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Chapter 1

Inequity Aversion and Limited
Foresight in the Repeated Prisoner’s
Dilemma

1.1 Introduction

One of the most dynamic research fields over the last two decades has been behav-
ioral game theory, i.e. the econometric and theoretical analysis of laboratory games to
align observed behavior with game-theoretical concepts. How should we think of be-
liefs, utilities, and subjects’ choices, and is it possible to explain choices as responses
to incentives? In some classes of games, most notably auctions, behavior shows to
be reasonably consistent with theory after simply accounting for risk aversion (Bajari
and Hortacsu, 2005) or biased beliefs (Eyster and Rabin, 2005). In generic normal-
form games involving dominated strategies, behavior is captured after relaxing ratio-
nal expectations (Costa-Gomes et al., 2001); in games without dominated strategies,
behavior tends to mainly reflect logistic errors in choice (Weizsäcker, 2003; Brunner
et al., 2011); and in games involving the distribution of monetary benefits, preference
interdependence seems to organize behavior (Fehr and Schmidt, 1999; Charness and
Rabin, 2002). Particular behavioral models tend to be disputed, but overall, there has
been substantial progress in aligning observed behavior and theoretical predictions
across many classes of games.

One class of games that has experienced less progress in aligning behavior and
predictions is the large class of repeated games. Repeated games are the main ap-
proach toward modeling long-run interactions, in particular to study cooperation and
defection, and they have been a core object of game-theoretic analyses at least since
the folk theorem for repeated games with discounting (Fudenberg and Maskin, 1986).
Regarding behavior in experiments, however, there is no consensus on what subjects
actually do—not even whether they play pure, mixed or behavior strategies—and there
is not a single analysis relating round-by-round decisions to beliefs and expected util-
ities despite its common practice in structural analyses of behavior in static games.

17
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The purpose of this paper is to re-analyze a large data set comprising 12 experi-
ments to robustly estimate strategies and structurally analyze them similar to previous
work on static games. We seek to answer three questions: Which strategies do sub-
jects actually play? Are the strategies played and the shares of them predictable across
conditions? How do the strategies align with expected utilities, and to what extent is
individual behavior consistent with existing models of behavior in games? Regarding
the first question, much of the existing literature restricts attention to strategies that
are pure (with trembles), but recent evidence suggests that behavior strategies might
better explain behavior (reviewed below). Regarding the second question, existing
evidence suggests that the type shares playing specific cooperative strategies fluctu-
ate fairly erratically between treatments, which is puzzling but may reflect inadequate
constraints to pure strategies that we shall relax in our analysis. The third question is
novel in the analysis of repeated games and has been left unexplored in previous work,
but it is a central question in many behavioral papers and of major relevance in order
to link behavior in repeated games to other literature.

Our main results can be summarized as follows. First, on a data set compris-
ing 145,000 decisions from 12 experiments, we use data-mining techniques to obtain
an upper bound for the goodness-of-fit that could be obtained assuming all subjects
play versions of pure strategies. We relax many assumptions made in the literature,
grant many degrees of freedom “for free”, and allow for either no switching, ran-
dom switching, or Markov switching of strategies between supergames to find the
best-fitting pure strategies out of 1051 combinations of pure-strategy mixtures across
treatments. We then take a simple behavior strategy previously hypothesized in Bre-
itmoser (2015) – dubbed semi-grim. Here, subjects cooperate with probability 0.9
when both cooperated in the previous round, with probability 0.1 when both defected
in the previous round, and with probability 0.3 when one player cooperated and the
other defected in the previous round. The intuitive interpretation is that subjects ex-
pect cooperation when both cooperated in the previous round, or defection when both
defected, and hence either cooperate or defect with very high probability. Otherwise,
they are unsure and randomize. We extend this semi-grim strategy to include round
1. Following a game-theoretic prediction, we allow for two types, one of which cap-
tures subjects who expect cooperation (and therefore cooperate with probability 0.9
in round 1), and the other one captures subjects who are doubtful and cooperate with
probability 0.3. The subjects expecting defection are assumed to play always defect
as usual. Note that all three probabilities (0.9,0.3,0.1) above are taken directly from
the small-sample analysis of Breitmoser (2015) and they are neither optimized nor
optimal. Nonetheless, this simple constant three-type mixture fits significantly better
than the best of the 1051 pure-strategy mixtures considered plausible in the existing
literature.

Second, we estimate the individual strategies without restrictions to pure or oth-
erwise known strategies, and find that both the bottom-up and the top-down approach
toward behavioral modeling converge to the three subject types outlined above, across
all treatments and experiments. That is, type 1 plays a slightly perturbed version of
always defect, and we refer to subjects of type 1 as defectors. Types 2 and 3 also ap-



1.1. INTRODUCTION 19

proximate the above description: both play behavior strategies predicting nearly pure
behavior after (c,c) and (d,d) (cooperation and defection, respectively), and they
both randomize after (c,d) and (d,c). In round 1, type 2 cooperates with intermedi-
ate probability and type 3 with high probability. We refer to subjects of types 2 and
3 as cautious and strong cooperators, respectively. The states will be abbreviated as
cc,cd,dc,dd in the following. We obtain these results from an unrestricted estimation
of memory-1 strategies, i.e. an estimation of strategies without imposing restrictions
to say pure strategies that characterize previous work. The initial focus on memory-
1 strategies follows a number of results in the literature on behavior in the repeated
PD with perfect information (Dal Bó and Fréchette, 2018; Breitmoser, 2015), and is
corroborated by a robustness check (to memory-2) reported in the appendix. Both the
data mining of pure strategies and the unrestricted estimation of behavior strategies
outlined above are conceptual novelties in the behavioral analysis of repeated games
and jointly provide a strong result that the three identified subject types robustly cap-
ture behavior across experiments.

Across treatments, the three types of strategies used are largely uncorrelated with
treatment parameters or other known predictors of cooperation, while the distribution
of types is highly correlated with the discount factor δ: As δ approaches the Blonski
et al. (2011) (BOS) threshold of cooperation δ∗, the share of defectors decreases rela-
tive to cooperators, and as δ is raised further, the strong cooperators start to outnumber
the cautious cooperators. That is, the unrestricted estimation implies that the distri-
bution of subject types stops being erratic and becomes predictable—this is our third
major result and addresses the second question above. Yet, the types of strategies that
subjects play are all the more puzzling. Specifically, we have no prior explanation for
the observation that type shares are correlated with δ (in relation to the BOS threshold
δ∗, see Figure 1.4), which suggests that subjects are aware of δ and other parameters
when choosing their strategy, while the actual strategies seem largely uncorrelated
with δ (Figure 1.3). Subjects seem to be choosing one of three strategies depending
on the environment, but hardly adapt the strategy as such to the environment.

To shed on light on this puzzle, and the third question above, we introduce a
third conceptual novelty into analyses of repeated PDs by using techniques developed
for the structural estimation of static games (McKelvey and Palfrey, 1995; Bajari and
Hortacsu, 2005) and dynamic games (Aguirregabiria and Mira, 2007). We aim to un-
derstand the individual motivation behind the strategies of cooperative types across
treatments. In this way, we also seek to resolve another puzzle that the above results
highlight: Cooperating subjects in our unrestricted analysis, and indeed in all previ-
ous work, cooperate with a probability close to 1 if both subjects had cooperated in
the previous round. They do so even if the expected payoff of cooperating (in the next
round) is substantially below the expected payoff of defecting, as we demonstrate be-
low, and even in the three treatments where Grim is not a subgame perfect equilibrium.
The latter implies that behavior cannot be explained just by relaxing beliefs about the
opponent’s strategy. By estimating the dynamic games, we try to understand subjects’
preferences in repeated games in a manner similar to previous behavioral analyses of
cooperative subjects in one-shot games, which is a key step in linking these literatures.
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We find that the strategies of cooperators are consistent with false consensus be-
liefs about the opponent’s type, i.e. that each subject believes their opponent to be of
the same type as they are (as in symmetric equilibrium), that subjects display severely
limited foresight (as if the discount factor was zero, discussed shortly), and that their
preferences are well described by Fehr-Schmidt inequity aversion. The limited fore-
sight implies that subjects do not look beyond the outcome of the present round and do
not explicitly consider sums of discounted payoffs. Instead, subjects associate utility
values with each of the four possible outcomes of the present round (cc,dc,cd,dd) that
encode the subject’s value of reaching the respective state. We estimate that these state
values induce a coordination game played round-by-round, that is, with one round of
foresight, and that these state values can be derived from the stage game payoffs using
inequity aversion.

As usual, this coordination game has three Nash equilibria: a cooperative one, a
defective one, and a mixed one. Our analysis indicates that subjects use focal points as
envisaged by Schelling and thus reliably coordinate on either of the three equilibria:
after cc subjects expect cooperation (i.e. believe the opponent to cooperate) and play
the cooperative equilibrium of the coordination game, after dd they expect defection
and play the defective equilibrium, and after mixed histories (cd or dc) they play the
mixed equilibrium. Our results indicate a similar line of reasoning in round 1: Given
the actual treatment parameters, some subjects focus on the cooperative equilibrium
(the “strong cooperators”), some focus on the defective equilibrium (the “defectors”),
and some seem “unsure” playing the mixed equilibrium in round 1 (the “cautious
cooperators”). The respective subject shares are predictable using the distance of dis-
count factor δ to the BOS-threshold δ∗ derived by Blonski et al. (2011).

We thus obtain a closed behavioral foundation of the strategies played in the re-
peated PD. In contrast to previous work, this model explains the strategies that we esti-
mated without restrictions beyond standard memory-1, rather than merely estimating
strategy weights under non-validated restrictions to certain pure strategies. Further,
our results bear many relations to previous work in behavioral economics.

Quantitatively, using just four parameters for the 80.000 observations of “experi-
enced subjects” (in their second halves of sessions), the resulting model captures 93%
of observed variance across 32 treatments from 12 experiments. Figure 1.1 briefly
summarizes the obtained decomposition of behavior using our structural estimates.
Our finding that behavior in the repeated PD is characterized by false consensus be-
liefs relates to a central concept in psychology (Ross et al., 1977) implying symmetric
equilibrium1; limited foresight relates to a central concept in computer science and be-
havioral game theory (Jehiel, 2001; Kübler and Weizsäcker, 2004); and inequity aver-
sion is a central concept in behavioral economics (Fehr and Schmidt, 1999).2 Further,

1Recent belief elicitation studies by Aoyagi et al. (2021) and Gill and Rosokha (2020) provide first
evidence that subjects “overestimate the popularity of their own strategy” in the repeated PD.

2Interestingly, our results shed new light on the findings of Dreber et al. (2014), who found that
inequity aversion does not help explain behavior in the repeated PD. The difference in our analysis
is that we do not attempt to explain so-called standard strategies, i.e. pure strategies, but behavior
strategies estimated without restrictions to purity. Further, inequity aversion in our analysis is closely
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Figure 1.1: Decomposition of behavior into model components
(second halves of sessions, based on 79.892 observations)
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Note: This plot summarizes the results of our structural analyses (Table 1.5) of the strategies played.
Here we focus on the strategies of subjects not classified as playing always defect. The clairvoyance
model explaining the strategies of cooperating subjects perfectly across treatments obtains the “perfect
fit” (100%), while the model predicting uniform randomization obtains 0%. The remaining percent-
ages are computed proportionally to these two benchmarks. First, the model assuming that subjects
play logit responses to Bayesian beliefs over their opponent’s strategy obtains 23%, additionally al-
lowing for inequity aversion increases the score to 63%, next adopting consensus beliefs increases the
explained variance to 74%, and allowing for a flexible discount factor δ (leading to limited foresight as
an estimation result) captures an additional 19% for a total of 93%. Figure A.2 provides information
also for behavior in the first halves of sessions and on robustness with respect to modeling assumptions.

the idea that a repeated PD resembles a coordination game in round 1, and iteratively
in any subsequent round, has been discussed at least since Rabin (1993). We pro-
vide the first empirical confirmation, by demonstrating that this implicit coordination
game is endogeneously obtained as an estimation result using econometric techniques
known from static games, and by the findings that this coordination game is highly
predictable using inequity aversion and that its equilibria are highly predictive of be-
havior across treatments and experiments. This yields a first explanation for behavior
in repeated games and a first set of precise behavioral predictions for future work on
repeated games generalizing the repeated PD—a very encouraging step to bridge the
gap between behavioral analyses of repeated games and behavioral analyses of static
games.

1.2 Background information

Definitions The prisoner’s dilemma (PD) involves two players choosing whether to
cooperate (c) or defect (d). In the normalized PD, each player’s payoff is 1 if both co-
operate and 0 if both defect. If exactly one player cooperates, the cooperating player’s
payoff is −l (l > 0) and the defecting player’s payoff is 1+g (g > 0). An infinite rep-
etition of this constituent game is strategically equivalent to an indefinitely repeated
one that is terminated with probability 1− δ after each round, assuming players are
risk neutral and discount future payoffs exponentially (using factor δ < 1). We will
refer to these games jointly as repeated PD (or, supergame). Given g, l > 0, coopera-
tion is dominated in the one-shot game but may be sustained along the path of play in
subgame-perfect equilibria of the repeated PD (depending on δ).

A strategy σ in the repeated PD maps all finite histories to probabilities of co-

interlinked with limited foresight, which Dreber et al. (2014) did not include in their analysis, and we
allow for α and β to be free parameters.
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operation in the next round. The strategy has memory-1 if it prescribes the same co-
operation probability for any two histories not differing in the actions chosen in their
respective last rounds. It has memory-2 if the same holds for the last two rounds. We
denote memory-1 strategies as σ = (σ /0,σcc,σcd,σdc,σdd) corresponding to the five
memory-1 histories { /0,cc,cd,dc,dd}, called states in the following. For example,
σcd , denotes the probability of cooperation when a player’s most recent action is c and
her opponent’s most recent action is d. A strategy is a pure strategy if it prescribes
degenerate cooperation probabilities after all histories (σ ∈ {0,1}5), and it is a behav-
ior strategy otherwise. It is a mixed strategy, when a player randomizes over the set
of pure strategies prior to the start of each supergame, but sticks to the drawn pure
strategy throughout the supergame. In contrast, when playing a behavior strategy, she
randomizes during the supergame.3

Table 1.1: Overview of most commonly analyzed strategies (see Table A.7 in the
appendix for a more comprehensive list)

Strategy Abbreviation Description (σ /0,σcc,σcd ,σdc,σdd)

Always Defect AD Always defects (0,0,0,0,0)
Always Cooperate AC Always cooperates (1,1,1,0,0)
Grim G Only cooperate in R1 and after cc (1,1,0,0,0)
Tit-for-Tat TFT Start with c, then copy opponent (1,1,0,1,0)
Suspicious TFT STFT, D-TFT Start with d, then copy opponent (0,1,0,1,0)
Win-Stay-Lose-Shift WSLS Cooperate in R1, cc and dd (1,1,0,0,1)
Semi-Grim SG Behavior strategy satisfying . . . σcd = σdc

Note: The conventional definition of AC is (1,1,1,1,1), which is behaviorally equivalent to
(1,1,1,0,0). The definition used above implies that any memory-1 behavior strategy that might be
observed on average can be rebuilt using some combination of AD, AC, Grim, TFT and WSLS.

Related behavioral literature We will keep the literature review short and focused
due to the availability of an excellent recent survey by Dal Bó and Fréchette (2018).
The modern experimental research on the repeated PD started with Dal Bó (2005),
who criticized earlier experiments for implementing experimental designs that let sub-
jects play against computerized opponents. The first wave of experiments following
Dal Bó (2005) includes Dreber et al. (2008), Duffy and Ochs (2009), Blonski et al.
(2011) and Kagel and Schley (2013), and focuses on analyzing first-round and to-
tal cooperation rates. A second wave comprising Dal Bó and Fréchette (2011, 2015),
Bruttel and Kamecke (2012), Camera et al. (2012), Fudenberg et al. (2012), Sherstyuk
et al. (2013), Breitmoser (2015), and Fréchette and Yuksel (2017) analyzes the strate-
gies actually chosen by players. The general theme in the reported results is that initial
cooperation rates depend on the strategic environment. More specifically, the results
indicate that subgame perfection of Grim is necessary but not sufficient for cooper-
ation to emerge (first reported in Dal Bó, 2005), and that subsequent cooperation of
subjects depends on their opponent’s actions, primarily on those in the previous round.
The central importance of initial cooperation is also demonstrated in Fudenberg and

3Including the case when she would switch between pure strategies within a supergame.
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Karreskog (2020). Many of the second-wave analyses classify individual subjects’
strategies into varying sets of pre-selected strategies. Even allowing for noise, these
analyses clearly show that subjects do not homogeneously follow a given pure strategy
across all supergames. The studies differ in their assumptions of what subjects might
be doing instead—whether they are playing pure, mixed, or behavior strategies—and
consequently in their conclusions about behavior.

Most analyses assume that decisions are made only prior to the first supergame
of a session, with subjects then sticking to a pure strategy for the rest of the session.
Given this restriction to pure strategies, these analyses typically conclude that the ma-
jority of subjects play either AD, TFT, or Grim, with each being attributed weights
around 20–30%. For example, Result 6 of Dal Bó and Fréchette (2018, DF18) states
that these three strategies account for “most of the data”, specifically they “account
for 70 percent of strategies in most treatments”, but importantly, this result is obtained
after a-priori restricting attention to (a subset of) pure strategies without further vali-
dating this restriction. We refer to this statement as the pure-strategy conjecture.

A second, less common approach is based on the assumption that subjects switch
pure strategies between supergames, which we refer to as mixed strategies in the game-
theoretical sense. For example, DF18 report that 84 percent of choices in supergames
lasting more than one round are accounted for by five pure strategies (now also in-
cluding AC and suspicious TFT) when they allow for strategy switching between su-
pergames (DF18, Footnote 38).4 The difficulty now is to explain this strategy switch-
ing; otherwise, the impression of a perfect fit, not requiring a complicated analysis al-
lowing for noise, is intriguing, but it is only true in a post-hoc sense. Ex-ante, the strat-
egy chosen by a given subject is not perfectly predictable, and the game-theoretical
concept closest to such a random choice over varying pure strategies over time is that
of a mixed strategy. The probabilities of choosing different pure strategies over time
may be path dependent, given the path-dependency they may be degenerate, and they
may be heterogeneous between subjects. Below, we shall explicitly allow for these
possibilities by considering Markov-switching models to capture strategy switching
that contain pure, mixed, and path-dependent mixtures as special cases. This will be
one of the major novelties of our analysis and will enable us to determine an upper
bound for the goodness-of-fit of pure and mixed strategies.

A third and growing group of studies challenges the pure-strategy conjecture by
allowing subjects to randomize in each round of each supergame, as in the game-
theoretical concept of behavior strategies. Relaxing the restriction to pure strate-
gies, Breitmoser (2015) observed that cooperating subjects play a semi-grim behav-
ior strategy, approximating (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1) without specify-
ing σ /0 (behavior-strategy conjecture, c.f. Breitmoser, 2015, p. 2889).5 The intu-
ition attributed to this observation is that subjects expect cooperation after cc and
then cooperate with high probability, that they expect defection after dd and then de-

4Specifically, DF18’s observation states that subjects’ behavior is described “exactly” even if one
“does not allow for any mistakes” .

5Specifically, a behavior strategy satisfying (σcc,σcd ,σdc,σdd) = (0.9,0.3,0.3,0.1), with varying
σ /0, is approximately played in all treatments of a data set comprising four experiments.
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fect with high probability, and that they are unsure after the mixed histories cd,dc
and then randomize. This intution directly entails a prediction for behavior round
1: Subjects expecting cooperation will cooperate with high probability, subjects that
are unsure will randomize, while subjects expecting defection would play always de-
fect as usually assumed. The game-theoretic foundation for this prediction is that, if
(σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1) is part of an equilibrium strategy, which is ap-
proximately the case if symmetric belief-free equilibria exist (Breitmoser, 2015), then
the three possible completions of this strategy to a symmetric equilibrium strategy are
σ /0 = 0.9, σ /0 = 0.3, and σ /0 = 0.1 (round 1 can be equated with any of the subsequent
states). We adopt the first two possibilities and skip the last one (σ /0 = 0.1), as we are
modeling defective players as playing AD by the standard convention.

Additionally, semi-grim behavior strategies are found to better capture behav-
ior than mixtures of pure memory-1 strategies.6 Recently, Fudenberg and Karreskog
(2020) report evidence highlighting the predictive power of semi-grim strategies in
repeated PDs with perfect monitoring. The behavioral assumption that decisions are
made in each round, instead of say once at the start of a session (as in the pure-strategy
conjecture), seems intuitive.7 However, there are several concerns about Breitmoser’s
results that might explain why the behavior-strategy conjecture faces skepticism: the
data set might be fortunately selected in Breitmoser (2015), behavior might be more
complex than memory-1 admits, strategies may be behavior strategies other than semi-
grim, subjects might switch strategies as the session progresses, and round-1 behavior
was not included in the estimation of strategies. In the next two sections, we address
all of these concerns and report arguably conclusive answers to the following ques-
tions whose answers then serve as foundation for the structural analysis of preferences
and beliefs:

Question 1. Do subjects play pure, mixed, or behavior strategies?

Question 2. Is there heterogeneity in subject types and which strategies are played?

The case for memory-2 strategies had been made by Fudenberg et al. (2012),
who analyze the repeated PD with imperfect monitoring and show that if we assume
subjects play pure strategies, then there must be subjects with memory-2, based on
evidence for 2TFT and "lenient" Grim2 strategies. Similar ideas are expressed in Aoy-
agi and Frechette (2009) and Bruttel and Kamecke (2012). Our analysis will allow for
memory-2, but in addition, we will relax the restriction to pure strategies, which seems

6The only other studies investigating a behavior strategy seem to be Fudenberg et al. (2012), who
include the strategy "generous TFT" which randomizes (only) after opponent’s defection, and more
recently Dvorak and Fehrler (2018). A recent study by Romero and Rosokha (2019) indicates that
subjects consider randomizing over single choices even ex-ante.

7Here follow the interpretation of behavior in repeated matching pennies games (e.g. Goeree et al.,
2003), whereby the description of subjects randomizing say 50-50 each round is simply the best-
possible description for the outside observer. Subjects themselves typically do perceive their decisions
to be deliberate each round. Similarly, we consider a behavior strategy implying randomization each
round to be the best-possible description available to observers of seemingly random but subjectively
deliberate (memory-1) decisions that subjects make each round.
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critical since behavior strategies also generate decision patterns resembling memory-2
or -3.

The data We re-analyze the exact same set of experiments reviewed in Dal Bó
and Fréchette (2018). This set comprises most of the modern experiments on re-
peated Prisoner’s Dilemmas with perfect monitoring, i.e. those published since Dal Bó
(2005), and consists in total of data from 12 experiments, 32 treatments, more than
1900 subjects, and almost 145,000 decisions. The set of experiments equates with
the experiments listed in Table 1.2. A brief review and an overview table is in Ap-
pendix B, but for a detailed discussion, see DF18. Due to its enormous size, the wide
range of experiments covered (from different experimenters in various universities and
various countries), and its comprehensive character with respect to the recent list of
experiments on the repeated PD, this data set appears to be optimal for our purposes.
In addition, by sticking exactly to the list of experiments reviewed by Dal Bó and
Fréchette (2018), we can rule out the notion that data selection biases the results in
favor of any of the hypotheses we intend to test.

Econometric approach Our econometric approach is standard, building on finite-
mixture and Markov-switching analyses generalizing the strategy frequency estima-
tion method of Dal Bó and Fréchette (2018) as we simultaneously estimate strategies
and their frequencies. All details, including a simulation analysis of validity given the
finite data sets considered here, are provided in the Appendix, Section A.1.

1.3 A model-free overview of behavior

In order to provide a foundation for the subsequent analysis and discussion, let us
first provide an overview of behavior in the repeated PD without imposing restrictions
reflecting any of the above stated three conjectures. To this end, we simply report
average cooperation rates in both the first and second halves of sessions of all exper-
iments and discuss how these average strategies align with expected payoffs across
states.

Average behavior Table 1.2 reports the average cooperation rates across experi-
ments in each of the four memory-1 states after round 1 and tests for significant differ-
ences. For brevity, we aggregate across all treatments per experiment here but provide
results by treatment in Table A.10 in the appendix, then also including round-1 be-
havior. Initially, we skip round-1 behavior as it varies substantially across treatments,
as discussed below, but the cooperation rates in the remaining states are fairly sim-
ilar across treatments and indeed across experiments, as Table 1.2 shows. In state
cc, cooperation rates are above 0.9, in state dd they are mostly at or below 0.1 (with
the sole exception of Aoyagi and Frechette, 2009), and after the mixed histories cd
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and dc, cooperation rates fluctuate somewhat in the range [0.2,0.5]. Further, the dif-
ferences between inexperienced and experienced subjects are very minor overall, the
aggregate cooperation probabilities shift by at most five percentage points. This obser-
vation notwithstanding, it is customary to distinguish experienced and inexperienced
behavior by first and second halves of sessions, which we maintain also for this paper.

Table 1.2: Few subjects play pure strategies and assuming pure strategies yields a
striking bias even in large mixture models

Actual cooperation rates Number of subjects not randomizing 50-50
Experiment σ̂cc σ̂cd σ̂dc σ̂dd (c,c) (c,d) (d,c) (d,d)

First halves per session
Aoyagi and Frechette (2009) 0.917 ≫ 0.45 ≈ 0.408 ≈ 0.336 32/38 1/23 3/20 7/21
Blonski et al. (2011) 0.89 ≫ 0.279 ≈ 0.193 ≫ 0.034 13/17 1/5 3/3 124/135
Bruttel and Kamecke (2012) 0.91 ≫ 0.286 ≈ 0.228 ≫ 0.08 12/18 6/23 8/21 32/36
Dal Bó (2005) 0.922 ≫ 0.212 < 0.342 ≫ 0.089 13/13 0/3 2/2 42/54
Dal Bó and Fréchette (2011) 0.951 ≫ 0.334 ≈ 0.331 ≫ 0.063 94/106 28/117 51/128 218/253
Dal Bó and Fréchette (2015) 0.94 ≫ 0.297 ≈ 0.335 ≫ 0.057 216/243 37/137 62/147 404/474
Dreber et al. (2008) 0.904 ≫ 0.217 ≈ 0.213 ≫ 0.036 15/25 3/19 12/18 45/48
Duffy and Ochs (2009) 0.904 ≫ 0.301 ≈ 0.33 ≫ 0.111 43/57 4/25 10/24 61/82
Fréchette and Yuksel (2017) 0.943 ≫ 0.141 ≈ 0.266 ≈ 0.091 21/28 0/0 2/2 5/8
Fudenberg et al. (2012) 0.982 ≫ 0.4 ≈ 0.427 ≫ 0.066 38/43 1/6 5/11 20/25
Kagel and Schley (2013) 0.935 ≫ 0.263 ≈ 0.295 ≫ 0.051 71/81 20/71 32/60 98/111
Sherstyuk et al. (2013) 0.945 ≫ 0.328 ≈ 0.371 ≫ 0.117 37/44 10/36 12/34 41/52

Pooled 0.938 ≫ 0.304 ≈ 0.322 ≫ 0.065 605/713 111/465 202/470 1097/1299

Second halves per session
Aoyagi and Frechette (2009) 0.958 ≫ 0.398 ≈ 0.517 ≈ 0.375 33/37 0/12 1/12 5/9
Blonski et al. (2011) 0.923 ≫ 0.287 ≈ 0.231 ≫ 0.02 26/32 10/25 11/16 172/178
Bruttel and Kamecke (2012) 0.947 ≫ 0.221 ≈ 0.297 ≫ 0.041 13/15 8/17 9/12 31/35
Dal Bó (2005) 0.92 ≫ 0.242 < 0.388 ≫ 0.064 18/27 0/3 0/1 50/65
Dal Bó and Fréchette (2011) 0.979 ≫ 0.376 ≈ 0.362 ≫ 0.041 132/137 34/89 62/100 196/215
Dal Bó and Fréchette (2015) 0.976 ≫ 0.315 < 0.402 ≫ 0.035 340/365 52/162 77/146 448/497
Dreber et al. (2008) 0.917 ≫ 0.128 ≪ 0.39 ≫ 0.009 14/18 6/11 6/12 41/43
Duffy and Ochs (2009) 0.977 ≫ 0.367 ≈ 0.391 ≫ 0.082 80/87 5/35 16/43 60/68
Fréchette and Yuksel (2017) 0.97 ≫ 0.233 ≈ 0.398 ≫ 0.069 33/37 1/6 2/10 20/25
Fudenberg et al. (2012) 0.971 ≫ 0.487 ≈ 0.412 ≫ 0.083 41/44 2/8 4/10 14/17
Kagel and Schley (2013) 0.966 ≫ 0.262 ≈ 0.332 ≫ 0.025 87/90 16/56 30/46 91/97
Sherstyuk et al. (2013) 0.973 ≫ 0.482 ≈ 0.437 ≫ 0.078 44/48 7/24 17/23 23/29

Pooled 0.971 ≫ 0.327 < 0.376 ≫ 0.039 861/937 141/448 235/431 1151/1278

Note: The “actual cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode boot-
strapped p-values (resampling at the subject level with 10,000 repetitions) where <,> indicate rejection of the Null of equality
at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within
data sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). As a result, if a data set is considered in
isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered simultaneously, the corresponding
Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “≫,≪”. Note that
all econometric details here exactly replicate Breitmoser (2015), i.e. the statistical tests are not adapted post-hoc. The “number
of subjects not randomizing 50-50” indicates the number of subjects with cooperation rates in the various states differing sig-
nificantly from 50-50 (in subject-level two-sided binomial tests), conditioning on subjects having moved at least five times in
the respective state. The required level of significance is set at p = 0.0625 such that five observations are sufficient to trigger
statistical significance if the subject plays a pure strategy.

Re-analyzing four experiments, Breitmoser (2015) made the observation that av-
erage memory-1 strategies have a “semi-grim” pattern. A behavior strategy is called
semi-grim if σcc > σcd ≈ σdc > σdd , with the approximation (σcc,σcd,σdc,σdd) =
(0.9,0.3,0.3,0.1). Based on the vastly extended data set analyzed here, we can scruti-
nize whether this somewhat surprising observation was the result of a selection effect.
The table 1.2 shows that (0.9,0.3,0.3,0.1) is clearly no more than an approximation,
but in the initial steps of our analysis in section 1.4, we shall use it nonetheless in
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order to avoid post-hoc specification adaptations of semi-grim.

We further test for differences in the cooperation rates using bootstrapped p-
values, resampling at the subject level, and distinguishing two levels of significance:
the conventional level 0.05 and the tighter level 0.002 ≈ 0.05/24. The latter imple-
ments the Bonferroni correction for tests across 12 experiments and the two session
halves. Naturally, we shall focus on this corrected level of significance, but for clarity
we also report the conventional level that does not correct for multiple testing.8

Out of all the 24 observations, considering first and second halves separately,
only one observation, based on one session half in one experiment (Dreber et al.,
2008), indicates a significant violation of the key restriction σcd ≈ σdc, while the
other two restrictions σcc > σcd,dc and σcd,dc > σdd are never violated significantly. In
45/48 cases they are even confirmed significantly at the tight 0.002 level surviving the
Bonferroni correction. Pooling all observations from all experiments, σcd ≈ σdc is not
rejected in the first halves of sessions but at the 0.05 level it is rejected in the second
halves of sessions. The difference of σcd and σdc remains small, however, and is not
significant at the 0.025 level surviving the Bonferroni correction considering that we
run two simultaneous tests for the pooled data (one for the first halves of sessions
and one for the second halves). Given this range of observations on a vastly extended
data set, we conclude that Breitmoser’s observation passed the out-of-sample test on
non-selected data, i.e. that average behavior indeed exhibits the semi-grim pattern.

We want to emphasize that, if there is subject heterogeneity, mean cooperation
rates provide unbiased estimates of the true cooperation rates but are not necessarily
unbiased estimates of the mean strategies (e.g. due to selection effects after round 1).
Yet, the behavior-strategy conjecture postulates that this semi-grim pattern does not
only characterize the behavior on average but also the strategies of individual sub-
jects. Otherwise, the observation that this pattern recurs across all treatments and
experiments would appear to be a striking coincidence—for, if used at all, pure strate-
gies are estimated to be played in strikingly varying weights across treatments (Dal Bó
and Fréchette, 2018), which seems incompatible with the observation that mean co-
operation rates always exhibit the semi-grim pattern—but our objective is to test this
conjecture directly.

The results of a first simple test of this hypothesis are reported in the last four
columns of Table 1.2. These columns list the number of subjects (per experiment)
that deviate significantly from randomizing 50-50 in the four memory-1 states. We
focus on subjects with at least five observations per state, which is sufficient to trigger
significance in two-sided Fisher tests if subjects play a pure strategy. The results are
fairly clear: In state cd, i.e. after unilateral defection of the opponent, all standard
pure strategies (except AC , which is rarely observed though) agree on the (pure) pre-
diction that one should defect. This state is unique with respect to the unanimity of
the prediction. For this state, however, we find the lowest number of subjects signif-
icantly deviating from randomizing 50-50—only around a quarter of the subjects do

8In Table 1.2, <,> indicate significance at the conventional level and ≪,≫ indicate significance
surviving the Bonferroni correction (see the table notes for details).
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so, putting a rather tight bound on the number of subjects potentially playing pure
strategies.

To further illustrate this bound, assume that subjects do use pure strategies: On
one hand, given that the semi-grim pattern results on average, there have to be subjects
that systematically cooperate after unilateral defection of opponents (state cd). These
subjects are rarely found in analyses, as indicated most clearly by the aforementioned
Result 6 of Dal Bó and Fréchette (2018), stating that “always defect” (AD), Grim,
and tit-for-tat (TFT) are the “three strategies [that] account for most of the data”. This
directly contradicts the observation that σcd ≈ σdc > σdd , unless in addition to the
strategies accounting for most of the data a substantial number of subjects system-
atically cooperate in state cd. However, the strategies predicting at least occasional
cooperation after cd, such as always-cooperate and tit-for-2-tats, were found to fit be-
havior of only very few subjects in Dal Bó and Fréchette (2018). This contradiction
foreshadows what we will find below: even allowing for drastic data mining, pure
strategies cannot be pushed to fit behavior as well as a simple behavior strategy does.

Relation to monetary incentives Complementing the model-free description of be-
havior, let us look at what subjects should be doing under rational expectations. While
relating the decisions “cooperate” and “defect” to expected payoffs in each state is a
standard behavioral piece of information in analyses of static games, it is novel in
analyses of repeated games. The underlying question, whether the actions chosen are
at least qualitatively plausible, is of obvious relevance in any attempt to understand
behavior.

For this initial model-free exposition, we will estimate the expected payoffs of
cooperate and defect, in each state, from the perspective of an agent who assumes con-
tinuation play follows the average relative frequencies of cooperation observed above.
These relative frequencies are denoted as the behavior strategy σ=(σ /0,σcc,σcd,σdc,σdd).
Given σ, the expected payoff in state ω ∈ { /0,cc,cd,dc,dd} is denoted as πω, with

πω = σωπω(c)+(1−σω)πω(d), (1.1)

where πω(c) and πω(d) denote the expected payoffs of playing c and d in state ω,

πω(c) = σω′
(
δπcc +(1−δ)×1

)
+(1−σω′)

(
δπcd +(1−δ)× (−l)

)
, (1.2)

πω(d) = σω′
(
δπdc +(1−δ)× (1+g)

)
+(1−σω′)

(
δπdd +(1−δ)×0

)
, (1.3)

with continuation probability δ and ω′ the state ω from the opponent’s point of view,
such that σω′ is the probability of cooperation by the opponent. By inserting the
treatment-specific average behavior strategies σ from above, we can solve the linear
equation system, Eqs. 1.1–1.3 for all ω, and obtain the expected payoffs πω(c) and
πω(d).

The monetary incentive to cooperate is πω(c)−πω(d), for each ω. Figure 1.2 pro-
vides an overview of the results: We plot the relative frequencies of cooperation across
treatments against the respective monetary incentives to cooperate for each state, sep-
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Figure 1.2: Relation of monetary incentives and cooperation rates across states (naive
beliefs)

(a) State /0, first halves of session
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(b) State /0, second halves of session
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(c) State cc, first halves of session
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(d) State cc, second halves of session
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(e) State cd,dc, first halves of session
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(f) State cd,dc, second halves of session
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(g) State dd, first halves of session
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(h) State dd, second halves of session
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Note: The figures show relative frequencies of cooperation by monetary incentives to cooperate by
treatments, for first and second halves of sessions, plus the best-fitting logistic curve. For further
information, see Tables A.46–A.53 in the supplement.
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arately for first and second halves of sessions. The states cd and dc are pooled for sim-
plicity. Figure 1.2 additionally shows the best-fitting logistic curve, estimated without
intercept such that neutral incentives πω(c)−πω(d) = 0 yield a predicted cooperation
probability of 0.50. The pseudo-R2 of the logistic curves indicate how much of the
null deviance is explained by allowing for logistic errors in utility maximization.

The observations can be summarized as follows: For each state, we have ob-
servations from treatments with net incentives ranging from around −0.5 to +1, i.e.
from cases where πω(c)−πω(d) is highly negative to cases where it is highly posi-
tive. Essentially, the former obtains in treatments where Grim is not a subgame-perfect
equilibrium strategy and the latter obtains in treatments where the discount factor δ

is substantially above the threshold for Grim to be a subgame-perfect equilibrium
strategy. Despite this range of induced monetary incentives, relative probabilities of
cooperation and monetary incentives are highly correlated only in round 1 (state /0).
They are statistically close to independent in all states after round 1. For example, in
second halves of sessions, when subjects have gained experience, the Pseudo-R2 of
the logit model is above 0.8 in round 1 and below 0.2 in all states afterwards. Obvi-
ously, this model-free analysis has the drawback of neglecting subject heterogeneity,
which we will address below, but it seems that behavior in states cc and dd may be
difficult to align with monetary incentives. For this reason, we raise the following set
of questions, which will be addressed in section 1.5.

Question 3. Do subjects act rationally and with rational expectations in round 1 but
irrationally follow some automaton or heuristic afterwards? How do strategies relate
to treatment parameters? Can we rationalize choices after round 1? And are the
strategies predictable?

1.4 Estimating the strategies used by subjects

This section consists of two parts. In the first part, we data mine for the best possi-
ble (post-hoc) mixtures of (generalized) pure strategies for each treatment. We will
not penalize the model for data mining best mixtures but treat the resulting mix-
tures treatment-by-treatment as if they had been hypothesized ex-ante. As we dis-
cuss below, this provides us with an upper bound for the goodness-of-fit of pure and
mixed strategies, which we will compare to a simple model that contains only de-
fectors playing AD and cooperators playing semi-grim behavior strategies satifysing
(σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1) as previously defined in Breitmoser (2015), in
all treatments. Due to the one-sided data mining, involving optimizing the post-hoc
mixture of pure strategies measured against treatment-invariant behavior strategies,
this analysis is heavily lopsided in favor of modeling behavior using pure and mixed
strategies. In this sense, we give the pure- and mixed-strategy conjectures the best
possible chance.

In the second part, we provide the results of an unrestricted estimation of memory-
1 strategies, and then estimate the number of subject types and the strategies played
in both a top-down and a bottom-up approach towards model selection. The top-down
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approach starts with the general model and iteratively eliminates insignificant com-
ponents, while the bottom-up approach starts with a basic model and iteratively adds
model components identified as significant.

Both parts of this section will converge to the same model distinguishing defec-
tors playing AD from cautious and strong cooperators playing semi-grim strategies.
Their behavior will be further analyzed in the next section. Section A.2 in the appendix
demonstrates robustness to longer memory lengths by demonstrating that model ade-
quacy does not improve by equipping subjects with memory-2, neither for (general-
izations of) pure strategies nor for semi-grim. That is, while increasing memory length
slightly improves the goodness-of-fit, this increase does not make up for the increased
complexity of strategies as evaluated using the Bayesian information criterion.

Pure, mixed or behavior strategies? In order to outline our approach towards es-
timating an upper bound of the goodness-of-fit of pure strategies, recall that the pure
memory-1 strategies AD, TFT, and Grim had been conjectured (Dal Bó and Fréchette,
2018, Result 6) to capture the behavior of most subjects across treatments, but the
analysis was restricted to pure strategies. For reasons discussed shortly, we add AC
and WSLS to obtain a set of baseline strategies. We then extend this set of strate-
gies in two ways. On one hand, we add generalized versions of these strategies by
introducing a free parameter per strategy to relax assumptions on first-round coop-
eration rates σ /0, thus allowing subjects’ first-round cooperation rates to be different
from 0 in AD, and different from 1 in all other strategies. This is critical, as it al-
lows us to also incorporate STFT. The definition of the continuation behavior remains
unchanged, such that (σcc,σcd,σdc,σdd) ∈ {0,1}4 for all pure strategies. We refer to
these strategies as generalized pure strategies of type I. On the other hand, in the set
of generalized pure strategies of type II, we introduce a free parameter to allow for
randomization within supergames to relax assumptions about behavior after histories
such as cd or dc, where the pure strategies tend to fit poorly. Using the notation intro-
duced above, defining strategies as quintuple (σ /0,σcc,σcd,σdc,σdd), generalized TFT
is defined as (1,1,0,θT FT ,0), generalized Grim as (1,1,θG,θG,θG), and generalized
WSLS as (1,1,0,0,θWSLS). Generalized AC and AD are defined as behavior strate-
gies (1,θAC,θAC,0,0) and (0,θAD,θAD,θAD,θAD), respectively, with all θ∗ ∈ [0,1].9

The advantage of defining generalized strategies this way is that linear combinations
of these generalized strategies, or of the original pure strategies, can reproduce the ag-
gregate semi-grim patterns we observed above. In addition, we will of course consider
the pure strategies in their original form, thereby covering the possibility that in at least
some treatments neither of the generalizations improves the goodness-of-fit, allowing
us to post-hoc save parameters. In addition to all of this, we allow for trembling-hand
noise, i.e. that subjects may deviate from the assumed (generalized) pure strategy with
probability ε ∈ [0,1] in any given round, to then randomize uniformly.

With this set of strategies in hand, our approach toward data mining the mixtures
9Allowing for more than one free parameter per generalized pure strategy would be unreasonable

since they would not be similar enough to their name giving pure strategy anymore. In addition, the
penalty for free parameters would increase strongly.
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across treatments is as follows.

First, we evaluate independently for each treatment which mixture of pure or
generalized pure strategies best captures behavior. That is, we determine for each
treatment, which combination of pure strategies fits best, which combination of gen-
eralized pure strategies of type I fits best, which of type II, and which of the three
best combinations fits best. Following the pure-strategy conjecture, we assume the
best combination always contains at least TFT, AD, and Grim. We add the remaining
strategies when this improves the goodness-of-fit. Thus, we choose the best out of
13 as promising conjectured memory-1 mixtures, for each of the 32 treatments and
each of the two half-sessions independently.10 In total, we therefore evaluate 1332

models per level of experience and afterwards pick the best-fitting model in terms
of ICL-BIC (see Appendix A.1). Second, we do all of this separately for the three
“switching models” designed to capture the three possibilities of strategy switching
between supergames: "No Switching" (pure strategy), "Random Switching" (mixed
strategy), and "Markov Switching" (strategy switching between supergames follows a
Markov process), see Appendix A.1.1 for details.

The results for each of the three switching models are reported in columns 2-5 of
Table 1.3. The leftmost column contains the results for the baseline model comprising
AC, AD, TFT, Grim, and WSLS without data mining, which can serve as a reference
for how much of the goodness-of-fit is due to data mining. For the sake of readability,
we report ICL-BICs aggregated by experiment.11

The random switching model in column 3 of Table 1.3 capturing mixed strategies
generally fits worst, by the enormous amount of more than 2000 points on the log-
likelihood scale. This shows that subjects are reasonably consistent in their strategy
choice. The no-switching model capturing pure strategies (column 2) fits worse than
the Markov-switching model (column 4) in the first halves of sessions, but weakly
better in the second halves of sessions. If these models captured behavior well, this
could suggest that subjects initially experiment with different pure strategies, though
not randomly, as in mixed strategies, but systematically, as in a stochastic Markov
process, to then converge to individual choices for strategies as the session progresses.
Additionally, Table A.15 (in the appendix) shows that continuation strategies of the
generalized pure type II (excluding round-1 behavior) perform much better than their
counterparts without generalization. The differences in model fit are large, amount-
ing in total to more than 1000 points on the log-likelihood scale. As defined above,
these generalized strategies allow for systematic randomization after round 1, which
suggests that randomization within supergames is indeed a behavioral facet.

10For each of the three classes of strategies (pure, generalized type I, generalized type II), we consider
mixtures containing AD, TFT and Grim and in addition either (i) no other strategy, (ii) AD, (iii) WSLS,
and (iv) AD + WSLS. This makes 12 combinations in total. In addition, in the case of pure strategies,
we allow for a mixture containing noise players (randomizing 50-50 in all states) as type besides AC,
TFT and Grim, which are otherwise contained as special case in generalized strategies of type II.

11Treatment-wise ICL-BICs are provided in the Appendix A.5, after Table A.16. Each entry in
the aggregated table represents the sum of ICL-BICs of the best out of 13 models for each respective
treatment. Tables A.15 and A.16 in the appendix contain additional details regarding the intermediate
results obtained during data mining for the best model.
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Table 1.3: Best mixtures of pure or generalized strategies in relation to semi-grim. Strategy mixtures are estimated treatment-by-
treatment. The resulting ICL-BICs are pooled for experiments and overall (less is better, relation signs point to better models)

Best mixture of pure or generalized strategies Best Mixture
Baseline No Random Markov Best Fixed SG Best Switching
Model Switching Switching Switching Switching 1.5×SG+AD By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 3 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 3 3–30

First halves per session
Aoyagi and Frechette (2009) 886.44 ≫ 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 793.63 > 755.97
Blonski et al. (2011) 1114.69 ≫ 1069.58 ≈ 1104.85 ≪ 1225.35 1225.35 ≫ 1043.4 ≈ 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 763.66 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 > 600.66 < 631.2
Dal Bó and Fréchette (2011) 7423.23 ≫ 6904.79 ≪ 7456.12 ≫ 6388.49 6388.49 ≈ 6458 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 ≫ 8434.93 ≪ 9166.72 ≫ 8158.31 8158.31 ≫ 7912.58 < 8138.61
Dreber et al. (2008) 871.32 ≫ 787.71 < 863.7 ≫ 752.16 752.16 ≈ 774.76 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1325.28 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 284.66 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 ≈ 421.46 ≈ 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 ≪ 2993.4 ≫ 2439.06 2439.06 ≈ 2473.59 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 ≪ 1450 ≫ 1296.85 1296.85 ≈ 1243.95 ≈ 1296.85

Pooled 27218.66 ≫ 25758.38 ≪ 27754.81 ≫ 25166.24 25166.24 ≫ 24205.04 ≪ 24863.15

Second halves per session
Aoyagi and Frechette (2009) 534.29 ≫ 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 460.38 ≫ 416.51
Blonski et al. (2011) 1503.41 ≫ 1398.5 ≪ 1509.09 < 1593.01 1398.5 ≈ 1350.39 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 ≫ 516.71 538.17 ≈ 487.8 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 688.66 < 729.48
Dal Bó and Fréchette (2011) 6065.93 ≫ 5195.88 ≪ 6378.16 ≫ 5007.24 5195.88 ≈ 4966.19 ≈ 4964.77
Dal Bó and Fréchette (2015) 9085.4 ≫ 8177.46 ≪ 9401.19 ≫ 7910.83 8177.46 ≫ 7820.35 ≈ 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≫ 545.25 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1764.77 ≈ 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 436.46 ≈ 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 493.46 ≈ 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 ≪ 2336.29 ≫ 1678.7 1751.81 ≈ 1713.66 ≈ 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 901.89 ≈ 955.73

Pooled 25271.72 ≫ 22848.49 ≪ 26409.44 ≫ 22927.9 22848.49 ≫ 21738.7 ≪ 22422.07

Note: Results treatment-by-treatment are in the appendix. Relation signs encode p-values of Schennach-Wilhelm likelihood-ratio tests where <,> indicate rejection
of the Null of equality at p< .05 and ≪,≫ indicating p< .002, which implements the Bonferroni correction of 24 simultaneous tests per hypothesis. “No Switching”
assumes that subjects chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that
subjects randomly chooses a strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process.
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However, the arguably most relevant observation at this point concerns the aggre-
gate effect achieved by data mining for the best-fitting combination of pure strategies
and switching model. Modeling the behavior of inexperienced subjects (first halves of
sessions), our generalizations and data mining combined yield a gain of 2000 points
on the log-likelihood scale, comparing the baseline model to the best-fitting Markov
switching models, and modeling experienced subjects (second halves), generaliza-
tion and data mining combined yield a gain of 2500 points compared to the baseline
model. Since these scores do not account for the degrees of freedom inherent in the
model selection during data mining, they do not imply that the baseline model has
to be rejected, but they clearly show that our approach yields an enormous improve-
ment in fit over the standard memory-1 mixtures typically proposed in the literature.
Further, since we attempted to include all specifications that may be considered com-
patible with either the pure- or the mixed-strategy conjecture, and picked the best one
for each treatment, we can consider this data-mined specification to be a generous
upper bound of the adequacy of these memory-1 models to describe behavior.

Second, this upper bound, reported in column 5 (“Best Switching”) of Table 1.3,
allows us to test the pure- and mixed-strategy conjectures against the behavior-strategy
conjecture. Recall that the behavior-strategy conjecture suggests that the behavior of
cooperating subjects is well-described using semi-grim strategies after round 1, ap-
proximately (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1), with σ /0 ∈ {0.9,0.3} depending
on subject type (optimistic or unsure subjects, as discussed above). The third behav-
ioral type capturing actions of non-cooperating subjects is modeled by AD as usual.
Thus we obtain three specific subject types, without any free parameters except for
the trembles of AD players and the type shares, and merely exploiting the simple in-
sight that cooperating subjects play semi-grim behavior strategies. We evaluate this
simple three-type mixture against the data-mined mixture of (generalized) pure strate-
gies, which exploits plenty of free parameters in the strategy definitions, flexible type
shares, and post-hoc model selection.

Specifically, we compare the simple three-type model defined in prior work, with
just 3 free parameters per treatment, to the “Best Switching” model that was post-
hoc picked from 3×1332 models, after estimating 438 parameters for each of the 32
treatments, but without accounting for the degrees of freedom used in the model se-
lection process (solely accounting for the 3–10 parameters of the best-fitting model
that is finally used — in line with the data mining ideal). The results are reported
in column 6 (“Fixed SG, 1.5×SG+AD”).12 Despite this abuse of statistical power,
the simple model allowing for semi-grim behavior strategies fits significantly better
than the mined mixture of generalized pure or mixed strategies: it improves on the
data-mined model by more than 900 points in the first-halves of sessions and even by
1100 points in the second halves of sessions. Since AD players are contained in all
models, this demonstrates that the behavior of subjects not playing AD—i.e. behavior
of cooperating subjects—is much better described by the semi-grim behavior strategy
than using any mixture of received or generalized pure strategies. This is substantial

12Slightly abusing notation, 1.5 semi-grim types indicates that the two cooperating types have differ-
ent cooperation probabilities in round 1 of each supergame but equivalent continuation strategies.
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and perhaps surprising, but in the end, it is simply a reflection of the deficiency of
deterministic choice rules in capturing behavior discussed above. A robustness check
clarifying that this observation also holds true after accounting for memory-2 is re-
ported in the appendix.

Third, we evaluate the arguably extreme model, which identifies the best-fitting
combination of (generalized) pure strategies (out of 13 combinations) and the best-
fitting switching model (out of 3) treatment by treatment without any consistency re-
quirement. Thus, we choose the best-fitting model from 39 models for each treatment,
amounting to the enormous selection of the best out of 3932 models across all exper-
iments. Note that such analysis without imposing consistency requirements across
treatments does not yield economically useful estimates, but if anything, this provides
an even more generous upper bound on the economic content of pure and generalized
pure strategies of memory-1. The results are reported in the right-most column (“Best
Switching By Treatment”). In total, this exhaustively mined model still fits highly
significantly worse (by more than 500 points) than the semi-grim model suggested by
the behavior-strategy conjecture.13 We summarize these observations as follows.

Result 1 (Question 1). Cooperating subjects seem to use memory-1 behavior strate-
gies. The upper bound of behavior that can be captured with received pure or mixed
strategies is significantly lower than the adequacy of a model assuming all cooperat-
ing subjects play two types of predefined deterministic (semi-grim) behavior strategies.

Heterogeneity of cooperators and unrestricted estimation Let us now examine
to what extent the cooperating subjects are heterogeneous and indeed play semi-grim
strategies. In order to test this joint hypothesis of heterogeneity and semi-grim, let us
start with a general model allowing for four different subject types (per treatment), one
of which plays AD and three that play general memory-1 behavior strategies without
imposing restrictions such as semi-grim.14 In Table 1.4, we refer to this model as “3×
P5+AD”, where P5 indicates use of an unrestricted five-parameter behavior strategy.
Table 1.4 provides detailed information on a range of models that distinguish either
up to three cooperating types playing general behavior strategies or up to three types
playing semi-grim strategies. This will allow us to directly test the joint hypothesis.

Before doing so, let us point to an arguably important observation. Table 1.4 re-
ports on a large range of models where cooperating subjects always are assumed to
play behavior strategies. All of these models improve on the best of the 1051 mod-
els assuming subjects play pure or generalized pure strategies (“Best Mixture, Best
Switching” in the left-most column of Table 1.4). That is, our earlier result on the
inadequacy of pure and generalized pure strategies is confirmed very robustly: what-
ever specification we use, allowing cooperating subjects to play behavior strategies
fits behavior much better. That is, the best of the 1051 models assuming pure or gen-
eralized pure strategies fits at least weakly worse than the worst of the seven models

13Section A.2 in the appendix demonstrates that this result is robust to allowing for memory-2, where
we find that memory-2 is overall insignificant.

14As a reminder, the general semi-grim restrictions are σcd = σcd and σcc = 1−σdd .



36 CHAPTER 1. INEQUITY AVERSION AND LIMITED FORESIGHT

assigning cooperating subjects behavior strategies, and significantly worse than all of
the five models allowing for at least two distinct types of cooperating subjects. No-
tably, this would not be observed if the pure-strategy conjecture was empirically valid:
Besides AD, the unrestricted analysis allows cooperating subjects to play any cooper-
ative strategies like TFT, Grim, and say WSLS, STFT or AC depending on treatment
(in 3 × P5 + AD), and if they actually did so, then the (generalized) pure strategy
mixture would fit substantially better without using as many free parameters and by
containing exactly as many pure strategies as optimal.

Now, using “3×P5+AD” as the baseline, we can analyze which form of het-
erogeneity is most suitable for describing behavior. Starting with four subject types
seems to be sufficient ex-ante, and will turn out to be sufficient ex-post. In Table 1.4,
the two right-most columns report on the adequacy of nested models that distinguish
only two types or one type of cooperating subjects (besides the AD type). It turns
out that distinguishing just two types of cooperating subjects (“2×P5+AD”) weakly
improves on distinguishing three types, while models with just one cooperating type
(“P5+AD”) fit significantly worse. The latter further corroborates that cooperating
subjects are not homogeneous.

To the left of column “3×P5+AD”, Table 1.4 details information on models
assuming the cooperating subjects play semi-grim strategies rather than unrestricted
memory-1 strategies. To be exhaustive, we consider models distinguishing three semi-
grim types (“3×SG+AD”), two semi-grim types (“2×SG+AD”) and 1.5 semi-grim
types (“1.5× SG+AD”), besides the model with fixed semi-grim strategies (“Fixed
SG, 1.5×SG+AD”) defined above. At this point, the discussion can be kept rather
short as the results are fairly clear: All models distinguishing at least two types of
cooperating subjects and flexible semi-grim behavior strategies fit about equally well.
The differences between these models are at best weakly significant, while all of them
fit significantly better than the model assuming cooperating subjects are homogeneous
( “P5+AD”)15. Compared to the model specification with the fixed semi-grim strate-
gies used above, the differences are insignificant in first halves of sessions but become
significant in second halves of sessions. Initially, that is, cooperating subjects seem
to be well-described by (σcc,σcd,σdc,σdd) = (0.9,0.3,0.3,0.1), while their behavior
becomes more nuanced and treatment-dependent as they gain experience.

These results provide strong evidence for heterogeneity and the behavior-strategy
conjecture, but we need additional guidance for or against modeling the behavior strat-
egy as semi-grim. For additional guidance, we can rely on either the top-down or the
bottom-up approach towards model selection. By the top-down approach, we start
with the most general model (3×P5+AD) and successively reduce its complexity
until such reductions dampen its adequacy significantly. The simplest model that we
reach this way without a significantly negative impact on adequacy is 1.5×SG+AD—
with fixed semi-grim strategies in first halves of sessions and with flexible ones in sec-
ond halves of sessions. In turn, by the bottom-up approach, we start with the simplest
model (Fixed SG, 1.5×SG+AD) and successively increase its complexity as long as

15Also compared to ‘SG+AD”, see Appendix Table A.18.
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Table 1.4: Examining heterogeneity of cooperating subjects and the semi-grim structure of their strategies

Best Mixture Fixed SG Treatment-specific SG specification
Best Switching 1.5×SG+ AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 3 7 9 13 19 17 11
# Parameters accounted for 3-30 3 7 9 13 19 17 11

First halves per session
Aoyagi and Frechette (2009) 755.97 ≈ 793.63 ≈ 792.44 ≈ 777.81 ≈ 782.63 > 742.33 ≈ 744.82 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1043.4 ≪ 1104.6 ≈ 1134.96 ≪ 1232.97 ≪ 1332.48 ≫ 1205.47 ≫ 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 763.66 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 600.66 < 618.39 ≈ 600.26 ≪ 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 ≈ 6458 ≈ 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 ≪ 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≫ 7912.58 > 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 ≪ 7969.32
Dreber et al. (2008) 752.16 ≈ 774.76 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1325.28 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 284.66 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 ≈ 421.46 > 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2473.59 ≈ 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 ≪ 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1243.95 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 ≪ 1286.14

Pooled 24863.15 ≫ 24205.04 ≈ 24202.44 ≈ 24079.69 ≈ 24196.07 < 24469.37 > 24219.83 ≪ 24704.09

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 460.38 ≫ 421.21 ≈ 422.29 ≈ 423.63 > 404.95 ≈ 408.6 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1350.39 ≈ 1370.16 ≈ 1385.91 < 1442.85 ≪ 1555.48 ≫ 1453.1 ≫ 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 487.8 ≈ 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 688.66 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 4966.19 ≫ 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 ≪ 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7820.35 ≫ 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 ≪ 7683.76
Dreber et al. (2008) 581.94 ≈ 545.25 ≈ 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1764.77 > 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 ≪ 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 436.46 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 493.46 ≫ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1713.66 ≫ 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 ≪ 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 901.89 > 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 ≪ 935.01

Pooled 22422.07 ≫ 21738.7 ≫ 20541.83 ≈ 20454.18 > 20231.09 < 20459.26 ≈ 20403.95 ≪ 21818.46

Note: This table verifies a number of possible mixtures involving semi-grim types as a robustness check for the sufficiency of focussing on the
mixtures examined above. E.g. “3× SG refers to a model containing three different versions of memory-1 semi-grim with allowing for heterogeneity
of randomization parameters across subjects.
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these increments significantly improve model adequacy. Starting with with this, ade-
quacy improves significantly only in second halves of sessions, then by allowing for
flexible semi-grim strategies, but beyond that, further increments again are not signif-
icant in a manner surviving the Bonferroni correction (indicated by ≫ or ≪ in Table
1.4).

That is, both the top-down and the bottom-up approach converge to the same
conclusion that we need to distinguish two types of cooperating subjects, whose be-
havior differs only in round 1 of each supergame. On average, the less cooperative
type cooperates with probabilities in [0.2,0.5] in round 1, similar to the cooperation
probabilities after mixed histories cd/dc, and the more cooperative type cooperates
with probabilities above 0.9 in most treatments, similar to cooperation probabilities
after cc. Table A.4 in the appendix provides detailed results.

Result 2 (Question 2). The analysis identifies two types of cooperating subjects play-
ing the same semi-grim continuation strategy but different cooperation probabilities
in round 1 (cautious cooperators and bold cooperators) and a subject type playing
a strategy close to always defect (defectors). A model with this subject composition,
and any other model allowing for two types of cooperating subjects playing behavior
strategies, fits significantly better than all 1051 models assuming pure or generalized
pure strategies.

1.5 How do strategies relate to supergame parameters?

Having estimated the number of subject types and their strategies, we can revisit Ques-
tion 3 and ask to what extent the subjects’ strategies are functions of treatment parame-
ters, to what extent they are rationalizable, and to what extent they may be predictable.
In light of the above results, we distinguish defecting and cooperating subjects. The
defecting subjects play slightly perturbed strategies close to AD, which are essentially
invariant to treatment parameters and rationalizable to the extent that AD is rationaliz-
able (note that AD is a best response to itself in all supergames considered here). For
this reason, we shall focus on the strategies played by cooperating subjects. By Result
2, there are two types of cooperating subjects, both identified as playing semi-grim su-
pergame strategies with significant differences found in the probability of cooperation
in round 1. The strategies are significantly treatment-dependent when subjects are ex-
perienced, i.e. in second halves of sessions, on which we shall focus in the following.

Overview Recall that Figure 1.2 plotted the average cooperation rates across states
against the expected payoffs from cooperation, which suggested that subjects act
highly rationally in round 1 but ignore expected payoffs afterwards. We suspected
confounds due to looking at raw cooperation rates, most notably possible selection
effects, and our estimates of the strategies of (cooperating) subject types allow us to
resolve these concerns. Figure 1.3 now plots the cooperation probabilities according to
the estimated strategies of cooperating subjects against two predictors of cooperation
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Figure 1.3: Relation of δ (left) and monetary incentives (right) to cooperation rates
(second halves of sessions)
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Note: For further information, set Tables A.46–A.53 in the Appendix.
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Figure 1.4: Relation of δ−δ∗ to shares of cooperators (second halves of sessions)
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Note: This figure shows how the ratios of the three strategies – defectors, cautious cooperators, and
strong cooperators change with the distance of δ to the BOS cooperation threshold δ∗ across treatments.
The solid line represents the best fitting logistic curve estimated without intercept such that the share
is 0.5 for δ = δ∗. Panel (a) displays the total share of both cooperators, panel (b) the relative share of
cautious cooperators among cooperators, panel (c) the share of cautious cooperators overall, panel (d)
the share of strong cooperators overall.

(expected payoffs and δ− δ∗). In the left column of plots, we see how the coopera-
tion probabilities across states relate to the difference of discount factor δ and BOS
threshold δ∗. In the right column of plots, we see how the probability of cooperation
relates to the monetary incentive to cooperate, πω(c)−πω(d) as defined above, Eqs.
1.1–1.3, for each state ω. For these plots, we assume that subjects hold “false consen-
sus” beliefs that their opponent plays the same strategy that they play. That is, strong
cooperators believe they face strong cooperators and weak cooperators believe they
face weak cooperators. In comparison to Figure 1.2, the results do not change sub-
stantially: Behavior is still close to being independent of the predictors of cooperation
in most states (bottom three panels), arguably with the exception of strong cooperators
in round 1 (top two panels).

Recall that we know from Dal Bó (2005) and subsequent work that average coop-
eration rates change as payoff parameters change, and above we have seen that most
of these changes can be reduced to changes in round 1. Yet, as just seen, the type
strategies are largely independent of the payoff parameters. To illuminate this further,
we next test the complementary statistic and examine how the shares of the three sub-
ject types change as parameters change. Figure 1.4 plots the shares of cooperators as
a function of the discount factor δ in relation to the BOS-threshold δ∗. We see two rel-
atively strong effects: As δ approaches δ∗, the overall share of cooperators increases,
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i.e. defectors become cooperators, and at the same time, the relative share of cautious
cooperators declines, i.e. cautious cooperators turn into strong cooperators.

Result 3 (Question 3 – part 1). The shares of subjects playing either of the three strate-
gies change highly predictably. As δ increases defectors are replaced by cooperators
and as it passes the BOS-threshold δ∗ the strong cooperators start to outweigh the
cautious cooperators (R̃2 ≥ 0.2 in all cases). The strategies themselves are largely
invariant to treatment parameters and monetary incentives. The only exception sat-
isfying R̃2 ≥ 0.2 are strong cooperators in round 1, whose strategies correlate with
treatment parameters (δ−δ∗) but not with monetary incentives, and only in round 1.

That is, the behavioral changes observed in the literature are mainly transitions
from defection to cautious cooperation and from cautious cooperation to strong co-
operation. These transitions are neatly predictable, being logistic functions of δ−δ∗,
which is a substantial result in relation to previous work that found no reliable asso-
ciation between strategies used and payoff parameters (Dal Bó and Fréchette, 2018).
This result directly follows from the unrestricted estimation of strategies, which thus
not only fits better but also renders type shares predictable. In turn, the actual strategies
associated with these seemingly archetypical behavioral types are largely invariant of
payoff parameters, which also is a novel result that we further investigate next.

Structural analysis of preferences and beliefs The above observations suggest that
it seems straightforward to explain the shares of subject types across treatments, as
they are simple functions of payoff parameters (i.e. of δ− δ∗), but it is not immedi-
ately obvious how to explain the largely invariant strategies chosen by these subject
types. Should we think of cooperating subjects as choosing automata, as first de-
scribed by Rubinstein (1986), or are these strategies predictable and rationalizable in
some way? This question can be answered in a structural analysis of behavior, a stan-
dard approach in behavioral analyses of normal-form games, but novel in analyses
of the repeated PD. Thanks to the existing work on behavior in normal-form games,
we can build on central ideas from three literatures. First, regarding belief formation
and relating to the above discussion, much of the pychological literature emphasizes
that people overestimate the extent to which others are similar to themselves. In anal-
yses of games, this basic psychological observation has been analyzed as projection
of information (Madarász, 2012) and projection of types or strategies (Breitmoser,
2019). In the context of the PD Aoyagi et al. (2021) and Gill and Rosokha (2020)
provide first evidence for such behavior. By our results above, the types are defined
in terms of strategy, and in this sense, projection of types equates with projection of
strategies, and both correspond with the false consensus beliefs discussed above. We
will contrast these consensus beliefs about opponents’ strategies with naive beliefs
and Bayesian beliefs in order to test the above suggestion that consensus beliefs best
capture behavior (for formal definitions, see Appendix A.3).

The above results imply, however, that relaxing assumptions on belief formation
is insufficient to comprehensively explain behavior. To see this, recall that subjects co-
operate after cc and cd/dc even in treatments where Grim is not a SPE, and if Grim is
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not a SPE, a strategy involving cooperation is not rationalizable in any state (i.e. never
a best response to any belief in any state). Thus, the behavior of cooperating subjects is
in general not rationalizable in the classical sense—by varying beliefs—but it may be
rationalizable after (also) relaxing assumptions on preferences. A standard approach
towards explaining cooperative behavior in the absence of strategic incentives, e.g. if
Grim is not a SPE, is to allow for interdependence of preferences. This has been ob-
served in several other literatures, most prominently in finitely repeated public goods
games, where such behavior seems related to a preference for conditional cooperation,
concerns of inequity aversion, or concerns for fairness and altruism (see for example
Keser and Van Winden, 2000, and Fischbacher et al., 2001). Building on this exist-
ing evidence, and seeking to avoid post-hoc experimentation, we will only consider
these four standard models in our analysis (the standard definitions are provided in
Appendix A.3).

In addition, we allow for the possibility that subjects misperceive the discount
factor δ. Such prescinding from the discount factor might arise if subjects are used
to engaging in repeated interactions with discount factors close to 1 or 0, for example
because the most prominent real-life interactions (with say family members and col-
leagues) have low break-up probability and occur with high frequency, implying that
discounting is negligible. Specifically, we allow the perceived discount factor δ̃ to be
a function of the true discount factor as in δ̃ = δx. If x = 1, subjects correctly perceive
the discount factor (or, break-up probability), for x < 1 they underestimate it, with the
limiting case x → 0 where they simply disregard the break-up probabibility and play
the game as if it had an infinite time horizon (without impatience, in the laboratory).
In turn, if x > 1, subjects overestimate the break-up probability, and in the limiting
case x → ∞, subjects seem “myopic” and play a sequence of one-shot games. Such
limitations of foresight characterize many approaches towards long-run interactions,
most notably perhaps chess. In the extreme case x → ∞, agents simply evaluate the
resulting outcome of the present round, i.e. cc, dc, cd or dd, which implicitly encodes
the continuation payoff expected from the subsequent rounds.

Regarding the econometric implementation of the analysis, we use standard spec-
ifications of structural analyses of games, following McKelvey and Palfrey (1995),
Costa-Gomes et al. (2001), Bajari and Hortacsu (2005), as extended to analyses of dy-
namic games by Aguirregabiria and Mira (2007). All details of these overall standard
definitions are provided in Appendix A.3. In order to quantify to what extent the dif-
ferent approaches allow us to capture behavior, we also estimate two standard bench-
mark models. First, we provide results for the lower-bound benchmark of uniform
randomization, i.e. the goodness-of-fit of predicting 50-50 randomization in all states.
Second, we consider the upper-bound benchmark clairvoyance predicting the actually
estimated probabilities of cooperation for the two cooperating types by treatment in all
states. Additionally, as a presumably trivial benchmark model, we examine the pos-
sibility that subjects play the actual stage game (without interdependent preferences)
but misunderstand δ as captured by x ̸= 1. By design, all models of interdependent
preferences allowing for x ̸= 1 should improve on this benchmark, as it is always con-
tained as a special case for interdependence weights equal to zero. This benchmark
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allows us to understand how much can be explained by allowing for misperception of
δ on its own. In the estimation x is limited to an upper bound of 100 for viability.

The results are presented in Table 1.5 and summarized in Figure 1.1 above. Table
1.5 distinguishes, for each model, three sets of estimates. This gives us a sense of
the robustness of the results. In the right-most columns (“Fit to each treatment”), we
allow for treatment-specific parameters. Since the behavior of cooperating subjects
in each treatment is described by five parameters (round-1 behavior of each type and
three parameters capturing continuation behavior), the four free parameters per model,
when allowed to be treatment specific, should capture behavior close to “clairvoyance”
(i.e., perfectly). This is indeed the case for models allowing for false-consensus beliefs
but not for the other belief models, as discussed shortly.

In the the middle set of columns (“Heterogeneous variance”), we allow for treat-
ment-specific variance of noise but now invoke the standard assumption that the pref-
erence parameters are constant across all treatments and experiments, while the clair-
voyance benchmark model remains unchanged (aside from a change in the penalty
term to reflect the change in the number of free parameters of the models for which
it is the upper bound). This informs us to what extent interdependence of preferences
actually captures behavior, rather than being able to fit behavior post-hoc treatment by
treatment. In the left-most set of columns (“Homogeneous variance”), we additionally
assume that the noise variance (as captured by the precision parameter λ in the logistic
specification) is constant across treatments. This yields a very parsimonious model of
behavior, using four parameters to describe the preferences of both cooperative types
across all 32 treatments analyzed here—which may not be expected to fit exactly. Ex-
plaining behavior across treatments and experiments with one set of parameters gives
us a sense of how robust (and thus predictable) behavior is, however.

As indicated, for each belief model, we evaluate the aforementioned four models
of social preferences with potentially misperceived δ, and a benchmark of inequity
aversion assuming the correct δ. Two observations stand out: First, for each of
the models with interdependent preferences, and each of the three measures for the
goodness-of-fit, false consensus beliefs best fit behavior—that is, cautious coopera-
tors seem to believe they play against cautious cooperators and strong ones seem to
believe they play against strong ones. In all cases, the distance to other belief models
is on the order of 5000 likelihood points, which is highly significant and corresponds
to about 20% of the total score, implying that it is behaviorally also highly relevant.

To understand this first observation, let us assume that subjects update beliefs
following Bayes’ Rule after each round, most notably perhaps after round 1—which
could explain the poor fit of actions in relations to expected payoffs after round 1.
Since all cooperating subjects are estimated to play the same continuation strategy,
their differences in round 1 cannot be in preferences but must be in the beliefs they
hold, and specifically in the beliefs about behavior in round 1, as the behavioral dif-
ferences are observed in round 1. False consensus about strategies directly predicts
this intuition— that cautious cooperators expect to play with cautious cooperators and
that strong ones expect to play with strong ones—and it also reflects the standard
theoretical assumption that agents play symmetric equilibrium strategies.
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Table 1.5: Testing interdependence of preferences (second halves; see also Tables A.5 and A.6 for analyses of first and both halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 20460.6 20692.6 21388.8
Lower bound BIC (Uniform Random) 51487.3 51719.4 52415.6

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 45115.4 (−,−,−) 42523.4 (−,−,−) 43219.6 (−,−,−)
True stage game g, l, free (δX ,−,−) 45096.6 (1.08,−,−) 42134 (1.32,−,−) 39948.6 (8.79,−,−)
True δ, inequity aversion (−,α,β) 28542.4 (−,0.96,0.6) 29407.7 (−,1.6,0.66) 27950.4 (−,−100,0.52)
Inequity Aversion (δX ,α,β) 22607.6 (100,0.82,0.14) 22330.2 (18.44,0.77,0.11) 21452.4 (17.05,0.37,−0.01)
Cond Cooperation (δX ,α,β) 27159.5 (100,1.61,−0.27) 25680.3 (5.91,1.7,−0.01) 21767.4 (16.79,1.79,−0.06)
Altruism (δX ,α,β) 24309.4 (68.15,1.45,−0.32) 23419.6 (19.92,1.38,−0.24) 21451.1 (4.17,0.98,0.12)
Gen Fairness Equilibrium (δX ,α,β) 28525.3 (6.53,6.66,0.22) 26864.2 (6.75,26.51,0.21) 22067.6 (11.03,24.23,0.07)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 44692.6 (−,−,−) 43458.3 (−,−,−) 44154.5 (−,−,−)
True stage game g, l, free (δX ,−,−) 44638.9 (1.08,−,−) 43310.6 (1.14,−,−) 41986.3 (2.53,−,−)
True δ, inequity aversion (−,α,β) 31003 (−,−100,−3.27) 31175.5 (−,−100,−2.18) 30032.2 (−,−100,−2.34)
Inequity Aversion (δX ,α,β) 27869.8 (100,6.99,0.98) 27782.3 (100,4.57,0.98) 28007.6 (100,8.48,0.81)
Cond Cooperation (δX ,α,β) 34743.7 (100,5.88,0.03) 31846.3 (4.73,3.3,0.28) 28008.3 (99.06,4.76,−0.12)
Altruism (δX ,α,β) 29473.8 (100,33.58,−0.8) 28683.2 (20.19,4.48,−0.7) 28008.3 (100,12.53,−0.54)
Gen Fairness Equilibrium (δX ,α,β) 29630.5 (4.64,−8.1,0.53) 28729.9 (4.11,−5.92,0.53) 28008.3 (34.26,−10.75,0.54)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 44424.9 (−,−,−) 42421.6 (−,−,−) 43117.8 (−,−,−)
True stage game g, l, free (δX ,−,−) 44022 (0.78,−,−) 42342 (0.89,−,−) 41036.3 (10.09,−,−)
True δ, inequity aversion (−,α,β) 31871.5 (−,2.15,0.93) 33302.6 (−,2,0.65) 33004.8 (−,100,100)
Inequity Aversion (δX ,α,β) 28095.3 (100,5.71,0.81) 28091.1 (74.82,16.36,0.79) 28508.4 (30.89,15.78,0.87)
Cond Cooperation (δX ,α,β) 35378.4 (100,3.53,−0.11) 32160.8 (3.85,2.04,0.12) 28501.6 (1,5.66,−0.3)
Altruism (δX ,α,β) 29162 (100,−50.45,5.08) 28915.4 (14.07,−17.8,4.89) 28505.3 (34.72,54.88,−0.3)
Gen Fairness Equilibrium (δX ,α,β) 34577.4 (5.58,11.59,0.17) 32527 (5.69,11.59,0.15) 28505.3 (23.52,100,−0.11)

Note: This table shows the estimates and BICs for the estimated models including benchmarks. In the rightmost column (“Fit to each treatment”) parameters are
estimated by treatment – the BICs are aggregated, the reported parameter estimates are averages. In the columns (“Fit to pooled data”) parameter sets are estimated
to be constant across all experiments with homogeneous variance and heterogeneous variance by treatment, respectively. The upper bound and lower bound BIC are
based on the same “Clairvoyance” and “Uniform Random” model in all three columns, with treatment specific strategies for the clairvoyance model, but the BICs
take into account the differences in parameter numbers of the interdependent-preferences models across the three columns to make them comparable.
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Second, between the four well-known models of interdependent preferences (de-
tailed in the Appendix A.3), there is a clear ranking when applied to the range of ex-
periments we re-analyze here. Whatever assumption we impose on the belief model,
capturing interdependence by inequity aversion fits substantially and significantly bet-
ter than capturing interdependence by any other model. That is, we observe very ro-
bust rankings of models with respect to both dimensions, beliefs and preferences. We
attribute this to the comprehensive data set re-analyzed here, which reduces the impact
of single observations and allows the law of large numbers to take effect.

