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Abstract
The free expansion of a planar plasma surface is a fundamental non-equilibrium process relevant
for various fields but as-yet experimentally still difficult to capture. The significance of the
associated spatiotemporal plasma motion ranges from astrophysics and controlled fusion to laser
machining, surface high-harmonic generation, plasma mirrors, and laser-driven particle
acceleration. Here, we show that x-ray coherent diffractive imaging can surpass existing
approaches and enables the quantitative real-time analysis of the sudden free expansion of
laser-heated nanoplasmas. For laser-ionized SiO2 nanospheres, we resolve the formation of the
emerging nearly self-similar plasma profile evolution and expose the so far inaccessible shell-wise
expansion dynamics including the associated startup delay and rarefaction front velocity. Our
results establish time-resolved diffractive imaging as an accurate quantitative diagnostic platform
for tracing and characterizing plasma expansion and indicate the possibility to resolve various
laser-driven processes including shock formation and wave-breaking phenomena with
unprecedented resolution.

1. Introduction

The sudden free expansion of a plasma with an initially sharp density step is a key model process for
astrophysical flows [1], fusion pellet ablation [2, 3], and plasma dynamics initiated by discharges [4] or wire
explosions [5, 6]. Especially the occurrence and structure of expansion modes with self-similar density
evolution [7] has been subject of vivid debate and intense analytical and numerical analysis [8–11].
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The significance of free plasma expansion culminates in the realm of intense laser–matter interactions at
surfaces due to its central role for laser-driven monoenergetic ion beam generation [12, 13], vacuum
acceleration of electrons [14], high-harmonic generation through relativistic oscillating mirrors [15–17] or
coherent wake emission [18, 19], and pulse cleaning via transient plasma mirrors [20]. In all these cases, the
plasma density profile at the surface is a pivotal element or critical control parameter for the main process.
Moreover, access to the surface expansion speed of isochorically heated plasmas enables characterization of
thermophysical properties of warm dense matter [21, 22], underlining the far-reaching implications of an
accurate characterization and understanding of plasma profile and expansion velocity dynamics.

Established approaches for the experimental characterization of laser-induced plasma expansion include
shadowgraphy and fluorescence imaging [21, 23], optical interferometry [24], Doppler spectroscopy [25],
and proton imaging [26], each with its specific merits. However, for the complete characterization of the
microscopic expansion process including the formation and evolution of self-similar expansion modes,
simultaneous resolution of density and velocity profiles on nanometer spatial and femtosecond temporal
scales or even beyond is essential, which exceeds current capabilities and is so far restricted to simulations.

An emerging alternative toward ultrafast and accurate tracing of plasma dynamics is time-resolved
coherent diffractive imaging of laser-driven free nanoparticles using x-ray free electron lasers (XFEL) [27].
Complete atomistic pump-probe simulations of ultrafast near-infrared (NIR) laser-driven ionization and
heating of hydrogen nanospheres have predicted the rapid formation of a nearly self-similar expansion
mode for the initially step-like density profile [28]. The main short-term dynamics is predicted to unfold
within few femtoseconds and includes an inward-motion of the rarefaction front expressed by a decreasing
radius of the dense plasma core, an increasing softness of the density edge, and the spreading of the
expanding surface layer that maintains a density profile with an asymptotically exponential radial decay.
Most importantly, a direct mapping between x-ray scattering patterns and the associated plasma profile
parameters has been identified for nearly spherical particles, promising the experimental characterization of
the density profile evolution with high spatial and temporal resolution.

In a pioneering study, Gorkhover et al demonstrated a substantial expansion of the surface layer of
laser-heated Xe clusters on the few hundred fs time scale [29] by analyzing the evolution of the angular
decay of the ring-shaped diffraction fringes. Wide-angle Bragg scattering with hard XFEL pulses can yield
insights into the dynamics of strongly pumped nanoplasmas [30], indicating that the loss of order proceeds
from the surface to the inner core of the cluster [31]. These results reflect a natural extension of previous
successful studies on ultrafast structural changes associated with non-thermal heating and nonequilibrium
phase transitions via time-resolved Bragg scattering at surfaces [32, 33]. Diffraction experiments on
laser-driven metal gratings further support high sensitivity of scattering patterns to the ultrafast density
profile evolution at the surface [34]. However, the envisaged complete tracing of the laser-induced plasma
expansion has so far remained a challenge as it requires the combination of (i) accurate knowledge of the
target’s initial size and shape, (ii) an unambiguous profile reconstruction based on an appropriate
few-parameter profile model, (iii) precise single-shot pulse timing to remedy the otherwise pathological
time jitter of free-electron laser sources when operated in self-amplified spontaneous emission (SASE)
mode, and (iv) a sufficiently large dataset to trace the profile evolution systematically.

Here, we report simultaneous realization of all the above prerequisites and demonstrate quantitative
time-resolved imaging of laser-induced nanoplasma expansion. The NIR pump x-ray diffraction probe
experiment was performed for isolated SiO2 nanospheres at the Linac Coherent Light Source (LCLS) at
SLAC and exposes the density profile evolution with unprecedented temporal and spatial resolution.
Moreover, our analysis provides access to the so far inaccessible shell-resolved expansion startup delay and
velocity buildup as well as the associated rarefaction front velocity. These results define not only a critical
benchmark for theory but also enable the systematic study of the impact of laser characteristics and material
properties on the ultrafast formation and relaxation of laser-driven nanoplasmas.

