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Compressed sensing studies linear recovery problems under structure assumptions. 
We introduce a new class of measurement operators, coined hierarchical measure-
ment operators, and prove results guaranteeing the efficient, stable and robust 
recovery of hierarchically structured signals from such measurements. We derive 
bounds on their hierarchical restricted isometry properties based on the restricted 
isometry constants of their constituent matrices, generalizing and extending prior 
work on Kronecker-product measurements. As an exemplary application, we apply 
the theory to two communication scenarios. The fast and scalable HiHTP algorithm 
is shown to be suitable for solving these types of problems and its performance is 
evaluated numerically in terms of sparse signal recovery and block detection capa-
bility.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The general idea of compressed sensing [11] is to exploit sparsity of a signal x to facilitate its recovery from 
incomplete and noisy linear measurements. The measurements being incomplete, the recovery problem is a 
priori ill-posed. Yet, if the signal is assumed to be sparse, efficient recovery is still possible. It can furthermore 
be theoretically guaranteed, provided the measurement operator A satisfies the restricted isometry property 
(RIP) [10]. We say that a matrix A has the s-RIP, if, for some constant δs(A) > 0,

|‖Ax‖2 − ‖x‖2| ≤ δs(A)‖x‖2 (1)
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for all s-sparse vectors x and with ‖ · ‖ denoting the (Euclidean) �2-norm. Sometimes, signals fulfill stronger 
structural assumption than sparsity. In this work, we consider hierarchical sparsity (hi-sparsity) as such an 
assumption. We define hi-sparsity as follows [20,33,37–39].

Definition 1 ((s, σ)-sparsity). Let x = (x1, . . . , xN ) ∈ Kn1 × · · · ×KnN , where K is either R or C. For s and 
σ = (σ1, . . . , σN ), we say that x is (s, σ)-sparse, if

• at most s blocks xi are non-zero and
• each non-zero block xi is σi-sparse.

To simplify notation, we use the shorthand (s, σ)-sparsity for the case when σi = σ for all i and scalar σ.

Remark 1. The definition can be recursively generalized to more sparsity levels with a nested tree structure. 
To be concrete, instead of assuming that the non-vanishing blocks are simply σi-sparse, we can require each 
block xi to consist of only σi non-vanishing sparse blocks. In other words, we require xi to be (σi, ςi)-sparse, 
with a vector ςi = (ςi,1, . . . , ςi,ni

) specifying the sparsity level of the blocks of the block xi. This gives rise to 
a three-level hierarchically structured vector. Recursively nesting the definition, we can organize the entries 
of a vector in a rooted tree of blocks with a sparsity restriction on each level, we refer to Ref. [33] for details. 
Importantly, most of our results hold for such general hierarchically sparse vectors with multiple levels of 
blocks. The proofs can be verbatim translated by simply allowing each σi to refer to an arbitrary multi-level 
hierarchical sparsity structure. We will however refrain from highlighting this in our notation to keep it 
concise.

Hi-sparse signals indeed appear in many applications. As a motivating example, we consider sporadic 
communication of a massive number of devices in the Internet of Things (IoT). In this scenario, we can 
imagine a large set of N devices sending messages xi to a base station. It is common to assume a sporadic 
device activity, i.e., that only a few devices are active at each instant. This corresponds to only a few 
blocks being non-zero. Additionally assuming that the messages are sparse (or sparsely encoded), the vector 
x = (x1, . . . , xn) of all messages that the base station needs to recover becomes hierarchically sparse, see for 
an overview, e.g., Ref. [9]. Alternatively, the messages themselves could also be assumed to be hierarchically 
sparse. For instance, wireless signals are often sparse in the angle-delay domain, which can be modeled as 
a type of hierarchical sparsity (see Ref. [44]). With such an assumption, x becomes hierarchically sparse in 
three levels (see Remark 1).

A subset of the authors of this work has introduced a general RIP-based recovery framework for hierarchi-
cally sparse vectors in Refs. [33,34], serving as our starting point here. In particular, they have introduced the 
hierarchical HTP (HiHTP), an adapted version of the celebrated hard threshold pursuit (HTP) [18] to recover 
hi-sparse signals. Importantly, for hierarchical sparsity, the projection step at the core of hard-thresholding 
algorithms, can be computed in the same computational complexity as sparse hard-thresholding. For this 
reason, HiHTP is efficient. The pseudo-code of the algorithm is given in Section 4. HiHTP comes with a 
recovery guarantee based on an adapted version of the RIP, the hierarchical RIP (HiRIP).

Definition 2 ((s, σ)-HiRIP constant). Let A ∈ Km̃,ñ. The smallest δ > 0 for which

(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

for all (s, σ)-sparse x is called the (s, σ)-HiRIP constant of A, δs,σ(A).

Provided the measurement operator has the HiRIP for suitable parameters, HiHTP can recover any 
hierarchically sparse signal in a stable and robust fashion. To be concrete, the following result holds.



A. Flinth et al. / Appl. Comput. Harmon. Anal. 58 (2022) 27–49 29
Theorem 1.1. [33, Theorem 9, simplified version] Suppose that δ(3s,3σ)(A) ≤ 1/
√

3. Given an (s, σ)-sparse 
x, the iterates x(t) of the HiHTP (Algorithm 1) with input data y = Ax + e with additive noise e satisfies 
‖xk − x‖ ≤ ρk‖x0 − x‖ + τ‖e‖ for constant ρ < 1 and τ only dependent on δ(3s,3σ)(A).

In the following, we simply say that a matrix ‘has the HiRIP’ when δs,σ(A) is small enough for the 
required parameters s and σ such that the recovery can be guaranteed.

These results motivate the study of the HiRIP properties of measurement operators. Within the frame-
work of model-based compressed sensing [5], HiRIP properties of Gaussian matrices can be directly derived 
by counting the number of sub-spaces constituting the signal structure [33]. Going significantly beyond these 
standard arguments and intimately related to the hierarchical structure, one can also establish a suitable 
HiRIP for Kronecker-product operators [32,33]. In this work, we follow-up and fully explore the relation 
between hierarchically structured signals and correspondingly structured measurement operators.

We study a general class of structured operators that are aligned with the hierarchical block-structure of 
the signals. Accordingly, we refer to them as hierarchical measurement operators.

Definition 3 (Hierarchical measurement operator). We call a measurement operator

H :
N⊕
i=1

Kni → KM ⊗Km

a hierarchical measurement operator if there exist matrices Bi ∈ Km×ni and a matrix A ∈ KM×N with 
columns ai ∈ KM , i ∈ [N ] := {1, 2, . . . , N} such that

H (x1, . . . ,xN ) =
N∑
i=1

ai ⊗ (Bixi) . (2)

We will refer to A as the top-level matrix and the Bi as the sub-level matrices.

Remark 2. 1. Kronecker product operators are special cases of hierarchical measurement operators. Indeed, 
if all Bi are equal to a single, common B, the corresponding hierarchical operator is equal to the operator 
given by the Kronecker product A ⊗B;

(A ⊗ B)x =

⎡⎣ a1,1B . . . a1,NB
...

