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Summary

This thesis aims to enable efficient trajectory planning for autonomous
vehicles without the requirement of a map or prior knowledge of the en-
vironment. For this purpose, an approach is presented, which adapts the
concept of trail pheromones used by ants as well as the collective animals’
flocking behavior to the domain of autonomous vehicles. In this way, the
drivers of surrounding vehicles are used as additional input for antici-
patory driving, expanding the capabilities of the individual autonomous
car: a typical achievement of swarm intelligence.

While map-based trajectory planning has many advantages, there are sit-
uations when no map is available or localization in a map is too inac-
curate. Also, the actual behavior of road users may differ significantly
from the given map. Existing approaches for planning driving maneu-
vers in urban traffic without a map decouple lateral and longitudinal
planning. Usually, knowledge of road geometry is assumed. This thesis
presents an approach to overcome those limitations, adopting the estab-
lished theory of elastic bands to implement swarm-based trajectory plan-
ning. The vehicle’s dynamic restrictions and the driver’s preferences are
represented with a comprehensive set of parameterized objective func-
tions. A swarm-based motion prediction algorithm is introduced to pre-
dict the surrounding vehicles’ trajectories, and a heuristic is presented to
choose the best candidate for a leader vehicle based on weighted criteria.
The approach is evaluated in simulation, on recorded data, and live field
tests in real traffic. The experimental results show that the presented ap-
proach, implementing a swarm behavior for autonomous cars, is valid to
temporarily compensate for the advantages of map-based planning.
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Zusammenfassung

Ziel dieser Arbeit ist, eine effiziente Trajektorienplanung fiir autonome
Fahrzeuge zu ermoglichen, ohne dass eine Karte oder Vorkenntnisse der
Umgebung erforderlich sind. Zu diesem Zweck wird ein Ansatz vor-
gestellt, der das Konzept der Spurpheromone von Ameisen, sowie das
Schwarmverhalten der Vogeln und Fischen fiir den Bereich autonomer
Fahrzeuge adaptiert. Die Fahrer der umgebenden Fahrzeuge werden
als zusitzliche Informationsquellen verwendet, wodurch die Fahigkeiten
fiir vorausschauendes Fahren des einzelnen autonomen Autos erweitert
werden: eine typische Errungenschaft der Schwarmintelligenz.

Hochgenaue Karten bieten viele Vorteile fiir die vorausschauende Tra-
jektorienplanung. Es gibt jedoch Situationen, in denen keine Karte ver-
fiigbar ist oder die Lokalisierung in einer Karte zu ungenau ist. Auch
kann das tatsdchliche Verhalten der Verkehrsteilnehmer erheblich von
der angegebenen Karte abweichen. Bestehende Ansitze zur Planung von
Fahrmanovern im Stadtverkehr ohne Karte betrachten die Planung in
Langs- und Querrichtung separat. Zudem wird in der Regel die Kennt-
nis der Straflengeometrie vorausgesetzt. Um diese Einschrankungen zu
tiberwinden, wird in dieser Arbeit eine schwarmbasierte Trajektorienpla-
nung, basierend auf der etablierten Theorie der Elastic Bands, vorgestellt.
Die Grenzen der Fahrzeugdynamik sowie Vorlieben des Fahrers hinsicht-
lich des Fahrverhaltens werden hierbei mit parametrisierten Kostenfunk-
tionen dargestellt. AufsSerdem wird ein schwarmbasierter Algorithmus
zur Vorhersage der Bewegung von Fahrzeugen in der Umgebung einge-
fiihrt, sowie eine Heuristik vorgestellt, um den besten Kandidaten fiir ein
Fiihrungsfahrzeug auszuwéhlen. Der Ansatz wird in Simulationen, auf
aufgezeichneten Daten und in Feldtests in realem Verkehr evaluiert. Die
experimentellen Ergebnisse zeigen, dass der vorgestellte Ansatz eines
Schwarmverhaltens fiir autonome Fahrzeuge die Vorteile einer karten-
basierten Planung voriibergehend kompensieren kann.
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Chapter 1

Introduction

1.1 Motivation

AutoNOMOS Labs is researching autonomous cars since 2007. Our work-
ing group has gathered much experience during the last ten years by
testing algorithms in real traffic with three different autonomous vehi-
cles (Sprit Of Berlin, MadeInGermany, and e-Instein). We have tested our
cars on roads in four countries (Germany, Switzerland, USA, Mexico).
Since all trajectory planning algorithms evaluated by the working group
for autonomous driving rely heavily on lane-accurate maps, up-to-date
maps with very high precision are indispensable. Another prerequisite is
highly accurate localization of the vehicle to match the position in those
maps. Both requirements often become a significant problem since both
can not always be guaranteed due to several reasons. This thesis aims to
provide a fall-back solution for trajectory planning if an autonomous car
cannot localize itself on a map. The basic idea is to use other drivers as
a source for environment perception, especially their knowledge of local
conditions and their skill to interpret unusual situations and thus achieve
a solution to the trajectory planning problem, which does not rely on a
map, but on social awareness.

As stated above, previous solutions of the working group for trajectory
planning for autonomous cars - and nearly all other currently researched
solutions - are based on a representation of the environment via a map.
Using a map enables the planner to consider properties of the planning
area far ahead, such as the drivable space, dynamic and static obstacles
that can be expected on the way, or speed limits. This makes it possible
to plan with much higher velocities since situations where the car needs
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to slow down, e.g., curves or crossings roads, can be predicted reliably.
Maps for autonomous driving typically describe the road network and
its properties with lane-level accuracy. Consequently, it is a very time-
consuming process to build those maps, depending heavily on precisely
georeferenced data. During tests in several countries around the globe,
data from several different runs at different dates was usually needed to
compensate drifts in the GPS position due to occlusion or reflection of
the satellite signal on buildings and other vehicles. Using high precision
real-time kinematic (RTK) GPS systems cannot prevent those effects due
to their spatial and temporal locality. Also, the process of connecting the
roads and drivable areas correctly, e.g., at complex junctions, is a task that
is very difficult to automate. When we recorded data to map about 2.400
km roads in Mexico, we found that already one month later several road
sections were undrivable for our autonomous vehicle MadeInGermany,
because the traffic was diverted to the oncoming lanes due to construc-
tion work. Due to the great expense of maintaining maps, up-to-date
detailed and accurate maps will not be available for all areas in the near
future.

A critical factor when using maps is localization. The full potential of
highly accurate maps can only be used if the car is able to localize itself
equally accurately within those maps. Unfortunately, no solution can
guarantee the required accuracy for the localization of autonomous ve-
hicles at all times. GPS, the primary source for global localization, relies
on an unobstructed line of sight to four or more satellites. The accuracy
of GPS can be enhanced to lane-level precision using real-time kinematic
(RTK) positioning, which relies on corrections to the satellite’s signals de-
rived from local reference stations. Practically this approach does not al-
ways work as expected. First of all, the RTK data (i.e., reference stations)
must be available for the region with a sufficient resolution. Secondly, the
correction signal has to be transmitted to the GPS receiver mounted on
the car - either via a 3G connection or by satellite. This process is prone
to reception errors. During our tests in different countries, we used var-
ious variants of RTK protocols, but none of them provided a completely
reliable and stable localization with an accuracy below 1.5 meters. Even
if RTK positioning works as expected, the satellite signal is still prone to
occlusion or reflection, which cannot be mitigated by information from
reference stations. This is especially relevant in an urban environment
with tall buildings.
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Another approach for positioning, widely used in the domain of robotics,
is feature-based localization. Local landmarks are observed by sensors
and matched to the corresponding landmarks stored in a map. We have
successfully used lane markings, curbs, poles, building corners, and im-
age features such as SURF or ORB for this purpose in our workgroup.
Nonetheless, tests involving feature-based localization were always re-
stricted to relatively small areas due to the requirement to build high-
quality feature maps and keep them up-to-date. Depending on the fea-
ture type, the availability of the features is also a problem: Not all roads
have lane markings, buildings, or poles (e.g., trees) or visually unique
features. Landmarks could also be occluded temporarily by other traffic
participants, weather conditions, or have changed permanently.

In addition to the challenges of maintaining a map and guaranteeing a
proper global localization, there is also the case that the lanes actually
used by human drivers differ from the officially designated road map.
During heavy snowfall in Berlin, we encountered the situation that the
human drivers created two lanes in the center of the road - to avoid the
heaps of snow at the borders. The original lane markings, which defined
three lanes, were invisible under the snow, and our autonomous car was
the only one following them.

Apart from situations where the mapped roads are blocked or shifted
due to temporal obstructions, there are cases where no valid road map
can be created altogether. One example is the roundabout at the Angel
de la Independencia in Mexico City, where no lane markings are avail-
able. Because there are no fixed lanes, the human drivers create them
instantaneously. Depending on the traffic density, the four lanes entering
the roundabout could be merged into two lanes or split up into six lanes.
Following the expected four lanes, our autonomous car was often per-
ceived as an obstacle by the local drivers, hindering traffic flow. Those
situations demonstrate a need for some kind of swarm behavior for au-
tonomous cars - even if perfect maps and localization may be available
in the future.
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1.2 Swarm-Based Trajectory Planning for
Autonomous Cars

Human drivers have a simple but efficient strategy if they cannot localize
themselves on the map they have memorized: They follow other cars,
i.e.,, they adapt to the behavior of other drivers who may have more
knowledge of the area. Drivers who are familiar with the local condi-
tions know where they can accelerate safely and where they have to slow
down. They also know where and how to drive in unusual situations,
such as partially closed or diverted lanes due to construction sites. This
knowledge can be used, similar to maps, to plan ahead of the close sensor
range and thus enable a more efficient driving behavior. Integrating into
the swarm of local drivers also benefits the safety aspect. A driver who
adopts the local driving behavior is more predictable for the other road
users.

Of course, human drivers do not follow arbitrarily observed cars blindly.
They also take into account common sense and their own driving pref-
erences, as well as traffic rules. This leads to a set of preferences and
restrictions which may be ambiguous or even contradict themselves. The
main challenge is how to weigh those parameters and maintain reason-
able safety and comfort properties while integrating as much as possible
into the swarm of local road users.

When talking about swarms, the flocking (or schooling) behavior of some
birds or fish comes to mind: large groups of individual entities move col-
lectively, according to some unspoken rules, in order to preserve energy,
deceive predators, or hunt prey. While it is not possible to directly copy
a specific animals’ behavior, there are aspects of the flocking behavior
which can be transferred to driving cars. Human drivers also adapt to
other cars surrounding the ego vehicle. They align with the other cars
and adjust their velocity. They also avoid getting too close to other in-
dividuals. The aspect of being attracted by the center of the swarm may
be useful when trajectory planning can benefit from the knowledge of
local drivers in the vicinity. On the other hand, it is not always desir-
able to be surrounded by other traffic participants. Even when following
a specific vehicle, human drivers often choose positions with more free
space around them (e.g., the empty neighbor lane) to better perceive the
oncoming road or more options to avoid obstacles. Also, human drivers



Chapter 1. Introduction 5

consider many other indicators where and how to drive, e.g., road mark-
ings and traffic signs. This is a major difference from the unstructured
environment where most animals navigate.

However, when taking the concept of roads into account, another well-
documented example of animals achieving swarm intelligence exists: many
species of ants use trail pheromones to guide their fellow members to
food sources and around obstacles. Based on this approach, the ants are
straightening out roads and cut shortcuts to ensure fast access to foraging
areas. Some species even maintain “highways” with multiple lanes. The
concept of trail pheromones can be used to create a momentary map of
the surrounding road geometry: the area where other cars were moving
seconds ago should also be drivable for the autonomous car. Similar to
the ants’ trails, if more individuals use a specific path, it should be bet-
ter in some aspect (e.g., safety or efficiency). The virtual pheromones left
by observed cars can include additional information on velocity, tracking
status, or classification confidence. This information can then be used to
filter only the safest and fastest trails to follow.

The objective of this thesis is to enable efficient trajectory planning when
no map is available, localization in a map is not possible, or the actual
behavior of road users differs from the given map. An approach is pre-
sented in the following, which adapts the concept of flocking and trail
pheromones to autonomous cars and thus achieves a kind of swarm be-
havior. Human drivers use many sources of information on the structure
and characteristics of the road that influence their driving behavior, e.g.,
lane markings and traffic signs, weather conditions, and their experience
and knowledge of the local practice. Nonetheless, this work focuses on a
single high-level type of input for the presented planning modules: ob-
jects with associated classification (e.g., car, truck, bicycle, or pedestrian),
contour, velocity, and acceleration. In a way, all of the additional infor-
mation available to human drivers is implicitly encoded in the behavior
of the dynamic objects. While non-vehicle objects are regarded solely as
obstacles and consequently avoided, the proposed behavior follows the
paths of observed vehicles and takes into account their velocity and ac-
celeration. Hence, not only the road geometry is perceived, but also the
traffic rules and characteristics (e.g., reasonable speed limits). This can be
seen as expanding the capabilities of the individual autonomous car by
using the group of other drivers as additional sensors: a typical achieve-
ment of swarm intelligence.
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1.3 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

e A swarm-based trajectory planning approach for autonomous ve-
hicles combining lateral and longitudinal control is presented.

e The proposed trajectory planning requires no map of the road net-
work or prior knowledge of the environment.

e The vehicle’s dynamics are taken into account for the trajectory
planning. They are parameterized and can be adapted to the drivers’
preferences.

e A swarm-based motion prediction algorithm is introduced to pre-
dict the surrounding vehicles’ trajectories.

e A heuristic algorithm is presented to choose the best candidate for
a leader vehicle based on weighted criteria.

e The approach is evaluated in simulation, on recorded data, as well
as with live field tests in real traffic.

Regarding specifically the field of elastic bands, this thesis contributes:

e A comprehensive set of weighted objective functions representing
driver preferences and restrictions.

e Objective functions which enable to drop the restriction of a fixed
goal position. This enables complex dynamic maneuvers despite

fixed time intervals between discrete states representing the elastic
band.

e An algorithm for efficiently initializing the states of the elastic band
based on the observed trajectories.

e An efficient and stable solution for handling dynamic obstacles dur-
ing optimization.

The remainder of this thesis is divided into five chapters, starting with a
discussion on related work and prerequisites in Chapter 2. The proposed
swarm-based motion prediction approach is presented in Chapter 3. At
the core of this work is a detailed description of the proposed STEBLE
trajectory planning in Chapter 4, followed by an evaluation of the exper-
imental results in Chapter 5, and concluding remarks in Chapter 6.



Chapter 2

Related Work and State of the Art

This Chapter summarizes the state of the art for swarm-based planning
approaches, trajectory planning for autonomous cars, as well as the spe-
cific concept of elastic bands. Furthermore, an overview is given of the
autonomous car MadeInGermany, which was used for the experiments
presented in this thesis. The associated FUB_ROSCAR software frame-
work for autonomous driving is described.

2.1 Swarm-Based Trajectory Planning

Swarm-based algorithms have a long history in the context of robotics
and optimization. The expression of “swarm intelligence” was intro-
duced in 1988 by Gerardo Beni and Jing Wang relating to cellular robotic
systems. Beni found the term appropriate because the group of cellular
robots he was researching on “had some special characteristics, which
in fact are found in swarms of insects, i.e., decentralized control, lack of
synchronicity, simple and (quasi) identical members”[1]. Although au-
tonomous cars are certainly not simple robots, they share many of those
aspects. In his article Beni also highlights the mechanism of “stigmergy”,
i.e., “communication by way of the environment”, as a critical concept in
the modeling of swarms. This indirect coordination between agents or
actions through the environment can also be observed on traffic partici-
pants. The similarities of swarming behavior and “automated highway
systems” were also noted by Gazi and Passino in the introduction section
of their work on swarm robotics control [2].
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One of the essential works in the field of swarm-based algorithms was
presented in 1987 by Craig Reynolds. The model for flocks of boids (bird-
like objects) presented in [3] is based on three simple rules for the behav-
ior of each individual boid, often quoted as “Reynolds’ rules”.

N
4 \f‘f}s Atfﬂ
A }& \> 4

Figure 2.1: Reynolds’ rules for modeling flocking behavior. (a) Separation: avoid colli-
sion with local flockmates. (b) Alignment: steer towards the average heading of local
flockmates. (c) Cohesion: move towards the center of the flock. (Images source: [4])

Reynolds extended his framework in [4], adding different rules for avoid-
ing obstacles or pursuing a path or leader. Also, the concept of velocity
alignment is introduced. An early example of the algorithm’s ability to
bridge the gap between artificial intelligence and natural swarm behav-
ior can be found in [5] where Vaughan et al. use a variation of the boids
algorithm to control a robot to interact with a flock of real geese. Based
on Reynolds’ rules, Olfati-Saber et al. define the flocking algorithm as a
set of mathematical equations [6]. The control input for each agent con-
sists of three terms: a gradient-based term, a velocity consensus term,
and the navigational feedback. The gradient-based term uses an attrac-
tive/repulsive pairwise function to keep the agent at a specified preferred
distance from other agents, with the preferred distance smaller than the
maximum communication range between agents. The velocity consen-
sus term is a damping force to align the velocities of close flockmates,
and the navigational feedback term attracts all agents towards a group
objective. Extending those three terms, Semnani et al. present the force-
based motion planning (FMP) algorithm for large teams of agents [7].
The approach builds on the concept of “semi flocking”, which changes
the navigational feedback term in order to enable multiple group targets.

A widely used algorithm with many similarities to Reynolds’ boid model
is particle swarm optimization (PSO), proposed by Kennedy and Eber-
hart in 1995 [8]. PSO updates a population (called a swarm) of candidate
solutions (called particles) of a given cost function by applying simple
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rules, which can be interpreted as moving them in the search space. Up-
dating the position of a particle in the search space takes into account the
individual particles” current position and velocity, as well as the whole
swarm’s best-known solution. A major advantage of PSO is that it does
not require the optimized problem to be differentiable, as it does not use
the gradient of the cost function. On the other hand, PSO does not guar-
antee that the globally optimal solution is found at all. As an established
method for computational optimization, PSO is not exclusively related to
the field of trajectory planning. It has been applied to a huge variety of
problems [9]. A recent example using PSO to optimize the trajectories of
multiple vehicles simultaneously can be found in [10].

Many other optimization algorithms are inspired by the natural swarm
behavior of animals, e.g., bees, bacteria, or fireflies. Mavrovouniotis et al.
give an extensive overview in their survey [11]. Among the most popular
classes of those algorithms is the ant colony optimization (ACO) intro-
duced by Marco Dorigo in 1992 [12]. The algorithm is modeled on ants
seeking a path between their colony and a source of food. Information
on the currently best solution is stored in the environment in the form of
pheromones, a paradigm of stigmergic behavior.

p . P - X |
\J ()

(a) (b)

Figure 2.2: The ant colony optimization of the traveling salesman problem. (a) Each
ant traverses all nodes of the graph. At each node the ants consider distance and the
amount of pheromone deposited to probabilistically select the next edge on their tour.
(b) After having traversed all nodes, the ants deposit pheromones along their traveled
path proportional to the quality of the solution. (¢) Deposited pheromones evaporate
over time, leaving only the frequently traveled best paths marked. (Images modified
from [14])
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While the original ACO algorithm is aiming to solve the traveling sales-
man problem (compare Figure 2.2), it can be adapted for a large variety
of optimization problems. Dorigo et al. give an overview of extensions
and applications of ant colony optimization in [13]. Given the origin of
the ACO algorithm, i.e., ants finding the most efficient routes, a natu-
ral application of the algorithm is urban traffic route planning. Claes
et al. highlight two significant advantages of the algorithm for this use
case [15]: (1) it can handle dynamically changing cost functions and (2)
can find globally coherent solutions based on distributed local informa-
tion. These features make it a perfect match for the proposed application
in an urban traffic environment, where predicted link travel time is con-
stantly changing, and accurate estimation is only locally available. ACO
has been applied to path planning for robots in dynamic environments,
usually based on a grid network representation. One of the first imple-
mentations of this approachis [16]. A more recent example with the focus
on autonomous vehicles can be found in [17], where the problem of the
discontinuous curvature grid path found with ACO is solved by fitting
non-uniform rational B-spline curves (NURBS).

Figure 2.3: Example of a path graph (blue) extracted from observed vehicles trajecto-
ries. Gray lines represent expected trajectories from mapped lanes. (Source: [18])

A different approach, also inspired by the pheromone-based stigmergy
mechanism of ants, is proposed by Ulbrich et al. to extract a graph of
possible paths for an autonomous car from observed vehicles trajecto-
ries [18]. Simon Rotter applies the approach to the autonomous driving
framework developed at Freie Universitadt Berlin in his master thesis [19]
and evaluates the results on the autonomous car MadeInGermany (which
is also the platform used for the experiments throughout this thesis). The
complete processing chain from selecting and abstracting sensor data to
generating a driveable trajectory is described in detail in [20].
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2.2 Elastic Bands For Trajectory Planning

The elastic band theory (as well as Reynolds’ boids algorithm) is closely
related to the concept of artificial potential fields, introduced by Ous-
sama Khatib for motion planning in 1986 [21]: A point, representing the
robot’s configuration, is subjected to an artificial force vector. The force
vector is calculated from the gradient of a potential function, combin-
ing attractive and repulsive potentials, similar to electrostatic potential
fields. While the attractive potential guides the robot towards a goal, the
repulsive potential repels the robot from obstacles so that the resulting
force vector indicates the most promising local direction. The concept of
artificial potential fields is a popular approach for implementing obsta-
cle avoidance. It is frequently applied in the domain of robot control, as
well as in swarm robotics. In [22] Reif et al. present a study on applying
“social” potential fields to distributed autonomous multi-robot control.
In the domain of vehicle control, Gerdes and Rossetter present a lane-
keeping driver assistance system based on artificial potential fields [23].
They validate their simulated results on a sports car [24]. De Lima et
al. implement a dynamic window approach for modifying the field to
take moving obstacles into account [25], realizing a path planning sys-
tem for autonomous road vehicles. Rasekhipour et al. combine the po-
tential fields with a model predictive control approach to include vehicle
dynamics [26]. In [27] Boroujeni et al. generate multiple discrete vector
fields for different velocities to attract an autonomous car to a target path.
The actual force vector for a given pose and velocity is then interpolated
between the fields entries.

One of the major advantages of the potential field approach is that its out-
put (i.e., the force vector applied to the robot) can be directly converted
into a robot’s control signal. It does not need a potentially costly repre-
sentation of free space, and in most situations, the force vector is guiding
the robot safely towards the goal. However, this is not the case in the
presence of local minima in the potential field. At a local minimum, the
sum of the attractive and repulsive force is zero, resulting in a force vector
with magnitude zero (compare Figure 2.4).

The goal of the elastic band approach, introduced by Sean Quinlan and
Oussama Khatib in 1993 [29], is to solve this problem by combining the
reactive capabilities of the artificial potential field method with global
path planning. The authors assume that a coarse collision-free initial path
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Figure 2.4: A robot trapped in a local minimum of the artificial potential field. The
attractive and repulsive forces are balanced, resulting in a force vector with magnitude
zero. (Image source: [28])

from the robot’s configuration to the goal is provided. Inspired by the
tension model in a physical elastic band, this path is then subjected to ar-
tificial forces, refining it towards a short and smooth solution while main-
taining the initial path’s clearance from complex obstacles and global in-
formation about how to achieve the goal. Quinlan et al. propose a frame-
work with three levels, each implementing a closed feedback loop. At
the topmost and slowest level (with the lowest execution frequency), a
world model is used to generate a coarse global solution. This solution
is then refined using the elastic band approach on the next level, i.e., the
generated path is deformed to handle local changes of the environment
in real-time and smooth the path. At the lowest level (with the highest
frequency), the control input for the robot to follow the refined path is
computed. Quinlan elaborates on the elastic band theory in detail in [28],
including the relation to artificial potential fields.

In the original elastic band theory, two artificial forces are used to deform
the planned path of the robot: An external repulsion force and an internal
contraction force. The repulsion force pushes the path away from obsta-
cles in the vicinity. The contraction force models the tension in a stretched
elastic band, smoothing and shortening the path. The total energy of the
elastic band is then minimized to find the optimal path. Later Quinlan et
al. introduce a third force component [28]. The constraint force ensures
that a static configuration of the band exists, but it does not contribute to
the band’s energy. The elastic band itself is represented as a finite series of
points. To ensure that the continuous curve generated from these points
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is collision-free, Quinlan et al. propose the concept of “bubbles”. A bub-
ble is modeling the free space around each point of the band, i.e., an area
where the robot can move and is guaranteed not to collide with any ob-
stacles (compare Figure 2.5). In the two-dimensional case, the most sim-
ple shape of the bubbles is a circle, but more complex shapes can be used.
The size of each bubble is determined by the distance of the correspond-
ing point to the closest obstacles. For the elastic band to be collision-free,
the bubbles of subsequent points on the band have to overlap.

Figure 2.5: Quinlan and Khatib originally describe the elastic band as a series of bub-
bles, representing the free space around discrete points on the elastic band. (Image
source [28])

The external repulsion force on a point of the elastic band is modeled in
the same way as the repulsive potential in the artificial potential fields
method. It pushes the point away from obstacles, with the force vector
corresponding to the gradient of the potential at the respective point. Ob-
stacles can be modeled as arbitrary shapes. The internal contraction force
model is inspired by the tension model in a physical elastic band. How-
ever, in contrast to the model of an (idealized) linear elastic material, the
proposed way to compute the internal force aims to reduce the impact of
the stretch of the band. It only depends on the curvature (and not the dis-
tance) between two consecutive points. In this way, the distance from the
obstacles at which the repulsive force and the contraction force balance
each other is much less affected by stretching or contracting the band.
Accordingly, local changes in the path due to appearing or disappearing
obstacles are less likely to propagate to other regions of the band. The



Chapter 2. Related Work and State of the Art 14

internal force model can be interpreted as a series of springs connecting
the points and straightening the band in the absence of obstacles (com-
pare Figure 2.6). By normalizing the force from each spring, a uniform
tension along the band regardless of its length (i.e., the number of points)
is reflected.