2. Experiment

The measurement was performed at the AMO hutch of LCLS using the LAMP multipurpose endstation,
see schematic setup in figure 1(a). The beam of SiO2 nanospheres with narrow distribution of size (62 nm
mean radius, see appendix A) and deformation crossed the optical axis of the collinear NIR and x-ray
pulses. For the employed 50 fs NIR pulses at 800 nm central wavelength and peak intensity
8 × 1014 W cm−2 (see appendix B), strong and nearly homogeneous ionization of the resulting nanoplasma
to atomic charge states up to q ≈ 6 is expected [28, 35]. The single-shot scattering images resulting from the
temporally synchronized illumination of the particles with 40 fs x-ray pulses at 800 eV photon energy are
recorded with two rectangular pnCCD detector panels [36] that were covered by a spectral filter (see
appendix C) to suppress NIR photons and XUV fluorescence from the heated nanoplasma. Employing a
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Figure 1. Sketch of the experiment. (a) A beam of chemically prepared SiO2 nanospheres with 62 nm mean radius was delivered
into the interaction region by an aerosol source employing aerodynamic lens focusing. The width of the size distribution is
characterized using both TEM images and the x-ray scattering pattern [see panel (b)]. X-ray pulses with 800 eV photon energy,
40 fs duration, and 1 mJ pulse energy are delivered at 120 Hz repetition rate and were focused into the interaction region using a
Kirkpatrick–Baez mirror system. They are merged with synchronized 50 fs NIR laser pulses at 800 nm central wavelength and
intensity 8 × 1014 cm−2 using a holey mirror placed behind the x-ray focusing optics. Scattering images are recorded by two
pnCCD detector panels placed 40 cm behind the interaction zone. The gap between the detector panels transmits the primary
beams of the x-ray and NIR lasers. Scattering images recorded for each laser shot are classified as hits, singles, and intense singles
[see histograms in (c)] and only the latter are used for further analysis. The delay dependent scattering images are fitted with a
model [see (d)–(g) for representative measured patterns and (h) for lineouts and associated fit results]. (i) The associated
reconstructed density profiles are displayed as function of the effective radial coordinate reff = κ+ Reff (see text) and encode the
plasma expansion. The profile dynamics resembles the laser-induced core shrinking and surface layer expansion (as indicated).

smaller x-ray spot size and selecting only bright diffraction images enables the exclusive analysis of particle
scattering images from a region that was homogeneously pumped by the NIR laser. Downstream the optical
axis, the accurate relative timing of the x-ray and NIR pulses is measured on a single shot basis with
few-femtosecond accuracy (see appendix D) [37–39].

The single-shot diffraction images were systematically recorded as function of pulse delay. While
scattering patterns with bright, nearly spherical fringes from unpumped particles are observed for negative
pulse delay (x-rays first), the fringe features begin to move and fade with increasing delay for pumped
particles (positive delays), see figures 1(d)–(g). The evolution of the fringe pattern represents our main
observable and encodes the plasma density dynamics. Note that images from unpumped particles enable
the in situ characterization of the initial target size distribution (see figure 1(b)).

3. Analysis

3.1. Shot statistics
From 1.3 × 106 recorded scattering images we found 24 500 clearly identifiable hits. After removing faint
images, multiparticle hits that display Newton rings [40, 41], and hits from clustered nanoparticles, a
dataset of 5700 bright single-shot images with clear fringe structures has been systematically analyzed as
described below. Out of that, a subset of 1070 images was assigned to the high intensity region of the x-ray
focus which is associated with homogeneous NIR pumping. It should be emphasized that the latter
discrimination step cannot be made based on the scatting pattern alone but requires the quantitative fit of
the image with our model to determine the associated incident x-ray fluence (see appendix E.6). The
distributions of classified images versus pulse delay are displayed in figure 1(c).

3.2. Individual image analysis
In the small-angle scattering limit, the far-field scattering pattern encode a two-dimensional projection of
the particle density. Nevertheless, for three-dimensional targets with spherical symmetry, the unique and
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Figure 2. Systematic analysis of the correlation between the density profile parameters core radius, scale length and edge softness
and the central signatures of the scattering pattern, i.e. fringe spacing and signal slope, evaluated in the limit of spherical particle
symmetry. Panels (a), (c) and (e) depict the employed density profile reference as a solid black line and the effect of the selective
variation of a single profile parameter as light red areas. Corresponding line-outs of the resulting scattering pattern are shown in
panels (b), (d) and (f).

unrestricted reconstruction of the radial density profile would still be possible if the complete scattering
image can be recorded. In real-world experiments, however, a substantial part of information is lost due to
the unavoidable detector gaps in pump-probe experiments and limited signal at larger scattering angles. For
the quantitative reconstruction of the density profile from the available information contained in the
single-shot scattering images an appropriate shape model is imperative. In our analysis we use a
simulation-guided few-parameter density profile [28] and retrieve the profile parameters by systematically
fitting simulated scattering patterns to the individual measured scattering images. The employed shape
model is based on an electron density profile described by a modified Fermi function with

n(�r) =
n0[

exp
(
κ(�r)
λσ

)
+ 1

]σ . (1)

Here n0 is the core electron density, κ is the local surface offset of the sampling point�r, σ is the edge
softness parameter, and λ is the scale length of the density decay. A sharp density edge corresponds to the
limit σ → 0. For a spherical system with a reference surface at radius R, the surface offset is κ = r − R.
The variation of radius, scale length, and softness are connected with specific signatures in the scattering
pattern, as illustrated in figure 2 for a spherical system. For a fixed softness parameter, the radius and scale
length are almost independently coupled to the fringe spacing and angular decay of the radial scattering
profile (cf figures 2(a)–(d)), respectively. As the underlying mapping between these profile parameters and
the signatures in the scattering images is a function of the softness, the latter must be known or has to be
determined independently for a unique parameter reconstruction. This requirement is illustrated in
figures 2(e) and (f), where the variation of the edge softness is shown to also modify the fringe spacing and
the angular decay of the scattering profile. It should be noted that in previous work, the problem was
usually circumvented by assuming an unphysical sharp edge (σ → 0). In our analysis we determine the
finite edge softness using an additional constraint, as described in detail below.