. . .
...

aM,1B . . . aM,NB

⎤⎦⎡⎣ x1
...

xN

⎤⎦ =

⎡⎣ a1,1Bx1 + · · · + a1,NBxN

...
aM,1Bx1 + · · · + aM,NBxN

⎤⎦

=
N∑
i=1

⎡⎣ a1,iBxi

...
aM,iBxi

⎤⎦ =
N∑
i=1

ai ⊗ (Bxi) .

2. Note that the Bi may be of different sizes, as long as they map into the same space.

A hierarchical measurement operator can be thought of as a ‘multi-shot mixing operator’. For each ‘shot’ 
j ∈ [M ], the linear combination 

∑N
i=1 aj,iBixi, is a ‘mixture’ of the vectors Bixi ∈ Km. This makes the 

structure relevant for applications. For a concrete example, let us return to the IoT scenario that was briefly 
discussed above. We assume that each user employs a linear encoding operator Bi ∈ Cm,ni to encode 
his/her sparse message xi ∈ Cni into a sequence Bixi ∈ Cm, and that the base station has M antennas at 
its disposal. Over the course of m time-slots, the j:th antenna will then receive
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yj =
N∑
i=1

aj,iBixi (3)

where aj,i is the complex channel gain from the i-th user to the j-th antenna. Hence, the entirety of the 
base station’s measurement will be a hierarchical measurement of the vector x to be recovered.

Contributions By the results explained above, the recovery of hi-sparse signals can be guaranteed if a mea-
surement operator has the HiRIP. Hierarchical measurement operators consist out of constituent matrices 
that act in alignment with the block-structures. On each level, each block of a hi-sparse signal is assumed to 
be sparse. A matrix with the RIP acts almost isometrically on such blocks. This motivates the main question 
of this work: How are the HiRIP constants of hierarchical operators related to standard RIP constants and 
coherence measures of the constituent matrices?

We derive two main results: The first one, Theorem 2.1, establishes that the hierarchical measurement 
operator inherits RIP properties from its constituent matrices. If the top-level matrix A has the s-RIP and 
all sub-level matrices Bi have the σi-RIP, the hierarchical measurement operator will have the (s, σ)-RIP.

As a second result, Theorem 3.2, we show that the RIP assumption on the top-level matrix can be relaxed 
if the sub-level matrices are mutually incoherent in a specific notion. This provides a more detailed picture of 
HiRIP arising from the properties of the constituent matrices and introduces considerable flexibility to derive 
HiRIP for specific instances of hierarchical measurement operators. In addition to the analytical results, we 
study the recovery performance of hierarchical sparse signals from hierarchical measurement operators in 
numerical simulations. The numerical results on the one hand illustrate and verify our theoretical results. 
On the other hand, they showcase the applicability of our framework in two specific applications from mobile 
communications.

Prior work The concept of hierarchical sparsity falls into the framework of model-based compressed sens-
ing [5]. The sparsity model of model-based compressed sensing is very general: A union of sub-spaces ⋃

i Ui ⊆ Kn [29], is distinguished as the subset of structured signals. Many standard recovery algorithms 
can be generalized to this sparsity model. In order to adapt greedy approaches such as CoSAMP [31] and 
hard-thresholding approaches, e.g. IHT [7] or HTP [18], one modifies to projection step to project onto the 
union of sub-spaces. The efficiency in time and space complexity of hard-thresholding algorithms for recov-
ering structured signals depends on the existence of an efficient projection onto the structure set. Notable 
exceptions include the relaxation to approximate projections [4,22].

Hierarchical sparsity can be regarded as the combination of two prominent signal structures: One of the 
earliest examples of model-based compressed sensing are block-sparse signals [15–17,40]. Block-sparse signals 
are thereby blocked signals (x1, . . . , xN ) where only a few xi, say s, are assumed to be non-zero, but not 
necessarily in themselves sparse. In other words, they are (s, (n1, . . . , nN ))-sparse. The second special case 
is level-sparsity [2,27] which are block vectors (x1, . . . , xN ), where a sparsity σi is assumed for each block. 
Thus, level-sparse signals can be viewed as special cases of hierarchical, namely (N, σ)-sparse, signals.

Original work on block-sparsity, focused on convex recovery algorithms, which can be understood as us-
ing the atomic norm [12] associated with the group sparse vectors as a regularizer, the so called �1,2-norm, 
‖x‖1,2 =

∑N
k=1 ‖x‖2. A greedy algorithm for block-sparse vectors is proposed in Ref. [30]. The atomic norm 

of hierarchically sparse vectors is the �1-norm – hence, the analogous strategy does not directly carry over. 
Instead, hierarchical sparse vectors were introduced in a line of work [20,37–39] that uses a convex combina-
tion of the �1 and �1,2 as a regularizer, giving rise to the HiLasso algorithm, a hierarchical soft-thresholding 
algorithm. HiLasso has been equipped with recovery guarantees based on notions of coherence. There are 
also non-convex generalizations of this approach [13]. Further generalizations of the convex combinations of 
norms for structured sparse signals can be found in Refs. [3,23]. The orthogonal matching pursuit algorithm
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has been generalized to hierarchical sparse vectors in Ref. [28]. We here build on generalizations of the 
hard-thresholding algorithms employing the efficient projections onto hierarchically sparse vectors [33,34].

Within model-based compressed sensing recovery guarantees for the generalized algorithmic approaches 
can be transferred using the aforementioned generalized RIP [8] restricted to the signal structure. (See also 
Refs. [26,41] for further generalizations.) In particular, for Gaussian random matrices one directly derives 
sampling complexities scaling with the logarithms of the cardinality of the union. Going beyond such im-
provements of polylog-factors in the sampling complexity, certain measurement ensembles that feature more 
structure can exhibit a structured version of RIP while not being amenable to standard RIP analysis. This 
is for example a core motivation for level-sparsity [1,6]. For hierarchical sparsity of particular importance, 
HiRIP can be established for Kronecker product measurement [32,34] without requiring each factor to have 
the corresponding RIP itself as in unstructured Kronecker compressed sensing [14,24]. The hierarchical 
measurement operator studied here is a considerable generalization of Kronecker product measurements 
for which comparable guarantees can be established. Compared results for block sparse or level-sparse sig-
nals, the analysis of hierarchical measurement operator crucially relies on the interplay between sparsity 
assumption on different hierarchy levels.

Outline The remainder of the work outline is as follows: The main results are presented and discussed in 
Sections 2 and 3, respectively. Section 4 is dedicated to numerical experiments. In particular, two applications 
are introduced and discussed. Most proofs are postponed to Section 6.

Notation For p ∈ N, we denote by [p] the set of integers between 1 and p. The ‖ · ‖ always denotes the 
Euclidean norm of Kn. The expression f � g, where f and g are entities depending on parameters π with 
values in P , means’ f is majorized by g up to a multiplicative constant’, i.e., that there exists a C > 0 so 
that fπ ≤ C · gπ for all π ∈ P . For a set S, |S| denotes its cardinality.

