metschnikowia infection severely decreased host fitness (Cáceres et al., 2006; Hesse et 

al., 2012). A combination of high host mortality and strongly reduced reproduction was observed in the 

infected treatments, regardless of NP exposure. However, NPs alone did not reduce host fitness 
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components, characterised as host lifespan, the likelihood to reach maturity, or fecundity. This was 

inconsistent with our expectation that NPs alone would reduce host fitness (Rist et al., 2017; Lin et al., 

2019). 

In addition, a slight boost to all host fitness traits showed that low doses of NPs can appear 

beneficial, suggesting a hormetic effect, a commonly observed phenomenon characterised by a low‐

dose stimulation and a high‐dose inhibition in dose‐response models (Stanley et al., 2013). According 

to a recent review summarising the dose effect in micro- and nanoplastic studies, there are about 300 

studies supporting the idea of a threshold or a hormetic dose-response model (Agathokleous et al., 

2021). Evidence of a hormetic effect has also been recorded for Daphnia; for example, when Daphnia 

pulex was tested under environmentally relevant concentrations of microplastics (1 μg/L), toxic effects 

appeared only in the F2 generation, whereas NPs promoted fitness of F0 and F1 generations (Liu et al., 

2020). A similar hormetic effect of plastic particles has been observed in crabs (Liu et al., 2019), algae 

(Gunasekaran et al., 2020), and oysters (Gardon et al., 2020). Even though in our study we could not 

identify the toxicological threshold, our results provide an initial estimation that the threshold dose 

should be between 5 mg/L and 20 mg/L in this system. 

NPs and parasite infection seem to have a synergistic effect on Daphnia. The combination of 

both stressors harms the host especially in the high NP treatment, where almost half of the individuals 

did not reach maturity. Such a phenomenon could be relevant for these natural populations where NP 

concentrations are higher than usual (i.e. direct disposal sites), possibly leading to decreased host 

population densities. This raises the risk of extinction (Ebert et al., 2000), and changes in Daphnia 

densities might intensely affect trophic interactions. Moreover, increased mortality before reaching 

maturity may affect transmission of other types of parasites present in the ecosystem, particularly 

vertically transmitted ones. For instance, in a previous Daphnia-parasite study, other types of pollutants, 

such as the insecticide carbaryl, greatly reduced Hamiltosporidium magnivora’s fitness, a vertically 

transmitted microsporidium (Coors et al., 2008).  

Considerably, to put our findings into an environmental context, it will be important to improve 

analytical methods that estimate environmentally relevant NP concentrations. Moreover, our findings 

were obtained from a single clone of D. galeata × longispina. Experiments testing different host 

genotypes (and species) are needed to generalise our results. Also, other parasites and types of parasite 

transmission (vertical vs horizontal) should be tested, to build upon these findings. 

 

4.3 Conclusion  

This study further demonstrates the need to consider biotic interactions when assessing potential risks 

of anthropogenic factors to the environment. As illustrated in the concept of the disease triangle, disease 
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severity is determined by the parasites’ virulence, the hosts’ susceptibility, and the environment. We 

have shown that altered environmental conditions caused by NP pollution may affect disease dynamics 

within Daphnia populations. Specifically, exposure to nanoplastics heavily affected parasite 

reproduction under the high-NP treatment. Even though parasite infectivity increased in the NP-exposed 

treatments, the parasite advantage was counter-balanced by increased host mortality. In this particular 

system, the effects of NPs seem to affect the parasite more negatively than the host itself, highlighting 

a need of including the species interaction perspective into the investigations of true effects of micro- 

and nanoplastics pollution on natural systems. 
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Figure S1. Comparison of daily survival of Daphnia individuals under three different NP concentrations:               

A) 0 mg/L, B) 5 mg/L, and C) 20 mg/L), either inoculated with a fungal parasite (red) or a control (blue). The left 

red vertical line marks the day of inoculation. The right red vertical line marks the day that the infection is 

observable and inspected. Each point represents the time of death of one individual. The shape reveals if the 

individual was successfully infected (triangle) or not (bullet point). The eight green bullet points represent the 

individuals that were lost due to background mortality and handling errors (excluded from every analysis). 
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Figure S2. Pie charts illustrating the different subsets of Daphnia individuals under the three NP concentrations 

of the parasite-inoculated treatment. Red and green colours represent the individuals that were confirmed as 

infected and not infected after inspection, respectively. Individuals that died before infection and could not be 

assessed (day 9 post-inoculation) were categorised as “early death” (grey). For host fitness variables, “early death” 

individuals were added together with infected (green) individuals in order to compare them with the control (i.e. 

non-inoculated) treatment. Individuals which died before parasite inoculation (day 3) or due to handling error are 

shown with black colour and were excluded from every analysis. 
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Figure S3. Host fitness traits in the parasite-inoculated (Infected) and Control groups under three NP 

concentrations: zero (0 mg/L), low (5 mg/L), and high (20 mg/L). A) Age at death of the individual Daphnia, B) 

Proportion of Daphnia that reached maturity, and C) Total number of offspring produced in a lifetime of a 

Daphnia individual. Infected group consists of strictly successfully infected individuals. Error bars represent the 

standard error of the mean. 
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Abstract

Over the course of seasonal epidemics, populations of susceptible hosts may encounter a wide
variety of parasites. Parasite phenology affects the order in which these species encounter their
hosts, leading to sequential infections, with potentially strong effects on within-host growth
and host population dynamics. Here, the cladoceran Daphnia magna was exposed sequentially
to a haemolymph-infecting yeast (Metschnikowia bicuspidata) and a gut microsporidium
(Ordospora colligata), with experimental treatments reflecting two possible scenarios of para-
site succession. The effects of single and co-exposure were compared on parasite infectivity,
spore production and the overall virulence experienced by the host. We show that neither
parasite benefited from coinfection; instead, when hosts encountered Ordospora, followed
by Metschnikowia, higher levels of host mortality contributed to an overall decrease in the
transmission of both parasites. These results showcase an example of sequential infections
generating unilateral priority effects, in which antagonistic interactions between parasites
can alleviate the intensity of infection and coincide with maladaptive levels of damage inflicted
on the host.

Introduction

Over the course of their lifetime, most free-living organisms are bound to encounter parasites
(Poulin and Morand, 2000). Realistically, individual hosts rarely encounter a single parasite,
but rather progress through a series of events (exposure, infection and recovery) from a multi-
tude of pathogens, some of which may coexist within the course of an infection. While some
parasites may encounter their hosts simultaneously, such as several virus species being inocu-
lated by a shared vector (Swanson et al., 2006), the majority of multiple infections are thought
to occur sequentially (Karvonen et al., 2019). In a within-host framework, ‘priority effects’
occur when this sequence of infection alters the outcome of interactions among parasites
(Halliday et al., 2020). For instance, as different strains compete for a pool of susceptible
hosts, faster replicating strains are generally favoured (Levin and Pimentel, 1981; Nowak
and May, 1994). However, prior residency may allow ‘weaker’ strains to prevail in coinfection,
by conferring protection against more competitive genotypes (Ben-Ami et al., 2008; Seifi et al.,
2012). The biological mechanisms underlying such observations are likely the product of com-
plex interactions between the defending host and coinfecting parasites (Alizon et al., 2013),
although common hypotheses have been proposed, which generally involve host immunity
and competition for resources (Read and Taylor, 2001; de Roode et al., 2005). For instance,
prior exposure may weaken host immunity in such a way that secondary infections are facili-
tated (Graham, 2008) or trigger priming of the host’s defences, so that subsequent infections
are either alleviated (Rodrigues et al., 2010) or prevented altogether (Ratcliff et al., 1999; Syller
and Grupa, 2016). Prior infection can also sequester within-host resources, which will then
alter the developmental trajectory of late-arriving parasites (Graham, 2008). Although trad-
itionally used in the context of species assemblages and community structures (Connell and
Slatyer, 1977; Wilbur and Alford, 1985), this notion of priority effects has since been widely
applied to the study of sequential infections (Hoverman et al., 2013; Wuerthner et al., 2017;
Clay et al., 2018; Carpenter et al., 2021). Incidentally, a majority of studies have reported nega-
tive effects on later arriving parasites (reviewed in Karvonen et al., 2019; but see also Ezenwa
et al., 2010, Lohr et al., 2010b).

Over the past decade, water fleas of the genus Daphnia (Crustacea: Cladocera) and their
microparasites have emerged as an ecologically relevant system for testing the outcome of
interspecific coinfections (Ben-Ami et al., 2011; Lange et al., 2014; Sánchez et al., 2019). As
common inhabitants and crucial agents in the stability of freshwater ecosystems (Carpenter
et al., 1985; Lampert, 2006, 2011), Daphnia are known to harbour a functionally and taxonom-
ically diverse range of parasite species, including microsporidia, fungi, ichthyosporea, bacteria
(Ebert, 1995; Stirnadel and Ebert, 1997; Wolinska, et al., 2009; Goren and Ben-Ami, 2013) and
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viruses (Toenshoff et al., 2018). For example, the gut microspor-
idium Ordospora colligata (Microsporidia: Ordosporidae, here-
after referred to as Ordospora) can be found in northern and
western European ponds (Ebert, 2005), where high prevalences
have been recorded in populations of its only host, Daphnia
magna (Ebert et al., 2001; Decaestecker et al., 2005). In temperate
ponds, the prevalence of microsporidian parasites increases from
late spring to early summer, before waning back in the autumn
and winter (Ebert, 1995; Larsson et al., 1997). Epidemics usually
start from infectious spore banks contained in the sediment,
although transmission stages are also able to disperse in the
water, where they can be encountered as free-floating spores
(Mangin et al., 1995; Kirk et al., 2018). Microsporidian spores
exhibit high survivability outside their hosts, allowing the parasite
to overwinter and survive periods of host diapause (Ebert, 1995).
Another common parasite of Daphnia, the waterborne yeast
Metschnikowia bicuspidata (Ascomycota: Saccharomycetales, here-
after referred to as Metschnikowia) is a generalist capable of infect-
ing several zooplankton species (Ebert, 2005; Dallas et al., 2016). In
temperate freshwater bodies of the Northern Hemisphere, epi-
demics of Metschnikowia typically peak in the late summer to
early autumn (Duffy et al., 2009; Hall et al., 2011; Penczykowski
et al., 2014), although it has been found to overlap with gut micro-
sporidia in the summer period (Ebert, 1995; Stirnadel and Ebert,
1997) or during the rainy season in Mediterranean to semi-arid cli-
mates of the Middle East (Goren and Ben-Ami, 2013).
Transmission is also horizontal, although infective propagules are
only released from dead hosts (i.e. obligate killer), and thus mostly
restricted to the sediment (Duffy, 2009; Duffy and Hunsberger,
2019).

