
Chapter 2

Polyhedral surfaces

2.1 Metric structure

A polyhedral surface, or Euclidean cone surface Mh is the metric space ob-
tained by gluing together flat Euclidean triangles isometrically along their
edges. Henceforth, we only consider finite triangulations which are homeo-
morphic to compact, connected, and orientable 2-manifolds.

If γ : [a, b] → Mh is a continuous curve, then the length of γ is the
supremum over all admissible partitions, Z = {t0 = a ≤ t1 ≤ ... ≤ tn = b},
of [a, b]:

l(γ) = sup
Z

n
∑

i=1

dE2(γ(ti−1), γ(ti)).

A partition is admissible if γ(ti) and γ(ti+1) lie in the same triangle, Th,
(possibly on ∂Th). Here dE2 denotes the Euclidean distance within each
triangle. The curve is called rectifiable if l(γ) < ∞. Let x and y be two
points in Mh. The distance between x and y is defined as

d(x, y) := inf
γ
l(γ), (2.1)

the infimum taken over all continuous curves γ : [a, b] → Mh connecting x
and y. Following Gromov [42], we call Mh a length space. On individual
triangles the length metric coincides with the flat Euclidean metric. Across
an edge of two adjacent triangles this metric is still flat since one can rotate
those triangles about their common edge until they become coplanar. In
other words, an intrinsic observer fails to note the existence of edges. The
situation changes at vertices where the metric exhibits cone points, cf. [79].

Definition 2.1.1 (metric cone). The set Cθ := {(r, ϕ)| 0 ≤ r; ϕ ∈ R/θZ}/∼
together with the (infinitesimal) metric

ds =
√

dr2 + r2 dϕ2 (2.2)

is called a metric cone with cone angle θ. Here (0, ϕ1) ∼ (0, ϕ2) for any pair
(ϕ1, ϕ2). The cone point is the coset consisting of all points (0, ϕ) ∈ Cθ.
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θ

Figure 2.1: A neighborhood of a vertex with total vertex angle θ equipped with the
length metric is isometric to a metric cone with cone angle θ.

A cone point is called singular if the cone angle does not equal 2π. A
singular cone point is spherical if the cone angle is less than 2π; otherwise it
is hyperbolic. We shall henceforth denote a polyhedral surface equipped with
its Euclidean cone metric by

(Mh, gMh
).

This metric coincides with the flat Euclidean metric outside cone singularities
and is given by (2.2) in a neighborhood of cone singularities. We remark that
the cone metric give rise to a (smooth) complex structure on Mh (cf. Troy-
anov [79]):

Proposition 2.1.1. The complex plane C equipped with the metric ds2 =
|z|2β| dz|2, with β = (θ/2π)− 1, is isometric to Cθ.

Finally, a geodesic in Mh is a curve which locally minimizes the distance
between any two points on its image. More precisely,

Definition 2.1.2 (minimizing geodesic). A minimizing geodesic in a metric
space (V, d) is a continuous curve γ : [a, b] → V such that d(γ(t), γ(t′)) =
|t′ − t| for all t and t′ in the interval [a, b].

For a triangulated surface Mh a minimizing geodesics consists of straight
line segments inside the triangles it crosses; and no minimizing geodesic
passes through a spherical cone point (cf. Figure 2.2). The following theorem
guarantees the existence of minimizing geodesics on the spaces we consider.
In fact this theorem holds true in the wider class of locally compact complete
length spaces (cf. Gromov [42]).

Theorem 2.1.1 (Hopf-Rinow). Let Mh be a metrically complete Euclidean
cone surface.
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Figure 2.2: Left: A geodesics through a hyperbolic vertex (θ > 2π); each incoming ray
admits a family of outgoing rays spanning an angle of θ− 2π. Right: For a neighborhood
of a spherical vertex (θ < 2π) and for each point x in that neighborhood there exists a
corresponding point y such that there are two minimizing geodesics connecting x and y.

i For all points x, y ∈ Mh there exists a minimizing geodesic connecting
them.

ii Each homotopy class of curves can be represented by a geodesic of min-
imal length.

We will show in Section 3.3.6 that geodesics on Euclidean cone surfaces
can be used to approximate smooth geodesics on smooth surfaces.

2.2 Sobolev theory on polyhedral surfaces

Here we outline the analytic preliminaries of Sobolev spaces over Euclidean
cone surfaces. Although the theory is similar to well-established machinery on
planar domains, there are subtle, yet crucial, differences due to the presence
of cone singularities. Here we provide the necessary adjustments from the
planar case.

In particular, we will carefully develop the theory of weak derivatives,
show a Poincaré lemma, discuss the Dirichlet problem, and give an outlook
on regularity theory. Many of these results could be deduced from the more
general approach of considering Lipschitz manifolds (and in particular the
fact that bi-Lipschitz maps leave invariant the Sobolev spaces W 1,p). For
such a general treatment we refer to the books of Wloka [83] and Ziemer [86]
and to an article by Cheeger [18]. We have chosen to develop the theory
from scratch here because many results of this section will be used later in
the text; moreover, we feel that a too general approach would obscure a clear
understanding of the peculiarities of Euclidean cone surfaces.
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2.2.1 Lp-spaces

Let dvol denote the volume form on the Euclidean cone surface (Mh, gMh
).

This volume form is defined (and smooth) outside cone singularities and
induces a Borel regular measure on Mh. We let X(Mh) denote the space of
dvol-measurable vector fields on Mh.

Definition 2.2.1 (Lp-spaces). For 1 ≤ p < ∞ let Lp(Mh) consist of all
measurable functions u whose pth power is integrable with respect to dvol,
that is,

‖u‖p =

(
∫

Mh

|u|p dvol

)1/p

<∞.

Similarly, for 1 ≤ p <∞ let Lp
X(Mh) consist of those X ∈ X(Mh) for which

‖X‖p =

(
∫

Mh

gMh
(X,X)p/2 dvol

)1/p

<∞.

As usual, an element of Lp refers to a class of functions (resp. vector fields)
which agree outside a set of measure zero.

For all 1 ≤ p < ∞, the spaces Lp are complete and the Hölder and
Minkowski inequalities hold (a consequence of the Lemma of Fatou). Addi-
tionally, since Mh is compact, it follows that

Lp ⊂ L1 for all p ≥ 1,

a consequence of Hölder’s inequality.

2.2.2 Calculus of variations

The main objective of this section is to define an appropriate class of test
functions and test vector fields in the presence of cone singularities. In con-
trast to the smooth case, one needs to impose extra regularity conditions on
the L∞-norm of the divergence of test vector fields – in order to be able to
treat integration by parts.

Definition 2.2.2 (Test functions). The space of test functions, C∞(Mh),
consists of all continuous functions which are smooth outside the cone sin-
gularities and away from the boundary of Mh. C

∞
0 (Mh) is the subspace of

those functions which are compactly supported in (Mh \ ∂Mh).
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X∞(Mh) is the space of test vector fields, X, which are smooth outside the
cone singularities and away from the boundary of Mh, and whose pointwise
norm, ‖X‖gMh

, and divergence, divX, (both classically defined a.e.) are in
L∞(Mh). X∞

0 (Mh) is the subspace of those vector fields which are compactly
supported in (Mh \ ∂Mh).

A theorem of the following kind is commonly referred to as the funda-
mental theorem of calculus of variations.

Theorem 2.2.1. Let u, v ∈ L1(Mh) and assume
∫

Mh

uϕ dvol =

∫

Mh

vϕ dvol ∀ ϕ ∈ C∞
0 (Mh).

Then u = v almost everywhere on Mh.

Proof. The standard proof (see e.g. Hörmander [49] Vol. I, Thm. 1.2.5) carries
over to Euclidean cone surfaces: one shows that w = u − v vanishes almost
everywhere. Indeed, outside cone singularities, the set (Mh \ ∂Mh) is locally
indistinguishable from R2. By assumption, w ∈ L1(Mh) and hence we can
apply Lebesgue’s theorem which states that for almost every x ∈Mh

lim
δ→0

1

δ2

∫

d(x,y)<δ

|w(x)− w(y)| dy = 0.

Now consider a non-negative function ρ ∈ C∞
0 (R2) supported in the unit ball

of R2 such that
∫

ρ(x) dx = 1. For almost every x ∈ Mh and small enough
δ > 0, every δ-ball around x ∈Mh is isometric to the δ-ball in R2. Hence for
small enough δ and almost every x we have

w(x) =
1

δ2

∫

Mh

w(x)ρ( d(x, y)/δ) dy

=
1

δ2

∫

Mh

(w(x)− w(y))ρ( d(x, y)/δ) dy +
1

δ2

∫

Mh

w(y)ρ( d(x, y)/δ) dy.

Now let δ → 0. The last term is zero by assumption (setting ϕ = ρ) and
the preceding term tends to zero for almost every x by Lebesgue’s theorem.

QED

Corollary 2.2.1. Let X,Y ∈ L1
X(Mh) and assume

∫

Mh

g(X,Z) dvol =

∫

Mh

g(Y, Z) dvol ∀ Z ∈ X∞
0 (Mh).

Then X = Y almost everywhere.
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Proof. For small δ-balls which do not contain cone singularities, X and Y
can be expressed in Euclidean coordinates. Apply the proof of the preceding
theorem to each coordinate separately. QED

Corollary 2.2.2. For every 1 ≤ p <∞ the space of test functions, C∞
0 (Mh),

is dense in Lp(Mh); similarly, X∞
0 (Mh) is dense in Lp

X(Mh).

Proof. We are going to show the first part only. The proof of the second part
is similar. Assume C∞

0 (Mh) was not dense in Lp(Mh). Then by the Hahn-
Banach theorem there exist u0 ∈ Lp(Mh) and a bounded linear functional
F : Lp(Mh)→ R such that F vanishes on C∞

0 (Mh) but F (u0) 6= 0. Then, by
the Riesz representation theorem, there exists f ∈ Lq(Mh) with 1/p+1/q = 1
such that F (u) =

∫

fu for all u ∈ Lp(Mh). Since F (ϕ) = 0 for every
ϕ ∈ C∞

0 (Mh), we can apply Theorem 2.2.1 which implies that f = 0, a
contradiction to 0 6= F (u0) =

∫

fu0. QED

2.2.3 Weak derivatives

In this section we develop the concept of weak derivatives on polyhedra.
Recall that the divergence, divX, of a vector field,X ∈ X∞

0 (Mh), is classically
well-defined outside the cone singularities of Mh.