2. HiRIP-properties of general hierarchical measurement operators

Let us get straight to the formal statement of the first main result of this work.

Theorem 2.1. Let H be a hierarchical measurement operator, as in (2), and s, σ = (σ1, . . . , σN ) hierarchical 
sparsity levels. Assume that

• The top-level matrix A obeys the s-RIP with constant δs(A).
• The sub-level matrices Bi all obey the σi-(Hi)RIP with constants δσi

(Bi).

Then H obeys the (s, σ)-HiRIP, with

δ(s,σ)(H) ≤ δs(A) + sup
i

δσi
(Bi) + δs(A) · sup

i
δσi

(Bi).

The intuition of the result is the following: if both the top-level and sub-level matrices possess their 
‘respective’ RIPs, the hierarchical measurement operator built from them has the HiRIP. This behavior
does in general not manifest itself for the RIP property of the hierarchical operator. This becomes apparent 
from the special case of Kronecker-product measurements. Indeed, as is shown in Ref. [25], we in fact have

δs(A ⊗ B) ≥ max(δs(A), δs(B)).

That is, in order for the Kronecker product A ⊗B to have the s-RIP, both A and B needs to have it. Note 
further that (s, σ)-sparse signals are not s-sparse, but rather sσ-sparse. For a discussion of implications in 
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the context of MIMO, see also Ref. [36]. It is thus safe to say that Theorem 2.1 implies that the hierarchical 
sparsity framework opens up for recovery for a class of signals and measurement that cannot be treated by 
standard compressed sensing.

Theorem 2.1 is a significant generalization of an analogous statement for Kronecker product measurements 
derived in Ref. [32] and the proof here is actually quite different compared to the one in Ref. [32]. The main 
new idea is to use that if A acts isometrically on s-sparse vectors, it induces an isometric action on bi-sparse
matrices.

Definition 4. A square matrix X ∈ KN,N is s-bisparse if there exists S ⊆ [N ] with |S| ≤ s so that

Xi,j = 0 if i or j is outside S.

The following lemma now captures how A acting simultaneously on the row and column space of an 
Hermitian matrix distorts its nuclear norm. To this end, let ‖X‖∗ denote the nuclear norm of X, i.e., the 
sum of the eigenvalues of X and 〈 ·, ·〉 denote the Hilbert-Schmidt inner product, 〈A,B〉 = tr(A∗B).

Lemma 2.2. Let A ∈ KM,N obey the s-RIP. Assume that X ∈ KN,N is an s-bisparse Hermitian matrix. It 
holds that

|〈A∗A,X〉 − ‖X‖∗| ≤ δs(A)‖X‖∗.

Proof. Since X is Hermitian, we may decompose it as follows

X =
N∑
i=1

λixix∗
i .

Here, xi are normalized eigenvectors of X and λi are the eigenvalues of X. Since X is s-bisparse, there exists 
a set S ⊆ [N ] and |S| ≤ s such that supp(xi) ⊆ S whenever λi �= 0. We therefore get

〈A∗A,X〉 =
N∑
i=1

λi 〈A∗A,xix∗
i 〉 =

N∑
i=1

λi 〈Axi,Axi〉 .

Since A has the s-RIP and all xi are s-sparse and normalized, we get

1 − δs(A) ≤ 〈Axi,Axi〉 ≤ 1 + δs(A),

and therefore ∣∣∣∣∣
N∑
i=1

λi(〈Axi,Axi〉 − 1)

∣∣∣∣∣ ≤
N∑
i=1

|λi| δs(A).

The claim follows. �
We may now prove the theorem.

Proof of Theorem 2.1. Let x = (x1, . . . , xN ) be an (s, σ)-sparse vector. Let S denote the block support of 
x, i.e.,

xi = 0 for i /∈ S.
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We have

‖H(x)‖2 =
〈

N∑
i=1

ai ⊗ (Bixi),
N∑
j=1

aj ⊗ (Bjxj)
〉

=
N∑

i,j=1
〈ai,aj〉 〈Bixi,Bjxj〉 = 〈A∗A,G〉 ,

where we have defined the matrix G ∈ KN,N through

Gi,j = 〈Bixi,Bjxj〉 .

This matrix is Hermitian and also s-bisparse, since Gi,j = 0 when i or j is not in S. Lemma 2.2 therefore 
implies

|〈A∗A,G〉 − ‖G‖∗| ≤ δs(A)‖G‖∗.

Now notice that G can be written as G = M∗M, where M ∈ Cm,N is defined through

Mc =
N∑
i=1

ciBixi.

We have ‖G‖∗ = ‖M‖2
F =

∑N
i=1 ‖Bixi‖2. Since each vector xi is σi-sparse, we get

N∑
i=1

(1 − δσi
(Bi))‖xi‖2 ≤

N∑
i=1

‖Bixi‖2 ≤
N∑
i=1

(1 + δσi
(Bi))‖xi‖2.

This implies∣∣‖H(x)‖2 − ‖x‖2∣∣ ≤ |〈A∗A,G〉 − ‖G‖∗| +
∣∣‖G‖∗ − ‖x‖2∣∣ ≤ δs(A)‖G‖∗ + sup

i
δσi

(Bi)‖x‖2

≤ (δs(A) + sup
i

δσi
(Bi) + δs(A) sup

i
δσi

(Bi))‖x‖2 . �
To exemplify its practicality, let us discuss the result within the IoT scenario outlined in the introduction. 

The theorem’s statement can be directly translated to the model: if

• each code book Bi has the σi-RIP,
• the matrix A of channel gains has the s-RIP,

the hierarchical ‘base station operator’ H will have the (s, σ)-HiRIP. This in turn implies that the base 
station can use the hierarchical recovery algorithms to recover all the users messages. The two assumptions 
are fulfilled in several practical settings: First, the users can use a standard ensemble of compressed sensing 
matrices, such as random Gaussian matrices Bi or sub-sampled bounded orthogonal systems as code books. 
For such ensembles it is well-known that a random matrix has the σi-RIP with high probability if m �
σi polylog(ni) [19].

As for the channel gain matrix, the situation depends on the geometry of the receiving antennas. Let us 
discuss two important special cases: If the antennas are well-separated, their channel gains can be modeled
as random Gaussians. If the antennas are instead arranged in a uniform linear array, we can model A as 
a Fourier matrix [44]. Again by classic results [19], we may randomly sub-sample M ∼ s log(N)4 of the 
rows of a Fourier matrix and still end up with a matrix with an s-RIP. In fact, the latter random sub-
sampling technique is the standard argument for applying compressed sensing in (hybrid) RF beamforming 
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techniques for MIMO networks. The main advantage is that the RF beamforming network operates at a 
drastic dimensionality reduction from N antennas to just M RF ports. In fact any massive MIMO array 
(say with more than 100 antennas) that would require an amount of RF ports in the order of the number 
of antennas is infeasible in practice both in terms of hardware (e.g. expensive RF components), energy and 
computational costs (analog/digital converters.). For further details see [44].