Result 4 (Question 3 – part 2). Subjects’ behavior is best described by false consen-
sus beliefs (i.e. symmetric equilibrium) and inequity aversion. Indeed, false consen-
sus fits substantially better than other belief models for all models of interdependent
preferences, and inequity aversion equally fits substantially better than other interde-
pendence models for all belief models.

Next, let us look at the extent of misperception of δ. In total, we consider four
models of interdependent preferences, three models of belief formation, and three
specifications of treatment dependence of parameters. Between these 36 = 4× 3× 3
sets of estimates, we obtain 35 times an estimate indicating x > 1, i.e. δx < δ, and
in particular, this is true for the identified specifications where subjects either hold
false consensus beliefs or exhibit inequity aversion. Indeed, when we allow subjects
to both hold false consensus beliefs and exhibit inequity aversion, and in many other
cases, we estimate the upper bound x = 100, implying δx ≈ 0. Thus, subjects are
clearly best described by limited foresight, similar to (but much more extreme than)
the chess players referenced above: Given δx ≈ 0, subjects in the repeated PD do
not seem to look beyond the current round. They capture the expected payoffs from
continuation play by the values they associate with each of the four possible outcomes
(cc,dc,cd,dd) of play in the current round, and these values relate to the stage game
payoffs via inequity aversion.

Result 5 (Question 3 – part 3). Subjects are estimated to not look ahead beyond the
present round, and the state values they associate with the four possible outcomes of
play in the present round relate to the stage game payoffs via inequity aversion.

So, which types of games are induced by the state values that the subjects per-
ceive? The answer depends on the stage game payoffs in the respective treatments,
but to give some sense, let us look at two well-known examples.

c d

c 2,2 0,3

d 3,0 1,1

⇝
α=0.82,β=0.14

c d

c 2,2 −0.42,0.54

d 0.54,−0.42 1,1

c d

c 3,3 0,4

d 4,0 1,1

⇝
α=0.82,β=0.14

c d

c 3,3 −0.56,0.72

d 0.72,−0.56 1,1
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It is easy to verify that for a wide range of stage game payoffs, inequity aversion
with the estimated parameters (0.82,0.14) induces a coordination game. Formally, a
coordination game is obtained if g<α∗(1+g+ l), and using α= 0.82, this holds true
whenever g ≤ 4, which includes all of the experimental games we analyze. That is, in
terms of the continuation payoffs, subjects generally seem to perceive the repeated PD
as a coordination game. Being a coordination game, there exist three Nash equilib-
ria – the defective equilibrium (d,d), the cooperative equilibrium (c,c), and a mixed
equilibrium corresponding to Pr(c) = 0.49 in the upper game and to Pr(c) = 0.41 in
the lower game. So, how does the econometric model align subjects’ behavior with
play this coordination game? After round 1, subjects play the “Schelling points” of
the coordination game (Schelling, 1960), i.e. the focal point given by the previous
round’s choices, and they correspondingly play the cooperative, defective or mixed
equilibrium after cc, dd, and cd/dc, respectively. In round 1, there is no such fo-
cal point, and subjects focus on either the cooperative, or the mixed, or the defective
equilibrium, depending on subjective beliefs and yielding the three subject types ob-
served above (strong cooperators, cautious cooperators, and defectors, respectively).
As demonstrated, the type shares (i.e. the subjective beliefs) depend in a clear-cut way
on the game parameters, and as we also saw by the significance of the type distinction,
at the subject level the focus is robust. To clarify, if it were not robust at the subject
level, then the distinction of say cautiously and strongly cooperative subjects would
not have been found to be significant.

1.6 Conclusion

We summarize our main results as follows.

Re-analyzing 12 experiments, we robustly identify three different types of sub-
jects: defectors, playing a strategy close to AD, and cautious and strong cooperators
who play semi-grim strategies that differ in their first-round cooperation probability.
The strategies are largely independent of treatment parameters but the shares of sub-
jects picking either of the three strategies depend strikingly on the continuation prob-
ability δ in relation to the BOS-threshold δ∗ (Blonski et al., 2011). Following rounds
where at least one player cooperated, subjects cooperate systematically even in su-
pergames where Grim is not a subgame-perfect equilibrium, which is rationalizable
after allowing for interdependent preferences. Testing different belief and interdepen-
dent preference models in a structural analysis, we find that the observed behavior can
be explained by subjects holding false-consensus beliefs, and having limited foresight
as well as inequity-averse preferences.

Specifically, subjects are estimated to play each round of the repeated PD based
on subjective valuations of the states that will result from the current round’s choices.
These state values relate to the original stage game payoffs in a manner compatible
with inequity aversion and induce coordination games for the experimental games
we consider. The defectors play according to the defective equilibrium in round 1
and thereafter. Some of the cooperating subjects systematically play according to the
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cooperative equilibrium in round 1 and are identified as strong cooperators, while the
others systematically playing according to the mixed equilibrium and are identified
as cautious cooperators. This focus in round 1 is persistent at the subject level. In
the subsequent rounds, both types of cooperative subjects play the Schelling points,
i.e. according to the cooperative equilibrium after (c,c), according to the defective
equilibrium after (d,d), and according to the mixed equilibrium after (c,d)/(d,c).

This description of behavior in the repeated PD is the result of a flexible struc-
tural analysis of 12 experiments, it closely relates to a wide range of previous results
in behavioral economics, and it fits behavior very well also quantitatively (see Figure
1.1). Using merely four parameters to explain 65.910 and 79.892 observations of in-
experienced and experienced subjects (respectively), it captures 89% of the variance
in behavior of inexperienced subjects and 93% of behavior of experienced subjects
from 32 treatments. The results also connect with key results in several large strands
of the literature. False consensus is a central concept in psychology (Ross et al., 1977),
the idea that the actions in the previous round serve as focal point for the actions in
the present round is (informally) predicted by the focal point theory (Schelling, 1960),
limited foresight and state recognition/evaluation are central ideas in games with in-
definite time-horizon in computer science (Levy and Newborn, 1982), in economics
(Jehiel, 2001; Kübler and Weizsäcker, 2004), and even for grand-master chess players
(Gobet and Simon, 1996), and inequity aversion (Fehr and Schmidt, 1999) is a cen-
tral concept of interdependent preferences. Further, we can rule out many potential
confounds related to overfitting when a model with four parameters explains 93% of
variance from close to 80.000 observations that were taken in a wide range of condi-
tions.

The observations that subjects assign values to future states and that these state
values closely relate to stage game payoffs in a manner compatible with inequity aver-
sion are very encouraging for future work, and perhaps most importantly, they rep-
resent a first behavioral foundation of play in repeated games—i.e. a formally closed
explanation of behavior that enables predictions for all repeated games. Experimen-
tal work on repeated games other than the repeated PD is needed to evaluate these
predictions, but the observation that closed behavioral models, and structural analyses
such as those known from static games, are possible also for repeated games demon-
strate that it is feasible and important to move beyond strategy estimation in attempts
towards understanding behavior. In addition, our results raise a number of novel and
interesting questions with respect to analyses of the repeated PD. We considered in-
equity aversion mainly because it is a well-established model of interdependent pref-
erences used to explain cooperative behavior in prior work. Thinking of state values,
should we not also include the true discount factor δ as a relevant factor? Is it a co-
incidence that the recurring semi-grim strategies are specific instances of belief-free
equilibria (Ely et al., 2005)? Is their apparent invariance after round 1 not reminis-
cent also of analogical reasoning (Samuelson, 2001)? Over time, behavior in round
1 seems to somewhat change as subjects gain experience (Fudenberg and Karreskog,
2020)—though the changes cancel out across treatments (see Table 1.2)—does the
“precision” λ change, do beliefs change, or do preferences change? Following the
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approach towards structurally analyzing behavior in repeated games developed above,
it will be possible to ask and answer these and many more such questions in exciting
future work.



Chapter 2

Training in Late Careers –
a Structural Approach

2.1 Introduction

In view of aging populations, pay-as-you-go public pension systems face severe chal-
lenges: Decreasing numbers in younger generations and increasing life expectancy are
threatening the system. In response many OECD countries have reformed their retire-
ment policies, for example, they have raised the normal retirement age to encourage
longer working lives (e.g. Blundell et al., 2016b; Staubli and Zweimüller, 2013).

Yet, older employees’ labor market chances are worse than those of younger em-
ployees (Daniel and Heywood, 2007; Göbel and Zwick, 2012), which is one of the
main reasons why increases in the statutory retirement age do not translate into a one-
to-one extension of the working life, even if financial incentives for staying employed
are high. Lack of employment is especially prevalent and problematic among the less-
educated (see, for example, Blundell et al., 2016b; Börsch-Supan and Ferrari, 2017).

Therefore, it is crucial to understand the labor market outcomes of less-educated
employees in their late careers and to investigate which instruments can foster em-
ployment. One instrument often discussed in this context is training (see, for example,
Sanders et al., 2011). It is meant to keep employees’ skills up to date so they meet the
demands of today’s tasks on the labor market, such that their productivity improves.
Consequently, it increases the firms’ incentives to keep them employed and preserve
or even raise their wages (e.g. Picchio and Van Ours, 2013; Zwick, 2011; Bellmann
et al., 2013). Many countries use training in their active labor market policy portfolio
(see, for example, Kluve, 2010). A study by Gohl et al. (2020) supports the relevance
of this instrument in the context of aging populations as it finds positive effects of an
increase in statutory retirement age on the prevalence of training.

However, to date, it has not yet been resolved whether policy-makers should in-
crease training supply or incentivize individual training take-up to foster overall train-
ing participation. Moreover, it is not clear how this increase in training participation
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would affect the employment outcomes of less-educated employees in their late ca-
reers.

In this paper, I use a structural dynamic discrete-choice model to answer this
question: I investigate the role of on-the-job training for the employment outcomes of
less-educated employees in their late careers and evaluate potential channels for policy
interventions. First, I explicitly model the cost-benefit trade-offs that these individu-
als face when deciding on whether to invest in their human capital, by participating in
training, or not. Second, in contrast to other studies, I use a data set that enables me
to identify different channels of frictions related to training participation: The data of
the German National Education Panel Study (NEPS) provides information about the
availability of firm-sponsored training. Thus, I can separate non-participation due to
the lack of availability of training from non-participation due to the individual cost-
benefit trade-offs. This allows me to quantify first, the benefits of training for the
employee, and, second, to show in counterfactual simulations how different types of
policy interventions affect the employee’s employment prospects. Should policy in-
terventions target the training supply at the firm side or the training take-up incentives
of individuals?

My model focuses on less-educated male employees aged above 50. Each period
they decide whether they want to continue working and whether they want to partic-
ipate in training, conditional on their available choice options: That is, the employer
may not offer training, such that the employee cannot choose training, or the employee
may lose his job in which case he automatically becomes unemployed. Employees de-
cide on whether to invest in training by trading off the benefits of training with respect
to future employment prospects, wages, and retirement benefits against instantaneous
utility costs of training. I estimate the model parameters reflecting the utility costs and
the benefits of training and employment with the maximum-likelihood method.

The estimated parameters determining the training choices and labor market out-
comes of the men in my sample are in line with the literature: I find very small and
insignificant effects of training on wages, and a positive effect of training on employ-
ment prospects. Training further decreases the estimated disutility of working. On the
other hand, training participation creates significant utility costs.

In my counterfactual simulations I show that a policy intervention that fosters the
availability of training in firms would not be effective to increase the employment rates
of less-educated employees near retirement: If training was available for everyone, the
training participation would increase by 30% but the employment rate near retirement
would only increase by 0.5%.

In contrast, a policy intervention that seeks to reduce the individual utility costs
of training has the potential to positively impact employment near retirement. Under
a full compensation of the individual utility costs of training, the training participa-
tion would quintuple to 50% and the employment rate in the year before retirement
could be increased by almost 5%. However, training in its current form is not able
to fully counterbalance the decreasing employment rates of less-educated employees
near retirement.
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This paper is related to the literature in various ways: There is a number of
reduced-form studies discussing the effects of training on productivity, wages, and
employment, indicating the importance of this topic. See Leuven (2005) for a re-
view of the theoretical literature. The overall evidence of empirical studies on further
training is mixed.1 Papers investigating effects of training on wages mostly find in-
significant or very small effects: Pischke (2001) investigates the link between training
and subsequent wage growth using German SOEP data and only finds insignificant
positive estimates. Conti (2005) does not find positive wage effects using Italian panel
data. Jürges and Schneider (2004) use GSOEP data to investigate effects of on-the-job
training on wages with different approaches and find insignificant effects. Bassanini
(2006) only finds positive effects on wages for high-educated and young employees
using European Community Householdpanel (ECHP) data. Fouarge et al. (2013) ar-
gue that wage returns to on-the-job training are positive and do not significantly differ
by education level using Dutch data but admit selection problems. Finally, Görlitz
(2011) finds insignificant short-term impact of on-the-job training on wages in Ger-
many, and Ehlert (2017) only finds significantly positive short-run effects on wages for
employer financed mandatory training using NEPS data. Other papers have looked at
firm level productivity (Göbel and Zwick, 2013; Zwick, 2002) and found mixed re-
sults.2

Papers investigating the impact on employment find mostly positive effects: E.g.
Cairo and Cajner (2018) conclude that on-the-job training is the reason for different
volatility levels in employment (via job separations) between high- and low-educated
employees in the US. Picchio and Van Ours (2013) find that firm provided training
significantly increases future employment prospects, even for older workers. Like-
wise, Bassanini (2006) finds positive results on employment security. Further, a study
by Dauth (2020) finds positive effects of subsidized training on employment duration
of low-skilled workers in Germany.

In contrast to these reduced-form studies a structural set-up allows to explicitly
model endogeneities and trade-offs of individual decisions. Further, it allows for coun-
terfactual simulations to find out which policy interventions are effective in increasing
employment rates of less-educated employees near retirement: Interventions that tar-
get the provision of firm sponsored training or interventions that target the individual
participation incentives?

Existing structural papers on this matter either do not use training data to identify
their effects (Kuruscu, 2006; Fan et al., 2017), or focus on middle-aged women (Blun-
dell et al., 2019), who arguably face different trade-offs than male employees in their
late careers. None of these studies uses data that allows for adapting individual choice
options in the model to the availability training. Thus, this paper closes a gap in the
literature by providing a structural model that is explicitly designed to understand the
training decisions of less-educated male employees in their late careers and by using

1The largest part of the empirical training literature looks at vocational training, training in early
careers, or (public) training programs for unemployed.

2Göbel and Zwick (2013) find no effects, Zwick (2002) finds positive association of training inten-
sity with productivity.
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a data-set that provides information to distinguish whether non-participation in train-
ing is due to a lack of the provision of firm-sponsored training or due to individual
cost-benefit trade offs.

The remainder of this paper is structured as follows: Section 2.2 introduces the
data set and provides first descriptive evidence. Section 2.3 contains all details of the
structural model. Section 3.6 presents estimation results and the model fit. Section 2.5
shows the results of the counterfactual simulations, and section 3.7 concludes.

2.2 Data and descriptive evidence

2.2.1 Data

For the analysis, I use adult-cohort data from the National Education Panel Study
(NEPS) – see Blossfeld et al. (2011). This is a comprehensive survey data set focusing
on adult education and lifelong learning. The earliest observations in the data set were
collected in 20073, while the NEPS itself started in 2009 and has been repeated every
year since. The main advantage of this data set is that it is specifically designed for
collecting information about further education and training among adults and there-
fore contains very detailed information about it. It contains information about training
participation, type of training, attitudes with respect to work and training, and, impor-
tantly, the availability of training support by the company. The latter is the key feature
that allows me to separate individual training costs from the availability of training in
the firm in my model. For my analysis, I transformed the data into an annual panel
format.4

In my analysis I will focus on male employees in their late careers with up-to-
intermediate education, i.e. those who are aged above 50 and who do not have com-
pleted high-school but may have completed vocational training. I call them “low” or
“less” educated as abbreviation.5 In line with the findings of the previous literature
(see, for example, Cairo and Cajner, 2018) the less-educated employees in my sam-
ple have lower employment rates than high-educated employees.6 Figure 2.1 shows
the employment rate of college educated and less-educated (no high-school diploma)
male employees. It shows significantly lower employment rates after age 60 for less
educated men.

3The initial survey was called ALWA (Arbeiten und Lernen im Wandel (Working and Learning in a
Changing World) run by the Institute for Employment Research (IAB))

4The NEPS consists of several data sets with different formats: Some as spell data, some as panel
data, which can be merged in several ways depending on data requirements. Details on the data pro-
cessing are available upon request.

5This classification is based on the education classification by Blundell et al. (2019) who use the
three groups – up-to-intermediate education, high-school degree, and college degree.

6Considering only men aged 50-64 who are in dependent employment when entering the sample,
the group with up-to-intermediate education is largest with 51% of the observations, college educated
are 34%, and the group of men with high-school degree but no college education is smallest with only
15%.
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Figure 2.1: Employment rate by age and education

Source: NEPS; own calculations based on estimation sample. For male employees
only. Low educated denotes people with no high-school diploma, high-educated
denotes people with college degree.

Furthermore, Figure 2.1 shows that, while most college-educated men in my sam-
ple leave the labor market at age 65, a large proportion of the less educated group
already leaves the labor market at age 63. From this age, the German public pension
system allows very long-term insured (those who have contributed for more than 45
years) to retire early without deductions.7 People whose health status does not allow
them to continue working may retire before age 63. To avoid confounding from this
type of retirement and differing attitudes with respect to work of these people, I drop
all those employees who state bad health status before age 63.8 I further drop all
remaining observations indicating retirement before age 63.9

Training data The most prevalent form of training among older employees in Ger-
many is non-formal on-the-job training (Ehlert, 2017; Kruppe and Trepesch, 2017),
i.e. training conducted while the individual is being employed and receives a regular

7For long-term insured (at least 35 years) it is allowed to retire with deductions from that age. From
the year of birth 1953 onwards, the age limit for this deduction-free pension will gradually increase.
For all those born in 1964 or later, the age limit is 65 years (Deutsche Rentenversicherung, 2020). Also
for people born before 1953 it was possible to retire early after unemployment (with deductions).

8Possible answers are "very good", "good", "intermediate", "bad", "very bad". I drop all individuals
who stated at least once "bad" or "very bad".

9After removing people with bad health status, there is only few (20) observations left who still
retire before age 63. For those people early retirement could be due to partial retirement plans or
retirement after unemployment.
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salary without the awarding of any official certificate. The NEPS provides records of
participation in such non-formal training for all employed individuals in every survey
wave (for details see Kruppe and Trepesch, 2017). It also contains information about
the availability of financing for such training.

In summary, my sample includes only men aged 50-63 without a high-school
diploma; who are in dependent full-time employment when they enter the sample; who
have at least two observations, no missing data for wages and training participation;
and who state at least intermediate health status before age 63.

Note that this study investigates the role of on-the-job training, i.e. training of
employed people, in future employment prospects. Less-educated men who are still
in employment at age 50 are not representative of all less-educated people, who often
suffer from unemployment at multiple points of their career. The reintegration of less-
educated unemployed into the labor force, e.g. with public sector sponsored training
programs, is not the subject of this study.

2.2.2 Descriptives

Training offers and training participation

One of the requirements for an employee to participate in on-the-job training is the
employer’s support for such activities. A key feature of the NEPS is that it provides
information about the availability of training support in the employee’s firm as stated
by the survey participant: Does the firm provide company agreements, further educa-
tion planning, financing for training, or a responsible person? Throughout my analysis
I use the availability of firm-sided funding for training to proxy whether the employee
has the possibility to participate in on-the-job training or not – denoted as “training
offers” (TO) in the following.

I use this indicator for three reasons: First, it shows to be a necessary condition
for training participation.10 Second, stated training offers based on this indicator are
unlikely to be determined by the employees’ demand for training: Many who state that
funding is available still do not train. Third, there is no difference between employees
with and employees without training offers in terms of beliefs about the usefulness
of training and in terms of self stated laziness.11 Further, there is no indication that
people with better employment prospects select into firms which offer training: The
employment rate is not higher for individuals who have (or used to have) training
offers, see Figure B.2. If anything it is lower for people with training offers near
retirement.

To indicate training participation I will use a binary variable following Blundell
et al. (2019). In my case an employee is denoted as having participated in training if
he did at least 20 hours of training in the past 12 months. Figure 2.2 shows the training
participation and training-offer rate by age.

10If funding is not available 96% don’t do any training.
11See appendix Figure B.1.



2.2. DATA AND DESCRIPTIVE EVIDENCE 55

Figure 2.2: Training participation and training offer rate

Notes: Whiskers depict 95% confidence intervals. Source: NEPS; own calculations based on esti-
mation sample.

The training-offer rate is, at close to 80%, much higher than the training-partic-
ipation rate, at around 10%. While the training-offer rate remains constant with age,
the training-participation rate decreases. The decreasing training-participation rate
reflects the lower returns compared to the costs of training for higher ages. Yet, it does
not decrease to zero.

Training and individual characteristics

In this subsection I examine differences in characteristics between training partici-
pants and non-participants as well as employees with and without training offers to
check whether people with specific employment-related characteristics select into ei-
ther group.

The NEPS includes questions about people’s career ambitions and attitudes in
some waves. Hence, I can check whether the responses differ between training partic-
ipants and non-participants in my sample.12 Table 2.1 shows the average response by
training participation. The career ambitions of training participants are very similar to
those of non-participants. The ambitions for status maintenance, for career advance-
ment, to perform tasks better, and the general importance of the career are slightly
higher for training participants. However, the importance of job security, for keeping
up with colleagues, and self stated laziness are the same between the two groups. Note
that both, training participation and ambitions may evolve with age. Therefore, I pro-
vide figures with ambitions and attitudes broken down by age in the appendix (Figure
B.3 and B.5). They do not show distinct patterns in training participants’ ambitions.13

12Possible answers for ambitions range from 1 “very important” to 5 “very unimportant” and for self
stated laziness from 1 “not lazy at all” to 5 “very lazy”.

13When looking at the ambitions at a single age 55 there are no significant differences for most
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Table 2.1: Individual characteristics by training participation

No training Training

Ambitions

Importance of status maintenance 1.784 1.709
(1.123) (1.077)

Importance career advancement 3.420 3.247
(1.054) (1.109)

Importance perform tasks better 1.944 1.814
(0.917) (0.733)

Importance job security 2.054 2.258
(1.301) ( 1.422)

Importance of keeping up 2.097 2.064
with colleges (1.089) (1.040)

Attitudes
Lazy 2.212 2.212

(1.102) (1.147)
Importance of career 2.765 2.680

(1.046) (1.049)
Wages
Monthly gross-wage 3568.4 4040.5

(1473.7) (1522.0)
Monthly net-wage 2391.1 2657.9

(991.1) (950.5)

Mean values, standard deviations in parentheses. Ambitions: 1 = very
important, 5= very unimportant. Laziness: 1= not lazy at all, 5= very lazy.
For a brake down by age see Figures B.3 and B.5 . Differences in wages are
not significant when controlling for wage-level endowments, as I will do in
my model. Source: NEPS data, low educated male employees in full time
employment only.

It behaves similarly with training offers: the groups of people with and without train-
ing offers are very similar in terms of their ambitions (Table B.1 and Figures B.4 and
B.5). Hence, selection into training participation or firms with training offers based
on ambitions and attitudes is not a problem in my sample of less-educated male em-
ployees in their late careers.

Stated gross- and net-wages of training participants are significantly higher com-
pared to non-participants.14 Thus, it will be important to control for wage-levels later

ambitions.
14In the NEPS all participants are asked about their gross- and net-wages last month. If they do not

know the exact number they are asked to classify themselves into an income category. First with a rough
grid with 3 categories and then with a finer grid with 9 categories, i.e. 3 finer categories depending on
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in the analysis.

Training and employment

Figure 2.3: Persistence in employment by human capital gained from training

Source: NEPS; own calculations bases on estimation sample. Whiskers
represent 95% confidence intervals. High training is defined as having
at least 0.9 units of discounted human capital of training, i.e having par-
ticipated at least once in 20 hours of training within the last two years
or having participated more than once more than two years ago would
suffice. For a formal definition of human capital of training see section
2.3.3.

In order to get first evidence on whether on-the-job training participation corre-
lates with employment in my data, I look at the difference in employment persistence
between training participants and non-participants. For this I define each person’s
human capital of training, that is, the human capital gained from training, as the dis-
counted sum of past training participation.15 Figure 2.3 shows the employment rate
conditional on being employed in the previous year for the group of employees who
have a human capital of training of at least 0.9, that is, for example, who participated
in at least 20 hours of training per year within the last 2 years since age 50, and those
who did not. For most ages, the persistence in employment is slightly higher for peo-
ple with training, indicating that training might affect employment security. But the
mean differences are not significant.

the previous response. The income variable I use takes the most precise available value. In case of
categories the midpoint of the range is used.

15See section 2.3.3 for a formal definition of the human capital of training.
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Table 2.2 shows simple linear-probability model regressions of employment sta-
tus (columns 1 and 2) and wage growth (columns 3 and 4) on the human capital of
training, conditional on previous period employment, while controlling for wage lev-
els (and training offers). I find significantly positive coefficients for the human cap-
ital of training on employment persistence. This remains true when controlling for
training offers (columns 1 and 2). Regressing wage-growth on the human capital of
training yields insignificant coefficients in both specifications with and without train-
ing offer controls (columns 3 and 4). These outcomes are in line with the findings of
the literature.

Table 2.2: Simple regression

(1) (2) (3) (4)
Employment Employment Wage growth Wage growth

Human capital of training 0.00568∗ 0.00585∗ 0.000941 0.000494
(0.00241) (0.00245) (0.00328) (0.00334)

Age -0.00366∗∗∗ -0.00366∗∗∗ -0.00147 -0.00146
(0.000557) (0.000557) (0.000767) (0.000767)

Wage level -0.00280 -0.00268 -0.00489 -0.00521
(0.00194) (0.00196) (0.00266) (0.00270)

Training offer -0.00166 0.00438
(0.00437) (0.00599)

Constant 1.197∗∗∗ 1.199∗∗∗ 0.119∗∗ 0.116∗∗

(0.0315) (0.0317) (0.0433) (0.0435)
R2 0.0145 0.0145 0.00219 0.00237
N 3050 3050 2975 2975
Notes: Linear probability model regression. Wage level is defined as initial wage divided by 1000.
Age relative to age 50. Standard errors in parentheses. Significance codes: ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

This is first evidence to indicate that the human capital of training may indeed
play a role in less-educated men’s employment prospects in their late careers. How-
ever, this descriptive evidence is unable to reproduce the dynamic trade-offs that in-
dividuals face when considering training participation. The employee’s decision to
work or participate in training is based on a dynamic cost-benefit trade-off. There-
fore, a reduced form model can not identify the impacts of training on the share of
job-separations and employment prospects of employees. Further, it could not iden-
tify the individual costs of training, which are necessary for counterfactual analyses
to evaluate potential policy interventions. Only then I can investigate whether pol-
icy interventions should target the supply of training or the individual participation
incentives.

In the next section I will turn to the design of the structural model, which allows
me to evaluate these interventions later on.
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2.3 Model

The previous section has shown that less-educated men in my sample indeed have
lower employment rates close to retirement and that on-the-job training exhibits to be
positively correlated with employment. I will now turn to the structural model, which
explicitly models the trade-offs that individuals face when making choices about labor
market participation and human capital investments.

2.3.1 Outline of the model

Employed men enter the model at age 50. In each period, they make a decision about
whether to continue working and whether to invest in training, depending on their
choice set. The choice set is determined by their employer’s training offers (TO)
and by the job separation rate (JS). Both, training and working are associated with a
disutility. On the other hand, training and working can have positive effects on wages
and future employment prospects. Therefore, they represent investments in monetary
returns from the labor market.

Figure 2.4: Timeline from choice to choice

Notes: This is a stylized sketch of the model to illustrate the timing of events during working life of
the individuals. It does not represent all interdependences between variables. For details on functional
forms and dependent variables see section 2.3.2 ff. Choice sets depend on realizations of job
separations (JS) and training offers (TO). Abbreviations: Choices: work and training (ℓt); work (ℓ);
unemployment (u).

During working life the individual has up to three different choice options avail-
able (unemployment u, working ℓ, working and training ℓt). Figure 2.4 shows a styl-
ized sketch of the timing of the events in my model for the case where an individual
has all three choices available in t − 1: After the individual has made his decision
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(dt ∈ {ℓt, ℓ,u}), he receives his reward and the human capital (HC) of training is ad-
justed according to the decision. If the person chooses unemployment, he will be
unemployed for the rest of his working life until retirement. If the person has chosen
to work, realizations of the job separations (JS) and training offers (TO) occur in the
next period. Depending on these realizations the individual faces one of the three pos-
sible choice sets, represented by the boxes, and again makes a decision. This choice
process continues until a person becomes unemployed or retires at age 63. The util-
ity and the job-separation rate in the model also depend on human capital investment
decisions that the individual has made previously (details follow below).

2.3.2 The individual’s optimization problem

At every age t the individual maximizes the following optimization problem. I drop
individual subscripts for convenience.

maxd∈D Et

T̄

∑
s=t

δ
s−tU(Rs,ds), (2.1)

with choice set Dt ⊆ {u, ℓ, ℓt} (u unemployment, ℓ work, ℓt work and training)
during working life and Dt = {r} (retirement) from age t ≥ 6316, and last period
T̄ = 85.17 Following Low et al. (2010) and Haan and Prowse (2014) I use a utility
function that allows me to relate costs of work and training directly to the utility of
consumption, which is set equal to rewards Rs in my model18 (the rewards are defined
in section 2.3.4).

U(Rs,ds)=


α

1−η
[Rs(ℓt)(1−ζ−ζage ∗age− τ∗ train−ν)]1−η + εt if ds = ℓt

α

1−η
[Rs(ℓ)(1−ζ−ζage ∗age− τ∗ train)]1−η + εt if ds = ℓ

α

1−η
[Rs(ds)]

1−η + εt if ds ∈ {r,u}
(2.2)

The parameter ν is the disutility of training. The disutility of labor ζ is allowed to

16Most people claim benefits as soon as they become available despite actuarial incentives (Gustman
and Steinmeier, 2005). Also see Figure 2.1. I choose a common retirement age at age 63 for all
employees to avoid inconsistencies with eligibility criteria that may arise in survey data (employment
histories are based on retrospective surveys in NEPS).

17Age 85 roughly corresponds to the life-expectancy of someone who is today 62 years old. The
life-expectancy varies by age but the difference between age 50 and 60 is small. It increases only by
0.7 year. Thus I generously use a horizon of 85 for everyone. As individuals only make choices up to
age 62 life-expectancies for years beyond that age are irrelevant.

18Similar to the paper by Keane and Wolpin (1997) where individuals optimize over rewards instead
of consumption. In contrast to Keane and Wolpin (1997) where individuals maximize their expected
present value of their lifetime rewards, I assume that individuals maximize over the utilities of these
rewards, allowing for decreasing marginal valuation of additional money.
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differ by age ζage and can depend on the human capital of training τ.19 The disutility
of labor can vary by age as leisure might become more attractive with deteriorating
physical capacities (see for example Gustman and Steinmeier, 2005). Training could
increase the enjoyableness of work as employees are/feel more proficient. The cur-
vature of the CRRA utility function is determined by η, the risk aversion parameter.
Individuals face random utility perturbations, represented by εt , which are extreme
value type-1 distributed. The parameter α determines the importance of the prefer-
ences regarding earnings and effort relative to the random utility perturbations. Given
that it is difficult to identify the risk aversion parameter,20 I set the parameter η at a
fixed level of 0.7, which is within the range Chetty (2006) finds.21 The discount rate is
set at 0.98 following Blundell et al. (2019) and Haan et al. (2018); all other parameters
will be estimated.22

Utility costs of work and training The disutility parameters, which are defined as
relative withdrawal from the reward,23 have a rather broad interpretation. For example,
disutility of work can also include (negatively) the joy of work or a benefit of not being
unemployed. Likewise, the parameter ν reflects the sum of all sorts of immediate
utility changes that are associated with training – this can be e.g. effort costs, monetary
costs, or other frictions.

The choice set Dt is determined by the individual’s age, exogenous training offers
(TO) provided in the data (see section 2.2.1), and involuntary job separations that
occur with probability JS (see section 2.3.5 for details). During working life the choice
set can consist of up to three choice options Dt = {u, ℓ, ℓt} if the individual receives a
training offer and does not face a job separation (TO=1, JS=0). If he does not receive
a training offer he can only choose between unemployment and work Dt = {u, ℓ}
(TO=0, JS=0), and if he loses his job (JS=1) he has no choice Dt = {u} and becomes
unemployed. Once employees become unemployed (due to choice or separations),
they remain unemployed until retirement. This assumption is reasonable, as very few
low-educated individuals return to employment once they become unemployed after

19See Section 2.3.3 for a definition of human capital of training.
20As it is the case in many structural models even in papers, which attempt to estimate this parameter.
21Also Wakker (2008) implies that this is a reasonable assumption. Note that individuals’ instan-

taneous utility is created by the income not consumption – individuals may have higher risk aversion
with respect to the latter. For higher values of η, employees would care too little about disutilities of
work and training.

22As the household context is arguably less important for employment decisions of this subsample
which entered the labor market in the 1970s/1980s I will model the decisions independent of the pres-
ence of a partner or children. This further allows me to circumvent the problem that the NEPS does not
provide income information of other household members. As I use only men aged above 50, who are
relevant for my research question, I do not need to make strong assumptions about the equivalence of
training and working conditions across decades, that are necessary in life-cycle models (e.g. Blundell
et al., 2019).

23This implies larger withdrawals from the reward for higher wages. Yet, this effect is diminished in
the respective utility due to the curvature of the utility function. For η = 1 (i.e. log-utility) the utility
loss would be equivalent for different income (reward) levels. For η < 1 the utility loss would be higher
for higher reward levels, for η > 1 it would be lower.
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age 50.24 It further faciliates identification. At age 63, all individuals are assumed to
retire and remain in retirement until the end of their life Dt = {r} for t ≥ 63. That is,
individuals will not have any more choices to make once they become unemployed or
retired.

2.3.3 Human capital

Training When individuals enter the model their human capital of training (train)
is normalized to 0. Any human capital of experience and training that was acquired
before is assumed to be reflected in the endowments of the wage-level wt0 and in the
fact that they are in employment when entering the model. In the subsequent periods
each time when the employee chooses to train (trt = 1) this adds to his human capital
account but the human capital of training decays over time at the rate δhc := 0.93.25

traint =
t

∑
s=t0

δ
t−s
hc I(trt = 1) (2.3)

The average level of human capital of training acquired since age 50 lies well below
1. It increases up to age 58 to an average level of 0.63 and then decreases again up
until retirement.26

Training offers The availability of training, that is financing for on-the-job training
by the employer (as observed in the data), is assumed to be exogenous.27 For future
time periods individuals expect their training offer to be equivalent to their current
training offer: EtTOt+1 = EtTOt+2 = TOt . Training offers are observed before the
choice is made.

2.3.4 Rewards

When individuals are employed, their rewards equal their annual net wage Rt(ℓ) =
Rt(ℓt) = wt , that is they receive the same salary when engaging in training.28 The
NEPS provides both stated gross and net wages. I use net wages, because these are

24Less than 8% of the low educated between 50 and 62 return to work once getting unemployed in
my data, Etgeton (see also 2018).

25This corresponds the average of the human capital depreciation rates in Blundell et al. (2019).
26See Figure B.6 for average level of train by age.
27Selection of older workers into firms with training offers at this age is unlikely. Section 2.2.2

confirmes that attitudes and ambitions of employees with and without training offers are similar.
28This model assumption is purposely different from typical human capital investment models, e.g.

as applied in Fan et al. (2017), as in the context of on-the-job training of German employees in their
late careers, where the company mostly finances and often even provides the training (Pischke, 2001;
Görlitz, 2011), it would be an unreasonable assumption to model training costs as forgone earnings.
Instead, potential training costs, monetary or non-monetary, are captured by the flexible parameter ν in
the utility function. This way of modeling training costs is similar to Blundell et al. (2019).
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closer to consumption and hence more useful for representing the individual’s utility
returns from work. I do not include savings in the model as savings are arguably
of minor relevance for less-educated employees’ late career choices due to the fact
that savings would typically be close to zero for this group (see, for example, Börsch-
Supan et al., 2015). When unemployed, the reward equals some unemployment benefit
Rt(u) = UBt and, when retired, the reward equals the retirement benefit Rt(r) = RB.
Details on the values of these rewards are provided below.

Wages wt

As I include only individuals who are employed when entering the sample, I observe
an initial wage wt0 for everyone. This wage reflects the market valuation of the em-
ployee’s work when entering the model, including the human capital levels at this
time and the general ambitions of the respective employee. In the subsequent periods,
the development of this wage is assumed to depend on a general wage trend, human
capital of training, and age.29 Wages are assumed to emerge in the following way:

wt = wt0 ∗ (1+α0 +α1(traint)+α2aget)
t−t0 (2.4)

with the age relative to age 50, human capital of training train.30 This definition allows
wage level to decrease if the human capital of training decays. This assumption is in
line with much of the literature (see eg. Blundell et al. (2016a)) and is reasonable, as
the data reveals that a relevant share of the employees face negative wage growth at
times. I assume that wages are deterministic from the worker’s perspective. However,
from the researcher’s perspective they are not as I only observe wages that potentially
include measurement error.

Unemployment benefit UBt

I set the unemployment benefits to 60% of the previous wage, which is in line with
the German rules.31 They are paid for up to two years for employees aged 50 or older.
After this period they receive means tested transfers and housing benefits. This is also
reflected in the reward function for unemployed people. The level of means tested
transfers plus housing benefits is set at EUR 959 for everyone.32

29The data does not indicate differences in relative wage growth across different wage levels for the
group of less-educated, hence I removed this as control to save parameters.

30Log wages are assumed to follow a normal distribution. Measurement error follows a normal
distribution with mean zero. Hence observed sample wages are assumed to be given by: Log(wt)+ εt
with εt ∼ N(0,σ2

ε).
31For individuals with dependent children 67%. I will use 60% for everyone.
32EUR 409 "ALGII"+550 housing benefit. As I don’t have precise information about individuals’

household context, savings, or housing costs an exact computation of means tested transfers is not
possible.
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Retirement benefit RB

In Germany, the retirement benefits depend on the time that an individual has con-
tributed to the system, i.e. employment years, and on the contribution level in these
years. More specifically, if the individual contributes less or more than the average
person in a year, then the contribution year is scaled down or up, corresponding to
the contribution level. The pension level is computed by adding up the scaled con-
tribution years and multiplying it with the current “Rentenwert” (retirement benefit
value) and penalties are deducted for early retirement (Deutsche Rentenversicherung,
2020). It turns out that for 45 contribution years, the gross retirement benefit amounts
to roughly 45% of the average gross wage and that a missing contribution year leads
to a deduction of roughly 1%. I reflect this in my model by considering the observed
wage level and using penalties for years of unemployment prior to retirement during
my observation period.33 Each retiree receives this annuity (RB) for the rest of his life.

2.3.5 Job separation rate

The probability of becoming unemployed (job separation rate JS) depends on the em-
ployee’s age, the human capital of training, and the initial wage level waget0

34 when
the individual entered the sample. The JS is assumed to follow a binomial-logit func-
tional form:35

JS(train,age,wage) = Λ(β0 +β1train+β2 age+β3waget0) (2.5)

The parameter vector β captures the impact of the state variables on the job sep-
arations and hence the choice set. That means, the realization of JS and the resulting
choice options that the individual has depend on his previous investments in human
capital of training. The individual observes the realization of JS before making his
decision.36

As I do not observe involuntary job-separations in the data, the relative magnitude
of job-separations compared to voluntary transitions into unemployment, due to the

33For the first two years of unemployment (ALG I) the contribution is reduced by 20%. As I do
not observe all wage levels in the employment history and only very rough information about actual
contribution years, I generously use the last wage level to calculate the retirement benefit and assume
that the individual was fully employed in all years prior to my observation period. Therefor I do not
account for the fact that the lower relative tax burden in retirement years improves the ratio with respect
net-wages and benefits compared to the gross values.

34waget0 is divided by 1000 in this equation to avoid very small parameters in estimation.
35Λ(.) = exp(.)/(1+ exp(.))
36The special set up in my model allows me to omit an experience variable. All employees who enter

my model are employed and once they become unemployed they will remain unemployed until they
are eligible for retirement. Any market valuation of experience that was gained prior to entering the
model will be reflected in wt0 and the fact that the person is still employed. Any return to experience
after entering the model is captured by the constant α0 for wages and β0 and β2 (negatively) for the job
separation rate.
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individual’s utility considerations, are determined by the functional form of my model.
Similarly, the functional form determines the way the effect of human capital of train-
ing on employment is split between the job-separation rate and the utility function.
However, the policy-relevant measure for my research question is the combination of
the job-separations and the voluntary transitions: the employment persistence and the
employment rate. The latter are identified with the data.37

2.3.6 Value functions

The resulting value functions of this dynamic-programming problem are defined as
follows:

The value function when choosing working and participating in on-the-job train-
ing:

V ℓt
t (sit ,θ) =U(Rs(ℓt), ℓt)

+δ

[
(1−Pr(JS = 1|si,t+1,θ))[

Pr(TO = 1|si,t+1)Emax{V u
t+1(si,t+1,θ),V ℓ

t+1(si,t+1,θ),V ℓt
t+1(si,t+1,θ)}

+(1−Pr(TO = 1|si,t+1))Emax{V u
t+1(si,t+1,θ),V ℓ

t+1(si,t+1,θ)}
]

+Pr(JS = 1|sit+1,θ)E{V u
t+1(si,t+1,θ)}

]
The value function when choosing working

V ℓ
t (sit ,θ) =U(Rs(ℓ), ℓ)

+δ

[
(1−Pr(JS = 1|si,t+1,θ))

[
Pr(TO = 1|sit)Emax{V u

t+1,V
ℓ

t+1,V
ℓt

t+1}

+(1−Pr(TO = 1|si,t+1))Emax{V u
t+1,V

ℓ
t+1}

]
+Pr(JS = 1|si,t+1,θ)E{V u

t+1}
]

and for unemployment

V u
t (sit ,θ) =U(Rs(u),u)+δE{V u

t+1(si,t+1,θ)}.

with parameters θ and the current state variables sit reflecting wage, the human
capital of training, age, and employment status. (V .

t+1 abbreviates V .
t+1(si,t+1,θ).)

V ℓ
t (sit ,θ) and V ℓt

t (sit ,θ) differ in the instantaneous utility and in the value of the state
variable “human capital of training” in t+1. The value function V u

t (sit ,θ) reflects that
the individual will not make any further decisions. The value function is solved via

37It would be interesting for further research to look more into the distinction between the effects
of training on the job-separation rate and the utility function beyond the functional form, especially to
validate the robustness of the reduction in the disutility of work due to training. This requires a data-set
containing both detailed information about training participation and involuntary job separations. For
a large enough data set also an exogenous shock to either channel would do.
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backward induction, starting at the terminal period T̄ , which corresponds to age 85.
See Appendix B.2 for details on the estimation.

Potential effect of training on employment

If training reduces the job separation rate, it has a first and a second order effect on
employment: First, job separations are reduced and hence the involuntary unemploy-
ment decreases. Second, voluntary unemployment becomes more costly relative to
employment when the probability of future involuntary job loss is reduced. Similarly,
if the effect of training on wages is positive, then voluntary unemployment becomes
more costly, as the individual would miss out on increased future wage growth.

2.4 Results and model fit

In this section I present the model-parameters estimated with the maximum-likelihood
estimation and provide information about the in-sample fit.

2.4.1 Estimation results

Table 2.3 shows the parameter estimates for the wage function, the job separation rate,
and the utility function, with standard errors in parentheses.

The results show a positive constant for the nominal wage growth rate of 2.1%.
Parameters of wage-growth function indicate that wage growth increases with human
capital of training and decreases with age on average but both coefficients are very
small and not significant. This is in line with the results from most of the previous
literature, which does not find significant effects of training on wages (see Section
2.1). The rate of job separations (JS) increases with age (significant at 10% level)
and also significantly with the initial wage level, but it decreases significantly with
training. Figure 2.5 shows the job-separation rate by age for an initial wage-level
of EUR 2500 by different levels of human capital of training. One can see that the
job-separation rate increases with age and consequently the largest percentage-point
decrease due to human capital of training can be achieved near the retirement age.
For example, at the age of 58, for an initial wage level of 2500 having one unit of
human capital of training compared to having 0 units of human capital of training
decreases the probability of job loss from 1.90% to 1.71%, i.e. by 0.19 percentage
points. For age 62 one unit of human capital of training reduces the job-separation
rate by 0.72 percentage points. The relative reduction is 10% for one unit of human
capital of training and about 19% for two units compared to 0 units. Yet, even for two
units of human capital of training, which lies far above the average of 0.42, training
cannot fully counteract the age related increase in employment loss. Small effects of
training on employment of older workers were also found by previous literature (see
e.g. Picchio and Van Ours, 2013). The average job separation rate lies within the range
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Table 2.3: Parameter estimates

Parameter Estimate Std. Err.

Wage function
α0 (Intercept) 0.02091 (0.00203)***
α1 (HC of training) 0.00015 (0.00011)
α2 ((Age-49)/10) -0.00031 (0.00226)

Employment risk (JS)
β0 (Intercept) -7.7561 (0.7361)***
β1 (HC of training) -0.1076 (0.0489)*
β2 (Age-49) 0.3067 (0.0801)***
β3 (waget0/1000) 0.2990 (0.09767)**

Utility function
ζ (Disutility of employment) 0.40533 (0.16780)*
ζage (Change in ζ by age ) 0.00993 (0.01198)
τ (Change in ζ by HC of training) -0.00695 (0.00265)**
ν (Disutility of training) 0.06370 (0.00828)***

Notes: Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. SD measurement error of
wages σε = 0.1379496 (SE 0.0003549). Utility scaling parameter α = 1.2034. N=3050.
Source: NEPS data, less-educated male employees only.

of the findings of previous literature (see Haan et al., 2017).38

The parameters of the utility function indicate that working is associated with a
dis-utility of 40% of the net-wages, which decreases slightly with human capital of
training. The age trend of the disutility is positive but not significant. The disutility
of training is 6.4% and significant.39 That is, individuals face positive costs when
participating in training despite the fact that their firm provides the financing and they
continue to receive their regular salary. These costs could include effort costs, general
taste, small time or monetary costs, or other frictions related to training participation.
Despite these positive costs it can still be worthwhile for individuals to participate
in training as it reduces the probability of becoming unemployed and it reduces the
disutility of work for future periods. Due to the fact that the training costs are relatively
low, some people still participate in training when they are near retirement and the
remaining working periods where training could pay off are limited.

38This indicates that the distinction between job separations and chosen unemployment via the func-
tional form of my model works sufficiently.

39This level of training costs is comparable to the paper by (Blundell et al., 2019) who fix the training
costs at 2 hours forgone wage, which would be 5% in a 40 hrs week.



68 CHAPTER 2. TRAINING IN LATE CAREERS

Figure 2.5: Job-separation rate by age and human capital of training

Notes: The black lines show the predicted job separation rate by age for individuals with no human
capital of training (solid line), with human capital of 1 (dashed line), and 2 (dotted line) for an initial
wage level of 2500 EUR. Source: NEPS; own calculations.

2.4.2 Goodness of fit

To evaluate the goodness of fit I compare the actual choices and wages in the data with
the choices and wages that the model would predict by age.40

Overall the model fits well. Average training participation (Figure 2.6) fits well
and deceases slightly with age, as it does in the original data. Also the average em-
ployment persistence, i.e. the probability to remain employed, by age fits well (Figure
2.7). It is very close to 1 in the early 50s and then first decreases slowly and then more
sharply when approaching retirement age.

Figure 2.8 displays the original density of wages in solid black and the simulated
in dashed green. The simulated wage density has a less pronounced spike around 2000
but nicely overlaps the original date. Figure 2.9 shows the mean and median wages
by age. The simulated mean and median are slightly higher but roughly fit the data.
The simulated median wage also reflects the decay close to retirement age as it can be
observed in the original data.

40For the simulated choices I replicate my sample 50 times to allow for different draws of random
utility perturbations and measurement error.
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Figure 2.6: Training rate by age original vs simulated

Notes: Training participation by age. Original values in solid line. Simulated values in dashed line.
Source: NEPS data, subsample. Own calculations.

Figure 2.7: Employment persistence by age original vs simulated

Notes: Share staying employed (employment persistence rate) by age. Original values in solid line.
Simulated values in dashed line. Source: NEPS data, subsample. Own calculations.
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Figure 2.8: Density of original wages and simulated wages

Notes: Density of monthly net-wages. Original values solid line, simulated wages in dashed line.
Source: NEPS data, subsample. Own calculations.

Figure 2.9: Wages by age simulated vs. original

Notes: Mean and median monthly net-wages. Original values in solid line (black: mean wage; grey:
median wage). Simulated values in dashed line. Source: NEPS data, subsample. Own calculations.
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2.5 Counterfactual simulations

In the previous sections I have quantified parameters that determine the training deci-
sion of the less-educated men in my sample. I showed that on the one hand individuals
have significant participation costs but on the other hand human capital of training has
a positive impact on the employment prospects. My data set has allowed me to sep-
arate individual costs of training from the availability of training offers, that is the
general availability of training funding in the firm. In this section I can now turn to the
question whether a policy intervention should target training supply or individual par-
ticipation incentives conditional on training supply, in order to increase employment
near retirement. I investigate these two channels separately: First, the training offers
(section 2.5.1) and second, the individual costs of training (section 2.5.2).

For the counterfactual simulations I randomly redraw 10,000 times from the sam-
ple of 51 year old in my data (less-educated male employees) and simulate their
choices and corresponding human capital and wage measures till retirement age.41

Afterwards, I calculate aggregate employment outcomes and compare the counterfac-
tual to the baseline model.

2.5.1 Increasing training offers

Scenario 1 An increase in training offers would enable more employees to choose
training. Hence it could increase the incidence of training, and its beneficial effects
on employment outcomes. Therefore, a policy intervention, like a subsidy of training
costs for firms, might improve employment prospects of less-educated men in their
late careers. I investigate the impact of an extreme policy intervention that would
increase training offers to 100%: TO= 1 for everyone at any age. Note that the general
willingness of the employers to invest in training (as reflected by the training offer rate)
is with 80% quite high in my sample already, while the training participation rate is
close to 10%. Consequently, I expect a relatively small impact of such an increase in
the training-offer rate on employment outcomes.

This is exactly what I observe in my simulation. The change in the simulated
training participation rate is very small (Figure 2.10). The average training participa-
tion in my sample increases from 9.7% to 12.6%. This small change in the training
rate has hardly any impact on the employment persistence (Figure 2.11) and employ-
ment rate (Figure 2.12). At age 62, where the effect is largest, the employment rate
rises from 83.5% to 84.0%, i.e. by 0.55 percent.

In summary, the simulation shows that a policy intervention that targets only the
willingness of firms to invest in training would not be effective in increasing the em-
ployment of less-educated men in their late careers, even if it achieves to increase
the training offer rate to 100%. In practice an implementation would additionally be
challenged by potential crowding out effects of firm provided further-education invest-

41I do this separately, for the baseline model (without intervention) and for the counterfactual sce-
narios.



72 CHAPTER 2. TRAINING IN LATE CAREERS

Figure 2.10: Scenario 1: Training rate – baseline model versus counterfactual

Notes: Baseline solid line, counterfactual scenario 1 dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

Figure 2.11: Scenario 1: Employment persistence – baseline model versus counter-
factual

Notes: Baseline solid line, counterfactual scenario 1 dashed line. Employment rate of individuals who
have been employed in previous period. Simulation based on 10,000 randomly re-sampled individuals
drawn from the original sample of 51 year old. Source: NEPS data. Own calculations.

ments (see Görlitz, 2010). This risk is larger in a setting where general willingness to
invest in training is already high - as in my data. Thus, any potential implementation
of such a policy would need to be carefully deliberated. Given the negligible returns
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Figure 2.12: Scenario 1: Employment rate – baseline model versus counterfactual

Notes: Baseline solid line, counterfactual scenario 1 dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

of a successful implementation, this intervention does not appear too promising.

2.5.2 Reducing individual training cost

Scenario 2 Since the rate of training participation is much lower than the training-
offer rate it might be more promising to think about a policy intervention that targets
individual incentives, i.e. the utility costs of training (ν). Thus, I exogenously reduce
the training costs in this second counterfactual analysis. To see the full potential of a
policy that targets individual incentives for training participation I analyze the extreme
case of ν = 0. That is the employee’s full disutility of training is compensated. Corre-
sponding potential policies could pay fringe benefits or other compensation payments,
which are payed in the year of training participation, or they could try to reduce the
non-monetary costs of training participation. For instance, frictions like the effort to
gather information about courses or to enroll in courses could create non-monetary
costs. Easy access to information about training or default sign-up rules could reduce
these costs.42

Reducing the utility costs of training to 0 would have a large impact on the train-
ing participation: It would increase to 50% on average, with the highest participation
rate of 58.3% at age 54.43 As a consequence the employment persistence and em-

42For the design of a precises policy intervention an additional analysis on the composition of the
individual training costs would help.

43Note that less than 80% of the employees have a training offer, that is about two thirds participate
in training on average.
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Figure 2.13: Scenario 2: Training rate – model vs counterfactual

Notes: Baseline solid line, counterfactual scenario 2 dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

ployment rate of older employees (Figures 2.14 and 2.15) would increase. The largest
percentage point increase in employment would be achieved for the oldest employees:
Assuming the same effect of training on involuntary separations under such a dramatic
increase in training participation, this would increase the employment rate of 62 year
old less-educated males from 83.5% to 87.6%. This corresponds to a 4.9% increase in
the employment rate of 62 year old. For age 60 the employment rate would increase
from 91.1% to 92.8%, i.e. by 1.9%.

This second counterfactual simulation shows that a policy intervention which
directly addresses the utility costs of employees could be more effective than an in-
tervention that addresses the general provision of training from the firm side. Such
a reduction could be achieved by different policy instruments: Besides compensation
payments, which would amount to EUR 1911 for an employee with a monthly net-
wage of EUR 2500 in this scenario, the reduction of non-monetary costs could be
effective. For example, a study by Van den Berg et al. (2019) provides evidence that
providing information about training programs can increase the training participation.

Yet, even a compensation of the entire training costs could not fully counteract
decreasing employment rates of less-educated employees approaching retirement age.
This is driven by two forces: First, the relative size of the absolute value of the training
coefficient in the employment risk function is smaller than the age coefficient reflect-
ing that training cannot fully compensate for advancing age. Second, some part of
this unemployment is a result of the employee’s trade-off between the utility of an
additional full salary plus no penalties for the retirement benefit compared to the un-
employment benefit without any disutility of work, despite the fact that the increased
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training activity would have decreased the disutility of work slightly.

Figure 2.14: Scenario 2: Employment persistence – baseline model vs counterfactual

Notes: Baseline solid line, counterfactual scenario 2 dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

Figure 2.15: Scenario 2: Employment rate – baseline model versus counterfactual

Notes: Baseline solid line, counterfactual scenario 2 dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

Scenario 2b The intervention in scenario 2 may appear extreme as we look at a
100% reduction in training costs, while we looked at a 25% increase in training offers
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in scenario 1. That is why I add a counterfactual simulation where I consider a 25%
reduction in training costs (scenario 2b). That is, if the chosen policy instrument is
compensation payments to reduce the individual training costs, an employee with a
monthly net-wage of EUR 2500 would receive a tax free compensation of EUR 478
for his training participation.44

Figure 2.16: Scenario 2b: Training rate – model vs counterfactual

Notes: Baseline solid line, counterfactual scenario 2b dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

As we see in Figure 2.16 the reduction of the individual training costs by 25%
would lead to a less pronounced increase in the training rate compared to a 100% re-
duction: The average training participation would increase to 18.1% on average, with
an increase by 98% at age 57 from 11.2% to 21.5% (compared to a maximum increase
of 33% in scenario 1). As a consequence the effects on the employment persistence
and employment rate (Figures 2.17 and 2.18) would also be more pronounced com-
pared to scenario 1: At age 62 the employment rate would increase by 1.4% from
83.5% to 84.6%.

In conclusion, even a 25% reduction in the individual training costs would have
a larger effect on employment than a 25% increase in training offers. Importantly
in the simulation in scenario 1 I already reached the maximum possible intervention
intensity for this channel, while the individual training cost could in principle even be
overcompensated and could consequently achieve an even further increase in training
participation in scenario 2. Hence, it reveals to be more promising to target individual
incentives of training participation than the provision of training from the firms’ side.

44This magnitude of the costs is still difficult to compare to scenario 1, as it is unclear what the firms
would pay for the training provision and to what extend crowding-out would play a role.
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Figure 2.17: Scenario 2b: Employment persistence – baseline model vs counterfactual

Notes: Baseline solid line, counterfactual scenario 2b dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.

Figure 2.18: Scenario 2b: Employment rate – baseline model versus counterfactual

Notes: Baseline solid line, counterfactual scenario 2b dashed line. Simulation based on 10,000
randomly re-sampled individuals drawn from the original sample of 51 year old. Source: NEPS data.
Own calculations.
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2.6 Discussion and conclusion

In this paper, I investigate the role of on-the-job training for employment outcomes of
less-educated men aged above 50 using a structural dynamic discrete-choice model.
This model provides novel insights into the trade-offs that these employees face when
they decide whether to participate in on-the-job training. An important feature of my
data set, the NEPS, is that it provides the necessary information to distinguish between
the general availability of training funding in the firm and the individual utility costs
of training. Using this feature in my structural model I was able to quantify the bene-
fits and costs of training for the employee and to simulate the effect of different policy
interventions on employment outcomes. As a consequence I could answer the ques-
tion whether policy makers should increase training supply or incentivize individual
training take-up to foster overall training participation.

The estimated parameters support findings from the existing literature, which
indicate that the human capital of training has little effect on wages but has an impact
on the employment outcomes. Further, I find that training causes a small reduction in
the disutility of work, which could be an interesting starting point for further research
addressing work motivation of less-educated employees in their late careers.

The counterfactual simulations in the last section illustrated, that it is less the
lack of training funding in firms that determines whether or not employees participate
in training and more the individual training costs. Further, training participation is
shown to have a positive impact on the employment rate. In an extreme case, where
the individual training costs were reduced to zero, a small increase in elderly employ-
ees’ employment persistence would be achieved and hence result in an increase in
employment rates near retirement from 84% to 88%. Therefore, fostering on-the-job
training could play a part in future policy interventions that seek to address unemploy-
ment of less-educated employees in their late careers. However, in its current form
on-the-job training would not be able to fully counteract the fact that employees’ em-
ployment persistence decreases with age. It would be interesting to see more research
on the question of how on-the-job training could become more effective in improving
employment outcomes among elderly less-educated employees; for example, on the
quality of training or the fit to the needs of older less-educated employees.45 Further-
more, research on the composition of the utility costs of training could help to design
an effective policy intervention targeting individual costs of training.

In conclusion, incentivizing on-the-job training participation for less-educated
employees past their 50s could help to improve their employment outcomes near re-
tirement.

45A study by Bellmann et al. (2013) provides first descriptive evidence on this topic.



Chapter 3

Can a federal minimum wage alleviate
poverty and income inequality?
Ex-post and simulation evidence from Germany

3.1 Introduction

The argument that a minimum wage should guarantee disposable incomes above the
poverty level has always been part of the minimum wage debate (Gramlich, 1976;
Dube, 2019). It is used increasingly in political discussions about harmonizing and
increasing minimum wage levels in the European Union (EU). The EU commission
started a political initiative for EU-wide “fair minimum wages” (European Commis-
sion, 2020b,a; Council of the European Union, 2021). A central argument for raising
minimum-wage levels is to ensure a decent living standard for workers and reduce (in-
work) poverty. Germany is a case in point where rising income inequality and poverty
were among the central arguments for the introduction of a statutory minimum wage
in 2015.1 Especially employees working full-time should not depend on welfare trans-
fers. The fact that people with regular jobs cannot afford a basic standard of living and
may require top-up benefits to cover their daily expenses was perceived as a particu-
lar injustice (Bruckmeier and Bruttel, 2020; Mindestlohnkommission, 2018). Outside
the regular adjustment mechanisms of the minimum-wage commission, the coalition
agreement of the newly elected government proposes a substantial increase of the
minimum wage level to finally reach these goals (Coalition, 2021).

Existing empirical literature on the distributional impact of the minimum wages
in Europe and, in particular in Germany, has either focused on earnings and hourly
wages (Caliendo et al., 2017; Bossler and Schank, 2020), or has been based on ex-
ante simulation studies (Müller and Steiner, 2013; Brenke and Müller, 2013). This
paper provides ex-post evidence on the distributional effects of a federal minimum

1This line of argument was used in the reasons stated in the draft of the minimum-wage law
(Deutscher Bundestag, 2014). The Left party (Deutscher Bundestag, 2011b) and the Social Democrats
(Deutscher Bundestag, 2011a) used the term “poverty wages” in earlier minimum wage bills.
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wage on disposable household incomes in Germany. Given that significant wage ef-
fects are a prerequisite for a pass-through to incomes, we first investigate the impact of
the minimum wage on hourly wages of eligible employees addressing non-compliance
and measurement error. Second, we analyze the minimum wage’s effect on the dis-
tribution of disposable household incomes. Third, we examine various mechanisms
that could explain the limited impact of an hourly wage increase on disposable in-
comes: We investigate welfare dependence and benefit withdrawal to assess whether
specific redistributive goals – the reduction of top-up benefits (Aufstocker) and overall
welfare dependence – have been reached. Further, we determine where in the dispos-
able household income distribution the minimum-wage earners are found, and look
at changes in employment outcomes across the household income distribution at the
intensive and extensive margin.

Since the statutory minimum wage in Germany was introduced uniformly across
all regions at the same level, ‘natural’ control groups for a causal analysis of inequality
and poverty are not available.2 Therefore, we do not apply a difference-in-difference
type design based on a variation in treatment (see, e.g., Bonin et al., 2019; Burauel
et al., 2019b; Garloff, 2019 for Germany), but accumulate descriptive evidence on the
actual situation of individuals and households, with a special focus on those affected
by the reform. We systematically compare different moments of the hourly-wage
and household income distributions, as well as inequality and poverty measures, be-
fore and after the introduction of the minimum wage to changes over time between
pre-reform periods. Dustmann et al. (2019) apply similar comparisons on individual
outcomes in a difference-in-difference framework. For the analysis of the underlying
mechanisms, we define “affected” individuals by their relative position in the annual
wage distributions, to account for wage and employment fluctuations that are particu-
larly prevalent among low-wage earners.3

To evaluate the magnitude of the observed changes and to establish an upper
bound for the redistributive potential of the minimum wage in a “best-case” outlook
without negative secondary effects on employment or compliance issues, we also sim-
ulate two counterfactual full-compliance scenarios. In the first scenario, all eligible
employees earn at least the statutory minimum wage of 8.50e per hour. In the second
scenario, employees receive a substantially higher level of 12e per hour as proposed
in the coalition agreement by the newly eleceted federal government, other left-wing
parties, and the Germany labor unions (Coalition, 2021). Both simulations serve as
ceteris paribus upper-bound benchmarks for the full redistributive potential of the min-
imum wage.4 To compare disposable incomes based on observed wages with those

2See Allegretto et al. (2017) and Neumark (2019) for a general discussion of alternative treat-
ment/control group designs and Caliendo et al. (2018) for a discussion of available control groups
for the German case.

3Results in this paper are not sensitive on the specific definition of this threshold which corresponds
to the bottom 11% of the hourly wage distribution. Robustness checks with thresholds of 9% and 13%
are available upon request. Inequality and poverty measures referring to the overall wage or income
distributions do not depend on the definition of “affected” individuals and households.

4Additional scenarios, e.g. a minimum wage level of 12e per hour with markedly lower compliance
rates and a counterfactual situation without minimum wage are available upon request.
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derived from wages in counterfactual scenarios, we employ a microsimulation model
that allows us to compute disposable household incomes reflecting the details of the
German tax and welfare system (Steiner et al., 2012). Assuming full take-up allows
us to sidestep the issue of benefit non-take-up when assessing minimum-wage effects.
We discuss this problem separately and provide robustness checks with reported dis-
posable household incomes and transfers.5

We find that neither (in-work) poverty nor overall inequality in disposable in-
comes declined after the minimum-wage introduction. We show that this cannot be
explained by non-compliance (Burauel et al., 2017) or measurement error in hourly
wages. Instead, we identify the minimum wage in Germany as a poor redistributive
tool with respect to disposable household incomes. It does not target low-income
households because minimum-wage earners are spread across the entire income dis-
tribution. This is the main reason why the minimum wage is not effective in reducing
poverty and income inequality. Consequently, neither top-up benefits, nor welfare de-
pendence decline significantly. We can rule out negative employment effects among
low-income households as an alternative explanation. The counterfactual scenarios
reveal that neither full compliance nor a substantial increase to 12e per hour would
make the uniform minimum wage a more efficient tool for income redistribution and
poverty reduction.

The remainder of this paper is organized as follows: Section 1.2 discusses the
related distributional minimum-wage literature. Section 3.3 provides institutional de-
tails of the German minimum wage. Section 2.2.1 informs about the data set and
sample. Section 3.5 discusses our methodological approach. Section 2.4 provides em-
pirical results on wages, disposable household incomes, and the several mechanisms
behind the distributional effects. Section 3.7 discusses our findings and concludes.

3.2 Related literature

This study is related to two branches of the minimum wage research. First, we relate
to the research concerned with effects on individuals’ gross wages, as we start our
analysis with the investigation of the effects of the German minimum wage on the low-
wage sector and wage inequality. The literature concurs that minimum wages mitigate
inequalities at the bottom of the wage distribution, albeit to a varying extent (Autor
et al., 2016; Dolton et al., 2012; Stewart, 2012b,a; Neumark et al., 2004; Dickens
and Manning, 2004; Teulings, 2003; Lee, 1999; DiNardo et al., 1996). Applications
for Germany confirm wage increases at the bottom of the distribution (Burauel et al.,
2019b; Bossler and Gerner, 2019; Ahlfeldt et al., 2018; Caliendo et al., 2018; Bruttel
et al., 2018; Caliendo et al., 2017). Evidence on wage spillovers is mixed (Autor et al.,
2016; Stewart, 2012b; Dickens and Manning, 2004).

We mainly contribute to a second branch of the distributional minimum wage

5Note, that we require the tax-transfer simulation model as the reported disposable household in-
comes are not available for simulated scenarios and top-up benefits are not reported in SOEP.
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literature investigating whether gross-wage increases induced by a minimum wage
translate to disposable household incomes and reduce (in-work) poverty and income
inequality. Income redistribution is jointly determined by wage and employment
changes and interactions with the tax and transfer system (MaCurdy, 2015). One
approach are ex-ante simulations that mimic certain adjustment channels. Incorpo-
rating tax interactions and employment effects, Johnson and Browning (1983) find a
marginal redistributive impact of the U.S. minimum wage (see Freeman, 1996 for the
UK). As low-wage employment and low household incomes are only loosely related
in the U.S., workers in households above the poverty line benefit more from the mini-
mum wage in relative terms (Burkhauser and Finegan, 1989; Burkhauser et al., 1996;
Burkhauser and Sabia, 2007; Sabia and Burkhauser, 2010; Neumark, 2015). Richer
households bear most of the burden from price increases induced by the minimum
wage, yet poor households lose more in relative terms because of higher consumption
rates (Macurdy and McIntyre, 2001; Gosling, 1996; Atkinson et al., 2017; Müller and
Steiner, 2009, 2013; Campolieti et al., 2012; Maloney and Pacheco, 2012).

Ex-post studies often use exogenous variation in minimum-wage regulations within
a reduced-form regression framework. Except for Neumark et al. (2005), they use
panel estimators exploiting regional variation in minimum wages. Several studies do
not identify a significant reduction of poverty (Vedder and Gallaway, 2002; Neumark
and Wascher, 2002; Burkhauser and Sabia, 2007; Sabia, 2008; Sabia and Burkhauser,
2010; Sabia and Nielsen, 2013). Other studies find moderate reductions in the inci-
dence (Addison and Blackburn, 1999; Morgan and Kickham, 2001; Stevans and Ses-
sions, 2001; Gundersen and Ziliak, 2004; DeFina, 2008; Sen et al., 2011) and depth of
poverty (Dube, 2019) in the U.S.. Neumark et al. (2012) find a slight poverty-reducing
effect of city-wide living wage laws. Godøy and Reich (2019) find significant reduc-
tions of household and child poverty in low-wage areas across the U.S.

Our study provides first evidence on the disposable income inequality and poverty
after the federal minimum-wage introduction in Germany. It closes a gap in the liter-
ature, as previous studies on this topic mostly focused on the U.S..6 The German case
is relevant as a federal minimum wage with significant bite has been introduced in a
comprehensive European welfare state, and mixed evidence from existing studies has
underlined the importance of the institutional context for the effectiveness of the min-
imum wage as a tool for income redistribution. We further contribute to the literature
by providing evidence on several underlying mechanisms (position of low-wage earn-
ers in the income distribution, benefit withdrawal, changes in employment) that may
impact the pass-through of wage increases to disposable incomes, and by combining
the ex-post analysis with simulations of counterfactual scenarios.

6There is some evidence for the Pacific region (Kawaguchi and Mori, 2009) and South America
(Sotomayor, 2021).
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3.3 Minimum wage institutions in Germany

Set at a gross wage of 8.50e per hour the federal minimum wage in Germany came
into effect on the 1st of January 2015. At that time a number of sectoral minimum
wages had already been put in place and many were still effective in 2015 and 2016.
Since 2017 sectoral minimum wages are required to pay at least the statutory level or
more, all sectoral minima below the federal minimum wage increased upon introduc-
tion of the federal minimum wage.7 During the transition period in 2015–2016 the
existing minimum wages were allowed to undercut the national level.

Generally, all employees are eligible for the federal minimum wage, except ex-
plicitly exempted groups: workers aged under 18 without formal training; trainees and
certain types of interns; the long-term unemployed in the first six months of a new job
and unemployed people who are working only few hours; and employees working un-
der collectively bargained sectoral minimum wages below 8.50e during the transition
period after the minimum-wage introduction. The self-employed are also not eligible
for the minimum wage. The only exemptions that significantly reduce the number of
employees eligible for the minimum wage concern trainees and minors (vom Berge
et al., 2016). Thus, there are no ‘natural’ control groups available among regularly
employed individuals for evaluation purposes. We will use the term eligible employ-
ees throughout the paper when referring to employees who are not exempted and who
do not work in a sector temporarily exempted from the minimum wage.

The German Minimum Wage Commission (MWC) consists of employer and em-
ployee representatives as well as scientific advisors. Its members are solely responsi-
ble for negotiating and recommending adjustments to the minimum wage level, which
is then legally codified by the German government (chancellor and labor secretary). In
2016, the minimum wage remained at the level of 8.50e. Thereafter, it has been raised
following proposals by the MWC according to §8 German Minimum Wage Law.8

The minimum wage is enforced by the German Customs Administration. It regu-
larly conducts inspections of firms and enforces compliance with social security laws
and the Minimum Wage Law. In the event of non-compliance, penalties of up to
500,000e can be imposed. However, not least because of personnel shortages due to
the refugee crisis, enforcement was widely regarded as weak, especially in the first
year after the introduction of the minimum wage (Deutscher Bundestag, 2016; Bu-
rauel et al., 2017).

7Sector-specific minimum wages are only allowed if they exceed the statutory level. As of January
1st, 2019 the full list in descending order by minimum wage levels varying from 17.25e per hour
to 9.49e per hour and for West and East Germany includes money transports, vocational education
and training services, skilled construction workers, commercial cleaning, painting (skilled workers),
chimney sweeping, roofing, unskilled construction workers, scaffolding, stone masonry, electro trade,
elderly care, painting (unskilled workers), and temporary agency work (Amlinger et al., 2016).

8As of 1 January 2017 the minimum wage was raised to 8.84e, as of 1 January 2019 to 9.19e, and
to 9.35e and 9.60e per hour in the following years with further steps being scheduled for 2022. We
focus here on the large wage-shock in first two post reform years 2015 and 2016 in order to allow for
clear interpretation of our results.
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3.4 Data and sample

The empirical analysis is based on unbalanced panels from the German Socio-Economic
Panel (SOEP) for the years 2012–16. We analyze wages for eligible working-age in-
dividuals and disposable incomes for all households with household members up to
age 65, including the non-employed.

3.4.1 Data

The SOEP is a representative longitudinal household study. It contains information
of roughly 30,000 individuals living in about 15,000 households (Goebel et al., 2019;
Wagner et al., 2007). The SOEP provides detailed information on individuals’ labor
market status, e.g. the type of employment relationship, contractual and actual weekly
working hours, and monthly labor earnings. It distinguishes earnings for the main and
potential side jobs. A wide range of individual and household characteristics (includ-
ing non-labor income) shed light on the economic and socio-demographic background
of individuals in our samples. This allows us to analyze interactions of the minimum
wage with the German tax and transfer system and to simulate disposable incomes
and transfers at the household level.

We use SOEP version 33.1.9 For specific variables, in particular for the labor
market status, we utilize the SOEP EVA-MIN data set. This is a specific data set based
on the SOEP that provides information for evaluation purposes and aims to establish
certain standards for the preparation of the data to ensure the comparability of results
among different studies. The EVA-MIN project included the collection of additional
variables on various topics related to the introduction of the minimum wage.10

3.4.2 Sample

For the wage analysis we use a sample of individuals and for the income analysis
a sample of households. The focus of this paper is on the working-age population.
Therefore, we exclude individuals above age 65 and households with such individuals.
A minimum wage also affects old-age incomes through lifetime labor earnings that
determine retirement benefits and through the supplementary earnings of retirees (e.g.
during partial retirement, or from marginal jobs). We do not consider these margins
of income redistribution here.

The individual sample for the wage analysis consists of full-time, part-time, and
marginally employed individuals as well as civil servants eligible for the minimum
wage. We exclude non-eligible individuals, the self-employed and retirees from the
individual sample. The household sample comprises all households with working-age
members and children – irrespective of employment status and eligibility because we

9See https://www.diw.de/en/diw_01.c.572910.en/1984_2016_v33.html, last accessed on
15 December 2021.

10See https://eva-min.soep.de/ for further information, last accessed on 15 December 2021.



3.5. METHODS 85

are interested in the impact of the minimum wage on the overall income distribution
and poverty. Therefore, we only exclude households with at least one household mem-
ber who is aged over 65 to prevent our results from being influenced by changes in
retirement benefits. The household sample also contains self-employed, unemployed,
or inactive individuals.

We use observations from 2012–2016 in unbalanced panels. This way we ob-
serve two pre-reform years that are not affected by anticipation of the reform, since
the minimum-wage introduction became common knowledge in 2014. We winsorize
the bottom and top percentiles of the hourly wage, the total wage, the hours, and the
income distributions to cope with outliers in our sample. In line with other studies
(e.g. Caliendo et al., 2018, 2017), values below the bottom and above the top per-
centiles are replaced with the threshold values. All SOEP sub-samples are used to
keep the overall size of our individual and household samples roughly constant. We
use sampling weights provided by SOEP throughout the empirical analysis to ensure
representativity.11

3.5 Methods

We use a descriptive approach investigating distributions, moments of these distribu-
tions, and distributional measures over time to assess whether outcomes changed sig-
nificantly after the introduction of the minimum wage. Year-to-year changes before
the minimum wage was introduced are used as a reference for comparison. Further,
we compare observed outcomes with simulated counterfactual scenarios, such as full
compliance and a 30% increase in the minimum wage level, to establish more general
results for a minimum wage in Germany’s institutional set-up.

3.5.1 Measurement of hourly wages

The SOEP questionnaire does not contain a direct query on hourly wages. Yet, re-
spondents are asked questions, both, about their monthly gross earnings as well as
their contractual and actual weekly hours of work. Based on this information differ-
ent concepts of hourly wages can be computed (see, e.g., Brenke and Müller, 2013,
Caliendo et al., 2017, or Dütsch et al., 2019), where monthly gross labor earnings are
divided by weekly working hours extrapolated to a monthly figure.