Obstacle

Internal Force fint %

External Force f

ext
Constraint Force .
Total Force f ot

Figure 2.6: The artificial forces deforming the elastic band. The external repulsion force
on the elastic band is pushing it away from obstacles. The internal contraction force
smooths and shortens the path. It can be interpreted as a series of springs connecting
points on the elastic band. The constraint force prevents the band from thinning out at
some regions, by restricting motion of points along the band. It is equal and opposite
to the external force projected along the elastic band. (Image source [30])

A problem of this model of the contraction force is that it has no com-
ponent in the tangential direction of the elastic band. Thus the external
force could continuously push points along the path, thinning out the
band in some regions. To counter this, the constraint force is introduced.
It is computed by projecting the external force along the band, prevent-
ing the motion of points in this direction. As the stretch of the band can
still change due to lateral movement of the points and the internal force
model is not entirely independent of the stretch, it is still possible that
local changes are reflected in other regions of the band. To further mit-
igate this, Quinlan et al. add a mechanism to add and remove points to
the band, i.e., change the length of the band. This effectively maintains
a more or less consistent amount of stretch along the whole elastic band.
With this mechanism in place, the constraint force is essential to prevent
an infinite sequence of points being inserted, migrate along the band, and
being removed at another region.
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Quinlan describes an application of the elastic band theory to the motion
planning of a system of three Puma 560 manipulator arms [28]. How-
ever, the approach has also been applied to the domain of path planning
for autonomous vehicles. Hilgert et al. present a method for planning
emergency maneuvers of autonomous vehicles [31]. Adopting the origi-
nal model using only the external and internal forces, they demonstrate
the capabilities of the elastic band to refine the planned path of a lane
change maneuver dynamically in the presence of other vehicles quickly
approaching from behind. The work is extended by Hirsch et al. to in-
clude a process called path oriented vehicle state prediction [32]. The
process takes into account linear dynamic effects for the calculation of the
steering angle. This is achieved by minimizing the distance of a sequence
of states (generated from a linear bicycle model) to the optimized elastic
band in an iterative process. The approach assumes constant longitudi-
nal velocity of the ego vehicle, and the velocity of obstacles is ignored.

Gehrig et al. present an extension to a vehicle following driver assis-
tance system [30], introducing several modifications to the original elas-
tic bands approach. The system follows the path of a lead vehicle and
uses elastic bands to introduce dynamic path modifications when other
traffic participants interfere with the leader’s path. The observed lead
vehicle’s path is used as the initial configuration of the elastic band. As
the system’s goal is to follow this path as closely as possible, the internal
forces are offset to penalize any deviation. Furthermore, the initial path
cannot be guaranteed to be collision-free, as the lead vehicle may have
smaller dimensions or moving obstacles may have interfered. Thus, the
concept of bubbles of free space is not valid anymore, and the final equi-
librium state of the band is also not necessarily collision-free. To solve
this problem Gehrig et al. propose geometrical checks for collision with
obstacles on the final path. As a further extension towards the domain
of road vehicles, the authors model observed lane markings as virtual
obstacles. Modeling the behavior of drivers keeping more distance at
higher speed, Gehrig et al. use a potential for obstacles depending on the
relative velocities between obstacle and ego vehicle (in addition to the
position-based potential proposed by Quinlan). For the position of the
obstacles, dynamic parameters are not taken into account (i.e., obstacles
are considered static regarding their position). The presented vehicle fol-
lowing system also decouples longitudinal and lateral control, i.e., there
is no feedback between the controller adjusting the velocity to follow the
lead vehicle and the path planning. Gehrig et al. validate the approach



Chapter 2. Related Work and State of the Art 16

on a real car (a Mercedes Benz E-class 420). The missing non-holonomic
constraints on the resulting path are not considered a problem by the au-
thors, with reference to the safety margin around obstacles and the non-
holonomic properties of the leader’s path. Nonetheless, M. Khatib et al.
present an approach to address this problem explicitly, introducing the
concept of non-holonomic bubbles to the elastic band theory [33].

Sattel et al. use elastic bands to plan an optimal emergency path for au-
tonomous vehicles [34], implementing a collision avoidance system. They
propose two significant extensions of the elastic band approach: First, the
(predicted) motion of dynamic obstacles is considered for computing the
external force. Furthermore, multiple elastic bands with different initial
paths are generated. To realize the inclusion of motion, the points of the
elastic band are associated with points in time using a constant planned
longitudinal velocity and the approximated traveled distance. Accord-
ingly, the obstacles predicted position at the respective time is used to
compute the repulsive force. The prediction of the obstacles also assumes
constant velocity and is initialized with sensor data at the beginning of
each path planning iteration. The basic idea of planning multiple elastic
bands is to generate alternative paths to pass an obstacle, either left or
right. This is achieved by shifting points on the initial path in the cor-
responding direction. Thus the proposed approach optimizes 2* elastic
bands for k observed obstacles. The criterion for evaluating the best path
is smallest maximum lateral acceleration. A similar approach, also using
motion prediction, is presented by Song et al. [35]. The authors assume
constant acceleration and predict the obstacles along the known road ge-
ometry.

It has to be noted that all of the approaches mentioned above consider
only lateral control, i.e., steering maneuvers. They either assume constant
velocity or acceleration of the ego vehicle or do not consider longitudi-
nal control at all in the path planning. This decoupling of path planning
and longitudinal control reduces the complexity of the problem signifi-
cantly, but also makes it impossible to consider dynamic constraints on
the robot. This is addressed with the concept of “timed elastic bands”, in-
troduced by Rosmann et al. [36]. The timed elastic band method refines
trajectories rather than paths. Similar to the methods taking into account
obstacle motion, the timed elastic bands approach augments the elastic
band with temporal information, i.e., each pair of consecutive points on
the band is associated with the duration needed to traverse the segment.
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However, those time intervals are also subject to the proposed optimiza-
tion (along with the spatial configuration of the robot). This enables the
approach to consider the temporal aspect of the ego-motion, reflecting
dynamic changes in the velocity profile along the path and constraints
on the robot, such as maximum velocity and limited acceleration.

Rosmann et al. express the constraints on the timed elastic band in terms
of piecewise continuous, differentiable objective functions, reflecting the
internal and external forces in the original elastic band theory. The weight-
ed sum of those functions is then minimized using a graph optimization
framework. Besides dynamic constraints on the robot (velocity and accel-
eration) and kinematic constraints enforcing non-holonomic properties,
the objectives also implement geometric constraints for clearance of ob-
stacles and attraction to waypoints. The contracting aspect of the elastic
band is realized via the “fastest path” objective, minimizing the sum of
all time intervals. Since most of the proposed objective functions are used
directly or extended in this work, a detailed description can be found in
Section 4.2.
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Figure 2.7: Rosmann et al. introduce a method for discovering and maintaining a set of
homotopically distinct paths, used to initialize multiple elastic bands passing obstacles
on the right and left side. Two paths are homotopic, if one can be deformed into the
other without intersecting any obstacles. (Image source [30])

Rosmann et al. extend the approach for planning multiple trajectories si-
multaneously [37], similar to the work of Sattel et al. described above.
The authors introduce a method for discovering and maintaining a set of
homotopically distinct initial trajectories (compare Figure 2.7), reducing
the computational complexity significantly. Keller et al. augment the ap-
proach with objective functions for lateral and longitudinal acceleration
as well as jerk [38]. They implement planning emergency maneuvers for
autonomous vehicles. In this domain, the distinction between lateral and
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longitudinal dynamics (and the respective weights of the objective) is of
major importance since it allows adjusting the preference between a brak-
ing and a lane changing maneuver. Furthermore, Keller et al. rely on an
objective function modeling the boundaries of the road, which requires
knowledge of the road geometry.

The approach presented in this thesis is aiming to overcome those lim-
itations. It is based on a further adaption of the timed elastic band ap-
proach toward the domain of autonomous driving, the stable timed elas-
tic band with loose end (STEBLE). The concept is introduced by Ulbrich
et al. in [39]. The approach is described in detail in Chapter 4. An early
version of the procedure for initializing the STEBLE trajectories is pre-
sented in [40].

2.3 Hardware and Software Framework

2.3.1 The Automomous Car MadeInGermany

The algorithms proposed in this thesis were tested in live test runs. Fur-
thermore, many of the experiments presented in this thesis are based on
data collected in real traffic. The platform used for those experiments
and the collection of live data is the autonomous car MadeInGermany
(Figure 2.8a), a 2010 Volkswagen Passat Variant 3c.

It is equipped with various sensors and modified so that the drive-by-
wire control of gas, brake, and steering can be directly accessed via a
CAN bus interface. More detailed information on the sensor setup can
be found in [41]. For the experiments throughout this thesis, only the
following sensors were used: six Ibeo LUX 4L lidars [42], an Applanix
POS LV 510 inertial measurement unit [43], as well as the steering angle,
provided on the CAN bus of the vehicle for the integrated Volkswagen
lane-keeping system. The Ibeo lidar sensors are fused using an Ibeo elec-
tronic control unit (ECU) running the Ibeo Feature Fusion Core Module.
The ECU provides the fused point clouds, as well as tracked objects.

Each of the Ibeo LUX lidar sensors has a horizontal field of view of 110
degrees and a range of up to 200 meters. The six lidars are distributed
around the car so that their field of view overlaps (compare Figure 2.8b).
Detection and tracking of objects are performed on the fused point cloud
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(a) (b)
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Figure 2.8: The sensor setup of the autonomous car MadeInGermany used for the ex-
periments in this thesis consists of six fused Ibeo LUX 4L lidar sensors and an Applanix
POS LV 510 inertial measurement unit. (a) MadeInGermany at the test site Flughafen
Tempelhof (Image source: Daniel Gohring, 2017). (b) The field of view of the lidar sen-
sors. (¢) The boundary boxes of dynamic (orange) and static (yellow) objects are tracked
over time, which mitigates the effect of blindspots and occlusion in the lidar point cloud
(blue).

of all sensors, which mitigates the effect of the blindspots in close prox-
imity of the car (Figure 2.8c). The Applanix POS LV 510 inertial mea-
surement unit allows localization with an accuracy in the range of a few
centimeters. It has to be noted that the absolute positioning capabilities
of the POS LV are not of relevance for the experiments presented in this
thesis since no map reference is used. Nonetheless, the Applanix system
provides very accurate relative position updates, allowing the evaluation
to focus on the validity and convergence of the presented algorithms.
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2.3.2 The FUB _ROSCAR Software Framework

The FUB_ROSCAR software framework is the basis for the autonomous
driving software stack developed at Freie Universitat Berlin. It is built
on the robotics middleware ROS [44]. The swarm-based prediction and
trajectory planning modules introduced in this thesis are integrated into
the FUB_ROSCAR framework via two ROS packages. Besides those two
packages, over 50 other packages developed at Freie Universitit are in-
volved in the software stack used for the experiments presented in this
thesis. (There are many more FUB_ROSCAR packages not used in the
context of this thesis.)

The sensors used in the experiments for this thesis, described in detail in
Section 2.3.1, are six fused Ibeo LUX 4L lidars [42], an Applanix POS LV
510 inertial measurement unit [43], as well as the steering angle sensor
of the integrated Volkswagen lane-keeping system. In the context of this
work, the post-processing of the data provided by the respective sensors
is limited to decoding and converting the sensor output in ROS messages.
The Applanix system provides the odometry of the ego vehicle with six
degrees of freedom at 100 Hz, matching the default frequency of the con-
trol loop. The steering angle is also provided at 100 Hz. The Ibeo ECU,
which is fusing the six individual lidars and performs object detection
and tracking, provides object data at a frequency of 12.5Hz. In addi-
tion to the objects” pose and dimensions, each object is associated with
a tracking id, enabling the matching of objects between two iterations of
the planning loop. The Ibeo object detection also provides a classification
into one of the following: car, truck, bike/motorcycle, pedestrian, and
unknown.

The data flow in the trajectory planning and control stack of the frame-
work is realized with two closed loops at different frequencies: one plan-
ning loop and one control loop (compare Figure 2.9). The planning loop
is usually run at 10Hz, primarily due to the computational cost of the
processing (including lidar and camera data). The control loop is run
at a much higher frequency of 100 Hz - which is necessary to follow the
planned trajectory precisely and avoid oscillations in the steering and ve-
locity control of the vehicle.

There is a direct feedback in each iteration of both the planning and the
control loop through the change of the ego vehicle’s state and environ-
ment detected by the sensors. For the control loop, the feedback data
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Figure 2.9: Data flow in the trajectory planning and control stack of the FUB_ROSCAR
framework. Data in the control loop (blue) is published at much higher frequencies
then the data in the planning loop (orange)

includes only the measured ego vehicle’s state. For the planning loop
also the observed objects are considered. Due to the different frequencies
of the loops, the trajectory tracking and the control module are working
on the same unchanged planned trajectory for some iterations. This ap-
proach can be seen as a hybrid of open and closed-loop control concepts.

Although the existing (map-based) FUB_ROSCAR trajectory planning
module was replaced by the proposed swarm-based trajectory planning
in the experiments, the control architecture was left as-is: The output of
the trajectory planning - a sequence of poses over time - is processed by a
trajectory tracking module. This module interprets the sequence of poses
as support points of two cubic splines over time. It samples the wanted
velocity and steering angle based on a PID controller, considering the ac-
tual measured pose and the planned trajectory. The wanted velocity and
steering angle are then realized in the control module by two further PID
controllers, generating the values for gas and brake pressure, as well as
the momentum of the steering wheel. Those values are sent directly to
the actuators of the vehicle.
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Chapter 3

Swarm-Based Prediction of
Dynamic Objects

Predicting dynamic objects is one of the essential aspects of trajectory
planning since it allows one to anticipate potential collisions and react
accordingly in due time. A precise prediction is even more crucial for an
approach like STEBLE, described in Chapter 4, where the (partially pre-
dicted) trajectories of other vehicles are not only used for obstacle avoid-
ance. In addition, STEBLE also aims towards following them, i.e., the
ego vehicle is attracted to the paths of other vehicles. The predicted tra-
jectories also play a significant role in choosing a target to follow and the
initialization of the elastic band.

The advantages of the presented swarm-based trajectory prediction over
a velocity-based approach are discussed in Section 3.1. In Section 3.2 the
tracking of dynamic objects is described, Section 3.3 covers the process
of relating the tracked objects to specific roads. The actual prediction of
the objects is described in Section 3.4 resulting in a reference trajectory
for each object. Section 3.5 deals with re-sampling those trajectories to
provide convenient sequences of poses for the algorithms described in
Chapter 4.

The input data for the object prediction modules includes the position,
orientation, as well as linear and angular velocity of objects surround-
ing the ego vehicle. The objects are classified as dynamic or static by the
perception modules; objects are dynamic when they have been observed
moving at some point in time. Each object is identified over time by a
unique id. This input data is accumulated for each object o; in the track-
ing step (Section 3.2), resulting in a sequence of observed poses P;.
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(a) For each dynamic object o; surrounding the ego vehicle (light gray), the poses and
velocities observed by sensor processing modules are tracked over time (solid arrows).
The resulting sequences P; of observed poses are used to attract the ego vehicle to the
trajectories of other vehicles (Section 4.2.5). The time interval between stored poses
corresponds to the time interval At of the STEBLE elastic band (compare Section 4.1).
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(b) The objects’ poses are predicted for a defined number of discrete time steps At
(dashed arrows) corresponding to the poses of the STEBLE elastic band (compare Sec-
tion 4.1). For each object o;, the predicted poses are appended to the observed poses P;
in a sequence Q;, which is used for obstacle avoidance (Section 4.2.4), selcting a target
to follow (Section 4.3) and generating an initial elastic band (Section 4.4).

Figure 3.1: Output of the tracking and prediction algorithms for dynamic objects.

The poses P; = (p]-,_nj, ..., Pjo) correspond to the poses of the elastic
band described in Chapter 4, i.e., each pose p;; = (lel-,y]-,i, 9j,i) consists
of two coordinates x, y for the two-dimensional position on a plane plus
one angle 0 for the orientation. The output of the prediction algorithm
described in this chapter is a sequence of poses Q);.

Qj = (Pj,fn]»/ - PjO/ Py Pj,n+m)

This sequence includes the predicted poses of the object o;, as well as the
poses observed in the past, i.e., P; C Q;. Merging the observed and pre-
dicted poses has advantages for some of the post-processing algorithms
described in Chapter 4. The index i of each pose represents the point in
time associated with the pose. The time interval At between subsequent
poses is constant, i.e., for each pose pji the offset in time to the most re-
cently observed pose pj is given by the product iAt.
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3.1 Swarm-Based vs. Velocity-Based Prediction

In early iterations of the presented approach, dynamic objects were pre-
dicted using the most straightforward method of assuming constant lin-
ear and angular velocities [39]. This has the advantage of a very low
computational cost: The pose p;; of object o; at the point in time corre-
sponding to index i of the elastics bands poses can be calculated by sim-
ply adding the offset iAtd; to the most recently observed pose p;, where
U; = (vx, vy, vg) is the vector of the linear velocity in x- and y-dimension
and the angular velocity. Although this prediction is accurate for straight
lanes or in curves with constant curvature, it does not work well for the
entrance and exit of curves (compare Figure 3.2). Also, in the planning
and construction of roads, segments of constant curvature are generally
avoided in favor of a smooth transition between different slopes.

Figure 3.2: Wrongly predicted trajectories assuming constant linear and angular veloc-
ity. The error in the prediction is most significant when entering curves (orange vehicle)
and leaving curves (blue vehicle).

One advantage of the STEBLE approach is that the exact points in time
for which the objects need to be predicted are known in advance. Thus,
the objects” predicted trajectories can be computed in advance for those
points in time and then be looked up in each iteration of the optimiza-
tion process. This approach enables a more sophisticated (and computa-
tionally expensive) algorithm for calculating the predicted poses without
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significantly impacting the overall computation cost. The proposed ap-
proach assumes that all vehicles follow the same road, i.e., the dynamic
object prediction is based on observing all surrounding vehicles instead
of assuming constant velocities for individual objects. This principle pro-
motes the idea of swarm-based behavior while also incorporating the
structured environment of the traffic infrastructure. Figure 3.3 compares
the result of the two approaches for a curvy section of the road. The as-
sumption of constant velocities fails dramatically for all objects in this
scenario, but the swarm-based approach predicts the trajectories nearly
perfectly (except for the rightmost object, where no observations of vehi-
cles driving ahead are available).
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Figure 3.3: Comparison of dynamic object prediction using (a) the constant linear and
angular velocity and (b) the proposed swarm-based approach, taking into account tra-
jectories of other objects driving ahead. The plots show the predicted poses of the ob-
jects over time. The objects are predicted for a duration of 5s with a step size of 0.2s.
The most recently observed pose is shown in yellow, the pose in 55 is red, the poses in
between are colored proportionally. Road boundaries are shown in blue for reference.
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This perfect performance is certainly not guaranteed for all scenarios.
Although the algorithm presented in the following considers to some
degree that drivers do follow other vehicles on shifted paths and with
different velocities, the prediction is still prone to individually differ-
ent behavior. The most important reason for this is that individual hu-
man drivers cannot be predicted precisely in general, as too many (unob-
servable) factors influence their behavior. More specifically, even when
restricted by the road networks structure, drivers can still make many
choices. Besides opting for different velocity profiles, they can perform
lane changes and thus distort the premise of drivers following the lanes.
Nonetheless, the evaluation in Section 5.2 verifies that the swarm-based
heuristic outperforms the velocity-based prediction substantially in sim-
ulation as well as in real traffic scenarios.

3.2 Tracking Dynamic Objects

The perception and tracking of objects are handled in other modules of
the FUB_ROSCAR Software Framework, which are not in the scope of
this work. In this processing, objects are classified as static or dynamic.
The prediction algorithm considers only objects classified as dynamic by
the perception modules (i.e., objects observed moving at some point in
time). Furthermore, the data passed to the trajectory planning module
for each perceived object includes the following information: a unique
id assigned by the tracking modules, the center pose, and linear and an-
gular velocities. Also, a label for object classes, such as car, bicycle, or
pedestrian, is available.

As a preprocessing step for the swarm-based trajectory prediction de-
scribed in this chapter, the observed poses are stored for each object o;
in a queue data structure over time (compare Figure 3.1a). Objects are
distinguished by their unique tracking id reported from the sensor pro-
cessing modules. A user-set parameter limits the length of the queues
for performance reasons. The time interval between stored poses corre-
sponds to the constant time interval At of the STEBLE elastic band, de-
scribed in detail in Section 4.1.
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The current content of the queues, a sequence of poses P; for each dy-
namic object 0j, is the input for the proposed prediction algorithm.

P] = (p]'/fnj’ o e IP],O)

The index i of each pose p;,; represents the point in time associated with
the pose. The actual offset in time to the last observed pose pjo (which
corresponds to the start pose of the trajectory planning described in Chap-
ter 4) is given by iAt. As stated above, the number 7; of poses stored for
each object o; is limited for performance reasons to a respective thresh-
old of 10s. On the other hand, the number 7; may be smaller than this
threshold for objects which have been tracked for a shorter duration.

The observed trajectories P; are the basis for the swarm-based trajectory
prediction described in the following sections. Furthermore, they are
used directly by the objective function attracting the ego vehicle to the
paths of other vehicles (compare Section 4.2.5).

3.3 Clustering Objects on the Same Road

As stated above, the underlying theory of the proposed approach is that
all vehicles follow the same road or, more precisely, drivers generally
follow the trajectories of other road users driving ahead. Since the pre-
sented approach aims to solve the task of trajectory planning without
using a map, the information that the observed vehicles are driving on
the same road cannot be derived from such a map. Instead, a very sim-
ple heuristic is applied in the first step to divide the observed dynamic
objects into two sets of same-directed and oncoming objects by compar-
ing the closest pose of their observed trajectories to the current pose of
the ego vehicle (compare Figure 3.4). This heuristic was chosen because,
despite its simplicity and low computational cost, it works in the vast ma-
jority of scenarios (i.e., when all vehicles going in the same direction as
the ego vehicle are actually using the same road). It has to be noted that
this heuristic ignores that drivers might be turning into different roads in
a similar direction (e.g., at highway exits), or lanes could diverge due to
traffic islands. However, such wrongly predicted trajectories do not dra-
matically impact the proposed swarm-based trajectory planning since it
promotes the ego vehicle moving in the same general direction as the
majority of close-by vehicles.
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Figure 3.4: The dynamic objects are clustered into two sets for the prediction: One set
for same-direction traffic and one set for oncoming traffic. The two sets are processed
precisely the same way in the subsequent processing steps, except for an inverted cri-
terion for ordering the elements.

3.4 Determining Reference Trajectories

An overview of the subsequent processing step for each set of dynamic
objects (same-directed and oncoming) is given in Figure 3.5. The goal
of this step is to find the best reference trajectory Qs ; for each object
0;. This step is intertwined with the next step of sampling the predicted
trajectory Q; from the chosen reference trajectory (described in detail in
the following section). The predicted trajectories of previously processed
objects are the input for selecting reference trajectories for the remaining
ones.

First, the order of processing of the objects within each set is determined.
For this, the objects in the two sets are sorted in two respective sequences
O; = (0g,...,0,) by their longitudinal distance to the ego vehicle. Vehi-
cles driving ahead should be processed first, as vehicles driving behind
them can use their predicted trajectories. Consequently, the object with
the highest longitudinal distance to the ego vehicle is the first element for
the same-directed sequence and vice versa for the oncoming sequence.

In the following steps, the two sequences O; of dynamic objects are not
distinguished anymore, as they are processed in the same way. For each
sorted sequence O;, the contained objects o; are then processed in order
of their index. For each 0; € O; a set T] is maintained, consisting of
the predicted trajectories Qy of previously processed objects (with index
k < j). As stated above, the objects with lower indices are assumed to
drive ahead of objects with higher indices.
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(a) For each set O; the dynamic objects 0; € O; and corresponding tracked trajectories
(solid arrows) are sorted by their longitudinal distance to the ego vehicle from furthest
ahead to furthest behind (vice versa for oncoming objects).
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(b) The object oy (red), which is the furthest forward, is processed first. No poses of
other trajectories are in front of the last tracked pose of oy. Therefore no reference
trajectory is available, the future poses of oy (dashed arrows) are predicted from its
linear and angular velocity.
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(c) The second furthest forward object 01 (green) is processed next. The only trajectory
which has poses in front of the last observed pose of o; is the one of oy (red). Conse-
quently the valid poses of o are chosen for the reference trajectory Q.1 (red arrows),
regardless of whether they were tracked or predicted in previous steps. The predicted
poses of 01 (dashed green arrows) are sampled from Qs
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(d) For the next object 0, (orange) two other (partially predicted) trajectories have valid
poses. The valid part of the trajectory of o1 (green arrows) is selected as the reference
trajectory Q,f o, since it has a lower average curvature then the respective valid trajec-
tory of og (red arrows).

(e) The last object o3 (blue, furthest behind) is processed. The valid trajectory of o
(green arrows) is chosen again as reference trajectory Q. 2, since it has the lowest av-
erage curvature of all valid trajectories.

Figure 3.5: Selecting reference trajectories from other dynamic objects’ poses.
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When processing an object 0;, the corresponding previously processed
trajectories Q € T; are checked for validity. A trajectory Qy is valid if
two criteria are true: (a) the distance from the last observed pose p; o of 0;
to the closest pose of Qy does not exceed a threshold d,,,x, and (b) there
exists a subsequence Q; C Qi of poses which are all in forward direction
of pjo (where a pose is in forward direction, if the dot product of the
orientation vector of p;o and the difference vector of their positions is

positive). The longest subsequence Qy for each valid trajectory is stored
in a set V]-, i.e., after this step, V] contains all trajectories in a forward
direction of o -

Next, for all the valid subsequences Q; € V; the average curvature &y is
calculated by taking the mean of the curvature between all subsequent
poses. The equations for estimating the curvature (i.e., the reciprocal
of the radius of curvature) between two subsequent poses can be found
in the section on the objective function restricting the turn radius (Sec-
tion 4.2.1). The trajectory Qy € V; with the lowest average curvature &y is
chosen as reference trajectory Q,.y,; for the object o;. If the set V; is empty,
i.e., there are no valid trajectories, the reference trajectory Q. ; is also left
empty.