In the description of the scattering process, both plasma electrons as well as atomically bound electrons
with binding energies smaller than the x-ray photon energy can be treated as free electrons. In contrast, the
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Figure 3. Reconstruction of the density profile parameters. (a)–(i) Temporal evolution of surface width λ, effective core radius
Reff and associated relative mass η = N/N0 reflecting the particle number N =

∫
n(�r)d3r (∝total mass) normalized to the

average value for unpumped shots N0. Evolutions are displayed assuming a small (a)–(c), large (d)–(f), and the optimized
softness parameter (g)–(i). Each gray dot represents an individual scattering image while the black symbols indicate the
time-binned mean values and their corresponding standard deviations. A fixed sharp edge (σ = 0.1) leads to a strong
overestimation of the particle number at large delays by roughly 70% (a)–(c). A fixed soft edge σ = 0.9 leads to the opposite
effect, i.e. an unphysical mass loss with delay (d)–(f). A systematic analysis of the mass mismatch evolution versus softness yields
a unique optimal path in the delay-softness plane that reflects mass conservation (j). Using σ(t) determined by this optimal path
leads to the final and physically consistent parameter evolution (g)–(j).

scattering contribution of strongly bound electrons is negligible, such as in the case of the silicon K-shell
electrons in our scenario. It should further be noted, that the K-shell electrons of Si are effectively
unreachable for the NIR-driven ionization. Hence the Si K-shell can be neglected for both ionization and
the scattering process. As a result and assuming that the fraction of emitted electrons is negligible for the
large particles considered here, the density of actively scattering electrons is representative for the atomic
density and their number can be assumed to be constant.

In our analysis the slight ellipsoidal deformation of the nanospheres resulting from the particle synthesis
must be included for high accuracy fits (see appendix E). For the resulting ellipsoidal reference surface with
direction dependent radius, the local surface offset is defined as κ = [�r − �ρ ] · �n, where �ρ(�r) specifies the
closest point on the reference surface and �n is the associated unit vector of the surface normal. The neglect
of directional variations of the remaining relevant parameters σ and λ is justified by the small anisotropy
predicted by microscopic calculations [28].

For a given value of the edge softness parameter σ, high quality fits of individual images can be
performed and yield the scale length λ and the minimal and maximal core radii ρmin and ρmax that
characterize the minor and major axis of the projected density associated with the ellipsoidal control
surface. For further analysis we use the effective radius Reff =

ρmin+ρmax
2 . So far, however, the remaining

dependence of the scale length and core radius on the edge softness results in an apparent critical ambiguity
for the analysis. We resolve this ambiguity by exploiting the conservation of the number of scattering
electrons (i.e. conservation of mass in the case of charge neutrality), as described in the following.

3.3. Determining the edge softness evolution
The treatment of the scattering problem via the few-parameter profile enables systematic forward fitting of
a large dataset with thousands of scattering images. Figures 3(a) and (b) displays fit results for the delay
dependent evolution of scale length and effective radius when assuming a fixed very sharp edge (σ = 0.1).
In this case, the associated total mass (number of electrons contributing to the scattering as given by the
integral of the electron density) would increase by almost 90% during the first 200 fs of the expansion
(figure 3(c)), which is obviously unphysical. The profile parameters retrieved assuming a very soft edge
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Figure 4. Evolution of radial density and mass fraction profiles. (a) and (b) Reconstructed spatio-temporal density map and
corresponding mass fraction map (color coded) with selected contour levels (red, levels as indicated) together with fit curves
(solid) as guides to the eye. For qualitative comparison of the experimental features with available plasma model calculations,
panels (c) and (d) show density and mass fraction maps (contour levels as indicated) as extracted from simulation results for
hydrogen spheres [28]. Shell-specific expansion start-up times (black dots) in (b) and (d) are estimated as the intersection of the
tangent to the trajectory at 2.5% relative shell expansion with the initial shell radius (cf black dotted lines). The global start-up
delay (circle) is determined from extrapolation to the initial surface (see text), which we define as the radius where the initial
relative density profile has dropped to 1/e (white dotted line). White solid lines indicate the motion of the rarefaction front.

(σ = 0.9) differ substantially (figure 3(d) and (e)) and, in turn, would correspond to a mass decrease by
more than 20% (figure 3(f)). The mass mismatch evolution map resulting from fits with systematically
varied softness parameters is shown in false color representation in figure 3(j), where the above discussed
representative cases are indicated by horizontal lines (top and bottom). While the impact of the edge
softness on the mismatch is little for unpumped particles as its effect vanishes in the limit of small scale
length (sharp density step), the map shows that mass conservation during expansion requires a dynamical
change of the softness parameter, expressed by the path of mass conservation (white color) in figure 3(j).
The delay dependent softness associated with conserved total mass (black curve) defines the final and
physically consistent evolution of all parameters and their mean values, i.e. softness, scale length and core
radius, see figures 3(g)–(j). Only these parameters have been used for further analysis and in figure 1.