Due to their overlapping distribution, coinfections of D.
magna involving both taxa are likely to occur. However, these
phylogenetically distant species have been shown to differ greatly
in their overall reproductive strategy: while infections by
Ordospora typically reduce host lifespan by up to 20% (Ebert
et al., 2000), Metschnikowia is a highly virulent parasite, produ-
cing lethal infections under 2-to-3 weeks (Ebert, 2005). Because
virulence in coinfection generally aligns with the amount of dam-
age induced by the more virulent parasite (Ben-Ami et al., 2008;
Ben-Ami and Routtu, 2013), coinfection by an obligate killer may
drastically reduce the timespan available to efficiently exploit host
resources for growth (Lohr et al., 2010b; Clay et al., 2019).
Furthermore, within-host competition for resources may be par-
ticularly relevant for parasites that colonize distinct niches within
the host (Ben-Ami et al., 2011). The intracellular Ordospora
ensures reproduction by hijacking energy (i.e. ATP molecules)
within the cytoplasm of epithelial cells (Tsaousis et al., 2008),
which serves both as a barrier and interface between the gut
lumen and the haemolymph. Meanwhile, development of
Metschnikowia takes place in the body cavity (Codreanu and
Codreanu-Balcescu, 1981), which is in turn alimented by direct
trophic exchanges along these compartments.

In addition to their contrasting reproductive strategies, the
exact sequence in which parasites succeed each other within
one host may further complicate such interactions (Hood, 2003;
de Roode et al., 2005; Jäger and Schjørring, 2006). The documen-
ted phenology of both parasites suggests that infections are likely
to overlap in late summer, with a predicted prior presence of
Ordospora in sympatric populations. Incidentally, some studies
of priority effects have been conducted using Metschnikowia,
along with ichtyhosporean (Lohr et al., 2010b) and bacterial
(Clay et al., 2019) parasites of Daphnia, in which it was shown
to consistently experience impaired transmission under prior resi-
dency. However, the literature is currently lacking such experi-
mental assays for microsporidian parasites of Daphnia. In their
exploratory study, Mangin et al. (1995) reported successful

transmission of Ordospora to individuals previously infected
with the microsporidium Tuzetia sp. (now referred to as
Hamiltosporidium magnivora, Haag et al., 2011). Nevertheless,
systematic assays of sequential exposure using Ordospora have
not been documented.

Here, we sequentially exposed the host D. magna to the para-
sites Metschnikowia and Ordospora. Experimental treatments
were designed to reflect two possible scenarios of parasite succes-
sion: one in which a gut microsporidium (Ordospora) encounters
the host after prior establishment of a fungal parasite in the
haemolymph (Metschnikowia), and a second, opposite scenario
in which the haemolymph-infecting yeast encounters the host
after prior establishment of the gut parasite. We aimed to deter-
mine (i) whether sequential infections differ from single infec-
tions in terms of parasite transmission traits, specifically
addressing the following questions: (a) how does Metschnikowia
respond to later arrival of Ordospora; (b) how does
Metschnikowia respond to prior infection by Ordospora; (c)
how does Ordospora respond to later arrival of Metschnikowia
and (d) how does Ordospora respond to prior infection by
Metschnikowia; and (ii) whether opposite scenarios of parasite
succession influence host fitness in diverging ways.

Materials and methods

Study system

Daphnia magna is commonly found in lakes and temporary
freshwater bodies of the Northern Hemisphere (Ebert, 2005).
Due to its large size (i.e. up to 5 mm) and efficient filtering
rate, D. magna is particularly prone to multiple infections in gen-
eral, as compared with smaller sympatric species (Stirnadel and
Ebert, 1997). One clonal line of D. magna was used as the focal
host for this experiment (clone NO-V-7, isolated from Norway;
Haag et al., 2020). This single genotype was selected on the
basis of having the highest compatibility with both strains of para-
sites used in this study, as reported by preliminary infectivity
assays.

A single strain of the yeast Metschnikowia was used, isolated
from Ammersee, Germany and later propagated on lab-reared
D. magna (clone E17:07). Spores are needle-shaped and puncture
the gut epithelium to reach the haemolymph, where fungal devel-
opment takes place (Codreanu and Codreanu-Balcescu, 1981;
Stewart Merrill and Cáceres, 2018). Infection symptoms are
clearly visible after 9–10 days, when the host’s body cavity starts
to fill with elongated asci (Stewart Merrill and Cáceres, 2018).

A single strain of Ordospora was used, isolated and maintained
on lab-reared cultures of the experimental host (NO-V-7). Late
stages of infection are characterized by the presence of several
dozens of spore clusters in the gut epithelium, which are mostly
confined to the upper half of the gut epithelium (Refardt and
Ebert, 2006) and notably visible in the ‘angular’ sections of the
digestive tract, such as the anterior diverticuli (Ebert, 2005).
Spore release can occur from live host after 3 days (Mangin
et al., 1995; Refardt and Ebert, 2007), although reliable detection
of infection is usually possible after 11 days, due to the exponen-
tial increase in parasite spore load throughout the infection (Kirk
et al., 2019).

Experimental setup

The experimental design included four single-exposure treat-
ments (‘METS early’: exposed to spores of Metschnikowia on
day 5; ‘METS late’: exposed to spores of Metschnikowia on day
7; ‘ORDO early’: exposed to spores of Ordospora on day 5;
‘ORDO late’: exposed to spores of Ordospora on day 7), two
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co-exposure treatments (‘CO:METS early:ORDO late’: exposed to
spores of Metschnikowia on day 5 and Ordospora on day 7; ‘CO:
ORDO early:METS late’: exposed to spores of Ordospora on day 5
and Metschnikowia on day 7) and one control treatment (exposed
to crushed tissue of uninfected D. magna on both days). On the
day which did not feature exposure to the parasite, all single infec-
tion treatments were exposed to the same placebo as the control.
Forty replicates (individual Daphnia) were used for each treat-
ment, yielding a total of 280 experimental units (Fig. 1).

Inoculation process

Juvenile Daphnia born within a 24-h time span (i.e. day 1) were
transferred to individual jars containing 5 mL of synthetic culture
medium (SSS-medium, Saebelfeld et al., 2017). Daphnia were
maintained at a constant temperature of 19°C, under a 12:12
light–dark photoperiod and fed three times per week with 1 mg
C L−1 of Scenedesmus obliquus (green algae, maintained in WC
algal medium). On day 5, spore solutions were prepared for
both parasites. Infected individuals were gathered in Eppendorf
tubes and crushed with a plastic pestle. The equivalent of ten
adult Daphnia were crushed per 40 replicates, ensuring a balanced
amount of host tissue was introduced in all seven treatments. To
prepare the stock solution of Metschnikowia, the appropriate
number of infected Daphnia (clone E17:07) was crushed to

achieve a target dose of 17 500 spore per recipient Daphnia
(3500 spores mL−1) across 80 replicates in two treatments
(METS early; CO:METS early:ORDO late). This dose was com-
parably higher than previous studies utilizing the same system
(Hesse et al., 2012), in order to maximize chances of successful
coinfection in the co-exposure treatments. The solution was com-
pleted by crushing additional uninfected individuals up to a total
of 20. To prepare the stock solution of Ordospora, 20 Daphnia
(clone NO-V-7) presenting signs of late stage infection (large
amount of spore clusters in the gut) were crushed to achieve a tar-
get dose of approximately 38 000 spores per recipient Daphnia
(7600 spores mL−1) across 80 replicates in two treatments
(ORDO early; CO:ORDO early:METS late). Repeated counts
from stock cultures were shown to provide the required number
of spores from 20 individuals (CI95% of average spore yield per
inoculation dose: 38 100 ± 6.5%). These spore solutions were
then distributed across all replicates of their respective treatments.
Single infection treatments that did not receive spores on day 5
(METS late; ORDO late), as well as the control treatment were
exposed to a placebo inoculate, prepared by crushing uninfected
individuals (clone NO-V-7) using the same ratio of ten adult
Daphnia for each treatment of 40 replicates.

After an exposure period of 2 days allocated to the first para-
site, all Daphnia were transferred to 5 mL of clean medium, and
the inoculation process was repeated on day 7. This delay was

Fig. 1. Graphical representation of the six exposure treatments, corresponding to two possible scenarios of parasite succession. On the left, the haemolymph para-
site Metschnikowia bicuspidata arrives ‘early’ and the gut parasite Ordospora colligata arrives ‘late’. On the right, the gut parasite O. colligata arrives ‘early’ and the
haemolymph parasite M. bicuspidata arrives ‘late’. Single-exposure treatments within each scenario follow the same timing of infection as the co-exposure treat-
ment, to allow proper comparison of parasite and host fitness parameters across single and co-exposure settings. The control treatment received the same placebo
inoculate (obtained from crushed uninfected Daphnia) as single-exposure treatments, albeit on both inoculation days.
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chosen to ensure that either Metschnikowia (Stewart Merrill and
Cáceres, 2018) or Ordospora (Mangin et al., 1995; Refardt and
Ebert, 2007) would reach their target compartment, before expos-
ing the host to the second parasite (consistent with the definition
of sequential infection as following establishment of the prior
parasite; Marchetto and Power, 2018). Spore solutions were pre-
pared anew, using the same methods as described for day 5,
and inoculated into their respective treatments (METS late; CO:
ORDO early:METS late; ORDO late; CO:METS early:ORDO
late). Daphnia were not fed on either exposure day, in order to
promote spore uptake (Hall et al., 2007). On experimental day
9 (i.e. the end of the exposure period allocated to the second para-
site), Daphnia were transferred to 20 mL of fresh, spore-free
medium.

From day 9 onwards (both exposure periods having been com-
pleted), dead individuals were collected and fixed in 3.7% formal-
dehyde. Samples were kept at 4°C until the assessment of spore
production (see below). Juveniles were removed and counted
daily, and Daphnia were transferred to fresh medium (20 mL)
every 4 days. The experiment was terminated on day 81, when
the last surviving Daphnia in the control treatment had died.

Recorded parameters

Parasite fitness
Individual Daphnia from all treatments were assigned a binary
value for host viability (0 = early death, 1 = viable host). Viable
hosts were described as individual Daphnia having survived
until the first possible detection of infection symptoms (i.e. pres-
ence of spores from crushed individuals), which was determined
as 9 days post-exposure for Metschnikowia (Stewart Merrill and
Cáceres, 2018) and 11 days post-exposure for Ordospora (Kirk
et al., 2019). Individuals from the six exposure treatments were
assigned a separate value for parasite infectivity (0 = non infected,
1 = infected). Infected hosts were described as individual Daphnia
in which spores of either parasite were detected (among those
considered viable). Individuals which did not survive until at
least both inoculation events had occurred (i.e. beyond experi-
mental day 7) were excluded from both calculations, as these
could not be properly attributed to their intended treatments
(Appendix, Table S1). All retrieved samples (except for the con-
trol) were blinded to ensure reliable assessment of spore yield
upon host death across single and co-exposure treatments.
Samples were crushed in 0.3 mL, homogenized and loaded with
10 μL in a Neubauer Improved chamber. Samples were first
screened for detection and quantification of needle-shaped
Metschnikowia spores, under a Nikon SMZ25 stereomicroscope
(200× magnification). For identification and quantification of
Ordospora, samples were observed under a Nikon Ti Eclypse
inverted microscope, using phase contrast and UV exposure
(200× magnification); for each sample, 2 μL of Calcofluor-White
(1 mg mL−1) were added to the counting chamber to generate
blue fluorescence, thereby staining the chitin-rich wall of pyriform
spores (Krebs et al., 2017).

