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Abstract

Water is one of the most essential substances on Earth as it occurs in all three ther-
modynamic phases both in the atmosphere and the surface: solid water in terms
of snow and ice grains, liquid water enclosed in-between ice crystals and leaves of
vegetation, and gaseous water forming the water vapor in the atmosphere. The
different phases of water control large amounts of the environmental energy cy-
cle and a quantitative mapping on a global scale is of particular importance as it
provides a valuable input to climate models and helps to understand underlying
processes. The three phases of water show subtle differences in absorption shape
in the optical range of the solar spectrum, so that a quantitative mapping requires
high-resolution measurements of solar radiation reflected from Earth’s surface. The
technique of imaging spectroscopy provides such measurements, but has been al-
most entirely applied to small local scales based on airborne sensors. However,
a new generation of orbital missions, including the Italian Hyperspectral Precur-
sor of the Application Mission (PRISMA), NASA’s Earth Surface Mineral Dust
Source Investigation (EMIT), the German Environmental Mapping and Analysis
Program (EnMAP), ESA’s Copernicus Hyperspectral Imaging Mission (CHIME),
and NASA’s Surface Biology and Geology (SBG) designated observable, is expected
to deliver high-resolution data both on a global scale and daily basis. This requests
for independently applicable retrieval algorithms including a rigorous quantification
of uncertainties. In this context, this thesis presents two new spectroscopic retrieval
methods to quantify the three phases of water from space, which are aligned with
future instrument characteristics, adapted to an increased atmospheric path as well
as to a different ground sampling distance. Both algorithms use the optimal es-
timation formalism that assumes Gaussian error distribution and leverages prior
knowledge as well as measurement noise in an inversion scheme that also produces
posterior uncertainty estimates. The first method couples atmospheric radiative
transfer simulations from the MODTRAN code to a surface reflectance model based
on the Beer-Lambert law. A unique coupling of the 3D Hyperspectral Simulation
of Canopy Reflectance (HySimCaR) model and the EnMAP end-to-end Simulation
tool (EeteS) is exploited for a sensitivity analysis of estimated vegetation liquid
water content. Furthermore, the retrieved values are validated with concurrent
field measurements of canopy water content. The second algorithm is based on a
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simultaneous retrieval of atmosphere and surface state and exploits statistical rela-
tionships between reflectance spectra and additional surface parameters to estimate
their most probable quantities. Retrieved snow and ice properties are investigated
based on a sensitivity analysis and validated with laboratory and field measurements
from the Greenland Ice Sheet. Finally, the applicability of the proposed methods to
forthcoming spaceborne imaging spectrometers is demonstrated on the example of
PRISMA cryosphere observations by providing retrieval maps of surface liquid water
and ice grain size as well as associated retrieval uncertainties. The results from this
thesis show that spaceborne imaging spectroscopy permits improved atmospheric
water vapor estimations, facilitates a prediction of vegetation drought stress and
wildfire potential, and contributes to the understanding of biophysical processes on
Earth’s Ice Sheets in the context of climate change. Concurrently, three key aspects
have been identified to be of particular importance for globally applicable retrieval
algorithms: (i) considering topographic characteristics, such as surface slope and
aspect as well as sky view factor and shadow fraction, (ii) integrating directional
effects depending on illumination and observation conditions, (iii) accounting for
mixed pixels by determining influences from background reflectance and fractional
cover. Overall, this thesis demonstrates that upcoming launches of several imaging
spectroscopy missions open new perspectives in regularly monitoring and mapping
atmosphere and surface properties including the three phases of water on a global
scale. These maps will provide a valuable input to the modeling of biological and
physical processes that help to better understand climate change and to predict and
adapt to its socioeconomic consequences.
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Zusammenfassung

Wasser ist eine der wichtigsten Substanzen auf der Erde, da es in allen drei ther-
modynamischen Phasen sowohl in der Atmosphäre als auch auf der Oberfläche
vorkommt: festes Wasser in Form von Schnee und Eiskörnern, flüssiges Wasser
zwischen Eiskristallen und als Bestandteil von Pflanzenblättern sowie gasförmiges
Wasser, das den Wasserdampf in der Atmosphäre bildet. Die verschiedenen Wasser-
phasen steuern große Teile des ökologischen Energiekreislaufes, so dass eine quan-
titative Kartierung auf globaler Ebene von besonderer Bedeutung ist. Sie leistet
außerdem einen wertvollen Beitrag zur Klimamodellierung und hilft, die zugrunde
liegenden Prozesse besser zu verstehen. Die drei Phasen des Wassers weisen feine
Unterschiede in ihrer Absorptionsform im optischen Bereich des solaren Spektrums
auf, so dass eine quantitative Bestimmung hochauflösende Messungen der von der
Erdoberfläche reflektierten Sonnenstrahlung erfordert. Die Technik der abbilden-
den Spektroskopie liefert solche Messungen, wurde aber bisher fast ausschließlich
auf der Grundlage von flugzeuggestützten Sensoren auf kleinen lokalen Skalen ange-
wandt. Eine neue Generation von Weltraummissionen, darunter die italienische
Hyperspectral Precursor of the Application Mission (PRISMA), die Earth Surface
Mineral Dust Source Investigation (EMIT) der NASA, das deutsche Environmental
Mapping and Analysis Program (EnMAP), die Copernicus Hyperspectral Imaging
Mission (CHIME) der ESA und das NASA Surface Biology and Geology (SBG)
Observable, soll jedoch hochauflösende Daten sowohl auf globaler Ebene als auch
auf täglicher Basis liefern. Dies erfordert unabhängig anwendbare Kartierungsalgo-
rithmen einschließlich einer präzisen Quantifizierung der Unsicherheiten. In diesem
Zusammenhang werden in dieser Arbeit zwei neue spektroskopische Methoden zur
Quantifizierung der drei Phasen von Wasser aus dem Weltraum vorgestellt, die auf
die zukünftigen Instrumentencharakteristika abgestimmt sind und sowohl an einen
längeren Weg der Strahlung durch die Atmosphäre als auch an eine andere räum-
liche Auflösung auf dem Erdboden angepasst sind. Beide Algorithmen verwenden
den Formalismus der Maximum-a-posteriori-Schätzung, der von einer Gauß’schen
Fehlerverteilung ausgeht und sowohl Vorwissen als auch Messrauschen in einem In-
versionsschema nutzt, das zusätzlich a posteriori Unsicherheitsschätzungen liefert.
Bei der ersten Methode werden atmosphärische Strahlungstransfersimulationen aus
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dem MODTRAN-Code mit einem auf dem Beer-Lambert-Gesetz basierenden Ober-
flächenreflexionsmodell gekoppelt. Eine einzigartige Kopplung des 3D Hyperspectral
Simulation of Canopy Reflectance (HySimCaR) Systems und des EnMAP end-to-end
Simulationstools (EeteS) wird für eine Sensitivitätsanalyse des geschätzten Flüssig-
wassergehalts von Vegetation genutzt. Außerdem werden die ermittelten Werte mit
gleichzeitigen Feldmessungen des Wassergehalts von Vegetationskronen validiert.
Der zweite Algorithmus basiert auf der simultanen Ermittlung des Zustands von
Atmosphäre und Oberfläche und nutzt statistische Beziehungen zwischen Reflex-
ionsspektren und zusätzlichen Oberflächenparametern, um deren wahrscheinlichste
Größen zu schätzen. Die ermittelten Schnee- und Eiseigenschaften werden auf der
Grundlage einer Sensitivitätsanalyse untersucht und mit Labor- und Feldmessun-
gen vom grönländischen Eisschild validiert. Abschließend wird die Anwendbarkeit
der vorgeschlagenen Methoden auf die kommenden weltraumgestützten abbildenden
Spektrometer am Beispiel von PRISMA Aufnahmen von Schnee- und Eisflächen
demonstriert, indem Karten von Flüssigwasser und Eiskorngröße sowie die damit
verbundenen Unsicherheiten dargestellt werden. Die Ergebnisse dieser Arbeit zeigen,
dass die weltraumgestützte abbildende Spektroskopie verbesserte Abschätzungen des
atmosphärischen Wasserdampfs ermöglicht, die Vorhersage von Pflanzenstress und
Waldbrandgefahr erleichtert und zum Verständnis der biophysikalischen Prozesse
auf den Eisschilden der Erde im Zusammenhang mit dem Klimawandel beiträgt.
Gleichzeitig werden drei Schlüsselaspekte identifiziert, die für global anwendbare
Kartierungsalgorithmen von besonderer Bedeutung sind: (i) die Berücksichtigung
topographischer Merkmale, wie z.B. Oberflächenneigung und -aspekt sowie Himmel-
slichtquotient und Schattenanteil, (ii) die Integration von Richtungseffekten in Ab-
hängigkeit von Beleuchtungs- und Beobachtungsbedingungen, (iii) die Berücksichti-
gung von Mischpixeln durch die Bestimmung von Einflüssen der Hintergrundreflex-
ion und des Bedeckungsgrades. Insgesamt zeigt diese Arbeit, dass die bevorstehen-
den Starts mehrerer abbildender Spektroskopiemissionen neue Perspektiven für die
regelmäßige Überwachung und Kartierung von Atmosphären- und Oberflächeneigen-
schaften, einschließlich der drei Phasen des Wassers, auf globaler Ebene eröffnen.
Diese Karten werden einen wertvollen Beitrag zur Modellierung biologischer und
physikalischer Prozesse leisten, die zu einem besseren Verständnis des Klimawandels
und zur Vorhersage und Anpassung an seine sozioökonomischen Folgen beiträgt.
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Chapter 1

Introduction

1.1 Rationale and structure

Water is one of the most essential substances on Earth and controls large amounts of
the environmental energy cycle (Green et al., 2006). It occurs in all three phases both
in Earth’s atmosphere and on its surface: solid water in terms of snow and ice grains,
liquid water enclosed in-between ice crystals and leaves of vegetation, and gaseous
water forming the water vapor in the atmosphere. Water in its different states is of
significant importance in a diverse field of scientific disciplines. Atmospheric water
vapor is the main absorbing greenhouse gas in the infrared (IR) wavelength region,
where most of the terrestrial radiation is emitted, and affects a multitude of climate
feedback mechanisms (Kiehl and Trenberth, 1997; Trenberth, Fasullo, and Kiehl,
2009; Diedrich et al., 2013). Liquid water is a significant driver of agricultural and
ecological processes on vegetated surfaces and is an important indicator for plant
physiological status and health as well as for wildfire potential (Schulze and Hall,
1982; Clevers, Kooistra, and Schaepman, 2010; Liu, Stanturf, and Goodrick, 2010;
Pasqualotto et al., 2018). Snow and ice properties control physical and biological
processes on polar ice sheets and mountainous glaciers, which strongly affect the
net solar radiation that regulates melt processes and the associated impacts on sea
level rise (Flanner and Zender, 2006; Painter et al., 2012; Bamber et al., 2018; Ryan
et al., 2018). Thus, a quantitative mapping of water in its three states on a global
scale is of particular importance as it provides a valuable input to climate models
and helps to understand underlying processes.

In this context, the objective of this thesis is to assess the potential of advanced
spaceborne imaging spectroscopy to improve the detection and quantification of the
three phases of water on Earth’s surface. So far, this technique has been almost
entirely based on airborne spectrometers, but a new era of orbital missions will
deliver high-resolution data both on a global scale and daily basis, which requests
for independently applicable retrieval algorithms (Cawse-Nicholson et al., 2021).



2 Chapter 1. Introduction

Chapter 3
OPTIMAL ESTIMATION OF SNOW
AND ICE SURFACE PARAMETERS
FROM IMAGING SPECTROSCOPY

MEASUREMENTS

• Scattering and 
absorption

• Snow and ice RTM
• Snow and ice surface 

properties

Chapter 2
COUPLED RETRIEVAL OF THE THREE 

PHASES OF WATER FROM 
SPACEBORNE IMAGING 

SPECTROSCOPY MEASUREMENTS

• Absorption
• Canopy RTM
• Vegetation liquid water

Chapter 1
RESEARCH 

BACKGROUND
• Scientific rationale and 

structure
• Main physical basics
• Data basis
• Objectives and 

research questions

Chapter 4
GLACIER ICE SURFACE PROPERTIES
IN SOUTH-WEST GREENLAND ICE 
SHEET: FIRST ESTIMATES FROM 

PRISMA IMAGING SPECTROSCOPY 
DATA

• Retrieval method from 
Chapter 3

• Glacier ice surface 
properties

• Synergies with 
multispectral data

• Potential for global 
product

Chapter 5
SYNTHESIS

• Research synthesis and 
conclusions

• Outlook to future 
requirements and 
possibilities

peer-reviewed scientific articles

Sensitivity analyses based on
synthetic spaceborne data

Figure 1.1: Schematic overview of thesis structure (for more detail, please see Sections 1.3
and 1.5).

Thus, the inauguration of new methods aligned with future instrument character-
istics, adapted to an increased atmospheric path as well as to a different ground
sampling distance is an important task for the upcoming decade and is pursued in
this work. The desired outcome of such algorithms is a robust global product that
maps atmospheric water vapor, vegetation liquid water content as well as snow and
ice surface properties corrected for latitudinal and topographic biases including a
rigorous quantification of uncertainties.

The thesis is divided into five main chapters. Chapter 1 introduces the general
research background by providing the scientific rationale, presenting the main phys-
ical basics, and formulating the objectives and research questions pursued in this
work. Chapters 2 - 4 include consecutive self-contained manuscripts, whose ancillary
objectives contribute to answering the main research questions of the overall thesis.
Chapter 2 presents a new coupled retrieval algorithm for the three phases of water
with a detailed assessment of quantifying vegetation liquid water content, Chapter 3
introduces an extension to a novel joint atmosphere and surface retrieval focusing
on the estimation of snow and ice properties, and Chapter 4 presents an application
of the new methods to already existing spaceborne imaging spectroscopy acquisi-
tions. Chapter 5 summarizes and discusses the main findings from Chapters 2 - 4,
and suggests future research perspectives. Figure 1.1 illustrates the outline of the
thesis and shows the main contributions of each chapter, whereas specific contribu-
tions and objectives of the individual manuscripts are presented in more detail in
Sections 1.3 and 1.5.
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1.2 Background

This section provides an overview about the radiative and optical properties of water
in its different states (Section 1.2.1) and state-of-the-art spaceborne optical remote
sensing of the three phases of water in general (Section 1.2.2). Finally, Section 1.2.3
outlines the potential of imaging spectroscopy in the face of novel opportunities
provided by present and upcoming spaceborne missions to simultaneously estimate
water in its different states.

1.2.1 Radiative and optical properties of water

The interactions of electromagnetic radiation with water in its different states are
controlled by both the radiative and optical properties of the three phases. The
radiative properties are also called ’optical constants’ and comprise the wavelength
dependent refractive index and absorption coefficient. They form the complex index
of refraction N� (Petty, 2004):

N� = n� + ik�, (1.1)

where n� is the real part determining the effective phase speed of electromagnetic
waves that propagate through the medium, and k� is the imaginary part that ex-
presses the absorption of photons and is directly related to the absorption coefficient
↵� by:

↵� =
4⇡k�
�

. (1.2)

While n� only marginally varies in the visible (VIS) and near-infrared (NIR) spectral
region, k� and consequentially, ↵�, change by up to seven orders of magnitude (Green
et al., 2006) (Figure 1.2). In this wavelength range, water absorption is mainly
caused by molecular vibration that is composed of the fundamental modes of bend-
ing and both symmetric and asymmetric stretch as well as overlapping overtones
that can be found in the mediumwave infrared between 3000 and 6000 nm (Green
et al., 2006; Warren, 2019). Although these intramolecular vibrational modes also
influence the water vapor absorption, Figure 1.2 illustrates that ↵� of the gaseous
phase clearly differs from those of the liquid and solid phases. We observe compara-
tively moderate absorption energies of liquid water and ice in contrast to the much
stronger attenuation of photons by water vapor (Green et al., 2006). This weaker
absorption of both liquid and solid phases is caused by an increased formation of
hydrogen bonds between the molecules and a resulting weaker O-H bonding strength
of liquid water and ice (Gao, 1996; Green et al., 2006). It has to be noted that water
features no distinct absorption mechanism in the VIS spectral range, but noticeable
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Figure 1.2: Absorption coefficients of different water phases in the VIS, NIR, and
shortwave-infrared (SWIR) solar spectrum, calculated from the HITRAN database on
a 1 nm grid in case of water vapor (Kochanov et al., 2016), and taken from Kedenburg
et al. (2012) and Warren and Brandt (2008), respectively, in case of liquid water and ice.
The spectral sampling interval is 1 nm for liquid water and 10 nm for ice. The lines of
liquid water and ice are not plotted over the whole optical wavelength range due to limited
data availability in the mentioned references. Note the logarithmic scale of the y-axis.

weakening of electromagnetic waves is induced by emanating molecular vibration
from the NIR. ↵� even reaches a value close to zero in the VIS blue wavelengths
below 500 nm (Warren, 2019). Figure 1.2 likewise highlights the difference between
the absorption lines of liquid water and ice in terms of a slight shift of the solid water
absorption coefficients towards longer wavelengths (Green et al., 2006). However,
the spectral shapes are very similar and exhibit characteristically smooth gradients,
which facilitates accurate calculations even based on a coarse spectral resolution.
Such smoothness is provoked by a high frequency of intermolecular collisions lead-
ing to a significant line broadening (Warren, 2019). In contrast, a smaller spectral
sampling interval is needed for simulations of water vapor absorption due to the
finer spectral line structures. They arise from different rotational states of gaseous
water (Green et al., 2006; Warren, 2019).

The optical properties of water generally include absorptance, transmittance,
reflectance, and emissivity of the different phases (Warren, 2019). These optical
functions depend on how solar radiation interacts with a medium. Contingent on
the spatial extent of sub-scale matter particles, the electromagnetic waves remain
either nearly unaffected in case of particles being much smaller than the wavelength,
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Figure 1.3: Transmission spectra of the three phases of water based on the absorption
coefficients displayed in Figure 1.2. The spectrum of water vapor is calculated for 25 mm
columnar water vapor. The spectra of liquid water and ice are calculated assuming optical
path lengths of 5 mm.

or experience varying magnitudes of attenuation at particles of much larger size rela-
tive to the wavelength (Warren, 1982). Figure 1.3 shows characteristic transmission
spectra of the three phases of water calculated for 25 mm atmospheric columnar
water vapor (CWV) and 5 mm of liquid water and ice optical path lengths, respec-
tively. Again, the displacement of the absorption coefficients as well as the different
magnitudes of absorption energies are clearly observable. Both properties therefore
form the basic principles of a spectroscopic separation of the three phases (Green
et al., 2006).

Transmission not only depends on the absorption coefficients but also on the
amount of water the photons are passing through. Several different units exist to
quantify water in its three states. Amongst others, water vapor can be classified
in mm being the integral of specific humidity over the vertical column (Diedrich,
2016), or as the amount of precipitable water in g cm

�2 available in the atmo-
sphere (Guanter, Gomez-Chova, and Moreno, 2008a). Liquid water in vegetation is
either indicated as liquid water content in g cm

�2 or as equivalent water thickness in
mm, which is the leaf or canopy water optical path length (Hunt, Ustin, and Riano,
2013). In addition to the expression as optical path length, liquid water in snow may
also be quantified as fraction of snow grain radius (Green et al., 2002; Green et al.,
2006). Finally, snow and ice surfaces are commonly characterized by the effective
grain radius in µm or the specific surface area (Warren, 1982). Alternatively, the
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solid water phase can also be parameterized as optical path length in mm (Green
et al., 2006). Throughout this work, the use of different units for parameterizing
water in its different states is assessed depending on the applied retrieval methods.

1.2.2 Optical remote sensing of the three phases of water

Optical remote sensing is based on measurements of the solar radiation reflected by
atmosphere and surface components and covers the VIS, NIR, and SWIR part of
the solar spectrum featuring a wavelength range from 400 to 2500 nm (Goetz et al.,
1985). Numerous multispectral or medium resolution satellite instruments operate
on this technique, which is a valuable tool to obtain spatial distribution of the three
phases of water on a global scale with a high temporal resolution. For instance,
the retrieval of columnar water vapor is a standard routine included in atmospheric
correction algorithms for remote sensing data and a multitude of various methods
exist to detect vegetation liquid water content as well as snow and ice on the surface.
The basic contributions of the three phases of water to an optical remote sensing
measurement from space are presented on the example of imaging spectroscopy in
Section 1.2.3 (see Figure 1.4).

Initially, atmospheric water vapor has been commonly retrieved from satellites
using the thermal infrared (TIR) region of the electromagnetic spectrum, until Gao
et al. (1993) presented the idea to use instrument channels around the 940 nm

NIR absorption feature for remotely sensing precipitable water. This method has
been established for retrievals from the MEdium Resolution Imaging Spectrome-
ter (MERIS), the moderate resolution imaging spectroradiometer (MODIS), or the
Sentinel-3 Ocean and Land Colour Instrument (S3 OLCI) (Bennartz and Fischer,
2001; Albert et al., 2005; Guanter, Gomez-Chova, and Moreno, 2008a; Lindstrot et
al., 2012; Diedrich et al., 2015; Preusker, Carbajal Henken, and Fischer, 2021). But
also multispectral sensors such as Sentinel-2 can be used for retrieving atmospheric
water vapor using only two spectral instrument channels (Makarau et al., 2017).
Prominent NIR retrieval algorithms include the Continuum Interpolated Band Ra-
tio (CIBR) and the Atmospheric Precorrected Differential Absorption technique
(APDA) (Carrere and Conel, 1993; Schlaepfer et al., 1998). Other approaches are
based on measurements in the VIS spectral range by using observations from sensors
such as the Ozone Monitoring Instrument (OMI) or the Global Ozone Monitoring
Experiment 2 (GOME-2) (Noël et al., 2002; Wagner et al., 2006; Wagner et al.,
2013). Ultimately, Frankenberg et al. (2013) introduced a method of using the
SWIR spectral range to estimate the isotopic composition of water vapor from the
GOSAT instrument.
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Likewise, a couple of different methods exist to retrieve liquid water from space-
borne optical remote sensing data. They mainly concentrate on vegetated surfaces
by presenting approaches to quantify leaf or canopy water content. However, the
most common way is to use empirical band indices that relate surface reflectance
to vegetation water content and can only be used as a proxy for physical quanti-
ties. The first suggestion for such an index was published by Hardisky, Klemas,
and Smart (1983). They presented the Infrared Index that compares the SWIR
with the NIR reflectance and was developed based on multispectral data from the
Landsat 4 and 5 Thematic Mappers (TM). Using the same Landsat bands, also the
Leaf Water Stress Index was introduced (Hunt, Rock, and Nobel, 1987; Hunt and
Rock, 1989). Gao (1996) developed the Normalized Difference Water Index (NDWI)
that compares the high reflectance plateau of vegetation at 860 nm and the water
absorption feature at 1240 nm using MODIS data. This index was also applied to
Landsat and Sentinel-2 data analyzing the water content of agricultural crops (Jack-
son et al., 2004; Zhang et al., 2017). Instead of empirical band indices, an alternative
method to estimate vegetation liquid water content is a physically-based inversion
of radiative transfer models such as the widely used PROSAIL model (Jacquemoud
et al., 2009). Several studies presented inversion techniques based on deep learning
algorithms such as neural networks and applied these approaches to MODIS data
or assessed the potential of observations from the high-resolution CHRIS-PROBA
satellite (Trombetti et al., 2008; Cernicharo, Verger, and Camacho, 2013).

