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SUMMARY 

 

Migration is an essential process in animals’ lives, which they use to avoid adverse weather 

conditions and resource scarcity. Migratory animals are considered particularly vulnerable to 

anthropogenic changes to their environment because they require a specific temporal and spatial 

progression of appropriate habitats for foraging and reproduction, and a refuge from harsh 

environmental conditions. Anthropogenic activities that change the environment such as habitat loss, 

habitat fragmentation, and climate change have had a global effect on migratory species resulting in 

widespread population declines. Climate change is a particularly serious threat for migratory species 

as it can have impacts across all the habitats within which migratory animals must move. Efforts to 

mitigate climate change may also have adverse effects on migratory species. The trade-off between 

renewable energy use and wildlife conservation is not always straightforward. Changes in energy 

systems have the potential to alter the functioning of ecosystems and wildlife populations by 

affecting species' access to resources, habitat availability, and connectivity. The use of wind energy 

poses a particular threat for many migratory species. Studies have shown that wind energy farms pose 

a mortality risk to flying migratory individuals both inland and on the coast, and new concerns are 

being raised around offshore establishments. 

Conservation of migratory species in the face of such threats is of vital importance and will 

likely require the protection of the multiple habitats that are used during the migratory journey. 

However, there is often limited knowledge about the migratory pathways and stopover sites used by 

migratory species, posing a major challenge for effective conservation. Stable isotope analysis can be 

used to trace terrestrial migratory routes and identify migratory origins. The development of such 

techniques to determine the corridors and pathways migratory animals are using to move between 

habitats has assisted us in further honing conservation efforts. Stable isotope analysis allows the use 

of a small number of samples, which can be collected in one sampling event, to detect environmental 
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tracers that are related to the spatial-temporal movement of animals. The application of stable 

isotopes in conservation biology is growing rapidly and shows great promise for the conservation of 

endangered species. 

Bats are one of the most taxonomically diverse groups of mammals, however, only a few species 

are known to migrate long distances. These species have evolved a combination of physiological and 

morphological traits to allow long-distance migration. The European Nathusius’ pipistrelle 

(Pipistrellus nathusii) is one of the most well-studied migratory bat species worldwide. The species is 

known to maintain a long-distance migration with both coastal and offshore pathways. Recent studies 

have shown that Nathusius’ pipistrelles have been increasing their geographical range, even reaching 

60° N in latitude. Their long-distance migratory behaviour and the increase in European wind farms 

make them highly vulnerable to environmental changes. Considering their broad European range, 

high vulnerability to environmental changes, and the current need to protect migratory species, 

Nathusius’ pipistrelles are an interesting model species in which to apply stable isotope analysis to 

investigate migration patterns. 

In this thesis, I use stable isotope analysis to identify the northern migratory corridors of 

Nathusius’ pipistrelles (chapter 1) and differentiate the mortality risk posed by wind turbines on 

different demographic groups during migration (chapter 2). In chapter 1, I use a dual-isotope 

approach (δ2H and 87Sr/86Sr) to determine the origin of bats found on three islands in the north of 

Germany. Although δ2H analysis suggested a possible Fennoscandian origin, 87Sr/86Sr analysis 

refuted this possibility and proposed they would be originating in Russia and the Baltic states. In 

chapter 2, I use a comprehensive dataset of fur samples from carcasses collected beneath wind 

turbines and living individuals across Germany to assess the vulnerability of different demographic 

groups to wind turbine mortality. Compared to adults, juveniles were more vulnerable at low wind 

turbine densities; this effect was minimised at high density, with both ages equally affected. In 
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addition, I found more females and regional migrants in both living and carcass populations. Overall, 

this dissertation demonstrates the importance of stable isotope analysis in wildlife research and 

provides a practical example of how it can help inform species conservation. 
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ZUSAMMENFASSUNG 

 

Migration ist ein essentieller Prozess im Leben von wandernden Tierarten, der dazu dient, 

ungünstige Wetterbedingungen und Ressourcenknappheit zu vermeiden. Wandernde Tiere gelten als 

besonders anfällig für anthropogene Veränderungen ihrer Umwelt, da sie eine bestimmte zeitliche 

und räumliche Abfolge geeigneter Lebensräume für eine erfolgreiche Nahrungssuche, Fortpflanzung 

und zum Schutz vor rauen Umweltbedingungen benötigen. Anthropogene Umweltveränderungen, 

wie zum Beispiel der Verlust und die Fragmentierung von Lebensräumen als auch der Klimawandels, 

haben sich weltweit auf wandernde Arten ausgewirkt und zu einem weit verbreiteten Rückgang sowie 

zur Verschiebung der Verbreitungsgebiete geführt. Der Klimawandel ist eine besonders ernste 

Bedrohung auch für wandernde Arten, da er sich auf alle wichtigen Lebensräume entlang der 

Wanderrouten auswirken kann. Bemühungen zur Abschwächung des Klimawandels können 

allerdings zusätzliche negative Auswirkungen auf wandernde Arten haben. So ist zum Beispiel die 

Abwägung zwischen erneuerbaren Energien und deren Wirkung auf die Natur und Wildtiere nicht 

trivial und es können neue Konflikte entstehen. Veränderungen in der Energiegewinnung können 

Ökosysteme stören und Wildtierpopulation beeinflussen, indem sie Lebensräume beschränken und 

deren Vernetzung sowie die Ressourcenverfügbarkeit verringern. Studien zeigen, dass 

Windenergieanlagen ein Mortalitätsrisiko für fliegende Tiere besonders während der Migration 

sowohl im Landesinneren als auch an der Küste darstellen. Auch bezüglich Offshore-Anlagen gibt es 

Bedenken. 

Der Schutz wandernder Arten ist angesichts solcher Bedrohungen von entscheidender Bedeutung 

und erfordert insbesondere den Schutz der verschiedenen Lebensräume, welche während der 

Migration genutzt werden. Während lokale Lebensweisen besser verstanden sind, ist das Wissen über 

die von wandernden Arten genutzten Wanderrouten und die dabei genutzten Lebensräume oft 

begrenzt, was eine große Herausforderung für einen wirksamen Schutz darstellt. Mit Hilfe der 
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Analyse stabiler Isotope lassen sich die terrestrischen Wanderrouten zurückverfolgen und die 

Ursprungsorte der Wanderungen ermitteln. Die Entwicklung solcher Techniken zur Bestimmung der 

Korridore und Zwischenstationen von wandernden Tieren hat dabei geholfen Schutzbemühungen 

weiter zu verbessern. Die Stabilisotopenanalyse ermöglicht es mit einer geringen Probenmenge, die 

einmalig entnommen werden kann, Umweltmarker nachzuweisen, die mit der räumlich-zeitlichen 

Bewegung von Tieren in Zusammenhang stehen. Die Verwendung stabiler Isotope im Naturschutz 

etabliert sich immer weiter und ist für die Erhaltung gefährdeter Arten sehr vielversprechend. 

Fledermäuse sind eine der taxonomisch vielfältigsten Säugetiergruppen, aber nur von wenigen 

Arten ist bekannt, dass sie wandern. Diese Arten haben eine Kombination von physiologischen und 

morphologischen Merkmalen entwickelt, die Langstreckenwanderungen ermöglichen. Die 

Europäische Rauhautfledermaus (Pipistrellus nathusii) ist eine der am besten untersuchten 

wandernden Fledermausarten weltweit. Es ist bekannt, dass diese Art über weite Entfernungen 

wandert und dabei sowohl küstennahe als auch küstenferne Flugrouten nutzt. Jüngste Studien haben 

gezeigt, dass diese Fledermäuse ihr Verbreitungsgebiet erweitert haben, welches jetzt sogar bis zum 

60. Breitengrad (60° N) reicht. In Anbetracht ihres weiten europäischen Verbreitungsgebiets, ihrer 

hohen Anfälligkeit für Umweltveränderungen und der Notwendigkeit wandernde Arten zu schützen, 

sind Rauhautfledermäuse eine interessante Modellart für die Untersuchung von Migrationsmustern 

mittels der Analyse stabiler Isotope. 

In dieser Arbeit verwende ich die Analyse stabiler Isotope, um die nördlichen Wanderkorridore 

von Rauhautfledermäusen zu identifizieren (Kapitel 1) und das Mortalitätsrisiko durch 

Windkraftanlagen für verschiedene demografische Gruppen während der Migration zu bestimmen 

(Kapitel 2). Im Kapitel 1 verwende ich einen dualen Isotopen Ansatz (δ2H und 87Sr/86Sr), um die 

Herkunft von Fledermäusen zu bestimmen, die auf drei Inseln in Norddeutschland gefunden wurden. 

Obwohl die δ2H-Analyse einen möglichen fennoskandischen Ursprung nahelegt, widerlegte die 
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87Sr/86Sr-Analyse diese Möglichkeit und legt nahe, dass sie aus Russland und den baltischen Ländern 

stammen. Im Kapitel 2 verwende ich einen umfassenden Datensatz basierend auf Haarproben, um 

das Mortalitätsrisiko verschiedener demografischer Gruppen durch Windkraftanlagen zu bewerten. 

Die Proben stammen sowohl von unter Windkraftanlagen gesammelten Kadavern als auch von 

lebenden Individuen aus ganz Deutschland. Jungtiere waren im Vergleich zu adulten Tieren bei einer 

geringen Dichte von Windkraftanlagen stärker gefährdet; bei einer hohen Dichte verschwand dieser 

Unterschied und beide Altersklassen waren gleichermaßen betroffen. Darüber hinaus zeigen die 

Totfunde und Daten von lebenden Individuen, dass die Populationen weiblich dominiert sind und 

dass es mehr regional ziehende Individuen als Langstreckenzieher in Deutschland gibt. Insgesamt 

zeigt diese Dissertation, wie wichtig die Analyse stabiler Isotope in der Wildtierforschung ist und sie 

liefert ein praktisches Beispiel dafür, wie die Methode zum Artenschutz beitragen kann. 
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GENERAL INTRODUCTION 

 

This thesis aims to apply stable isotope analysis to elucidate the pathways of migratory bats and 

understand the threat posed to them by wind turbines during migration. The introduction to the thesis 

gives a background to the topic, presenting key terms and concepts essential for its comprehension. In 

the first section, I provide a broad introduction to migration and examples of different migratory 

animals. In the second section, I explain several terms related to stable isotope analysis and the 

theories behind the method when used to determine the origin of animals. Finally, in the last section, 

I present migratory bats, their unique characteristics that enable long-distance journeys, and introduce 

Nathusius’ pipistrelles (Pipistrellus nathusii) as the model species used in this thesis. 

 

1. A walk on the wild side – Migration patterns of animals 

1.1 To be or not to be – Migration concepts 

Migration is a vital component of the ecology and life history of animals and is present in a 

variety of taxa, ranging from invertebrates to vertebrates (Dingle 2014) and across many 

environments (e.g., terrestrial, aquatic, and aerial). The earliest evidence of animal migration dates to 

the Stone Age, with rock paintings showing the movement of African savannah animals, circa 20,000 

years ago (Hoare 2009). Ancient Greek philosophers were the first to document a theory of migratory 

behaviour in animals. Aristotle theorised about the movements of several seasonal birds (Aristotle, 

circa 350 BC). However, his explanation for their sudden disappearance was that the birds seen in 

summer morphed into different species that were seen in the winter (Hoare 2009). The first actual 

record of animal migration was reported in fish (herrings – family Clupeidae) in the late 18th century 

(Gilpin 1786). Since then, our knowledge of the drivers, causes, and cues for migration has increased 

dramatically (Dingle 2006; Bauer and Klaassen 2013; Shaw 2016). 
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Although migration is a widespread phenomenon, no single definition has garnered consensus 

among scientists. The definition of animal movements may include terms such as one-way, two-way, 

partial, continuous, complete, return, exploratory, etc. Conceptually, migration definitions are either 

focused on the individual (physiological, behavioural, genetic) or the population (ecological, 

evolutionary) levels (Dingle and Drake 2007). For example, a behavioural definition consists of the 

relocation of the animal on a larger scale with a longer duration than those arising in its normal daily 

activities (Dingle and Drake 2007). The ecological view of migration is defined as a yearly, round-

trip, seasonal movement of animals between two (or more) locations (Shaw 2016). Other definitions 

include factors, such as geographical direction, periodicity, distance, and spatial locomotion (see a 

review of definitions in Dingle and Drake (2007)). In some cases, there is still a discussion of what is 

a migratory individual based on the distances the animals travel. The scale varies depending on the 

animal; hence, a short distance movement could imply an individual is sedentary or migratory. For 

bats and birds that move large distances daily for foraging, the scale can be several kilometres. For 

example, following Kunz and Fenton (2005), a sedentary bat moves less than 50 km, a regional 

migrant, between 100–500 km, and a long-distance migrant more than 500 km. 

Migration is considered adaptive for most animals, and migrants play an important role in many 

ecosystem processes. As they travel between locations, they transport nutrients, plants, pathogens, 

and parasites and link habitats that otherwise would not be connected (Bauer and Hoye 2014). This 

behaviour is often associated with the success of populations in a variety of environmental 

conditions, such as harsh winters (Dingle 2006). The underlying drivers of animal movement can be 

summarised into three categories: “refuge”, “breeding”, and “tracking” (Table 1) (Shaw 2016; 

Alerstam and Bäckman 2018). Refuge migration occurs when organisms must find an alternative 

habitat in response to temporarily unfavourable conditions (e.g., harsh winters, droughts, and 

predation). These animals usually have one primary habitat that they leave due to unfavourable 
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conditions. Monarch butterfly (Danaus plexippus) migration is an example of two-way refuge 

migration, even though not the same individual that starts the journey finishes it. They migrate from 

several locations in the U.S. and Canada to Mexico every year in order to avoid the harsh winter and 

limited resource availability in their northern habitats (Reppert and de Roode 2018). Breeding 

migration refers to the movement of individuals between the habitat they forage and another habitat 

specifically for breeding, thereby they have two preferential habitats; this behaviour is not necessarily 

linked to temporal changes in abiotic/biotic factors. The common cuttlefish (Sepia officinalis) 

presents seasonal movements, migrating closer to shore to spawn, and then moving offshore during 

feeding and development (Keller et al. 2014). Organisms that undergo tracking migration will 

consistently follow food resources (e.g., migratory prey), and tend to have no primary habitat. Some 

carnivores that follow prey that are themselves migratory are considered to perform tracking 

migration. Barren-ground wolves (Canis lupus) seem to follow migratory caribou (Rangifer 

tarandus) in the Northwest Territories, Canada, during winter (Walton et al. 2001). 

 Individuals can exhibit different migration strategies. When only a fraction of the population 

moves and the other remains either in its breeding or non-breeding area, this is termed partial 

migration (Dingle and Drake 2007). Differential migration is when all individuals of the same 

population migrate but differ in their migration distances (Shaw 2016); it is often presented as 

different sexes or ages moving different distances (Dingle and Drake 2007). These migratory 

strategies might be affected by changes in environmental conditions. For example, the common 

noctule bat (Nyctalus noctula), which is a migratory species with a large distribution range across 

Europe, has been reported to have partial and differential migration. For common noctules, females 

travel longer distances than males during spring migration (Lehnert et al. 2018). Noctule bats have 

been reported to be expanding their winter range northward, with more individuals roosting at high 

latitudes in response to milder climates (Godlevska 2015; Kravchenko et al. 2020). Whether or not an 
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individual migrates or remains a resident is based on a trade-off between the potential for increasing 

survival or holding a competitive advantage for later seasons. American dippers (Cinclus mexicanus) 

spend winter in low-elevation streams in British Columbia, Canada; some individuals breed there, 

while the rest migrate to higher elevation streams to breed. In this case, partial migration seems to be 

caused by competition for limited breeding sites forcing some individuals to breed elsewhere (Gillis 

et al. 2008). Therefore, different migratory strategies will be selected as an individual seeks 

favourable environmental conditions and optimal energy balance to increase its growth, survival, and 

reproduction. 

Several triggers can be associated with an individual’s decision to start the migration. The 

decision consists of a complex combination of cues, such as food supply shortage, competition for 

resources, individual’s body condition, photoperiod, temperature, and precipitation patterns (for 

examples and reviews see Beebee (1995); Jenni and Kéry (2003); Lehodey et al. (2006); Van Buskirk 

et al. (2009); Chapman et al. (2015)). For example, populations of green turtles (Chelonia mydas) 

seem to vary the time between the migration events depending on their body conditions each year, 

stopping or not to reproduce in Costa Rica (Hays 2000). The migration of Aphrissa statira butterflies 

was reported to be correlated with El Niño Southern Oscillation in Panama because the drought and 

rain periods interfered with larval food production (Srygley et al. 2010). The spring departure dates of 

American redstarts (Setophaga ruticilla) in Jamaica were associated with the amount of rainfall 

during the non-breeding period and not with the photoperiod change (Studds and Marra 2011). Once 

an individual begins migration it must be able to orientate in a particular direction by using a few 

features or properties of the environment. This “compass”, which has evolved to enable animals to 

perform accurate long-distance movements, may use cues, such as the Earth’s magnetic field (review 

in Lohmann et al. (2007)), the sun (Alerstam and Bäckman 2018), the stars (Alerstam and Bäckman 

2018), ocean (Lohmann et al. 1999) and river (Peake and McKinley 1998) current flows, etc. With 
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these cues, animals navigate based on a compass-map system, which helps them to know their 

relative location and the direction to travel to their destination (Rozhok 2008). 

 

1.2 Bridge over troubled water – Vulnerability and conservation of migratory animals 

Habitat loss is the greatest threat to the conservation of animals. Breeding, feeding, and resting 

sites have declined by more than 50% in the last century (WWF 2020). Some habitats are particularly 

vulnerable, such as coastal areas, which have been highly affected by increased coastal 

developments. Coastal developments are expected to impact 91% of all temperate and tropical coasts 

by 2050 (Usaid 2009). Migratory species, particularly those who cover long distances, are often 

highly susceptible to environmental change, such as climate change, and the destruction and 

alteration of landscapes as they rely on many different habitats along their journey (Wilcove and 

Wikelski 2008). Because the life cycle of migratory animals is dependent upon access to specific 

areas along the migratory pathway, individuals have fewer opportunities to simply shift to alternative 

habitats (Berger 2004). 

Conservation focus for migratory species must take into account differences in migratory 

behaviour and its effects on population connectivity, i.e., the extent to which individuals from the 

same breeding populations migrate to another site. Weak connectivity occurs when individuals from 

one breeding population can migrate anywhere across the whole species' wintering range or to 

various wintering sites (Shaw 2016). This is also the case in breeding populations with individuals 

originating from different wintering sites (Shaw 2016). American white pelicans (Pelecanus 

erythrorhyncos) are known to maintain random mating within a breeding population and often do not 

return to their birth area (limited philopatry), producing a weakly connected population (Reudink et 

al. 2016). Strong connectivity occurs when individuals from one breeding site migrate mainly to one 
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wintering site. An extreme case of strongly connected populations is the Kirtland’s Warbler 

(Dendroica kirtlandii), which breeds in Michigan, U.S., and winters exclusively in the Bahamas 

(Ewert et al. 2012). Therefore, disrupting any of these locations would be extremely detrimental to 

this bird population. The degree to which migratory populations are connected is an important facet 

to consider for species conservation. 