The heuristic of selecting the trajectory with the lowest average curva-
ture was chosen above all for its simplicity and the resulting low com-
putational complexity. This is a crucial feature, as the overall number of
trajectories to evaluate (with respect to a specific pose) increases quadrat-
ically with the number of vehicles. Using the minimal average curvature
has two further advantages over other easily evaluated features, such as
distance to a reference pose, velocity, or trajectory length and duration.
Firstly, a lower curvature, and consequently a lower centripetal accelera-
tion, is generally more comfortable for the passengers. Secondly, the cur-
vature is better suited for detecting lane-change maneuvers. On a straight
road, a (partial) lane change increases the average curvature. This is not
always the case in curves, but a relatively higher average curvature is still
a strong indicator for a lane change. Furthermore, in addition to the aver-
age curvature, the distance to the trajectory candidates is considered by
limiting valid trajectories to having a minimal distance below a specified
threshold.
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The output of the processing step described in this section, a reference tra-
jectory Q,.r,; for each object o;, is the basis for generating the correspond-
ing predicted trajectories Q;. The process of sampling Q; is described in
the following section. As stated above, the two steps of determining the
reference trajectory Qs ; and sampling the predicted trajectory Q; from
it are intertwined: The predicted trajectory Q; is the input for finding
a reference trajectory Q.r,iy1 (along with all other previously predicted
trajectories Qx;).

3.5 Sampling from the Reference Trajectory

The goal of this processing step is to generate a predicted trajectory for
one specific dynamic object o;. The input for this step are the recently ob-
served poses P; of 0; (compare Section 3.2), as well as a reference trajec-
tory Qyef,j- The process of determining Q. ; is described in detail in the
previous section. The output is the trajectory Q;, a sequence of n + m pre-
dicted poses appended to the observed trajectory P; of the corresponding
object 0. The observed poses P;are included in Qj (i.e., P; C Qj), since, on
the one hand, the reference trajectories are generated from both observed
and predicted poses (compare preceding section), and, on the other hand,
the objective function for obstacle avoidance needs to access past states
in some cases to cover the dynamic longitudinal safety distance (compare
Section 4.2.4). The handling of obstacle avoidance is also the reason for
extending the number of predicted poses beyond the maximum length
n of the elastic band: The number m of surplus poses is a configurable
parameter likewise related to the dynamic longitudinal safety distance.

The proposed algorithm for sampling the predicted poses of Q; from a
reference trajectory Q. takes into account two important facts: Firstly,
in many cases, drivers do not follow other drivers’ trajectories strictly.
They may be using different lanes, so their path is shifted by a spatial
offset. In curves, also the rotation has to be considered, shortening inner
paths and extending outer paths, respectively. Secondly, drivers may fol-
low the road with varying velocities, depending on observed obstacles
and driver preferences. The proposed approach takes this into account
by shifting the paths and velocity of the predicted trajectories in relation

to the recently observed spatial offset d and difference in speed Av.
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Figure 3.6 gives an overview of the full process of sampling the predicted
poses of o; from a reference trajectory Q.. First, the offset vector d
is calculated, pointing from the first pose pg of the reference trajectory
Qref,j to the last observed pose of o; (i.e. the last element of P;, compare
Figure 3.6b). Also, the difference Av in the speed (i.e. the magnitude of
the velocity in forward direction) at those two poses is stored. For this,
the respective speed values are approximated from the distance and the
constant time interval At between subsequent poses (which is valid for
P;as well as Qe ).

(a) (b)

(d (e ®

Figure 3.6: Deriving predicted poses from a reference trajectory. (a) The blue object’s
trajectory is to be predicted from the poses of the reference trajectory (green). (b) An
offset vector d is calculated between the first reference pose (green) and the last observed
pose of the blue object. Also, the difference Av in the speed at those two poses is stored.
(c) The offset vector d is attached to each reference pose (green) taking into account the
rotation. The resulting sequence of poses (blue circles) is annotated with a sequence
of speed values in the respective reference poses. (d) The pose sequence is filtered so
that the distance between subsequent poses does not fall below a minimum (compare
Figure 3.7). (e) Using the remaining poses as support points, two cubic splines are
constructed for the x- and y-coordinate over time. The respective time intervals between
two poses are calculated from the annotated speed values taking into account the initial
difference in speed Av. (f) The resulting splines and their first derivatives are then
sampled with the desired temporal interval to calculate the predicted poses of the blue
object.
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The offset vector d = (x4,y4) is then attached to each pose p; of the ref-
erence trajectory to obtain a sequence of poses p;. Here, the relative ori-
entation of the reference poses is taken into account, i.e., d is rotated by
the respective difference Af; in the orientation of p; to the first pose pg of
Qref,j (compare Figure 3.6¢).

pi = (xi,yi,0i), A6 = 6; — 6
f)l- = (xl- + COS(AQi)xd — sin(AOi)xd, yi+ sin(AOi)yd — COS(AQ,’)yd, 91')

The resulting sequence of poses S = (py, ..., P, ) is annotated with a se-
quence V = (v, ...,v,), reflecting the speed in the respective reference
poses p;. Again, the respective speed values are approximated from the
distance and the constant time interval At between subsequent poses.
The pose sequence S is filtered, considering two criteria described in Fig-
ure 3.7. The resulting sequence S is guaranteed to have a minimum sep-
aration of d,,;, between subsequent poses.

A5q if’o 3o Po
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Figure 3.7: Example of filtering a sequence of poses for spline construction. (a) The
offset vector d is attached to each reference pose p; taking into account the rotation.
The resulting poses p; are checked in sequence for two criteria. In the example shown,
only two poses (blue) are selected as support points for the trajectory spline. The two
other poses (gray) are rejected for not satisfying both criteria. (b) The pose p, is selected
because it is the first pose in the sequence. The pose p, is rejected because it is not
in forward direction the last selected pose p,,. This is determined by evaluating the dot
product of the orientation vector 0 of po and the difference vector A3, (orange) pointing
from p; to py. (c) The pose P, is rejected because it is too close to the last selected pose
Po- This criterion is evaluated by comparing the euclidean distance between the two
poses to a distance threshold d,,;,. (d) The pose p, is selected because it fulfills both
criteria: it is in forward direction of the last selected pose p, as well as further away
then the minimum distance d,,,,,.
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Using the remaining poses p; € S as support points, two cubic splines
with continuous first and second derivatives are constructed for the x-
and y-coordinate over time (compare Figure 3.6e). The respective time
intervals At; between two poses p; and p;,; are calculated from the re-
spective annotated speed values V = (v, ...,v,) and the arc distance b;
between the two poses. For the definition of the arc distance b; compare
Section 4.2.3. Furthermore, the speed difference Av in the last observed
pose pjo of o; and the first pose pg of the reference trajectory Q. ; is
taken into account by subtracting it from the respective speed values.

b;
v, — Av

At; =

For the construction of the spline the ecl_geometry ROS package [45] is
used, which in turn references [46] for the implementation of the contin-
uous derivative cubic spline. The resulting splines and their first deriva-
tives are then sampled with the desired temporal interval to calculate the
predicted poses (pj1,---,Pju+m) of the object o;. It has to be noted, that
the time domain of the spline defined by the support points may be not
large enough to sample all required n + m poses. This is the case when
no valid reference trajectory is available, but it can also happen when the
last observed speed of o is substantially higher than the corresponding
speed on the reference trajectory. In those cases the missing elements are
calculated assuming constant linear and angular velocity.

Finally, the predicted poses (p;1, - -, Pjntm) are appended to the sequence
of observed poses P; = (p]-,_n]., .-+, Pjo)- Corresponding to the construc-
tion of P; (compare Section 3.2), the index i of each pose p;; represents the
point in time associated with the pose. The temporal offset to the most
recent observation is given by the product iAt.

Q] = (Pj,—nj/ ---/PjoPj1s s Pj,n—l—m)

The resulting sequence Qj, i.e., the predicted trajectory of an object o; at-
tached to its actually observed poses, is the output of the processing step
described in this section. As stated above, this sequence is then used to
generate reference trajectory candidates for subsequently processed ob-
jects oy~ (compare Section 3.4). Additionally, the predicted trajectories
are of major relevance for the objective functions to avoid obstacles (Sec-
tion 4.2.4) and following other vehicles (Section 4.2.5), as well as for se-
lecting the best target to follow (Section 4.3) and the generation of the
initial elastic band (Section 4.4).
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Chapter 4

Swarm-Based Trajectory
Planning (STEBLE)

The approach presented in this chapter enables efficient trajectory plan-
ning without using a map, i.e., when no map is available, localization in
a map is not possible, or the observed behavior of road users differs from
the given map. To this end, in the following sections, the STEBLE ap-
proach for trajectory planning is presented. It transfers many aspects of
swarm behavior, like flocking or trail pheromones, to the domain of au-
tonomous driving. Figure 4.1 gives an overview of the proposed process
of generating a trajectory.

STEBLE cannot work without observing at least one other vehicle. The
direction of the generated trajectory is solely determined by selecting a
target vehicle to follow, similar to many flocks in nature choosing a (tem-
porary) leader who determines the direction of the swarm. Many other
implementation details can be related to characteristics observed on an-
imals moving in swarms or collectives. The set of presented objective
functions attract the ego vehicle to other traffic participants (or “swarm
members”) while simultaneously keeping a safe distance to them. The
same behavior can be seen on flocking birds or schooling fish. The ob-
jective function for attracting the trajectory to the trajectory of other vehi-
cles is a central part of STEBLE and resembles the trail pheromones many
species of ants use to guide their fellow members. The prediction of dy-
namic objects incorporates aspects of both flocking and trail pheromones,
as it assumes that drivers follow in the shifted tracks of other vehicles.
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(a) A target vehicle is chosen from a set of candidates (blue). The ego vehicle (black) is
supposed to follow the target’s trajectory.
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(b) A sequence of initial poses (red) is sampled from a cubic spline based on the target
vehicle’s trajectory. A constant time interval is assumed between subsequent poses.
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(c) The planned trajectory of the ego vehicle (black) is optimized using the elastic band
approach. The optimization is based on several objective functions, taking into account
the ego vehicle’s dynamics, avoiding obstacles and attracting the band to observed ve-
hicles’ trajectories.

Figure 4.1: Overview of the proposed trajectory planning.

STEBLE extends the established trajectory planning method of elastic
bands. Section 4.1 presents the principal aspects of the approach, as well
as the representation as a graph optimization problem. The correspond-
ing objective functions, presented in Section 4.2, are the basis for the op-
timization of the trajectory. Section 4.3 presents a heuristic to determine
the optimal target vehicle to follow. In Section 4.4 a procedure to ini-
tialize the elastic band is proposed. Section 4.5 presents an approach to
prune invalid states from the elastic band, to prevent the optimization
from being stuck in a local minimum.
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4,1 STEBLE - Elastic Bands with
Fixed Time Interval and Flexible Goal

The method described in this chapter utilizes the concept of timed elastic
bands to generate locally optimal trajectories. The actual timed elastic
band is composed of a sequence of three-dimensional poses and an as-
sociated sequence of time intervals between those poses. All constraints,
e.g., minimum distance to obstacles, maximum velocity, or acceleration,
are formulated as objective functions. The optimization step then adjusts
all poses and time intervals to minimize the weighted sum of these func-
tions.

An essential aspect of timed elastic bands is that they consider tempo-
ral aspects of the whole trajectory, i.e., they can optimize dynamic con-
straints, such as acceleration, for the whole trajectory in addition to avoid-
ing obstacles. The poses at the end of the trajectory restrict the poses at
the beginning. In this way, it is possible to smoothly plan for more ex-
tended maneuvers such as overtaking and lane changes. Furthermore,
elastic bands enable planning in continuous space and are still efficient
compared to searching a huge discrete state space.

The concept of elastic bands for trajectory optimization is also ideally
suited for the task of following other vehicles’ trajectories, as an objective
function that attracts the band to those trajectories can be easily formu-
lated. This following of trajectories can be seen as swarm behavior, such
as ants following the pheromone tracks of their fellow species.

However, existing trajectory planning solutions using elastic bands re-
quire a fixed start and goal position between which the band is stretched.
This, in turn, requires dynamic time intervals between the individual
poses; otherwise, the average velocity on the planned trajectory would
also be fixed. As shown in the following sections, using fixed time inter-
vals between the poses of the band dramatically reduces the complexity
of the optimization problem. A critical contribution of this thesis is the
concept of stable timed elastic bands with loose ends (STEBLE), an ap-
proach eliminating the need for a fixed goal position while still preserv-
ing the requirement to follow other vehicles’ trajectories.
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Nevertheless, the concept of elastic bands has two inherent drawbacks:
1) the optimization step can only find a local optimum and 2) it is not
possible to formulate hard constraints with the objective functions, i.e.,
the optimal solution can be a sequence of poses that violates some of the
constraints. For example, the band could be trapped between two obsta-
cles, which results in the respective objective function pushing the band
in opposite directions and thus canceling the influence of both obstacles
altogether. The STEBLE approach presented in this thesis provides strate-
gies to solve this problem by pruning invalid states from the elastic band.
Another vital factor in mitigating this effect is providing a reasonable es-
timate for the initial state of the band, which is another notable contribu-
tion of this thesis.

4.1.1 Elastic Bands for Trajectory Planning

The proposed trajectory planning with stable timed elastic bands with
loose ends (STEBLE) primarily builds on the concept of timed elastic
bands (TEB) introduced by Rosmann et al. [36]. The TEB framework was
implemented and published by Résmann as the central part of the ROS
package teb_local_planner [47]. TEB extends the original elastic band ap-
proach proposed by Quinlan et al. [29] with regard to temporal aspects.
Compare Section 2.2 for related work on the elastic band theory.

This original elastic band is described as a sequence Q of poses p; in a
three-dimensional workspace with two coordinates x;, y; for the position
on a plane plus one angle 6; for the orientation.

Q = (pO/Pll--~/Pn)
Pi = (xi/yilei)

Timed elastic bands (TEB) augment Q by an additional sequence of time
intervals, which denote the time needed by a robot to transit between
adjacent poses. As discussed in detail in the next section, the approach
presented in this thesis (STEBLE) omits this sequence of time intervals
and instead defines one global time interval At. This At is valid for all
pairs of adjacent poses, i.e., denotes the time needed by the ego vehicle
to transit from each pose p; to the next pose p;;1. That is, for STEBLE,
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the elastic band is described entirely by the sequence of poses Q and a
constant time interval At.

B = (Q,At)

For timed elastic bands (i.e., TEB and STEBLE), the association of time
intervals (or a single time interval, respectively) with the poses allows
formulating objective functions regarding dynamic aspects, such as ve-
locity, acceleration, or moving obstacles.

The timed elastic band B is optimized by minimizing a global weighted
multi-objective function f(B).

f(B) = ;'kak(B)

B* = argmin f(B)
B

f(B) calculates the weighted sum of several objective functions f; with
corresponding weights 7. The individual components f; are described
in detail in Section 4.2. The resulting timed elastic band B* is optimal in
terms of the poses p; with regard to f(B).

4.1.2 Using a Fixed Time Interval and Flexible Goal

The central concept of STEBLE - stable timed elastic bands with loose
ends - is that the time interval At associated with the transition from pose
pi to pose p;;1 is constant. Thus, there is no need for nodes representing
the time intervals between poses in the hyper-graph to optimize. This
concept results in a much smaller search space for locally optimal solu-
tions compared to TEB since it is restricted to spatial configurations.

Although this can be seen as going a step back to the original elastic band
approach, all the objective functions with respect to At are still available
in STEBLE, so that the expression “timed” elastic band is still justified.
Dynamic changes of the velocity throughout the band are still possible
by varying the euclidean distance between poses. Besides the reduced
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complexity of the optimization problem, it is generally a preferable fea-
ture to have constant time intervals on the planned path, as many calcu-
lations can be simplified (e.g., objects” predicted poses can be computed
in advance of the optimization for discrete points in time).

The other vital aspect of STEBLE is that the last pose of the band (i.e., the
goal) is not set to a fixed position and orientation during the optimization
process. Since the total number of poses is constant after initialization,
the length of the band regarding the temporal aspect is also fixed. Thus,
a spatially fixed goal pose would imply the unnecessary constraint of be-
ing at a specific time at a specific position. Instead, to follow other cars, it
is sufficient to be somewhere on their trajectory at a given time. STEBLE
uses the objective function f,;, to constrain the band’s poses to other
vehicles’ trajectories to achieve such a behavior (compare Section 4.2).
In [39] STEBLE and TEB are compared based on their performance when
planning a simple merge into traffic maneuver. The respective experi-
ments have shown that f,,;, provides enough stability to the planned
paths so that it is feasible to loosen the end of the elastic band.

All objective functions and the weights and parameters used for STEBLE
are described in detail in the following subsections.

4.1.3 Trajectory Optimization as Graph
Optimization Problem

This optimization problem can be represented as a hyper-graph (com-
pare Figure 4.2). This generalization of the problem can be solved us-
ing established methods for graph optimization. For the implementa-
tion in the context of this thesis, the g2o library [48] was used. g2o0 is an
open-source C++ framework for optimizing graph-based nonlinear error
functions. The algorithm to solve the underlying nonlinear least-squares
problem can be configured from a range of standard methods. For the
experiments in this thesis, the Levenberg-Marquardt solver provided by
the g2o0 framework was selected.

The ego vehicle’s poses p; over time are represented as nodes. The in-
dividual objective functions fi correspond to hyper-edges of the graph.
Hyper-edges can relate to any number of nodes. In the presented im-
plementation, there are unary, binary, and ternary edges associated with
one, two, and three nodes, respectively. An example of a unary edge
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centr. acceleration lon. acceleration centr. acceleration

ang. acceleration

| velocity |

Figure 4.2: Representation of the timed elastic band optimization problem as hyper-
graph. The ego vehicle’s poses p; over time are represented as nodes (circles). Hyper-
edges (annotated with squares) can relate to any number of nodes. In the context of
timed elastic bands, there are unary (red), binary (blue, green, orange), and ternary
(yellow) edges, corresponding to the respective objective functions f;. Only the node
corresponding to the first pose p of the trajectory has a fixed value. The values of all
other nodes, i.e., the poses p;~g, can be modified during the optimization process to
minimize the overall cost for all edges.

is the objective function for obstacle avoidance. The edges for limiting
velocity are binary, as two nodes (poses) are needed for the calculation.
Edges related to acceleration are mostly ternary. A detailed description
of the respective objective functions associated with the hyper-edges can
be found in Section 4.2.

Furthermore, the first pose is permanently fixed during the optimization
process, i.e., it cannot be changed. This makes sense since we generally
want to start the trajectory from a specific pose. While in TEB also the
last pose is fixed, this property is disbanded for the STEBLE approach
(compare Section 4.1). All nodes (poses) except the first can be modified
during the optimization process.
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4.2 The Objective Functions

The final timed elastic band is optimized in terms of spatial configura-
tions (poses). At the core of this optimization process is the weighted
multi-objective function f(B). It calculates the weighted sum of several
objective functions f; with corresponding weights .

f(B) =Y _ 7fx(B) (4.1)
X

Each function f; represents an objective or a constraint that is associated
with one or more consecutive poses p;. Rosmann et. al. introduced in [36]
a piece-wise continuous, differentiable cost function er (Eq. 4.2) that re-
wards objectives and penalizes the violation of a constrained value x be-
yond a threshold x;, respectively.

(%)” ifx>x —e¢

er(x,xr,€,5,n) ~ {0 4.2)

otherwise

er

Figure 4.3: The piece-wise continuous, differentiable cost function er (Eq. 4.3).
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In the context of this work the simplified version (Eq. 4.3) of er was used
for all objectives, setting the scaling parameter S = 1 and € = 0. For all
objectives, the polynomial order n was set to either one or two.

(x —x)" ifx > x,

; (4.3)
0 otherwise

er(x, x,,n) ~ {

Based on er, Rosmann et al. proposed objective functions restricting max-
imum velocity, maximum longitudinal and angular acceleration, and en-
forcing non-holonomic kinematics [36], which are used in STEBLE. Fur-
thermore, existing functions from the implementation in [47] are used to
penalize backward-driving, falling below the minimum turning radius,
and maintaining a specific velocity at the start and goal pose.

Objective Function Description
non-holonomic

Fuk kinetics These functions ensure that all poses on the band

min turning follow the principle of non-holonomic kinetics.
Jrurn radius

Froroard | forward driving ‘]:Zvr;fglr:fsa?eci)g}}: forward driving” policy for the
. Limits the maximum velocity on the band to the
fo_max max velocity specified threshold.
. . Penalizes any deviation from the specified optimal
foopt | optimal velocity velocity. Used to modify the follow distance.
max longitudinal
Ja_ton acceleration
max centripetal | These functions restrict the maximum acceleration on

Jocen acceleration the band to the specified respective thresholds.

max angular
fa_ang acceleration

. Repels the band from obstacles closer than the
fop | avoidobstacles | 0 igied threshold.
fpath traf.ouow. Attracts the band to the trajectories of other vehicles.
jectories

Table 4.1: Overview of the individual objective functions f contributing to the global
weighted multi-objective function f(B)

The most important addition for the STEBLE approach is an objective
function to attract the trajectory to other vehicles’ trajectories. Further-
more, an objective function regarding the centripetal acceleration was
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added, and the existing function for handling dynamic obstacles was
substantially modified. Also, an objective function is proposed to pre-
fer a specific velocity (instead of limiting the maximum).

An overview of all objective functions used for STEBLE is given in Ta-
ble 4.1. They are described in detail in the remainder of this section; the
respective weights and thresholds are discussed in Section 5.3.1.

4.2.1 Non-Holonomic Kinematics and Turning Radius

The most crucial objective for optimizing the trajectory is that the vehicle
must be able to follow it. The related objective functions f,;x and frurm
ensure that all poses on the band follow the principle of non-holonomic
kinetics and the curvature of the trajectory does not exceed the physical
limitations of the vehicle, respectively.

The basic idea of the related objective functions f,;x and fim is to ap-
proximate a suitable path by assuming arc segments between two con-
secutive poses, i.e., each pair of adjacent poses p; and p; 1 is required to
be on a common arc segment of constant curvature and radius. It has to
be noted that this assumption can only partially enforce driveable trajec-
tories, as the transition between arc segments with different curvatures
would require an instantaneous change in the steering angle, i.e., an in-
finitely high angular acceleration. This is taken care of by the objective
function f,.. s, discussed in the respective section below, which implic-
itly constrains that the change in curvature from one arc segment to the
next is limited.

Pi Ab i

Figure 4.4: To restrict the trajectory to follow the principles of non-holonomic vehicles,
each pair of adjacent poses p; and p;;1 is required to be on a common arc segment of
constant curvature. This is realized by comparing the angles «; and «;,1 between the

respective orientation of the poses and the vector As;.
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pi = (xi,¥i,6i), Pix1 = (Xit1,Yit1,6i+1)

Ao, — <Xi+1 - xi) _ (Axi)
b \Vin1 Vi Ayi
0x;, = £(As))

a; =0; =05, aip1 =0ip1 — O

The function f,;; penalizes the deviation of the position and orientation
from such an arc segment. This is realized by comparing the angles «; and
—u;11 between the respective orientation of the poses and the orientation
0 % of Agi. A;i is the difference vector of the positions of p; and p; 1.

The relation of #; and a;;1 depends on the driving direction (compare
Table 4.2).

N = —jyq forward driving
T—oa;=—(mT—a;1) backward driving
;= —(m—0a;q) change driving direction from forward to backward
T— 0 = —®j11] change driving direction from backward to forward

Table 4.2: Relation of #; to ;1 depending on the driving direction.

Oj = —Qj+1 \/ T—a;=—(7T—ajy1) \/ TT— & = —&it1 \/ = — (7 — ajt1)
0

cos 0; Ax; cos 8; 41 Ax;
sin 91' X Ayi = — sin 9i+1 X Ayi

)= () - (=8 -
|

cos 0; Ax; Ax; cos 0; 41
sin 91' X Ayi = Ayi X | sin 9i+1
0 0 0 0
)
0 0
0 = 0
cos 0;Ay; — sin 0;Ax; sin 0, 1Ax; — cos 0;11Ay;

0

cos 0;Ay; — sin0;Ax; = sin ;1 Ax; — cos 0;1Ay;
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2

(cos; + cos 01 1)Ay; — (sinb; 4 sin 0; 1) Ax; (4.4)

| As;]]

funk(Pis Piv1) = ‘

Rosmann et al. have shown a definition of an objective function for this
purpose in [36], using the cross product of the respective orientation vec-
tors and As;. This has the advantage of taking implicitly care of the cases
when one or both of the the orientation angles 0; and 6, are rotated by
180°. Thus, it does not penalize traversing the arc segment in reverse
direction or inverting the direction between the two poses.

For the proposed definition of f,;x (Eq. 4.4) the definition by Rosmann et
al. was extended by a normalizing term. By dividing through ||As;||, the
cost for violating the non-holonomic constraint is prevented from being
influenced by the distance between poses.

As stated above, the curvature of the trajectory also needs to be con-
strained to the vehicle’s limits. To that end, fi;m (Eq. 4.5) likewise uses
the assumption of p; and p;;1 being on a common arc segment and pe-
nalizes the radius of this arc segment being below a specified threshold
T'min (1.€., the minimum turn radius of the vehicle).

Figure 4.5: The radius r of the arc segment of constant curvature between each pair of
adjacent poses p; and p;_1 can be calculated from the chord length ||As;|| and the angle
Af;. Ab; is the difference of the respective orientations ¢; and 6;,1 normalized to the
interval [—7t, 7T).
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(0ir1 — 0 +2m) if (6i1 —0;) < -7
Agi = (9i+1 — 9,‘ - 27‘[) if (9,‘_’_1 - 91‘) > 7
(0i11 —6;) otherwise

2sin (5!