Finally, the mapping of snow properties was among the earliest geophysical re-
trieval methods from spaceborne optical remote sensing data (Rango and Itten,
1976). The potential of the NIR wavelength region to estimate grain size was already
demonstrated in the early 80’s based on measurements from the NOAA Advanced
Very High Resolution Radiometer (AVHRR) (Dozier, Schneider, and Jr., 1981). In
particular, data from the Landsat TM satellite were then used to map snow cover
and grain size (Dozier and Marks, 1987; Dozier, 1989). Dozier (1989) also introduced
the Normalized Difference Snow Index (NDSI) that was later on used for generating
the standard snow product from MODIS acquisitions (Hall, Riggs, and Salomonson,
1995). Prominent subsequent algorithms used for retrieving snow cover and grain
size include algorithms based on observations from MODIS and S3 OLCI (Zege et
al., 2008; Sirguey, Mathieu, and Arnaud, 2009; Zege et al., 2011; Carlsen et al.,
2017; Kokhanovsky et al., 2019).

In general, previously developed retrieval methods for the three phases of wa-
ter based on optical remote sensing from space are limited both in accuracy and
spatial scale due to the characteristics of existing instruments (for exemplary speci-
fications, see Table 1.1). Despite featuring a very high spectral resolution, OMI and
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GOME-2 only cover the VIS and have large footprints with magnitudes of several
kilometers. MERIS, MODIS, and S3 OLCI provide ground sampling distances of
250 � 1000 m, but feature only 16, 36, and 21 spectral channels, respectively. On
the other hand, CHRIS-PROBA is limited to the range of 400 to 1000 nm and
has less quality in radiometric calibration. Multispectral sensors such as Landsat
and Sentinel-2 provide an even smaller number of bands than MERIS, MODIS, or
S3 OLCI. As a consequence, the majority of retrieval algorithms is just empirical,
cannot provide numbers in physical units, and is potentially confounded by other
factors similarly impacting the multispectral spectrum. Inferring local variations of
atmospheric water vapor on small spatial scales and determining the exact amounts
of surface liquid water and snow and ice is therefore challenging using existing op-
tical spaceborne technology. Moreover, all the above-mentioned retrieval methods
are designed for quantifying water in only one of its three states since existing
spaceborne sensors do not come with the technical prerequisites to spectroscopically
separate and quantify the three phases of water simultaneously, which would sig-
nificantly improve the accuracy of estimated quantities. For instance, decoupling
liquid and solid water absorption from the gaseous phase leads to less uncertainty in
atmospheric water vapor maps over vegetated and snow-covered terrain (Thompson
et al., 2015). Furthermore, a coupled retrieval increases the accuracy of liquid wa-
ter estimates on snow and ice surfaces leading to improved prediction of melt rates
and processes (Green et al., 2006). Finally, retrieval uncertainties and error corre-
lation between all three phases could precisely be quantified using a simultaneous
approach facilitating a better evaluation of the estimated values. Advanced high-
resolution imaging spectroscopy helps toward facing these challenges and achieving
these objectives as exemplified in the following section.

1.2.3 Imaging spectroscopy

In contrast to multispectral or medium resolution technologies, the new generation
of spaceborne imaging spectrometers features both contiguous channels with a high
spectral sampling interval along the complete optical range from even 380 to 2500 nm

and a high-resolution footprint of around 30 m (Cawse-Nicholson et al., 2021) (Ta-
ble 1.1). Due to these specifications, spectroscopic measurements can be used to ac-
curately quantify land, water, and atmosphere constituents using physically-based
retrievals by modeling characteristic atmosphere and surface absorption features.
Imaging spectroscopy can be applied to a wide range of different scientific disci-
plines in Earth Observation (EO) such as quantification of atmospheric greenhouse
gases and aerosols, monitoring vegetation phenology, soil and mineral mapping, es-
timating snow and ice surface properties, as well as retrieval of water constituents



1.2. Background 9

Table 1.1: Relevant characteristics of exemplary operating satellite instruments in com-
parison to the new generation of imaging spectrometers. The specifications are collected
from Masek et al. (2020), Justice et al. (2002), Munro et al. (2006), Barducci et al. (2005),
and Cawse-Nicholson et al. (2021).

Multispectral Medium resolution High resolution VIS High resolution VNIR New generation of
(e.g., Landsat) (e.g., MODIS) (e.g., GOME-2) (e.g., CHRIS-PROBA) imaging spectroscopy

Data availability 1972-present 1999-present 2006-present 2001-present 2018-present
Nadir pixel size [km] 0.015-0.03 0.25-1 40 0.017-0.034 0.03
Swath width [km] 185 2330 960 14 30
Revisit time [days] 8 1-2 1.5-3 7 16

Spectral coverage [nm] 430-2290 405-2155 240-790 400-1050 380-2500
Spectral resolution [nm] 207 92 0.2-0.4 1.25-11 < 10

Signal-to-noise ratio (SNR) < 540 < 1087 < 1000 < 140 < 500

over inland water bodies, coastal areas and open ocean (Schaepman et al., 2009).
In particular, high-resolution imaging spectroscopy measurements enable a separa-
tion and quantification of water in its three states (Green et al., 2006; Painter et
al., 2013). In a simplified way, Figure 1.4 illustrates the contributions of the three
phases of water to such measurements from space over vegetated and snow-covered
surfaces. Thereby, the spectral top-of-atmosphere (TOA) radiance received by the
instrument is a particular portion of the incoming TOA solar irradiance that is re-
flected by atmosphere and surface components. On the path from the sun to the
sensor, the atmospheric transmission of solar photons is mainly determined by water
vapor, whereas liquid water and ice form characteristic absorption features of the
surface reflectance. Additional contributors to the TOA radiance signal such as at-
mospheric path radiance, spherical albedo, or topographic and adjacency effects are
not included in the sketch, but ideally have to be considered in an accurate retrieval
scheme as well. Using a simplified solution of the radiative transfer equation, the
wavelength-dependent TOA radiance can be formulated as (Chandrasekhar, 1960):

LTOA(�) = L0(�) +
1

⇡

⇢s(�)(Edir(�)µsun + Edif(�))T"(�)

1� S(�)⇢s(�)
, (1.3)

where L0 is the atmospheric path radiance; Edir and Edif are the direct and diffuse
components of Isol arriving at the surface; µsun is the cosine of the solar zenith angle;
and S is the spherical albedo of the atmosphere.

So far, imaging spectroscopy of the three phases of water has been almost entirely
based on field and airborne spectrometers. For instance, Carrere and Conel (1993)
applied the method from Gao et al. (1993) to measurements from NASA’s Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) to retrieve atmospheric water va-
por. Based on least squares spectrum-matching techniques, canopy equivalent wa-
ter thickness was also estimated using spectroscopic AVIRIS data (Gao and Goetz,
1995). Additionally, several studies focused on indices exploiting the 970 nm liquid
water absorption feature in the NIR using measurements from field spectrometers or
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Figure 1.4: Contributions of the three phases of water to a high-resolution optical remote
sensing measurement from a spaceborne imaging spectrometer over vegetated and snow-
covered surfaces under cloud free conditions. Depicted are TOA solar irradiance (Isol),
total atmospheric transmission with main contribution from water vapor (T#"), surface
reflectance of both snow and vegetation with characteristic liquid water and ice absorp-
tion features (⇢s), and respective TOA radiance received by the satellite sensor (LTOA).
Additional contributors to the TOA radiance signal such as atmospheric path radiance,
spherical albedo, or topographic and adjacency effects are neglected for simplicity.

the airborne Hyperspectral Mapper (HyMap) to estimate leaf or canopy water con-
tent (Peñuelas et al., 1993; Peñuelas et al., 1997; Vohland, 2008; Clevers, Kooistra,
and Schaepman, 2008). With the Water Absorption Area Index (WAAI) and the
Depth Water Index (DWI), more generally applicable indices were recently devel-
oped to assess the liquid water content of agricultural crops based on HyMap obser-
vations (Pasqualotto et al., 2018), and Champagne et al. (2003) inverted PROSAIL
for retrieving canopy water content based on precalculated look-up-tables (LUT)
using the Probe-1 airborne imaging spectrometer. Likewise, spectroscopic retrievals
for the cryosphere were mainly developed based on AVIRIS data. One of the first
methods for estimating snow grain size exploited the nonlinear relationship between
modeled directional reflectance at 1030 nm and grain radius (Nolin and Dozier,
1993). This approach was then extended to the full 1030 nm ice absorption feature
by relating the absorption band area to snow grain radius leading to more robust
retrieval results (Nolin and Dozier, 2000). By prior calculating snow subpixel cover,
this method was further improved (Painter et al., 2003). To reduce biases from the
overlapping water vapor and liquid water absorption, Painter et al. (2013) proposed
a spectral fitting method for the 1030 nm ice feature, which optimized a modeled
snow spectrum to match the reflectance observed by the instrument. Finally, Green
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et al. (2002) presented reflectance models for wet snow to retrieve liquid water frac-
tion and tested the approach with measurements from a field spectrometer. To date,
this method was never extended to airborne or spaceborne instruments though.

Attempts to simultaneously quantify water in its different states using spec-
troscopy reach back to the 90’s as a few studies introduced a combined water vapor
and liquid water retrieval from AVIRIS data (Gao and Goetz, 1990; Green et al.,
1991; Gao, 1996). Initially, this approach aimed at improving the performance
of atmospheric correction algorithms by decoupling the overlapping absorption of
the liquid phase from the stronger vapor line to enhance the accuracy of the de-
rived water vapor maps. The method applies a nonlinear least squares inversion of
the MODTRAN radiative transfer model (RTM) (Berk, Bernstein, and Robertson,
1989), linked with a well-parameterized surface reflectance model based on the Beer-
Lambert law. It expresses the absorption of incident radiation as a function of the
optical path length of liquid water (Born and Wolf, 1959). Later on, this method ap-
peared to be reliable for analyzing vegetation liquid water content (Roberts, Green,
and Adams, 1997; Roberts et al., 1998a). However, the first assessment to con-
currently infer the amounts of water in all three states was introduced by Green
et al. (2006) more than ten years later by accounting for the absorption line of the
solid phase in the Beer-Lambert surface model. This approach was further improved
by a linear approximation of the inversion technique (Thompson et al., 2015), and
applied to measure the thermodynamic phase of clouds (Thompson et al., 2016).
Ultimately, Thompson et al. (2018) recently presented a simultaneous retrieval of
water vapor, aerosol optical thickness (AOT), and surface reflectance by exploiting
all AVIRIS instrument channels covering the whole optical range from the VIS to
the SWIR wavelengths. This approach offers promising potential to add further
surface parameters such as liquid water as well as snow and ice properties to the
state vector.

Imaging spectroscopy of the three phases of water is still limited in spatial
and temporal coverage. However, the comprehensive research based on airborne
techniques over the past decades laid the bedrock for advancing retrieval methods
from airborne sensors to spaceborne instruments. With the launch of the German
Aerospace Center’s (DLR) Earth Sensing Imaging Spectrometer (DESIS) (Mueller
et al., 2016) and the Italian Hyperspectral Precursor of the Application Mission
(PRISMA) (Cogliati et al., 2021), a new era of orbital imaging spectrometers was
heralded in the years 2018 and 2019, respectively. Both sensors already deliver
promising data products and several forthcoming missions are expected to further
extend spatial and temporal coverage with daily acquisitions and high-resolution
footprints of 30 m. Prominent future instruments include NASA’s Earth Surface
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Mineral Dust Source Investigation (EMIT) (Green et al., 2018), the German En-
vironmental Mapping and Analysis Program (EnMAP) (Guanter et al., 2015), the
Copernicus Hyperspectral Imaging Mission (CHIME) led by the European Space
Agency (ESA) (Rast et al., 2019), and NASA’s Surface Biology and Geology (SBG)
designated observable (National Academies of Sciences, Engineering, and Medicine,
2018). The expected unprecedented availability of EO data acquired by these space-
borne imaging spectrometers will raise new possibilities in simultaneously mapping
water vapor, liquid water as well as snow and ice properties both on local and on
global scale.

1.3 Aims and objectives

The general objective of this thesis is to evaluate the potential of a new generation
of spaceborne imaging spectroscopy missions to further the detection and quantifi-
cation of the three phases of water on Earth’s surface by introducing novel joint
retrieval methods from satellite instruments. In particular, 1) the ongoing climate
change demands more frequent high-resolution observations of both vegetated and
snow-covered surfaces to assess the role of water in analyses of plant health and the
associated potential as a carbon sink as well as in investigations of melting dynamics
on glacier ice sheets, and 2) present and forthcoming orbital imaging spectrometers
will deliver high-resolution data both on a global scale and daily basis, which re-
quests for an independently applicable precise mapping of the three phases of water.
These objectives are addressed by presenting two novel joint retrieval algorithms
designed for the application to spaceborne instruments: a coupled retrieval of the
three phases of water modeling the absorption of surface liquid water and ice, and
the extension to a simultaneous atmosphere and surface inversion relying on accu-
rate simulations of both scattering and absorptive properties of water in its three
states. Specifically, the objective of this work aims at a rigorous quantification of re-
trieval uncertainties by utilizing optimal estimation as inversion technique. For this
purpose, the performance of the algorithms is evaluated through sensitivity anal-
yses based on synthetic EnMAP data, and is tested on already existing PRISMA
measurements. Furthermore, the potential of new spectroscopic retrievals in concert
with multiband data in a comprehensive observation system as well as the capability
of the presented algorithms to be scaled to a global product are shown. Methodolog-
ically, this research focuses on joint retrieval approaches that exploit 1) the spectral
information provided by imaging spectroscopy to differentiate between the three
phases of water, and 2) prior knowledge obtained from simulations by vegetation,
snow, and ice radiative transfer models. A major step in this work is the quantitative
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validation of retrieved canopy water content and snow and ice properties and the
assessment of the correlation between atmosphere and surface state and its effect
on retrieval uncertainties, as well as an evaluation of the limitations of present and
future imaging spectroscopy missions and the applied approaches.

Based on the objectives, the following main research questions will be addressed
in this thesis:

(1) Are present and forthcoming orbital imaging spectroscopy missions applicable
to robustly map and quantify the three phases of water?

(2) How can spaceborne imaging spectroscopy contribute to the analyses of veg-
etation dynamics and ice melt processes and their link to climate change?

(3) What are the synergies between imaging spectroscopy from space and obser-
vations from existing multiband orbital instruments?

1.4 Data basis

This section provides an overview about the remote sensing data and field mea-
surements used to address the objectives and research questions. The sensitivity
analyses of Chapters 2 and 3 are based on synthetic EnMAP data. Additionally,
the applicability of the modified retrieval algorithms is demonstrated on airborne
AVIRIS acquisitions. Both chapters also use selected datasets for validation: Chap-
ter 2 compares field measurements of canopy water content with the results from a
concurrent CHRIS-PROBA observation, Chapter 3 validates glacier algae concentra-
tion retrieved from field spectrometer based simulated EnMAP data with laboratory
measurements. Finally, Chapter 4 applies the method from Chapter 3 to PRISMA
data and uses a Sentinel-3 OLCI acquisition for comparison.

Synthetic spaceborne EnMAP imaging spectroscopy data
The Environmental Mapping and Analysis Program (EnMAP) is a German high
performance EO mission leading to Level 2 products including an open data pol-
icy (Guanter et al., 2015). The instrument is a push-broom imaging spectrometer
scheduled for launch in 2022. EnMAP will be in sun-synchronous orbit carrying two
cameras: a VNIR camera covering 420�1000 nm with a mean spectral sampling in-
terval (SSI) of 6.5 nm and a SWIR camera covering 900�2450 nm with a mean SSI of
10 nm. The instrument has a swath width of 30 km and a ground sampling distance
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(GSD) of 30 m. The mission lifetime is scheduled for 5 years. EnMAP TOA radi-
ances were simulated using the EnMAP end-to-end Simulation tool (EeteS) (Segl
et al., 2012) based on two different types of input reflectance spectra. For the
vegetation analysis, simulations of canopy reflectance from the 3D Hyperspectral
Simulation of Canopy Reflectance system (HySimCaR) (Kuester et al., 2014) are
used. For studying snow and ice properties, input spectra were generated with the
snow and ice RTM BioSNICAR-GO (Cook et al., 2020). Based on the provided re-
flectance, EeteS was used to simulate the entire image data acquisition, calibration
and processing chain from spatially and spectrally oversampled data to intermedi-
ate Level-1A (systematically-corrected) raw data and to the final EnMAP Level-1B
products (radiometrically-corrected, spectrally- and geometrically-characterized ra-
diance).

Spaceborne PRISMA imaging spectroscopy data
The Hyperspectral Precursor of the Application Mission (PRISMA) is an imaging
spectroscopy satellite mission led by the Italian Space Agency (ASI) (Cogliati et
al., 2021). The push-broom instrument was launched in March 2019 and provides
on-demand data for most of the Earth. It features 239 spectral bands covering the
wavelength region from 400 to 2500 nm with an SSI less than 12 nm. The GSD is
30 m, while the swath is 30 km. For the cryosphere study in Chapter 4, an acqui-
sition from August 30, 2020, covering a part of the k-transect on the Greenland Ice
Sheet was selected. The official PRISMA L1 TOA radiance product was refined by
applying a suite of preprocessing tools, including a spectral smile correction and a
radiometric radiance correction (Chlus, Townsend, and Gierach, 2021).

Spaceborne CHRIS-PROBA imaging spectroscopy data
The Compact High Resolution Imaging Spectrometer (CHRIS) on the Project for
On-Board Autonomy-1 (PROBA-1) satellite is a push-broom imaging spectrometer
that still delivers EO data since launch in 2001. The instrument features a swath
width of 13.5 km and a GSD of 36 m. It has a spectral range covering 410 nm to
1050 nm and an SSI of 1.25 nm (at 400 nm) and 11 nm (at 1050 nm) (Barducci
et al., 2005). The dataset used in Chapter 2 was acquired during the ESA Spectra
Barrax Campaign (SPARC’03) in Barrax, Spain, on July 14, 2003. The image covers
a mixture of agricultural areas and open soil and extends over 38.97� 39.13�N and
2.00� 2.19�W.

Spaceborne medium resolution Sentinel-3 OLCI data
The Ocean and Land Colour Instrument (OLCI) is a moderate resolution imaging
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spectrometer installed on the Sentinel-3 satellite that was launched in 2016. The
instrument provides 21 spectral bands spanning 400 to 1020 nm with an SSI be-
tween 2.5 and 40 nm. With 1, 270 km and 300 m, it features relatively large swath
and GSD, respectively. OLCI was specifically designed for retrieving chlorophyll
content, primarily over ocean surfaces, which is highly facilitated by its large foot-
print (Malenovský et al., 2012). Chapter 4 utilizes an acquisition from August 30,
2020, 15:00 GMT-2. The scene covers large parts of the western shore of the Green-
land Ice Sheet including the k-transect. For the comparison with PRISMA data,
the OLCI L1B product providing radiometrically calibrated TOA radiances is used.

Airborne AVIRIS imaging spectroscopy data
Both data from the AVIRIS-Classic (AVIRIS-C) and the AVIRIS-Next Generation
(AVIRIS-NG) instrument are used in Chapters 2 and 3. AVIRIS-C covers the wave-
length range from 380 to 2500 nm with an SSI of 10 nm. It features varying
GSD due to different flying altitudes (Green et al., 1998). It can be installed on
the NASA ER-2 research aircraft so that it is able to acquire data from a height
of up to 20 km resulting in a GSD of 20 m. The channels of AVIRIS-NG cover
the same wavelengths as AVIRIS-C, but with a denser SSI of 5 nm. The GSD
can vary in the same range as for AVIRIS-C (Hamlin et al., 2011). For studying
vegetated surfaces, an AVIRIS-C dataset acquired over a mountainous area in the
Sierra Nevada, California, on February 02, 2015 was selected. Two subsets were
generated: one containing vegetated agricultural areas and rock surfaces in equal
parts covering 35.70�35.76�N and 118.07�118.13�W, and another one consisting of
partly snow- and forest-covered mountain ranges extending over 35.57�35.65�N and
118.04� 118.13�W. For assessing the retrieval of snow and ice surface properties in
Chapter 3, an AVIRIS-NG image acquired over the Greenland Ice Sheet on August
31, 2019 was selected. Again, two subsets were generated: one capturing a dark
ice surface at 66.97�N and 49.12�W, and another one covering a clean snow surface
with center coordinates 66.96�N and 46.86�W.

Field measurements
Two collections of field data were used in Chapters 2 and 3. For the vegetation
analysis, measurements of leaf water content and leaf area index (LAI) were taken
from a dataset created during the SPARC03 campaign (Delegido et al., 2013). The
data were sampled between July 12 and 14, 2003, at 39.3�N and 2.6�W in Barrax,
La Mancha, Spain, and cover multiple crop types, growth phases, canopy geome-
tries and soil conditions. Canopy water content was then obtained by multiplying
measured leaf water content with LAI (Clevers, Kooistra, and Schaepman, 2010).
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Additionally, field observations from the Greenland Ice Sheet are used to validate
remotely retrieved snow and ice properties. The dataset includes reflectance mea-
surements conducted with an Analytical Spectral Device (ASD) FieldSpec Pro 3,
and laboratory measurements of glacier algae mass mixing ratios obtained from ice
samples taken from within the viewing area of the ASD. The data were collected
and provided by Cook et al. (2020) in the frame of the Black and Bloom Project
and were sampled from a Greenland field site at 67.04� N and 49.07� W between
July 10 and 17, 2017.