Lemma 2.2.1. Let ϕ ∈ C∞(Mh). Then

∫

Mh

gMh
(∇ϕ,X) dvol = −

∫

Mh

ϕ divX dvol ∀ X ∈ X∞
0 (Mh).

Proof. Put small disks, Di, around the cone singularities, {xi}, of Mh. Since
Mh\∪Di contains no cone singularities and carries the standard flat Euclidean
metric, it follows that

∫

Mh\∪Di

gMh
(∇ϕ,X) dvol +

∫

Mh\∪Di

ϕ divX dvol =
∑

i

∮

∂Di

gMh
(X, ηi)ϕ ds.

Here ηi denotes the unit normal along ∂Di. By definition, ‖X‖ and |ϕ|
are bounded on Mh so that the right hand side approaches zero with Di

tending to the cone point, xi. Moreover, by the definition of X∞(Mh), we
have divX ∈ L∞(Mh), so that the second integral stays bounded as the disks
Di become smaller. This proves the assertion. QED

The proof of the preceding lemma also implies the following divergence
theorem.
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Theorem 2.2.2 (Gauss’ divergence theorem). For every open subdomain
Ω ⊂Mh with C0,1-boundary, ∂Ω, and every X ∈ X∞(Mh) one has

∫

Ω

divX dvol =

∮

∂Ω

gMh
(X, η) ds,

where η is the (almost everywhere defined) normal to ∂Ω.

This divergence theorem may be used as a tool to discriminate between
appropriate and non-appropriate local charts for Mh. Indeed, the next ex-
ample shows that conformal charts on polyhedra, as introduced in Propo-
sition 2.1.1, are not appropriate for the theory of calculus of variations on
polyhedral surfaces – in the sense that there exist vector fields for which the
divergence theorem holds on Mh but fails in these charts. This can be viewed
as an instance that cone singularities do indeed complicate the Sobolev the-
ory.

Example (conformal charts are not appropriate). Let Cθ be a cone with
cone angle θ. By Proposition 2.1.1, Cθ is isometric to C equipped with the
metric ds2 = |z|2β| dz|2 with β = (θ/2π) − 1. In the punctured complex
plane, C \ {0}, define a vector field X by

X(r, ϕ) =
1

r
∂r.

We claim that for any θ > 2π, the field X satisfies the divergence theorem
(for suitable Ω) with respect to the cone metric, ds2. Indeed, if DR ⊂ C is
a disk of Euclidean radius R, centered at the origin, then we have

∮

∂DR

gMh
(X, η) ds = 2πRβ.

For θ > 2π this integral converges to zero as R → 0. Hence, the same
argument as in the proof of Lemma 2.2.1 shows that the divergence theorem
holds for X with respect to the cone metric. On the other hand X, having
a distributional point source at the origin, does not satisfy the divergence
theorem with respect to the standard Euclidean metric, | dz|2, on C since its
singularity at the origin yields a non-vanishing contribution of 2π. Therefore,
the conformal charts of Proposition 2.1.1 are not appropriate because there
exist vector fields for which the divergence theorem holds on Mh but fails in
these charts.

We now turn to the notion of weak derivatives.
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Definition 2.2.3 (Sobolev spaces on polyhedra). For 1 ≤ p <∞ the Sobolev
space W 1,p(Mh) consist of all u ∈ Lp(Mh) for which there exists a weak
gradient, ∇u ∈ Lp

X(Mh), such that

∫

Mh

gMh
(∇u,X) dvol = −

∫

Mh

u divX dvol ∀ X ∈ X∞
0 (Mh).

Corollary 2.2.1 guarantees uniqueness of weak derivatives. Completeness of
W 1,p with respect to the metric

‖u‖1,p = ‖u‖p + ‖∇u‖p

is a simple consequence of the completeness of Lp (cf. [50] Corollary 20.9).

The following result may be interpreted as an a posteriori justification of
the choice of test functions made in this work.

Theorem 2.2.3. C∞(Mh)∩W
1,p(Mh) is dense in W 1,p(Mh) for 1 ≤ p <∞.

Proof. Consider a collection of metric disks, {Ui}, around the cone points
and boundary vertices of Mh. Without loss of generality, assume that {Ui} is
a locally finite cover Mh (by introducing extra ”flat cone points” if necessary).
We require that no Ui contains more than one cone singularity and Ui ∩ Uj

contains no cone singularity. Let (Ui,Φi) be charts of the following kind: for
a metric cone of angle θi let

Φi(r, ϕ) := (r,
2π

θi

ϕ) with 0 ≤ ϕ < θi.

For a boundary vertex, bi ∈ ∂Mh, with inner vertex angle θi set

Φi(r, ϕ) := (r,
π

θi

ϕ) with 0 ≤ ϕ < θi,

i.e., a neighborhood of bi gets mapped to the half-disk in R2. The main
property of these charts is that the differentials, dΦi, introduce no metric
distortion in the radial direction and a constant distortion in the angular
direction.

Let {ρi} be a partition of unity subordinate to {Ui}. We can assume that
ρi ∈ C∞(Mh) and ‖∇ρi‖ ∈ L∞(Mh). Then a straightforward calculation
shows that (ρiu) ∈W

1,p(Mh) for every u ∈ W 1,p(Mh). Next we claim that

ϕ := (ρiu) ◦ Φ−1
i ∈W

1,p(Φi(Ui)),
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where Φi(Ui) is equipped with the standard Euclidean metric in R2. To show
this, we are going to establish that

∫

Φi(Ui)

〈∇R2ϕ,X〉R2 dvolR2 = −

∫

Φi(Ui)

ϕ divR2 X dvolR2 (2.3)

for all smooth vector fields X ∈ X(R2) which are compactly supported in
Φi(Ui). Indeed, since Φi is smooth on Ui away from the cone point, and
dΦ−1

i is bounded, it follows that dΦ−1
i (X) ∈ X∞

0 (Mh). By Definition 2.2.3
we obtain

∫

Ui

gMh
(∇(ρiu), dΦ−1

i (X)) dvol = −

∫

Ui

(ρiu) div( dΦ−1
i (X)) dvol. (2.4)

Considering the metric distortion introduced by dΦi, it follows that the push-
forward of the volume form, dvol, to Φi(Ui) equals C dvolR2 for some positive
constant, C. Moreover, we obtain

gMh
(∇(ρiu), dΦ−1

i (X)) = 〈∇R2ϕ,X〉R2 ◦ Φi.

It follows that the left hand side of (2.4) equals

C

∫

Φi(Ui)

〈∇R2ϕ,X〉R2 dvolR2 .

Furthermore, since under a change of Riemannian metrics, the divergence
operator transforms according to

divg X =
1

| dvolg|
div(| dvolg|X),

and | dvolg| = C in our case, it follows that the right hand side of (2.4) equals

−C

∫

Φi(Ui)

ϕ divR2 X dvolR2 .

Consequently (2.3) holds and hence

(ρiu) ◦ Φ−1
i ∈W

1,p(Φi(Ui)).

It is a classical result that C∞(Φi(Ui))∩W
1,p(Φi(Ui)) is dense inW 1,p(Φi(Ui)),

so that there exist smooth functions, ψi,j ∈ C
∞(Φi(Ui)), such that

lim
j→∞
‖ψi,j − (ρiu) ◦ Φ−1

i ‖W 1,p(Φi(Ui)) = 0. (2.5)
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For interior points, ρi is compactly supported in Ui, so that we can assume
ψi,j ∈ C∞

0 (Φi(Ui)) and hence ψi,j ◦ Φi ∈ C∞
0 (Mh). For boundary points

we can assume that ψi,j ◦ Φi is continuous up to the boundary (since we
are dealing with piecewise linear boundary, cf. [83]). Consequently, we can
assume ψi,j ◦Φi ∈ C

∞(Mh). Moreover, since dΦi is bounded, it follows that
ψi,j ◦ Φi ∈ W

1,p(Mh), and from (2.5) we obtain

lim
j→∞
‖ψi,j ◦ Φi − ρiu‖W 1,p(Mh) = 0.

Using that {ρi} is a partition of unity, we conclude that

lim
j→∞

∥

∥

∥

∥

∥

u−
∑

i

ψi,j ◦ Φi

∥

∥

∥

∥

∥

W 1,p(Mh)

≤ lim
j→∞

∑

i

‖ρiu− ψi,j ◦ Φi‖W 1,p(Mh) = 0.

The assertion follows since
∑

i ψi,j ◦ Φi ∈ C
∞(Mh). QED

2.2.4 Rellich lemma and Poincaré inequality

In this section we prove Poincaré’s inequality on Euclidean cone surfaces.
This result will be useful later for a priori estimates. We provide the usual
indirect proof of Poincaré’s inequality built on Rellich’s compactness lemma.

Lemma 2.2.2 (Rellich-Kondrachov). Let Mh be a triangulated mesh. Then

W 1,p(Mh) ⊂⊂ Lp(Mh)

is a compact embedding for all 1 ≤ p <∞.

Proof. Let {un} be a bounded sequence in W 1,p(Mh). We have to show that
there exists a subsequence, {uni

}, which converges in Lp(Mh). Indeed, the
Rellich lemma holds on individual triangles of Mh, and hence, for every tri-
angle Th ⊂Mh there exists a subsequence of {un} which converges in Lp(Th).
Since we consider only finite triangulations, there exists a subsequence {uni

}
which converges simultaneously on all triangles. Consequently, {uni

} con-
verges in Lp(Mh). QED

Theorem 2.2.4 (Poincaré inequality). Let Mh be a Euclidean cone surface.
For every 1 ≤ p <∞ there exists a constant C only depending on Mh and p
such that

‖u− ū‖p ≤ C‖∇u‖p (2.6)

for all u ∈ W 1,p(Mh). As usual we let ū := 1
|Mh|

∫

Mh
u dvol.
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Proof. We give the usual indirect proof of Poincaré’s inequality. Assume the
inequality is false. Then for each n ∈ N there exists un ∈ W 1,p(Mh) such
that

‖un − ūn‖p > n‖∇un‖p.