Populations with strong connectivity are more vulnerable to declines since they are mainly 

composed of one major population and rarely connect with peripheral populations (Bowlin et al. 

2010; Marra et al. 2019). Strongly connected populations, however, may benefit the most from 

conservation efforts because the connections between two or more areas are well established. While 

populations of weakly connected individuals may appear inherently ‘safer’ considering that the risks 

are divided among more locations, these populations can be harder to manage. Thus, conservation 

measures must be implemented over large regions, which encompass a significant percentage of 

subpopulations. Information on population connectivity can, therefore, result in radically different 

decisions on how to allocate resources for the conservation of species (Shaw 2016). For instance, 

long-distance migrants may cross different geopolitical jurisdictions where conservation measures are 

absent or inadequate. Because migratory connectivity is important to conservation, its efforts need to 

be established beyond political borders to protect suitable corridors and habitats for these highly 

mobile species (Dallimer and Strange 2015; Voigt et al. 2015). The loss of critical migration 

corridors or stopover sites may jeopardise an entire population, as the migrant capacity to refuel, rest, 

or reproduce may disappear (Kurvits et al. 2011). 

Environmental conditions within different habitats along a species’ migratory route will have 

important consequences on the ability of migrants to refuel and seek refuge. Anthropogenic changes 

may cause disruptions to intact breeding and wintering locations as well as to a sequence of suitable 

habitats along the migratory route (O’Connor et al. 2020; Cardenas-Ortiz et al. 2020; Barbosa et al. 
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2020). The ability to adapt and change their behaviour may be the only thing preventing population 

extinction. The accelerated shift in climate conditions due to human-induced changes to the 

environment is altering resource availability at a pace that animals may be unable to cope with 

(Robinson et al. 2009). Consequences of these changes include alterations in migration timing (Dunn 

and Winkler 1999; Parmesan and Yohe 2003), frequency, and even migratory status – with some 

individuals ceasing to migrate; it has been described for birds, insects, and fish (Moore et al. 1998; 

Gresh et al. 2000; Wikelski et al. 2007; Wilcove and Wikelski 2008; Jepsen et al. 2015; Flack et al. 

2016; Kravchenko et al. 2020). In the Arctic, for example, climate change is causing the permafrost 

to thaw, shifting the caribou (Rangifer tarandus) habitat boundaries, consequently making the 

caribou travel increasingly longer distances in search of food and causing negative effects on their 

body conditions (Joly et al. 2011). The effects of climate change, however, are far from uniform. In 

some cases, it may increase the quality of a migratory habitat. For example, tree lines are shifting 

northwards into the habitats of migratory species that are dependent on them (Cazzolla Gatti et al. 

2019). These species are thus able to shift their stopover and breeding locations further north because 

the quality of the habitat has changed. 

Many migratory species such as birds and bats pass through aerial habitats, however, little 

research focus has been applied to those other types of habitats. Aerial habitats remain understudied 

and are largely absent from environmental policy, hindering the protection of aerial biodiversity 

(Davy et al. 2017). Animals that fly at high altitudes not only face direct threats on land but also in 

the air, either by direct collisions with anthropogenic structures or physical barriers, such as aircraft 

and pollution (Voigt et al. 2018b). Aerial habitat conservation is difficult and requires more 

information on high-altitude flying animals in order to shift the efforts of policymakers. A recent 

study discussed the possibility that aerial species might be compensating for the lost ecosystem 

functions previously provided by terrestrial wildlife and thus their presence can be even more 
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important to maintaining ecosystem functions (Zuluaga et al. 2022). Understanding migration drivers 

and establishing tools to verify such behaviour are essential to allow us to improve the conservation 

efforts applied to migratory animals. 

 

1.3 Blowin’ in the wind – Wind turbine impacts on wildlife 

Rising energy demand and efforts to minimise climate change require a significant decrease in 

fossil fuel use. In an effort to use alternate sources of energy and reduce the negative effects of CO2 

emissions on the global climate, many countries are promoting energy production from renewable 

sources, such as wind (IRENA 2020). While these power sources have a clear positive value for 

energy production and are considered environmentally friendly, they may negatively affect wildlife, 

thus the trade-off between renewable energy use and wildlife conservation is not always 

straightforward (Arnett et al. 2008; Saidur et al. 2011; Baerwald and Barclay 2011; Schuster et al. 

2015; Zimmerling and Francis 2016; Thaxter et al. 2017; Thaker et al. 2018). While it is possible to 

utilise renewable energy sources without adversely affecting wildlife, this requires careful planning. 

The changes in energy systems have the potential to alter the functioning of ecosystems and wildlife 

populations by affecting species' access to resources, habitat availability, and connectivity. For 

example, studies have shown that wind energy farms pose a mortality risk to migratory species inland 

and on the coast (Thaxter et al. 2017); new concerns are being raised around offshore establishments 

and their possible impacts remain understudied. Animals may be killed by operating turbines, either 

by blunt-force trauma when colliding with blades or by barotrauma in the tailwind vortices of the 

spinning blades (Baerwald et al. 2008; Voigt et al. 2015). In addition, animals may suffer from 

habitat loss during wind turbine constructions in sensitive areas, such as forests or wetlands. 
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The exact number of bat and bird fatalities at wind turbines is currently unknown. A recent 

review has tried to summarise the different records of animals killed, but the numbers continue to 

vary over different countries and periods (Winder et al. 2019). One of their main conclusions was that 

the 300 bird species and 22 bat species recorded in collisions in the U.S. have had their populations 

affected, most likely via a loss of connectivity between summer and wintering habitats of migratory 

species. It is therefore important that additional funds and efforts are established to improve risk 

evaluation. In addition, the appropriate location of wind farms to avoid future impacts should be 

continuously evaluated. 

Recent population trend analyses suggested that some species with high collision risks are in 

decline (Zahn et al. 2014; Frick et al. 2017), yet the effects on populations are difficult to monitor 

because wind turbines can kill individuals that originate from both local and distant populations of 

unknown location (Popa-Lisseanu et al. 2012; Lehnert et al. 2014). It has been suggested that the 

number of fatalities at wind farms could be reduced substantially by temporarily stopping turbines at 

night at certain times of the year and under certain climatic conditions (Arnett et al. 2008). However, 

these mitigating measures have not been applied systematically, generating potentially major 

conservation issues for migratory species. Understanding where and when individuals migrate is 

essential for deciding on new wind farm locations and to help establish adequate mitigation schemes. 

 

2. Let’s get chemical – Stable isotopes as an alternative tool to track migratory animals 

Several techniques have been developed to track migratory animals (see a review of several 

methods in Table 1.1. from Hobson et al. (2019)). The method applied differs depending on the 

species and the environment in which it travels. One broadly applicable method is extrinsic markers, 

which have been used for many years and are well established. This method relies on fixed markers, 
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such as banding/marking (e.g., tags, collars, streamers), or phenotypic plasticity (morphological 

markings), which enable the identification of individuals at any given location along their migratory 

route (Hobson et al. 2019). It is usually the cheapest method; however, it requires capturing the 

animal at least two times in order to retrieve low-resolution information, and sometimes it can take 

several years of recaptures to assemble adequate data (Hobson et al. 2019). With the development of 

new onboard tracking technologies, such as radio and satellite transmitters, the quantity and quality 

of the information increased. However, these bio-loggers still have several limitations, such as 

transmitter size/weight (in the case of small animals), distance to triangulate the position with a 

receiver, battery life, etc (Davis 2008). Therefore, extrinsic methods require the knowledge of several 

points in the animal’s route (e.g., the origin and the final destination) to recapture the animal and 

retrieve the data, yet for the vast majority of migratory species recapture rates are extremely low (< 

0.01% (Hobson 2003)). 

Many migratory bird and bat species are too small to be studied with the bio-logging technology 

that is currently available. Therefore, we needed to establish alternative methods to gain information 

on their phenology, migratory corridors, and connectivity between summer and wintering habitats. A 

few intrinsic methods have a major potential to infer animal migration, such as contaminants (e.g., 

heavy metals), parasites and pathogens, genetics, etc (Hobson et al. 2019). A useful and powerful 

intrinsic method such as stable isotope analysis offers an advantageous alternative to existing 

methods because all necessary information is obtained from a single sample without the need to 

recapture the animal (Hobson et al. 2019). Additionally, minimum quantities of samples are sufficient 

for most analyses, which do not necessarily require invasive sampling methods and can be used in 

any size animal. The application of stable isotopes in conservation biology is growing rapidly and 

shows great promise for the conservation of endangered species (Bond and Diamond 2011; Pietsch et 

al. 2011). Stable isotope analysis can be used to trace terrestrial migratory routes, identify migratory 
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origins, and determine the vulnerability of different demographic groups (Hobson 2003; Martínez del 

Rio et al. 2009; Caizergues et al. 2016; Wieringa et al. 2020). 

Stable isotopes are atoms with an equal number of protons but a different number of neutrons in 

their nuclei, conferring them different relative atomic masses with nearly identical chemical 

properties (Albarede 2011). Isotopic abundances are commonly reported using the delta (δ) notation, 

which represents the isotopic ratio of an element (Pinti 2011). The ratio represents the differences in 

abundance between the most abundant stable form (usually the “light” isotope) to the less abundant 

one (usually the “heavy” isotope) in a sample, relative to the same ratio in a reference material 

(international standards for hydrogen – Vienna Standard Mean Ocean Water (V-SMOW); for 

nitrogen – N2 in the air; for carbon – Pee Dee Belemnite (PDB)); the ratio is often reported in per 

mille (‰) or percent (%) (Equation 1). 

𝛿𝑋 =  
𝑅𝑆𝐴𝑀𝑃𝐿𝐸−𝑅𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷

𝑅𝑆𝑇𝐴𝑁𝐷𝐴𝑅𝐷
× 1000   (1) 

where X represents the least abundant isotope of an element, RSAMPLE is the isotopic ratio of the 

sample and RSTANDARD is the ratio of the standard. 

Stable isotope analysis has been used as a multidisciplinary tool and is widely applied in physics, 

Earth sciences, biogeochemistry, animal and plant physiology, ecology, anthropology, and 

archaeology (Fry 2006). Stable isotope analysis was first conducted by ecologists to assess diet, 

trophic level, and source of nutrients in food webs (Fry 2006). This method can help unravel the 

parameters of cryptic animals. For example, an analysis of δ13C in common vampire bats (Desmodus 

rotundus) showed that the species was able to survive in a forested area (which is uncommon for the 

species) by preying upon species of capybaras in open habitats (Gonçalves et al. 2020). 
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To apply the method to migration, a few conditions must be followed. First, as the stable isotopic 

values reflect the animal’s (consumer) diet, what they eat and drink will influence directly the ratios 

we find. Therefore, the food web must differ either in space or its isotopic signature for us to use this 

information to access the consumer origin. The food items themselves can be the same, however, 

they must present different isotopic values (Hobson et al. 2019). For example, in the breeding area, 

the animals feed on food with a distinct isotopic value from the food they eat in the wintering area 

(Voigt et al. 2012a). Researchers found that Lasiurus curasoae bats were travelling more than 500 

km from the U.S. to feed on agave plants on the south coast of Mexico (Fleming et al. 1993), which 

is currently known as the “nectar corridor” that bats use during migration. During winter, these bats 

feed on C3 plants (e.g., forest plants) and during migration, switch to CAM plants (e.g., cacti). 

Moreover, the tissue used for the analysis will determine the time period evaluated. 

Metabolically active and inactive tissues differ in the spatial information they can provide. The time 

taken for tissues to change their isotopic value to match that of their diet is termed “turnover rate” 

(Hobson et al. 2019). For example, European bats moult in summer before they migrate (Fraser et al. 

2013). As fur is a metabolically inactive tissue, if we analyse a fur sample taken any time before the 

following summer, it will reflect the food web the bat ingested before migration, i.e., the time of fur 

growth. The isotopic signatures may vary according to the tissue-specific turnover rate (Martínez del 

Rio and Carleton 2012). Stable isotope ratios in bat blood integrate the diet over past days and weeks, 

liver and muscle over several weeks, and wing membrane tissue over weeks or even months (Voigt et 

al. 2003; Mirón M. et al. 2006). The turnover rate of different tissues is usually quantified using diet-

switch experiments (e.g., Bearhop et al. (2002); Voigt and Speakman (2007)). Therefore, different 

tissues can be used to access different periods of the animal’s life cycles. 

Finally, physiological and metabolic processes influence isotopic signals in the consumer’s 

tissues, e.g., discrimination factor, exercise, and pool source. Discrimination factor or isotopic 
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fractionation is an offset between the ingested food and drinking water and the isotopic signals in 

tissues due to physical or metabolic processes (Hobson 2008; Voigt et al. 2013). This offset is 

because living organisms tend to have a preference in the assimilation of a particular isotope to 

another isotope of the same element (Wassenaar 2018). The molecular bonds are facilitated when 

made between light isotopes (Caut et al. 2008a). A well-known example in nature is the preferential 

fixation by photosynthetic organisms of the lighter (and vastly more abundant) isotope 12C compared 

with the heavier 13C.   

To correlate the tissue values to the environmental data, first, we must establish a transfer 

function. Transfer functions are regression models that calibrate the environmental isotopic ratios to 

predict the values for the animal tissues. This calibration uses the discrimination factor to account for 

the variation of isotopes in animal tissues. Currently, robust transfer functions remain scarce because 

they are species-, age-, sex-, and time-specific (Caut et al. 2008b; Hobson and Wassenaar 2019), and 

they depend on baseline data across a large geographical range (Voigt and Lehnert 2019). A few 

transfer functions have been established (see review in Table 5.3 in Voigt and Lehnert (2019)), 

however, for example, for carnivorous animals establishing this function seems particularly difficult 

because of physiological characteristics (e.g., low dependency on drinking water (Pietsch et al. 

2011)). Therefore, stable isotope analysis requires a deep knowledge of biology and the natural 

history of the animal, for one to shed light on what stable isotope values actually reflect. 

Stable isotope analysis has been used as environmental tracers to elucidate the geographic origin 

of animals (Hobson and Wassenaar 2019) through isoscapes origin models. Isoscapes are models that 

predict the spatial distribution of stable isotopes across continents, linking isotopic signatures of the 

environment to animals. The isoscapes can be calibrated with the transfer functions to assign the 

origin of animals more accurately. The isoscape we use to assign the origin of animals is predicted 

with mean values of the environment in each measured location (Figure 0-1a). This isoscape presents 
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a temporal variation in each measured location (Figure 0-1b) and uncertainty in each point prediction 

(Figure 0-1c) (“IsoriX” package version 0.8.2 in R (Courtiol et al. 2019)). With the application of 

isoscapes, we have greatly expanded our understanding of migratory pathways. For example, past 

studies have successfully applied the stable isotope approach to the study of bat migration for tracing 

elevational (Voigt et al. 2014), latitudinal (Meehan et al. 2004; Popa-Lisseanu et al. 2012; Sullivan et 

al. 2012; Ossa et al. 2012; Voigt et al. 2012a; Lehnert et al. 2014; Pylant et al. 2016; Lehnert et al. 

2018), and longitudinal migration (Weller et al. 2016). In addition, in Eurasian Golden Orioles 

(Oriolus oriolus) this method has even been used to investigate past migratory behaviour in relation 

to rainfall patterns from museum specimens, enabling us to recreate migratory patterns from almost 

200 years ago (Milano et al. 2021). Researchers have used several isotopes for understanding aspects 

of migration, I will mainly discuss hydrogen, oxygen, strontium, carbon, and nitrogen. 
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Figure 0- 1: European isoscapes of stable hydrogen isotopes. (a) Mean variation predictions from 

each point. (b) Residual variation to predict the temporal variation at each location. (c) Uncertainty in 

each point prediction. The uncertainty increases as the distance from the measured location increases. 

White crosses represent each source point. 

 

2.1 When it rains, it pours – Stable hydrogen isotopes 

Stable hydrogen isotope ratio (δ2H), mainly measured in water, is the most used biomarker to 

determine the long-distance origin of migratory animals (Hobson 1999). In geographic assignments, 

tissue samples are usually compared to δ2H recorded in precipitation. The cycle of water and the 

different chemical bonds the water molecule produces can lead to a variation in δ2H over space and 

time, generating a gradient of values that can be distinguished over massive geospatial scales 

(regional, continental, global) (Courtiol et al. 2019). δ2H varies inversely with latitude, elevation, and 

distance from the coast (Wassenaar 2018). 

On one hand, it is relatively easy to obtain water samples from around the world and map 

extensive landscapes. On the other hand, the explanatory power of these models is limited because 

they return relatively large regions of potential origin, encompassing several hundreds of kilometres 

(Wassenaar 2018). The lack of precipitation data in some regions (e.g., Russia) further reduces the 

resolution of the predictions. δ2H is often measured in samples from animals that have biologically 

inert materials with a low turnover rate, such as feathers, fur, or chitin, to depict the origin of animals 

where those tissues were formed (moulted, grown, or shed, respectively). Due to their low turnover 

rate, these materials retain their isotopic composition until the next moulting event occurs (Hobson 

2005). 
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Hydrogen analysis has a major disadvantage because organic hydrogen can exchange with the 

ambient water vapour (Wassenaar and Hobson 2000). This exchange is dependent on temperature, 

type of tissue (C–H bonds are mainly fixed, but H bonds to other functional groups are not, e.g., –

COOH, –NH2, and –SH; Wassenaar and Hobson (2000)), and methods used for tissue preparation 

(grinding, whole tissues, etc). Therefore, the comparison between laboratories where different air 

moistures might be present is an issue (Wassenaar 2018). 

 

2.2 Breath in, breath out – Stable oxygen isotopes 

Similar to δ2H, stable oxygen isotopes (δ18O) are also used to determine geographical origins on 

a global scale (Wassenaar 2018) and are suitable markers to differentiate between terrestrial and 

marine biomes and between continents (Pearson et al. 2020). Figure 0-2 shows the oxygen isoscape 

for Europe. Even though oxygen has a key advantage over hydrogen because it does not have 

exchangeable parts, the analysis increases in complexity because there are more oxygen sources (air 

O2, H2O, dietary O) and sinks (H2O, CO2) in biological dietary systems (Wassenaar 2018). Most 

studies involving δ18O have tried to distinguish the influence of food and ambient water, growth 

effects, relationships within and among tissues, etc (Kirsanow and Tuross 2011; Storm-Suke et al. 