4. Results and discussion

The resulting time-dependent density map in figure 4(a) displays the retrieved mean density profile
evolution and reflects the core depletion and ablation dynamics of the nanoplasma. Both the decreasing
radius of the remaining high-density core as well as the increasing width of the surface layer can be clearly
identified and tracked in time, see the evolution of density isolines. Note that the initial finite width of the
density step in the experimental data for unpumped particles (negative delays) is attributed to surface
roughness and deviations from an ellipsoidal shape. Minimizing the initial roughness and surface porosity
via advanced target preparation techniques is expected to remedy this effect [42]. Most importantly, the
continuous sampling of the mean density profile along the time axis further allows to track the expansion
startup and velocity buildup for individual shells—an information that could not be accessed with existing
plasma imaging techniques. To that end we analyze the evolution of the normalized radial density integral.
The resulting mass fraction map (figure 4(b)) reflects the relative particle mass enclosed in a given radius as
function of time. Contours of equal mass fraction (see lines), in turn, reflect the expansion of individual
shells and define meaningful shell-specific trajectories if overrun effects (i.e. if inner shells overrun outer
ones) can be excluded. Note that the employed geometry model is ideally suited to describe the expansion
dynamics after laser excitation. It is not constructed to capture e.g. the sub-cycle dynamics during laser
excitation and thus describes an averaged density dynamics during the excitation.

The evolution of adjacent shell trajectories shows that the surface layer expansion does not proceed with
a single speed. From the shell-resolved trajectories we can extract the specific buildup and saturation of the
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respective shell velocities as well as the associated start-up delay. A comparison of the shell-specific start-up
delays (symbols in figure 4(b)), however, shows an almost constant velocity of the inward-traveling
rarefaction front with radial speed v

exp
front = −0.135 nm fs−1 and defines a global startup delay of

τ
exp
startup = 52 fs via interpolation to the initial surface radius (see figure 4(b)). The global startup delay has

been determined only from the dynamics outside the NIR-excitation window and is therefore independent
of the sub-cycle dynamics during laser excitation. It does not necessarily specify the actual beginning of the
plasma motion, but reflects a meaningful parameter to characterize the rarefaction wave. Both central
parameters, i.e. the front velocity and the global start-up delay, are assumed to be characteristic observables
for the dependence of the plasma formation and relaxation dynamics on laser parameters and material
properties and are thus of particular interest for comparison with theory.

With existing models, a full microscopic modeling of the expansion dynamics for the experimental
scenario is still out of reach. However, to evaluate the significance and generic character of the observed
features, we perform a qualitative comparison with the published microscopic particle-in-cell simulations
for hydrogen spheres [28], see figures 4(c) and (d). The simulation results are displayed for axis limits that
correspond to similar relative changes of parameters as in the experiment. Though absolute spatial and
temporal scales are different, the general structure of the density evolution and shell-resolved expansion
trajectories shows excellent agreement. In particular, a finite start-up delay of τ sim

startup = 7 fs and a nearly
constant rarefaction front velocity of vexp

front = −0.035 nm fs−1 are predicted by the simulations, supporting
general applicability of our analysis and the significance of these key parameters. In particular, our results
demonstrate the accessibility of these parameters in time-resolved diffraction studies, highlighting their
potential for the quantitative characterization of both laser-driven plasma formation and the resulting
relaxation in both experiment and theory. The development of theoretical models that can explain the
impact of material and laser parameters is expected to allow the description and optimization of such
processes for arbitrary target shapes and laser configurations.

5. Conclusions

Our time-resolved diffraction experiment has revealed the quantitative density profile evolution emerging
in the early stage of sudden laser-induced nanoplasma expansion for silica nanospheres. The work exposes
the so-far inaccessible onset, buildup, and stabilization of the shell-resolved expansion velocity. The
observed rarefaction front velocity is comparable with the disorder front velocity reported in [31, 43],
indicating a potential connection between the two observables that remains to be clarified. The current
results provide a critical reference for theory and underpin the unprecedented potential of diffractive
imaging for the precise characterization of ultrafast laser-plasma processes, with far-reaching implications
for both fundamental research on laser-induced self-similar plasma expansion and applications of intense
laser–matter interactions at plasma surfaces in general. The feasibility of ultrafast imaging with
simultaneous high spatial and temporal resolution [44] is expected to also enable tracking of other ultrafast
plasma dynamics, such as bunching and shock formation in the expansion process [9] or nonlinear plasma
wave formation and breaking [35]. Such experiments, however, require an appropriately adjusted geometry
model to capture and parametrize the relevant features, e.g. to describe density jumps in case of shocks or
regular density modulations in case of wave phenomena. Our method is further anticipated to be
transferable to thin cylindrical or even flat jets, opening routes to the systematic tracking of plasma
formation, wave dynamics, and the initial phases of ablation in various materials including biologically
relevant liquids such as liquid water.
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Appendix A. Target preparation and characterization

Silica nanoparticles were produced by the Stöber method [45]. First, small seed nanoparticles were prepared
by adding 21 g of TEOS, 28 ml of ammonia solution (25% wt. in water) and 1 ml of water to 530 ml of
ethanol and stirring the mixture for 24 h. A further shell was grown on the seed nanoparticles via the
seeded growth method [46] until the desired particle size was reached. All samples were stored in ultra-pure
ethanol after cleaning. The used particle batch was characterized by means of transmission electron
microscopy (TEM) as well as by fits of the scattering pattern from unpumped particles (cf figure 1(b)).
The TEM analysis yields an average diameter of 125.2 nm and a polydispersity of 1.8% while a mean
diameter of 123.5 nm and a polydispersity of 2.3% is determined from the scattering pattern. Note that
these values are consistent when considering the estimated systematic error of ca 2% in the analysis of the
diffraction data due to uncertainty of the exact distance of the active detector plane from the interaction
point and the fluctuation of the central x-ray wavelength. Further, the systematic analysis of the scattering

pattern reveals an average eccentricity e =
√

1 − ( ρmin
ρmax

)2 of around 0.3 for unpumped particles (cf

figure A1). The associated differences in the ring positions along the minor and major axes in the scattering
image would result in significant overlap of neighboring maxima and minima when performing circular
averaging. The high accuracy reproduction of the scattering images necessary for our forward fitting
approach can therefore only be achieved when the elliptic nature of the particles is taken directly into
account (see appendix E for more details on the forward fitting method). Suitable aliquots of the mother
suspension were dispersed in larger volumes in deionized water at a concentration of 1 g l−1, then briefly
sonicated, and used in the experiments. The nanoparticles are aerosolized with nitrogen. The aerosol was
subsequently dried in a counterflow membrane dryer employing dry nitrogen, introduced into the vacuum
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Figure B1. Measured yields of singly and doubly charged Ar ions used for NIR intensity calibration. The top axis shows the
settings of the λ/2 wave plate used to control the intensity, whereas the bottom axis indicates the corresponding transmission, i.e.,
the relative NIR pulse intensity. For the wave plate settings above 23.7, Ar+ signal is significantly affected by the detector
saturation.