Setting vn := un − ūn and re-normalizing we can assume that
∫

Mh

vn dvol = 0 and ‖vn‖p = 1.

By our assumption it follows that ‖∇vn‖p < 1/n so that {vn} is bounded in
W 1,p(Mh). By the Rellich lemma, there exists a subsequence, {vni

}, which
converges to v ∈ Lp(Mh). Since ‖∇vni

‖p → 0, it follows that {vni
} forms a

Cauchy sequence in W 1,p(Mh), so that by completeness v ∈ W 1,p(Mh) and
∇v = 0. This implies that v is constant almost everywhere and since v̄ = 0
it follows that v = 0 (Mh is assumed to be connected); a contradiction to
‖v‖p = 1. QED

It is evident from the proof of the Poincaré inequality that one merely
needs to exclude constants in order to bound the Lp-norm of a function by the
Lp-norm of its weak derivative. Hence if Mh has non-empty boundary then
the same argument as above shows that if u lies in the closure of C∞

0 (Mh) ⊂
W 1,p(Mh) then

‖u‖p ≤ C‖∇u‖p,

where the constant C is independent of u.

2.2.5 Laplace–Beltrami and Dirichlet problem

We define the Laplace–Beltrami operator and discuss the Dirichlet problem
on Euclidean cone surfaces. First, let us recall the usual definition of the
Sobolev space H1

0 (Mh).

Definition 2.2.4. The space H1
0 (Mh) is the closure of C∞

0 (Mh) in W 1,2(Mh),
where, in the case that Mh has no boundary, u ∈ C∞

0 (Mh) implies
∫

Mh
u = 0.

The inner product

(u, v)H1
0 (Mh) :=

∫

Mh

gMh
(∇u,∇v) dvol (2.7)

induces a Hilbert space structure on H1
0 (Mh) whose norm is equivalent to

‖ · ‖1,2 by Poincaré’s inequality.
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Definition 2.2.5 (Laplace–Beltrami). Let H−1(Mh) denote the dual space
to H1

0 (Mh), that is the space of bounded linear functionals on H1
0 (Mh); and

let 〈·|·〉 be the dual pairing between H−1(Mh) and H1
0 (Mh). The Laplace–

Beltrami operator

∆ : H1
0 (Mh)→ H−1(Mh)

is the negative of the Riesz map between H1
0 (Mh) and H−1(Mh), that is

〈∆u|v〉 := −(u, v)H1
0 (Mh).

We can now treat existence and uniqueness of solutions to the Dirichlet
problem. By Poincaré’s inequality the embedding

E : H1
0 (Mh) →֒ L2(Mh)

is continuous. Hence the dual operator, E ′ : L2(Mh) → H−1(Mh), defined
by

〈E ′(f)|v〉 = (f, E(v))L2

is also continuous.

Theorem 2.2.5 (Dirichlet problem). The equation

−∆u = E ′(f) (2.8)

has a unique solution u ∈ H1
0 (Mh) for every f ∈ L2(Mh). The solution u

continuously depends on the data f .

Proof. Existence and uniqueness immediately follow from the fact that −∆ is
the Riesz map. That u depends continuously on f follows from the continuity
of E ′ and the continuity of the inverse operator, ∆−1. QED

2.2.6 A glimpse at regularity

We give an outlook on regularity of solutions to the Dirichlet problem on
polyhedral surfaces. Without making any attempt to cover this issue in full
generality, we observe here that the solutions are smooth (in the sense of
Definition 2.2.2) provided that the right hand side is smooth.

Theorem 2.2.6. Let Mh be a closed Euclidean cone surface. Let u ∈ H1
0 (Mh)

be the weak solution to the Dirichlet problem −∆u = E ′(f) for f ∈ L2(Mh).
Then f ∈ C∞(Mh) implies u ∈ C∞(Mh).
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Proof. We have to show that u is continuous on Mh as well as smooth outside
cone singularities. We first proof smoothness. Consider a simply connected
domain Ω ⊂Mh which does not touch the cone singularities of Mh (so that Ω
can be developed into the plane). By assumption, f ∈ C∞(Ω), and whence
local regularity implies u ∈ C∞(Ω) (cf. Gilbarg and Trudinger [35], Corollary
8.11). It follows that u is indeed smooth outside cone singularities.

What remains to be shown is that u ∈ C0(Mh). We show that u is
continuous at every cone point. This will follow from the fact that in appro-
priate local charts the Laplacian on Mh can be written in divergence form,
so that a classical result of De Giorgi and Nash implies that the solution to
the Dirichlet problem is Hölder continuous.

As in the proof of Theorem 2.2.3, consider charts (Ui,Φi) of the following
kind: for a metric cone of cone angle θi let

Φi(r, ϕ) := (r,
2π

θi

ϕ) with 0 ≤ ϕ < θi.

Let (r, ϕ̄), with 0 ≤ ϕ̄ < 2π, denote polar coordinates on Φi(Ui) ⊂ R2 (note
that Φi introduces no distortion in the radial direction, so we deliberately
leave the letter r here). In these coordinates, the Laplace–Beltrami operator
on Mh locally takes the form

−∆v =
1

r
(rvr)r + α2 1

r2
vϕ̄ϕ̄ for all v ∈ C2(R2),

with α = 2π/θi. A straightforward calculation delivers that in the charts we
consider, ∆ can be written in divergence form with respect to the standard
metric on R2,

−∆ = divR2(A∇R2),

where divR2 and ∇R2 denote the standard divergence and grad operators in
R2. Indeed, one obtains that

A = Id+ (α2 − 1)

(

sin2 ϕ̄ − sin ϕ̄ cos ϕ̄
− sin ϕ̄ cos ϕ̄ cos2 ϕ̄

)

,

with α = 2π/θi. In the chart (Ui,Φi) the Dirichlet problem hence takes the
form

− divR2(A∇R2)(u ◦ Φ−1
i ) = (f ◦ Φ−1

i ).

The symmetric matrix A is positive definite and has measurable and bounded
coefficients. It hence follows from classical results by De Giorgi and Nash
that (u ◦ Φ−1

i ) is Hölder continuous (for a proof see [35], Theorem 8.22).
Consequently, u is continuous since the maps Φi are continuous. QED
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2.3 Discrete function spaces

Discretization of surfaces, in the point of view taken in this work, is equivalent
to the study of finite-dimensional function spaces and bounded operators
acting between them. A natural framework for this construction is the finite
element method (FEM). The construction of the corresponding spaces on
Euclidean cone surfaces turns out to be analogous to the planar case. For the
planar case we refer to standard textbooks such as Braess [14], Ciarlet [20],
and Strang and Fix [76].

In the current work, we use the concept of intrinsic discretization of sur-
faces, i.e., we do not make use of any parameterization. This intrinsic ap-
proach goes back to Dziuk ([27, 28]), who proved asymptotic convergence
for elliptic equations and to Pinkall and Polthier [61] who introduced a FE
approach to mean curvature discretization on Euclidean cone surfaces. For
a different approach, where surfaces are sampled over triangulated planar
domains by piecewise linear functions, we refer to e.g. Dziuk and Hutchin-
son [29, 30].

2.3.1 Conforming and nonconforming elements

As for the discretization of elliptic problems in the plane, one differentiates
between conforming elements, where the finite-dimensional function spaces
are subspaces of the Sobolev space H1, and nonconforming elements (called
variational crimes in older literature, cf. [76]), where the discrete spaces are
no longer subspaces of H1.

Definition 2.3.1 (conforming finite elements). The space of linear Lagrange
elements is defined as

Sh = {u ∈ C0(Mh) |u is linear on all triangles}.

A basis consists of all those functions, φp, for which φp(q) = δpq, where δpq

denotes the Kronecker delta, cf. Figure 2.3. We define the subspace Sh,0 ⊂ Sh

by

Sh,0 =

{

{u ∈ Sh |u = 0 along the boundary} if ∂Mh 6= ∅
{u ∈ Sh |

∫

Mh
u = 0} if ∂Mh = ∅.

We have the inclusions Sh ⊂ H1(Mh) and Sh,0 ⊂ H1
0 (Mh).
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Figure 2.3: Conforming Lagrange basis function equaling 1 at a single vertex and 0 on
all other vertices.

Definition 2.3.2 (nonconforming finite elements). The space of Crouzeix-
Raviart elements is defined as

S∗
h = {u ∈ L2(Mh) |u is linear on all triangles and

continuous at edge midpoints}.

A basis consists of all those functions, φe, which take the value 1 at the
midpoint of edge e and zero at all other edge midpoints of the mesh (cf. Fig-
ure 2.4). We define the subspace S∗

h,0 ⊂ S∗
h by

S∗
h,0 =

{

{u ∈ S∗
h |u = 0 at all edge midpoints along ∂Mh} if ∂Mh 6= ∅

{u ∈ S∗
h |

∫

Mh
u = 0} if ∂Mh = ∅.
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Figure 2.4: Nonconforming basis function equaling 1 at a single edge midpoint and 0 on
all other edge midpoints.

It is evident from the definitions of Sh and S∗
h that

Sh ⊂ S∗
h and Sh,0 ⊂ S∗

h,0;

however, S∗
h is no longer a subspace of H1(Mh). In particular, there is no

unique extension of F ∈ H−1(Mh) to a functional on H1
0 (Mh) + S∗

h,0. Hence
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we will focus on a subclass of functionals which are extendable. For the FE
part of this work, we restrict our attention to those functionals which arise
from integration by parts. More precisely, we consider real-valued bounded
linear operators F on the space H1

0 (Mh) + S∗
h of the following kind:

〈F |u〉 = −

∫

Mh

gMh
(XF ,∇u) dvol +

∫

∂Mh

u · gMh
(XF , η) ds, (2.9)

for some piecewise constant vector field XF ∈ L
2
X(Mh). Here η denotes the

(piecewise constant) normal along ∂Mh. The functional F is indeed well
defined onH1

0 (Mh)+S
∗
h since the boundary term vanishes for any u ∈ H1

0 (Mh)
and the gradient of any u ∈ S∗

h is well defined (and constant) on all triangles
of Mh. The following criterion is hence a valid assumption in our case:

Criterion 1. For the FE part of this work, we restrict our attention to those
F ∈ H−1(Mh) which take the form of equation (2.9).