We employ the arguably most reliable measure of contractual working hours that
are fixed in the contract the employee signed and do not fluctuate or change in the
short-run. Although a minimum wage policy intends that employee’s receive the min-
imum wage for all the hours they work, which would be represented by actual working
hours in the SOEP, there are problems attached to this wage concept. Actual work-

11Robustness checks for a samples without migrants who have been increasingly oversampled during
the observation period are provided upon request. The results do not depend on the inclusion of these
samples.
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ing hours are more likely to suffer from measurement error or strong fluctuations and
therefore lack precision. Moreover, wages and overtime hours do not have the same
reference month in the survey. However, we must keep in mind that many employees
supply unpaid overtime hours, which might have increased due to the minimum wage
reform. The wage measure based on contractual hours thus represents an upper bound
for gross hourly wages. Wages are not deflated.

3.5.2 Simulated and observed incomes

The primary interest of this study is to investigate whether the minimum wage im-
proved the living standard of low-wage earners. Therefore, we consider disposable
household incomes that take into account the size and composition of households and
interactions with the tax and transfer system. Disposable household incomes in our
study are defined as the equivalence weighted household income, including all income
sources, including transfers minus the taxes.

To compare income measures not only for observed wages before and after the
minimum-wage introduction, but also consistently with counterfactual scenarios based
on hypothetical hourly wages and labor earnings, we compute disposable household
incomes as main outcome. Employing a microsimulation model (Steiner et al., 2012),
we simulate the disposable household incomes on the basis of various earnings and in-
come components as observed in the SOEP: hourly wages, contractual hours of work,
and other types of income by all household members. This model incorporates the
features of the German tax and transfer system.12 Gross household income is com-
posed of earnings from dependent employment, income from capital, property rents
and other income. Earnings from dependent employment is the main income com-
ponent for the most households. Taxable income is calculated by deducting various
expenses from gross income. According to German tax law, joint income taxation
is applied to married couples. Employees’ social security contributions and income
tax are deducted from gross income and social transfers are added to compute net-
household income. Social transfers include child allowances, child-rearing benefits,
educational allowances for students and apprentices, unemployment benefits, housing
allowance, and social assistance. The micro-simulation model is also used to calculate
top-up benefits and transfer eligibility.

The computation of disposable household incomes is based on perfect compli-
ance and full take-up assumptions. It is assumed that people fully comply with the
tax law; tax avoidance and non-take up of benefits are not considered. Therefore, cal-
culated welfare-benefits are based on the neediness of households and not the actual
take-up. This way we can abstract from potential problems regarding enforcement of
the tax-transfer system. We check the robustness of our results based on the simu-
lated income measure by comparing them to outcomes based on reported disposable
household incomes as directly reported by SOEP respondents before and after the

12Vandelannoote and Verbist (2020) and Leventi et al. (2019) follow a similar methodological ap-
proach in a comparative perspective.
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introduction of the minimum wage.13 Distributional moments and quantiles as well
as inequality and poverty measures prove to be similar for simulated and observed
disposable incomes. Throughout the income analysis we use equivalence-weighted
household incomes based on the new OECD equivalence scale. Equivalence incomes
are not deflated.

3.5.3 Assumptions on employment effects and wage spillovers

Different parts of the distributional analyses, e.g. hourly wages vs. disposable in-
comes or observed differences in pre- and post-reform years vs. comparisons with
counterfactual scenarios, require different assumptions. Since the wage analysis is
based on hourly wages of eligible employees (sub-section 3.4.2), it does not consider
changes in employment. In the counterfactual scenarios, we modify certain wage rates
based on the same number of total jobs as in the status quo.

The analysis of disposable incomes is based on the overall distribution of house-
holds with working-age adults (sub-section 3.4.2). When individuals become unem-
ployed, change their jobs, or the number of hours worked as a result of the minimum
wage, this affects disposable household incomes and is thus included in the distribu-
tional analysis. No assumptions on employment effects are needed here. However,
comparisons with counterfactual scenarios require assumptions on employment. We
do not change any other variables besides hourly wages in the simulation of counter-
factual scenarios (sub-section 3.5.4), that is we assume no changes in employment.
Assuming that potential employment effects tend to be negative, these scenarios pro-
vide an upper bound for the redistributive potential of the minimum wage if there were
no downsides.

We do not need assumptions on wage spillovers when analyzing observed changes
in wages and incomes. Should the minimum wage induce spillover effects, they are
captured in observed wage and income distributions. We assume zero wage spillovers
for the simulation of counterfactual scenarios. Should spillover effects primarily ben-
efit medium to high-wage individuals or high-income households, then our scenarios
must be interpreted as upper bounds for redistributive effects of the minimum wage
also in this regard.

3.5.4 Counterfactual scenarios

We simulate counterfactual scenarios assuming full compliance to assess the redis-
tributive potential of the minimum wage, irrespective of compliance or measurement
problems during the implementation of the minimum wage. We construct two ‘ideal
world’ scenarios: First, we lift observed hourly wages below 8.50e to this threshold
in post-reform years simulating full compliance ceteris paribus (scenario A). Wages
above the minimum wage level and other variables remain unchanged. In the second

13As mentioned, incomes of counterfactual scenarios and top-up benefits are not observed and must
be computed with the tax-transfer microsimulation model.
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scenario, we repeat this exercise for a markedly higher minimum wage level of 12e
per hour. Assuming full compliance all observed hourly wages below 12e per hour
are set to this threshold value (scenario B). In both scenarios we assume zero labor
supply and zero labor demand effects.14 By construction, scenarios A and B provide
upper bounds for the redistributive effects of the minimum wage, in the absence of
secondary effects (wage spillovers or employment) diminishing income redistribution.

3.5.5 Inequality and poverty measures

In order to reduce wage inequality, income inequality and (in-work) poverty, a min-
imum wage needs to lift wages at the bottom of the hourly wage distribution and
increase incomes at the bottom of the disposable income distribution. Besides com-
paring distributions, moments, and quantiles of these distributions, we also study in-
equality and poverty measures (Cowell, 2011) to assess whether the minimum wage
reduces poverty and income inequality.

Despite its straightforward interpretation and widespread use, the poverty rate
only describes how many households are below or above a certain income threshold
– the poverty line. It is insensitive to changes in low incomes that do not push house-
holds above the poverty line. Therefore, we use additional poverty measures from the
Foster-Greer-Thorbeke class to get more information on the income situations of poor
households:

FGT (α) =
1
n

q

∑
i=1

(
z− yi

z

)α

(3.1)

Parameters z and q denote the poverty line and the number of households below this
line, respectively. For parameter α = 0 we get the Poverty Rate, for α = 1 the Poverty
Gap. This measure is based on the distance of incomes to the poverty line for poor
households and can hence change, even if households are not lifted above the poverty
line. For α = 2, the FGT(2) measure puts more weight on poorer households that are
further away from the poverty line. Both, the Poverty Gap and the FGT(2) satisfy the
monotonicity axiom by (Sen, 1976), which states that the measure must rise whenever
income of a poor person is reduced. The FGT(2) measure further satisfies the transfer
axiom, which requires that the poverty measure must increase whenever money is
transferred from a poor to a less poor household, ceteris paribus.

To analyze minimum wage effects on overall distributions we use the Atkinson
inequality measure with an inequality aversion parameter ε= 2 (Atkinson, 1970; Cow-

14This is a strong assumption, especially for the 12e per hour-scenario which would affect around
30% of the employees in our sample. It is further possible that non-complying jobs in the observed
data would be at risk when compliance is enforced. Yet, the purpose of these simulated scenarios is not
to compute a realistic outcome under full compliance but to provide a counterfactual of the potential
impact that the minimum wage could have if there were no negative side effects.
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ell, 2011).
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where yi and ȳ are individual and mean incomes (or wages) and we sum over the entire
distribution. In addition to its sound theoretical foundation based on social welfare and
its favorable statistical properties (e.g. sub-group consistency), the Atkinson index
is sensitive to inequality at the lower end of the distribution. Thus, the Atkinson
measure is particularly suited for a distributional analysis of the minimum wage that
disproportionately affects lower parts, but may also influence the middle of wage and
income distributions.

3.5.6 Definition of people affected by the minimum wage

To investigate different mechanisms behind the minimum wage effect on household
income inequality (sub-section 3.6.3), we need to define the group of affected peo-
ple. A common approach in ex-ante studies (e.g. Lesch et al., 2014; Kalina and
Weinkopf, 2014; Falck et al., 2013) and ex-post evaluations (e.g. Bonin et al., 2019;
Burauel et al., 2019b; Garloff, 2019) of the minimum wage is to determine affected
individuals based on their hourly wages in a single ‘pre-reform’ period. Applying
this approach here would create substantial problems that are rarely discussed. In the
bottom parts of the wage distribution there is a lot of year-to-year fluctuation between
jobs and employment states. As a result, the hourly wages of low-wage employees
vary substantially between years and are subject to mean reversion. Wages of a fixed
group would therefore entail positive wage trends, even in the absence of minimum
wage reforms. This fluctuation is clearly present in the pre-reform years in our sam-
ple. More than 40% of people working in jobs paying below 8.50e in 2012 earn more
than 8.50e in the subsequent year (Table C.1, Appendix).

This pattern is in many instances driven by job changes. Transitions to new jobs
are particularly frequent in lower deciles of the wage distribution: In the pre-reform
years 2011–2014 on average 39% of employees in the bottom decile and 33% of
employees in the second decile of our sample state that they had changed jobs since
the last year (Table C.2, Appendix). Mean reversion contributes to positive average
wage trends for such people (see also Dustmann et al., 2019).

Given job fluctuation and variation in hourly wages that are unrelated to the min-
imum wage, we do not use pre-reform work conditions to define the treatment group.
Instead, we define employees as being ‘affected’ by the minimum wage, if their wage
is within a certain range at the bottom of the hourly wage distribution and if they
comply – according to their employment status – with eligibility criteria. The chosen
range is determined by the share of eligible employees who earned less than 8.50e per
hour prior to the minimum wage reform. We take 2013 as the baseline year to avoid
bias through anticipation effects. In 2013 11% of eligible employees earned less than
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8.50e. Therefore, we denote the group of employed people whose employment sta-
tus complies with the eligibility criteria of the minimum wage and who belong to the
bottom 11% of the hourly wage distribution of a respective year as affected.15

Eligibility and “affectedness” are determined at the individual level. Wage ef-
fects are, by construction, primarily driven by employees with hourly wages at the
bottom of the wage distribution in a given year, i.e. those targeted and affected by
the minimum wage. For the analysis of disposable incomes, households are defined as
being affected by the minimum wage, if at least one household member is individually
affected (eligible and in the bottom 11% of the hourly wage distribution).

3.6 Empirical findings

As wage effects are a necessary condition for a minimum wage-induced redistribution
of disposable incomes, we first assess the impact of the minimum wage on individuals’
hourly wages. Second, we analyze distributional effects of the minimum wage on dis-
posable household incomes. Third, we investigate several mechanisms that potentially
affect the transmission of wage increases to household incomes.

3.6.1 Wage effects

Figure 3.1 shows kernel density estimates for hourly wages of eligible employees
between 2012 and 2016. Distributions are indistinguishable at the bottom in the pre-
reform years 2012–2014. In contrast, we observe a distinct shift to the right after
the minimum wage was introduced in 2015, followed by an additional shift in 2016.
A Kolmogorov-Smirnov test confirms that the post-reform wage distributions differ
significantly from the pre-reform distribution. The minimum wage reform had a sub-
stantial impact at the bottom end of the wage distribution. However, there is still a lot
of probability mass to the left of the statutory minimum wage level of 8.50e per hour
(represented by the vertical line), even in 2016. This points to possible measurement
issues and reporting errors with respect to hourly wages as well as non-compliance
with the minimum wage law, potentially to a considerable extent (see also Caliendo
et al., 2017; Burauel et al., 2017).

To shed light on potential non-compliance, we take a look at the share of employ-
ees who receive wages below the minimum wage over time (Table 3.1). The share
of employees below the threshold decreases significantly in 2015, persisting in 2016.
However, the share remains markedly positive in 2015 (7.5%). In 2016 this number
drops only slightly. This confirms the observations from the distributional graph. It re-
mains unclear to what extent this is a measurement or compliance problem. Evidence
on insufficient enforcement of the minimum wage suggests that non-compliance was
a significant factor (see Caliendo et al., 2017).

15Robustness checks with 9% and 13% thresholds are available upon request. Results are not driven
by the precise definition of this threshold.
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Figure 3.1: Distributions of hourly wages, eligible employees, 2012-2016

Notes: Kernel densities of the hourly wages of eligible employees by year. Wages
not deflated, individual frequency weights used. The vertical line depicts the min-
imum wage level of 8.50e per hour. Source: SOEP, waves 2012-2016; weighted;
own calculations.

Table 3.1: Share of eligible employees with wages below 8.50e per hour in %, 2012-
2016

Year 2012 2013 2014 2015 2016

Share eligible 10.3 10.4 10.1 7.5 6.9
CI [9.8;10.9] [9.9;11.0] [9.5;10.6] [7.0;8.0] [6.4;7.4]

Notes: 53,143 observations per year for those eligible; 95% confidence inter-
vals in parentheses. Source: SOEP, waves 2012-2016; own calculations.

The wage growth observed in the lower quantiles does not impact overall inequal-
ity of gross hourly wages (Figure 3.2). Due to the general wage-growth across the
distribution in post-reform years, the Atkinson inequality index does not change sig-
nificantly after the introduction of the federal minimum wage. Under full compliance,
however, the statutory minimum wage of 8.50e per hour would have significantly
decreased wage inequality (scenario A).

Given full compliance, a markedly higher minimum wage level of 12e would
even reduce the wage inequality among the employed by 40% (scenario B). Compar-
isons with full-compliance scenarios show that the minimum wage did by far not reach
its full potential in reducing inequality at the bottom of the hourly-wage distribution.
Under full compliance reductions would be substantially larger than for the observed
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Figure 3.2: Atkinson inequality measure for the hourly gross wage distribution, eligi-
ble employees, 2012-2016

Notes: Individual frequency weights used. Bootstrapped confidence in-
tervals based on 500 replications. For inequality and poverty measures
see definition in sub-section 3.5.5. In scenario A (B) all wages below
8.50e (12e) are lifted to this threshold, everything else unchanged,
including employment. For exact values of the confidence intervals
and poverty lines, and for results of additional counterfactual scenarios
see Table C.8; for significance of differences see Table C.9, Appendix.
Source: SOEP, waves 2012-2016; own calculations.

outcomes (Figure 3.2).

3.6.2 Income effects

The distributional analysis of disposable incomes is based on a sample of all house-
holds in the SOEP without household members exceeding age 65. Given the mod-
erate wage effects and insignificant reductions in wage inequality, we expect even
smaller redistributive effects on incomes: The analysis of disposable household in-
comes takes adjustments of employment, partners’ earnings, and interactions with the
tax and transfer system into account that potentially reduce the redistributive impact
of wage increases. Therefore, the counterfactual scenarios A and B – representing full
compliance under the statutory level and a considerably higher minimum wage level
of 12 e per hour – provide a benchmark for the redistributive potential the minimum
wage would have in the best case, i.e. without negative employment and price ef-
fects.16 Comparisons with these scenarios require the use of simulated incomes in the
main analysis (sub-section 3.5.2). We provide robustness checks by comparing our
simulated outcomes with outcomes based on reported incomes in the appendix.

16Assuming that potential spillovers on other wages are of minor importance regarding the reduction
of disposable household income inequality. The assumption of no employment losses becomes more
restrictive with higher minimum wage levels.
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In a first step, we compare specific quantiles and moments of the disposable in-
come distribution over time and with the counterfactual scenarios (Figure 3.3). The
5th percentile of the income distribution does not reveal any changes in post-reform
compared to pre-reform years. There is income growth for the 10th percentile and for
the mean over time which stagnates, however, after the minimum-wage introduction.
Only median incomes keep increasing after the minimum wage is introduced; the 2016
median is significantly above its 2014 level. This points rather at a divergence than a
convergence in incomes. Full-compliance scenarios A and B would not change these
patterns. Incomes in the 5th or 10th percentile would hardly increase. Even under
the substantial increase in the minimum wage to 12e with full-compliance (scenario
B), the incomes would not converge. On the contrary, the median income increase
would be even larger compared the increase in the 5th and 10th percentiles and fortify
divergence. That means households in the middle of the distribution would benefit
more from a higher minimum wage level. We will further elaborate on this finding in
sub-section 3.6.3 below.17

The longitudinal analysis of inequality and poverty measures sheds more light on
the distributional consequences of these findings for disposable household incomes
(Figure 3.4). We do not observe any changes in the Atkinson inequality measure after
the minimum-wage introduction. Instead, we find a rise in poverty measures. The
poverty gap increases by 0.5 in 2016 compared to 2014 but all changes remain in-
significant. Full-compliance scenario A would diminish the increase in the poverty
rate and poverty gap slightly but insignificantly. The measures would still increase
compared to 2014. Under the 12 e full-compliance scenario , in turn, the poverty
measures would increase as much as for observed incomes compared to 2014, with
differences being insignificant (see also tables C.12 and C.13 for differences, Ap-
pendix).

Differential income growth across the distribution raises the poverty line while in-
comes in bottom quantiles remain largely constant. Absolute poverty did not increase:
When we keep the poverty line fixed to 2014 levels and do not deflate equivalence
incomes, we observe even a slight decrease in the poverty rate in 2016 and decreases
in the poverty gap and the FGT(2) measure over the years (Table C.14, Appendix).
The patterns with respect to the minimum wage reform are robust to using reported
household incomes. Neither inequality, nor poverty decreased significantly after the
minimum wage introduction in 2015 (Figure C.2, Appendix).

Our counterfactual scenarios show that neither full compliance with the statutory
minimum wage, nor raising its level to 12e per hour would have decreased disposable
household income inequality or poverty (Figure 3.4, scenarios A and B). The Atkin-
son index would have remained at the same level, while the poverty measures rather
increased than decreased. A higher minimum wage at 12e would even lift the poverty
line and thereby increase relative income poverty, albeit insignificantly, compared to
a full compliance under a minimum wage level of 8.50e per hour.

17The growth patterns at the different moments of the income distribution can be replicated with
reported household incomes (Figure C.1, Appendix).
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Figure 3.3: Quantiles and moments of the monthly disposable household equivalence
income distribution (in e), working-age households, 2012-2016

Notes: The sample includes all households without members exceeding age 65, irrespective of their
employment status. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. In scenario A (B) all wages
below 8.50e (12e) are lifted to this threshold, everything else unchanged, including employment. For
exact values of the confidence intervals and for results of additional counterfactual scenarios see Table
C.10, for significance of differences see Table C.11, Appendix. Source: SOEP, waves 2012-2016; own
calculations.

Results based on a fixed poverty line show that even the maximum minimum
wage effect on income levels of the poor, i.e. under full compliance and with a sub-
stantially higher minimum-wage level and no negative employment effects, would
be very small with a maximum of 9% less people below the poverty line compared
to 2014 (Table C.14, Appendix). To conclude, the minimum wage in Germany has
proven to be an ineffective redistributive tool with respect to disposable household
incomes. In fact, an increase of the minimum-wage level could even amplify income
inequality and poverty, as households at the very bottom would benefit less in relative
terms (due to their lower labor market attachment). To explain these findings, we turn
to the analysis of different mechanisms.

3.6.3 Mechanisms

There are several channels which potentially affect a low pass-through of wage changes
to incomes. Previous studies point out that the correlation between gross hourly wages
and disposable household incomes is limited (Neumark, 2015; Müller and Steiner,
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Figure 3.4: Inequality and poverty measures for the monthly disposable household
equivalence income distribution, working-age households, 2012-2016

Notes: The sample includes all households without members exceeding age 65, irrespective of their
employment status. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. For inequality and poverty
measures see definition in sub-section 3.5.5. Poverty line refers to respective year (flexible poverty
line). In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold, everything else
unchanged, including employment. For exact values of the confidence intervals and poverty lines, and
for results of additional counterfactual scenarios see Table C.12; for significance of differences see
Table C.13, for number of observations Table C.10 Appendix. For results with a fixed poverty line see
Table C.14, Appendix. Source: SOEP, waves 2012-2016; own calculations.

2013; Burkhauser and Finegan, 1989; Johnson and Browning, 1983). Low-wage em-
ployees often provide only secondary wage earnings to overall household incomes.
Various types of welfare transfers may also contribute to a weak relationship between
the hourly wage and disposable income distributions. We elaborate on the mecha-
nisms that could drive our results, by investigating the distribution of affected individ-
uals across the household-income distribution, potential welfare-benefit withdrawal,
and employment effects.

Position of affected individuals within the disposable household income distribu-
tion

To analyze the relationship between low hourly wages and low disposable incomes,
we investigate which kind of households are affected by the minimum wage. Almost
two thirds of all affected individuals in our sample live in households with an addi-
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tional wage earner and about 53% of affected individuals earn less than their partner.
These numbers already indicate that affected individuals must not necessarily live in
the poorest households. To be more precise, we display the distributional position of
affected households, breaking down their shares by deciles of the disposable house-
hold income distribution (Table 3.2, left panel). Note, ‘affected households’ comprise
households with at least one person earning an hourly wage in the bottom 11% of the
gross hourly wage distribution in the respective year (sub-section 3.5.6). The share of
affected households in the bottom decile is less than 3%. The largest shares of affected
households are in deciles 3 to 5. Even in the 6th and 7th deciles shares around 10% are
reached. Not even in the top decile the share of affected households is smaller than at
the bottom of the distribution in all years. Shares are stable over time for most deciles.
Hence, there is conclusive evidence that the minimum wage does not effectively target
households at the bottom of the income distribution.

Table 3.2: Shares of affected and average incomes by deciles of the household income
distribution, 2012-2016

Decile Share affected in % Average disposable househ. income

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

1 2.35 2.56 2.68 2.49 2.04 553 579 592 596 590
2 8.99 8.25 7.40 8.33 7.95 795 802 826 829 840
3 20.14 18.87 19.44 19.22 19.18 966 959 996 994 1012
4 15.17 15.32 18.60 17.23 19.28 1158 1147 1194 1204 1235
5 13.11 13.39 12.91 13.65 12.14 1372 1369 1417 1446 1486
6 9.77 10.61 10.53 9.25 12.83 1611 1617 1671 1696 1737
7 10.85 5.67 5.83 8.28 7.05 1868 1887 1947 1986 2014
8 4.52 5.06 5.32 5.23 8.90 2182 2233 2299 2358 2348
9 3.48 2.78 3.62 4.01 2.65 2660 2776 2840 2921 2869
10 1.70 1.89 3.16 2.04 2.75 4384 4585 4701 4727 4728
Total 9.01 8.44 8.95 8.97 9.47 1754 1795 1848 1875 1885

Notes: The sample includes all households without members exceeding age 65, irrespective of
their employment status. Share of affected defined as share of households with at least one mem-
ber earning wages in the bottom 11% of the wage distribution of respective year. Equivalence
weights according to the new OECD scale and household frequency weights used. For confi-
dence intervals see Tables C.19 and C.20, Appendix. Source: SOEP, waves 2012-2016; own
calculations.

We also break down average disposable household incomes by deciles of the
income distribution (Table 3.2, right panel). Income growth differs across deciles of
the household income distribution. We do not observe income growth in the bottom
decile, not even in 2016. The largest growth between 2014 and 2016 occurred in the
middle of the distribution (deciles 5 with 4.8% , 6 with 3.9%, 4 and 7 with 3.4%),
while there was less growth at the upper end. This explains why poverty measures
increased while the Atkinson inequality measure remained constant.

The limited impact on the distribution of disposable household incomes is partly
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driven by the fact that many households at the bottom are not affected by the minimum
wage as they are not working, they are not eligible, or they are working at higher wage
rates. To see how large the effect of the minimum wage would be within the group of
affected households, we replicate the distributional income analysis only for affected
households, i.e. with at least one member affected by the minimum wage (Tables
C.21 and C.22, Appendix).18 The poverty measures are based on the poverty line of
the entire household income distribution from above.

We observe a modest increase in median incomes over time. The mean income
fluctuates with a decrease in 2016 as does the poverty rate. The poverty gap and the
FGT(2) measure display an increase in post-reform years. However, none of these
changes are significant. In the full-compliance scenario A the mean and median in-
comes would increase slightly and the poverty rate would decrase below the 2014
level. Still, poverty gap and FGT(2) would stay above the 2014 level. In the 12e full-
compliance scenario B, the mean and median incomes would increase significantly
above the 2014 level. Poverty rate and poverty gap would undercut the 2014 level, but
insignificantly, and the FGT(2) measure would still be higher than in 2014.

In summary, even in this selective sub-sample, where we only focus on house-
holds that are actually affected by the minimum wage, and even with a 12e minimum
wage without negative side effects, the minimum wage proves to be ineffective in
poverty reduction. This holds especially with respect to the severity of poverty, mea-
sured by the poverty gap and the FGT(2) measure.

Benefit withdrawal: top-up benefits and welfare dependence

One redistributive goal of the minimum wage stated by policymakers is the reduc-
tion of in-work poverty. Individuals with regular jobs should not depend on welfare
transfers, namely on top-up benefits in addition to labor earnings (European Com-
mission, 2020b; Coalition, 2021; Deutscher Bundestag, 2014). Therefore, we analyze
changes in top-up benefits (in-work transfers) after the minimum wage reform. We,
further analyze overall social assistance transfers (ALG II) of all households in our
sample (Table 3.3), as these include welfare transfers of people who are not employed
and employment may interact with the minimum wage.19 We simulate eligibility and
amount of these transfers with the tax-transfer simulation-model, while assuming that
eligibility for benefits below 10e per month are not taken up. As a robustness we also
show transfer receipt as stated by the SOEP respondents, which is typically lower due
to non-take-up and under-reporting. The simulated transfers represent the eligibility
by the law and hence represent the neediness of the households. Therefore, they are
more informative regarding the policy goal to reduce in-work poverty.20

18Note that a 12e minimum wage would affect almost 30% of the eligible employees. However, we
still refer to the bottom 11% as affected for scenario B to allow for comparability between the results.

19Arbeitslosengeld II (ALG II) is a means tested transfer for employable individuals and their house-
holds which applies if they working age individuals are not, or no longer eligible for unemployment
insurance benefits.

20The actual transfer take-up might be more important for fiscal considerations.
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Table 3.3: Top-up benefits and welfare receipt, working-age households, 2012-2016

Top-up benefits (only working)2 Social assistance transfer (all households)

Calculated eligibility2 Stated take-up3

Year eligibility avg. transfer e/year1 eligibility avg. transfer e/year1 take-up avg. transfer e/year1

CI CI CI CI CI CI

2012 10.7 [9.8;11.5] 590 [533;644] 25.0 [23.8;26.1] 1975 [1864;2081] 9.4 [8.6;10.3] 723 [655.1;784.6]
2013 11.3 [10.4;12.1] 639 [582;692] 26.9 [25.8;28.3] 2175 [2074;2281] 10.0 [9.2;10.9] 795 [730.3;862.7]
2014 11.3 [10.3;12.2] 623 [566;680] 25.6 [24.3;27.0] 2074 [1946;2199] 10.1 [9.2;10.9] 826 [745.0;908.8]
2015 10.8 [10.0;11.8] 635 [576;702] 26.1 [24.8;27.7] 2187 [2067;2322] 9.7 [8.8;10.7] 801 [718.3;892.4]
2016 11.1 [10.2;12.1] 620 [571;677] 27.0 [25.5;28.5] 2220 [2077;2340] 10.6 [9.4;11.8] 870 [780.8;958.2]
Scenario A Full compliance scenario, minimum wage level: 8.50e per hour
2015 9.9 [9.1;10.9] 557 [499;612] 25.2 [23.9;26.6] 2103 [1985;2228]
2016 10.6 [9.7;11.5] 563 [511;619] 26.5 [25.2;27.8] 2158 [2025;2275]
Scenario B Full compliance scenario, minimum wage level: 12e per hour
2015 8.7 [7.9;9.6] 479 [429;538] 23.9 [22.5;25.3] 2005 [1885;2130]
2016 9.5 [8.6;10.3] 486 [441;533] 25.2 [23.6;26.8] 2066 [1934;2198]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment status. Equivalence weights
according to the new OECD scale and household frequency weights used. Bootstrapped confidence intervals based on 500 replications.
1 Average transfer per year is an average over the entire sample, i.e. reflecting both, the number of households eligible and the amount eligible

households receive.
2 The number of households eligible and average transfer as calculated in our model. We exclude minor transfer eligibility of less than 120e

per year.
3 The number of households eligible and average transfer as stated in the survey (SOEP).
For significance of differences see Table C.18, Appendix. Source: SOEP, waves 2012-2016; own calculations.
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We do not observe any significant reductions of top-up benefit eligibility and
average benefits in the post-reform years. Under full compliance eligibility would
have been reduced significantly in 2015. However, the simulated reduction in average
top-up transfers is not significant (scenario A).

For average social-assistance transfers of all households we neither see a reduc-
tion in eligibility nor in average transfers after the minimum wage introduction – both
numbers increase slightly, but not significantly. The patterns for stated take-up are
similar – we do not observe any significant changes.21 In the full compliance scenario,
eligibility and average transfers would be lower than in the observed post-reform years
but compared to the pre-reform year 2014 they would not decrease significantly. These
results are in line with administrative statistics on welfare receipt and top-up benefits
(Figure C.3, Appendix) and previous findings (Bruckmeier and Wiemers, 2015; Min-
destlohnkommission, 2016, 2018). Thus, benefit withdrawal due to higher earnings
induced by the minimum wage cannot explain the negligible impact of the minimum
wage on the income distribution.

Only under a higher minimum-wage level of 12e per hour with full compliance
(and zero employment effects), top-up benefit eligibility and hence in-work poverty
could be reduced significantly. Compared to 2014 eligibility would decrease by 16%
and the average transfers by 22%. However, this scenario neglects potential (dis-)
employment effects and focuses only on people who are already in employed. If we
look at the overall welfare dependence, measured by social assistance transfers, we
see that in the 12e-scenario, the eligibility and average transfers in 2016 would not
decrease significantly compared to 2014. Again, this scenario represents an upper
bound for the redistributive potential of the minimum wage as it does not incorporate
potentially negative employment effects. These findings confirm that the minimum
wage is an inefficient tool to reduce overall and in-work poverty to a large extent, given
that such a steep rise of its level yields only minor reductions in benefit dependence.

Changes in employment and working hours

Reductions in employment or working hours counteracting wage gains could be an
alternative mechanism behind limited income redistribution and persistent transfer
dependence in post-reform years. The outcomes of the counterfactual scenarios in
our previous analysis, that omit potentially negative employment effects, indicate that
this channel cannot be the main driver of the limited redistributive impact. Neverthe-
less, we want to discuss this channel in our analysis, as it makes up a large part in
the minimum-wage literature. As explained above, the observed incomes in our dis-
tributional analysis incorporate employment as a potential adjustment channel (sub-
section 3.5.3). Therefore, we assess whether employment changes at the extensive
and intensive margin contribute to this finding. First, we analyze full-time, part-time,
and marginal employment shares of household members aged 18-65 by deciles of the
household income distribution (Table C.23, Appendix) and then turn to the working

21Stated transfer take-up amounts to roughly 40% of the simulated eligibility. The actual transfer
take-up will lie slightly above this figure, see (Bruckmeier et al., 2014, 2019).
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hours in these categories. Full-time shares increase almost monotonically over the
household income distribution in all years, with the bottom two deciles having full-
time employment rates below 25%. Across years the shares remain stable for most
of the deciles. In the bottom two deciles the shares fluctuate more across years with
a significant reduction in the 2nd decile in 2016 but a significant increase in the first
decile. The total full-time employment share does not change significantly.

The part-time employment share increases up to the 3rd decile and then slowly
decreases again. Across years these shares fluctuate in all deciles. For some deciles
we observe a significant increase, and for others significant decreases in part-time
employment in post-reform years. However, these changes are not correlated with
the share of households affected by the minimum wage. Overall, shares of house-
holds with part-time employees increased significantly compared to pre-reform years.
Marginal employment is observed in all deciles of the household income distribution,
but mostly in deciles 2 and 3. It is lowest in the top two deciles. The overall share of
marginal employment remained roughly stable across years. There are no clear trends
across the distribution that correlate with households affected by the minimum wage.

We next investigate the intensive margin of employment by breaking down aggre-
gate working hours of each household by the three employment categories and taking
means over households by deciles of the income distribution (Table C.24, Appendix).
We observe a significant increase in overall working hours for full-time employment in
2016 compared to 2014. There is no significant reduction in hours in any decile com-
pared to 2014. In 2015 only the 7th decile experienced a significant dip in full-time
hours of work which was recovered in the following year. Among part-time employ-
ees hours of work are lowest in the bottom deciles and the top decile of the disposable
income distribution. We find a significant increase in overall part-time hours between
2013 and 2014, i.e. before reform. There is no significant change in part-time hours
after the minimum wage came into effect. Mean hours of work in marginal employ-
ment are relatively evenly distributed across income deciles, except for the top decile
where they are below average in most years. Moreover, mean marginal hours fluctu-
ate in most deciles without clear trends over time. Overall, marginal hours decreased
significantly in 2016 compared to 2014. However, the decrease is smaller than the
significant jump from 2013 to 2014 before the minimum wage reform.

In summary, changes in employment levels provide no indication for significant
disemployment effects due to the minimum-wage reform, neither overall nor differ-
entially across deciles. This is consistent with previous studies that found short-run
employment effects to be insignificant or limited to inflows (Bruttel, 2019; Caliendo
et al., 2019). We have limited evidence for a substitution from marginal to part-time
employment which also confirms previous findings (Garloff, 2019; Schmitz, 2019;
Bonin et al., 2019; Bachmann et al., 2017; vom Berge and Weber, 2017), albeit only
significant for the rise in part-time work in 2016. Different from Burauel et al. (2019a)
and Caliendo et al. (2017), we do not find decreases in working hours in our sample,
neither overall nor differentially across deciles.22 Adjustments at the extensive or

22This is not necessarily a contradiction, as we do not consider any positive employment effects
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intensive margin of employment induced by the minimum wage cannot explain the
limited pass-through of wage increases to disposable outcomes limiting the impact of
the minimum wage on income redistribution and poverty reduction.

3.7 Discussion and conclusion

This paper on the redistributive impact on disposable household incomes closes a gap
in the minimum wage literature on European welfare states. The case is of general
interest as the minimum wage introduction in Germany offers one of the more sizable
policy experiments among European labor markets in recent years. A statutory mini-
mum wage with substantial bite, particularly in certain regions and for specific groups
of employees, was introduced in an economy with a generous welfare state. In recent
years policy-makers increasingly state redistributive motives in support of harmoniz-
ing or increasing minimum wage levels (European Commission, 2020b; Council of
the European Union, 2021).

We show that a uniform federal minimum wage is not an effective tool for income
redistribution and the reduction of (in-work) poverty when the correlation between
low hourly wages and disposable incomes is as weak as in Germany. Under these
circumstances the minimum wage does not target poor households because low-wage
earners are not concentrated at the bottom, but spread out over the middle and higher
parts of the household income distribution. This means that the minimum wage re-
duces wage inequality at the the bottom of the individual wage distribution, but not
poverty and income inequality. Consequently, we see only marginal reductions in top-
up benefits and no decrease in welfare dependence in the data. The withdrawal of
welfare transfers does hardly contribute to the limited pass-through of wage effects
to disposable incomes. The same holds for employment levels and working hours of
low-income households which did not decrease systematically and significantly. We
further show that, under those conditions, a higher minimum wage level would not
increase its efficiency for poverty and inequality reduction, even if we abstract from
potentially negative employment effects. These findings on a weak link between low-
wage earners and low-income households confirm studies for the U.S. (Burkhauser
and Finegan, 1989; Burkhauser et al., 1996; Burkhauser and Sabia, 2007; Sabia and
Burkhauser, 2010; Neumark, 2015) and other Non-European countries (Kawaguchi
and Mori, 2009; Sotomayor, 2021).

What do our results mean for the policy discussion? A uniform federal min-
imum wage cannot reduce income inequality and poverty in a labor market where
low-wage earners are distributed across the entire household income distribution and
non-employment is prevalent among the lowest household incomes. Raising the fed-
eral minimum wage level does not improve its redistributive efficiency with respect to
disposable household incomes. In light of current plans about substantial minimum
wage increases, our findings serve as a cautionary tale. Results on the underlying

which could have been there in absence of a reform.
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mechanisms rather indicate severe employability problems for individuals in house-
holds with the lowest incomes and job insecurity among low-wage earners (Halleröd
et al., 2015). In order to strengthen the relationship between low wages and incomes,
the labor market attachment of individuals in the bottom deciles of the income distri-
bution must be improved, for example by strengthening their employability (Rovny,
2014), by enhancing work incentives (Vandelannoote and Verbist, 2020), or by ad-
dressing labor market risks driven by long-term processes like skill-biased technolog-
ical change (Brülle et al., 2019). Sustainable labor market attachment of low-wage
earners is a necessary (pre-)condition for minimum wages to become more effective
in reducing income inequality and (in-work) poverty.



Appendix A

Appendix to Chapter 1

A.1 Econometric approach for the strategy estimation

Recall that a subject using a pure strategy acts equivalently whenever a given state is
reached and she uses the same pure strategy across all supergames. A subject using
a mixed strategy uses a pure strategy within supergames but randomizes over pure
strategies prior to supergames. A subject using a behavior strategy may randomize
each round and thus deviate from pure strategies even within supergames. These def-
initions provide a basis for identification, but identification is made difficult by the
standard assumption that choice is stochastic. For example, a single deviation from a
given pure strategy, over say 20 observations, is intuitively not considered sufficient
evidence against purity of strategies. Otherwise, the case for behavior strategies would
be trivial, but how can this intuition be made formally precise—in a manner that al-
lows us to econometrically distinguish “noisy” pure, mixed, and behavior strategies?

The distinction is achieved efficiently using the Markov-switching models known
from empirical finance and empirical macroeconomics in conjunction with the robust
likelihood-ratio tests of Schennach and Wilhelm (2017). Markov-switching models
generalize the finite-mixture and random-switching models used in previous analyses
of repeated game strategies.1 They allow us to capture a potentially heterogeneous
group of agents (in our case, subjects potentially playing different strategies), where
each agent is characterized by a “state of mind” (the strategy to be played), and agents
may change their states of mind over the course of time, but both states and transi-
tions are latent and thus not directly observable. Let us refer to Ansari et al. (2012),
Breitmoser et al. (2014) and Shachat et al. (2015) for earlier applications in behav-
ioral analyses. The identifying assumption is that state transitions follow a Markov
process. This generalizes the finite mixture model, with degenerate transition prob-

1The approach of using mixture models in order to uncover decision rules in experimental data
has been established by Stahl and Wilson (1994) and El-Gamal and Grether (1995) and subsequently
used in many analyses of level-k reasoning and stochastic choice, see e.g. Houser and Winter (2004)
and Houser et al. (2004), to unravel individual decision rules. A special case of finite mixture model-
ing is the Strategy Frequency Estimation Method (SFEM) employed by Dal Bó and Fréchette (2011),
Fudenberg et al. (2012), Rand et al. (2015), Dal Bó and Fréchette (2015), Fréchette and Yuksel (2017).
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abilities, and the random switching model, with constant choice probabilities for the
strategies. Given this, estimation proceeds by maximum likelihood using an EM al-
gorithm. Model adequacy is evaluated using ICL-BIC (Biernacki et al., 2000), and
model differences are evaluated using the Schennach-Wilhelm test, which captures
that all models may be arbitrarily nested and misspecified. Finally, we allow for
stochastic choice in the form of trembles (after all histories of play) following Har-
less and Camerer (1994), i.e. in each round the minimal probability of any action is
equal to γ ≥ 0 where γ is a free (noise) parameter in the estimation.

A.1.1 Markov-switching models and ICL-BIC

The Markov-switching model builds on the simpler and more restrictive finite mixture
model, which has been established in the experimental literature by Stahl and Wilson
(1994) and can be used to empirically identify a finite number K of strategies with pa-
rameter vectors θk. The log-likelihood function to be maximized for the finite mixture
model is

lnL(θ,ρ|O) = log

(
∏
s∈S

p(os|θ,ρ)

)
= ∑

s∈S
ln ∑

k∈K
ρk pk(os|θk), (A.1)

with observations O, ρk denoting the relative frequency of strategy k, and pk(os|θk)
denoting the probability that player s chooses action os given he plays strategy k 2.

A way to model regime switches is to replace the implicit latent indicator vari-
able in finite mixture models (indicating the discrete types) with a hidden Markov
chain (Frühwirth-Schnatter, 2006). The central assumption characterizing the learn-
ing process in Markov models is that the type of a player (or its strategy in our context)
in the next period can only depend on its type in this period. More precisely if kt is
the type in period t then: Pr(kt+1|kt ,kt−1,kt−2, ...,k1) = Pr(kt+1|kt), where the type is
hidden and cannot be observed directly.3 What we do observe is the action ot , which
in turn depends on the type kt in t only: Pr(ot |kt ,ot−1,kt−1, ...,k1,o1) = Pr(ot |kt) (c.f
Bilmes et al. (1998)). It implies that transitions between states are independent of time
t. This assumption might be quite restrictive. For example if we want to assume that
the probability of switching to a new strategy is more likely later in the game than
at the beginning. Nevertheless, we can use memory-2 or memory-3 strategies if we
define the state ω as a history of more than one past outcome and condition the strat-
egy on this history of outcomes. Moreover, it is possible to interact time dependent
components with switching probabilities.

Let Kt denote the state at time t ∈ 1,2, ...,T and σkk′ = Pr(Kt+1 = k′|Kt = k)
define the transition probability from k to k′ which is independent from t, as pointed.
So σ is a (K×K) transition matrix containing transition probabilities for every pair of

2For the memory-1 case pk(os|θk) = ∏t(σωs,t (k))
os,t (1−σωs,t (k))

1−os,t with strategy σωs,t (k)
os,t for

state ωs,t(k)1−os,t .
3Therefore also known as the Hidden Markov Model (HMM).
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states, where all entries are positive and each row sums up to 1. Moreover, the state-
paths are denoted by κ ∈ KT with Pr(κ) conditional on initial weights ρ and transition
probabilities σ. The probability of observing os,t conditional on subject s being type k
in this period is Pr(os,t |θ,k). The likelihood function is:

lnL(ρ,σ,θ|O) = ∑
s∈S

ln ∑
κ∈KT

Pr(κ)∏
t≤T

Pr(os,t |θ,κ(t), t) (A.2)

Due to the introduction of the transition matrix σ the number of parameters to be esti-
mated increases dramatically. Moreover, with a naive estimation approach we would
have to consider all possible state paths and be very time consuming. Therefore we
choose to apply a backward-forward algorithm to calculate posteriors for estimation
with the expectation maximization (EM) algorithm.

The idea of the EM-algorithm is to conduct two steps the E-step and the M-
step iteratively. This way we split up every optimization step into many steps which
simplifies complexity and consequently speeds up computations. In the E-step we
evaluate the conditional expectation of the log-likelihood given our data O and the
current parameter vector and then maximize over a reduced set of free parameters in
the M-Step. The number of possible types k is pre-defined as well as the structure of
their mixing parameters θk.

In the E-step we need to compute for all subjects for all time periods the poste-
rior probability of component inclusion (being a specific type) and the probability to
switch between two types. An efficient way to calculate those posterior probabilities is
to built up on the backward-forward. First, we have the forward procedure, where we
define the (joint) probability of observing the partial sequence os1, ...,ost and ending
up with type k at time t:

αsk(t) = Pr(Os1 = os1, ...,Ost = ost ,Kt = k) (A.3)

Recursively, we can then define:

1. αsk(1) = ρkPr(os1|θ,k) (A.4)

2. αsk′(t +1) =

[
∑
k

αsk(t)σkk′

]
Pr(ost+1|θ,k′)

3. Pr(os) = ∑
k∈K

αsk(T )

Second, for the backward procedure we define the probability of ending in the partial
sequence ost+1, ...osT given that we have started at type k at time t.

βsk(t) = Pr(Ost+1 = ost+1, ...,OT = oT |Kt = k) (A.5)
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Again we can define βsk(t) efficiently (Bilmes et al., 1998)

1. βsk(T ) = 1 (A.6)

2. βsk(t) = ∑
k′∈K

σkk′Pr(ost+1|θ,k′)βsk′(t +1)

3. Pr(os) = ∑
k∈K

βsk(1)ρkPr(os1|θ,k)

We then take advantage of the fact that the unconditional probability Pr(os) can
be defined using αsk(t) or βsk(t) to calculate the posterior probabilities γsk and ζskk′ .
The former is the conditional probability of being type k at time t given observations
os:

γsk(t) = Pr(Kt = k|os) =
Pr(os,Kt = k)

Pr(os)
=

Pr(os,Kt = k)
∑k′∈K Pr(os,Kt = k)

=
αsk(t)βsk(t)

∑k′∈K αsk′(t)βsk′(t)
,

(A.7)

Using γsk we can define the probability of having type k in t and type k′ in t + 1
conditional on our observations as

ζskk′(t) = Pr(Kt = k,Kt+1 = k′|os) =
Pr(Kt = k|os)Pr(ot+1,...,T ,Kt+1 = k′|Kt = k′)

Pr(ot+1,...,T |Kt = k)
(A.8)

=
γsk(t)σkk′Pr(os,t+1|θ,k′)βsk′(t +1)

βsk(t)

(cf. Bilmes et al. (1998)).

In the M-step we maximize for each k and t ≤ T the function

LLkt(θ
′
k) = ∑

s∈S
γsk(t) lnPr(ost |θ′)→ max

θ′kt

! (A.9)

to yield the updated θ+1 when assuming that θkt does not affect the likelihood of other
components k. If it does, we need to maximize ∑k′∈K LLkt(θ

′)→max
θ′

! and yield θ+1.4

Moreover, we update ρ and σ using the posteriors from above and yield

ρ
+1
k =

1
n ∑

s∈S
γsk(1) and σ

+1
kk′ =

∑s∈S ∑t<T ζskk′(t)
∑s∈S ∑t<T γsk(t)

(A.10)

The two steps are iterated until the distance between (θ,ρ,σ) and (θ+1,ρ+1,σ+1) gets
small.

Estimation proceeds by a maximum likelihood, as usual, but as is well-known,
the larger the number of parameters, the larger a model’s capacity to fit data—and
implicitly, the larger its fallacy to overfit the data. This is conventionally captured by

4θ may depend on t but does not have to.
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evaluating model adequacy based on information criteria such as BIC, which penalize
for the degrees of freedom in a theoretically adequate manner. Mixture and switch-
ing models additionally contain freedom in defining the components of the subject
pool, i.e. the number of subject types, which provides an additional source for over-
fitting aside from the number of parameters used. Following (Biernacki et al., 2000),
these concerns are addressed using the information-classification likelihood Bayes-
information criterion (ICL-BIC), a criterion that penalizes both model complexity and
the failure of the mixture model to provide a classification in well-separated strat-
egy clusters. We address the observation that modeling mixtures of pure, mixed, and
behavior strategies induces sophisticated nesting structures, and the concern that in-
deed all models may be misspecified by evaluating model differences using the novel
Schennach-Wilhelm likelihood ratio tests (Schennach and Wilhelm, 2017). Finally,
we capture the intuition that choice is stochastic by allowing for trembles in the sense
of Selten (1975): Each agent of a player picks any given action with probability no less
than e > 0. This approach follows (Breitmoser, 2015) and, in relation to the logistic-
error approach proposed by (Dal Bó and Fréchette, 2011), it has the advantage that it
does not perturb choice probabilities of subjects that originally randomize already.

A.1.2 Validity

To demonstrate the validity of our approach to distinguish pure, mixed, and behavior
strategies, we first run it on different sets of simulated data: For each of the three
conjectures, we simulate corresponding data sets and verify if we can identify the un-
derlying conjecture based on model-fit evaluations using ICL-BIC. As for pure strate-
gies, we consider a population where AD, Grim, and TFT have share 0.25 each, AC
has share 0.15, and WSLS has share 0.1.5 Drawing from this population, we simulate
for three different discount factors δ = 0.6, δ = 0.75, and δ = 0.9 each 100 data-sets
with 50 subjects6 and enough supergames to have 40 decisions per subject past round
1.

Here, δ = 0.75 corresponds to the average supergame in our sample, δ = 0.6
and δ = 0.9 serve as robustness check approaching the upper and lower bound of
δ in our data. The tremble parameter is γ = 0.1, which is of the proportion typically
estimated in the literature. Then we determine the average ICL-BICs of the three basic
econometric models, finite-mixture, random-switching, and semi-grim7, across those
100 data-sets and compare their performance using simple matched-pairs Wilcoxon
tests of the ICL-BICs. Table A.1 reports the results.

Under the pure-strategy conjecture, the true model of the population is the finite-
mixture model. Our analysis should therefore identify it as the best fitting model if

5We include WSLS here and in the analysis below, as a number of studies established its evolution-
ary robustness, see Nowak and Sigmund (1993) and Imhof et al. (2007), indicating that it should be
considered a promising candidate.

6Robustness-checks with 100 and 200 subjects are provided in Table A.2.
7In this case, without allowing for subject heterogeneity, the semi-grim model simply determines

the average cooperation rates in each state.
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Table A.1: Can we econometrically distinguish pure, mixed and behavior strategies?

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 1227.92 ≪ 1706.67 ≪ 1862.09
δ = 0.75 1045.68 ≪ 1329.11 ≪ 1412.36
δ = 0.9 950.68 ≪ 1061.13 ≫ 1011.52

Mixed-Strategy Conjecture
δ = 0.6 1842.11 ≫ 1725.16 ≪ 1875.59
δ = 0.75 1472.24 ≫ 1334.32 ≪ 1415.32
δ = 0.9 1228.48 ≫ 1073.86 ≫ 1023.88

Behavior-Strategy Conjecture
δ = 0.6 2068.31 ≫ 1720.06 ≈ 1728.46
δ = 0.75 1521.77 ≫ 1262.84 ≫ 1202.79
δ = 0.9 1049.64 ≫ 944.11 ≫ 732.88

Note: Analysis based on simulated data sets comprising 50 subjects and 40 observations (past round
1) per subject, reporting the average ICL-BIC of the classes of fitted models. Here, ≫,≪ indicate
significance of differences (in Wilcoxon matched-pairs tests of the simulated ICL-BICs) at α = 0.01
and >,< indicate significance at α = 0.05.

and only if the simulated subjects play pure strategies. The first three rows of Table
A.1 show, that this is clearly the case: We obtain significantly (at α= 0.01) lower ICL-
BICs for the finite-mixture model than for the other two models for all three values of
δ. We can therefore identify pure strategies with our approach.

We repeat the same exercise for simulated subject pools playing mixed strate-
gies and pools playing semi-grim strategies. The mixed strategy population is based
on the same pure strategies and prior probabilities as above but assuming subjects
redraw a pure strategy prior to each supergame. The semi-grim strategy is of the
form (0.4,0.9,0.3,0.3,0.1), which approximates the average cooperation probabili-
ties across all experiments in our data set.

The results displayed in the bottom rows of Table A.1 indicate that distinguishing
between mixed-strategy and semi-grim populations is more difficult. When analyzing
long supergames (δ= 0.9), there appears be to a bias towards detecting semi-grim, and
analyzing short supergames (δ = 0.6) there appears to be a bias towards the random-
switching model (mixed strategies). Our data set contains more observations for short
supergames satisfying δ ≤ 0.6 than for long supergames satisfying δ ≥ 0.9, see Tables
A.9 and A.10 in the appendix. Moreover, the average δ weighed by individual ob-
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servations is around 0.73 in the first halves of sessions and 0.74 in the second halves,
approximating the case where all conjectures are well-identified. Thus, in aggregate
there may be a slight bias against semi-grim in the analysis, but aggregating across a
large number of subject pools with δ = 0.75 on average, our method seems suitable to
reliably identify the correct model.
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Table A.2: Can we econometrically distinguish pure, mixed and behavior strategies?
Robustness check for larger data

(a) Intermediate data set: 100 subjects

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 2450.06 ≪ 3430.25 ≪ 3746.59
δ = 0.75 2093.11 ≪ 2669.43 ≪ 2841.81
δ = 0.9 1891.42 ≪ 2120.93 ≫ 2042.6

Mixed-Strategy Conjecture
δ = 0.6 3693.23 ≫ 3454.03 ≪ 3762.16
δ = 0.75 2948.44 ≫ 2673.63 ≪ 2835.13
δ = 0.9 2457.96 ≫ 2146.63 ≫ 2058.91

Behavior-Strategy Conjecture
δ = 0.6 4132.82 ≫ 3436.66 ≪ 3463.7
δ = 0.75 3047.1 ≫ 2521.5 ≫ 2406.99
δ = 0.9 2105.78 ≫ 1888.58 ≫ 1468.14

(b) Large data set: around 200 subjects

Model fitted to the data
Finite Random

Mixture Switching Semi-Grim

Pure-Strategy Conjecture
δ = 0.6 4908.54 ≪ 6870.11 ≪ 7498.08
δ = 0.75 4175.89 ≪ 5329.73 ≪ 5675.49
δ = 0.9 3791.25 ≪ 4252.75 ≫ 4103.17

Mixed-Strategy Conjecture
δ = 0.6 7385.62 ≫ 6909.42 ≪ 7521.3
δ = 0.75 5923.99 ≫ 5371.1 ≪ 5693.22
δ = 0.9 4926.83 ≫ 4298.72 ≫ 4120.77

Behavior-Strategy Conjecture
δ = 0.6 8266.47 ≫ 6877.24 ≪ 6927.44
δ = 0.75 6092.37 ≫ 5037.9 ≫ 4805.57
δ = 0.9 4220.99 ≫ 3787.16 ≫ 2938.41

Note: Analysis based on simulated data sets comprising 50 subjects and 40 observations (past
round 1) per subject, reporting the average ICL-BIC of the classes of fitted models. Here,
≫,≪ indicate significance of differences (in Wilcoxon matched-pairs tests of the simulated
ICL-BICs) at α = 0.01 and >,< indicate significance at α = 0.05.
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A.2 Robustness check: Memory-2

We investigate memory length using a data mining approach similar to above. To this
end, we extend the set of pure strategies to capture possible interdependence of actions
with choices in t−2 and determine the best-fitting specification for each treatment. We
then evaluate these best fitting specifications, treatment by treatment, against the above
memory-1 model AD+SG, i.e. against the conjecture that all cooperating subjects
homogeneously play a simple behavior strategy.

Specifically, we allow for two alternative approaches of extending the set of memory-
1 strategies to memory-2. One approach follows Fudenberg et al. (2012), who intro-
duced lenient and resilient variants of the pure memory-1 strategies, i.e., strategies that
punish only after the second deviation or that punish for two rounds instead of one,
respectively. Let us note that such variations in punishment behavior also follow if
punishment is random as in memory-1 behavior strategies, which were not considered
by Fudenberg et al. (2012). This first approach is applicable in particular to generalize
pure memory-1 strategies, by providing a specific list of memory-2 generalizations.
The other approach is novel and more generally allows the cooperation probabilities
in round t to depend on the behavior of one or both players in t−2. Here, we allow for
three different specifications: cooperation probabilities may be a function of the oppo-
nent’s choice in t −2 (TFT-Scheme), a function of whether both players cooperated in
t −2 or not (Grim-Scheme), or a function of the entire choice profile in t −2 (General
scheme). This approach is parametric and suitable in particular to extend generalized
pure strategies of type II (or, behavior strategies) from memory-1 to memory-2. As
indicated, we set up this deliberately large number of ways to model memory-2 only
to post-hoc pick the best of them for an evaluation against the memory-1 semi-grim
specification.

Table A.3 summarizes the results. First, we mine for mixtures of pure strategies,
based on the list of 10 strategies8 of Fudenberg et al. (2012). Given the above results,
we assume that subjects do not switch strategies within half-sessions, as this comes
without loss of descriptive adequacy for experienced subjects and only little loss for
inexperienced subjects (for whom, however, memory-2 will turn out to be of negligi-
ble relevance). For each treatment, we determine the most adequate combination of
strategies from a list of five possible combinations of Fudenberg et al.’s strategies, thus
providing a selection of the best of 532 models overall. The resulting model (Column
“Best Pure M1&M2” in Table A.3) fits highly significantly worse than the selection
of pure and generalized-pure strategies with memory-1 defined above (“M1” in Ta-
ble A.3). We may therefore discard the possibility that subjects play pure strategies
(with noise) of either memory-1 or memory-2, in favor of the possibility that they play
generalized-pure strategies allowing for non-trivial randomization in at least one state.

Second, we take the above memory-1 model (“M1” in Table A.3) as our benchmark
and ask if equipping the pure or generalized pure strategies of type II with memory-

8These strategies are TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT as defined in Fudenberg
et al. (2012) and also in Table A.7 in the Appendix.



112
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
TO

C
H

A
PT

E
R

1

Table A.3: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are estimated treatment-by-
treatment. The resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure
M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

First halves per session
Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 ≪ 884.86
Blonski et al. (2011) 1244.76 ≫ 1121.17 ≈ 1120.87 ≫ 1069.28 ≈ 1069.56 ≈ 1069.56 ≈ 1069.58 ≈ 1105.98
Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.17 ≈ 635.04 ≈ 635.04 ≈ 635.04 ≈ 653.05
Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.93 ≪ 6904.79 ≈ 6904.79 ≈ 6904.79 ≪ 7391.89
Dal Bó and Fréchette (2015) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.59 ≪ 8423.8 ≈ 8431.51 ≈ 8434.93 ≪ 8893.78
Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.37 ≈ 787.71 ≈ 787.71 ≈ 787.71 < 863.47
Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69

Pooled 25434.21 ≫ 24972.71 ≈ 24931.86 ≈ 24779.85 ≪ 25750.84 ≈ 25757.44 ≈ 25758.38 ≪ 27115.39

Second halves per session
Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 ≪ 540.47
Blonski et al. (2011) 1518.54 ≫ 1395.94 ≈ 1393.41 ≫ 1346.79 ≈ 1398.5 ≈ 1398.5 ≈ 1398.5 < 1564.48
Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 726.04 ≈ 731.81 ≈ 732.27 ≈ 741.2
Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.69 ≈ 5195.88 ≈ 5195.88 ≈ 5195.88 ≪ 5960.78
Dal Bó and Fréchette (2015) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 ≪ 8172.63 ≈ 8177.46 ≈ 8177.46 ≪ 9143.98
Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.84 ≈ 618.5 ≈ 618.89 ≈ 619.9 ≈ 648.55
Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43

Pooled 22669.91 ≫ 22258.14 ≈ 22153.69 ≈ 22097.67 ≪ 22811.34 ≈ 22828.13 ≈ 22848.49 ≪ 25177.57

Note: Results treatment-by-treatment are in the appendix. The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as above, see Table 1.3. “M2” (“M1”)
denotes strategies, whose actions may depend on actions in t −2 and t −1 (t −1 only). The supplements “General”, “TFT”, “Grim” indicate whether parameters of behavior strategies may depend on: all
four possible histories in t −2 (M2 “General”), whether the opponent cooperated in t −2 (M2 “TFT”), or whether there was joint cooperation in t −2 (M2 “Grim”). Pure M2 strategies do not have such free
parameters. Columns 1-3 contain one memory-2 version of semi-grim each. Column 4 is memory-1 semi-grim. Columns 5-7 are memory-2 and memory-1 versions of generalized prototypical strategies.
The last column contains the best fitting combinations of a set of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2, 2TFT, 2PTFT) for definitions see Table
A.7 in the Appendix.
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2 improves goodness-of-fit. Again, we do so treatment by treatment. That is, for
each treatment, we take the best-fitting of the 13 memory-1 models discussed above,
the best of the five pure memory-2 strategy combinations following Fudenberg et al.
(2012), and the best of the four generalized pure strategies (type II) after allowing for
them to be of memory-2 following either the TFT scheme or the Grim scheme, and
then take the best of these 22 models overall. The results are provided in the columns
M1+M2”TFT” and M1+M2”Grim” of Table A.3: After allowing for generalized pure
strategies as done here, allowing for memory-2 has virtually zero impact for inexperi-
enced subjects and some but only insignificant impact for experienced subjects.9 This
indicates that the appearance of memory-2 is indistinguishable from the parametri-
cally simpler notion of randomization as in generalized-pure strategies. Further, all of
these data-mined models still fit significantly worse than the simple AD+SG that stays
free from post-hoc modeling choices (column 4 of Table A.3). Considering that the
best of 2232 models, comprising all of the key ideas expressed in behavioral analyses
of repeated games, does not improve on this single model now strongly indicates that
subjects actually play behavior strategies.

Third, we evaluate whether these behavior strategies possibly have memory-2. That
is, we compare the simple AD+SG memory-1 version with the three generalizations
to memory-2 introduced above. The TFT-scheme allows the cooperation probabilities
to be functions of the opponent’s action in t −2, the Grim-scheme allows them to be
functions of whether both subjects cooperated in t − 2, and the General scheme of
all four possible states in t − 2. The results are report in the three left-most columns
of Table A.3 and appear clear-cut: None of the memory-2 extensions improves on
describing behavior by the simple memory-1 semi-grim strategy. Indeed, the finer
the memory-2 ramifications, the worse the model adequacy (after accounting for the
additional degrees of freedom). These results are additionally compatible with a result
of Breitmoser (2015) who verified the Markov assumption by testing whether subjects
systematically deviate from memory-1 strategies after particular histories in memory-
2. We summarize these observations as follows.

Result 6 (Memory-2). Model adequacy does not improve by equipping subjects with
memory-2, neither for (generalizations of) pure strategies nor for semi-grim.

A.3 Further details and results on the structural anal-
ysis of preferences and beliefs

Our objective is to examine to what extent received models are compatible with the
observation that the (sub-)population of cooperating subjects consists of two compo-

9One reason for the good performance of generalized memory-1 strategies compared to the gener-
alized memory-2 strategies is that allowing for first round randomization seems essential. However,
when we abstract from first rounds, as done in an earlier draft (available from the authors), we obtained
a similarly bad fit for generalized memory-2 strategies compared to generalized memory-1 strategies
(both type-II generalization).
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nents, cautious cooperators and strong cooperators, who play the mildly treatment-
dependent strategies estimated above. For clarity, the estimated strategies are listed
in Table A.4. In the structural analysis, we do not include defecting subjects, as their
behavior is easily rationalizable across treatments. Further, we do not seek to model
the relative shares of cautious cooperators and strong cooperators, since the shares
seem closely related to existing predictors of cooperation. The actual strategies leave
us with the remaining part of our original research question to understand behavior in
the repeated PD: How can we rationalize this behavior?

In order to introduce the requisite notation in a general setting, let us consider a player
using strategy σ (as above, a mapping from memory-1 states to probabilities of coop-
eration) with initially arbitrary beliefs about the possibly types of opponents. The set
of opponents’ types is K, and opponents of type k ∈K play strategy τk. The prior belief
of facing opponent type k ∈ K is denoted ρk, and given history h, the posterior belief
that the opponent is of type k ∈ K is denoted as Pr(k|h). Obviously, this posterior is a
function of the prior belief (K,ρ,τ), which we shall make explicit in the notation be-
low. Define τ = {τk}k. The expected payoff of playing a ∈ {c,d} after history h, over
the present and all subsequent rounds of the indefinitely repeated game, given one’s
own continuation strategy σ and the opponent’s strategy τk, is denoted as Π(a|h,σ,τk).
Holding the belief Pr(k|h) fixed, the expected payoff of playing a ∈ {c,d}, given σ

and τ, can be written as

Π
0(a|h,σ,K,ρ,τ) = ∑

k∈K
Pr(k|h,K,ρ,τ) ·Π(a|h,σ,τk). (A.11)

Assuming logistic errors and precision λ ≥ 0, the probability of observing action a ∈
{c,d} in state ω is thus

Pr(a,ω|σ,K,ρ,τ) =
exp{λ ·Π0(a|ω,σ,K,ρ,τ)}

exp{λ ·Π0(c|ω,σ,K,ρ,τ)}+ exp{λ ·Π0(d|ω,σ,K,ρ,τ)}
.

(A.12)

Now, let the estimated population be described by the two types (ρ̂cautious, σ̂cautious)
and (ρ̂strong, σ̂strong), and let the underlying data set consist of n(a,ω) observations of
action a in state ω. Allowing cautious and strong cooperators to hold different beliefs,
the log-likelihood of a belief model (ρ,τ,K) with respect is

LL(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · logPr(a,ω|σ̂cautious,Kc,ρc,τc)

+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · logPr(a,ω|σ̂strong,Ks,ρs,τs).

We maximize this log-likelihood using the same algorithms as above (first NEWUOA
and Newton-Raphson), where the free parameters are those of the utility models de-
scribed below.
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Table A.4: Estimated cooperation probabilities and shares of the identified player
types

Defectors Cautious Coop. Strong Coop. Continuation of Coop.
Experiment/Treatment δ−δ∗ Share ε Share σ /0 Share σ /0 σcc σcd/dc σdd

First halves per session
DF11–6 -0.32 0.487 0.016 0.47 0.181 0.05 0.887 0.922 0.398 0.078
DF15–4 -0.32 0.591 0.026 0.39 0.263 0.02 0.99 0.895 0.356 0.105
BOS11–9 -0.3 0.366 0 0.59 0.304 0.05 0.99 0.946 0.201 0.054
BOS11–15 -0.15 0.839 0.008 0.08 0.196 0.08 0.197 0.999 0.224 0.001
DF11–7 -0.11 0.308 0.018 0.4 0.123 0.29 0.43 0.894 0.324 0.106
DF11–22 -0.07 0.316 0.013 0.42 0.212 0.27 0.568 0.916 0.383 0.084
DF15–20 -0.07 0.276 0.01 0.61 0.247 0.11 0.882 0.921 0.322 0.079
BOS11–14 -0.05 0.189 0.203 0.73 0.069 0.08 0.478 0.991 0.123 0.009
BOS11–26 -0.05 0.174 0.222 0.62 0.112 0.21 0.831 0.984 0.171 0.016
DRFN08–10 -0.05 0.188 0.036 0.62 0.438 0.19 0.965 0.948 0.178 0.052
BOS11–30 0.07 0.648 0.062 0.21 0.484 0.14 0.99 1 0 0
BOS11–31 0.07 0.33 0.027 0.27 0.256 0.4 0.895 0.977 0.512 0.023
BOS11–16 0.08 0.051 0.5 0.49 0.251 0.46 0.898 0.95 0.178 0.05
BOS11–27 0.08 0.502 0.01 0.35 0.373 0.15 0.99 0.887 0.448 0.113
D05–18 0.08 0.096 0.045 0.36 0.144 0.55 0.782 0.86 0.286 0.14
D05–19 0.08 0.233 0.01 0.44 0.289 0.33 0.956 0.914 0.335 0.086
DF15–33 0.08 0.279 0.025 0.55 0.291 0.17 0.898 0.929 0.368 0.071
DRFN08–11 0.08 0.271 0.052 0.39 0.468 0.34 0.908 0.931 0.329 0.069
DF11–8 0.11 0.251 0.01 0.32 0.204 0.43 0.699 0.906 0.419 0.094
DF15–5 0.11 0.296 0.095 0.31 0.458 0.39 0.947 0.933 0.309 0.067
BK12–28 0.13 0.143 0.077 0.47 0.262 0.39 0.867 0.916 0.289 0.084
DF15–35 0.13 0.169 0.167 0.3 0.076 0.54 0.833 0.972 0.417 0.028
DF11–23 0.14 0.21 0.08 0.25 0.288 0.54 0.817 0.951 0.458 0.049
KS13–12 0.15 0.224 0.022 0.31 0.431 0.47 0.911 0.932 0.335 0.068
BOS11–17 0.18 0.569 0.298 0.14 0.036 0.29 0.75 1 0.383 0
STS13–13 0.19 0.152 0.074 0.33 0.275 0.52 0.892 0.919 0.409 0.081
DO09–32 0.23 0.22 0.1 0.31 0.283 0.47 0.905 0.901 0.373 0.099
FY17–25 0.31 0.119 0.01 0.32 0.581 0.56 0.984 0.926 0.245 0.074
DF11–24 0.36 0.112 0.189 0.37 0.597 0.51 0.948 0.949 0.356 0.051
DF15–21 0.36 0.186 0.088 0.24 0.407 0.58 0.926 0.942 0.467 0.058
FRD12–29 0.48 0.062 0.023 0.3 0.417 0.63 0.983 0.97 0.469 0.03
AF09–34 0.59 0.15 0.5 0.53 0.648 0.32 0.988 0.911 0.41 0.089

Second halves per session
DF11–6 -0.32 0.687 0.01 0.27 0.093 0.05 0.643 0.937 0.553 0.063
DF15–4 -0.32 0.635 0.009 0.28 0.102 0.08 0.72 0.94 0.234 0.06
BOS11–9 -0.3 0.166 0.074 0.53 0.01 0.3 0.718 0.999 0.129 0.001
BOS11–15 -0.15 0.008 0.007 0.9 0.001 0.09 0.001 0.998 0.001 0.002
DF11–7 -0.11 0.399 0.009 0.41 0.178 0.19 0.615 0.864 0.473 0.136
DF11–22 -0.07 0.313 0.01 0.46 0.158 0.23 0.818 0.963 0.465 0.037
DF15–20 -0.07 0.392 0.01 0.4 0.179 0.21 0.856 0.943 0.42 0.057
BOS11–14 -0.05 0.002 0.01 0.95 0 0.05 0.491 0.987 0.3 0.013
BOS11–26 -0.05 0.43 0.008 0.39 0.365 0.18 0.748 0.935 0.291 0.065
DRFN08–10 -0.05 0.455 0.01 0.4 0.342 0.14 0.908 0.968 0.252 0.032
BOS11–30 0.07 0.339 0.01 0.57 0.356 0.09 0.99 0.963 0.201 0.037
BOS11–31 0.07 0.449 0.017 0.23 0.139 0.33 0.88 0.979 0.484 0.021
BOS11–16 0.08 0.11 0.371 0.43 0.271 0.46 0.977 0.966 0.208 0.034
BOS11–27 0.08 0.355 0.01 0.34 0.109 0.3 0.887 0.951 0.495 0.049
D05–18 0.08 0.071 0.009 0.38 0.048 0.55 0.83 0.878 0.396 0.122
D05–19 0.08 0.21 0.018 0.16 0.051 0.63 0.825 0.947 0.295 0.053
DF15–33 0.08 0.219 0.01 0.38 0.159 0.4 0.841 0.964 0.476 0.036
DRFN08–11 0.08 0.091 0.01 0.3 0.309 0.61 0.92 0.951 0.327 0.049
DF11–8 0.11 0.37 0.01 0.24 0.231 0.39 0.896 0.971 0.446 0.029
DF15–5 0.11 0.291 0.021 0.3 0.345 0.41 0.948 0.963 0.322 0.037
BK12–28 0.13 0.236 0.015 0.42 0.275 0.34 0.969 0.948 0.323 0.052
DF15–35 0.13 0.156 0.01 0.31 0.127 0.53 0.93 0.967 0.51 0.033
DF11–23 0.14 0.079 0.01 0.16 0.151 0.76 0.967 0.956 0.508 0.044
KS13–12 0.15 0.165 0.01 0.12 0.175 0.71 0.954 0.964 0.359 0.036
BOS11–17 0.18 0.311 0.009 0.53 0.504 0.16 0.908 0.95 0.256 0.05
STS13–13 0.19 0.125 0.021 0.25 0.237 0.63 0.925 0.953 0.55 0.047
DO09–32 0.23 0.047 0.01 0.3 0.173 0.66 0.953 0.954 0.392 0.046
FY17–25 0.31 0.139 0.024 0.14 0.514 0.73 0.956 0.957 0.352 0.043
DF11–24 0.36 0 0.053 0.11 0.647 0.89 0.99 0.98 0.334 0.02
DF15–21 0.36 0.089 0.01 0.16 0.337 0.75 0.958 0.965 0.373 0.035
FRD12–29 0.48 0.083 0.06 0.09 0.119 0.83 0.967 0.965 0.536 0.035
AF09–34 0.59 0.133 0.498 0.05 0.259 0.81 0.984 0.968 0.461 0.032
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Modeling prior beliefs We consider the following three types of prior beliefs. The
“naive” prior assumes that opponents are homogeneous and play an average strategy,
the “correct” prior assumes that all three types of opponents exist, and the “consen-
sus” prior assumes that opponents are of the same type as oneself. Using (K̃, ρ̃, τ̃) to
denote the true type distributions, the beliefs (K,ρ,τ) of the two playe types (c,s), i.e.
cautious and strong cooperators, are formally defined as follows.

Naive: Kc = Ks = {A} ρA = 1 τA = ∑
k∈K̃

ρ̃kτ̃k

Correct: Kc = Ks = K̃ ρk = ρ̃k τk = τ̃k ∀k ∈ K̃
Consensus: Kc = {c} ρc = 1 τc = τ̃cautious

Ks = {s} ρs = 1 τs = τ̃strong

Bayesian updating of beliefs Players with correct beliefs understand that subjects
are not homogeneous and therefore update their beliefs given their observations. Us-
ing Bayes’ rule, the posterior belief after history h is

Pr(k|h,K,ρ,τ) =
ρk Pr(h|σ,τk)

∑k′∈K ρk′ Pr(h|σ,τk′)
,

where Pr(h|σ,τk), with k ∈ {A,B}, denotes the probability that history h is reached if
the own strategy is σ and the opponent’s strategy is τk. As estimated above, subjects in
experiments seem to condition their actions on memory-1 Markov states, as opposed
to more complex subsets of the history or even entire histories. This form of bounded
rationality (i.e., imperfect recall) needs to be acknowledged, but can be expressed
straightforwardly also in belief formation. Given the own strategy σ and the two
opponent types’ strategies τk, the memory-1 posterior that the opponent’s type is
k ∈ K given memory-1 state ω is

Pr(k|ω,K,ρ,τ) =
ρk ∑h∈H(ω)Pr(h|σ,τk)

∑k′∈K ρk′ ∑h∈H(ω)Pr(h|σ,τk′)
,

where H(ω) is the set of histories leading to the memory-1 state ω.

Interdependent preferences As discussed above, we also examine to what extent
received models of interdependent preferences allow us to capture behavior—having
observed that pure payoff concerns are inevitably insufficient to capture behavior
across treatments. The extension of the above definitions from expected payoffs to
expected utilities is straightforward using the following definitions of stage game utili-
ties. To begin with, all models of interdependent preferences are defined such that they
allow for two free parameters. In altruism, we allow for the payoff of the other player
to be relevant, and to obtain two free parameters as in other models, the other payoff’s
weight is allowed to depend on the relation of the own payoff to any reference point
in [0,1]. In inequity aversion, we use a standard implementation of Fehr-Schmidt
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preferences. In conditional cooperation, we allow the utility to express an aversion
against unilateral cooperation and unilateral defection (i.e. a preference for match-
ing the opponent’s action). In generalized fairness, we generalize the parameter-free
fairness concerns fo Rabin (1993) to contain two free parameters just like the other
models.

Altruism: u(π1,π2,a1,a2) = π1 + Iπ1≥0.5 ·απ2 + Iπ1<0.5 ·βπ2

Inequity aversion: u(π1,π2,a1,a2) = π1 − Iπ1≥π2 ·απ2 − Iπ1<π2 ·βπ2

Cond. cooperation: u(π1,π2,a1,a2) = π1 − Ia1=d∧a2=c ·αg− Ia1=c∧a2=d ·βl

Our definition of generalized fairness concerns requires additional notation. Recall
that Rabin (1993) definitions imply that in a one-shot PD with probabilities of coop-
eration (s1,s2) ∈ [0,1]2, player i’s utility is

Ui(si,s j) = πi(si,s j)+ f j(s j,si) · fi(si,s j)

= s j · (1+g)− si · l − sis j · (g− l)+(s j −1/2)(si −1/2).

We generalize this towards

Ui(si,s j) = s j · (1+g)− si · l − sis j · (g− l)+α(s j −β)(si −β) (A.13)

and as for the implicit stage game payoffs, this implies

Ui(1,1) = 1+α(1−β)2 = 1+α(1−2β+β
2) =̂1+α(1−2β)

Ui(1,0) =−l −αβ(1−β) =−l −αβ+αβ
2 =̂− l −αβ

Ui(0,1) = 1+g−αβ(1−β) = 1+g−αβ+αβ
2 =̂1+g−αβ

Ui(0,0) = αβ
2 =̂0,

i.e. that the players play a constituent game resembling a “PD” with the parameters
l∗ = l+αβ

1+α(1−2β) and g∗ = 1+g−αβ

1+α(1−2β) −1.