chamber through a 120 μm glass nozzle, and collimated by a differentially pumped aerodynamic lens to
form a beam of nanoparticles.

Appendix B. IR-intensity calibration

Because neither the NIR pulse energy on target (after the holey mirror) nor its focus profile was directly
measured, the absolute calibration of the peak intensity of the NIR pulses was performed based on the
intensity-dependent yields of Ar+ and Ar2+ recorded using an ion time-of-flight spectrometer. The
intensity of the NIR pulse was controlled using a λ/2 wave plate set in front of a polarizing beam splitter.
The measured Ar+ and Ar2+ yields are shown in figure B1 as a function of the wave plate settings. Since the
detector signal for Ar+ was saturated in the high-intensity region, we used the intensity-dependent Ar2+

signal for the calibration. By matching the Ar2+ yield curve to the literature data [47, 48], we estimate that
the highest intensity value for figure B1 corresponds to 8 ± 2 × 1014 W cm−2.

Appendix C. Scattering detector and spectral filters

Scattering images are recorded in single-shot mode using the front pixel detectors of the LAMP endstation
at LCLS [36, 49]. The front pixel detector consists of two movable detector panels, each containing 1024 ×
512 pixel with 75 × 75 μm pixel size. The detectors are covered with a 50 nm Al coating to suppress signal
from visible light and plasma emission from the target into the extreme ultraviolet spectral regime. For the
current experiments with intense 800 nm laser pulses, an additional optical filter of 220 nm Al on a 0.77 μm
LUXfilm polyimide is used and a baffle system is implemented to guide the optical laser pulses through the
detector system. The spectral transmission of the filter combined with the detector response [36] result in a
net quantum efficiency of 0.48 for detection of the 800 eV XFEL photons employed for the diffractive
imaging with single photon sensitivity.

Appendix D. Laser pulse characterization and timing analysis

Our results rely on the accurate determination of the relative delay between the NIR pump pulses and the
x-ray scattering probe pulses. The self amplification of spontaneous emission (SASE) process for free
electron lasers as used here produces x-ray pulse shapes whose average temporal shape is well behaved but
the individual shots are a near stochastic collection of longitudinal optical modes. When we speak of the
‘duration’ of the x-ray pulse, we are therefore referring to the average duration that is typically a majority
fraction of the electron bunch length used to produce the FEL pulse. In our case the electron bunch was
measured to correspond to a duration of about 40–50 fs, where the average x-ray pulse duration would be
expected in the vicinity of 30–40 femtoseconds FWHM, though we note that the average intensity
distribution is not necessarily Gaussian in shape. The NIR pump pulse used in this experiment has been
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Figure D1. Time tool calibration. (a) Exemplary pair of transmission measurements with (blue) and without x-ray pulse (red).
(b) Resulting relative transmission change corresponding to measurements shown in (a) with distinct step. (c) Delay calibration
of step position as function of electronic delay via systematic delay scan. The second order polynomial fit is shown as black curve.

repeatedly measured consistent with 50 fs duration FWHM at the interaction point. We used the
conventional method of optimizing this duration in situ by optimizing the ratio of high/low charge states of
the strong field ionization of Ar and N2.

D.1. Calibration of relative delay
The NIR pump laser and the FEL are independent sources, and as such their relative timing can only be
controlled at the accuracy level of the radio-frequency synchronization system. At the LCLS, this
synchronization is typically on the order of a 150 fs rms and must be corrected by the use of a single-shot
x-ray optical cross correlation method [37, 38]. The cross correlation method used here is based on the idea
of encoding time onto the spectrum of an optical reference [50, 51]. This so-called ‘spectral encoding’
allows for relative measurements with precision below 10 fs [39].

The basic observable of the timing tool is the change in the frequency resolved transmission of a
super-continuum, generated from a replica of the NIR pulse, through a dielectric plate with (signal) and
without (reference) the co-propagating x-ray pulse, see figures D1(a) and (b) for exemplary raw signals and
the corresponding relative x-ray induced transmission change, respectively. Due to a spectral chirp of the
super-continuum, the spectral transmission change exhibits a step that is associated with the pulse overlap
and can be translated into a relative pulse delay. To this end, a systematic scan of the relative pulse delay, e.g.
via electronic delay settings, is performed that yields a map for the correlation of the edge position and
pulse delay, still including the jitter. A second order polynomial fit to that map provides a mapping function
for position and relative delay, see figure D1(c).