1.5 Thesis structure and author contribution

This thesis contains an introduction (Chapter 1), three main chapters represent-
ing three manuscripts (Chapters 2 - 4), and an overall synthesis and discussion
(Chapter 5). Chapters 2 and 3 are original publications that have been published
in peer-reviewed scientific journals and Chapter 4 has been submitted to a peer-
reviewed scientific journal and is currently under review. All main chapters represent
stand-alone independent research. Therefore, some overlapping general information
appears between publications, particularly in the description of methods and mate-
rials as well as in the introductory sections.

Chapter 2 - Coupled retrieval of the three phases of water from space-
borne imaging spectroscopy measurements

Niklas Bohn, Luis Guanter, Theres Kuester, René Preusker, and Karl Segl.
Remote Sensing of Environment, 2020, 242, 111708,
https: // doi. org/ 10. 1016/ j. rse. 2020. 111708 .

The first published manuscript presents a new coupled retrieval of the three phases
of water that builds upon a method from Green et al. (2006). The study focuses
on a sensitivity analysis of liquid water retrievals over vegetated surfaces based
on synthetic EnMAP data. The algorithm adopts optimal estimation as inverse
method in order to enable a rigorous quantification of uncertainties. Additionally,
a validation of remotely retrieved canopy water content with field measurements
is included to assess the potential of spaceborne imaging spectroscopy to support
analyses of plant phenological status and health. N. Bohn developed the overall idea
and approach supported by L. Guanter. N. Bohn conducted data processing and
statistical analysis, generation of figures and tables, and wrote the manuscript. T.
Kuester contributed to the simulation of EnMAP data, particularly, to the genera-
tion of 3D canopy reflectance simulations, and wrote the subsections about modeling

https://doi.org/10.1016/j.rse.2020.111708
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at leaf and canopy level. R. Preusker contributed to the methodological program-
ming by providing Python scripts on optimal estimation. K. Segl contributed to
the simulation of EnMAP data by providing the end-to-end software. L. Guanter
contributed to data interpretation and manuscript review.

Chapter 3 - Optimal estimation of snow and ice surface parameters from
imaging spectroscopy measurements

Niklas Bohn, Thomas H. Painter, David R. Thompson, Nimrod Carmon, Jouni
Susiluoto, Michael J. Turmon, Mark C. Helmlinger, Robert O. Green, Joseph M.

Cook, Luis Guanter. Remote Sensing of Environment, 2021, 264, 112613,
https: // doi. org/ 10. 1016/ j. rse. 2021. 112613 .

The second published manuscript introduces a novel joint atmosphere and surface
inversion advancing a method from Thompson et al. (2018). The study concentrates
on a sensitivity analysis of snow and ice property retrievals based on synthetic En-
MAP data. The algorithm adds selected surface parameters such as grain size, liquid
water content, and algae concentration to the state vector in order to quantify pos-
terior uncertainties and correlation errors. Additionally, a validation of remotely
retrieved glacier algae concentration with field measurements is included to assess
the potential of spaceborne imaging spectroscopy to support research of darkening
and melting ice sheets. N. Bohn developed the overall idea and approach supported
by D. Thompson and N. Carmon. N. Bohn conducted data processing and statistical
analysis, generation of figures and tables, and wrote the manuscript. T. Painter con-
tributed to data interpretation and manuscript review and provided simulations of
directional reflectance. D. Thompson, N. Carmon, J. Susiluoto, M. Turmon, and L.
Guanter contributed to data interpretation and manuscript review. M. Helmlinger
effected scientific contacts and supported acquisition of AVIRIS data. R. Green pro-
vided the overall research frame by allocating both hardware and software. J. Cook
contributed to data interpretation and manuscript review and provided glacier algae
field measurements as well as the snow and ice radiative transfer model.

Chapter 4 - Glacier ice surface properties in South-West Greenland Ice
Sheet: first estimates from PRISMA imaging spectroscopy data

Niklas Bohn, Biagio Di Mauro, Roberto Colombo, David R. Thompson, Jouni
Susiluoto, Nimrod Carmon, Michael J. Turmon, Luis Guanter. Journal of

Geophysical Research: Biogeosciences, Special Issue "The Earth in living color:
spectroscopic and thermal imaging of the Earth: NASA’s Decadal Survey Surface
Biology and Geology Designated Observable", submitted on November 17, 2021.

https://doi.org/10.1016/j.rse.2021.112613
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The third manuscript presents an application of the retrieval method from Chap-
ter 3 to measurements from the spaceborne PRISMA sensor over the Greenland Ice
Sheet. The study examines the capabilities of an existing satellite imaging spectrom-
eter to map snow and ice surface properties and provides an assessment of potential
synergies between imaging spectroscopy and multiband data in a comprehensive
cryosphere observation system. Additionally, a potential pathway to a global prod-
uct from a virtual constellation of orbital imaging spectrometers is analyzed. N.
Bohn developed the overall idea and approach supported by B. Di Mauro and R.
Colombo. N. Bohn conducted data processing and statistical analysis, generation
of figures and tables, and wrote the manuscript. B. Di Mauro and R. Colombo con-
tributed to data interpretation and manuscript review and provided PRISMA data
products. D. Thompson, J. Susiluoto, N. Carmon, M. Turmon, and L. Guanter
contributed to data interpretation and manuscript review.
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Abstract

Measurements of reflected solar radiation by imaging spectrometers can quantify
water in different states (solid, liquid, gas) thanks to the discriminative absorption
shapes. We developed a retrieval method to quantify the amount of water in each
of the three states from spaceborne imaging spectroscopy data, such as those from
the German EnMAP mission. The retrieval couples atmospheric radiative transfer
simulations from the MODTRAN5 radiative transfer code to a surface reflectance
model based on the Beer-Lambert law. The model is inverted on a per-pixel basis
using a maximum likelihood estimation formalism. Based on a unique coupling of
the canopy reflectance model HySimCaR and the EnMAP end-to-end simulation
tool EeteS, we performed a sensitivity analysis by comparing the retrieved values
with the simulation input leading to an R2 of 0.991 for water vapor and 0.965
for liquid water. Furthermore, we applied the algorithm to airborne AVIRIS-C
data to demonstrate the ability to map snow/ice extent as well as to a CHRIS-
PROBA dataset for which concurrent field measurements of canopy water content
were available. The comparison between the retrievals and the ground measurements
showed an overall R2 of 0.80 for multiple crop types and a remarkable clustering in
the regression analysis indicating a dependency of the retrieved water content from
the physical structure of the vegetation. In addition, the algorithm is able to produce
smoother and more physically-plausible water vapor maps than the ones from the
band ratio approaches used for multispectral data, since biases due to background
reflectance are reduced. The demonstrated potential of imaging spectroscopy to
provide accurate quantitative measures of water from space will be further exploited
using upcoming spaceborne imaging spectroscopy missions like PRISMA or EnMAP.

2.1 Introduction

Imaging spectroscopy or hyperspectral remote sensing of the Earth’s system is based
on spectroscopic measurements of the solar radiation reflected by atmospheric and
surface components in contiguous spectral channels (Goetz et al., 1985; Vane and
Goetz, 1988). They cover the visible (VIS), near-infrared (NIR) and shortwave-
infrared (SWIR) part of the solar spectrum featuring a wavelength range from
400 nm to 2500 nm (Goetz et al., 1985). Since land, water and atmosphere con-
stituents show characteristic spectral signatures, spectroscopic measurements enable
their identification and quantification using physically-based retrievals by modeling
atmospheric and surface absorption features. Based on this technique, imaging
spectroscopy can be applied to a wide range of different scientific disciplines in
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Earth Observation (EO) such as quantification of atmospheric greenhouse gases
and aerosols, monitoring vegetation phenology, soil and mineral mapping, as well
as retrieval of water constituents over inland water bodies, coastal areas and open
ocean (Schaepman et al., 2009). Imaging spectroscopy can therefore substantially
contribute to a better understanding of Earth’s ecosystems and support studies of
climate change (Thompson et al., 2015).

So far, research in imaging spectroscopy has been mostly based on airborne
spectrometers and simulations of spaceborne technology, but a number of satellite
missions were recently launched, or are to be launched soon. The German DLR
Earth Sensing Imaging Spectrometer (DESIS) (Mueller et al., 2016) and the Italian
Hyperspectral Precursor of the Application Mission (PRISMA) (Loizzo et al., 2018)
came into operation in June, 2018 and March, 2019, respectively. The German
Environmental Mapping and Analysis Program (EnMAP) (Guanter et al., 2015) is
scheduled for launch in 2021 and further missions like the NASA Surface Biology
and Geology (SBG) (Lee et al., 2015) and the Copernicus Hyperspectral Imaging
Mission (CHIME) (Bach, Rast, and Nieke, 2018) led by ESA are in the planning
phase.

The remote sensing of the three phases of water is an ideal example of the poten-
tial of imaging spectroscopy for environmental sciences, since it makes it possible to
identify and quantify water in different states due to the presence of sufficient nar-
row bands in the NIR (Green et al., 2006). In this connection, the use of spaceborne
imaging spectroscopy measurements presented in our study enables new possibilities
in mapping local and global trends of water vapor, liquid water and ice. On one
hand, it significantly contributes to climate research (Diedrich et al., 2013). On the
other, it is essential for evaluating the water use efficiency of plants and their phys-
iological status and health (see Clevers, Kooistra, and Schaepman (2010), Wocher
et al. (2018)). Finally, it helps to assess the distribution and availability of fresh
water through predicting snow melt rates and processes (Green et al., 2006).

Green et al. (2006) introduced a method to simultaneously estimate the path
lengths of water vapor, liquid water and ice from airborne imaging spectroscopy data
by applying a physically-based nonlinear least squares inversion of the MODTRAN
Radiative Transfer Model (RTM) (Berk, Bernstein, and Robertson, 1989) linked to
a surface reflectance model. The latter incorporates the Beer-Lambert law, which
expresses the radiation absorption as a function of the path length of pure liquid
water and ice (Born and Wolf, 1959). While water vapor can be inferred from
the MODTRAN simulations, the surface reflectance model enables the retrieval of
the other two phases. The approach is based on the decoupling of the overlapping
absorption lines of water vapor, liquid water and ice (Green et al., 2006; Thompson
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Figure 2.1: Overlapping transmittance spectra of the three phases of water. The line
of water vapor is calculated for an absorption of 5 mm precipitable water. The lines of
liquid water and ice are shown for five different absorption path lengths between 1 mm
and 9 mm.

et al., 2015) (Figure 2.1). The lines of liquid water and ice are shifted towards
longer wavelengths. This displacement, in combination with moderate absorption
energies enables a spectroscopic separation of the three phases (Green et al., 2006).
The study of Green et al. (2006) can be seen as the first assessment to infer the
amounts of all three phases of water in a coupled way. Earlier studies only present
combined vapor and liquid retrievals (Gao and Goetz, 1990; Green et al., 1991; Gao,
1996). Thompson et al. (2015) modified the method of Green et al. (2006) by a linear
approximation of the inversion procedure, and additionally present an application
on measuring cloud thermodynamic phase (Thompson et al., 2016). Each of the
aforementioned retrieval studies used data from the airborne AVIRIS-C instrument
(see Green et al. (1998), Vane et al. (1993)).

In view of the upcoming satellite missions, this work presents a novel appli-
cation of the existing coupled retrieval of the three phases of water by extending
the approach to spaceborne imaging spectroscopy measurements. We evaluate the
performance of the algorithm through a sensitivity analysis based on simulated En-
MAP data, which is new compared with previous applications, and show retrieval
uncertainties, and discuss potential issues. Additionally, we test the algorithm on
AVIRIS-C data to demonstrate the ability to map snow and ice extents, and use
CHRIS-PROBA data as a proxy for future satellite measurements to illustrate the
accuracy improvements using the three phases approach compared with band ratio
water vapor retrievals. Finally, we focus on canopy water content (CWC) as a sort
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of liquid water because of its especial relevance to vegetation studies, and show the
potential of the algorithm to quantitatively map CWC from space. This is done
by comparing the retrievals with ground-based measurements and by discussing the
interpretation of the derived top-of-canopy (TOC) values as a function of canopy
structural parameters.

2.2 Methods

The coupled retrieval of the three phases of water is based on the inversion of a
forward model, which models the top-of-atmosphere (TOA) radiance spectra. Ap-
plying this technique, the values of columnar water vapor (CWV), liquid water and
ice can be inferred by minimizing the difference between modeled and measured
spectra. The minimization uses a predefined cost function in an iterative optimiza-
tion procedure.

2.2.1 Forward model

Many algorithms in the field of remote sensing aim to infer specified quantities
from a set of measurements, generally TOA radiance, by the inversion of a well-
parameterized forward model. In a general form, the TOA radiance y is modeled
by:

y = F(x,b) + ✏, (2.1)

where F is the forward model, in this work composed of an atmospheric RTM and a
surface reflectance model; x is the state vector, here containing CWV, liquid water
and ice path lengths as well as slope and offset of the linear surface reflectance
continuum of the chosen water absorption feature; b is the model parameter vector
containing known parameters required by the forward model; and ✏ is an error
vector containing different uncertainty components. In our case, the forward model
input on one hand requires the observation geometry, i.e., the viewing zenith angle
(VZA), the solar zenith angle (SZA), the relative azimuth angle (RAA) and the
sensor altitude, and on the other hand, two physical parameters, namely the surface
elevation (HSF) and aerosol optical thickness (AOT). ✏ consists of measurement
errors caused by instrument calibration and noise, forward model errors, and errors
in the state vector variables as well as the known model parameters.

2.2.1.1 Atmospheric model

For the atmospheric radiative transfer simulations we use the MODTRAN code (Berk,
Bernstein, and Robertson, 1989; Berk et al., 2003; Bernstein, Berk, and Sundberg,
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Table 2.1: Gridding of LUT parameters for MODTRAN radiative transfer simulations
(according to Guanter, Richter, and Kaufmann (2009)).

1 2 3 4 5 6 7
VZA (�) 0 10 20 30 40 - -
SZA (�) 0 10 20 35 50 70 -
RAA (�) 0 25 50 85 120 155 180

HSF (km) 0 0.7 2.5 8 - - -
AOT 0.05 0.12 0.2 0.3 0.4 0.8 -

CWV (gcm�2) 0 1 1.5 2 2.7 3.5 5

2007). It is a 1D scalar RTM to calculate transmittance, radiance and fluxes for the
ultraviolet (UV), VIS, NIR, SWIR and thermal infrared (TIR) spectrum covering
a wavelength range of 0.2 - 104 µm. We simulated wavelengths from 400 nm to
2500 nm to match the spectral coverage of EnMAP, AVIRIS-C and CHRIS-PROBA
and executed MODTRAN in band model mode with a spectral sampling interval
(SSI) of 1.0 cm�1. The molecular absorption lines were obtained from the HITRAN
database (Rothman et al., 2009), and multiple scattering was calculated using the
DISORT N-stream (Stamnes et al., 1988).

Assuming clear sky and a plane-parallel atmosphere as well as a Lambertian
surface, the TOA radiance LTOA can be modeled by a simplified solution of the
radiative transfer equation following the approach of Chandrasekhar (1960):

LTOA = L0 +
1

⇡
⇤ ⇢s(Edirµsun + Edif )T "

1� S⇢s
, (2.2)

where L0 is the atmospheric path radiance; ⇢s is the surface reflectance; Edir and
Edif are the direct and diffuse solar irradiance, respectively, arriving at the surface;
µsun is the cosine of the solar zenith angle; T " is the total upward atmospheric
transmittance; and S is the spherical albedo of the atmosphere. All components
except ⇢s are functions of the state vector x and the model parameter vector b

and are derived from the MODTRAN output by applying specific conversions fol-
lowing Guanter, Richter, and Kaufmann (2009). To decrease the computational
burden and to increase the processing speed, the atmospheric components were pre-
viously calculated for different atmospheric cases and stored in a multidimensional
Look-Up-Table (LUT) (Table 2.1). The simulations sum up to 35,380 cases and are
assumed to cover most of the acquisition conditions of the data used in this study.

2.2.1.2 Surface reflectance model

Since water vapor is the only water phase appearing directly within the MODTRAN
code, the atmospheric RTM has to be linked with a well-parameterized surface



2.2. Methods 25

reflectance model to account for the path lengths of liquid water and ice. Whereas
vapor is most dominant in the atmosphere, liquid and solid water can be classified
as surface parameters. We use the method of Green et al. (2006) and model the
surface reflectance as a linear change in reflectance with wavelength attenuated by
the spectrally dependent absorption for liquid water and ice based on the Beer-
Lambert law (Born and Wolf, 1959). Consequentially, the wavelength dependent
surface reflectance ⇢s,� is expressed by:

⇢s,� = (a+ b�)e(�dw↵w,��di↵i,�), (2.3)

where a and b are offset and slope of the linear reflectance continuum; ↵w and ↵i

are the wavelength dependent absorption coefficients of liquid water and ice, re-
spectively; and dw and di are the liquid water and ice path lengths, respectively,
expressed in the same unit as wavelength. ↵w and ↵i are calculated by using the
imaginary part of the complex index of refraction k, which is also wavelength de-
pendent (Petty, 2004):

↵� =
4⇡k�
�

. (2.4)

To obtain k, we use the table of Kedenburg et al. (2012) for liquid water and the
values from Warren (1984) for ice.

2.2.2 Inverse method

During the inversion of the forward model F, water vapor, liquid water, and ice path
lengths are iteratively adjusted to match modeled and measured spectra within the
water absorption feature around 1140 nm. We chose the 1140 nm window since
EnMAP features two overlapping detectors around the 940 nm water absorption
band so that a complete coverage of the window using only one detector is not
possible. Furthermore, both water bands can be used in a uniform manner to
retrieve the amounts of the three phases (Thompson et al., 2015). The matching of
the spectra is evaluated by a predefined cost function and the needed atmospheric
parameters are obtained by a multidimensional linear interpolation within the LUT.
Since we do not revert to prior or background knowledge about the uncertainties
of the retrieval quantities, we apply a maximum likelihood estimation instead of
optimal estimation to the iteration procedure with a focus on retrieval accuracy and
processing speed. The mathematical expressions presented in the following section
can be found in Rodgers (2000) as well as in applications by Diedrich et al. (2013)
and Diedrich (2016).
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2.2.2.1 Maximum likelihood estimation

The maximum likelihood estimation enables the possibility to incorporate the error
vector ✏ from Eq. 2.1 in terms of a measurement error covariance matrix Se and to
calculate the retrieval uncertainty for each state vector parameter as a by-product.
The method is based on Bayes’ theorem about probability density and takes Gaus-
sian distribution of the errors as a basis. We invert the forward model by iteratively
minimizing the cost function f(x), which is commonly used for maximum likelihood
and optimal estimation procedures:

f(x) = (x� xa)
TS�1

a
(x� xa) + (y � F(x))TS�1

e
(y � F(x)), (2.5)

where xa is the a priori state vector; and Sa is its error covariance matrix. Here,
the difference between modeled spectra F(x) and measured spectra y is evaluated
by taking into account the residuals between state vector and a priori state vector.
Both quantities are weighted by their uncertainties and the state vector is changed at
each iteration step to find the solution with the highest probability based on a given
measurement and a priori information about the state. Since we apply the maximum
likelihood estimation without considering information about the uncertainties of the
entries of xa, we fill the matrix Sa with sufficient high values (see Section 2.2.2.2).
For convergence, we use the criterion:

(xi � xi+1)
TS�1

x
(xi � xi+1) < ✏xn, (2.6)

where Sx is the a posteriori or retrieval error covariance matrix; ✏x is a threshold
in fraction of variance (here: ✏x = 0.01); and n is the number of dimensions of the
state vector. The retrieval error covariance matrix gives a direct measure of the
uncertainty of each parameter and is calculated by propagating the measurement
uncertainty into the state vector space:

Sx = (S�1
a

+KT

i
S�1
e
Ki)

�1
, (2.7)

where K is the Jacobian of the forward model and expresses the change in mod-
eled TOA radiance in the j-th instrument channel for a small change in the k-th
parameter of the solution state vector x at iteration step i:

Kj,k = { �yj
�xk

}. (2.8)

Se is decomposed into a matrix Sy describing the uncertainties due to physical
instrument noise and a matrix Sb accounting for errors caused by unknown forward
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model parameters. Sy is calculated by:

Sy

j,k
= {cj,k�y,j�y,k}, (2.9)

where �y,j is the measurement error in units of standard deviation for the j-th band
of the imaging spectrometer; and cj,k is the correlation between the errors in the
j-th and k-th band. For standard imaging spectrometers it can be assumed that
cj,k = 0. Consequentially, Se has only diagonal elements:

(�y
j,j
)2 = (

Lj

SNRj

)2 +�2
j
, (2.10)

where Lj is the radiance measured in band j; SNRj is the signal-to-noise ratio
(y/�y); and �j is the uncertainty of the calibration of band j.

We treat the uncertainties due to unknown forward model parameters as inde-
pendent error sources by adding their contributions to Sy, which is equivalent to
standard error propagation:

Se = Sy +KbSbK
T

b
, (2.11)

where Kb is the Jacobian of the model unknowns, which expresses the change in
modeled TOA radiance in the j-th instrument channel for a small change in the
k-th unknown model parameter. It is expressed by:

Kb

j,k
= {�yj

�bk
}. (2.12)

Sb comprises uncertainties due to unknown, not retrieved parameters of the for-
ward model. Following Thompson et al. (2018), they can be attributed to the
surface, the instrument and the atmosphere. Their classification accounts for sky
view effects, intrinsic error in absorption line intensities of water vapor, systematic
calibration and radiative transfer uncertainty, and non-systematic radiometric un-
certainty. We adopt their values for sky view effects and the water vapor absorption
intensity and cover errors in liquid and solid water absorption line intensity by in-
corporating uncertainties of the imaginary part of the complex index of refraction k

presented by Kou, Labrie, and Chylek (1993). Since our sensitivity analysis is based
on simulated data, we resign systematic and non-systematic errors. Table 2.2 gives
an overview of the different error sources and their associated uncertainty values.



28 Chapter 2. Coupled retrieval of the three phases of water

Table 2.2: Uncertainties due to unknown, not retrieved forward model parameters.