—|ASZ|9.) H if 6iy1 7 0;

00 otherwise

(Fypin —1)% if 7 < Ty

i (4.5)
0 otherwise

fturn(Pi/ Pi+1/ rmin) = €r(—1’, _rminzz) = {

It has to be noted that the equations for both f,;x and f,» assume that the
poses p; are the respective center of rotation for the vehicle (usually the
center of the rear axis). This is actually not the case in the context of the
FUB_ROSCAR framework. Instead, the origin of the vehicle’s coordinate
system was set to the center of the front axle, as this is the default for
most automotive sensors used in the project. This spatial offset can be
taken into account by shifting the x and y coordinates of the poses p;. In
the equations given above, this was omitted for clarity.

Furthermore, both objective functions in this section do not penalize re-
versing the direction of the trajectory between two poses; they ignore a
difference of the orientation angles 0; and (6;,1 of more than 180° due to
the normalization of Af; to the interval [—7t, 7). This property was kept
intentionally, as future improvements of the proposed approach may in-
clude planning reverse driving. In the scope of this thesis, backward driv-
ing is effectively prohibited by penalizing it severely with the objective
function ffoyara (Eq. 4.6) described in the following section.

4.2.2 Forward Driving

As mentioned in the previous section, the objective functions f,;; and
fturn for ensuring the principle of non-holonomic kinetics and a mini-
mum turn radius do not penalize inverting the direction between two
consecutive poses. With no further constraints, this may produce trajec-
tories that reverse the driving direction. This property may be a desirable



Chapter 4. Swarm-Based Trajectory Planning (STEBLE) 48

feature, e.g., for planning parking maneuvers. The objective function re-
lated to maximum acceleration takes care of the necessary velocity re-
duction in those cases. However, in the context of cars, a change in the
driving direction has to be penalized, as it usually requires some time to
change the gear. In the scenarios evaluated in the context of this thesis,
reversing the driving direction was not applicable; thus, the weight for
the respective objective function fy,rqeq was set so that changes in the
driving direction did not occur.

Pi+1

Y

Pi A i

Figure 4.6: To restrict the orientation of pose p; to being in forward direction, the dot

product of its orientation vector 0; and the difference vector A_éi of the positions of p;
and the next pose p; 1 is evaluated.

pi = (X0, ¥i,0i), Piv1 = (Xiy1,Yis1,0i1)
Ag; — (xi+1 - Xi)
: Yivr1 — Vi

s _ (cos 0;
' \sin 91'

. As; - 0;)% if (As;-0;) <0
fforward(Pi/Pi+l):eF(_(ASi'Oi)rOIZ):{( i+0) (85i - 3)

0 otherwise
(4.6)

The orientation of pose p; is constrained by requiring that the subsequent
pose p;1 is “in front” of it. This is realized by comparing the orientation
vector d; of p; to the difference vector As; pointing from the position of p;
to piy1. If the dot product Agi - 0; is negative, the squared dot product is
returned as error.
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4.2.3 Limiting Velocity and Acceleration

Another crucial aspect of constraining the trajectory is limiting the veloc-
ity and acceleration. The vehicle’s dynamics are limited by the laws of
physics and cannot exceed some specified maxima. However, the actual
limits when driving in (urban) traffic are usually much lower. Addition-
ally, we can have different thresholds for safety and comfort.

In the following, the five different objective functions related to the vehi-
cle dynamics are discussed: fu_max , fo_opts fa_lons fa_cen and fg_ang. While
the former two functions restrict the maximum velocity and penalize de-
viation from an optimal velocity, the latter three are related to the ac-
celeration (longitudinal, centripetal, and angular). While in the case of
velocity, two (slightly) different functions are needed, for the accelera-
tion functions, it is only necessary to adapt the respective thresholds and
weights for a distinction between maximum and optimal values (relating
to safety and comfort).

Maximum Velocity

The original objective function f, ;ax for restricting maximum linear ve-
locity, proposed by Rosmann et al. in [36], is quite simple: The penalty
is proportional to the amount of velocity beyond a specified threshold.
The velocity is calculated from the euclidean distance between a pair of
subsequent poses p; and p;;1 and the time difference At (which is equal
for all 7). As two poses are needed for the calculation, f, 4y represents a
binary edge in the hyper-graph to optimize (compare Section 4.1.3) and
is associated with each pair of adjacent poses.

The implementation in [47] presents a minor refinement, which was adopted
in the context of this thesis: Instead of the euclidean distance ||As;||, the
arc distance b; of an arc segment of constant curvature between the poses

is used (compare Figure 4.7). This takes into account the vehicle’s orien-
tation and approximates the actual path traveled more accurately, espe-
cially in the case of a high angular velocity.

pi = (xi, ¥, 0;), Pit1 = (Xix1,Yit1,0i41)

A*Si _ (xi—l-l — xi)
Yiv1 — Vi
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b;

Pi A6;

Figure 4.7: The arc distance b; between each pair of adjacent poses p; and p;1 is used

for calculating the respective velocity. b; can be derived from the chord length || As; || and
the angle A6;. A6, is the difference of the respective orientations 6; and 6;, 1 normalized
to the interval [—7t, 7).

(0ir1 — 6; +2m) if (61 — 0;) < —71
Agi = (9i+l — 91' — 27'[) if (91'+1 - 91) > Tt
(6i11 — 0;) otherwise

AR ' if 041 # 0;

| As;| otherwise

Vi — Umax £ Uj > Upax 4.7)

fv_max(Pi/ Pi+1/ Umax) = €r(vi, Omax, 1) = )
0 otherwise

The threshold for the maximum velocity v,y (along with v,y below) is
particular in that it is not set to a static value externally, but is determined
during the initialization process for each trajectory optimization, i.e., it is
set only after the initial band is constructed (compare Section 4.4). This
is because the maximum (and optimal) velocity depends on the environ-
ment.
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While in most cases the maximum velocity is regulated by traffic rules,
the approach in this thesis is not to rely on explicit information on the
speed limit derived from a map or perceived traffic signs. Instead, we
want to adapt to the behavior of other drivers. Therefore the thresh-
old for maximum velocity is set relative to the velocities on the initial
band, which incorporates the velocity of the target vehicle. Throughout
this thesis, the threshold v;,,x was set to 110 % of the maximum velocity
value of the initial elastic band. This allows the ego vehicle to close the
distance to a leading vehicle but still penalizes substantially exceeding
the velocities of observed cars.

Optimal Velocity

Another function related to the velocity is fy ops. It penalizes the devia-
tion from an optimal (wanted) velocity. This is necessary since otherwise,
the ego vehicle would not increase the velocity at all if the goal velocity
(i.e., the velocity of the leading vehicle) is lower than the initial velocity;
in other words, the ego vehicle could never get closer to the leading ve-
hicle. As the number of poses is fixed and the time interval At between
poses is static, we cannot address this with an objective function reward-
ing a lower total time. A possible alternative would be to reward spatially
more extended trajectories, but by adjusting the optimal velocity thresh-
old, the distance kept to the leading vehicle can be influenced implicitly
in both directions (see calculation of v,,; below).

It also has to be noted that, although f, o,+ penalizes velocities higher
then v,,;, keeping a separate function f, m.x and threshold vy, is still
justified. While f, 4 must have a relatively high weight, as it is a safety-
critical constraint, the weight for f, ,,+ can be substantially lower since it
should be neglected in favor of more critical constraints.

The implementation of f; oy is quite similar to f; . The central part
of calculating the velocity v; is identical; it only differs in the final cal-
culation of the penalty, where (instead of the amount of the velocity v;
exceeding the threshold v,,y) the absolute difference of v; and v,y is re-
turned. Likewise, f, oyt also represents a binary edge and is associated
with each pair of consecutive poses p; and p;.

fv_opt(Pi/ Pi+1, Z7opt) = el"(Hvi - Uopt”; 0, 1) = ||Ui - Uopt” (4-8)
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Another similarity between the two velocity restricting functions is that
the threshold v, is also calculated during initialization. This is necessary
since it is implicitly responsible for maintaining a specified distance to the
leading vehicle and therefore depends on the observed environment (in
contrast to, e.g., thresholds for acceleration, which depend on the drivers’
or passengers’ preference). As v,,; directly influences the velocity on the
whole band, it is used to catch up to a selected target vehicle o; if the
distance diarger to that vehicle is larger than a specified follow-distance
d fol10w, and fall back if d, is smaller, respectively. To achieve this, v, is
calculated dynamically based on the current velocity vssrger Of the target
ot (i.e., the vehicle to follow) and the distance d between the ego vehicle
and oy.

dfOllOw - maX(5 m, ’Uego . 1 S)
Uoffset = 0.1s7". (d - dfollow) (4.9)

Oopt = min(vmax/ Otarget + Uoffset)

The distance d f,)0, is also calculated dynamically with respect to the cur-
rent velocity of the ego vehicle. This corresponds to following the target
with a temporal distance of 1 s. For low velocities, d ¢yjo, is limited from
below, so it cannot fall below a specified minimum follow-distance of
5 m. Additionally, the value of v, is limited from above, so that it can-
not exceed v4y-

Longitudinal and Angular Acceleration

Besides limiting the velocity on the trajectory, we also need to limit accel-
eration. On the one hand, the maximum acceleration is restricted by the
vehicle’s physical limits. On the other hand, we need to restrict those val-
ues to a range that is acceptable (or even comfortable) for human passen-
gers, which is typically much lower. We also have to distinguish between
linear and angular, as well as between longitudinal and lateral accelera-
tion, as those forces are perceived differently.

In the presented approach, the maximum longitudinal linear and the an-
gular acceleration are constrained explicitly. Respective objective func-
tions f, jon and f,_sng Were adopted for this thesis as proposed by Ros-
mann et al. in [36]. They correspond to ternary edges in the underlying
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hyper-graph (compare Section 4.1.3) and are associated with each triple
of consecutive poses p;, pi+1 and p;ip. In both cases, the return value is
the amount of the respective acceleration exceeding the threshold.

The longitudinal acceleration g,,, ; is calculated as the difference of the
linear velocities v; (between p; and p;.1) and v, (between p;;1 and
pi+2) over the time interval At. The velocities are calculated using the
arc distance, as described above for the velocity related functions.

_ Vi1 =0
Alon,i = At

fa_lon (Pir Pi+1,Pi+2/ alon,mux) =er ( ||alon,i » Alon,maxs 1)

(4.10)

_ Halon,i if ||alon,i
0 otherwise

< Alon,max

The calculation of ag; is analogous, using the difference of the angular
velocities w; and w; 1, which in turn are calculated from the difference in
the orientations 0; of the respective poses.

Ab;
wj = A_tl’ AG; = 0i11 —0;
Wiy1 — W;
ag,i = —Z+At l

fa_ang(pir Pi+1,Pi+2/ a(?,max) = Er( ||a9,i 7 A0, maxs 1)

_ gl if llagill < a6max (4.11)
0 otherwise

Centripetal Acceleration

Unlike longitudinal and angular acceleration, lateral acceleration is not
constrained explicitly. Instead an objective function f; .» was imple-
mented to restrict the centripetal acceleration a.. Along with f, ;,, and
fa_ang this implicitly constraints lateral acceleration.
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Restricting the centripetal accelerationa,. ; has the advantage of also con-
straining the angular velocity w; with respect to the linear velocity v;, as
it is the product of those two values. This allows higher angular veloci-
ties at lower linear velocities and vice versa, i.e., it enables sharp turns at
low speed while restricting them at higher speeds.

Aci = Vi

if ||ac,i < d¢,max

fa_cen (Piz Pi+1/ ﬂc,max) = eF(Hac,i 0 otherwise

(4.12)

a .
s Ae,maxs 1) = {H o

Another advantage of constraining the centripetal acceleration over con-
straining the lateral acceleration is that it only needs two consecutive
poses (instead of three). The objective function f; e, therefore, corre-
sponds to a binary edge in the underlying hyper-graph (compare Sec-
tion 4.1.3) in contrast to the ternary edges related to longitudinal and
angular acceleration.

While the thresholds for the velocity related functions are dynamic and
dependent on the observed environment, the thresholds for f; 15, fa cen
and f; ang are set externally to static values, which represent the prefer-
ences of the drivers (or passengers, respectively).

As the functions regarding acceleration penalize only values above the
specified maximum, they were added twice to the global weighted multi-
objective function f(B) with different thresholds: Firstly with a thresh-
old reflecting the dynamic limits acceptable for passengers, and secondly
with a threshold of zero (which is most comfortable for passengers). The
higher thresholds are needed to optimize the band towards a trajectory
with reasonable limits for acceleration and velocity. Accordingly, the re-
spective functions have high weights, as this represents a critical feature
of the trajectory. In contrast, the functions with thresholds set to zero
penalize any acceleration. They are added to favor a smooth and com-
fortable way of driving. Their corresponding weights are relatively low
because we do not want them to interfere with more critical objectives of
the optimization.
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4.2.4 Avoiding Obstacles

Besides respecting the vehicle’s dynamics (i.e., the vehicle must be able
to follow the trajectory), the most critical aspect of trajectory planning is
avoiding obstacles. The basic idea of the related objective function f,,
is straightforward: if the distance to an obstacle is smaller than some
safety distance, the penalty is proportional to how much we violate this
safety distance. The function f,;, corresponds to a unary edge in the graph
optimization problem (an edge associated with a single node, compare
Section 4.1.3), as it checks the distance to obstacles for every single pose
p; independently.

Geometric Representation of Objects

However, despite the simple basic idea, the actual calculation of the dis-
tance is not trivial for arbitrarily shaped objects. Their contour is approx-
imated by more simple shapes to reduce the complexity. From the sensor
processing modules of the FUB_ROSCAR Software Framework objects
are passed to the trajectory planning module, including the following in-
formation: a unique id for tracking, the center pose and size of the three-
dimensional arbitrarily oriented minimum bounding box, a list of points
for the estimated contour of the object (two-dimensional on the ground
plane), as well as linear and angular velocities for a tracked pose within
the object. Furthermore, the objects are classified into static (i.e., non-
moving) and dynamic ones. Also, a label for object classes, such as car,
bicycle, or pedestrian, is available. For the representation of the objects
within the proposed trajectory planning module, a distinction is made
between static and dynamic ones (compare Figure 4.8).

For static objects, a single set of line segments L; = {1y, ...,1,} is stored.
Each line segment 1; = (x;0,Yi0, Xi1,Yi1) is formed by connecting a pair
of adjacent contour points of an individual object. The line segments
stored in Ls are not associated with any specific obstacle anymore, as no
further information than the segments themselves is required. An R-tree
data structure [49] is used to accelerate the lookup of line segments in the
proximity of a specified coordinate.
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Figure 4.8: Geometric representations of objects. (a) All static objects are represented by
a single set L, of line segments 1; connecting the contour points of the individual objects.
(b) A dynamic object o; is represented by a geometric stadium shape defined by a center
pose p;;, a length a; and a radius r;. The values of 4; and r; are calculated based on the
bounding box of the object (black dotted lines). (c) The shape of ego vehicle (green) is
defined in the same way as those of dynamic objects. As the poses p; are not located in
the center of the vehicle, but the on the front axle, two lengths a, and as are needed to
form the line segment from the rear to the front of the car. The stadium shape is then
defined analogously to dynamic objects with the radius 7.g,. (d) The poses of dynamic
objects (red) are predicted with a step size of At. While the dimensions of the bounding
boxes of dynamic obstacles is tracked over time, for static objects only the currently
visible contour points (blue) are taken into account.

Using the contour is necessary for static objects since many non-moving
obstacles are curved walls or other road boundaries. Such large convex
or concave objects cannot be represented by a single bounding box ac-
curately. The minimum distance between two adjacent contour points is
20 cm for the sensor setup used throughout the experiments. The maxi-
mum separation of contour points is not limited.

On the other hand, a different representation was chosen for dynamic
objects because they require much more complex processing, as their
poses change over time. The actually observed poses are tracked and
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future poses are predicted with an algorithm described in detail in Chap-
ter 3. For each dynamic object o; it returns a sequence of poses Q;, where
pji € Qj represents the position and orientation of the object at a specific
point in time. A time interval of At, matching the STEBLE elastic band’s
time interval, is assumed between two subsequent poses. The pose p; is
the currently observed pose of 0; and corresponds temporally to the start
pose py of the elastic band, i.e., the current pose of the ego vehicle. Poses
with an index i < 0 represent the recently observed states, the poses with
i > 0 are predicted. For the obstacle avoidance a subsequence Qj CQjis
selected for each dynamic object o;.

Qj = (Pj(0—m)s -+ Pj(ntm) S Qj
pji = (X Y 0;i)

The parameter m states how many time steps the object is predicted be-
yond the number of poses n of the initial elastic band. It is set in ac-
cordance with the desired longitudinal safety margin (see below in this
section).

In addition to the computational cost of the actual prediction, the lookup
of dynamic objects cannot be accelerated in the same way as static ob-
jects. While the line segment representing the latter can be stored in one
single R-tree data structure to accelerate the distance calculation for all
poses, the dynamic obstacles would need an individual tree for each time
step. This strategy is ineffective unless a very high number of iterations
is used for the optimization loop (which proved unnecessary, compare
Section 5.3.2).

Thus, to reduce the complexity for dynamic objects, the contour points
are entirely ignored. Instead, each dynamic object o; is represented by
a geometric stadium shape, derived from its arbitrarily oriented mini-
mum bounding box (compare Figure 4.8b). Most dynamic objects in ur-
ban traffic can either be approximated quite well with this shape (cars,
trucks, motorcycles, bicycles) or are so small that there is no significant
difference to using the contour (pedestrians, animals). The geometric sta-
dium effectively adds two half circles to the minimum bounding box.
However, it substantially reduces the computational effort of calculating
the distance to other objects, compared to directly using the rectangular
bounding box, as the distance calculation effectively uses a single line
segment. Another major advantage of using the stadium shape is that
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its definition with a line segment and radius implicitly defines the cen-
ter of the object. This enables considering the distance to the center in
the objective function, so that band poses are pushed outwards of objects
(compare Eq. 4.14 and Eq. 4.15).

The stadium shape of dynamic object o; at a specific point in time ¢; can
be calculated from the (predicted) center pose p; ;, a length a; and a radius
ri (with p;; and a; defining the line segment mentioned above, compare
Figure 4.8b). While p;; needs to be computed for each step i, the values
of aj and r; are calculated for each object o; only once. They are derived
directly from the dimensions of the bounding box of 0, with a; being the
length and r; half of the width. Another advantage of using the arbitrarily
oriented minimum bounding box over the contour points, besides the
much more simple computation, is that the bounding box is tracked over
time for each object o; (in the sensor processing modules). The reported
bounding box’s dimensions take into account previous observations of
the corresponding object, while contour points are only available for the
currently visible portions of the object.

The shape of the ego vehicle is represented in the same way as dynamic
obstacles for calculating the distance to objects (compare Figure 4.8c). The
contour of the car is approximated quite well by the geometric stadium
shape. In contrast to dynamic objects, the poses p; of the ego vehicle (i.e.,
the elastic band) do not describe the center of the object but the center
of the front axle. For this reason, two length parameters a, and a, are
needed to define the length of the stadium shape. Together p;, a, and a4,
define a line segment, which in turn defines the geometric stadium shape
with the radius 7eg.

Dynamic Longitudinal Safety Distance

Another critical aspect of obstacle avoidance in traffic is the difference
in safety margins for lateral and longitudinal separation from other road
users. The lateral distance to objects moving in the same direction can get
relatively low (in the range of centimeters for urban traffic). This does not
pose an immediate danger, as changes in the lateral velocity are typically
much slower than their longitudinal counterparts and can be predicted
from the geometry of the lanes (assuming that drivers check for free space
when performing lane-change maneuvers). The longitudinal safety mar-
gin, on the other hand, is usually much larger. It strongly depends on the
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velocity of the vehicles. Instead of specifying a fixed value, the recom-
mended safe distance for following another vehicle is often given in sec-
onds (e.g., the German law requires a minimum distance corresponding
to 0.9s). Compare Section 5.3.1 for a detailed discussion on the optimal
safety margins.

In the first iterations of the presented approach, the dynamic property
and relatively larger size of the longitudinal safety distance was taken
into account by simply extending the length 4; by a multiple of the ve-
locity of the object [39]. This strategy works for straight trajectories with
simulated measurements free of noise or very small variations of this use
case. However, it is not feasible in many real-world cases.

(a) (b)

Figure 4.9: Extending objects in longitudinal direction is not a feasible approach for
maintaining separate longitudinal and lateral safety margins. Compared to the object
predicted with actual dimensions (a), the area occupied by the predicted longitudinally
extended object is substantially larger on the outer side of curves (b) and thus imposing
more lateral distance then necessary.

If the predicted trajectories contain curves or the perception of the ori-
entation of the objects is noisy (which is more or less always the case
for actual sensor data), this is not a valid approach (compare Figure 4.9).
Instead of extending the objects in one spatial dimension, a much more
practical solution is to use multiple predicted poses of the object at dif-
ferent points in time (compare Figure 4.10). This effectively projects the
shape of the object along its predicted trajectory.

@ Pj,(i+5)

Pj,(i-5)

Pi

Figure 4.10: Increasing the longitudinal safety margin depending on the object’s veloc-
ity is accomplished by measuring the distance of the ego vehicle at pose p; to the object
0; at several consecutive poses p;;. The poses p;; represent the objects predicted state
at different points in time.
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For each pair of a pose p; of the elastic band and a dynamic object o; a
sequence Qj,i of poses is selected from all predicted poses Qj of o;.

Qji = (Pj(i=mys- -+ Pjir-+ -+ P (icm))

N - (4.13)
Qji € Qj = (Pj,0—m)r -+ Pj(nsm))

All sequences Q]',i are subsequences of object’s o; predicted trajectory Q]-.
As described above, Q]- contains all predicted poses of the object o, as
well as some recently observed, exceeding the number of poses and re-
spective points in time of the elastic band by m in the past and future.
Each subsequence QA]-,Z- is centered around a pose p;; which corresponds

to a pose p; of the elastic band. For each Qj,i the poses from Q]- are se-
lected, where the index is greater than or equal to (i — m) and less than
or equal to (i + m). The threshold m is set according to the preferred
longitudinal distance depending on the value of At.

All of the poses in all sequences Qj,i are checked for a violation of the
minimum distance against their corresponding elastic band pose p; (tak-
ing into account the respective shapes of the objects). Of course, this
increases the number of distance checks substantially (by a factor of 2m),
compared to simply extending the length of the object at a single point
in time. As mentioned above, this is one of the reasons that the shape of
dynamic objects is approximated by a stadium shape instead of taking
into account the individual contour points (as is done for static objects).

Summing Up the Objects’ Penalties

The basic idea of the objective function f,, presented in this chapter is
straightforward: For each object closer to the ego vehicle than a thresh-
old distance d,,;,, the amount of the euclidean distance falling below the
threshold is squared and summed up as return value. The input param-
eters for f,, regarding the state of the ego vehicle, as well as static and
dynamic objects, are summarized in Figure 4.11. A set of line segments
represents static objects. For the ego vehicle and dynamic objects, the
combination of poses and a length can also be interpreted as line seg-
ments. That is, for both classes of objects, the calculation of the minimum
separation to the ego vehicle comes down to calculating the distance be-
tween two line segments and comparing it to some threshold. The radii
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static objects

@ | o Li={ly...,1,} <
- set of line segments 1; = (x;0,Yi0, Xi1,Yi1)
— represents the contours of all static objects
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/ dynamic object o;

e Q= (Pj,(Ofm)/ Ry Pj,(n+m))
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Figure 4.11: Summary of the object parameters used in the objective function f,;. Com-
pare Figure 4.8 for a description of the geometric shapes. (a) All line segments 1; derived
from the static objects’ contours are stored in a single set L;. (b) Each dynamic object
0; € Oy is defined by its predicted trajectory Qj, a length a; and a radius r;. (c) The ego
vehicle is described similar to the dynamic objects, but with two lengths a, and a;.

of the stadium shapes can be taken into account by subtracting them from
the threshold. The distance between line segments is calculated quite fre-
quently. The number of calls to this method varies between 100000 and
500000 times per planning iteration with the parameter set used through-
out the experiments. Vladimir J. Lumelsky proposed an efficient algo-
rithm for this distance calculation [50].
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A specialization of Lumelsky’s algorithm was used in this project, the
pseudo code can be found in Appendix A.

dist(1,,1;) = min. distance between 1, and 1, (see Appendix A)

The line segment 1., ; representing the ego vehicle with rear and front
distance a, and ay at each pose p; of the elastic band can be calculated as
follows. It is defined by the quadruple of the x- and y-coordinates of the
start and end point.

pi = (xi,vi,0;)
logoi = (i — arcos 0;,y; — a,sin0;, x; + agcosb,y; + aygsin 6;)

As static and dynamic objects have different representations, the compu-
tation of f,, is essentially split into two steps: determining the cost c;
(Eq. 4.14) for static and c;; (Eq. 4.15) for dynamic objects.

In the first step the sum c,; of all penalties g;; for all static objects vi-
olating the minimum distance d,,;;, to a specific pose p; of the band is
computed. To take into account the stadium shape associated with p;,
the actual distance d; ; between the object and the ego vehicle is the dif-
ference of the distance between the corresponding line segments 1; and
lego,i and the radius r,g, of the stadium shape representing the ego vehi-
cle. By subtracting 7., it is possible that d; < 0. This means the penalty
is increased the closer the object is to the center of the ego vehicle. That
is, the more the objects overlap, the higher the penalty. This is necessary
to push the band outwards, if the ego vehicle’s shape overlaps an object
and the distance of the contours is zero regardless of the extend of the
overlap.

I, € L
di = dist(lego,i, Ik) — Tego
Sik = 8§(ego,is I, Tegor Amin) = er(di g, dmin, 2)
_ {(di,k — dyin)® i dig < dmin

0 otherwise

Csi = Cs(lego,i/ Ls, Tego, dmin) = Z ik (4.14)
lkGLs
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It has to be noted that c,; (as well as c;; below) is based on a quadratic
cost function er. This is a better fit than a linear cost since the gradient
of the quadratic function mirrors a property of obstacle avoidance: major
violations of the specified minimum distance are fatal for the safety of the
trajectory, while slight breaches can be neglected.