D.2. Finding absolute zero
In order to identify the absolute time overlap between the NIR and the x-ray pulse, we used the method
described in [52] whereby the photo-dissociation of quasi-bound N++

2 dications into N+ fragment ions
[53] serves as an indication of the x-ray induced appearance of N++

2 via the x-ray core ionization and
subsequent normal Auger decay. In particular the delay dependent abundance of the resulting low and high
energy cations serves as a measure for the pulse order. Due to the high ionization potential of N2, the
attenuated NIR-pulse is unable to excite or ionize the neutral molecule, leaving the ionization by the
subsequent x-ray pulse and the resulting population of quasi-bound N++

2 almost unchanged. However,
initial irradiation of the neutral molecules by the x-ray generates a population of quasi-bound N++

2 that,
after further excitation by the NIR pulse, results in dissociation into a pair of N+ with corresponding recoil
energy due to Coulomb repulsion.
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Figure D2. (a) Averaged time-of-flight spectra containing N+ and N++
2 ion signals for shots with x-ray first and NIR first

excitation [delay ranges are indicated in (b)]. The highlighted areas define the integration regions for the respective yields of
N++

2 (area A) and N+
2 ions with recoil (area B). (b) 2D-histogram of single-shot ion yield ratios A/B with center and width of

corresponding Gaussian fits indicated by cyan and orange lines, respectively. (c) Rate of change of the delay-dependent (fitted)
ratio center and resulting x-ray pulse duration as function of the NIR pulse duration (see inset). The arrows indicate the x-ray
pulse duration resulting for the measured NIR pulse duration of 50 fs.

Figure D2(a) presents averaged time-of-flight spectra for shots with the x-ray pulse first (blue) or the
NIR pulse first (purple). Note that area A indicates the recoil-free signal from N++

2 that exhibits higher
yield if the NIR arrives first. Area B is representative for N+ signal with recoil and shows increased yield
when the NIR is late. The ratio of the signals integrated within these areas is used to trace the pulse order as
function of the (not offset corrected) delay. Figure D2(b) shows the distribution of the single-shot yield
ratios from a systematic delay scan. For each delay bin, the distribution can be described well by a Gaussian
envelope. The resulting delay-dependent center position (width) of the Gaussian fits is shown as cyan
(orange) curve. The step around −160 fs is indicative of pulse overlap, i.e. zero delay.

Assuming no-depletion and linear response for both the x-ray and NIR excitations processes, the
derivative of the delay-dependent ratio signal directly reflects the cross correlation of the pulses envelopes

d

dτ

A(τ)

B(τ)
∝ (Ix−ray ∗ INIR)(τ). (D.1)

A fit of the step feature in the evolution of the delay-dependent centers in figure D2(b) with an error
function (black) and taking the derivative of the latter yields the cross-correlation in figure D2(c), whose
peak is located at Δt0 = −160 fs, defining zero delay. Assuming Gaussian pulses the FWHM-width of the
cross correlation of 67 fs can be used to estimate the mean x-ray pulse duration to about 38 fs from the
knowledge of the NIR pulse duration of 50 fs (see inset).

Appendix E. Small angle scattering of ellipsoids in the weak scattering limit

E.1. Evaluation of the scattering integral in Born approximation
To derive the formalism used to describe the scattering of ellipsoids in our study we depart from the general
solution to the classical scattering problem in the limit of weak scattering, i.e. neglecting multiple scattering

(Born approximation). Assuming a linearly polarized incident electric field �Einc = �E0 e−i�kin�r with wave
vector�kin and an arbitrarily shaped scattering object defined via the scattering electron density n(�r) we can
calculate the scattered field amplitude from

E(�q) = E0
re

ldet

∫∫∫
n(�r)e−i�q·�r d3r (E.1)

with momentum transfer vector �q defined as the difference between incoming and outgoing wave vector
according to �q = �kout −�kin, classical electron radius re and detector distance ldet. Note that the angular
dependence of the scattered field amplitude due to polarization effects can be neglected for small scattering
angles.

For the following discussion we consider, without loss of generality, an incident wave vector along the
z-axis�kin = k�ez. We further limit the discussion to a small angle scattering scenario with |q| � |kin|) such
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that we can now assume qz � 0 and rewrite equation (E.1) as follows:

E(�q) = E0
re

ldet

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
n(�r)e−i(qxx+qyy+qzz)dx dy dz

= E0
re

ldet

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
n(�r)dz

︸ ︷︷ ︸
n2D(x,y)

e−i(qxx+qyy)dx dy

= E0
re

ldet

∫ ∞

−∞

∫ ∞

−∞
n2D(x, y)e−i(qxx+qyy)dx dy

= E0
re

ldet
F [n2D] (qx, qy), (E.2)

which reflects that the scattering intensity in the small angle scattering limit is determined by the Fourier
transform of the projected density n2D.

If we are only interested in a line profile instead of the full 2D scattering image, e.g. for qy = 0, we can
further simplify the expression and write:

E(qx, qy = 0) = E0
re

ldet

∫ ∞

−∞

∫ ∞

−∞
n2D(x, y)e−i(qxx+qyy)dx dy

= E0
re

ldet

∫ ∞

−∞

∫ ∞

−∞
n2D(x, y)dy

︸ ︷︷ ︸
n1d(x)

e−i(qxx)dx

= E0
re

ldet

∫ ∞

−∞
n1D(x)e−i(qxx)dx

= E0
re

ldet
F [n1D] (qx) (E.3)

which relates the scattered field along a specific polar angle with the Fourier transform of the density
projected onto the corresponding axis. Based on the above equation we will now derive solution strategies
for the density distributions that are most relevant to our work, i.e. that of homogeneous spheres and
ellipsoids with sharp and soft surfaces.

E.2. Analytic solution for a homogeneous sphere with a sharp surface
As the first step we will revisit the well-known solution for a homogeneous sphere with a sharp surface
described by the density profile

n(r) =

⎧⎨
⎩

0 r > R

n0 r � R

with the homogeneous electron density n0. Due to the radial symmetry we only need to calculate the
scattering for a single scattering direction, i.e. we are only interested in the double projected density n1D(x).
The corresponding integral can be calculated in polar coordinates

n1D(x) = n0

∫ 2π

0

∫ ρmax

0
ρ dρ dϕ = n0πρ

2
max,

where ρmax(x) describes the radial extension of the sphere for the given position on the projection axis x
with

ρmax(x) =

⎧⎨
⎩

√
R2 − x2 x � R

0 x > R.