Parasite growth (i.e. the rate of spore production) was com-
puted as the ratio of spore yield over the number of days survived
by the host post-exposure. A comprehensive measure of parasite
fitness, the net spore output per exposed host, was computed as
an estimation of overall transmission success. Here, in addition
to individuals that produced a detectable spore yield, those that
scored ‘0’ for either host viability or parasite infectivity were
also included, and recorded as a having a ‘net’ spore output of
zero. This was done to reflect the probability of each encounter
with an exposed host leading to subsequent reproduction of the
parasite, which may differ across experimental treatments, inde-
pendently of parasite growth (Manzi et al., 2020).

Host fitness
Host fitness was recorded via three variables: host lifespan post-
exposure was defined as the number of days survived by individ-
ual Daphnia, following the completion of both exposure events
(i.e. beyond experimental day 7). Total offspring production per
individual was used as a comprehensive measure of the host’s
reproductive success. Finally, the rate of offspring production
was computed as the ratio of total offspring production over
host lifespan post-exposure.

Data analysis

Data were analysed using R version 4.0.4 (R Core Team, 2021).
Graphical outputs were produced using the ‘ggplot2’ (Wickham,
2016), ‘Hmisc’ (Harrell and Harrell, 2019) and ‘patchwork’
(Pedersen, 2020) packages. Analyses of variance (F-test or χ2

test) were performed with the ‘car’ package (Fox and Weisberg,
2019).

Parasite fitness
Parasite fitness variables were analysed separately for each parasite
and compared across single and co-exposure treatments with the
same timing of infection. Host viability (0 = early death, 1 = viable
host) and parasite infectivity (0 = non infected, 1 = infected) were
analysed using a binary logistic regression with ‘exposure’ as
explanatory variable (i.e. a factor with up to six possible levels).
Additionally, host viability was compared to baseline mortality
in the control treatment (Appendix, Table S2). In co-exposure
treatments, infectivity of a given parasite included the total num-
ber of cases in which spores of that parasite were detected, either
in single or coinfection. Parasite growth and the net spore output
per exposed host were analysed with ‘exposure’ as explanatory
variable in a linear model, assuming a normal distribution of resi-
duals. Only successful infections (i.e. detection of a non-zero
number of spores) were included in the analysis of parasite
growth. All individuals which survived until at least both exposure
events had occurred (i.e. beyond experimental day 7) were
included in the analysis of net spore output. Normal distribution
and homoscedasticity of the residuals were verified by visual
inspection of quantile–quantile plots and residuals against fitted
values.

Host fitness
Host fitness variables (namely lifespan post-exposure, rate of off-
spring production and total offspring production) were analysed
using linear models, assuming a normal distribution of residuals,
with ‘exposure’ as the explanatory variable (i.e. a factor with seven
levels, including the control treatment). Only individuals success-
fully infected by either one (single exposure) or both parasites
(co-exposure) were included in the non-control treatments. One
individual from the control treatment was lost due to handling
error and was thus excluded from these analyses. Post-hoc pair-
wise comparisons (Tukey’s HSD test) were performed with the
‘multcomp’ package (Hothorn et al., 2008).

Results

Parasite fitness

How does Metschnikowia respond to later arrival of Ordospora?
Under prior arrival of Metschnikowia, the viability of experimen-
tal Daphnia did not differ between the single and co-exposure
treatments, with 94.7% (METS early) and 89.7% (CO:METS
early:ORDO late) of hosts surviving until day 9 post-exposure
(Fig. 2A, Table 1). Among hosts considered viable, the probability
of successful infection did not differ significantly between single
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(68.6%) and co-exposure (57.1%) treatments (Fig. 3A, Table 1).
Parasite growth was comparable between single and co-exposure
treatments (Fig. 4A, Table 1). Thus, the net output of
Metschnikowia did not differ significantly across single and
co-exposure treatments (Fig. 5A, Table 1).

How does Metschnikowia respond to prior infection by
Ordospora?
Under late arrival of Metschnikowia, individuals which were first
exposed to Ordospora suffered significant mortality during the
early days of the experiment, with only 60.0% of hosts remaining
viable (CO:ORDO early:METS late), as opposed to 81.6% in the
single-exposure treatment (METS late) (Fig. 2B, Table 1).
Infectivity did not differ significantly between the single
(74.2%) and co-exposure (70.8%) treatments (Fig. 3B, Table 1).
Parasite growth was significantly reduced in the co-exposure treat-
ment (Fig. 4B, Table 1). Consequently, the net output of
Metschnikowia in co-exposure was only half of that in the corre-
sponding single-exposure treatment (Fig. 5B, Table 1).

How does Ordospora respond to later arrival of Metschnikowia?
Under prior arrival of Ordospora, the viability of experimental
Daphnia was significantly reduced in the co-exposure treatment,
with only 60.0% of hosts remaining viable (CO:ORDO early:
METS late) compared to 80.0% in single exposure (ORDO
early) (Fig. 2C, Table 1). There was a tendency towards higher
infectivity in single exposure (43.8%) compared with the
co-exposure treatment (29.2%) (Fig. 3C, Table 1). Parasite growth
did not differ between the single and co-exposure treatments
(Fig. 4C, Table 1). However, the net output of Ordospora was
still 3-fold lower in co-exposure than in the single-exposure treat-
ment (Fig. 5C, Table 1).

How does Ordospora respond to prior infection by
Metschnikowia?
Under late arrival of Ordospora, there was a tendency towards
higher viability in single exposure, with respectively 97.3%
(ORDO late) and 87.2% (CO:METS early:ORDO late) of

surviving hosts (Fig. 2D, Table 1). Infectivity did not differ
between these treatments, with respectively 69.4% in single expos-
ure and 61.8% in co-exposure (Fig. 3D, Table 1). Parasite growth
did not differ either between those treatments (Fig. 4D, Table 1).
Consequently, the net output of Ordospora did not differ signifi-
cantly between single and co-exposure (Fig. 5D, Table 1).

Host fitness

Exposure had a significant effect on host lifespan (F6,135 = 138.4;
P < 0.001) and total offspring production (F6,135 = 74.46; P <
0.001). On average, control Daphnia lived 56 days post-exposure
(CI95% ± 2.19; Fig. 6A) and produced 33 offspring (CI95% ±2.28;
Fig. 6B). In comparison, hosts singly infected by Ordospora
lived 38 days post-exposure (±2.89; Fig. 6A) and produced 23 off-
spring (±1.62; Fig. 6B), while those singly infected by
Metschnikowia lived 17 days (±1.54; Fig. 6A) and produced
only ten offspring (±1.56; Fig. 6B). Single-exposure treatments
with opposite timing of infection did not differ significantly
from each other (Appendix, Table S3). The reduction in host life-
span and total offspring production induced by coinfection was
comparable to that of single infections by Metschnikowia, but
much stronger overall than the effect of single infections by
Ordospora. Post-hoc analyses of the rate of offspring production
indicate that such differences in fecundity were mostly driven
by lifespan (Fig. 6C). While exposure had a significant effect on
the rate of offspring production (F6,135 = 2.376; P = 0.033), the
only significant pairwise comparison occurred between the
METS early and METS late treatments, with the former reducing
host fecundity to a greater extent (Tukey’s HSD: t-value: 3.315,
P = 0.018; Appendix, Table S3).

Discussion

By exposing the host D. magna to sequential infections of the
gut-dwelling microsporidium, O. colligata and the haemolymph-
infecting yeast,M. bicuspidata, we investigated the potential for pri-
ority effects at the within-host level, in a system of sympatric

Fig. 2. Graphical representation of the proportion of Daphnia considered viable hosts, i.e. which survived until at least 9 days post-exposure (Metschnikowia) or 11
days post-exposure (Ordospora), allowing either parasite to produce detectable levels of infection (i.e. presence of spores in crushed individuals). Host viability was
compared between single and co-exposure treatments, to answer the following: (A) How does Metschnikowia respond to later arrival of Ordospora? (B) How does
Metschnikowia respond to prior infection by Ordospora? (C) How does Ordospora respond to later arrival of Metschnikowia? (D) How does Ordospora respond to
prior infection by Metschnikowia? Individuals which did not survive until at least both inoculation events had occurred were excluded from these calculations. Error
bars depict the standard error of the mean (calculated from binary values assigned to individual Daphnia: 0 = early death, 1 = viable host). Significance levels are
provided by logistic regression performed across single and co-exposure treatments with shared timing of infection: *P ⩽ 0.05.
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species. We simulated two orders of arrival, designed to reflect con-
trasting patterns of parasite succession. In sequential exposures
where Metschnikowia arrived first (CO:METS early:ORDO late),
parasite transmission traits (parasite infectivity, parasite growth)
did not differ significantly from single exposures. However, in
sequential exposures where Ordospora arrived first (CO:ORDO
early:METS late), parasite growth was reduced for the fungal para-
site. Though infectivity was not significantly impacted, there was
also higher host mortality in this treatment, which contributed to
a decrease in the net spore output of both parasites (i.e. a compre-
hensive measure of parasite fitness).

Performance of Metschnikowia under single vs sequential
infections

Under prior residency of Metschnikowia, sequential exposures
were not shown to influence its transmission potential, as none
of the recorded parameters differed between single exposure
(METS early) and co-exposure (CO:METS early:ORDO late).
This apparent lack of effect was unexpected, as it somewhat con-
tradicts previous findings involving this parasite. When pitting

Metschnikowia against the ichthyosporean gut parasite Caullerya
mesnili, Lohr et al. (2010b) found that given prior residency,
Metschnikowia took longer to develop, and produced fewer spores
in coinfection. Similarly, Clay et al. (2019) observed lower produc-
tion of fungal spores in coinfected hosts, whenMetschnikowia was
first to arrive against the bacterium Pasteuria ramosa, as opposed
to the treatment where it arrived second. Both studies suggest that
Metschnikowia generally does not fare well under prior residency.
However, the authors co-exposed Daphnia hosts to parasites that
are considerably more virulent than Ordospora. Both C. mesnili
and P. ramosa are known to induce complete castration of their
hosts (Bittner et al., 2002; Ebert et al., 2004; Jensen et al., 2006;
Lohr et al., 2010a). Parasites that shut down reproduction entirely
(i.e. parasitic castration) are thought to redirect considerable
amount or resources, that would normally support reproductive
effort of the host, towards increased growth or survivorship
instead (Baudoin, 1975). This difference in exploitation strategy
may partly explain why Metschnikowia would experience strong
priority effects against such virulent parasites, while demonstrat-
ing no apparent response to the later establishment of Ordospora.