2012; Coulter et al. 2017). Pietsch et al. (2011) used δ2H and δ18O in hair to verify the provenance of 

wild cats that are traded illegally in the U.S. and Canada, however, found that felid bulk hair does not 

correlate to expected isoscapes’ predictions. Further studies are necessary to understand the 

relationship between tissues from different animals and environmental data. Therefore, its use in 

migration studies remains largely unexplored. 
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Figure 0- 2: European isoscape for stable oxygen isotope. The figure was obtained from 

waterisotopes.org archives. 

 

2.3 We will rock you – Stable strontium isotopes 

Recent studies have tried to overcome the issue of the broad-scale possible origins from δ2H and 

δ18O by adding other stable isotope elements, such as strontium, to isoscape origin models 

(Chamberlain et al. 1997; Oelze et al. 2012; Vautour et al. 2015). Stable strontium isotope ratio 

(87Sr/86Sr) can also be used as a complementary geochemical marker since it varies with bedrock 

type, soil geology, and soil age, making the variation stable (Hoogewerff et al. 2019). Figure 0-3 
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shows the strontium isoscape for Europe. Several studies have used 87Sr/86Sr as a marker for spatial 

tracking of animals (e.g., Koch et al. (1995); Sellick et al. (2009)) and humans (e.g., Bentley (2006); 

Font et al. (2012); Tipple et al. (2013)), as well as for provenance studies (e.g., Vogel et al. (1990); 

Frei et al. (2009); Voerkelius et al. (2010)). Recently, a study established a continuous-surface 

geographic assignment for monarch butterflies (Danaus plexippus) using 87Sr/86Sr, which should aid 

in future studies using this isotope (Reich et al. 2021). 

Differently from other isotopes, 87Sr/86Sr in tissues is believed to match the ecosystem values 

without a fractionation between trophic levels, tissues, or different species (Wassenaar 2018). This 

facilitates its use to match samples with environmental data. However, studies that used 87Sr/86Sr 

have only expressed the lack of fractionation between tooth enamel and bone tissue (Vogel et al. 

1990; Clementz 2012), which have the slowest turnover period (Cerling et al. 2007), and the studies 

have not been performed with other tissues. More studies are required to understand the link between 

87Sr/86Sr and other tissues. 
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Figure 0- 3: European isoscape for stable strontium isotope. The distribution of 87Sr/86Sr values is 

heavily skewed, therefore we used a non-linear colour palette following Bataille et al. (2020). 

 

2.4 Safe and sound – Stable carbon and nitrogen isotopes 

Stable carbon (δ13C) and nitrogen (δ15N) isotopes have been considered for local-scale 

geographical assignments; however, their application to migration studies is not as straightforward as 

δ2H. Similar to other isotopes, animals must move between habitats that have isotopic signatures with 

different C and N profiles for these isotopes to be effective at determining geographic assignments; 

however, variation in C and N is determined by the presence of different wild plants and often 

plantations in the environment (Tieszen et al. 1983), which can change depending on human 

activities. δ13C and δ15N are the most common isotopes used to determine diet, trophic level, and 

habitat preference. 

δ13C is directly linked to the three primary photosynthetic pathways of plants: C3 (e.g., most 

plants), CAM (e.g., succulents), and C4 (e.g., grasses). When we analyse tissues from herbivorous 
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animals, we can identify which type of plants they feed on (Fry 2006). δ13C is also enriched by 

trophic level. The relative proportion of plants with different photosynthetic pathways is linked to 

precipitation and temperature and varies latitudinally (Fry 2006). The use of δ13C for tracking 

animals requires confidence about the relationship between the animals and their food sources in 

order to obtain solid isoscape results (Hobson 2019), which is currently lacking. Therefore, δ13C still 

requires further exploration. 

δ15N in consumer tissues is a way to trace the protein derived from the diet, thus it varies largely 

with the animal’s trophic position (Vanderklift and Ponsard 2003; Caut et al. 2008a; Rex et al. 2010; 

Siemers et al. 2011), and to a lesser extent with the δ15N values of local ecosystems (Hartman and 

Danin 2010). N is mainly present in lipids and carbohydrates. One disadvantage of using δ15N is that 

it depends largely on the method of excretion an animal uses, and thus the discrimination factor of 

this isotope varies depending on the animal’s physiology status (e.g., fasting) (Post 2002; Vanderklift 

and Ponsard 2003). In addition, with the introduction of fertilisers used in crops and other soils, δ15N 

can fluctuate annually (McCutchan et al. 2003). This makes it difficult to create an isoscape for this 

isotope. With the use of machine learning, isoscapes for carbon and nitrogen are starting to be 

developed (Bowen, G. pers. comm.). 

 

3. You can sometimes get what you want – Migratory bats 

Bats, an ecologically and taxonomically diverse group, comprise approximately 20% of the 

mammalian diversity worldwide, with more than 1,400 recognised species (Burgin et al. 2018). 

However, only a few species are known to perform any type of migration, including partial (i.e., part 

of the population migrates) or whole population migration, and regional or long-distance migration 

(for more details of each species-particular migration see Table 15.1 in Krauel and Mccracken 
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(2013)). Considering their small size, bats are exceptional among terrestrial mammals in their ability 

to migrate (Krauel and McCracken 2013). Their migratory behaviour is much less common than in 

other flying animals, such as birds (Gauthreaux 2019). Bats cover shorter distances, rarely undergo 

continental migration (except L. cinereus cinereus (Cryan et al. 2014)), and require many stopover 

intervals for refuelling and rest compared to birds (Hedenström 2009; McGuire 2012). 

Migratory bats have evolved a combination of physiological and morphological traits to assist 

their travels. They are adapted for rapid and energetically efficient flight because their wings are long 

and narrow (high aspect ratio), with pointed wing tips and high wing loading (Fleming 2019). 

Because of their ability for powered flight, they may cover several thousand kilometres during their 

annual journeys (Popa-Lisseanu and Voigt 2009; Alcalde et al. 2021). Yet, powered flight is 

energetically expensive, which forces bats to optimise their migration behaviour by minimising the 

energy expended in relation to the distance travelled per unit of time (maximum range speed) 

(Troxell et al. 2019). In addition, migratory bats consume insects while migrating (Voigt et al. 

2012a), thus reducing the need for prolonged stopovers for refuelling. Lastly, they save energy by 

entering torpor during daytime resting, known as torpor-assisted migration (McGuire et al. 2014). 

Bats face several trade-offs on their journeys, between acquiring sufficient fat deposits (energy 

reserves) to fuel flight and maintaining optimal body conditions (weight, size) for flight with low 

energetic costs (Fleming et al. 2003). 

In tropical bats, migration tends to occur due to seasonal fluctuation in food availability (Fleming 

2019). Conversely, temperate zone bats tend to migrate to avoid low food availability and extremely 

low air temperatures during harsh winters, which are physiologically stressful (Fleming 2019). These 

species will overwinter in less harsh temperature areas, hibernating through winter as a means of 

energy conservation. The annual cycle of temperate zone bats continues in spring when individuals 

meet for reproduction (i.e., spring migration). There is often a difference between the distances 
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individuals migrate and the locations they spend summer in, with females migrating longer distances 

to form maternity colonies. Finally, in autumn both sexes restart their journeys to their hibernation 

sites (i.e., autumn migration). In some species (e.g., N. noctula, P. nathusii), mating occurs along the 

female migratory pathways with males defending roost sites that females then visit (McCracken and 

Wilkinson 2000). In other species (e.g., Myotis species in North America), individuals of both sexes 

form ‘swarms’ at the entrances of hibernation sites for mating. Fertilisation seems to occur differently 

depending on the female hibernation status: hibernating females store the viable sperm in their 

oviducts during winter, then ovulate and undergo fertilisation in the spring prior to migrating to their 

summer maternity roosts (Pfeiffer and Mayer 2013); non-hibernating females mate with fertilisation 

occurring simultaneously, prior to, or during spring migration (e.g., L. borealis, L. yerbabuenae, and 

Tadarida brasiliensis) (Orr and Zuk 2013). 

Efficient conservation measures for the protection of migratory bat populations are often 

impaired by the lack of information on migratory corridors and stopover sites (Cryan and Brown 

2007; Dzal et al. 2009; Taylor et al. 2011). Little is known about the behaviour of bats during their 

migration, i.e., whether they stop for extended periods or simply forage along the way. The definition 

of a migratory stopover is scale- and species-specific (Taylor et al. 2011). Researchers have found a 

few bat species that prolong their stay in specific places during autumn migration (Cryan and Brown 

2007) but could not quantify how long one individual stayed. In contrast, another study showed that 

most individuals stayed only one night except when weather conditions forced a delay; these 

individuals had sufficient fat reserves to complete the migration without any additional foraging 

(McGuire et al. 2012). Therefore, more efforts to understand the behaviour of different species while 

migrating are needed. 

Currently, it is widely assumed that coastal habitats and river valleys represent suitable pathways 

for migratory bats (Furmankiewicz and Kucharska 2009; Šuba et al. 2013). Additionally, peninsulas 
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have been identified as suitable stopover sites (Taylor et al. 2011). However, our understanding of 

where bats migrate remains largely speculative. Despite decades of banding efforts (Hutterer et al. 

2005), and recent advances in GPS bio-logging methods (Richter and Cumming 2008; Weller et al. 

2016) and stable isotope approaches (Cryan et al. 2004; Popa-Lisseanu et al. 2012; Fraser et al. 2012; 

Voigt et al. 2013, 2014, 2016, 2012c; Sullivan et al. 2012; Ossa et al. 2012; Baerwald et al. 2014; 

Kravchenko et al. 2015; Pylant et al. 2016; Lehnert et al. 2018), our current knowledge regarding the 

connectivity of different habitats is still unclear for most migratory bat species (Popa-Lisseanu and 

Voigt 2009; Ciechanowski et al. 2010). Because their annual ranges often encompass substantial 

geographic areas that usually cross different federal or international boundaries, the conservation of 

migratory bats can be challenging (Flaquer et al. 2009; Mas et al. 2021). Consequently, conservation 

efforts need to be geographically and politically broad in scope. Even though migratory animals are 

internationally protected by law (Conservation of Migratory Species of Wild Animals), often the 

conservation efforts applied to migratory animals vary between countries (Voigt et al. 2012b). 

Therefore, conservation efforts must involve protecting a variety of different roost sites, including 

those used for mating, migration, maternity colonies, foraging habitats around critical roost sites, as 

well as habitats used en route during migration (Racey and Entwistle 2003; Wiederholt et al. 2013; 

Voigt et al. 2018b). 

 

3.1 Europe’s next top model – Nathusius’ pipistrelles (Pipistrellus nathusii) as a model for the study 

of migration 

The European Nathusius’ pipistrelle (order Chiroptera, family Vespertilionidae, P. nathusii 

(Keyserling & Blasius, 1839)) is one of the most well-studied migratory bat species worldwide. This 

species holds the world record for the longest migratory distance of any bat, covering more than 

2,200 km one way between the Baltic states and southwestern Europe (Alcalde et al. 2021). The 
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species presents a head and body length of 46–55 mm and a wingspan of 220–250 mm, the forearm 

length ranges from 32–40 mm, and the weight is approximately 6–15.5 g (Paunović and Juste 2016). 

In summer, the species roosts in tree holes, buildings, and bat boxes, while in winter it prefers to 

hibernate in crevices in cliffs and cave entrances (Sachanowicz et al. 2019). P. nathusii maintains a 

generalist diet, feeding mainly on insects connected to aquatic habitats, such as Diptera and 

Chironomidae (Flaquer et al. 2009; Voigt et al. 2012a; Krüger et al. 2014). During migration, they 

have been found to feed while travelling (‘fly-and-forage’ strategy) to replenish the energy loss due 

to flight (Voigt et al. 2012a; Šuba et al. 2013). As for mating, males defend territories or resources 

against conspecific males (resource-defence polygyny) as many other European bats; however, small 

male aggregations seem to be common as well (Jahelková and Horáček 2011). The males are known 

to perform complex loud acoustic displays combined with songs (Smotherman et al. 2016) and 

present high fidelity to their mating roosts (Russ and Racey 2007). 

Currently, the species is in the least concern category of the IUCN Red List (Paunović and Juste 

2016). However, a recent study in France identified a decline of 46% in the French P. nathusii 

population (Bas et al. 2020). For more than 30 years, researchers have aimed at identifying the 

migratory corridors of Nathusius’ pipistrelles (summary in Figure 0-4) (Kurvits et al. 2011)). 

Initially, they engaged in large banding campaigns at the places of summer origin or along the 

migratory route, hoping to receive recaptures from the area where bats hibernate. These efforts 

revealed that Nathusius’ pipistrelles from North-eastern and Central Europe move in the 

Southwestern and Western directions to reach their hibernation area in France and Belgium, the 

Netherlands, and Luxembourg (Figure 0-4a) (Hutterer et al. 2005). Limpens and Schulte (2000) 

reported that Nathusius’ bats may use a corridor starting in Eastern Europe, migrating along with the 

Polish, German, and Dutch coastline to the southwest of Germany, southeast of France, north of Italy, 

and Switzerland (Figure 0-4b). However, with a broader dataset, Hutterer et al. (2005) challenged this 
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assumption and suggested that wintering habitats should be extended along the Atlantic and Adriatic 

coasts. Lastly, there is evidence of current changes in the wintering ranges in Finland (Blomberg et 

al. 2021), which might indicate that instead of taking the route from Baltorussia (Estonia, Latvia, 

Lithuania, Belarus, and Russia), bats may migrate through Fennoscandia (Finland, Sweden, and 

Norway) and cross the Baltic Sea to continental Europe (Figure 0-4c). Evidence for this movement is 

weak since it is based on acoustic data, which does not inform the direction of movements. Migratory 

pathways between Sweden and Germany would conflict with recent offshore wind turbine 

developments in the Baltic Sea. Despite evidence of these migratory routes, the relative abundance of 

Nathusius’ pipistrelles with Fennoscandian origin at the German coastline is yet unresolved. The 

knowledge of the location, sizes, and composition of maternity colonies and source population is 

essential to monitor how the species is coping with adverse challenges such as climate change and to 

demand proper conservation efforts from the countries in which P. nathusii occurs. 

Currently, P. nathusii areas of summer residency and migratory corridors have often been 

associated with wetlands, such as forests adjacent to bogs, lakes, and marshlands (Flaquer et al. 2009; 

Dietz et al. 2009; Furmankiewicz and Kucharska 2009; Voigt et al. 2016; Ijäs et al. 2017). Multi-year 

recaptures have demonstrated high site fidelity at summer grounds, maternity roosts, and mating sites 

(Hutterer et al. 2005), suggesting that a significant proportion of the European population of 

Nathusius’ pipistrelles crosses Germany twice each year. Consequently, Germany has an essential 

responsibility for protecting this and other migratory species as a central location in the flyways of 

European migratory bats (Voigt et al. 2015). 

Nathusius’ pipistrelles are the most recorded species in fatalities from wind turbines (Lehnert et 

al. 2014; Măntoiu et al. 2020). Bat collisions most commonly occur on nights with low wind speed (< 

6 m/s), and before/after the passage of storm fronts when a large number of bats are likely to be 

migrating, showing a peak of fatalities occurring during migration (Rydell et al. 2010; Măntoiu et al. 
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2020). Estimates obtained from systematic environmental impact assessments suggest that a single 

turbine may lead to 2–30 bat fatalities per year if no mitigation scheme is implemented (Brinkmann 

et al. 2011; Korner-Nievergelt et al. 2013; Măntoiu et al. 2020). The total may sum up to hundreds of 

thousands of bats killed per year in countries with high wind energy production, such as Germany 

(Fritze et al. 2019) and the U.S. (Hayes 2013). Considering the low reproductive rate of most bat 

species, with only about 1–2 offspring per year (Garbino et al. 2021), wind turbine fatalities may lead 

to population declines because species are not able to compensate for the additional losses of 

individuals at wind turbines. 

Nathusius’ pipistrelles have been extensively studied using stable isotope analysis. Information 

concerning the exact moult pattern is important to ensure accurate determination of when and where 

the animal acquired the isotopes. However, this is still poorly documented for this species and other 

mammals. Fraser et al. (2013) reviewed the moulting pattern in bats, showing that in European 

species it mainly occurs in a single event in summer or autumn; however, it may vary between 

species and demographic groups. For example, the moulting period of P. nathusii fur was defined 

between late June/early July and mid-August (Voigt et al. 2016), which suggests that the species have 

new fur when migrating to their wintering sites in autumn. This information can be used to determine 

the time period the tissue analysed will reflect. In addition, because transfer functions are species-

specific, to date, no transfer function for δ2H has been established for P. nathusii using non-migratory 

individuals of this species. Previous studies that have assigned the origin of P. nathusii individuals 

have used a pool of five different bat species (Popa-Lisseanu et al. 2012; Lehnert et al. 2014). 

Consequently, potentially imprecise geographical origins have been assigned to those individuals. 

Considering their broad European range, high vulnerability to environmental changes, and the 

current need to protect migratory species, Nathusius’ pipistrelles are an interesting model to 

determine migration patterns through the application of stable isotopes. 
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Figure 0- 4: Possible migratory routes of Nathusius’ pipistrelles (Pipistrellus nathusii). a) Bats 

moving from North-eastern and Central Europe to their hibernation area in France, Belgium, the 

Netherlands, and Luxembourg (blue solid lines); possibly reaching the Adriatic and Atlantic seas ( 

blue dashed lines) (Hutterer et al. 2005); b) bats migrating along with the Polish, German, and Dutch 

coastline to the southwest of Germany, southeast of France, north of Italy, and Switzerland (orange 

solid lines) (Limpens and Schulte 2000); c) bats wintering in Finland and moving through 

Fennoscandia (Finland, Sweden, Norway), crossing the Baltic Sea to continental Europe (purple 

dashed lines) (Blomberg et al. 2021). 

 

THESIS OUTLINE 

 

This thesis aims to apply stable isotope analysis to identify migratory pathways in P. nathusii 

and use this knowledge to help inform more adequate conservation measures for migratory bat 

species. In chapter 1, I applied a dual-isotope approach to distinguish between different Northern 

European pathways the P. nathusii could migrate (Fig. 0-5). This represents the first study using 

87Sr/86Sr in fur keratin to improve probability maps of the origin of bats and establish connectivity for 

P. nathusii bats captured during migration. I analysed the summer origin of P. nathusii bats found in 

three islands in the north of Germany. As a critical stopover site for the species, the bats found in 

Germany may use different pathways to migrate to their winter grounds. Detailed information about 

winter and summer ranges, as well as corridors used for their seasonal journeys, is important to 

understand the bat migration cycle. Following recent summer acoustic observations of P. nathusii in 

Fennoscandia, I hypothesised that the individuals observed during spring and autumn migration on 

German offshore islands originated from Fennoscandia rather than the more commonly assumed 
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Baltorussian origin. I used stable strontium isotopes to detect a possible Fennoscandian summer 

origin and thus refine the broad geographical scale that stable hydrogen isoscapes provide. I predicted 

that the western capturing sites (Fehmarn and Heligoland) would include more bats from 

Fennoscandian, presenting higher 87Sr/86Sr values compared with the eastern capturing site 

(Greifswalder Oie). This would either postulate that bats of Fennoscandian origin cross Denmark and 

the Baltic Sea along a northeast-southwest trajectory between Sweden and Germany or bats could 

originate from Baltorussian populations but make use of the Fennoscandian route to reach Germany. I 

reported the migratory possible origins of 59 Nathusius’ pipistrelles captured on Northern German 

islands. 