In the second step the penalty for dynamic objects is calculated. For the
pose p; associated with f,;, the sum ¢, ; adds up the individual penalties
h; ; for each dynamic object 0; € Oy violating the minimum distance d ;.

For the computation of &; ; the sequence of poses lei is selected from the

sequence Qj of all predicted poses of the respective o; (see Eq. 4.13 and
corresponding subsection above for a detailed description).

0]' = (Q], Cl]', 1’]) € Od
Qj,i - Qj

From each sequence Q]-,i and the length of the object a; a set L;; of line
segments is derived.

lineseg(x,y,0,a) = (x —acosb,y —asinb,x +acosb,y + asinbh)

a; A
L;; = {lineseg(x,y, 0,31) :p=(xy0)€Q}

The minimum distance d; ; of the ego vehicle at pose p; to the object o; is
then calculated as the minimum of the set of distances to all line segments
in L; ;. The subsequent calculation of ¢, is analogous to the computation
of the cost ¢ ; of static objects. Again, the radii of the stadium shapes are
taken into account by subtracting them from the distance between the
line segments (this time including also r; of the object).

d;j = min({dist(logo,;,1) : 1 € Lj;i}) = Tego — 7
hi,j = h(lego,il 0j, Tego, dmi”) - er(dif]" Amin, 2)
= {(di,]' — dyin)* if dij < din

0 otherwise

ca;i = Cd(lego,is Ods Tego, Amin) = Y, hij (4.15)

o]EOd
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The final value of f,;, is then simply the sum of the cost cy; (Eq. 4.14) for
static and c;; (Eq. 4.15) for dynamic objects.

fob = ¢si +cai (4.16)

There are two reasons why a single objective function f,;, for dynamic and
static objects is used (although the individual penalties are only merged
in the final step). Firstly, both c;; and c;; (unlike any other objective) de-
pend on the computation of the line segments 1., ; representing the ego
vehicle. By merging both in a single objective function, this has to be done
only once. The second reason is that avoiding static and dynamic obsta-
cles should have the same weight in the global multi-objective function
f(B). The two different cost functions are defined to have a fluid transi-
tion if an object switches from static to dynamic state, and this property
would be invalidated with different weights. Also, when the planned
trajectory runs through a narrow space between a static and a dynamic
object, the band’s poses should end up centered between those objects to
minimize the violation of the respective safety margins. Given the bal-
anced property of the cost functions, this also requires uniform weights.

The objective function f,;, is one of only two functions represented as
unary edge in the hyper-graph to optimize (compare Section 4.1.3). It is
assigned to each band pose p; (i.e., node of the graph). Each of those
edges affects only a single pose of the band (or node in the graph, respec-
tively); all other properties such as the objects’ states or the geometric
shape of vehicles are not changed during the optimization process. Fur-
thermore, f,; is the only objective function presented, which directly uses
the index i of its associated pose p;. As described above, the index is re-
lated to a specific point in time and thus needs to look up the correspond-
ing states of dynamic vehicles. The states of the objects can be calculated
once in advance of the optimization process, due to the property of hav-
ing a fixed time interval At between the band poses all relevant points in
time are multiples of At.
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Furthermore, the implementation of f,, uses an R-tree data structure [49]
to accelerate the lookup of line segments in the proximity of the corre-
sponding pose’s coordinate so that the actual distance calculation only
have to be performed on a subset of all line segments. As stated above,
this is only done for the line segments representing static objects. For dy-
namic objects, an individual set of line segments is needed for each band
pose p;, as they represent different points in time. This substantially in-
creases the number of line segments for dynamic objects and is the main
reason for their comparatively simpler geometric representation. As us-
ing this simpler shape effectively reduces the number of line segments to
one per dynamic object per time step, there is no benefit in constructing
multiple R-trees compared to simply calculating the distance to all line
segments (unless the number of iterations of the optimization process is
much higher than in the presented approach).

4.2.5 Following Trajectories of Other Vehicles

A central aspect of the STEBLE approach is the objective function fyuy.
It penalizes the separation of the ego vehicle’s trajectory (i.e., the elastic
band’s poses) to other vehicles” paths. On the one hand, this reflects the
intention of driving on a trajectory close to the paths of other vehicles -
one of the basic ideas of the presented approach. If other cars were driv-
ing on a specific path recently, there is a high chance of this being a safe
and comfortable path for the ego vehicle. On the other hand, the func-
tion f,4, is critical for another aspect of STEBLE: the position of the last
pose of the band is not fixed. Without an objective attracting the poses to
other vehicles’ paths, the optimal path (disregarding collision avoidance)
would be a straight line in the direction of the start pose since this would
minimize the centripetal and angular acceleration. The objective func-
tion fyu is the only one, which guides the ego vehicle towards its goal
of following other vehicles. It corresponds to a unary edge in the graph
optimization problem (an edge associated with a single node, compare
Section 4.1.3). The objective function f .y, is associated with each pose p;
of the elastic band, except for the first.

Besides the respective pose p;, the input for f,;, is a set L, of line seg-
ments, representing the other vehicles” paths. An important decision re-
garding fp,s; is to choose which objects contribute to this set of possible
paths. While only the best target to follow is selected for initializing the
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elastic band (compare Section 4.3), for f,,, it is not necessary to limit
the choice to a single vehicle. Depending on the start pose and obstacles
blocking the way, it may be beneficial to follow the paths of other vehicles
(which are not the current target to follow) for some distance. Nonethe-
less, the presented approach does not take into account the trajectories of
all observed objects. A simple heuristic is applied to filter the candidates.

In this regard, the first criterion is that the object is classified as a vehicle
since the ego vehicle should not follow pedestrians or unknown objects.
The information on the class of the object is passed to the trajectory plan-
ning module from other modules of the FUB_ROSCAR Framework that
are not in the scope of this thesis. Secondly, only dynamic objects are
considered (i.e., objects that have moved at some point in time), as only
those can have a valid trajectory.

The further criteria for objects to contribute to the set of possible paths
are based on the object’s trajectory. For this evaluation, only the tracked
objects” states are considered that were actually observed. To represent
those observed states, for each dynamic object o; a sequence of poses
P; is maintained. The algorithm for tracking (and predicting) dynamic

objects is described in detail in Chapter 3. Similar to the sequence Q;
of predicted poses used for obstacle avoidance (compare Section 4.2.4),
each pose p;x € P; represents an observed position and orientation of the
object at a specific point in time.

P]' = (sz—”j" . '/Pj,O)
Pix = (Xjk Yik i)

The observed poses’ corresponding timestamps are not stored explicitly.
They can be derived from the index k due to a constant time interval of At
between two subsequent poses. It has to be noted that the time interval
At for the observed poses corresponds to the time interval for the elastic
band and the predicted poses. This is not mandatory since, for f,,, only
the spatial information is used. On the other hand, it has advantages for
the algorithm predicting dynamic objects (compare Chapter 3). The num-
ber of observed poses 7; can be different for each object o;. It depends on
the duration for which the object has been observed and is limited from
above to some threshold for computational efficiency.
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Given the observed trajectory P; of an object o; (which is classified as a
vehicle and has moved at some point in time) and the pose pg of the ego
vehicle (i.e., the start pose of the elastic band), two conditions are evalu-
ated to decide if o; contributes to the set of line segments L, representing
the paths to follow:

e D; contains at least 2 poses in forward direction of pg. This is eval-
uated using the dot product of the orientation vector of pg and the
difference vector of the positions similar to ffyyard in Section 4.2.2.

e The absolute difference between the orientation of py and the ori-
entation of the pose in P; which is closest to py is below 90°. This
ensures that trajectories of vehicles in the opposite direction are ig-
nored.

Figure 4.12: The path of all dynamic objects classified as vehicles are checked for two
conditions to be included in the set of valid paths to follow. The path of o is not taken
into account because its closest pose is in the opposite direction of the ego vehicle’s pose
po.- The path of o; is not considered because fewer then two poses are in the forward
direction of pg. The path of o, fulfills both conditions.

All trajectories P; fulfilling the above criteria are added to a set P. The set
L, is then generated from P, consisting of a line segment between each
non-equal pair of subsequent poses. The individual line segments are
defined by the quadruple of the x- and y-coordinates of the start and end
pose.

lineseg(pp, Pq) = (Xp, Yp, Xq, Ygq)
Ly = {lineseg(pjk Pj k+1)) : (Pjk Pjk+1)) € P Pjk # Pjk41). Pj € P}
Having obtained the set L, of line segments representing possible paths

to follow, the remaining task of determining the minimum distance of
those line segments to the respective pose p; associated with f 4, is sim-

ple.
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Calculating the distance of a two-dimensional position (x, y) to a line seg-
ment 1 was implemented in a straightforward way using the dot product
of two vectors. The pseudo code can be found in Appendix A.

dist(x, y,1) = min. distance between point (x,y) and line segment 1

The cost value returned by f 4, is then simply the minimum d,,,, ; of the
distances to all line segments1 € Ly, .

pPi = (xi/ Yi, 91)

fratn(Pis Lp) = dmin,; = min({dist(x;, y;,1) : 1 € Ly}) (4.17)

Figure 4.13: The objective function fp,; evaluates the minimum distance d;y,; of its
corresponding pose p; to the closest line segment. The axis aligned bounding boxes
(AABB) of the line segments are stored in a R-tree for faster lookup. The distance to the
AABB may be smaller then the distance to the actual line segment. Therefore, the exact
distance to the line segment is calculated for the k closest AABB (yellow), where k is the
number of trajectories (i.e., distinct objects) contributing to L, plus one.

The distance calculation can be accelerated by first filtering the candi-
dates using an R-tree data structure [49] to determine the k nearest neigh-
bors. Because the R-tree only takes into account the axis-aligned bound-
ing boxes, the k nearest neighbors need to be evaluated for the exact dis-
tance (compare Figure 4.13). When k is the number of distinct trajectories
contributing to L, plus one, the algorithm is guaranteed to find the clos-
est line segment.

Another way to reduce the computational complexity of fpu is to limit
the number of trajectories that contribute to the set of possible paths. It is
also feasible to use only one trajectory. In the vast majority of evaluated
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planning iterations, there is no difference in the calculated cost using only
the trajectory of the selected target to follow versus using all observed tra-
jectories. This is due to the ego vehicle usually being on or very close to
the trajectory of the car it is following. However, in the more challenging
scenarios, especially a merge into traffic maneuver of the leading vehicle
(compare Section 5.3), the availability of alternative paths on other lanes
is quite helpful for providing more stable planned trajectories in subse-
quent iterations. For this reason, the proposed implementation takes into
account all valid trajectories, as described above.

Furthermore, it has to be noted that the above cost function assumes that
both, the poses p; of the ego vehicle and the poses p; of the tracked ob-
jects, are assumed to be the center of rotation for the respective vehicle
(which is usually at the center of the rear axis). The actual center of rota-
tion for the tracked objects is unknown; their tracked poses represent the
object’s center. Due to measurement noise, efforts to calculate the offset
to the center of rotation turned out too inaccurate to have any noticeable
positive effect. Also, in the context of the FUB_ROSCAR framework, the
origin of the ego vehicle’s coordinate system was set to the center of the
front axle, as this is the default for most automotive sensors used in the
project. This spatial offset can be easily taken into account by shifting
the x and y coordinates of the poses p; to the center of the ego vehicle to
match the objects’ representation. In the equations given above, this shift
was omitted for clarity.

4.3 Selecting A Target to Follow

As described in previous sections, the general idea of the STEBLE ap-
proach is to follow other vehicles. The related objective function (com-
pare Section 4.2.5) is designed in a way that it is not necessary to choose
a specific target to follow, but instead, the trajectory of the ego vehicle
is attracted by a set of trajectories selected from all observed vehicles.
Nonetheless, several other aspects of STEBLE benefit from selecting a sin-
gle target vehicle to follow. Taking into account the trajectory of a specific
target for the initialization of the elastic band (compare Section 4.4) leads
to much faster convergence of the optimization; a statistical analysis can
be found in Section 5.3.2. Furthermore, the velocity of the ego vehicle is
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influenced to keep a specific distance to the chosen target vehicle (com-
pare Section 4.2.3). Consequently, the ego vehicle matches the speed of
a single leading vehicle. This integrates the ego vehicle into the swarm
of other road users while still allowing other drivers to overtake without
affecting the velocity of the ego vehicle.

The remainder of this section describes the algorithm for selecting a tar-
get vehicle o; from a set of candidates O = {0y, ...,0,}. The algorithm
heavily utilizes the output (and intermediate results) of the tracking and
swarm-based trajectory prediction described in Chapter 3. Consequently,
the set O contains the elements of the filtered sequence corresponding
to the observed vehicles driving in the same direction as the ego vehi-
cle (compare Section 3.4). For each of the candidate vehicles 0; € O, a
sequence of poses Q; is available from the post-processing modules, de-
scribing the observed and predicted trajectory.

The general idea of the algorithm is to select the vehicle whose state re-
sembles most closely the current state of the ego vehicle. For this task,
all candidate vehicles o; € O are evaluated based on four weighted cri-
teria: the difference in distance, orientation, and velocity, as well as the
duration for which the ego vehicle was following the vehicle in previous
planning iterations. While the first three criteria are directly related to
the similarity of the vehicles’ states, the duration for which a vehicle was
followed can be interpreted as a measurement of trust. It is also used to
provide a hysteresis and thus discourage frequent changes of the target
vehicle. The distance to the ego vehicle’s current position is evaluated
twice for each object: once for the position of 0; most recently observed
and once for the spatially closest position on the respective trajectory Q;.
While the latter value is calculated only in accordance with the general
idea of rewarding similarity to the ego vehicle’s state, the former value
rewards a more recent similarity. This is useful for breaking ties when
two vehicles have a spatially similar but temporally shifted trajectory.

Table 4.3 gives an overview of the criteria and weights used to evaluate
the best target to follow. It has to be noted, that all values ¢y ; are within
the range [0,1]. For the first criterion c;; - the duration object o; was
followed - this is realized by clamping the value to a maximum of 1.0s.
For the other criteria, the values are normalized between all objects o; €
O in a way that the respective state most similar to the ego vehicle’s state
is 1 and the one farthest away is 0.
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Criterion ¢ ; | Weight wy | Description

Duration (in seconds) for which o; was selected
€1, 0.5 continuously as target to follow in previous iterations.
Clamped to a maximum of 1.0s.

Normalized distance from the ego vehicle’s current

2 0.2 position to the most recently observed position of o;.
Normalized distance from the ego vehicle’s current
C3 i 1.0 cpe iy .
4 position to the closest position on the trajectory Q;.
. 1.0 Normalized difference in orientation between the ego
4 ' vehicle’s pose and the closest pose on the trajectory Q;.
p p J Y Kj
c 0.2 Normalized difference in velocity between the ego
5,j -

vehicle’s pose and the closest pose on the trajectory Q;.

Table 4.3: Criteria and weights for the heuristic evaluating the best target to follow.
Except for ¢y, all criterion values are normalized between all objects 0; € O in the
range [0,1] in a way that the respective state most similar to the ego vehicle’s state is 1
and the one farthest away is 0.

After calculating and normalizing the values ¢ ;, for each object o; a
weighted sum (), is computed.

Q] = ;wkck,j

All candidate objects o; € O are then stored in a priority list Oq), sorted
by their according ();. The object with the highest priority, i.e., the high-
est value Qj, is then selected as target vehicle o;. As stated above, having
a single target vehicle is important for adapting the velocity of the ego
vehicle (compare Section 4.2.3), as well as the process of initializing the
band described in Section 4.4. Having all candidates o; stored in a pri-
ority queue enables easily selecting the next best target. This may be
necessary, if for some reason no initial trajectory can be generated for the
chosen o; or if multiple redundant trajectories are planned for different
target candidates.
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4.4 Initialization of the Elastic Band (CSTT)

One of the most critical factors for the performance of the elastic band
approach is the initialization step. If the initial band (i.e., a sequence of
initial poses) is based on a good estimate regarding the dynamic con-
straints for velocity and acceleration, the necessary number of iterations
during the optimization step is greatly reduced (compare Section 5.3.2 for
statistics). Furthermore, the initialization determines towards which lo-
cal optimum the optimized band will converge. This, in turn, determines
some properties of the optimized trajectory, e.g., if a specific obstacle is
passed on the left or right. To provide the initial band Bj,;; = (Qjpit, At)
we have to find initial values for all poses p; € Qiyit-

Qinit = (Po,P1,-- -, Pn)

The time interval At between subsequent poses is constant over all plan-
ning iterations and set explicitly to 2.0 s during the experiments through-
out this thesis (compare Section 5.3.1). A simple solution - incorporat-
ing the vehicle’s dynamics - is to sample positions along a straight path
according to the ego vehicle’s current velocity. However, the primary
objective of the STEBLE approach is to follow the trajectories of other ve-
hicles. Towards that goal, in the first experiments presented in [39] the
path is aligned with the target vehicle’s position: poses are sampled with
a constant distance interval (based on the current velocity of the ego ve-
hicle) from the start pose (i.e., the current position of the ego vehicle) to
the goal (i.e., the latest predicted position of the target to follow, compare
Section 4.3). The orientation for all poses is set to the orientation of the
vector from start to goal. As shown in [39], the performance of the ap-
proach can be even more improved by providing a more sophisticated
initial guess using cubic splines to sample the transitioning poses to the
target trajectory, abbreviated CSTT.

The CSTT initialization process presented in this thesis shares many fea-
tures of the approach presented by the author of this thesis in [39], al-
though it was improved in some aspects. E.g., the novel process does
not take into account the current pose of the target vehicle but instead
relies on the swarm-based prediction presented in Chapter 3. Also, cubic
functions are constructed in the space domain in an intermediate step to
prevent oscillation of the generated trajectories due to minor inaccuracies
in the measurements. An overview of the process is shown in Figure 4.14.
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(a) The poses of the target vehicle’s trajectory are evaluated in order from oldest to
latest. The first encountered pose spatially in front of the ego vehicle (orange) and all
later poses (blue) are kept for further processing. Older poses (gray) are discarded.
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(b) For each remaining pose two minimum turning circles are constructed. One is at-
tached to the ego vehicle’s pose (black) and one to the target vehicle’s respective pose
(blue). All poses where the circles do intersect (area filled with orange lines) are dis-
carded (gray). The first pose where circles do not intersect (orange) and all later poses
(blue) are kept for further processing.

— — —_— — — —D

Pad
= — —

(c) A cubic function is constructed in the space domain for each of the two spatial coor-
dinates of the position, using the current pose of the ego vehicle (black) and the oldest
remaining pose of the target’s trajectory (orange) as support points. The parameter of
the funtions is the arc distance between those two poses. The resulting curves are then
sampled for poses (green) using a constant step size (distance). The resulting equally
spaced poses are associated with points in time related to the interpolated velocity be-
tween the two poses.
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(d) A cubic spline is constructed in the time domain for each of the two spatial di-
mensions of the position, using the current pose of the ego vehicle, the sampled tran-
sitioning poses and the remaining poses of the target’s trajectory as support points.
The length of the splines is the time interval calculated from the velocity and points in
time associated with the respective poses. The resulting spline is then sampled with a
constant step size (time interval) to generate the poses of the initial band (red).

Figure 4.14: Overview of generating the initial elastic band.
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Section 4.4.1 discusses the details of pruning the trajectory of the target
vehicle, i.e., removing poses that cannot be reached, taking into account
the ego vehicle’s dynamics. Section 4.4.2 then elaborates on the process
of sampling a trajectory with constant time intervals.

4.4.1 Pruning the Target Trajectory

The overall objective of the initialization process is to generate a trajectory
smoothly transitioning from the current pose of the ego vehicle pego =
(xego,yego,Oego) to the trajectory of a chosen target vehicle o; (compare
Section 4.3). The target’s respective trajectory Q; is obtained from the
prediction modules presented in Chapter 3:

Q= (Ptﬁnu -/ PO/ Pt - s pt,n+m)

It is represented as a sequence of poses p; = (x;,y;,0;), assuming a time
interval of At between subsequent poses (in accordance with the At of the
elastic band). The respective temporal offset of each pose p; to the most
recently observed pose pp can be calculated by multiplying the index i
with the time interval At.

The objective of the algorithm presented in this subsection is to prune
the trajectory Q;. In the resulting trajectory Q}, only those poses should
remain, which can be reached by the ego vehicle assuming moderate val-
ues for the centripetal and longitudinal acceleration. In general, poses
that are not in the forward direction of the ego vehicle should be omitted,
but only if they are within a certain distance. If they are far away, the
ego vehicle should turn towards the target vehicle’s trajectory. On the
other hand, the ego vehicle should not be required to turn away from the
target trajectory or drive in loops but instead prefer a direct transition,
i.e., the distance to the trajectory should continuously decrease. This cor-
responds to a simple or S-shaped curve in the direction of the target’s
trajectory (compare Figure 4.15).

The algorithm for determining the final pruned trajectory Qf, i.e., decid-
ing which poses of Q; are feasible, is divided into two steps.
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All poses p; of the target vehicle’s trajectory Q; are evaluated in order from oldest
to latest (i.e., starting with the lowest index ). For each pose p; the dot product of
the orientation vector of the ego vehicle and the difference vector of the positions
of pego and the p; is evaluated.

When encountering the first pose py spatially in front of the ego vehicle (i.e., the
dot product is positive), an intermediate sequence Q} is constructed, including
px and all later poses:

Q; = (Pks- -/ Ptyntm)
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All poses p; € Qj are evaluated in order, starting with the lowest index i.
For each pose p; the feasibility is checked as followed:

o Get the distance d; between the pose p,¢, of the ego vehicle and p;. Calcu-
late the velocity v; the ego vehicle would have, when slowing down with
longitudinal acceleration aj,,,¢ from current velocity veg, for distance d;.

\/0? if o2 > 0 )
v; = , Uf = —2amaxd; +

. 1
— —01.2 otherwise

2
Uego

Calculate the average velocity v,y = max(0, Ue%ﬂl)
o Calculate the radius 7; of a minimum turning circle with centripetal accel-
eration a.., with respect to v;:
ri = 7112/ Acen

e Construct a minimum turning circle Cego with radius ;. The circle shall
be tangential to the orientation vector G,g, of the pose pego. Thus, there
are two candidates for the position of the center of the circle: ¢; and ¢,
orthogonal left and right of pego, respectively.

Which of the candidates ¢; and ¢, is chosen as Cego

center point for C,g, depends on the relative
position of p;. To determine if p; is on the left
or right side of G,g, (blue), the vector As; (or-

pi

5i
ange) is constructed, pointing from the posi-
tion of peg, to the position of p;. If the deter- Pego (_fego
minant of the matrix [0ego As;] is positive, p; o

is left of Gpgo and ¢; is selected as center point
for Cego. Otherwise, ¢, is chosen accordingly.

o Construct a circle C;, analogously to Cego, but Pi G
with p; on the circle perimeter. Respectively,
if the determinant of the matrix [6; — As;] is
positive, pego is left of 6; and ¢; is selected as
center point for C;. Otherwise, ¢, is chosen as

center point accordingly. Pego

o If the two circles C,qo and C; do not intersect, the pose p; is feasible. This
means it can be reached from the ego vehicle’s current pose, given the
current velocity and respective acceleration limits below aj,,,, and ac.x,
without turning away from p;. Examples for feasible and non-feasible
configurations of poses can be found in Figure 4.15.

When encountering the first pose py fulfilling the above criterion of feasibility,
the sequence Q} is constructed, including py and all later poses:

;, = (pk/ ococy pt,l’ler)
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The second step is based on the principle of Dubins path [51] using two
circles and a tangent to connect two poses with the shortest curve.

(a) (b) (c) (d)
(e) ® (g) (h)

X
X

o—

Figure 4.15: Examples for feasible and non-feasible configurations of poses. The pose of
the ego vehicle is shown in black, the target pose in orange, the corresponding turning
circles are shown in the respective lighter colors. The assumed trajectory transitioning
between the poses is blue. (a)-(d) The two circles do not intersect, a direct transition
without receding from the target pose is possible. The respective target poses are fea-
sible. (e),(f) The circles intersect, it would be required to initially move away from the
target. The respective target poses are non-feasible and thus omitted from the filtered
target trajectory. (g) A rare configuration, where the circles intersect, but a direct tran-
sition is possible. This false negative is accepted in favor of a more simple heuristic. (h)
The circles do not intersect, but receding from the target would be required (if following
the perimeter of the selected turning circles). This is not a problem, since for all similar
configurations the second turning circle candidate (dotted gray) on the opposite side of
the start pose can be constructed. This opposite circle also does not intersect with the
target’s circle and enables a direct transition on its perimeter.

If there are no feasible poses, i.e., Q} is empty, a new target vehicle o; (i.e.,
anew trajectory Q;) has to be chosen, as at least one pose is needed for the
subsequent steps of sampling an initial trajectory. In this case, the next
object o; in the priority queue of evaluated target candidates (compare
Section 4.3) is selected as o; and the pruning step is repeated for the new
target.
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4.4.2 Sampling With Constant Time Intervals

A central aspect of the STEBLE approach is assuming a constant time in-
terval At between adjacent poses of the planned trajectory. The trajectory
Qinit used to initialize the elastic band should reflect this property. As
stated above, the initial trajectory Q;,;; starts at the current pose of the
ego vehicle and transitions smoothly to the trajectory Q; of the selected
target vehicle. However, for the reason of having enough distance (tem-
poral and spatially) for a smooth transition, there may be a considerable
gap between the start pose and the remaining poses of the pruned target
trajectory Q) (compare Section 4.4.1). Also, this gap usually does not cor-
respond to a multiple of the constant time interval At associated with the
elastic band. Thus, it is necessary to (re)sample the transitioning poses as
well as the poses of the target trajectory with a constant time interval At
in between.

Po P1 P2 P3 P4

—
Pego

(a) The input for the sampling step is the current pose of the ego vehicle p.g, (black)
and the poses p; (blue) of the pruned target trajectory Q.
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(b) The output is a sequence Qjy;; of poses (red), which is used to initialize the nodes of
the elastic band. A constant time interval At is assumed between subsequent poses.

Figure 4.16: Input and output of the sampling step.