By contrast, we found evidence for reduced transmission of
Metschnikowia, when it was preceded by the gut parasite.
Sequential exposure resulted in a 2-fold reduction of
Metschnikowia’s net spore output, which was seemingly driven
by two parameters of parasite fitness. First, parasite growth of
Metschnikowia was slightly reduced in sequential exposure (CO:
ORDO early:METS late), as opposed to the single-exposure treat-
ment (METS late). This effect may be attributed to prior resource
sequestration by the gut parasite. Intracellular microsporidian
parasites ensure within-host growth by scavenging ATP molecules
from host cells, through the activity of nucleotide transporters
(Tsaousis et al., 2008; Smith, 2009) and further interactions
with host mitochondria (Terry et al., 1997). Considering that
infection by Ordospora takes place in the gut epithelium, prior
sequestration of resources at the interface between the gut
lumen and the haemolymph (i.e. where Metschnikowia completes
its development and reproduction cycle) seems plausible. Second,
a significant reduction of host viability was recorded in hosts that
were first exposed to Ordospora, prior to Metschnikowia (CO:
ORDO early:METS late), which resulted in a large proportion
of co-exposed hosts not progressing towards successful reproduc-
tion of Metschnikowia.

While the mechanism responsible for such high mortality is
difficult to infer from our results, this pattern is reminiscent of
the ultrainfection phenomenon first described by Sofonea et al.
(2015). Ultrainfection occurs when two parasites display adaptive
levels of virulence and growth in single infection, while double
infection triggers ‘explosive’ levels of host mortality, that are nor-
mally not found in each respective species. For this reason, coin-
fections are often hidden in the population, as cases that do occur
only exist for a brief span of time, quickly interrupted by host
death (Sofonea et al., 2017). With regards to the present study,
the CO:ORDO early:METS late treatment did result in excessive
host mortality, which also contributed to a very low number of
successfully coinfected hosts. A similar phenomenon has been
described in nature, where interspecific coinfection of an insect
host generates lethal levels of damage from a viral pathogen
that is otherwise considered avirulent (Nazzi et al., 2012).

Additionally, it has been observed that prior infection by a gut
parasite can modify the structural integrity of the gut in Daphnia,
which in turn modulates the probability of fungal spores success-
fully crossing into the haemolymph (T. Stewart Merrill, personal
communication). Thus, we suspected prior colonization of epithe-
lial cells by Ordospora could have altered susceptibility to
Metschnikowia; however, parasite infectivity did not differ from
single exposure in this treatment.

Table 1. Analysis of variance (F-test or χ2 test) was performed across single and
co-exposure treatments with shared timing of infection, to answer the
following: (a) How does Metschnikowia respond to later arrival of Ordospora?
(b) How does Metschnikowia respond to prior infection by Ordospora? (c)
How does Ordospora respond to later arrival of Metschnikowia? (d) How does
Ordospora respond to prior infection by Metschnikowia?

Response variable
Degree of
freedom

χ2/F
value P value

(a) METS early | CO:METS early:ORDO late

Host viability 75 0.6807 0.4093

Parasite infectivity 68 0.9820 0.3217

Parasite growth 42 0.5758 04522

Net output per
exposed host

75 0.8109 0.3708

(b) METS late | CO:ORDO early:METS late

Host viability 76 4.4597 0.0347

Parasite infectivity 53 0.0768 0.7817

Parasite growth 38 5.7688 0.0213

Net output per
exposed host

76 0.4945 0.0291

(c) ORDO early | CO:ORDO early:METS late

Host viability 78 3.8652 0.0493

Parasite infectivity 58 2.9877 0.0839

Parasite growth 19 0.1618 0.6920

Net output per
exposed host

78 6.0996 0.0157

(d) ORDO late | CO:METS early:ORDO late

Host viability 74 2.9155 0.0877

Parasite infectivity 70 1.2013 0.2731

Parasite growth 43 1.2613 0.2676

Net output per
exposed host

73 1.2907 0.2596

A generalized linear model was used, assuming a binomial distribution of residuals for host
viability of individual Daphnia (0 = early death, 1 = viable host) and infection status of
individual Daphnia (0 = non infected, 1 = infected). A general linear model was used,
assuming a normal distribution of residuals for parasite growth (rate of spore production
per infected host) and the net spore output per exposed host. Significant P values (⩽0.05)
are highlighted in bold.
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Performance of Ordospora under single vs sequential
infections

In single-exposure treatments, the overall infection success of
Ordospora was lower when it was inoculated on day
5. Although we suspect possible heterogeneity between spore
solutions may have contributed to this observation (as different

parasite inoculates were used on days 5 and 7), age and body
size-related effects could have further influenced infectivity
(Izhar and Ben-Ami, 2015; Garbutt and Little, 2017). For
instance, filtering rate and permeability of the gut epithelium
(i.e. thickness of cell wall) in Daphnia have been shown to directly
correlate with age and size class (Burns, 1969; Stewart Merrill

Fig. 3. Graphical representation of the proportion of Daphnia successfully infected by the parasites Metschnikowia and Ordospora. Parasite infectivity was com-
pared between single and co-exposure treatments, to answer the following: (A) How does Metschnikowia respond to later arrival of Ordospora? (B) How does
Metschnikowia respond to prior infection by Ordospora? (C) How does Ordospora respond to later arrival of Metschnikowia? (D) How does Ordospora respond
to prior infection by Metschnikowia? The horizontal section of the bar in co-exposure treatments represents the contribution of coinfections to the overall number
of successful infections by the focal parasite. Individuals which did not survive until the earliest possible observation of parasite symptoms were excluded from the
analysis of infectivity; reported proportions are computed amongst the remaining number of individuals considered viable. Error bars depict the standard error of
the mean (calculated from binary values assigned to individual Daphnia: 0 = non infected, 1 = infected). Significance levels are provided by logistic regression per-
formed across single and co-exposure treatments with shared timing of infection; none of the pairwise comparisons were significant.

Fig. 4. Graphical representation of parasite growth (computed as the ratio of spore yield upon host death and the number of days survived by the host, post-second
exposure event) for the parasites Metschnikowia and Ordospora. Parasite growth was compared between single and co-exposure treatments, to answer the follow-
ing: (A) How does Metschnikowia respond to later arrival of Ordospora? (B) How does Metschnikowia respond to prior infection by Ordospora? (C) How does
Ordospora respond to later arrival of Metschnikowia? (D) How does Ordospora respond to prior infection by Metschnikowia? Coloured dots depict individuals
which were confirmed to be coinfected by Metschnikowia and Ordospora. Error bars depict the standard error of the mean, which was computed by pooling singly
and coinfected individuals in the co-exposure treatments. Significance levels are provided by analysis of variance (F-test) across single and co-exposure treatments
with shared timing of infection: *P⩽ 0.05.
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et al., 2019). As D. magna can reach maturity starting from 7 days
at 20°C (Lampert, 1993), the initial exposure of pre-adults
Daphnia (i.e. from days 5–7) as opposed to potentially mature
individuals (i.e. from days 7–9) may have influenced the parasite’s
infection success (Ben-Ami, 2019).

Independent of this observation, sequential exposure reduced
transmission of Ordospora, when it was first to infect the host
(CO:ORDO early:METS late). Contrary to our observations on
Metschnikowia, these results seem to have been driven mostly
by increased mortality of co-exposed hosts, as parasite growth
did not differ between the single and co-exposure treatments.
While our method for quantifying spores did not allow us to
monitor the continuous shedding of propagules from live hosts,
the number of spore clusters recorded in the gut of infected indi-
viduals increases exponentially throughout the course of infection
(Mangin et al., 1995; Kirk et al., 2018), with each cluster bearing
up to 60 infective stages (Kirk et al., 2019). This suggests that
spore yield recorded upon fixation of the host can be used to
approximate the parasite’s progression along the gut epithelium
(i.e. infection intensity) and overall reproductive success.
Although previous coinfection experiments using Ordospora
were not available for comparison, C. mesnili benefited from an
increase in spore production, when it was first to arrive in coin-
fection with Metschnikowia (Lohr et al., 2010b). As mentioned
above, the contrasting priority effects observed here may stem
from distinct strategies of host exploitation and varying degrees
of fitness impairment, as Ordospora is one of the least virulent
endoparasites commonly found in Daphnia (Ebert, 2005).

Due to external factors, such as selective predation on infected
individuals (Duffy et al., 2005; Johnson et al., 2006; Goren and
Ben-Ami, 2017), Daphnia in their natural habitat may not experi-
ence such long lifespans as those observed in controlled condi-
tions (instead, rarely surviving beyond 20 days; Lampert, 1993).
In the present study, individuals which were successfully coin-
fected by both parasites experienced similar lifespan as those sin-
gly infected by Metschnikowia, but lived only half the span of
those singly infected by Ordospora (Fig. 6A). Therefore,

coinfections in nature may contribute fewer infective propagules
to the overall transmission of Ordospora, especially when no
benefit to coinfection was observed, that would help compensate
this reduction in host lifespan.

From parasite phenology to sequential exposure

The phenology of symbionts often varies, causing them to emerge
among a host population sequentially (Schmidt et al., 2007;
Dumbrell et al., 2011). Because the probability of being the first
to infect directly correlates with a parasite’s prior prevalence in
the population (Clay et al., 2018), differences in species emer-
gence patterns may in turn facilitate the occurrence of priority
effects at the within-host level. While Ordospora may reach very
high prevalence in natural populations of D. magna (Ebert,
2001), reportedly nearing 40% in shallow eutrophic ponds
(Decaestecker et al., 2005), much lower prevalences have been
recorded for Metschnikowia in similar environments (<10%,
Stirnadel and Ebert, 1997). Thus, co-occurrence of these two spe-
cies could imply that a significant proportion of the host popula-
tion may have already encountered Ordospora, around the time
when Metschnikowia increases to peak prevalence (i.e. in the
late summer).

Additionally, spores of these two parasites are likely to be
found in separate locations of the water column. While epidemics
of Ordospora typically start from infectious spore banks, following
a period of inactivity from host populations (Mangin et al., 1995),
subsequent infections are likely to result in the continuous shed-
ding of spores from live hosts. Because infective stages are able to
disperse in the water (Mangin et al., 1995; Kirk et al., 2018), these
may be encountered as free-floating spores across the upper parts
of the water column. By contrast, spores of Metschnikowia grad-
ually build up in the sediment, where infected hosts sink to and
decompose after succumbing to infection (Duffy and
Hunsberger, 2019). However, selective predation of spore-bearing
individuals may contribute to the occasional resuspension of the
parasite in the water column, as non-damaged asci can remain

Fig. 5. Graphical representation of the net spore output (per exposed host) for the parasites Metschnikowia and Ordospora, as compared between single and
co-exposure treatments, to answer the following: (A) How does Metschnikowia respond to later arrival of Ordospora? (B) How does Metschnikowia respond to
prior infection by Ordospora? (C) How does Ordospora respond to later arrival of Metschnikowia? (D) How does Ordospora respond to prior infection by
Metschnikowia? Error bars depict the standard error of the mean. Significance levels are provided by analysis of variance (F-test) across single and co-exposure
treatments with shared timing of infection: *P ⩽ 0.05.
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infectious following their passage through a fish’s digestive tract
(Duffy, 2009). Due to particularly strong diel vertical migration
behaviour in D. magna (De Meester, 1992), this species is espe-
cially prone to contamination from infectious spore banks
(Decaestecker et al., 2002, 2004). However, differences in the like-
lihood of spore encounter may also be driven by individual vari-
ability in phototactic behaviour, which exhibits strong genotypic
variation among clones of D. magna (De Meester, 1989; De
Meester et al., 1994). For instance, positively phototactic geno-
types may recruit a higher proportion of free-floating microspor-
idian spores during the day, while being exposed to buried spore
banks during the night. Finally, it has been shown that D. magna
individuals infected with Ordospora exhibit much deeper position

than uninfected ones in artificial mesocosms (Fels et al., 2004).
This suggests that prior infection by Ordosporamay also influence
host behaviour in such a way that secondary infections (e.g. by
Metschnikowia) are facilitated in nature.