Then, I present in chapter 2 an assessment of the vulnerability of different demographic groups 

of P. nathusii bats to wind turbine mortality (Fig. 0-5). This is the first study to present the mortality 

risk of different groups based on carcasses and the living population. I combined the stable isotope 

analysis with demographic data to determine the vulnerability of specific groups of bats to wind 

turbine mortality in Germany. A few studies have provided information on this matter for other 

species (Lehnert et al. 2014; Thaxter et al. 2017; Cardenas-Ortiz et al. 2020); however, they lacked 

the comparison with the living population. The comparison with the living population is important to 

verify if such results are due to unequal ratios of sex, age, and origin in the population or are truly 

driven by a higher vulnerability in certain demographic groups. Hence, the data shows a unique point 

of view that removes a possible bias that would result from only evaluating the individuals found 

dead below wind turbines. I evaluated the possible mortality risk around wind turbines of different 

sex, age, and migratory status groups. I used 119 carcasses and 524 living individuals. I hypothesised 

that long-distance migrants would be more affected because they migrate using corridors with a high 

density of wind turbines (e.g., coast and rivers). In addition, juveniles would be more vulnerable 

because of their strong exploratory behaviour (Horn et al. 2008) and lack of experience in responding 
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to different environmental cues (Lindecke et al. 2019), such as a limited perception of danger (Hunt 

et al. 2017). Female bats would be at higher collision risk because of their observed attraction 

towards wind turbines, i.e., search for social partners or roosts for mating at wind turbines (Roeleke 

et al. 2016). Sex- or age-skewed mortality can gradually change the demographic structure of animal 

populations, leading to accelerated declines or even population collapses (Coulson et al. 2001). The 

impact of wind turbines on females could affect the establishment of maternity colonies and for males 

of leks and territories. Juveniles are a key group to quickly respond to climate change by shifting the 

ranges the species breed and hibernate (Kravchenko et al. 2020). The effects of wind turbines on 

adult long-distance migrants can minimise the migratory behaviour thus disrupting the genetic pool 

and increasing the genetic drift (Winder et al. 2019). 

 In conclusion, this project provides evidence of the functionality of different isotopes to 

determine the origin of migratory bats, thus the method could be applied for the conservation of a 

European species. This dissertation confirms the use of stable isotopes for studying migratory 

animals and contributes with a practical application to necessary conservation measures.  
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Figure 0- 5: Overview of the topics, methods, type of data, and main analyses integrated with this 

thesis. 
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Rationale: Identifying migratory corridors of animals is essential for their effective

protection, yet the exact location of such corridors is often unknown, particularly for

elusive animals such as bats. While migrating along the German coastline, Nathusius'

pipistrelles (Pipistrellus nathusii) are regularly killed at wind turbines. Therefore, we

explored the paths taken on their annual journey.

Methods: We used isotope ratio mass spectrometry to measure stable hydrogen and

strontium isotope ratios in fur keratin of 59 Nathusius' pipistrelles captured on three

offshore islands. Samples were pre-treated before analysis to report exclusively

stable isotope ratios of non-exchangeable hydrogen. We generated maps to predict

summer origins of bats using isoscape models.

Results: Bats were classified as long-distance migrants, mostly originating from

Eastern Europe. Hydrogen analysis suggested for some bats a possible

Fennoscandian origin, yet additional information from strontium analysis excluded

this possibility. Instead, our data suggest that most Nathusius' pipistrelles migrating

along the German coastline were of continental European summer origin, but also

highlight the possibility that Nathusius' pipistrelles of Baltorussian origin may travel

offshore from Fennoscandia to Germany.

Conclusions: Our findings demonstrate the benefit of using complementary isotopic

tracers for analysing the migratory pathways of bats and also potentially other

terrestrial vertebrate species. Furthermore, data from our study suggest an offset of

fur strontium isotope ratios in relation to local bedrock.
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1 | INTRODUCTION

In the era of the Anthropocene, human-induced changes to the

environment, such as land use and global climate changes, threaten a

number of species, leading ultimately to a worldwide biodiversity

crisis.1–3 Migratory species are particularly vulnerable to anthropogenic

changes because they depend not only on intact breeding and

wintering locations, but also on a sequence of suitable and intact

habitats along their migratory routes.2,4,5 Thus, conservation efforts

need to be established beyond political borders to protect suitable

corridors and habitats for these highly mobile species.6,7

Migratory behaviour is observed in a range of vertebrate taxa,

including ungulates, birds, cetaceans, sea turtles and bats.8

Considering their small size, bats are outstanding among terrestrial

mammals in their ability to cover long distances when migrating.9,10

Yet, efficient conservation measures for the protection of migratory

bats are impaired by the lack of information on migratory corridors

and stopover sites.11 Currently, it is widely assumed that coastal

habitats and river valleys represent suitable pathways for migratory

bats in Europe.8,12–15 In addition, peninsulas have been identified as

suitable stopover sites.16 Other than that, our understanding of where

bats migrate remains largely speculative. This lack of knowledge has

emerged as a major conservation problem since thousands of

migratory bats are killed by wind turbines,6,17,18 which are

increasingly erected along coastal habitats, both onshore and

offshore.13 Thus, understanding where and when bats migrate is

essential for deciding where to avoid wind parks and where to

establish adequate mitigation schemes.

The European bat, Nathusius' pipistrelle (Pipistrellus nathusii),

holds the world record for long-distance migration among bats,

covering more than 2200 km one-way between the Baltic countries

and southwestern Europe.8,9,19,20 Large banding campaigns along the

presumed migratory routes helped to identify wintering areas based

on the recapture of banded bats.9,19,20 These banding efforts support

the existence of a coastal migratory pathway of Nathusius' pipistrelles

with a northeastern origin (e.g. Russia, Baltic countries, Belarus) to

central, western and southwestern Europe (e.g. Spain, France,

Benelux countries, Germany) in late summer9 (Figure 1). Alternatively,

acoustic recordings suggest a possible migratory pathway of

Fennoscandian individuals across the Baltic Sea from Sweden via

Denmark to Germany8,21,22 (Figure 1). Recently, it was also suggested

that Baltorussian bats move via Finland, Sweden and Denmark to

Germany.13,14 Migratory pathways between Sweden and Germany

would conflict with recent offshore wind turbine developments in the

Baltic Sea. Despite evidence of these migratory routes, the relative

abundance of Nathusius' pipistrelles of Fennoscandian origin at the

German coastline is as yet unresolved.

Stable isotope analysis provides a powerful tool to expand our

understanding of migratory pathways and the likely origin of

migratory animals. Stable isotopes have been repeatedly used as

environmental tracers to shed light on the geographic origin of

animals using isoscape origin models, i.e. models based on the spatial

distribution of stable isotopes across continents.23–25 Isoscape origin

models involving bats are usually based on stable hydrogen isotope

ratios of fur, since it is a biologically inert matrix that, once formed,

carries the same isotopic composition from the moulting area to the

wintering area without changing until the next moulting event occurs

prior to summer migration.26–28 In the past, isoscape origin models

were based mostly on stable hydrogen isotope ratios (depicted in the

delta notation δ2H in relation to an international standard), since

the δ2H values of meteoric water follow latitudinal gradients.29 Yet,

the explanatory power of these models is limited because they return

F IGURE 1 Map of potential migratory pathways of Nathusius’ pipistrelles along the coast of the Baltic Sea. Blue lines highlight the pathway
from Baltorussian populations to Poland and Germany. Red lines highlight the pathways of Fennoscandian populations via Denmark to Germany.
Dashed blue lines represent alternative pathways of Baltorussian bats via Fennoscandia to Germany. Western offshore islands in Germany
(Heligoland and Fehmarn) are indicated by red circles and the eastern island (Greiswalder Oie) by a blue circle
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relatively large regions of potential origin, encompassing usually

several hundreds of kilometres on the latitudinal scale.23 Recent

studies have tried to overcome this problem by adding stable isotope

ratios of other elements, such as nitrogen and carbon, to the isoscape

origin models.27,30–35 Strontium stable isotope ratios (87Sr/86Sr) can

also be used as a complementary geochemical marker since 87Sr/86Sr

values vary with bedrock geology and age,36 and since consumer
87Sr/86Sr values match closely ecosystem 87Sr/86Sr values.37 For

example, 87Sr/86Sr values were about 0.737 in tooth enamel and

0.728 in bone material of wildlife from Sweden,38 whereas values in

the same matrix were lower for wildlife of central and eastern Europe,

ranging, for example, from 0.709 to 0.711 in Denmark39 and from

0.711 to 0.712 in Estonia,40 highlighting the contrasting 87Sr/86Sr

values between Fennoscandia and continental Europe.41,42 87Sr/86Sr

values have been used before for spatial tracking of animals43,44 and

humans,45,46 and also for provenance studies.47–50 Yet, few studies

have combined information on δ2H and 87Sr/86Sr values to infer the

geographic origin of terrestrial wildlife. Here, we used a combination

of δ2H and 87Sr/86Sr values from fur keratin of Nathusius' pipistrelles

captured on German offshore islands to discriminate between a

continental European and a Fennoscandian summer origin of long-

distance migratory individuals. Specifically, we tested if Nathusius'

pipistrelles observed during spring and autumn migration on German

offshore islands originated from Fennoscandia. We predicted that our

western capturing sites (Fehmarn and Heligoland) should include

more bats of Fennoscandian origin (higher 87Sr/86Sr values) than our

eastern capturing site (Greifswalder Oie; Figure 1). This assumes that

bats of Fennoscandian origin cross Denmark and the Baltic Sea along

a northeast–southwest trajectory between Sweden and Germany.

Alternatively, Nathusius' pipistrelles observed at the western

capturing sites could originate from Baltorussian populations but

make use of the Fennoscandian route to reach Germany via Denmark.

2 | METHODS

2.1 | Data collection

We captured 458 Nathusius' pipistrelles during the non-migratory

period for δ2H reference material, and 10 for 87Sr/86Sr reference

material; and 59 during the migratory period with unknown origin.

Bats were captured with mist nets and from bat boxes. δ2H reference

material bats were captured in several European sites (Table SM1,

supporting information) and 87Sr/86Sr reference material bats were

captured in Engure Lake, Latvia (57�09044.300N 23�13011.000E;

Table SM2, supporting information). For the reference materials, we

defined July 15th as the end of moulting period,27 and thus included

only fur samples of animals that were captured a few weeks before

that date. However, we acknowledge that individual and geographic

variation may cause deviations from this date.

The bats with an unknown origin were collected from two islands

in the Baltic Sea, Greifswalder Oie (54�14051.900N 13�55006.900E) and

Fehmarn (Wallnau 54�29000.000N 11�00045.500E), and one island in the

North Sea, Heligoland (54�10049.200N 7�53020.200E; Figure 1;

Table SM2, supporting information). Nathusius' pipistrelles do not

establish breeding colonies on the islands of Greifswalder Oie and

Heligoland, while they are assumed to breed on the island of

Fehmarn, because of their presence on this island during the whole

plant growth period. Sample collection was conducted in spring and

autumn 2017 (May and September, respectively) and autumn 2018

(September), and samples were analysed for both isotope ratios.

Spring and autumn captures were analysed separately. It is important

to remember for bats captured during the spring migration period that

predicted places of origin are related to the moulting area where bats

remained during the summer of the previous year.

From each individual, we collected a small tuft of fur from the

interscapular region. Afterwards, all bats were released at the site of

capture. Fur samples were transferred to plastic vials and stored dry

until further analysis. Capture and fur sample collection were

conducted with the permission of local authorities, specifically permit

44.30-2017-177-Os, 60.5/Sr, VG-S-17-021, 60.5/Br and VG-19-010.

2.2 | Stable isotope analysis

We analysed samples for stable hydrogen isotope ratios (reference

material and unknown origin samples) at the Stable Isotope

Laboratory of the Leibniz Institute for Zoo and Wildlife Research,

Berlin, Germany. Before analyses, samples were washed in 2:1

chloroform–methanol solution for 24 h to remove external

contaminants. Afterwards, all samples, including keratin standards,

were dried in an oven at 50�C for ten days to facilitate the

equilibration of non-exchangeable hydrogen. We then loaded 0.3-mL

silver capsules (IVA Analysetechnik e.K., Meerbusch, Germany) with

0.274 ± 0.01 mg of each sample, which were then transferred to an

autosampler (Zero Blank Autosampler, Costech Analytical

Technologies Inc., Firenze, Italy). In the autosampler, samples

equilibrated for 1 h with chemically pure helium (70 mL/min; Linde,

Leuna, Germany). Afterwards, they were pyrolysed at 1450�C in a

Delta V Advantage isotope ratio mass spectrometer (Thermo Fisher

Scientific, Bremen, Germany) connected via a Finnigan ConFlo III

interface (Thermo Fisher Scientific) to an HTO elemental analyser

(Hekatech GmbH, Wegberg, Germany). We report values of stable

hydrogen isotope ratios in relation to the international standard V-

SMOW in the unit of per mille (‰) using the delta notation,

δ2H. During measurements, we included one USGS42 keratin

standard (Tibetan Human Hair; US Geological Survey, Reston, VA,

USA; −72.2 ± 0.9‰) and three laboratory keratin standards

(powdered sheep hair from Sweden (Kstd.1, −111.7‰); powdered

sheep hair from Spain (Kstd.2, −61.5‰); and powdered goat hair

from Tanzania (Kstd.3, −26.4‰)) every 10 samples. We referenced

our keratin standards to a previously established keratin standard of

another laboratory and the USGS42 keratin standard.28,51 The

analytical precision based on the repeated measurements of stable

hydrogen ratios in laboratory keratin standards was always better

than 2‰ (one standard deviation of mean ratios).
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Stable strontium isotope ratios (87Sr/86Sr) were measured in the

TIMS laboratory at the Technical University Bergakademie Freiberg,

Germany. The washed and dried samples (see previous paragraph;

0.5–5 mg) were loaded into clean Teflon beakers and the initial

digestion was achieved with a mix of 16 M HNO3 and 6 M HCl. After

drying samples on a hotplate (80�C under clean conditions) they were

taken up in 100 μL of suprapure H2O2 and dried again. The final

dissolution step was a combined nitric acid plus hydrogen peroxide

attack where the sample was taken up in 100 μL of 16 M

HNO3 + 100 μL of 35% H2O2 to decompose organic compounds.52

The Sr separation procedure was based on the micro-Sr column

chemistry method designed for samples with small amounts of Sr

available.53

The microcolumns (200-μL) were made from shrinkable Teflon.

The separation of Sr was achieved by Sr spec resin (Eichrom

technologies LLC, Lisle, IL, USA) that was thoroughly precleaned with

6 M HCl, 0.5 M HNO3 and H2O.53 All reagents had a blank

contribution less than 1 pg Sr blank. With each batch of samples, one

total procedural blank was determined. The average Sr total

procedural blank was low (6.6 ± 3.3 pg; 2 standard deviations, n = 4).

Samples were loaded together with TaF5 activator54 onto tungsten

filaments that were pre-outgassed at 4.5 A for 240 min. The Sr

isotope ratios were measured with a Phoenix TI mass spectrometer

(Isotopx Ltd, Middlewich, UK) at the Isotope Laboratory of the

Technical University Bergakademie Freiberg. The newly developed

IsotopX ATONA Faraday cup detector amplifiers can precisely and

accurately measure low ion currents.55 The measurement signal of
87Sr was usually >2 mV. The international Sr standard NBS 987 was

measured at the same low intensities and yielded a 87Sr/86Sr ratio of

0.71024 ± 0.00010 (2 standard deviations, n = 10). The measurement

errors of samples were usually within 0.00010, i.e. within two

standard deviations.

2.3 | Geographic assignment based on keratin δ2H
values

We used the package IsoriX56 to generate group maps based on δ2H

values that showed the likely summer origin of Nathusius' pipistrelles

from each sampling location and season (Greifswalder Oie was

sampled in spring and autumn). The approach uses the Global

Network of Isotopes in Precipitation (GNIP) monthly data (May to

July 1960 to 2018) from the International Atomic Energy Agency

(IAEA, Vienna, Austria) aggregated by 4 × 4 cell group to generate a

precipitation δ2H isoscape for Europe with a 0.03� grid resolution. We

only considered possible origin locations inside the breeding area of

the species as defined by the IUCN records and modified by national

bat experts of the UNEP/EUROBATS advisory committee.

We established the transfer function by regressing δ2H values

based on 458 δ2H reference samples against mapped δ2H values of

mean monthly precipitation.57 The transfer function defines how data

from bats with unknown origin are related to the environment where

fur was collected, providing the basis for a δ2H isoscape with

predicted sample values. It also accounts for potential geospatial

assignment errors. We compared the slope and the uncertainty

around values of the previously established transfer function of

common noctule bats58 with our newly developed transfer function

for Nathusius' pipistrelles using a t-test.

Using the δ2H isoscape with predicted sample values, we

assigned every individual a p-value for each of the 0.03 km grid cells

to test the putative summer origin.56 Any location with p ≤ 0.05 was

not considered to be a likely place of origin (i.e. the δ2H value of the

individual fell outside the 95% confidence interval of the possible

origin location). Individuals were classified as long-distance migrants

when the sampling location was not considered a possible origin

location (i.e. p ≤ 0.05). All other animals were considered regional

bats. To simplify the description of the migratory origin of Nathusius'

pipistrelles, we categorized individuals into groups based on their

δ2H values, covering ranges of 20‰, so-called isotopic bins, from

−140‰ to −60‰. For each isotopic bin, we pooled the individual

p-values using Fisher's combined probability test to generate a

single map showing the possible origin locations for all bats of the

same bin.56

2.4 | Geographic assignment based on keratin
87Sr/86Sr values

We developed additional maps to show the likely summer origin of

Nathusius' pipistrelles from each sampling location and season based

on 87Sr/86Sr values. We aggregated 87Sr/86Sr values from soil data

provided in Bataille et al42 by calculating mean 87Sr/86Sr values within

10 × 10 cell groups to return a 0.07� × 0.06� grid resolution. We used

the aggregated 87Sr/86Sr data as a strontium isoscape for Europe.