Source Elements Value
Sky view factor 1 10 %

Water vapor absorption intensity 1 1 %
Liquid water absorption intensity 1 2 %
Solid water absorption intensity 1 2 %

2.2.2.2 A priori knowledge and first guess

We assume no mentionable correlation between the different water phases so that
a priori knowledge about their uncertainties is not taken into account. Hence, the
diagonal entries of the a priori covariance matrix Sa are set to relatively high val-
ues. This leads to an infinitesimally small weight of the first part of Eq. 2.5, and
consequentially, the cost function only evaluates the measurement uncertainty and
errors in the forward model parameters.

The inversion method generally requires a first guess solution for the state vector
parameters. We use the a priori state vector xa as first guess and start each iteration
with the result from a band ratio retrieval for CWV (after Guanter, Gomez-Chova,
and Moreno (2008a)). For the a priori state of liquid water, we calculate the nor-
malized difference water index (NDWI) (Gao, 1996) and use its relationship to the
liquid water path length presented by Gao (1996) to come up with a scaled value. A
similar approach is taken into account for the a priori value of the ice path length.
Here, we calculate the normalized difference snow index (NDSI) (Hall, Riggs, and
Salomonson, 1995) and apply the thresholds proposed by the MODIS snow prod-
ucts user guide to start the iteration either with 0.1 or 0 (Riggs and Hall, 2015).
Additionally, the offset a and slope b from Eq. 2.3 have to be optimized and are
initialized by approximating the surface reflectance. For this purpose, we use the
TOA reflectance ⇢TOA at both absorption feature shoulders (�1 and �2):

⇢TOA,� =
⇡ ⇤ LTOA,�

S0,� ⇤ µsun

, (2.13)

where S0,� is the wavelength dependent exoatmospheric solar irradiance. Now, a

and b can be estimated by:

a = ⇢TOA,�2 �
(⇢TOA,�1 � ⇢TOA,�2) ⇤ �2

�1 � �2
, (2.14)

b =
(⇢TOA,�1 � ⇢TOA,�2)

�1 � �2
. (2.15)
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2.2.2.3 Retrieval uncertainty

The retrieval error covariance matrix Sx is obtained during the iteration procedure
and provides information about the retrieval uncertainty and the error correlation
between the retrieved state vector parameters. According to Rodgers (2000), the
square root of the diagonal entries of Sx gives the retrieval error in the unit of the
respective state vector parameter. It is equivalent to the standard deviation of the
retrieved quantity. To enable an interpretation of the error correlation, we apply a
normalization or rescaling leading to an error correlation matrix

P
(i, j) (Govaerts

et al., 2010):
X

(i, j) =
Sx(i, j)p

Sx(i, i) ⇤ Sx(j, j)
. (2.16)

The equation for
P

(i, j) results from the definition of the error covariance. If
P

(i, j) ! +1, the uncertainties of the state vector parameters are correlated,
meaning an overestimation or underestimation of i leads to the same for j. If
P

(i, j) ! �1, the uncertainties are anticorrelated, that is, an overestimation or un-
derestimation of i leads to the opposite for j. If

P
(i, j) ! 0, an error in the retrieval

of i does not effect the retrieval of j. The reliability of this approach including some
examples can be found in Wagner, Govaerts, and Lattanzio (2010).

2.3 Materials

We use both simulated and measured data from imaging spectrometers for evaluating
the performance of the retrieval algorithm. First, we conduct a sensitivity analysis
on simulated EnMAP data since the instrument is not launched yet. The workflow of
the simulation is described in the following Section 2.3.1. Subsequent, Section 2.3.2
shortly presents the characteristics and chosen datasets of both the airborne AVIRIS-
C and the spaceborne CHRIS-PROBA sensors, which we additionally use to validate
the retrieval.

2.3.1 Simulation of EnMAP spectra

For the sensitivity analysis, we used a unique coupling of the leaf reflectance model
PROSPECT (Jacquemoud and Baret, 1990), the 3D canopy reflectance model Hy-
perspectral Simulation of Canopy Reflectance system (HySimCaR) (Kuester et al.,
2014) and the sensor model EnMAP end-to-end Simulation tool (EeteS) (Segl et al.,
2012) to simulate EnMAP-like TOA radiance spectra of 3D cereal canopies with
known CWV and leaf water content (LWC) (Figure 2.2). The main focus is to as-
sess the retrieval of CWC from vegetated agricultural surfaces. Therefore, we scaled
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Figure 2.2: Structure chart of the simulation process to gain EnMAP-like vegetation
canopy TOA radiance data.

up LWC to canopy level by multiplying with the leaf area index (LAI) (Clevers,
Kooistra, and Schaepman, 2010), which was calculated during the HySimCaR sim-
ulations.

EnMAP is a push-broom imaging spectrometer, which is scheduled for launch
in 2021 and scientifically led by the GFZ German Research Centre for Geosciences
(Guanter et al., 2015). It is a high performance scientific mission leading to Level
2A products including an open data policy. EnMAP will be in sun-synchronous
orbit carrying two cameras: a VIS/NIR camera covering 420-1000 nm with a mean
SSI of 6.5 nm and a SWIR camera covering 900-2450 nm with a mean SSI of 10 nm.
The instrument has a swath width of 30 km and a spatial sampling distance (SSD)
of 30 m. The mission lifetime is scheduled for 5 years.

2.3.1.1 Modeling at leaf level - PROSPECT simulations

PROSPECT is a leaf RTM, which simulates reflectance as a function of leaf bio-
physical and -chemical parameters (Jacquemoud and Baret, 1990). It is coupled to
canopy RTM’s such as SAIL, like in PROSAIL, which also includes canopy structural
elements (Jacquemoud et al., 2009), or SCOPE, which is a variation of PROSAIL
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Table 2.3: Parameter values used for PROSPECT simulations with all possible permu-
tations resulting in 360 simulated reflectance signatures.

Cab Car Cbrown Cw Cm N
[µg/cm2] [µg/cm2] [0-1] [cm] [m2/2] [0-1]

20 5 0.0 0.006 0.002 1.0
30 15 0.5 0.012 0.008
40 25 1.0 0.018
50 0.024

0.030

including photosynthesis (Tol et al., 2009). Here, we used PROSPECT to gener-
ate leaf reflectance and transmittance spectral signatures with varying leaf water
content (Cw), chlorophyll content (Cab), carotenoid content (Car), brown pigments
(Cbrown), dry matter content (Cm) and leaf mesophyll structure (N) (Table 2.3). The
parameter values were varied according to experiences from several years of in-situ
measurements and literature values like from Jacquemoud and Baret (1992) or Xiao
et al. (2014).

2.3.1.2 Modeling at canopy level - HySimCaR simulations

HySimCaR has been developed in the context of the EnMAP mission. This spec-
tral, spatial and temporal simulation system consists of detailed virtual 3D cereal
canopies for different phenological stages, whose geometries are linked to correspond-
ing spectral information. The system enables the simulation of realistic bidirectional
reflectance spectra on the basis of virtual 3D scenarios by incorporating any possi-
ble viewing position with ray tracing techniques. The sampling of the virtual 3D
canopies is performed by the aDvanced Radiometric rAy Tracer (DRAT), an efficient
MCRT (Monte Carlo Ray Tracing) software that was developed by Lewis (1999).
DRAT calculates the canopy reflectance based on 3D descriptions with linked spec-
tral properties, predefined camera imaging properties and illumination conditions
using reverse ray tracing. The reflectance results conform to case 1 (bidirectional)
of Nicodemus et al. (1977) using a planar camera model with orthographic methods
and a directional illumination source. Since the third phase of RAMI (RAdiation
transfer Model Intercomparison, RAMI-3 (Widlowski et al., 2007)) the DRAT model
belongs to a series of credible 3D MCRT models. HySimCaR has been validated
with respect to structural and spectral accuracy using three cereal types, includ-
ing wheat (Triticum aestivum), rye (Secale cereale) and barley (Hordeum vulgare),
and 13 different phenological stages between leaf development and senescence (after
the phenological scale system of Meier (1997)). A detailed description of HySim-
CaR, including the entire virtual plant and canopy build up, the virtual sampling
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Table 2.4: Parameter values used for HySimCaR simulations resulting in 72 virtual cereal
canopy scenarios. (Meier, 1997)

Row orientation Plants per Tillers per Row distance Phenology
against SAA meter row plant (Meier, 1997)
0� 13 5 - 3 dev. 13 cm - 17 cm 24-25 late tillering
30� 15 22 cm - 26 cm 37-39 stem elongation
60� 17 41-43 late stem elongation
90�

process and its validation can be found in Kuester (2011), Kuester et al. (2014),
and Spengler (2014). In addition, the model has already been used for several appli-
cations found in Kuester et al. (2017), Kuester and Spengler (2018), and Spengler
et al. (2011), Spengler et al. (2013). Based on the model, the influence of plant and
canopy architecture on cereal canopy reflectance, the anisotropic behaviour of cereal
canopy reflectance and its inter-annual variations were investigated by Kuester and
Spengler (2018). Additionally, the influence of vegetation cover on the prediction of
soil spectral features was investigated and quantified by Kuester et al. (2017).

We modeled 72 structurally different virtual canopies varying in canopy phenol-
ogy and architecture (see Table 2.4 for respective HySimCaR parameter values).
The values of the virtual canopies were chosen to balance between natural variety,
management and computational costs. Phenology, the number of plants per meter
of seeding row, the number of tillers per plant and the distance between the rows
are parameters determining canopy density and volume that influences the shape of
the reflectance signal mainly due to leaf pigment absorption and volume scattering.
The relative orientation of the seeding rows against the sun azimuth angle (SAA)
influences the brightness of the whole reflectance signal due to different sunlit and
shading effects. The spectral properties of the soil background were kept constant,
as the focus of this study is on the vegetation parameters. As a consequence, the
retrieval of liquid water content from vegetated surfaces is less violated and is as-
sumed to report only the amounts included in the canopy. This enables a higher
retrieval accuracy and a direct interpretation of the results with respect to plant
conditions. Otherwise, the algorithm would likely report additional liquid water
amounts in terms of soil moisture or water included in minerals. Also, overlapping
absorption features of minerals could impact the liquid water retrieval. Only the
3D structure of the soil background was included to consider the typical sunlit and
shading effects. LAI and fCover were calculated directly from the 3D geometry of
the virtual canopies and range between 0.32 and 3.17 for LAI and between 0.18
and 0.87 for fCover. The values of both parameters are almost equally distributed.
All virtual canopies were coupled with PROSPECT leaf reflectance and transmit-
tance. This sums up to 25,920 different leaf-canopy combinations that were sampled
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virtually. All resulting canopy reflectance spectra contain 467 continuous spectral
bands (4 nm SSI) between 400 nm and 2448 nm with the exception of the ranges of
atmospheric absorption ([1352 nm, 1416 nm] and [1824 nm, 1936 nm]).

2.3.1.3 Modeling at sensor acquisition level - EeteS simulations

Based on HySimCaR model outputs, EnMAP TOA radiance spectra were simulated
using EeteS (Segl et al., 2012). This tool simulates the entire image data acquisition,
calibration and processing chain from spatially and spectrally oversampled data to
intermediate Level-1A (systematically-corrected) raw data and to the final EnMAP
products, such as Level-1B (radiometrically-corrected, spectrally- and geometrically-
characterized radiance), Level-1C (orthorectified Level-1B product) and Level-2A
data. Data acquisition consists of a sequential processing chain represented by four
independent modules: atmospheric, spatial, spectral, and radiometric. These mod-
ules allow flexible customization of a wide range of simulation input parameters.
They are coupled with a backward simulation branch consisting of calibration mod-
ules, such as non-linearity, dark current, and absolute radiometric calibration, and
a series of preprocessing modules such as radiometric calibration, co-registration,
orthorectification, and atmospheric correction. Since the modeled data base only
consists of a collection of reflectance spectra, the simulation of the two spaceborne
sensors is only performed in terms of spectral and radiometric characteristics. No
spatial simulation was performed with EeteS assuming that the pixel size already
is 30 m. The atmospheric simulation was performed with settings for the end of
May using identical parameters for all 25,920 canopy reflectance spectra with re-
spect to viewing geometry and physical parameters (AOT: 0.2, rural aerosol model,
HSF: 0 km). Only CWV was varied between 1.9 and 2.2 g

cm2 . To calculate the
measurement error covariance matrix Se within the retrieval algorithm, we obtained
the EnMAP SNR from Guanter et al. (2015). EeteS provides the option to add
instrument noise to the simulated TOA radiance (Figure 2.2). But since we assume
no significant influences of noise effects on the three phases retrieval, we abstained
from including them (see Section 2.4.1.3).

2.3.2 Imaging spectroscopy measurements

To extend the analysis on real data, we chose two additional datasets of imaging
spectroscopy measurements for assessing the retrieval results. The first one is an
airborne AVIRIS-C image acquired over a mountainous area in the Sierra Nevada,
California, on 02/24/2015. The particular aim is to show the possibility of the
algorithm to map snow/ice extent. We generated two subsets of the acquisition:
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one containing vegetated agricultural areas and rock surfaces in equal parts cover-
ing 35.70�N - 35.76�N and 118.07�W - 118.13�W, and another consisting of partly
snow- and forest-covered mountain ranges reaching from 35.57�N to 35.65�N and
from 118.04�W to 118.13�W. The first subset shows a surface elevation of 400 m to
600 m for the vegetated areas and up to 1700 m for the mountainous parts. The
second, more elevated region reaches up to 2300 m HSF for the highest snow-covered
mountains.

AVIRIS-C has a similar wavelength range and SSI to the EnMAP sensor but
varying ground sampling distance due to different flying altitudes (Green et al.,
1998). It is installed on the NASA ER-2 research aircraft so that AVIRIS-C is able
to acquire data from a height of up to 20 km, which results in an SSD of 20 m. The
coefficients to calculate the measurement uncertainty were taken from the Python
ISOFIT repository and the AVIRIS-C SNR needed for the retrieval algorithm was
calculated according to Thompson et al. (2018).

To demonstrate the applicability to satellite images we also used a spaceborne
CHRIS-PROBA dataset from the ESA SPARC’03 campaign in Barrax, Spain, ac-
quired on 07/14/2003. The image covers a mixture of agricultural areas and open
soil so that it is well suited for the CWC retrieval analysis. The acquisition reaches
from 38.97�N to 39.13�N and from 2.00�W to 2.19�W. There are no remarkable dif-
ferences in surface elevation throughout the image as the Barrax region is part of a
high plateau in south-east Spain.

CHRIS-PROBA is a push-broom imaging spectrometer featuring a swath width
of 13.5 km and an SSD of 36 m in the hyperspectral mode. It has a spectral range
covering 410 nm to 1050 nm and an SSI of 1.25 nm (at 400 nm) and 11 nm (at
1050 nm) (Barducci et al., 2005). Barducci et al. (2005) also provided the SNR re-
quired for the retrieval algorithm. Since CHRIS-PROBA is missing channels beyond
1050 nm, we used the 940 nm water absorption feature for the retrieval.

2.4 Results and discussion

2.4.1 Retrieval from simulated EnMAP data - sensitivity anal-
ysis

2.4.1.1 Water vapor

We first compare the results from the maximum likelihood estimation with the sim-
ulation input described in Section 2.3.1. We achieve a very good matching with the
input values showing an R2 of 0.99 and an RMSE of 0.007 gcm�2 with an overall
very slight underestimation of the CWV values (Figure 2.3a). Figure 2.3b illus-
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Figure 2.3: Comparison of derived CWV with the input of the HySimCaR + EeteS
simulations. a) Results from the three phases retrieval. b) Absolute CWV retrieval error
as a function of simulated CWC values for the three phases retrieval. c) Results from the
band ratio retrieval. d) Absolute CWV retrieval error as a function of simulated CWC
values for the band ratio retrieval.

trates the absolute CWV retrieval error as a function of simulated CWC from the
three phases retrieval. For low CWC values of up to 0.02 gcm�2, we find a nega-
tive error of around -0.01 gcm�2 for the CWV retrieval. As it will be presented in
Section 2.4.1.2, the retrieval clearly overestimates the CWC, especially for low veg-
etation canopy heights and small LAI. This causes the very slight underestimation
of CWV for low CWC since the algorithm seems to attribute a very small fraction
of CWV to nonpresent CWC. However, Figure 2.3b shows a clear linear trend of the
CWV retrieval error from underestimation for low CWC values to an overestimation
for higher CWC. This accords with the experience from band ratio CWV retrievals,
which tend to even more overestimate CWV under the presence of high liquid water
absorption (Thompson et al., 2015). To confirm this assumption, we additionally
show the results from the a priori band ratio CWV retrieval (Figure 2.3c and Fig-
ure 2.3d). The values clearly more scatter around the 1:1-line with a tendency to
overestimation and the absolute CWV retrieval errors are immensely higher. The
retrieval is slightly biased due to the a priori state which is based on the overes-
timated CWV values. As a consequence, a very small overestimation of CWV for
higher simulated CWC still occurs (Figure 2.3b). However, our results accord with
the outcomes of previous studies that estimating CWV and liquid water amounts
in a simultaneous way improves the accuracy of atmospheric correction procedures
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Figure 2.4: Comparison of derived CWC from the three phases retrieval with a) the input
of the HySimCaR + EeteS simulations and b) the previously calculated NDWI, which has
been used to build the a priori state of liquid water.

since biases due to background reflectance are reduced (Gao and Goetz, 1995; Green
et al., 1991; Thompson et al., 2015).

2.4.1.2 Canopy water content

In the same way as for CWV, we compare retrieved CWC with the simulation in-
put. Again, a very good correlation between retrieved and simulated values can
be observed depicting an R2 of 0.96 (Figure 2.4a). Though, the result shows a con-
stant mean overestimation with a slope of approximately 3.37 and virtually no offset.
This induces the relatively high RMSE of 0.07 gcm�2. Nearly the same behavior was
found by Wocher et al. (2018), whose CWC retrieval from TOC spectra is likewise
based on the Beer-Lambert law too, but with a constant overestimation of around
3.52. They calibrated their retrieval model with simulated PROSPECT spectra
and tested the approach on ASD measured in situ data and HyMAP images. This
overestimation is due to volume scattering processes within the vegetation canopies,
which the Beer-Lambert law cannot take into account (Zhang, Li, and Zhang, 2011).
Although Wocher et al. (2018) received accurate results, it has to be mentioned that
both, their study and our simulations of EnMAP data, are based on spectra of
more or less uniform canopies of low-lying cereal crops between tillering and late
stem elongation and therefore, higher uncertainties might be assumed by applying
such model calibration factors to more complex canopies and/or different observ-
ing conditions. Especially different observation geometries, such as those planned
for EnMAP (off-nadir observations up to ±30� (Guanter et al., 2015)) lead to an
increase of the uncertainties. Asner and Martin (2008) showed that LAI and view-
ing geometry most negatively impact the accuracy of the spectroscopic retrieval
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of especially CWC. The difficulty to transfer between different observation geome-
tries largely stems from changing fractions of sunlit or shaded vegetation (opaque
or translucent) or soil. Depending on the viewing angle, the sensor observes a dif-
ferent composition of the reflecting surfaces due to the path of radiation through
the vegetation canopy. For this, more investigations would have to be made in or-
der to be able to evaluate the transferability of the method to different observation
geometries. Kuester and Spengler (2018) have analyzed the spectral influences of dif-
ferent canopy architecture and observation geometries on cereal canopy reflectance
and found that the larger the fraction of the radiation reflected by the vegetation
canopy, the stronger is the influence of the canopy architecture on the reflectance
signal. A finding that can very likely also be assumed for other vegetation canopies
such as pastures or shrublands. A detailed discussion of the influence of crop canopy
architecture on the CWC three phases retrieval of arable lands and a test investi-
gating possible modifications of the Beer-Lambert law are provided in Section 2.4.4.

However, Figure 2.4b gives an impression of the advantages of imaging spec-
troscopy with respect to multispectral instruments. The correlation between re-
trieved CWC and NDWI is clearly lower with an R2 of 0.85 showing a stronger
scattering around the regression line. Consequentially, we assume that the three
phases approach can better capture changes in CWC than multispectral indices are
able to and thus, offers a high potential for accurate vegetation analysis.

2.4.1.3 Surface reflectance

We additionally used the CWV and CWC retrieval results to calculate atmospheri-
cally corrected surface reflectance spectra. This enables a quantitative comparison
with the input canopy reflectance spectra simulated by HySimCaR. We evaluate the
wavelength range around the used water absorption feature at 1140 nm (Figure 2.5).
Very good results can be observed for both the modeled TOA radiance and the sur-
face reflectance. The residual errors range within 0.5 % for low CWC and within
1 % for high CWC, which makes the results similar to those obtained by Thompson
et al. (2015).

We achieved the results based on noise free simulated TOA radiance spectra.
Adding instrument noise to the simulations leads only to a marginal decrease of
retrieval accuracy. Figure 2.6 shows the norm of the mean residual errors of all
simulated spectra for both the modeled TOA radiance and the retrieved surface
reflectance. Again, we evaluate the absorption feature around 1140 nm separated
in results for spectra containing either low or high CWC. The dashed lines repre-
sent simulations with additional instrument noise while the solid lines illustrate the
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Figure 2.5: Results for the TOA radiance spectral fit and the surface reflectance retrieval
from simulated EnMAP data for the water absorption feature at 1140 nm. Left panel:
simulated and fitted TOA radiance as well as simulated and retrieved surface reflectance.
Right panel: relative residual errors for both quantities. Upper panel: low CWC amount.
Lower panel: high CWC amount.

Figure 2.6: Norm of the mean residual errors of all simulated spectra for a) the mod-
eled TOA radiance and b) the retrieved surface reflectance. Blue lines represent low
CWC <= 0.006gcm�2, red lines illustrate high CWC >= 0.05gcm�2. Dashed lines repre-
sent simulations with additional instrument noise, solid lines illustrate simulations without
noise used for the sensitivity analysis.
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Table 2.5: Regression coefficients and correlation metrics for retrieved CWV and CWC
for simulations including instrument noise and for noise free simulations used for the sen-
sitivity analysis.