Within-host interactions between symbionts may scale up to
influence host-parasite dynamics at the community level
(Mordecai et al., 2016; Marchetto and Power, 2018; Karvonen
et al., 2019), a phenomenon that has been demonstrated experi-
mentally (Halliday et al., 2017). For instance, mechanisms of posi-
tive or negative frequency dependence may arise from
system-specific priority effects (Clay et al., 2018). The unilateral
priority effects highlighted in this study (i.e. reduced transmission
under prior arrival of Ordospora) are likely to occur in

Fig. 6. Graphical representation of (A) lifespan post-exposure, (B) total offspring production and the resulting (C) rate of offspring production (number of offspring
per day post-exposure) compared for individual Daphnia across the control and all six exposure treatments. Only individuals successfully infected by one (single
exposure) or both parasites (co-exposure) were included in the non-control treatments. Error bars depict the standard error of the mean.
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populations where both parasites are sympatric. These may be of
particular importance during the early phase of parasite emer-
gence, when every successful infection helps to kick-start a para-
site’s successful outbreak in the environment. For instance,
species that usually emerge later in the season (e.g.
Metschnikowia) are effectively starting in an environment where
most – if not all – available hosts may have previously encoun-
tered a competing parasite species (e.g. Ordospora). Parasites
that tend to suffer from late residency might face a ‘critical
early point’ in their epidemic curve, during which most infections
with previously infected hosts could result in a suboptimal out-
come, potentially slowing – if not preventing – their successful
establishment and emergence in the environment.

Concluding remarks

Our results suggest that specific patterns of parasite succession,
with prior emergence of the microsporidium Ordospora over
the yeast Metschnikowia (i.e. a plausible scenario in natural popu-
lations) may limit the transmission of both species, due to (i)
impaired spore production of the yeast and (ii) maladaptive levels
of host mortality that are not found in single infections. We also
highlight the inherent specificity of priority effects among com-
mon parasites of Daphnia, showing that contrasting responses
to sequential infections can be observed across a microsporidian
gut parasite and functionally similar species. Thus, we encourage
further research to consider other assemblages of ecologically rele-
vant parasites, while monitoring temporal succession patterns
that are observed in the field. Changes in parasite phenology
could be especially relevant in light of climate change: distinct
species may react differently to specific environmental triggers –
such as light, temperature or nutrient availability – that are
known to stimulate the emergence of resting stages, transmission
and within-host reproduction (e.g. Overholt et al., 2012; Kirk
et al., 2018). Elevated freshwater temperatures may cause asym-
metric shifts between the overlapping epidemic curves of water-
borne parasites, which could have implications for the
likelihood of sequential infections at the within-host level.
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Appendix 

 

Table S1. Proportion of viable hosts: experimental Daphnia which survived until at least day 9 post-exposure (i.e. earliest 

observation of infection symptoms for Metschnikowia) or day 11 post-exposure (i.e. earliest observation of infection 

symptoms for Ordospora); proportion of infected hosts: experimental Daphnia confirmed to have produced spores of the 

parasites (a) Metschnikowia or (b) Ordospora. Individuals which did not survive until at least both inoculation events had 

occurred (beyond experimental day 7) were excluded; reported proportions are computed from ≤ 40 surviving hosts per 

exposure treatment. 

 

a) Successful infections by Metschnikowia 

Exposure Proportion of viable hosts Proportion of infected hosts 

METS early 36/38 0.947 24/36 0.686 

CO:METS early:ORDO late 35/39 0.897 20/35 0.571 

METS late 31/38 0.816 23/31 0.742 

CO:ORDO early:METS late 24/40 0.600 17/24 0.708 

 

Total (≤ 160 replicates) 

 

126/155 

 

0.813 

 

84/126 

 

0.666 

 

b) Successful infections by Ordospora 

Exposure Proportion of viable hosts Proportion of infected hosts 

ORDO early 32/40 0.800 14/32 0.438 

CO:ORDO early:METS late 24/40 0.600 7/24 0.292 

ORDO late 36/37 0.973 25/36 0.694 

CO:METS early:ORDO late 34/39 0.872 21/34 0.618 

 

Total (≤ 160 replicates) 

 

126/156 

 

0.808 

 

67/126 

 

0.532 

 

  



Table S2. Logistic regression performed across combinations of single exposure and co-exposure treatments with the 

same timing of infection. The number of individuals surviving until the first possible detection of the parasites 

Metschnikowia (i.e. from day 9 onward) or Ordospora (i.e. from day 11 onward) was compared to baseline mortality in 

the control treatment. A generalized linear model was used, assuming a binomial distribution of residuals. Significant P-

values (≤ 0.05) are highlighted in bold. 

 

Response variable Degree of freedom χ2 P-value 

Control | METS early | CO:METS early:ORDO late 

Host viability (≥ day 9) 2; 113 5.762 0.056 

Control | METS late | CO:ORDO early:METS late 

Host viability (≥ day 9) 2; 114 25.829 < 0.001 

Control | ORDO early | CO:ORDO early:METS late 

Host viability (≥ day 11) 2; 116 27.921 < 0.001 

Control | ORDO late | CO:METS early:ORDO late 

Host viability (≥ day 11) 2; 112 8.9352 0.0115 

  



Table S3. Results of Tukey’s HSD test applied to a one-way analysis of variance (ANOVA), with (a) host lifespan, (b) 

total offspring production and (c) the rate of offspring production as response variables, compared across the control and 

all exposure treatments. Only significant P-values (≤ 0.05) are reported and highlighted in bold. 

 

a) Host lifespan 

Compared levels  Estimate Standard error t value P-value 

Control METS early +39.33 1.80 21.835 < 0.0001 

Control METS late +39.97 1.83 21.900 < 0.0001 

Control ORDO late +18.59 1.78 10.448 < 0.0001 

Control ORDO early +19.20 2.16 8.889 < 0.0001 

Control CO:METS early:ORDO late +41.56 2.22 18.716 < 0.0001 

Control CO:ORDO early:METS late +39.63 3.29 12.056 < 0.0001 

ORDO early METS early +20.14 2.32 8.665 < 0.0001 

ORDO early METS late +20.78 2.34 8.870 < 0.0001 

ORDO early CO:METS early:ORDO late +22.35 2.66 8.398 < 0.0001  

ORDO early CO:ORDO early:METS late +20.43 3.60 5.674 < 0.0001 

ORDO late METS early +20.75 1.97 10.507 < 0.0001 

ORDO late METS late +21.39 2.00 10.712 < 0.0001 

ORDO late CO:METS early:ORDO late +22.96 2.36 9.718 < 0.0001 

ORDO late CO:ORDO early:METS late +21.04 3.39 6.215 < 0.0001 

 

 

b) Total offspring production 

Compared levels  Estimate Standard error t value P-value 

Control METS early +24.64 1.48 16.614 < 0.001 

Control METS late +22.13 1.50 14.724 < 0.001 

Control ORDO early +11.40 1.79 6.412 < 0.001 

Control ORDO late +9.83 1.46 6.713 < 0.001 

Control CO:METS early:ORDO late +25.70 1.82 14.064 < 0.001 

Control CO:ORDO early:METS late +23.67 2.71 8.749 < 0.001 

ORDO early METS early +13.24 1.91 6.921 < 0.001 

ORDO early METS late +10.72 1.92 5.562 < 0.001 

ORDO early CO:METS early:ORDO late +14.302 2.19 6.528 < 0.001 

ORDO early CO:ORDO early:METS late +12.271 2.96 4.141    0.001 

ORDO late METS early +14.807 1.63 9.109 < 0.001 

ORDO late METS late +12.292 1.64 7.480 < 0.001 

ORDO late CO:METS early:ORDO late +15.871 1.95 8.160 < 0.001 

ORDO late CO:ORDO early:METS late +13.840 2.786 4.967 < 0.001 

  



c) Rate of offspring production 

Compared levels  Estimate Standard error t value P-value 

METS late METS early +0.20 0.06 3.315 0.0185 
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GENERAL DISCUSSION 

 

 

Abiotic and biotic parameters of the environment can modulate the outcome of parasitic infections, and 

many of these factors are expected to shift under the influence of anthropogenic disturbances. 

Understanding whether and how future environmental shifts will modify the occurrence and severity of 

diseases is of high interest in the Daphnia-microparasite system, due to the host’s ecological relevance 

as a keystone organism and its contribution to ecosystem-level processes. Throughout the four chapters 

of this thesis, we aimed to identify both direct (i.e. rising water temperature, plastic pollution) and 

indirect (i.e. cyanobacterial dominance, temporality of epidemics) sources of interference between 

human activity and host-parasite interactions in a commonly occurring freshwater system. 

In Chapter 1, we identified a glaring gap in the literature by considering water temperature and 

phytoplankton community composition (a major determinant of zooplankton diet quality) as deeply 

interconnected factors, rather than separate sources of environmental stress. We found that these can 

have complex, associative effects on parameters of host and parasite fitness. In Chapter 2, we examined 

a potential source of environmental interference between toxin-producing cyanobacteria and free-living 

stages of the parasite. Although parameters associated with climate change were previously shown to 

decrease the infectious potential of parasite transmission stages, high concentrations of dissolved 

cyanobacterial toxins were not identified as one such mechanism. In Chapter 3, we provided the first 

experimental evidence of direct interactions between plastic pollution and infections of zooplankton, 

adding our contribution to a relatively new – yet promising – body of work. Finally, Chapter 4 

highlighted the importance of considering within-host priority effects, resulting from the spatial and 

temporal overlap of distinct species of parasites competing for host resources. 

 

1. How will future environmental shifts affect the performance of 

Metschnikowia in natural Daphnia populations? 