Discounting We allow for the perceived discount factor δ̃ to be a function of the true
discount factor as in δ̃ = δx. If x = 1, subjects correctly perceive the discount factor
(or, break-up probability), for x < 1 they underestimate it, with the limiting case x → 0
where they simply disregard the break-up probabibility and simply play the game as
if it had an infinite time horizon (or, without impatience). In turn, if x > 1, subjects
overestimate the break-up probability, and in the limiting case x → ∞, subjects are
myopic and play a sequence of one-shot games. In the estimation x is limited to 100
for viability.

Parametrization Overall, all models thus have up to three parameters, exponent X
characterizing the perceived discount factor δX and (α,β) characterizing the extent of
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social preferences.

Benchmarks We provide results for the standard benchmark of uniform randomiza-
tion, i.e. the goodness-of-fit of predicting 50-50 randomization in all states, and for the
benchmark clairvoyance predicting the actually estimated probabilities of cooperation
in all states. The first one is a lower bound of the goodness-of-fit and the second one is
an upper bound, and in relation to those we can estimate the extent to which behavior
is explained by the various model components.

LLRandom(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · log1/2+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · log1/2

LLClairvoyance(ρ,τ,K) = ρ̂cautious ∑
ω

∑
a∈{c,d}

n(a,ω) · log σ̂cautious(a,ω)

+ ρ̂strong ∑
ω

∑
a∈{c,d}

n(a,ω) · log σ̂strong(a,ω).

BIC Instead of looking at the pure log-likelihoods, we evaluate models based on
their Bayes information criteria BIC = −LL+ #pars · log#obs/2, reported in Tables
1.5 in the paper, and Tables A.5 and A.6 in the appendix. As for the two benchmark
models, whose specification remains the same across the three column sets, we evalu-
ate the BIC using the numbers of parameters and observations for the models that are
compared to the respective benchmark.This way, we obtain upper and lower bounds
for the reported BIC.
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Figure A.1: Relation of observed and predicted probabilities of cooperation (second
halves of sessions)
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Figure A.2: Decomposition of the structural model components
Top graph in each half: with constant preference parameters and constant variance of noise;
Middle graph in each half: with constant preference parameters and treatment-dependent vari-
ance of noise;
Bottom graph in each half: with treatment-dependent preference parameters and variance of
noise
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Table A.5: Testing interdependence of preferences (both halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 45129.7 45361.8 46058
Lower bound BIC (Uniform Random) 94380.8 94612.8 95309.1

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 83654.6 (−,−,−) 79175.3 (−,−,−) 79871.6 (−,−,−)
True stage game g, l, free (δX ,−,−) 83455 (1.19,−,−) 78282.6 (1.35,−,−) 74836.7 (1.3,−,−)
True δ, inequity aversion (−,α,β) 61047.3 (−,1.01,0.5) 60561.3 (−,1.28,0.6) 55375.4 (−,15.44,0.43)
Inequity Aversion (δX ,α,β) 49685.8 (100,0.79,0.12) 48920.5 (19.85,0.75,0.1) 46200.5 (46.62,0.7,−0.05)
Cond Cooperation (δX ,α,β) 55923 (100,1.48,−0.37) 54269.2 (5.96,1.6,−0.05) 46599.6 (20.26,2.01,−0.03)
Altruism (δX ,α,β) 53154.9 (74.75,1.37,−0.27) 51208.9 (21.84,1.33,−0.22) 46187.8 (9.72,0.89,0.24)
Gen Fairness Equilibrium (δX ,α,β) 57075.3 (7.4,38.23,0.22) 54040.5 (6.57,43.25,0.22) 47108.2 (9.12,33.11,0.02)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 83743.8 (−,−,−) 81266.6 (−,−,−) 81962.8 (−,−,−)
True stage game g, l, free (δX ,−,−) 83437 (1.14,−,−) 80676.1 (1.21,−,−) 77696.3 (3.62,−,−)
True δ, inequity aversion (−,α,β) 61994.4 (−,−100,−3.67) 62929.2 (−,−100,−2.69) 60135 (−,−100,−2.36)
Inequity Aversion (δX ,α,β) 56552 (100,26.11,1.09) 56390.1 (87.42,3.36,1.09) 56398.5 (49.69,14.98,0.82)
Cond Cooperation (δX ,α,β) 67945.9 (100,30.4,0.22) 63489.7 (4.24,8.45,0.47) 56398.5 (100,20.26,−0.05)
Altruism (δX ,α,β) 59484.3 (87.42,15.46,−0.96) 58236.5 (19.53,44.06,−0.8) 56398.5 (34.4,15.85,−0.59)
Gen Fairness Equilibrium (δX ,α,β) 59345.5 (4.13,−6.15,0.53) 57955.1 (3.93,−6.09,0.54) 56398.5 (40.1,9.13,0.41)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 83891.8 (−,−,−) 80092.5 (−,−,−) 80788.7 (−,−,−)
True stage game g, l, free (δX ,−,−) 83746 (0.9,−,−) 80091.6 (1.01,−,−) 77163.4 (1.39,−,−)
True δ, inequity aversion (−,α,β) 62553.9 (−,11.84,1.21) 65804.6 (−,2.23,0.86) 65085.3 (−,100,100)
Inequity Aversion (δX ,α,β) 56374.2 (100,9.72,0.98) 56319.6 (87.42,11.68,0.95) 56706 (6.83,100,0.9)
Cond Cooperation (δX ,α,β) 68640.9 (100,100,0.11) 63818.6 (3.69,14.65,0.33) 56704.2 (22.88,5.08,−0.22)
Altruism (δX ,α,β) 58022.9 (100,−100,5.74) 57485.5 (11.32,−100,5.53) 56704.8 (20.47,100,−0.7)
Gen Fairness Equilibrium (δX ,α,β) 66459.5 (5.83,17.42,0.21) 63148 (5.52,7.93,0.2) 56704.1 (9.02,81.49,−0.26)



122
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
TO

C
H

A
PT

E
R

1
Table A.6: Testing interdependence of preferences (first halves)

Fit to pooled data
Homogeneous variance Heterogeneous variance Fit to each treatment

Model (free parameters) BIC Estimates BIC Estimates BIC Average Estimates

Upper bound BIC (Clairvoyance) 22650.9 22883 23579.2
Lower bound BIC (Uniform Random) 42075.3 42307.3 43003.5

False Consensus Beliefs
True supergame (g, l,δ), no free par (−) 38037.9 (−,−,−) 36156.8 (−,−,−) 36853 (−,−,−)
True stage game g, l, free (δX ,−,−) 37892.6 (1.28,−,−) 35739.7 (1.36,−,−) 34543.1 (0.4,−,−)
True δ, inequity aversion (−,α,β) 29429.8 (−,1.02,0.49) 28878 (−,1.32,0.66) 27879.8 (−,11.37,0.54)
Inequity Aversion (δX ,α,β) 24738.5 (100,0.81,0.14) 24486.5 (24.6,0.76,0.12) 23632.4 (57.13,0.61,−0.02)
Cond Cooperation (δX ,α,β) 27236.5 (100,1.48,−0.32) 26859.8 (100,1.55,−0.32) 23848.4 (2.8,2.04,0)
Altruism (δX ,α,β) 26204.3 (77.34,1.32,−0.27) 25520.2 (28.27,1.29,−0.23) 23633.4 (10.43,3.43,0.12)
Gen Fairness Equilibrium (δX ,α,β) 27087.2 (8.91,2.95,0.22) 25933.4 (6.24,3.07,0.24) 24047.4 (5.89,6.9,0.04)

Naive Beliefs
True supergame (g, l,δ), no free par (−) 39017.8 (−,−,−) 37922 (−,−,−) 38618.3 (−,−,−)
True stage game g, l, free (δX ,−,−) 38910.2 (1.14,−,−) 37674 (1.22,−,−) 36580.1 (0.6,−,−)
True δ, inequity aversion (−,α,β) 30817.9 (−,−87.62,−3.64) 31187.3 (−,−87.77,−2.91) 30333.6 (−,−69.79,−2.46)
Inequity Aversion (δX ,α,β) 28610.8 (100,8.31,1.04) 28622.1 (87.42,4.61,1.04) 28969.7 (55.54,100,0.72)
Cond Cooperation (δX ,α,β) 33552.7 (100,26.39,0.31) 31888 (3.34,4.55,0.57) 28967.9 (62.27,9.96,−0.08)
Altruism (δX ,α,β) 29758.9 (100,17.51,−0.95) 29435.6 (22.6,46.57,−0.77) 28969.7 (40.36,34.44,−0.47)
Gen Fairness Equilibrium (δX ,α,β) 29944.2 (3.81,−7.36,0.53) 29358.2 (3.64,−6.03,0.53) 28967.6 (100,100,0.29)

Bayesian Beliefs
True supergame (g, l,δ), no free par (−) 38912.9 (−,−,−) 37205.4 (−,−,−) 37901.7 (−,−,−)
True stage game g, l, free (δX ,−,−) 38784.8 (0.84,−,−) 37202.4 (0.98,−,−) 36329.7 (1.27,−,−)
True δ, inequity aversion (−,α,β) 30829.4 (−,2.04,1.16) 32096.1 (−,2,0.92) 32411.5 (−,10.71,0.84)
Inequity Aversion (δX ,α,β) 28534.6 (100,60.49,0.99) 28609.6 (58.38,14.71,0.97) 29106.3 (2.13,64.75,0.83)
Cond Cooperation (δX ,α,β) 33762.8 (100,1.91,0.15) 32161.8 (2.88,2.04,0.5) 29106 (11.55,14.75,−0.18)
Altruism (δX ,α,β) 29003.9 (100,−10.62,5.7) 29047.6 (17.9,−9.93,5.6) 29105.4 (100,−51.77,−0.37)
Gen Fairness Equilibrium (δX ,α,β) 32044.4 (6.93,2.96,0.2) 30760.7 (4.79,2.91,0.22) 29105.3 (27.06,100,0.28)
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A.4 Information on the experiments re-analyzed

This section provides some background information on the experiments re-analyzed
in this paper. Table A.7 summarizes and defines the strategies considered by previous
studies. Table A.8 reviews focus and main results (in terms of identified strategies) of
these studies. Table A.9 reviews the numbers of subjects and observations, average pa-
rameters, and average cooperation rates for all experiments, and Table A.10 provides
the detailed overview by treatments.
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Table A.7: Pure strategies considered in behavioral analyses

Strategy Abbreviation Description (σcc,σcd ,σdc,σdd)
† References

Pure Strategies Non-responsive or Memory-1
Always Defect AD Always defects independent (0,0,0,0) DF11, DF15, FRD12,

of previous outcome FY17, STS13
Always Cooperate AC Always cooperates inde- (1,1,1,1) DF11, DF15, FRD12,

(1,1,0,0) B15
pendent of previous outcome FY17, STS13

Grim G Only cooperates after cc (1,0,0,0) AF09, DF11, DF15
was last outcome FRD12, FY17, STS13

Tit-for-Tat TFT Only plays C if opponent (1,0,1,0) AF09, DF11, DF15
did last period FRD12, FY17, STS13

Win-stay-Lose-Shift WSLS Plays same strategy if it (1,0,0,1) DF11, DF15, FRD12,
(aka Perfect TFT) was successful, otherwise shifts FY17

False cooperator C-to-AD Play c in first round – FRD12, FY17
then AD

Explorative TFT D-TFT Play d in first round then TFT – DF15, FRD12, FY17
Alternator DC-Alt Play d in first round – FRD12, FY17

then alternate c and d
Trigger-with-Reversion GwR Like Grim but revert (1,0,0,0) STS13

to cooperation after cc‡

Pure Strategies Memory-2/3
Trigger 2 periods T2 Player punishes defection for max. 2 (1,0,θ∗1, 0) DF11, FY17

periods, otherwise cooperates
Tit-for-2(3)-Tats TF2T Defects after 2 (1,θ2,1,θ2) FRD12, FY17

defections
2-Tits-for-2-Tats 2TF2T Defects twice after (1,θ3,θ3,θ3) FRD12, FY17

2 defections
2-Tits-for-1-Tats 2TFT Defects twice after (1,0,θ4,0) FRD12, FY17

each defections
Grim2(3/4) G2(3) After 2(3) defections (1,θ5,0,0) FRD12, FY17, STS13

will play D forever
Win-stay-Lose-Shift-2 WSLS2 cooperate after (dd,dd),(cc,cc), – FRD12

(dd,cc) otherwise defect
Explorative TF2(3)T D-TF2(3)T Play D in first round then – FRD12, FY17

TF2(3)T
Explorative Grim2(3) D-Grim2(3) Play D in first round then Grim2(3) – FRD12, FY17

Behavior Strategies
Semi-Grim∗∗ SG Similar to Grim but may (1,θSG,θSG,0) B15

cooperate after CD or DC.
Generous TFT GTFT Like TFT but cooperate (1,θGT ,1,θGT ) FRD12, B15

with prob α after CD or DD

† σ assigns cooperation probabilities after joint cooperation (cc), unilateral defection by opponent (cd), unilateral defection (dc), and joint
defection (dd).
‡ possible if players make mistakes.
∗ Vector assigning cooperation probabilities ∈ {0,1} depending on the state 2 periods ahead.
∗∗ θSG and θGT are mixing parameters ∈ (0,1).

References: AF09 (Aoyagi and Frechette, 2009), B15 (Breitmoser, 2015), DF11 (Dal Bó and Fréchette, 2011), DF15 (Dal Bó and Fréchette,
2015), FRD12 (Fudenberg et al., 2012), FY17 (Fréchette and Yuksel, 2017), STS13 (Sherstyuk et al., 2013)
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Table A.8: Overview literature

Reference Focus Investigation of Strategies Strategies found

Aoyagi and Frechette (2009) Imperfect public Mainly avg. coop. rates Threshold strat S0
monitoring in PD Mem-1, Mem-2, Threshold (same threshold

in state 1 & 0)

Blonski et al. (2011) New δ∗ with Avg. coop rates –
sucker’s payoff

Bruttel and Kamecke (2012) Endgame effects Elicitation of pure strategies – ∗

discuss avg. coop. rates

Camera et al. (2012) Player’s strat using All possible pure mem-1 large share play
finite automata unconditional

Dal Bó (2005) Finitely vs infinitely Avg. cooperation rates –
repeated PD

Dal Bó and Fréchette (2011) Players’ strategies selected mem-1 strategies AC, AD, TFT
learning model SFEM

Dal Bó and Fréchette (2015) Players’ strategies SFEM, elicitation, pure Mem-1, AD, TFT, Grim
upd (2017) Mem-2 mainly preselected

Dreber et al. (2008) PD extended with Agg. cooperation behavior (AD, Grim, TFT)∗∗

punishment option

Duffy and Ochs (2009) Fixed matching of Round 1 and avg. coop. –
players in PD rates

Fréchette and Yuksel (2017) De-coupling of expected Avg. coop. rates, SFEM Grim, TFT
length of game and Mem-1, Mem2/3 preselected
discount factor

Fudenberg et al. (2012) Effect of noise/ Avg. coop. rate, SFEM, AC, AD, Grim,
uncertainty on leniency 20 pure Mem-1, Mem-2(3) (D)-TFT, 2TFT, Grim2

Kagel and Schley (2013) Linear payoff Fist round coop. rates –
transformations

Sherstyuk et al. (2013) Payment schemes Avg. cooperation rates, share AD, TFT, GwR
of correctly predicted actions
by selected pure strats

Dal Bó and Fréchette (2018) Determinants of Mainly first round coop –
cooperation (meta)

∗ Table 4 column "Strategy" in their study indicating SG in coefficients for cdt−1 & cdt−2.
∗∗ Reported by Fudenberg et al. (2012).
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Table A.9: Overview of the data sets used in the analysis

Logistics Parameters Average cooperation rates
Experiment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 38 1650 0.9 0.333 0.111 0.465 0.917 ≫ 0.45 ≈ 0.408 ≈ 0.336
Blonski et al. (2011) 200 3040 0.756 1.345 2.602 0.295 0.89 ≫ 0.279 ≈ 0.193 ≫ 0.034
Bruttel and Kamecke (2012) 36 1920 0.8 1.167 0.833 0.481 0.91 ≫ 0.286 ≈ 0.228 ≫ 0.08
Dal Bó (2005) 102 1320 0.75 0.939 1.061 0.342 0.922 ≫ 0.212 < 0.342 ≫ 0.089
Dal Bó and Fréchette (2011) 266 17772 0.622 1.062 1.072 0.31 0.951 ≫ 0.334 ≈ 0.331 ≫ 0.063
Dal Bó and Fréchette (2015) 672 22112 0.743 1.579 1.341 0.451 0.94 ≫ 0.297 ≈ 0.335 ≫ 0.057
Dreber et al. (2008) 50 2064 0.75 1.488 1.488 0.488 0.904 ≫ 0.217 ≈ 0.213 ≫ 0.036
Duffy and Ochs (2009) 102 3128 0.9 1 1 0.53 0.904 ≫ 0.301 ≈ 0.33 ≫ 0.111
Fréchette and Yuksel (2017) 50 800 0.75 0.4 0.4 0.737 0.943 ≫ 0.141 ≈ 0.266 ≈ 0.091
Fudenberg et al. (2012) 48 1452 0.875 0.333 0.333 0.756 0.982 ≫ 0.4 ≈ 0.427 ≫ 0.066
Kagel and Schley (2013) 114 7600 0.75 1 0.5 0.573 0.935 ≫ 0.263 ≈ 0.295 ≫ 0.051
Sherstyuk et al. (2013) 56 3052 0.75 1 0.25 0.56 0.945 ≫ 0.328 ≈ 0.371 ≫ 0.117

Pooled 1734 65910 0.728 1.207 1.083 0.389 0.938 ≫ 0.304 ≈ 0.322 ≫ 0.065

Second halves per session
Aoyagi and Frechette (2009) 38 1400 0.9 0.333 0.111 0.424 0.958 ≫ 0.398 ≈ 0.517 ≈ 0.375
Blonski et al. (2011) 200 5460 0.766 1.282 2.554 0.279 0.923 ≫ 0.287 ≈ 0.231 ≫ 0.02
Bruttel and Kamecke (2012) 36 1632 0.8 1.167 0.833 0.447 0.947 ≫ 0.221 ≈ 0.297 ≫ 0.041
Dal Bó (2005) 102 1650 0.75 0.961 1.039 0.297 0.92 ≫ 0.242 < 0.388 ≫ 0.064
Dal Bó and Fréchette (2011) 266 19270 0.62 1.122 1.103 0.355 0.979 ≫ 0.376 ≈ 0.362 ≫ 0.041
Dal Bó and Fréchette (2015) 672 29480 0.766 1.666 1.386 0.469 0.976 ≫ 0.315 < 0.402 ≫ 0.035
Dreber et al. (2008) 50 1838 0.75 1.533 1.533 0.461 0.917 ≫ 0.128 ≪ 0.39 ≫ 0.009
Duffy and Ochs (2009) 102 6018 0.9 1 1 0.684 0.977 ≫ 0.367 ≈ 0.391 ≫ 0.082
Fréchette and Yuksel (2017) 50 1568 0.75 0.4 0.4 0.763 0.97 ≫ 0.233 ≈ 0.398 ≫ 0.069
Fudenberg et al. (2012) 48 1800 0.875 0.333 0.333 0.829 0.971 ≫ 0.487 ≈ 0.412 ≫ 0.083
Kagel and Schley (2013) 114 7172 0.75 1 0.5 0.704 0.966 ≫ 0.262 ≈ 0.332 ≫ 0.025
Sherstyuk et al. (2013) 56 2604 0.75 1 0.25 0.646 0.973 ≫ 0.482 ≈ 0.437 ≫ 0.078

Pooled 1734 79892 0.744 1.271 1.172 0.404 0.971 ≫ 0.327 < 0.376 ≫ 0.039

Note: The “average cooperation rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000 repetitions)
where <,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the multiplicity of comparisons within data sets by adjusting
p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate Breitmoser (2015). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<”
is appropriate. If all 24 treatments are considered simultaneously, the corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “≫,≪”.
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Table A.10: Table A.9 by treatments – Overview of the data sets used in the analysis

(a) First halves per session

Logistics Parameters Average cooperation rates
Treatment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 38 1650 0.9 0.333 0.111 0.729 0.917 ≫ 0.45 ≈ 0.408 ≈ 0.336

Blonski et al. (2011)
BOS11–9 20 220 0.5 2 2 0.23 - 0.182 0.182 0.031
BOS11–14 20 340 0.75 0.5 3.5 0.16 - 0.188 0.062 0.029
BOS11–15 20 320 0.75 1 8 0.04 - 0.167 0 0.005
BOS11–16 20 400 0.75 0.75 1.25 0.56 0.915 ≫ 0.206 ≈ 0.206 > 0.073
BOS11–17 20 180 0.75 0.833 0.5 0.42 0.5 ≈ 0.235 ≈ 0.471 ≈ 0.125
BOS11–26 40 760 0.75 2 2 0.285 0.833 ≫ 0.235 ≈ 0.196 ≫ 0.03
BOS11–27 20 240 0.75 1 1 0.28 0.917 > 0.316 ≈ 0.211 > 0.056
BOS11–30 20 140 0.875 0.5 3.5 0.275 - 0 0 0.058
BOS11–31 20 440 0.875 2 2 0.437 0.968 ≫ 0.513 ≈ 0.154 > 0.023

BOS11–All 200 3040 0.756 1.345 2.602 0.295 0.89 ≫ 0.279 ≈ 0.193 ≫ 0.034

Bruttel and Kamecke (2012)
BK12–28 36 1920 0.8 1.167 0.833 0.481 0.91 ≫ 0.286 ≈ 0.228 ≫ 0.08

Dal Bó (2005)
D05–18 42 420 0.75 1.167 0.833 0.484 0.806 ≫ 0.239 ≈ 0.304 > 0.114
D05–19 60 900 0.75 0.833 1.167 0.443 0.958 ≫ 0.2 < 0.36 ≫ 0.074

D05–All 102 1320 0.75 0.939 1.061 0.342 0.922 ≫ 0.212 < 0.342 ≫ 0.089

Dal Bó and Fréchette (2011)
DF11–6 44 2748 0.5 2.571 1.857 0.134 0.792 ≫ 0.32 ≈ 0.272 ≫ 0.036
DF11–7 50 3290 0.5 0.667 0.867 0.18 0.673 ≫ 0.299 ≈ 0.258 ≫ 0.061
DF11–8 46 3092 0.5 0.087 0.565 0.365 0.973 ≫ 0.421 > 0.263 ≫ 0.081
DF11–22 44 2842 0.75 2.571 1.857 0.248 0.891 ≫ 0.303 ≈ 0.355 ≫ 0.05
DF11–23 38 2656 0.75 0.667 0.867 0.511 0.965 ≫ 0.39 ≈ 0.386 ≫ 0.073
DF11–24 44 3144 0.75 0.087 0.565 0.74 0.961 ≫ 0.266 ≈ 0.399 ≫ 0.11

DF11–All 266 17772 0.622 1.062 1.072 0.31 0.951 ≫ 0.334 ≈ 0.331 ≫ 0.063

Dal Bó and Fréchette (2015)
DF15–4 50 1438 0.5 2.571 1.857 0.137 0.562 > 0.164 < 0.327 ≫ 0.031
DF15–5 140 4094 0.5 0.087 0.565 0.58 0.921 ≫ 0.254 ≈ 0.241 ≫ 0.082
DF15–20 114 4054 0.75 2.571 1.857 0.25 0.912 ≫ 0.223 < 0.336 ≫ 0.052
DF15–21 164 4740 0.75 0.087 0.565 0.658 0.952 ≫ 0.388 ≈ 0.369 ≫ 0.083
DF15–33 168 6438 0.9 2.571 1.857 0.307 0.928 ≫ 0.297 ≈ 0.344 ≫ 0.054
DF15–35 36 1348 0.95 2.571 1.857 0.5 0.974 ≫ 0.324 ≈ 0.432 ≫ 0.05

DF15–All 672 22112 0.743 1.579 1.341 0.451 0.94 ≫ 0.297 ≈ 0.335 ≫ 0.057

Dreber et al. (2008)
DRFN08–10 28 1008 0.75 2 2 0.468 0.888 ≫ 0.188 ≈ 0.139 ≫ 0.02
DRFN08–11 22 1056 0.75 1 1 0.507 0.917 ≫ 0.245 ≈ 0.283 ≫ 0.051

DRFN08–All 50 2064 0.75 1.488 1.488 0.488 0.904 ≫ 0.217 ≈ 0.213 ≫ 0.036

Duffy and Ochs (2009)
DO09–32 102 3128 0.9 1 1 0.53 0.904 ≫ 0.301 ≈ 0.33 ≫ 0.111

Fréchette and Yuksel (2017)
FY17–25 50 800 0.75 0.4 0.4 0.737 0.943 ≫ 0.141 ≈ 0.266 ≈ 0.091

Fudenberg et al. (2012)
FRD12–29 48 1452 0.875 0.333 0.333 0.756 0.982 ≫ 0.4 ≈ 0.427 ≫ 0.066

Kagel and Schley (2013)
KS13–12 114 7600 0.75 1 0.5 0.573 0.935 ≫ 0.263 ≈ 0.295 ≫ 0.051

Sherstyuk et al. (2013)
STS13–13 56 3052 0.75 1 0.25 0.56 0.945 ≫ 0.328 ≈ 0.371 ≫ 0.117

Pooled 1734 65910 0.728 1.207 1.083 0.389 0.938 ≫ 0.304 ≈ 0.322 ≫ 0.065

(b) Second halves per session

Logistics Parameters Average cooperation rates
Treatment #Subj #Dec δ g l σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 38 1400 0.9 0.333 0.111 0.873 0.958 ≫ 0.398 ≈ 0.517 ≈ 0.375

Blonski et al. (2011)
BOS11–9 20 300 0.5 2 2 0.233 0.917 > 0.062 ≈ 0.188 ≈ 0.007

BOS11–14 20 280 0.75 0.5 3.5 0.025 - 0.2 0.4 0.013
BOS11–15 20 640 0.75 1 8 0 - 0 0 0.002
BOS11–16 20 340 0.75 0.75 1.25 0.633 0.846 ≫ 0.2 ≈ 0.233 ≫ 0.024
BOS11–17 20 680 0.75 0.833 0.5 0.417 0.917 ≫ 0.182 ≈ 0.255 ≫ 0.026
BOS11–26 40 1100 0.75 2 2 0.283 0.959 ≫ 0.241 ≈ 0.203 ≫ 0.032
BOS11–27 20 800 0.75 1 1 0.308 0.875 ≫ 0.447 ≈ 0.318 ≫ 0.023
BOS11–30 20 560 0.875 0.5 3.5 0.3 0.8 ≈ 0.167 ≈ 0.139 ≈ 0.02
BOS11–31 20 760 0.875 2 2 0.338 1 ≫ 0.423 ≈ 0.173 > 0.021

BOS11–All 200 5460 0.766 1.282 2.554 0.279 0.923 ≫ 0.287 ≈ 0.231 ≫ 0.02

Bruttel and Kamecke (2012)
BK12–28 36 1632 0.8 1.167 0.833 0.447 0.947 ≫ 0.221 ≈ 0.297 ≫ 0.041

Dal Bó (2005)
D05–18 42 630 0.75 1.167 0.833 0.476 0.86 ≫ 0.274 < 0.476 ≫ 0.098
D05–19 60 1020 0.75 0.833 1.167 0.533 0.952 ≫ 0.21 ≈ 0.296 ≫ 0.046

D05–All 102 1650 0.75 0.961 1.039 0.297 0.92 ≫ 0.242 < 0.388 ≫ 0.064

Dal Bó and Fréchette (2011)
DF11–6 44 2988 0.5 2.571 1.857 0.064 1 ≫ 0.352 ≈ 0.477 ≫ 0.022
DF11–7 50 3614 0.5 0.667 0.867 0.194 0.922 ≫ 0.377 ≈ 0.364 ≫ 0.078
DF11–8 46 3398 0.5 0.087 0.565 0.414 1 ≫ 0.409 > 0.189 ≫ 0.027

DF11–22 44 3606 0.75 2.571 1.857 0.264 0.96 ≫ 0.357 ≈ 0.408 ≫ 0.024
DF11–23 38 2524 0.75 0.667 0.867 0.708 0.974 ≫ 0.405 ≈ 0.5 ≫ 0.088
DF11–24 44 3140 0.75 0.087 0.565 0.957 0.984 ≫ 0.302 ≈ 0.372 ≫ 0.083

DF11–All 266 19270 0.62 1.122 1.103 0.355 0.979 ≫ 0.376 ≈ 0.362 ≫ 0.041

Dal Bó and Fréchette (2015)
DF15–4 50 1638 0.5 2.571 1.857 0.101 0.833 > 0.067 < 0.267 > 0.017
DF15–5 140 4656 0.5 0.087 0.565 0.539 0.976 ≫ 0.27 ≈ 0.231 ≫ 0.038

DF15–20 114 4370 0.75 2.571 1.857 0.24 0.948 ≫ 0.305 ≈ 0.37 ≫ 0.03
DF15–21 164 6090 0.75 0.087 0.565 0.775 0.98 ≫ 0.313 ≈ 0.313 ≫ 0.062
DF15–33 168 9718 0.9 2.571 1.857 0.384 0.975 ≫ 0.314 ≪ 0.542 ≫ 0.032
DF15–35 36 3008 0.95 2.571 1.857 0.539 0.981 ≫ 0.478 ≈ 0.427 ≫ 0.039

DF15–All 672 29480 0.766 1.666 1.386 0.469 0.976 ≫ 0.315 < 0.402 ≫ 0.035

Dreber et al. (2008)
DRFN08–10 28 980 0.75 2 2 0.269 0.75 ≫ 0.121 < 0.276 ≫ 0.002
DRFN08–11 22 858 0.75 1 1 0.653 0.942 ≫ 0.133 ≪ 0.47 ≫ 0.028

DRFN08–All 50 1838 0.75 1.533 1.533 0.461 0.917 ≫ 0.128 ≪ 0.39 ≫ 0.009

Duffy and Ochs (2009)
DO09–32 102 6018 0.9 1 1 0.684 0.977 ≫ 0.367 ≈ 0.391 ≫ 0.082

Fréchette and Yuksel (2017)
FY17–25 50 1568 0.75 0.4 0.4 0.763 0.97 ≫ 0.233 ≈ 0.398 ≫ 0.069

Fudenberg et al. (2012)
FRD12–29 48 1800 0.875 0.333 0.333 0.829 0.971 ≫ 0.487 ≈ 0.412 ≫ 0.083

Kagel and Schley (2013)
KS13–12 114 7172 0.75 1 0.5 0.704 0.966 ≫ 0.262 ≈ 0.332 ≫ 0.025

Sherstyuk et al. (2013)
STS13–13 56 2604 0.75 1 0.25 0.646 0.973 ≫ 0.482 ≈ 0.437 ≫ 0.078

Pooled 1734 79892 0.744 1.271 1.172 0.404 0.971 ≫ 0.327 < 0.376 ≫ 0.039
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Table A.11: Expected and observed realizations in two round 2s per subject after
outcome CD in round 1

Cooperators Defectors
iid observed difference iid observed difference

Half 1 (Obs 518 ) (Obs 108 )
Defecting twice 0.557 0.627 -0.07 0.522 0.583 -0.061
One of each 0.379 0.237 0.142 0.401 0.278 0.123
Cooperating twice 0.064 0.135 -0.071 0.077 0.139 -0.062

Half 2 (Obs 455 ) (Obs 84 )
Defecting twice 0.557 0.684 -0.116 0.545 0.631 -0.086
One of each 0.379 0.141 0.23 0.387 0.214 0.173
Cooperating twice 0.064 0.176 -0.115 0.069 0.155 -0.086

Note: “Cooperators” and “Defectors” are determined by their average cooperation rate in round 1. If
above median, they are cooperators. Average cooperation behavior in round 2 if the state is CD of the
last two supergames with such an observation by halves and round1-cooperation rates.
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Table A.12: Overview of cooperation rates in the data

Cooperators Defectors
Average cooperation rates Average cooperation rates

Experiment #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd #Subj #Dec σ̂ /0 σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 35 1509 0.783 0.936 0.45 0.402 0.313 3 141 0.143 0.575 0.444 0.441 0.486
Blonski et al. (2011) 74 1145 0.685 0.896 0.31 0.356 0.056 126 1895 0.066 0.714 0.192 0.123 0.027
Bruttel and Kamecke (2012) 20 1062 0.75 0.926 0.253 0.267 0.113 16 858 0.144 0.806 0.375 0.198 0.055
Dal Bó (2005) 52 675 0.807 0.947 0.21 0.37 0.133 50 645 0.087 0.762 0.22 0.326 0.064
Dal Bó and Fréchette (2011) 108 7382 0.699 0.969 0.337 0.415 0.113 158 10390 0.108 0.807 0.328 0.28 0.045
Dal Bó and Fréchette (2015) 311 10133 0.819 0.954 0.326 0.499 0.084 361 11979 0.124 0.87 0.239 0.239 0.048
Dreber et al. (2008) 31 1272 0.711 0.909 0.189 0.245 0.05 19 792 0.129 0.846 0.326 0.181 0.022
Duffy and Ochs (2009) 63 1886 0.807 0.913 0.302 0.403 0.14 39 1242 0.097 0.866 0.298 0.25 0.087
Fréchette and Yuksel (2017) 41 652 0.886 0.941 0.133 0.394 0.136 9 148 0.056 1 0.25 0.129 0.039
Fudenberg et al. (2012) 39 1185 0.905 0.985 0.418 0.518 0.06 9 267 0.091 0.947 0.316 0.333 0.077
Kagel and Schley (2013) 76 5066 0.814 0.939 0.262 0.419 0.069 38 2534 0.089 0.872 0.268 0.168 0.033
Sherstyuk et al. (2013) 34 1920 0.828 0.968 0.33 0.518 0.119 22 1132 0.152 0.78 0.323 0.266 0.115

Pooled 884 33887 0.778 0.951 0.312 0.43 0.098 850 32023 0.111 0.843 0.283 0.242 0.049

Second halves per session
Aoyagi and Frechette (2009) 34 1245 0.959 0.968 0.382 0.578 0.328 4 155 0.211 0.75 0.448 0.371 0.469
Blonski et al. (2011) 66 1761 0.75 0.926 0.322 0.398 0.036 134 3699 0.049 0.91 0.189 0.164 0.015
Bruttel and Kamecke (2012) 15 656 0.893 0.954 0.136 0.613 0.031 21 976 0.129 0.922 0.351 0.211 0.044
Dal Bó (2005) 60 974 0.838 0.927 0.24 0.434 0.063 42 676 0.042 0.852 0.25 0.348 0.065
Dal Bó and Fréchette (2011) 111 7984 0.892 0.982 0.358 0.579 0.055 155 11286 0.081 0.948 0.406 0.286 0.038
Dal Bó and Fréchette (2015) 319 14330 0.897 0.978 0.312 0.585 0.067 353 15150 0.089 0.965 0.322 0.315 0.024
Dreber et al. (2008) 22 830 0.847 0.929 0.1 0.479 0.027 28 1008 0.125 0.833 0.195 0.344 0.002
Duffy and Ochs (2009) 69 4206 0.943 0.978 0.376 0.408 0.083 33 1812 0.124 0.968 0.348 0.373 0.081
Fréchette and Yuksel (2017) 42 1322 0.909 0.973 0.227 0.507 0.115 8 246 0 0.8 0.333 0.194 0.014
Fudenberg et al. (2012) 41 1542 0.957 0.969 0.465 0.456 0.106 7 258 0.065 1 0.6 0.325 0.053
Kagel and Schley (2013) 82 5176 0.949 0.968 0.242 0.505 0.035 32 1996 0.067 0.937 0.426 0.194 0.015
Sherstyuk et al. (2013) 37 1674 0.907 0.978 0.489 0.558 0.124 19 930 0.123 0.946 0.456 0.382 0.053

Pooled 898 41700 0.898 0.974 0.318 0.525 0.063 836 38192 0.084 0.954 0.347 0.292 0.03

Note: “Cooperators” and “Defectors” are determined by their average cooperation rate in round 1. If above median, they are cooperators. The “average cooperation
rates” are the relative frequencies estimated directly from the data. The relation signs encode bootstrapped p-values (resampling at the subject level with 10,000
repetitions) where <,> indicate rejection of the Null of equality at p < .05 and ≪,≫ indicating p < .002. Following Wright (1992), we accommodate for the
multiplicity of comparisons within data sets by adjusting p-values using the Holm-Bonferroni method (Holm, 1979). Note that all details here exactly replicate
Breitmoser (2015). As a result, if a data set is considered in isolation, the .05-level indicated by “>,<” is appropriate. If all 24 treatments are considered
simultaneously, the corresponding Bonferroni correction requires to further reduce the threshold to .002 ≈ .05/24, which corresponds with “≫,≪”.
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A.5 Robustness checks for section 1.4

The tables in this section provide robustness checks on the results presented in Section
1.4. Specifically, we show results by treatment, different strategy combinations, and
results considering only continuation strategies (excluding first rounds)

• Table A.13 compares the “best mixtures” analyzed in the main text to the mod-
els allowing for all 1-memory types that correspond with those analyzed in the
literature, e.g. Dal Bó and Fréchette (2011). Recall that the 2-memory strate-
gies analyzed in other strings of literature are examined in Section 4. This ta-
ble clarifies that focussing on the “best mixtures” for each treatment improves
the goodness-of-fit of these models substantially (i.e. by at least 100 likelihood
points).

• Table A.15 shows a comparison of the best mixtures of pure and generalized
pure continuation strategies.

• Table A.16 shows a comparison of the best mixtures of pure and generalized
pure strategies as discussed in the main text.

• Table A.18 is similar to Table 1.3 in the main text but focussing on the proto-
typical strategies in their pure form only.

• Table A.20 is similar to Table 1.3 in the main text but focussing on the proto-
typical strategies in their generalized form only.

• Table A.22 is shows a robustness for to Table 1.3 in the main text, showing strat-
egy combinations with AD and one or two generalized Semi-Grim strategies.

• Table A.25 is a robustness check for Table A.3 by focussing on continuation
strategies.

• Table A.26 is a robustness for Table 1.4 in the main text, showing the additional
stratgey combination SG+AD.

• Table A.28 shows aggregate state-wise cooperation rates for different lagged
histories (cooperation or defection of the opponent in t −2) TFT-Scheme.

• Table A.29 shows aggregate state-wise cooperation rates for different lagged
histories (joint cooperation or not in t −2) Grim-Scheme.

• Table A.31 compares different models containing semi-grim to models contain-
ing pure strategies assuming no-switching behavior.

• Table A.33 compares different models containing semi-grim to models contain-
ing pure strategies assuming random-switching behavior.

• Table A.35 compares different models containing modifications of semi-grim.
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• Table A.37 compares different models containing prototypical strategies derived
from strategies discussed in previous literature in a No-Switching model.

• Table A.39 compares different two parameter versions of semi-grim with mod-
els containing prototypical strategies. The memory-2 level follows a Grim-
Scheme if applicable

• Table A.40 compares different two parameter versions of semi-grim with mod-
els containing prototypical strategies. The memory-2 level follows a TFT-Scheme
if applicable

• Table A.41 examines all mixtures of Semi-Grim with pure or generalized pure
strategies as secondary components.
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Table A.13: Pure, mixed, or switching strategies? (ICL-BIC of the models, less is better and relation signs point toward better models)

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
Models evaluated 532 532 532 1 1 1
Pars est. (by treat.) 16 16 82 5 5 30
Pars accounted for 3–5 3–5 12–30 5 5 30

First halves per session
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
Blonski et al. (2011) 1069.58 ≈ 1104.85 ≪ 1221.28 1114.69 ≈ 1157.02 ≪ 1615.75
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
Dal Bó (2005) 651.88 < 689.58 > 652.36 666.1 < 702.56 ≈ 729
Dal Bó and Fréchette (2011) 7164.32 ≪ 7557.8 ≫ 6422.83 7423.23 < 7705.11 ≫ 6913.83
Dal Bó and Fréchette (2015) 8756.15 ≪ 9253.62 ≫ 8275.74 8880.62 ≪ 9330.5 ≫ 8571.44
Dreber et al. (2008) 863.26 ≈ 864.49 ≫ 752.16 871.32 ≈ 880.55 ≫ 809.71
Duffy and Ochs (2009) 1396.68 < 1467.36 ≫ 1372.99 1448.71 < 1497.48 > 1444.51
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
Kagel and Schley (2013) 2685.4 ≪ 3010.1 ≫ 2439.06 2735.02 ≪ 3041.29 ≫ 2581.96
Sherstyuk et al. (2013) 1346.41 < 1481.65 ≫ 1296.85 1389.33 < 1483.17 ≫ 1333.21

Pooled 26525.91 ≪ 28023.06 ≫ 25411.21 27218.66 ≪ 28469.06 ≫ 27585.46

Second halves per session
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1503.41 ≈ 1554.93 ≪ 1973.56
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 ≫ 516.71 588.33 ≈ 632.75 > 584.4
Dal Bó (2005) 741.2 < 790.21 > 743.74 751.82 ≪ 814.54 ≈ 823.78
Dal Bó and Fréchette (2011) 5646.38 ≪ 6634.92 ≫ 5110.1 6065.93 ≪ 6783.93 ≫ 5634.97
Dal Bó and Fréchette (2015) 8951.57 ≪ 9835.77 ≫ 8264.26 9085.4 ≪ 9876.09 ≫ 8601.02
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 656.38 ≈ 702.27 ≈ 672.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 ≫ 1883.22 2010.01 ≈ 2038.28 > 1977.9
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
Kagel and Schley (2013) 1751.81 ≪ 2365.94 ≫ 1678.7 1866.19 ≪ 2375.6 ≫ 1777.72
Sherstyuk et al. (2013) 1025.32 ≪ 1177.96 ≫ 1008.49 1027.43 ≪ 1180.11 ≫ 1025.75

Pooled 24301.45 ≪ 27269.48 ≫ 23494.22 25271.72 ≪ 27696.6 ≫ 25737.55
Note: Relation signs are used as defined above (Table A.9). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly: “No Switching” assumes that each subject
randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that each subject randomly chooses a strategy prior to
each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process. “All but SG” allows subjects to play either AD, Grim, TFT, AC or WSLS, and “Best w/o
SG” picks the best mixture model after eliminating AC or WSLS, or both or none of these.
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Table A.14: Table A.13 by treatments – Pure, mixed, or switching strategies?

(a) First halves per session

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
Models evaluated 532 532 532 1 1 1
Pars est. (by treat.) 16 16 82 5 5 30
Pars accounted for 3–5 3–5 12–30 5 5 30

AF09–34 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
BOS11–9 83.42 ≈ 83.96 ≈ 88.41 85.17 ≈ 86.21 ≪ 112.66
BOS11–14 97.73 ≈ 90 ≈ 92.94 100.72 ≈ 93 ≪ 119.36
BOS11–15 34.3 ≈ 32.69 ≪ 43.18 37.29 ≈ 35.69 ≪ 69.59
BOS11–16 167.3 ≈ 169.38 ≈ 170.57 176.55 ≈ 180.23 < 197.16
BOS11–17 110.57 ≈ 118.71 ≈ 121.05 113.57 ≈ 121.87 ≪ 147.65
BOS11–26 256.88 ≈ 262.33 ≈ 257.54 260.57 ≈ 270.79 ≈ 286.48
BOS11–27 102.11 ≈ 112.76 ≈ 111.44 103.61 ≈ 114.26 ≈ 132.37
BOS11–30 56.81 ≈ 65.61 ≈ 64.33 59.81 ≈ 68.31 < 91.33
BOS11–31 125.82 ≈ 135.1 ≈ 142.43 127.32 ≈ 136.59 < 158.7
BK12–28 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
D05–18 235.84 ≈ 234.95 ≈ 235.63 241.39 ≈ 243.54 < 266.02
D05–19 413.65 < 452.05 ≫ 408.22 421.17 < 455.47 ≈ 441.71
DF11–6 810.5 < 925.1 > 770.36 880.04 ≈ 949.19 ≈ 847.92
DF11–7 1349.47 ≈ 1364.07 ≫ 1132.04 1423.93 ≈ 1388.73 ≫ 1227.66
DF11–8 1496.25 ≪ 1712.65 ≫ 1279.8 1515.51 < 1714.28 ≫ 1316.15
DF11–22 1154.93 ≈ 1122.94 ≈ 1066.33 1192.92 ≈ 1161.02 ≈ 1141.85
DF11–23 1142.96 ≈ 1217.02 ≫ 1020.09 1144.78 ≈ 1218.9 ≫ 1066.21
DF11–24 1188.68 ≈ 1194.48 ≫ 1046.5 1239.14 ≈ 1246.06 > 1152.48
DF15–4 431.07 ≈ 467.36 > 395.89 460.23 ≈ 478.56 ≈ 441.94
DF15–5 1763.19 ≪ 2211.16 ≫ 1646.78 1808.3 ≪ 2212.37 ≫ 1686.31
DF15–20 1569.49 ≈ 1543.46 ≫ 1439.66 1588.62 ≈ 1571.15 > 1501.57
DF15–21 2012.6 ≪ 2221.98 ≫ 1943.68 2015.1 ≪ 2224.97 ≫ 1960.65
DF15–33 2552.94 > 2400.56 ≈ 2336.73 2573.89 > 2423.22 ≈ 2389.72
DF15–35 403.53 ≈ 385.77 ≈ 396.36 405.32 ≈ 391.08 ≪ 416.29
DRFN08–10 410.24 ≈ 390.77 > 334.73 413.58 ≈ 400.1 > 362.2
DRFN08–11 450.5 ≈ 470.91 ≫ 405.73 454.24 ≈ 476.95 ≫ 426.5
DO09–32 1396.68 < 1467.36 ≫ 1372.99 1448.71 < 1497.48 > 1444.51
FY17–25 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
FRD12–29 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
KS13–12 2685.4 ≪ 3010.1 ≫ 2439.06 2735.02 ≪ 3041.29 ≫ 2581.96
STS13–13 1346.41 < 1481.65 ≫ 1296.85 1389.33 < 1483.17 ≫ 1333.21
AF09 843.08 ≈ 834.4 ≈ 845.51 886.44 ≈ 866.95 ≈ 892.7
BOS11 1069.58 ≈ 1104.85 ≪ 1221.28 1114.69 ≈ 1157.02 ≪ 1615.75
BK12 845.41 ≈ 845.05 > 785.49 845.41 ≈ 846.82 > 811.17
D05 651.88 < 689.58 > 652.36 666.1 < 702.56 ≈ 729
DF11 7164.32 ≪ 7557.8 ≫ 6422.83 7423.23 < 7705.11 ≫ 6913.83
DF15 8756.15 ≪ 9253.62 ≫ 8275.74 8880.62 ≪ 9330.5 ≫ 8571.44
DRFN08 863.26 ≈ 864.49 ≫ 752.16 871.32 ≈ 880.55 ≫ 809.71
DO09 1396.68 < 1467.36 ≫ 1372.99 1448.71 < 1497.48 > 1444.51
FY17 313.03 ≈ 337.5 > 301.74 321.32 ≈ 337.5 ≈ 332.73
FRD12 451.47 ≈ 435.83 ≈ 435.86 454.09 ≈ 437.74 ≈ 455.21
KS13 2685.4 ≪ 3010.1 ≫ 2439.06 2735.02 ≪ 3041.29 ≫ 2581.96
STS13 1346.41 < 1481.65 ≫ 1296.85 1389.33 < 1483.17 ≫ 1333.21

Pooled 26525.91 ≪ 28023.06 ≫ 25411.21 27218.66 ≪ 28469.06 ≫ 27585.46

(b) Second halves per session

Best w/o SG All but SG
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
Models evaluated 532 532 532 1 1 1
Pars est. (by treat.) 16 16 82 5 5 30
Pars accounted for 3–5 3–5 12–30 5 5 30

AF09–34 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
BOS11–9 84.22 ≈ 96.42 ≈ 88.85 87.22 ≈ 99.64 ≈ 115.59
BOS11–14 40.82 ≈ 40.83 < 50.24 43.82 ≈ 43.83 ≪ 77.2
BOS11–15 15.52 ≈ 15.52 ≪ 29.01 18.52 ≈ 18.52 ≪ 55.98
BOS11–16 157.48 ≈ 165.09 ≈ 157.84 160.48 ≈ 169.38 ≈ 183.26
BOS11–17 229.75 ≈ 225.64 ≈ 219.73 232.75 ≈ 230.42 ≈ 245.01
BOS11–26 366.88 ≈ 365.76 ≈ 350.94 369.98 ≈ 367.47 ≈ 374.89
BOS11–27 226.92 ≈ 255.26 ≈ 243.72 228.41 ≈ 256.76 ≈ 258.15
BOS11–30 146.49 ≈ 137.43 ≈ 145.96 149.49 ≈ 143.16 < 172.77
BOS11–31 161.17 ≈ 174.2 ≈ 173.52 162.67 ≈ 175.69 ≈ 190.25
BK12–28 561.63 ≈ 627.74 ≫ 516.71 588.33 ≈ 632.75 > 584.4
D05–18 350.59 ≈ 359.16 ≈ 351.93 355.62 ≈ 361.11 < 383.77
D05–19 388.49 < 428.21 ≫ 383.3 392.65 ≪ 449.88 > 418.75
DF11–6 633.6 ≈ 693.84 ≈ 557.16 751.56 ≈ 723.62 ≈ 654.48
DF11–7 1427.15 < 1645.34 ≫ 1268.34 1571.76 ≈ 1692.09 ≫ 1428.39
DF11–8 1139.15 ≪ 1646.78 ≫ 960.35 1142.1 ≪ 1648.58 ≫ 978.71
DF11–22 1196.64 ≈ 1160.77 ≫ 1018.52 1198.53 ≈ 1190.83 > 1068.63
DF11–23 723.5 ≪ 970.63 ≫ 737.29 842.37 < 979.34 > 820.55
DF11–24 504.8 ≈ 496.02 ≈ 460.73 532.68 ≈ 522.54 ≈ 522.66
DF15–4 331.12 ≈ 402.51 ≈ 339.15 345.97 ≈ 407.07 ≈ 379.36
DF15–5 1666.6 ≪ 2234.36 ≫ 1438.87 1686.18 ≪ 2235.53 ≫ 1466.72
DF15–20 1572.51 ≈ 1548.84 ≫ 1339.13 1572.51 ≈ 1558.84 ≫ 1379.3
DF15–21 1664.01 ≪ 1914.7 ≫ 1504.63 1754.13 < 1914.7 ≫ 1620.64
DF15–33 2913.27 ≈ 2919.03 ≫ 2735.52 2915.83 ≈ 2936.72 ≫ 2771.7
DF15–35 779.84 ≈ 792.29 ≈ 790.32 781.64 ≈ 794.07 ≈ 808.34
DRFN08–10 301.08 ≈ 289.13 ≈ 251.55 304.41 ≈ 303.62 ≈ 287.94
DRFN08–11 345.37 ≈ 389.41 > 323.06 348.47 ≈ 395.16 ≈ 363.7
DO09–32 1925.24 ≈ 1992.71 ≫ 1883.22 2010.01 ≈ 2038.28 > 1977.9
FY17–25 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
FRD12–29 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
KS13–12 1751.81 ≪ 2365.94 ≫ 1678.7 1866.19 ≪ 2375.6 ≫ 1777.72
STS13–13 1025.32 ≪ 1177.96 ≫ 1008.49 1027.43 ≪ 1180.11 ≫ 1025.75
AF09 492.28 ≈ 484.05 ≈ 482.82 534.29 ≈ 514.94 ≈ 547.48
BOS11 1462.41 ≈ 1513.92 < 1604.87 1503.41 ≈ 1554.93 ≪ 1973.56
BK12 561.63 ≈ 627.74 ≫ 516.71 588.33 ≈ 632.75 > 584.4
D05 741.2 < 790.21 > 743.74 751.82 ≪ 814.54 ≈ 823.78
DF11 5646.38 ≪ 6634.92 ≫ 5110.1 6065.93 ≪ 6783.93 ≫ 5634.97
DF15 8951.57 ≪ 9835.77 ≫ 8264.26 9085.4 ≪ 9876.09 ≫ 8601.02
DRFN08 648.55 ≈ 681.35 > 588.62 656.38 ≈ 702.27 ≈ 672.66
DO09 1925.24 ≈ 1992.71 ≫ 1883.22 2010.01 ≈ 2038.28 > 1977.9
FY17 433.18 < 474.93 > 427.79 469.85 ≈ 493.4 ≈ 474.8
FRD12 528.36 ≈ 545.76 ≈ 529.88 530.3 ≈ 547.36 ≈ 549.27
KS13 1751.81 ≪ 2365.94 ≫ 1678.7 1866.19 ≪ 2375.6 ≫ 1777.72
STS13 1025.32 ≪ 1177.96 ≫ 1008.49 1027.43 ≪ 1180.11 ≫ 1025.75

Pooled 24301.45 ≪ 27269.48 ≫ 23494.22 25271.72 ≪ 27696.6 ≫ 25737.55

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.15: Pure, mixed, or switching strategies? Best mixtures of continuation strategies (not including round 1) without Semi-Grim
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies Best mixture of generalized pure strategies (type II)
No Random Markov No Random Markov

Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 432 432 432 432 432 432

# Pars estimated (by treatment) (by treatment) 16 16 82 32 32 98
# Parameters accounted for (by treatment) 3–5 3–5 12–30 6–10 6–10 15–35

First halves per session
Aoyagi and Frechette (2009) 744.79 ≈ 733.65 ≈ 746.14 645.31 ≈ 646.53 ≈ 649.53
Blonski et al. (2011) 669.18 ≫ 621.56 ≪ 843 713.8 ≫ 670.62 ≪ 875.74
Bruttel and Kamecke (2012) 590.68 ≈ 581 ≈ 590.89 585.42 ≈ 570.56 ≈ 570.87
Dal Bó (2005) 390.88 ≫ 363.41 ≪ 393 407.86 ≫ 378.95 < 404.78
Dal Bó and Fréchette (2011) 3719.86 ≈ 3729.53 ≈ 3670.79 3536.73 ≈ 3589.36 ≈ 3524.77
Dal Bó and Fréchette (2015) 5494.71 ≫ 5264.13 ≈ 5303.29 5259.64 ≫ 5037.82 ≈ 5057.54
Dreber et al. (2008) 455.55 ≈ 461.78 ≈ 481.64 478.09 ≈ 466.13 ≈ 482.86
Duffy and Ochs (2009) 1069.16 ≈ 1076.16 ≈ 1069.38 1047.59 ≈ 1053.04 ≈ 1049.79
Fréchette and Yuksel (2017) 181.98 ≫ 158.34 ≪ 176.5 188.5 ≈ 183.48 ≈ 175.59
Fudenberg et al. (2012) 356.73 > 331.44 < 347.07 319.45 ≈ 308.6 ≈ 320.55
Kagel and Schley (2013) 1776.53 ≈ 1837.93 ≫ 1715.12 1761.98 ≈ 1780.97 > 1694.94
Sherstyuk et al. (2013) 926.9 ≈ 953.91 > 912.67 865.67 ≈ 907.14 > 858.65

Pooled 16515.74 > 16251.31 ≪ 16837.05 16077.95 > 15853.82 ≪ 16335.33

Second halves per session
Aoyagi and Frechette (2009) 448.52 ≈ 431.35 ≈ 432.41 363.58 ≈ 368.23 ≈ 368.89
Blonski et al. (2011) 967.16 ≫ 914.28 ≪ 1140.5 992.44 ≈ 993.71 ≪ 1154.56
Bruttel and Kamecke (2012) 342.17 ≈ 361.38 ≈ 348.88 344.88 ≈ 358.12 ≈ 347.08
Dal Bó (2005) 462.39 ≈ 445.5 ≪ 474.71 475.11 ≈ 456.4 ≈ 469.98
Dal Bó and Fréchette (2011) 2957.24 ≈ 3076.88 ≈ 2979.53 2737.11 < 2875.64 > 2721.88
Dal Bó and Fréchette (2015) 5537.83 > 5419.19 ≈ 5438.75 5164.78 ≈ 5105.6 ≈ 5116.42
Dreber et al. (2008) 287.58 ≈ 285.34 < 303.79 295.06 ≈ 297.88 ≈ 303.03
Duffy and Ochs (2009) 1555.1 ≈ 1599.27 ≈ 1561.56 1381.01 ≈ 1416.71 ≈ 1392.49
Fréchette and Yuksel (2017) 333.32 ≈ 309.06 ≈ 325.58 309.63 ≈ 304.7 ≈ 308.78
Fudenberg et al. (2012) 443.13 ≈ 439.28 ≈ 444.41 373.44 ≈ 395.32 ≈ 376.62
Kagel and Schley (2013) 1191.45 < 1301.1 ≫ 1187.17 1170.12 ≈ 1224.37 > 1143.67
Sherstyuk et al. (2013) 587.45 < 640.1 > 597.28 527.09 ≈ 590.16 ≈ 567.63

Pooled 15249.49 ≈ 15361.1 ≪ 15841.93 14387.48 < 14656.93 ≈ 14961.61
Note: Relation signs are used as defined above (Table A.9). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly: “No Switching”
assumes that each subject randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that each
subject randomly chooses a strategy prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process. “Best mixture of pure
strategies” starts with the general mixture model allowing subjects to play AD, Grim, TFT, AC or WSLS and picks the best-fitting model after eliminating AC or WSLS, or both or none
of these. The “Best mixture of generalized strategies” additionally allows for randomization based on these proto-typical strategies as defined in the main text.
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Table A.16: Pure, mixed, or switching strategies? Best mixtures without Semi-Grim, including first round behavior.
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies Best mixture of generalized pure strategies
Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

First halves per session
Aoyagi and Frechette (2009) 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
Blonski et al. (2011) 1114.69 ≫ 1069.58 ≈ 1104.85 ≪ 1221.28 1134.67 ≈ 1173.15 ≪ 1272.13
Bruttel and Kamecke (2012) 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
Dal Bó (2005) 666.1 ≈ 651.88 < 689.58 > 652.36 641.98 < 674.57 ≈ 653.11
Dal Bó and Fréchette (2011) 7423.23 > 7164.32 ≪ 7557.8 ≫ 6422.83 6921.58 ≪ 7467.72 ≫ 6465.99
Dal Bó and Fréchette (2015) 8880.62 > 8756.15 ≪ 9253.62 ≫ 8275.74 8446 ≪ 9183.55 ≫ 8168.2
Dreber et al. (2008) 871.32 ≈ 863.26 ≈ 864.49 ≫ 752.16 787.71 < 865.64 ≫ 763.43
Duffy and Ochs (2009) 1448.71 ≈ 1396.68 < 1467.36 ≫ 1372.99 1395.4 < 1461.01 > 1394.31
Fréchette and Yuksel (2017) 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
Fudenberg et al. (2012) 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 ≪ 3010.1 ≫ 2439.06 2709.95 ≪ 2993.4 ≫ 2539.99
Sherstyuk et al. (2013) 1389.33 ≈ 1346.41 < 1481.65 ≫ 1296.85 1322.6 ≪ 1450 ≫ 1298.37

Pooled 27218.66 ≫ 26525.91 ≪ 28023.06 ≫ 25411.21 25933.42 ≪ 27915.32 ≫ 25504.76

Second halves per session
Aoyagi and Frechette (2009) 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
Blonski et al. (2011) 1503.41 ≫ 1462.41 ≈ 1513.92 < 1604.87 1414.39 ≪ 1553.12 ≈ 1609.79
Bruttel and Kamecke (2012) 588.33 ≈ 561.63 ≈ 627.74 ≫ 516.71 538.17 < 611.91 ≫ 525.5
Dal Bó (2005) 751.82 ≈ 741.2 < 790.21 > 743.74 737.05 < 786.21 > 741.54
Dal Bó and Fréchette (2011) 6065.93 > 5646.38 ≪ 6634.92 ≫ 5110.1 5220.17 ≪ 6378.16 ≫ 5069.04
Dal Bó and Fréchette (2015) 9085.4 > 8951.57 ≪ 9835.77 ≫ 8264.26 8205.77 ≪ 9401.19 ≫ 7947.33
Dreber et al. (2008) 656.38 ≈ 648.55 ≈ 681.35 > 588.62 619.9 ≈ 662.24 > 596.78
Duffy and Ochs (2009) 2010.01 ≈ 1925.24 ≈ 1992.71 ≫ 1883.22 1883.52 ≈ 1914.83 > 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
Fudenberg et al. (2012) 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
Kagel and Schley (2013) 1866.19 ≈ 1751.81 ≪ 2365.94 ≫ 1678.7 1808.21 ≪ 2336.29 ≫ 1718.07
Sherstyuk et al. (2013) 1027.43 ≈ 1025.32 ≪ 1177.96 ≫ 1008.49 955.73 ≪ 1137.49 ≫ 958.99

Pooled 25271.72 ≫ 24301.45 ≪ 27269.48 ≫ 23494.22 23009.84 ≪ 26479.73 ≫ 23143.38
Note: Relation signs are used as defined above (Table A.9). “No Switching”, “Random Switching” and “Markov Switching” are as defined in the text, but briefly: “No Switching” assumes that each
subject randomly chooses a strategy prior to the first supergame and plays this strategy constantly for the entire half session. “Random Switching” assumes that each subject randomly chooses a strategy
prior to each supergame (by i.i.d. draws), and “Markov Switching” allows that these switches follow a Markov process. “Best mixture of pure strategies” starts with the general mixture model allowing
subjects to play AD, Grim, TFT, AC or WSLS and picks the best-fitting model after eliminating AC or WSLS, or both or none of these. The “Best mixture of generalized strategies” additionally allows for
randomization in the first round.
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Table A.17: Table A.16 by treatments – Pure, mixed, or switching strategies? Best mixtures without Semi-Grim

(a) First halves per session
Best mixture of pure strategies Best mixture of generalized pure strategies

Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

AF09–34 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
BOS11–9 85.17 ≈ 83.42 ≈ 83.96 ≈ 88.41 89.7 ≈ 87.81 ≈ 91.36
BOS11–14 100.72 ≈ 97.73 ≈ 90 ≈ 92.94 102.27 ≈ 94.44 ≈ 96.5
BOS11–15 37.29 ≈ 34.3 ≈ 32.69 ≪ 43.18 38.79 ≈ 37.18 ≈ 44.74
BOS11–16 176.55 ≈ 167.3 ≈ 169.38 ≈ 170.57 168.92 ≈ 176.43 ≈ 174.73
BOS11–17 113.57 ≈ 110.57 ≈ 118.71 ≈ 121.05 115.07 ≈ 123.19 ≈ 123.74
BOS11–26 260.57 ≈ 256.88 ≈ 262.33 ≈ 257.54 257.82 ≈ 269.17 ≈ 256.37
BOS11–27 103.61 ≈ 102.11 ≈ 112.76 ≈ 111.44 103.44 ≈ 114.9 ≈ 110.81
BOS11–30 59.81 > 56.81 ≈ 65.61 ≈ 64.33 60.42 ≈ 68.55 ≈ 68.16
BOS11–31 127.32 ≈ 125.82 ≈ 135.1 ≈ 142.43 129.65 ≈ 137.48 ≈ 145.13
BK12–28 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
D05–18 241.39 ≈ 235.84 ≈ 234.95 ≈ 235.63 241.44 ≈ 230.66 ≈ 238.66
D05–19 421.17 ≈ 413.65 < 452.05 ≫ 408.22 396.28 ≪ 439.65 > 403.81
DF11–6 880.04 ≈ 810.5 < 925.1 > 770.36 823.69 ≈ 909.31 > 772.55
DF11–7 1423.93 > 1349.47 ≈ 1364.07 ≫ 1132.04 1297.64 < 1370.65 ≫ 1181.36
DF11–8 1515.51 ≈ 1496.25 ≪ 1712.65 ≫ 1279.8 1422.73 ≪ 1668.83 ≫ 1284.25
DF11–22 1192.92 ≈ 1154.93 ≈ 1122.94 ≈ 1066.33 1080.23 ≈ 1110.68 ≈ 1056.77
DF11–23 1144.78 ≈ 1142.96 ≈ 1217.02 ≫ 1020.09 1082.68 < 1185.69 ≫ 1027.3
DF11–24 1239.14 ≈ 1188.68 ≈ 1194.48 ≫ 1046.5 1171.57 ≈ 1179.6 ≫ 1022.62
DF15–4 460.23 > 431.07 ≈ 467.36 > 395.89 439.54 ≈ 474.37 ≈ 412.27
DF15–5 1808.3 ≈ 1763.19 ≪ 2211.16 ≫ 1646.78 1762.23 ≪ 2211.09 ≫ 1638.92
DF15–20 1588.62 ≈ 1569.49 ≈ 1543.46 ≫ 1439.66 1463.03 < 1547.14 ≫ 1433.87
DF15–21 2015.1 ≈ 2012.6 ≪ 2221.98 ≫ 1943.68 1974.94 ≪ 2184.97 ≫ 1902.95
DF15–33 2573.89 ≈ 2552.94 > 2400.56 ≈ 2336.73 2379.17 ≈ 2350.87 ≈ 2296.41
DF15–35 405.32 ≈ 403.53 ≈ 385.77 ≈ 396.36 384.6 ≈ 372.62 ≈ 382.07
DRFN08–10 413.58 ≈ 410.24 ≈ 390.77 > 334.73 374.3 ≈ 391.56 > 339.73
DRFN08–11 454.24 ≈ 450.5 ≈ 470.91 ≫ 405.73 408.63 < 468.48 ≫ 413.19
DO09–32 1448.71 ≈ 1396.68 < 1467.36 ≫ 1372.99 1395.4 < 1461.01 > 1394.31
FY17–25 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
FRD12–29 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
KS13–12 2735.02 ≈ 2685.4 ≪ 3010.1 ≫ 2439.06 2709.95 ≪ 2993.4 ≫ 2539.99
STS13–13 1389.33 ≈ 1346.41 < 1481.65 ≫ 1296.85 1322.6 ≪ 1450 ≫ 1298.37
Aoyagi and Frechette (2009) 886.44 ≈ 843.08 ≈ 834.4 ≈ 845.51 756.95 ≈ 763.11 ≈ 755.97
Blonski et al. (2011) 1114.69 ≫ 1069.58 ≈ 1104.85 ≪ 1221.28 1134.67 ≈ 1173.15 ≪ 1272.13
Bruttel and Kamecke (2012) 845.41 ≈ 845.41 ≈ 845.05 > 785.49 817.89 ≈ 835.6 > 787.63
Dal Bó (2005) 666.1 ≈ 651.88 < 689.58 > 652.36 641.98 < 674.57 ≈ 653.11
Dal Bó and Fréchette (2011) 7423.23 > 7164.32 ≪ 7557.8 ≫ 6422.83 6921.58 ≪ 7467.72 ≫ 6465.99
Dal Bó and Fréchette (2015) 8880.62 > 8756.15 ≪ 9253.62 ≫ 8275.74 8446 ≪ 9183.55 ≫ 8168.2
Dreber et al. (2008) 871.32 ≈ 863.26 ≈ 864.49 ≫ 752.16 787.71 < 865.64 ≫ 763.43
Duffy and Ochs (2009) 1448.71 ≈ 1396.68 < 1467.36 ≫ 1372.99 1395.4 < 1461.01 > 1394.31
Fréchette and Yuksel (2017) 321.32 ≈ 313.03 ≈ 337.5 > 301.74 300.87 < 345.74 > 298.53
Fudenberg et al. (2012) 454.09 ≈ 451.47 ≈ 435.83 ≈ 435.86 432.32 ≈ 432.38 ≈ 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 ≪ 3010.1 ≫ 2439.06 2709.95 ≪ 2993.4 ≫ 2539.99
Sherstyuk et al. (2013) 1389.33 ≈ 1346.41 < 1481.65 ≫ 1296.85 1322.6 ≪ 1450 ≫ 1298.37

Pooled 27218.66 ≫ 26525.91 ≪ 28023.06 ≫ 25411.21 25933.42 ≪ 27915.32 ≫ 25504.76

(b) Second halves per session
Best mixture of pure strategies Best mixture of generalized pure strategies

Baseline No Random Markov No Random Markov
Model Switching Switching Switching Switching Switching Switching

Specification
# Models evaluated 1 532 532 532 832 832 832

# Pars estimated (by treatment) 5 16 16 82 64 64 196
# Parameters accounted for 5 3–5 3–5 12–30 6–10 6–10 15–35

AF09–34 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
BOS11–9 87.22 ≈ 84.22 ≈ 96.42 ≈ 88.85 78.84 < 103.47 ≈ 83.98
BOS11–14 43.82 ≈ 40.82 ≈ 40.83 < 50.24 45.31 ≈ 42.43 ≈ 48.97
BOS11–15 18.52 ≈ 15.52 ≈ 15.52 ≪ 29.01 20.01 ≈ 20.01 ≪ 33.5
BOS11–16 160.48 ≈ 157.48 ≈ 165.09 ≈ 157.84 148.98 ≈ 168.12 ≈ 158.84
BOS11–17 232.75 ≈ 229.75 ≈ 225.64 ≈ 219.73 211.59 ≈ 225.1 ≈ 216.6
BOS11–26 369.98 ≈ 366.88 ≈ 365.76 ≈ 350.94 327.16 ≈ 352.05 ≈ 338.09
BOS11–27 228.41 ≈ 226.92 ≈ 255.26 ≈ 243.72 224.85 ≈ 254.56 ≈ 233.57
BOS11–30 149.49 > 146.49 ≈ 137.43 ≈ 145.96 139.46 ≈ 139.47 ≈ 146.9
BOS11–31 162.67 ≈ 161.17 ≈ 174.2 ≈ 173.52 151.87 < 179.31 ≈ 171.15
BK12–28 588.33 ≈ 561.63 ≈ 627.74 ≫ 516.71 538.17 < 611.91 ≫ 525.5
D05–18 355.62 ≈ 350.59 ≈ 359.16 ≈ 351.93 340.33 ≈ 355.81 ≈ 346.45
D05–19 392.65 ≈ 388.49 < 428.21 ≫ 383.3 392.47 < 426.15 > 384.46
DF11–6 751.56 ≈ 633.6 ≈ 693.84 ≈ 557.16 579.84 ≈ 628.84 ≈ 565.43
DF11–7 1571.76 > 1427.15 < 1645.34 ≫ 1268.34 1359.89 ≪ 1582.11 ≫ 1299.86
DF11–8 1142.1 ≈ 1139.15 ≪ 1646.78 ≫ 960.35 1028.93 ≪ 1600.86 ≫ 904.89
DF11–22 1198.53 ≈ 1196.64 ≈ 1160.77 ≫ 1018.52 1012.26 < 1102.07 ≫ 973.62
DF11–23 842.37 ≈ 723.5 ≪ 970.63 ≫ 737.29 743.89 < 943.35 ≫ 739.29
DF11–24 532.68 ≈ 504.8 ≈ 496.02 ≈ 460.73 450.61 ≈ 477.85 ≈ 455.62
DF15–4 345.97 ≈ 331.12 ≈ 402.51 ≈ 339.15 301.69 < 385.5 ≈ 307.03
DF15–5 1686.18 ≈ 1666.6 ≪ 2234.36 ≫ 1438.87 1581.28 ≪ 2217.39 ≫ 1435.63
DF15–20 1572.51 ≈ 1572.51 ≈ 1548.84 ≫ 1339.13 1273.14 ≪ 1441.16 ≫ 1270.1
DF15–21 1754.13 ≈ 1664.01 ≪ 1914.7 ≫ 1504.63 1688.09 < 1878.92 ≫ 1544.66
DF15–33 2915.83 ≈ 2913.27 ≈ 2919.03 ≫ 2735.52 2582.61 < 2690.87 ≫ 2541.5
DF15–35 781.64 ≈ 779.84 ≈ 792.29 ≈ 790.32 733.28 ≈ 742.93 ≈ 723.78
DRFN08–10 304.41 ≈ 301.08 ≈ 289.13 ≈ 251.55 276.61 ≈ 285.26 ≈ 243.71
DRFN08–11 348.47 ≈ 345.37 ≈ 389.41 > 323.06 339.09 ≈ 371.38 ≈ 339.95
DO09–32 2010.01 ≈ 1925.24 ≈ 1992.71 ≫ 1883.22 1883.52 ≈ 1914.83 > 1850.35
FY17–25 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
FRD12–29 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
KS13–12 1866.19 ≈ 1751.81 ≪ 2365.94 ≫ 1678.7 1808.21 ≪ 2336.29 ≫ 1718.07
STS13–13 1027.43 ≈ 1025.32 ≪ 1177.96 ≫ 1008.49 955.73 ≪ 1137.49 ≫ 958.99
Aoyagi and Frechette (2009) 534.29 ≈ 492.28 ≈ 484.05 ≈ 482.82 416.51 ≈ 437.8 ≈ 423.05
Blonski et al. (2011) 1503.41 ≫ 1462.41 ≈ 1513.92 < 1604.87 1414.39 ≪ 1553.12 ≈ 1609.79
Bruttel and Kamecke (2012) 588.33 ≈ 561.63 ≈ 627.74 ≫ 516.71 538.17 < 611.91 ≫ 525.5
Dal Bó (2005) 751.82 ≈ 741.2 < 790.21 > 743.74 737.05 < 786.21 > 741.54
Dal Bó and Fréchette (2011) 6065.93 > 5646.38 ≪ 6634.92 ≫ 5110.1 5220.17 ≪ 6378.16 ≫ 5069.04
Dal Bó and Fréchette (2015) 9085.4 > 8951.57 ≪ 9835.77 ≫ 8264.26 8205.77 ≪ 9401.19 ≫ 7947.33
Dreber et al. (2008) 656.38 ≈ 648.55 ≈ 681.35 > 588.62 619.9 ≈ 662.24 > 596.78
Duffy and Ochs (2009) 2010.01 ≈ 1925.24 ≈ 1992.71 ≫ 1883.22 1883.52 ≈ 1914.83 > 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 438.55 < 478.2 ≈ 434.61
Fudenberg et al. (2012) 530.3 ≈ 528.36 ≈ 545.76 ≈ 529.88 514.87 ≈ 516.12 ≈ 515.97
Kagel and Schley (2013) 1866.19 ≈ 1751.81 ≪ 2365.94 ≫ 1678.7 1808.21 ≪ 2336.29 ≫ 1718.07
Sherstyuk et al. (2013) 1027.43 ≈ 1025.32 ≪ 1177.96 ≫ 1008.49 955.73 ≪ 1137.49 ≫ 958.99

Pooled 25271.72 ≫ 24301.45 ≪ 27269.48 ≫ 23494.22 23009.84 ≪ 26479.73 ≫ 23143.38

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.18: Best mixtures of pure strategies in relation to a Semi-Grim behavior strategy
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

First halves per session
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 845.51 ≫ 781.86 ≈ 792.51
Blonski et al. (2011) 1069.58 ≈ 1104.85 ≪ 1221.28 1221.28 ≫ 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 651.88 < 689.58 > 652.36 652.36 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 7164.32 ≪ 7557.8 ≫ 6422.83 6422.83 < 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8756.15 ≪ 9253.62 ≫ 8275.74 8275.74 > 8017.59 ≫ 7830.12
Dreber et al. (2008) 863.26 ≈ 864.49 ≫ 752.16 752.16 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1396.68 < 1467.36 ≫ 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2685.4 ≪ 3010.1 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2450.24
Sherstyuk et al. (2013) 1346.41 < 1481.65 ≫ 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52

Pooled 26525.91 ≪ 28023.06 ≫ 25411.21 25411.21 ≫ 24779.85 ≫ 24202.51

Second halves per session
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 492.28 ≫ 423.68 ≈ 421.21
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1462.41 ≫ 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 ≫ 516.71 561.63 ≈ 536.77 ≫ 480.47
Dal Bó (2005) 741.2 < 790.21 > 743.74 741.2 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5646.38 ≪ 6634.92 ≫ 5110.1 5646.38 ≫ 5128.69 ≫ 4565.93
Dal Bó and Fréchette (2015) 8951.57 ≪ 9835.77 ≫ 8264.26 8951.57 ≫ 7825.98 ≫ 7306.25
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 648.55 > 589.84 > 544.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 ≫ 1883.22 1925.24 > 1761.6 ≫ 1656.55
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 528.36 ≫ 452.6 ≈ 433.74
Kagel and Schley (2013) 1751.81 ≪ 2365.94 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1572.95
Sherstyuk et al. (2013) 1025.32 ≪ 1177.96 ≫ 1008.49 1025.32 ≈ 951.34 ≫ 834.74

Pooled 24301.45 ≪ 27269.48 ≫ 23494.22 24301.45 ≫ 22097.67 ≫ 20541.83

Note: This table extends Table A.13 by picking the best switching model per half-session, after picking the best-fitting mixture involving the pure forms of AD,
Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and mixtures involving Semi-
Grim. The model "AD+SG2" has the same number of degrees of freedom as the Semi-Grim model. In contrast to "Semi-Grim", SG2 has only two decrees of
freedom including the noise term.
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Table A.19: Table A.18 by treatments – Best mixtures of pure strategies in relation to a Semi-Grim behavior strategy