Slope Offset R
2 RMSE

CWV 0.9969 0.0053 0.9919 0.0077
CWV (noise) 0.9828 0.0348 0.9869 0.0095

CWC 3.3746 0.0082 0.9650 0.0767
CWC (noise) 3.4583 0.0044 0.9328 0.0784

simulations without noise used for our sensitivity analysis. Both modeled TOA ra-
diance and retrieved surface reflectance show a similar behavior when noise is added
to the simulations. For low CWC the residual errors increase by a factor of 2 to 4,
whereas for high CWC the errors are only marginally higher. Especially the surface
reflectance retrieval seems to be nearly unaffected by instrument noise under the
presence of high CWC. Furthermore, the retrieval accuracy of CWV and CWC only
slightly decreases when noise is added to the simulations (Table 2.5). The R

2 still
shows values of 0.98 for CWV and 0.93 for CWC, respectively, indicating a very
good correlation. Although the RMSE for CWV rises of about 23 %, the absolute
retrieval error still is below 0.5 % of the mean retrieved CWV. The RMSE for CWC
even rises about only 2 % under the influence of instrument noise. These results
justify our previous assumption not to add instrument noise to the simulations.

2.4.1.4 Correlation errors

Based on Eq. 2.16 we calculated the correlation error matrix for the synthetic En-
MAP dataset. Figure 2.7 shows the correlation of the retrieval errors between the
state vector parameters, which are all optimized during the iteration procedure.
Errors in the estimation of slope and offset of the linear reflectance continuum
clearly influence the CWC retrieval featuring coefficients of 0.93 and -0.92, respec-
tively. Otherwise, the CWV retrieval seems to be nearly uncorrelated with the CWC
derivation. This justifies the use of the maximum likelihood approach instead of the
optimal estimation method at least for the CWV and CWC retrieval. However, the
correlation coefficients for offset and slope indicate that a priori information about
both quantities is needed to increase the accuracy of the retrieval. In general, if a
priori uncertainties are known and free of biases, adding a priori knowledge, that is,
applying optimal estimation, can significantly improve the retrieval results (Rodgers,
2000).
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Figure 2.7: State vector correlation error matrix for the three phases retrieval from the
simulated EnMAP data.

2.4.2 Retrieval from AVIRIS-C data

Figure 2.8b-c shows the retrieved CWV and CWC maps for the AVIRIS-C Sierra
Nevada vegetation subset. As previously shown in Green et al. (2006), the distri-
bution of the CWV values obviously matches the texture of the surface elevation
in an anticorrelated way and CWC is clearly higher for vegetated areas compared
with rock surfaces (also see Thompson et al. (2015)). The derived CWV ranges
from 0.78 gcm�2 and less for the highest elevations of up to 1700 m and 0.90 gcm�2

and more for lower elevated areas of around 500 m. This is plausible when com-
paring with AERONET data. The nearest station at a distance of approx. 250 km
in Fresno, CA (36.8�N, 119.8�W, 100 m surface elevation) shows a mean CWV of
0.91 gcm�2 and a maximum value of 0.98 gcm�2 for February 24, 2015 (AERONET,
2019). The retrieved CWC of 0-0.2 gcm�2 is also meaningful when comparing to
the results from the sensitivity analysis (Section 2.4.1.2).

We additionally produced uncertainty maps from the a posteriori covariance
matrix showing the retrieval errors for CWV and CWC (Figure 2.8d-e). Overall,
CWV shows lower errors than CWC due to less variance within the retrieved values,
which was also shown by the sensitivity analysis on simulated data. Furthermore,
the type of surface has not that much influence on the amount of vapor in the
atmosphere. This influence can be seen in the CWC uncertainty map yielding the
highest retrieval errors over dark surfaces, e.g., the shady sides of the mountains,
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Figure 2.8: Results for the three phases retrieval from the AVIRIS-C Sierra Nevada
vegetation subset, supplemented by the uncertainty maps from the a posteriori covariance
matrix. a) False-color image (RGB: 1602/870/560 nm). b) CWV map. c) CWC map.
d) CWV uncertainties. e) CWC uncertainties. The pixel values of the uncertainty maps
represent the standard deviation in the unit of the retrieved parameter.

since the CWC estimation depends on the signal strength of the surface reflection.
Also, a general issue of RTMs is that they are not able to realistically simulate
shaded areas.

For a continuative evaluation, we compared the retrieved CWC with the NDWI,
which has been previously calculated to build the a priori state of liquid water (see
Section 2.2.2.2) (Figure 2.9). We achieve an R2 of 0.71, which indicates a good
correlation between derived CWC and NDWI and confirms the plausibility of the
three phases retrieval result.

Although the solid water phase was not considered for the sensitivity analysis,
we included an appropriate dataset to apply the algorithm on snow-covered sur-
faces. Figure 2.10b-d shows the retrieved maps for the three water phases for the
AVIRIS-C snow/ice subset. To improve the interpretation of spatial trends of the
three phases, we produced a combined RGB map (Figure 2.10e). CWV, CWC and
ice are displayed in red, green, and blue, respectively. Consequentially, turquoise
colors depict melting snow since both ice and liquid water are present. Again, the
CWV values anticorrelate with surface elevation and the value range of CWV (0.72-
0.88 gcm�2) likewise fits well to the AERONET observations at Fresno mentioned
before (AERONET, 2019). The derived CWC of up to 0.4 gcm�2 increases for sur-
faces covered by wet snow and accords with typical value ranges for liquid water
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Figure 2.9: Comparison of NDWI with retrieved CWC from the AVIRIS-C Sierra Nevada
vegetation subset.

Figure 2.10: Results for the three phases retrieval from the AVIRIS-C Sierra Nevada
snow/ice subset. a) False-color image (RGB: 1602/870/560 nm). b) CWV map. c) CWC
map. d) Ice map. e) Combined three phases map (RGB: CWV/CWC/Ice).



2.4. Results and discussion 43

Figure 2.11: Comparison of NDSI with retrieved ice path lengths from the AVIRIS-C
Sierra Nevada snow/ice subset.

observed by Green et al. (2006). The distribution of snow and ice-covered areas cor-
responds well with the false-color image and the results with many pixels showing
around 0.5 gcm�2 or enormously more are in a good compliance with typical values
for dry and wet snow presented by Green et al. (2006).

We also compare the derived ice amounts with the NDSI, which results in a very
good correlation with an R2 of 0.94 (Figure 2.11). The fitted polynomial regression
indicates that the three phases retrieval is able to better distinguish between medium
and high ice amounts compared to the NDSI, which becomes saturated at a value
of around 0.9.

2.4.3 Retrieval from CHRIS-PROBA data

Figure 2.12b-d shows the retrieval results for the CHRIS-PROBA Barrax dataset
incorporating the CWV and CWC maps from the three phases retrieval. The true-
color image is supplemented by the indicators of ground-truth data conducted during
the ESA SPARC’03 campaign, which amongst others contain CWC measurements.
Additionally, we present a CWV map derived from the a priori band ratio retrieval
(see Section 2.2.2.2). As likewise shown in Thompson et al. (2015), the CWV map
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Figure 2.12: Retrieval results from the CHRIS-PROBA Barrax dataset, supplemented
by the uncertainty maps from the a posteriori covariance matrix. a) True-color image with
pink colored points representing locations of field measurements (RGB: 653/563/481 nm).
b) CWC map derived from the three phases retrieval. c) CWV map derived from the
three phases retrieval. d) CWV map derived from the a priori band ratio retrieval. e)
CWV uncertainties. f) CWC uncertainties. White colored pixels indicate masked clouds,
which have been excluded from the retrievals. Except for the upper panel, each colorbar
accounts for both left and right panel. The pixel values of the uncertainty maps represent
the standard deviation in the unit of the retrieved parameter.
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Figure 2.13: Comparison of retrieved CWV with retrieved CWC for different retrieval
methods. a) Band ratio retrieval. b) Three phases retrieval.

from the three phases retrieval is much smoother and physically-plausible. In con-
trast, the CWV map from the band ratio approach has clear biases in form of tex-
tures according with vegetated areas indicating a higher sensitivity to background
reflectance. Also low-frequency striping patterns are visible, which have been previ-
ously observed by Guanter et al. (2008b). The result from the algorithm presented
in our study is nearly free of these influences. Cloud pixels have been excluded
from the retrieval and areas of cloud shadow have to be treated carefully within
the analysis since retrieved CWV generally shows a strong positive bias for these
pixels (Barducci et al., 2004).

As one major result, the three phases retrieval leads to a decoupling of retrieved
CWV from apparent CWC. Already recognizable in the maps of Figure 2.12, the
influence of present surface liquid water on the CWV retrieval declines compared
with the band ratio retrieval. This is underlined by both the decreasing slope and
R2 from 0.49 to 0.08 and from 0.38 to 0.08, respectively, when comparing retrieved
CWV with retrieved CWC for the different methods (Figure 2.13). This trend was
also observed by Thompson et al. (2015).

The derived CWC map provides a clear distinction of agricultural areas and
bare soil as pixels with high water content can be distinguished well from the sur-
roundings. Furthermore, the validation with the CWC field measurements yields
a good correlation resulting in an R2 of 0.8 (Figure 2.14). The overestimation of
CWC by the Beer-Lambert model is clearly visible and varies depending on the
crop type, which results in a remarkable forming of clusters. For example, the mea-
sured CWC of garlic and alfalfa is in a similar range, but the retrieval overestimates
most of the alfalfa CWC by a factor of 2 to 3. The clusters indicate the differ-
ent crop type architectures and penetration depths and thus, the varying ability to
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Figure 2.14: Comparison of retrieved CWC with measured CWC from the Barrax
SPARC’03 field campaign. Error bars indicate the standard deviation of retrieved CWC.

detect CWC. Pasqualotto et al. (2018) recently developed two new hyperspectral
indices to retrieve CWC: the water absorption area index (WAAI) and the depth
water index (DWI). They also used the dataset of field measurements from the ESA
SPARC’03 campaign in Barrax, Spain, acquired on 07/14/2003, but in combination
with atmospherically corrected airborne HyMap data. They achieved an R2 of 0.8
for the WAAI and 0.7 for the DWI. Hence, the result from the three phases retrieval
ranges in the same order of magnitude and even outperforms one of the proposed
hyperspectral indices.

Another substantial fact is that the algorithm is able to meaningfully map CWV
and CWC without having the right shoulder of the 940 nm water absorption feature
at its disposal since CHRIS-PROBA is missing channels beyond 1050 nm. However,
these missing bands can lead to higher retrieval uncertainties when looking at the
validation of absolute values. This is also expressed by the uncertainty maps from
the a posteriori matrix, which show much higher uncertainties for both CWV and
CWC than for the AVIRIS data. Especially, a strong correlation between retrieved
CWC and retrieval error is observable (Figure 2.12e-f). Another error source within
the CWV retrieval are the miscalibration trends of CHRIS-PROBA in the NIR
wavelength range. This issue was reported by Guanter, Alonso, and Moreno (2005)
who stated that the resulting underestimation of the signal cannot be used for
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Figure 2.15: Comparison of retrieved CWC with simulated CWC as a function of a)
mean canopy height, and b) LAI, from the simulated EnMAP data.

common radiative transfer algorithms, which instead have to be supplemented by
empirical line approaches to obtain useful results.

2.4.4 Interpretation of CWC retrieval results

Wocher et al. (2018) used the regression slope for calibrating their CWC retrieval
results, but our study indicates that this factor cannot be seen as a global calibra-
tion. As shown in Figure 2.14, the overestimation varies depending on the vegeta-
tion type and the according characteristics. We further investigate this with some
analysis on the simulated EnMAP data. As a result, a critical factor influencing
the overestimation is the vegetation canopy height (Figure 2.15a). Increasing the
height of simulated cereal plants from 12 cm to 66.5 cm leads to a decrease in re-
gression slope from 5.28 to 3.05. Furthermore, the overestimation decreases from
3.77 to 2.88 for increasing LAI from less than 2 to more than 3 (Figure 2.15b).
On one hand, the overestimation can be attributed to volume scattering processes
within the canopy, which the Beer-Lambert law is not able to account for (Zhang,
Li, and Zhang, 2011). These are very special effects in vegetation canopies due to
the multitude of scattering objects, e.g., leaves, and their ability to transmit radi-
ation (Kuester and Spengler, 2018). On the other hand, it can be stated that the
higher the modeled canopies and the LAI are, the better is the accuracy of retrieved
CWC. Roberts et al. (1998a) showed that LAI and vegetation canopy liquid water
amounts are well correlated. Consequentially, we assume that with increasing LAI
the volume scattering effect indeed gets stronger, but since the liquid water contents
simultaneously increase, the additional amounts retrieved by the Beer-Lambert law
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Figure 2.16: Comparison of NIRv with LAI for different mean canopy heights.

get smaller compared to the actual CWC and lead to a higher retrieval accuracy.
This fits to the findings of Wocher et al. (2018) who got best results in the early
young growth stages when most of the scattering objects in the canopy are leaves.
In general, the more opaque stalks and ears are present in the canopy, the lower is
the retrieval accuracy.

We added a test of NIR reflectance as an indicator of volume scattering by
calculating the NIR reflectance of vegetation (NIRv) for each spectrum. This index
was presented by Badgley, Field, and Berry (2017) and is related to photon escape
probability, i.e., NIR reflectance, and corrects for the non-green parts of the pixel:

NIRv = (NDV I � 0.08) ⇤ ⇢TOA,�NIR . (2.17)

It is calculated as the product of normalized difference vegetation index (NDVI)
and NIR TOA reflectance ⇢TOA,�NIR at �NIR ⇠ 780 nm. Badgley, Field, and
Berry (2017) proposed to substract 0.08 from the NDVI values to account for bare
soil. Figure 2.16 shows the NIRv compared with LAI for different canopy heights.
The NIR reflectance is well correlated with LAI yielding an R

2 of 0.81 and clearly
increases for higher LAI. The canopy height seems to have less effect on the NIRv.
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Only for very small vegetation the NIR reflectance is substantially lower. Conclud-
ing, we assume that the volume scattering effects are mainly correlated with LAI
and not necessarily with canopy height. Thus, a future approach will be to supple-
ment the surface reflectance model based on the Beer-Lambert law with information
about the LAI and the NIR reflectance to correct for canopy structural effects. Fi-
nally, also soil moisture content and water included in surface minerals have to be
considered. Both can influence the retrieved liquid water path over bare soil since
the Beer-Lambert law is not able to distinguish between water included in different
kinds of surface. An illustration can be found in Figure 2.14 where bare soil pixels
with a measured CWC of 0 gcm�2 show retrieved values of 0.05-0.08 gcm�2.

Hunt, Ustin, and Riano (2013) proposed not to use the absolute CWC values
retrieved by the surface model based on the Beer-Lambert for further analyses. They
pointed to alternative retrieval methods, which are insensitive to volume scattering
effects, e.g., partial least squares regression (Asner and Martin, 2008; Li et al.,
2008) or wavelet transforms (Cheng, Rivard, and Sanchez-Azofeifa, 2011). However,
our study shows that the Beer-Lambert surface reflectance model indeed can be
improved with additional terms, but nevertheless, leads to promising results, which
are already interpretable regarding absolute retrieved CWC.

2.5 Conclusion

We present a coupled retrieval of the three phases of water applied to spaceborne
imaging spectroscopy measurements such as the upcoming German EnMAP mis-
sion. We analyze the sensitivity of the algorithm by a novel combination of field
validation using CHRIS-PROBA measurements and a simulation study based on
synthetic EnMAP data. The latter are obtained from canopy reflectance spectra
simulated by the 3-dimensional HySimCaR system. Previous studies mainly vali-
dated their results by a visual interpretation (see Green et al. (2006), Thompson et
al. (2015)) or used 1-dimensional PROSAIL spectra as input without simulating the
atmosphere (see Clevers, Kooistra, and Schaepman (2010), Wocher et al. (2018)).
Focusing on canopies of cereal crops, our sensitivity analysis demonstrates the abil-
ity of the proposed three phases of water retrieval to infer CWV and CWC with a
high correlation to the simulation input showing an R

2 of 0.99 and 0.96, respectively.
However, our investigation shows that CWC is strongly overestimated by a mean

factor of 3.37, which results from a large dependency on canopy structure and crop
type. From a physical perspective, volume scattering effects related to LAI are
primarily responsible for the observed overestimation. Otherwise, increasing the LAI
from less than 2 to more than 3 leads to a decrease of the regression slope from 3.77 to
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2.88. This supports the assumption that plant structure also plays an essential role in
the overestimation. The more that stalks and ears influence the radiation signal, the
less is the retrieval accuracy. This hypothesis is supported by the validation of CWC
retrieved from CHRIS-PROBA data with field measurements. The analysis indeed
yields an R

2 of 0.80 but provides a separation of different crop types depending
on their physical structure. This is also visualized by a remarkable clustering in
the scatter plot. Furthermore, by producing smoother and more plausible CWV
maps we achieve an accuracy improvement of CWV retrieved from CHRIS-PROBA
data instead from a band ratio retrieval in the presence of liquid water absorption.
This indicates that the algorithm leads to improvements in atmospheric correction
procedures.

As a confirmatory of previous studies, we additionally show results of the three
phases retrieval applied to airborne AVIRIS-C data. Based on an evaluation of the
derived CWC from a vegetated surface, we assume that imaging spectroscopy tracks
changes in CWC better than multispectral indices, such as the NDWI. Furthermore,
the snow/ice retrieval from AVIRIS-C data produces a good correlation with the
NDSI with an R

2 of 0.94 illustrating the ability of the three phases retrieval to
clearly distinguish between different quantities of ice. In fact, higher amounts are
tracked better than by using the NDSI since it becomes saturated at a value of
around 0.9.

In summary, our study shows that the presented surface reflectance model based
on the Beer-Lambert law can indeed be improved with additional terms to account
for physical processes such as volume scattering. Also, the retrieval accuracy could
be increased by integrating, if available, a priori information about the type of vege-
tation and the structure of the canopy in the framework of optimal estimation. How-
ever, even without improvement, this process has delivered promising results, which
are already interpretable regarding absolute retrieved CWC. Recently launched or
upcoming spaceborne imaging spectroscopy missions like PRISMA or EnMAP will
provide valuable input for a further validation of the three phases of water retrieval.
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Abstract

Snow and ice melt processes on the Greenland Ice Sheet are a key in Earth’s en-
ergy balance and hydrological cycle, and they are acutely sensitive to climate change.
Melting dynamics are directly related to a decrease in surface albedo, amongst others
caused by the accumulation of light-absorbing particles (LAPs). Featuring unique
spectral patterns, these accumulations can be mapped and quantified by imaging
spectroscopy. In this contribution, we present first results for the retrieval of glacier
ice properties from the spaceborne PRISMA imaging spectrometer by applying a
recently developed simultaneous inversion of atmospheric and surface state using
optimal estimation (OE). The image analyzed in this study was acquired over the
South-West margin of the Greenland Ice Sheet in late August 2020. The area is
characterized by patterns of both clean and dark ice associated with a high amount
of LAPs deposited on the surface. We present retrieval maps and uncertainties for
grain size, liquid water, and glacier algae concentration, as well as estimated re-
flectance spectra for different surface properties. We then show the feasibility of
using imaging spectroscopy to interpret multiband sensor data to achieve high accu-
racy, fast cadence observations of changing snow and ice conditions. In particular,
we show that glacier algae concentration can be predicted from the Sentinel-3 OLCI
impurity index with less than 10% uncertainty. Our study evidence that present
and upcoming orbital imaging spectroscopy missions such as PRISMA, EnMAP,
CHIME, and the SBG designated observable, can significantly support research of
melting ice sheets.

4.1 Introduction

Snow and ice melt processes on the Greenland Ice Sheet are a key in Earth’s
energy-balance and hydrological cycle, and they are acutely sensitive to climate
change (Tedesco et al., 2016). Melting dynamics are directly related to environ-
mental factors and to a decrease in surface albedo, amongst others caused by the
accumulation of light-absorbing particles (LAPs), including both inorganic (i.e.,
mineral dust) and biological impurities (i.e., glacier algae) (Flanner et al., 2007;
Skiles et al., 2018; Di Mauro, 2020). The magnitude of this absorption is controlled
by LAP type, mass mixing ratio, and size distribution (Warren, 1982). Variability
in snow and ice grain size caused by the presence of liquid water can also affect
the surface reflectance (Dozier et al., 2009). At the same time, surface melting
promotes the formation of cryoconite on bare ice, which is a supraglacial sediment
composed of very fine organic and inorganic material transported by glacial streams
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and therefore, leads to a further decrease of albedo by depositing LAP’s on the ice
surface (Sneed and Hamilton, 2011; Cook et al., 2016). The increasing amounts of
melt water settle in supraglacial lakes, which play a crucial role in climate feedback
processes and in the hydrological system of the Greenland Ice Sheet in general (Pope
et al., 2016). Overall, snow and ice conditions can change on rapid timescales, and
regular observations are critical to infer the rate at which accumulation, LAP de-
position, and melt processes occur. A recent report by the National Academy of
Sciences called for snow albedo observations on a weekly basis to constrain changes
in the water and energy cycles (National Academies of Sciences, Engineering, and
Medicine, 2018). Remote Sensing from space can significantly contribute to achieve
these requirements by mapping local and global trends of snow and ice surface prop-
erties.

The most common variable of the cryosphere being monitored from space is the
effective snow grain radius in µm (Dozier, Schneider, and Jr., 1981). It is a measure
of the ice crystal size and can also be expressed as specific surface area (Warren,
1982). Likewise, the spatial distribution and amount of LAP accumulation can
be detected from space. In particular, depositions of algae in snow and glacier
ice can be monitored by relying on chlorophyll and carotenoids absorption charac-
teristics (Painter, Duval, and Thimas, 2001). Algal accumulation can be quanti-
fied as concentration in units of cells ml

�1 or as mass mixing ratio expressed in
µg/gsnow/ice (Painter, Duval, and Thimas, 2001; Cook et al., 2017b). Finally, the
effective grain radius is also an indicator for surface wetness since the crystal size
increases due to clustering processes in liquid water enriched snow and ice (Dozier
et al., 2009). Alternatively, liquid water content can be expressed as spherical frac-
tion of the snow and ice grains. However, this approach requires a separation of the
liquid water and ice absorption lines and can therefore only be pursued by using
imaging spectroscopy measurements (Green et al., 2002).