Since piecewise constant vector fields will be used extensively, we fix the
following notation:

Definition 2.3.3 (piecewise constant vector fields). Let Xh denote the space
of vector fields which are constant on individual triangles.

The following lemma assures that the boundary term in (2.9) does not
only vanish for every u ∈ H1

0 (Mh), but also for every u ∈ S∗
h,0.

Lemma 2.3.1. Assume u ∈ S∗
h,0, and let Y ∈ Xh be piecewise constant.

Then
∫

∂Mh

u · gMh
(Y, η) ds = 0.

Proof. Let e be an edge of the boundary, ∂Mh. Then gMh
(Y, η) is constant

along e. Since u ∈ S∗
h,0, it follows that u vanishes at the midpoint of e. By

linearity of u along e, we obtain

∫

e

u · gMh
(Y, η) ds = 0.

This completes the proof. QED

The significance of the last lemma lies in the fact that it provides justifi-
cation for the nonconforming versions of the Dirichlet problem, divergence,
curl, the Laplace–Beltrami operator, and the mean curvature vector.
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2.3.2 Discrete Dirichlet problem

Given f ∈ L2(Mh), the discrete Dirichlet problem amounts to solving the
variational problem

∫

Mh

gMh
(∇uh,∇φh) dvol =

∫

Mh

fφh dvol ∀φh (2.10)

under the requirement that both the test functions, φh, and the solution,
uh, are from the same space Sh,0 (resp. S∗

h,0). Due to the ellipticity of the
problem, (2.10) always has a unique solution uh. Furthermore, it follows
from the choice of the inner product on H1

0 (eq. (2.7)), that the conforming
solution, uh ∈ Sh,0, is the projection to Sh,0 of the solution u ∈ H1

0 to the full
Dirichlet problem (2.8).

2.3.3 Delaunay discretization

So far we have avoided questions of ambiguity of discretizing function spaces.
But in fact there are several possible, and indeed plausible, discretizations of
these spaces for any given polyhedron.

If we take the view of an intrinsic observer in Mh then there are several
possible intrinsic ways to connect the vertices of Mh by intrinsic edges, i.e.,
geodesics of Mh. Notice that in this context an edge refers to an intrinsic
straight line, rather than a straight line in ambient space. For example,
consider the situation of Figure 2.5, where the original edge of a hinge (made
up of two adjacent flat triangles of Mh) is replaced by another interior edge
via an intrinsic edge flip. Intrinsic edge flips correspond to a re-meshing of
Mh without changing the metric structure Mh.

Figure 2.5: Intrinsic edge flip for a hinge of Mh. An intrinsic observer would experience
this edge flip as depicted in the second and third picture.

Notice that the finite element spaces, Sh and S∗
h, will (in general) be

different for different choices of intrinsic edges. From the numerical point
of view, different edge choices effect the corresponding stiffness matrices: let
{φp} be a nodal basis of Sh corresponding to a particular choice of edges. In
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order to simplify the discussion, we assume that Mh is closed. The stiffness
matrix is given as

Lpq :=

∫

Mh

gMh
(∇φp,∇φq) dvol.

By definition, Lpq = −〈∆φp|φq〉, and (Lpq) is always symmetric and pos-
itive semi-definite (its kernel are the constants). Note that Lpp > 0 and
∑

q Lpq = 0. However, (Lpq) may contain positive off-diagonal entries . In-
deed, let p and q share an edge. Then

Lpq = −
1

2
(cotαpq + cotβpq) = −

1

2
·

sin(αpq + βpq)

sinαpq · sin βpq

,

where αpq and βpq are the two angles opposite to the edge pq. Hence Lpq > 0
if and only if αpq + βpq > π. Numerically, positive off-diagonal entries effect
the conditioning of the system. Geometrically, such entries are responsible
for a violation of a discrete maximum principle (cf. [62]).

Bobenko and Springborn [10] recently observed that such positive entries
can be avoided by considering intrinsic Delaunay tessellations. A choice of
intrinsic edges is called Delaunay if the unfolding of any pair of adjacent
(Euclidean) triangles satisfies the empty circumcircle property: none of the
four vertices of the two unfolded triangles are contained in the interior of the
two circumcircles of these triangles. Bobenko and Springborn show:

Theorem 2.3.1 (Delaunay discretization). Every compact Euclidean cone
surface allows for an intrinsic Delaunay tessellation. Furthermore, the stiff-
ness matrix corresponding to an intrinsic choice of edges has all non-positive
off-diagonal entries if and only if the choice of edges is Delaunay.

2.3.4 Mass matrices and discretized functionals

We conclude this section with a remark on scaling behavior. Because func-
tionals scale differently from functions, one sometimes wishes to interpret
a functional, F ∈ H−1(Mh), as a function in the space Sh or S∗

h. Notice
that only because the dimension of the involved spaces is finite, a func-
tional, F ∈ H−1(Mh), can be discretized to become a function Fh ∈ Sh

(resp. F ∗
h ∈ S∗

h). There is no infinite-dimensional analogue of such a con-
struction.

Definition 2.3.4 (mass matrix). Let {φp} denote the nodal basis functions
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at vertices, and let {φei
} denote the mid-edge basis functions at edges. Then

Mpq =

∫

Mh

φpφq dvol and M∗
ij =

∫

Mh

φei
φej

dvol

defines the conforming and the nonconforming mass matrix of the mesh.

Remark 2.3.1. Note thatM = (Mpq) andM∗ = (M∗
ij) are invertible because

they represent the L2 inner product.

Definition 2.3.5 (discretized functionals). For any F ∈ H−1(Mh) which
satisfies Criterion 1, define Fh ∈ Sh and F ∗

h ∈ S
∗
h by

∫

Mh

Fhφh dvol = 〈F |φh〉 ∀φh ∈ Sh and

∫

Mh

F ∗
hφ

∗
h dvol = 〈F |φ∗

h〉 ∀φ
∗
h ∈ S

∗
h.

The functions Fh and F ∗
h can be explicitly computed as follows:

Fh =
∑

p,q

〈F |φp〉M
pqφq and

F ∗
h =

∑

i,j

〈F |φei
〉(M∗)ijφej

,

summing over all nodes p and q (resp. all edges ei and ej). Here Mpq and
(M∗)ij denote the inverse mass matrices.

Scaling: If the mesh Mh is scaled by a factor λ while the functional F is
kept scale-free, then the functions, Fh and F ∗

h , re-scale with 1/λ2.

2.4 Discrete differential operators

This section serves as summarizing a framework for weak versions of the
following operators: divergence, curl, Laplace–Beltrami, and the mean cur-
vature vector1. Most of the material here was initiated by Polthier (see
for example [62]). Our development of a concise theory of Sobolev spaces
on simplicial meshes (cf. Section 2.2) allows to give these operators a precise
meaning. In particular, it makes possible the exact specification of the spaces
these operators act on, a fact that is important for treating convergence later.

1Whereas divergence, curl, and the Laplacian are intrinsic notions, we assume that Mh

is isometrically embedded into R3 whenever we talk about the mean curvature vector.
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Observation (functions vs. functionals). The operators considered here,
such as divergence, curl, Laplace–Beltrami and the mean curvature vector,
are functionals. By construction, they are elements of the Sobolev space
H−1(Mh). Hence it makes in general no sense to speak about pointwise
evaluation of these objects as if they were continuous functions. Instead, a
functional F ∈ H−1(Mh) only gives a real number if paired with a function
in H1

0 . In this sense the ’evaluation’ of the functional F at an interior vertex
p may be understood as the pairing 〈F |φp〉 with the nodal basis function φp.
Similarly, the ’evaluation’ of the functional F at an interior edge e may be
understood as the pairing 〈F |φe〉 with the mid-edge basis function φe.

In what follows, we will provide two versions for each of the operators of
interest – a conforming and a nonconforming one. The conforming version
can be thought of as being vertex-based. Similarly, the nonconforming ver-
sion is edge-based. The two versions are related by the following averaging
property.

Lemma 2.4.1 (averaging property). Vertex-based quantities are obtained
from edge-based quantities by summing over the edges incident to a particular
vertex. By linearity, this follows from the identity

φp =
1

2

∑

e∋p

φe, (2.11)

where φp is the Lagrange basis function of a vertex p, and φe denotes the
mid-edge basis function for an edge e incident to p.

2.4.1 Complex structure

The cone metric on Mh induces a complex structure, J, which on individual
triangles acts by rotating tangential vectors counter-clockwise by π/2. Notice
that except at cone singularities, J is well defined. Indeed, by making a pair
of adjacent triangles coplanar, the action of J extends to the interior of edges.

The complex structure can be thought of as a version of a discrete Hodge
star operator since for a pair (X,Y ) of piecewise constant vector fields one
has

∫

Mh

X ∧ Y =

∫

Mh

gMh
(JX,Y ) dvol.

Later it will be shown, however, that one is often interested in a discrete
Hodge star operator which differs from complex multiplication.
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2.4.2 Divergence and Gauss’ theorem

Gauss’ theorem asserts that the divergence of a vector field, integrated over
a volume, measures the flux through the boundary of this volume. This fact
remains true in the weak setting. As usual, we define the divergence operator
as the (negative) adjoint operator of

∇ : H1
0 (Mh)→ L2

X(Mh).

Let X ∈ Xh ⊂ L2
X(Mh) be a piecewise constant vector field. The con-

forming version of divergence is given by

divX(p) := 〈divX|φp〉 = −

∫

Mh

gMh
(X,∇φp) dvol.

Here p is an interior vertex of Mh, and φp ∈ Sh,0 denotes the linear Lagrange
basis function at p. Similarly, for any interior edge (an edge is called interior
if it is not a boundary edge), the nonconforming version reads

div*X(e) := 〈divX|φe〉 = −

∫

Mh

gMh
(X,∇φe) dvol.

Remark 2.4.1. The nonconforming version is justified by Lemma 2.3.1: the
boundary contribution to integration by parts vanishes for φe ∈ S

∗
h,0.

Gauss’ theorem holds in the sense that the conforming and nonconforming
versions can be written, respectively, as boundary integrals over the boundary
of the star of p (the star is the set of triangles containing p), and over the
star of an interior edge e (the star is the set of triangles containing e). For a
piecewise constant vector field, X, one obtains

divX(p) =
1

2

∮

∂ star(p)

gMh
(X, η) ds = −

1

2

∑

i

gMh
(Xi, J~ei).