Inserting this result yields

n1D(x) =

⎧⎨
⎩

0 x > R

n0π(R2 − x2) x � R
(E.4)

and allows to obtain the scattered field by solving the corresponding Fourier integral
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E(qx) = E0
re

ldet

∫ ∞

−∞
n1D(x)e−i(qxx)dx

= n0E0
re

ldet

∫ R

−R
π(R2 − x2)e−i(qxx)dx

= E0
re

ldet
n04πR3

(
sin(qxR) − qxR cos(qxR)

q3
xR3

)
.

It is often beneficial to work with the normalized scattered field En (En(0) = 1) which reads

En(q) = 3

(
sin(qR) − qR cos(qR)

q3R3

)
.

Note, that we can drop the subscript x of the momentum transfer vector due to the radial symmetry.

E.3. Analytic solution for a homogeneous ellipsoid with a sharp surface
The doubly-projected density n1D that is needed to evaluate the scattering integral in equation (E.3) for an
object is also an important quantity in the field of reconstruction algorithms in computer tomography,
where it is known as the Radon transform. In particular, the Radon transform of arbitrarily shaped and
oriented ellipsoids are of wider interest and are analytically known [54]

n1D(ρ,�n) =

⎧⎨
⎩

0 |ρ| � ζ

n0π
abc

ζ3

(
ζ2 − ρ2

)
|ρ| < ζ,

(E.5)

where �n = (sin θ cos ϕ, sin θ sin ϕ, cos θ)t is the normalized vector characterizing the direction the density
is projected on and ρ = �r�n is the remaining coordinate along this direction. The parameters a, b and c
determine the ellipsoids length along the x, y and z direction for an unrotated ellipsoid. The effects of the
dimension and orientation of the ellipsoid are now encapsulated in the factor ζ:

ζ2 = a2 (cos θ sin ψ2 sin ψ3 + sin θ sin ϕ(cos ψ3 sin ψ1 + cos ψ1 cos ψ2 sin ψ3)

+ cos ϕ sin θ(cos ψ1 cos ψ3 − cos ψ2 sin ψ1 sin ψ3))2 + b2 (cos θ sin ψ3 cos ψ3

− sin θ cos ϕ(cos ψ1 sin ψ3 + sin ψ1 cos ψ2 cos ψ3) + sin ϕ sin θ(cos ψ1 cos ψ2 cos ψ3 − sin ψ1 sin ψ3))2

+ c2(cos θ cos ψ2 − sin θ sin (ϕ− ψ1) sin ψ2)2

which gives us the effective dimension of the projected ellipsoid along the direction of the projection vector
�n. The angles ψ1,ψ2 and ψ3 are Euler angles in x-convention for the rotation of the ellipsoid (rotation first
by angle ψ1 about the z-axis, secondly by angle 0 � ψ2 � π about the x-axis, and finally by angle ψ3 about
the z-axis again). For our purposes we can, without loss of generality, assume a detector in the x–y plane
(our propagation direction is z), i.e. θ = π/2 such that the angle ϕ is essentially the polar angle defining the
line-out from the 2D scattering pattern. Doing this already simplifies the above expressions considerably:

ζ2 = a2(sin ϕ(cos ψ3 sin ψ1 + cos ψ1 cos ψ2 sin ψ3) + cos ϕ(cos ψ1 cos ψ3 − cos ψ2 sin ψ1 sin ψ3))2

+ b2(− cos ϕ(cos ψ1 sin ψ3 + sin ψ1 cos ψ2 cos ψ3) + sin ϕ(cos ψ1 cos ψ2 cosψ3 − sin ψ1 sin ψ3))2

+ c2(− sin(ϕ− ψ1) sin ψ2)2.

For any given projection direction �n the expression for the double projected density is structure-wise
identical to that for a homogeneous sphere, cf equation (E.4). However, the value of the radius equivalent ζ
changes as a function of the projection direction. Before we discuss the implications of this aspect, we
further reduce the complexity of the expression for ζ with the help of trigonometrical identities such that

ζ2 = a2(sin ϕ′ cos ψ2 sin ψ3 + cos ϕ′ cos ψ3)2 + b2(sin ϕ′ cos ψ2 cos ψ3 − cos ϕ′ sin ψ3)2 + c2(sin ϕ′ sin ψ2)2,

where ϕ′ = ϕ− ψ1. It can be shown, that for any given set of parameters a, b, c, ψ1, ψ2, ψ3 and ϕ the
description of ζ2 can be reduced to an even simpler functional form:

ζ2 = a2
eff cos (ϕ′ +Δ)2 + b2

eff sin (ϕ′ +Δ)2,

where the effective parameters aeff and beff describe the dimensions of the projection and Δ describes its
orientation in the x–y plane.

Now we can solve the Fourier integral for each projection direction individually in full analogy to the
spherical case discussed above. The result is a scattered field that resembles the scattering of a sphere for any
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given direction ϕ′′ = ϕ′ +Δ, but with a direction dependent radius R(ϕ′′) ≡ ζ. The result for the scattered
field amplitude reads

E(q,ϕ′′) = E0
re

ldet
n04πabc

(
sin(qR(ϕ′′)) − qR(ϕ′′) cos(qR(ϕ′′))

q3R(ϕ′′)3

)
.

The corresponding normalized fields (En(0,ϕ′′) = 1) can be written as

En(q,ϕ′) = 3

(
sin(qR(ϕ′′)) − qR(ϕ′′) cos(qR(ϕ′′))

q3R(ϕ′′)3

)
(E.6)

which resembles the solution of a sharp sphere, but with an angular dependent radius.