Aggregation was necessary to limit computational time. We used the
87Sr/86Sr values of individuals of the same isotopic δ2H bin to

generate maps showing possible origin locations inside the species

distribution range. We used a Kolmogorov–Smirnov test to compare

the probability distribution of 87Sr/86Sr in bats and each possible

origin location.

Previous studies tested for a possible fractionation of strontium

isotopes in consumer tissue samples and overall observed no

significant deviation from local bedrock chemistry.37,59–61 It has thus

been generalized that strontium isotope ratios do not fractionate in

relation to endogenous sources such as diet.37 Yet, most previous

studies investigated bone collagen and dentine in mammals, or chitin

in insects.37,48,62,63 In human hair, 87Sr/86Sr values seem to vary

according to the relative contribution of endogenous (diet) and

exogenous (ambient humidity, dust and other contaminants)

sources.46,64 We inferred from these findings that the 87Sr/86Sr

values of wildlife fur might deviate from those of dietary sources if

contaminants add a distinct strontium isotope signal to keratin. Given

the paucity of data for strontium isotopes in wildlife species in general

and bats in particular, we tested for a possible fractionation effect of

strontium isotopes in bat fur. To this end, we calculated a mean
87Sr/86Sr value within a 100 km buffer zone around the 87Sr/86Sr
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reference material capturing site (i.e. Engure Lake, Latvia). We then

calculated the mean difference between 87Sr/86Sr bedrock values and

the 87Sr/86Sr values of the reference material bats. This mean

difference was used as the trophic discrimination. We used this

trophic discrimination factor to create alternative 87Sr/86Sr maps for

the likely origin of Nathusius' pipistrelles captured at the three

German offshore islands.

We also ran two-way analysis of variance models to test the

influence of location and sex on δ2H and 87Sr/86Sr values, followed by

a post hoc Tukey's test. All analyses were conducted in R.65

3 | RESULTS

3.1 | Isoscapes

We established a hydrogen isoscape for the summer locations of

Nathusius' pipistrelles at a 0.03 km grid resolution. Within the

Nathusius' pipistrelle breeding range, the highest δ2H values of the

isoscape were observed in central Italy and between the Black Sea

and the Caspian Sea (Figure 2). We also observed relatively high δ2H

values for France and the UK. Lowest values were observed in

northern Russia. The established 87Sr/86Sr isoscape (0.07 km grid

resolution) showed average 87Sr/86Sr values of 0.7163 for the

Fennoscandia breeding area and 0.7100 for the continental European

breeding area. Peak 87Sr/86Sr values were observed in southeastern

Sweden and lowest 87Sr/86Sr values in western Estonia (Figure 2).

Relatively high 87Sr/86Sr values were also reported for western

France, for parts of Ukraine, Czech Republic, the UK and the

Caucasian mountains (Figure 2).

3.2 | Capture and stable isotope data

In total, we captured 59 Nathusius' pipistrelles at three places in

northern Germany: one island in the North Sea (Heligoland: 9 males/2

F IGURE 2 European isoscapes of stable hydrogen and strontium isotope ratios from precipitation and bioavailable strontium data,
respectively. The highlighted polygon is the current breeding range of Nathusius’ pipistrelles in Europe (IUCN report, adjusted in Eastern Europe
based on pers. comm. Dekker J, Keribirou C, Kravchenko K). We used a non-linear colour pallet for the 87Sr/86Sr isoscape, following42, because
the distribution of 87Sr/86Sr values is heavily skewed. Dots represent Heligoland (blue), Fehmarn (green) and Greifswalder Oie (orange). We also
report density plots for both isotope ratios
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females) and two islands in the Baltic Sea (Greifswalder Oie: spring:

3 males/12 females and 3 unknown sex; autumn: 7 unknown sex;

Fehmarn: 12 males/10 females and 1 unknown sex). The fur keratin

of bats captured on Fehmarn was more than 10‰ enriched in

deuterium in relation to protium than that of the fur of bats captured

at other sites (mean (and standard deviation) values: Fehmarn:

−102.8‰ (16.6); Greifswalder Oie spring: −111.3‰ (8.2);

Greifswalder Oie autumn: −118.9‰ (5.3); Heligoland: −116.3‰

(11.8)). The δ2H values did not differ for Nathusius' pipistrelles

captured during autumn and spring on the island Greifswalder Oie

(Table SM3, supporting information). The 87Sr/86Sr values varied by

0.0001 between the three islands, with fur from bats captured on

Greifswalder Oie being most depleted and that from bats captured on

Fehmarn most enriched in heavy to light strontium isotopes

(Figure 3).

The δ2H values of Nathusius' pipistrelles captured on the three

islands were significantly different between locations (F2,56 = 5.17,

p = 0.0047) but not between sexes (F3,55 = 2.08, p = 0.11). The
87Sr/86Sr values of fur keratin were significantly lower in females than

in males (F3,55 = 5.17, p = 0.0032), but did not differ between

locations (F2,56 = 0.53, p = 0.59). Average and standard deviations of

δ2H and 87Sr/86Sr values are reported for each location in Table SM3

(supporting information).

3.3 | Transfer function

Based on the δ2H reference material, we established a transfer

function for the relationship between δ2H values in fur keratin of

Nathusius' pipistrelles and those of mean annual precipitation water

at the capture sites of bats (Figure 4). The transfer function for

Nathusius' pipistrelles reads: intercept = −83.96 ± 14.48,

slope = 0.74 ± 0.31. The slope of the transfer function for the other

European non-migratory bats66 (intercept = −30.54 ± 5.27;

slope = 0.92 ± 0.09) was significantly steeper than that of the

Nathusius' pipistrelle transfer function (t = 2.07; df = 791; p = 0.038).

For the 87Sr/86Sr bat reference material, we calculated a trophic

discrimination factor of 0.0028 ± 0.0002, based on the difference

between the mean of the bioavailable 87Sr/86Sr values in the local

ecosystem (Table SM3, supporting information) and the mean of the

fur keratin 87Sr/86Sr values.

3.4 | Geographic assignment based on keratin
stable isotope ratios

Nathusius' pipistrelles were assigned to three isotopic bins based on

δ2H values with possible locations from northeastern to southwestern

Europe: range 1 (−140‰ to −121‰; northern range; Eastern

Europe), range 2 (−120‰ to −101‰; central range; Central Europe)

and range 3 (−100‰ to −85.4‰; southern range; Western Europe;

Figures 5A–5C). The δ2H values of fur keratin classified them as long-

distance migrants (n = 58). One individual from Fehmarn was not

assigned to any bin and considered an outlier (δ2H = −66‰), and

therefore excluded from all further analyses. All the Nathusius'

pipistrelles captured on Heligoland were assigned to ranges 1 and

2 (45% and 55%, respectively; Figure 5). The majority of Nathusius'

pipistrelles captured in spring on Greifswalder Oie probably originated

from range 2 (72%). Bats captured on the island of Fehmarn and in

autumn on Greifswalder Oie were assigned to all three ranges at

varying proportions (Fehmarn: 43%, 30%, 22%; Greifswalder Oie:

11%, 72%, 17%, respectively; Figures 5A–5C).

F IGURE 3 δ2H (‰) and 87Sr/86Sr raw
values of 59 Nathusius’ pipistrelles
captured during the migratory period on
offshore islands in Germany. Ranges 1 to
3 represent the ranges in assignment
maps. Note the outlier shown (*) was not
used for further analysis
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The 87Sr/86Sr values in fur keratin of bats (87Sr/86Sr keratin;

Table SM2, supporting information) indicated that captured

individuals were unlikely to have moulted in summer in Fennoscandia.

The most likely places of summer origin for bats included multiple

spots in continental Europe (Figures 5D–5F) with a concentration of

possible origins in Poland, Russia and Ukraine. This pattern changed

when assuming trophic discrimination of strontium isotopes as

observed in the local population of Engure Lake, Latvia (87Sr/86Sr

keratincorr; Table SM3, supporting information; Figures 5G–5I). After

correcting for trophic discrimination, the isoscape models suggested

F IGURE 4 Relationship between the stable
hydrogen isotopic ratios (δ2H values) of fur keratin
in 458 Nathusius’ pipistrelles captured during the
non-migration period in Europe and the isotopic
ratios of monthly precipitation (δ2H values) in
their environment (red triangles). In addition, we
plotted the same relationship for 335 bats of five
non-migratory species (n = 224) and common
noctules (n = 111) captured during their non-

migration period for comparison (67; black dots).
Solid lines represent the transfer functions for
each dataset and dashed lines represent the
confidence intervals

F IGURE 5 Maps depicting the likely summer origin of 58 Nathusius’ pipistrelles captured on three offshore islands in Germany (Heligoland,
Fehmarn, Greifswalder Oie). Geographic assignments were based on keratin δ2H values (A, B, C), raw 87Sr/86Sr values (D, E, F) and 87Sr/86Sr
values corrected for isotopic discrimination based on values from bats captured at Engure Lake, Latvia (white triangle; G, H, I). Bats were assigned
to three isotopic bins derived from 20 ‰ ranges of precipitation δ2H values, referring to a northern origin (A, D, G), central origin (B, E, H) and
southern origin (C, F, I). P-values above 0.05 (indicated by a non-grey colour) are possible places of origin and p-values below 0.05 (indicated by
grey) unlikely places of origin. The pie charts represent the proportion of the bats assigned to each of the possible origins captured in Heligoland
(blue), Fehmarn (green) and Greifswalder Oie spring (orange) and autumn (yellow), respectively. The highlighted polygon is the current breeding
range of Nathusius’ pipistrelles in Europe modified from the IUCN distribution map and according to bat experts from the UNEP/EUROBATS
advisory committee (see Figure 2 for details)
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likely places of summer origin in the Baltic countries for bats from the

northern and central range (isotopic bins 1 and 2; Figures 5A, 5G, 5B

and 5H). For bats of southern origin, probability maps of δ2H and
87Sr/86Sr did not reach a consensus for the likely place of summer

origin (Figures 5C and 5I). Similar to uncorrected 87Sr/86Sr values, the

corrected values of Nathusius' pipistrelles were always lower than

values reported for wildlife in Fennoscandia (0.737 in tooth enamel

and 0.728 in bone material of wildlife species from Sweden38).

4 | DISCUSSION

Migration is an essential part of the annual life cycle of billions of

animals globally. However, anthropogenic changes to the

environment threaten many of these animals during their seasonal

journeys. In Europe, migratory bats are frequently killed by wind

turbines.6,67 To prevent bat fatalities, we need to gain a more detailed

understanding about the summer and wintering ranges of these bats,

in combination with information on the corridors used for their

seasonal journeys. Nathusius' pipistrelles hold the world record for

long-distance migration with animals moving seasonally between the

Baltic countries and southern France or northern Spain.20 Previous

studies suggested coastal and offshore migration for this bat

species,8,13,14,22,68,69 yet we lack data on the breeding origins of

individuals observed at these coastal migratory corridors. Here, we

established a dual-isotope approach to aid the probability maps built

on hydrogen isoscapes only. This study is the first to use strontium

isotope ratios in fur keratin to establish connectivity between the

places where migratory Nathusius' pipistrelles were captured en route

(three offshore islands in Germany) and the summer moulting places.

Our data suggest possible movements of Nathusius' pipistrelles in

eastern (origin in France and the British Isles) and western directions

(origin in Russia and the Baltic countries). However, they do not

support a large influx of Fennoscandian Nathusius' pipistrelles via

Denmark to Germany which would have been expected for the

western islands (Heligoland and Fehmarn). Consequently, this

evidence refutes our hypothesis that Nathusius' pipistrelles captured

on German offshore islands originate from either Fennoscandia or

Baltorussia, depending on a western or eastern location of the islands,

respectively.

Based on isotopic evidence, our study indicates that most

Nathusius' pipistrelles move from the northeastern summer range to

the three German offshore islands in the Baltic Sea (Greifswalder Oie

and Fehmarn) and North Sea (Heligoland). Most captured bats were

categorized as long-distance migrants from the Baltic countries,

Poland, or Ukraine and Russia, with some individuals potentially

originating from western Europe (France). Bats are known to occur in

Fennoscandia13,14,22; however, we found no evidence of

Fennoscandian origin in our data. This may be because bats of

Fennoscandian origin make up only a small proportion of the

migratory population and were missed by our limited sampling.

Alternatively, Fennoscandian bats may use different pathways that do

not include our study sites. Finally, some Nathusius' pipistrelles

observed during late summer in Fennoscandia could have originated

from the Baltorussian region, which could occur if bats show

northward movements before heading in a southwestern direction to

the wintering ranges (Figure 1). In this case, bats observed in

Fennoscandia would show an isotopic profile similar to that of bats

originating in the Baltic countries.

Although our findings support a Baltorussian origin of most

Nathusius' pipistrelles captured on German offshore islands, we

cannot rule out the possibility that those bats are using two migratory

corridors to reach the offshore islands: one from Baltorussia along the

Polish coastline to western Europe and the other from Baltorussia, to

Finland, Sweden and Denmark, then to Germany. The latter migratory

route would involve offshore migration.

The lack of individuals with a Fennoscandian origin at our capture

site is surprising since the island of Fehmarn is located inside the

presumed migratory corridor of Fennoscandian bats.8 Alternatively,

bats of Fennoscandian origin may choose other migratory corridors

that we missed with our limited field campaign. Isotopic evidence of

bats captured on the island of Fehmarn suggested a broad area of

origin across continental Europe. If we assume that the raw 87Sr/86Sr

values in fur keratin are representative of local bedrock type, our

probability maps indicated that some individuals at the Fehmarn

sample site may have originated from western France (Normandy and

Brittany) where a small breeding population exists.70,71 However, we

observed a difference between the 87Sr/86Sr values of fur keratin and

those of the local ecosystem in bats captured during the moulting

period in Latvia. This is surprising because stable isotopes of relatively

heavy elements, such as strontium, are not expected to fractionate

along the food chain.37 Possibly, the assumption of strontium

isotopes not undergoing trophic discrimination may be an artefact of

previous studies focusing almost exclusively on teeth enamel or bone

material of mammals72 or chitin of insects37 as a matrix for analysis.

The 87Sr/86Sr values of these matrices may be dominated by dietary

sources which could explain the close match with the environmental

baseline. The 87Sr/86Sr values of keratin are known to carry both an

internal dietary and an environmental signal.73 These environmental

signals stem from aerosols, particulates and environmental water.74

They alter the 87Sr/86Sr values of hair and fur keratin,64 yet their

impact on geographic assignments may remain small,64 particularly

when the 87Sr/86Sr values of internal sources (diet) resemble those of

external sources (e.g. meteoric water). We consider it unlikely that

external sources contaminated the geospatial signal of 87Sr/86Sr

values because bats usually do not expose their fur to precipitation, as

this would impair their flight ability.75 We suggest establishing
87Sr/86Sr data for other mammal species and other regions to verify if

the trophic discrimination observed for fur keratin in this particular

bat species is consistent for other wildlife species. If the corrected
87Sr/86Sr values in fur keratin of Nathusius' pipistrelles more

accurately match local bedrock type, our data suggest a Baltic origin

of our northern and central groups (isotopic bins 1 and 2). This is

consistent with migration pathways established in banding studies

(i.e. a northeastern and southwestern pathway). We did not find a

consensus for derived hydrogen and strontium enriched probability
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maps, since presumed places of origin in western Europe (France and

British Isles) were inconsistent between the strontium data. These

contradictory results require additional studies to ensure that

accurate conclusions are reached with these data.

Our isotopic approach was impeded by the large variation in δ2H

values observed in non-migratory Nathusius' pipistrelles across

Europe, which resulted in broad isotopic bins (i.e. most of central

Europe was covered in range 2). Indeed, the transfer function

established for Nathusius' pipistrelles deviated largely from the

previously established transfer function of a sympatric aerial-hawking

species, the common noctule bat.66 This is probably caused by a

larger contribution of food items of aquatic origin, such as chironomid

flies, in the diet of Nathusius' pipistrelles than, for example, in the diet

of common noctule bats and other bats.12,76,77 A previous isotopic

study with a focus on non-migratory European bat species showed

that δ2H values varied largely with the relative contribution of aquatic

to terrestrial food items to the diet of bats.78 By these Nathusius'

pipistrelles consuming a mixture of insects of aquatic and terrestrial

origin, the δ2H values in their fur might become highly variable within

local populations, which may explain why the transfer function of this

species shows an offset and a larger variation of δ2H values for a

given location than the transfer function previously established for

non-migratory bats.

It is noteworthy that we documented a likely origin of Nathusius'

pipistrelles in various areas of Poland, Russia and Ukraine. This would

imply that populations from these countries head northward before

changing to the southwestern direction of their wintering sites.

Although our isotopic evidence for this scenario is weak, acoustic

recordings also suggest a northward movement of migratory

Nathusius' pipistrelles from Baltic countries to Finland.13 Migratory

movements of Nathusius' pipistrelles may be more complex than

previously assumed, especially when animals perform indirect

migration. Isotopic assignments of animals may be insufficient to offer

unambiguous insights into the exact migratory corridors used by bats

when moving along or across the Baltic Sea. We suggest engaging in

large-scale radio-tracking campaigns using miniaturized radio

transmitters and automated receiver stations to unravel the exact

locations of migratory corridors. At this point, our data do not argue

against an influx of Nathusius' pipistrelles migrating from Sweden to

Germany; however, these individuals may originate from Baltorussian

populations.
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Abstract

Large numbers of bats are killed by wind turbines globally, yet the specific

demographic consequences of wind turbine mortality are still unclear. In this

study, we compared characteristics of Nathusius’ pipistrelles (Pipistrellus

nathusii) killed at wind turbines (N = 119) to those observed within the live

population (N = 524) during the summer migration period in Germany. We

used generalized linear mixed-effects modeling to identify demographic groups

most vulnerable to wind turbine mortality, including sex (female or male), age

(adult or juvenile), and geographic origin (regional or long-distance migrant;

depicted by fur stable hydrogen isotope ratios). Juveniles contributed with a

higher proportion of carcasses at wind turbines than expected given their fre-

quency in the live population suggesting that juvenile bats may be particularly

vulnerable to wind turbine mortality. This effect varied with wind turbine den-

sity. Specifically, at low wind turbine densities, representing mostly inland

areas with water bodies and forests where Nathusius’ pipistrelles breed, juve-
niles were found more often dead beneath turbines than expected based on

their abundance in the live population. At high wind turbine densities, rep-

resenting mostly coastal areas where Nathusius’ pipistrelles migrate, adults

and juveniles were equally vulnerable. We found no evidence of increased vul-

nerability to wind turbines in either sex, yet we observed a higher proportion

of females than males among both carcasses and the live population, which

may reflect a female bias in the live population most likely caused by females

migrating from their northeastern breeding areas migrating into Germany. A

high mortality of females is conservation concern for this migratory bat species

because it affects the annual reproduction rate of populations. A distant origin

did not influence the likelihood of getting killed at wind turbines. A dispropor-

tionately high vulnerability of juveniles to wind turbine mortality may reduce

juvenile recruitment, which may limit the resilience of Nathusius’ pipistrelles
to environmental stressors such as climate change or habitat loss. Schemes to

mitigate wind turbine mortality, such as elevated cut-in speeds, should be
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implemented throughout Europe to prevent population declines of Nathusius’
pipistrelles and other migratory bats.