(a) First halves per session

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

AF09–34 843.08 ≈ 834.4 ≈ 845.51 845.51 ≫ 781.86 ≈ 792.51
BOS11–9 83.42 ≈ 83.96 ≈ 88.41 88.41 ≈ 86.56 ≈ 88.35
BOS11–14 97.73 ≈ 90 ≈ 92.94 92.94 ≈ 93.88 ≈ 98.01
BOS11–15 34.3 ≈ 32.69 ≪ 43.18 43.18 > 37.73 < 43.07
BOS11–16 167.3 ≈ 169.38 ≈ 170.57 170.57 ≈ 167.42 ≈ 157.13
BOS11–17 110.57 ≈ 118.71 ≈ 121.05 121.05 > 115.02 ≈ 119.79
BOS11–26 256.88 ≈ 262.33 ≈ 257.54 257.54 ≈ 244.5 ≈ 246.46
BOS11–27 102.11 ≈ 112.76 ≈ 111.44 111.44 > 92.83 ≈ 92.07
BOS11–30 56.81 ≈ 65.61 ≈ 64.33 64.33 > 55.74 < 61.12
BOS11–31 125.82 ≈ 135.1 ≈ 142.43 142.43 ≈ 125.52 ≈ 128.49
BK12–28 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
D05–18 235.84 ≈ 234.95 ≈ 235.63 235.63 ≈ 230.57 ≈ 238.35
D05–19 413.65 < 452.05 ≫ 408.22 408.22 ≈ 395.06 ≈ 375.07
DF11–6 810.5 < 925.1 > 770.36 770.36 ≈ 794.44 ≈ 748.9
DF11–7 1349.47 ≈ 1364.07 ≫ 1132.04 1132.04 < 1256.83 ≈ 1229.61
DF11–8 1496.25 ≪ 1712.65 ≫ 1279.8 1279.8 < 1389.06 ≈ 1286.68
DF11–22 1154.93 ≈ 1122.94 ≈ 1066.33 1066.33 > 965.96 ≈ 961.58
DF11–23 1142.96 ≈ 1217.02 ≫ 1020.09 1020.09 ≈ 1019.57 ≈ 972.17
DF11–24 1188.68 ≈ 1194.48 ≫ 1046.5 1046.5 < 1145.15 ≈ 1115.95
DF15–4 431.07 ≈ 467.36 > 395.89 395.89 ≈ 436.57 ≈ 422.43
DF15–5 1763.19 ≪ 2211.16 ≫ 1646.78 1646.78 < 1738.77 ≫ 1649.1
DF15–20 1569.49 ≈ 1543.46 ≫ 1439.66 1439.66 ≈ 1405.3 > 1366.09
DF15–21 2012.6 ≪ 2221.98 ≫ 1943.68 1943.68 > 1872.47 > 1827.37
DF15–33 2552.94 > 2400.56 ≈ 2336.73 2336.73 > 2186.26 ≈ 2178.12
DF15–35 403.53 ≈ 385.77 ≈ 396.36 396.36 > 349.06 ≈ 346.18
DRFN08–10 410.24 ≈ 390.77 > 334.73 334.73 < 367.86 ≈ 359.04
DRFN08–11 450.5 ≈ 470.91 ≫ 405.73 405.73 ≈ 411.01 ≈ 400.49
DO09–32 1396.68 < 1467.36 ≫ 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
FY17–25 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
FRD12–29 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
KS13–12 2685.4 ≪ 3010.1 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2450.24
STS13–13 1346.41 < 1481.65 ≫ 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52
Aoyagi and Frechette (2009) 843.08 ≈ 834.4 ≈ 845.51 845.51 ≫ 781.86 ≈ 792.51
Blonski et al. (2011) 1069.58 ≈ 1104.85 ≪ 1221.28 1221.28 ≫ 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 845.41 ≈ 845.05 > 785.49 785.49 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 651.88 < 689.58 > 652.36 652.36 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 7164.32 ≪ 7557.8 ≫ 6422.83 6422.83 < 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8756.15 ≪ 9253.62 ≫ 8275.74 8275.74 > 8017.59 ≫ 7830.12
Dreber et al. (2008) 863.26 ≈ 864.49 ≫ 752.16 752.16 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1396.68 < 1467.36 ≫ 1372.99 1372.99 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 313.03 ≈ 337.5 > 301.74 301.74 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 451.47 ≈ 435.83 ≈ 435.86 435.86 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2685.4 ≪ 3010.1 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2450.24
Sherstyuk et al. (2013) 1346.41 < 1481.65 ≫ 1296.85 1296.85 ≈ 1303.8 ≈ 1234.52

Pooled 26525.91 ≪ 28023.06 ≫ 25411.21 25411.21 ≫ 24779.85 ≫ 24202.51

(b) Second halves per session

Best mixture of pure strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 532 532 532 1 1
# Pars estimated (by treatment) 16 16 82 3 5
# Parameters accounted for 3–5 3–5 12–35 3 5

AF09–34 492.28 ≈ 484.05 ≈ 482.82 492.28 ≫ 423.68 ≈ 421.21
BOS11–9 84.22 ≈ 96.42 ≈ 88.85 84.22 ≈ 75.1 ≈ 80.12
BOS11–14 40.82 ≈ 40.83 < 50.24 40.82 ≈ 35.58 ≈ 35.86
BOS11–15 15.52 ≈ 15.52 ≪ 29.01 15.52 ≈ 19.23 < 24.71
BOS11–16 157.48 ≈ 165.09 ≈ 157.84 157.48 ≈ 150.95 ≈ 138.89
BOS11–17 229.75 ≈ 225.64 ≈ 219.73 229.75 > 196.25 ≈ 201.03
BOS11–26 366.88 ≈ 365.76 ≈ 350.94 366.88 > 299.85 ≈ 309.63
BOS11–27 226.92 ≈ 255.26 ≈ 243.72 226.92 ≈ 235.88 ≈ 223.91
BOS11–30 146.49 ≈ 137.43 ≈ 145.96 146.49 ≈ 129.86 ≈ 132.45
BOS11–31 161.17 ≈ 174.2 ≈ 173.52 161.17 ≈ 154.02 ≈ 153.45
BK12–28 561.63 ≈ 627.74 ≫ 516.71 561.63 ≈ 536.77 ≫ 480.47
D05–18 350.59 ≈ 359.16 ≈ 351.93 350.59 ≈ 334.18 > 312.74
D05–19 388.49 < 428.21 ≫ 383.3 388.49 > 361.33 ≈ 359.54
DF11–6 633.6 ≈ 693.84 ≈ 557.16 633.6 > 526.15 ≈ 489.74
DF11–7 1427.15 < 1645.34 ≫ 1268.34 1427.15 ≈ 1316.79 ≈ 1250.02
DF11–8 1139.15 ≪ 1646.78 ≫ 960.35 1139.15 ≈ 1078.24 > 871.84
DF11–22 1196.64 ≈ 1160.77 ≫ 1018.52 1196.64 ≫ 930.3 > 858.03
DF11–23 723.5 ≪ 970.63 ≫ 737.29 723.5 ≈ 767.04 > 608.87
DF11–24 504.8 ≈ 496.02 ≈ 460.73 504.8 ≈ 483.25 ≈ 449.72
DF15–4 331.12 ≈ 402.51 ≈ 339.15 331.12 ≈ 320.02 ≈ 299.49
DF15–5 1666.6 ≪ 2234.36 ≫ 1438.87 1666.6 ≈ 1606.96 ≫ 1407.26
DF15–20 1572.51 ≈ 1548.84 ≫ 1339.13 1572.51 ≫ 1232.33 ≫ 1145.96
DF15–21 1664.01 ≪ 1914.7 ≫ 1504.63 1664.01 ≈ 1591.27 ≫ 1453.74
DF15–33 2913.27 ≈ 2919.03 ≫ 2735.52 2913.27 ≫ 2405.23 ≈ 2331.38
DF15–35 779.84 ≈ 792.29 ≈ 790.32 779.84 ≫ 641.02 ≈ 627.6
DRFN08–10 301.08 ≈ 289.13 ≈ 251.55 301.08 > 244.91 ≈ 234.76
DRFN08–11 345.37 ≈ 389.41 > 323.06 345.37 ≈ 341.42 > 305
DO09–32 1925.24 ≈ 1992.71 ≫ 1883.22 1925.24 > 1761.6 ≫ 1656.55
FY17–25 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
FRD12–29 528.36 ≈ 545.76 ≈ 529.88 528.36 ≫ 452.6 ≈ 433.74
KS13–12 1751.81 ≪ 2365.94 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1572.95
STS13–13 1025.32 ≪ 1177.96 ≫ 1008.49 1025.32 ≈ 951.34 ≫ 834.74
Aoyagi and Frechette (2009) 492.28 ≈ 484.05 ≈ 482.82 492.28 ≫ 423.68 ≈ 421.21
Blonski et al. (2011) 1462.41 ≈ 1513.92 < 1604.87 1462.41 ≫ 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 561.63 ≈ 627.74 ≫ 516.71 561.63 ≈ 536.77 ≫ 480.47
Dal Bó (2005) 741.2 < 790.21 > 743.74 741.2 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5646.38 ≪ 6634.92 ≫ 5110.1 5646.38 ≫ 5128.69 ≫ 4565.93
Dal Bó and Fréchette (2015) 8951.57 ≪ 9835.77 ≫ 8264.26 8951.57 ≫ 7825.98 ≫ 7306.25
Dreber et al. (2008) 648.55 ≈ 681.35 > 588.62 648.55 > 589.84 > 544.66
Duffy and Ochs (2009) 1925.24 ≈ 1992.71 ≫ 1883.22 1925.24 > 1761.6 ≫ 1656.55
Fréchette and Yuksel (2017) 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 528.36 ≈ 545.76 ≈ 529.88 528.36 ≫ 452.6 ≈ 433.74
Kagel and Schley (2013) 1751.81 ≪ 2365.94 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1572.95
Sherstyuk et al. (2013) 1025.32 ≪ 1177.96 ≫ 1008.49 1025.32 ≈ 951.34 ≫ 834.74

Pooled 24301.45 ≪ 27269.48 ≫ 23494.22 24301.45 ≫ 22097.67 ≫ 20541.83

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.20: Best mixtures of generalized strategies in relation to a Semi-Grim strategy
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

First halves per session
Aoyagi and Frechette (2009) 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
Blonski et al. (2011) 1134.67 ≈ 1173.15 ≪ 1272.13 1272.13 ≫ 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 641.98 < 674.57 ≈ 653.11 653.11 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 6921.58 ≪ 7467.72 ≫ 6465.99 6465.99 ≈ 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8446 ≪ 9183.55 ≫ 8168.2 8168.2 > 8017.59 ≫ 7830.12
Dreber et al. (2008) 787.71 < 865.64 ≫ 763.43 763.43 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2709.95 ≪ 2993.4 ≫ 2539.99 2539.99 ≈ 2561.76 ≫ 2450.24
Sherstyuk et al. (2013) 1322.6 ≪ 1450 ≫ 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52

Pooled 25933.42 ≪ 27915.32 ≫ 25504.76 25504.76 ≫ 24779.85 ≫ 24202.51

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
Blonski et al. (2011) 1414.39 ≪ 1553.12 ≈ 1609.79 1414.39 > 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 538.17 < 611.91 ≫ 525.5 538.17 ≈ 536.77 ≫ 480.47
Dal Bó (2005) 737.05 < 786.21 > 741.54 737.05 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5220.17 ≪ 6378.16 ≫ 5069.04 5220.17 ≈ 5128.69 ≫ 4565.93
Dal Bó and Fréchette (2015) 8205.77 ≪ 9401.19 ≫ 7947.33 8205.77 ≫ 7825.98 ≫ 7306.25
Dreber et al. (2008) 619.9 ≈ 662.24 > 596.78 619.9 ≈ 589.84 > 544.66
Duffy and Ochs (2009) 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 ≫ 1656.55
Fréchette and Yuksel (2017) 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
Kagel and Schley (2013) 1808.21 ≪ 2336.29 ≫ 1718.07 1808.21 ≈ 1775.62 ≫ 1572.95
Sherstyuk et al. (2013) 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 834.74

Pooled 23009.84 ≪ 26479.73 ≫ 23143.38 23009.84 ≫ 22097.67 ≫ 20541.83
Note: This table extends Table A.16 by picking the best switching model per half-session, after picking the best-fitting mixture involving the generalized forms of
AD, Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and mixtures involving
Semi-Grim.



140
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
TO

C
H

A
PT

E
R

1
Table A.21: Table A.20 by treatments – Best mixtures of generalized strategies in relation to a Semi-Grim strategy

(a) First halves per session

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

AF09–34 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
BOS11–9 89.7 ≈ 87.81 ≈ 91.36 91.36 ≈ 86.56 ≈ 88.35
BOS11–14 102.27 ≈ 94.44 ≈ 96.5 96.5 ≈ 93.88 ≈ 98.01
BOS11–15 38.79 ≈ 37.18 ≈ 44.74 44.74 ≈ 37.73 < 43.07
BOS11–16 168.92 ≈ 176.43 ≈ 174.73 174.73 ≈ 167.42 ≈ 157.13
BOS11–17 115.07 ≈ 123.19 ≈ 123.74 123.74 > 115.02 ≈ 119.79
BOS11–26 257.82 ≈ 269.17 ≈ 256.37 256.37 ≈ 244.5 ≈ 246.46
BOS11–27 103.44 ≈ 114.9 ≈ 110.81 110.81 > 92.83 ≈ 92.07
BOS11–30 60.42 ≈ 68.55 ≈ 68.16 68.16 ≫ 55.74 < 61.12
BOS11–31 129.65 ≈ 137.48 ≈ 145.13 145.13 ≈ 125.52 ≈ 128.49
BK12–28 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
D05–18 241.44 ≈ 230.66 ≈ 238.66 238.66 ≈ 230.57 ≈ 238.35
D05–19 396.28 ≪ 439.65 > 403.81 403.81 ≈ 395.06 ≈ 375.07
DF11–6 823.69 ≈ 909.31 > 772.55 772.55 ≈ 794.44 ≈ 748.9
DF11–7 1297.64 < 1370.65 ≫ 1181.36 1181.36 < 1256.83 ≈ 1229.61
DF11–8 1422.73 ≪ 1668.83 ≫ 1284.25 1284.25 < 1389.06 ≈ 1286.68
DF11–22 1080.23 ≈ 1110.68 ≈ 1056.77 1056.77 > 965.96 ≈ 961.58
DF11–23 1082.68 < 1185.69 ≫ 1027.3 1027.3 ≈ 1019.57 ≈ 972.17
DF11–24 1171.57 ≈ 1179.6 ≫ 1022.62 1022.62 ≪ 1145.15 ≈ 1115.95
DF15–4 439.54 ≈ 474.37 ≈ 412.27 412.27 ≈ 436.57 ≈ 422.43
DF15–5 1762.23 ≪ 2211.09 ≫ 1638.92 1638.92 ≪ 1738.77 ≫ 1649.1
DF15–20 1463.03 < 1547.14 ≫ 1433.87 1433.87 ≈ 1405.3 > 1366.09
DF15–21 1974.94 ≪ 2184.97 ≫ 1902.95 1902.95 ≈ 1872.47 > 1827.37
DF15–33 2379.17 ≈ 2350.87 ≈ 2296.41 2296.41 > 2186.26 ≈ 2178.12
DF15–35 384.6 ≈ 372.62 ≈ 382.07 382.07 > 349.06 ≈ 346.18
DRFN08–10 374.3 ≈ 391.56 > 339.73 339.73 ≈ 367.86 ≈ 359.04
DRFN08–11 408.63 < 468.48 ≫ 413.19 413.19 ≈ 411.01 ≈ 400.49
DO09–32 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
FY17–25 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
FRD12–29 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
KS13–12 2709.95 ≪ 2993.4 ≫ 2539.99 2539.99 ≈ 2561.76 ≫ 2450.24
STS13–13 1322.6 ≪ 1450 ≫ 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52
Aoyagi and Frechette (2009) 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 792.51
Blonski et al. (2011) 1134.67 ≈ 1173.15 ≪ 1272.13 1272.13 ≫ 1069.28 ≈ 1104.6
Bruttel and Kamecke (2012) 817.89 ≈ 835.6 > 787.63 787.63 ≈ 800.12 ≈ 771.14
Dal Bó (2005) 641.98 < 674.57 ≈ 653.11 653.11 ≈ 629.17 ≈ 618.39
Dal Bó and Fréchette (2011) 6921.58 ≪ 7467.72 ≫ 6465.99 6465.99 ≈ 6597.93 > 6352.59
Dal Bó and Fréchette (2015) 8446 ≪ 9183.55 ≫ 8168.2 8168.2 > 8017.59 ≫ 7830.12
Dreber et al. (2008) 787.71 < 865.64 ≫ 763.43 763.43 ≈ 782.37 ≈ 764.44
Duffy and Ochs (2009) 1395.4 < 1461.01 > 1394.31 1394.31 ≈ 1372.97 ≈ 1361.15
Fréchette and Yuksel (2017) 300.87 < 345.74 > 298.53 298.53 ≈ 299.62 ≈ 289.54
Fudenberg et al. (2012) 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 377.96
Kagel and Schley (2013) 2709.95 ≪ 2993.4 ≫ 2539.99 2539.99 ≈ 2561.76 ≫ 2450.24
Sherstyuk et al. (2013) 1322.6 ≪ 1450 ≫ 1298.37 1298.37 ≈ 1303.8 ≈ 1234.52

Pooled 25933.42 ≪ 27915.32 ≫ 25504.76 25504.76 ≫ 24779.85 ≫ 24202.51

(b) Second halves per session

Best mixture of generalized strategies
No Random Markov Best

Switching Switching Switching Switching Semi-Grim AD + SG

Specification
# Models evaluated 832 832 832 1 1
# Pars estimated (by treatment) 64 64 196 3 5
# Parameters accounted for 6–10 6–10 15-35 3 5

AF09–34 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
BOS11–9 78.84 < 103.47 ≈ 83.98 78.84 ≈ 75.1 ≈ 80.12
BOS11–14 45.31 ≈ 42.43 ≈ 48.97 45.31 ≈ 35.58 ≈ 35.86
BOS11–15 20.01 ≈ 20.01 ≪ 33.5 20.01 ≈ 19.23 < 24.71
BOS11–16 148.98 ≈ 168.12 ≈ 158.84 148.98 ≈ 150.95 ≈ 138.89
BOS11–17 211.59 ≈ 225.1 ≈ 216.6 211.59 ≈ 196.25 ≈ 201.03
BOS11–26 327.16 ≈ 352.05 ≈ 338.09 327.16 ≈ 299.85 ≈ 309.63
BOS11–27 224.85 ≈ 254.56 ≈ 233.57 224.85 ≈ 235.88 ≈ 223.91
BOS11–30 139.46 ≈ 139.47 ≈ 146.9 139.46 ≈ 129.86 ≈ 132.45
BOS11–31 151.87 < 179.31 ≈ 171.15 151.87 ≈ 154.02 ≈ 153.45
BK12–28 538.17 < 611.91 ≫ 525.5 538.17 ≈ 536.77 ≫ 480.47
D05–18 340.33 ≈ 355.81 ≈ 346.45 340.33 ≈ 334.18 > 312.74
D05–19 392.47 < 426.15 > 384.46 392.47 > 361.33 ≈ 359.54
DF11–6 579.84 ≈ 628.84 ≈ 565.43 579.84 ≈ 526.15 ≈ 489.74
DF11–7 1359.89 ≪ 1582.11 ≫ 1299.86 1359.89 ≈ 1316.79 ≈ 1250.02
DF11–8 1028.93 ≪ 1600.86 ≫ 904.89 1028.93 ≈ 1078.24 > 871.84
DF11–22 1012.26 < 1102.07 ≫ 973.62 1012.26 ≈ 930.3 > 858.03
DF11–23 743.89 < 943.35 ≫ 739.29 743.89 ≈ 767.04 > 608.87
DF11–24 450.61 ≈ 477.85 ≈ 455.62 450.61 ≈ 483.25 ≈ 449.72
DF15–4 301.69 < 385.5 ≈ 307.03 301.69 ≈ 320.02 ≈ 299.49
DF15–5 1581.28 ≪ 2217.39 ≫ 1435.63 1581.28 ≈ 1606.96 ≫ 1407.26
DF15–20 1273.14 ≪ 1441.16 ≫ 1270.1 1273.14 ≈ 1232.33 ≫ 1145.96
DF15–21 1688.09 < 1878.92 ≫ 1544.66 1688.09 ≈ 1591.27 ≫ 1453.74
DF15–33 2582.61 < 2690.87 ≫ 2541.5 2582.61 > 2405.23 ≈ 2331.38
DF15–35 733.28 ≈ 742.93 ≈ 723.78 733.28 ≫ 641.02 ≈ 627.6
DRFN08–10 276.61 ≈ 285.26 ≈ 243.71 276.61 > 244.91 ≈ 234.76
DRFN08–11 339.09 ≈ 371.38 ≈ 339.95 339.09 ≈ 341.42 > 305
DO09–32 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 ≫ 1656.55
FY17–25 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
FRD12–29 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
KS13–12 1808.21 ≪ 2336.29 ≫ 1718.07 1808.21 ≈ 1775.62 ≫ 1572.95
STS13–13 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 834.74
Aoyagi and Frechette (2009) 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 421.21
Blonski et al. (2011) 1414.39 ≪ 1553.12 ≈ 1609.79 1414.39 > 1346.79 ≈ 1370.16
Bruttel and Kamecke (2012) 538.17 < 611.91 ≫ 525.5 538.17 ≈ 536.77 ≫ 480.47
Dal Bó (2005) 737.05 < 786.21 > 741.54 737.05 > 699.05 ≈ 677.24
Dal Bó and Fréchette (2011) 5220.17 ≪ 6378.16 ≫ 5069.04 5220.17 ≈ 5128.69 ≫ 4565.93
Dal Bó and Fréchette (2015) 8205.77 ≪ 9401.19 ≫ 7947.33 8205.77 ≫ 7825.98 ≫ 7306.25
Dreber et al. (2008) 619.9 ≈ 662.24 > 596.78 619.9 ≈ 589.84 > 544.66
Duffy and Ochs (2009) 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 ≫ 1656.55
Fréchette and Yuksel (2017) 438.55 < 478.2 ≈ 434.61 438.55 ≈ 423.34 ≈ 422.61
Fudenberg et al. (2012) 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 ≈ 433.74
Kagel and Schley (2013) 1808.21 ≪ 2336.29 ≫ 1718.07 1808.21 ≈ 1775.62 ≫ 1572.95
Sherstyuk et al. (2013) 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 834.74

Pooled 23009.84 ≪ 26479.73 ≫ 23143.38 23009.84 ≫ 22097.67 ≫ 20541.83

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.22: Best mixtures of pure or generalized strategies in relation to Semi-Grim
(ICL-BIC of the models, less is better and relation signs point toward better models)

Best mixture of pure or generalized strategies Best Mixture
Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

First halves per session
Aoyagi and Frechette (2009) 886.44 ≫ 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
Blonski et al. (2011) 1114.69 ≫ 1069.58 ≈ 1104.85 ≪ 1225.35 1225.35 ≫ 1069.28 < 1134.96 > 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 ≈ 629.17 ≈ 600.26 < 631.2
Dal Bó and Fréchette (2011) 7423.23 ≫ 6904.79 ≪ 7456.12 ≫ 6388.49 6388.49 < 6597.93 ≫ 6304.97 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 ≫ 8434.93 ≪ 9166.72 ≫ 8158.31 8158.31 > 8017.59 ≫ 7810.7 ≪ 8138.61
Dreber et al. (2008) 871.32 ≫ 787.71 < 863.7 ≫ 752.16 752.16 ≈ 782.37 ≈ 763.52 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 ≪ 2993.4 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2421.27 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 ≪ 1450 ≫ 1296.85 1296.85 ≈ 1303.8 ≫ 1200.28 < 1296.85

Pooled 27218.66 ≫ 25758.38 ≪ 27754.81 ≫ 25166.24 25166.24 > 24779.85 ≫ 24079.18 ≪ 24863.15

Second halves per session
Aoyagi and Frechette (2009) 534.29 ≫ 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
Blonski et al. (2011) 1503.41 ≫ 1398.5 ≪ 1509.09 < 1593.01 1398.5 > 1346.79 ≈ 1385.91 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 ≫ 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 699.05 ≈ 679.04 < 729.48
Dal Bó and Fréchette (2011) 6065.93 ≫ 5195.88 ≪ 6378.16 ≫ 5007.24 5195.88 ≈ 5128.69 ≫ 4545.08 ≪ 4964.77
Dal Bó and Fréchette (2015) 9085.4 ≫ 8177.46 ≪ 9401.19 ≫ 7910.83 8177.46 ≫ 7825.98 ≫ 7310.27 ≪ 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≈ 589.84 > 541.83 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 ≪ 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 ≪ 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 ≪ 2336.29 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1541.38 < 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 823.06 ≪ 955.73

Pooled 25271.72 ≫ 22848.49 ≪ 26409.44 ≫ 22927.9 22848.49 ≫ 22097.67 ≫ 20454.13 ≪ 22422.07

Note: This table extends Table A.16 by picking the best switching model per half-session, after picking the best-fitting mixture involving either the pure or
generalized forms of AD, Grim, TFT, AC and WSLS (as above) for each treatment independently, and examining its goodness-of-fit in relation to Semi-Grim and
mixtures involving Semi-Grim. The model "AD+SG2" has the same number of degrees of freedom as the Semi-Grim model.
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Table A.23: Table A.22 by treatments – Best mixtures of pure or generalized strategies in relation to Semi-Grim

(a) First halves per session
Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

AF09–34 886.44 ≫ 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
BOS11–9 85.17 ≈ 83.42 ≈ 83.96 ≈ 88.41 88.41 ≈ 86.56 ≈ 85.71 ≈ 83.42
BOS11–14 100.72 ≈ 97.73 ≈ 90 ≈ 92.94 92.94 ≈ 93.88 ≈ 95.87 ≈ 90
BOS11–15 37.29 ≈ 34.3 ≈ 32.69 ≪ 43.18 43.18 > 37.73 ≪ 53.61 ≫ 32.69
BOS11–16 176.55 ≈ 167.3 ≈ 169.38 ≈ 170.57 170.57 ≈ 167.42 ≈ 157.72 ≈ 167.3
BOS11–17 113.57 ≈ 110.57 ≈ 118.71 ≈ 121.05 121.05 > 115.02 < 122.41 > 110.57
BOS11–26 260.57 ≈ 256.88 ≈ 262.33 ≈ 256.37 256.37 ≈ 244.5 ≈ 249.78 ≈ 256.37
BOS11–27 103.61 ≈ 102.11 ≈ 112.76 ≈ 110.81 110.81 > 92.83 ≈ 93.42 ≈ 102.11
BOS11–30 59.81 > 56.81 ≈ 65.61 ≈ 64.33 64.33 > 55.74 ≪ 64.33 > 56.81
BOS11–31 127.32 ≈ 125.82 ≈ 135.1 ≈ 142.43 142.43 ≈ 125.52 ≈ 121.98 ≈ 125.82
BK12–28 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
D05–18 241.39 ≈ 235.84 ≈ 230.66 ≈ 235.63 235.63 ≈ 230.57 ≈ 229.01 ≈ 230.66
D05–19 421.17 > 396.28 ≪ 439.65 > 403.81 403.81 ≈ 395.06 > 364.87 < 396.28
DF11–6 880.04 ≈ 810.5 ≈ 909.31 > 770.36 770.36 ≈ 794.44 ≈ 752.56 ≈ 770.36
DF11–7 1423.93 > 1297.64 ≈ 1364.07 ≫ 1132.04 1132.04 < 1256.83 ≈ 1238 > 1132.04
DF11–8 1515.51 > 1422.73 ≪ 1668.83 ≫ 1279.8 1279.8 < 1389.06 ≈ 1289.21 ≈ 1279.8
DF11–22 1192.92 > 1080.23 ≈ 1110.68 ≈ 1056.77 1056.77 > 965.96 ≈ 944.2 ≪ 1056.77
DF11–23 1144.78 ≈ 1082.68 < 1185.69 ≫ 1020.09 1020.09 ≈ 1019.57 > 941.73 ≈ 1020.09
DF11–24 1239.14 > 1171.57 ≈ 1179.6 ≫ 1022.62 1022.62 ≪ 1145.15 ≈ 1090.82 ≈ 1022.62
DF15–4 460.23 > 431.07 ≈ 467.36 > 395.89 395.89 ≈ 436.57 ≈ 425 > 395.89
DF15–5 1808.3 > 1762.23 ≪ 2211.09 ≫ 1638.92 1638.92 ≪ 1738.77 ≫ 1639.52 ≈ 1638.92
DF15–20 1588.62 ≫ 1463.03 < 1543.46 ≫ 1433.87 1433.87 ≈ 1405.3 > 1364.37 ≈ 1433.87
DF15–21 2015.1 > 1974.94 ≪ 2184.97 ≫ 1902.95 1902.95 ≈ 1872.47 > 1811.11 < 1902.95
DF15–33 2573.89 ≫ 2379.17 ≈ 2350.87 ≈ 2296.41 2296.41 > 2186.26 ≈ 2174.56 ≪ 2296.41
DF15–35 405.32 ≈ 384.6 ≈ 372.62 ≈ 382.07 382.07 > 349.06 ≈ 343.65 < 372.62
DRFN08–10 413.58 > 374.3 ≈ 390.77 > 334.73 334.73 < 367.86 ≈ 358.63 ≈ 334.73
DRFN08–11 454.24 > 408.63 < 468.48 ≫ 405.73 405.73 ≈ 411.01 ≈ 398.59 ≈ 405.73
DO09–32 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
FY17–25 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
FRD12–29 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
KS13–12 2735.02 ≈ 2685.4 ≪ 2993.4 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2421.27 ≈ 2439.06
STS13–13 1389.33 ≈ 1322.6 ≪ 1450 ≫ 1296.85 1296.85 ≈ 1303.8 ≫ 1200.28 < 1296.85
Aoyagi and Frechette (2009) 886.44 ≫ 756.95 ≈ 763.11 ≈ 755.97 755.97 ≈ 781.86 ≈ 777.3 ≈ 755.97
Blonski et al. (2011) 1114.69 ≫ 1069.58 ≈ 1104.85 ≪ 1225.35 1225.35 ≫ 1069.28 < 1134.96 > 1069.39
Bruttel and Kamecke (2012) 845.41 ≈ 817.89 ≈ 835.6 > 785.49 785.49 ≈ 800.12 > 762.83 ≈ 785.49
Dal Bó (2005) 666.1 > 635.04 < 674.57 ≈ 648.75 648.75 ≈ 629.17 ≈ 600.26 < 631.2
Dal Bó and Fréchette (2011) 7423.23 ≫ 6904.79 ≪ 7456.12 ≫ 6388.49 6388.49 < 6597.93 ≫ 6304.97 ≈ 6388.49
Dal Bó and Fréchette (2015) 8880.62 ≫ 8434.93 ≪ 9166.72 ≫ 8158.31 8158.31 > 8017.59 ≫ 7810.7 ≪ 8138.61
Dreber et al. (2008) 871.32 ≫ 787.71 < 863.7 ≫ 752.16 752.16 ≈ 782.37 ≈ 763.52 ≈ 752.16
Duffy and Ochs (2009) 1448.71 ≈ 1395.4 < 1461.01 > 1372.99 1372.99 ≈ 1372.97 ≈ 1320.71 ≈ 1372.99
Fréchette and Yuksel (2017) 321.32 ≈ 300.87 < 337.5 > 298.53 298.53 ≈ 299.62 ≈ 284.11 ≈ 298.53
Fudenberg et al. (2012) 454.09 ≈ 432.32 ≈ 432.38 ≈ 425.54 425.54 > 381.01 ≈ 370.01 < 425.54
Kagel and Schley (2013) 2735.02 ≈ 2685.4 ≪ 2993.4 ≫ 2439.06 2439.06 ≈ 2561.76 ≫ 2421.27 ≈ 2439.06
Sherstyuk et al. (2013) 1389.33 ≈ 1322.6 ≪ 1450 ≫ 1296.85 1296.85 ≈ 1303.8 ≫ 1200.28 < 1296.85

Pooled 27218.66 ≫ 25758.38 ≪ 27754.81 ≫ 25166.24 25166.24 > 24779.85 ≫ 24079.18 ≪ 24863.15

(b) Second halves per session
Best mixture of pure or generalized strategies Best Mixture

Baseline No Random Markov Best Best Switching
Model Switching Switching Switching Switching AD + SG AD + 2SG By Treatment

Specification
# Models evaluated 1 1332 1332 1332 3×1332 1 1 3932 ≈ 1051

# Pars estimated (by treatment) 5 80 80 278 438 5 9 438
# Parameters accounted for 5 3–10 3–10 12-35 3–30 5 9 3–30

AF09–34 534.29 ≫ 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
BOS11–9 87.22 ≈ 78.84 ≈ 96.42 ≈ 83.98 78.84 ≈ 75.1 ≈ 76.06 ≈ 78.84
BOS11–14 43.82 ≈ 40.82 ≈ 40.83 ≈ 48.97 40.82 ≈ 35.58 ≈ 38.21 ≈ 40.82
BOS11–15 18.52 ≈ 15.52 ≈ 15.52 ≪ 29.01 15.52 ≈ 19.23 ≪ 30.15 ≫ 15.52
BOS11–16 160.48 ≈ 148.98 ≈ 165.09 ≈ 157.84 148.98 ≈ 150.95 ≈ 149.71 ≈ 148.98
BOS11–17 232.75 > 211.59 ≈ 225.1 ≈ 216.6 211.59 ≈ 196.25 ≈ 198.59 ≈ 211.59
BOS11–26 369.98 ≫ 327.16 ≈ 352.05 ≈ 338.09 327.16 ≈ 299.85 ≈ 295.25 < 327.16
BOS11–27 228.41 ≈ 224.85 ≈ 254.56 ≈ 233.57 224.85 ≈ 235.88 ≈ 224.21 ≈ 224.85
BOS11–30 149.49 ≈ 139.46 ≈ 137.43 ≈ 145.96 139.46 ≈ 129.86 ≈ 133.81 ≈ 137.43
BOS11–31 162.67 ≈ 151.87 ≈ 174.2 ≈ 171.15 151.87 ≈ 154.02 ≈ 149.77 ≈ 151.87
BK12–28 588.33 > 538.17 < 611.91 ≫ 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
D05–18 355.62 ≈ 340.33 ≈ 355.81 ≈ 346.45 340.33 ≈ 334.18 ≈ 315.38 < 340.33
D05–19 392.65 ≈ 388.49 < 426.15 > 383.3 388.49 > 361.33 ≈ 357.27 < 383.3
DF11–6 751.56 > 579.84 ≈ 628.84 ≈ 557.16 579.84 ≈ 526.15 ≈ 509.84 ≈ 557.16
DF11–7 1571.76 ≫ 1359.89 ≪ 1582.11 ≫ 1268.34 1359.89 ≈ 1316.79 > 1246.93 ≈ 1268.34
DF11–8 1142.1 > 1028.93 ≪ 1600.86 ≫ 904.89 1028.93 ≈ 1078.24 > 872.45 ≈ 904.89
DF11–22 1198.53 > 1012.26 < 1102.07 ≫ 973.62 1012.26 ≈ 930.3 > 860.39 < 973.62
DF11–23 842.37 ≈ 723.5 < 943.35 > 737.29 723.5 ≈ 767.04 > 582.24 < 723.5
DF11–24 532.68 ≫ 450.61 ≈ 477.85 ≈ 455.62 450.61 ≈ 483.25 > 424.76 ≈ 450.61
DF15–4 345.97 > 301.69 < 385.5 ≈ 307.03 301.69 ≈ 320.02 ≈ 306.89 ≈ 301.69
DF15–5 1686.18 > 1581.28 ≪ 2217.39 ≫ 1435.63 1581.28 ≈ 1606.96 ≫ 1409.52 ≈ 1435.63
DF15–20 1572.51 ≫ 1273.14 ≪ 1441.16 ≫ 1270.1 1273.14 ≈ 1232.33 ≫ 1141.29 < 1270.1
DF15–21 1754.13 ≈ 1664.01 ≪ 1878.92 ≫ 1504.63 1664.01 ≈ 1591.27 ≫ 1422.87 ≈ 1504.63
DF15–33 2915.83 ≫ 2582.61 < 2690.87 ≫ 2541.5 2582.61 > 2405.23 ≈ 2349.48 ≪ 2541.5
DF15–35 781.64 > 733.28 ≈ 742.93 ≈ 723.78 733.28 ≫ 641.02 ≈ 627.73 < 723.78
DRFN08–10 304.41 ≈ 276.61 ≈ 285.26 ≈ 243.71 276.61 > 244.91 ≈ 236.44 ≈ 243.71
DRFN08–11 348.47 ≈ 339.09 ≈ 371.38 ≈ 323.06 339.09 ≈ 341.42 ≫ 299.09 ≈ 323.06
DO09–32 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 ≪ 1850.35
FY17–25 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 ≪ 427.79
FRD12–29 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
KS13–12 1866.19 ≈ 1751.81 ≪ 2336.29 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1541.38 < 1678.7
STS13–13 1027.43 > 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 823.06 ≪ 955.73
Aoyagi and Frechette (2009) 534.29 ≫ 416.51 ≈ 437.8 ≈ 423.05 416.51 ≈ 423.68 ≈ 422.24 ≈ 416.51
Blonski et al. (2011) 1503.41 ≫ 1398.5 ≪ 1509.09 < 1593.01 1398.5 > 1346.79 ≈ 1385.91 ≈ 1394.16
Bruttel and Kamecke (2012) 588.33 > 538.17 < 611.91 ≫ 516.71 538.17 ≈ 536.77 > 478.23 ≈ 516.71
Dal Bó (2005) 751.82 ≈ 732.27 < 786.21 > 739.59 732.27 > 699.05 ≈ 679.04 < 729.48
Dal Bó and Fréchette (2011) 6065.93 ≫ 5195.88 ≪ 6378.16 ≫ 5007.24 5195.88 ≈ 5128.69 ≫ 4545.08 ≪ 4964.77
Dal Bó and Fréchette (2015) 9085.4 ≫ 8177.46 ≪ 9401.19 ≫ 7910.83 8177.46 ≫ 7825.98 ≫ 7310.27 ≪ 7893.79
Dreber et al. (2008) 656.38 ≈ 619.9 ≈ 662.24 > 581.94 619.9 ≈ 589.84 > 541.83 ≈ 581.94
Duffy and Ochs (2009) 2010.01 > 1883.52 ≈ 1914.83 > 1850.35 1883.52 > 1761.6 > 1602.93 ≪ 1850.35
Fréchette and Yuksel (2017) 469.85 ≈ 433.18 < 474.93 > 427.79 433.18 ≈ 423.34 ≈ 381.63 ≪ 427.79
Fudenberg et al. (2012) 530.3 ≈ 514.87 ≈ 516.12 ≈ 515.97 514.87 ≈ 452.6 > 414.24 < 514.87
Kagel and Schley (2013) 1866.19 ≈ 1751.81 ≪ 2336.29 ≫ 1678.7 1751.81 ≈ 1775.62 ≫ 1541.38 < 1678.7
Sherstyuk et al. (2013) 1027.43 > 955.73 ≪ 1137.49 ≫ 958.99 955.73 ≈ 951.34 ≫ 823.06 ≪ 955.73

Pooled 25271.72 ≫ 22848.49 ≪ 26409.44 ≫ 22927.9 22848.49 ≫ 22097.67 ≫ 20454.13 ≪ 22422.07

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.24: Table A.3 by treatments – Memory-1 or Memory-2, and semi-grim, pure or generalized pure?

(a) First halves per session
Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure

M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

AF09–34 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 ≪ 884.86
BOS11–9 91.44 ≈ 87.24 ≈ 90.13 ≈ 86.56 ≈ 83.42 ≈ 83.42 ≈ 83.42 ≈ 85.2
BOS11–14 103.75 ≈ 98.34 ≈ 97.69 ≈ 93.88 ≈ 97.73 ≈ 97.73 ≈ 97.73 ≈ 97.73
BOS11–15 50.59 ≫ 41.48 ≈ 41.64 > 37.73 ≈ 34.3 ≈ 34.3 ≈ 34.3 ≈ 34.3
BOS11–16 175.94 > 168.96 ≈ 168.84 ≈ 167.42 ≈ 167.3 ≈ 167.3 ≈ 167.3 ≈ 174.26
BOS11–17 128.36 ≫ 118.65 ≈ 119.18 ≈ 115.02 ≈ 110.57 ≈ 110.57 ≈ 110.57 ≈ 110.57
BOS11–26 253.27 ≈ 244.2 ≈ 242.92 ≈ 244.5 ≈ 256.88 ≈ 256.88 ≈ 256.88 ≈ 256.88
BOS11–27 100.21 > 94.88 ≈ 93.66 ≈ 92.83 ≈ 100.97 ≈ 100.97 ≈ 102.11 ≈ 100.97
BOS11–30 69.22 ≫ 60.24 ≈ 60.24 ≫ 55.74 ≈ 56.77 ≈ 56.77 ≈ 56.81 ≈ 56.77
BOS11–31 131.77 ≈ 127.07 ≈ 126.46 ≈ 125.52 ≈ 125.82 ≈ 125.82 ≈ 125.82 ≈ 156.95
BK12–28 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
D05–18 241.79 ≈ 235.57 ≈ 236.43 ≈ 230.57 ≈ 235.84 ≈ 235.84 ≈ 235.84 ≈ 235.84
D05–19 408.97 ≈ 400.1 ≈ 400.16 ≈ 395.06 ≈ 396.28 ≈ 396.28 ≈ 396.28 ≈ 415.08
DF11–6 806.97 ≈ 797.22 ≈ 798.57 ≈ 794.44 ≈ 810.5 ≈ 810.5 ≈ 810.5 < 877.78
DF11–7 1252.93 ≈ 1248.87 ≈ 1249.66 ≈ 1256.83 ≈ 1297.64 ≈ 1297.64 ≈ 1297.64 < 1424.78
DF11–8 1403.92 ≈ 1393.05 ≈ 1393.09 ≈ 1389.06 ≈ 1422.73 ≈ 1422.73 ≈ 1422.73 < 1501.88
DF11–22 973.99 ≈ 965.39 ≈ 969.46 ≈ 965.96 ≪ 1080.23 ≈ 1080.23 ≈ 1080.23 ≪ 1188.65
DF11–23 1026.82 ≈ 1024.62 ≈ 1022.57 ≈ 1019.57 ≈ 1082.68 ≈ 1082.68 ≈ 1082.68 ≈ 1148.16
DF11–24 1131.28 ≈ 1144.21 ≈ 1128.27 ≈ 1145.15 ≈ 1171.57 ≈ 1171.57 ≈ 1171.57 < 1224.49
DF15–4 442.4 ≈ 439.96 ≈ 437.41 ≈ 436.57 ≈ 431.07 ≈ 431.07 ≈ 431.07 ≈ 456.32
DF15–5 1752.09 ≈ 1739.69 ≈ 1739.11 ≈ 1738.77 ≈ 1751.2 ≈ 1756.46 ≈ 1762.23 ≈ 1817.09
DF15–20 1408.72 ≈ 1403.6 ≈ 1408.86 ≈ 1405.3 ≈ 1463.03 ≈ 1463.03 ≈ 1463.03 < 1585.91
DF15–21 1871.42 ≈ 1871.98 ≈ 1864.48 ≈ 1872.47 < 1971.78 ≈ 1974.94 ≈ 1974.94 ≈ 2022.58
DF15–33 2154.98 ≈ 2176.37 ≈ 2184.09 ≈ 2186.26 ≪ 2379.17 ≈ 2379.17 ≈ 2379.17 ≪ 2575.64
DF15–35 357.11 ≈ 350.57 ≈ 350.98 ≈ 349.06 < 384.6 ≈ 384.6 ≈ 384.6 ≈ 411.07
DRFN08–10 375.03 ≈ 366.4 ≈ 367.62 ≈ 367.86 ≈ 374.3 ≈ 374.3 ≈ 374.3 ≈ 410.24
DRFN08–11 420.9 ≈ 413.48 ≈ 412.38 ≈ 411.01 ≈ 408.63 ≈ 408.63 ≈ 408.63 ≈ 451.13
DO09–32 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
FY17–25 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
FRD12–29 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
KS13–12 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
STS13–13 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69
Aoyagi and Frechette (2009) 756.04 ≈ 764.13 ≈ 749.99 ≈ 781.86 ≈ 756.95 ≈ 756.95 ≈ 756.95 ≪ 884.86
Blonski et al. (2011) 1244.76 ≫ 1121.17 ≈ 1120.87 ≫ 1069.28 ≈ 1069.56 ≈ 1069.56 ≈ 1069.58 ≈ 1105.98
Bruttel and Kamecke (2012) 807.47 ≈ 802.89 ≈ 804.16 ≈ 800.12 ≈ 817.89 ≈ 817.89 ≈ 817.89 ≈ 839.97
Dal Bó (2005) 660.68 > 641.34 ≈ 642.26 ≈ 629.17 ≈ 635.04 ≈ 635.04 ≈ 635.04 ≈ 653.05
Dal Bó and Fréchette (2011) 6671.28 ≈ 6616.44 ≈ 6604.7 ≈ 6597.93 ≪ 6904.79 ≈ 6904.79 ≈ 6904.79 ≪ 7391.89
Dal Bó and Fréchette (2015) 8068.37 ≈ 8028.83 ≈ 8031.59 ≈ 8017.59 ≪ 8423.8 ≈ 8431.51 ≈ 8434.93 ≪ 8893.78
Dreber et al. (2008) 805.74 > 785.48 ≈ 785.6 ≈ 782.37 ≈ 787.71 ≈ 787.71 ≈ 787.71 < 863.47
Duffy and Ochs (2009) 1361.84 ≈ 1377.17 ≈ 1369.86 ≈ 1372.97 ≈ 1395.4 ≈ 1395.4 ≈ 1395.4 ≈ 1426.34
Fréchette and Yuksel (2017) 305.9 ≈ 299.72 ≈ 296.93 ≈ 299.62 ≈ 300.87 ≈ 300.87 ≈ 300.87 ≈ 317.35
Fudenberg et al. (2012) 387.8 ≈ 379.84 ≈ 378.07 ≈ 381.01 < 432.32 ≈ 432.32 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 2542.02 ≈ 2556.45 ≈ 2552.09 ≈ 2561.76 ≈ 2679.23 ≈ 2685.4 ≈ 2685.4 ≈ 2730.66
Sherstyuk et al. (2013) 1311.64 ≈ 1307.45 ≈ 1303.94 ≈ 1303.8 ≈ 1322.6 ≈ 1322.6 ≈ 1322.6 < 1398.69

Pooled 25434.21 ≫ 24972.71 ≈ 24931.86 ≈ 24779.85 ≪ 25750.84 ≈ 25757.44 ≈ 25758.38 ≪ 27115.39

(b) Second halves per session
Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure

M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

AF09–34 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 ≪ 540.47
BOS11–9 88.57 > 79.59 ≈ 79.59 ≈ 75.1 ≈ 78.84 ≈ 78.84 ≈ 78.84 ≈ 84.22
BOS11–14 58.78 ≫ 40.08 ≈ 39.03 ≈ 35.58 ≈ 40.82 ≈ 40.82 ≈ 40.82 ≈ 40.82
BOS11–15 33.32 ≫ 19.62 ≈ 19.63 > 19.23 ≈ 15.52 ≈ 15.52 ≈ 15.52 ≈ 15.52
BOS11–16 158.81 ≈ 153.59 ≈ 150.12 ≈ 150.95 ≈ 148.98 ≈ 148.98 ≈ 148.98 ≈ 157.48
BOS11–17 205.77 ≈ 197.54 ≈ 199.15 ≈ 196.25 ≈ 211.59 ≈ 211.59 ≈ 211.59 ≈ 228.36
BOS11–26 309.39 ≈ 304.57 ≈ 304.15 ≈ 299.85 ≈ 327.16 ≈ 327.16 ≈ 327.16 < 374.79
BOS11–27 227.82 ≈ 231.03 ≈ 234.28 ≈ 235.88 ≈ 224.85 ≈ 224.85 ≈ 224.85 ≈ 281.24
BOS11–30 138.28 > 133.27 ≈ 131.54 ≈ 129.86 ≈ 139.46 ≈ 139.46 ≈ 139.46 ≈ 146.49
BOS11–31 157.58 ≈ 156.52 ≈ 155.81 ≈ 154.02 ≈ 151.87 ≈ 151.87 ≈ 151.87 ≈ 196.99
BK12–28 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
D05–18 350.65 > 338.4 ≈ 337.77 ≈ 334.18 ≈ 340.33 ≈ 340.33 ≈ 340.33 ≈ 350.59
D05–19 366.67 ≈ 366.81 ≈ 364.88 ≈ 361.33 ≈ 380.66 ≈ 386.44 ≈ 388.49 ≈ 388.49
DF11–6 532.38 ≈ 524.97 ≈ 526.02 ≈ 526.15 ≈ 579.84 ≈ 579.84 ≈ 579.84 < 747.77
DF11–7 1316.59 ≈ 1310.02 ≈ 1309.99 ≈ 1316.79 ≈ 1359.89 ≈ 1359.89 ≈ 1359.89 ≪ 1566.58
DF11–8 1092.7 ≈ 1082.36 ≈ 1082.77 ≈ 1078.24 ≈ 1028.93 ≈ 1028.93 ≈ 1028.93 < 1153.72
DF11–22 928.2 ≈ 926.45 ≈ 928.99 ≈ 930.3 ≈ 1012.26 ≈ 1012.26 ≈ 1012.26 ≈ 1152.14
DF11–23 776.48 ≈ 771.57 ≈ 770.87 ≈ 767.04 ≈ 723.5 ≈ 723.5 ≈ 723.5 ≈ 782.51
DF11–24 479.3 ≈ 479.38 ≈ 471.25 ≈ 483.25 ≈ 450.61 ≈ 450.61 ≈ 450.61 < 530.97
DF15–4 329.82 ≈ 322.21 ≈ 323.22 ≈ 320.02 ≈ 301.69 ≈ 301.69 ≈ 301.69 < 342.05
DF15–5 1610.1 ≈ 1602.79 ≈ 1599.28 ≈ 1606.96 ≈ 1581.28 ≈ 1581.28 ≈ 1581.28 < 1712.9
DF15–20 1222.77 ≈ 1231.06 ≈ 1229.59 ≈ 1232.33 ≈ 1273.14 ≈ 1273.14 ≈ 1273.14 ≪ 1582.66
DF15–21 1575.91 ≈ 1587.09 ≈ 1571.12 ≈ 1591.27 ≈ 1664.01 ≈ 1664.01 ≈ 1664.01 < 1754.9
DF15–33 2378.58 ≈ 2399.8 ≈ 2401.15 ≈ 2405.23 < 2582.61 ≈ 2582.61 ≈ 2582.61 ≪ 2935.81
DF15–35 642.04 ≈ 639.91 ≈ 637.62 ≈ 641.02 < 722.6 ≈ 733.28 ≈ 733.28 ≈ 789.09
DRFN08–10 232.84 ≈ 233.55 ≈ 223.78 < 244.91 < 276.61 ≈ 276.61 ≈ 276.61 ≈ 301.08
DRFN08–11 354.52 ≈ 341.48 ≈ 340.95 ≈ 341.42 ≈ 336.45 ≈ 336.84 ≈ 339.09 ≈ 345.37
DO09–32 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
FY17–25 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
FRD12–29 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
KS13–12 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
STS13–13 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43
Aoyagi and Frechette (2009) 415.47 ≈ 421.18 > 409.19 ≈ 423.68 ≈ 416.51 ≈ 416.51 ≈ 416.51 ≪ 540.47
Blonski et al. (2011) 1518.54 ≫ 1395.94 ≈ 1393.41 ≫ 1346.79 ≈ 1398.5 ≈ 1398.5 ≈ 1398.5 < 1564.48
Bruttel and Kamecke (2012) 536.19 ≈ 532.08 ≈ 529.47 ≈ 536.77 ≈ 538.17 ≈ 538.17 ≈ 538.17 ≈ 567.99
Dal Bó (2005) 727.25 ≈ 710.88 ≈ 708.32 ≈ 699.05 ≈ 726.04 ≈ 731.81 ≈ 732.27 ≈ 741.2
Dal Bó and Fréchette (2011) 5201.05 ≈ 5137.82 ≈ 5132.96 ≈ 5128.69 ≈ 5195.88 ≈ 5195.88 ≈ 5195.88 ≪ 5960.78
Dal Bó and Fréchette (2015) 7840.87 ≈ 7829.51 ≈ 7808.63 ≈ 7825.98 ≪ 8172.63 ≈ 8177.46 ≈ 8177.46 ≪ 9143.98
Dreber et al. (2008) 597.17 ≈ 580.63 ≈ 570.33 ≈ 589.84 ≈ 618.5 ≈ 618.89 ≈ 619.9 ≈ 648.55
Duffy and Ochs (2009) 1706.1 ≈ 1753.41 ≈ 1719.86 ≈ 1761.6 ≈ 1857.06 ≈ 1876.72 ≈ 1883.52 ≈ 2003.41
Fréchette and Yuksel (2017) 422.32 ≈ 424.41 ≈ 419.44 ≈ 423.34 ≈ 433.18 ≈ 433.18 ≈ 433.18 < 464.23
Fudenberg et al. (2012) 452.64 ≈ 450.08 ≈ 447.25 ≈ 452.6 < 484.5 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 1782.43 ≈ 1777.83 ≈ 1773.55 ≈ 1775.62 ≈ 1751.81 ≈ 1751.81 ≈ 1751.81 ≈ 1830.26
Sherstyuk et al. (2013) 959.21 ≈ 952.56 ≈ 949.46 ≈ 951.34 ≈ 955.73 ≈ 955.73 ≈ 955.73 ≈ 1023.43

Pooled 22669.91 ≫ 22258.14 ≈ 22153.69 ≈ 22097.67 ≪ 22811.34 ≈ 22828.13 ≈ 22848.49 ≪ 25177.57

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.25: Continuation strategies: Memory-1 or Memory-2, and semi-grim, pure or generalized pure? Strategy mixtures are
estimated treatment-by-treatment. The resulting ICL-BICs are pooled within experiments and overall (less is better, relation signs point
to better models)

Memory-2 Generalizations of Semi-Grim + AD Best Mixtures of Generalized Pure Strategies Best Pure
M2“General” M2“TFT” M2“Grim” AD+SG M1+M2“TFT” M1+M2“Grim” M1 M1 & M2

Specification
# Models evaluated 1 1 1 1 2232 2232 1332 532

# Pars estimated (by treatment) 12 6 6 5 160 160 80 32
# Parameters accounted for 12 6 6 5 6–15 6–15 6–10 3–8

First halves per session
Aoyagi and Frechette (2009) 692.5 ≈ 690.85 ≈ 686.2 ≈ 694.72 > 649.38 ≈ 646.7 ≈ 645.31 ≪ 791.38
Blonski et al. (2011) 714 ≫ 601.67 ≈ 601.95 ≫ 549.45 ≪ 760.28 ≈ 768.65 ≫ 713.8 ≈ 703.06
Bruttel and Kamecke (2012) 572.14 ≈ 566.75 ≈ 567.58 ≈ 567.86 ≈ 569.25 ≈ 576.94 ≈ 585.42 ≈ 588.54
Dal Bó (2005) 385.61 > 367.94 ≈ 366.48 ≈ 358.51 ≪ 404.24 ≈ 402.79 ≈ 407.86 ≈ 389.05
Dal Bó and Fréchette (2011) 3596.64 ≈ 3542.28 ≈ 3538.64 ≈ 3533.99 ≈ 3481.93 ≈ 3517.82 ≈ 3536.73 ≪ 3835.73
Dal Bó and Fréchette (2015) 5017.27 ≈ 4974.8 ≈ 4988.94 ≈ 4991.74 ≪ 5193.81 ≈ 5218.03 ≈ 5259.64 ≪ 5538.35
Dreber et al. (2008) 464.84 > 444.11 ≈ 444.71 ≈ 437.17 ≈ 474.89 ≈ 483.06 ≈ 478.09 ≈ 462.72
Duffy and Ochs (2009) 1060.26 ≈ 1063.66 ≈ 1074.9 ≈ 1090.22 ≈ 1039.24 ≈ 1045.68 ≈ 1047.59 ≈ 1102.63
Fréchette and Yuksel (2017) 174.64 ≈ 167.06 ≈ 164.75 ≈ 161.45 ≪ 182.7 ≈ 188.04 ≈ 188.5 ≈ 181.98
Fudenberg et al. (2012) 301.76 ≈ 293.52 ≈ 294.4 ≈ 291.43 < 319.76 ≈ 322.89 ≈ 319.45 < 366.77
Kagel and Schley (2013) 1746.26 ≈ 1749.95 ≈ 1753.68 ≈ 1782.82 > 1651.6 ≈ 1679.19 < 1761.98 ≈ 1805.96
Sherstyuk et al. (2013) 917.07 ≈ 907.95 ≈ 913.52 ≈ 912.8 ≈ 857.56 ≈ 870.11 ≈ 865.67 < 941.92

Pooled 16080.69 ≫ 15589.39 ≈ 15614.59 > 15481.59 ≪ 15948.02 < 16109.87 ≈ 16077.95 ≪ 16858.76

Second halves per session
Aoyagi and Frechette (2009) 396.32 ≈ 391.42 > 387.48 ≈ 389.24 ≈ 368.08 ≈ 365.6 ≈ 363.58 ≪ 484.41
Blonski et al. (2011) 1012.48 ≫ 919.29 ≈ 922.48 ≫ 867.87 < 1007.71 ≈ 1021.03 > 992.44 ≈ 1055.98
Bruttel and Kamecke (2012) 333.51 ≈ 337.12 ≈ 329.73 ≈ 347.4 ≈ 318.55 ≈ 328.38 ≈ 344.88 ≈ 316.37
Dal Bó (2005) 449.03 ≈ 434.38 ≈ 433.82 ≈ 424.44 < 451.25 < 471.53 ≈ 475.11 ≈ 463.53
Dal Bó and Fréchette (2011) 2854.52 ≈ 2801.46 ≈ 2800.71 ≈ 2817.31 > 2619.87 ≈ 2643.97 < 2737.11 < 2885.4
Dal Bó and Fréchette (2015) 5006.3 ≈ 5013.49 ≈ 5012.99 ≈ 5043.81 ≈ 5034.8 ≈ 5099.68 ≈ 5164.78 ≪ 5575.88
Dreber et al. (2008) 272.94 ≈ 258.88 ≈ 253.47 ≈ 264.94 ≈ 287.55 ≈ 288.95 ≈ 295.06 ≈ 287.58
Duffy and Ochs (2009) 1375.43 ≈ 1367.68 ≈ 1389.92 ≈ 1403.03 ≈ 1339.22 ≈ 1359.29 ≈ 1381.01 ≪ 1617.76
Fréchette and Yuksel (2017) 308.21 ≈ 304.2 ≈ 306.93 ≈ 313.5 ≈ 311.03 ≈ 311.99 ≈ 309.63 ≪ 356.11
Fudenberg et al. (2012) 384.37 ≈ 382.32 ≈ 378.59 ≈ 380.75 ≈ 367.2 ≈ 364.46 ≈ 373.44 < 447.18
Kagel and Schley (2013) 1204.38 ≈ 1202.61 ≈ 1197.19 ≈ 1211.37 > 1088.27 ≈ 1122.98 ≈ 1170.12 ≈ 1169.32
Sherstyuk et al. (2013) 598.79 ≈ 590.65 ≈ 591.38 ≈ 586.72 > 503.98 ≈ 517.77 ≈ 527.09 ≈ 583.8

Pooled 14633.97 ≫ 14222.35 ≈ 14223.53 ≈ 14159.8 ≈ 14059.75 < 14267.75 ≈ 14387.48 ≪ 15400.68

Note: Results treatment-by-treatment are in the appendix. The main body contains ICL-BICs aggregated at paper level. Relation signs and p-values are exactly as
above, see Table 1.3. “M2” (“M1”) denotes strategies, whose actions may depend on actions in t − 2 and t − 1 (t − 1 only). The supplements “General”, “TFT”,
“Grim” indicate whether parameters of behavior strategies may depend on: all four possible histories in t −2 (M2 “General”), whether the opponent cooperated in
t − 2 (M2 “TFT”), or whether there was joint cooperation in t − 2 (M2 “Grim”). Pure M2 strategies do not have such free parameters. Columns 1-3 contain one
memory-2 version of semi-grim each. Column 4 is memory-1 semi-grim. Columns 5-7 are memory-2 and memory-1 versions of generalized prototypical strategies.
The last column contains the best fitting combinations of a set of pure memory-1 and memory-2 strategies from the literature (TFT, Grim, AD, Grim2, TF2T, T2,
2TFT, 2PTFT) for definitions see Table A.7 in the Appendix.
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Table A.26: Is there a single “semi grim” type? Mixture models involving SG

Best Mixture
Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

First halves per session
Aoyagi and Frechette (2009) 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1069.28 ≈ 1104.6 ≈ 1134.96 ≪ 1232.97 ≪ 1332.48 ≫ 1205.47 ≫ 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 629.17 ≈ 618.39 ≈ 600.26 ≪ 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 < 6597.93 > 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 ≪ 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≈ 8017.59 ≫ 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 ≪ 7969.32
Dreber et al. (2008) 752.16 ≈ 782.37 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2561.76 ≫ 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 ≪ 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 ≪ 1286.14

Pooled 24863.15 ≈ 24779.85 ≫ 24202.51 ≈ 24079.18 ≈ 24195.57 < 24468.99 > 24219.87 ≪ 24704.09

Second halves per session
Aoyagi and Frechette (2009) 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1346.79 ≈ 1370.16 ≈ 1385.91 < 1442.85 ≪ 1555.48 ≫ 1453.1 ≫ 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 536.77 ≫ 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 699.05 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 5128.69 ≫ 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 ≪ 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7825.98 ≫ 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 ≪ 7683.76
Dreber et al. (2008) 581.94 ≈ 589.84 > 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1761.6 ≫ 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 ≪ 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1775.62 ≫ 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 ≪ 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 951.34 ≫ 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 ≪ 935.01

Pooled 22422.07 ≈ 22097.67 ≫ 20541.83 ≈ 20454.13 > 20231.09 < 20459.26 ≈ 20403.95 ≪ 21818.45

Note: This table verifies a number of possible mixtures involving Semi-Grim types as a robustness check for the sufficiency of focussing on the
mixtures examined above. E.g. “3× SG refers to a model containing three different versions of memory-1 semi-grim with allowing for heterogeneity
of randomization parameters across subjects.
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Table A.27: Table A.26 by treatments – Is there a single “semi grim” type? Mixture models involving SG

(a) First halves per session
Best Mixture

Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

AF09–34 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
BOS11–9 83.42 ≈ 86.56 ≈ 88.35 ≈ 85.71 < 92 < 97.71 ≈ 91.58 ≈ 89.57
BOS11–14 90 ≈ 93.88 ≈ 98.01 ≈ 95.87 ≪ 105.42 < 113.81 ≫ 99.92 ≈ 96.86
BOS11–15 32.69 ≈ 37.73 < 43.07 ≪ 53.61 ≪ 61.19 ≪ 72.34 ≫ 60.83 ≫ 42.63
BOS11–16 167.3 ≈ 167.42 ≈ 157.13 ≈ 157.72 ≈ 162.97 ≈ 171.76 ≈ 165.4 ≈ 169.7
BOS11–17 110.57 ≈ 115.02 ≈ 119.79 ≈ 122.41 ≈ 129.42 ≈ 123.86 ≈ 124.68 > 112.95
BOS11–26 256.37 ≈ 244.5 ≈ 246.46 ≈ 249.78 ≈ 248.26 ≈ 247.15 ≈ 245.48 ≈ 245.83
BOS11–27 102.11 ≈ 92.83 ≈ 92.07 ≈ 93.42 < 103.66 ≈ 106.06 ≫ 93.17 ≈ 91.86
BOS11–30 56.81 ≈ 55.74 < 61.12 ≈ 64.33 < 73.55 ≪ 82.55 ≫ 70.18 ≫ 58.74
BOS11–31 125.82 ≈ 125.52 ≈ 128.49 ≈ 121.98 ≈ 126.3 ≈ 126.95 ≈ 124.03 ≈ 127.75
BK12–28 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
D05–18 230.66 ≈ 230.57 ≈ 238.35 ≈ 229.01 < 241.65 ≈ 249.85 ≈ 238.41 ≈ 233.85
D05–19 396.28 ≈ 395.06 ≈ 375.07 ≈ 364.87 ≈ 375.69 ≈ 376.48 ≈ 361.48 < 381.57
DF11–6 770.36 ≈ 794.44 ≈ 748.9 ≈ 752.56 ≈ 730.86 ≈ 734.21 ≈ 753.19 ≈ 793.66
DF11–7 1132.04 < 1256.83 ≈ 1229.61 ≈ 1238 ≈ 1219.19 ≈ 1214.51 ≈ 1243.2 ≈ 1256.83
DF11–8 1279.8 < 1389.06 ≈ 1286.68 ≈ 1289.21 ≈ 1255.59 ≈ 1249.19 < 1279.81 ≪ 1379.72
DF11–22 1056.77 > 965.96 ≈ 961.58 ≈ 944.2 ≈ 934.1 ≈ 934.68 ≈ 945.32 ≈ 963.43
DF11–23 1020.09 ≈ 1019.57 ≈ 972.17 ≈ 941.73 ≈ 921.62 ≈ 919.31 ≈ 937.03 ≈ 1003.42
DF11–24 1022.62 ≪ 1145.15 ≈ 1115.95 ≈ 1090.82 ≈ 1066.75 ≈ 1062.01 ≈ 1066.78 ≈ 1118.5
DF15–4 395.89 ≈ 436.57 ≈ 422.43 ≈ 425 ≈ 433.05 ≈ 423.74 ≈ 421.84 ≈ 426.78
DF15–5 1638.92 ≪ 1738.77 ≫ 1649.1 ≈ 1639.52 ≈ 1632.23 ≈ 1637.48 ≈ 1637.39 ≪ 1735.05
DF15–20 1433.87 ≈ 1405.3 > 1366.09 ≈ 1364.37 ≈ 1365.64 ≈ 1341.25 ≈ 1352.57 ≈ 1392.99
DF15–21 1902.95 ≈ 1872.47 > 1827.37 ≈ 1811.11 ≈ 1806.23 ≈ 1811.27 ≈ 1792.58 ≈ 1852.64
DF15–33 2296.41 > 2186.26 ≈ 2178.12 ≈ 2174.56 ≈ 2165.14 ≈ 2158.49 ≈ 2161.68 ≈ 2179.74
DF15–35 372.62 ≈ 349.06 ≈ 346.18 ≈ 343.65 ≈ 350.27 ≈ 346.71 ≈ 333.83 ≈ 341.3
DRFN08–10 334.73 < 367.86 ≈ 359.04 ≈ 358.63 ≈ 358.23 ≈ 357.95 ≈ 359.19 ≈ 367.27
DRFN08–11 405.73 ≈ 411.01 ≈ 400.49 ≈ 398.59 ≈ 399.43 ≈ 394.56 ≈ 399.03 ≈ 411.28
DO09–32 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
FY17–25 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
FRD12–29 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
KS13–12 2439.06 ≈ 2561.76 ≫ 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 ≪ 2551.68
STS13–13 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 ≪ 1286.14
Aoyagi and Frechette (2009) 755.97 ≈ 781.86 ≈ 792.51 ≈ 777.3 ≈ 782.13 > 741.95 ≈ 744.86 ≈ 744.06
Blonski et al. (2011) 1069.39 ≈ 1069.28 ≈ 1104.6 ≈ 1134.96 ≪ 1232.97 ≪ 1332.48 ≫ 1205.47 ≫ 1106.01
Bruttel and Kamecke (2012) 785.49 ≈ 800.12 ≈ 771.14 ≈ 762.83 ≈ 748.06 ≈ 751.86 ≈ 759.45 ≈ 803.58
Dal Bó (2005) 631.2 ≈ 629.17 ≈ 618.39 ≈ 600.26 ≪ 626.56 ≈ 639.8 > 609.1 ≈ 620.38
Dal Bó and Fréchette (2011) 6388.49 < 6597.93 > 6352.59 ≈ 6304.97 ≈ 6198.12 ≈ 6216.22 < 6295.32 ≪ 6553.25
Dal Bó and Fréchette (2015) 8138.61 ≈ 8017.59 ≫ 7830.12 ≈ 7810.7 ≈ 7828.38 ≈ 7829.74 ≈ 7775.7 ≪ 7969.32
Dreber et al. (2008) 752.16 ≈ 782.37 ≈ 764.44 ≈ 763.52 ≈ 766.77 ≈ 765.81 ≈ 767.32 ≈ 783.45
Duffy and Ochs (2009) 1372.99 ≈ 1372.97 ≈ 1361.15 ≈ 1320.71 ≈ 1297.84 ≈ 1291.42 < 1345.16 ≈ 1361.86
Fréchette and Yuksel (2017) 298.53 ≈ 299.62 ≈ 289.54 ≈ 284.11 ≈ 289.88 ≈ 294.05 ≈ 285.33 ≈ 291.69
Fudenberg et al. (2012) 425.54 > 381.01 ≈ 377.96 ≈ 370.01 ≈ 380.86 ≈ 381.34 ≈ 372.32 ≈ 377.33
Kagel and Schley (2013) 2439.06 ≈ 2561.76 ≫ 2450.24 ≈ 2421.27 ≈ 2385.02 ≈ 2354.05 ≈ 2398.74 ≪ 2551.68
Sherstyuk et al. (2013) 1296.85 ≈ 1303.8 ≈ 1234.52 ≈ 1200.28 ≈ 1184.82 ≈ 1177.24 ≈ 1186.92 ≪ 1286.14

Pooled 24863.15 ≈ 24779.85 ≫ 24202.51 ≈ 24079.18 ≈ 24195.57 < 24468.99 > 24219.87 ≪ 24704.09

(b) Second halves per session
Best Mixture

Best Switching SG + AD 1.5×SG+AD 2×SG+AD 3×SG+AD 3×P5+AD 2×P5+AD P5+AD

Specification
# Models evaluated 3932 ≈ 1051 1 1 1 1 1 1 1
# Pars estimated (by treatment) 438 5 7 9 13 19 17 11
# Parameters accounted for 3-30 5 7 9 13 19 17 11

AF09–34 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
BOS11–9 78.84 ≈ 75.1 ≈ 80.12 ≈ 76.06 < 81.99 ≈ 86.75 > 77.82 ≈ 78.45
BOS11–14 40.82 ≈ 35.58 ≈ 35.86 ≪ 38.21 ≪ 44.97 ≪ 61.2 ≫ 51.58 ≈ 43.6
BOS11–15 15.52 ≈ 19.23 < 24.71 ≪ 30.15 ≪ 37.6 ≪ 53.63 ≫ 36.89 ≫ 18.77
BOS11–16 148.98 ≈ 150.95 ≈ 138.89 ≈ 149.71 ≈ 144.32 ≈ 145.7 ≈ 143.01 ≈ 151.37
BOS11–17 211.59 ≈ 196.25 ≈ 201.03 ≈ 198.59 ≈ 205.53 ≈ 205.55 ≈ 199.44 ≈ 196.67
BOS11–26 327.16 ≈ 299.85 ≈ 309.63 ≈ 295.25 ≈ 301.95 ≈ 305.72 ≈ 300.57 ≈ 301.47
BOS11–27 224.85 ≈ 235.88 ≈ 223.91 ≈ 224.21 ≈ 212.63 ≈ 212.04 ≈ 222.13 ≈ 234.53
BOS11–30 137.43 ≈ 129.86 ≈ 132.45 ≈ 133.81 ≈ 137.88 ≈ 146.11 ≫ 134.06 ≈ 130.39
BOS11–31 151.87 ≈ 154.02 ≈ 153.45 ≈ 149.77 ≈ 145.78 ≈ 148.5 ≈ 157.41 ≈ 154.5
BK12–28 516.71 ≈ 536.77 ≫ 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
D05–18 340.33 ≈ 334.18 > 312.74 ≈ 315.38 ≈ 323.23 ≈ 323.92 ≈ 314.03 ≈ 330.79
D05–19 383.3 ≈ 361.33 ≈ 359.54 ≈ 357.27 ≈ 364.76 ≈ 369.86 ≈ 364.62 ≈ 360.66
DF11–6 557.16 ≈ 526.15 ≈ 489.74 ≈ 509.84 ≈ 495.28 ≈ 492.63 ≈ 484.7 ≈ 516.27
DF11–7 1268.34 ≈ 1316.79 ≈ 1250.02 ≈ 1246.93 ≈ 1197.33 ≈ 1212.7 ≈ 1235.02 ≈ 1305.98
DF11–8 904.89 ≪ 1078.24 > 871.84 ≈ 872.45 ≈ 834.02 < 852.42 < 869.39 ≪ 1065.6
DF11–22 973.62 ≈ 930.3 > 858.03 ≈ 860.39 ≈ 848.36 ≈ 832.44 ≈ 844.82 < 918.07
DF11–23 723.5 ≈ 767.04 > 608.87 ≈ 582.24 ≈ 556.55 ≈ 545.64 ≈ 564.18 < 741.18
DF11–24 450.61 ≈ 483.25 ≈ 449.72 ≈ 424.76 ≈ 424.94 ≈ 423.85 ≈ 424.99 ≈ 460.55
DF15–4 301.69 ≈ 320.02 ≈ 299.49 ≈ 306.89 ≈ 301.34 ≈ 299.43 ≈ 295.28 ≈ 318.1
DF15–5 1435.63 ≪ 1606.96 ≫ 1407.26 ≈ 1409.52 ≈ 1395.3 ≈ 1409.68 ≈ 1407.43 ≪ 1596.73
DF15–20 1270.1 ≈ 1232.33 ≫ 1145.96 ≈ 1141.29 ≈ 1113.17 ≈ 1107.65 ≈ 1121.22 < 1215.9
DF15–21 1504.63 ≈ 1591.27 ≫ 1453.74 ≈ 1422.87 ≈ 1390.81 ≈ 1367.29 ≈ 1403.53 ≪ 1559.69
DF15–33 2541.5 > 2405.23 ≈ 2331.38 ≈ 2349.48 > 2265.94 > 2184.74 < 2237.97 < 2318.99
DF15–35 723.78 > 641.02 ≈ 627.6 ≈ 627.73 ≈ 627.87 ≈ 609.97 ≈ 610.6 ≈ 633.52
DRFN08–10 243.71 ≈ 244.91 ≈ 234.76 ≈ 236.44 ≈ 234.24 ≈ 218.82 ≈ 218.68 ≈ 225.25
DRFN08–11 323.06 ≈ 341.42 > 305 ≈ 299.09 ≈ 296.13 ≈ 287.15 ≈ 291.03 ≈ 332.84
DO09–32 1850.35 ≈ 1761.6 ≫ 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 ≪ 1715.88
FY17–25 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
FRD12–29 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
KS13–12 1678.7 ≈ 1775.62 ≫ 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 ≪ 1748.01
STS13–13 955.73 ≈ 951.34 ≫ 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 ≪ 935.01
Aoyagi and Frechette (2009) 416.51 ≈ 423.68 ≈ 421.21 ≈ 422.24 ≈ 423.63 > 404.95 ≈ 408.59 ≈ 409.04
Blonski et al. (2011) 1394.16 ≈ 1346.79 ≈ 1370.16 ≈ 1385.91 < 1442.85 ≪ 1555.48 ≫ 1453.1 ≫ 1379.87
Bruttel and Kamecke (2012) 516.71 ≈ 536.77 ≫ 480.47 ≈ 478.23 ≈ 470.25 ≈ 443.83 ≈ 471.73 < 528.54
Dal Bó (2005) 729.48 > 699.05 ≈ 677.24 ≈ 679.04 < 697.21 ≈ 707.25 ≈ 687.86 ≈ 696.41
Dal Bó and Fréchette (2011) 4964.77 ≈ 5128.69 ≫ 4565.93 ≈ 4545.08 ≈ 4426.48 ≈ 4461.98 ≈ 4493.1 ≪ 5045.34
Dal Bó and Fréchette (2015) 7893.79 ≈ 7825.98 ≫ 7306.25 ≈ 7310.27 > 7170.25 ≈ 7089.56 ≈ 7151.84 ≪ 7683.76
Dreber et al. (2008) 581.94 ≈ 589.84 > 544.66 ≈ 541.83 ≈ 539.47 ≈ 519.28 ≈ 518.82 < 562.99
Duffy and Ochs (2009) 1850.35 ≈ 1761.6 ≫ 1656.55 ≈ 1602.93 > 1518.65 ≈ 1509.7 < 1598.04 ≪ 1715.88
Fréchette and Yuksel (2017) 427.79 ≈ 423.34 ≈ 422.61 ≈ 381.63 ≈ 375.03 ≈ 384.11 ≈ 382.16 < 409.93
Fudenberg et al. (2012) 514.87 ≈ 452.6 ≈ 433.74 ≈ 414.24 ≈ 405.22 ≈ 410.69 ≈ 421.81 ≈ 448.37
Kagel and Schley (2013) 1678.7 ≈ 1775.62 ≫ 1572.95 ≈ 1541.38 > 1488.49 ≈ 1477.87 ≈ 1527.47 ≪ 1748.01
Sherstyuk et al. (2013) 955.73 ≈ 951.34 ≫ 834.74 ≈ 823.06 ≈ 799.39 ≈ 801.53 ≈ 815.26 ≪ 935.01

Pooled 22422.07 ≈ 22097.67 ≫ 20541.83 ≈ 20454.13 > 20231.09 < 20459.26 ≈ 20403.95 ≪ 21818.45

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.