Here η is the outward normal along the boundary, ∂ star(p), ~ei denotes a
boundary edge, oriented counter-clockwise, and Xi denotes the value of X
inside the triangle formed by p and its opposite edge, ei. The factor 1/2
effectively means that the boundary integral is taken over the boundary of
half the star of p, obtained by connecting up the midpoints of the edges
emanating from p to a closed cycle.

The nonconforming version at an interior edge, e, can be rewritten as

div*X(e) =

∮

∂ star(e)

gMh
(X, η) ds = gMh

(Xi+1 −Xi, J~epq).
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p

q

pq

i+1XXi

epq

eJ

Figure 2.6: Notations for the nonconforming version of divergence and curl. The figure
shows two adjacent triangles in the unfolded configuration.

Here η is the outer normal along the boundary, ∂ star(e), ~epq is oriented
from p to q, and Xi and Xi+1 denote the values of the piecewise constant
field, X. The difference, Xi+1 − Xi, is taken in the unfolded configuration,
cf. Figure 2.6. We have the following interpretation.

Lemma 2.4.2 (normal jump). div*X(e) measures the normal jump, [X]nor(e),
of the piecewise constant field X at the edge e.

The identity

divX(p) =
1

2

∑

e∋p

div*X(e)

constitutes the averaging property for any interior vertex p.

2.4.3 Curl and Stokes’ theorem

The definition of curl on a 2D manifold can be based on the definition of div
using complex multiplication,

curlX = − div(JX).

Stokes’ theorem holds in the sense that for any interior vertex curl can be
expressed as a boundary integral. Indeed, let X ∈ Xh be a piecewise constant
vector field, and let p be an interior vertex. Then

curlX(p) =
1

2

∮

∂ star(p)

gMh
(X, τ) ds =

1

2

∑

i

g(Xi, ~ei).
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Here τ is the unit tangent vector along ∂ star(p), ~ei denotes a boundary edge,
oriented counter-clockwise, and Xi denotes the value of X inside the triangle
formed by p and its opposite edge, ei. Similarly,

curl*X(e) =

∮

∂ star(e)

gMh
(X, τ) ds = g(Xi −Xi+1, ~epq),

where the edge, ~epq, is oriented from p to q, and Xi, Xi+1 denote the val-
ues of the piecewise constant field, X. The difference, Xi+1 − Xi, is taken
in the unfolded configuration, cf. Figure 2.6. This leads to the following
interpretation.

Lemma 2.4.3 (tangential jump). curl*X(e) measures the tangential jump,
[X]tan(e), of the piecewise constant field X at the edge e.

The averaging property holds for the curl operators.

2.4.4 Laplace–Beltrami

The Laplace–Beltrami operator on polyhedral surfaces was introduced in
Section 2.2. By construction we have

∆ = div∇.

From the preceding discussion we obtain two versions of discrete Laplacians:
a conforming (vertex-based) and a nonconforming (edge-based) one.

Lemma 2.4.4 (vertex-based Laplace–Beltrami operator). Let u ∈ Sh, and
let p be an interior vertex in Mh. Then

∆u(p) := 〈∆u|φp〉 = −
1

2

∑

q

(cotαpq + cotβpq)(u(p)− u(q))

is the conforming Laplace–Beltrami operator. The sum is taken over all ver-
tices, q, which share an edge with p, compare Figure 2.7. The vertex-based
stiffness matrix evaluates to

Lpq = −∆φp(q) (= −
1

2
(cotαpq + cot βpq) if p and q share an edge),

where φp and φq are the nodal basis functions at the vertices p and q and αpq

and βpq are the two angles opposite to the edge pq.

The above formula is known as the cotan formula, as it appeared in the
work of Pinkall and Polthier [61] in their discussion of discrete minimal sur-
faces, and earlier in Duffin’s work [26] in the framework of electrical networks.
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α pq

β pq

q

p

Figure 2.7: The conforming versions of the operators only see the vertex-star of p (the
set of triangles containing p).

Lemma 2.4.5 (edge-based Laplace–Beltrami operator). Let u ∈ S∗
h, and let

e be an interior edge in Mh. Then

∆∗u(e) := 〈∆u|φe〉 = −2
∑

j

cot ∠(ei, ej)(ui − uj)

is the nonconforming Laplace–Beltrami operator. The sum is taken over the
four edges in ∂ star(e), and ui, uj denote the values of u at the edge-midpoints
of ei, ej, respectively. The edge-based stiffness matrix is given by

L∗
ij := −∆∗φei

(ej) (= −2 cot ∠(ei, ej) if ei 6= ej belong to a single triangle),

where φei
is the mid-edge basis function corresponding to edge ei.

The following theorem can be interpreted as a discrete equivalent of the
fact that on a Riemannian manifold the first fundamental form is completely
determined by the Laplace operator.

Theorem 2.4.1 (edge-Laplacian determines intrinsic metric). Let Mh be
closed. Then, up to uniform re-scaling, the edge-based stiffness matrix, (L∗

ij),
completely determines the first fundamental form of Mh.

Proof. Since cot is bijective on (0, π), one can recover all angles from L∗
ij =

−2 cot ∠(ei, ej). QED

In particular, (L∗
ij) governs the entire theory of Sobolev spaces on closed

triangular meshes.

2.4.5 Mean curvature

Analogous to the smooth setting, the mean curvature vector of a polyhe-
dron is defined as the Laplace–Beltrami operator applied to the isometric



2.4 Discrete differential operators 31

embedding of Mh into R3, that is, as the R3-valued functional

~H = ∆ ~E ∈ (H−1(Mh))
3.

The mean curvature functional on Euclidean cone surfaces has given rise to
a long and diverse list of applications over the past few years. For exam-
ple, the vertex-based version was employed for isotropic mesh filtering by
Desbrun et al. [23]; later the edge-based version was found to be useful for
anisotropic filtering by Hildebrandt and Polthier [47]. Other applications
cover modeling and animation of elastic materials (cf. Grinspun et al. [40])
as well as mesh editing and mesh compression (see the remarks following
Theorem 2.4.2 below). Finally, in [61], Pinkall and Polthier for the first time
started a systematic treatment of discrete minimal surfaces. Their approach
has spawned a rich pool of explicitly computable examples (cf. [51] [44] [66]).

Figure 2.8: The discrete catenoid was the first example of an explicitly computable (con-
forming) discrete minimal surface (cf. Polthier and Rossman [66]).

Since the embedding of a piecewise linear surface is itself piecewise linear,
we can define:

Definition 2.4.1 (discrete minimal surface). A polyhedral surface is called
(conforming) minimal if

〈 ~H|φp〉 = 0 for all vertices p ∈Mh \ ∂Mh.
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Remark 2.4.2. Note carefully that discrete minimality means that 〈 ~H|uh〉 = 0

for all uh ∈ Sh,0, so that it is a weaker condition than ~H = 0 ∈ H−1(Mh).
This is because (conforming) discrete minimality is a condition at vertices
only; edges may still be bent, see Figure 2.8.

The conforming version of the mean curvature vector at an interior vertex
p of Mh takes the form

~H(p) := 〈 ~H|φp〉 = −
1

2

∑

q

(cotαpq + cotβpq)(p− q),

the sum being taken over all vertices q which share an edge with p, compare
Figure 2.7 for notation. The conforming version of the mean curvature vector
is the negative area gradient of the Euclidean cone surface Mh for variations
of its vertices (this is a simple consequence of the fact that all admissible
variations are piecewise linear, cf. [61]). Hence the mean curvature vector
at a vertex can be thought of as being normal to the polyhedron, while its
length determines the velocity by which Mh needs to move to decrease its
total area.

e

N

q

e

θ

p

Figure 2.9: Ingredients for mean curvature vector at an edge.

The nonconforming version at an interior edge of Mh takes the form

~H∗(e) := 〈 ~H|φe〉 = −2 cos
θ

2
‖e‖ ~Ne,

where ~Ne denotes the outer angle-bisecting normal to Mh at the edge e and
θ is the dihedral angle at e, compare Figure 2.9. The conforming and non-
conforming versions are related by the averaging property.

The following result relates the vertex-based mean curvature vector to the
embedding of Mh. It can be thought of as the uniqueness part of a discrete
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”fundamental theorem of surface theory”, the smooth version of which asserts
that there exists a unique embedding given the first and second fundamental
forms. It is an interesting problem to find the discrete existence part - which
in the smooth setting relates first and second fundamental form by certain
integrability conditions – the Gauss and Codazzi-Mainardi equations.

Theorem 2.4.2. Let Mh be closed. Then the vertex-based stiffness matrix
(Lpq) together with the vertex-based mean curvature vectors ( ~H(p)) uniquely

determine the embedding ~E : Mh → R3 up to a global translation in R3.

Proof. The stiffness matrix (Lpq) is symmetric and positive semi-definite. Its

kernel is the 1-dimensional space of constants. The embedding ~E of Mh can
be written in terms of the nodal basis functions, ~E =

∑

q φqq, summing over
all vertices of Mh. To recover the positions of the vertices of Mh, one has to
solve the linear system

−
∑

q∈Mh

Lpqq = ~H(p). (2.12)

Fixing the position of a single vertex makes the system full-rank. QED

Theorem 2.4.2 has interesting applications for shape editing and mor-
phing: given the mean curvature vectors of an initial (undeformed) mesh,
and altering a few vertex positions of that mesh, one solves for the remain-
ing vertex positions using (a constrained version of) (2.12). In this view,
mean curvature vectors take the role of ’mesh coordinates’. They were in-
troduced under the name of delta coordinates by Alexa [2]. Applications
of δ-coordinates range from single-resolution mesh editing (cf. Lipman et
al. [52]) to mesh compression (cf. Sorkine et al. [74]). For an overview of
recent developments using δ-coordinates, see [73].

Remark 2.4.3. We take an interpretation of δ-coordinates here which differs
from their original definition. Originally these coordinates were not based on
the geometric Laplace–Beltrami operator but rather on a purely combinatorial
version corresponding to the incidence matrix of the mesh (where off-diagonal
elements contain the entry 1 for each edge, and diagonal entries encode the
degree of each vertex). The relation between geometric and combinatorial
information of a mesh is an area of ongoing research, see e.g. Alliez and
Gotsman [3].