In previous work [40] an algorithm was proposed for this task, using a
cubic spline (satisfying continuity requirements up to the second deriva-
tive) constructed for each of the two spatial dimensions over time. For
this, it is necessary to estimate the time interval between the current pose
Pego Of the ego vehicle and the first feasible pose pg of the pruned tar-
get trajectory Qf. In [40] this time interval is derived directly from the
arc distance (i.e., the estimated travel distance) and the average velocity
between those two poses.
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The cubic splines are generated using the ContinuousDerivatives class from
the ECL Geometry Package for ROS [45], which refers to [46] for the al-
gorithm. The splines are of third-degree and satisfy C2-continuity re-
quirements. Each spline is constructed from two corresponding arrays
describing values and parameters of the support points of the spline, as
well as the values of the first derivative in the first and last support point
(i.e., boundary constraints).

During the experiments presented in Chapter 5 a further intermediate
step has proven beneficial: generating additional support points for the
spline between the start pose pego and the first feasible target pose po.
The optimization of the elastic band with regard to the vehicle’s dynam-
ics tends to generate trajectories with a symmetric transitioning segment,
i.e., the inflection point of the transition curve is located around its cen-
ter. This is primarily due to the acceleration constraints smoothing dif-
ferences in the velocities and penalizing curvature. However, the esti-
mation of the time interval between peg, and po, as well as inaccuracies
in the measurements, lead to a large variety in the spline’s appearance
in this transitioning segment (compare Figure 4.17). The introduction of
more support points dramatically reduces the variation of the spline due
to minor inconsistencies in the time stamps related to the observed poses.
Moreover, when sampling the additional support points, the orientation
of the first feasible target pose pg can be taken into account. This miti-
gates oscillations of the final spline between the target trajectory’s poses.

(@

(b)

o—» 0 ©

Figure 4.17: A cubic spline (light red) is constructed for each of the spatial dimensions
over time to sample transitioning poses. (a) The start pose pego and feasible target poses
pi are used as support points (red). The value of the first derivative is set according to
the corresponding velocities (black and blue arrows) in the first and last support point.
The resulting spline’s appearance varies (dashed, dotted and solid curve) with slightly
different values for the time parameter of the support points. (b) Adding more support
points (green) with a constant spatial distance considerably reduces the oscillations.
The normalized orientation vector of the first feasible target pose (orange) is taken into
account for sampling the additional points.
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The result of the optimization of the elastic band is, in the vast majority,
a trajectory with a spatially symmetric S-shaped transitioning segment.
Thus, it makes sense to initialize the band with such a trajectory. For
this, a cubic function (i.e., a polynomial of third-degree) is constructed for
each of the two spatial coordinates of the path over the traveled distance
(compare Figure 4.18). The functions are constrained by the coordinates
of two support points: the start pose pego and the first feasible target pose
po- The orientation of the poses is taken into account by constraining the
first derivative in those support points to values derived from normal-
ized orientation vectors. That is, the amount of the velocity is completely
ignored for the construction of the cubic functions. The domain of the
function is the traveled distance.

Po

o—» O *
Pego

Figure 4.18: Generating additional support points to encourage a spatially symmetric
transition segment. A cubic function (light green) is constructed for each of the two
spatial coordinates over the traveled distance. The two functions are constrained by the
respective coordinates of the start pose pego (black) and the first feasible target pose po
(orange). Also, the values for the first derivative in the two boundary points are derived
from the normalized vectors of the respective orientation (i.e., only the direction of the
velocity is taken into account). The additional support points (green) are then sampled
with a constant step size (with regard to the traveled distance).

Constructing the cubic function in the spatial domain is crucial in pro-
moting the spatial symmetry of the transitioning curve. Deriving the val-
ues of the first derivative in both boundaries from unit vectors yields a
perfectly symmetric curve if the orientation for both poses is the same.
In practice, the orientation is at least similar in the vast majority of cases,
which still reduces the oscillation of the final spline in the time domain
considerably.

The domain of definition for the cubic function is the actually traveled
distance. This distance is estimated by the arc distance between the two
poses. Compared to the arc distance used for the velocity-related objec-
tive functions in Section 4.2.3, a slightly different definition of the arc dis-
tance is used. This is due to the fact that the two poses might be relatively
far away (up to 70 m with a speed of 50 km/h and a planning horizon of
55s) and often have a very similar orientation.
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Thus, instead of assuming a single arc segment tangential to both poses’
orientation vectors, the path is estimated by two symmetric arc segments.
The combined length of those arc segments is equal to the length of one
single arc segment tangential to the orientation vector of p,g, and touch-
ing po (compare Figure 4.19).

Po

NI

o
Pego Oego

Figure 4.19: The arc length b of the blue arc segment is used for estimating the actually
traveled distance between the poses pego and po. It can be calculated from the angle o
between the orientation vector d,g, and the positions’ difference vector As. The length of
the two green arc segments (which resemble a symmetric trajectory assuming uniform
orientation in both poses) is exactly b/2.

To calculate the arc length b of this single arc segment two values are
needed: First, the norm of the difference vector As of the two poses’ po-
sitions (i.e., the chord length of the arc segment). Second, the angle «
between As and the orientation vector Oego-

a-|As|

b ) |sinG@) ifa #£0
|As| otherwise

The cubic function constructed from the respective coordinates and first
derivative of the boundary points p.¢, and pg over the estimated traveled
distance b is then sampled for poses p; with a constant step size of 1m.
The resulting sequence of poses is not associated with a constant time
interval. Instead, the time domain is reintroduced by assigning points in
time to the spatially equidistant sampled points in space. The point in
time #/ associated with each pose p/ is calculated from the speed value v/,
which is interpolated linearly over the traveled distance between the ego
vehicles speed v,¢, and the speed vy in the pose po.
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=
Il

The point in time t( associated with the first feasible target pose po is
calculated from the traveled distance b of the transitioning segment and
the average velocity v, between pego and pg. The time stamps ¢; of the
subsequent poses p; are then computed based on their index i, as the
respective poses are associated with the constant time interval At.

_ Tego + 0o

Op 5

b .
to = —, t; = tog + iAt
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The start pose pego is associated with origin of the time frame of the tra-
jectory.

To obtain the final initial sequence of poses, a pair of cubic splines py(t)
and py(t) (one for each spatial coordinate) is then constructed in the time
domain.

tego t t,  to t
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Figure 4.20: The poses of the initial trajectory Q;,;; are sampled from two cubic splines,
representing the spatial coordinates in the time domain. The start pose pego (black), the
transitioning poses p! (green) and the feasible target poses p; (red) are associated with
respective points in time (gray) to construct the support points of the splines. The first
derivative in the splines” boundaries is taken from the respective velocity vectors (black
and blue arrows).



Chapter 4. Swarm-Based Trajectory Planning (STEBLE) 83

For this, the start pose pego, the transitioning poses pg and the feasible
target poses p; are merged in a sequence P.

P = (Peg0/P6/~-~,P;/P0/--~/Pv)

A second sequence T is constructed, containing the respective points in
time t; and t;, relative to the time stamp t,¢, = 0.

T = (tegos tos- - tysto, -, to)

The sequences P and T represent the support points of the pair of cubic
splines py(t) and py,(t). The respective spatial coordinate of the poses
in P is the value, the corresponding entry of T is the parameters. The
boundary constraints, i.e., the values of the first derivative in the first
and last support point, are taken directly from the components of the
respective velocity vectors Tgo and ¥y in the first and last pose of P. As
stated above, the splines are continuous in the first and second derivative
by construction.

The sequence of initial poses Qjy,;; is then obtained by sampling initial
poses p; = (x;,y;,0;) from py(t) and p,(t) with a step size of At. The
values for x; and y; are the values of the respective coordinate’s spline at
the parameter iAt. The orientation angle 6; can be calculated in a straight-
forward manner from the first derivatives pi(t) and p; (t) of the splines,
as those can be interpreted as the components of the respective pose’s
velocity vector.
0; = atan2(p,, (iAt), p,(iAt))

pi = (px(iAt), py(ilt),0;)
Qinit = (Po,P1,---,Pn)
Binit = (Qinit, At)

The temporal horizon of the predicted target trajectory extends the du-
ration of the elastic band (compare Chapter 3). Thus, the domain of the
spline is larger than nAt in most cases (i.e., if the ego vehicle does not
move substantially faster than the target vehicle), so that all initial poses
up to p, can be sampled from the splines. If this is not the case, the
remaining poses are computed assuming constant linear and angular ve-
locity.
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4.5 Validation and Pruning of the Optimized
Elastic Band

An inherent problem of the STEBLE approach is that for some configura-
tions of the poses, the different objectives of the optimization may oppose
each other. Due to these conflicting objectives, the elastic band may get
stuck in invalid states during the optimization process, i.e., the dynam-
ics of the trajectory exceed the given limits or the minimum distance to
objects is violated. If this is the case, one of the objectives has to be dis-
regarded, i.e., one constraint is violated. This drawback is reinforced by
the fact that the optimization can only converge towards a local optimum.
An existing globally better solution may not be found.

This violation of the objectives is accepted within a certain limit, as cho-
sen thresholds do not represent hard constraints. In some cases, it is ac-
tually beneficial to exceed the thresholds temporarily to enable conver-
gence towards a globally better solution. On the other hand, the dynam-
ics of vehicles have hard constraints in the real world, which cannot be
exceeded. If the final trajectory violates those limits, it may be impossible
for the ego vehicle to follow the planned trajectory or the risk of collisions
is increased unacceptably. Thus, the final trajectory needs to be checked
for validity (i.e., if there are no violations of the "hard" constraints) before
it is passed to the vehicle controller.

As stated above, the optimization may get stuck in an invalid state be-
cause of opposing objectives. The objective function pushing the trajec-
tory away from objects is always involved in those gridlocks, as it directly
constrains the location of the trajectories poses. Enforcing other objec-
tives, such as maximum acceleration or velocity, may require the poses to
be in such restricted areas. Two simple cases are depicted in Figure 4.21.
There are much more complicated configurations, where more than two
objectives are involved: Avoiding obstacles in combinations with any
number of the safety-related functions preserving the non-holonomic ki-
netics, minimum turning circle, maximum acceleration, or velocity may
lead to a gridlock situation. It has to be noted that the objective function
attracting the trajectory to the other vehicles’ trajectories also enforces a
direct spatial restriction. However, it is weighted much lower and thus
does not cause the problems mentioned above.
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Figure 4.21: (a)/(b) Examples of elastic bands stuck in an invalid state due to opposing
objectives. The orange obstacles enclose the trajectory on both sides or are located on
the trajectory with a perpendicular alignment, respectively. The objective function re-
pels the blues poses from the obstacles (orange arrows). They are also attracted to each
other to preserve max acceleration and velocity limits (green arrows). The blue poses
do not move during further optimization iterations, as the repelling and the attract-
ing forces are in balance. The stuck poses prevent the trajectory from slowing down
to avoid a collision, as for such a maneuver, it would be necessary to pull more poses
closer towards the trajectory’s start pose (black). (c)/(d) By pruning all poses after the
first stuck pose, the remaining poses are freed from the gridlock, as one of the opposing
objectives is removed.

Checking the trajectory for validity is done in a straightforward man-
ner: The minimum distance to objects, the curvature, the velocity, and
the longitudinal, angular, and centripetal acceleration at each pose (or
pair/triple of poses, respectively) are compared to thresholds represent-
ing the hard constraints. The actual values of the thresholds can be found
in Table 5.2 in Chapter 5. The values at the respective poses do not need
to be calculated again, as they are stored in the edges of the optimiza-
tion graph. Compare Section 4.2 for a detailed description on how those
values are calculated.

In most cases, the gridlock of the objectives only affects a minimal num-
ber of poses directly. If the constraints on those poses are removed (or the
poses themselves), the elastic band recovers with further optimization it-
erations and converges to a valid state again. Thus, instead of throwing
away the whole invalid trajectory, only poses directly involved in violat-
ing the given hard limits are pruned from the elastic band. This has the
advantage of still providing a valid trajectory in many cases, although
this pruned trajectory may be much shorter than the usual planning hori-
zon. This is not necessarily a problem in the context of the framework
used for this thesis, as the time interval for re-planning is much shorter
than the planning horizon. Nonetheless, a shortened horizon cripples the
planning algorithms’ ability to plan ahead.
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In practice, it is not necessary to prune all poses contributing to an in-
valid state, but only the latest pose is involved in calculating the respec-
tive values. Thus, the following rules are applied to decide where the
elastic band is clipped: (1) For violations of the minimum distance to ob-
jects, all poses after the first invalid one are removed. (2) If the limits
for maximum velocity or centripetal acceleration are exceeded, the latter
of the two poses involved in the calculation and all subsequent poses are
pruned. The same applies to violations of the minimum turning circle. (3)
The longitudinal and angular acceleration take three poses into account;
the latest of those and all subsequent poses are removed, respectively.

The check for validity is not performed after every iteration of the opti-
mization to give the optimization process some time to recover to a valid
state (and reduce the impact on the computational cost). Instead, the iter-
ations are partitioned into an inner and outer loop. i.e., the optimization
is performed in batches. While the range of the inner loop represents the
actual iterations of the graph optimization, the range of the outer loop
defines how many of those optimization batches are executed. For the
experiments in Chapter 5 the number of iterations was set to 10 for the
inner loop and 4 for the outer loop, respectively (compare Section 5.3.1).
In Section 5.3 the impact of the pruning on the trajectories is evaluated in
detail.

4.6 Simultaneous Optimization of Multiple
Trajectories

Due to the process of pruning invalid trajectories, the STEBLE approach
may return a result with zero length. Even if the horizon of a valid trajec-
tory extends the time interval for re-planning (i.e., 0.2s in the presented
experiments), it may be too short to enable anticipatory driving. This
may be inevitable in some cases, but in other cases, a globally better so-
lution exists. This inherent problem of local search algorithms can be
dealt with in several ways. A straightforward technique to enhance the
chances of finding a globally optimal solution is to start the optimization
with different initial values. In the case of STEBLE, this is realized by
planning multiple trajectories simultaneously.
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Figure 4.22: Candidates for initial trajectories. (a) The initial trajectory (red) is based on
the heuristically best target vehicle’s trajectory. (b) The trajectory’s path is based on the
heuristically best target’s path, but braking with maximum longitudinal acceleration
is assumed. (c) The initial trajectory is based on the heuristically second best target
vehicle’s trajectory.

The STEBLE approach uses two ways of providing different initial values
(i.e., initial trajectories), depicted in Figure 4.22: First, adapting the veloc-
ity on the path following the heuristically best target to follow. Second,
choosing a different target to follow.

Both strategies can be implemented in a straightforward manner. The
poses of the initial trajectories are sampled from a cubic spline in the time
domain (compare Section 4.4.2), adapting the velocity is performed by
sampling with adjusted time intervals based on the euclidean distance.
For the value of the adapted velocity, an emergency braking maneuver
is assumed, i.e., braking with the maximum possible negative longitu-
dinal acceleration of 8m/s?. Planning with a different target vehicle is
computationally more costly since it requires rerunning the whole pro-
cess of pruning the target trajectory and constructing a spline in the time
domain. On the other hand, some aspects can be shared between the dif-
ferent passes. Most importantly, the dynamic objects are predicted inde-
pendently from the actual target vehicle (compare Chapter 3). Also, the
process of selecting the heuristically best target provides a priority list of
candidates, so choosing the next best target is straightforward (compare
Section 4.3).
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Another essential task when simultaneously planning multiple trajecto-
ries is to select the best trajectory for passing on to the software modules
controlling the vehicle’s actuators. As all candidates are checked for va-
lidity and pruned accordingly (compare Section 4.5), the final optimized
trajectories are all driveable and collision-free.

An obvious candidate for evaluating the trajectories is the value of the
weighted multi-objective function f(B), i.e., the sum of all edges of the
graph underlying the optimization process (compare Section 4.2). Since
f(B) is the basis for the optimization, lower values represent more opti-
mal solutions. However, this value is not a good choice when comparing
trajectories that are already guaranteed to be safe and driveable.

The multi-objective function f(B)’s thresholds and weights are tuned to
emphasize the properties of the trajectory related to the safety aspect.
Even slight violations of the respective thresholds may result in large
penalties due to the relatively higher weights. If the safety-related limits
are already respected (which is guaranteed by the validation and pruning
step), there is no more need to penalize any violations of the respective
thresholds. Also, the objective functions for optimal velocity and path
following are not directly related to a trajectory’s safety and comfort but
contribute to following a specific vehicle’s paths at a specific distance.
Instead, the comfort-related aspects are much more relevant when com-
paring trajectories that are already guaranteed to be driveable and safe.
Those can be reduced to one defining value: the amount of acceleration
on the trajectory. It has to be noted that it is not differentiated between
negative or positive longitudinal acceleration and centripetal accelera-
tion in this regard. The value used for the comparison is the norm of the
vector 4, which represents the combined acceleration in all directions.

Another important aspect when comparing trajectories is the locality of
the criteria. Taking into account only an average value on all poses may
hide some uncomfortable sections. E.g., an otherwise perfectly smooth
trajectory with one large spike in the acceleration values may get evalu-
ated better than a slightly rougher but more balanced trajectory. In the
context of both safety and comfort, it is often more meaningful to com-
pare the maximum value of the trajectories’ properties than an average.

Another aspect of the trajectories” quality is the (temporal) length: longer
trajectories enable more anticipatory driving. As the trajectories may be
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pruned during optimization to ensure driveability and safety, the total
duration ATy of the elastic band B is also used as a criterion.

Furthermore, another temporal element is taken into account: the dura-
tion the target vehicle used to initialize the respective elastic band was
followed. This is essentially a hysteresis on the target vehicle. It is im-
plemented to prevent frequent changes of the target vehicle in the case
of two trajectories with similar acceleration values and length, as those
changes often introduce unwanted swerving. This swerving feels un-
comfortable even when it is not directly increasing the acceleration.

The above mentioned criteria, i.e., (1) the maximum |4|;;;, of the norms
of the combined acceleration vectors @; at each pose (in m/s?), (2) the
respective average |d@|,uq over all poses, (3) the total temporal length ATy
of the band (in s) and (4) the duration AT; the respective target vehicle
was followed in previous planning iterations (in s), are combined in the
cost function c¢(B).

C(B ) = |ﬁ | max maximum acceleration in range [0,8]
+ |l_i |zwg average acceleration in range [0,8]
+ 0.1max(5 — ATg,0)| total trajectory duration clipped to [0,0.5]
+ 0.5max(1 — AT;,0) | duration target followed clipped to [0,0.5]
(4.18)

Each addend of ¢(B) is limited from below and above, either by the vali-
dation step restricting the respective value during optimization or by the
max operator. The individual range of each addend is annotated in Equa-
tion 4.18. As can be seen, the acceleration’s expressions are most highly
weighted; the expressions related to the length of the band and the target
hysteresis have much lower weights.

All acceleration values are already computed for each pose (or pair/triple
of poses, respectively) on the band in the previous processing step of
validation and pruning. The respective minima and maxima for each
band B are stored at the same time. The total duration ATg = ngAt of
the band B can be derived directly from the respective number of poses
ng. The duration ATgopeq represents the time interval how long the
target vehicle forming the basis of the initial trajectory of B was followed
previously. It is tracked over subsequent planning iterations based on the
object id reported by the object tracking modules.
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Selecting the most comfortable of the simultaneously optimized elastic
bands is the final step in the proposed trajectory planning algorithm.
After calculating the value of ¢(B) for each candidate, the trajectory of
the elastic band with the lowest value is passed to the further processing
modules. It has to be noted, there still may be no valid trajectory at all,
e.g., if a collision cannot be avoided while still respecting the given limits
on the dynamics. This may happen if an object pops up on the planned
path close to the ego vehicle. If no candidate with a non-zero length
can be found, an empty trajectory is passed to signal this particular case.
The empty trajectory can be easily detected and handled appropriately
by introducing emergency maneuvers. However, the experiments pre-
sented in the following chapter show that this situation is very unlikely
in typical traffic scenarios. As stated above, planning multiple trajecto-
ries significantly enhances the probability of finding a globally optimal
solution with a sufficiently large planning horizon for anticipatory driv-
ing maneuvers.
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Chapter 5

Evaluation and Experimental
Results

This chapter evaluates the proposed swarm-based prediction and trajec-
tory planning algorithms and presents experimental results. Section 5.1
describes the data sets used for the evaluation. Section 5.2 presents statis-
tics on the swarm-based prediction, while Section 5.3 focuses on the STE-
BLE trajectory planning. Regarding STEBLE, Section 5.3.1 gives an overview
of the parameters, weights, and thresholds used in the experiments pre-
sented in this chapter to adapt to passenger preferences and physical lim-
itations of the vehicle. Section 5.3.2 gives a statistical analyses of the ob-
jective function for trajectory optimization. In 5.3.3 the general validity
of the approach is discussed, Section 5.3.4 evaluates the accuracy of the
path following. In Section 5.3.5 the trajectory generated by STEBLE are
compared to the trajectories of human drivers.

5.1 Description of the Evaluated Data Sets

This section gives an overview of the data sets used for evaluating the
proposed STEBLE path planning algorithm. The data was obtained in
two different setups: One is a pure simulation approach, used for data
set A (compare Section 5.1.1). In the other setup, the simulation environ-
ment is combined with recorded live data. This second approach is used
for data set B and C (Section 5.1.2 and 5.1.3, respectively).

In the pure simulation environment of data set A, the poses of the ego
vehicle and all other objects (i.e., other vehicles) are computed over time
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by the simulation modules of the FUB_ROSCAR framework. The phys-
ical model for updating the poses is based on the observed dynamics of
the autonomous vehicle MadeInGermany but disregards complex phys-
ical aspects such as inertia and friction. The offset between two subse-
quent simulation steps is based on the control output of the vehicles’ re-
spective controller modules and its linear and angular velocity (compare
Section 2.3.2). A pure simulation environment has the advantage that
the trajectory of the ego vehicle and the trajectories of all other vehicles
are known with perfect accuracy. This setup enables evaluating the path
planning algorithm without being affected by the precision of the envi-
ronment perception (such as sensor accuracy and timing issues). Also,
the behavior of the other traffic participants can be directly controlled.
This is especially useful for enforcing actions that do not frequently oc-
cur in real traffic, such as emergency braking maneuvers.

For the second approach, which is used in data set B and C, the sim-
ulation of the ego vehicle is combined with recorded data of the envi-
ronment. The poses of the ego vehicle are computed in the same way
(i.e., from a simulation model) as in the pure simulation environment.
However, the information on observed objects is taken from data sets
recorded during test driving in real traffic with the autonomous vehicle
MadelnGermany. Of course, the simulated pose of the ego vehicle can
deviate from the recorded original pose if the parameters of the trajec-
tory planning have changed. Thus, there may be an offset between the
simulated pose and the origin of the recorded data. This offset may affect
the authenticity of the recorded data; different objects or parts of objects
may be visible in the recorded data due to occlusion. To mitigate this ef-
fect, the simulated pose of the ego vehicle is reset to the vehicle’s original
recorded pose if the respective positions deviate more than a specified
threshold. For data sets B and C, this threshold was set to a value of 20m
and 30 m, respectively. The combined simulation and recorded data have
the advantage of providing a much more realistic impression of the nat-
ural environment and the performance of the sensors (compared to pure
simulation), including sensor accuracy, occlusion, and delay. However,
the combination with a simulated ego vehicle still enables repetitions of
the same scenario with different planning parameters.
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It has to be noted that there have also been several experiments in a pure
live environment, i.e., the STEBLE trajectory planning modules were run-
ning on the autonomous vehicle MadeInGermany and providing the ba-
sis for the control of the vehicle. However, due to the computational
cost of live sensor processing and data recording (mandatory for live
test drives), detailed statistics on the generated trajectories had to be col-
lected later on the respective recorded data (using the same parameters
for the planning). This resembles the combined approach with a devia-
tion threshold of zero. As stated above, of the three different data sets
used to evaluate the STEBLE approach, only one (A) uses the pure simu-
lation approach. The other data sets (B and C) are based on recorded data
from different test drives with the autonomous vehicle MadeInGermany.
All three data sets are described in detail in the following subsections.

5.1.1 Data Set A

Data set A is a round course of ~600 m length. It was initially designed
for tuning the controller modules of the FUB_ROSCAR framework and is
located on the apron of the decommissioned Berlin Tempelhof Airport. It
has three lanes in all sections of the course, although the lanes are purely
virtual, i.e., no road markings or other boundaries indicate the course in
the real world.

0 50 100 m q

Figure 5.1: The GPS track of the (simulated) ego vehicle following other (simulated)
vehicles autonomously for 60 minutes in Scenario A.
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The course has sections of varying curvature and one long straight seg-
ment of ~200 m length (compare Figure 5.1). The virtual track was popu-
lated with a simulated ego vehicle and ten simulated non-ego vehicles to
accumulate data for evaluating the trajectory planning. The correspond-
ing data set was recorded in a 60 minute run of the simulation.

In contrast to the ego vehicle (which used the STEBLE trajectory plan-
ning), the simulated non-ego vehicles followed the virtual lanes in a counter-
clockwise direction using a map-based trajectory planner. The vehicles
were spawned at locations distributed randomly along the track; each
simulated vehicle also has a randomly chosen preference for one of the
three lanes. This lane preference was randomly altered at 10 Hz with

a probability of 0.0016, i.e., on average, each vehicle performed a lane
change maneuver onto a new preferred lane every 1.5 minutes.

To generate some variance in the driving style, a speed limit was set ran-
domly for each non-ego vehicle between 36 and 54 km/h. Furthermore,
the maximum centripetal acceleration was set to a value between 2 and
3m/s?, the maximum positive acceleration between 0.6 and 0.8 m/ s? and
the maximum negative acceleration was varied between 0.9 and 1.1 m/s2.
Due to the restriction of the maximum acceleration, the speed limit is
only reached on the straight segment. In the curvy parts of the track, the
velocity of the simulated vehicles varies between 20 and 40 km /h.