Overall, we conclude that the base station needs no more than

M ·m � smax
i

σi · polylog(N,n)

total measurements to allow for recovery of all (s, σ)-sparse vectors. This is the same scaling as required for 
establishing HiRIP for unstructured Gaussian measurement operators (up to log-factors) [33].

Remark 3. These considerations naturally extend the results derived for Kronecker operators from Ref. [34]
to a considerably more general measurement operators that use varying sparsity levels, ambient dimensions 
and sub-level matrices Bi. The coding scenario explained above already exemplifies an instance where such 
a general model is practically required. Here it is desired that each user can use his/her own private code 
book.

2.1. Necessity of RIP of the top- and sub-level matrices

It is interesting to ask to which extent the conditions of Theorem 2.1 are necessary. In particular: Can the 
(s, σ)-HiRIP-constants of H be smaller than what the RIP properties of the constituent matrices suggest via 
Theorem 2.1? In this section, as well as in the subsequent one, we derive results that answer this question. 
Let us begin by discussing the sub-level matrices. Note that if H has the (s, σ)-RIP, each matrix

‖ai‖2Bi

must have the σi-RIP. To see this, let i be arbitrary, xi a σi-sparse vector, and x̂i = (0, . . . , xi, . . . , 0) the 
vector with its i:th block equal to xi, and zeros elsewhere. We then have∣∣‖ai‖2‖Bixi‖2 − ‖xi‖2∣∣ = ∣∣‖H(x̂i)‖2 − ‖x̂i‖2∣∣ ≤ δ(s,σ)(H)‖xi‖2,

since x̂i is (1, σi)-sparse. We can therefore conclude the following result.

Proposition 2.3. Assume that δ(s,σ)(H) < 1, and that each column ai in A is normalized. Then

δσi
(Bi) ≤ δ(s,σ)(H).

Remark 4. The assumption of normalized columns is not really a restriction. Indeed, since ai ⊗ Bi =
(λai) ⊗ (λ−1Bi) for each λ > 0, we may always simultaneously re-scale the columns and sub-level matrices 
to ‖ai‖ = 1 for each i, while keeping the hierarchical operator constant.

As for the RIP-properties of the top-level matrix A, the situation is more complicated. It is in particular 
not necessary for A to have the s-RIP. After all, the Bi can map into N pairwise orthogonal sub-spaces Vi. 
Then we have ∥∥∥∥∥

N∑
i=1

ai ⊗ Bixi

∥∥∥∥∥
2

=
N∑
i=1

‖ai‖2‖Bixi‖2.
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Thus, if each matrix has the σi-RIP, H will have the (s, σ)-HiRIP already when each column of A is 
normalized. In particular, they may be equal, so that A does not have the s-RIP for any s > 1.

In the above example, the block operators Bi already allow by themselves for a de-mixing of their inputs. 
If this is not the case, e.g., if m is impermissively small, we need A to “help them” via having acting 
isometrically itself. To be concrete, we have the following result. The proof for it is conceptually simple but 
technical, whence we postpone it to Section 6.

Proposition 2.4. Let H have the (s, σ)-HiRIP. Assume that for each subset S ⊆ [N ] there exist σi-sparse 
vectors gi, i ∈ S so that

Bigi = Bjgj , i, j ∈ S.

Then

δs(A) ≤ δs,σ(H) + supi δσi
(Bi)

1 − supi δσi
(Bi)

.

The aforementioned discussion focused on two extreme cases: In one case, Bi map into pairwise orthogonal 
sub-spaces. In the other case, each subset of s matrices Bi maps sparse vector into the same sub-space of 
Km. We now take a look at the realm in between the two extreme cases and ask what can be gained already 
if the Bi map sparse vectors into sufficiently ‘incoherent’ sub-spaces of Km?

3. Incoherent sub-level matrices

In this section, we establish a refined version of Theorem 2.1 for the case when the sub-level matrices are 
incoherent. Let us make the latter notion precise.

Definition 5 (Pairwise (δ, σ)-incoherence). Let δ > 0. We say that the collection of operators Bi ∈
Km×ni , i ∈ [N ] are pairwise (δ, σ)-incoherent if for each i �= j,

|〈Bivi,Bjvj〉| ≤ δ,

for each pair of normalized and σi- and σj-sparse, respectively, vectors vi and vj .

Note that the above condition can be also formulated in terms of the sparse block-coherence introduced 
in Ref. [39]. Collections of incoherent operators are not hard to construct. In fact, we obtain such a collection 
by independently sampling from several common distributions, as summarized in the following proposition.

Proposition 3.1. 1. Let each entry of each sub-level matrix Bi ∈ Rm,n be independently drawn from a sub-
Gaussian distribution D [19, sec. 7.4]. Suppose that for some σ ∈ N,

m � δ−2
(
σ log

(n
σ

)
+ log(N)

)
,

with implicit constants only depending on the sub-Gaussian parameters of D . Then the collection is (δ, σ)-
incoherent with high probability.
2. Let U ∈ Kn,n be a unitary matrix with bounded entries such that

√
n sup

k,�
|Uk,�| ≤ K

for some constant K ∈ R. For each i, let the matrix Bi ∈ Km,n be constructed by
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1. uniformly and independently sampling m rows of U
2. multiplying each of the rows with a uniform random sign
3. rescaling the rows by a factor m−1/2.

We assume that Bi is independent of Bj, for i �= j. Suppose for some σ ∈ N that

m ≥ CK2σδ−2 log(n)4 log(N),

the collection is (δ, σ)-incoherent with probability higher than 1 − n− logn3 .

Remark 5. Note that in this result, the sparsity σ is scalar. The first part could probably be generalized to 
more sparsity levels. However, the second cannot. The reason for this is that it is not hard to give conditions 
under which sub-Gaussian matrices have the σ-RIP for σ of arbitrarily many levels – the same is however 
not true for the subsampled unitary matrices.

The proof of this proposition, which employs standard compressed sensing techniques, is postponed to 
Section 6.

Intuitively, if the sub-level matrices (Bi)i∈[N ] form a pairwise incoherent collection, they can to some 
extent already intrinsically separate the contributions of the individual blocks of a hierarchically sparse 
vector from the ‘single-shot’ measurement 

∑N
i=1 Bixi. Therefore, the top-level matrix A is expected to not 

be required to ‘help them’ by having the s-RIP to the same extent as in the general setting. This is indeed 
the case. A formal result is as follows.

Theorem 3.2. Let Bi ∈ Km×ni for i ∈ [N ], be a pairwise (δ∗2σ, σ)-incoherent family. Further assume that

sup
i

δσi
(Bi) ≤ δ∗σ

Let further H be a hierarchical measurement operator formed by the Bi and a matrix A ∈ KM×N with 
δ2s(A) < 1 for some s ∈ N. Then, for any λ ∈ N, H has the ŝ = (λt, σ)-HiRIP with

δŝ(H) ≤ δs(A) + δ∗σ + δs(A)δ∗σ + λ
√
sδ2s(A)δ∗2σ

The proof employs similar ideas as the one of Theorem 2.1, but is more technically involved. We therefore 
postpone it in its entirety to Section 6. Let us here instead stress its intuitive meaning: A small value of 
δ∗2σ (that is, a highly incoherent sub-level collection), can be ‘traded in’ for a higher value of s in the 
hisparsity-index (s, σ).