2.5 Algebraic topology from FE

In this section we interpret the cohomological structure of a Euclidean cone
surface in terms of chain complexes built from discrete differential operators
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– in close analogy to the smooth de Rham complex. Later, in Chapter 3, we
show that the operators and spaces considered here converge to their smooth
counterparts. To simplify the discussion we are only going to deal with closed
surfaces.

The discrete theory presented here builds on mixing conforming and non-
conforming linear finite elements. This mixing yields two distinct versions
of a discrete de Rham complex. The cohomology of each of these com-
plexes is isomorphic to simplicial cohomology (Theorem 2.5.1). Moreover,
mixing conforming and nonconforming elements gives rise to two versions
of a discrete Hodge decomposition (Section 2.5.3). The observation that in
the discrete case one obtains two distinct versions of a Hodge decomposition
– a doubling which is absent in the smooth setting – is closely related to
the cellular viewpoint taken by Mercat [54, 55] who builds his discretization
upon simultaneously considering two distinct grids (a primal and a dual one)
and obtains Riemann period matrices of double the dimension in his work
on discrete conformal structures. Our view is also closely linked to that of
Desbrun et al. [22] and Glickenstein [36, 37]. The necessity for such a dou-
bling in the discrete case appears to be related to a certain impossibility of
constructing a discrete Hodge star operator which at the same time takes the
role of complex multiplication on 1-forms (i.e., acts by 90° rotation) and also
isomorphically maps the 2g-dimensional space of harmonic 1-forms to itself
for a closed polyhedron of genus g. In the sequel we shall therefore carefully
distinguish between complex multiplication and the Hodge star operator.

As before, we consider the space of piecewise constant vector fields. On
this space, complex multiplication J acts by 90° rotation. In particular,
J exchanges the spaces of conforming and nonconforming harmonic vector
fields,

J : ker curl*h ∩ ker divh −→ ker curlh ∩ ker div*
h .

The (conforming) Hodge star operator is obtained by composing J with a
projection (with respect to the L2 inner product), mapping nonconforming
harmonic fields back conforming ones:

⋆ = Π ◦ J : ker curl*h ∩ ker divh 	 .

This Hodge star will be used to study holomorphic and antiholomorphic vec-
tor fields in Section 2.5.6.

Using piecewise constant vector fields is, in a sense, the simplest possible
discretization of the space of smooth vector fields. Another common dis-
cretizations is based on (piecewise linear) Whitney forms which date back to
the seminal work of Whitney [81]. For an excellent overview of the use of
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Whitney forms in discretizing PDEs, see Arnold [5]. The reason to explore
the theory and convergence of piecewise constant fields here is their wide-
spread use in graphics applications, see Gu and Yau [45, 46], and Polthier
and Preuss [65], as well as in the FE viewpoint of minimal surface theory,
see [62]. The exact relations between piecewise constant fields and Whitney
forms is established in Sections 3.4.1 and 3.4.2.

2.5.1 Discrete de Rham complex

The smooth setting. Recall the de Rham complex of a smooth Riemann
surface (M, g):

0 −−−→ Λ0(M)
d

−−−→ Λ1(M)
d

−−−→ Λ2(M) −−−→ 0.

This is a chain complex ( d2 = 0) for the Cartan outer differentials d acting
on smooth q-forms, Λq. The metric version of the above complex is obtained
by using the duality between 1-forms and vector fields (using the sharp oper-
ator), as well as the duality between 2-forms and functions (using the Hodge
star). One obtains the following commutative diagram:

0 −−−→ Λ0(M)
d

−−−→ Λ1(M)
d

−−−→ Λ2(M) −−−→ 0




y
Id





y

♯





y

⋆

0 −−−→ Λ0(M)
∇
−−−→ X(M)

curl
−−−→ Λ0(M) −−−→ 0,

where for σ ∈ Λ1(M), ω ∈ Λ2(M), and X ∈ X(M),

σ(X) = g(σ♯, X) and ω = (⋆ω) dvolg.

The discrete setting. We consider the following metric version of a
discrete de Rham complex as well as its adjoint version with respect to the
L2 inner products on Sh, S

∗
h, and Xh:

0 −−−→ Sh
∇
−−−→ Xh

curl*
h−−−→ S∗

h −−−→ 0

0 ←−−− Sh
divh←−−− Xh

J∇
←−−− S∗

h ←−−− 0.

(2.13)

Recall that J denotes complex multiplication, and the subscript h denotes
the discretization of functionals as in Definition 2.3.5, that is

(curl*hX,φ)L2 = 〈curl*X|φ〉 for all φ ∈ S∗
h and

(divhX,φ)L2 = 〈divX|φ〉 for all φ ∈ Sh.
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Figure 2.10: Top: Discrete de Rham complex from mixing conforming elements (where
the degree of freedom is at the vertices) and nonconforming elements (where the degree of
freedom is at edge midpoints). Bottom: The dual complex with respect to the L2 inner
products.

Lemma 2.5.1. The complexes of Diagram (2.13) are chain complexes.

Proof. By Lemma 2.4.3, curl*X(e) = [X]tan(e) measures the tangential jump
of the field X at the edge e. If X = ∇u, with u ∈ Sh, then X is tangentially
continuous at any edge and hence curl*∇u(e) = 0. This implies that the top
row of (2.13) is a chain complex. The bottom row is the adjoint version of
the top row – so it is a chain complex as well. QED

It is also useful the consider the J-transformed version of (2.13):

0 −−−→ Sh
J∇
−−−→ Xh

div*
h−−−→ S∗

h −−−→ 0

0 ←−−− Sh
curlh←−−− Xh

∇
←−−− S∗

h ←−−− 0.

(2.14)

Considering both, (2.13) and (2.14), implies that any closed polyhedral sur-
face gives rise to (at least) two pairs of de Rham chain complexes. Within
each of these pairs, one complex is the L2-adjoint of the other. Note that
the above complexes mix conforming and nonconforming elements. The next
section will illuminate why this is indeed necessary in the discrete setting.

2.5.2 de Rham cohomology

The most important feature of the chain complexes in Diagrams (2.13) and
(2.14) is that they induce the same (co)homology as singular (co)homology.
For the case of a simply connected Mh this result had been independently
obtained by Arnold and Falk [6], and Polthier and Preuss [65]. Here we
extend it to closed meshes of arbitrary genus.
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Theorem 2.5.1 (de Rham cohomology from FE). Let Mh be a closed Euclid-
ean cone surface. The ith (co)homology (i = 0, 1, 2) of the chain complexes
in Diagrams (2.13) and (2.14) are equal to the ith singular (co)homology of
Mh. In particular

H1
sing(Mh; R) ∼=

ker curl*h
im∇|Sh

∼=
ker divh

im J∇|S∗

h

∼=
ker curlh
im∇|S∗

h

∼=
ker div*

h

im J∇|Sh

.

Proof. We show that H1
sing(Mh) = ker curl*h / im∇|Sh

. By Lemma 2.4.3 the

elements of ker curl*h ⊂ Xh are those piecewise constant vector fields which
are tangentially continuous across every edge e of Mh. In particular, X ∈
ker curl*h gives rise to a simplicial 1-form ωX on Mh by

ωX(~epq) = g(X,~epq).

Since X is piecewise constant, ωX is closed, that is δ1ωX = 0, where

δ1 : C1(Mh)→ C2(Mh)

denotes the simplicial coboundary operator. Vice-versa, any closed simplicial
1-form ω gives rise to a piecewise constant vector field Xω ∈ ker curl*h by
dualization. We obtain

ker δ1 ∼= ker curl*h .

Now let f ∈ C0(Mh) be a simplicial 0-form, i.e. f gives answers to vertices
of Mh. Consider the simplicial coboundary operator δ0 : C0(Mh)→ C1(Mh).
Extending f linearly across triangles we get

(δ0f)(~epq) = f(q)− f(p) = g(∇f,~epq).

In other words, under the identification of 0-forms with piecewise linear func-
tions we get

im δ0 ∼= im∇|Sh
.

Together this shows

H1
sing(Mh; R) =

ker δ1

im δ0
∼=

ker curl*h
im∇|Sh

.

It now follows from analogous considerations that the remaining quotients in
the statement of the theorem are all equal to each other. QED
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2.5.3 Hodge decomposition

From the above de Rham complex one immediately obtains a discrete Hodge
decomposition of the space of piecewise constant vector fields. Before we go
into detail, we make a rather general note about Hodge decompositions for
chain complexes involving finite dimensional metric spaces (cf. Eckmann [31]).

Lemma 2.5.2. Let (U, gU), (V, gV ) and (W, gW ) be finite-dimensional vector
spaces equipped with positive symmetric inner products. Assume that

U
d1−−−→ V

d2−−−→ W

is a chain complex. i.e. d2 ◦ d1 = 0. Let d∗1 : V → U and d∗2 : W → V
denote the adjoint operators to d1 and d2 (a finite-dimensional space and its
dual are identified via the inner product). Then there exists a gV -orthogonal
decomposition

V = im d1 ⊕ im d∗2 ⊕ ker d2 ∩ ker d∗1.

Moreover, this decomposition only depends on the choice of the inner
product gV on V , as well the spaces im d1 ⊂ V and ker d2 ⊂ V . The de-
composition is otherwise independent of the choices of d1, d2, (U, gU), and
(W, gW ). Finally, the following spaces are isomorphic,

ker d2

im d1

∼=
ker d∗1
im d∗2

∼= ker d2 ∩ ker d∗1.

As usual, the space ker d2 ∩ ker d∗1 is called harmonic.

Proof. One repeatedly uses the fact that the image of the adjoint of an op-
erator equals the orthogonal complement of the kernel of the operator itself:
im d∗ = (ker d)⊥. QED

From Lemma 2.5.2, we deduce the following result for closed Euclidean
cone surfaces.

Theorem 2.5.2 (Hodge decompositions from FE). Let Mh be closed. The
space of piecewise constant vector fields can be decomposed according to the
following (conforming and nonconforming) L2-orthogonal splittings

Xh = im∇|Sh
⊕ im J∇|S∗

h

⊕ ker curl*h ∩ ker divh

= im J∇|Sh
⊕ im∇|S∗

h

⊕ ker div*
h ∩ ker curlh .