KEYWORD S
bats, females, Germany, hydrogen, juveniles, migration, migratory corridor, Pipistrellus
nathusii, stable isotopes, wind farms

INTRODUCTION

In an effort to reduce the negative effects of CO2 emissions
on the global climate, many countries have been promot-
ing energy production from renewable sources, such as
wind (IRENA, 2020). Although it is considered environ-
mentally friendly, wind energy production may come
at significant costs to biodiversity (Saidur et al., 2011;
Schuster et al., 2015; Thaker et al., 2018). First, animal
populations may suffer from habitat loss during wind tur-
bine constructions in sensitive areas, such as forests or wet-
lands. Second, some taxa may be killed by operating
turbines. Among birds, raptors, gulls, and some songbirds
are regularly observed colliding with the rotating blades
of wind turbines during daytime (e.g., Barrios &
Rodríguez, 2004; Nazir et al., 2020; Smallwood & Bell, 2020).
At night, bats are frequently killed by wind turbines either
by blunt-force trauma when colliding with blades, or by
barotrauma in the tailwind vortices of the spinning blades
(Baerwald et al., 2008; Voigt et al., 2015b).

The exact number of bat fatalities at wind turbines is
currently unknown. Estimates obtained from systematic
environmental impact assessments that control for scaven-
ger removal and searcher inefficiency suggest that a single
turbine may lead to 2–30 bat fatalities per year if no mitiga-
tion scheme is implemented (Brinkmann et al., 2011;
Korner-Nievergelt et al., 2013; M�antoiu et al., 2020). This
may add up to hundreds of thousands of bats killed per
year in countries with high wind energy production, such
as Germany (Fritze et al., 2019; Voigt et al., 2015b) and the
United States (Cryan & Barclay, 2009; Hayes, 2013). Migra-
tory bats are most often found dead below wind turbines in
the temperate zone (Arnett et al., 2016), suggesting that
wind energy infrastructures may impede the connectivity
between their summer and wintering habitats (Cryan &
Barclay, 2009; Voigt et al., 2015b). Populations may be
unable to compensate for the additional losses of individ-
uals at wind turbines since bats have a low reproductive
rate, with only one or two offspring per year (Garbino
et al., 2021). Recent population trend analyses suggested
that some species with high collision risk may be in
decline (Frick et al., 2017; Zahn et al., 2014), yet popula-
tion effects are difficult to monitor in bats because wind
turbines can kill migratory bats that originate from both

local and distant populations of unknown location
(Lehnert et al., 2014; Voigt et al., 2012).

European Nathusius’ pipistrelles (Pipistrellus nathusii)
hold the record for long-distance bat migration, with one
individual banded in Latvia and recaptured in Northern
Spain, a 2,200-km air-line distance (Alcalde et al., 2021).
Populations of Nathusius’ pipistrelles undergo a
seasonal migration from northeastern Europe to west-
ern and southern Europe (Hutterer et al., 2005;
Meschede et al., 2017; P�etersons, 2004). During migra-
tion, bats can use flight corridors along coastlines that
are also heavily used for wind energy production
(Gaultier et al., 2020; Kruszynski et al., 2020; Kurvits
et al., 2011). When migrating inland, Nathusius’ pipistrelles
have been observed to use larger water bodies, such as lakes
or rivers, for migration and stopovers, preferably in forested
areas (Furmankiewicz & Kucharska, 2009). Apart from
coastal areas, migration of Nathusius’ pipistrelles in
Germany is not restricted to distinct migratory corridors but
instead includes broad, large-scale migratory paths
(Meschede et al., 2017). The species ranks second con-
cerning fatality rates at wind turbines in Germany (Rydell
et al., 2010). Multiyear recaptures demonstrate site fidelity
at summer grounds, maternity roosts, and mating sites
(Hutterer et al., 2005), suggesting that a significant propor-
tion of the European population of Nathusius’ pipistrelles
crosses Germany twice each year. Consequently, Germany
has an essential responsibility for protecting this and other
migratory species due to the country’s central location in
the flyways of European migratory bats (Voigt et al., 2015b),
and its obligations under national and international laws
(EU Directive 92/32/CEE – Annexes II and IV; §44 and §7
of the German “Bundesnaturschutzgesetz”; Conservation of
Migratory Species of Wild Animals; UNEP/EUROBATS
agreement signed Bonn, 1979, and London, 1991).

While wind turbine bat mortality has been clearly
documented, the long-term consequences of such mortality
are less clear. Previous studies have attempted to identify
demographic groups most at risk by sampling carcasses
found beneath wind turbines (Baerwald and Barclay 2011,
Lehnert et al., 2014, Chipps et al. 2020, Davy et al. 2021).
Greater numbers of carcasses from one sex or age group
may be evidence of differences in vulnerability to wind tur-
bine mortality. For example, 72% of common noctule bats
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(Nyctalus noctula) found dead below wind turbines in
Germany were of regional origin, whereas 28% of bats were
defined as long-distance migrants (Lehnert et al., 2014).
However, without corresponding data from the live popula-
tion at that point in time, it is unclear whether such results
are due to unequal ratios of sex, age, and origin in the pop-
ulation or are truly driven by a higher vulnerability in cer-
tain demographic groups. To better assess the demographic
consequences of wind turbine mortality, we expanded
these previous approaches by comparing the sex (males/
females), age (juveniles/adults), and origin (regional/dis-
tant) of Nathusius’ pipistrelles found dead beneath wind
turbines to bats within the live population.

Identifying demographic groups with higher wind tur-
bine vulnerability will help us better understand the impact
of wind turbine fatalities on Nathusius’ pipistrelles
populations. A higher vulnerability of females at wind tur-
bines may lower reproduction in maternity colonies and,
thus, the birth rate in source populations. Similarly, the
higher mortality risk of juveniles compared to adults may
impair juvenile recruitment into the adult population, with
negative consequences for population growth and sizes.
Additionally, juvenile bats are key for shifting the species’
distribution range in response to climate change
(Kravchenko et al., 2020). Thus, increased mortality of
juvenile bats at wind turbines might constrain a species’
ability to respond adequately to global warming. Under-
standing these potential negative consequences of wind
turbines on bats is essential as the prevalence of wind
energy will continue to increase.

We predicted that wind turbines would be more
likely to kill individuals of distant origin, so-called long-
distance migrants, than conspecifics of regional origin.
During the migration period, Nathusius’ pipistrelles are
more likely to use corridors (e.g., on the sea coast) with
a high density of wind turbines, increasing their vulner-
ability (Gaultier et al., 2020). Additionally, we expected
females to have a higher vulnerability at wind turbines than
males, based on the observed attraction of female bats
towards wind turbines, that is, search for social partners or
roosts for mating at wind turbines (Roeleke et al., 2016).
Further, we expected juveniles to have a higher vulnerabil-
ity at wind turbines than adult conspecifics because they
are less experienced around wind turbines and they seem to
exhibit a high exploratory behavior (Horn et al., 2008).

METHODS

Sample collection and study area

We used carcasses of Nathusius’ pipistrelles from the
central repository of Brandenburg’s Federal Agency for

Environment (Landesumweltamt, Potsdam, Germany),
administered at the Vogelschutzwarte Buckow, and the
Natural Science Collections of the University Halle-Wit-
tenberg. Carcasses originated from surveys conducted at
wind farms between August 2003 and September 2013.
Carcasses were kept frozen from the day of collection
until fur sampling. In total, we considered 119 Nathusius’
pipistrelle carcasses as sufficiently fresh (without signs of
decomposition from the field) to be included in our study.
After thawing, we collected a small tuft of fur from the
interscapular region of each carcass from which we esti-
mated geographic origin using stable isotopes. We con-
firmed the species, age (juvenile or adult), and sex by
visual inspection.

We obtained fur samples from 524 live Nathusius’
pipistrelles that were encountered during routine popula-
tion surveys conducted as part of official population mon-
itoring schemes between August 2006 and September
2018. We only used samples included in the late sum-
mer/early autumn migratory season, ranging from about
July 15 to September 31. In Nathusius’ pipistrelles,
molting occurs in the summer habitat prior to the migra-
tory period (Voigt et al., 2016). Samples were obtained
from bats encountered during daytime surveys of artifi-
cial roosts or mist netting. Surveying experts identified
the species and noted the sex and age cohort. In the
remainder of this manuscript, we refer to the survey type
where we acquired the data from live animals as bat box
data (BB) and to those from carcasses as wind turbine
data (WT).

Sex was recorded in 408 of our samples (119 BB,
299 WT). Age was estimated by visually inspecting the
bone density close to the epiphyseal junction of the finger
bones. Reliable age estimates were obtained for 186 speci-
mens (118 BB, 68 WT). The majority of samples from
both survey types were obtained from eastern parts of
Germany and from coastal areas of the North Sea where
regional wind energy density is high (Figure 1). Dry fur
samples were shipped in plastic vials to the stable isotope
laboratory of the Leibniz Institute for Zoo and Wildlife
Research (IZW) in Berlin.

Wind turbine density varies throughout Germany
(Lütkehus et al., 2013), which may affect bat mortality. We
used data from the renewable power plants in Open Power
System Data (OPSD) for Germany to calculate wind tur-
bine density around each sampling site (Figure 1; https://
open-power-system-data.org/). We counted the number of
wind turbines within a 10-km buffer around each sampling
site, corresponding to the maximum travel distance of
Nathusius’ pipistrelles per night (Schorcht et al., 2002). We
used data from all turbines commissioned between 1983
and 2018 that were still operating when a carcass was
found. To illustrate wind energy density in Figure 1, we
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used the two-dimensional kernel density estimation pro-
vided by the “ggplot2” package in R (Wickham, 2016).

Stable isotope analyses

In our study, we used an isotopic approach to identify the
geographical origin of bats. This approach is based on
two observations. First, stable hydrogen isotope ratios of
precipitation water vary latitudinally across continents
following rainfall patterns and ambient temperature
(Bowen et al., 2005; Hobson, 1999). Second, body tissues or
products, such as hair keratin, are composed of elements
that animals consume as water and food. Specifically, stable
isotope ratios of fur keratin correlate with those of surface
water where molting occurs, usually the summer habitat of
migratory bats (Cryan et al., 2004; Lehnert et al., 2018;
Popa-Lisseanu et al., 2012; Voigt et al., 2016). Stable hydro-
gen isotope ratios in fur keratin have been used before to
differentiate the origins of bat carcasses observed at wind
turbines (Baerwald et al., 2014; Lehnert et al., 2014, 2018;
Pylant et al., 2016).

We cleaned the fur from surface oils and contaminants
using a 2:1 chloroform-methanol solution and then dried
them in an oven for 24 h at 50�C. From each fur sample, we
placed a subsample of 0.274 mg (� 0.1 mg) in a silver foil
capsule (IVA Analysetechnik e.K. Meerbusch, Germany).
The methodological approach in analyzing stable hydrogen
isotope ratios in the IZW laboratory has been described in
full detail in Kruszynski et al. (2020). Briefly, fur samples
were placed in the autosampler (Zero Blank autosampler,
Costech Analytical Technologies, Milan, Italy) of the ele-
mental analyzer (HT Elementaranalysator HEKAtech
GmbH, Wegberg, Germany). Before combustion, samples
were flushed in the autosampler for at least 1 h with chemi-
cally pure helium (Linde, Leuna, Germany). We used a
Delta V Advantage isotope ratio mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany) that was connected via
an interface (Finnigan Conflo III, Thermo Fisher Scientific,
Bremen, Germany) with the elemental analyzer. For every
10 samples, we included one USGS42 keratin standard
(Tibetan Human Hair; U.S. Geological Survey) and three
lab keratin standards (powdered sheep hair from Sweden
[Kstd.1] and Spain [Kstd.2], and powdered goat hair from

F I GURE 1 Sampling locations in Germany from which material was obtained in relation to wind turbine densities (in shades of yellow to

black, indicating absence/low density and high density of wind turbines scaled from 0 to 1, respectively). Turbine density was calculated by

counting the number of turbines within a 10-km buffer around the location where carcasses were found. The survey type from which data for

Nathusius’ pipistrelles originated is indicated by triangles for animals found dead below wind turbines (WT) and by circles for live animals from

artificial daytime roosts, so-called bat boxes (BB). The sizes of triangles and circles indicate the number of samples collected per location
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Tanzania [Kstd.3]). Stable hydrogen isotope ratios of sam-
ples were normalized to the stable isotope ratio of the non-
exchangeable portion of hydrogen in standard material
following Soto et al. (2017). All values are given in the
δ notation as parts per mill (‰) deviation from the
international standard V-SMOW. The δ2H values of keratin
standards equaled �73.1% � 0.5% for USGS42, �167.3% for
Kstd.1, �110.02% for Kstd.2, and �65.5% for Kstd.3. Analyt-
ical precision based on the repeated analyses of stable
hydrogen ratios in laboratory keratin standards was always
better than 1.3% (one standard deviation). Twenty-nine
samples were used in another publication (Kruszynski
et al., 2020) and they are referenced in Kruszynski
et al. (2021).

Estimating migratory status based on
keratin δ2H values

We used the package IsoriX (Courtiol et al., 2019) to clas-
sify individuals as either long-distance or regional
migrants. The approach uses the Global Network of Iso-
topes in Precipitation (GNIP) annual data (from 1960 to
2018) from the International Atomic Energy Agency
(IAEA, Vienna, Austria). We used a transfer function for
regressing δ2H values based on 458 data points from
Nathusius’ pipistrelles during the non-migration period
against mapped δ2H values of mean annual precipitation

(Kruszynski et al., 2020). With this function, we
established a δ2H isoscape map with predicted sample
values. This isoscape map was then used to assign every
individual a P value within each grid cell to test the puta-
tive origin (Courtiol et al., 2019). Individuals were classi-
fied as being long-distance migrants when the sampling
location was not considered a possible origin location
(i.e., P ≤ 0.05). All other animals were considered as
being of regional origin (Kruszynski et al., 2020). This is a
conservative approach in the case of Nathusius’
pipistrelles given the relative imprecision of the species’
transfer function (Kruszynski et al., 2020), which limits
the predictive power of the regression function when used
in isoscape origin models. The probability maps of long-
distance migrants were plotted separately for bats of the
WT and BB population and males and females (Figure 2).
The probability maps were calculated by overlaying P
values > 0.5 of individuals in each aforementioned group.

Statistical models

Demographic differences in wind turbine
mortality

We fitted generalized linear mixed effects logistic regres-
sion models for each of the three response variables:
(1) probability to sample a female, (2) a juvenile, and

F I GURE 2 Probability maps for the likely origin of long-distance migrating Nathusius’ pipistrelles found (a) dead below wind turbines

(n = 8) or (b) live in bat boxes (n = 49), and (c) females (n = 23) and (d) males (n = 33). Probabilities were calculated by overlaying P > 0.5 of

migratory bats in each category. The highlighted polygon represents the current breeding range of Nathusius’ pipistrelles (Kruszynski et al., 2020)
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(3) a long-distance migrant. For each response variable,
we used a subset of our data that had complete informa-
tion for the target response, that is, we excluded all
data that did not have the information on the variable
being tested. We use “y” in the model descriptions
below to cover these three response variables. For each
response variable, we compared three model structures
using Akaike information criterion corrected for sam-
ple size (AICc) model selection. These models are as
follows:

1. Model 1: No effect of survey type (WT/BB) on the
response variable. Neither demographic group is par-
ticularly vulnerable to wind turbine mortality

Mod1¼ y� 1þ 1jlocationð Þ:

2. Model 2: Effect of survey type (WT/BB) on the
response variable. One demographic group is more
vulnerable to wind turbine mortality

Mod2¼ y� survey typeþ 1jlocationð Þ:

3. Model 3: Effect of survey type (WT/BB) on the response
variable. One demographic group is more vulnerable to
mortality. The effect of wind turbine survey type differs
with wind turbine density. The variance in wind turbine
density around bat boxes was set to zero, therefore, the
interaction between BB and wind turbine density was
excluded during the process of model fitting

Mod3¼ y� survey typeþ survey type :

number of wind turbinesþ 1jlocationð Þ:

In order to account for the uncertainty in the models, we
presented coefficients from each model individually and
model-averaged coefficients using the MuMIn package in
R (Barton, 2020).

Isotopic differences between demographic
groups

We fitted a generalized linear mixed model to test the
influence of sex (male/female), age (juvenile/adult), and
the interaction between survey type (WT or BB) and ori-
gin (regional/distant) on δ2H values, with sampling site
(unique locations where bats were collected) as a random
effect to account for potential spatial autocorrelation. We
did not consider samples with unknown sex or age in this
analysis.

All analyses were conducted in R (R Core
Team, 2020).

RESULTS

Models

We obtained data from 119 carcasses (WT; 59 females,
50 males, 10 individuals of unknown sex) of Nathusius’
pipistrelles found dead below wind turbines and from
524 live conspecifics of local populations (BB; 164, 135,
225) in Germany (Figure 1). For analysis of each response
variable, we used a subset of data that had comprehen-
sive information for the target response. Sample sizes for
each model are reported in Table 1.

Model 3 (effect of survey type and interaction with
wind turbine density) best explained variation in age pat-
terns (Table 1). At low wind turbine densities, model
3 showed juvenile bats were found dead beneath wind
turbines more often (19 out of 68; 27.9%) than expected
based on their abundance in the live population (14 out
of 118; 11.8%). The probability to encounter juveniles
dead below wind turbines decreased with increasing
wind turbine density (Table 2). Due to model selection
uncertainty, we cannot definitively exclude alternative
models 1 and 2 (ΔAICc <2), therefore we also presented
model-averaged coefficients and standard errors (Table 2).
Model average coefficients showed qualitatively similar
results to our top model, although model-averaged confi-
dence intervals overlapped with 0.

For sex and migratory status, Model 1 (intercept-only
model) had the lowest AICc (Table 1), suggesting no
effect of survey type or wind turbine density on the sex or
migratory status of sampled individuals at wind turbines.
Females were observed more often than males both
beneath wind turbines and in the live population (54.6%;
Table 2), while regional migrants were more common
than long-distance migrants both in the carcass and live
population (91.1%; Table 2).