Figure 5.2: A typical scene of the object data recorded in Scenario A. The ego vehicle is
shown in white. All simulated vehicles (orange) are visible to the ego vehicle, regard-
less of the distance or occlusion. Their trajectories (partly tracked and partly predicted)
are shown in red. There are no other objects simulated except for the vehicles.
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The object information (i.e., pose, velocity and dimensions) of all simu-
lated vehicles is made available to the ego vehicle’s trajectory planning
modules without considering occlusion and sensor uncertainty. An ex-
emplary scene of the object data (and the respective predicted trajecto-
ries) is shown in Figure 5.2. One significant advantage of the pure simu-
lation approach of data set A is that the trajectories of all observed vehi-
cles are known perfectly so that sensor uncertainty can be excluded from
the evaluation. The curvy track, designed for tuning the control mod-
ules, also provides a challenge for the STEBLE approach due to the high
and frequently changing curvature. Furthermore, the simulated vehicles’
random lane changes and planning parameters generate a wide variety
of different situations.

5.1.2 Data SetB

Data set B was accumulated in a simulation environment combined with
recorded live data. The poses of the ego vehicle are computed in the
same way as in the pure simulation approach: from a simulation model
based on the control output. The control output, in turn, is based on the
planned trajectory provided by the STEBLE trajectory planning modules.
However, in contrast to the pure simulation, the information on observed
objects is taken from a data set recorded during test driving in real traffic
with the autonomous vehicle MadeInGermany. To preserve the authen-
ticity of the recorded data in combination with the simulation, the pose
of the simulated ego vehicle is reset to the recorded original pose if the
two poses deviate more than 20 m.

The object data for data set B was recorded on a test drive in an especially
challenging urban traffic environment: the roundabout “GrofSer Stern” in
the center of Berlin, Germany (Figure 5.3). The roundabout connects five
roads; the two northern roads each have four lanes, the three other roads
have six lanes. Traffic lights control the entering traffic. The number of
lanes within the roundabout varies between four and six.

The recorded data set consists of 15 transits of the roundabout. It was
recorded on Thursday, January 4, 2018, at 10:54 am (UTC) and has a total
length of ~39 minutes. The traffic situation reflects an average morning
(after rush hour, but still crowded) on a working day. Samples of the
observed objects are shown in Figure 5.4.



Chapter 5. Evaluation and Experimental Results 96

0 100 200/7 300- 400 500 m A

////

Figure 5.3: The recorded GPS track of the ego vehicle in Scenario B.

Over the whole data set, the ego vehicle perceived at least two other
vehicles at all times. A maximum of 18 vehicles was observed simul-
taneously; on average, the number of perceived other vehicles is six.
The speed limit for the whole roundabout and its surrounding roads is
50km/h. The human drivers transiting the roundabout usually do not
exceed this limit due to the high curvature. On the other hand, they do
not fall below this limit significantly, leading to relatively high centripetal
acceleration values. The human driver of the ego vehicle tried to blend
in with the traffic as much as possible (excluding the unusual U-turns to
re-enter the roundabout). More statistics on the behavior of the driver in
this scenario can be found in Section 5.3.5.

The traffic environment of data set B is a massive challenge for the STE-
BLE trajectory planning, as it has vehicles changing lanes, sudden changes
in the traffic flow due to traffic lights, and a very high curvature in rela-
tion to the speed of the other vehicles.
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(a) (b) (0

Figure 5.4: Samples of the object data recorded for data set B. The ego vehicle is shown
in white. Objects classified as vehicles are shown in orange, their trajectories (partly
tracked and partly predicted) red. Static objects are yellow.

5.1.3 Data Set C

Data set C was also accumulated in the setup combining simulation and
recorded live data of the autonomous vehicle MadeInGermany. In con-
trast to data set B, which reflects an urban traffic environment, data set C
comprises a highway-only test drive. Another major difference is that a
considerable part of the test drive was conducted in autonomous mode,
i.e., the control of the vehicle was handed over to the FUB_ROSCAR
framework (using the STEBLE trajectory planning).

The underlying data for the objects and original pose of data set C was
recorded on Thursday, November 22, 2018, at 9:12 am (UTC). The record
has a duration of ~12 minutes, a total distance of 13.1 km is traveled, a
distance of 6.7 km is traveled in autonomous mode. The corresponding
GPS track is depicted in Figure 5.5.
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Figure 5.5: The recorded GPS track of the ego vehicle in data set C. In the orange seg-
ments of the track, the ego vehicle was controlled by a human driver. In the blue seg-
ment, the ego vehicle was driving in autonomous mode, using the STEBLE trajectory
planning to follow the trajectories of observed vehicles.

The record starts with the human driver controlling the vehicle on high-
way A 111 in the southern direction, close to exit “Seidelstrafie”. When
reaching highway A 100, the control of the vehicle was handed over to
the FUB_ROSCAR framework. The ego vehicle then followed the other
vehicles to the exit “Schmargendorf” (using the STEBLE trajectory plan-
ning), where the human driver took over control and exited the A 100,
following the “Abzweig Steglitz”.

(L]

(a)

(b)

Figure 5.6: A sample of the object data recorded for data set C. The ego vehicle is shown
in white. Objects classified as vehicles are shown in orange, static objects are yellow. In
(a) trajectories are omitted for improved visibility of the objects, (b) depicts the same
scene with the tracked and predicted trajectories (red) of the observed objects.

The traffic situation in data set C reflects an average morning on a work-
ing day. Samples of the observed objects are shown in Figure 5.6. Despite
a speed limit of 80 km/h throughout the whole track, the actual speed
of the observed vehicles is much lower due to the heavy traffic. The av-
erage speed of the ego vehicle is 64.076 km/h. The human-driven seg-
ments of the track have two lanes in the driving direction (excluding exit
and entry lanes), the autonomous segment has three lanes. The oncom-
ing traffic is separated clearly by solid walls or fences at all times. Over
the whole data set, the ego vehicle perceived at least three other vehicles
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at all times (five in the autonomous segment). A maximum of 19 vehi-
cles was observed simultaneously; on average, the number of perceived
other vehicles is five (seven in the autonomous segment). The highway
environment of data set C (with no traffic lights and sudden changes in
the curvature) suits the STEBLE trajectory planning. On the other hand,
heavy traffic still provides a major challenge, with many vehicles cutting
in at significantly varying speeds.

5.2 Evaluation of the Swarm-Based Prediction

The prediction of the movement of dynamic objects is an essential re-
quirement for the STEBLE approach. The concept of following other ve-
hicles benefits significantly from a stable and accurate guess on their fu-
ture trajectories. For STEBLE, the predicted trajectories are used in two
different domains: the avoidance of dynamic objects (Section 4.2.4) and
the initialization of the elastic band along a target trajectory (Section 4.4).
The performance of the swarm-based prediction, explained in detail in
Chapter 3, is evaluated for all three data sets described in Section 5.1:
(A) a small round course with heavily varying curvature, (B) an urban
roundabout with several lanes, and (C) a highway environment. The
swarm-based approach is compared to a simple prediction model, which
assumes constant linear and angular velocities and was used in an early
implementation of STEBLE (compare [39] for details).

To evaluate the prediction accuracy, the predicted position and speed are
compared to the actual state of the object at the respective points in time.
This comparison is conducted for different temporal horizons of the pre-
diction; the plots show the results for 1, 2, 3, 4, and 5 seconds. The re-
sults for all horizons are only considered for the evaluation if the object
(identified by a unique tracking id) is observed in the recorded data set
at each respective point in time. While for data set A, all objects” actual
position and speed are known with perfect accuracy (due to the pure
simulation setup), data sets B and C include the sensor uncertainty in
the measurements. The results of the evaluation are shown in Figure 5.7
and Figure 5.8 for the position and speed, respectively. The plots show
the resulting error in the prediction for the simple velocity-based and the
proposed swarm-based approach.
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Figure 5.7: Box plots of the error of the predicted object position over prediction du-
ration. The error is the euclidean distance from the predicted position to the actual
recorded position of the object at the respective point in time. Each column of the plots
shows the results for one of the data sets. Row (a) presents the error in the prediction
for the simple velocity-based approach, (b) for the proposed swarm-based approach.
In (c) the error of the swarm-based approach is evaluated excluding predictions where
the algorithm has to fall back to the velocity-based prediction due to the lack of vehicles
driving ahead.

The plots of the resulting errors are broken down according to the data
sets. It can be seen that the results are pretty similar for all three scenarios,
despite the different environments. Furthermore, the evaluation shows
a significant improvement in the accuracy of the proposed swarm-based
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Figure 5.8: Box plots of the error of the predicted speed of objects over prediction du-
ration. The error is the difference of the predicted speed to the actual recorded speed of
the object at the respective point in time. Each column of the plots shows the results for
one of the data sets. Row (a) presents the error in the prediction for the simple velocity-
based approach, (b) for the proposed swarm-based approach. In (c) the error of the
swarm-based approach is evaluated excluding predictions where the algorithm has to
fall back to the velocity-based prediction due to the lack of vehicles driving ahead.

approach for the position and speed. Over all data sets, the predicted
position error median decreases from 0.83 m to 0.21 m with a prediction
duration of 1s, and from 8.13m to 3.32m after 5s. The maximum of
the measured error is reduced by ~ 1/3 on average for prediction of the
position as well as the speed. This improvement is even more highlighted
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when omitting the objects, for which the algorithm has to fall back to the
velocity-based prediction due to the lack of vehicles driving ahead.

At which rate the swarm-based prediction is possible in the different
data sets correlates directly with the average number of observed vehi-
cles when taking into account how often oncoming traffic is observed at
all. As the algorithm divides the traffic into two clusters (oncoming and
same-directed), in most cases, two vehicles cannot be predicted using the
other’s trajectories: the vehicle driving in the respective front position.
Furthermore, in some cases, there are two leading vehicles in different
lanes in the same direction. Thus, in data set A, the rate of objects where
the swarm-based prediction was possible is 78.52 % (with ten vehicles ob-
served at all times). In data set B, the rate is at 69.41 % with six vehicles
observed on average. The rate being above the ratio of 4/6 is because not
at all times oncoming traffic was observed. This is also the case for data
set C, where oncoming traffic is only observed in 15.83 %. The respective
rate is 76.23 % at five vehicles observed on average.

It can be concluded that the proposed swarm-based approach substan-
tially improves the performance of the prediction. The results on the data
sets recorded in real traffic are quite comparable to the results in a pure
simulation environment. As stated above, this is an essential factor for
the performance of the STEBLE trajectory planning, as it heavily relies on
predicted trajectories of other vehicles.

5.3 Evaluation of STEBLE Trajectory Planning

In this section, the major contribution of this work, the STEBLE trajectory
planning, is evaluated in detail. In Section 5.3.1 the general parameters
used throughout the experiments, as well as thresholds and weights of
the objective functions, are discussed. A statistical analysis of the con-
vergence of the objective function and the influence of the proposed ini-
tialization algorithm is given in Section 5.3.2. Section 5.3.3 discusses the
general validity of the generated trajectories, based on statistics on the
performance in the three evaluation data sets. Furthermore, exemplary
trajectories are analyzed in detail for chosen scenarios. The accuracy of
following other vehicles” paths is evaluated in Section 5.3.4. Finally, in
Section 5.3.5 the trajectories generated by STEBLE trajectory planning are
compared to those of a human driver.
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5.3.1 Parameters, Weights and Thresholds

The performance of the STEBLE approach depends on several param-
eters. Some of those parameters’ values can be derived from external
requirements; some depend on the user’s preferences. Also, many of the
parameters - especially the weights and thresholds of the objective func-
tions - are interdependent with the configuration of multiple other pa-
rameters. The remainder of this section discusses the parameter values
used throughout the experiments presented in this chapter. Section 5.3.1
covers the parameters which affect the general properties of the approach
and the whole of the trajectory. In Section 5.3.1 the weights and specific
thresholds for each objective function are described.

General Parameters

In this subsection, parameters are discussed which affect the whole of
the trajectory planning algorithm. Most of those parameters are directly
related to the run time of the implementation. The most defining param-
eter in this regard is the frequency of replanning the trajectory, i.e., how
often is the whole sequence from initialization to optimization executed.
The pose of the ego vehicle and the observed environment are usually
constantly changing, so we want to replan as often as possible in the-
ory. On the other hand, the sensors perceiving the environment of the
autonomous vehicle have a fixed frequency; any updates with the same
sensory data are essentially useless. Moreover, the replanning frequency
limits the overall runtime of the trajectory planning, as the processing
of one trajectory should be completed before the next planning iteration
starts to guarantee the timely availability of a valid trajectory. Taking all
this into account, the replanning frequency for the experiments through-
out this thesis was set to f = 10Hz, which results in a maximum time
frame of 100 ms for each planning iteration.

The other global parameters were tuned in accordance with this time
frame. In this context, the most critical parameter is the global time inter-
val At, which describes the temporal distance between two consecutive
poses on the trajectory. The value of At is one of two factors determining
the number 7 of poses on the trajectory, one of the significant factors re-
garding the computational cost. Following the policy to reduce this cost
as much as possible without affecting the performance of the algorithm in
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terms of safety and comfort, the value of At was set to 0.2 s in the context
of this thesis. The vehicle MadeInGermany used in the experiments is al-
lowed to drive autonomously at velocities up to 100 km/h. The resulting
spatial distance of two consecutive poses at this velocity is ~5.5 m, which
is small enough to guarantee that no object can slip between two poses at
velocities below this threshold (taking into account the minimum obsta-
cle separation and vehicle dimensions).

The other determining factor for the number n of poses on the elastic
band is the overall duration AT of the whole planned trajectory.

AT

TTOAr

The duration AT was set to 5 s for the experiments. This property limits
the number of poses to n = 25 but still enables some foresight regarding
evasive maneuvers. It has to be noted that the actual number of poses
on the elastic band (i.e., the duration of the trajectory) can be reduced to
a number less than n due to the pruning of invalid states (compare Sec-
tion 4.5). Furthermore, the (maximum) number n of poses on the elastic
band also affects the cost of predicting objects, as it determines the num-
ber of each object’s predicted poses (compare Chapter 3).

Another major factor influencing the run time of the algorithm is the
number of iterations when optimizing the trajectory (compare Section 4.1.3).
For the detection and pruning of invalid states (compare Section 4.5),
those iterations are partitioned into an inner and outer loop: While the
number of iterations of the inner loop represents the actual steps of the
graph optimization, the range of the outer loop defines how many of
those optimization batches are executed. The number of iterations was
set to 10 for the inner loop and 4 for the outer loop, respectively. This
results in an overall maximum of 40 iterations per elastic band. As can be
seen in the statistical analysis of the objective function in Section 5.3.2,
this number of iterations is more than sufficient. In the experiments
throughout this thesis, no substantial optimization is performed after
much fewer iterations. Nonetheless, there are still marginal improve-
ments in some cases, so the maximum number of optimization iterations
was chosen to come close to the limits of the given time frame for each
planning iteration (i.e., 100 ms).
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The run time is also largely affected by the number of simultaneous plan-
ning iterations. A total of three optimization runs are performed with
different initial trajectories to increase the chance of finding a globally
optimal trajectory (compare Section 4.6). The respective initial trajecto-
ries are based on: (1) the heuristically best target vehicle’s trajectory, (2)
the best target’s path, but braking with maximum longitudinal acceler-
ation is assumed, and (3) the heuristically second-best target vehicle’s
trajectory.

Other general parameters, which can be configured in the presented im-
plementation, concern the vehicle’s dimensions. The autonomous vehicle
MadeInGermany, which was used throughout the experiments, is repre-
sented by a stadium shape anchored at the center of the front axle (com-
pare Figure 4.8c from Section 4.2.4). The respective lengths were set to
a, = 3.8m and a r=1m, resulting in an overall length of 4.8 m of the
straight sides. The radius of the stadium shape was set to 7.go = 1 m. The
wheelbase of the vehicle is d, = 2.709 m, which is of relevance for the
objective functions using the center of rotation, as they need to reproject
the poses coordinates from the center of the front axle.

Weights and Thresholds of the Objective Functions

In this section, the weights and thresholds related to the individual com-
ponents of the objective functions are discussed. It has to be stated that
the influence of one distinct objective on the actual trajectory depends not
only on its own weight but is also tightly connected to the parameters of
the other objective functions. The relative differences in the weight define
the priority of the objectives. Nonetheless, the values of the thresholds
cannot be ignored in this regard. A significant part of the experiments
in [39] focuses on this aspect. In summary, it can be said that it is very
difficult to determine optimal weights and thresholds, given the infinitely
large space of possible configurations and scenarios in real traffic. Many
sets of values work equally well, measured by the subjective impression
of safety and comfort of the generated trajectories. Thus, the optimal val-
ues also depend on the preferences of the user.

There are some fundamental considerations valid for all configurations
of values. Kinematic constraints must have the highest priority; gener-
ating trajectories the vehicle cannot follow makes no sense. This high



Chapter 5. Evaluation and Experimental Results 106

Obj. Func. Weight Threshold | Threshold Description
funk 1000000 n/a
frurn 1000000 5m The minimum turning radius of the vehicle
f forward 1000000 n/a
fa_cen 4000 2m/s? Maximum centripetal acceleration
fa_ang 4000 0.5rad/s? | Maximum angular acceleration
1m/s? Maximum long. positive acceleration
f a_lon 3500 2 ; . .
4m/s Maximum long. negative acceleration
oo 1000 2m Minimum spatial distance to obstacles
1s Dynamic long. safety distance (temporal)
fo_max 500 on init Maximum velocity on the trajectory (m/s)
1 path 400 n/a
fo_opt 30 on init Optimal velocity on the trajectory (m/s)
fa_cen 20 0m/s? Desired centripetal acceleration
fa_ang 20 Orad/s?> | Desired angular acceleration
fa_ton 10 0Om/s? Desired long. acceleration (pos. and neg.)

Table 5.1: Overview of weights and thresholds of the individual objective functions fj.
The thresholds related to the maximum and optimal velocity are determined during the
initialization of each elastic band (compare Section 4.4). The objective functions related
to acceleration are added twice with different weights and thresholds to reflect different
limits for safety and comfort, respectively.

priority policy also includes the functions related to maximum acceler-
ation and velocity, although the given thresholds do not represent the
vehicle’s limits and thus can be slightly violated. The same can be said
for avoiding obstacles. Although it is undoubtedly essential to avoid col-
lisions, the respective threshold was chosen to have a large safety margin
that can be undershot. Thus, the relative weight for avoiding objects can
be much lower than the kinematic constraints. Following the trajectories
has a lower priority than the safety-related objectives, although it is an
essential factor in the concept of STEBLE. Similarly, objectives represent-
ing comfort aspects of the trajectory have much lower weights. In this
context, it has to be mentioned that the same objective function regard-
ing the acceleration was used twice with different thresholds and weights
to represent safety and comfort restrictions, respectively.

In the experiments presented in this thesis, the thresholds and weights
given in table 5.1 were used. After deriving initial values from com-
mon sense and previous experiments (compare [39]), they were adjusted
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based on the preferences of the safety drivers of the autonomous vehicle
MadelnGermany in many iterations of frequently occurring scenarios -
simulated, live in real traffic, and based on recorded data.

One example of a parameter that is particularly prone to the driver’s pref-
erence is the maximum longitudinal acceleration. While in the experi-
ments relatively low values of 1 m/s? for positive and 4m/s? for nega-
tive acceleration were used, most human drivers accelerate more aggres-
sively. The lower values were chosen to give the safety drivers more time
to intervene in case of misbehavior of the autonomous vehicle. The same
reasoning applies to another parameter: the relatively large minimum
spacial distance of 2m to other objects. It also has to be noted that the
chosen longitudinal safety distance of 1s (defined in the time domain to
take into account the respective velocity) is only slightly above the min-
imum of 0.9s required by German law. According to [52], 41 % of the
drivers are on average falling below the legal distance when following
other vehicles on country roads or motorways. In an urban environment,
the human drivers tend to leave much less space; the chosen safety dis-
tance of 1 s was often perceived as extraordinarily large during the exper-
iments.

Another result from the tuning of the parameters under the preferences
of the test drivers is the relatively higher weights of centripetal and angu-
lar acceleration in relation to the weight of the longitudinal acceleration.
This order of the weights implies that braking is generally preferred over
swerving for obstacle avoidance; braking maneuvers are generally easier
to handle for the driver in most scenarios. The thresholds for the de-
sired acceleration were set to zero for all kinds of acceleration, and the
associated functions have much lower weights than their safety-related
counterparts.

A particular case regarding the thresholds are the velocity-related objec-
tive functions. Their values are determined during the initialization of
each elastic band (compare Section 4.4). The maximum velocity is based
on the observations of other vehicles at the respective point in time. The
value for the optimal velocity is used to control the follow distance to the
chosen target vehicle and thus also depends on the current observations.
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Hard Threshold | Description
4m The minimum turning radius of the vehicle

4m/s? Maximum centripetal acceleration

1rad/s? Maximum angular acceleration
4m/s? Maximum long. positive acceleration
8m/s> Maximum long. negative acceleration

0.5m Minimum spatial distance to obstacles
27.7m/s Maximum velocity on the trajectory

Table 5.2: Hard constraints for checking the validity of the optimized trajectory. The
given threshold represents the actual limit of the vehicle or acceptable dynamics for the
passengers. If one of the thresholds is violated for any pose (or pair/triple of poses,
respectively), the trajectory is declared invalid.

As explained in detail in Section 4.5, the trajectories are validated and po-
tentially pruned during the optimization process. In this validation pro-
cess, the minimum distance to objects, the curvature, the velocity, as well
as the longitudinal, angular, and centripetal acceleration at each pose (or
pair/triple of poses, respectively) are compared to thresholds represent-
ing hard constraints, which can be found in Table 5.2.

5.3.2 Statistical Analysis of the Objective Function

The critical component of the optimization step of the STEBLE trajec-
tory planning is the weighted multi-objective function f(B). It calculates
the weighted sum of several objective functions fi(B) with correspond-
ing weights -y, representing constraints and objectives for the trajectory
(compare Section 4.2). It is hard to visualize the objective function f(B)
itself due to the high dimensionality. Instead, in this section, statistics on
the resulting values and the values of the individual objective functions
fx(B) are presented. The basis for this evaluation are ~ 30000 planning
iterations sampled from all three data sets (compare Section 5.1). For each
sample, the value of f(B) as well as each fi(B) is stored for each iteration
of the optimization process. As described in Section 5.3.1, the number of
iterations is set to 10 for the inner loop and 4 for the outer loop, resulting
in a total number of 40 iterations of the optimization step. Trajectories
pruned due to the detection of invalid poses are omitted from this data
set, i.e., all trajectories have a total length of 5s, corresponding to pre-
cisely 25 poses at a temporal distance of 0.2 s.
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Figure 5.9: The mean value of the weighted multi-objective function f(B) and individ-
ual weighted objective functions 7, f(B) over iterations of the optimization process. A
base-10 logarithmic scale is used for the Y-axis of the graph for better presentability.
Objective functions for forward driving and minimal turn radius were omitted, as they
had zero values for all iterations for the evaluated data sets.

Figure 5.9 shows the mean value of the weighted multi-objective func-
tion f(B) and individual weighted objective functions v fx(B) over iter-
ations of the optimization process. First of all, it can be seen that f(B)
converges to a local minimum. Furthermore, the contribution of the indi-
vidual objective functions mostly correlates with the value of respective
weights. Notable exceptions are the functions for following the path of
other vehicles, forward driving, and the minimum turn radius. The rel-
atively high impact of the path following function is due to it being the
only objective bending the trajectory into curves, which often contradicts
multiple other objectives (mostly related to acceleration). Consequently,
the value of f,,y, is the only component of f(B), which is increased on av-
erage during optimization. The same reasoning applies to the objective
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function for avoiding obstacles, although to a lesser extent. Regarding
the (non-existent) penalty for not driving forward, it has to be noted that
the ego vehicle is already in a forward motion for almost all of the taken
samples, which adds the acceleration cost of braking down to zero speed
to a potential maneuver of reversing the driving direction. The speed of
the ego vehicle being distinctly above zero also explains the missing vio-
lations of the minimum turn radius, as those can only occur at very low
velocities without drastically increasing the centripetal acceleration.
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Figure 5.10: Percentile representations of the value of the weighted multi-objective
function f(B) over iterations of the optimization process. (a) The distribution of sam-
ples with values larger and lower then 99 % of all samples. (b) The the membership in
the corresponding centiles, visualized using a base-10 logarithmic scale for the Y axis.

Another important observation is that the major part of the convergence
is performed in the first steps of the optimization process. Figure 5.10
uses a percentile representation of the total value. The fast convergence
in the first iterations can be observed throughout all centiles. In 80 % of
the samples, the minimum is reached after 10 iterations, in 50 % the value
of f(B) decreases only marginally after 3 iterations.

One of the main factors regarding the number of optimization steps nec-
essary is the initialization of the elastic band. In the following, two differ-
ent initialization algorithms for STEBLE are compared: (1) the complex
initialization proposed in Section 4.4 (CSTT, using cubic splines to tran-
sition smoothly to the target trajectory) and (2) a naive implementation
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using configurations sampled on a straight line to the selected target ve-
hicle, with distances between samples calculated from linear interpola-
tion between the ego and the target vehicles’ velocities (in the following
called STRAIGHT). For the data collection, two trajectory planning mod-
ules with the respective versions of the initialization were run simultane-
ously so that the samples were based on the same observations.
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Figure 5.11: Percentile representations of the value of the weighted multi-objective
function f(B) over iterations of the optimization process, visualized using a base-10
logarithmic scale for the Y axis. (a) The proposed initialization algorithm (CSTT).
(b) The naive initialization sampled on a straight line to the target (STRAIGHT).