Hence, in the discrete case there exist two versions of harmonic vector
fields (given by ker curl*h ∩ ker divh and ker div*

h ∩ ker curlh), and

H1
sing(Mh; R) ∼= ker curl*h ∩ ker divh

∼= ker div*
h ∩ ker curlh .
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In particular, the dimension of each of the spaces of harmonic vector fields
equals twice the genus of Mh. We summarize the situation by a definition.

Definition 2.5.1 (conforming and nonconforming harmonic fields). Let Mh

be closed. The space of conforming harmonic vector fields is defined as

H(Mh; R) = ker curl*h ∩ ker divh .

The space of nonconforming harmonic vector fields is defined as

H∗(Mh; R) = ker curlh ∩ ker div*
h .

The dimension of these spaces is 2g (twice the genus of Mh).

Interpretation in terms of 1-forms. The proof of Theorem 2.5.1 shows
that every curl*h-free piecewise constant vector field, X ∈ ker curl*h, is dual to
a closed simplicial 1-form ωX ∈ ker δ1:

Xω ∈ ker curl*h ⇐⇒ ωX ∈ ker δ1,

where δ1 is the usual simplicial co-boundary operator. If X is additionally
conforming harmonic then X ∈ ker divh. This is equivalent to a condition at
the vertices p of Mh, namely:

∑

q

(cotαpq + cot βpq)g(X,~epq) = 0,

where the sum is taken over all edges ~epq emanating from p, and αpq and
cot βpq are the two angles opposite to edge ~epq. In terms of the simplicial
1-form ωX and an appropriate dual operator (δ1)∗, this can be written as

0 = (δ1)∗ωX(p) =
∑

q

(cotαpq + cotβpq)ωX(~epq).

In other words, discrete harmonicity in the language of 1-forms is equiv-
alent to

δ1ωX = 0 and (δ1)∗ωX = 0,

i.e. a condition for faces (δ1ωX = 0) and vertices ((δ1)∗ωX = 0), cf. Fig-
ure 2.11. The corresponding nonconforming version for harmonic vector fields
has a similar interpretation in terms of 1-forms by integrating the normal
component along edges. In the next subsection we will elaborate on discrete
harmonic 1-forms.

Finally, we note that in the smooth setting there is only a single version
of harmonic vector fields, and complex multiplication acts as an isometry
on this space. In contrast, on polyhedral surfaces there are two versions of
harmonic fields, and complex multiplication interchanges them:
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Figure 2.11: For a discrete 1-form to be closed is a condition on triangles: the answer to
any simply connected closed loop must be zero. To be co-closed is a condition on vertices:
the answer to a weighted sum over all edges emanating from a vertex must be zero.

Proposition 2.5.1. Let Mh be closed. Complex multiplication induces an
isomorphism between conforming and nonconforming harmonic vector fields:

J : H(Mh; R)→ H∗(Mh; R).

Moreover,

H(Mh; R) ∩H∗(Mh; R) = {0},

unless the cone angle at every vertex of Mh is an integer multiple of 2π.

Proof. Assume

0 6= X ∈ H(Mh; R) ∩H∗(Mh; R) ⊂ ker curl*h ∩ ker div*
h .

Recall that ker curl*h consists of all edge-tangentially continuous piecewise
constant vector fields and that ker div*

h contains all edge-normally contin-
uous ones. Hence a non-vanishing field X ∈ ker curl*h ∩ ker div*

h would be
everywhere parallel (wrt. intrinsic parallel transport). Such a field X exists
if and only if the cone angle at any vertex of Mh is an integer multiple of
2π. QED

Remark 2.5.1. There is a third possible discretization of the de Rham complex
on Euclidean cone surfaces which is entirely built from conforming elements:

0 −−−→ Sh
∇
−−−→ Xh

curlh−−−→ Sh −−−→ 0

0 ←−−− Sh
divh←−−− Xh

J∇
←−−− Sh ←−−− 0.

However, this complex does not induce the correct (co)homology. Indeed,

dim(ker curlh ∩ ker divh) = #F + 4g− 2,

where g is the genus of Mh, and #F denotes the number of faces (triangles)
of Mh – in contrast to dimH1

sing(Mh; R) = 2g.
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2.5.4 Local parameterization and Poincaré index theorem

In this subsection we review how harmonic vector fields can be used for
mesh parameterization. In a later section we will refine these results and
introduce holomorphic vector fields to get conformal parameterizations. As
an application we mention that the Delaunay discretization of a Euclidean
cone surface (cf. Section 2.3.3) provides a tool to obtain locally injective
parameterizations in the FE setting.

As observed by Gortler, Gotsman and Thurston (cf. [39]), a certain class of
harmonic 1-forms on meshes yields locally injective mesh parameterizations.
In particular, they apply their results to obtain a simple proof of Tutte’s
celebrated barycentric embedding theorem for planar graphs [80]. The basis
of their approach is to provide a discrete Poincaré-Hopf index theorem for
1-forms on oriented meshes G = (V,E, F ) with vertex set V , edge set E, and
face set F .

A one-form on G is an assignment of a real number, ω(~epq), to each
oriented edge, ~epq, such that ω(~epq) = −ω(~eqp). Throughout it is assumed
that this number is different from zero (if it is zero, remove the corresponding
edge from E). A pair (f, p) ∈ (F, V ) with p ∈ f is called a corner of ω if

sgnω(~epq) 6= sgnω(~epr),

for the unique pair of oriented edges ~epq and ~epr in f emanating from p. The
index of a vertex p is the number

ind(p) = 1−
corn(p)

2
,

where corn(p) is the number of faces f such that (f, p) is a corner. The index
of a face f is the number

ind(f) = 1−
non-corn(f)

2
,

where non-corn(f) is the number of vertices p such that (f, p) is not a corner.
A vertex (resp. face) is called regular if ind(v) = 0 (resp. ind(f) = 0), and
a non-regular vertex (face) is called singular. A singular vertex of index 1 is
either a source or a sink. A singular face of index 1 is called a vortex. All
other singularities (ind < 0) are called saddles. Gortler, Gotsman, Thurston
show:

Theorem 2.5.3 (Poincaré-Hopf). If G = (V,E, F ) has the topology of a
closed oriented 2-manifold of genus g then

∑

p∈V

ind(p) +
∑

f∈F

ind(f) = 2− 2g.
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As usual, a 1-form is called closed if

δω(f) =
∑

~e∈∂f

ω(~e) = 0 ∀ f,

where ∂f is the boundary operator of the face f . Note that any closed 1-form
can locally be integrated along edges to locally give a real-valued function on
the vertices of G. A pair of (non-collinear) closed 1-forms can then be used
to locally ’parameterize’ G by using the corresponding functions on vertices
to locally get a map to the plane. More formally,

Definition 2.5.2 (local parameterization). Let ω1 and ω2 be two non-collinear
closed 1-forms on G. Then locally integrating the complex-valued 1-form
(ω1 + iω2) gives a local parameterization of G.

Let kpq = kqp be a set of symmetric real-valued weights on edges. A
1-form is called co-closed with respect to {kpq} if

δ∗ω(p) =
∑

~epq

kpqω(~epq) = 0 ∀ p,

where ~epq runs over the (oriented) edges emanating from p. Finally, ω is
called harmonic if it is closed and co-closed, that is

δω = 0 and δ∗ω = 0.

A parameterization is called locally injective if the one-ring of faces around
each interior vertex maps homeomorphically to a disk in the plane (the term
was coined by Floater, cf. [33]). The following result is shwon in [39]:

Theorem 2.5.4 (locally injective parameterizations). If the weights {kpq}
in the definition of co-closed forms all have the same sign then any pair of
(non-collinear) harmonic 1-forms yields a locally injective parameterization
of G.

Connection with harmonic vector fields. Recall that the space of
conforming harmonic vector fields was defined as

H(Mh; R) = ker curl*h ∩ ker divh .

In the previous subsection we explained how to obtain a harmonic 1-form, ωX ,
from a (conforming) harmonic vector field, X. In this context, the weights
kpq are given by the cotan weights

kpq = cotαpq + cot βpq.
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By Section 2.3.3, these weights are all non-negative for the Delaunay dis-
cretization. Note that any edge ~epq for which kpq = 0 can be removed with-
out changing the conditions δω = δ∗ω = 0. As long as all faces stay simply
connected after this removal, we get:

Corollary 2.5.1 (Delaunay discretization yields local injectivity). Let Mh be
a closed Euclidean cone surface. If all edges with zero cotan weights are re-
moved from the edge set of a Delaunay discretization of Mh and the remaining
faces stay simply connected then any pair of (non-collinear) harmonic vector
fields yields a locally injective parameterization.

2.5.5 Hodge-star for harmonic vector fields

We introduce a Hodge-star operator which induces an isomorphism on the
space of conforming harmonic vector fields,

⋆ : H(Mh; R) 	 .

This is in contrast with complex multiplication on polyhedral meshes, which
exchanges the space of conforming and nonconforming harmonic fields. In-
deed, recall that complex multiplication induces an isomorphism

J : H(Mh; R) −→ H∗(Mh; R).

Our construction of the Hodge star operator is similar to the construction of
Wilson [82] who uses Whitney forms. In particular, we owe the discussion
on Poincaré duality as well as Theorems 2.5.5 and 2.5.6 to this source. The
similarity is due to the fact that harmonic Whitney 1-forms are in one-to-
one correspondence with conforming harmonic vector fields (cf. Sections 3.4.1
and 3.4.2 for the precise relations). Furthermore, Gu and Yau [45] were the
first to provide explicit formulas for computing a discrete Hodge star in the
FE setting (without making explicit the spaces which ⋆ acts on). Their Hodge
star coincides with the one discussed here.

Definition 2.5.3 (Hodge-star for conforming harmonic fields). The Hodge-
star operator on the space of conforming harmonic vector fields is a compo-
sition of complex multiplication with a projection,

⋆ := Π ◦ J : H(Mh; R) 	,

where Π : H∗(Mh; R) → H(Mh; R) is the L2-projection to the space of con-
forming harmonic vector fields.
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The projection Π is responsible for the fact that ⋆ is no longer an isometry,
in fact,

⋆2 6= −Id.