Optical remote sensing of snow and ice surface properties from space was among
the earliest geophysical retrieval methods based on satellite missions and is a valu-
able tool to obtain amount and spatial distribution of different parameters on a
global scale with a high temporal resolution (Rango and Itten, 1976). The poten-
tial of the near-infrared (NIR) wavelengths to estimate snow grain size was already
demonstrated in the early 80’s based on measurements from the NOAA Advanced
Very High Resolution Radiometer (AVHRR) (Dozier, Schneider, and Jr., 1981).
Prominent subsequent missions used to retrieve snow grain size include the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (Zege et al., 2008; Zege et al.,
2011; Carlsen et al., 2017), and the Sentinel-3 Ocean and Land Colour Instrument
(S3 OLCI) (Kokhanovsky et al., 2019). The detection of biological LAP on snow
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and ice surfaces has also been studied in detail and a couple of investigations fo-
cused on mapping glacier algal blooms and determining their effects on ice melt on
the Greenland Ice Sheet (Takeuchi et al., 2006; Stibal et al., 2017; Wang et al.,
2018; Wang et al., 2020; Cook et al., 2020; Gray et al., 2020). These studies ap-
plied retrieval algorithms to data from the Satellite Probatoire d’ Observation de
la Terre (SPOT), MODIS, S3 OLCI, the Medium Resolution Imaging Spectrometer
(MERIS), or Sentinel-2.

In contrast to most of the existing optical satellite missions, imaging spectroscopy
can be used to accurately map and quantify snow and ice surface properties using
physically-based retrievals by modeling characteristic atmospheric and surface ab-
sorption features (Painter et al., 2013). So far, this technique has been almost
entirely based on airborne spectrometers though, and in particular, on measure-
ments from NASA’s Airborne Visible Infrared Imaging Spectrometer (AVIRIS).
Approaches to estimate snow grain size from AVIRIS data have been introduced
by Nolin and Dozier (1993), and further developed by Nolin and Dozier (2000)
and Painter et al. (2013). It has also been demonstrated that concentration of snow
algal blooms can be quantified using AVIRIS acquisitions (Painter, Duval, and Thi-
mas, 2001). The same instrument was used to quantify liquid water in-between
the snow grains (Green et al., 2006). Recently, Bohn et al. (2021) demonstrated a
promising potential of spaceborne imaging spectroscopy missions to simultaneously
detect and quantify snow and ice grain size, liquid water, and glacier algal accumu-
lation on the Greenland Ice Sheet based on simulated data and AVIRIS measure-
ments. In this context, a new generation of orbital imaging spectroscopy missions is
expected to provide much wider coverage on a more regular basis with high resolu-
tion footprints of only 30 m. The German Aerospace Center’s (DLR) Earth Sensing
Imaging Spectrometer (DESIS) (Mueller et al., 2016) and the Italian Hyperspectral
Precursor of the Application Mission (PRISMA) (Cogliati et al., 2021) already are in
operation since 2018 and 2019, respectively. Forthcoming missions include NASA’s
Earth Surface Mineral Dust Source Investigation (EMIT) (Green et al., 2018), the
German Environmental Mapping and Analysis Program (EnMAP) (Guanter et al.,
2015), the Copernicus Hyperspectral Imaging Mission (CHIME) led by ESA (Rast
et al., 2019), and NASA’s Surface Biology and Geology (SBG) designated observ-
able (National Academies of Sciences, Engineering, and Medicine, 2018).

In this work, we present the first estimation of snow and ice surface properties
from existing spaceborne imaging spectroscopy data. We apply a recently developed
simultaneous Bayesian inversion of atmospheric and surface state using optimal
estimation (OE). The algorithm was introduced by Bohn et al. (2021) and is an
extended version of the concept presented in Thompson et al. (2018). It incorporates
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prior knowledge, measurement noise as well as model uncertainties. We use a dataset
from the PRISMA instrument in order to map and quantify ice grain size, surface
liquid water, and algae mass mixing ratio. The image was acquired over the South-
West margin of the Greenland Ice Sheet in late August 2020 capturing the "dark
zone" or "k-transect", which is characterized by patterns of clean snow and dark
ice featuring high concentration of deposited LAPs (Wientjes et al., 2011). We
present retrieval maps and associated posterior uncertainties, as well as estimated
reflectance spectra for different surface conditions. We also analyze the optical
properties of melt ponds or supraglacial lakes, which are numerous in the selected
PRISMA acquisition. In addition to presenting the new spectroscopic retrievals, we
finally show how these measurements can be used in concert with multiband data
in a comprehensive cryosphere observation system. We demonstrate for the first
time that simple local regression models applied to multispectral S3 OLCI data can
achieve a high degree of alignment with retrieval maps from imaging spectroscopy
measurements.

4.2 Methods

4.2.1 Spectroscopic snow and ice property retrievals

The algorithm our study is based relies on statistical relationships between surface
reflectance spectra and snow and ice properties to estimate the most probable solu-
tion state given a particular reflectance. It is based on the principles of OE described
by Rodgers (2000) and uses a comprehensive library of reflectance spectra and asso-
ciated snow and ice surface parameters as a representation of prior knowledge. Bohn
et al. (2021) named this approach a "lazy Gaussian" or "lazy prior-driven" inver-
sion since the forward model is a function of the atmospheric state and the surface
reflectance, but not of the additional surface parameters. These extra parameters
are estimated entirely based on the prior mean and covariance with the surface re-
flectance. They comprise grain radius, liquid water path length as well as mass
mixing ratios of various LAPs. The statistical correlations between reflectance and
surface properties are derived from runs of the snow and ice radiative transfer model
(RTM) BioSNICAR-GO.

BioSNICAR-GO simulates surface spectral albedo by combining a bio-optical
model with the two-stream multilayer SNow, ICe, and Aerosol Radiation model
SNICAR (Flanner et al., 2007; Cook et al., 2020). It facilitates the modeling of ice
grains and LAP either as collections of spheres based on Lorenz-Mie theory (Grenfell
and Warren, 1999) or as arbitrarily large hexagonal plates and columns using a
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geometric optics (GO) parameterization from Diedenhoven et al. (2014). To enable
the estimation of surface liquid water, Bohn et al. (2021) coupled BioSNICAR-GO
with the two-layer coated sphere reflectance model developed by Green et al. (2002).
The model assumes an increased grain radius attributed to a particular liquid water
fraction, and is based on a slight shift between the imaginary parts of the spectral
refractive index of liquid water and ice (Dozier and Painter, 2004).

This section presents a brief discussion of the difference in modeling of snow and
ice grains, followed by an overview about the forward model and OE in general.
We adhere to standard conventions and denote matrices with uppercase boldface
letters, and vectors as well as vector-valued functions with a lowercase boldface
notation. For in-depth details, the reader is referred to Rodgers (2000), Thompson
et al. (2018), and Bohn et al. (2021).

4.2.1.1 Snow vs. ice grains

Most of the scientific literature on the retrieval of snow and ice surface parame-
ters is focused on snow grain size (see, e.g., Nolin and Dozier (1993), Nolin and
Dozier (2000), Painter et al. (2013), Kokhanovsky et al. (2019)). However, the opti-
cal properties of ice crystals are very different compared to snow, which is a mixture
of air and ice (Warren, 2019). There is an inner complexity in estimating ice grain
dimensions since the transition from snow to glacier ice is a continuum. On ice
sheets, snow is compressed by its own weight and with increasing density, present
air forms enclosed bubbles. The higher the density and the pressure, the smaller the
bubbles get until they finally dissolve to spare pure ice (Warren, 2019).

The most common method to model the shape of snow grains is to assume non-
spherical snow particles being arranged as a collection of spheres and to obtain
their optical properties from Lorenz-Mie theory (Grenfell and Warren, 1999). This
approach is justified by expecting the snow grain radius being much larger than
the incident radiation wavelengths. However, this method features clear limitations
when applied to surfaces of bare ice since the grains typically appear to be arbi-
trarily shaped as plates and columns with irregular dimensions (Kokhanovsky and
Zege, 2004). To capture this in the modeling, Aoki et al. (2007) proposed to con-
sider length, width, and thickness of the ice crystals instead of the collected-spheres
approach. These parameters are likewise the basis of the geometric optics (GO)
calculations introduced by Kokhanovsky and Zege (2004).

In this study, we run the "lazy Gaussian" inversion based on both the collected-
spheres and the GO method representing the prior distributions. Although the
simulated spectra for glacier ice surfaces display the more appropriate prior mean
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and covariance for our case study, we also applied the Lorenz-Mie based snow spec-
tral library to our PRISMA dataset to enable a comparison with the grain radius
maps derived from S3 OLCI data. Furthermore, this demonstrates the resulting
differences both in spatial distribution and value range of the estimated grain sizes,
and therefore, gives an impression of the applicability of the different approaches to
model snow and ice grain shape. Figure 4.1d shows representative surface reflectance
spectra of clean snow and dark ice, respectively, with highlighted characteristic ab-
sorption features. Abundance of carotenoids and chlorophyll indicates presence of
biological impurities on the surface, whereas ice and liquid water absorption bands
are used for retrieving grain size as well as liquid water content. The spectra high-
light the differences in reflectivity of snow and ice surfaces and thus, confirm the
importance of choosing an appropriate prior knowledge for the inversion.

4.2.1.2 Forward model

We denote the forward model as a vector-valued function f of the state vector
x = [x1, ..., xn]T yielding the measurement vector y = [y1, ..., ym]T:

y = f(x) + ✏✏✏, (4.1)

with ✏ representing a random error vector, which in our case includes measurement
noise, prior uncertainties in x, and errors due to unknown forward model parameters.
Following Thompson et al. (2018), x contains columnar water vapor in g cm

�2 and
dimensionless Aerosol Optical Thickness (AOT) at 550 nm being an atmospheric
part xATM = [xH2O, xAOT]T, and the reflectance of each instrument channel as a sur-
face part xSURF. Here, the snow and ice properties are added leading to the extended
version xSURF = [x�1 , ..., x�m , xSURF1 , ..., xSURFn ]

T. Thompson et al. (2018) use the
hemispherical-directional reflectance factor (HDRF) as a representation of the sur-
face reflectance. In contrast, our implementation of the "lazy Gaussian" method
optimizes the hemispherically-integrated spectral albedo. This approach is limited
by the used 2-stream snow and ice RTM BioSNICAR-GO. However, although the
HDRF is the more appropriate quantity when modeling measurements of imaging
spectrometers (Schaepman-Strub et al., 2006), the use of spectral albedo for appli-
cations to the flat parts of the Greenland Ice Sheet can be pursued (Bohn et al.,
2021).

In specific form, f models the wavelength-dependent top-of-atmosphere (TOA)
radiance using a simplified solution of the radiative transfer equation (Chandrasekhar,
1960):

LTOA = L0 +
1

⇡

⇢s(Edirµsun + Edif)T"

1� S⇢s
, (4.2)
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where L0 is the atmospheric path radiance; Edir and Edif are the direct and diffuse
solar irradiance arriving at the surface; µsun is the cosine of the solar zenith angle;
T" is the total upward atmospheric transmittance; S is the spherical albedo of the
atmosphere; and ⇢s is the surface spectral albedo. For simplicity, we assume an
infinite, horizontal, and isotropic Lambertian surface as well as clear sky and a
plane-parallel atmosphere. At the same time, these assumptions ensure validity of
using spectral albedo in place of HDRF (Bohn et al., 2021). The atmospheric flux
parameters L0, Edir, Edif , T", and S are functions of xATM, surface elevation as
well as solar and observation geometry. They are derived from radiative transfer
simulations using the MODTRAN code (Berk, Bernstein, and Robertson, 1989).
The prior covariance matrix of xATM is assumed to be diagonal and unconstrained.

While the first part of the surface state vector, [x�1 , ..., x�m ], is expressed by
⇢s in f , the remaining parameters of xSURF, [xSURF1 , ..., xSURFn ], are not an input
to the forward model. They are optimized entirely based on their prior mean and
covariance, which are obtained from the prior surface statistics. These statistics
are characterized by a multivariate Gaussian distribution of surface reflectance for
each instrument channel and the additional surface parameters with a non-diagonal
covariance matrix due to expected correlations across channels.

4.2.1.3 Optimal estimation

OE acts on two main assumptions: measurement and state vectors as well as the
associated errors follow a Gaussian distribution, and the forward model is locally
linear. Then, f can be inverted by minimizing the following cost function, which is
the negative logarithm of the posterior probability density function:

C(x̂) = 1

2
(x̂� xa)

TS�1
a (x̂� xa) +

1

2

�
y � f(x̂))TS�1

✏
(y � f(x̂)

�
. (4.3)

Here, xa is the prior state vector; Sa is the prior covariance matrix; and S✏ is the
measurement covariance matrix. The first term of the right-hand side penalizes the
departure of the modeled TOA radiance from the measurement, weighted by S✏,
which captures both instrument noise, expressed by the noise-equivalent change in
radiance, and uncertainties due to unknown forward model parameters. We assume
no correlation between the measurement noise of different instrument channels as
well as between the unknown parameters, so that S✏ is diagonal. The second term
evaluates the difference between prior and solution state by taking into account Sa.
The iteration then searches for the solution state x̂ that leads to a local minimum
of Equation 4.3, being the state with the highest probability given the measurement
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and the prior state. In this work, we find x̂ using a Gauss-Newton iteration scheme
that typically converges in less than 30 iterations.

Besides the converged solution state, the OE retrieval scheme reports the poste-
rior predictive uncertainty for each x̂:

Ŝ = (KTS�1
✏
K+ S�1

a )�1
, (4.4)

where K is the Jacobian of the forward model with respect to x̂. To facilitate an
interpretation of the posterior uncertainties, Ŝ can be normalized leading to an error
correlation matrix (Govaerts et al., 2010).

4.2.2 Sentinel-3 OLCI snow property retrievals

Measurements from S3 OLCI can be used to derive several snow properties including
spectral and broadband albedo, snow specific surface area, snow extent, and snow
grain size (Kokhanovsky et al., 2019). Additionally, multiple band indices have
been developed for identifying impurities on snow and ice surfaces from instruments
such as MERIS, MODIS, or S3 OLCI, including different chlorophyll indices and
the impurity index (Wang et al., 2018; Wang et al., 2020; Dumont et al., 2014). In
this section, we briefly introduce the S3 OLCI grain size retrieval algorithm as well
as the impurity index, as results from both are used for comparison with retrieval
maps from PRISMA data.

The snow grain radius is estimated from S3 OLCI data using the following rela-
tion (Kokhanovsky et al., 2019):

r =
Al

2
, (4.5)

where l is the effective ice absorption length, and A is derived from a scaling con-
stant depending both on snow type and grain shape. Kokhanovsky et al. (2019)
suggest A = 0.06 based on findings from various studies, which analyze the scaling
constant (see Kokhanovsky (2006), Libois et al. (2014), Di Mauro et al. (2015)).
The absorption length l is calculated by:

l =
1

↵2f
2
ln(

R2

R1
), (4.6)

where R1 and R2 are the OLCI TOA reflectance at 865 and 1020 nm, ↵2 is the
ice absorption coefficient at 1020 nm, and f is an angular function that depends
on solar and viewing geometry as well as on the theoretical reflectance of a non-
absorbing snow layer. The important assumptions of this approach are that R1 and
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R2 have to be sensitive to the snow grain radius and least influenced by atmospheric
absorption and scattering (Kokhanovsky et al., 2019). For more details about the
algorithm the reader is referred to Kokhanovsky et al. (2019).

The impurity index was introduced by Dumont et al. (2014) and exploits the
much higher sensitivity of the visible (VIS) wavelengths to impurity content com-
pared with the near-infrared (NIR) spectral region. It is calculated by the ratio of
the natural logarithms of green and NIR surface reflectance at 560 and 865 nm,
respectively:

iimp =
ln(R560 nm)

ln(R865 nm)
. (4.7)

Dumont et al. (2014) showed that iimp is almost non-sensitive to the ice grain size,
whereas it can be affected by atmospheric aerosols in case of biased atmospheric
correction results. An accurate surface reflectance retrieval is therefore needed prior
to calculating iimp. Furthermore, Di Mauro et al. (2017) demonstrated that iimp is
also sensitive to mineral dust and black carbon concentration on ice surfaces. Typical
values of the impurity index are 0.2� 0.5 for bare ice, 0.7� 0.9 for low to moderate
chlorophyll content, and more than 0.9 for high chlorophyll concentration (Wang et
al., 2020). Its values can reach up to 1.2 for high loads of impurities and cryoconite
on bare ice (Di Mauro et al., 2017).

4.3 Materials

4.3.1 Study area

Our study area is located at the South-West margin of the Greenland Ice Sheet at
66� – 68� N and 48� – 50� W. It belongs to the Kangerlussuaq transect (k-transect)
and is characterized by patterns of clean snow and dark ice. Especially in the sum-
mertime, i.e., July and August, the k-transect features a low surface albedo forming
a zone of dark ice (Alexander et al., 2014; Ryan et al., 2018). This process is highly
correlated with meltwater production and runoff as well as with associated occur-
rences of algal blooms on the ice surface (Wang et al., 2018; Cook et al., 2020; Bohn
et al., 2021). As shown by previous studies, the predominant species of biologi-
cal impurities during the melt season in the dark zone are Mesotaenium berggrenii
and Ancylonema nordenskioldii (Yallop et al., 2012; Williamson et al., 2018). In
fact, these eukaryotic species are known to dominate the supraglacial environment
both in Greenland and elsewhere (Di Mauro et al., 2020). Additionally, the large
amount of meltwater production leads to the development of several widespread
melt ponds (Diamond et al., 2021).
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Figure 4.1: a) Map of Greenland showing the location of the PRISMA acquisition as a red
box; b) a true-color image of the TOA radiance dataset; c) the normalized difference snow
index (NDSI) calculated from the difference between the VIS green and shortwave infrared
(SWIR) TOA reflectance; and d) exemplary surface reflectance spectra estimated from
PRISMA TOA radiance data for clean snow and dark ice, respectively. Center wavelengths
of characteristic absorption features of carotenoids (Car), chlorophyll (Chl), liquid water
(Liq), and ice (Ice) are highlighted with dashed lines.

4.3.2 PRISMA data

PRISMA is an Italian satellite mission led by the Italian Space Agency (ASI)
(Cogliati et al., 2021). The instrument was launched in March 2019 and provides
on-demand data for most of the Earth. It features 239 spectral bands covering the
wavelength region from 400 to 2500 nm with a spectral sampling interval (SSI) less
than 12 nm. The ground sampling distance (GSD) is 30 m, while the swath is
30 km.

For our study, we selected an acquisition from August 30, 2020, covering a part of
the k-transect. Figure 4.1a-b shows a true-color representation of the scene and its
location on the Greenland Ice Sheet. The image contains representative examples of
both clean snow and dark ice at the end of the melting season. Several melt ponds
are also displayed. After converting PRISMA L1 TOA radiance data to reflectance,
we calculated the normalized difference snow index (NDSI) (Dozier, 1989), which is
visualized in Figure 4.1c. We mostly obtain an NDSI beyond 0.8 with 0.74 being the
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minimum value of the entire image, which clearly indicates that the surface is covered
with snow and ice (Dozier and Painter, 2004). We can also observe some smooth
structures towards the East showing lower values of NDSI, which might be some
thin clouds not easily detectable in the true-color image. Stillinger et al. (2019) have
shown that the NDSI of dark clouds can be high enough to cause misclassification.

In order to improve the radiometric and spectral quality of the selected PRISMA
data, we applied a suite of preprocessing tools, including a spectral smile correction
and a radiometric radiance correction (Chlus, Townsend, and Gierach, 2021).

To obtain the individual noise-equivalent change in radiance for each PRISMA
spectrum needed by the OE-based inversion, we use an estimation of the signal-
to-noise ratio (SNR) based on a discrete cosine transform and scale the results
assuming a photon shot noise square root dependence with the radiance (Gorroño
and Guanter, 2021).

4.3.3 Sentinel-3 OLCI data

OLCI is a moderate resolution imaging spectrometer installed on the Sentinel-3
satellite, which was launched in 2016. The instrument provides 21 spectral bands
spanning 400 to 1020 nm with an SSI between 2.5 and 40 nm. With 1, 270 km

and 300 m, it features much larger swath and GSD, respectively, than the PRISMA
imaging spectrometer. OLCI was specifically designed for retrieving chlorophyll
content, primarily over ocean surfaces, which is highly facilitated by its large foot-
print (Malenovský et al., 2012).

For the comparison with our PRISMA dataset, we selected an OLCI acquisition
from the same date, i.e., August 30, 2020, and almost the same time of overpass, i.e.,
approximately 15:00 GMT-2. The scene covers large parts of the western shore of
the Greenland Ice Sheet and part of the Canadian arctic. It includes our study area
in the k-transect of southwest Greenland and shows a slightly larger cloud fraction,
which is mainly located over water surfaces though. We used the OLCI L1B product
providing radiometrically calibrated TOA radiances and converted the data both to
TOA and surface reflectance using the S3 OLCI Snow and Ice Properties Processor
(SICE). Details on SICE can be found in Kokhanovsky, Box, and Vandecrux (2020).
Subsequently, we produced a snow grain size map and calculated the impurity index
for each pixel using OLCI bands 6 at 560 nm and 17 at 865 nm.
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4.4 Results and discussion

4.4.1 Snow and ice parameter maps

The left panel of Figure 4.2 quantifies the spatial distribution of ice grain radius, ice
liquid water path length, and glacier algae mass mixing ratio from the PRISMA data
using the glacier ice spectral library as prior knowledge. Comparing the maps with
the true-color image in Figure 4.1b, it is obvious that the darker the surface, the
larger are the estimated ice grains and the algae concentration since high amounts
of both quantities lead to decreasing reflectance in the VIS (Bohn et al., 2021).
Likewise, the liquid water path length detected on the ice surface is significantly
larger for the dark zone in the western part. The algae map is calculated from
the sum of retrieved values of the species Mesotaenium berggrenii and Ancylonema
nordenskioldii, and conforms to values measured in the field (Cook et al., 2020).