 

1.1 Effects of lake warming and increased cyanobacterial dominance 

Among the four scenarios that were investigated throughout this thesis, none of the tested factors had a 

straightforward, net positive effect on parasite transmission. For instance, we found that elevated 

temperature increased the net spore output of Metschnikowia when genotype AMME_12 was fed either 

Scenedesmus or Microcystis (Chapter 1, Section 3.1); however, we found the opposite effect when 

AMME_12 was fed with Planktothrix. Furthermore, elevated temperature consistently reduced parasite 

transmission in genotype AMME_51 (i.e. across all three diets). Thus, out of six possible combinations 
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of host diet and genotype tested in this chapter, only two benefitted from increased parasite transmission 

under a predicted temperature elevation of 4°C. Our results suggest that the interactive effects of high 

temperature and Planktothrix-based diets could be highly unfavourable to the parasite in communities 

that are dominated by this common genus, or possibly other filamentous species of similar nutritional 

value and toxicity (e.g. genus Limnothrix and Pseudanabaena), which were found to dominate 

phytoplankton composition in some European eutrophic lakes during the summer/autumn period 

(Nixdorf et al., 2003). Moreover, given the particularly low growth rates found for D. galeata × 

longispina under conditions reflective of future lake warming, we suspect that increasing occurrences 

of heat-waves and cyanobacterial dominance in summer could limit the spread of horizontally-

transmitted parasites that rely on high host population densities for their efficient transmission 

(particularly if such conditions occur at an early phase of their epidemic curve). 

Overall, the findings of Chapters 1-2 are consistent with previous studies supporting negative 

effects of either low food quality or quantity on transmission traits of Metschnikowia (Penczykowski et 

al., 2014; Sánchez et al., 2019) and other parasites of Daphnia (Mitchell & Read, 2005; Frost et al., 

2008; Ben-Ami et al., 2010; Stjernman & Little, 2011; Coopman et al., 2014; Lange et al., 2014). Our 

results also support non-straightforward effects of temperature elevation on parasite transmission. 

While previous reports suggested that Metschnikowia benefits from higher transmission at high 

temperatures, due to increased foraging rates of the host (Cuco et al., 2018; Shocket et al., 2018a, 

2018b), a later study found that high temperature did not alter post-exposure infectivity and even 

reduced spore production of the parasite (Shocket et al., 2019). Finally, elevated temperature could also 

influence freshwater dynamics at higher trophic levels, generating top-down control on Daphnia-

parasite interactions: as the thermal physiology of fish increases more steeply than that of the host, an 

epidemiological model suggested that high temperatures could inhibit epidemics, by way of increased 

predation risk in the Daphnia-Metschnikowia system (Hall et al., 2006). 

 

1.2 Effects of the external environment on parasite resting stages 

In freshwater environments, spores of environmentally-transmitted parasites often display high 

survivability outside their hosts (Ebert, 2005). For instance, endospores of the bacterium P. ramosa can 

remain infectious for over 20 years (Decaestecker et al., 2004). Spores of horizontally-transmitted 

parasites that are not immediately transmitted to susceptible hosts after release often build up as spore 

banks in the sediment. Because they exhibit such high lifespan in the water column, these resting stages 

are potentially vulnerable to environmental sources of degradation (Duffy & Hunsberger, 2019). Here, 

we hypothesized that high concentrations of secondary metabolites produced by cyanobacteria could 

reduce the infectivity and/or reproductive ability of resting stages of Metschnikowia, should they get in 

contact prior to their ingestion by a susceptible host. However, we found no evidence for negative 
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effects of dissolved cyanobacterial content against fungal spores (Chapter 2; Section 3.1). Instead, the 

proportion of successfully infected hosts even increased in one of two tested genotypes (though we 

suspected this could be due to variable sensitivity to cyanobacterial toxins at the host level, rather than 

a direct alteration of the parasite itself). 

Although our initial hypothesis was not supported by these results, prior studies addressing 

more direct consequences of global warming on abiotic parameters of freshwater bodies promote the 

idea of constrained epidemics under future climactic changes. For instance, degradation of the 

atmospheric ozone layer influences the amount of ultraviolet radiations entering the environment, with 

potentially harmful effects on live organisms (Jankowski & Cader, 1997). Following this premise, 

Overholt et al. (2012) found that relatively low levels of UV radiations could sharply decrease the 

infectivity of Metschnikowia spores, but did not affect the host’s inherent susceptibility to the parasite. 

In a later study, increasing intensities of UVs and visible light were also shown to reduce the infectivity 

of P. ramosa (Overholt et al., 2020). Finally, Shocket et al. (2019) found that prolonged exposure to 

temperatures above 20°C could reduce the infectivity of free-living stages in Metschnikowia. Therefore, 

results currently available in the literature point towards the existence of direct mechanisms of 

interference between climate change-induced parameters of freshwater environments and the resting 

stages of fungal and bacterial parasites of Daphnia. 

 

1.3 Effects of freshwater contamination by nanoplastics 

Throughout Chapters 1-2, we found that infected Daphnia of genotype AMME_51 generally supported 

poor parasite transmission under the effects of environmental disturbances. Using the same assemblage 

of host and parasite, we showed that a different source of environmental stress (high concentrations of 

nanoplastics in the culture medium) also had diverging effects on distinct parameters contributing to 

the parasite’s success (Chapter 3, Section 3.1). For instance, both concentrations of nanoplastics 

(5 mg/L and 20 mg/L) increased host susceptibility, as compared to the control (0 mg/L) treatment. 

However, when taking into account an offsetting effect of nanoplastics on host viability (i.e. early 

mortality of the host increased as NP concentrations went higher), we found that the overall success of 

infection did not differ across all NPs treatments. Furthermore, the highest concentration of nanoplastics 

tested in our study strongly reduced the parasite’s ability to produce spores. As pointed out by Duneau 

et al. (2011), distinct phases of the parasite’s infection cycle may be influenced differentially by the 

environment. Here, we showed that a seemingly positive increase in the parasite’s infectivity could be 

offset by a higher proportion of hosts dying before the parasite could complete its infectious cycle, 

resulting in either neutral effects (“low” NP concentration) or negative effects on the parasite’s overall 

transmission success (“high” NP concentration). 
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Although studies investigating the direct consequences of micro- and nanoplastic pollution on 

parasitic infections are still in their infancy, our findings in the Daphnia-Metschnikowia system remain 

consistent with a limited number of experimental reports available thus far. Notably, Schampera et al. 

(2021) found that polystyrene nanoplastics could form hetero-aggregates around filaments of 

Planktothrix agardhii, which reduced their availability to zoospores and contributed to an overall 

reduction of infection severity by a chytrid (i.e. fungal) parasite. In their study investigating trematode 

parasites of amphibians, Buss et al. (2021) found that polyester microfibers did not affect the survival 

of cercarian stages or host susceptibility when applied independently; however, simultaneous exposure 

of both antagonists reduced infection success by about 33% at concentrations of 10 and 20 mg/L. In a 

complementary field survey, the authors also found evidence for ubiquitous microfiber contamination 

across all of nine sampled ponds (USA, Pennsylvania). These few pioneer studies suggest that plastic 

contaminants of different size and shape can exhibit strong inhibitive effects on common parasites of 

freshwater biota. Still, besides cladoceran and cyanobacteria, important actors of freshwater ecosystems 

remain to be explored in this context. Examining the effects of micro- and nanoplastics on waterborne 

diseases should be relatively easy to implement for those host-parasite systems that already benefit from 

well-defined protocols of experimental infection, such as fish (Bracamonte et al., 2019), crayfish 

(Mojžišová et al., 2020) and freshwater snails (Babaran et al., 2021). 

 

1.4 Effects of parasite phenology and sequential infections 

In Chapter 4, we showed that sequential infections between Metschnikowia and Ordospora had 

diverging effects on the fitness of both parasites, depending on which species encountered the host first. 

The direction of these effects ranged from neutral to negative on host viability and spore production, as 

compared with single infections; therefore, none of the two tested scenarios involved an increase in the 

fitness of either parasite. While we did not test for simultaneous infection in our study, it is unlikely 

that these would result in any positive gain to the parasites, as can be inferred from the results of 

simultaneous infections in Lohr et al., 2010b (i.e. simultaneous infection of Metschnikowia and a 

castrating parasite of the gut, Caullerya mesnili induced a strong reduction in the number of mature 

spores produced by Metschnikowia and spore clusters of Caullerya). Whether environmental shifts 

associated with climate change will influence the distribution of both parasites is not clear; however, it 

is likely that abiotic parameters play an important part in controlling the seasonal emergence and 

withdrawal of either parasite. Green (1974) hypothesized that the distribution of certain parasites of 

Daphnia was influenced by the severity of winter and spring temperatures. For instance, maximally hot 

temperatures in summer and lake cooling in winter were suggested to constrain transmission of 

Metschnikowia in temperate lakes, thus confining seasonal outbreaks to the autumn period (Hall et al., 

2006; Shocket et al., 2019; Duffy & Hunsberger, 2019). While factors governing the seasonal patterns 
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of microsporidia are not fully understood, several hypotheses have been proposed, including 

mechanisms of density-dependent transmission (Green, 1974; Brambilla, 1983; Ebert, 1995) and 

limited success of infection at low temperatures (Ruttner-Kolisko, 1977; Vidtmann, 1993; Ebert, 1995). 

The latter received further support from recent experimental studies, as no successful infection by 

Ordospora could be detected below 11.8°C, which could explain their absence in winter and later re-

emergence in the spring (Kirk et al., 2018; 2020). 

 Due to Ordospora being a specialist parasite of D. magna only, coinfections by these two 

parasites are most likely to occur in rock pools and pond populations, where Metschnikowia generally 

exhibits much lower prevalence than in lakes (Stirnadel & Ebert, 1997; Goren & Ben-Ami, 2013). 

Because the probability of infecting the host first correlates with a parasite’s prior prevalence in the 

population (Clay et al., 2019a), field data suggests that most sequential infections between these two 

parasite should occur with prior establishment of Ordospora in the gut epithelium (unless transmission 

stages are picked up from mixed spore banks residing in the sediment). Thus, the current pattern of 

infection expected in natural populations seems slightly unfavourable to both parasites, as compared 

with single infections by either species (Chapter 4). Future changes in the climate may shift the 

emergence of either parasite in ways that either reinforce or minimize the temporal overlap of their 

respective epidemic curves. For instance, the minimal temperature threshold compatible with 

Ordospora infections could be reached earlier in the spring, thus pushing microsporidian outbreaks 

earlier in the year. Such a pattern could reinforce prior dominance of microsporidia in D. magna 

populations and impair the later emergence of Metschnikowia. Using epidemiological models 

implementing within-host priority effects, parameterized from sequential infection assays between 

Metschnikowia and the bacterium Pasteuria ramosa, Clay et al. (2020) predicted that advancing the 

start date of bacterial epidemics relative to that of the fungus would decrease the mean prevalence of 

Pasteuria, supporting the idea that future climactic changes could affect the timing and outcome of co-

occurring epidemics. 