Still, ⋆ remains an isomorphism as next theorem shows. To show that, we
use Poincaré duality on cohomology. The argument is due to Wilson.

Poincaré duality on cohomology. For piecewise constant vector fields,
Poincaré duality on cohomology can be stated in terms of the non-degeneracy
on cohomology of the skew-symmetric product

X ∪ Y =

∫

Mh

g(JX,Y ) dvol.

To see that this is non-degenerate, let X,Y ∈ ker curl*h represent two coho-
mology classes. Recall that there is a 1 : 1 correspondence between piecewise
constant vector fields X ∈ ker curl*h and closed simplicial 1-forms ωX . Hence
it suffices to show that the above product is non-degenerate on the coho-
mology level for simplicial 1-forms. Indeed, this nondegeneracy follows from
the fact that the above ∪-product yields the same product on cohomology
as the Alexander-Whitney cup product (this follows by using the method of
acyclic models, cf. Bredon [16]). Using the nondegeneracy of ∪, one obtains
(cf. Wilson [82]):

Theorem 2.5.5. The Hodge-star has the following properties:

i For X,Y ∈ H(Mh; R), one has (⋆X, Y )L2 = −(X, ⋆Y )L2.

ii ⋆ : H(Mh; R) 	 is an isomorphism.

Proof. The first statement follows from simple algebraic manipulations:

i For X,Y ∈ H(Mh; R) one has

(⋆X, Y )L2 = (ΠJX,Y )L2 = (JX,Y )L2

= −(X, JY )L2 = −(X,ΠJY )L2

= −(X, ⋆Y )L2 .

ii The Hodge star is the composition of two isomorphisms, Poincaré du-
ality and the inverse of a non-degenerate inner product. Indeed, let
X,Y ∈ H(Mh; R) then

(⋆X, Y )L2 = (JX,Y )L2 = X ∪ Y.

Since ∪ is non-degenerate on cohomology, and (·, ·)L2 is non-degenerate,
it follows that ⋆ has full rank.

This completes the proof. QED
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2.5.6 Holomorphic and anti-holomorphic vector fields

The Hodge star can be used to obtain a splitting of the space of conform-
ing (resp. nonconforming) harmonic vector fields into holomorphic and anti-
holomorphic fields. We are only going to deal with the conforming version in
this section; the nonconforming version is obtained from the conforming one
by a transformation with J.

In order to obtain such a splitting, one first complexifies the real vector
space of conforming harmonic vector fields H(Mh; R), that is

H(Mh; C) = C⊗R H(Mh; R).

Next, one extends ⋆ linearly over C to this complexified space and extends
(·, ·)L2 to a Hermitian inner product

(X1 + iY1, X2 + iY2)
C

L2 = (X1, X2)L2 + (Y1, Y2)L2 + i(Y1, X2)L2 − i(X1, Y2)L2 ,

where Xj, Yj are real-valued conforming harmonic vector fields. Note that
skew-symmetry

(⋆X, Y )C

L2 = −(X, ⋆Y )C

L2

implies that ⋆ has purely imaginary eigenvalues. Moreover, since ⋆ is the
composition of an isometry (the operator J) with a projection, the magnitude
of these eigenvalues is less or equal to 1. The following definition of discrete
(anti)holomorphic vector fields is due to Wilson:

Definition 2.5.4. Let Mh be closed. The space of holomorphic vector fields
is generated by the eigenvectors of the Hodge star operator corresponding to
negative imaginary eigenvalues:

H1,0(Mh) := span{X ∈ H(Mh; C) | ⋆ X = −iλX for some 0 < λ ≤ 1}.

The space of anti-holomorphic vector fields is generated by the eigenvectors
of ⋆ corresponding to positive imaginary eigenvalues:

H0,1(Mh) := span{X ∈ H(Mh; C) | ⋆ X = iλX for some 0 < λ ≤ 1}.

Note that positive and negative imaginary eigenvalues come in pairs (of
equal absolute value). The following theorem constitutes the splitting of
the (complex) space of harmonic vector fields into holomorphic and anti-
holomorphic fields. It is a simple consequence of Theorem 2.5.5.
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Theorem 2.5.6. There exists an orthogonal splitting with respect to (·, ·)C

L2,

H(Mh; C) = H1,0(Mh)⊕H
0,1(Mh),

where each summand on the right hand side has complex dimension g and
complex conjugation maps one space to the other.

Holomorphic vector fields can be used to conformally parameterize Mh.

Definition 2.5.5 (local conformal parameterization). Let the Euclidean cone
surface Mh be closed and not spherical. A local conformal parameterization
of Mh in the FE sense is obtained by integrating a holomorphic vector field.

Remark 2.5.2. Let the triple (M, gM , ⋆M) represent a smooth Riemann surface
with Riemannian metric gM and star operator ⋆M . Recall that

⋆2
M = −Id and gM(⋆MX,Y ) = −gM(X, ⋆MY ),

so that star ⋆M induces a complex structure on M . The eigenvalues of ⋆M on
the (complexified) space of harmonic vector fields (or 1-forms) are −i and i.
They occur with multiplicity g (genus of M) for each of these two eigenvalues.
The corresponding eigenspaces are called holomorphic and anti-holomorphic.

H1,0(M) = {X ∈ H(M ; C) | ⋆M X = −iX} and (2.15)

H0,1(M) = {X ∈ H(M ; C) | ⋆M X = +iX}. (2.16)

We will later show that the discrete Hodge star ⋆ introduced in the last
section is an approximation of the smooth operator ⋆M (under suitable as-
sumptions). The spectrum of ⋆ is hence an approximation of the spectrum of
⋆M . However, whereas the spectral decomposition of ⋆M consists of the two
eigenspaces corresponding to −i and +i, each of complex dimension g, the
spectral decomposition of ⋆ does in general consist of 2g distinct eigenspaces,
each of complex dimension 1 (compare Proposition 2.5.2).

2.5.7 CR equations and parameterization

In this subsection we are going to remark on a slightly different approach to
surface parameterization. The approach taken by Gu and Yau [45, 46] falls
into this category. We show that the space of vector fields considered by Gu
and Yau for local parameterization is in general larger than the space of holo-
morphic vector fields (cf. Proposition 2.5.2). Our discussion will be based on
discrete Cauchy-Riemann equations (CR equations) in the FE setting.
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The smooth setting. Recall that for a smooth complex-valued function
f : C→ C with f = u+ iv (where u and v are real-valued), the CR equations
are

J∇u = ∇v. (2.17)

On a smooth closed Riemann surface (M, gM , J = ⋆M), the only solutions
to equation (2.17) are constants (since u and v are harmonic). However, the
complex-valued functions obtained by locally integrating (over any simply
connected domain) a complex-valued field of the form

X + i ⋆M X with X ∈ H(M ; C) = C⊗R (ker curlM ∩ ker divM),

do (locally) satisfy the CR-equation. Moreover, since ⋆2
M = −Id on a smooth

Riemann surface, it follows that

H1,0(M) = {X + i ⋆M X |X ∈ H(M ; C)} and

H0,1(M) = {X − i ⋆M X |X ∈ H(M ; C)},

where H1,0(M) and H0,1(M) are defined as in (2.15) and (2.16). Hence,
the functions arising from locally integrating a complex-valued field X ∈
H(M ; C) satisfy the CR equations if and only if X ∈ H1,0(M), that is X is
holomorphic.

The discrete setting. Drawing from this connection between CR equations
and holomorphic vector fields for smooth Riemann surfaces, Gu and Yau [45,
46] define discrete conformal parameterizations on the Euclidean cone surface
Mh by locally integrating complex fields of the form

X + i ⋆ X with X ∈ H(Mh; C),

i.e. for X (conforming) harmonic. However, unlike in the smooth case, the
complex vector space spanned by vectors of this kind is in general larger than
the space of holomorphic vector fields H1,0(Mh). This is due to the fact that
in general ⋆2 6= −Id in the discrete case. More precisely, the following result
holds.

Proposition 2.5.2. Let Mh be a closed Euclidean cone surface of genus g.
Then

H1,0(Mh) ⊂ {X + i ⋆ X |X ∈ H(Mh; C)},

but equality does in general not hold. Indeed, one has

dimC{X + i ⋆ X |X ∈ H(Mh; C)} = 2g− dimC{X | ⋆ X = iX} ≥ g,

whereas dimCH
1,0(Mh) = g.
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Proof. To show the inclusion, let Y ∈ H1,0(Mh) such that ⋆Y = −iλY for
some 0 < λ ≤ 1. Then

Y =
1

1 + λ
(Y + i ⋆ Y ) ∈ {X + i ⋆ X |X ∈ H(Mh; C)}.

To show the dimension count, let Ȳ ∈ H0,1(Mh) be an anti-holomorphic
vector field such that ⋆Ȳ = iλȲ for some 0 < λ ≤ 1. If λ 6= 1, we get

Ȳ =
1

1− λ
(Ȳ + i ⋆ Ȳ ) ∈ {X + i ⋆ X |X ∈ H(Mh; C)}.

Since by Theorem 2.5.6 we have

H(Mh; C) = H1,0(Mh)⊕H
0,1(Mh),

it follows that

H(Mh; C) = {X + i ⋆ X |X ∈ H(Mh; C)} ⊕ {X | ⋆ X = iX},

which completes the proof. QED

Remark 2.5.3. Polthier (cf. [62]) observed that a local version of the CR
equations on Euclidean cone surfaces can be obtained by mixing conforming
and nonconforming elements. Let Ω be a simply connected simplicial domain.
Let u ∈ Sh(Ω) be harmonic, i.e. ∆u(p) = 0 for all interior vertices p ∈ Ω.
Then there exists v ∈ S∗

h(Ω) such that

J∇u = ∇v

and ∆∗v(e) = 0 for all interior edges e. The function v is uniquely determined
up to an additive constant. Vice-versa, if u ∈ Sh and v ∈ S∗

h satisfy the
discrete CR equations (J∇u = ∇v) then ∆u(p) = 0 at all interior vertices
and ∆∗v(e) = 0 for all interior edges. This characterization leads to an
interesting construction of discrete conjugate minimal surfaces in the FE
sense (cf. [62]).