Figure 4.3 illustrates these findings by showing spatial transects of ice grain
radius, ice liquid water path length, and glacier algae mass mixing ratio at 67.14�

N. We selected this particular latitude as this transect not only covers the dark zone
and clean ice and snow, but also the large dark melt pond located in the north-
eastern part of the image. Between 48.5� and 48.8�W, the transect can generally
be characterized as transition area from the dark zone near the coastline towards
the clean ice at higher elevated parts of the Ice Sheet. This transition area is
interrupted by some small scale accumulations of glacier algae around melt ponds,
which typically cause algal disposition in the surrounding area. In contrast, we
observe constantly large ice grain radii and ice liquid water path lengths as well as
high algae concentration within the dark zone. The discrete spike in all transects
between 48.8� and 48.9� W originates from a small and shallow melt pond, whose
brighter reflectance properties are most likely influenced by underlying bare ice
featuring a smaller grain radius and very low algae concentration. On the other
hand, the dark melt pond is characterized by large estimated ice grains and high
concentration of glacier algae (see Section 4.4.5 for a detailed analysis). Finally,
the region of clean ice and snow shows small grain radii, less liquid water on the
ice surface, and almost no biological impurities. Overall, the reported value ranges
for the various parameters coincide with findings from previous studies (Cook et
al., 2020; Bohn et al., 2021). Especially the comparison with samples of algal field
measurements collected and provided by Cook et al. (2020) proves a similar value
range of mass mixing ratios remotely retrieved from PRISMA data (Figure 4.3). In
fact, the concentrations observed in the field are slightly lower, but this is probably
due to an earlier sampling date within the melting season, i.e., mid of July instead
of late August. Furthermore, the results from the PRISMA data rather represent
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Figure 4.2: Estimated surface parameter maps from PRISMA data using different spec-
tral libraries as prior knowledge. Left panel: glacier ice; right panel: snow. a-b) Grain
radius; c-d) liquid water path length; e-f) algae mass mixing ratio; and g-h) posterior error
correlation matrices for selected atmosphere and surface state parameters. The dashed red
lines in a, c, and e indicate the latitude that is selected to create the spatial transects in
Figure 4.3.
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Figure 4.3: Spatial transects of estimated ice grain radius, ice liquid water path length,
and glacier algae mass mixing ratio at 67.14� N (see dashed red lines in the left panel of
Figure 4.2). The selected latitude covers the dark zone of high impurity concentration as
well as a large dark melt pond and an area of clean ice and snow in the eastern part of
the image. The lower panel is complemented by a boxplot calculated from samples of algal
field measurements collected between 10 and 17 July 2017 within the k-transect by Cook
et al. (2020). The pink dashed line and the pink colored point show median and mean of
the distribution, respectively.
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average values of 30⇥ 30 m pixels than point measurements. Thus, the mean of the
algal field measurements, indicated by a pink colored point within the boxplot, is
the more appropriate quantity to compare with.

The right panel of Figure 4.2 presents the estimated maps for snow grain radius,
snow liquid water path length, and snow algae mass mixing ratio using the Lorenz-
Mie based snow spectral library as prior knowledge. In contrast to the retrieved
ice grain size, a correlation with surface brightness is not observable for the snow
grain radius. In fact, this retrieval ideally works for sphere-shaped snow grains,
so that the reported values for the dark ice surface have to be treated carefully.
Towards the most eastern part, the map features smaller grain radii potentially
related to the increasing surface elevation, which rises from 1000 to 1500 m in
our PRISMA image and leads to lower air temperatures when moving landwards.
Under these conditions, generally dry snow with small grain size is found on the
surface (Warren, 2019). Several studies well describe the spatial distribution of
snow grain size including its decline on the uplifted parts of the Greenland Ice
Sheet (see, e.g., Kokhanovsky et al. (2019) or Bohn et al. (2021)). The estimated
snow liquid water path lengths confirm the retrieved snow grain size map since the
highest values can be observed for pixels with large grain radii of up to 800 to
1000 µm. The grains in liquid water enriched wet snow tend to form clusters, which
behave as larger grains with the respective optical properties (Dozier et al., 2009).
Finally, the snow algae map in Figure 4.2f points out the importance of selecting
appropriate priors for the inversion. Applying the snow spectral library to retrievals
on glacier ice surfaces obviously leads to less realistic results of algae concentration.
The estimated mass mixing ratios do not correlate with surface brightness and show
artificially high values when compared to the field observations of Cook et al. (2020)
(see Figure 4.3). This is mainly due to the different approaches of modeling the shape
of both snow and ice grains and the algal cells. Relying on prior knowledge based on
GO calculations significantly enhances the retrieval results since it simulates existing
conditions on glacier ice surfaces more appropriately (Cook et al., 2020).

4.4.2 Posterior error correlation

Then, we present posterior error correlation matrices for selected atmosphere and
surface parameters to show how retrieval uncertainties of particular state vector
elements affect each other. We calculated the mean coefficients from the posterior
predictive uncertainties for all x̂ of the PRISMA image. Depending on the used
surface prior spectral library, Figure 4.2g-h divides into glacier ice and snow surface
parameters.



4.4. Results and discussion 105

Although we do not analyze the retrieval of the atmospheric state xATM in this
study, we take a look at potential effects of water vapor and AOT on the additional
surface parameters. Whereas water vapor uncertainties are clearly uncorrelated with
all other parameters over glacier ice, a negative correlation between errors in the ice
grain retrieval and the AOT estimation can be observed. Scattering and absorption
by atmospheric aerosols show similar effects on the reflectance shape and magnitude
in the VIS as increasing ice grain radii. Thus, corresponding retrieval uncertainties
are introduced, which was one of the key findings in Bohn et al. (2021). Furthermore,
posterior errors for the glacier algae species are strongly negatively correlated since
their absorption features are similar (Cook et al., 2020). However, we report the
sum of both in the retrieval maps, so that potential inaccuracies compensate for
each other.

Figure 4.2h illustrates the positive correlation between uncertainties in the snow
grain size retrieval and errors in the liquid water estimation. This is most likely due
to the similarities between liquid and ice absorption shapes (Green et al., 2006).
Even errors in the solution state for atmospheric water vapor can be little affected
by posterior uncertainties in the surface liquid water estimation. However, the re-
spective correlation coefficient is only �0.13 and likewise, the remaining values of
the matrix are more or less close to 0. Overall, Figure 4.2g-h confirms the indepen-
dence of most state vector parameters and therefore, our ability to estimate them
with the "lazy Gaussian" inversion.

4.4.3 TOA radiance fits

Next, we present a comparison between PRISMA L1 data and the respective TOA
radiance fits, modeled by Equation 4.2. As an example, the upper panel of Figure 4.4
shows three selected spectra of different Ice Sheet surface types as highlighted in
Figure 4.3. The left panel represents a clean snow surface in the eastern part of
the image featuring small ice crystals, a smaller liquid water path length, and no
algae accumulation. In contrast, the spectrum in the middle panel originates from
a dark ice pixel in the ablation zone having large ice crystals, a large liquid water
path length, and a high glacier algae mass mixing ratio. Finally, the right panel
emphasizes the radiative and reflective properties of the dark melt pond located on
the spatial transect drawn in the left panel of Figure 4.2.

While showing almost no residuals in the SWIR, all spectral fits illustrate discrep-
ancies of up to 2 µWnm

�1
cm

�2
sr

�1 in the VIS/NIR wavelength region. Generally,
the modeled TOA radiance rather underestimates the measured PRISMA L1 data,
except for the NIR part of the melt pond spectrum. However, we observe slightly
different spectral regions of largest error occurrence. The radiance fit for the dark



106 Chapter 4. Glacier ice surface properties in South-West Greenland Ice Sheet

Figure 4.4: TOA radiance fits and estimated surface reflectance for three selected Ice
Sheet surface types. a) Clean snow with small ice crystals, smaller liquid water path length,
and no algae accumulation; b) dark ice with large ice crystals, large liquid water path
length, and high algae accumulation; and c) dark melt pond with very large ice crystals,
medium liquid water path length, and moderate algae accumulation. The upper panel
shows fits between PRISMA L1 data and the forward modeled radiance at convergence.
The lower panel presents a comparison of reflectance solution states with the PRISMA
L2C product. The blue lines in all plots depict the absolute residuals between PRISMA
data and the lazy Gaussian results.

ice surface almost exclusively deviates from the PRISMA measurement between 400

and 750 nm, where the TOA radiance signal is strongly affected by the scattering
of atmospheric aerosols. An explanation is directly presented in Figure 4.2g. Here,
we notice a correlation coefficient of �0.69 between errors in the ice grain radius re-
trieval and the AOT estimation. Therefore, the AOT value reported in the solution
state for the dark ice spectrum might be overestimated due to an underestimated
ice grain radius. This reduces the modeled radiance in the VIS. Additionally, the
AOT estimation is biased by a missing first guess retrieval prior to the inversion.

The fit for the clean snow spectrum shows less influences by the AOT retrieval
in the VIS. Here, we observe the largest model discrepancies in the NIR wavelength
region. As the inversion reports a much smaller ice grain radius, but remarkably
higher relative liquid water fraction, the residuals might be explained by error cor-
relation in-between the three phases of water, i.e., atmospheric water vapor, surface
liquid water, and ice grain radius. Figure 4.2h confirms this assumption since we
note correlation coefficients of 0.60 between snow grain and liquid water retrieval
uncertainties as well as at least �0.13 for errors in water vapor estimation and the
reported liquid water fraction.

Finally, the radiance fit for the melt pond spectrum slightly deviates from the
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PRISMA L1 data in the blue VIS region, but shows larger differences in the NIR
wavelength range. The former is most likely caused by uncertainties in the AOT es-
timation, while the latter might be explained by insufficient surface prior knowledge.
The applied spectral libraries of snow and ice reflectance do not include simulations
for melt pond surfaces and consequentially, the prior state vector does not cover
these characteristics in the inversion. This is also reflected in the estimated ice crys-
tal size for this spectrum. The inversion reports a disproportionately large radius of
23212 µm, although we rather find open water than ice-covered surface in this pixel.
Here, the solution state of the ice crystal size is clearly guided by the relatively low
radiance, which is commonly observed for water surfaces.

Overall, the discrepancies in modeled TOA radiance may also originate from too
strong constraints on the surface reflectance priors. The optimization then attends
less to the measurement part of the cost function and consequentially, models y

with a higher associated uncertainty. Increasing the surface reflectance diagonal
of the prior covariance matrix may improve the performance of our forward model.
Also, uncertainties introduced by the radiometric calibration of the instrument itself
might be another source of errors influencing the TOA radiance fits.

Finally, we presume though that at least the amount of algae accumulation on the
ice surface has less effects on the fitted TOA radiance. Bohn et al. (2021) have shown
that the information content of the radiance measurement is almost unaffected by
biological impurities. However, small errors might still remain in the TOA radiance
fits.

4.4.4 Estimated surface reflectance

Since the "lazy Gaussian" inversion is embedded in an atmospheric correction al-
gorithm and the spectral albedo for each instrument channel are elements of the
state vector, the evaluation of the retrieved surface reflectance is an essential part
of our analysis. Although we lack appropriate field measurements for validation, a
qualitative comparison with the official PRISMA L2C product is informative. Since
our resulting reflectance map is yet in sensor geometry similar to the PRISMA L1
product, we use the L2C data for comparison instead of the final orthorectified L2D
product.

The lower panel of Figure 4.4 shows results for the same pixels as analyzed in
Section 4.4.3. For clarity, we excluded reflectance values from instrument channels
located within the deep SWIR water vapor absorption features around 1350 and
1850 nm, where the solar radiation is almost entirely absorbed by the atmosphere.
Even marginally biased simulations of atmospheric water vapor transmission could
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Figure 4.5: The middle panel presents examples of retrieved melt pond surface reflectance
spectra from the PRISMA image. In addition to the figure legend, estimated mass mixing
ratios of glacier algae are displayed in textcolor according to the respective spectrum.
Dashed vertical lines indicate the positions of both carotenoid and chlorophyll absorption
features at 500 and 680 nm, respectively. The left panel shows a true-color RGB with the
location of the areas on the map. The right panel zooms in on carotenoid and chlorophyll
absorption features between 400 and 700 nm present in spectra (c) and (d).

lead to artificially high reflectance values at these wavelengths. Again, we evalu-
ate spectra of clean snow, dark ice, and a melt pond surface. Overall, we see a
good agreement with PRISMA L2C spectra. The results from the "lazy Gaussian"
inversion feature less spikes and a smoother reflectance gradient especially in the
VIS. This emphasizes the capabilities of OE, which enables a less noisy reflectance
estimation by incorporating the prior distribution in the surface model (Thompson
et al., 2018). However, all spectra show deviations from the PRISMA data in the
same spectral ranges as illustrated by the upper panel of Figure 4.4. This confirms
the assumptions of the previous Section 4.4.3. On the other hand, further studies
are needed to assess the quality of PRISMA L2C spectra and if they can serve as
validation targets (Cogliati et al., 2021). Instead, an accurate evaluation of the re-
trieval results from the "lazy Gaussian" inversion would require field measurements
of surface reflectance.

4.4.5 Melt ponds

Figure 4.5 shows selected melt pond reflectance spectra representing different water
types. Additionally, the estimated glacier algae accumulation for the respective pix-
els is given in the plot. When comparing with snow or ice surfaces, the reflectance
spectrum of melt ponds is characterized by a missing peak at 1100 nm. The re-
flectance beyond 900 nm is typically low due to strong liquid water absorption in
these wavelengths, with any signal due only to Fresnel reflection (Malinka et al.,
2018). Spectra (a) and (b) in Figure 4.5 only show a marginal peak in the NIR
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indicating an open pond without ice cover. Shape and magnitude of both spectra
conform with field spectrometer measurements of dark and light-blue ponds pre-
sented in Malinka et al. (2018). However, while the inversion reports no present
algae accumulation for spectrum (a), the estimated mass mixing ratio of 71 µg/gice

is comparatively high for spectrum (b). Here, we most likely observe the influence
of cryoconite on the bottom of the pond, which has been interspersed with melt
water.

In contrast, spectra (c) and (d) exhibit absorption features in the VIS spectral
region caused by abundance of biological impurities on the surface. This assumption
is confirmed by retrieved glacier algae mass mixing ratios of 38 and 154 µg/gice,
respectively. Even a distinction between different species of algae is enabled by the
retrieval result since both spectra hold different characteristic absorption features.
The right panel of Figure 4.5 presents a closer look at carotenoid and chlorophyll
absorption between 400 and 700 nm present in spectra (c) and (d). We observe a
mixture of phycoerythrin and chlorophyll absorption around 620 nm in spectrum
(c) (Bryant, 1982), pointing to green algae or blue colored cyanobacteria, which are
commonly found on the Greenland Ice Sheet (Wientjes et al., 2011; Yallop et al.,
2012; Gray et al., 2020; Di Mauro et al., 2020). In contrast, spectrum (d) can be
distinguished by a broad carotenoid feature around 500 nm indicating the presence
of red or purple algae (Hoham and Remias, 2020). They are found in large quantities
on the Greenland Ice Sheet (Cook et al., 2020), which is underlined by the relatively
high retrieved concentration of 154 µg/gice. Present reflectance peaks at 1100 nm

in spectra (c) and (d) suggest though that the respective ponds seem to be either
partly covered with ice or to consist of a mixture of water and ice grains (Malinka
et al., 2018). This is further endorsed since both spectra (c) and (d) resemble the
shape of spectrum (e), which is retrieved from a frozen pond featuring almost clean
ice without significant algae accumulation.

Overall, the results demonstrate that the "lazy Gaussian" inversion is able to
report meaningful results from PRISMA data for glacial melt ponds by quantifying
different brightness of water surfaces, distinguishing turbid and clear water as well
as identifying potential ice cover. Furthermore, we show that even weak chlorophyll
absorption can be resolved by PRISMA data. To our knowledge, this is the first
time that this small absorption is observed from a spaceborne imaging spectrometer,
which opens a valuable perspective for the life detection on snow and ice using
imaging spectroscopy data.
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Figure 4.6: Resulting maps from the S3 OLCI snow properties retrieval for the western
Greenland dataset (acquisition date: August 30, 2020, 15:00 GMT-2). a) Snow grain ra-
dius; and b) impurity index. For non-snow covered pixels, the true-color image is displayed.
Red boxes indicate the location of the PRISMA acquisition analyzed in this study.

4.4.6 Comparison with Sentinel-3 OLCI

Finally, we present results from the S3 OLCI snow properties retrieval and show a
comparison with the PRISMA retrieval maps. In particular, we demonstrate the
potential of snow and ice surface parameters derived from imaging spectrometers to
develop regression models for multispectral data.

Figure 4.6 shows S3 OLCI snow grain radius and impurity index calculated ac-
cording to Equations 4.5 and 4.7, respectively. It is important to note that the
OLCI grain size algorithm assumes a spherical grain shape, so that the retrieval
rather reports radii of snow grains than dimensions of arbitrarily shaped ice crys-
tals (Kokhanovsky et al., 2019). We masked out non-snow covered pixels to save
processing time and complemented the plot with a true-color image of the S3 acqui-
sition. When looking at the eastern part of the scene, we observe a distinct spatial
pattern of both parameters having the largest values towards the edge of the ice
sheet in a stripe parallel to the coastline. Moving landwards, snow grain radius
and impurity index significantly decline. Both their value range and spatial distri-
bution coincide with reported values in, e.g., Kokhanovsky et al. (2019) or Wang
et al. (2020), and are in line with the seasonal conditions to be found at the end of
the melting season in late August (Alexander et al., 2014).

As a next step, we generated spatial subsets from the S3 OLCI retrieval maps to
match the geographic extent of the PRISMA acquisition. Figure 4.7 shows a visual
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Figure 4.7: Visual comparison of PRISMA snow grain radius and glacier algae mass
mixing ratio retrieval maps with the spatially equal subsets from the S3 OLCI results. a)
Subset of the S3 OLCI snow grain radius map (GSD: 300 m); b) PRISMA snow grain
radius map (GSD: 30 m); d) subset of the S3 OLCI impurity index map (GSD: 300 m);
and e) PRISMA glacier algae mass mixing ratio map (GSD: 30 m). The right panel shows
scatter plots for the results shown in a-b and d-e. c) Snow grain radius; and f) impurity
index vs. glacier algae mass mixing ratio. To enable a per pixel comparison, the PRISMA
surface parameter maps were resampled to 300 m GSD by calculating mean values of
10⇥ 10 pixel aggregates.

comparison of retrieved snow grain radius from both instruments as well as the S3
impurity index and estimated PRISMA glacier algae concentration. First of all, the
maps derived from PRISMA data reveal finer spatial structures and patterns on
the surface due to the much smaller GSD. Nevertheless, both distribution and value
range of snow grain radius are very similar. We observe a broader stripe of larger
radii of up to 1000 µm extending from North to South in the eastern part of the
image and a distinct decrease towards the most north-eastern corner with values
of around 200 µm. The impurity index likewise follows the spatial distribution
of retrieved glacier algae accumulation. However, the PRISMA glacier algae map
yields a clearer distinction of high algae accumulation spots, which is especially
demonstrated by the patterns in the middle of the image with mass mixing ratios
of up to 160 µg/gice, and the large melt pond towards the North showing algae
concentration both on the water surface and at the shoreline. It is important to
note that the impurity index is not only sensitive to biological impurities but also to
inorganic LAP such as mineral dust, black carbon, and cryoconite (Dumont et al.,
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2014; Di Mauro et al., 2017; Wang et al., 2020). Consequentially, deposits of these
particles on the ice surface might influence the value of iimp, and thus, explain a
part of the variability in the comparison.

We assess the before-mentioned spatial correlation of S3 and PRISMA snow
grain radius as well as impurity index and algae concentration by showing scatter
plots in Figure 4.7c and f. To enable a per pixel comparison, we resampled the
PRISMA surface parameter maps to 300 m GSD by taking the mean values of
10⇥10 pixel aggregates. Estimated snow grain radii show a remarkable consistency.
While we achieve an R

2 of 0.61 and an RMSE of 77.25 µm, the values retrieved from
multispectral S3 data spread over a larger range reaching 1000 µm. In contrast, the
estimated grain radii for the most north-eastern part of the image are much smaller
when applying our proposed approach to the PRISMA data. Here, we observe values
even lower than 200 µm. The impurity index seems to be less correlated with glacier
algae mass mixing ratio, although featuring an R

2 of 0.76. It is obvious that most
of the correlation is influenced by two clusters in the scatter plot, one at iimp around
0.6�0.7 and mass mixing ratios of 100�140 µg/gice, and another at concentrations
below 40 µg/gice with corresponding iimp of 0.2 � 0.5. When only considering high
glacier algae mass mixing ratio, the impurity index does not significantly increase
and remains almost constant at values of around 0.7. This is an indicator that iimp is
in fact able to detect algae accumulation on the ice surface, but is less appropriate
for describing fine-scale variations of higher amounts of concentration (Wang et
al., 2020). Finally, the scattering of points in both plots may also be due to a
geometric mismatch, so that a correction for geolocation of the PRISMA image may
improve the regression. However, our results demonstrate sufficient potential of the
correlation between impurity index and glacier algae mass mixing ratio derived from
PRISMA spectra to build predictors for S3 OLCI data.

Figure 4.8 presents predicted glacier algae concentrations for the S3 OLCI acqui-
sition using two different regression methods. First, we applied the linear regression
derived from Figure 4.7f, y = 227.04x � 41.43, to each pixel of the S3 OLCI im-
age. Then, we fit a Gaussian process regressor (GPR) with a constant kernel to
the data from the subset and predicted the glacier algae mass mixing ratios for
the complete dataset. We selected these two regression approaches as examples for
both a simple and a more complex method in order to show the manifold choice of
well performing algorithms in the field of supervised learning. Figures 4.8c and d
illustrate the performance of both regressors when applied to the S3 OLCI subset
covering the same extent as the PRISMA image. We observe almost identical R2

values of 0.76 and 0.75, respectively, with a larger RMSE of 36.12 µg/gice though
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Figure 4.8: a-b) Predicted glacier algae mass mixing ratio maps for the S3 OLCI dataset;
and c-d) scatter plots from the comparison of predicted glacier algae mass mixing ratio for
the S3 OLCI subset and the resampled PRISMA map. The left panel shows results for a
simple linear regression. The right panel illustrates the performance of a more complex
Gaussian process regression.

for the GPR. Furthermore, the Gaussian kernel densities suggest that a larger frac-
tion of the values predicted by the linear regression is located on the 1 : 1-line.
The respective prediction maps in Figures 4.8a and b indicate that both methods
are able to locate the dark zone of high glacier algae accumulation at the edge of
the ice shield. However, the linear regression leads to smoother transitions towards
lower concentrations, whereas the GPR can better reproduce high amounts of al-
gae on the surface. Nevertheless, for GPR prediction quality, learning the kernel is
critically important, and the results could be improved by a detailed investigation
and a careful selection of the covariance function and the optimizer of the kernel
parameters (Rasmussen and Williams, 2006).