E.4. Solution for a sphere with a soft surface
Next, we will consider spherical objects with a soft surface density profile, akin to the one used in the main
manuscript, i.e.

n(r) =
n0[

exp
(

r−R
λσ

)
+ 1

]σ ,

where n0 is the core density, R is the core radius, σ is the edge softness parameter, and λ is the scale length
of the density decay. Again, due to the radial symmetry we only need to calculate the scattering for a single
scattering direction, i.e. we are only interested in the double projected density n1D(x). The corresponding
integral can be calculated in polar coordinates

n1D(x) =

∫ 2π

0

∫ ∞

0
n(r)ρ dρ dϕ

= 2π

∫ ∞

0
n(
√

x2 + ρ2)ρ dρ.

In contrast to the scenarios with a sharp surface discussed above, this integral can in general not be solved
analytically. However, since only a single one-dimensional integral has to be evaluated to calculate the 2D
scattering pattern, a direct numerical integration is a fast and viable approach.

E.5. Approximation for an ellipsoid with a soft surface
Eventually we are looking for an efficient way to compute the scattering pattern for an arbitrarily
dimensioned and oriented ellipsoid with a softened density profile given by

n(�r) =
n0[

exp
(
κ(�r)
λσ

)
+ 1

]σ , (E.7)

where n0 is the core density, κ is the local surface offset of the sampling point�r (i.e. its distance to the
closest point on the ellipsoidal control surface, see main text), σ is the edge softness parameter, and λ is the
scale length of the density decay. For this type of profile no general solutions for the singly- or
doubly-projected densities n2D and n1D are known. An apparent alternative way to obtain these projections
involves the three-dimensional sampling of the density on a grid and subsequent numerical projection. This
requires the evaluation of the perpendicular distance from the control ellipsoid surface κ for all given
sampling points. In the limit of a sphere this turns into the radial distance from the surface, i.e. κ = r − R,
which is easily calculated. However, in the general case of an ellipsoid, the evaluation of the perpendicular
(or closest) distance is not trivial. In fact, its computation involves numerical root finding procedures [55],
which practically precludes application of this method in forward fitting approaches.

To solve this problem, we propose an approximation that is based on a combination of the solution for a
homogeneous ellipsoid with sharp surface and the solution for a soft sphere. To recall, for an ellipsoid with
sharp surface the scattering profile for any given scattering direction is given by that of sharp sphere, the
ellipsoidal character enters the description in the form of an angular dependent effective sphere radius.
Here, for the ellipsoid with a soft surface, we use a similar approach by replacing the solution of a sharp
sphere with that of a soft sphere for a given scattering direction. This approximation will work best for
small eccentricities and even becomes exact for a sphere. A systematic analysis of the approximation quality
is shown in figure E1. Note that the eccentricity of the particles used in figure E1 has been chosen larger
than the average eccentricity of the particle in the experiment to show the outstanding quality of the
approximation in the considered parameter regime.
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Figure E1. Systematic study of the quality of our approximation for a softened ellipsoid with semi-axis 60 nm, 80 nm and 60 nm
rotated 45 degree about the x-axis. The scale length λ and the edge softness σ have been varied systematically within the ranges
most relevant for this work. The density has been sampled directly on a grid and subsequently projected to obtain n2D and the
reference 2D scattering pattern. The corresponding polar representation has then been fitted using the described approximation
(with fixed edge softness σ). The projected densities, reference Cartesian- and polar scattering images as well as the fitted
scattering pattern are shown for two exemplary configurations in panels (a)–(h). Panel (i) shows the difference between the
actual scale length of the reference dref and the reconstructed scale length from the fit dfit.

Figure E2. Comparison of recorded scattering images and corresponding fits for representative pattern with sharp surface (top
panels) and soft surface (bottom panels). (a) and (e) Cartesian representation of recorded scattering pattern. (b) and (f) Polar
representation of recorded scattering pattern. The active areas associated with the two detector panels is outlined by the solid
black line. (c) and (g) Polar representation of corresponding fits. Parts relevant for the comparison with the experiment are
color-coded. (d) and (h) Comparison of line-outs of recorded and fitted pattern at indicated scattering angles (see red and blue
shaded areas in other panels).

E.6. Forward fitting procedure
The main tool for the fitting procedure will be the above approximation of the scattering pattern of a soft
ellipsoid by that of a soft sphere with angle dependent effective radius. In a first step the recorded
experimental scattering pattern is transformed into a polar representation. Polar coordinates are the natural
coordinates of the numerical scheme for ellipsoid scattering described above and are therefore optimally
suited for a comparison of experiment and theory. Furthermore, for properly chosen resolution this step
intrinsically applies a sub-sampling of the scattering signal at large scattering angles where the signal
strength and therefore the signal-to-noise ratio naturally decreases.
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In our approach a simulated scattering image is fully defined by a set of seven parameters. Besides the
parameters defined above, i.e. the density projection dimensions aeff and beff , the surface scale length λ, the
projections orientation Δ and the edge softness σ that are necessary to compute the normalized scattering
pattern In, we consider the incident field intensity I0 and a constant background signal Ibg.

I = I0In(aeff, beff,λ,Δ,σ) + Ibg. (E.8)

In our forward fitting procedure parameter optimization has been achieved using the
‘trust-region-reflective’ algorithm embedded in MATLAB’s optimization toolbox. Figure E2 shows two
representative exemplary optimization results in comparison with the experimental reference pattern for a
sharp surface (top panels) and a soft surface (bottom panels).
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[17] Rödel C et al 2012 Phys. Rev. Lett. 109 125001
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