 

Overall, it appears that most anthropogenically-derived shifts explored throughout this thesis 

resulted in either neutral or negative effects on the transmission of our focal parasite, with only limited 

evidence for net positive gains in transmission-related traits. The few positive effects of anthropic 

disturbances on parameters of parasite fitness were either highly context-dependent (Chapter 1) or 

applied to discrete parameters of parasite fitness that were not representative of the parasite’s overall 

transmission success (Chapter 3). Meanwhile, evidence for negative effects were found in all four 

chapters, when comparing the performance of the parasite across disturbed and control conditions. The 

respective effects of each factor explored throughout this thesis, as well as the different pathways 

connecting these anthropic disturbances in freshwater ecosystems are represented graphically in Box 5. 
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In this regard, our combined findings provide further nuance to the highly topical 'warmer is sicker' 

hypothesis, thus converging with the opinions of Hall et al. (2006), who concluded that parasite 

infection traits would mostly respond negatively to temperature changes in the Daphnia-Metschnikowia 

system. Moreover, it introduces the possibility of shifting the question slightly: rather than focusing on 

rising temperatures alone, one would legitimately ask whether the spread of parasitic diseases should 

increase or decrease in an increasingly ‘disturbed’ or ‘anthropized’ world (as was previously proposed 

by Lafferty & Kuris, 2005). In the present work, we highlight that most disturbances introduced by 

human activity appear to converge towards lower parasite success – rather than the opposite – with the 

potential to constrain epidemics in freshwater ecosystems, as evidenced by a commonly distributed and 

ecologically relevant host-parasite assemblage. 

 However, one should bear in mind that the sensitivity of distinct infection traits to 

environmental variables may be highly system-specific, and thus not necessarily generalizable to the 

wider diversity of parasites encountered in the Daphnia genus. For instance, direct counterexamples 

were found by Sánchez et al. (2019), who showed that the overall transmission success of P. ramosa 

was favoured by low-quality diets. The authors suggested that high-quality, non-toxic diets may help 

Daphnia suppress the pathogen’s replication; by contrast, low-quality diets would prevent the 

successful display of host defences, while no medicinal effect of cyanobacteria was found against this 

bacterial parasite. In other freshwater host-parasites systems, contrasting effects of environmental 

disturbances were also found, which seemed to depend on the taxonomic identity (e.g. trematode vs. 

echinostome) and levels of host-specificity (e.g. generalist vs. specialist) displayed by such parasites 

(Koprivnikar & Redfern, 2012). Overall, we argue that the spread of waterborne parasites should not 

be inferred from discrete parameters of infection that do not reflect, on their own, the overall 

transmission success of a pathogen in the environment. Moreover, future modelling and experimental 

studies should not fail to consider the interdependency of environmental disturbances, instead aiming 

for more integrative approaches to epidemiological predictions in a changing world. 
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Box 5. Graphical summary of our findings. Environmental disturbances associated with 

climate change and plastic pollution of freshwater environments promote neutral to negative 

effects on the transmission of Metschnikowia. Regular arrows represent context-dependent effects 

that either enhanced (+) or reduced (-) parameters of parasite transmission in our studies. Flat-ended 

arrows represent strictly inhibitive effects (-) of environmental disturbances on parasite transmission. 

The greyed out arrow represents the absence of a predicted effect. 
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2. Interactive effects of environmental stressors: the missing links 

 

In their review summarizing the effects of micro- and nanoplastics on freshwater biota, Agathokleous 

et al. (2021) remind their audience that “no single stress occurs in the environment”. This point was 

made to highlight the recent discovery of interactive effects between micro- and nanoplastics and other 

environmental factors, including copper contamination (Zhu et al., 2020), pH levels (Piccardo et al., 

2020), growing media (Ustabasi & Baysal, 2020; Ziajahromi et al., 2019) and natural food availability 

(Ogonowski et al., 2016). More importantly, Yang et al. (2020) found that biological responses to 

nanoplastics could be altered by environmental shifts representative of climate change, showing that 

elevated levels of CO2 and warmer temperatures could attenuate the toxicity of nanoplastics towards 

Scenedesmus obliquus. The implications of such findings are compelling, and highlight the importance 

of using ‘big picture’ approaches when making predictions about the spread of disease in freshwater 

ecosystems. For instance, most freshwater bodies threatened by plastic pollution are likely to be 

concurrently affected by warming. While each independent factor was shown to modulate the outcome 

of infection in our focal system (Chapters 1 & 3), complex interactions may arise that change the 

directional effects that would be expected under the single threat of nanoplastics and temperature. 

Chapter 1 represented such an attempt to account for the interdependency of environmental challenges 

at play in freshwater ecosystems, and allowed us to observe this precise phenomenon across different 

assemblages of temperature and host diet quality. 

Nevertheless, experimental studies focusing on simpler designs are still required, especially 

when trying to identify biological processes that are still poorly understood in the literature. For 

instance, Chapter 3 focused on the effects of nanoplastics on host-parasite interactions in a Daphnia-

yeast system. Because such effects were previously unaccounted for in the literature, we deliberately 

limited the scope of this study, prioritizing the distribution of our replicative and statistical power 

towards the analysis of a single explanatory variable (i.e. nanoplastic concentration). By addressing 

discrete biological processes that lack prior documentation, such experiments can then serve as stepping 

stone for future research to improve upon. For instance, we were able to identify negative effects of 

nanoplastics on parasite reproduction, which did not occur until concentrations > 5 mg/L. Building upon 

such preliminary findings, future research could then focus on i) refining the determination of a dose-

response relationship, using a greater selection of nanoplastic concentrations or ii) attempt to simulate 

more realistic conditions in the laboratory, by accounting for the interactive effects of nanoplastics and 

other environmental stressors. Similarly, epidemiological modelling approaches may benefit from the 

establishment of prior experimental data (e.g. spore yield, host lifespan), which can then be used to 

parameterize predictive models (e.g. Clay et al., 2019b, 2020). 
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Based on these premises, future research could focus on investigating the joint effects of 

elevated temperature and plastic pollution in experimental infections of Daphnia. As water temperature 

increases, the metabolic rate of Daphnia is elevated, promoting higher rates of particle uptake 

(McMahon, 1965). This phenomenon was previously suggested to promote the recruitment of parasite 

spores, including those of Metschnikowia under conditions of high temperature (Cuco et al., 2018; 

Shocket al., 2019). The increased filtering rate of Daphnia under elevated temperature may create 

contradictory effects on infection success, favouring the acquisition of parasite spores, while 

simultaneously increasing the intake of nanoplastic particles, which were found to negatively affect the 

parasite’s ability to produce spores at high concentrations (Chapter 3; Section 3.1). Moreover, it was 

previously shown that nanoplastic uptake could reinforce the host’s haemocyte response, particularly 

at high temperature (Sadler et al., 2019). Such negative effects of nanoplastics on parasite growth may 

balance out the beneficial effects of temperature on encounter rates, suggesting that lowest parasite 

success could be attained under high NP × high temperature conditions. On a related side note, Feng et 

al. (2020) showed that nanoplastics could promote the production and later release of microcystin in 

Microcystis aeruginosa. Although results from Chapter 2 suggest that this should not interfere with the 

parasite in its free-living stage, concurrent exposure to nanoplastics and Microcystis-based diet could 

exert stronger effects of Metschnikowia when ingested as part of the host diet, as was observed in 

Chapters 1 & 2. Finally, Besseling et al. (2014) found that nanoplastics could impair the growth rate of 

Scenedesmus obliquus, by reducing the chlorophyll concentration of algal cells. Such a phenomenon 

could further contribute to a reduction of zooplankton diet quality, which begs the question of 

interactive effects between nanoplastics and food levels in the context of parasitic infections, and may 

motivate yet another link to explore throughout future studies. 

Besides the gradual accumulation of plastic particles in the food chain, sediments and the water 

column, freshwater ecosystems are additionally threatened by a variety of chemical contaminants, many 

of which are derived from industrial and agricultural purposes. Adding to our understanding of 

interactive environmental stressors, Cuco et al. (2018) already demonstrated that a temperature 

elevation of 4°C (equivalent to the one tested in Chapter 1) could reinforce the anti-parasitic actions of 

an agricultural fungicide towards Metschnikowia, suggesting that temperature can act as a modulator of 

interactions between pollution and disease in freshwater ecosystems. Similar interactions between 

temperature and contaminants were previously identified in Daphnia; however, these studies were 

conceived as single-species ecotoxicological assays, and did not address the possible implications for 

parasites of Daphnia. For instance, a combination of high temperature (26°C) and high concentration 

of nitrate (>250 mg NO3/L) reduced the mortality of D. magna by 60%, which was three times stronger 

than the effect of either stressor applied independently (Maceda-Veiga et al., 2015). Similarly, Bae et 

al. (2016) found that multi-generational exposure to elevated temperature aggravated the toxicity of Cu 

particles, in the form of stronger inducement of D. magna’s oxidative stress response, which could 
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translate to the next generation. Such interactive effects of temperature and environmental pollutants 

(other than nanoplastics) represent other promising leads that could be explored in future experimental 

assays using the Daphnia-microparasite system. 

 

3. Understanding the complexity of within-host processes 

 

Experimental studies on sequential infections have determined that complex within-host processes – 

resulting from the competition between sequentially arriving parasites – can scale up to alter epidemic 

dynamics at the community level (Ezenwa et al., 2010; Bushman et al., 2018; Clay et al., 2020). 

Whether these imply modifications of the host’s immune system, metabolic rate or mechanisms of 

resource allocation, the influence of external environmental factors on parameters of parasite 

transmission often find an explanation in complex processes that occur at the intra-host level; however, 

these may be difficult to observe in situ. While some of the factors contributing to infectious cycles are 

easy to identify and can readily be measured in experimental settings, such as foraging rates 

(Penczykowski et al., 2014) or the gut residence time for parasite spores (Kirk et al., 2019) and 

contaminants (Ogonowski et al., 2018), identifying the exact sub-cellular processes tying environmental 

disturbances with variable infection outcomes may require advanced techniques of visualization. For 

instance, we hypothesized that direct interference between nanoplastics and the expression of immune 

defences could explain the higher susceptibility of hosts exposed to NPs in Chapter 3; however, the 

experimental setup of our study did not allow us to confirm this conjecture by direct observations. For 

this purpose, one may consider combining experimental infection assays with fluorescent markings of 

nanoplastic particles (e.g. a similar method was previously used by Chae et al., 2018 to observe the 

distribution of NPs in live Daphnia). Alternatively, the staining technique that we used to facilitate 

quantification of microsporidian spores in Chapter 4 may be adapted to monitor the movements of 

Ordospora in live Daphnia, provided that staining agents do not bear toxicity to either the parasite or 

the host itself. Such complementary methods may be used to shed light on the sub-cellular processes 

underlying infections in conditions of environmental stress. 