Note that the parameters s and λ can be chosen in various ways to yield the same value of sλ. This 
arguably makes the result slightly hard to decipher. In particular, given values of δ∗2σ and s, it does not 
clearly state the requirements on the top-level matrix to obtain a (t, σ)-HiRIP. The following result sheds 
more light on the situation when the top-level matrix is Gaussian. Again, the proof is postponed to the 
Section 6.

Proposition 3.3. Assume that (Bi)i is as in Theorem 3.2, and that A ∈ KM×N is a Gaussian matrix. Let 
furthermore δ, ε > 0. Provided

M � (tδ∗2σ)2

δ2 log
(
N(1 + δ∗σ)2

(tδ∗2σ)2

)
+ log(ε−1),

the hierarchical measurement operator H defined by A and (Bi)i obeys
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δ(t,σ)(H) ≤ δ + δ∗σ

with a probability at least 1 − ε.

The above result states that in the case of a Gaussian A ∈ KM,N , we need M to be of the order (sδ∗2σ)2
to allow for s-sparse signals on the ‘block level’, rather than s. For small δ∗2σ, we may hence obtain the RIP 
already when M is less than s – a behavior which cannot be explained by Theorem 2.1.

Remark 6. The quadratic dependence on sδ∗2σ here is of course not sample-optimal. We actually believe that 
it is likely to be an artefact of the proof. We leave the possible strengthening of the result to future work.

4. Numerical simulations

In this section, we perform numerical simulations to showcase the practical relevance of our results. 
First, we empirically verify the implications of our main results, Theorems 2.1 and 3.2. Then, we explore 
two potential applications from mobile communications. In our experiments, we apply the hierarchical hard 
thresholding pursuit (HiHTP) algorithm. HiHTP is a low-complexity algorithm for solving hierarchically 
sparse compressed sensing problems of the form

min
x

1
2‖y − Hx‖2 subject to x is (s,σ)-sparse, (4)

where H is a linear operator. If H has a suitable HiRIP for an appropriate sparsity level, HiHTP is theoret-
ically guaranteed to robustly recover any (s, σ)-sparse vector. The interested reader is referred to Ref. [33]
for more details.

The algorithm in each iteration performs a gradient descent step and projects the result onto (s, σ)-
sparse vectors to obtain a support estimate. Subsequently, the new iterate is obtained by solving the linear 
least-square problem restricted to the support estimate. The algorithm terminates once the support of 
two successive iterates does not change or another suitable stopping criterion is reached. Importantly, the 
projection Ts,σ onto the set of (s, σ)-sparse signal (line 3 of Algorithm 1) can be performed via hierarchical 
hard-thresholding in time complexity O(Nn). We again refer to Ref. [33] for implementation details.

4.1. Verification of Theorem 2.1 and Theorem 3.2:

In a nutshell, Theorem 2.1 tells us that HiHTP successfully recovers (s, σ)-sparse signals reliably from a 
hierarchical measurement if both δs(A) and each δσi

(Bi) are small. It is common wisdom that the latter is 
achieved with high-probability with suitable drawn random matrices A ∈ KM,N and Bi ∈ Km,n if and only 
if M � s and m � maxi σi, up to logarithmic terms in N and ni. Thus, if we fix M, m, n and N , HiHTP 
should be able to recover (s, σ)-sparse for s ≤ s∗ and σ ≤ σ∗ for some thresholds s∗ and σ∗. Conversely, we 
expect the recovery to start to fail below thresholds with an identical scaling.

Algorithm 1: HiHTP.
input : Problem data y ∈ Km, H ∈ Km×Nn, hisparsity (s, σ)
initialize : x(0) = 0

1 repeat
2 x̄(t) = x(t−1) + H∗

(
y − Hx(t−1)

)
;

3 I(t) = support Ts,σ

(
x̄(t)

)
;

4 x(t) = argmin
x

1
2‖y − Hx‖2 subject to supp(x) ⊆ I(t);

5 until stopping criterion is met at t = t∗

output : (s, σ)-sparse vector x(t∗)
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Fig. 1. Results for the ‘equal blocks, equal Bi’-experiments for M = 35, m = 45, N = 40, n = 100 (left) and M = 50, m = 75, 
N = 80, n = 200 (right). The line defines a threshold: below it, the recovery probability is at least 94%.

Fig. 2. Results for M = 35, m = 45, N = 40, n = 100 for the ‘equal blocks, different Bi’ (left) and ‘equal Bi, different blocks’ 
(right) setup. The line is a manually determined threshold-line for a recovery probability of at least 94%.

To test whether we observe such a behavior also in the average performance of the algorithm, we set up 
an experiment as follows: For each s and σ within a range, we draw the top-level matrix A ∈ CM×N as a 
(correctly re-scaled) complex random Gaussian and set each block operator Bi ∈ Cm×n equal to a common 
randomly sub-sampled DFT-matrix B ∈ Cm×n. We generate the ground truth signal x by drawing a σ-
sparse support at random from the index set [n], draw the values on that support according to a Rademacher 
distribution, thereby letting all block xi in x be equal. By choosing both the measurement matrices Bi and 
the signal xi identical for all i, respectively, we ensure that there is no sub-level incoherence that, in light of 
Theorem 3.2, could ‘help’ in the de-mixing. Thus, we are especially testing the cases that highly depend on 
the compressed sensing capabilities of A as well. The measurement vector b is set equal to Hx (i.e., we make 
a noise-free experiment) and let the HiHTP algorithm run. For each set of parameters, 50 random trials are 
conducted. We declare a run successful if after at most 25 iterations, the output x∗ of the algorithm obeys 
‖x∗ − x‖/‖x‖ < 10−7.

The results for the two settings M = 35, m = 45, N = 40, n = 100 and M = 50, m = 75, N = 80, 
n = 200 are depicted in Fig. 1. We have marked a (manually determined) approximate iso-line for a recovery 
probability larger than or equal to 94% = 47/50. We observe that the region of high-recovery probability 
has approximately the rectangular shape in agreement with the scaling suggested by Theorem 2.1.
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Fig. 3. Results for the massive IoT model with varying number of active users s and number of active antennas M for a SNR of 
5 dB. Left: Relative recovery error. Right: Percentage of correctly detected active users.

To showcase Theorem 3.2, we repeat the experiment for M = 35, m = 45, n = 40, N = 100. We draw 
each Bi in the same manner as before but now i.i.d. for each i.1 In this setting, the theory suggests that 
M larger than (sδ∗2σ)2 is sufficient (where the square is probably a proof artefact). Thus, choosing σ less 
than σ∗ and s ≤ s∗/δ∗2σ should be sufficient for recovery. The results of the experiments, depicted on the 
left of Fig. 2, show this behavior – notice that the set of values where recovery is probable is considerably 
stretched in s-direction.