Table A.28: Strategies as a function of behavior in t −2 (TFT scheme)

Cooperation after /0,(c,c),(d,c) in t −2 Cooperation after (c,d),(d,d) in t −2
Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 0.93 ≫ 0.439 ≈ 0.388 ≈ 0.434 0.789 ≫ 0.463 ≈ 0.44 > 0.291
Blonski et al. (2011) 0.901 ≫ 0.27 ≈ 0.146 ≫ 0.053 0.667 ≈ 0.296 ≈ 0.321 ≫ 0.027
Bruttel and Kamecke (2012) 0.908 ≫ 0.312 ≈ 0.218 ≈ 0.151 0.944 ≫ 0.247 ≈ 0.247 ≫ 0.063
Dal Bó (2005) 0.93 ≫ 0.232 ≈ 0.31 > 0.126 0.833 > 0.147 ≈ 0.413 ≫ 0.071
Dal Bó and Fréchette (2011) 0.955 ≫ 0.352 ≈ 0.298 ≫ 0.086 0.885 ≫ 0.291 ≈ 0.41 ≫ 0.048
Dal Bó and Fréchette (2015) 0.944 ≫ 0.301 ≈ 0.277 ≫ 0.098 0.847 ≫ 0.288 ≈ 0.44 ≫ 0.044
Dreber et al. (2008) 0.902 ≫ 0.213 ≈ 0.189 ≫ 0.061 1 > 0.233 ≈ 0.302 ≫ 0.025
Duffy and Ochs (2009) 0.927 ≫ 0.316 ≈ 0.304 ≈ 0.232 0.691 ≫ 0.277 ≈ 0.361 ≫ 0.08
Fréchette and Yuksel (2017) 0.943 ≫ 0.153 ≈ 0.241 ≈ 0.1 1 ≈ ≈ 0.4 ≈ 0.086
Fudenberg et al. (2012) 0.984 ≫ 0.394 ≈ 0.347 ≫ 0.05 0.895 ≫ 0.41 ≈ 0.579 ≫ 0.069
Kagel and Schley (2013) 0.94 ≫ 0.29 ≈ 0.25 ≫ 0.125 0.787 ≫ 0.196 ≈ 0.402 ≫ 0.032
Sherstyuk et al. (2013) 0.951 ≫ 0.329 ≈ 0.341 > 0.186 0.844 ≫ 0.328 ≈ 0.424 ≫ 0.09

Pooled 0.944 ≫ 0.312 > 0.279 ≫ 0.106 0.826 ≫ 0.287 ≈ 0.41 ≫ 0.05

Second halves per session
Aoyagi and Frechette (2009) 0.961 ≫ 0.408 ≈ 0.567 ≈ 0.447 0.867 ≫ 0.381 ≈ 0.451 ≈ 0.328
Blonski et al. (2011) 0.922 ≫ 0.224 ≈ 0.195 ≫ 0.029 0.944 ≫ 0.402 ≈ 0.324 ≫ 0.018
Bruttel and Kamecke (2012) 0.948 ≫ 0.239 ≈ 0.214 ≈ 0.118 0.923 > 0.167 ≈ 0.5 ≫ 0.018
Dal Bó (2005) 0.919 ≫ 0.264 ≈ 0.39 ≫ 0.113 0.938 ≫ 0.175 ≈ 0.383 ≫ 0.047
Dal Bó and Fréchette (2011) 0.979 ≫ 0.391 ≈ 0.29 ≫ 0.075 0.975 ≫ 0.334 ≈ 0.547 ≫ 0.022
Dal Bó and Fréchette (2015) 0.977 ≫ 0.304 ≈ 0.328 ≫ 0.064 0.927 ≫ 0.343 ≈ 0.532 ≫ 0.028
Dreber et al. (2008) 0.917 ≫ 0.111 < 0.311 ≫ 0.005 0.909 > 0.5 ≈ 0.629 ≫ 0.01
Duffy and Ochs (2009) 0.98 ≫ 0.408 ≈ 0.371 > 0.232 0.849 ≫ 0.316 ≈ 0.415 ≫ 0.058
Fréchette and Yuksel (2017) 0.973 ≫ 0.213 ≈ 0.286 ≈ 0.214 0.818 ≈ 0.286 ≈ 0.575 ≫ 0.038
Fudenberg et al. (2012) 0.974 ≫ 0.5 ≈ 0.41 ≫ 0.111 0.84 > 0.463 ≈ 0.417 ≫ 0.075
Kagel and Schley (2013) 0.967 ≫ 0.281 ≈ 0.263 ≫ 0.061 0.872 ≫ 0.188 ≈ 0.527 ≫ 0.018
Sherstyuk et al. (2013) 0.973 ≫ 0.503 ≈ 0.417 ≫ 0.12 0.968 ≫ 0.431 ≈ 0.5 ≫ 0.062

Pooled 0.973 ≫ 0.325 ≈ 0.315 ≫ 0.076 0.917 ≫ 0.332 ≈ 0.499 ≫ 0.028

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2, with the obvious adaptation that the Holm-
Bonferroni correction now applies to all eight tests per data set.
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Table A.29: Strategies as a function of behavior in t −2 (Grim scheme)

Cooperation after /0,(c,c) in t −2 Cooperation after (c,d),(d,c),(d,d) in t −2
Experiment σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

First halves per session
Aoyagi and Frechette (2009) 0.939 ≫ 0.39 ≈ 0.439 ≈ 0.556 0.782 ≫ 0.485 ≈ 0.39 > 0.32
Blonski et al. (2011) 0.903 ≫ 0.248 ≈ 0.174 ≫ 0.045 0.714 > 0.318 ≈ 0.216 > 0.031
Bruttel and Kamecke (2012) 0.919 ≫ 0.296 ≈ 0.245 ≈ 0.179 0.833 ≫ 0.278 ≈ 0.213 ≫ 0.071
Dal Bó (2005) 0.926 ≫ 0.184 ≈ 0.31 ≈ 0.143 0.889 ≫ 0.254 ≈ 0.39 ≫ 0.074
Dal Bó and Fréchette (2011) 0.961 ≫ 0.342 ≈ 0.307 ≫ 0.081 0.849 ≫ 0.324 ≈ 0.364 ≫ 0.054
Dal Bó and Fréchette (2015) 0.95 ≫ 0.265 ≈ 0.301 ≫ 0.081 0.843 ≫ 0.328 ≈ 0.369 ≫ 0.052
Dreber et al. (2008) 0.901 ≫ 0.154 ≈ 0.217 ≫ 0.062 1 ≫ 0.359 ≈ 0.203 ≫ 0.031
Duffy and Ochs (2009) 0.932 ≫ 0.218 ≈ 0.301 ≈ 0.208 0.748 ≫ 0.361 ≈ 0.35 ≫ 0.102
Fréchette and Yuksel (2017) 0.942 ≫ 0.132 ≈ 0.245 ≫ 0 1 ≈ 0.182 ≈ 0.364 ≈ 0.111
Fudenberg et al. (2012) 0.985 ≫ 0.429 ≈ 0.408 ≫ 0 0.921 ≫ 0.377 ≈ 0.443 ≫ 0.068
Kagel and Schley (2013) 0.947 ≫ 0.236 ≈ 0.288 ≫ 0.133 0.763 ≫ 0.298 ≈ 0.305 ≫ 0.042
Sherstyuk et al. (2013) 0.953 ≫ 0.312 ≈ 0.395 ≫ 0.172 0.875 ≫ 0.343 ≈ 0.349 ≫ 0.107

Pooled 0.949 ≫ 0.278 ≈ 0.3 ≫ 0.091 0.825 ≫ 0.333 ≈ 0.346 ≫ 0.059

Second halves per session
Aoyagi and Frechette (2009) 0.965 ≫ 0.438 ≈ 0.625 ≈ 0.333 0.846 ≫ 0.371 < 0.443 ≈ 0.378
Blonski et al. (2011) 0.922 ≫ 0.157 ≈ 0.232 ≫ 0.027 0.941 ≫ 0.425 ≈ 0.23 ≫ 0.019
Bruttel and Kamecke (2012) 0.946 ≫ 0.156 ≈ 0.233 ≈ 0.173 0.958 ≫ 0.327 ≈ 0.4 ≫ 0.019
Dal Bó (2005) 0.918 ≫ 0.178 < 0.4 > 0.131 0.937 ≫ 0.32 ≈ 0.373 ≫ 0.052
Dal Bó and Fréchette (2011) 0.981 ≫ 0.373 ≈ 0.323 ≫ 0.077 0.95 ≫ 0.38 ≈ 0.416 ≫ 0.025
Dal Bó and Fréchette (2015) 0.98 ≫ 0.264 < 0.366 ≫ 0.058 0.904 ≫ 0.369 ≈ 0.44 ≫ 0.031
Dreber et al. (2008) 0.913 ≫ 0.029 ≪ 0.314 ≫ 0.007 0.955 ≫ 0.417 ≈ 0.611 ≫ 0.009
Duffy and Ochs (2009) 0.981 ≫ 0.362 ≈ 0.433 ≈ 0.226 0.889 ≫ 0.369 ≈ 0.368 ≫ 0.077
Fréchette and Yuksel (2017) 0.976 ≫ 0.173 ≈ 0.308 ≈ 0.222 0.75 > 0.294 ≈ 0.49 ≫ 0.06
Fudenberg et al. (2012) 0.976 ≫ 0.473 ≈ 0.509 ≈ 0.2 0.854 ≫ 0.5 ≈ 0.328 ≫ 0.077
Kagel and Schley (2013) 0.969 ≫ 0.218 ≈ 0.293 > 0.098 0.868 ≫ 0.332 ≈ 0.394 ≫ 0.02
Sherstyuk et al. (2013) 0.974 ≫ 0.465 ≈ 0.486 ≫ 0.107 0.952 ≫ 0.505 ≈ 0.369 ≫ 0.072

Pooled 0.975 ≫ 0.282 ≪ 0.351 ≫ 0.07 0.908 ≫ 0.378 ≈ 0.404 ≫ 0.033

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2, with the obvious adaptation that the Holm-
Bonferroni correction now applies to all eight tests per data set.
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Table A.30: Table A.29 by treatments – Strategies as a function of behavior in t −2 (Grim scheme)

(a) First halves per session
Equality Cooperation after (d,c),(c,d),(d,d) in t −2 Cooperation after ../tex-r1/ext-grim-tab2.tex in t −2

Treatment p-value σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 0 0.939 ≫ 0.39 ≈ 0.439 ≈ 0.556 0.782 ≫ 0.485 ≈ 0.39 > 0.32

Blonski et al. (2011)
BOS11–9 0.23 - 0.182 0.182 0.031

BOS11–14 0.16 - 0.188 0.062 0.029
BOS11–15 0.04 - 0.167 0 0.005
BOS11–16 0 0.934 ≫ 0.136 ≈ 0.136 ≈ 0.056 0.667 ≈ 0.333 ≈ 0.333 > 0.076
BOS11–17 1 0.5 ≈ 0.231 ≈ 0.462 ≈ 0.115 NA ≈ 0.25 ≈ 0.5 ≈ 0.167
BOS11–26 0.005 0.857 > 0.258 ≈ 0.097 ≈ 0.07 0.5 ≈ 0.2 ≈ 0.35 ≫ 0.02
BOS11–27 0.18 0.875 ≈ 0.556 ≈ 0.333 ≈ 0.091 1 ≈ 0.1 ≈ 0.1 ≈ 0.044
BOS11–30 0.275 - 0 0 0.058
BOS11–31 0 0.983 ≫ 0.385 ≈ 0.231 ≈ 0.091 0.5 ≈ 0.577 ≈ 0.115 ≈ 0.015

BOS11–All 0 0.903 ≫ 0.248 ≈ 0.174 ≫ 0.045 0.714 > 0.318 ≈ 0.216 > 0.031

Bruttel and Kamecke (2012)
BK12–28 0 0.919 ≫ 0.296 ≈ 0.245 ≈ 0.179 0.833 ≫ 0.278 ≈ 0.213 ≫ 0.071

Dal Bó (2005)
D05–18 0 0.821 ≫ 0.208 ≈ 0.25 ≈ 0.091 0.75 ≈ 0.273 ≈ 0.364 ≈ 0.118
D05–19 0 0.954 ≫ 0.175 ≈ 0.333 ≈ 0.158 1 ≫ 0.243 ≈ 0.405 ≫ 0.044

D05–All 0 0.926 ≫ 0.184 ≈ 0.31 ≈ 0.143 0.889 ≫ 0.254 ≈ 0.39 ≫ 0.074

Dal Bó and Fréchette (2011)
DF11–6 0.059 0.667 ≈ 0.294 ≈ 0.235 ≫ 0.038 0.917 ≫ 0.375 ≈ 0.35 ≫ 0.034
DF11–7 0.002 0.632 > 0.254 ≈ 0.254 ≫ 0.089 0.786 > 0.391 ≈ 0.266 ≫ 0.029
DF11–8 0 0.979 ≫ 0.446 ≈ 0.28 ≫ 0.105 0.923 ≫ 0.361 ≈ 0.222 ≫ 0.06

DF11–22 0 0.922 ≫ 0.34 ≈ 0.381 ≫ 0.06 0.833 ≫ 0.279 ≈ 0.338 ≫ 0.048
DF11–23 0 0.976 ≫ 0.448 ≈ 0.321 ≫ 0.16 0.859 ≫ 0.325 ≈ 0.462 ≫ 0.054
DF11–24 0 0.967 ≫ 0.228 ≈ 0.366 > 0.135 0.813 ≫ 0.308 ≈ 0.436 ≫ 0.107

DF11–All 0 0.961 ≫ 0.342 ≈ 0.307 ≫ 0.081 0.849 ≫ 0.324 ≈ 0.364 ≫ 0.054

Dal Bó and Fréchette (2015)
DF15–4 0.017 0.571 > 0.073 ≈ 0.268 > 0.018 0.5 ≈ 0.429 ≈ 0.5 ≫ 0.044
DF15–5 0 0.92 ≫ 0.223 ≈ 0.219 ≫ 0.076 0.95 ≫ 0.369 ≈ 0.323 ≫ 0.086

DF15–20 0 0.933 ≫ 0.222 ≈ 0.335 ≫ 0.073 0.825 ≫ 0.225 ≈ 0.337 ≫ 0.046
DF15–21 0 0.959 ≫ 0.325 ≈ 0.329 ≫ 0.129 0.873 ≫ 0.455 > 0.411 ≫ 0.077
DF15–33 0 0.953 ≫ 0.313 ≈ 0.322 ≫ 0.111 0.802 ≫ 0.288 ≈ 0.356 ≫ 0.047
DF15–35 0 0.98 ≫ 0.276 ≈ 0.448 ≈ 0.214 0.882 ≫ 0.356 ≈ 0.422 ≫ 0.042

DF15–All 0 0.95 ≫ 0.265 ≈ 0.301 ≫ 0.081 0.843 ≫ 0.328 ≈ 0.369 ≫ 0.052

Dreber et al. (2008)
DRFN08–10 0 0.885 ≫ 0.143 ≈ 0.13 > 0.031 1 > 0.333 ≈ 0.167 > 0.018
DRFN08–11 0 0.914 ≫ 0.167 ≈ 0.318 > 0.091 1 > 0.375 ≈ 0.225 ≫ 0.043

DRFN08–All 0 0.901 ≫ 0.154 ≈ 0.217 ≫ 0.062 1 ≫ 0.359 ≈ 0.203 ≫ 0.031

Duffy and Ochs (2009)
DO09–32 0 0.932 ≫ 0.218 ≈ 0.301 ≈ 0.208 0.748 ≫ 0.361 ≈ 0.35 ≫ 0.102

Fréchette and Yuksel (2017)
FY17–25 0 0.942 ≫ 0.132 ≈ 0.245 ≫ 0 1 ≈ 0.182 ≈ 0.364 ≈ 0.111

Fudenberg et al. (2012)
FRD12–29 0 0.985 ≫ 0.429 ≈ 0.408 ≫ 0 0.921 ≫ 0.377 ≈ 0.443 ≫ 0.068

Kagel and Schley (2013)
KS13–12 0 0.947 ≫ 0.236 ≈ 0.288 ≫ 0.133 0.763 ≫ 0.298 ≈ 0.305 ≫ 0.042

Sherstyuk et al. (2013)
STS13–13 0 0.953 ≫ 0.312 ≈ 0.395 ≫ 0.172 0.875 ≫ 0.343 ≈ 0.349 ≫ 0.107

Pooled 0 0.949 ≫ 0.278 ≈ 0.3 ≫ 0.091 0.825 ≫ 0.333 ≈ 0.346 ≫ 0.059

(b) Second halves per session
Equality Cooperation after (d,c),(c,d),(d,d) in t −2 Cooperation after ../tex-r1/ext-grim-tab3.tex in t −2

Treatment p-value σ̂cc σ̂cd σ̂dc σ̂dd σ̂cc σ̂cd σ̂dc σ̂dd

Aoyagi and Frechette (2009)
AF09–34 0 0.965 ≫ 0.438 ≈ 0.625 ≈ 0.333 0.846 ≫ 0.371 ≈ 0.443 ≈ 0.378

Blonski et al. (2011)
BOS11–9 0.006 0.917 > 0 ≈ 0.154 ≈ 0.021 NA ≈ 0.333 ≈ 0.333 ≈ 0

BOS11–14 0.025 - 0.2 0.4 0.013
BOS11–15 0 - 0 0 0.002
BOS11–16 0 0.855 ≫ 0.12 ≈ 0.24 > 0 0.5 ≈ 0.6 ≈ 0.2 ≈ 0.03
BOS11–17 0 0.912 ≫ 0.161 ≈ 0.194 ≈ 0.048 1 ≈ 0.208 ≈ 0.333 ≫ 0.024
BOS11–26 0 0.955 ≫ 0.171 ≈ 0.195 ≫ 0.022 1 > 0.316 ≈ 0.211 ≫ 0.033
BOS11–27 0.01 0.867 > 0.31 ≈ 0.414 > 0.109 0.9 ≫ 0.518 ≈ 0.268 > 0.014
BOS11–30 0.099 0.75 ≈ 0.083 ≈ 0.083 ≈ 0 1 ≈ 0.333 ≈ 0.25 ≈ 0.022
BOS11–31 0.004 1 > 0.143 ≈ 0.286 ≈ 0.062 1 > 0.613 ≈ 0.097 > 0.018

BOS11–All 0 0.922 ≫ 0.157 ≈ 0.232 ≫ 0.027 0.941 ≫ 0.425 ≈ 0.23 ≫ 0.019

Bruttel and Kamecke (2012)
BK12–28 0 0.946 ≫ 0.156 ≈ 0.233 ≈ 0.173 0.958 ≫ 0.327 ≈ 0.4 ≫ 0.019

Dal Bó (2005)
D05–18 0 0.85 ≫ 0.227 < 0.523 ≈ 0.194 0.9 ≫ 0.325 ≈ 0.425 ≫ 0.076
D05–19 0 0.949 ≫ 0.13 ≈ 0.283 ≈ 0.083 1 ≫ 0.314 ≈ 0.314 ≫ 0.04

D05–All 0 0.918 ≫ 0.178 < 0.4 > 0.131 0.937 ≫ 0.32 ≈ 0.373 ≫ 0.052

Dal Bó and Fréchette (2011)
DF11–6 0.006 1 > 0.267 ≈ 0.378 ≫ 0.031 1 ≫ 0.442 ≈ 0.581 ≫ 0.012
DF11–7 0 0.903 ≫ 0.36 ≈ 0.346 ≫ 0.12 0.95 ≫ 0.4 ≈ 0.389 ≫ 0.042
DF11–8 0 1 ≫ 0.395 > 0.163 ≫ 0.047 1 ≫ 0.453 ≈ 0.266 ≫ 0.02

DF11–22 0 0.971 ≫ 0.462 ≈ 0.387 ≫ 0.056 0.903 ≫ 0.265 ≈ 0.426 ≫ 0.018
DF11–23 0 0.974 ≫ 0.387 ≈ 0.6 ≈ 0.314 0.98 ≫ 0.425 ≈ 0.397 ≫ 0.036
DF11–24 0 0.984 ≫ 0.192 ≈ 0.25 ≈ 1 0.9 > 0.471 ≈ 0.559 ≫ 0.073

DF11–All 0 0.981 ≫ 0.373 ≈ 0.323 ≫ 0.077 0.95 ≫ 0.38 ≈ 0.416 ≫ 0.025

Dal Bó and Fréchette (2015)
DF15–4 0.034 0.75 > 0.059 ≈ 0.176 ≈ 0.007 1 ≈ 0.091 ≈ 0.545 > 0.024
DF15–5 0 0.981 ≫ 0.226 ≈ 0.218 ≫ 0.031 0.846 ≫ 0.411 ≈ 0.274 ≫ 0.041

DF15–20 0 0.958 ≫ 0.348 ≈ 0.402 ≫ 0.069 0.889 ≫ 0.255 ≈ 0.333 ≫ 0.02
DF15–21 0 0.981 ≫ 0.234 ≈ 0.288 > 0.133 0.929 ≫ 0.424 ≈ 0.348 ≫ 0.058
DF15–33 0 0.981 ≫ 0.273 ≪ 0.517 ≫ 0.077 0.911 ≫ 0.34 < 0.557 ≫ 0.028
DF15–35 0 0.986 ≫ 0.362 ≈ 0.569 ≈ 0.375 0.887 ≫ 0.533 ≈ 0.358 ≫ 0.032

DF15–All 0 0.98 ≫ 0.264 < 0.366 ≫ 0.058 0.904 ≫ 0.369 ≈ 0.44 ≫ 0.031

Dreber et al. (2008)
DRFN08–10 0 0.667 ≫ 0.02 ≈ 0.18 ≈ 0 1 ≈ 0.75 ≈ 0.875 ≫ 0.002
DRFN08–11 0 0.943 ≫ 0.036 ≪ 0.436 > 0.031 0.929 ≫ 0.321 ≈ 0.536 ≫ 0.028

DRFN08–All 0 0.913 ≫ 0.029 ≪ 0.314 ≫ 0.007 0.955 ≫ 0.417 ≈ 0.611 ≫ 0.009

Duffy and Ochs (2009)
DO09–32 0 0.981 ≫ 0.362 ≈ 0.433 ≈ 0.226 0.889 ≫ 0.369 ≈ 0.368 ≫ 0.077

Fréchette and Yuksel (2017)
FY17–25 0 0.976 ≫ 0.173 ≈ 0.308 ≈ 0.222 0.75 > 0.294 ≈ 0.49 ≫ 0.06

Fudenberg et al. (2012)
FRD12–29 0 0.976 ≫ 0.473 ≈ 0.509 ≈ 0.2 0.854 ≫ 0.5 ≈ 0.328 ≫ 0.077

Kagel and Schley (2013)
KS13–12 0 0.969 ≫ 0.218 ≈ 0.293 > 0.098 0.868 ≫ 0.332 ≈ 0.394 ≫ 0.02

Sherstyuk et al. (2013)
STS13–13 0 0.974 ≫ 0.465 ≈ 0.486 ≫ 0.107 0.952 ≫ 0.505 ≈ 0.369 ≫ 0.072

Pooled 0 0.975 ≫ 0.282 ≪ 0.351 ≫ 0.07 0.908 ≫ 0.378 ≈ 0.404 ≫ 0.033
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Table A.31: 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory pure strategies (No
switching) (ICL-BIC of the models, less is better and relation signs point toward better models)

SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

First halves per session
Aoyagi and Frechette (2009) 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
Blonski et al. (2011) 2337.47 ≫ 2188.04 ≫ 1089.36 ≪ 1241.55 ≪ 1367.4 ≫ 1239.58
Bruttel and Kamecke (2012) 1025.99 ≈ 1021.23 ≫ 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
Dal Bó (2005) 968.96 ≫ 907.92 ≫ 653.33 ≈ 678.73 ≪ 713.82 > 678.73
Dal Bó and Fréchette (2011) 14795.82 ≈ 14789.67 ≫ 7282.65 < 7668.25 ≈ 7725.56 ≈ 7670.28
Dal Bó and Fréchette (2015) 13772.1 ≫ 13479.92 ≫ 8887.67 ≈ 9096.12 ≪ 9276.23 ≫ 9116.67
Dreber et al. (2008) 1176.51 ≈ 1165.17 ≫ 838.33 ≈ 875.56 < 905.5 > 875.56
Duffy and Ochs (2009) 1670.22 ≈ 1650.03 ≫ 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
Fréchette and Yuksel (2017) 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 ≪ 344.74 ≫ 319.92
Fudenberg et al. (2012) 466.79 ≈ 452.21 ≫ 398.38 ≪ 474.56 ≈ 474.56 ≈ 479.33
Kagel and Schley (2013) 3526.46 ≈ 3570.33 ≫ 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
Sherstyuk et al. (2013) 1685.47 ≈ 1691.71 ≫ 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6

Pooled 42929.62 ≫ 42318.82 ≫ 27010.74 ≪ 27851.71 ≪ 28384.93 ≫ 27867.48

Second halves per session
Aoyagi and Frechette (2009) 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
Blonski et al. (2011) 3075.21 ≫ 2951.31 ≫ 1441.28 ≪ 1757.39 ≪ 1863.15 ≫ 1757.39
Bruttel and Kamecke (2012) 833.83 ≈ 838.57 ≫ 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
Dal Bó (2005) 1041.04 ≫ 975.62 ≫ 748.55 ≈ 747.84 ≪ 785.02 ≫ 747.84
Dal Bó and Fréchette (2011) 13878.91 ≈ 13949.42 ≫ 6160.5 ≈ 6250.91 ≈ 6306.7 ≈ 6430.56
Dal Bó and Fréchette (2015) 14391.56 ≈ 14280.59 ≫ 9015.88 < 9477.45 ≈ 9544.21 ≈ 9552.41
Dreber et al. (2008) 1118.6 ≈ 1106.62 ≫ 665.13 ≈ 664.79 ≪ 690.58 ≈ 664.79
Duffy and Ochs (2009) 2016.24 ≈ 1993.56 ≫ 1794.26 ≪ 2016.45 ≈ 2016.45 ≈ 2042.07
Fréchette and Yuksel (2017) 561.78 > 528.38 ≈ 481.62 ≈ 474.69 ≪ 502.3 > 474.69
Fudenberg et al. (2012) 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
Kagel and Schley (2013) 2648.79 ≈ 2676.25 ≫ 2261.67 ≫ 1919.9 ≈ 1919.9 ≈ 1971.47
Sherstyuk et al. (2013) 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23

Pooled 42117.12 > 41806.84 ≫ 25340.99 < 26159.81 ≪ 26522.89 ≈ 26597.37

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. Pure M1 refers to TFT, Grim, and AD. G2
denotes Grim2. For definitions of the strategies see Table A.7.



A
.5.

R
O

B
U

ST
N

E
SS

C
H

E
C

K
S

FO
R

SE
C

T
IO

N
1.4

151

Table A.32: Table A.31 by treatments – 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory
pure strategies (No switching)

(a) First halves per session
SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
BOS11–9 228.81 ≫ 213.06 ≫ 82.26 ≈ 99.25 ≪ 112.53 ≫ 99.25
BOS11–14 260.4 ≈ 249.04 ≫ 87.7 ≪ 114.56 ≪ 127.38 ≫ 114.56
BOS11–15 273.29 > 256.51 ≫ 31.07 ≪ 72.06 ≪ 85.01 ≫ 72.06
BOS11–16 225 > 210.23 > 170.96 ≈ 176.25 < 188.95 > 176.25
BOS11–17 165.97 ≫ 148.89 > 119.9 ≈ 123.55 ≪ 139.81 ≫ 123.55
BOS11–26 509.26 > 483.9 ≫ 254.14 ≈ 275.47 ≪ 293.71 > 275.47
BOS11–27 227.67 > 217.47 ≫ 108.51 ≈ 116.34 ≈ 116.34 ≈ 116.68
BOS11–30 173.13 ≫ 156.27 ≫ 63.02 ≈ 64.25 ≪ 77.67 ≫ 64.25
BOS11–31 203.85 ≈ 202.6 > 141.75 ≈ 167.46 ≈ 175.92 > 167.46
BK12–28 1025.99 ≈ 1021.23 ≫ 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
D05–18 305.64 ≫ 281.91 ≫ 224.25 ≈ 240.35 ≪ 263.72 ≫ 240.35
D05–19 658.37 ≫ 622.47 ≫ 426.95 ≈ 436.26 ≈ 446.55 ≈ 436.26
DF11–6 3212.26 ≈ 3201.72 ≫ 894.35 ≈ 929.98 ≈ 939.5 ≈ 929.98
DF11–7 3939.04 ≈ 3932.55 ≫ 1369.26 < 1498.06 ≈ 1530.47 ≈ 1498.06
DF11–8 3028.46 ≈ 3058.62 ≫ 1648.75 ≈ 1568.94 ≈ 1568.94 ≈ 1571.62
DF11–22 1830.58 ≈ 1822.78 ≫ 1042.26 ≪ 1226.5 ≈ 1236.62 ≈ 1226.5
DF11–23 1453.39 ≈ 1461.14 ≫ 1117.42 ≈ 1176.02 ≈ 1176.02 ≈ 1181.42
DF11–24 1294.39 ≈ 1285.94 > 1194.45 ≈ 1246.18 ≈ 1247.07 ≈ 1246.54
DF15–4 1783.05 ≈ 1749.99 ≫ 477.13 ≈ 494.11 ≪ 523.98 ≫ 494.11
DF15–5 3031.87 > 2953.98 ≫ 2194.38 ≫ 1845.7 ≈ 1889.41 ≈ 1845.7
DF15–20 2763.46 ≈ 2713.19 ≫ 1481.46 < 1642.7 ≈ 1670.78 > 1642.7
DF15–21 2460.51 ≈ 2433.58 ≫ 2111.65 ≈ 2058.02 ≈ 2058.02 ≈ 2079.98
DF15–33 3248.44 > 3172.27 ≫ 2256.38 ≪ 2613.59 < 2676.03 > 2613.59
DF15–35 443.95 ≈ 427.76 ≫ 349.17 < 423.09 ≈ 428.84 ≈ 423.09
DRFN08–10 569.36 ≈ 559.43 ≫ 382.91 ≈ 415.65 < 432.45 ≈ 415.65
DRFN08–11 602.25 ≈ 602.24 > 453.32 ≈ 457.81 ≈ 469.55 ≈ 457.81
DO09–32 1670.22 ≈ 1650.03 ≫ 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
FY17–25 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 ≪ 344.74 ≫ 319.92
FRD12–29 466.79 ≈ 452.21 ≫ 398.38 ≪ 474.56 ≈ 474.56 ≈ 479.33
KS13–12 3526.46 ≈ 3570.33 ≫ 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
STS13–13 1685.47 ≈ 1691.71 ≫ 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6
Aoyagi and Frechette (2009) 855.34 ≈ 847.81 ≈ 835.89 ≈ 891.63 ≈ 891.63 ≈ 897.8
Blonski et al. (2011) 2337.47 ≫ 2188.04 ≫ 1089.36 ≪ 1241.55 ≪ 1367.4 ≫ 1239.58
Bruttel and Kamecke (2012) 1025.99 ≈ 1021.23 ≫ 817.24 ≈ 861.15 ≈ 861.15 ≈ 862.58
Dal Bó (2005) 968.96 ≫ 907.92 ≫ 653.33 ≈ 678.73 ≪ 713.82 > 678.73
Dal Bó and Fréchette (2011) 14795.82 ≈ 14789.67 ≫ 7282.65 < 7668.25 ≈ 7725.56 ≈ 7670.28
Dal Bó and Fréchette (2015) 13772.1 ≫ 13479.92 ≫ 8887.67 ≈ 9096.12 ≪ 9276.23 ≫ 9116.67
Dreber et al. (2008) 1176.51 ≈ 1165.17 ≫ 838.33 ≈ 875.56 < 905.5 > 875.56
Duffy and Ochs (2009) 1670.22 ≈ 1650.03 ≫ 1437.86 ≈ 1449.33 ≈ 1459.86 ≈ 1449.33
Fréchette and Yuksel (2017) 393.16 ≈ 372.41 ≈ 335.07 ≈ 319.92 ≪ 344.74 ≫ 319.92
Fudenberg et al. (2012) 466.79 ≈ 452.21 ≫ 398.38 ≪ 474.56 ≈ 474.56 ≈ 479.33
Kagel and Schley (2013) 3526.46 ≈ 3570.33 ≫ 2912.53 > 2739.66 ≈ 2760.67 ≈ 2739.66
Sherstyuk et al. (2013) 1685.47 ≈ 1691.71 ≫ 1413 ≈ 1421.45 ≈ 1421.45 ≈ 1428.6

Pooled 42929.62 ≫ 42318.82 ≫ 27010.74 ≪ 27851.71 ≪ 28384.93 ≫ 27867.48

(b) Second halves per session
SG+ SG M2“General” SG M2“General” Semi-Grim Best Pure Pure M1+G2,T2 Pure M1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
BOS11–9 262.26 ≈ 252.38 ≫ 92.34 ≈ 100.69 ≪ 111.7 ≫ 100.69
BOS11–14 316.89 > 301.99 ≫ 35.25 ≪ 74.75 ≪ 86.28 ≫ 74.75
BOS11–15 357.64 > 340.78 ≫ 11.86 ≪ 93.99 ≪ 106.45 ≫ 93.99
BOS11–16 206.46 > 194.41 ≈ 162.19 ≈ 166.7 < 179.74 > 166.7
BOS11–17 327 ≈ 313.44 ≫ 212.8 ≈ 232.04 ≈ 237.43 ≈ 232.04
BOS11–26 635.75 ≈ 617.18 ≫ 333.39 < 391.24 ≈ 404.11 > 391.24
BOS11–27 388.11 ≈ 384.8 > 262.85 ≈ 292.85 ≈ 296.91 ≈ 292.85
BOS11–30 246.9 > 231.15 ≫ 131.11 < 161.56 ≈ 173.63 ≫ 161.56
BOS11–31 264.1 ≈ 265.11 > 169.45 < 213.53 ≈ 216.82 ≈ 213.53
BK12–28 833.83 ≈ 838.57 ≫ 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
D05–18 450.68 ≫ 424.87 ≫ 336.26 ≈ 353.97 ≈ 364.98 ≈ 353.97
D05–19 585.4 ≫ 547.21 ≫ 410.17 ≈ 391.74 ≪ 416.49 ≫ 391.74
DF11–6 3524.22 ≈ 3504.27 ≫ 610.65 < 807.87 ≈ 830.4 ≈ 807.87
DF11–7 4029.73 ≈ 4054.52 ≫ 1566.15 ≈ 1638.56 ≈ 1655.2 ≈ 1638.56
DF11–8 2783 ≈ 2835.26 ≫ 1570.36 ≫ 1172.76 ≈ 1172.76 < 1228.26
DF11–22 1884.84 ≈ 1904.65 ≫ 1031.86 ≈ 1173.61 ≈ 1173.61 ≈ 1229.35
DF11–23 1003.64 ≈ 1024.22 > 885.87 ≈ 792.63 ≈ 792.63 ≈ 866.55
DF11–24 615.76 ≈ 599.58 > 479.46 ≪ 643.83 ≈ 655.18 ≈ 643.83
DF15–4 1896.41 ≈ 1863.03 ≫ 384.53 ≈ 417.63 ≪ 441.51 ≫ 417.63
DF15–5 3236.45 ≈ 3202.05 ≫ 2172.99 ≫ 1735.14 ≈ 1764.47 ≈ 1735.14
DF15–20 2796.05 ≈ 2784.9 ≫ 1393.96 < 1646.2 ≈ 1646.2 ≈ 1663.73
DF15–21 2061.25 ≈ 2051.69 ≫ 1826.53 ≈ 1832.26 ≈ 1840.23 ≈ 1832.26
DF15–33 3542.83 ≈ 3534.1 ≫ 2550.95 ≪ 3002.88 ≈ 3002.88 ≈ 3026.08
DF15–35 817.74 ≈ 815.66 ≫ 669.42 ≪ 819.77 ≈ 819.77 ≈ 860.08
DRFN08–10 664.97 ≈ 653.29 ≫ 288.29 ≈ 315.7 < 330.73 ≈ 315.7
DRFN08–11 448.73 ≈ 449.83 ≈ 374.74 ≈ 346.99 ≈ 356.35 ≈ 346.99
DO09–32 2016.24 ≈ 1993.56 ≫ 1794.26 ≪ 2016.45 ≈ 2016.45 ≈ 2042.07
FY17–25 561.78 > 528.38 ≈ 481.62 ≈ 474.69 ≪ 502.3 > 474.69
FRD12–29 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
KS13–12 2648.79 ≈ 2676.25 ≫ 2261.67 ≫ 1919.9 ≈ 1919.9 ≈ 1971.47
STS13–13 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23
Aoyagi and Frechette (2009) 515.26 > 500.7 ≈ 494.93 ≈ 548.36 ≈ 548.36 ≈ 553.46
Blonski et al. (2011) 3075.21 ≫ 2951.31 ≫ 1441.28 ≪ 1757.39 ≪ 1863.15 ≫ 1757.39
Bruttel and Kamecke (2012) 833.83 ≈ 838.57 ≫ 595.23 ≈ 583.12 ≈ 583.12 ≈ 594.04
Dal Bó (2005) 1041.04 ≫ 975.62 ≫ 748.55 ≈ 747.84 ≪ 785.02 ≫ 747.84
Dal Bó and Fréchette (2011) 13878.91 ≈ 13949.42 ≫ 6160.5 ≈ 6250.91 ≈ 6306.7 ≈ 6430.56
Dal Bó and Fréchette (2015) 14391.56 ≈ 14280.59 ≫ 9015.88 < 9477.45 ≈ 9544.21 ≈ 9552.41
Dreber et al. (2008) 1118.6 ≈ 1106.62 ≫ 665.13 ≈ 664.79 ≪ 690.58 ≈ 664.79
Duffy and Ochs (2009) 2016.24 ≈ 1993.56 ≫ 1794.26 ≪ 2016.45 ≈ 2016.45 ≈ 2042.07
Fréchette and Yuksel (2017) 561.78 > 528.38 ≈ 481.62 ≈ 474.69 ≪ 502.3 > 474.69
Fudenberg et al. (2012) 532.03 ≈ 530.32 > 485.43 < 551 ≈ 551 ≈ 571.98
Kagel and Schley (2013) 2648.79 ≈ 2676.25 ≫ 2261.67 ≫ 1919.9 ≈ 1919.9 ≈ 1971.47
Sherstyuk et al. (2013) 1248.54 ≈ 1293.11 > 1087.07 ≈ 1029.75 ≈ 1029.75 < 1127.23

Pooled 42117.12 > 41806.84 ≫ 25340.99 < 26159.81 ≪ 26522.89 ≈ 26597.37

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.33: 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory pure strategies (Random
switching) (ICL-BIC of the models, less is better and relation signs point toward better models)

SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

First halves per session
Aoyagi and Frechette (2009) 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
Blonski et al. (2011) 1938.36 ≫ 1807.07 ≫ 1089.36 < 1141.74 < 1168.97 ≈ 1147.53
Bruttel and Kamecke (2012) 986.56 ≈ 969.46 ≫ 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
Dal Bó (2005) 810.96 ≈ 798.82 ≫ 653.33 ≪ 690.17 ≈ 693.14 ≈ 692.19
Dal Bó and Fréchette (2011) 9041.66 > 8900.69 ≫ 7282.65 ≪ 7638.05 ≈ 7645.17 < 7825.68
Dal Bó and Fréchette (2015) 11458.55 ≫ 11208.45 ≫ 8887.67 ≪ 9301.85 ≈ 9306.74 < 9460.02
Dreber et al. (2008) 1104.74 ≈ 1080.21 ≫ 838.33 ≈ 871.6 ≈ 871.39 ≈ 879
Duffy and Ochs (2009) 1613.97 ≈ 1588.23 ≫ 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
Fréchette and Yuksel (2017) 400.09 ≫ 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
Fudenberg et al. (2012) 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
Kagel and Schley (2013) 3481.07 ≈ 3490.59 ≫ 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
Sherstyuk et al. (2013) 1626.21 ≈ 1601.7 ≫ 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01

Pooled 34006.81 ≫ 33277.82 ≫ 27010.74 ≪ 28272.53 ≈ 28320.03 ≪ 28752.26

Second halves per session
Aoyagi and Frechette (2009) 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
Blonski et al. (2011) 2648.18 ≫ 2535.71 ≫ 1441.28 ≪ 1609.58 ≈ 1637.46 > 1613.11
Bruttel and Kamecke (2012) 802.05 ≈ 798.92 ≫ 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
Dal Bó (2005) 915.79 ≈ 904.46 ≫ 748.55 ≪ 793.71 ≈ 796.01 ≈ 807.66
Dal Bó and Fréchette (2011) 8212.23 ≈ 8185.18 ≫ 6160.5 ≪ 6655.07 ≈ 6655.57 ≪ 6955.42
Dal Bó and Fréchette (2015) 12150.58 > 12016.88 ≫ 9015.88 ≪ 9880.99 ≈ 9886.61 ≪ 10178.06
Dreber et al. (2008) 1002.39 ≈ 994.93 ≫ 665.13 ≈ 694.37 ≈ 699.01 ≈ 694.37
Duffy and Ochs (2009) 1970.43 ≈ 1973.39 ≫ 1794.26 ≪ 2010.69 ≈ 2010.69 ≈ 2083.26
Fréchette and Yuksel (2017) 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
Fudenberg et al. (2012) 514.64 ≈ 510.99 ≈ 485.43 ≪ 546.56 ≈ 548.09 < 591.31
Kagel and Schley (2013) 2680.42 ≈ 2675.61 ≫ 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
Sherstyuk et al. (2013) 1256.5 ≈ 1261.23 ≫ 1087.07 < 1167.39 ≈ 1167.39 < 1245.55

Pooled 33467.87 ≫ 33064.51 ≫ 25340.99 ≪ 27480.48 ≈ 27550.66 ≪ 28348.53

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. Pure M1 refers to TFT, Grim, and AD. G2
denotes Grim2. For definitions of the strategies see Table A.7.
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Table A.34: Table A.33 by treatments – 1- and 2-memory SG behavior strategies versus best mixtures (by treatment) of 1- and 2-memory
pure strategies (Random switching)

(a) First halves per session
SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
BOS11–9 168.61 ≫ 153.78 ≫ 82.26 ≈ 83.96 ≈ 86.52 ≈ 83.96
BOS11–14 210.98 ≈ 207.95 ≫ 87.7 ≈ 90.01 ≈ 92.44 ≈ 90.01
BOS11–15 221.49 ≫ 204.63 ≫ 31.07 ≈ 32.69 ≈ 33.3 ≈ 32.69
BOS11–16 212.6 > 199.27 > 170.96 ≈ 176.09 ≈ 177.8 ≈ 176.09
BOS11–17 142.08 ≫ 125.22 ≈ 119.9 ≈ 118.75 ≈ 121.83 ≈ 118.75
BOS11–26 458.54 ≫ 427.81 ≫ 254.14 ≈ 259.54 ≈ 259.54 ≈ 267.51
BOS11–27 167.95 ≈ 164.96 > 108.51 ≈ 109.62 ≈ 109.62 ≈ 113.56
BOS11–30 90.04 ≫ 73.18 > 63.02 ≈ 65.48 ≈ 68.48 ≈ 65.48
BOS11–31 195.97 ≈ 200.2 > 141.75 ≈ 169.35 ≈ 169.35 ≈ 169.44
BK12–28 986.56 ≈ 969.46 ≫ 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
D05–18 262.83 ≈ 256.79 > 224.25 < 238.03 ≈ 240.12 ≈ 238.03
D05–19 543.17 ≈ 538.48 ≫ 426.95 < 449.48 ≈ 449.48 ≈ 452.03
DF11–6 1030.71 ≈ 998.16 ≫ 894.35 < 951.32 ≈ 951.32 ≈ 965.47
DF11–7 1482.77 ≈ 1460.6 > 1369.26 ≈ 1396.1 ≈ 1396.1 ≈ 1405.07
DF11–8 2145.02 ≈ 2117.53 ≫ 1648.75 < 1707.55 ≈ 1707.55 ≈ 1768.61
DF11–22 1643.66 ≈ 1622.27 ≫ 1042.26 ≪ 1139.78 ≈ 1140.58 ≈ 1162.24
DF11–23 1388.55 ≈ 1392.28 ≫ 1117.42 ≈ 1185.74 ≈ 1185.74 ≈ 1246
DF11–24 1313.25 ≈ 1282.93 > 1194.45 ≈ 1227.04 ≈ 1236.96 ≈ 1262.13
DF15–4 550.04 ≫ 511.86 ≈ 477.13 ≈ 475.23 ≈ 477.75 ≈ 475.23
DF15–5 2545.46 ≫ 2459.44 ≫ 2194.38 ≈ 2214.8 ≈ 2214.8 ≈ 2235.3
DF15–20 2434.72 ≫ 2354.53 ≫ 1481.46 < 1548.72 ≈ 1548.72 ≈ 1572.04
DF15–21 2359.09 ≈ 2351.69 ≫ 2111.65 ≪ 2225.46 ≈ 2225.46 < 2291.78
DF15–33 3090.18 ≈ 3078.85 ≫ 2256.38 ≪ 2420.93 ≈ 2421.39 < 2469.21
DF15–35 438.24 ≈ 422.92 ≫ 349.17 < 389.46 ≈ 389.46 ≈ 398.96
DRFN08–10 538.54 ≈ 517.1 ≫ 382.91 ≈ 395.82 ≈ 395.82 ≈ 398.11
DRFN08–11 561.29 ≈ 559.61 > 453.32 ≈ 471.86 ≈ 472.06 ≈ 478.79
DO09–32 1613.97 ≈ 1588.23 ≫ 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
FY17–25 400.09 ≫ 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
FRD12–29 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
KS13–12 3481.07 ≈ 3490.59 ≫ 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
STS13–13 1626.21 ≈ 1601.7 ≫ 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01
Aoyagi and Frechette (2009) 846.9 ≈ 846.43 ≈ 835.89 ≈ 862.48 ≈ 862.48 ≈ 891.2
Blonski et al. (2011) 1938.36 ≫ 1807.07 ≫ 1089.36 < 1141.74 < 1168.97 ≈ 1147.53
Bruttel and Kamecke (2012) 986.56 ≈ 969.46 ≫ 817.24 ≈ 837.88 ≈ 837.88 ≈ 857.62
Dal Bó (2005) 810.96 ≈ 798.82 ≫ 653.33 ≪ 690.17 ≈ 693.14 ≈ 692.19
Dal Bó and Fréchette (2011) 9041.66 > 8900.69 ≫ 7282.65 ≪ 7638.05 ≈ 7645.17 < 7825.68
Dal Bó and Fréchette (2015) 11458.55 ≫ 11208.45 ≫ 8887.67 ≪ 9301.85 ≈ 9306.74 < 9460.02
Dreber et al. (2008) 1104.74 ≈ 1080.21 ≫ 838.33 ≈ 871.6 ≈ 871.39 ≈ 879
Duffy and Ochs (2009) 1613.97 ≈ 1588.23 ≫ 1437.86 ≈ 1488.29 ≈ 1488.29 ≈ 1507.66
Fréchette and Yuksel (2017) 400.09 ≫ 363.06 > 335.07 < 349.53 ≈ 354.74 ≈ 352.99
Fudenberg et al. (2012) 442.4 ≈ 440.73 > 398.38 < 445.18 ≈ 445.18 ≈ 466.32
Kagel and Schley (2013) 3481.07 ≈ 3490.59 ≫ 2912.53 ≈ 2979.94 ≈ 2979.94 ≈ 3059.61
Sherstyuk et al. (2013) 1626.21 ≈ 1601.7 ≫ 1413 < 1483.72 ≈ 1483.75 ≈ 1503.01

Pooled 34006.81 ≫ 33277.82 ≫ 27010.74 ≪ 28272.53 ≈ 28320.03 ≪ 28752.26

(b) Second halves per session
SG+SG M2“General” SG M2“General” Semi-Grim Best Pure Pure 1+G2,T2 Pure 1

Specification
# Models evaluated 1 1 1 5 1 1
# Pars estimated (by treatment) 7 3 3 32 5 3
# Parameters accounted for 7 3 3 3-8 5 3

AF09–34 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
BOS11–9 213.11 ≫ 196.77 ≫ 92.34 ≈ 96.65 ≈ 99.64 ≈ 96.65
BOS11–14 59.94 ≫ 43.82 ≈ 35.25 < 40.83 < 43.83 ≈ 40.83
BOS11–15 334.66 > 317.8 ≫ 11.86 ≈ 15.52 ≪ 18.52 ≫ 15.52
BOS11–16 196.1 ≫ 180.84 ≈ 162.19 ≈ 166.4 ≈ 168.97 ≈ 166.4
BOS11–17 322.09 ≈ 307.49 ≫ 212.8 ≈ 224.02 ≈ 224.02 ≈ 227.57
BOS11–26 577.71 ≈ 570.16 ≫ 333.39 < 375.4 ≈ 375.72 ≈ 375.4
BOS11–27 375.08 ≈ 375.07 > 262.85 ≈ 304.34 ≈ 304.34 ≈ 308.69
BOS11–30 231.84 ≈ 228.65 ≫ 131.11 ≈ 141.22 ≈ 144.11 ≈ 141.22
BOS11–31 267.55 ≈ 265.05 > 169.45 ≈ 208.24 ≈ 208.24 ≈ 210.78
BK12–28 802.05 ≈ 798.92 ≫ 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
D05–18 390.84 ≈ 385.35 > 336.26 < 360.28 ≈ 361.7 ≈ 360.28
D05–19 519.98 ≈ 515.56 ≫ 410.17 < 430.77 ≈ 430.77 < 445.25
DF11–6 855.84 ≈ 852.06 ≫ 610.65 < 719.86 ≈ 719.86 ≈ 737.29
DF11–7 1807.16 ≈ 1803.16 ≫ 1566.15 ≪ 1683.6 ≈ 1683.6 ≈ 1710.18
DF11–8 2192.09 ≈ 2193.11 ≫ 1570.36 < 1641.29 ≈ 1641.29 < 1736.37
DF11–22 1811.46 ≈ 1810.44 ≫ 1031.86 < 1120.33 ≈ 1120.33 < 1218.47
DF11–23 1024.7 ≈ 1020.39 > 885.87 ≈ 946.29 ≈ 948.73 ≈ 1000.66
DF11–24 483.28 ≈ 479.09 ≈ 479.46 < 514.84 ≈ 514.84 ≈ 536.29
DF15–4 475.49 ≫ 438.92 > 384.53 ≈ 403.13 ≈ 405.76 ≈ 403.13
DF15–5 2818.99 ≫ 2728.87 ≫ 2172.99 < 2253.42 ≈ 2253.42 ≈ 2284.97
DF15–20 2476.53 ≈ 2470 ≫ 1393.96 < 1532.28 ≈ 1532.28 ≈ 1606.34
DF15–21 2052.8 ≈ 2046.05 ≫ 1826.53 ≪ 1939.3 ≈ 1940.01 < 1995.85
DF15–33 3515.78 ≈ 3532.97 ≫ 2550.95 ≪ 2910.55 ≈ 2911.64 < 3012.62
DF15–35 770.16 ≈ 770.91 > 669.42 ≪ 814.34 ≈ 814.34 ≈ 857.65
DRFN08–10 565.43 ≈ 561.61 ≫ 288.29 ≈ 300.31 ≈ 301.48 ≈ 300.31
DRFN08–11 432.06 ≈ 429.82 > 374.74 ≈ 391.96 ≈ 394.02 ≈ 391.96
DO09–32 1970.43 ≈ 1973.39 ≫ 1794.26 ≪ 2010.69 ≈ 2010.69 ≈ 2083.26
FY17–25 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
FRD12–29 514.64 ≈ 510.99 ≈ 485.43 ≪ 546.56 ≈ 548.09 < 591.31
KS13–12 2680.42 ≈ 2675.61 ≫ 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
STS13–13 1256.5 ≈ 1261.23 ≫ 1087.07 < 1167.39 ≈ 1167.39 < 1245.55
Aoyagi and Frechette (2009) 498.98 ≈ 498.38 ≈ 494.93 ≈ 521.74 ≈ 531.13 ≈ 537.76
Blonski et al. (2011) 2648.18 ≫ 2535.71 ≫ 1441.28 ≪ 1609.58 ≈ 1637.46 > 1613.11
Bruttel and Kamecke (2012) 802.05 ≈ 798.92 ≫ 595.23 ≈ 620.35 ≈ 620.35 ≈ 632.85
Dal Bó (2005) 915.79 ≈ 904.46 ≫ 748.55 ≪ 793.71 ≈ 796.01 ≈ 807.66
Dal Bó and Fréchette (2011) 8212.23 ≈ 8185.18 ≫ 6160.5 ≪ 6655.07 ≈ 6655.57 ≪ 6955.42
Dal Bó and Fréchette (2015) 12150.58 > 12016.88 ≫ 9015.88 ≪ 9880.99 ≈ 9886.61 ≪ 10178.06
Dreber et al. (2008) 1002.39 ≈ 994.93 ≫ 665.13 ≈ 694.37 ≈ 699.01 ≈ 694.37
Duffy and Ochs (2009) 1970.43 ≈ 1973.39 ≫ 1794.26 ≪ 2010.69 ≈ 2010.69 ≈ 2083.26
Fréchette and Yuksel (2017) 560.37 > 526.45 ≈ 481.62 ≈ 500.54 ≈ 503.62 ≈ 500.54
Fudenberg et al. (2012) 514.64 ≈ 510.99 ≈ 485.43 ≪ 546.56 ≈ 548.09 < 591.31
Kagel and Schley (2013) 2680.42 ≈ 2675.61 ≫ 2261.67 ≈ 2312.35 ≈ 2312.35 < 2399.2
Sherstyuk et al. (2013) 1256.5 ≈ 1261.23 ≫ 1087.07 < 1167.39 ≈ 1167.39 < 1245.55

Pooled 33467.87 ≫ 33064.51 ≫ 25340.99 ≪ 27480.48 ≈ 27550.66 ≪ 28348.53

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.35: 1-memory or 2-memory Semi-Grim strategies, complexity of memory, mixtures of 1-memory and 2-memory SG (no switch-
ing) (ICL-BIC of the models, less is better and relation signs point toward better
models)

SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

First halves per session
Aoyagi and Frechette (2009) 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 ≫ 848.86
Blonski et al. (2011) 1421.49 > 1397.85 > 1375.08 ≫ 1089.36 ≪ 1555.38 < 1591.37
Bruttel and Kamecke (2012) 969.35 ≈ 967.88 ≈ 966.75 ≫ 817.24 ≪ 968.22 ≈ 968.68
Dal Bó (2005) 798.82 ≈ 794.23 ≈ 791.74 ≫ 653.33 ≪ 939.56 > 849.06
Dal Bó and Fréchette (2011) 8512.04 ≈ 8495.44 ≈ 8479.3 ≫ 7282.65 ≪ 8625.51 ≈ 8659.2
Dal Bó and Fréchette (2015) 11283.53 ≈ 11282.42 ≈ 11280.81 ≫ 8887.67 ≪ 11725.16 ≈ 11671.5
Dreber et al. (2008) 1177.21 ≈ 1173.36 ≈ 1170.29 ≫ 838.33 ≪ 1199.59 ≈ 1202.45
Duffy and Ochs (2009) 1588.23 ≈ 1587.59 ≈ 1586.14 ≫ 1437.86 ≪ 1610.06 ≈ 1629.09
Fréchette and Yuksel (2017) 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
Fudenberg et al. (2012) 440.73 ≈ 442.18 ≈ 440.31 > 398.38 ≪ 452.14 ≈ 455.2
Kagel and Schley (2013) 3490.59 ≈ 3488.45 ≈ 3478.42 ≫ 2912.53 ≪ 3438.64 ≈ 3435.84
Sherstyuk et al. (2013) 1601.7 ≈ 1602.31 ≈ 1600.41 ≫ 1413 ≪ 1596.66 ≈ 1598.4

Pooled 32694.65 ≈ 32602.68 ≈ 32481.42 ≫ 27010.74 ≪ 33565.57 ≈ 33534.58

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
Blonski et al. (2011) 2277.26 > 2253.69 > 2230.87 ≫ 1441.28 ≪ 2411.7 ≈ 2458.66
Bruttel and Kamecke (2012) 1013.73 ≈ 1011.93 ≈ 1010.14 ≫ 595.23 ≪ 1038.68 ≈ 1040.33
Dal Bó (2005) 904.41 ≈ 900.53 ≈ 902.58 ≫ 748.55 ≪ 969.26 ≈ 951.14
Dal Bó and Fréchette (2011) 8322.63 ≈ 8300.39 ≈ 8283.81 ≫ 6160.5 ≪ 8428.76 ≈ 8461.64
Dal Bó and Fréchette (2015) 14925.81 ≈ 14915.3 ≈ 14901.44 ≫ 9015.88 ≪ 15226.83 ≈ 15283.12
Dreber et al. (2008) 827.1 ≈ 824.75 ≈ 820.93 ≫ 665.13 ≪ 843.61 ≈ 848.54
Duffy and Ochs (2009) 1973.39 ≈ 1971.08 ≈ 1968.89 ≫ 1794.26 ≪ 1988.35 ≈ 1988.91
Fréchette and Yuksel (2017) 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
Fudenberg et al. (2012) 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
Kagel and Schley (2013) 2675.61 ≈ 2674.59 ≈ 2673.64 ≫ 2261.67 ≪ 2637.36 ≈ 2623.98
Sherstyuk et al. (2013) 1261.23 ≈ 1260.86 ≈ 1259.78 ≫ 1087.07 < 1219.58 ≈ 1228.3

Pooled 35899.35 ≈ 35792.43 ≈ 35690.23 ≫ 25340.99 ≪ 36502.1 ≈ 36712.43

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above.
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Table A.36: Table A.35 by treatments – 1-memory or 2-memory Semi-Grim strategies, complexity of memory, mixtures of 1-memory
and 2-memory SG (no switching)

(a) First halves per session
SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

AF09–34 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 ≫ 848.86
BOS11–9 95.12 ≈ 93.62 ≈ 92.12 > 82.26 ≪ 108.85 ≈ 111.63
BOS11–14 99.31 ≈ 97.81 ≈ 96.32 ≈ 87.7 ≪ 112.69 ≈ 114.94
BOS11–15 37.29 ≈ 35.79 ≈ 34.3 ≈ 31.07 ≪ 50.93 < 53.92
BOS11–16 199.22 ≈ 197.93 ≈ 197.5 > 170.96 < 211.68 ≈ 203.65
BOS11–17 125.22 ≈ 123.72 ≈ 122.22 ≈ 119.9 ≪ 139.08 ≈ 142.08
BOS11–26 335.64 ≈ 333.79 ≈ 331.95 > 254.14 ≪ 363.18 ≈ 366.9
BOS11–27 135.45 ≈ 133.95 ≈ 132.45 > 108.51 ≪ 149.17 ≈ 152.18
BOS11–30 73.18 ≈ 71.68 ≈ 70.18 ≈ 63.02 ≪ 87.04 ≈ 90.04
BOS11–31 270.99 ≈ 269.49 ≈ 267.99 ≫ 141.75 ≪ 282.68 ≈ 285.92
BK12–28 969.35 ≈ 967.88 ≈ 966.75 ≫ 817.24 ≪ 968.22 ≈ 968.68
D05–18 256.79 ≈ 254.92 ≈ 253.12 > 224.25 ≪ 301.43 ≈ 288.42
D05–19 538.48 ≈ 536.47 ≈ 536.5 ≫ 426.95 ≪ 634.58 > 555.67
DF11–6 998.16 ≈ 996.27 ≈ 994.37 ≫ 894.35 ≪ 1027.52 ≈ 1032.2
DF11–7 1460.6 ≈ 1458.64 ≈ 1456.69 > 1369.26 ≪ 1494.99 ≈ 1499
DF11–8 1990.14 ≈ 1988.22 ≈ 1986.31 ≫ 1648.75 ≪ 2021.5 ≈ 2025.23
DF11–22 1367.84 ≈ 1365.95 ≈ 1364.06 ≫ 1042.26 ≪ 1398.28 ≈ 1401.94
DF11–23 1385.44 ≈ 1383.73 ≈ 1381.92 ≫ 1117.42 ≪ 1379.96 ≈ 1386.38
DF11–24 1282.93 ≈ 1281.09 ≈ 1279.8 > 1194.45 < 1276.35 ≈ 1276.77
DF15–4 511.86 ≈ 509.91 ≈ 507.95 ≈ 477.13 ≪ 546.28 ≈ 549.97
DF15–5 2459.45 ≈ 2458.01 ≈ 2456.99 ≫ 2194.38 ≪ 2557.48 ≈ 2547.91
DF15–20 1939.87 ≈ 1937.5 ≈ 1935.13 ≫ 1481.46 ≪ 2018.71 ≈ 2021.82
DF15–21 2351.69 ≈ 2365.28 ≈ 2379.17 ≫ 2111.65 ≪ 2462.49 ≫ 2387.65
DF15–33 3568.57 ≈ 3566.01 ≈ 3563.45 ≫ 2256.38 ≪ 3682.71 ≈ 3689.45
DF15–35 422.92 ≈ 422.38 ≈ 420.63 ≫ 349.17 ≪ 428.33 ≈ 433.87
DRFN08–10 614.11 ≈ 612.45 ≈ 610.78 ≫ 382.91 ≪ 633.52 ≈ 635.7
DRFN08–11 559.59 ≈ 558.11 ≈ 557.41 > 453.32 < 562.57 ≈ 561.85
DO09–32 1588.23 ≈ 1587.59 ≈ 1586.14 ≫ 1437.86 ≪ 1610.06 ≈ 1629.09
FY17–25 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
FRD12–29 440.73 ≈ 442.18 ≈ 440.31 > 398.38 ≪ 452.14 ≈ 455.2
KS13–12 3490.59 ≈ 3488.45 ≈ 3478.42 ≫ 2912.53 ≪ 3438.64 ≈ 3435.84
STS13–13 1601.7 ≈ 1602.31 ≈ 1600.41 ≫ 1413 ≪ 1596.66 ≈ 1598.4
Aoyagi and Frechette (2009) 865.91 ≈ 864.19 ≈ 843.09 ≈ 835.89 < 906.78 ≫ 848.86
Blonski et al. (2011) 1421.49 > 1397.85 > 1375.08 ≫ 1089.36 ≪ 1555.38 < 1591.37
Bruttel and Kamecke (2012) 969.35 ≈ 967.88 ≈ 966.75 ≫ 817.24 ≪ 968.22 ≈ 968.68
Dal Bó (2005) 798.82 ≈ 794.23 ≈ 791.74 ≫ 653.33 ≪ 939.56 > 849.06
Dal Bó and Fréchette (2011) 8512.04 ≈ 8495.44 ≈ 8479.3 ≫ 7282.65 ≪ 8625.51 ≈ 8659.2
Dal Bó and Fréchette (2015) 11283.53 ≈ 11282.42 ≈ 11280.81 ≫ 8887.67 ≪ 11725.16 ≈ 11671.5
Dreber et al. (2008) 1177.21 ≈ 1173.36 ≈ 1170.29 ≫ 838.33 ≪ 1199.59 ≈ 1202.45
Duffy and Ochs (2009) 1588.23 ≈ 1587.59 ≈ 1586.14 ≫ 1437.86 ≪ 1610.06 ≈ 1629.09
Fréchette and Yuksel (2017) 362.68 ≈ 360.88 ≈ 359.65 ≈ 335.07 < 365.5 ≈ 369.6
Fudenberg et al. (2012) 440.73 ≈ 442.18 ≈ 440.31 > 398.38 ≪ 452.14 ≈ 455.2
Kagel and Schley (2013) 3490.59 ≈ 3488.45 ≈ 3478.42 ≫ 2912.53 ≪ 3438.64 ≈ 3435.84
Sherstyuk et al. (2013) 1601.7 ≈ 1602.31 ≈ 1600.41 ≫ 1413 ≪ 1596.66 ≈ 1598.4

Pooled 32694.65 ≈ 32602.68 ≈ 32481.42 ≫ 27010.74 ≪ 33565.57 ≈ 33534.58

(b) Second halves per session
SG M2“General” SG M2“Semi-Grim” SG M2“Grim” Semi-Grim SG M1 + M2“Grim” SG M1 + M2“General”

Specification
# Models evaluated 1 1 1 1 1 1
# Pars estimated (by treatment) 5 4 3 3 5 7
# Parameters accounted for 5 4 3 3 5 7

AF09–34 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
BOS11–9 132.55 ≈ 131.06 ≈ 129.56 > 92.34 ≪ 144.91 ≈ 147.93
BOS11–14 43.82 ≈ 42.32 ≈ 40.82 ≈ 35.25 ≪ 57.68 < 60.61
BOS11–15 14.95 > 13.45 > 11.95 ≈ 11.86 ≪ 28.81 < 31.81
BOS11–16 180.41 ≈ 179.18 ≈ 178.71 ≈ 162.19 < 193.95 ≈ 196.03
BOS11–17 366.29 ≈ 364.79 ≈ 363.3 ≫ 212.8 ≪ 380.12 ≈ 383.08
BOS11–26 521.64 ≈ 519.8 ≈ 517.95 ≫ 333.39 ≪ 549.32 ≈ 552.16
BOS11–27 390.6 ≈ 389.1 ≈ 387.61 > 262.85 < 403.67 ≈ 407.41
BOS11–30 178.29 ≈ 176.8 ≈ 175.3 > 131.11 < 192.09 ≈ 194.6
BOS11–31 398.63 ≈ 397.13 ≈ 395.63 ≫ 169.45 ≪ 411.07 ≈ 414.92
BK12–28 1013.73 ≈ 1011.93 ≈ 1010.14 ≫ 595.23 ≪ 1038.68 ≈ 1040.33
D05–18 385.3 ≈ 383.77 ≈ 382.42 > 336.26 ≪ 409.23 ≈ 410.57
D05–19 515.56 ≈ 513.92 ≈ 518.04 ≫ 410.17 ≪ 556.49 > 535.61
DF11–6 852.06 ≈ 850.17 ≈ 848.28 ≫ 610.65 ≪ 882.56 ≈ 886.33
DF11–7 1803.16 ≈ 1801.21 ≈ 1799.25 ≫ 1566.15 ≪ 1837.54 ≈ 1841.44
DF11–8 2239.88 ≈ 2237.97 ≈ 2236.05 ≫ 1570.36 ≪ 2271.07 ≈ 2274.87
DF11–22 1895.06 ≈ 1893.17 ≈ 1891.28 ≫ 1031.86 ≪ 1924.73 ≈ 1927.87
DF11–23 1026.45 ≈ 1018.73 ≈ 1017.07 > 885.87 < 998.41 ≈ 999.98
DF11–24 479.09 ≈ 477.61 ≈ 475.73 ≈ 479.46 ≈ 487.52 ≈ 493.46
DF15–4 438.92 ≈ 436.97 ≈ 435.01 > 384.53 ≪ 473.58 ≈ 477.38
DF15–5 2723.35 ≈ 2723.7 ≈ 2723.94 ≫ 2172.99 ≪ 2795.2 ≈ 2819.55
DF15–20 2389.9 ≈ 2387.53 ≈ 2385.16 ≫ 1393.96 ≪ 2468.89 ≈ 2473.66
DF15–21 2046.05 ≈ 2044.63 ≈ 2042.29 ≫ 1826.53 ≪ 2052.9 ≈ 2051.25
DF15–33 6527.52 ≈ 6524.96 ≈ 6522.39 ≫ 2550.95 ≪ 6637.01 ≈ 6648.75
DF15–35 770.91 ≈ 774.19 ≈ 775.14 ≫ 669.42 < 770.1 ≈ 771.71
DRFN08–10 393.77 ≈ 392.11 ≈ 390.44 ≫ 288.29 ≪ 411.68 ≈ 415.01
DRFN08–11 429.82 ≈ 429.84 ≈ 428.39 > 374.74 ≈ 428.43 ≈ 428.63
DO09–32 1973.39 ≈ 1971.08 ≈ 1968.89 ≫ 1794.26 ≪ 1988.35 ≈ 1988.91
FY17–25 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
FRD12–29 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
KS13–12 2675.61 ≈ 2674.59 ≈ 2673.64 ≫ 2261.67 ≪ 2637.36 ≈ 2623.98
STS13–13 1261.23 ≈ 1260.86 ≈ 1259.78 ≫ 1087.07 < 1219.58 ≈ 1228.3
Aoyagi and Frechette (2009) 498.38 ≈ 496.59 ≈ 495.48 ≈ 494.93 ≈ 501.5 ≈ 503.4
Blonski et al. (2011) 2277.26 > 2253.69 > 2230.87 ≫ 1441.28 ≪ 2411.7 ≈ 2458.66
Bruttel and Kamecke (2012) 1013.73 ≈ 1011.93 ≈ 1010.14 ≫ 595.23 ≪ 1038.68 ≈ 1040.33
Dal Bó (2005) 904.41 ≈ 900.53 ≈ 902.58 ≫ 748.55 ≪ 969.26 ≈ 951.14
Dal Bó and Fréchette (2011) 8322.63 ≈ 8300.39 ≈ 8283.81 ≫ 6160.5 ≪ 8428.76 ≈ 8461.64
Dal Bó and Fréchette (2015) 14925.81 ≈ 14915.3 ≈ 14901.44 ≫ 9015.88 ≪ 15226.83 ≈ 15283.12
Dreber et al. (2008) 827.1 ≈ 824.75 ≈ 820.93 ≫ 665.13 ≪ 843.61 ≈ 848.54
Duffy and Ochs (2009) 1973.39 ≈ 1971.08 ≈ 1968.89 ≫ 1794.26 ≪ 1988.35 ≈ 1988.91
Fréchette and Yuksel (2017) 526.45 ≈ 527.58 ≈ 525.79 ≈ 481.62 < 546.95 < 559.74
Fudenberg et al. (2012) 510.99 ≈ 509.24 ≈ 507.45 ≈ 485.43 ≈ 507.15 ≈ 509.35
Kagel and Schley (2013) 2675.61 ≈ 2674.59 ≈ 2673.64 ≫ 2261.67 ≪ 2637.36 ≈ 2623.98
Sherstyuk et al. (2013) 1261.23 ≈ 1260.86 ≈ 1259.78 ≫ 1087.07 < 1219.58 ≈ 1228.3

Pooled 35899.35 ≈ 35792.43 ≈ 35690.23 ≫ 25340.99 ≪ 36502.1 ≈ 36712.43

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.37: Mixtures of 1- and 2-memory pure and generalized strategies (no switching)
(ICL-BIC of the models, less is better and relation signs point toward better models)

Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

First halves per session
Aoyagi and Frechette (2009) 764.25 ≈ 757.68 ≪ 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
Blonski et al. (2011) 1167.82 ≈ 1208.25 > 1105.96 ≈ 1105.89 ≪ 1169.27 < 1195.88
Bruttel and Kamecke (2012) 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
Dal Bó (2005) 667.03 ≈ 655.4 ≈ 653.05 ≈ 653.05 ≈ 667.82 ≈ 672.66
Dal Bó and Fréchette (2011) 7378.08 ≈ 7433.78 ≈ 7391.89 ≈ 7453.78 ≈ 7410.56 ≈ 7426.49
Dal Bó and Fréchette (2015) 8826.62 ≈ 8852.04 ≈ 8893.78 ≈ 8946.72 ≈ 8929.45 ≈ 8959.61
Dreber et al. (2008) 888.62 ≈ 876.1 ≈ 863.47 ≈ 863.47 ≈ 875.14 ≈ 879.91
Duffy and Ochs (2009) 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
Fréchette and Yuksel (2017) 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
Fudenberg et al. (2012) 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
Kagel and Schley (2013) 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
Sherstyuk et al. (2013) 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5

Pooled 27115.51 ≈ 27128.29 ≈ 27115.38 ≈ 27263.8 ≈ 27362.62 ≈ 27509.48

Second halves per session
Aoyagi and Frechette (2009) 417.68 ≈ 416.51 ≪ 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
Blonski et al. (2011) 1601.27 ≈ 1588.79 ≈ 1564.48 ≈ 1567.21 ≈ 1614.81 ≈ 1640.42
Bruttel and Kamecke (2012) 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
Dal Bó (2005) 739.07 < 756.94 ≈ 741.2 ≈ 741.2 ≈ 756.26 ≈ 761.39
Dal Bó and Fréchette (2011) 5926.01 < 6059.85 ≈ 5960.78 ≪ 6189.93 > 5983.61 ≈ 5994.24
Dal Bó and Fréchette (2015) 8955.93 < 9139.62 ≈ 9143.98 < 9333.86 > 9170.84 ≈ 9204.77
Dreber et al. (2008) 645.2 ≈ 656.58 ≈ 648.55 ≈ 648.55 < 660.03 ≈ 663.65
Duffy and Ochs (2009) 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
Fréchette and Yuksel (2017) 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
Fudenberg et al. (2012) 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
Kagel and Schley (2013) 1806.93 ≪ 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
Sherstyuk et al. (2013) 1029.88 < 1249.12 ≫ 1023.43 < 1109.62 > 1025.44 ≈ 1027.45

Pooled 24837.07 ≪ 25470.38 ≈ 25177.57 ≪ 25815.79 ≫ 25392.89 ≈ 25519.27

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. Pure M1 refers to TFT, Grim, and AD. G2
denotes Grim2. For definitions of pure strategies see Table A.7. Gen M1 refers to generalized versions of TFT, Grim, and AD with memory-1. “+
G2, TFT2, T2” adds those strategies to the set of “Pure M1”. “+2TFT” adds this strategy on top of the former.
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Table A.38: Table A.37 by treatments – Mixtures of 1- and 2-memory pure and generalized strategies (no switching)