Stable isotope data and general statistics

δ2H values of male bats were higher (�112.2% � 19.1%)
than those of females (�115.0% � 17.9%; βSEX = 5.27,
df = 165.6, t = 2.34, P = 0.02), yet the difference between
sexes was small. We did not find any difference in
δ2H values between adults (�113.9% � 18.1%) and
juveniles (�118.6% � 26.8%; βAGE = �0.83, df = 178.5,
t = �0.25, P = 0.7).

Eight out of 119 Nathusius’ pipistrelle bats (6.7%)
killed by wind turbines were classified as long-distance
migrants, compared to 49 out of 524 (9.3%) of bats
from the live population. Migrants of distant origin
from the live population had higher δ2H values
(�114.4% � 27.1%) than those found dead below wind
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turbines (�169.7% � 48%; βSAMPLE_LOCATION = �39.13,
df = 91.53, t = �4.08, P < 0.001). δ2H values of regional
Nathusius’ pipistrelles were higher than conspecifics of
distant origin for both BB and WT populations (regional
BB, �111.6% � 12.6%; regional WT, �117.7% � 14.9%;
βSTATUS = 24.42, df = 84.48, t = 3.34, P = 0.001),
although this effect was greater in bats from the WT
than from those of the BB population (βSTATUS:

SAMPLE_LOCATION = 33.9, df = 129.25, t = 3.4, P < 0.001,
Appendix S1: Figure S1).

Long-distance migrants from the WT population were
assigned to more northeastern areas in Europe, such as
Russia and Finland (Figure 2a), than long-distance
migrants from the live population (Figure 2b). Within
long-distance migrants, females had the most likely ori-
gin in eastern and central Europe (Figure 2c) whereas
males had most likely originated from western areas in
Europe (Figure 2d).

DISCUSSION

Wind energy production has been endorsed worldwide
as a CO2-free renewable energy source; however, wind
energy production comes at high ecological costs
since turbines kill large numbers of bats and birds
when no mitigation measures are practiced (Cryan &
Barclay, 2009; Hayes, 2013; Nazir et al., 2020;
Smallwood & Bell, 2020; Voigt et al., 2015b). To improve
our understanding of how wind turbines might cause

population declines (Frick et al., 2020; Zahn et al., 2014),
we studied the European long-distance migratory bat spe-
cies Nathusius’ pipistrelles (Pipistrellus nathusii). We
assessed whether individual characteristics (sex, age,
migratory origin) affected vulnerability to wind turbine
mortality, that is, whether certain individuals are killed
more than would be predicted based on their relative pro-
portion in the live population. To this end, we compared
demographic and isotopic data of live Nathusius’
pipistrelles encountered during mist-netting and surveys
of artificial daytime roosts (so-called bat boxes, also
referred to as bats from the live population) with data
from conspecifics found dead beneath wind turbines,
during the late summer/early autumn migration season.
Model selection suggested juveniles were more likely to
die at wind turbines than expected given their abun-
dance in the live population, yet this pattern varied with
wind turbine density. An elevated fatality rate of juve-
nile bats was most apparent where wind turbine density
was low. At high wind turbine densities, juvenile
Nathusius’ pipistrelles were as likely to collide with
wind turbines as adult bats. The underlying reason for
this pattern remains unclear. There was no evidence of
increased vulnerability of either sex. However, we
observed a higher proportion of females than males in
the population, which could be derived from females
migrating south from maternity colonies in northeast-
ern Europe. Finally, geographic origin (regional/distant)
did not explain the likelihood of getting killed at wind
turbines.

TAB L E 1 Model comparison to test the effects of the independent variables (age, sex, and migratory status) for the mortality risk

Nathusius’ pipistrelles at wind turbines

Variable, N (BB/WT), model Parametera AICc ΔAICc Weight

Age, 118/68

3 survey type + survey type:nrwt + (1jlocation) 159.8 0 0.507

1 1 + (1jlocation) 161 1.21 0.277

2 survey type + (1jlocation) 161.5 1.71 0.216

Sex, 299/109

1 1 + (1jlocation) 574.2 0 0.604

2 survey type + (1jlocation) 575.8 1.6 0.271

3 survey type + survey type:nrwt + (1jlocation) 577.4 3.16 0.124

Status, 524/119

1 1 + (1jlocation) 158.9 0 0.551

2 survey type + (1jlocation) 160.1 1.17 0.306

3 survey type + survey type:nrwt + (1jlocation) 161.6 2.71 0.142

Notes: In addition to the AICc values (Akaike information criterion corrected for sample size), sample sizes (N), Akaike weights, and ΔAICc (the difference in AICc

between this model and the best model) are also presented. Model 3 presents an interaction between survey type and wind turbine density, however, the variance

around bat boxes was set to zero, therefore, this effect at the bat boxes was excluded during model fitting.
aVariables are survey type, wind turbine (WT) or bat boxes (BB); location, sampling sites; nrwt, number of wind turbines inside a 10-km buffer around the

sampling site.
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TAB L E 2 Parameter estimates, standard errors (SE), and 95% confidence intervals (CI) of the models for Nathusius’ pipistrelles

Variable, model, and parametera Estimate Conditional SE t Lower 95% CI Upper 95% CI

Age

1

Intercept �1.57 0.45 �3.44 �2.8 �0.70

2

Intercept �2.23 0.72 �3.06 �4.13 �0.93

Survey type (wt) 1.06 0.84 1.26 �0.48 3.12

3

Intercept �2.23 0.73 �3.05 �4.38 �0.95

Survey type (wt) 1.74 0.93 1.86 0.07 3.89

Survey type = “wt”:nrwt �0.04 0.02 �1.63 �1.14 �0.006

Average

Intercept 2.05 �3.48 �0.61

Survey type (wt) 1.11 �0.35 3.44

Survey type = “wt”:nrwt �0.02 �0.09 0.009

Sex

1

Intercept 0.2 0.15 1.32 �0.11 0.48

2

Intercept 0.13 0.17 0.76 �0.2 0.48

Survey type (wt) 0.20 0.32 0.65 �0.42 0.8

3

Intercept 0.13 0.17 0.77 �0.22 0.48

Survey type (wt) 0.05 0.39 0.12 �0.73 0.84

Survey type = “wt”:nrwt 0.006 0.009 0.68 �0.01 0.02

Average

Intercept 0.17 �0.14 0.49

Survey type (wt) 0.06 �0.53 0.85

Survey type = “wt”:nrwt 0.0008 �0.01 0.02

Status

1

Intercept �7.38 2.02 �3.65 �26.0 �4.87

2

Intercept �8.06 2.4 �3.34 �29.42 �5.11

Survey type (wt) 1.23 1.37 0.89 �2.54 6.26

3

Intercept �8.41 2.74 �3.06 �29.94 �5.23

Survey type (wt) 1.9 1.75 1.08 �2.71 13.73

Survey type = “wt”:nrwt �0.03 0.05 �0.63 �37.43 0.09

Average

Intercept �7.73 �12.24 �3.22

Survey type (wt) 0.65 �1.56 4.46

Survey type = “wt”:nrwt �0.004 �0.13 0.06

Note: The interaction between survey type and wind turbine density is not considering the variance around bat boxes because it was set to 0,
therefore, this effect at the bat boxes was excluded during model fitting.
aVariable abbreviations are survey type (wt), survey type on WT; nrwt, number of wind turbines inside a 10-km buffer around the sampling site.
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Most of the sampled carcasses used for this study
were collected in high wind turbine density areas along
the German North Sea coastline (Figure 1), that is,
within the coastal migration corridors of Nathusius’
pipistrelles (Kurvits et al., 2011, Gaultier et al., 2020,
Kruszynski et al., 2020,). Additionally, we received carcass
data from another area with high wind turbine density
close to the river Oder (at the border between Germany
and Poland), which is also known to function as a migra-
tion corridor for Nathusius’ pipistrelles (Furmankiewicz &
Kucharska, 2009). Within these migration corridors, our
analysis suggested that the relative risk for Nathusius’
pipistrelles to collide with wind turbines was independent
of age. In these corridors, adults and juveniles are flying at
speeds of about 25 km/h (Troxell et al., 2019), most likely
during continuous flights of several hours. As both sexes
and all age groups migrate in the same manner, we would
expect similar vulnerability for all migrating individuals.
Outside migration corridors, predominantly in northeast-
ern Germany where wind turbines occur at lower densities
(Figure 1), the risk for Nathusius’ pipistrelles appeared to
be unevenly distributed. The region is dominated by large
forests and several larger lakes areas. In this region, juve-
nile Nathusius’ pipistrelles were more likely to die at wind
turbines than are adult conspecifics. Outside the migration
corridors, adult Nathusius’ pipistrelles may pause migra-
tion at stopover sites where they court and mate (Voigt-
Heucke et al., 2016). Yet, juveniles may still be attracted to
the tall structures of wind turbines because of an increased
exploratory behavior (Horn et al., 2008) and a lack of expe-
rience in responding to environmental cues, such as the
Earth’s magnetic field for orientation, during the first
southward journey when their navigation system has not
yet fully developed (Lindecke et al. 2019). Without behav-
ioral data from bats in areas of both high and low wind
turbine density, it is difficult to provide a mechanistic
explanation for our results with certainty. Future studies
are needed to address in more detail why juvenile
Nathusius’ pipistrelles appear to be more vulnerable at
wind turbines at low densities, and it would be important
to understand whether wind turbines present a similarly
high risk for juveniles of other migratory bat species.

The sex ratio of Nathusius’ pipistrelles populations is
known to vary across Europe during the migratory sea-
son (Boshamer & Bekker, 2008; Flaquer et al., 2009;
Gukasova et al., 2011; P�etersons, 2004). Our results from
both the live population and the carcasses from wind
turbines suggested a female-biased sex ratio in Germany.
Germany is a major pathway and stopover site for bats
migrating southward, and we expect many of the sam-
pled females would be moving from northern maternity
colonies (Alcalde et al., 2021; Hutterer et al., 2005;
Kurvits et al., 2011). Wind turbine mortality in Germany

during the migratory season may therefore be particularly
problematic as it could include higher numbers of deaths
for reproductively active females. A female sex ratio bias
has also been reported in other species with northern
maternity colonies (Nyctalus noctula; Lehnert et al., 2014),
suggesting that the risks posed by wind turbines in
Germany may extend beyond Nathusius’ pipistrelles and
should therefore be a focus for future mitigation actions.

Based on the results of our study, we perceive three
possible consequences of wind turbine mortality for
Nathusius’ pipistrelles source populations. First, mortal-
ity of females at wind turbines during the migratory sea-
son could lead to declining numbers of maternity
colonies and may lead to the eventual extirpation of local
populations (Frick et al., 2017; Zahn et al., 2014). Second,
a disproportionately higher vulnerability of juvenile
Nathusius’ pipistrelles at wind turbines may affect the
recruitment of juveniles, which may lead to population
declines. Third, the elevated mortality risk of juvenile
bats might reduce the dispersal of juveniles to novel
breeding or wintering areas. Adult Nathusius’ pipistrelles
show high site fidelity in their wintering and summer
areas (Lehnert et al., 2018), making dispersal of juveniles
a key driver of northward range shifts in response to cli-
mate change (Kravchenko et al., 2020). The so-called
“generational shift” that is responsible for the northward
range expansion of bats might be impaired when juve-
niles are killed by wind turbines during their first jour-
neys, and thus limiting the ability of the species to
adequately respond to a warming climate.

Our ability to distinguish between regional and long-
distance migrants, and to identify differing vulnerability in
either group, may have been impeded by the weak isotopic
transfer function available for Nathusius’ pipistrelles. This
function aims to regress δ2H values of the likely place of
molt based on δ2H values in fur keratin of focal animals.
The transfer function is relatively imprecise for Nathusius’
pipistrelles compared to transfer functions of other species
such as common noctule bats (Lehnert et al., 2018). The
imprecision yields large areas of more than 1000 km across
latitude and longitude as likely places of origin for this spe-
cies (Kruszynski et al., 2020). This imprecision may be a
result of Nathusius’ pipistrelles foraging between limnic
and terrestrial food webs (Voigt et al., 2015a), and because of
an age effect on δ2H values. δ2H values of juvenile bats were
shown to be lower than those of corresponding mothers,
most likely because of the consumption of deuterium-
depleted fat-rich milk by juveniles (Kravchenko et al., 2019).
This further complicates the geographic assignment of juve-
niles based on stable isotopes (Kravchenko et al., 2019).

This is one of the first studies to account for demo-
graphic characteristics in the live population when study-
ing bat wind turbine mortality. Without this comparison,
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it is impossible to disentangle whether demographic data
from carcasses represent true differences in vulnerability or
simply biased demographic ratios within the studied popu-
lation. However, our analysis relies on observational data
collected with inconsistent effort and thus our results
should be seen only as a first step towards understanding
the uneven impact of wind turbines on bats. Systematic
data collection that includes both consistent effort sam-
pling below wind turbines and live population surveys
within close proximity to wind turbine sites would provide
us with a more robust test of the results presented here.
Such systematic effort should also focus on areas with dif-
ferent levels of wind turbine densities to better understand
how juvenile mortality may vary with turbine density.

In this study, we demonstrated that the threat of wind
turbines can be uneven across bat populations. The
higher vulnerability of juveniles to wind turbine mortal-
ity may lead to population declines of migratory species
and to an impaired ability of populations to respond ade-
quately to warming global temperatures. This calls for
more robust mitigation measures, such as curtailment
speeds (Arnett et al., 2011), to reduce the number of fatal-
ities of bats at wind turbines. Furthermore, wind turbine
construction should be limited in sensitive areas for bats,
such as forested areas with large water bodies. Under-
standing and mitigating the effects of wind turbine mor-
tality on bats will be an important conservation challenge
for the future as countries transition to renewable energy.
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4. Mind the gap – Bats, climate change, and wind turbines 

Given the growing impacts of anthropogenic changes and global climate change, it is 

essential to gain greater insight into migratory pathways and fine-scale movements of 

migratory species. This has been done using onboard devices or permanent markers, which 

require recapture of individuals, can be expensive, and restricted to larger migratory species. 

Using state-of-the-art stable isotope analysis in fur samples collected from populations of 

migratory bats, I was able to investigate the origins of individuals discovered at different sites 

along their migratory route and differentiate potential threats to regional and migratory 

populations in the path of wind turbines. 

In chapter 1, while checking that the stable isotope analysis method can be applied to 

identify the migration patterns of Nathusius’ pipistrelles, I could distinguish between two 

probable pathways they use to move from their summer breeding area to their wintering areas. 

First, I established isoscapes for two isotopes used in this study (H and Sr) with a suitable grid 

resolution (0.3 and 0.7 km, respectively). δ2H analysis suggested all bats have a long-distance 

origin. Then, I established three isotopic bins (range 1: east Europe; range 2: central Europe; 

range 3: west Europe) in order to present the results of the 58 individuals (one individual was 

considered an outlier, and its results were not presented). The bats from different islands were 

assigned to different bins, suggesting weak connectivity within the population of this species. 

Although δ2H analysis suggested a possible Fennoscandian origin, 87Sr/86Sr analysis excluded 

this possibility. Instead, the data suggest that the individuals captured migrating along the 

German coastline had a continental European summer origin. The data did not support an 

influx of Fennoscandian bats in Germany, however, I could not exclude the possibility that the 



 General Discusssion 

 

88 

 

migratory corridor starts in Baltorussia and ends in Germany passing through Finland, 

Sweden, and Denmark. Although their movement first northward and then south is unusual 

and the isotopic evidence for this is weak, acoustic recordings show their presence during 

summer in northern countries (Gaultier et al. 2020). Fennoscandian bats might use different 

pathways that were not included in our sampling efforts. Moreover, I found possible 

movements from the east (Baltorussia) and west (Normandy and Brittany) directions where 

the species have breeding populations. 

In this chapter, I also emphasise the importance of distinguishing the fractionation of 

isotopes as it can hamper the interpretation of the data. The Sr fractionation found between the 

bat samples and the environment could be a feature that only happens in bats’ fur or could also 

occur in other mammals. In order to verify the accuracy of the data, more studies should focus 

on reporting 87Sr/86Sr values for different tissues, animals, and regions. In the case of 

hydrogen, the fractionation was established with the sedentary Nathusius’ pipistrelles data, but 

the resulting transfer function was not as solid as for other bats (e.g., five European bat species 

(Lehnert et al. 2018)). For Nathusius’ pipistrelles, the transfer function shows an unclear 

relationship with precipitation data probably influenced by their diet, which is composed of 

both terrestrial and aquatic insects (Krüger et al. 2014). A recent study found that emerging 

insects might contribute to the diet of insectivorous bats regardless of the distance to streams 

(Recalde et al. 2021), which could be a reason we find this unclear pattern between bat fur and 

environmental data. I concluded that the migratory pathways and patterns of Nathusius’ 

pipistrelles are more complex than previously assumed, thus, more efforts are needed to 

disentangle their movements between summer and winter grounds and their feeding 

behaviour. 



 General Discusssion 

 

89 

 

In chapter 2, I used stable hydrogen isotopes in fur keratin to determine the migratory 

status of Nathusius’ pipistrelle carcasses and living conspecifics to evaluate the vulnerability 

of long-distance and regional groups to wind turbines. The models showed evidence of an 

unequal vulnerability of age to wind turbines. Specifically, at low wind turbine density, 

juveniles were found dead beneath turbines significantly more often than expected based on 

their abundance in the living population. Extensive local exploratory behaviour is 

energetically costly, as is migratory flight (Currie et al. 2020). While adults from both sexes 

spend time in mating territories, juveniles may spend time exploring and constantly foraging 

en route. Therefore, the vulnerability of juveniles to wind turbines may be higher than for 

adults. It is not uncommon for juveniles to be disproportionately impacted by wind turbines. 

Other studies have also shown this pattern in golden eagles (Aquila chrysaetos) (Hunt et al. 

2017) as well as other soaring bird species (Barrios and Rodríguez 2004). However, when 

wind turbines are installed at high density, I found equal vulnerability of both ages, which has 

also been shown in black kites (Milvus migrans) (Santos et al. 2021). As both sexes and all 

age groups of P. nathusii migrate in the same manner, we would expect similar vulnerability 

for all migrating individuals in high wind turbine areas. In areas with a low density of wind 

turbines, mainly in north-eastern Germany, there are more forested areas and lakes where P. 

nathusii roost and feed. Recent findings showed that diverse habitats with a mixture of open 

vegetated areas, watercourses, and broadleaf forests were the most important land features for 

a diverse bat fauna, along with high connectivity via tree cover and linear landscape elements 

(Skog 2021). Adults can use those areas as stopover sites, where they court and mate. 

However, the juveniles might be attracted to wind turbines as they have less experience with 

dangerous situations. In addition, the juveniles’ strong exploratory behaviour might bring 

them in search of roosts in the vacant areas in an attempt to establish territories because they 
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could mistake wind turbines for tall trees (Arnett et al. 2008). Yet, a single underlying reason 

for the pattern found between low and high density of wind turbines remains unclear. 