Interestingly, when we repeat the experiment for equal Bi, but draw each block xi independently at 
random, the same behavior can be observed, depicted in Fig. 2 on the right. We suspect that the probability 
of H acting close to isometrically on the subset of hisparse signals with incoherent blocks is high, and that 
this in turn helps the recovery process. The present theory however cannot fully support any of these claims, 
and we leave the theoretical analysis of this phenomenon to future work.

4.2. Massive random sparse coding

We move on to an experiment related to the IoT application, namely the model in (3) we outlined in the 
introduction. The code books Bi ∈ Cm,n are chosen as complex-valued Gaussians, drawn independently for 
each user. We model A ∈ CM,N as a randomly sub-sampled Fourier matrix, corresponding to a uniform 
linear array geometry. The number M < N is the number of randomly sampled antennas. We vary this 
number, as well as the number of active users s, while fixing m = 100, n = 400, N = 64, and the sub-level 
sparsity to σ = 10, synthetically generating data. We then add white Gaussian noise n ∼ N (0, ηI) to the 
measurements y, where η = 10−SNR/10‖y‖. We record the mean recovery error ‖x−x∗‖/‖x‖, as well as the 
fraction of correctly identified active users, for each configuration over 25 random trials at an (expected) 
SNR of 5 dB. The results are shown in Fig. 3. We have observed that for all values of M and s, a significant 
portion of the users are correctly identified as active. For M ≥ 32 all active users are found for any s. The 
recovery error also degrades gracefully with a rising number of users.

1 Note that formally Proposition 3.1 only holds when each row of the Bi is multiplied with a random sign. We do not explicitly 
account for this in our signal model here.
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Fig. 4. The standard random access (left) vs. the grouped approach proposed here (right).

4.3. Grouped random access

Let us end this section by extending the IoT model towards random access scenario. In such random 
access, a user that wishes to communicate with the base station chooses a resource at random (out of ν
available resources) and sends a pilot signal associated with that resource. Assuming equal power transmitted 
from the users, and letting bj(i) ∈ Cm, m ≤ ν, be the pilot signal that user i chooses, the base station then 
receives the vector

y = Bx =
(

ν∑
i=1

xibj(i)

)
,

where xi = 0 if user i is inactive, xi = 1 if her/he is active, and B = (b1, . . . , bν). As before, it is reasonable 
to assume that the user activity is sporadic, which implies that the vector x is sparse. This protocol 
has a fundamental problem – if several users choose the same resource, a collision occurs and subsequent 
communication is impossible since each frequency can only serve one user at a time. The probability of a 
collision grows fast with the number of users – a phenomenon commonly referred to as the birthday paradox.

In order to reduce the probability of collisions, we have proposed to distribute the users in groups 
[42,43,45] (cf. Fig. 4). To this end, we randomly subdivide the active users in N groups, and accordingly 
replace the entries of the vector x with in total N blocks xi. We then let the users in each group i choose 
one of n resources, with n ≤ ν. We refer to this protocol as grouped random access [21]. Obviously, there 
is then within each block a much lower probability of collision than before. Furthermore, each block is with 
high probability sparse, say σi-sparse. Thus, the signal to be recovered, (x1, . . . , xN ) ∈ (Cn)N is no longer 
only sparse, but with high probability even (N, σ)-hierarchically sparse.

In order for the base station to be able to de-mix the individual block contributions, we may let them send 
their pilot signals during disjoint time intervals and recover each xi from Bixi, for i = 1, . . . , N individually. 
This would however be very tedious compared to the original, single-shot scheme. To increase efficiency, we 
may first and foremost let the Bi be sub-sampled, i.e. use shorter slots. To still achieve recovery, we propose 
to mix the contributions Bixi over M incoherent slots (say in time, frequency or space), each time j with 
a different random modulation aj,i. The base station over the course of those slots then receives

yj =
N∑

aj,iBixi, j ∈ [M ],

i=1
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Fig. 5. User detection with hierarchical measurements.

which defines a hierarchical measurement. Notably, since all the N blocks may be filled, we arguably are 
no longer in the hierarchical compressed sensing realm. However, Theorem 3.2 about incoherent blocks still 
indicates that recovery is possible.

To test the practical performance of the protocol, we perform a simulation on synthetic data. We assume 
ν = n = 512 available resources and model the measurements at the base station as y = Fx, where 
F ∈ Cn×n is a n × n-DFT matrix. Note that since we are aiming for user detection, we do not necessarily 
need to recover x exactly: we only need to determine which xi are non-zero. Our baseline method therefore 
consists of computing supp(F−1y) to obtain the selected resources.

We compare this to the grouped random access model with N sub-sampled Bi, which each consist of 
m = 256 random rows from the n × n DFT matrix. The random modulation matrix A ∈ CM×N , where 
M = 16, is chosen as complex Gaussian with variance 1√

N
.

Fig. 5 shows the average number of users recovered by HiHTP for varying sparsities σ = 16, . . . , 36 and 
number of blocks N = 8, . . . , 32 over 25 random trials for each configuration. Note that for N > 8 the 
system has more pre-image dimensions than measurements, so that we are in a compressed sensing regime. 
The baseline shown in Fig. 5 is computed as the total number of users, N · σ, minus the expected number 
of collisions that occur, if these users choose randomly out of the n = 512 available resources. As can be 
seen, HiHTP is able to recover many more users compared to the baseline. For σ = 16 and σ = 32, we also 
show the performance in the case that σ ·N users are distributed randomly over all available slots (i.e. the 
block sparsities are not uniformly fixed to σ). Even in this scenario, where the algorithm operates with the 
wrong sparsity parameters, reasonable performance is achieved.

5. Conclusion

Hierarchical sparsity is a structured notion of sparsity that arises in many applications. The structure 
also allows for efficient custom-tailored recovery algorithms, such as the HiHTP, but it is more restrictive 
yielding stronger guarantees than the ones given by classical compressed sensing. In this work, we have in-
troduced a large class of linear operators that are aligned with the hierarchical signal structure and establish 
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such stronger guarantees based on the HiRIP. Hierarchical measurement operators model multidimensional 
mixtures of sub-level operators that are expected to arise in many applications. We have seen that if both 
the mixture procedure as well as all sub-level operators possess the RIP, the hierarchical measurement has 
the HiRIP. If additionally the sub-level operators are incoherent, the RIP-requirements on the mixture oper-
ation can be weakened. These results open up for structured recovery for a class of signals and measurement 
operators that cannot be captured to the same extent by classical compressed sensing methods. We have 
demonstrated that the framework can be applied in several mobile communication applications in numerical 
simulations. We hope to explore further potential applications, and measurement operator classes, in future 
research.

Finally, a natural generalization of hierarchical sparse signals are signals that combine low-rank and 
sparsity assumptions on nested hierarchy levels. A simple instance where such structures arise is the de-
mixing problem of a sparse sum of low-rank matrices. Generalization of the hierarchical sparse recovery 
framework to such structures has been recently studied in the context of blind quantum tomography [35]. 
We expect that many of the results presented here can be directly generalized and translated to this setting.