(a) First halves per session

Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

AF09–34 764.25 ≈ 757.68 ≪ 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
BOS11–9 86.93 ≈ 89.7 ≈ 85.2 ≈ 85.2 ≈ 89.33 ≈ 90.83
BOS11–14 103.76 ≈ 102.27 ≈ 97.73 ≈ 97.73 ≈ 102.22 ≈ 103.88
BOS11–15 41.19 ≈ 38.79 > 34.3 ≈ 34.3 ≪ 38.79 ≈ 40.29
BOS11–16 173.13 ≈ 169.08 ≈ 174.24 ≈ 174.24 ≈ 178.7 ≈ 180.69
BOS11–17 119.24 ≈ 115.07 ≈ 110.57 ≈ 110.57 ≈ 115.16 ≈ 116.89
BOS11–26 259.69 ≈ 262.42 ≈ 256.88 ≈ 256.88 ≈ 259.48 ≈ 261.42
BOS11–27 102.01 ≈ 107.7 ≈ 100.97 ≈ 103.2 ≈ 102.47 ≈ 103.97
BOS11–30 65.81 ≫ 60.42 > 56.77 ≈ 56.77 < 61.29 ≈ 64.59
BOS11–31 125.92 ≪ 202.72 ≈ 156.95 ≈ 156.95 ≈ 161.73 ≈ 163.21
BK12–28 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
D05–18 246.67 ≈ 241.44 ≈ 235.84 ≈ 235.84 ≈ 242.03 ≈ 243.88
D05–19 413.98 ≈ 409.7 ≈ 415.08 ≈ 415.08 ≈ 421.53 ≈ 423.82
DF11–6 883.72 ≈ 881.9 ≈ 877.78 ≈ 885.43 ≈ 879.67 ≈ 881.56
DF11–7 1436.53 ≈ 1432.97 ≈ 1424.78 ≈ 1424.78 ≈ 1430.65 ≈ 1432.61
DF11–8 1503.83 ≈ 1543.89 ≈ 1501.88 ≈ 1538.15 ≈ 1502.59 ≈ 1504.5
DF11–22 1178.2 ≈ 1185.37 ≈ 1188.65 ≈ 1189.26 ≈ 1190.54 ≈ 1191.58
DF11–23 1137.85 ≈ 1155.41 ≈ 1148.16 ≈ 1166.13 ≈ 1150.31 ≈ 1152.13
DF11–24 1189.48 ≈ 1201.92 ≈ 1224.49 ≈ 1233.88 ≈ 1224.49 ≈ 1226.42
DF15–4 468.06 ≈ 462.19 ≈ 456.32 ≈ 456.32 ≈ 462.19 ≈ 464.14
DF15–5 1756.46 ≈ 1762.23 ≈ 1817.09 ≈ 1818.32 ≈ 1819.54 ≈ 1821.88
DF15–20 1586.29 ≈ 1594.81 ≈ 1585.91 ≈ 1592.93 ≈ 1588.28 ≈ 1594.48
DF15–21 2002.93 ≈ 2003.37 ≈ 2022.58 ≈ 2069.89 ≈ 2025.12 ≈ 2029.73
DF15–33 2558.85 ≈ 2563.96 ≈ 2575.64 ≈ 2575.64 ≈ 2585.4 ≈ 2592.83
DF15–35 401.54 ≈ 430.5 ≈ 411.07 ≈ 416.14 ≈ 413.93 ≈ 415.7
DRFN08–10 424.56 ≈ 416.07 ≈ 410.24 ≈ 410.24 ≈ 415.24 ≈ 416.93
DRFN08–11 457.75 ≈ 455.83 ≈ 451.13 ≈ 451.13 ≈ 455.7 ≈ 458.08
DO09–32 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
FY17–25 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
FRD12–29 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
KS13–12 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
STS13–13 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5
Aoyagi and Frechette (2009) 764.25 ≈ 757.68 ≪ 884.86 ≈ 892.99 ≈ 890.72 ≈ 892.49
Blonski et al. (2011) 1167.82 ≈ 1208.25 > 1105.96 ≈ 1105.89 ≪ 1169.27 < 1195.88
Bruttel and Kamecke (2012) 827.89 ≈ 853.09 ≈ 839.97 ≈ 851.01 ≈ 841.77 ≈ 843.55
Dal Bó (2005) 667.03 ≈ 655.4 ≈ 653.05 ≈ 653.05 ≈ 667.82 ≈ 672.66
Dal Bó and Fréchette (2011) 7378.08 ≈ 7433.78 ≈ 7391.89 ≈ 7453.78 ≈ 7410.56 ≈ 7426.49
Dal Bó and Fréchette (2015) 8826.62 ≈ 8852.04 ≈ 8893.78 ≈ 8946.72 ≈ 8929.45 ≈ 8959.61
Dreber et al. (2008) 888.62 ≈ 876.1 ≈ 863.47 ≈ 863.47 ≈ 875.14 ≈ 879.91
Duffy and Ochs (2009) 1414.26 ≈ 1407.43 ≈ 1426.34 ≈ 1446.74 ≈ 1429.36 ≈ 1440.65
Fréchette and Yuksel (2017) 322.84 ≈ 324.71 ≈ 317.35 ≈ 317.35 < 330.66 ≈ 334.41
Fudenberg et al. (2012) 433.05 ≈ 432.32 ≈ 463.4 ≈ 469.22 ≈ 465.31 ≈ 467.27
Kagel and Schley (2013) 2710.64 ≈ 2739.15 ≈ 2730.66 ≈ 2737.32 ≈ 2733.03 ≈ 2737.72
Sherstyuk et al. (2013) 1386.14 ≈ 1369.48 ≈ 1398.69 ≈ 1416.84 ≈ 1400.69 ≈ 1403.5

Pooled 27115.51 ≈ 27128.29 ≈ 27115.38 ≈ 27263.8 ≈ 27362.62 ≈ 27509.48

(b) Second halves per session
Gen M2 Gen M1 Best Pure M2 Pure M1 + G2, TFT2, T2 + 2TFT

Specification
# Models evaluated 1 1 5 1 1 1
# Pars estimated (by treatment) 9 6 32 3 6 7
# Parameters accounted for 9 6 3–8 3 6 7

AF09–34 417.68 ≈ 416.51 ≪ 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
BOS11–9 96.6 ≈ 92.33 > 84.22 ≈ 84.22 < 88.72 ≈ 90.22
BOS11–14 49.8 > 45.31 ≈ 40.82 ≈ 40.82 ≪ 45.31 ≈ 46.81
BOS11–15 24.51 ≈ 20.01 ≈ 15.52 ≈ 15.52 ≈ 20.01 ≈ 21.51
BOS11–16 173.27 ≈ 162.81 ≈ 157.48 ≈ 157.48 ≈ 161.97 ≈ 163.73
BOS11–17 240.94 ≈ 234.24 ≈ 228.36 ≈ 229.75 ≈ 229.86 ≈ 231.36
BOS11–26 374.59 ≈ 375.35 ≈ 374.79 ≈ 375.99 ≈ 376.63 ≈ 379.73
BOS11–27 243.46 ≈ 290.73 ≈ 281.24 ≈ 286.24 ≈ 282.74 ≈ 284.24
BOS11–30 147.13 ≈ 148.34 ≈ 146.49 ≈ 146.49 ≈ 150.98 ≈ 152.47
BOS11–31 160.84 ≈ 159.57 ≈ 196.99 ≈ 200.65 ≈ 198.49 ≈ 200.23
BK12–28 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
D05–18 346.26 ≈ 356.38 ≈ 350.59 ≈ 350.59 ≈ 354.41 ≈ 356.81
D05–19 386.44 ≈ 396.31 ≈ 388.48 ≈ 388.48 ≈ 397.6 ≈ 399.62
DF11–6 755.12 ≈ 752.32 ≈ 747.77 ≈ 747.77 ≈ 753.45 ≈ 755.34
DF11–7 1571.64 ≈ 1591.36 ≈ 1566.58 ≈ 1585.49 ≈ 1568.54 ≈ 1570.53
DF11–8 1140.35 < 1223.57 ≈ 1153.72 < 1217.82 ≈ 1155.64 ≈ 1157.54
DF11–22 1171.84 ≈ 1224.33 ≈ 1152.14 ≈ 1218.65 ≈ 1154.03 ≈ 1153.84
DF11–23 776.24 ≈ 785.37 ≈ 782.51 ≈ 863.26 > 786.34 ≈ 782.51
DF11–24 462.37 ≈ 450.61 < 530.97 ≈ 540.78 ≈ 533.31 ≈ 536.77
DF15–4 352.57 ≈ 347.64 ≈ 342.05 ≈ 342.05 ≈ 346.85 ≈ 348.81
DF15–5 1688.11 ≈ 1688.45 ≈ 1712.9 ≈ 1722.43 ≈ 1715.36 ≈ 1723.94
DF15–20 1563.94 ≈ 1628.58 ≈ 1582.66 ≈ 1622.15 ≈ 1585.03 ≈ 1587.38
DF15–21 1684.16 ≈ 1692.13 ≈ 1754.9 ≈ 1796.63 ≈ 1761.1 ≈ 1769.78
DF15–33 2856.1 < 2973.69 ≈ 2935.81 ≈ 2990.83 ≈ 2936.64 ≈ 2941.36
DF15–35 758.55 ≈ 774.14 ≈ 789.09 ≈ 842.27 > 790.87 ≈ 792.66
DRFN08–10 302.05 ≈ 303.34 ≈ 301.08 ≈ 301.08 ≈ 306.08 ≈ 307.74
DRFN08–11 336.84 ≈ 349.04 ≈ 345.37 ≈ 345.37 ≈ 349.75 ≈ 351
DO09–32 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
FY17–25 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
FRD12–29 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
KS13–12 1806.93 ≪ 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
STS13–13 1029.88 < 1249.12 ≫ 1023.43 < 1109.62 > 1025.44 ≈ 1027.45
Aoyagi and Frechette (2009) 417.68 ≈ 416.51 ≪ 540.47 ≈ 543.34 ≈ 546.38 ≈ 544.96
Blonski et al. (2011) 1601.27 ≈ 1588.79 ≈ 1564.48 ≈ 1567.21 ≈ 1614.81 ≈ 1640.42
Bruttel and Kamecke (2012) 575.98 ≈ 592.59 ≈ 567.99 ≈ 587.38 ≈ 569.78 ≈ 571.6
Dal Bó (2005) 739.07 < 756.94 ≈ 741.2 ≈ 741.2 ≈ 756.26 ≈ 761.39
Dal Bó and Fréchette (2011) 5926.01 < 6059.85 ≈ 5960.78 ≪ 6189.93 > 5983.61 ≈ 5994.24
Dal Bó and Fréchette (2015) 8955.93 < 9139.62 ≈ 9143.98 < 9333.86 > 9170.84 ≈ 9204.77
Dreber et al. (2008) 645.2 ≈ 656.58 ≈ 648.55 ≈ 648.55 < 660.03 ≈ 663.65
Duffy and Ochs (2009) 1888.67 ≈ 1914.18 ≈ 2003.41 ≈ 2034.56 ≈ 2005.7 ≈ 2009.16
Fréchette and Yuksel (2017) 444.26 ≈ 438.55 < 464.23 ≈ 464.23 ≈ 472.21 ≈ 474.13
Fudenberg et al. (2012) 477.91 ≈ 514.87 ≈ 534.47 ≈ 562.1 ≈ 536.37 ≈ 537.09
Kagel and Schley (2013) 1806.93 ≪ 1923.93 > 1830.26 < 1924.38 > 1832.61 ≈ 1835.1
Sherstyuk et al. (2013) 1029.88 < 1249.12 ≫ 1023.43 < 1109.62 > 1025.44 ≈ 1027.45

Pooled 24837.07 ≪ 25470.38 ≈ 25177.57 ≪ 25815.79 ≫ 25392.89 ≈ 25519.27

Note: Notation of treatments and meaning of relation signs are all as defined above, see Table A.9.
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Table A.39: Comparison of 1- and 2-memory Semi-Grim with two and three parameters, pure and generalized strategies (no switching,
Grim scheme) (ICL-BIC of the models, less is better and relation signs point toward better models)

SGs M2“General” SGs M2 “Grim” Semi-Grim Gen M2“Grim” Gen M1 Best Pure M2

Specification
# Models evaluated 1 1 1 1 1 5
# Pars estimated (by treatment) 5 3 3 9 6 32
# Parameters accounted for 5 3 3 9 6 3–8

First halves per session
Aoyagi and Frechette (2009) 865.91 > 843.09 ≈ 835.89 > 764.25 ≈ 757.68 ≪ 884.86
Blonski et al. (2011) 1421.49 ≫ 1375.08 ≫ 1089.36 < 1167.82 ≈ 1208.25 > 1105.96
Bruttel and Kamecke (2012) 969.35 ≈ 966.75 ≫ 817.24 ≈ 827.89 ≈ 853.09 ≈ 839.97
Dal Bó (2005) 798.82 ≈ 791.74 ≫ 653.33 ≈ 667.03 ≈ 655.4 ≈ 653.05
Dal Bó and Fréchette (2011) 8512.04 ≈ 8479.3 ≫ 7282.65 ≈ 7378.08 ≈ 7433.78 ≈ 7391.89
Dal Bó and Fréchette (2015) 11283.53 ≈ 11280.81 ≫ 8887.67 ≈ 8826.62 ≈ 8852.04 ≈ 8893.78
Dreber et al. (2008) 1177.21 ≈ 1170.29 ≫ 838.33 ≈ 888.62 ≈ 876.1 ≈ 863.47
Duffy and Ochs (2009) 1588.23 ≈ 1586.14 ≫ 1437.86 ≈ 1414.26 ≈ 1407.43 ≈ 1426.34
Fréchette and Yuksel (2017) 362.68 ≈ 359.65 ≈ 335.07 ≈ 322.84 ≈ 324.71 ≈ 317.35
Fudenberg et al. (2012) 440.73 ≈ 440.31 > 398.38 ≈ 433.05 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 3490.59 ≈ 3478.42 ≫ 2912.53 > 2710.64 ≈ 2739.15 ≈ 2730.66
Sherstyuk et al. (2013) 1601.7 ≈ 1600.41 ≫ 1413 ≈ 1386.14 ≈ 1369.48 ≈ 1398.69

Pooled 32694.65 > 32481.42 ≫ 27010.74 ≈ 27115.51 ≈ 27128.29 ≈ 27115.38

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 495.48 ≈ 494.93 > 417.68 ≈ 416.51 ≪ 540.47
Blonski et al. (2011) 2277.26 ≫ 2230.87 ≫ 1441.28 < 1601.27 ≈ 1588.79 ≈ 1564.48
Bruttel and Kamecke (2012) 1013.73 ≈ 1010.14 ≫ 595.23 ≈ 575.98 ≈ 592.59 ≈ 567.99
Dal Bó (2005) 904.41 ≈ 902.58 ≫ 748.55 ≈ 739.07 < 756.94 ≈ 741.2
Dal Bó and Fréchette (2011) 8322.63 ≈ 8283.81 ≫ 6160.5 ≈ 5926.01 < 6059.85 ≈ 5960.78
Dal Bó and Fréchette (2015) 14925.81 ≈ 14901.44 ≫ 9015.88 ≈ 8955.93 < 9139.62 ≈ 9143.98
Dreber et al. (2008) 827.1 ≈ 820.93 ≫ 665.13 ≈ 645.2 ≈ 656.58 ≈ 648.55
Duffy and Ochs (2009) 1973.39 ≈ 1968.89 ≫ 1794.26 ≈ 1888.67 ≈ 1914.18 ≈ 2003.41
Fréchette and Yuksel (2017) 526.45 ≈ 525.79 ≈ 481.62 ≈ 444.26 ≈ 438.55 < 464.23
Fudenberg et al. (2012) 510.99 ≈ 507.45 ≈ 485.43 ≈ 477.91 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 2675.61 ≈ 2673.64 ≫ 2261.67 ≫ 1806.93 ≪ 1923.93 > 1830.26
Sherstyuk et al. (2013) 1261.23 ≈ 1259.78 ≫ 1087.07 ≈ 1029.88 < 1249.12 ≫ 1023.43

Pooled 35899.35 > 35690.23 ≫ 25340.99 ≈ 24837.07 ≪ 25470.38 ≈ 25177.57

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. Pure M1 refers to TFT, Grim, and AD. For
definitions of pure strategies see Table A.7. Gen M1 refers to generalized versions of TFT, Grim, and AD with memory-1. SGs refers to a two
parameter version of SG (1−θ1,θ2,θ2,θ1). “Gen M2” refers to memory-2 versions of the generalized strategies that allow parameters to depend
on the prevalence of joint cooperation in t −2 (Grim Scheme).
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Table A.40: Comparison of 1- and 2-memory Semi-Grim, pure and generalized strategies (no switching, TFT scheme)
(ICL-BIC of the models, less is better and relation signs point toward better models)

SGs M2“General” SGs M2 “TFT” Semi-Grim Gen M2“TFT” Gen M1 Best Pure M2

Specification
# Models evaluated 1 1 1 1 1 5
# Pars estimated (by treatment) 5 3 3 9 6 32
# Parameters accounted for 5 3 3 9 6 3–8

First halves per session
Aoyagi and Frechette (2009) 846.43 ≈ 842.85 ≈ 835.89 > 761.5 ≈ 757.68 ≪ 884.86
Blonski et al. (2011) 1806.09 > 1764.42 ≫ 1089.36 < 1166.9 ≈ 1208.25 > 1105.98
Bruttel and Kamecke (2012) 969.46 ≈ 966.85 ≫ 817.24 ≈ 830.04 ≈ 853.09 ≈ 839.97
Dal Bó (2005) 798.82 ≈ 792.19 ≫ 653.33 ≈ 670.93 ≈ 655.4 ≈ 653.05
Dal Bó and Fréchette (2011) 8766.46 ≈ 8857.14 ≫ 7282.65 ≈ 7356.81 ≈ 7433.78 ≈ 7391.89
Dal Bó and Fréchette (2015) 11201.12 ≈ 11195.82 ≫ 8887.67 ≈ 8772.73 ≈ 8852.04 ≈ 8893.78
Dreber et al. (2008) 1080.21 ≈ 1074.01 ≫ 838.33 ≈ 885.14 ≈ 876.1 ≈ 863.47
Duffy and Ochs (2009) 1588.23 ≈ 1589.78 ≫ 1437.86 ≈ 1408.4 ≈ 1407.43 ≈ 1426.34
Fréchette and Yuksel (2017) 362.68 ≈ 359.82 ≈ 335.07 ≈ 317.71 ≈ 324.71 ≈ 317.35
Fudenberg et al. (2012) 440.73 ≈ 438.77 > 398.38 ≈ 434.18 ≈ 432.32 ≈ 463.4
Kagel and Schley (2013) 3482.28 ≈ 3478.98 ≫ 2912.53 > 2679.23 ≈ 2739.15 ≈ 2730.66
Sherstyuk et al. (2013) 1601.7 ≈ 1599.88 ≫ 1413 ≈ 1361.19 ≈ 1369.48 ≈ 1398.69

Pooled 33126.57 ≈ 33069.94 ≫ 27010.74 ≈ 26973 ≈ 27128.29 ≈ 27115.39

Second halves per session
Aoyagi and Frechette (2009) 498.38 ≈ 496.8 ≈ 494.93 > 420.25 ≈ 416.51 ≪ 540.47
Blonski et al. (2011) 2534.05 ≈ 2515.52 ≫ 1441.28 < 1585.85 ≈ 1588.79 ≈ 1564.48
Bruttel and Kamecke (2012) 798.72 ≈ 802.37 ≫ 595.23 ≈ 565.54 ≈ 592.59 ≈ 567.99
Dal Bó (2005) 904.46 ≈ 903.44 ≫ 748.55 ≈ 736.51 < 756.94 ≈ 741.2
Dal Bó and Fréchette (2011) 8180.26 ≈ 8163 ≫ 6160.5 ≈ 5907.5 < 6059.85 ≈ 5960.78
Dal Bó and Fréchette (2015) 12011.36 ≈ 12036.08 ≫ 9015.88 ≈ 8931.28 < 9139.62 ≈ 9143.98
Dreber et al. (2008) 994.91 ≈ 990.52 ≫ 665.13 ≈ 640.2 ≈ 656.58 ≈ 648.55
Duffy and Ochs (2009) 1973.39 ≈ 1969 ≫ 1794.26 ≈ 1866.23 ≈ 1914.18 ≈ 2003.41
Fréchette and Yuksel (2017) 526.45 ≈ 524.04 ≈ 481.62 ≈ 442.91 ≈ 438.55 < 464.23
Fudenberg et al. (2012) 510.99 ≈ 508.14 ≈ 485.43 ≈ 503.36 ≈ 514.87 ≈ 534.47
Kagel and Schley (2013) 2675.61 ≈ 2675.31 ≫ 2261.67 ≫ 1786.55 ≪ 1923.93 > 1830.26
Sherstyuk et al. (2013) 1261.23 ≈ 1260.14 ≫ 1087.07 ≈ 1015.79 ≪ 1249.12 ≫ 1023.43

Pooled 33052.2 ≈ 32953.79 ≫ 25340.99 > 24730.23 ≪ 25470.38 ≈ 25177.57

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. Pure M1 refers to TFT, Grim, and AD. For
definitions of pure strategies see Table A.7. “Gen M1” refers to generalized versions of TFT, Grim, and AD with memory-1. SGs refers to a two
parameter version of SG (1−θ1,θ2,θ2,θ1). “Gen M2” refers to memory-2 versions of the generalized strategies that allow parameters to depend
on opponent’s behavior in t −2 (TFT Scheme).
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Table A.41: Examining all mixtures of Semi-Grim with pure or generalized pure strategies as secondary components

Component 1 First component is always Semi-Grim
Component 2 Gen WSLS Gen TFT Gen Grim Gen AD/AC AD Grim TFT WSLS

Specification
# Models evaluated 1 1 1 1 1 1 1 1
# Pars estimated (by treatment) 5 5 5 5 4 4 4 4
# Parameters accounted for 5 5 5 5 4 4 4 4

First halves per session
Aoyagi and Frechette (2009) 833.07 ≈ 827.61 > 781.52 ≈ 781.72 ≈ 781.86 ≈ 836.15 ≈ 839.39 ≈ 838.34
Blonski et al. (2011) 1104.67 ≪ 1205.21 ≫ 1078.98 ≈ 1077.49 ≈ 1069.28 ≈ 1078.78 ≈ 1084.91 ≈ 1116.68
Bruttel and Kamecke (2012) 788.3 ≈ 774.29 ≈ 781.67 ≈ 801.91 ≈ 800.12 ≈ 785.63 ≈ 791.16 ≈ 805.34
Dal Bó (2005) 626.71 ≈ 615.03 ≈ 618.81 ≈ 633.79 ≈ 629.17 ≈ 622.09 ≈ 620.42 ≪ 665.94
Dal Bó and Fréchette (2011) 6792.73 ≈ 6741.75 ≈ 6717.88 ≈ 6613.74 ≈ 6597.93 < 6776.33 ≈ 6768.78 ≪ 7019.27
Dal Bó and Fréchette (2015) 8296.9 > 8219.32 ≈ 8146.3 ≈ 8032.68 ≈ 8017.59 ≪ 8282.13 ≈ 8244.33 ≪ 8578.97
Dreber et al. (2008) 783.18 ≈ 778.8 ≈ 780.25 ≈ 786.29 ≈ 782.37 ≈ 779.27 ≈ 801.73 ≈ 840.26
Duffy and Ochs (2009) 1400.27 ≈ 1392.67 ≈ 1378.77 ≈ 1375.28 ≈ 1372.97 ≈ 1398.16 ≈ 1427.86 ≈ 1368.08
Fréchette and Yuksel (2017) 296.99 ≈ 288.62 ≈ 291.8 ≈ 301.54 ≈ 299.62 ≈ 295.03 ≈ 301.61 < 341.67
Fudenberg et al. (2012) 407.24 ≈ 393.68 ≈ 396.2 ≈ 382.94 ≈ 381.01 ≈ 408.96 ≈ 391.66 ≈ 403.85
Kagel and Schley (2013) 2707.66 > 2615.48 ≈ 2659.78 ≈ 2564.13 ≈ 2561.76 < 2705.29 ≈ 2737.96 < 2909.82
Sherstyuk et al. (2013) 1344.97 ≈ 1288.49 ≈ 1290.74 ≈ 1305.81 ≈ 1303.8 ≈ 1342.96 ≈ 1322.1 < 1417.88

Pooled 25601.53 > 25359.79 > 25141.55 ≈ 24876.16 ≈ 24779.85 ≪ 25493.16 ≈ 25514.29 ≪ 26488.47

Second halves per session
Aoyagi and Frechette (2009) 479.98 > 446.87 > 418.99 ≈ 425.42 ≈ 423.68 ≈ 479.95 ≈ 455.1 ≈ 485.31
Blonski et al. (2011) 1439.96 > 1403.78 ≈ 1398.73 ≈ 1366.99 ≈ 1346.79 ≈ 1416.3 ≈ 1397.1 ≈ 1449.29
Bruttel and Kamecke (2012) 515.73 ≈ 492.41 ≈ 512.72 ≈ 538.57 ≈ 536.77 ≈ 513.93 ≈ 503.46 ≪ 590.69
Dal Bó (2005) 693.22 > 673 ≈ 697.25 ≈ 710.27 ≈ 699.05 ≈ 688.6 ≈ 707.82 < 761.12
Dal Bó and Fréchette (2011) 5253.2 ≈ 5114.49 ≈ 5119.08 < 5500.38 > 5128.69 ≈ 5239.33 ≈ 5098.31 ≪ 5730.27
Dal Bó and Fréchette (2015) 7980.76 ≫ 7744.75 ≈ 7753.44 ≈ 7873.59 ≈ 7825.98 ≈ 8016.72 ≈ 7886.32 ≪ 8545.26
Dreber et al. (2008) 568.76 ≈ 551.89 ≈ 565.89 ≈ 593.75 ≈ 589.84 ≈ 564.85 ≈ 573.93 < 672.96
Duffy and Ochs (2009) 1647.29 ≈ 1715.88 ≈ 1710.22 ≈ 1661.28 ≈ 1761.6 ≈ 1747.49 ≈ 1755.26 ≈ 1795.33
Fréchette and Yuksel (2017) 464.38 ≈ 437.79 ≈ 431.82 ≈ 425.29 ≈ 423.34 ≈ 462.62 ≈ 457.07 < 487.74
Fudenberg et al. (2012) 463.31 ≈ 473.75 ≈ 481.89 ≈ 470.44 ≈ 452.6 ≈ 461.37 ≈ 483.91 ≈ 487.78
Kagel and Schley (2013) 1902.37 ≫ 1730.68 ≈ 1791.78 ≈ 1777.99 ≈ 1775.62 ≈ 1900 ≈ 1881.46 ≪ 2265.03
Sherstyuk et al. (2013) 1015.02 ≈ 969.34 ≈ 915.62 ≈ 953.35 ≈ 951.34 ≈ 1013.01 ≈ 986.2 < 1079.05

Pooled 22642.83 ≫ 21973.48 ≈ 22016.28 < 22516.18 > 22097.67 < 22686.55 > 22368.31 ≪ 24532.19

Note: Relation signs, bootstrap procedure, and derived p-values are exactly as above, see Table 1.2. For definitions of pure strategies see Table A.7.
For definitions of generalized strategies see Section 3 main text.
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A.6 Robustness checks for section 1.5

Figure A.3: Relation of actual and estimated treatment parameters: Comparison of
estimates based on regular and belief-free semi-grim MPEs (first halves of sessions)

(a) RegSG: Actual vs. Estimated Delta
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(b) BFSG: Actual vs. Estimated Delta
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(c) RegSG: Actual vs. Estimated g
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(d) BFSG: Actual vs. Estimated g
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(e) RegSG: Actual vs. Estimated l
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(f) BFSG: Actual vs. Estimated l
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Figure A.4: Relation of actual and estimated treatment parameters: Comparison of es-
timates based on regular and belief-free semi-grim MPEs (second halves of sessions)
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(b) BFSG: Actual vs. Estimated Delta
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(c) RegSG: Actual vs. Estimated g
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(e) RegSG: Actual vs. Estimated l
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(f) BFSG: Actual vs. Estimated l
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Table A.42: Distance to Semi-Grim MPEs (first halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game (δ,g, l) MAD in game (δ,g, l) MAD in game (δ,g, l)

AF09–34 ( 0.91,0.41,0.41,0.09 ) ( 0.9,0.33,0.11 ) 0.18 ( 0.65,1,0.79 ) 0 ( 0.7,0.84,0.54 )
BOS11–9 ( 0.95,0.2,0.2,0.05 ) ( 0.5,2,2 ) 0 ( 0.75,0.9,0.79 ) 0 ( 0.62,1.02,0.2 )
BOS11–14 ( 0.99,0.12,0.12,0.01 ) ( 0.75,0.5,3.5 ) 0 ( 0.84,1,0.81 ) 0 ( 0.55,1.03,0.17 )
BOS11–15 ( 1,0.22,0.22,0 ) ( 0.75,1,8 ) 0 ( 0.76,0.87,0.96 ) 0 ( 0.58,1.05,0.3 )
BOS11–16 ( 0.95,0.18,0.18,0.05 ) ( 0.75,0.75,1.25 ) 0.1 ( 0.77,0.92,0.77 ) 0 ( 0.61,1.04,0.17 )
BOS11–17 ( 1,0.38,0.38,0 ) ( 0.75,0.83,0.5 ) 0 ( 0.65,1,0.8 ) 0 ( 0.62,1,0.62 )
BOS11–26 ( 0.98,0.17,0.17,0.02 ) ( 0.75,2,2 ) 0.03 ( 0.79,0.78,0.81 ) 0.05 ( 0.58,1.03,0.24 )
BOS11–27 ( 0.89,0.45,0.45,0.11 ) ( 0.75,1,1 ) 0.23 ( 0.55,1,0.71 ) 0 ( 0.77,0.84,0.64 )
BOS11–30 ( 1,0,0,0 ) ( 0.88,0.5,3.5 ) 0 ( 1,0.5,1.1 ) 0 ( 0.57,1.03,0.01 )
BOS11–31 ( 0.98,0.51,0.51,0.02 ) ( 0.88,2,2 ) 0.05 ( 0.56,0.84,0.91 ) 0 ( 0.69,0.95,1 )
BK12–28 ( 0.92,0.29,0.29,0.08 ) ( 0.8,1.17,0.83 ) 0.17 ( 0.73,1,0.99 ) 0 ( 0.69,1.01,0.33 )
D05–18 ( 0.86,0.29,0.29,0.14 ) ( 0.75,1.17,0.83 ) 0.28 ( 0.73,1,0.99 ) 0 ( 0.77,1.01,0.26 )
D05–19 ( 0.91,0.34,0.34,0.09 ) ( 0.75,0.83,1.17 ) 0.17 ( 0.67,1,0.81 ) 0 ( 0.72,1.02,0.44 )
DF11–6 ( 0.92,0.4,0.4,0.08 ) ( 0.5,2.57,1.86 ) 0.16 ( 0.65,1,0.8 ) 0 ( 0.7,0.89,0.54 )
DF11–7 ( 0.89,0.32,0.32,0.11 ) ( 0.5,0.67,0.87 ) 0.21 ( 0.68,1,0.81 ) 0 ( 0.74,1.02,0.39 )
DF11–8 ( 0.91,0.42,0.42,0.09 ) ( 0.5,0.09,0.57 ) 0.19 ( 0.64,1,0.78 ) 0 ( 0.73,0.86,0.58 )
DF11–22 ( 0.92,0.38,0.38,0.08 ) ( 0.75,2.57,1.86 ) 0.17 ( 0.65,1,0.8 ) 0 ( 0.7,0.89,0.5 )
DF11–23 ( 0.95,0.46,0.46,0.05 ) ( 0.75,0.67,0.87 ) 0.1 ( 0.56,1.03,0.78 ) 0 ( 0.72,1.01,0.84 )
DF11–24 ( 0.95,0.36,0.36,0.05 ) ( 0.75,0.09,0.57 ) 0.1 ( 0.66,0.99,0.8 ) 0 ( 0.67,1,0.52 )
DF15–4 ( 0.9,0.36,0.36,0.1 ) ( 0.5,2.57,1.86 ) 0.21 ( 0.66,0.99,0.8 ) 0 ( 0.75,0.99,0.46 )
DF15–5 ( 0.93,0.31,0.31,0.07 ) ( 0.5,0.09,0.57 ) 0.14 ( 0.72,0.98,1 ) 0 ( 0.67,1.01,0.39 )
DF15–20 ( 0.92,0.32,0.32,0.08 ) ( 0.75,2.57,1.86 ) 0.16 ( 0.68,0.96,0.85 ) 0 ( 0.71,1.05,0.43 )
DF15–21 ( 0.94,0.47,0.47,0.06 ) ( 0.75,0.09,0.57 ) 0.12 ( 0.54,1.03,0.85 ) 0 ( 0.73,0.98,0.85 )
DF15–33 ( 0.93,0.37,0.37,0.07 ) ( 0.9,2.57,1.86 ) 0.14 ( 0.66,1,0.81 ) 0 ( 0.7,1,0.53 )
DF15–35 ( 0.97,0.42,0.42,0.03 ) ( 0.95,2.57,1.86 ) 0.06 ( 0.64,1,0.79 ) 0 ( 0.67,1.03,0.72 )
DRFN08–10 ( 0.95,0.18,0.18,0.05 ) ( 0.75,2,2 ) 0.11 ( 0.77,0.91,0.79 ) 0.02 ( 0.61,1.03,0.18 )
DRFN08–11 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,1 ) 0.14 ( 0.67,1,0.8 ) 0 ( 0.69,1.03,0.44 )
DO09–32 ( 0.9,0.37,0.37,0.1 ) ( 0.9,1,1 ) 0.2 ( 0.65,0.99,0.79 ) 0 ( 0.73,0.93,0.48 )
FY17–25 ( 0.93,0.25,0.25,0.07 ) ( 0.75,0.4,0.4 ) 0.15 ( 0.76,0.94,1 ) 0 ( 0.66,1.03,0.26 )
FRD12–29 ( 0.97,0.47,0.47,0.03 ) ( 0.88,0.33,0.33 ) 0.06 ( 0.58,0.95,0.76 ) 0 ( 0.7,1.01,0.88 )
KS13–12 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,0.5 ) 0.14 ( 0.67,1,0.81 ) 0 ( 0.69,1.02,0.46 )
STS13–13 ( 0.92,0.41,0.41,0.08 ) ( 0.75,1,0.25 ) 0.16 ( 0.65,1,0.79 ) 0 ( 0.7,0.86,0.55 )

Means 0.123 ( 0.69,0.95,0.84 ) 0.002 ( 0.68,0.98,0.47 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table A.43: Distance to Semi-Grim MPEs: closest equilibria (first halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game Strategy Strategy

AF09–34 ( 0.91,0.41,0.41,0.09 ) ( 0.9,0.33,0.11 ) ( 1,0.41,0.41,0 ) ( 0.91,0.41,0.41,0.09 )
BOS11–9 ( 0.95,0.2,0.2,0.05 ) ( 0.5,2,2 ) ( 1,0.2,0.2,0 ) ( 0.95,0.2,0.2,0.05 )
BOS11–14 ( 0.99,0.12,0.12,0.01 ) ( 0.75,0.5,3.5 ) ( 1,0.12,0.12,0 ) ( 1,0.15,0.15,0 )
BOS11–15 ( 1,0.22,0.22,0 ) ( 0.75,1,8 ) ( 1,0.22,0.22,0 ) ( 1,0.22,0.22,0 )
BOS11–16 ( 0.95,0.18,0.18,0.05 ) ( 0.75,0.75,1.25 ) ( 1,0.18,0.18,0 ) ( 0.95,0.18,0.18,0.05 )
BOS11–17 ( 1,0.38,0.38,0 ) ( 0.75,0.83,0.5 ) ( 1,0.38,0.38,0 ) ( 1,0.38,0.38,0 )
BOS11–26 ( 0.98,0.17,0.17,0.02 ) ( 0.75,2,2 ) ( 1,0.17,0.17,0 ) ( 0.98,0.2,0.2,0.02 )
BOS11–27 ( 0.89,0.45,0.45,0.11 ) ( 0.75,1,1 ) ( 1,0.45,0.45,0 ) ( 0.89,0.45,0.45,0.11 )
BOS11–30 ( 1,0,0,0 ) ( 0.88,0.5,3.5 ) ( 1,0,0,0 ) ( 0.95,0.06,0.06,0.05 )
BOS11–31 ( 0.98,0.51,0.51,0.02 ) ( 0.88,2,2 ) ( 1,0.51,0.51,0 ) ( 0.98,0.51,0.51,0.02 )
BK12–28 ( 0.92,0.29,0.29,0.08 ) ( 0.8,1.17,0.83 ) ( 1,0.29,0.29,0 ) ( 0.92,0.29,0.29,0.08 )
D05–18 ( 0.86,0.29,0.29,0.14 ) ( 0.75,1.17,0.83 ) ( 1,0.29,0.29,0 ) ( 0.86,0.29,0.29,0.14 )
D05–19 ( 0.91,0.34,0.34,0.09 ) ( 0.75,0.83,1.17 ) ( 1,0.34,0.34,0 ) ( 0.91,0.34,0.34,0.09 )
DF11–6 ( 0.92,0.4,0.4,0.08 ) ( 0.5,2.57,1.86 ) ( 1,0.4,0.4,0 ) ( 0.92,0.4,0.4,0.08 )
DF11–7 ( 0.89,0.32,0.32,0.11 ) ( 0.5,0.67,0.87 ) ( 1,0.32,0.32,0 ) ( 0.89,0.32,0.32,0.11 )
DF11–8 ( 0.91,0.42,0.42,0.09 ) ( 0.5,0.09,0.57 ) ( 1,0.42,0.42,0 ) ( 0.91,0.42,0.42,0.09 )
DF11–22 ( 0.92,0.38,0.38,0.08 ) ( 0.75,2.57,1.86 ) ( 1,0.38,0.38,0 ) ( 0.92,0.38,0.38,0.08 )
DF11–23 ( 0.95,0.46,0.46,0.05 ) ( 0.75,0.67,0.87 ) ( 1,0.46,0.46,0 ) ( 0.95,0.46,0.46,0.05 )
DF11–24 ( 0.95,0.36,0.36,0.05 ) ( 0.75,0.09,0.57 ) ( 1,0.36,0.36,0 ) ( 0.95,0.36,0.36,0.05 )
DF15–4 ( 0.9,0.36,0.36,0.1 ) ( 0.5,2.57,1.86 ) ( 1,0.36,0.36,0 ) ( 0.9,0.36,0.36,0.1 )
DF15–5 ( 0.93,0.31,0.31,0.07 ) ( 0.5,0.09,0.57 ) ( 1,0.31,0.31,0 ) ( 0.93,0.31,0.31,0.07 )
DF15–20 ( 0.92,0.32,0.32,0.08 ) ( 0.75,2.57,1.86 ) ( 1,0.32,0.32,0 ) ( 0.92,0.32,0.32,0.08 )
DF15–21 ( 0.94,0.47,0.47,0.06 ) ( 0.75,0.09,0.57 ) ( 1,0.47,0.47,0 ) ( 0.94,0.47,0.47,0.06 )
DF15–33 ( 0.93,0.37,0.37,0.07 ) ( 0.9,2.57,1.86 ) ( 1,0.37,0.37,0 ) ( 0.93,0.37,0.37,0.07 )
DF15–35 ( 0.97,0.42,0.42,0.03 ) ( 0.95,2.57,1.86 ) ( 1,0.42,0.42,0 ) ( 0.97,0.42,0.42,0.03 )
DRFN08–10 ( 0.95,0.18,0.18,0.05 ) ( 0.75,2,2 ) ( 1,0.18,0.18,0 ) ( 0.95,0.19,0.19,0.05 )
DRFN08–11 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,1 ) ( 1,0.33,0.33,0 ) ( 0.93,0.33,0.33,0.07 )
DO09–32 ( 0.9,0.37,0.37,0.1 ) ( 0.9,1,1 ) ( 1,0.37,0.37,0 ) ( 0.9,0.37,0.37,0.1 )
FY17–25 ( 0.93,0.25,0.25,0.07 ) ( 0.75,0.4,0.4 ) ( 1,0.25,0.25,0 ) ( 0.93,0.25,0.25,0.07 )
FRD12–29 ( 0.97,0.47,0.47,0.03 ) ( 0.88,0.33,0.33 ) ( 1,0.47,0.47,0 ) ( 0.97,0.47,0.47,0.03 )
KS13–12 ( 0.93,0.33,0.33,0.07 ) ( 0.75,1,0.5 ) ( 1,0.33,0.33,0 ) ( 0.93,0.33,0.33,0.07 )
STS13–13 ( 0.92,0.41,0.41,0.08 ) ( 0.75,1,0.25 ) ( 1,0.41,0.41,0 ) ( 0.92,0.41,0.41,0.08 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table A.44: Distance to Semi-Grim MPEs (second halves of sessions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game (δ,g, l) MAD in game (δ,g, l) MAD in game (δ,g, l)

AF09–34 ( 0.97,0.46,0.46,0.03 ) ( 0.9,0.33,0.11 ) 0.06 ( 0.55,1.02,0.8 ) 0 ( 0.68,0.97,0.82 )
BOS11–9 ( 1,0.13,0.13,0 ) ( 0.5,2,2 ) 0 ( 0.83,1,0.8 ) 0 ( 0.54,1.03,0.15 )
BOS11–14 ( 0.99,0.3,0.3,0.01 ) ( 0.75,0.5,3.5 ) 0 ( 0.72,0.99,0.99 ) 0 ( 0.61,1.02,0.43 )
BOS11–15 ( 1,0,0,0 ) ( 0.75,1,8 ) 0 ( 1,0.99,1 ) 0 ( 0.59,1.03,0.01 )
BOS11–16 ( 0.97,0.21,0.21,0.03 ) ( 0.75,0.75,1.25 ) 0.07 ( 0.75,1,0.8 ) 0.06 ( 0.61,1.03,0.29 )
BOS11–17 ( 0.95,0.26,0.26,0.05 ) ( 0.75,0.83,0.5 ) 0.1 ( 0.75,1,1 ) 0.07 ( 0.64,1.04,0.38 )
BOS11–26 ( 0.94,0.29,0.29,0.06 ) ( 0.75,2,2 ) 0.13 ( 0.73,1,1 ) 0.03 ( 0.66,1.04,0.38 )
BOS11–27 ( 0.95,0.5,0.5,0.05 ) ( 0.75,1,1 ) 0.1 ( 0.51,0.86,0.83 ) 0 ( 0.73,0.97,0.95 )
BOS11–30 ( 0.96,0.2,0.2,0.04 ) ( 0.88,0.5,3.5 ) 0.08 ( 0.75,0.89,0.78 ) 0.02 ( 0.6,1.03,0.22 )
BOS11–31 ( 0.98,0.48,0.48,0.02 ) ( 0.88,2,2 ) 0.04 ( 0.54,0.89,0.81 ) 0 ( 0.69,0.99,0.93 )
BK12–28 ( 0.95,0.32,0.32,0.05 ) ( 0.8,1.17,0.83 ) 0.1 ( 0.68,0.98,0.82 ) 0 ( 0.66,1.02,0.44 )
D05–18 ( 0.88,0.4,0.4,0.12 ) ( 0.75,1.17,0.83 ) 0.24 ( 0.65,1,0.8 ) 0 ( 0.78,0.91,0.52 )
D05–19 ( 0.95,0.3,0.3,0.05 ) ( 0.75,0.83,1.17 ) 0.11 ( 0.72,1,0.98 ) 0 ( 0.66,1.03,0.38 )
DF11–6 ( 0.94,0.55,0.55,0.06 ) ( 0.5,2.57,1.86 ) 0.13 ( 0.56,0.67,0.97 ) 0 ( 0.73,0.79,1.01 )
DF11–7 ( 0.86,0.47,0.47,0.14 ) ( 0.5,0.67,0.87 ) 0.27 ( 0.53,1,0.86 ) 0 ( 0.81,0.78,0.67 )
DF11–8 ( 0.97,0.45,0.45,0.03 ) ( 0.5,0.09,0.57 ) 0.06 ( 0.56,0.99,0.69 ) 0 ( 0.68,1.01,0.8 )
DF11–22 ( 0.96,0.47,0.47,0.04 ) ( 0.75,2.57,1.86 ) 0.08 ( 0.55,1,0.81 ) 0 ( 0.7,1,0.86 )
DF11–23 ( 0.96,0.51,0.51,0.04 ) ( 0.75,0.67,0.87 ) 0.09 ( 0.56,0.83,0.87 ) 0 ( 0.72,0.95,0.98 )
DF11–24 ( 0.98,0.33,0.33,0.02 ) ( 0.75,0.09,0.57 ) 0.04 ( 0.67,1,0.79 ) 0 ( 0.63,1.02,0.5 )
DF15–4 ( 0.94,0.23,0.23,0.06 ) ( 0.5,2.57,1.86 ) 0.12 ( 0.75,1.14,0.87 ) 0 ( 0.63,1.01,0.25 )
DF15–5 ( 0.96,0.32,0.32,0.04 ) ( 0.5,0.09,0.57 ) 0.08 ( 0.68,0.96,0.85 ) 0 ( 0.64,1.01,0.45 )
DF15–20 ( 0.94,0.42,0.42,0.06 ) ( 0.75,2.57,1.86 ) 0.12 ( 0.64,0.99,0.77 ) 0 ( 0.71,0.99,0.69 )
DF15–21 ( 0.97,0.37,0.37,0.03 ) ( 0.75,0.09,0.57 ) 0.07 ( 0.66,1,0.81 ) 0 ( 0.66,1.01,0.58 )
DF15–33 ( 0.96,0.48,0.48,0.04 ) ( 0.9,2.57,1.86 ) 0.07 ( 0.55,1,0.87 ) 0 ( 0.7,1,0.9 )
DF15–35 ( 0.97,0.51,0.51,0.03 ) ( 0.95,2.57,1.86 ) 0.07 ( 0.54,0.82,0.87 ) 0 ( 0.7,0.91,0.95 )
DRFN08–10 ( 0.97,0.25,0.25,0.03 ) ( 0.75,2,2 ) 0.07 ( 0.75,1,1 ) 0.03 ( 0.61,1.03,0.34 )
DRFN08–11 ( 0.95,0.33,0.33,0.05 ) ( 0.75,1,1 ) 0.1 ( 0.67,1,0.8 ) 0 ( 0.66,1.02,0.45 )
DO09–32 ( 0.95,0.39,0.39,0.05 ) ( 0.9,1,1 ) 0.09 ( 0.65,1,0.8 ) 0 ( 0.68,1,0.62 )
FY17–25 ( 0.96,0.35,0.35,0.04 ) ( 0.75,0.4,0.4 ) 0.09 ( 0.66,0.99,0.79 ) 0 ( 0.66,1,0.51 )
FRD12–29 ( 0.96,0.54,0.54,0.04 ) ( 0.88,0.33,0.33 ) 0.07 ( 0.53,0.82,1 ) 0 ( 0.68,0.8,0.93 )
KS13–12 ( 0.96,0.36,0.36,0.04 ) ( 0.75,1,0.5 ) 0.07 ( 0.66,0.99,0.81 ) 0 ( 0.65,1.01,0.54 )
STS13–13 ( 0.95,0.55,0.55,0.05 ) ( 0.75,1,0.25 ) 0.09 ( 0.59,0.61,0.9 ) 0.01 ( 0.73,0.88,1.08 )

Means 0.088 ( 0.65,0.95,0.86 ) 0.007 ( 0.67,0.98,0.59 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table A.45: Distance to Semi-Grim MPEs: closest equilibria (second halves of ses-
sions)

Empirical Closest Reg-SG MPE Closest BF-SG MPE
Treatment SG-Strategy Game Strategy Strategy

AF09–34 ( 0.97,0.46,0.46,0.03 ) ( 0.9,0.33,0.11 ) ( 1,0.46,0.46,0 ) ( 0.97,0.46,0.46,0.03 )
BOS11–9 ( 1,0.13,0.13,0 ) ( 0.5,2,2 ) ( 1,0.13,0.13,0 ) ( 1,0.13,0.13,0 )
BOS11–14 ( 0.99,0.3,0.3,0.01 ) ( 0.75,0.5,3.5 ) ( 1,0.3,0.3,0 ) ( 0.99,0.3,0.3,0.01 )
BOS11–15 ( 1,0,0,0 ) ( 0.75,1,8 ) ( 1,0,0,0 ) ( 0.93,0.08,0.08,0.07 )
BOS11–16 ( 0.97,0.21,0.21,0.03 ) ( 0.75,0.75,1.25 ) ( 1,0.21,0.21,0 ) ( 0.97,0.24,0.24,0.03 )
BOS11–17 ( 0.95,0.26,0.26,0.05 ) ( 0.75,0.83,0.5 ) ( 1,0.26,0.26,0 ) ( 0.96,0.29,0.29,0.04 )
BOS11–26 ( 0.94,0.29,0.29,0.06 ) ( 0.75,2,2 ) ( 1,0.29,0.29,0 ) ( 0.94,0.29,0.29,0.06 )
BOS11–27 ( 0.95,0.5,0.5,0.05 ) ( 0.75,1,1 ) ( 1,0.5,0.5,0 ) ( 0.95,0.5,0.5,0.05 )
BOS11–30 ( 0.96,0.2,0.2,0.04 ) ( 0.88,0.5,3.5 ) ( 1,0.2,0.2,0 ) ( 0.97,0.2,0.2,0.03 )
BOS11–31 ( 0.98,0.48,0.48,0.02 ) ( 0.88,2,2 ) ( 1,0.48,0.48,0 ) ( 0.98,0.48,0.48,0.02 )
BK12–28 ( 0.95,0.32,0.32,0.05 ) ( 0.8,1.17,0.83 ) ( 1,0.32,0.32,0 ) ( 0.95,0.32,0.32,0.05 )
D05–18 ( 0.88,0.4,0.4,0.12 ) ( 0.75,1.17,0.83 ) ( 1,0.4,0.4,0 ) ( 0.88,0.4,0.4,0.12 )
D05–19 ( 0.95,0.3,0.3,0.05 ) ( 0.75,0.83,1.17 ) ( 1,0.3,0.3,0 ) ( 0.95,0.3,0.3,0.05 )
DF11–6 ( 0.94,0.55,0.55,0.06 ) ( 0.5,2.57,1.86 ) ( 1,0.55,0.55,0 ) ( 0.94,0.55,0.55,0.06 )
DF11–7 ( 0.86,0.47,0.47,0.14 ) ( 0.5,0.67,0.87 ) ( 1,0.47,0.47,0 ) ( 0.86,0.47,0.47,0.14 )
DF11–8 ( 0.97,0.45,0.45,0.03 ) ( 0.5,0.09,0.57 ) ( 1,0.45,0.45,0 ) ( 0.97,0.45,0.45,0.03 )
DF11–22 ( 0.96,0.47,0.47,0.04 ) ( 0.75,2.57,1.86 ) ( 1,0.47,0.47,0 ) ( 0.96,0.47,0.47,0.04 )
DF11–23 ( 0.96,0.51,0.51,0.04 ) ( 0.75,0.67,0.87 ) ( 1,0.51,0.51,0 ) ( 0.96,0.51,0.51,0.04 )
DF11–24 ( 0.98,0.33,0.33,0.02 ) ( 0.75,0.09,0.57 ) ( 1,0.33,0.33,0 ) ( 0.98,0.33,0.33,0.02 )
DF15–4 ( 0.94,0.23,0.23,0.06 ) ( 0.5,2.57,1.86 ) ( 1,0.23,0.23,0 ) ( 0.94,0.23,0.23,0.06 )
DF15–5 ( 0.96,0.32,0.32,0.04 ) ( 0.5,0.09,0.57 ) ( 1,0.32,0.32,0 ) ( 0.96,0.32,0.32,0.04 )
DF15–20 ( 0.94,0.42,0.42,0.06 ) ( 0.75,2.57,1.86 ) ( 1,0.42,0.42,0 ) ( 0.94,0.42,0.42,0.06 )
DF15–21 ( 0.97,0.37,0.37,0.03 ) ( 0.75,0.09,0.57 ) ( 1,0.37,0.37,0 ) ( 0.97,0.37,0.37,0.03 )
DF15–33 ( 0.96,0.48,0.48,0.04 ) ( 0.9,2.57,1.86 ) ( 1,0.48,0.48,0 ) ( 0.96,0.48,0.48,0.04 )
DF15–35 ( 0.97,0.51,0.51,0.03 ) ( 0.95,2.57,1.86 ) ( 1,0.51,0.51,0 ) ( 0.97,0.51,0.51,0.03 )
DRFN08–10 ( 0.97,0.25,0.25,0.03 ) ( 0.75,2,2 ) ( 1,0.25,0.25,0 ) ( 0.98,0.26,0.26,0.02 )
DRFN08–11 ( 0.95,0.33,0.33,0.05 ) ( 0.75,1,1 ) ( 1,0.33,0.33,0 ) ( 0.95,0.33,0.33,0.05 )
DO09–32 ( 0.95,0.39,0.39,0.05 ) ( 0.9,1,1 ) ( 1,0.39,0.39,0 ) ( 0.95,0.39,0.39,0.05 )
FY17–25 ( 0.96,0.35,0.35,0.04 ) ( 0.75,0.4,0.4 ) ( 1,0.35,0.35,0 ) ( 0.96,0.35,0.35,0.04 )
FRD12–29 ( 0.96,0.54,0.54,0.04 ) ( 0.88,0.33,0.33 ) ( 1,0.54,0.54,0 ) ( 0.96,0.54,0.54,0.04 )
KS13–12 ( 0.96,0.36,0.36,0.04 ) ( 0.75,1,0.5 ) ( 1,0.36,0.36,0 ) ( 0.96,0.36,0.36,0.04 )
STS13–13 ( 0.95,0.55,0.55,0.05 ) ( 0.75,1,0.25 ) ( 1,0.55,0.55,0 ) ( 0.95,0.55,0.55,0.05 )

Note: “SG-Strategy” is the SG-continuation strategy estimated in the “1.5× SG + AD” model
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Table A.46: Incentives in state /0 (second halves of sessions)

Observation Fit
Treatment Game σ̂0 π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.94 7.7 6.46 0.99 -0.05
BOS11–9 ( 0.5,2,2 ) 0.27 0.75 1.18 0.19 0.08
BOS11–14 ( 0.75,0.5,3.5 ) 0.03 0.75 1 0.3 -0.27
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.3 -0.3
BOS11–16 ( 0.75,0.75,1.25 ) 0.63 1.32 1.28 0.53 0.1
BOS11–17 ( 0.75,0.83,0.5 ) 0.6 1.69 1.5 0.66 -0.06
BOS11–26 ( 0.75,2,2 ) 0.49 0.99 1.12 0.39 0.1
BOS11–27 ( 0.75,1,1 ) 0.47 1.27 1.23 0.53 -0.06
BOS11–30 ( 0.88,0.5,3.5 ) 0.45 0.95 1 0.46 -0.01
BOS11–31 ( 0.88,2,2 ) 0.58 1.11 1.09 0.52 0.06
BK12–28 ( 0.8,1.17,0.83 ) 0.58 1.44 1.36 0.57 0.01
D05–18 ( 0.75,1.17,0.83 ) 0.51 1.5 1.59 0.42 0.09
D05–19 ( 0.75,0.83,1.17 ) 0.67 1.3 1.26 0.53 0.14
DF11–6 ( 0.5,2.57,1.86 ) 0.17 0.76 1.07 0.26 -0.09
DF11–7 ( 0.5,0.67,0.87 ) 0.32 0.98 1.24 0.29 0.03
DF11–8 ( 0.5,0.09,0.57 ) 0.64 1.53 1.43 0.58 0.06
DF11–22 ( 0.75,2.57,1.86 ) 0.38 1.08 1.18 0.42 -0.04
DF11–23 ( 0.75,0.67,0.87 ) 0.83 1.79 1.61 0.65 0.18
DF11–24 ( 0.75,0.09,0.57 ) 0.95 2.54 1.73 0.94 0.01
DF15–4 ( 0.5,2.57,1.86 ) 0.24 0.68 1.1 0.19 0.05
DF15–5 ( 0.5,0.09,0.57 ) 0.69 1.65 1.52 0.61 0.08
DF15–20 ( 0.75,2.57,1.86 ) 0.42 1.06 1.17 0.41 0.01
DF15–21 ( 0.75,0.09,0.57 ) 0.85 2.19 1.56 0.89 -0.04
DF15–33 ( 0.9,2.57,1.86 ) 0.51 1.22 1.18 0.53 -0.02
DF15–35 ( 0.95,2.57,1.86 ) 0.63 1.27 1.21 0.55 0.08
DRFN08–10 ( 0.75,2,2 ) 0.49 0.98 1.11 0.39 0.1
DRFN08–11 ( 0.75,1,1 ) 0.72 1.52 1.44 0.57 0.15
DO09–32 ( 0.9,1,1 ) 0.71 1.53 1.36 0.64 0.07
FY17–25 ( 0.75,0.4,0.4 ) 0.89 2.66 1.95 0.92 -0.03
FRD12–29 ( 0.88,0.33,0.33 ) 0.89 3.18 2.41 0.93 -0.04
KS13–12 ( 0.75,1,0.5 ) 0.84 2.29 1.93 0.77 0.07
STS13–13 ( 0.75,1,0.25 ) 0.73 3.87 3.39 0.84 -0.11
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state /0 in second halves of sessions), the expected payoff cooper-
ating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability
of cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.47: Incentives in state cc (second halves of sessions)

Observation Fit
Treatment Game σ̂cc π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.97 7.86 6.61 0.98 -0.01
BOS11–9 ( 0.5,2,2 ) 1 1.46 1.75 0.28 0.72
BOS11–14 ( 0.75,0.5,3.5 ) 0.99 1.25 1.1 0.62 0.37
BOS11–15 ( 0.75,1,8 ) 1 1.12 1.06 0.55 0.45
BOS11–16 ( 0.75,0.75,1.25 ) 0.97 1.59 1.42 0.63 0.34
BOS11–17 ( 0.75,0.83,0.5 ) 0.95 2.57 2.03 0.85 0.1
BOS11–26 ( 0.75,2,2 ) 0.94 1.35 1.37 0.48 0.46
BOS11–27 ( 0.75,1,1 ) 0.95 1.8 1.62 0.64 0.31
BOS11–30 ( 0.88,0.5,3.5 ) 0.96 1.15 1.03 0.59 0.37
BOS11–31 ( 0.88,2,2 ) 0.98 1.38 1.23 0.62 0.36
BK12–28 ( 0.8,1.17,0.83 ) 0.95 1.9 1.65 0.69 0.26
D05–18 ( 0.75,1.17,0.83 ) 0.88 1.83 1.9 0.44 0.44
D05–19 ( 0.75,0.83,1.17 ) 0.95 1.64 1.43 0.66 0.29
DF11–6 ( 0.5,2.57,1.86 ) 0.94 1.42 1.85 0.2 0.74
DF11–7 ( 0.5,0.67,0.87 ) 0.86 1.81 1.9 0.43 0.43
DF11–8 ( 0.5,0.09,0.57 ) 0.97 2.61 2 0.88 0.09
DF11–22 ( 0.75,2.57,1.86 ) 0.96 1.46 1.56 0.42 0.54
DF11–23 ( 0.75,0.67,0.87 ) 0.96 1.96 1.74 0.67 0.29
DF11–24 ( 0.75,0.09,0.57 ) 0.98 2.59 1.75 0.94 0.04
DF15–4 ( 0.5,2.57,1.86 ) 0.94 1.41 1.87 0.19 0.75
DF15–5 ( 0.5,0.09,0.57 ) 0.96 2.57 1.97 0.87 0.09
DF15–20 ( 0.75,2.57,1.86 ) 0.94 1.42 1.52 0.42 0.52
DF15–21 ( 0.75,0.09,0.57 ) 0.97 2.47 1.68 0.93 0.04
DF15–33 ( 0.9,2.57,1.86 ) 0.96 1.4 1.34 0.55 0.41
DF15–35 ( 0.95,2.57,1.86 ) 0.97 1.36 1.29 0.56 0.41
DRFN08–10 ( 0.75,2,2 ) 0.97 1.4 1.37 0.52 0.45
DRFN08–11 ( 0.75,1,1 ) 0.95 1.79 1.62 0.63 0.32
DO09–32 ( 0.9,1,1 ) 0.95 1.67 1.45 0.67 0.28
FY17–25 ( 0.75,0.4,0.4 ) 0.96 3.03 2.15 0.94 0.02
FRD12–29 ( 0.88,0.33,0.33 ) 0.96 3.38 2.57 0.93 0.03
KS13–12 ( 0.75,1,0.5 ) 0.96 2.71 2.25 0.81 0.15
STS13–13 ( 0.75,1,0.25 ) 0.95 4.54 4.32 0.67 0.28
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state cc in second halves of sessions), the expected payoff cooper-
ating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability
of cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.48: Incentives in state cd,dc (second halves of sessions)

Observation Fit
Treatment Game σ̂cd,dc π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.46 6.66 5.49 0.63 -0.17
BOS11–9 ( 0.5,2,2 ) 0.13 0.64 1.1 0.45 -0.32
BOS11–14 ( 0.75,0.5,3.5 ) 0.3 0.9 1.02 0.49 -0.19
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.47 -0.47
BOS11–16 ( 0.75,0.75,1.25 ) 0.21 1.06 1.15 0.49 -0.28
BOS11–17 ( 0.75,0.83,0.5 ) 0.26 1.42 1.33 0.51 -0.25
BOS11–26 ( 0.75,2,2 ) 0.29 0.99 1.12 0.48 -0.19
BOS11–27 ( 0.75,1,1 ) 0.5 1.41 1.33 0.51 -0.01
BOS11–30 ( 0.88,0.5,3.5 ) 0.2 0.92 1 0.49 -0.29
BOS11–31 ( 0.88,2,2 ) 0.48 1.15 1.11 0.5 -0.02
BK12–28 ( 0.8,1.17,0.83 ) 0.32 1.31 1.27 0.5 -0.18
D05–18 ( 0.75,1.17,0.83 ) 0.4 1.44 1.52 0.49 -0.09
D05–19 ( 0.75,0.83,1.17 ) 0.3 1.09 1.15 0.49 -0.19
DF11–6 ( 0.5,2.57,1.86 ) 0.55 1.11 1.49 0.46 0.09
DF11–7 ( 0.5,0.67,0.87 ) 0.47 1.31 1.51 0.48 -0.01
DF11–8 ( 0.5,0.09,0.57 ) 0.45 1.57 1.45 0.51 -0.06
DF11–22 ( 0.75,2.57,1.86 ) 0.47 1.19 1.28 0.49 -0.02
DF11–23 ( 0.75,0.67,0.87 ) 0.51 1.56 1.43 0.52 -0.01
DF11–24 ( 0.75,0.09,0.57 ) 0.33 1.57 1.29 0.53 -0.2
DF15–4 ( 0.5,2.57,1.86 ) 0.23 0.79 1.22 0.45 -0.22
DF15–5 ( 0.5,0.09,0.57 ) 0.32 1.26 1.32 0.49 -0.17
DF15–20 ( 0.75,2.57,1.86 ) 0.42 1.13 1.24 0.49 -0.07
DF15–21 ( 0.75,0.09,0.57 ) 0.37 1.58 1.29 0.53 -0.16
DF15–33 ( 0.9,2.57,1.86 ) 0.48 1.24 1.2 0.5 -0.02
DF15–35 ( 0.95,2.57,1.86 ) 0.51 1.27 1.21 0.51 0
DRFN08–10 ( 0.75,2,2 ) 0.25 0.95 1.1 0.48 -0.23
DRFN08–11 ( 0.75,1,1 ) 0.33 1.23 1.25 0.5 -0.17
DO09–32 ( 0.9,1,1 ) 0.39 1.38 1.27 0.51 -0.12
FY17–25 ( 0.75,0.4,0.4 ) 0.35 1.83 1.49 0.54 -0.19
FRD12–29 ( 0.88,0.33,0.33 ) 0.54 2.74 2.06 0.58 -0.04
KS13–12 ( 0.75,1,0.5 ) 0.36 1.73 1.51 0.53 -0.17
STS13–13 ( 0.75,1,0.25 ) 0.55 3.64 3.07 0.57 -0.02
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in states cd,dc in second halves of sessions), the expected pay-
off cooperating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted”
probability of cooperation based on the logistic regression of cooperation rates on monetary incentive
π̂(c)− π̂(c), and the absolute deviation of that prediction.
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Table A.49: Incentives in state dd (second halves of sessions)

Observation Fit
Treatment Game σ̂dd π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.03 5.71 4.6 0.64 -0.61
BOS11–9 ( 0.5,2,2 ) 0 0.54 1.02 0.44 -0.44
BOS11–14 ( 0.75,0.5,3.5 ) 0.01 0.75 1 0.47 -0.46
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.47 -0.47
BOS11–16 ( 0.75,0.75,1.25 ) 0.03 0.91 1.08 0.48 -0.45
BOS11–17 ( 0.75,0.83,0.5 ) 0.05 1.06 1.12 0.49 -0.44
BOS11–26 ( 0.75,2,2 ) 0.06 0.85 1.03 0.48 -0.42
BOS11–27 ( 0.75,1,1 ) 0.05 1.04 1.06 0.5 -0.45
BOS11–30 ( 0.88,0.5,3.5 ) 0.04 0.87 0.99 0.48 -0.44
BOS11–31 ( 0.88,2,2 ) 0.02 0.99 1.03 0.49 -0.47
BK12–28 ( 0.8,1.17,0.83 ) 0.05 1.06 1.11 0.49 -0.44
D05–18 ( 0.75,1.17,0.83 ) 0.12 1.21 1.3 0.49 -0.37
D05–19 ( 0.75,0.83,1.17 ) 0.05 0.89 1.05 0.48 -0.43
DF11–6 ( 0.5,2.57,1.86 ) 0.06 0.73 1.03 0.46 -0.4
DF11–7 ( 0.5,0.67,0.87 ) 0.14 0.82 1.12 0.46 -0.32
DF11–8 ( 0.5,0.09,0.57 ) 0.03 0.77 1.03 0.47 -0.44
DF11–22 ( 0.75,2.57,1.86 ) 0.04 0.95 1.05 0.49 -0.45
DF11–23 ( 0.75,0.67,0.87 ) 0.04 1.14 1.1 0.51 -0.47
DF11–24 ( 0.75,0.09,0.57 ) 0.02 1.07 1.06 0.5 -0.48
DF15–4 ( 0.5,2.57,1.86 ) 0.06 0.61 1.04 0.44 -0.38
DF15–5 ( 0.5,0.09,0.57 ) 0.04 0.71 1.05 0.46 -0.42
DF15–20 ( 0.75,2.57,1.86 ) 0.06 0.93 1.05 0.48 -0.42
DF15–21 ( 0.75,0.09,0.57 ) 0.03 1.07 1.07 0.5 -0.47
DF15–33 ( 0.9,2.57,1.86 ) 0.04 1.1 1.08 0.5 -0.46
DF15–35 ( 0.95,2.57,1.86 ) 0.03 1.17 1.12 0.51 -0.48
DRFN08–10 ( 0.75,2,2 ) 0.03 0.82 1.02 0.47 -0.44
DRFN08–11 ( 0.75,1,1 ) 0.05 0.97 1.08 0.49 -0.44
DO09–32 ( 0.9,1,1 ) 0.05 1.2 1.16 0.51 -0.46
FY17–25 ( 0.75,0.4,0.4 ) 0.04 1.24 1.16 0.51 -0.47
FRD12–29 ( 0.88,0.33,0.33 ) 0.04 2.1 1.55 0.57 -0.53
KS13–12 ( 0.75,1,0.5 ) 0.04 1.2 1.12 0.51 -0.47
STS13–13 ( 0.75,1,0.25 ) 0.05 2.54 1.55 0.63 -0.58
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state dd in second halves of sessions), the expected payoff coop-
erating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability
of cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.50: Incentives in state 0 (first halves of sessions)

Observation Fit
Treatment Game σ̂ /0 π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.78 6.24 5.51 0.87 -0.09
BOS11–9 ( 0.5,2,2 ) 0.36 0.76 1.18 0.26 0.1
BOS11–14 ( 0.75,0.5,3.5 ) 0.11 0.78 0.99 0.37 -0.26
BOS11–15 ( 0.75,1,8 ) 0.2 0.76 1 0.35 -0.15
BOS11–16 ( 0.75,0.75,1.25 ) 0.57 1.26 1.25 0.51 0.06
BOS11–17 ( 0.75,0.83,0.5 ) 0.52 1.7 1.83 0.42 0.1
BOS11–26 ( 0.75,2,2 ) 0.29 0.96 1.14 0.39 -0.1
BOS11–27 ( 0.75,1,1 ) 0.56 1.17 1.2 0.48 0.08
BOS11–30 ( 0.88,0.5,3.5 ) 0.69 0.95 0.99 0.47 0.22
BOS11–31 ( 0.88,2,2 ) 0.64 1.18 1.14 0.53 0.11
BK12–28 ( 0.8,1.17,0.83 ) 0.54 1.43 1.44 0.49 0.05
D05–18 ( 0.75,1.17,0.83 ) 0.53 1.43 1.54 0.43 0.1
D05–19 ( 0.75,0.83,1.17 ) 0.58 1.21 1.24 0.48 0.1
DF11–6 ( 0.5,2.57,1.86 ) 0.24 0.77 1.15 0.27 -0.03
DF11–7 ( 0.5,0.67,0.87 ) 0.25 0.89 1.22 0.3 -0.05
DF11–8 ( 0.5,0.09,0.57 ) 0.48 1.41 1.43 0.49 -0.01
DF11–22 ( 0.75,2.57,1.86 ) 0.35 1.04 1.19 0.41 -0.06
DF11–23 ( 0.75,0.67,0.87 ) 0.65 1.51 1.42 0.56 0.09
DF11–24 ( 0.75,0.09,0.57 ) 0.8 2.04 1.6 0.75 0.05
DF15–4 ( 0.5,2.57,1.86 ) 0.3 0.75 1.16 0.26 0.04
DF15–5 ( 0.5,0.09,0.57 ) 0.73 1.68 1.59 0.56 0.17
DF15–20 ( 0.75,2.57,1.86 ) 0.34 1.02 1.18 0.4 -0.06
DF15–21 ( 0.75,0.09,0.57 ) 0.78 1.94 1.56 0.73 0.05
DF15–33 ( 0.9,2.57,1.86 ) 0.43 1.13 1.16 0.48 -0.05
DF15–35 ( 0.95,2.57,1.86 ) 0.56 1.24 1.21 0.52 0.04
DRFN08–10 ( 0.75,2,2 ) 0.56 1.08 1.2 0.42 0.14
DRFN08–11 ( 0.75,1,1 ) 0.67 1.34 1.35 0.49 0.18
DO09–32 ( 0.9,1,1 ) 0.66 1.35 1.32 0.52 0.14
FY17–25 ( 0.75,0.4,0.4 ) 0.84 2.43 1.87 0.81 0.03
FRD12–29 ( 0.88,0.33,0.33 ) 0.8 3.06 2.18 0.9 -0.1
KS13–12 ( 0.75,1,0.5 ) 0.72 1.99 1.81 0.61 0.11
STS13–13 ( 0.75,1,0.25 ) 0.65 3.33 3.09 0.65 0
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state /0 in first halves of sessions), the expected payoff cooperating
in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of
cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.51: Incentives in state cc (first halves of sessions)

Observation Fit
Treatment Game σ̂cc π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.91 6.53 5.77 0.85 0.06
BOS11–9 ( 0.5,2,2 ) 0.95 1.41 1.71 0.33 0.62
BOS11–14 ( 0.75,0.5,3.5 ) 0.99 1.09 1.07 0.51 0.48
BOS11–15 ( 0.75,1,8 ) 1 1.05 1.03 0.51 0.49
BOS11–16 ( 0.75,0.75,1.25 ) 0.95 1.55 1.39 0.59 0.36
BOS11–17 ( 0.75,0.83,0.5 ) 1 2.08 2.21 0.43 0.57
BOS11–26 ( 0.75,2,2 ) 0.98 1.33 1.39 0.47 0.51
BOS11–27 ( 0.75,1,1 ) 0.89 1.6 1.52 0.55 0.34
BOS11–30 ( 0.88,0.5,3.5 ) 1 1.2 1.03 0.6 0.4
BOS11–31 ( 0.88,2,2 ) 0.98 1.39 1.26 0.57 0.41
BK12–28 ( 0.8,1.17,0.83 ) 0.92 1.79 1.7 0.55 0.37
D05–18 ( 0.75,1.17,0.83 ) 0.86 1.74 1.8 0.47 0.39
D05–19 ( 0.75,0.83,1.17 ) 0.91 1.56 1.43 0.57 0.34
DF11–6 ( 0.5,2.57,1.86 ) 0.92 1.4 1.88 0.25 0.67
DF11–7 ( 0.5,0.67,0.87 ) 0.89 1.84 1.92 0.45 0.44
DF11–8 ( 0.5,0.09,0.57 ) 0.91 2.38 2 0.71 0.2
DF11–22 ( 0.75,2.57,1.86 ) 0.92 1.39 1.53 0.42 0.5
DF11–23 ( 0.75,0.67,0.87 ) 0.95 1.89 1.67 0.62 0.33
DF11–24 ( 0.75,0.09,0.57 ) 0.95 2.32 1.73 0.8 0.15
DF15–4 ( 0.5,2.57,1.86 ) 0.9 1.33 1.81 0.25 0.65
DF15–5 ( 0.5,0.09,0.57 ) 0.93 2.36 1.95 0.72 0.21
DF15–20 ( 0.75,2.57,1.86 ) 0.92 1.39 1.52 0.43 0.49
DF15–21 ( 0.75,0.09,0.57 ) 0.94 2.3 1.75 0.78 0.16
DF15–33 ( 0.9,2.57,1.86 ) 0.93 1.31 1.29 0.51 0.42
DF15–35 ( 0.95,2.57,1.86 ) 0.97 1.33 1.28 0.53 0.44
DRFN08–10 ( 0.75,2,2 ) 0.95 1.37 1.38 0.49 0.46
DRFN08–11 ( 0.75,1,1 ) 0.93 1.69 1.57 0.57 0.36
DO09–32 ( 0.9,1,1 ) 0.9 1.48 1.4 0.55 0.35
FY17–25 ( 0.75,0.4,0.4 ) 0.93 2.78 2.06 0.84 0.09
FRD12–29 ( 0.88,0.33,0.33 ) 0.97 3.4 2.43 0.9 0.07
KS13–12 ( 0.75,1,0.5 ) 0.93 2.52 2.23 0.66 0.27
STS13–13 ( 0.75,1,0.25 ) 0.92 4.13 3.96 0.6 0.32
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state cc in first halves of sessions), the expected payoff cooperating
in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability of
cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.52: Incentives in state cd,dc (first halves of sessions)

Observation Fit
Treatment Game σ̂cd,dc π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.41 5.62 4.94 0.69 -0.28
BOS11–9 ( 0.5,2,2 ) 0.2 0.73 1.15 0.38 -0.18
BOS11–14 ( 0.75,0.5,3.5 ) 0.12 0.8 1 0.44 -0.32
BOS11–15 ( 0.75,1,8 ) 0.22 0.79 1 0.44 -0.22
BOS11–16 ( 0.75,0.75,1.25 ) 0.18 0.99 1.12 0.46 -0.28
BOS11–17 ( 0.75,0.83,0.5 ) 0.38 1.63 1.76 0.46 -0.08
BOS11–26 ( 0.75,2,2 ) 0.17 0.91 1.1 0.44 -0.27
BOS11–27 ( 0.75,1,1 ) 0.45 1.27 1.28 0.5 -0.05
BOS11–30 ( 0.88,0.5,3.5 ) 0 0.88 0.98 0.47 -0.47
BOS11–31 ( 0.88,2,2 ) 0.51 1.18 1.14 0.51 0
BK12–28 ( 0.8,1.17,0.83 ) 0.29 1.27 1.32 0.49 -0.2
D05–18 ( 0.75,1.17,0.83 ) 0.29 1.26 1.4 0.46 -0.17
D05–19 ( 0.75,0.83,1.17 ) 0.34 1.13 1.19 0.48 -0.14
DF11–6 ( 0.5,2.57,1.86 ) 0.4 0.97 1.38 0.38 0.02
DF11–7 ( 0.5,0.67,0.87 ) 0.32 1.07 1.36 0.42 -0.1
DF11–8 ( 0.5,0.09,0.57 ) 0.42 1.5 1.49 0.5 -0.08
DF11–22 ( 0.75,2.57,1.86 ) 0.38 1.11 1.25 0.46 -0.08
DF11–23 ( 0.75,0.67,0.87 ) 0.46 1.41 1.35 0.52 -0.06
DF11–24 ( 0.75,0.09,0.57 ) 0.36 1.49 1.35 0.54 -0.18
DF15–4 ( 0.5,2.57,1.86 ) 0.36 0.89 1.32 0.38 -0.02
DF15–5 ( 0.5,0.09,0.57 ) 0.31 1.15 1.32 0.45 -0.14
DF15–20 ( 0.75,2.57,1.86 ) 0.32 1.06 1.21 0.46 -0.14
DF15–21 ( 0.75,0.09,0.57 ) 0.47 1.65 1.42 0.57 -0.1
DF15–33 ( 0.9,2.57,1.86 ) 0.37 1.14 1.16 0.49 -0.12
DF15–35 ( 0.95,2.57,1.86 ) 0.42 1.2 1.19 0.5 -0.08
DRFN08–10 ( 0.75,2,2 ) 0.18 0.89 1.09 0.44 -0.26
DRFN08–11 ( 0.75,1,1 ) 0.33 1.16 1.23 0.48 -0.15
DO09–32 ( 0.9,1,1 ) 0.37 1.27 1.27 0.5 -0.13
FY17–25 ( 0.75,0.4,0.4 ) 0.25 1.51 1.39 0.53 -0.28
FRD12–29 ( 0.88,0.33,0.33 ) 0.47 2.6 1.85 0.71 -0.24
KS13–12 ( 0.75,1,0.5 ) 0.33 1.64 1.54 0.53 -0.2
STS13–13 ( 0.75,1,0.25 ) 0.41 2.93 2.64 0.58 -0.17
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state cd,dc in first halves of sessions), the expected payoff coop-
erating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability
of cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.
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Table A.53: Incentives in state dd (first halves of sessions)

Observation Fit
Treatment Game σ̂dd π̂(c) π̂(d) σ∗

0 Deviat

AF09–34 ( 0.9,0.33,0.11 ) 0.09 5 4.39 0.87 -0.78
BOS11–9 ( 0.5,2,2 ) 0.05 0.58 1.03 0.2 -0.15
BOS11–14 ( 0.75,0.5,3.5 ) 0.01 0.74 0.99 0.32 -0.31
BOS11–15 ( 0.75,1,8 ) 0 0.75 1 0.32 -0.32
BOS11–16 ( 0.75,0.75,1.25 ) 0.05 0.87 1.06 0.36 -0.31
BOS11–17 ( 0.75,0.83,0.5 ) 0 1.46 1.59 0.4 -0.4
BOS11–26 ( 0.75,2,2 ) 0.02 0.83 1.04 0.34 -0.32
BOS11–27 ( 0.75,1,1 ) 0.11 0.98 1.07 0.43 -0.32
BOS11–30 ( 0.88,0.5,3.5 ) 0 0.87 0.98 0.42 -0.42
BOS11–31 ( 0.88,2,2 ) 0.02 1.02 1.04 0.48 -0.46
BK12–28 ( 0.8,1.17,0.83 ) 0.08 1.11 1.21 0.42 -0.34
D05–18 ( 0.75,1.17,0.83 ) 0.14 1.13 1.29 0.38 -0.24
D05–19 ( 0.75,0.83,1.17 ) 0.09 0.92 1.07 0.39 -0.3
DF11–6 ( 0.5,2.57,1.86 ) 0.08 0.69 1.06 0.24 -0.16
DF11–7 ( 0.5,0.67,0.87 ) 0.11 0.75 1.12 0.24 -0.13
DF11–8 ( 0.5,0.09,0.57 ) 0.09 0.85 1.11 0.31 -0.22
DF11–22 ( 0.75,2.57,1.86 ) 0.08 0.94 1.09 0.39 -0.31
DF11–23 ( 0.75,0.67,0.87 ) 0.05 1.08 1.14 0.45 -0.4
DF11–24 ( 0.75,0.09,0.57 ) 0.05 1.16 1.2 0.47 -0.42
DF15–4 ( 0.5,2.57,1.86 ) 0.1 0.67 1.07 0.22 -0.12
DF15–5 ( 0.5,0.09,0.57 ) 0.07 0.8 1.14 0.26 -0.19
DF15–20 ( 0.75,2.57,1.86 ) 0.08 0.91 1.08 0.37 -0.29
DF15–21 ( 0.75,0.09,0.57 ) 0.06 1.21 1.19 0.52 -0.46
DF15–33 ( 0.9,2.57,1.86 ) 0.07 1.06 1.1 0.47 -0.4
DF15–35 ( 0.95,2.57,1.86 ) 0.03 1.15 1.16 0.49 -0.46
DRFN08–10 ( 0.75,2,2 ) 0.05 0.82 1.04 0.34 -0.29
DRFN08–11 ( 0.75,1,1 ) 0.07 0.97 1.11 0.39 -0.32
DO09–32 ( 0.9,1,1 ) 0.1 1.18 1.21 0.48 -0.38
FY17–25 ( 0.75,0.4,0.4 ) 0.07 1.16 1.21 0.46 -0.39
FRD12–29 ( 0.88,0.33,0.33 ) 0.03 1.92 1.37 0.85 -0.82
KS13–12 ( 0.75,1,0.5 ) 0.07 1.24 1.22 0.52 -0.45
STS13–13 ( 0.75,1,0.25 ) 0.08 2.23 1.88 0.75 -0.67
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Note: For each treatment in each experiment, the table reviews the treatment parameters, the observed
relative frequency of cooperation (in state dd in first halves of sessions), the expected payoff cooper-
ating in that state π̂(c), the expected payoff of defecting in that state π̂(d), the “predicted” probability
of cooperation based on the logistic regression of cooperation rates on monetary incentive π̂(c)− π̂(c),
and the absolute deviation of that prediction.