Overall, our results provide a promising basis for future exploitation of spectro-
scopic retrievals to be used as predictors for multispectral data. Different instrument
revisit times and the possibility to use imaging spectroscopy data for re-calibration
purposes of multiband sensors are other potential synergies. However, a detailed
analysis of uncertainty quantification would require concurrent field measurements
for a validation of estimated quantities of ice surface parameters.
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4.4.7 Scaling to a global cryosphere product

With the setup presented in this study, the "lazy Gaussian" inversion can appro-
priately be applied to snow and ice surfaces without significant topographic charac-
teristics under sufficient illumination conditions, i.e., solar zenith angles not signif-
icantly exceeding 50 � 60� (Bohn et al., 2021). This holds true for many parts
of the Greenland Ice Sheet during summertime. However, forthcoming orbital
imaging spectroscopy missions will deliver high-resolution data both on a global
scale and daily basis, which requests for independently applicable retrieval algo-
rithms (Cawse-Nicholson et al., 2021). Especially the SBG designated observable
and ESA’s CHIME mission are expected to record large data volumes covering a
wide range of different snow and ice surface conditions spanning over almost all
latitudes.

The results from PRISMA data demonstrate that our approach for mapping
snow and ice surface properties has the potential for providing a robust cryosphere
product based on orbital imaging spectroscopy. However, the method still faces
some challenges that need to be confronted prior to a global application. So far, the
inversion uses simulations of spectral albedo by a two-stream snow and ice RTM as
prior knowledge, which does not account for directional effects in the reflectance.
Likewise, geometric characteristics of the surface such as slope, aspect, sky view
factor, or shadow fraction are not considered in the forward model. In order to
achieve accurate retrieval results over mountainous areas with complex terrain as
well as varying illumination and observation geometries, simulations of directional
reflectance based on multi-stream RTMs such as DISORT have to be considered
as prior knowledge (Lamare et al., 2020). Furthermore, Equation 4.2 needs to be
extended by some additional terms accounting for surface topography. However,
by applying an OE-based simultaneous atmosphere and surface inversion scheme
our approach provides the basis for a straightforward implementation of these re-
quirements. This will enable a global mapping of snow and ice surface properties
corrected for latitudinal and topographic biases including a rigorous quantification
of uncertainties.

4.5 Conclusion

We present first results from the recently introduced "lazy Gaussian" inversion to
infer glacier ice surface properties from a PRISMA imaging spectroscopy dataset ac-
quired over the Greenland Ice Sheet. It is the first time that PRISMA data are used
for studying the cryosphere and it serves as a finger board to the global availability
of spaceborne imaging spectroscopy data, which will allow to detect and quantify
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snow and ice variables with unprecedented accuracy. The algorithm maps grain ra-
dius, liquid water path length, and algae mass mixing ratio, and reports associated
posterior predictive uncertainties. Additionally, we show a comparison with mul-
tispectral data from the S3 OLCI instrument to detect potential synergies and to
reveal how these data can be complimented by satellite spectroscopy observations.

Our results demonstrate that spectroscopic observations from space will play a
crucial rule in upcoming research of the Greenland Ice Sheet. We show that these
data can be used to detect and quantify patterns of LAP accumulated on the surface
in areas such as the dark zone or k-transect. Maps of algae accumulation, surface
liquid water, and melt pond evolution provided on a regular basis can support the
ongoing investigations of ice sheet melt processes and the resulting sea level rise.

Furthermore, we evidence that glacier algae maps derived from the PRISMA
imaging spectrometer can be used to predict the same surface parameter from simple
band indices such as the impurity index. This opens new possibilities of producing
multi-year time series of glacier algae mapping on the Greenland Ice Sheet based on
multispectral datasets acquired by instruments such as Landsat or Sentinel-2 and
3. High-frequency observations may not be possible even from the next generation
of imaging spectrometers due to their global charter and the high fraction of cloud
cover over the Arctic. In contrast, multiband sensors like Sentinel-3 have far greater
temporal coverage, but lack imaging spectrometer’s sensitivity to subtler snow and
ice parameters. Under such circumstances, a hybrid approach can capture the best
of both, with sparse imaging spectroscopy data being used to build local models for
a more complete interpretation of the multiband data. At the same time, this can
fill the gap of missing spectroscopic observations from space during the past four
decades. A multitude of upcoming missions such as EnMAP, EMIT, CHIME, and
SBG will lead to an unprecedented availability of high-resolution data both on a
global scale and daily basis, and thus, improve our understanding of snow and ice
surface processes and facilitate the monitoring of glacier ice changes over time.
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Chapter 5

Synthesis

The main objective of this thesis is to assess the contributions from a new generation
of spaceborne imaging spectroscopy missions to further the detection and quantifi-
cation of the three phases of water on Earth’s surface by introducing novel joint
retrieval methods. In particular, these methods are investigated for their potential
of providing a robust global product independent from latitudinal and topographic
characteristics and delivering rigorous uncertainty quantification. Section 5.1 of
this final chapter summarizes the main outcomes of the consecutive self-contained
manuscripts in Chapters 2 - 4 with respect to the main research questions formu-
lated in Chapter 1. Ultimately, Section 5.2 provides an outlook to future research
perspectives and recommendations.

5.1 Conclusions

This section addresses the key results from Chapters 2 - 4 by presenting their par-
ticular contributions to answering the main research questions of this thesis.

(1) Are present and forthcoming orbital imaging spectroscopy missions
applicable to robustly map and quantify the three phases of water?

Chapters 2 and 3 assessed the accuracy of retrieved vegetation liquid water con-
tent and snow and ice properties and evaluated the decoupling of atmosphere and
surface state within two novel joint inversion schemes for spaceborne imaging spec-
troscopy data. Below, the main outcomes of these analyses are summarized, each
followed by a more detailed elaboration:

• Spaceborne imaging spectroscopy permits improved atmospheric water vapor
estimations by a removal of perturbing influences from overlapping surface
liquid water and ice absorption.
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The sensitivity analysis of the coupled retrieval of the three phases of water in
Chapter 2 reveals that estimations of atmospheric water vapor are less biased com-
pared with results from traditional band ratio approaches. This is in accordance
with results from previous studies that used AVIRIS data as a pathfinder for future
spaceborne instruments (Green et al., 2006; Thompson et al., 2015). Furthermore,
the investigation of retrieval error correlation matrices indicates a distinct separa-
tion of atmosphere and surface state during the inversion, which not only facilitates
a quantification of the three phases of water, but also improves the results of atmo-
spheric correction procedures especially over liquid and solid water enriched surfaces
such as vegetation and snow. The proposed joint atmosphere and surface inversion
in Chapter 3 confirms this strict decoupling of atmospheric water vapor from influ-
ences induced by background surface reflectance.

• The accuracy of estimated vegetation liquid water content strongly depends
on plant species as well as on the physical processes considered in the surface
model.

Chapter 2 demonstrates the general robustness of the coupled retrieval of the
three phases of water in terms of estimating vegetation canopy water content. How-
ever, the results show that an accurate quantification requires the consideration of
both scattering and absorption processes on the surface, e.g., in leaves of vegetation
or the superior canopy. The coupled retrieval incorporates a surface model based on
the Beer-Lambert law that only accounts for absorption without respecting multiple
volume scattering effects. Neglecting these effects leads to a systematic overestima-
tion of canopy water content. Similar studies determined a constant factor repre-
senting this overestimation, which was then used to calibrate the retrieval results
(see, e.g., Wocher et al. (2018)). However, the results from Chapter 2 clearly out-
line that the magnitude of overestimation depends on the native structure of plant
species, most importantly population height and LAI, so that a global application
of such calibration is not accurate. In fact, considering multiple scattering events
in the surface model might be the more appropriate way to achieve improvements
in retrieval accuracy. A promising approach is demonstrated in Chapter 3. The
local prior spectral library of snow and ice reflectance could straightforwardly be
replaced by simulations of canopy reflectance obtained from a 3D canopy RTM such
as HySimCaR (Kuester et al., 2014). This would automatically introduce informa-
tion about the type of vegetation and the structure of the canopy and thus, facilitate
a more accurate retrieval of vegetation biophysical variables including liquid water
content.
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• Spaceborne imaging spectroscopy can provide accurate retrieval maps of snow
and ice grain size, surface liquid water content, as well as biological LAP
accumulation.

The coupled retrieval of the three phases of water demonstrates the ability to
clearly distinguish between different quantities of ice on the surface. Furthermore,
the method enables a discrimination between dry and wet snow and tracks high
amounts clearly better than empirical indices, such as the NDSI. This concept is
then advanced to the joint atmosphere and surface inversion as presented in Chap-
ter 3, which provides an even more accurate quantification of snow and ice properties.
In particular, the ability to incorporate different surface models as prior knowledge
enables a separation between snow and ice grains based on their optical properties,
as well as an additional retrieval of LAP accumulation on the surface. Moreover,
this novel OE-based retrieval scheme yields a direct interpretation of snow and ice
retrieval uncertainties and their intercorrelation with the atmospheric state. For
instance, it is for the first time demonstrated that errors in the retrieval of atmo-
spheric AOT can significantly bias the estimation of ice crystal dimensions on the
surface.

• The joint atmosphere and surface inversion serves as a prototype for a globally
applicable algorithm to estimate the three phases of water from orbital imaging
spectroscopy missions including a rigorous propagation and quantification of
retrieval uncertainties.

The results from Chapters 3 and 4 demonstrate the eligibility of the joint atmo-
sphere and surface inversion to serve as a basis for providing robust global prod-
ucts and associated uncertainties. The OE-based inversion scheme permits a novel
rigorous propagation of uncertainties caused by instrument noise, unknown model
parameters, and prior knowledge, through the retrieval chain up to a quantification
of final level 3 product uncertainties. This leverages the interpretation of surface
property mapping as shown in previous studies, for instance, on the example of min-
erals (Carmon et al., 2020). But also the analyses of posterior predicted distribution
of covariances presented in this thesis confirm the ability of OE to associate rigorous
uncertainties with the estimated three phases of water. In particular, it enables a
detailed investigation of posterior error correlation between atmospheric and surface
state parameters.

However, a robust global mapping of vegetation liquid water content as well as
snow and ice surface properties is critically contingent on a precise incorporation of
solar and observation geometry in the retrieval scheme. Biased assumptions of the
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instrument viewing angles have the most significant negative effects on the retrieval
of vegetation liquid water content along with LAI (Asner and Martin, 2008). The
solar zenith angle strongly affects the reflectivity of snow and ice surfaces. Espe-
cially sun angles beyond 50� lead to remarkably increased directional effects in the
snow and ice reflectance (Painter and Dozier, 2004b; Painter and Dozier, 2004a).
The sensitivity analysis of Chapter 3 has attested retrieval errors of snow grain ra-
dius within several orders of magnitude if directional effects are neglected in the
prior knowledge. To avoid increasing uncertainties due to acquisition geometries,
an incorporation of appropriate prior knowledge in the OE inversion scheme will
be necessary. This could be accomplished by relying on respective reflectance sim-
ulations under changing illumination and observation conditions as prior spectral
library.

Although featuring high-resolution footprints of 30 m, the issue of mixed pixels
is still of importance for forthcoming orbital imaging spectroscopy observations.
An accurate retrieval of surface liquid water as well as snow and ice properties
is impeded if significant background reflectance properties featuring absorption in
a similar wavelength region but due to different materials influence the measured
signal. A descriptive example is the underlying soil of vegetation, which becomes
imposed if the fractional cover falls below a value of 1. If present, ferruginous
minerals such as hematite or goethite virtually increase water absorption by having
broad iron features superimposing NIR water bands (Carmon et al., 2020). But also
sulfate minerals such as gypsum show small absorption around the 940 and 1140 nm

water bands, so that retrievals could be biased (Milewski et al., 2019). This also
accounts for snow and ice surfaces in cases of low snow fractional cover. However,
on condition that this fractional cover is known, the approaches to simultaneously
optimize for all three phases of water presented in this thesis would significantly
improve retrievals for mixed pixels.

Finally, the joint atmosphere and surface inversion as presented in Chapter 4 can
appropriately be applied to surfaces without significant topographic characteristics,
i.e., assuming a flat and horizontal orientation. While this holds true for, e. g.,
many parts of the Greenland Ice Sheet, a multitude of observation targets is located
in mountainous areas with rugged terrain. The consideration of topographic fea-
tures, such as surface slope and aspect, sky view factor, or shadow fraction, in the
retrieval algorithm is therefore crucial for achieving accurate estimations of surface
properties. Although such effects are not yet considered in the forward model, the
OE-based inversion scheme provides the basis for a straightforward implementation
of these requirements.
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(2) How can spaceborne imaging spectroscopy contribute to the analyses
of vegetation dynamics and ice melt processes and their link to climate
change?

A quantitative mapping of water in its three states on a global scale is crucial
as it helps to assess physical and biological processes both in Earth’s atmosphere
and on its surface. In particular, the role of vegetation as well as snow and ice sur-
faces in climate change can be better evaluated by integrating knowledge obtained
from high-resolution optical remote sensing from space into climate models. The
independent studies in Chapters 2 - 4 lead to the following main conclusions that
are outlined in more detail hereinafter:

• By tracking changes in vegetation liquid water content more reliable than em-
pirical band indices, spaceborne imaging spectroscopy facilitates a prediction
of drought stress and wildfire potential in the context of climate change.

Vegetation that is exposed to excessive heat and aridity develops indications of
water stress including wilting or loss of leaves. However, the actual water content
decreases comparatively slowly. Hunt, Ustin, and Riano (2013) stated that measure-
ments are required to detect differences of only 0.02 gcm

�2 in relative water content
in order to show evidence of drought stress on leaf level. The commonly applied
upscaling method to canopy level of multiplying by the LAI leads to increasing dif-
ferences, making spaceborne observations an ideal tool to detect plant water stress.
However, the sensitivity analysis in Chapter 2 demonstrates that such small differ-
ences in canopy water content are hardly detectable by empirical band indices. Even
traditional indices such as the normalized difference vegetation index (NDVI) have
only limited capabilities to detect drought stress since the decrease in water content
starts prior to a reduction in LAI (Hunt, Ustin, and Riano, 2013). In contrast, the
coupled retrieval of the three phases of water leads to much subtler differentiation
of quantitative values, pointing to the significant potential of spaceborne imaging
spectroscopy to early detect droughts and the associated wildfire risk. In fact, the
sensitivity of vegetation liquid water content to drought stress is too low for being
distinguishable by spectroscopic measurements from a single date (Serrano et al.,
2000; Hunt, Ustin, and Riano, 2013), but the expected data availability on a daily
basis delivered by forthcoming orbital imaging spectroscopy missions will enable re-
liable estimates of changes in vegetation water content and consequentially, provide
useful drought predictions. This will lead to important data records for assessing
the impacts of climate change on agricultural and ecological processes.
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• Imaging spectroscopy observations from space will significantly contribute to
the understanding of biophysical processes on Earth’s Ice Sheets by revealing
the positive climate feedback between surface liquid water content and algae
accumulation.

The sensitivity analysis in Chapter 3 shows that the information content of
imaging spectroscopy measurements is almost independent from the occurrence of
biological LAP in-between the ice crystals. This is a promising basis for using such
observations to enhance the understanding of algal blooms on snow and ice surfaces.
Estimated glacier algae concentration from both airborne AVIRIS-NG and space-
borne PRISMA acquisitions, as presented in Chapters 3 and 4, revealed a distinct
accordance with field measurements in terms of value range and spatial distribution.
In particular, the results confirmed a remarkable correlation between the amount
of available liquid water on the surface and the blooms of glacier algae. This sup-
ports the theory of the positive algae-liquid water climate feedback as described in
previous studies (Williamson et al., 2018; Dial, Ganey, and Skiles, 2018). A major
consequence of this interaction is an increased melting of the Ice Sheets, which in
turn significantly contributes to global sea level rise in the context of ongoing climate
change (Benning et al., 2014; Bamber et al., 2018). Hence, quantitative maps of
surface liquid water and glacier algae accumulation derived from spaceborne imag-
ing spectroscopy on a daily basis will be an important input to surface process and
climate models.

(3) What are the synergies between imaging spectroscopy from space
and observations from existing multiband orbital instruments?

Forthcoming spaceborne imaging spectroscopy missions, such as SBG and CHIME,
will provide a comprehensive global monitoring of Earth’s surface. Generally, a com-
plementation with multispectral or medium resolution instruments, such as Landsat
and Sentinel-2 or 3, will facilitate the mapping of climate change related biophysical
variables. The resulting lower spectral resolution is then balanced by a high tempo-
ral revisit (Cawse-Nicholson et al., 2021). Synergistic approaches to existing Earth
observation missions are expected to contribute new aspects of science to climate
research (Malenovský et al., 2012; Cawse-Nicholson et al., 2021).

In particular, snow and ice conditions can change on rapid timescales, and reg-
ular observations are critical to infer the rate at which accumulation, LAP depo-
sition, and melt processes occur. A recent report by the National Academy of
Sciences called for snow albedo observations on a weekly basis to constrain changes
in the water and energy cycles (National Academies of Sciences, Engineering, and
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Medicine, 2018). Such dense observations may not be possible even from the next
generation of imaging spectrometers due to their global charter and the high frac-
tion of cloud cover over the Arctic. In contrast, multiband sensors like Sentinel-2
or 3 have far greater temporal coverage, but lack imaging spectrometer’s sensitivity
to subtler snow and ice parameters. Under such circumstances, a hybrid approach
can capture the best of both, with sparse imaging spectroscopy data being used to
build local models for a more complete interpretation of the multiband data. Chap-
ter 4 demonstrates for the first time how measurements derived from the new era
of spaceborne imaging spectrometers can be used in concert with multiband data in
a comprehensive cryosphere observation system. The results show that simple local
regression models applied to moderate resolution optical remote sensing data can
achieve a high degree of alignment with the spectroscopic measurements over snow
and ice surfaces. Including such a temporal component in the prior knowledge of
the spectroscopic retrieval scheme could further improve the algorithm performance
as it would capture both short- and long-time variations in alternating melt and
freezing events.

In the same way, regular observations of vegetation on a daily basis using orbital
imaging spectroscopy will provide large data volumes of quantitatively estimated
biophysical surface parameters including canopy liquid water content. These can
complement long-term time series of empirical band indices, such as NDWI or NDVI,
obtained from multiband and medium resolution measurements in order to transform
spectral band ratios into accurate physical quantities.

5.2 Outlook

Given the short time period since the new generation of orbital imaging spectrom-
eters has been heralded by the launch of DESIS and PRISMA, the wealth of re-
trieval algorithms already available for application in different scientific disciplines
is compelling. This has mainly been facilitated by long-term mission planning and
comprehensive precursor studies based on airborne technologies, such as NASA’s
AVIRIS instruments. These studies also pioneered several approaches for the detec-
tion and quantification of the three phases of water with imaging spectroscopy (Gao
and Goetz, 1990; Roberts, Green, and Adams, 1997; Nolin and Dozier, 2000; Green
et al., 2002; Green et al., 2006; Painter et al., 2013; Thompson et al., 2018). Based
on that, this thesis introduces two novel methods of joint atmosphere and surface
inversions that are tailored to the application to the new era of spectroscopic mea-
surements from space. However, several limitations need to be addressed in further
improving retrieval algorithms, paving the way for their independent applicability
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as requested in Cawse-Nicholson et al. (2021). In this context, the following aspects
are of particular relevance:

1. Future global retrieval algorithms must include a consideration of topographic
characteristics, such as surface slope and aspect as well as sky view factor and
shadow fraction.

2. Directional effects, particularly in snow and ice reflectance, depending on il-
lumination and observation conditions must be integrated as prior knowledge
in future OE retrieval schemes.

3. Improved retrieval algorithms must account for mixed pixels by determining
influences from background reflectance and fractional cover.

4. Both absorption and scattering processes must be rigorously treated by future
surface models in order to increase the accuracy of retrieved vegetation liquid
water content.

5. A comprehensive ground-based validation is needed for a proper characteri-
zation of uncertainties in estimated atmosphere and surface state parameters
and to interpret OE-retrieved posterior error measures.

6. Strategies to handle terabytes of data volume expected from upcoming satellite
imaging spectroscopy missions need to be integrated in improved retrieval
algorithms, including processing efficiency and storage of data output.

While the joint atmosphere and surface inversion presented in Chapter 4 can
appropriately be applied to flat and horizontal surfaces, extensions to the forward
model accounting for topographic characteristics, such as introduced in Carmon
et al. (2021), are crucial for a global application (point 1). Just as importantly,
future OE retrieval schemes should rely on simulations of directional reflectance
instead of spectral albedo as prior knowledge, using multistream radiative transfer
models, such as DISORT (Painter and Dozier, 2004b; Lamare et al., 2020) (point 2).
Point 3 could be addressed by incorporating algorithms to calculate fractional cover
similar to the MEMSCAG (Multiple EndMember Snow-Covered Area and Grain
size) model (Roberts et al., 1998b; Painter et al., 2003). The retrieval of vegetation
liquid water content requests for a consideration of both absorption and multiple
scattering processes, which could be accomplished by reverting to prior knowledge
obtained from 3D canopy reflectance models, such as HySimCaR (Kuester et al.,
2014) (point 4). The entire suite of retrieval algorithms also necessitates more
frequent efforts of ground-based validation, particularly from remote areas of the
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Earth, such as the Greenland Ice Sheet (point 5). Finally, strategies to improve
processing efficiency of retrieval algorithms have been initialized, but still need to be
implemented for operational use (point 6). They include the training of local linear
emulators assuming spatial continuity of atmospheric fields (Thompson et al., 2021),
or the design of high-performance Bayesian inversions speeding up the traditional OE
scheme by about two orders of magnitude (Susiluoto et al., 2021). To reduce memory
demand of algorithm output, approaches to decompose large retrieval uncertainty
matrices into a few principal components are also under consideration. In summary,
retrieval algorithms for spaceborne imaging spectroscopy of the three phases of water
still need to experience extensive future research.

Nevertheless, optical remote sensing of Earth’s surface from space will be ad-
vanced to an unprecedented level in the near future in terms of both data availability
and quality. Complementing already existing multispectral and medium resolution
instruments, upcoming launches of several imaging spectroscopy missions including
EMIT, EnMAP, CHIME, and SBG, open new perspectives in regularly monitor-
ing and mapping atmosphere and surface properties including the three phases of
water on a global scale. As demonstrated in this thesis, these maps will provide
a valuable input to the modeling of biological and physical processes that help to
better understand climate change and to predict and adapt to its socioeconomic
consequences.
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