Wind turbine vulnerability did not differ between sexes or migratory status. The findings 

showed a female- and regional-biased trend in both survey types (carcasses and living). The 

small quota of long-distance migrants was mostly from north-eastern Europe; long-distance 

females and males differed in their origin. The first possibly originated from north-eastern 

Europe and the latter from west Europe. This contributes to the hypothesis that there are more 

females present in the area because they are coming from northeastern maternity colonies. 

However, more studies should focus on understanding this sex-skewed phenomenon that 

occurs in Germany during the migration season, and the reproductive biology of this species 

because such information could aid in making informed conservation strategies (Cryan et al. 

2012). Moreover, the findings emphasise the importance of Germany as a stopover site and a 

major migratory pathway for long-distance migratory bats. The increased number of regional 

bats could be due to a high site fidelity also found in adults of other species of bats (Muñoz-

Romo et al. 2008; Lehnert et al. 2014). My approach to using carcasses as well as living 

conspecifics was essential to remove the biases of unequal group abundances in the living 

population and to obtain reliable results for the population trends. Future studies still need to 

address in more detail the demographics of the European bat populations, including why 

juveniles appear to be more vulnerable at wind turbines at low densities; if they are 

particularly vulnerable to sensory traps due to a lack of experience; and whether migration and 

exploratory flights force them to spend more time at stopover sites or refuelling mid-air. In 

addition, it would be interesting to understand whether this pattern is also present in juveniles 

of other migratory bat species. 
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5. One isotope cannot rule them all – Future directions in stable isotope analysis 

The more studies report on the trophic discrimination factors and fractionation values 

between tissues, the more we understand that there is no magic number that unites all species, 

such as 421. Although there is a need to reduce and substitute animal studies in vivo, we still 

require animal experimentation and invasive sampling in order to develop a strong foundation 

to understand the dynamics of isotopes within and between species. One way to mitigate the 

experiments with living animals is using carcasses from environmental impact assessments of 

wind farms and other human constructions. The use of carcasses to study isotopic routing 

enables a unique insight because we can determine the isotopes in different tissues from the 

same individual without having to remove a living specimen from nature (Fisk et al. 2001; 

Măntoiu et al. 2020). Different tissues may vary their isotopic turnover rate and trophic 

discrimination factors (Fry 2006; Martínez del Rio et al. 2009). However, we still lack a 

systematisation of carcasses collection (e.g., which tissues to collect, at which places in the 

body), and standardisation of the metadata collected (e.g., Darwin core standards). 

Standardisation between species is still a challenge. 

The type of tissues collected tends to vary depending on the research question, available 

equipment, etc, which makes the comparison within species and between species even more 

difficult. Through collaboration between researchers and professionals in other areas, we can 

create a global standard method for animal collection. For example, in biodiversity hotspots, 

the collection of animals that serves as voucher specimens (i.e., preserved specimens that 

serve as a verifiable and permanent record of wildlife) should include not only tissues for 

molecular analysis but also for other approaches, such as samples for isotopic analysis. 

Samples for isotopic analysis are easily stored when the material is metabolically inert (e.g., 

 
1
 Reference to the "Answer to the Ultimate Question of Life, the Universe, and Everything", in The 

Hitchhiker's Guide to the Galaxy by Douglas Adams. 
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keratinous tissue) or if metabolically active, by freezing (Wassenaar et al. 2015). In 

environmental impact assessment surveys, carcasses without visible signs of decay should be 

continuously collected and their organs separated and stored. This allows for the extraction of 

tissues from species that are not easily found in other surveys, are endangered, or are unknown 

to certain areas, without the need to remove the individual from the population. Moreover, this 

information allows a clearer overview of the relationship between and within tissues and 

species. In the last few years, the work of surveying and monitoring environmental impacts 

has substantially increased the scientific collections with materials from areas that have rarely 

or never been sampled, as well as other landscapes that have completely disappeared, such as 

those that constitute the reservoirs of large dams. These specimens and the tissues from 

individuals collected and/or found dead are evidence of the diversity still in the process of 

being described. Determining guidelines for an appropriate destination of biological materials 

combined with public policies can further hone the information that can be then organised by 

environmental departments and supervised by governmental agencies. Thus, there is a need to 

combine efforts to collect and store tissues whenever possible to address those gaps in 

knowledge. In addition, the standardisation method should include a simple and easy way to 

write comprehensive metadata associated with the samples collected. Recently, the use of big 

datasets has been considered vital to understanding global ecological patterns (e.g., Masson-

Delmotte et al. (2021)). However, it is not uncommon to find errors and contradictions in the 

data. Therefore, a standard method to collect and write data as well as make the data publicly 

available should be considered in the near future. 

Stable isotope analysis, however, has some limitations. Notably, the information obtained 

from a tissue sample will always reflect the place where it incorporated the isotopic signatures. 

Thus, the places used between the origin and the destination remain largely unknown using 

this method. Additionally, the advantage provided by only capturing the individuals once is 
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hampered by the cost of this method. On one hand, the lack of environmental data in certain 

locations can be an issue for isotopic geographical assignments, increasing the uncertainty in 

the isoscapes. Although models have improved over the past decades to account for this issue 

and the performance of laboratories worldwide has improved (Wassenaar et al. 2021), 

acquiring data on missing areas can help make isoscapes more detailed. On the other hand, the 

Global North concentrates most of the data, which can bias where most studies are performed. 

I believe that with the combination of methods such as the use of multiple isotopes (chapter 

1), compound-specific isotope analysis of amino acids (reviewed in Whiteman et al. (2019)), 

and an online database for isotopes (e.g., Project Isobank), we could assign more detailed 

origins. 

Finally, I have shown that the transfer function and fractionation of the tissues can 

influence the accuracy of the results obtained. Researchers have attempted to develop models 

to account for discrimination factors according to phylogenetics (“SIDER” R package (Healy 

et al. 2018)). However, it still needs actual isotopic values to increase the input of the models. 

Furthermore, the interaction of isotopes and tissues remains unclear. For example, only a few 

studies compared tissues’ relationship to water (either drinking water or precipitation). 

Rodriguez Curras et al. (2018) measured the proportion of drinking water in tissues of 

laboratory mice (Mus musculus), showing that the overall contribution of water to muscle and 

liver was less than 20%. Hobson and Robbins (2009) evaluated the relationship of different 

tissues of nomadic Sedge Wren (Cistothorus platensis) to precipitation and found a weak 

relationship between liver and claw. Wolf et al. (2013) did not find a direct relationship 

between muscle and the drinking water of Japanese Quail (Cortunix japonica) but muscle 

tissues were depleted in relation to drinking water. Lastly, Lübcker et al. (2021) recommend 

caution in using moulted hair to address the diet and movement of animals after evaluating C 
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and N in moulted hair and the outermost epidermis of elephant seals (Mirounga leonina). 

Future studies focusing on the relationship between isotopes and tissues are required. 

 

6. Shed light in the dark – Conservation efforts for migratory animals 

The loss of migratory species is not inevitable. For example, the application of the 

dynamic conservation strategy for migratory species can improve the connectivity of habitats 

and protect migratory individuals (Reynolds et al. 2017). The dynamic conservation strategy 

aims to reduce threats to migratory species while providing opportunities to enhance the 

resilience of populations and their habitats (Zhao et al. 2021). It implements a set of 

conservation actions across the full annual cycle of migratory species. These actions include, 

but are not limited to, the protection and maintenance of key habitats, the creation of 

favourable conditions at migratory routes and stopover sites, and the mitigation of threats at 

source areas (Reynolds et al. 2017). The near-term ecological forecasting and the potential 

advantages of dynamic mitigation strategies have been shown to have successful results when 

applied to the conservation of birds in the U.S. (Horton et al. 2021). In addition, dynamic 

conservation management should be undertaken to support the long-term viability of 

migratory species. Considering the high temporal and spatial scales at which these actions are 

required, it is essential to involve a broad range of stakeholders at all levels of governance 

(e.g., local, national, regional, and international) in the planning, implementation, and 

evaluation of these actions. 

With the recent development of offshore wind turbines, an urgent need for models that 

can map sites with the least impact on biodiversity is needed (May et al. 2021). A recent study 

modelled the impact of wind turbines in L. cirineus in the U.S. and Canada, and the 

simulations of population trends suggested past substantial population declines (Friedenberg 
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and Frick 2021). However, in order to achieve fatality minimisation, turbine curtailment may 

be sufficient to manage risks. Therefore, improvements to statistical methods such as species 

distribution models (e.g., McGowan et al. (2021)), occupancy modelling (e.g., Froidevaux et 

al. (2020)), hierarchical Bayesian models (e.g., Davy et al. (2021)), and data integration will 

further develop the analysis of historic trends in bat populations; harnessing the rapidly 

increasing number of data not only to track population trends in time and space but also to 

understand their drivers. 

Several issues can be simultaneously tackled to protect migratory species. First, the 

effects of climate change on migratory behaviour should be continuously documented. This 

information can be used to identify the most vulnerable species and the habitats they use. In 

addition, the loss of migratory species may be prevented through the application of different 

policy managements that more effectively protect migratory animals (Voigt et al. 2018a). Such 

an option is the creation of protected areas that will prevent the degradation of important 

stopover sites along migratory routes. These areas can also be used to protect the habitats of 

species that are experiencing habitat loss, thus preventing further losses in migratory 

behaviour. Another option is to create corridors to connect fragmented habitats, as these can 

help migratory species maintain migratory behaviour (Zhao et al. 2021). These corridors can 

also be used to connect habitats to which species are shifting, thus giving them access to the 

habitats that are best suited to their needs. In addition, after identifying the corridors, they 

should be legislated as forbidden areas for new enterprises that can disrupt migratory 

pathways. Finally, education and citizen science (Fournier et al. 2017; Gili et al. 2020; 

Rodhouse et al. 2021) can be used to educate people about the importance of migratory 

species, the effects of climate change on them, and the steps that can be taken to prevent 

further losses of migratory species, helping them understand the importance of protecting 

migratory species. 
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APPENDICES 

Appendix Chapter 1 

Appendix 1 - 1: Table SM 1: Reference material used in the δ2H transfer function of the 

models. Location and measured stable hydrogen isotopic ratios in fur keratin of 458 

Pipistrellus nathusii bats captured within the breeding range. (Online access via 

https://doi.org/10.1002/rcm.9031) 

 

  

species sex age date location w, long d2H month 
P. lJUJbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -lOLOO 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -137 .36 7 
P. nathusii NA NA 7/ 1/2019 Baia, Hungary 46.18342 18.95382 -12U l 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -149.20 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -126.5 1 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -138.26 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -106.88 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -132.66 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -128.70 7 

P. ~ NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -146.95 7 
P. nathusii NA NA 7/ 1/2019 Baia, Hungary 46.18342 18.95382 -105.36 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 Baja, Hungary 46.18342 18.95382 -116.78 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Switzerland 46.28357 6.16592 -123.50 7 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -108.28 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -108.62 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -102.85 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -108.37 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -109.97 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -102.28 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -105.32 7 

Russia 
P. l%1JbJJ,w.. NA NA 7/ 1/2019 ~ Oryol Oblast, 52.5 35 -106.99 7 
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Appendix 1 - 2: Table SM2: Location, migratory status, measured stable hydrogen and 

strontium isotopic ratios in fur keratin of 59 Pipistrellus nathusii bats captured in Fehmarn, 

Greifswalder Oie, and Heligoland (North of Germany). (Online access via 

https://doi.org/10.1002/rcm.9031) 

  

species sex age location date d2H d87sr long w, ~ ranges 
Pipistrellus Female adult Helgoland 9/21/2017 -125 0.713 7.888944 54.18033 long-distance 1 
nnthueii mi2rant 
Pipistrellus Male adult Helgoland 9/22/2017 -126.7 0.7105 7.888944 54.18033 long-distance 1 
nathu.<ii mi2rant 
Pipistrellus Male adult Helgoland 9/22/2017 -121.2 0.7093 7.888944 54.18033 long-distance 1 
nnthmi · mi2rant 
Pipistrellus Male adult Helgoland 9/23/2017 -123.1 0.7111 7.888944 54.18033 long-distance 1 
nnthueii mi2rant 
Pipistrellus Male adult Helgoland 9/23/2017 -140.2 0.7102 7.888944 54.18033 long-distance 1 
nnthueii mi2rant 
Pipistrellus Female adult ~ 9/21/2017 - 0.7124 11.01263 54.48333 long-distance I 
nathu.<ii Fehmam 132.71 mi2rant 
Pipistrellus Female adult ~ 9/21/2017 - 0.7103 11.01263 54.48333 long-distance I 
nnthmi · Fehmam 133.15 mi2rant 
Pipistrellus Female adult ~ 9/ 18/2018 - 0.7127 11.01263 54.48333 long-distance 1 
nnthueii Fehmam 124.06 mi2rant 
Pipistrellus Female adult ~ 9/ 18/2018 - 0.7103 11.01263 54.48333 long-distance 1 
nnthueii Fehmam 120.93 mi2rant 
Pipistrellus Female adult ~ 9/20/2018 - 0.7105 11.01263 54.48333 long-distance I 
nathu.<ii Fehmam 124.83 mi2rant 
Pipistrellus NA ~ 5/13/2017 -12 1.7 0.71 13.91857 54.24775 long-distance I 
nnthmi · ()jp mi2rant 
Pipistrellus NA ~ 5/ 14/2017 -122.4 0.709 13.91857 54.24775 long-distance 1 
nnthueii ()jp mi2rant 
Pipistrellus NA ~ 9/ 19/2017 - 0.71 13.91857 54.24775 long-distance I 
nathu.<ii Oie 121.84 mi2rant 
Pipistrellus NA ~ 9/ 19/2017 - 0.71 13.91857 54.24775 long-distance I 
nnthmi · ()jp 129.48 mi2rant 
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 Appendices 

 

126 

 

Appendix 1 - 3: Table SM3: Mean δ2H and 87Sr/86Sr values (± one standard deviation) of 

fur keratin in Nathusius’ pipistrelles captured on the islands of Heligoland, Greifswalder Oie 

(both seasons), Fehmarn (all northern Germany) and during the pre-migration season close to 

Engure Lake (Latvia). We report raw 87Sr/86Sr values of fur (keratin), 87Sr/86Sr values 

corrected for trophic discrimination (keratincorr) and bioavailable 87Sr/86Sr values 

(bioavailable) calculated for a 100 km buffer around the capture site. Ranges refer to isotopic 

bins of δ2H values (see more details in the text). (Online access via 

https://doi.org/10.1002/rcm.9031) 

 

  

location n season range keratin keratin 87Srl86Sr ~ 87Sr/86Sr bioavailable 

62H (%o) 87Sr/86Sr 

~ Lake 10 summer NA -100.96 ± 3.8 0.7 112 ± 0.0002 0.7 141 ± 0.0002 0.7088 

Fehmarn 5 autumn I -127.14 ± 5.48 0.7 112 ± 0.0012 0.7 141 ± 0.0012 0.7086 

Fehmarn 7 autumn 2 -106.57 ± 5.05 0.7 102 ± 0.0011 0.7 131 ± 0.0011 0.7086 

Fehmarn 10 autumn 3 -91.84 ± 4.77 0.7 101 ± 0.001 I 0.7 13 ± 0.001 I 0.7086 

~ ~ 2 spring I -122.05 ± 0.49 0.7095 ± 0.0007 0.7 123 ± 0.0007 0.7085 

~~ 13 spring 2 -112.8 ± 5.41 0.7 1 ± 0.001 I 0.7 129 ± 0.001 I 0.7085 

~~ 3 spring 3 -98.03 ± 1.37 0.7 106 ± 0.0011 0.7 135 ± 0.001 I 0.7085 

~~ 2 autumn I -125.66 ± 5.4 0.7 1 ± 0 0.7 128 ± 0 0.7085 

~~ 5 autumn 2 -116.3 ± 2.05 0.7 104 ± 0.0005 0.7 132 ± 0.0005 0.7085 

Heligoland 5 autumn I -127.24 ± 7.53 0.7 108 ± 0.0013 0.7 137 ± 0.0013 0.7088 

Heligoland 6 autumn 2 -107.33 ± 4.17 0.7099 ± 0.0007 0.7 127 ± 0.0007 0.7088 

https://doi.org/10.1002/rcm.9031
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Appendix Chapter 2 

Appendix 2 - 1: Table SM1: Raw stable hydrogen isotopic data of Nathusius’ pipistrelles 

collected in Germany. (Online access via DOI: 10.5281/zenodo.4557292) 

 

.. 
date id species sex age forearm mass location lat long d2h long ref 

distant 
migrant_st 
atus 

8/19/2003 68 Pipistrellus F adult Nauen 52.587° 12.821 -103.733 regional 
nathusii migrant 

··s,1112004 61 Pipistrellus F adult Wemitz 52.5489 12.883 -120.206 regional 
nathusii migrant 

8/17/2004 262 Pipistrellus M juvenile i Tremmen 52.522 i 12.892 -194.53 i long 
nathusii distant 

mie.rant 
8/30/2004 211 Pipistrellus F juvenile Nauen 52.587 12.821 -126.841 regional 

nathusii ---- migrant 
8/30/2004 239 Pipistrellus F adult Bliesdorf 52.702 14.186 -116.798 regional 

nathusii migrant 
--9/20/2004 257 Pipistrellus F juvenile Karstadt 53.155 11.774 -186.708 long 

nathusii distant 

9/11/2005 267 Pipistrellus M adult Ausleben 52.122 11.161 -146.941 
migrant 
rei ional 

nathusii ---- migrant 
8/4/2006 DE- Pipistrellus M Sachsen 51.10454 13.20174 -97.4846 regional 

HAL04080 nathusii migrant 
&-Pna0l 

····s /4/2006 DE- Pipistrellus M 51.28597 14.45252 -97.4846 regional 
HAL04080 nathusii migrant 
&-Pna0l 

8/18/2006 243 Pipistrellus F juvenile Domnitz 51.623 11.859 -129.067 regional 
nathusii migrant 

8/20/2006 DE- Pipistrellus i F Sachsen 51.10454 13.20174 -126.349 reiional 
HAL20080 nathusii migrant 
6-Pna0l 

··s,2012006 DE- Pipistrellus F Sachsen 51.10454 13.20174 -130.469 regional 
HAL20080 nathusii migrant 
&-Pna03 

8/20/2006 DE- Pipistrellus M Sachsen 51.10454 13.20174 -113.597 regional 
HAL20080 nathusii migrant 
6-Pna02 

8/20/2006 DE- Pipistrellus F 51.28597° 14.45252 -126.349 regional 
HAL20080 nathusii migrant 
&-Pna0l ----
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Appendix 2 - 2: Figure S1: Hydrogen isotopic ratios of long-distance and regional Nathusius’ pipistrelle bats from carcasses (WT) and live 

population (BB) in Germany during the migratory period. 
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