Figure 5.11 compares the percentile representations of the value of f(B)
using CSTT and STRAIGHT initialization. It can be seen that the mean
value of the proposed approach is lower by a magnitude greater than 50
before any optimization is applied. Even after 40 iterations, it is still lower
by a magnitude of ~10. It can be seen that the introduction of a more so-
phisticated initialization achieves a considerable performance gain, i.e., it
reduces the number of necessary optimization iterations significantly. In
the naive case, f(B) is still decreasing in the mean even after 40 iterations.
With the proposed initialization, there are only marginal changes after 20
iterations. When taking into account the samples with lower initial val-
ues, this trend is even more noticeable. Furthermore, the 10 % samples
with the highest values are responsible for a substantial amount of the



Chapter 5. Evaluation and Experimental Results 112

mean value. In the case of CSTT, the maximum initial value of f(B) is
decreased by a factor of more than 10 when taking only into account the
90 % lowest samples. In comparison, the maximum value is only reduced
by a factor of ~3.1 when using STRAIGHT.
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Figure 5.12: Distribution of the value of the weighted multi-objective function f(B) and
all relevant individual weighted objective functions 7 f (B) before optimization, using
CSTT (blue) and STRAIGHT (orange). A base-10 logarithmic scale is used for the bin
size of the histograms as well as both axes.

Figure 5.12 show the respective histograms for the individual objective
functions before optimization for CSTT and STRAIGHT. CSTT’s initial
values are lower or equal for all objectives, except for obstacle avoidance.
This is due to CSTT following the path of vehicles, where usually more
vehicles can be found. However, it cannot be concluded that CSTT tends
to find better local optima. A naive approach may converge to a similar
(or even better) solution after more iterations. Nonetheless, the proposed
initialization algorithm CSTT, explained in detail in Section 4.4, is clearly
superior to the naive approach regarding the rate of convergence. Conse-
quently, the number of necessary iterations is reduced significantly and,
thus, the computational cost of the optimization.
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5.3.3 General Validity of the Generated Trajectories

In this section, the general validity of the trajectories generated by STE-
BLE trajectory planning is evaluated. Since the STEBLE planning is very
dynamic and depends much on the observation of objects, it is impos-
sible to show the behavior of the trajectory planning in every potential
scenario. Instead, in this thesis, the general validity of STEBLE is evalu-
ated in two different ways: First, statistics on the performance in the three
data sets described in Section 5.1 are presented. Second, the validity of
trajectories is analyzed in detail for chosen exemplary scenarios.

Another indication for the general validity of the proposed approach can
be found in [39]: an early version of STEBLE (with fixed time intervals
and a flexible goal position) was compared to the original TEB approach
(with flexible time intervals and a fixed goal position), based on a sim-
ulated merge into traffic maneuver. While both algorithms generated
smooth trajectories, the results with STEBLE trajectory planning were
much safer concerning the distance to obstacles. This can primarily be
attributed to the flexible goal not forcing the trajectory towards a specific
location and abandoning the objective function that penalizes a longer
total duration of the trajectory.

In the following, the performance of STEBLE is evaluated for all three
data sets described in Section 5.1: (A) a small round course with heavily
varying curvature, (B) an urban roundabout with several lanes, and (C)
a highway environment. The three data sets provide different challenges
for trajectory planning. Data set A has many curves with high and fre-
quently changing curvature. Furthermore, the simulated vehicles’” ran-
dom lane changes and planning parameters generate a wide variety of
different situations. The traffic environment of data set B also has many
vehicles changing lanes and a very high curvature in relation to the speed
of the other vehicles. Furthermore, there are sudden changes in the traf-
fic flow due to traffic lights and vehicles turning in different directions
in the roundabout. In contrast, the highway environment of data set C,
with no traffic lights and no abrupt changes in the curvature, suits the
STEBLE trajectory planning. On the other hand, the heavy traffic in the
scenario still provides a major challenge, with many vehicles cutting in
at significantly varying speeds.
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STEBLE generates valid trajectories (as defined in Section 4.5) in all three
different environments if a target to follow is available. Overall, at least
one target is available in 92.9 % of the planning iterations. When breaking
this number down to the individual data sets, data sets A and C always
have at least one target available. In data set B, STEBLE can find a ve-
hicle to follow in 80.1%. Although this value for data set B appears to
be relatively low at first glance, at a closer look, the absence of valid tar-
gets occurs mainly when the ego vehicle is doing a U-turn to re-enter the
roundabout (i.e., an unusual maneuver) or when standing in the front
row at a traffic light. Also, in the vast majority of cases, more than one
target is available in all data sets, which is vital for planning multiple al-
ternative trajectories simultaneously (compare Section 4.6). For the two
data sets B and C, based on recorded traffic data, the average of available
targets per planning iteration is 2.3 and 3.1, respectively.

All trajectories generated by STEBLE are checked for validity, as described
in Section 4.5. There are thresholds for the minimum distance to objects,
the curvature, the velocity as well as the longitudinal, angular, and cen-
tripetal acceleration, which can be found in Table 5.2 in Section 5.3.1. Tra-
jectories violating these thresholds are pruned at the respective poses.
How often this is necessary varies for the data sets. While pruning does
not occur at all in the highway scenario (data set C), in the tight round
course populated with simulated vehicles for data set A 0.7 % of the gen-
erated trajectories have less than the maximum 5 s length. For the round-
about data set B 1.8 % of the generated trajectories are pruned. It has to be
noted that the statistics on pruned trajectories include the simultaneously
planned alternative trajectories, as described in Section 4.6. The den-
sity and distribution of objects can explain the differences in the pruning
rate. Although the average distance to objects in the highway scenario
C (10.14 m) is not much higher than in the roundabout of B (9.29 m), the
vehicles have significantly more lateral distance due to the broader lanes
in the former case. Also, in data set B, the distance to objects is biased by
the unusual turn maneuvers (generating unusually large distances) and
stopping at traffic lights (with low distances to surrounding vehicles).
When taking into account only the transits of the roundabout without
stopping, the average distance to objects is 6.13m. In data set A, which
consists of purely simulated traffic, the average distance to objects is sig-
nificantly higher at 14.19m. This is primarily due to the simulated ve-
hicles using the default FUB_ROSCAR trajectory planning, which keeps
much more safety distance than human drivers. The higher pruning rate
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of scenario A (compared to the highway scenario) can be explained by
the lower lane width (i.e., lower lateral distance) and the simulated vehi-
cles’ randomly induced lane-change maneuvers. In regard of the overall
minimum distance to objects, the values for all data sets are quite similar,
with 1.35m (A), 1.04 m (B) and 1.20m (C).

While the validity of the trajectories can be checked against hard criteria
defined by the physical limits, the quality of the generated trajectories
is bound to be subjective since different drivers (and passengers) have
different preferences for optimal velocity and tolerated accelerations. Re-
garding the quality, it can be concluded that the properties of the STEBLE
trajectories are comparable to those of human drivers, as described in de-
tail in Section 5.3.5.
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Figure 5.13: Two scenes of the ego vehicle following a vehicle, which performs a brak-
ing maneuver. The initial trajectory (pink), the optimized trajectory (green), and the
predicted trajectory of the leading vehicle (orange) are shown from different perspec-
tives. (a) The leading vehicle is braking with a negative acceleration of 2m/s?. The
ego vehicle has a higher speed, and the initial trajectory violates the minimal longitu-
dinal distance to the leading vehicle. The optimized trajectory reduces the speed and
thus maintains a safe separation while still following the path of the leading vehicle.
(b) The leading vehicle is performing a very hard braking maneuver with a negative ac-
celeration of 8m/s?. The initial trajectory would collide with the leading vehicle. Since
the respective objective function limits the maximum negative acceleration to 4m/s?,
the optimized trajectory cannot maintain a safe separation by braking alone. Instead, a
swerve maneuver is planned. The ego vehicle switches to a shifted path parallel to the
leading vehicle’s.
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In the remainder of this section, six exemplary trajectories for three differ-
ent scenarios are shown in detail. In the first scenario, the leading vehicle
is breaking, once with typical negative acceleration and once with very
hard negative acceleration (Figure 5.13). The other two scenarios are vari-
ations of a merge into traffic maneuver. The merge into traffic maneuver
is one of the most challenging scenarios for trajectory planning since it
is very dynamic and needs advance planning. In most cases, multiple
acceleration and deceleration phases are necessary to align the vehicle to
a gap between the other vehicles and match the velocity simultaneously.
Figure 5.14 presents two examples of other vehicles performing a merge
into traffic, cutting in between the ego vehicle and the target vehicle to
follow. In Figure 5.15 the leading vehicle performs a merge into traffic,
and the ego vehicle has to do the same to follow.
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Figure 5.14: Two scenes of another vehicle cutting into the lane between the ego vehicle
and a leading vehicle. The initial trajectory (pink), the optimized trajectory (green), and
the predicted trajectories of the cutting and leading vehicles (orange) are shown from
different perspectives. (a) The vehicle cutting into the ego vehicle’s lane is positioned
approximately 8 m ahead of the ego vehicle. All three vehicles have similar speed. The
optimized trajectory reduces the speed and thus maintains a safe separation to both
other vehicles, without deviating from the path of the leading vehicle. (b) The vehicle
cutting into the ego vehicle’s lane is positioned approximately 2.5m behind the ego
vehicle. Due to it’s slightly higher (predicted) speed, the ego vehicle’s initial trajectory
collides. The optimized trajectory cannot maintain a safe separation by braking alone,
while respecting the limits for longitudinal acceleration. The collision is avoided by
shifting the trajectory in parallel to the predicted path of the cutting vehicle.
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Figure 5.15: Two scenes of the ego vehicle following a vehicle, which performs a merge
into traffic maneuver. The initial trajectory (pink), the optimized trajectory (green), and
the predicted trajectories of the other vehicles (orange) are shown from different per-
spectives. (a) The leading vehicle has not yet finished the merge. The ego vehicle’s initial
trajectory collides with the predicted trajectory of another vehicle, positioned slightly
ahead in the lane the leading vehicle merges into. The optimized trajectory avoids the
collision by shifting on a parallel path and is falling slowly behind both other vehicles.
Scene (b) is actually the continuation of scene (a): The leading vehicle has completed
the merge maneuver. The ego vehicle has fallen further behind the vehicle blocking the
lane. The optimized trajectory reduces the speed and defers the swerve to the other lane
and thus maintains a safe separation to both other vehicles during the planned merge
into traffic maneuver of the ego vehicle.

In summary, the presented scenes show that the STEBLE approach can
not only follow other vehicles at the same speed on the same path (which
it does in ~99.9 % of the evaluated data sets). STEBLE can also deal with
more complex scenarios. As can be seen in the figures, it does so by
planning trajectories in a more defensive driving style. STEBLE always
chooses the slower trajectory due to the lower centripetal force when
given the option to either accelerate or decelerate to avoid obstacles. If
a target to follow is available, the STEBLE trajectory planning generates
safe and driveable trajectories in all evaluated environments. The most
important properties of the planned trajectories, i.e., the minimum dis-
tance to objects, the curvature, the velocity, as well as the longitudinal,
angular, and centripetal acceleration, are guaranteed to be within speci-
fied limits. Also, STEBLE trajectory planning can perform complex ma-
neuvers, such as merging into traffic.
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5.3.4 Evaluation of the Path Following Accuracy

Another interesting property of trajectories following other vehicles is
how close exactly the paths are matching, i.e., what is the lateral offset
between the paths. The planned trajectory of the ego vehicle and the
paths of vehicles to follow consist of sequences of discrete poses. As they
may have different temporal offsets, it is not feasible to directly compare
the poses for evaluating the lateral offset. Instead, in Figure 5.16 the lat-
eral distance of the vehicles to the center of the lane (which is represented
by a cubic spline) is plotted for data set A.
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Figure 5.16: Kernel density estimate of the lateral distance to the center of the nearest
lane for data set A: (a) a map-based trajectory planner (following the center of the lane),
(b) STEBLE trajectory planning, (c) STEBLE trajectory planning with increased weight
(1000) for path following objective, (d) STEBLE trajectory planning without obstacle
avoidance.

Figure 5.16a shows the estimated probability density function for the sim-
ulated non-ego vehicles of data set A. They are using a map-based trajec-
tory planner, following the center of the lane with slightly varying limits
for acceleration and maximum speed (compare Section 5.1.1). Although
the poses of the planned trajectory generated by the map-based plan-
ner are sampled exactly on the lane center spline, the simulated vehicles
slightly deviate from this spline in curves due to the properties of the
controller modules. Another source for the simulated vehicles depart-
ing from the center of the lane are the randomly enforced lane changes
(the simulated vehicles are in a lane change maneuver in ~5 % of the to-
tal time). Nonetheless, the non-ego vehicles’ lateral distances to the lane
center are distributed narrowly around zero.
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With STEBLE trajectory planning, i.e., the ego vehicle following the other
vehicles without prior knowledge of the road boundaries and center, dif-
ferent characteristics can be observed for left and right lateral shifts, re-
spectively: On the right-hand side (positive lateral distance), the plots are
quite similar. This side of the plot represents the outside of the curves.
The vehicles are driving on the round course in a counter-clockwise di-
rection; thus, left turns prevail. On the left-hand side, i.e., primarily the
inner side of the curves, the deviation from the lane center is significantly
larger, although still in a tolerable range.

While Figure 5.16b shows the plot for planning with default parame-
ters (compare Section 5.3.1), Figure 5.16¢ highlights the influence of the
weight of the path following objective. It can be seen that increasing this
weight to more than two times the original value (i.e., from 400 to 1000)
affects the distribution only slightly. It has to be noted that such a high
weight for the path following is not feasible since it interferes with the
objective of avoiding objects (which has a weight of 1000 and a similar
range of values). Figure 5.16d highlights the influence of the obstacle
avoidance objective. In contrast to the map-based planner, STEBLE is
affected by vehicles driving in neighboring lanes. When hiding all ob-
jects except the target vehicle from the STEBLE planner, the distribution
narrows, i.e., the accuracy in following the path of the target vehicle is
improved.

It can be concluded that the STEBLE trajectory planner’s lateral distance
to the center of the lane is acceptable, although it deviates more than the
reference map-based planner, particularly on the inside of curves. The
variance of the lateral distance measured for data set A (where the posi-
tion of all objects is known precisely) is much lower than the uncertainty
in the measurements of data set B and C. As the error in the measured
objects” position would dominate the actual offset between the driven
trajectories, those data sets were omitted from the evaluation in this sec-
tion.
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5.3.5 Comparison with Human Drivers’ Trajectories

To evaluate the subjective quality of the optimized trajectories, the ac-
celeration and distance to obstacles were compared to the trajectories of
human drivers in [40]. Although the results are still meaningful, those ex-
periments were repeated for this work since the STEBLE trajectory plan-
ning was refined in several aspects.

The comparison is based on six selected transits of the roundabout from
data set B (compare Section 5.1.2 for a detailed description of the data set).
At the start of each of the six segments, the position of the simulated ego
vehicle (using the STEBLE trajectory planning) is reset to the recorded
pose of the ego vehicle (driven by a human driver). During the segments,
the pose of the simulated ego vehicle never deviates more than 20 m from
the recorded original pose. Thus, there are no jumps in the position for
the STEBLE planning, which may have distorted the results. Also, for all
segments, there was always at least one valid target to follow available.

Table 5.3 shows the results of measuring the three most meaningful val-
ues for judging the quality of a trajectory: the longitudinal acceleration,
the centripetal acceleration, and the distance to the closest object. The
properties of the recorded vehicle, driven by a human driver, are com-
pared to the properties of a simulated vehicle, using the same recorded
observations and the STEBLE trajectory planning. For comparison, the
results of the evaluation in [40], using an earlier version of STEBLE, are
also presented here. The respective rows are annotated with STEBLE"18.

The central statement of the previous evaluation is still valid (and even
more so): The values for the simulated vehicle using STEBLE and the
human-driven recorded vehicle are quite comparable. The minimum
and maximum values are in a similar range. The difference in the av-
erage speed is only 0.7m/s, the difference in the average longitudinal
and centripetal acceleration is also insignificant at 0.2 m/ s2and 0.1m/s?,
respectively. Regarding the distance to objects, the STEBLE vehicle never
has less separation than the human driver. The very low minimum dis-
tances in the second and sixth segments result from the vehicle being
surrounded by other vehicles while stopping at the traffic light. Also,
the average distance to objects is comparable (STEBLE: 6.13 m, human:
5.16 m), although the human driver tends to maintain more narrow safety
margins (especially notable in segment one and four).
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cr{:g cars observed trajectory valid targets target speed [m/s] long acc [m/ 52] cen acc [m/ sz] dist to obst. [m]
g (max/min/avg) | planning | (max/min/avg) | changes | (max/min/avg) (max/avg) (max/avg) (max/min/avg)
STEBLE'18 | 10/1/55 2 139/0.0/ 838 43/12 21/08 104 /02/7.0

1| 18/6/112 STEBLE 10/2/59 13.6/0.0/ 86 32/10 22/07 10.6/18/77
human 10.8/0.0/ 75 32/07 28/0.7 114 /18 /40

STEBLE'18 7/1/41 0 135/0.0/ 9.0 34/06 25/1.0 105/ 0.6 /4.8

2| 10/4/71 STEBLE 7/1/45 0 13.6/00/ 87 32/05 25/09 6.5/0.6 /40
human 140/0.0/ 84 3.0/0.6 54/10 55/04 /3.1

STEBLE'18 5/2/24 0 125/75/ 113 22/05 17/07 149 /1.7 /8.1

3 9/5/68 STEBLE 5/2/29 0 127 /45 /11.2 22/05 20/08 129/27/85
human 134 /42 /107 19/05 28/1.0 17.0/32/94

STEBLE'18 6/1/27 0 13.8 /6.9 /10.9 20/07 1.8/07 68/1.1/5.1

41 14/4/56 STEBLE 6/1/36 0 12.7 /5.0 / 10.1 21/07 17/07 63/17/57
human 13.8 /4.7 / 10.6 3.6 /08 37/0.6 7.6/05 /39

STEBLE'18 | 12/1/44 4 123/00/ 79 35/08 29/08 11.5/09 /65

51 18/2/94 STEBLE 12/2/52 1 12.7/0.0/ 82 29/06 3.0/09 11.7 /18 /63
human 123/0.0/ 86 39/07 38/1.1 112/12/58

STEBLE'18 9/1/61 3 135/00/ 87 48/09 19/07 10.1/0.1/53

6| 15/5/111 STEBLE 9/1/67 1 132/0.0/ 89 38/07 20/07 104 /05 /5.1
human 11.7/00/ 75 3.8/09 2.6/09 8.6/05 /48

Table 5.3: Comparison STEBLE trajectory planning vs. human driver

Furthermore, when comparing the results of the 2018 evaluation and the
performance of the current version of the STEBLE trajectory planning, a
significant improvement can be observed. The very low minimum dis-
tance to objects of STEBLE18 in segments one and six is increased with
the current version. This is due to two reasons: the introduction of the
pruning step (compare Section 4.5), as well as optimizing multiple al-
ternative trajectories simultaneously (compare Section 4.6). While the
pruning prevents the elastic band from being stuck in invalid states, the
concurrent trajectory planning enables finding potentially better local op-
tima. Accordingly, the maximum longitudinal acceleration in those seg-
ments is reduced. Over all segments, the average longitudinal and cen-
tripetal acceleration is slightly lower, primarily due to the more accurate
object prediction (compare Chapter 3) and improved concept for keep-
ing the longitudinal distance (compare Section 4.2.4). Two other minor
enhancements can be attributed to the swarm-based object prediction:
First, the number of available valid targets to follow is slightly increased.
This is due to vehicles driving in parallel to or slightly ahead of the ego
vehicle can now be taken into account more often since their trajectories
are predicted along the paths of vehicles driving ahead. Second, due to
the more stable prediction, the target vehicle changes significantly less
often.
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The quality of the generated trajectories is bound to be subjective since
different drivers (and passengers) have different preferences for optimal
velocity, tolerated accelerations, and safety margins. The evaluation in
this section shows that the generated STEBLE trajectories are comparable
to those of human drivers, and the respective properties are guaranteed
to be within the specified limits. Also, the comparison to the 2018 version
of STEBLE trajectory planning reveals significant improvements due to
several enhancements of the approach introduced in this work.
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Chapter 6

Conclusions

This work presents an algorithm to enable trajectory planning for au-
tonomous vehicles when no map or precise localization is available. The
proposed STEBLE approach utilizes the swarm of surrounding vehicles
as a source for environment perception and generates a collision-free
and locally optimal trajectory within the physical limitations of the ve-
hicle. The well-known concept of elastic bands is adapted to realize this
approach, resulting in a comprehensive set of weighted objective func-
tions. This set includes functions that can be adapted to different drivers’
preferences and vehicles” dynamic restrictions. Other objective functions
handle the avoidance of static and dynamic objects. Furthermore, one
more objective function is proposed to realize a unique property of the
STEBLE approach: Integrating into the swarm of local drivers by follow-
ing the paths of other vehicles.

In combination, the presented objective functions enable two defining
features of the STEBLE approach: (1) The time interval between discrete
states representing the elastic band is constant, and (2) it is not neces-
sary to spatially freeze the goal position of the generated trajectory. The
first property stabilizes the trajectories and significantly improves per-
formance during the optimization process due to the lower dimension of
the search space. The second property enables complex dynamic maneu-
vers. Complementing the optimization step at the core of STEBLE, this
work presents several more algorithms for selecting a target vehicle to
follow, initializing the elastic band with poses transitioning smoothly to
the target’s trajectory, the validation and pruning of the elastic band, as
well as the concurrent planning of alternative trajectories. Additionally,
an algorithm for the swarm-based prediction of objects is proposed.
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All of the algorithms mentioned above were evaluated in simulation and
on recorded data. Also, live field tests in real traffic were conducted. The
experimental results show the validity of the proposed approach to gen-
erate safe and driveable trajectories. The proposed initialization process
is superior to a naive initialization, as significantly fewer iterations of the
optimization step are required to achieve a locally optimal solution. The
concept of validating and pruning the elastic band as well as the con-
current planning of alternative trajectories mitigate the inherent draw-
back of the optimization converging into local minima. While the former
can guarantee a collision-free trajectory within the maximum bounds for
vehicle dynamics, the latter enhances the probability of finding a valid
trajectory. While all presented aspects have a significant impact on the
trajectory planning performance, one of the most relevant improvements
stems from a task not directly related: the swarm-based prediction of ob-
jects. The improvement in the accuracy of the prediction greatly enhances
the result of the STEBLE trajectory planning, where the predicted trajec-
tories of other vehicles are not only used for obstacle avoidance but also
provide information on the road geometry and characteristics. Exper-
iments were conducted in three fundamentally different environments
and prove the applicability of the presented approaches. In the highway
scenario, at least one valid target vehicle is available at all times. In the
urban scenario, this prerequisite is also met in the vast majority of scenes
(when excluding the unusual maneuvers to reenter the test area). The
proposed swarm-based object prediction can be applied even more of-
ten, as the only prerequisite is that other vehicles are driving on the same
road (including vehicles following the ego vehicle).

The presented state of STEBLE trajectory planning has potential for fur-
ther development, and it can be enhanced in many different aspects.
Some improvement could be achieved by adding more objective func-
tions. A natural candidate is a function penalizing jerk, i.e., the rate at
which the acceleration changes. The implementation of such a function
is straightforward; many of the required computations are already per-
formed for the functions related to acceleration. Nonetheless, the cal-
culation of the jerk is still computationally expensive. Other objective
functions could incorporate advanced behavior, such as aligning the ve-
hicle in specific ways to other vehicles to increase the field of view or
have more options for maneuvers. Also, in many European countries, it
is obligatory to drive on the right-hand side of the road if possible and
overtaking is only allowed on the left-hand side. Those rules could be
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integrated into existing or additional objectives.

Aside from the objective functions, more elaborated strategies for select-
ing the target vehicle to follow can be developed. On the one hand, this
could include information on the accuracy of the information on the po-
tential target. Given the significantly better performance, the availability
of the swarm-based prediction could be a further criterion for selecting
the target. On the other hand, explicit information directly acquired from
other traffic participants could be taken into account (e.g., with vehicle-
to-vehicle communication). A different approach for selecting the best
target to follow could include a hierarchical solution for the optimization
step. Rough trajectories (with a very low number of optimization steps
and fewer poses) could be planned for all potential targets concurrently.
Based on the evaluation of those rough trajectories, a subset of candidates
can then be selected for further optimization with an increased level of
detail. Such an approach can improve the selection of targets and reduce
the overall computational complexity. The algorithms presented in this
work provide all the necessary tools for dynamic parameterization and
evaluation.

It can be concluded that the main objective of this thesis was achieved:
efficient trajectory planning without relying on a map. The experimental
results show that the approach of following other vehicles using elas-
tic bands is valid to compensate (at least temporarily) the advantages of
map-based planning. The presented STEBLE trajectory planning adapts
the concept of flocking and trail pheromones to autonomous cars and
expands the capabilities of the individual by using the group of other
drivers as additional sensors, implementing a kind of swarm behavior
for autonomous cars.
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Appendix A: Implementation of Distance Calculations

The function dist(1,,1;) calculates the minimal distance between two
two-dimensional line segments 1, and 1;. The implementation is
a specialization of Lumelsky’s algorithm [50] and performs ~74 %
faster in the presented experiments then a naive implementation.
function clamp(x)

function dist(1,,1;) if ¥ < 0 then
pa < first end point of 1, L Y0

pb < second end point of 1, return True
pc < first end point of 1,

if x > 1 then
pa < second end point of 1, L 1
dy + |pp — pal® return True
dy < |pq — pcl? L return False

r < (Pp — Pa) * (pa — pc) //dot product
d <+ didy — r?

514 (Po = Pa) * (Pc — Pa)

s2 <= (pa = Pc) * (Pc — Pa)

if d # 0 then
t < (51d2 — 821’) /d
clamp(t)
else  //segments are parallel
L t«<0

u < (tr—sp)/d
if clamp(u) then
t < ur+s1/dy //recalculate t
L clamp(t)

return |{(py — pa) — t(Pg — Pc) — (Pc — Pa)|

The function dist(p, 1) calculates the minimal distance between two-
dimensional point p and line segment 1.

function dist(p, 1)
pa < first end point of 1
Py < second end point of 1
if p;, = pp then
| return |[p — py|
t < ((p—Pa) - (Po—Pa))/ [Py — Pa
if t <0 then
| return [p — pi|
if t > 1 then
| return |p — py|
return |p — p, + td|

| //-is the dot product operator
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