6. Proofs

In this section, we present the proofs omitted in the main part of the text.

6.1. Proof of Proposition 2.4

We begin with the proposition stating that when the sub-level matrices are not incoherent, the top-level 
matrix needs to have the RIP for the hierarchical measurement operator to have the HiRIP.

Proof of Proposition 2.4. Let S with |S| = s be arbitrary. Define, for c arbitrary with supp(c) ⊆ S, the 
vector x = (x1, . . . , xN ) with non-vanishing blocks xi = cigi for i ∈ S and gi defined in the statement of the 
proposition. Letting w be the common value for Bigi for all i ∈ S, the definition of the σi-RIP constants, 
then implies ∑

i∈S

|ci|2 (1 − δσi
(Bi))‖gi‖2 ≤

∑
i∈S

|ci|2 ‖Bigi‖2 ≤
∑
i∈S

|ci|2 (1 + δσi
(Bi))‖gi‖2

and, thus,

(1 − sup
i

δσi
(Bi))‖x‖2 ≤ ‖c‖2‖w‖2 ≤ (1 + sup

i
δσi

(Bi))‖x‖2 . (5)

Now notice that

H(x) =
∑
i∈S

ai ⊗ (ciBigi) =
(∑

i∈S

ciai

)
⊗ w = Ac ⊗ w.

Consequently∣∣‖Ac‖2‖w‖2 − ‖c‖2‖w‖2∣∣ ≤ ∣∣‖H(x)‖2 − ‖x‖2∣∣+ ∣∣‖x‖2 − ‖c‖2‖w‖2∣∣ ≤ (δ(s,σ)(H) + sup
i

δσi
(Bi)))‖x‖2.

Dividing the above by ‖w‖2, and utilizing (5), we obtain

∣∣‖Ac‖2 − ‖c‖2∣∣ ≤ (δ(s,σ)(H) + sup
i

δσi
(Bi)) ·

‖x‖2

‖w‖2 ≤
δ(s,σ)(H) + supi δσi

(Bi)
1 − supi δσi

(Bi)
‖c‖2.

Since c and S were arbitrary, the claim follows. �
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6.2. Proof of Proposition 3.1

Here, we prove that by drawing matrices Bi from “off-the-shelf” compressed-sensing ensembles, we obtain 
pairwise (δ, σ)-incoherent collections. Let us first begin with a lemma, which will later let us use standard 
results on RIP-properties of random matrices.

Lemma 6.1. Assume that the family (Bi)i∈[N ] has the property that for each i �= j, the matrix

Ci,j = [Bi,Bj ] ∈ Km,ni+nj

has 2σ-RIP constant δ2σ smaller than δ∗. Then, the family is pairwise (δ∗, σ)-incoherent.

Proof. Let vi and vj be σ-sparse and normalized. Let further |θ| = 1 be arbitrary. The vector

h =
[

vi

θvj

]
∈ K2m

is 2σ-sparse. Hence ∣∣‖[Bi,Bj ]h‖2 − ‖h‖2∣∣ ≤ δ∗‖h‖2.

It is not hard to see that δσ(Bi), δσ(Bj) ≤ δ2σ(Ci,j) ≤ δ∗. Consequently,

‖[Bi,Bj ]h‖2 = ‖Bigi‖2 + ‖Bjgj‖2 + 2Re(〈Bigi, θBjgj〉) ≥ (1 − δ∗)‖h‖2 + 2Re(〈Bigi, θBjgj〉).

Now we combine these inequalities and choose θ such that Re(〈Bigi, θBjgj〉) = |〈Bigi,Bjgj〉|, to obtain

|〈Bigi,Bjgj〉| ≤ δ∗‖h‖2 = 2δ∗ . �
We may now prove the proposition.

Proof of Proposition 3.1. We prove that the two types of random matrices obey the assumption of 
Lemma 6.1 with high probability. This will give the claim. We remind of the definition Ci,j = [Bi, Bj ]
from the previous lemma.

1. Notice that for each i �= j, Ci,j is a matrix with i.i.d. sub-Gaussian entries. For a subset S of [2n], let 
us define Ei,j(S) as the event

sup
supp(g)⊆S,‖g‖≤1

∣∣‖Ci,jg‖2 − ‖g‖2∣∣ ≥ δ

Following a standard proof for the restricted isometry property for sub-Gaussian matrices (e.g., [19, p. 276-
278]) one proves that for each S ⊆ [n] with |S| ≤ 2σ

P (Ei,j(S)) ≤ C2σ
1 e−C2δ

2m,

where C1 and C2 are constants that only depend on the sub-Gaussian parameters of D . A union bound 
over multiple events yields

P (∃i �= j, S : |S| = 2σ, Ei,j(S)) ≤ N2
(

2n
2σ

)
Cσ

1 e
−C2δ

2m.
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The last expression is smaller than ε provided

m � δ−2
(
σ log

(n
σ

)
+ log(N) + log(ε−1)

)
,

which is the claim.

2. Consider the following 2n functions on Ω = [n]2 × {−1, 1}2

φ�(s, t, ξ, η) =
√
nξUs�,

φn+�(s, t, ξ, η) =
√
nηUt�.

Then, (φ1, . . . , φ2n) forms a bounded orthonormal system on Ω with respect to the uniform measure ν in 
the following sense: For �1, �2 ∈ [n], we have, using the shorthand ω = (s, t, ξ, η),

∫
Ω

φ�1(ω)φ�2(ω)dν(ω) = 1
n2

n∑
s,t=1

nUt�1Ut�2 ·
1
4

∑
ξ,η∈{−1,1}

ξ2 = δ�1,�2

∫
Ω

φ�1+n(ω)φ�2+n(ω)dν(ω) = 1
n2

n∑
s,t=1

nUs�1Us�2 ·
1
4

∑
ξ,η∈{−1,1}

η2 = δ�1,�2

∫
Ω

φ�1(ω)φn+�2(ω)dν(ω) = 1
n2

(
n∑

k1=1

Us�1

)(
n∑

k2=1

Ut�2

)
· 1
4

∑
ξ,η∈{−1,1}

ξη = 0

and it is clear that sup�∈[n],ω∈Ω |φ�(ω)| ≤ K. Now we notice that the matrix with k:th row equal to

[φ1(ωk), . . . φ2n(ωk)]

with ωk uniformly sampled on Ω, is distributed exactly as Ci,j . This allows us to use the standard theory 
of bounded orthonormal systems. Following Ref. [19, p. 404-416], we see that if we define the event

Fi,j = sup
‖g‖≤1

g 2σ-sparse

∣∣‖Ci,jg‖2 − ‖g‖2∣∣ ≥ η2
1 + η1 + δ,

where η is a parameter which must obey

η1 � K

√
4σ log(8σ)

√
log(9m) log(16n)√
m

.