Appendix B

Appendix to Chapter 2

B.1 Descriptives

Figure B.1: Expectations and ambitions by training offers

Notes: Male less educated employees only. Top row expectations; bottom row ambitions. Source:
NEPS; own calculations based on estimation sample.
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Figure B.2: Employment by training offers

Source: NEPS; own calculations bases on estimation sample. Male employees, less-educated only.

Figure B.3: Career ambitions by training participation

Notes: Scale ranges from 1 ="very important" to 5 ="very unimportant". Less-educated male
employees only. Training participation defined as having participated at least in 20hrs of training. Age
is grouped into three year intervals, i.e. the data point at age 51 refers to ages 50-52. Source: NEPS,
subsample; own calculations.
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Table B.1: Individual characteristics by training offers

Variable No training offer Training offer

Ambitions

Importance of status maintenance 1.994 1.971
(1.303) (1.292)

Importance career advancement 3.528 3.331
(1.122) (1.105)

Importance perform tasks better 1.977 1.891
(1.018) (0.883)

Importance job security 2.038 2.087
(1.312) (1.341)

Importance of keeping up 2.109 2.038
with colleges (1.177) (1.065)

Attitudes
Lazy 2.132 2.248

(1.072) (1.131)
Importance of career 2.593 2.583

(1.091) (1.105)
Wages
Gross wage 2990.9 3797.9

(1235.7) (1502.8)
Net wage 2034.4 2529.3

(1035.7) (949.1)

Notes: Mean values, standard deviations in parentheses. Ambitions: 1 = very important,
5= very unimportant. Lazyness: 1= not lazy at all, 5 very lazy. For a brake down by age
see Figures B.4 and B.5 Source: NEPS data, less-educated male employees in full-time
employment only.
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Figure B.4: Career Ambitions by training offers (TO)

Notes: Scale ranges from 1 ="very important" to 5 ="very unimportant". Less educated male
employees only. Source: NEPS, subsample; own calculations.
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Figure B.5: Ambitions by training offers and training participation

Source: NEPS; own calculations bases on estimation sample. Male less-educated employees only. Top
row training participation; bottom row training offers.

Figure B.6: Pre-choice human capital of training by age

Notes: Human capital of training as defined in section 2.3.3. Source: NEPS; own calculations base.
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B.2 Estimation

I use a multinomial-logit model to approximate the choices. First, the dynamic pro-
gramming problem is solved using backward induction. I use linear interpolation for
expected value functions of periods that are more than two periods ahead from the de-
cision period. Interpolation is used for the state variables of wages and human capital
of training only.1

The log-likelihood function is defined as follows:

L =
N

∑
i=1

log
[ t̄

∏
t=t0

P(dit |θ,sit) f (wobs
it |θ,sit)

]
(B.1)

with parameter vector θ and state-variables sit = {trainit ,TOit ,wageit ,JSit}
Individual likelihood contributions for parameters θ and state variables sit :

Pr(d = ℓt|sit ,θ) = P(Dit = {u, ℓ, ℓt}|sit ,θ)
exp(V̄ℓt(sit ,θ))

∑c∈{ℓt,ℓ,u} exp(V̄c(sit ,θ))
f (wageobs|sit ,θ)

Pr(d = ℓ|sit ,θ) =[
Pr(Dit = {u, ℓ, ℓt}|sit ,θ)

exp(V̄ℓ(sit ,θ))

∑c∈{ℓt,ℓ,u} exp(V̄c(sit ,θ))

+Pr(Dit = {u, ℓ}|sit ,θ)
exp(V̄ℓ(sit,θ))

∑c∈{ℓ,u} exp(V̄c(sit ,θ))

]
f (wageobs|sit ,θ)

Pr(d = u|sit ,θ) =

Pr(Dit = {u, ℓ, ℓt}|sit ,θ)
exp(V̄u(sit ,θ))

∑c∈{ℓt,ℓ,u} exp(V̄c(sit ,θ))

+Pr(Dit = {u, ℓ}|sit ,θ)
exp(V̄u(sit ,θ))

∑c∈{ℓ,u} exp(V̄c(sit ,θ))
+Pr(Dit = {u}|sit ,θ)

where V̄ () is the systematic component of the value function without the preference
shock. I estimate the parameters of the model with the maximum-likelihood method
using nonlinear minimization with a Newton-type method in R (nlm). Several starting
values were tested to ensure the parameters represent the global optimum. The stan-
dard errors at the optimum are derived using the information matrix equality (BHHH
method) with numerical gradient (see Henningsen and Toomet, 2011).

1The grid for net-monthly wages is {1500,2000,2500,3000,3500,4200,5000,10000}, for training
{0,0.8,1,1.8,3}.
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Appendix to Chapter 3

C.1 Supplementary tables for section 3.5

Table C.1: Shares of employees with gross hourly wages > 8.50e per hour among
employees with gross hourly wages < 8.50e per hour in 2012

Year Share with wage > 8.50e per hour CI Observations

2012 0.000 [0.000,0.000] 551
2013 0.424 [0.357,0.491] 551
2014 0.544 [0.478,0.609] 551

Only employees eligible for the minimum wage and employed in all years 2012-2014. Source: SOEP, waves 2012-2014;
own calculations.

Table C.2: Share of job changers by deciles of the gross hourly wage distribution,
years 2011-2014 pooled

Decile Share of job changes CI Observations

1 0.39 [0.36,0.41] 5,052
2 0.33 [0.31,0.35] 5,047
3 0.27 [0.25,0.29] 5,090
4 0.23 [0.21,0.25] 5,013
5 0.19 [0.17,0.20] 5,114
6 0.14 [0.13,0.16] 4,976
7 0.12 [0.11,0.14] 5,065
8 0.11 [0.10,0.13] 5,032
9 0.09 [0.08,0.10] 5,045
10 0.11 [0.09,0.12] 5,046

Source: SOEP, waves 2011-2014; own calculations.

Descriptive evidence over time on the employment levels and sectors of affected em-
ployees shows that employment conditions of low-wage employees were hardly af-
fected by the reform (Table C.3). Most employees belonging to the bottom 11% of the
hourly wage distribution in a respective year are full-time employed. The full-time
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share does not change significantly over time. The share of part-time employment
increases in post-reform years. In 2016 the part-time share is significantly above pre-
reform years. The proportion of marginal employment decreases, albeit not signifi-
cantly. These findings are consistent with previous evidence pointing towards some
transformation of marginal jobs into part-time employment (Garloff, 2019; Schmitz,
2019; Bonin et al., 2019; Bachmann et al., 2017; vom Berge and Weber, 2017).

Table C.3: Eligible individuals in the bottom 11% of the hourly wage distribution

2012 2013 2014 2015 2016

Employment categories in %
- full time 53.99 54.85 49.36 56.19 50.81
- part time 18.43 18.58 17.61 20.47 24.47
- marginal 25.25 24.48 29.84 20.89 22.89
Contractual working hours per week
- mean 29.67 29.86 28.40 29.93 28.26
- median 31.54 32.46 29.54 32.54 30.46
Sectors (in %)
Agriculture 0.47 0.38 0.54 0.42 0.43
Energy 0.35 0.46 0.30 0.19 0.06
Manufacturing 14.62 14.67 11.18 12.81 12.81
Construction 6.58 7.48 4.37 5.87 7.44
Trade 26.75 31.90 29.91 30.64 28.53
Transport 5.20 4.92 4.58 4.62 4.49
Bank, Insurance 1.06 1.17 0.87 0.95 0.53
Services 38.88 38.52 38.98 41.30 35.44

Observations 1348 1534 1289 1482 1244

Notes: Affected individuals: bottom 11% of the hourly wage distri-
bution – reference: share of individuals who earned less than 8.50e
per hour in 2013.
Individual frequency weights used. Bootstrapped confidence inter-

vals based on 500 replications.
For confidence intervals see tables C.4 and C.5, Appendix.
Source: SOEP, waves 2012-2016; own calculations.

There is some fluctuation in mean and median working hours before and after the
minimum wage reform. Yet, this variation is not statistically significant. Large shares
of low-wage employees work in the trade, service, and manufacturing sectors: About
40% work in the service sector, about 30% in the trade sector, and around 13% in
the manufacturing sector. Sectoral shares also fluctuate, however they do not change
significantly over time. Selection through a reduction of, or compositional changes
working hours is not a problem under the statutory level of 8.50e per hour. However,
ruling out negative employment effects by assumption in the counterfactual scenarios
with full compliance, especially with a markedly higher minimum wage level of 12e
per hour, would be too restrictive. Redistributive effects can thus only be interpreted
as upper bounds in those counterfactual scenarios.
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Table C.4: Confidence intervals for Table C.3 – employment & working hours

Employment categories Weekly working hours
Year full-time part-time marginal mean median

CI CI CI CI CI

2012 54.0 [49.4;57.5] 18.4 [15.2;21.9] 25.2 [22.1;28.8] 29.7 [28.7;30.7] 31.5 [29.5;35.0]
2013 54.9 [50.6;58.7] 18.6 [15.9;21.4] 24.5 [21.1;28.6] 29.9 [28.9;30.8] 32.5 [29.6;35.0]
2014 49.4 [44.6;54.4] 17.6 [14.6;21.2] 29.8 [25.3;33.6] 28.4 [27.3;29.8] 29.5 [29.5;30.0]
2015 56.2 [52.2;60.1] 20.5 [17.4;23.8] 20.9 [17.8;24.3] 29.9 [28.8;31.0] 32.5 [29.5;34.5]
2016 50.8 [46.2;55.6] 24.7 [21.0;29.0] 22.9 [18.5;27.0] 28.3 [27.1;29.4] 30.5 [29.5;33.5]

Source: SOEP, waves 2011-2016; own calculations.

Table C.5: Confidence intervals for Table C.3 – sectors

Year Agriculture Energy Manufacturing Construction
CI CI CI CI

2012 0.5 [0.2;0.9] 0.4 [0.1;0.8] 14.6 [11.6;17.3] 6.6 [4.9;8.4]
2013 0.4 [0.1;0.8] 0.5 [0.1;1.1] 14.7 [12.0;17.5] 7.5 [5.3;9.8]
2014 0.5 [0.2;1.1] 0.3 [0.0;0.7] 11.2 [8.9;13.7] 4.4 [2.8;6.2]
2015 0.4 [0.1;0.8] 0.2 [0.0;0.5] 12.8 [10.6;15.7] 5.9 [4.2;7.7]
2016 0.4 [0.0;0.9] 0.1 [0.0;0.2] 12.8 [10.1;15.6] 7.4 [4.7;10.4]

Year Trade Transport Bank / Ins. Services
CI CI CI CI

2012 26.7 [23.4;30.5] 5.2 [3.7;7.1] 1.1 [0.4;1.9] 38.9 [35.0;43.6]
2013 31.9 [28.3;35.9] 4.9 [3.6;6.6] 1.2 [0.2;2.5] 38.5 [33.9;42.7]
2014 29.9 [25.8;33.9] 4.6 [2.8;7.0] 0.9 [0.3;1.7] 39.0 [34.6;43.0]
2015 30.6 [26.9;34.2] 4.6 [3.5;5.9] 0.9 [0.1;2.4] 41.3 [37.2;45.6]
2016 28.5 [24.0;32.5] 4.5 [3.1;5.8] 0.5 [0.1;1.0] 35.4 [31.6;40.3]

Source: SOEP, waves 2011-2016; own calculations.



184 APPENDIX C. APPENDIX TO CHAPTER 3

C.2 Supplementary tables for the wage analysis in sub-
section 3.6.1

This part of the Appendix provides supplementary tables for the wage analysis of sub-
section 3.6.1. It contains tables on distributional moments or measures and on the
differences of these statistics between years or scenarios. All tables contain results
based on observed data and five different counterfactual scenarios:

• Scenario A is a full compliance scenario for the statutory minimum wage level
of 8.50e per hour. All wages of eligible employees below 8.50e are set to
8.50e. All other variables are kept unchanged.

• Scenario B is a full compliance scenario for a markedly higher minimum wage
level of 12e per hour. All wages of eligible employees below 12e are set to
12e. All other variables are kept unchanged.

Table C.6: Quantiles of the hourly gross wage distribution (in e per hour),
eligible employees, 2012-2016

Year Percentiles Median
P1 P5 P10

CI CI CI CI

2012 4.66 [4.19;4.72] 7.11 [6.98;7.34] 8.45 [8.26;8.61] 15.17 [14.97;15.53]
2013 4.72 [4.25;4.95] 7.08 [6.99;7.26] 8.43 [8.17;8.64] 15.15 [14.95;15.36]
2014 4.72 [4.47;4.81] 7.13 [6.99;7.24] 8.51 [8.21;8.65] 15.69 [15.35;15.88]
2015 4.72 [4.22;5.31] 7.72 [7.49;7.99] 9.01 [8.80;9.20] 16.33 [16.09;16.61]
2016 5.31 [4.99;5.88] 8.12 [7.90;8.29] 9.11 [8.99;9.32] 16.32 [15.96;16.74]
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015 8.50 [8.50;8.50] 8.50 [8.50;8.50] 9.01 [8.80;9.20] 16.33 [16.09;16.64]
2016 8.50 [8.50;8.50] 8.50 [8.50;8.50] 9.11 [8.99;9.32] 16.32 [15.97;16.64]
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015 12.00 [12.00;12.00] 12.00 [12.00;12.00] 12.00 [12.00;12.00] 16.33 [16.03;16.66]
2016 12.00 [12.00;12.00] 12.00 [12.00;12.00] 12.00 [12.00;12.00] 16.32 [15.96;16.66]

Notes: Individual frequency weights used. Bootstrapped confidence intervals based on 500 replications.
In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold, everything else unchanged, in-
cluding employment. For significance of differences see Table C.7. Source: SOEP, waves 2012-2016; own
calculations.
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Table C.7: Differences in quantiles of the hourly gross wage distribution (in e per hour), eligible
employees, 2012-2016

Year Percentiles Median
P1 P5 P10 N

CI CI CI CI

2013-2012 0.05 [0.00;0.53] -0.03 [-0.26;0.10] -0.02 [-0.17;0.17] -0.02 [-0.38;0.18] 13,992
2014-2013 0.00 [-0.24;0.47] 0.05 [-0.13;0.14] 0.08 [-0.13;0.34] 0.53 [0.33;0.74] 12,373
2015-2014 0.00 [-0.10;0.24] 0.59 [0.48;0.73] 0.50 [0.36;0.80] 0.64 [0.45;0.98] 12,144
2016-2014 0.59 [0.49;0.83] 0.99 [0.88;1.13] 0.60 [0.46;0.91] 0.63 [0.44;0.97] 10,732
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 3.78 [3.69;4.03] 1.37 [1.26;1.51] 0.50 [0.36;0.80] 0.64 [0.45;0.98] 12,144
2016-2014 3.78 [3.69;4.03] 1.37 [1.26;1.51] 0.60 [0.46;0.91] 0.63 [0.44;0.97] 10,732
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015-2014 7.28 [7.19;7.53] 4.87 [4.76;5.01] 3.49 [3.35;3.79] 0.64 [0.45;0.98] 12,144
2016-2014 7.28 [7.19;7.53] 4.87 [4.76;5.01] 3.49 [3.35;3.79] 0.63 [0.44;0.97] 10,732

Notes: This table contains differences and confidence intervals of these differences for the values in Table C.6. All
values of the counterfactual scenarios are compared to the observed 2014 values. Bootstrapped confidence intervals
based on 500 replications. In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold, everything
else unchanged, including employment. Source: SOEP, waves 2012-2016; own calculations.

Table C.8: Inequality and poverty measures for the hourly gross wage distribution, eligible
employees, 2012-2016

Year Inequality Poverty measures
Atkinson Poverty rate Poverty gap FGT(2) Poverty

CI CI CI CI line

2012 0.20 [0.19;0.21] 13.10 [12.20;14.38] 2.73 [2.52;3.02] 0.94 [0.84;1.08] 9.10
2013 0.20 [0.19;0.21] 13.15 [12.25;14.14] 2.70 [2.46;2.97] 0.90 [0.79;1.02] 9.09
2014 0.21 [0.20;0.22] 15.39 [13.55;16.36] 3.04 [2.75;3.29] 1.02 [0.89;1.13] 9.41
2015 0.20 [0.19;0.21] 13.62 [12.66;15.04] 2.70 [2.43;3.00] 0.89 [0.76;1.03] 9.80
2016 0.19 [0.18;0.21] 14.21 [12.63;15.39] 2.36 [2.09;2.68] 0.72 [0.61;0.86] 9.79
Scenario A Full compliance scenario, minimum wage level: 8.50e per hour
2015 0.17 [0.16;0.18] 13.62 [12.79;15.08] 1.41 [1.24;1.65] 0.17 [0.13;0.22] 9.80
2016 0.17 [0.16;0.18] 14.21 [12.72;15.41] 1.35 [1.13;1.60] 0.16 [0.12;0.21] 9.79
Scenario B Full compliance scenario, minimum wage level: 12e per hour
2015 0.13 [0.12;0.14] 0.00 [0.00;0.00] 0.00 [0.00;0.00] 0.00 [0.00;0.00] 9.80
2016 0.13 [0.12;0.14] 0.00 [0.00;0.00] 0.00 [0.00;0.00] 0.00 [0.00;0.00] 9.79

Notes: Individual frequency weights used. Bootstrapped confidence intervals based on 500 replications. For
inequality and poverty measures see definition in sub-section 3.5.5.
In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold, everything else unchanged, in-
cluding employment. For significance of differences see Table C.9.
Source: SOEP, waves 2012-2016; own calculations.
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Table C.9: Differences in inequality & poverty measures for the hourly gross wage distribution,
eligible employees, 2012-2016

Year Inequality Poverty measures
Atkinson Poverty rate Poverty gap FGT(2)

CI CI CI CI

2013-2012 0.00 [-0.02;0.02] 0.05 [-1.61;1.32] -0.03 [-0.44;0.29] -0.04 [-0.23;0.11]
2014-2013 0.01 [-0.01;0.02] 2.23 [0.25;3.50] 0.34 [-0.05;0.69] 0.12 [-0.06;0.28]
2015-2014 -0.01 [-0.03;0.01] -1.77 [-3.11;0.63] -0.34 [-0.75;0.10] -0.12 [-0.31;0.09]
2016-2014 -0.02 [-0.03;0.00] -1.18 [-2.92;1.09] -0.68 [-1.05;-0.25] -0.30 [-0.47;-0.11]
Scenario A Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 -0.04 [-0.05;-0.02] -1.77 [-2.97;0.54] -1.63 [-1.89;-1.25] -0.85 [-0.97;-0.71]
2016-2014 -0.04 [-0.06;-0.02] -1.18 [-3.06;0.91] -1.68 [-2.03;-1.30] -0.86 [-0.98;-0.72]
Scenario B Full compliance scenario, minimum wage level: 12e per hour
2015-2014 -0.08 [-0.10;-0.07] -15.39 [-16.36;-13.55] -3.04 [-3.29;-2.75] -1.02 [-1.13;-0.89]
2016-2014 -0.08 [-0.10;-0.07] -15.39 [-16.36;-13.55] -3.04 [-3.29;-2.75] -1.02 [-1.13;-0.89]

Notes: This table contains differences and confidence intervals of these differences for the values in Table C.8.
All values of the counterfactual scenarios are compared to the observed 2014 values. Bootstrapped confidence
intervals based on 500 replications. For inequality and poverty measures see definition in sub-section 3.5.5. For
number of observations see Table C.7. In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold,
everything else unchanged, including employment. Source: SOEP, waves 2012-2016; own calculations.
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C.3 Supplementary figures and tables for the income
analysis in sub-section 3.6.2

This part of the Appendix provides supplementary tables for the income analysis of
sub-section 3.6.2. It contains tables on distributional moments or measures and on the
differences of these statistics between years or scenarios. All tables contain results
based on observed data and five different counterfactual scenarios:

• Scenario A is a full compliance scenario for the statutory minimum wage level
of 8.50e per hour. All wages of eligible employees below 8.50e are set to
8.50e. All other variables are kept unchanged.

• Scenario B is a full compliance scenario for a markedly higher minimum wage
level of 12e per hour. All wages of eligible employees below 12e are set to
12e. All other variables are kept unchanged.

Table C.10: Quantiles & moments of the monthly disposable household equivalence
income distribution (in e), working-age households, 2012-2016

Year P5 P10 Mean Median N
CI CI CI CI

2012 622 [593;641] 708 [692;725] 1754 [1718;1788] 1488 [1451;1524] 11,320
2013 636 [623;647] 716 [703;733] 1795 [1762;1826] 1497 [1457;1527] 12,560
2014 664 [649;671] 735 [721;751] 1848 [1813;1887] 1546 [1508;1582] 10,773
2015 657 [633;672] 748 [728;767] 1875 [1837;1916] 1575 [1526;1616] 10,566
2016 650 [627;663] 742 [724;770] 1885 [1847;1931] 1610 [1571;1653] 10,214
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015 657 [639;672] 750 [728;770] 1882 [1842;1920] 1583 [1541;1618] 10,566
2016 653 [627;665] 747 [724;771] 1890 [1855;1928] 1611 [1574;1652] 10,214
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015 661 [641;673] 755 [729;773] 1904 [1864;1940] 1616 [1580;1649] 10,566
2016 654 [629;670] 751 [726;779] 1909 [1865;1952] 1642 [1599;1681] 10,214

Notes: The sample includes all households without members exceeding age 65, irrespective of their
employment status. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. In scenario A (B) all wages
below 8.50e (12e) are lifted to this threshold, everything else unchanged, including employment. For
significance of differences see Table C.11. Source: SOEP, waves 2012-2016; own calculations.
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Table C.11: Differences in quantiles & moments of the monthly disposable
household equivalence income distribution (in e), working-age households,
2012-2016

Year P5 P10 Mean Median N
CI CI CI CI

2013-2012 14 [-5;43] 8 [-9;24] 41 [-5;85] 9 [-27;46] 12,560
2014-2013 28 [17;41] 19 [2;32] 53 [4;105] 49 [19;89] 10,773
2015-2014 -7 [-14;8] 13 [-3;27] 27 [-26;77] 29 [-7;67] 10,566
2016-2014 -14 [-21;5] 7 [-9;21] 37 [-12;99] 64 [20;107] 10,214

Scenario A Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 -7 [-14;8] 15 [-1;29] 34 [-22;86] 37 [1;75] 10,566
2016-2014 -11 [-18;8] 12 [-3;26] 41 [-5;96] 65 [21;108] 10,214
Scenario B Full compliance scenario, minimum wage level: 12e per hour
2015-2014 -3 [-10;12] 20 [4;34] 56 [1;106] 70 [34;108] 10,566
2016-2014 -10 [-17;9] 16 [0;30] 61 [10;115] 96 [53;140] 10,214

Notes: The sample includes all households without members exceeding age 65, irrespec-
tive of their employment status. Equivalence weights according to the new OECD scale
and household frequency weights used. Bootstrapped confidence intervals based on 500
replications. In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold,
everything else unchanged, including employment. Source: SOEP, waves 2012-2016; own
calculations.
Table C.12: Inequality & poverty measures of the monthly disposable household
equivalence income distribution, working-age households, 2012-2016

Year Inequality Poverty measures
Atkinson Poverty rate Poverty gap FGT(2) Poverty

CI CI CI CI line

2012 0.30 [0.29;0.31] 20.7 [19.4;21.8] 4.9 [4.5;5.3] 1.9 [1.7;2.1] 892.6
2013 0.30 [0.29;0.31] 21.1 [19.5;22.2] 4.6 [4.2;5.0] 1.6 [1.4;1.8] 898.2
2014 0.30 [0.29;0.31] 21.1 [19.6;22.3] 4.7 [4.3;5.1] 1.7 [1.5;1.9] 927.6
2015 0.30 [0.29;0.32] 22.5 [20.7;23.7] 5.0 [4.5;5.4] 1.8 [1.6;2.0] 945.2
2016 0.30 [0.28;0.32] 22.4 [21.2;23.8] 5.3 [4.8;5.7] 1.9 [1.7;2.1] 965.7
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015 0.30 [0.28;0.31] 21.8 [20.3;23.0] 4.9 [4.4;5.3] 1.7 [1.5;1.9] 950.0
2016 0.30 [0.28;0.31] 21.8 [20.6;23.4] 5.1 [4.7;5.6] 1.9 [1.6;2.1] 966.5
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015 0.30 [0.28;0.31] 21.9 [20.8;23.0] 5.1 [4.7;5.5] 1.8 [1.6;2.0] 969.8
2016 0.29 [0.28;0.31] 22.4 [20.8;23.5] 5.3 [4.8;5.7] 1.9 [1.7;2.2] 985.5

Notes: The sample includes all households without members exceeding age 65, irrespective of
their employment status. Equivalence weights according to the new OECD scale and household
frequency weights used. Bootstrapped confidence intervals based on 500 replications. For in-
equality and poverty measures see definition in sub-section 3.5.5. Poverty line refers to respective
year (flexible poverty line). In scenario A (B) all wages below 8.50e (12e) are lifted to this
threshold, everything else unchanged, including employment. For significance of differences see
Table C.13. For results with a fixed poverty line see Table C.14. For number of observations see
table C.10 Source: SOEP, waves 2012-2016; own calculations.
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Table C.13: Differences in inequality & poverty measures for the monthly disposable
household equivalence income distribution, working-age households, 2012-2016

Year Inequality Poverty measures
Atkinson Poverty rate Poverty gap FGT(2) Poverty

CI CI CI CI line

2013-2012 -0.00 [-0.02;0.02] 0.4 [-1.6;2.0] -0.3 [-0.9;0.3] -0.3 [-0.6;0.0] 898.2
2014-2013 0.00 [-0.02;0.02] -0.0 [-1.8;2.0] 0.1 [-0.5;0.7] 0.1 [-0.2;0.4] 927.6
2015-2014 0.00 [-0.02;0.02] 1.4 [-0.7;3.3] 0.3 [-0.4;0.8] 0.1 [-0.2;0.4] 945.2
2016-2014 -0.00 [-0.02;0.02] 1.3 [-0.4;3.6] 0.5 [-0.1;1.2] 0.2 [-0.1;0.5] 965.7
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 -0.00 [-0.02;0.02] 0.7 [-1.5;2.4] 0.2 [-0.4;0.7] 0.0 [-0.2;0.3] 950.0
2016-2014 -0.00 [-0.03;0.02] 0.7 [-1.0;3.1] 0.4 [-0.2;1.1] 0.2 [-0.1;0.5] 966.5
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015-2014 -0.00 [-0.02;0.02] 0.9 [-0.8;2.7] 0.4 [-0.2;0.9] 0.1 [-0.2;0.4] 969.8
2016-2014 -0.01 [-0.03;0.01] 1.4 [-0.8;2.9] 0.6 [-0.1;1.2] 0.3 [-0.1;0.6] 985.5

Notes: The sample includes all households without members exceeding age 65, irrespective of their em-
ployment status. Equivalence weights according to the new OECD scale and household frequency weights
used. Bootstrapped confidence intervals based on 500 replications. For inequality and poverty measures
see definition in sub-section 3.5.5. Poverty line refers to respective year (flexible poverty line). In sce-
nario A (B) all wages below 8.50e (12e) are lifted to this threshold, everything else unchanged, including
employment. Source: SOEP, waves 2012-2016; own calculations.

Table C.14: Poverty measures of the monthly disposable household
equivalence income distribution, working-age households, 2012-2016 –
robustness: fixed poverty line

Year Poverty measures
Poverty rate Poverty gap FGT(2) Poverty

CI CI CI line

2012 22.87 [20.73;24.96] 5.55 [4.87;6.20] 2.13 [1.80;2.43] 927.62
2013 23.04 [21.15;25.31] 5.19 [4.66;5.83] 1.82 [1.59;2.08] 927.62
2014 21.06 [19.52;22.32] 4.72 [4.28;5.12] 1.69 [1.46;1.88] 927.62
2015 21.23 [19.07;23.52] 4.66 [4.12;5.28] 1.66 [1.43;1.92] 927.62
2016 20.37 [18.18;22.16] 4.59 [3.99;5.13] 1.66 [1.37;1.93] 927.62
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015 20.30 [17.79;22.39] 4.52 [3.95;5.08] 1.61 [1.37;1.85] 927.62
2016 19.73 [17.67;21.43] 4.48 [3.82;5.14] 1.62 [1.34;1.92] 927.62
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015 19.56 [17.56;21.52] 4.43 [3.89;5.00] 1.58 [1.36;1.82] 927.62
2016 19.19 [17.29;21.26] 4.38 [3.83;4.99] 1.57 [1.33;1.85] 927.62

Notes: The sample includes all households without members exceeding age 65, irre-
spective of their employment status. Equivalence weights according to the new OECD
scale and household frequency weights used. Bootstrapped confidence intervals based
on 500 replications. For inequality and poverty measures see definition in sub-section
3.5.5. Poverty line is fixed to 2014 level. In scenario A (B) all wages below 8.50e
(12e) are lifted to this threshold, everything else unchanged, including employment.
Source: SOEP, waves 2012-2016; own calculations.
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C.4 Robustness: results for observed disposable house-
hold incomes

This part of the Appendix provides additional material for robustness tests concerning
the income analysis of sub-section 3.6.2. We re-analyze the distributional moments
and quantiles as well as inequality and poverty measures for disposable household
incomes reported directly by SOEP respondents. These results confirm the findings
based on simulated disposable household incomes discussed in sub-section 3.6.2.

Figure C.1: Robustness for reported incomes: quantiles & moments of the monthly
disposable household equivalence income distribution (in e), working-age house-
holds, 2012-2016

Notes: The sample includes all households without members exceeding age 65, irrespective of their
employment status. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. For exact values of the
confidence intervals see Table C.15, Appendix. Source: SOEP, waves 2012-2016; own calculations.
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Table C.15: Robustness for reported incomes: quantiles & moments of the monthly
disposable household equivalence income distribution (in e), working-age households,
2012-2016

Year P5 P10 Mean Median N
CI CI CI CI

2012 650 [630;662] 750 [730;766] 1717 [1688;1750] 1500 [1500;1533] 11,305
2013 625 [600;646] 750 [745;769] 1727 [1696;1761] 1500 [1500;1533] 12,552
2014 650 [629;674] 766 [750;788] 1805 [1766;1850] 1600 [1538;1600] 10,767
2015 667 [644;683] 783 [761;800] 1858 [1817;1899] 1615 [1600;1667] 10,559
2016 650 [617;680] 786 [762;800] 1840 [1800;1879] 1667 [1619;1680] 10,201

Notes: The sample includes all households without members exceeding age 65, irrespective of their em-
ployment status. Disposable household incomes as reported in SOEP household questionnaires. Equiv-
alence weights according to the new OECD scale and household frequency weights used. Bootstrapped
confidence intervals based on 500 replications. Source: SOEP, waves 2012-2016; own calculations.

Figure C.2: Robustness for reported incomes: inequality and poverty measures for the
monthly disposable household equivalence income distribution, working-age house-
holds, 2012-2016

Notes: The sample includes all households without members exceeding age 65, irrespective of their
employment status. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. For inequality and poverty
measures see definition in sub-section 3.5.5. Poverty line refers to respective year (flexible poverty
line). For exact values of the confidence intervals and poverty lines see Table C.16, Appendix.
Source: SOEP, waves 2012-2016; own calculations.
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Table C.16: Robustness for reported incomes: inequality & poverty measures for
the monthly disposable household equivalence income distribution, working-age
households, 2012-2016

Year Inequality Poverty measures
Atkinson Poverty rate Poverty gap FGT(2) Poverty

CI CI CI CI line

2012 0.25 [0.24;0.27] 16.7 [15.7;17.9] 4.0 [3.7;4.4] 1.5 [1.3;1.7] 900.0
2013 0.26 [0.25;0.27] 17.4 [16.5;18.6] 4.1 [3.9;4.5] 1.5 [1.3;1.7] 900.0
2014 0.27 [0.25;0.28] 19.4 [17.7;20.1] 4.6 [4.1;4.9] 1.7 [1.4;1.8] 960.0
2015 0.27 [0.25,0.28] 18.5 [17.4;19.6] 4.5 [4.1;5.0] 1.6 [1.4;1.8] 969.2
2016 0.26 [0.25;0.28] 18.8 [17.5;20.5] 5.0 [4.6;5.4] 1.9 [1.7;2.2] 1000.0

Notes: The sample includes all households without members exceeding age 65, irrespective of
their employment status. Disposable household incomes as reported in SOEP household question-
naires. Equivalence weights according to the new OECD scale and household frequency weights
used. Bootstrapped confidence intervals based on 500 replications. For inequality and poverty
measures see definition in sub-section 3.5.5. Source: SOEP, waves 2012-2016; own calculations.

Table C.17: Means of household gross
wages by deciles of the disposable house-
hold income distribution

Decile Household gross wages

2012 2013 2014 2015 2016

1 231 158 154 208 222
2 442 379 441 413 406
3 1229 1111 1224 1120 1184
4 1841 1776 1945 1861 1970
5 2291 2223 2254 2393 2598
6 2915 2782 2954 2993 3125
7 3386 3476 3618 3692 3702
8 3950 4147 4084 4324 4459
9 4728 4680 5095 5179 5212
10 5465 5476 5540 5766 6110

Notes: Table shows means of aggregated household
gross wages deciles of the disposable household in-
come distribution. Equivalence weights according to
the new OECD scale. Household frequency weights
used. Source: SOEP, waves 2012-2016; own calcu-
lations.
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C.5 Supplementary figures and tables for the analysis
of mechanisms in sub-section 3.6.3

This part of the Appendix provides supplementary material for the analysis of mech-
anisms that explain the (limited) pass-through from gross hourly wages to disposable
household incomes in sub-section 3.6.3.

Figure C.3: Welfare recipients, top-up benefits, and unemployment assistance bene-
fits, 2005-2018

Notes: The vertical line depicts the minimum wage introduction in 2015; total ALG II benefits in
1000e. Source: Federal employment agency, monthly data 2005-2018; own calculations.
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Table C.18: Differences in top-up benefits and welfare receipt, working-age households, 2012-2016

Top-up benefits (only working)1 Social assistance transfer (all households)

Calculated eligibility1 stated take-up3

Year eligibility avg. transfer e/year3 eligibility avg. transfer e/year3 take-up avg. transfer e/year3

CI CI CI CI CI CI

2013-2012 0.6 [-0.6;1.8] 49.0 [-31.2;123.0] 2.0 [0.3;3.7] 199.9 [51.7;360.6] 0.6 [-0.5;1.7] 71.5 [-14.5;163.9]
2014-2013 0.0 [-1.3;1.3] -15.5 [-94.5;67.1] -1.2 [-3.1;0.5] -100.1 [-272.1;50.6] 0.1 [-1.3;1.3] 31.2 [-83.4;136.1]
2015-2014 -0.5 [-1.8;0.9] 11.9 [-70.5;102.2] 0.4 [-1.5;2.4] 112.2 [-51.2;294.9] -0.4 [-1.6;1.0] -25.2 [-132.5;86.2]
2016-2014 -0.2 [-1.5;1.3] -3.3 [-83.6;91.4] 1.2 [-0.7;3.5] 146.0 [-40.5;325.2] 0.5 [-0.9;2.1] 43.7 [-97.3;179.7]
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 -1.4 [-2.7;-0.2] -66.1 [-147.5;13.2] -0.5 [-2.3;1.4] 28.1 [-145.7;204.0]
2016-2014 -0.7 [-2.1;0.8] -59.7 [-147.6;15.3] 0.8 [-1.3;2.7] 83.8 [-119.9;259.6]
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015-2014 -2.6 [-3.9;-1.3] -144.4 [-219.9;-61.7] -1.8 [-3.7;0.2] -69.1 [-227.9;119.4]
2016-2014 -1.8 [-3.2;-0.6] -137.4 [-217.5;-72.5] -0.6 [-2.7;1.4] -8.4 [-206.0;177.9]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment status. Equivalence weights according
to the new OECD scale and household frequency weights used. Bootstrapped confidence intervals based on 500 replications.
1 The number of households eligible and average transfer as calculated in our model. We exclude minor transfer eligibility of less than 120e per year.
2 The number of households eligible and average transfer as stated in the survey (SOEP).
3 Average transfer per year is an average over the entire sample, i.e. reflecting both, the number of households eligible and the amount that eligible

households receive.
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Table C.19: Share of affected by deciles of the disposable household equivalence income distribu-
tion, working-age households, 2012-2016

Decile Share in %
2012 2013 2014 2015 2016

CI CI CI CI CI
1 2.4 [1.3;3.4] 2.6 [1.5;3.6] 2.7 [1.5;3.8] 2.5 [1.4;3.6] 2.0 [1.1;3.0]
2 9.0 [7.3;10.6] 8.3 [6.7;9.8] 7.4 [5.8;9.0] 8.3 [6.6;10.1] 8.0 [6.6;9.3]
3 20.1 [18.2;22.1] 18.9 [17.0;20.7] 19.4 [17.4;21.5] 19.2 [17.2;21.2] 19.2 [17.2;21.2]
4 15.2 [13.3;17.0] 15.3 [13.6;17.1] 18.6 [16.5;20.7] 17.2 [15.2;19.3] 19.3 [17.0;21.6]
5 13.1 [11.3;15.0] 13.4 [11.6;15.2] 12.9 [11.0;14.8] 13.7 [11.7;15.6] 12.1 [10.1;14.1]
6 9.8 [8.0;11.5] 10.6 [8.9;12.3] 10.5 [8.7;12.4] 9.3 [7.5;11.0] 12.8 [10.7;15.0]
7 10.8 [8.9;12.8] 5.7 [4.3;7.0] 5.8 [4.4;7.2] 8.3 [6.6;10.0] 7.0 [5.3;8.8]
8 4.5 [3.2;5.8] 5.1 [3.7;6.4] 5.3 [3.9;6.8] 5.2 [3.8;6.7] 8.9 [6.9;10.9]
9 3.5 [2.3;4.7] 2.8 [1.8;3.8] 3.6 [2.5;4.8] 4.0 [2.8;5.3] 2.6 [1.5;3.8]
10 1.7 [0.9;2.5] 1.9 [1.1;2.7] 3.2 [2.0;4.3] 2.0 [1.1;3.0] 2.7 [1.6;3.9]
Total 9.0 [8.5;9.5] 8.4 [8.0;8.9] 8.9 [8.4;9.5] 9.0 [8.4;9.5] 9.5 [8.9;10.0]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment
status. Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped
confidence intervals based on 500 replications. Source: SOEP, waves 2012-2016; own calculations.

Table C.20: Mean disposable household income by deciles of disposable household equivalence income
distribution, working-age households, 2012-2016

Decile Income in e
2012 2013 2014 2015 2016

CI CI CI CI CI
1 553 [542;563] 579 [571;588] 592 [583;602] 596 [586;605] 590 [581;599]
2 795 [792;798] 802 [799;805] 826 [823;829] 829 [826;832] 840 [837;842]
3 966 [963;968] 959 [957;961] 996 [993;998] 994 [991;996] 1012 [1009;1015]
4 1158 [1155;1161] 1147 [1144;1150] 1194 [1191;1198] 1204 [1200;1207] 1235 [1231;1240]
5 1372 [1368;1375] 1369 [1365;1372] 1417 [1413;1421] 1446 [1442;1450] 1486 [1482;1491]
6 1611 [1606;1615] 1617 [1613;1621] 1671 [1667;1675] 1696 [1692;1700] 1737 [1732;1742]
7 1868 [1863;1873] 1887 [1883;1892] 1947 [1942;1953] 1986 [1980;1992] 2014 [2008;2020]
8 2182 [2175;2188] 2233 [2227;2240] 2299 [2292;2306] 2358 [2350;2365] 2348 [2341;2356]
9 2660 [2648;2672] 2776 [2763;2788] 2840 [2827;2854] 2921 [2907;2935] 2869 [2855;2883]
10 4384 [4304;4464] 4585 [4508;4661] 4701 [4612;4790] 4737 [4655;4820] 4728 [4640;4816]
Total 1754 [1733;1776] 1795 [1774;1816] 1848 [1825;1871] 1875 [1852;1899] 1885 [1861;1909]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment status.
Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped confidence
intervals based on 500 replications. Source: SOEP, waves 2012-2016; own calculations.
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Table C.21: Moments and Poverty measures of the monthly disposable household equivalence income distribu-
tion, households with affected employees, 2012-2016

Year Income measures Poverty measures
Mean Median Poverty rate Poverty gap FGT(2) Poverty

CI CI CI CI CI line

2012 1410 [1341;1488] 1223 [1160;1302] 14.3 [10.7;18.1] 1.86 [1.40;2.39] 0.47 [0.31;0.68] 893
2013 1391 [1336;1449] 1227 [1151;1274] 14.0 [10.4;18.6] 1.92 1.29;2.61] 0.55 [0.33;0.80] 898
2014 1519 [1451;1619] 1251 [1204;1327] 13.2 [7.9;18.0] 1.54 [1.06;2.13] 0.39 [0.22;0.60] 928
2015 1487 [1420;1575] 1278 [1197;1367] 16.7 [11.2;20.3] 2.02 [1.38;2.68] 0.53 [0.33;0.76] 945
2016 1560 [1476;1678] 1335 [1266;1436] 14.7 [11.1;18.7] 2.03 [1.41;2.89] 0.64 [0.35;1.06] 966
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015 1516 [1453;1593] 1313 [1240;1384] 12.3 [;.9;16.4] 1.68 [1.08;2.30] 0.46 [0.25;0.66] 950
2016 1578 [1502;1683] 1351 [1290;1433] 12.1 [9.0;16.2] 1.73 [1.18;2.35] 0.58 [0.31;0.90] 967
Scenario B: Full compliance scenario, minimum wage level: 12e per hour
2015 1655 [1611;1708] 1472 [1438;1498] 10.6 [7.6;12.8] 1.51 [1.11;1.91] 0.45 [0.30;0.61] 970
2016 1728 [1673;1782] 1515 [1478;1568] 10.1 [8.1;12.6] 1.44 [1.05;1.85] 0.40 [0.27;0.56] 985

Notes: Households are affected if at least one person in the household earns an hourly wage belonging to the bottom 11% of the wage
distribution of the respective year. Equivalence weights according to the new OECD scale and household frequency weights used.
Bootstrapped confidence intervals based on 500 replications. For inequality and poverty measures see definition in sub-section 3.5.5.
Poverty line refers to respective year (flexible poverty line). In scenario A (B) all wages below 8.50e (12e) are lifted to this threshold,
everything else unchanged, including employment. For significance of differences see Table C.22. Source: SOEP, waves 2012-2016;
own calculations.

Table C.22: Differences in moments and poverty measures for the monthly disposable household equiv-
alence income distribution, households with affected employees, 2012-2016

Year Income measures Poverty measures
Mean Median Poverty rate Poverty gap FGT(2)

CI CI CI CI CI

2013-2012 -19 [-115;63] 4 [-121;82] -0.3 [-6.2;4.9] 0.06 [-0.83;0.95] 0.07 [-0.28;0.36]
2014-2013 128 [41;248] 24 [-34;122] -0.8 [-7.6;4.4] -0.37 [-1.24;0.50] -0.16 [-0.44;0.15]
2015-2014 -31 [-146;74] 27 [-90;117] 3.5 [-5.2;9.9] 0.48 [-0.57;1.22] 0.14 [-0.14;0.40]
2016-2014 41 [-74;175] 84 [-13;188] 1.5 [-4.4;8.1] 0.48 [-0.41;1.47] 0.26 [-0.10;0.71]
Scenario A: Full compliance scenario, minimum wage level: 8.50e per hour
2015-2014 -3 [-129;102] 61 [-39;152] -0.9 [-7.6;6.0] 0.14 [-0.77;0.98] 0.07 [-0.21;0.37]
2016-2014 60 [-76;189] 100 [7;192] -1.1 [-7.0;4.7] 0.19 [-0.63;0.91] 0.19 [-0.11;0.55]
Scenario B:Full compliance scenario, minimum wage level: 12e per hour
2015-2014 137 [24;221] 221 [141;263] -2.6 [-8.1;3.1] -0.03 [-0.73;0.68] 0.07 [-0.14;0.34]
2016-2014 209 [97;307] 264 [170;329] -3.1 [-8.3;2.8] -0.10 [-0.75;0.63] 0.02 [-0.24;0.29]

Notes: Households are affected if at least one person in the household earns an hourly wage belonging to the bottom 11% of
the wage distribution of the respective year. Equivalence weights according to the new OECD scale and household frequency
weights used. Bootstrapped confidence intervals based on 500 replications. For inequality and poverty measures see definition
in sub-section 3.5.5. Poverty line refers to respective year (flexible poverty line). In scenario A (B) all wages below 8.50e
(12e) are lifted to this threshold, everything else unchanged, including employment. Source: SOEP, waves 2012-2016; own
calculations.
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Table C.23: Employment shares by deciles of the monthly disposable household equivalence income distribution,
working-age households, 2012-2016

Decile Full-time employment Part-time employment Marginal employment

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

1 0.21 0.22 0.18 0.17 0.19 0.09 0.08 0.07 0.11 0.12 0.06 0.06 0.07 0.07 0.05
2 0.25 0.23 0.19 0.21 0.16 0.14 0.13 0.17 0.14 0.14 0.08 0.10 0.10 0.12 0.12
3 0.35 0.32 0.34 0.33 0.34 0.18 0.20 0.19 0.21 0.23 0.09 0.10 0.12 0.10 0.10
4 0.46 0.45 0.45 0.44 0.46 0.17 0.20 0.22 0.22 0.18 0.08 0.09 0.10 0.09 0.08
5 0.50 0.50 0.47 0.51 0.51 0.17 0.18 0.20 0.20 0.19 0.08 0.08 0.08 0.07 0.07
6 0.65 0.59 0.62 0.65 0.65 0.15 0.17 0.17 0.15 0.17 0.05 0.05 0.05 0.04 0.06
7 0.68 0.70 0.66 0.64 0.66 0.15 0.14 0.15 0.18 0.18 0.05 0.04 0.04 0.04 0.03
8 0.72 0.72 0.75 0.74 0.71 0.14 0.16 0.13 0.15 0.16 0.03 0.03 0.03 0.02 0.04
9 0.74 0.75 0.74 0.76 0.74 0.15 0.13 0.14 0.14 0.16 0.03 0.03 0.02 0.03 0.03
10 0.79 0.79 0.79 0.78 0.78 0.12 0.12 0.12 0.12 0.12 0.02 0.03 0.03 0.03 0.03
Total 0.53 0.53 0.52 0.52 0.52 0.15 0.15 0.15 0.16 0.16 0.06 0.06 0.06 0.06 0.06

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment status. Household
frequency weights used. Shares displayed in the respective decile and year refer to households which have at least one person in full-
time (part-time, marginal) employment. For confidence intervals see Tables C.25, C.26, and C.27, Appendix. Source: SOEP, waves
2012-2016; own calculations.
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Table C.24: Working time by employment status and deciles of the monthly disposable household equivalence income
distribution, working-age households, 2012-2016

Decile Full-time employment Part-time employment Marginal employment

2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

1 36.77 39.51 35.48 35.67 39.29 19.33 19.84 19.97 19.65 18.93 8.23 5.46 11.76 6.45 8.70
2 38.29 39.12 38.22 36.79 39.67 20.07 20.43 20.76 21.11 21.88 6.71 7.30 8.15 7.87 8.76
3 38.46 39.08 38.31 39.14 39.04 21.61 20.92 23.18 21.57 22.07 8.46 8.55 9.19 8.79 6.74
4 37.96 37.12 38.80 39.11 39.26 22.24 22.21 23.80 23.49 21.91 6.38 7.45 8.00 6.69 7.31
5 40.24 40.44 40.00 41.46 41.90 21.00 22.11 22.88 23.21 23.62 9.26 7.16 8.74 11.82 7.25
6 42.52 40.98 42.12 42.12 41.87 22.79 20.78 22.68 23.45 23.36 7.56 7.61 9.32 9.42 8.56
7 42.26 42.71 43.64 41.70 43.49 22.28 23.44 24.24 24.62 23.96 5.96 6.12 7.53 6.44 6.29
8 42.11 43.83 42.93 42.02 45.03 20.82 23.22 25.65 23.32 24.87 7.51 5.68 7.42 8.37 5.47
9 42.79 41.67 43.22 42.80 45.46 23.30 24.06 23.46 21.23 22.95 5.14 5.27 9.33 8.31 4.17
10 32.98 32.04 32.68 36.14 37.08 18.09 17.84 18.82 17.74 19.45 3.93 2.85 3.40 4.03 4.51
Total 39.79 39.75 40.10 40.38 41.72 21.36 21.68 22.83 22.26 22.60 7.25 6.80 8.37 8.04 7.13

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment status. Equivalence weights
according to the new OECD scale and household frequency weights used. Values refer to averages of aggregate working hours in the household
per employment status. I.e. within the household all hours are aggregated for each employment status (full-time, part-time, marginal employ-
ment), then the average over all households within this decile is computed. For confidence intervals see Tables C.28, C.29, and C.30, Appendix.
Source: SOEP, waves 2012-2016; own calculations.
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Table C.25: Full-time employment shares by deciles of the monthly disposable household equiv-
alence income distribution, working-age households, 2012-2016

Decile Share in %
2012 2013 2014 2015 2016

CI CI CI CI CI
1 21.0 [18.3;23.7] 21.5 [18.9;24.1] 18.1 [15.5;20.8] 16.6 [14.1;19.0] 19.0 [16.5;21.6]
2 24.7 [22.5;27.0] 23.1 [21.0;25.2] 19.0 [16.9;21.2] 21.0 [18.6;23.3] 16.0 [14.3;17.6]
3 34.5 [32.6;36.4] 32.5 [30.6;34.3] 33.7 [31.7;35.8] 32.6 [30.6;34.6] 33.6 [31.6;35.5]
4 45.8 [43.8;47.7] 44.9 [43.0;46.7] 44.7 [42.6;46.8] 44.1 [41.9;46.2] 46.0 [43.8;48.3]
5 50.3 [48.3;52.4] 50.0 [48.0;52.0] 47.3 [45.2;49.5] 50.5 [48.3;52.7] 51.4 [49.2;53.6]
6 65.5 [63.4;67.6] 58.6 [56.6;60.6] 61.9 [59.8;63.9] 65.1 [63.0;67.2] 64.9 [62.6;67.1]
7 67.7 [65.6;69.7] 69.9 [67.9;71.8] 66.2 [64.1;68.3] 64.0 [61.8;66.1] 65.8 [63.4;68.2]
8 71.5 [69.5;73.6] 72.1 [70.2;74.1] 74.9 [72.8;76.9] 74.2 [72.2;76.1] 71.2 [68.9;73.4]
9 73.5 [71.5;75.6] 75.4 [73.5;77.2] 73.7 [71.8;75.6] 75.5 [73.6;77.4] 74.2 [72.0;76.3]
10 79.3 [77.7;81.0] 78.9 [77.2;80.5] 78.5 [76.7;80.4] 78.0 [76.1;79.9] 77.5 [75.6;79.5]
Total 53.4 [52.6;54.1] 52.7 [52.0;53.4] 51.8 [51.0;52.6] 52.1 [51.3;52.9] 51.9 [51.2;52.7]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment
status. Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped
confidence intervals based on 500 replications. Shares displayed in the respective decile and year refer to households
which have at least one person in full-time employment. Source: SOEP, waves 2012-2016; own calculations.

Table C.26: Part-time employment shares by deciles of the monthly disposable household equiva-
lence income distribution, working-age households, 2012-2016

Decile Share in %
2012 2013 2014 2015 2016

CI CI CI CI CI
1 8.7 [6.9;10.6] 8.0 [6.4;9.7] 7.2 [5.5;8.9] 11.3 [9.2;13.4] 11.7 [9.6;13.7]
2 13.7 [[11.9;15.5] 12.9 [11.2;14.6] 16.5 [14.4;18.7] 13.8 [11.8;15.8] 13.8 [12.2;15.4]
3 18.3 [16.7;19.9] 20.0 [18.3;21.7] 18.8 [17.0;20.6] 21.3 [19.4;23.2] 23.3 [21.4;25.1]
4 17.1 [15.4;18.8] 19.6 [18.0;21.3] 21.8 [19.9;23.7] 21.9 [19.9;23.9] 18.1 [16.2;20.0]
5 17.2 [15.5;18.9] 18.2 [16.5;19.9] 19.8 [18.0;21.7] 20.0 [18.1;21.9] 19.1 [17.2;21.1]
6 15.1 [13.4;16.8] 16.5 [15.0;18.1] 16.8 [15.1;18.5] 14.9 [13.2;16.6] 17.5 [15.6;19.4]
7 15.0 [13.5;16.6] 13.7 [12.3;15.1] 15.1 [13.5;16.7] 18.4 [16.6;20.1] 17.9 [16.0;19.9]
8 13.7 [12.1;15.3] 15.7 [14.2;17.3] 13.1 [11.5;14.8] 15.5 [13.9;17.1] 15.8 [14.0;17.6]
9 15.1 [13.4;16.8] 12.6 [11.2;14.0] 13.7 [12.2;15.2] 13.7 [12.1;15.2] 15.6 [13.8;17.3]
10 11.9 [10.6;13.2] 11.8 [10.5;13.1] 12.1 [10.6;13.5] 11.5 [10.1;13.0] 11.8 [10;.4;13.3]
Total 14.6 [14.1;15.1] 14.9 [14.4;15.4] 15.5 [14.9;16.1] 16.2 [15.7;16.8] 16.5 [15.9;17.0]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment
status. Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped
confidence intervals based on 500 replications. Shares displayed in the respective decile and year refer to households
which have at least one person in part-time employment. Source: SOEP, waves 2012-2016; own calculations.
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Table C.27: Marginal employment shares by deciles of the monthly disposable household
equivalence income distribution, working-age households, 2012-2016

Decile Share in %
2012 2013 2014 2015 2016

CI CI CI CI CI
1 6.0 [4.4;7.6] 6.4 [4.9:7.9] 6.6 [4.9;8.2] 6.7 [5.0;8.3] 4.7 [3.3;6.0]
2 8.3 [6.9;9.8] 9.9 [8.4;11.5] 9.6 [8.0;11.2] 12.1 [10.2;14.0] 12.5 [10.9;14.0]
3 9.3 [8.0;10.5] 10.3 [9.0;11.6] 11.8 [10.3;13.3] 10.2 [8.9;11.6] 9.5 [8.3;10.8]
4 7.7 [6.6;8.8] 9.2 [8.0;10.3] 9.6 [8.2;10.9] 8.9 [7.7;10.2] 8.5 [7.1;9.9]
5 8.1 [6.9;9.3] 7.9 [6.7;9.1] 8.4 [7.1;9.7] 7.1 [5.9;8.3] 6.6 [5.4;7.7]
6 5.2 [4.3;6.2] 4.8 [3.9;5.8] 4.6 [3.6;5.6] 3.8 [2.9;4.7] 6.1 [4.9;7.3]
7 4.5 [3.6;5.5] 4.1 [3.3;5.0] 4.2 [3.3;5.1] 4.4 [3.5;5.3] 3.2 [2.4;4.1]
8 2.9 [2.2;3.7] 3.0 [2.2;3.8] 3.2 [2.4;4.1] 2.5 [1.8;3.2] 3.8 [2.8;4.8]
9 2.8 [2.1;3.5] 3.2 [2.4;4.0] 2.1 [1.5;2.7] 2.9 [2.2;3.7] 2.7 [1.9;3.6]
10 2.2 [1.6;2.8] 2.6 [2.0;3.2] 2.9 [2.2;3.6] 2.6 [1.9;3.3] 3.5 [2.6;4.3]
Total 5.7 [5.4;6.1] 6.1 [5.8;6.5] 6.3 [5.9;6.7] 6.1 [5.7;6.5] 6.1 [5.7;6.5]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment
status. Equivalence weights according to the new OECD scale and household frequency weights used. Boot-
strapped confidence intervals based on 500 replications. Shares displayed in the respective decile and year refer
to households which have at least one person in marginal employment. Source: SOEP, waves 2012-2016; own
calculations.

Table C.28: Working time of full-time employed by deciles of the monthly disposable household
equivalence income distribution, working-age households, 2012-2016

Decile 2012 2013 2014 2015 2016
CI CI CI CI CI

1 36.8 [34.1;39.4] 39.5 [36.9;42.1] 35.5 [32.6;38.3] 35.7 [32.9;38.4] 39.3 [35.9;42.7]
2 38.3 [36.1;40.4] 39.1 [37.1;41.2] 38.2 [36.0;40.4] 36.8 [34.6;39.0] 39.7 [37.3;42.0]
3 38.5 [37.2;39.7] 39.1 [37.9;40.2] 38.3 [37.1;39.5] 39.1 [38.1;40.2] 39.0 [37.7;40.3]
4 38.0 [37.0;38.9] 37.1 [36.1;38.1] 38.8 [37.8;39.8] 39.1 [38.1;40.1] 39.3 [38.2;40.3]
5 40.2 [39.2;41.2] 40.4 [39.4;41.5] 40.0 [38.9;41.1] 41.5 [40.3;42.7] 41.9 [40.6;43.2]
6 42.5 [41.4;43.7] 41.0 [39.8;42.1] 42.1 [41.0;43.3] 42.1 [41.1;43.1] 41.9 [40.5;43.2]
7 42.3 [40.9;43.6] 42.7 [41.5;43.9] 43.6 [42.4;44.8] 41.7 [40.5;42.9] 43.5 [42.0;45.0]
8 42.1 [40.6;43.6] 43.8 [42.6;45.1] 42.9 [41.4;44.4] 42.0 [40.5;43.5] 45.0 [43.4;46.6]
9 42.8 [41.1;44.5] 41.7 [40.1;43.2] 43.2 [41.6;44.8] 42.8 [41.2;44.4] 45.5 [43.7;47.2]
10 33.0 [31.2;34.8] 32.0 [30.2;33.8] 32.7 [30.8;34.6] 36.1 [34.2;38.1] 37.1 [35.1;39.1]
Total 39.8 [39.3;40.3] 39.7 [39.3;40.2] 40.1 [39.6;40.6] 40.4 [39.9;40.9] 41.7 [41.2;42.2]

Notes: The sample includes all households without members exceeding age 65, irrespective of employment status.
Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped confi-
dence intervals based on 500 replications. Values refer to averages of aggregate working hours in the household per
employment status. I.e. within the household all hours are aggregated for each employment status, then the average
over all households within this decile is computed.
Source: SOEP, waves 2012-2016; own calculations.
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Table C.29: Working time of part-time employed by deciles of the monthly disposable household
equivalence income distribution, working-age households, 2012-2016

Decile 2012 2013 2014 2015 2016
CI CI CI CI CI

1 19.3 [17.3;21.3] 19.8 [17.6;22.1] 20.0 [17.7;22.2] 19.7 [17.5;21.8] 18.9 [16.2;21.7]
2 20.1 [18.7;21.4] 20.4 [19.1;21.8] 20.8 [19.3;22.2] 21.1 [19.8;22.5] 21.9 [20.1;23.7]
3 21.6 [20.7;22.5] 20.9 [20.0;21.8] 23.2 [22.0;24.4] 21.6 [20.6;22.6] 22.1 [21.0;23.1]
4 22.2 [21.2;23.3] 22.2 [21.3;23.1] 23.8 [22.9;24.7] 23.5 [22.5;24.5] 21.9 [20.7;23.1]
5 21.0 [20.0;22.0] 22.1 [21.1;23.1] 22.9 [21.9;23.8] 23.2 [21.9;24.5] 23.6 [22.5;24.8]
6 22.8 [21.4;24.1] 20.8 [19.6;22.0] 22.7 [21.6;23.7] 23.5 [22.3;24.6] 23.4 [22.1;24.6]
7 22.3 [21.3;23.3] 23.4 [22.4;24.5] 24.2 [23.2;25.3] 24.6 [23.5;25.7] 24.0 [22.7;25.2]
8 20.8 [19.6;22.0] 23.2 [22.1;24.3] 25.7 [24.5;26.8] 23.3 [22.2;24.4] 24.9 [23.5;26.2]
9 23.3 [22.1;24.5] 24.1 [22.9;25.2] 23.5 [22.3;24.6] 21.2 [20.1;22.3] 22.9 [21.7;24.2]
10 18.1 [16.7;19.5] 17.8 [16.5;19.2] 18.8 [17.3;20.4] 17.7 [16.0;19.4] 19.5 [17.8;21.1]
Total 21.4 [21.0;21.7] 21.7 [21.3;22.0] 22.8 [22.4;23.2] 22.3 [21.9;22.7] 22.6 [22.2;23.0]

Notes: The sample includes all households without members exceeding age 65, irrespective of their employment
status. Equivalence weights according to the new OECD scale and household frequency weights used. Bootstrapped
confidence intervals based on 500 replications. Values refer to averages of aggregate working hours in the household
per employment status. I.e. within the household all hours are aggregated for each employment status, then the
average over all households within this decile is computed. Source: SOEP, waves 2012-2016; own calculations.

Table C.30: Working time of marginally employed by deciles of the monthly disposable
household equivalence income distribution, working-age households, 2012-2016

Decile 2012 2013 2014 2015 2016
CI CI CI CI CI

1 8.2 [6.1;10.4] 5.5 [3.7;7.2] 11.8 [8.8;14.7] 6.4 [3.9;9.0] 8.7 [6.0;11.5]
2 6.7 [5.6;7.8] 7.3 [6.0;8.6] 8.2 [6.8;9.5] 7.9 [6.5;9.2] 8.8 [7.0;10.6]
3 8.5 [6.9;10.0] 8.5 [7.4;9.7] 9.2 [8.0;10.4] 8.8 [7.4;10.2] 6.7 [5.8;7.7]
4 6.4 [5.3;7.4] 7.5 [6.3;8.6] 8.0 [6.9;9.1] 6.7 [5.6;7.7] 7.3 [6.3;8.3]
5 9.3 [8.1;10.4] 7.2 [5.9;8.4] 8.7 [7.6;9.9] 11.8 [9.8;13.8] 7.3 [6.1;8.4]
6 7.6 [5.9;9.2] 7.6 [6.4;8.8] 9.3 [8.3;10.4] 9.4 [7.8;11.0] 8.6 [7.2;9.9]
7 6.0 [4.8;7.1] 6.1 [4.7;7.5] 7.5 [6.1;8.9] 6.4 [5.1;7.8] 6.3 [4.9;7.7]
8 7.5 [5.7;9.4] 5.7 [3.6;7.7] 7.4 [6.1;8.8] 8.4 [5.5;11.2] 5.5 [3.7;7.2]
9 5.1 [2.5;7.7] 5.3 [3.5;7.1] 9.3 [7.0;11.7] 8.3 [4.8;11.8] 4.2 [2.2;6.2]
10 3.9 [2.1;5.7] 2.8 [1.6;4.1] 3.4 [1.9;4.8] 4.0 [2.5;5.6] 4.5 [2.7;6.3]
Total 7.3 [6.8;7.7] 6.8 [6.4;7.2] 8.4 [7.9;8.8] 8.0 [7.5;8.6] 7.1 [6.7;7.6]

Notes: The sample includes all households without members exceeding age 65, irrespective of their em-
ployment status. Equivalence weights according to the new OECD scale and household frequency weights
used. Bootstrapped confidence intervals based on 500 replications. Values refer to averages of aggregate
working hours in the household per employment status. I.e. within the household all hours are aggregated
for each employment status, then the average over all households within this decile is computed.
Source: SOEP, waves 2012-2016; own calculations.



202 APPENDIX C. APPENDIX TO CHAPTER 3



Summary

This dissertation consists of three chapters in the field of applied microeconomics with
a focus on labor economics and behavioral economics. It covers various topics and
methods. A common theme is the importance of decisions. Our economy is the result
of innumerable decisions made by individual and institutional agents. The decisions
are constraint by resources and differ in complexity and impact. All three chapters
contain empirical analyzes of such decisions reaching from binary decisions in the
stylized context of the prisoners dilemma, over individual training and employment
choices and consequences in late-careers, to the impact of the political choice of the
minimum-wage introduction on income inequality and poverty.

In the first chapter we study how individuals make decisions in the stylized context
of the repeated prisoners’ dilemma. In a meta-study we reanalyze 12 experiments on
the repeated prisoner’s dilemma (PD) and identify three distinct types of players: de-
fectors, cautious cooperators and strong cooperators. The defectors defect with a high
probability in every round. Both cooperating types play semi-grim behavior strategies.
This simple three-type mixture fits significantly better than any model consisting of
combinations of (generalized) pure strategies from the literature, which we fitted at the
treatment level (considering 1051 pure-strategy mixtures), even when we use constant
specifications of the three types across all experiments. The three best fitting strategies
vary slightly across experiments, however. Structurally analyzing these strategies, we
find that subjects have limited foresight and subjectively assign utility values to the
four states (cc,cd,dc,dd) of the supergame, which relate to the original stage-game
payoffs in a manner compatible with inequity aversion. This subjectively transforms
the prisoners dilemma game into a coordination game and can reliably explain the
strategies used across all 32 treatments.

In the second chapter I study how individual decisions interplay with institutional
factors in the context of late-career choices. I investigate decisions regarding on-
the-job training and their impact on the employment outcomes of less-educated men
in their late careers. Using survey data from the German National Education Panel
Study adult cohort, I estimate a structural dynamic discrete-choice model reflecting the
trade-offs of the employees’ training participation decision. The data set enables me
to distinguish whether non-participation is due to lack of availability of training or due
to individual cost-benefit considerations. As a consequence, I can investigate whether
future policy interventions should target the provision of training or the individual
participation incentives. I find that on-the-job training has a positive impact on the
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employees’ employment prospects. Counterfactual simulations show that a reduction
of the individual training costs would increase training participation and positively
affect the employment rate near retirement. In contrast, an increase in the general
availability of training would not be effective.

In the third chapter we study how the decision of the federal government in Germany
about the introduction of the minimum wage has affected the disposable income of
households. Minimum wages are increasingly discussed as an instrument against (in-
work) poverty and income inequality in Europe. Recently, the German government
opted for a substantial ad-hoc increase of the minimum-wage level by 22% to 12e
per hour citing poverty prevention as an explicit goal. We use the introduction of
the federal minimum wage in Germany in 2015 to study its impact on poverty and
the disposable household income distribution. Based on the German Socio-Economic
Panel we analyze changes in poverty and income inequality, and investigate different
mechanisms determining the transmission from individual gross wage-rates to dispos-
able household incomes. We find that the minimum wage is an inadequate tool for
income redistribution and poverty reduction because it does not target poor house-
holds effectively. Individuals affected by the minimum wage are spread across the
entire income distribution and households at the bottom end are hardly affected. Con-
sequently, welfare dependence decreases only marginally. A reduction in transfers or
negative employment effects cannot explain the limited effect on poverty. Additional
simulations show that a markedly higher level of 12e per hour does not render the
minimum wage more effective in reducing poverty.



German Summary

Diese Dissertation besteht aus drei Kapitel im Bereich der angewandten Mikroökono-
mie mit einem Fokus auf Arbeitsmarktökonomik und Verhaltensökonomik. Sie um-
fasst verschiedene Themen und Methoden. Ein gemeinsames Motiv ist die Bedeutung
von Entscheidungen. Unsere Volkswirtschaft ist das Ergebnis unzähliger Entschei-
dungen, die von Individuen und Institutionen getroffen werden. Diese Entscheidun-
gen werden durch verfügbare Ressourcen beschränkt und variieren in Komplexität und
ihren Auswirkung. Alle drei Kapitel enthalten empirische Analysen solcher Entschei-
dungen, von binären Entscheidungen im stilisieren Kontext des Gefangenendilemmas,
über individuelle Trainings- und Beschäftigungsentscheidungen und deren Auswir-
kungen, bis zum Einfluss der politischen Entscheidung der Mindestlohneinführung
auf Einkommensungleichheit und Armut.

Im ersten Kapitel werden Entscheidungen von Individuen in der stilisierten Umge-
bung des wiederholten Gefangenendilemmas untersucht. In der Meta-Studie mit Da-
ten aus zwölf Gefangenendilemmaexperimenten indentifizieren wir drei verschiedene
Spieler-Typen: Defektierer, vorsichtige Kooperateure und überzeugte Kooperateure.
Die Defektierer defektieren mit sehr hoher Wahrscheinlichkeit in jeder Runde. Bei-
de Kooperateure spielen Semi-Grim Behavior-Strategien. Ein Modell dieser einfa-
chen Drei-Typen-Mischung erzeugt einen signifikant besseren Fit als jedes Modell
auf Basis von reinen Strategien aus der Literatur, das auf Treatmentebene optimiert
wurde (unter Berücksichtingung von 1051 möglichen Mischungen), selbst wenn wir
eine über alle Experimente konstante Drei-Typen-Mischung annehmen. Die am be-
sten passendsten drei Strategien variieren aber leicht über die Experimente. In einer
strukturellen Analyse dieser Strategien finden wir, dass die Spieler eine beschränk-
te Voraussicht haben und allen vier Spielstadien (cc,cd,dc,dd) bestimmte subjektive
Nutzenwerte zuweisen, welche zu den jeweiligen Auszahlungsmatrizen der Experi-
mente in einem Zusammenhang stehen, der sich über Ungleichheitsaversion erklären
lässt. Dies transformiert das Gefangenendilemmaspiel subjektiv in ein Koordinations-
spiel und kann zuverlässig die verwendeten Strategien über alle 32 Treatments in den
analysierten Experimenten erklären.

Im zweiten Kapitel werden die Interaktion individueller Entscheidungen mit institutio-
nellen Faktoren im Kontext von berufsbegleitender Weiterbildung von Arbeitnehmern
im späten Verlauf ihrer Karriere analysiert. Ich untersuche wie sich Weiterbildung auf
die Arbeitsmarktergebnisse von weniger gebildeten Arbeitnehmern gegen Ende ihrer
Karriere auswirken kann. Mithilfe von Daten aus der Erwachsenenkohorte des Natio-
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nalen Bildungspanels, schätze ich ein strukturelles dynamisches diskretes Entschei-
dungsmodel, das die Abwägungen der Weiterbildungsentscheidung von Arbeitneh-
mern abbildet. Der Datensatz ermöglicht es mir Nichtteilnahme an beruflichen Wei-
terbildungsangeboten wegen mangelnder Verfügbarkeit von Weiterbildung von Nicht-
teilnahme aufgrund von individuellen Kosten-Nutzen-Abwägungen zu unterscheiden.
Infolgedessen kann ich untersuchen, ob zukünftige Politikmaßnahmen die Bereitstel-
lung von Weiterbildung oder die individuellen Teilnahmeanreize in den Fokus neh-
men sollten. Ich finde heraus, dass Weiterbildung einen positiven Einfluss auf die
Erwerbsperspektive der Arbeitnehmer hat. Kontrafaktische Simulationen zeigen, dass
eine Reduktion der Weiterbildungskosten die Weiterbildungsteilnahme steigern würde
und die Beschäftigungsquote kurz vor der Rente positiv beeinflussen würde. Im Ge-
gensatz dazu wäre eine Steigerung der allgemeinen Verfügbarkeit von Weiterbildung
nicht effektiv.

Im dritten Kapitel wird untersucht, welche Auswirkungen die Entscheidung der deut-
schen Bundesregierung zur Mindestlohneinführung auf die verfügbaren Einkommen
der Haushalte hat. Mindestlöhne werden in Europa zunehmend als Mittel gegen
(Erwerbs-)Armut und Einkommensungleichheit diskutiert. Vor kurzem hat die deut-
sche Regierung eine deutliche Erhöhung des Mindestlohnniveaus um 22% auf 12e
beschlossen. Die Armutsbekämpfung wurde dabei als explizites Ziel genannt. Wir
nutzen die Einführung des bundeseinheitlichen deutschen Mindestlohns im Jahr 2015
um dessen Einfluss auf Armut und die Verteilung der verfügbaren Haushaltseinkom-
men zu untersuchen. Auf Basis von Daten aus dem Sozio-oekonomischen Panel ana-
lysieren wir Änderungen in Einkommensungleichheit und Armut, sowie unterschied-
liche Mechanismen, die die Transmission von individuellen Bruttostundenlöhnen auf
verfügbare Haushaltseinkommen beeinflussen. Wir finden heraus, dass der Mindest-
lohn kein effektives Werkzeug zur Haushaltseinkommensumverteilung und Armuts-
reduktion ist, da er nicht zielgerichtet auf arme Haushalte wirkt. Individuen, die vom
Mindestlohn betroffen sind, sind über die gesamte Einkommensverteilung verteilt und
Haushalte am unteren Ende sind kaum betroffen. Infolgedessen sinkt die Soziallei-
stungsabhängigkeit nur marginal. Weder eine Reduktion der Transferzahlungen noch
negative Beschäftigungseffekte sind Grund für den begrenzten Effekt auf die Armut.
Durch zusätzliche Simulationen zeigen wir, dass der Mindestlohn auch durch eine er-
hebliche Erhöhung auf 12e nicht zu einem effektiverem Werkzeug zur Reduktion von
Ungleichheit und Armut wird.
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