Ultimately, some of the environmental stressors that were investigated throughout this thesis 

may have influenced infection outcomes via mechanically similar processes. For instance, Chapter 4 

supported the existence of within-host priority effects resulting from the sequential infection order of 

Ordospora and Metschnikowia. Among the antagonistic processes thought to derive from sequential 

infections, one can cite mechanisms of priming of the host’s immune system (Rodrigues et al., 2010; 

Syller & Grupa, 2016) or the phenomenon of prior resource sequestration by early arriving parasites 

(Graham, 2008). Moreover, some highly virulent parasites of Daphnia are capable of castrating their 

hosts (e.g. Caullerya mesnili; Wolinska et al., 2004), a parasitic strategy that is often accompanied by 
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an atrophy or malformation of the host’s gonadal tissues (Baudoin, 1975). While we showed that 

Daphnia fed with Microcystis and Planktothrix diets grew smaller and produced fewer offspring than 

control individuals fed with green algae (Chapter 1, Supporting Information), Allan (1976) additionally 

reported that the ovaries of Microcystis-fed individuals also appeared to be less developed. In other 

words, whether prior atrophy of the ovaries and depletion of the host’s resource that would normally be 

allocated towards reproduction were caused by i) the ingestion of a low-quality diet or ii) prior infection 

by a parasite competing for resource exploitation, two distinct sources of environmental stress may 

result in the same physiological end point, which could have been responsible for the lower growth rate 

of Metschnikowia reported across Chapters 1, 2 and 4. To further this analogy, it was previously shown 

that nanoplastics could inhibit reproduction, induce abnormal embryonic development in Daphnia 

galeata (Cui et al., 2017) and that the uptake of polystyrene nanoparticles could be mediated through 

the brood chamber in D. magna (Brun et al., 2017). Finally, the possible recognition of nanoplastic 

particles as ‘non-self’ by the host’s immune system may result in similar mechanisms of immune 

priming to those attributed to sequential infections: in fact, short-term exposure to polystyrene 

nanoplastics was shown to induce the expression of stress defence mechanisms in Daphnia, such as the 

production of reactive oxygen species (Liu et al., 2018, 2019, 2020). 

The inherent life mode and nature of the host tissue targeted by distinct endoparasites may also 

influence how much of an impact nanoplastics could have on their respective development. Because 

cell membranes are permeable to polystyrene nanoplastics (Bojic et al., 2020; Jung et al., 2020), plastic 

pollution may be more detrimental to intracellular parasites of Daphnia (e.g. Ordospora, which 

colonizes cells of the gut epithelium) as opposed to parasites reproducing in the host’s body cavity (e.g. 

Metschnikowia). Thus, in the presence of nanoplastics, intra-host competition may be swayed in favour 

of the fungal parasite. This hypothesis is currently undergoing testing in our research group, using the 

same assemblage of host and parasites used in Chapter 4 (Daphnia magna NO-V-7, singly or coinfected 

with Metschnikowia bicuspidata or Ordospora colligata). Using the experience and knowledge gained 

from working with nanoplastics (Chapter 3) and the Metschnikowia-Ordospora coinfection system 

(Chapter 4), a follow-up experiment was recently performed in our laboratory. Although full disclosure 

of the data is not possible at the time of writing this dissertation, preliminary analyses suggest a similar 

threshold for hormesis in uninfected Daphnia magna (i.e. slightly positive effects of NPs on parameters 

of host fitness up to 5 mg/L), while the virulence of Metschnikowia in both single and co-infections 

seemed to increase even at the lowest NP concentration (Schlösser et al., in prep). Moreover, the 

upcoming results will allow us to estimate the impact that these two parasites exert under simultaneous 

infection, which was not previously tested in Chapter 4. One possible mechanism that could interfere 

with the establishment and later multiplication of Ordospora in the gut epithelium involves the 

formation of an intracellular parasitophorous vacuole, which is believed to be produced by the host at 

the time of infection (Larsson et al., 1997). Prior or later intrusion of nanoplastics into epithelial cells 
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may disrupt the host-mediated processes involved in the formation of this structure, thus preventing the 

development of sporogonial stages. 

Finally, one should bear in mind the limits of extrapolating individual-based results to natural 

populations. The same experimental dose (i.e. number of spores / volume) applied to an experimental 

population of Daphnia, as opposed to individually-monitored Daphnia in reduced volume, may result 

in different transmission dynamics, based on factors such as between-host competition for resource 

acquisition or simply individual stochasticity. Even within clonally-reproducing hosts, Daphnia of the 

same genotype may still differ in size, due to stochastic differences in their early life-history or the 

clutch order they originated from (Ebert, 1991). As such, larger or healthier individuals are expected to 

exert more efficient filtering rates, thus promoting the ingestion of a larger proportion of dissolved 

particles (whether it be food, pollutants, or infective propagules), which could simultaneously reduce 

the encounter rate of smaller or younger Daphnia. In natural populations, distinct age classes can coexist 

at a given time, and all Daphnia do not encounter parasite spores at the exact same age. Thus, there 

could be an interesting equilibrium between more resistant adults depleting the pool of parasite 

propagules towards an infectious sink (i.e. failed infection, that will not result in the production of new 

parasite propagules) while juvenile Daphnia, shown to have weaker immune systems and gut barriers 

(Stewart Merrill et al., 2019), would benefit from a diminished risk of ingesting parasite spores. 

Whereas simulating realistic age structure at the population level would more accurately represent the 

conditions for parasite transmission in nature, individual-based experiments that provide such 

knowledge in the first place (e.g. Izhar & Ben-Ami, 2015; Stewart Merrill et al., 2019 for age- and size-

related susceptibility to infection) represent equally important contributions to the literature. According 

to Kirk et al. (2021), while processes observed among vector-borne parasites tend to translate from 

individual to the population level, environmentally-transmitted parasitism may operate by a different 

set of rules, suggesting the need for trait-based studies at both the individual and population levels in 

these systems. As Metschnikowia belongs to the second category, both approaches should contribute 

equally to the literature, each providing different – yet complementary – sets of information towards 

our understanding of infection dynamics. Ideally, epidemiological models should aim at parameterizing 

their equations, using values determined from individual-based data, while confirming that simulated 

transmission patterns do indeed match with those observed in the field as well as population-level 

experiments. 
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4. Looking forward : conservation and restoration of freshwater 

ecosystems 

 

Although global environmental shifts may result in detrimental effects towards a common fungal 

parasite of Daphnia, the growth rate of host populations should also respond negatively to future 

environmental disturbances. Indeed, Chapter 1 and Chapter 3 both showed strong combinatory effects 

of parasite-induced virulence and environmental stress (i.e. elevated temperature, low-quality diets, 

nanoplastics) on fitness parameters of Daphnia, which could be even more exacerbated, considering 

that all three of those environmental stressors may occur concurrently with parasite epidemics in nature. 

The ecological implications of parasites, however, may extend beyond negative effects towards their 

hosts: with the potential to establish alternative trophic links and the ability to modulate existing ones 

(Valois & Burns, 2016; Frenken et al., 2020), parasites may even create positive feedback loops at the 

community level, with parasite diversity being sometimes considered as an indicator of ecosystem 

health (Hudson et al., 2006; Hatcher et al., 2012). Thus, aiming towards a reduced occurrence of 

parasitic infections in freshwater environments does not represent a conceivable scenario. Instead, 

future conservation measures should focus on i) understanding how climactic changes and anthropic 

disturbances will affect disease dynamics in the future and ii) developing and applying methods to either 

limit – or revert – the ecological impacts of human activity on the status of freshwater bodies. 

Overall, the experimental data presented throughout the present work should provide 

incremental support towards the former objective. While this overarching topic has been promoted since 

the end of the 20th century (Martens et al., 1995), we were able to identify a number of grey areas – 

particularly relating to freshwater ecosystems – that have only recently started to gain traction in the 

scientific literature. Beyond the contribution of experimental infection assays, field-based science and 

environmental monitoring may also capitalize on sampling sites of interest. For instance, using a set of 

lakes artificially heated by adjacent power-plant cooling activity, researchers have the possibility to 

observe the effects of future lake warming in ‘live-action’ settings (Dziuba et al., 2020, 2021). By 

comparing these sites of interest with neighbouring, ‘control’ lakes (that were not affected by the same 

anthropization pressure), such studies have and will continue to provide valuable insights into the 

response of Daphnia communities and their parasites towards a predicted temperature elevation of 4°C. 

Although anthropic pressures have already altered the trophic state and abiotic conditions of 

freshwater bodies, there is increasing support in the literature for innovative methods that would enable 

a gradual restoration and possible de-contamination of said environments. One of the first measure to 

consider – and perhaps the most relevant to our system of interest – consists in the preservation of 

Daphnia populations themselves. Indeed, filter-feeding cladocerans have been regularly considered for 

conservation purposes, and may contribute to the control of bloom-forming cyanobacteria (Gerasimova 
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et al., 2018) and de-eutrophication of water bodies (Gerasimova & Pogozhev, 2002; Pogozhev & 

Gerasimova, 2005). Using similar approaches, recent studies have provided support for the biological 

control (i.e. ‘bioremediation’) of various contaminants. Such options that have been considered include 

the biodegradation of plastics (via enzymatic digestion) by specialized bacteria (Yoshida et al., 2016; 

Hiraga et al., 2019) and aquatic fungi (Paço et al., 2017), or the biodegradation and phytoremediation 

of pesticides using freshwater macrophytes and algae (Vandermaesen et al., 2016; Riaz et al., 2017). 

Recent technological innovations may also contribute to this purpose, including advanced technologies 

of wastewater treatments to remove plastic pollution (Lares et al., 2018), endocrine disruptors (Kim et 

al., 2021) or the removal of pesticides using multi-walled carbon nanotubes (Dehghani et al., 2019). 

However, it must be noted that such restoration methods may not be sufficient to compensate the rate 

at which excess nutrients and contaminants enter the environment; as such, conservation policies should 

concentrate their efforts towards reducing their discharge in the first place (Zamparas & Zacharias, 

2014). Alternatively, this may be achieved by encouraging the production of biodegradable plastic 

matters, which can be derived from cellulose or lignin (Silva et al., 2018). 

Not unlike the aforementioned process of environmental remediation, which can be achieved 

by localized efforts to restore the chemical properties of contaminated sites, a similar course of action 

may be taken at a global scale in order to limit our future contribution to climate change. According to 

the most recent report from the International Panel for Climate Change (IPCC 2021), predicted 

scenarios implying very low (SSP1-1.9) or low (SSP1-2.6) emissions of greenhouse gases could have 

rapid and sustainable effects to limit the impact of human activity on climate change. Provided a strict 

and globalized commitment to a lowest-emission scenario, it may be possible to limit the rising 

occurrence of climate-induced disasters (such as extreme sea levels) and avoid the crossing of 

dangerous heat thresholds by the end of the century. With regards to global surface temperature 

elevation, noticeable differences to the predicted trends may even emerge under shorter terms. Finally, 

provided the successful implementation of anthropogenic CO2 removal to a scale that would exceed 

residual emissions, it may not be too late to envision a future reversal and possible shift towards a net 

cooling scenario (Allan et al., 2021). Though many efforts and long-term promises are still required in 

order to revert – or at the very least hinder – our impact on the environment, understanding in which 

way future environmental conditions will affect host-parasite dynamics in threatened ecosystems 

constitutes a necessary and commendable first step towards applying possible conservation and 

restoration measures. 
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Conclusion: Human activity translates into a wide array of environmental shifts, from rising 

temperatures at a global scale to the localized pollution of freshwater bodies. Disturbances of 

anthropogenic origin may act independently or interactively to affect the growth of zooplankton, as well 

as modulate their interactions with environmentally-transmitted parasites. Convergent evidence 

suggests that the transmission of a common fungal parasite of Daphnia may be constrained under 

increasingly anthropic conditions. Overall, future predictions of disease dynamics should consider that 

no single stress occurs in the environment, and that distinct phases of a parasite’s infectious cycle may 

be influenced differentially by such disturbances.  
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