We have (see p. 416 of Ref. [19])

P (Fi,j) ≤ e−c1
mδ2
K2σ ,

where c1 is a universal constant. A union bound hence implies that as long as

m � K2σδ−2 log(N) log(ε−1),
m

log(9m) � K2σδ−2 log(8σ)2 log(16n),

the collection is (δ, σ)-incoherent with a probability bigger than 1 − ε. Putting ε = n− log(n)3 (and bounding 
(log(m) log(σ)2 � log(n)3) yields the claim. �
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6.3. Proof of Theorem 3.2

We move on to the proof of the second main result of this work, Theorem 3.2. Let us begin by proving a 
version of Lemma 2.2 more suitable for the purposes of this section.

Lemma 6.2. Let A ∈ KM,N have the 2s-RIP and X be disjointly s-bisparse matrix. That is, assume that 
there exists two disjoint subsets of S, S′ of [N ] with |S| , |S′| ≤ s so that

Xi,j = 0 if i /∈ S or j /∈ S′ .

Then

|〈A∗A,X〉| ≤ δ2s(A)‖X‖∗ .

Proof. We use exactly the same idea as in the proof of Lemma 2.2. We may form a singular value decom-
position of X

N∑
i=1

ρixiy∗
i ,

where xi and yi are left and right normalized singular vectors of xi and yi, and ρi are singular values of X. 
Now, since X is disjointly s-bisparse, there must be suppxi ⊆ S and suppyi ⊆ S′ whenever ρi �= 0. We get

|〈A∗A,X〉| ≤
∑
i

ρi |〈Aixi,Ayi〉| .

It is a well known result that the disjointness of S and S′ (see, e.g., Ref. [19, Prop. 6.3]) implies that

|〈Axi,Ayi〉| ≤ δ2s(A).

The claim follows. �
Now, we have all the tools in place to prove the theorem.

Proof of Theorem 3.2. We start just as in the proof of Theorem 2.1: Let x = (x1, . . . , xN ) be (λs, σ)-sparse 
and normalized. We then have

‖H(x)‖2 = 〈A∗A,G〉

where Gi,j = 〈Bixi,Bjxj〉. Now let us divide the block support of x into λ disjoint groups Sk, each of 
cardinality s. Then define Gk,� through

Gk,�
i,j =

{
〈Bixi,Bjxj〉 if i ∈ Sk and j ∈ S�

0 else.

Then Gk,� is s-bisparse for k = � and disjointly s-bisparse for k �= �. Thus, applying Lemmata 2.2 and 6.2
yields for k �= � ∣∣〈A∗A,Gk,k

〉
− ‖Gk,k‖∗

∣∣ ≤ δs(A)‖Gk,k‖∗,∣∣〈A∗A,Gk,�
〉∣∣ ≤ δ2s(A)‖Gk,�‖∗ .
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Consequently, ∣∣∣∣∣〈A∗A,G〉 −
∑
k

‖Gk,k‖∗

∣∣∣∣∣ ≤∑
k

δs(A)‖Gk,k‖∗ +
∑
k 	=�

δ2s(A)‖Gk,�‖∗ .

We deal with the diagonal terms just as in the proof of Theorem 2.1: We obtain∣∣∣∣∣‖Gk,k‖∗ −
∑
i∈Sk

‖xi‖2

∣∣∣∣∣ ≤ δ∗σ
∑
i∈Sk

‖xi‖2.

By summing over k, we have

|〈A∗A,G〉 − 1| ≤δs(A) + δ∗σ + δs(A)δ∗σ +
∑
k 	=�

δ2s(A)‖Gk,�‖∗ .

Now we need to analyze the cross diagonal terms. Since each term is a matrix of rank at most s, we have

‖Gk,�‖∗ ≤
√
s‖Gk,�‖F .

The (δ, σ)-incoherence assumption gives us the entry-wise bound 
∣∣∣Gk,�

i,j

∣∣∣2 ≤ δ2σ∗‖xi‖2‖xj‖2 on Gk,�. That 
implies

‖Gk,�‖2
F ≤

∑
i∈Sk

∑
j∈S�

δ2
2σ∗‖xi‖2‖xj‖2.

Therefore,

∑
k 	=�

δ2s(A)‖Gk,�‖∗ ≤
√
sδ∗2σ

∑
k 	=�

(∑
i∈Sk

‖xi‖2

) 1
2
⎛⎝∑

j∈S�

‖xj‖2

⎞⎠
1
2

≤
√
sδ∗2σ

⎛⎜⎝∑
k

(∑
i∈Sk

‖xi‖2

)1
2
⎞⎟⎠

2

≤ λ
√
sδ∗2σ ,

where we used Cauchy-Schwarz and the (implicit) normalization assumption in the final line. �
6.4. Proof of Proposition 3.3

Here, we give the proof of Proposition 3.3, the special case of the ‘deciphering’ Theorem 3.2 for a Gaussian 
top-level matrix.

Proof of Proposition 3.3. It is well known that (see, e.g., Ref. [19, Proof of Th. 9.11])

P (A does not have the (t, δ)-RIP) ≤ Ct
1

(
N

t

)
e−C2Mδ2

.

Now note that if A has the 
(
s, δ

2(1+δ∗σ)

)
-RIP and 

(
2s, δ

√
s

2tδ∗2σ

)
-RIP, Theorem 3.2, with λ = t/s, implies that

δ(t,σ)(H) ≤ δs(A)(1 + δ∗σ) + δ∗σ + t
s ·

√
sδ2s(A)δ∗2σ ≤ δ

2 + δ∗σ + δ
2 = δ∗σ + δ.
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Consequently,

P (H does not have the ((t,σ), (δ + δ∗σ))-HiRIP)

≤ P

(
A does not have the

(
s,

δ

2(1 + δ∗σ)

)
-RIP

)
+ P

(
A does not have the

(
2s,

√
sδ

2tδ∗2σ

)
-RIP

)
≤ Cs

1

(
N

s

)
e
− C2Mδ2

4(1+δ∗σ)2 + C2s
1

(
N

2s

)
e−C2

Mt2(δ∗2σ)2δ2

4s .

It suffices to make each term smaller than ε/2 for any chosen ε > 0. Sufficient for this is

M ≥ 4(1 + δ∗σ)2

C2δ2

(
s log(C1) + log

(
N

s

)
+ log(2ε−1)

)
,

M ≥ 4s
C2t2(δ∗2σ)2δ2

(
2s log(C1) + log

(
N

2s

)
+ log(2ε−1)

)
.

Using the asymptotic estimate log
(
N
s

)
∼ s log N

s , we obtain the following sufficient conditions

M � 4(1 + δ∗σ)2s
C2δ2 ·

(
log(C1) + log

(
N

s

)
+ s−1 log(2ε−1)

)
,

M � 4s2

C2t2(δ∗2σ)2δ2

(
log(C1) + log

(
N

2s

)
+ s−1 log(2ε−1)

)
.

If we now choose s ∼ (tδ∗2σ)2, both equations above turn in to

M � (tδ∗2σ)2

C2δ2

(
log(C1) + log

(
N

2s

)
+ s−1 log(2ε−1)

)
,

which is the assumption of the proposition. The proof is finished. �
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