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Abstract

In metacommunity ecology, a major focus has been on combining observa-

tional and analytical approaches to identify the role of critical assembly pro-

cesses, such as dispersal limitation and environmental filtering, but this work

has largely ignored temporal community dynamics. Here, we develop a “vir-
tual ecologist” approach to evaluate assembly processes by simulating meta-

communities varying in three main processes: density-independent responses
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to abiotic conditions, density-dependent biotic interactions, and dispersal. We

then calculate a number of commonly used summary statistics of community

structure in space and time and use random forests to evaluate their utility for

inferring the strength of these three processes. We find that (i) both spatial

and temporal data are necessary to disentangle metacommunity processes

based on the summary statistics we test, and including statistics that are mea-

sured through time increases the explanatory power of random forests by up

to 59% compared to cases where only spatial variation is considered; (ii) the

three studied processes can be distinguished with different descriptors; and

(iii) each summary statistic is differently sensitive to temporal and spatial sam-

pling effort. Including repeated observations of metacommunities over time

was essential for inferring the metacommunity processes, particularly dis-

persal. Some of the most useful statistics include the coefficient of variation of

species abundances through time and metrics that incorporate variation in the

relative abundances (evenness) of species. We conclude that a combination of

methods and summary statistics is probably necessary to understand the pro-

cesses that underlie metacommunity assembly through space and time, but we

recognize that these results will be modified when other processes or summary

statistics are used.

KEYWORD S
metacommunity ecology, random forests, simulation study, spatiotemporal dynamics,
summary statistics, variation partitioning

INTRODUCTION

Metacommunity ecology lies at the interface of local coexis-
tence, which results from species traits and interactions,
and spatial processes such as habitat heterogeneity and dis-
persal. As such, metacommunity ecology provides a power-
ful framework from which to understand the composition,
diversity, and abundances of species and how they vary in
space and time (Leibold & Chase, 2017; Thompson et al.,
2020). While the theory of metacommunities is thriving,
empirical work has lagged. Most notably, empirical tests of
two alternative processes have been emphasized in the liter-
ature. First, species interactions and environmental filtering
have dominated “niche-based” thinking (e.g., Chase &
Leibold, 2003; Tilman, 1982), where, for example, if patterns
of species composition are well matched to environmental
variation in the landscape, niche-based processes are more
likely to have underlain those patterns. Second, aspects
of stochasticity and dispersal limitation are more associated
with “neutral-based” perspectives (e.g., Hubbell, 2001;
O’Dwyer & Cornell, 2018).

A large body of empirical work in metacommunity
ecology has focused on using statistical analyses of natu-
ral patterns of species diversity and composition to identify

signatures of the underlying processes (e.g., niche
vs. neutral) in structuring community assembly (Cottenie,
2005; Ovaskainen et al., 2019; Soininen, 2014, 2016). Unfor-
tunately, it is now clear that inference-based analyses can
suffer from a number of statistical biases (e.g., Clappe
et al., 2018; Gilbert & Bennett, 2010) and that analyses of
metacommunities at a single point in time (snapshot) are
often insufficient to differentiate among multiple ecological
processes (Jabot et al., 2020). These findings have called into
question the results of a number of empirical met-
acommunity studies and syntheses thereof. Instead, new
tools, concepts, and approaches are likely necessary to
make progress in understanding the underlying processes
that influence metacommunity assembly.

Although metacommunity ecologists have continued
to develop more refined analytical tools (Clappe et al.,
2018; Münkemüller et al., 2012; Ovaskainen et al., 2017,
2019; Peres-Neto & Legendre, 2010; Viana et al., 2021),
most approaches rely on (i) analyses of one or only a few
metrics describing community structure, such as the
shape of the species abundance distribution or the pro-
portion of variation explained by spatial or environmen-
tal factors; (ii) static (snapshot) patterns of these metrics
over a relatively short time period. We address both of
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these topics by explicitly considering multiple patterns
simultaneously (Brown et al., 2016; May et al., 2015;
Ovaskainen et al., 2019) and by emphasizing the impor-
tance of temporal dynamics.

Here, we used a process-based approach to explore
the ability of multiple metrics and analyses to distinguish
among metacommunity processes when both temporal
and spatial patterns of species abundances are available
(Figure 1). To do so, we started by taking a “virtual ecolo-
gist” approach (sensu Zurell et al., 2010) by simulating
metacommunity dynamics and varying the strengths of
three key processes emphasized in Thompson et al. (2020):
(1) density-independent responses to abiotic conditions,
modeled as the range of environmental conditions that
allow for positive growth of organisms (i.e., the funda-
mental abiotic niche); (2) density-dependent biotic inter-
actions, modeled as the per-capita effect of one species on

another, usually competition for resources; and (3) dis-
persal, modeled via the emigration and immigration of
individuals from one patch to another. All processes were
implemented simultaneously, and each process had a sto-
chastic component (Shoemaker et al., 2020) (Figure 1—
arrow i, Box 1).

To capture the dynamic nature of metacommunity
patterns, we estimated spatial and temporal variation in
patterns of relative abundance, diversity, and composi-
tion using summary statistics, including patterns and
model-based statistics, calculated from the simulated
metacommunities (Figure 1—arrow ii). We then used a
suite of these summary statistics in random forest models
to identify those most informative for distinguishing vari-
ation in metacommunity processes (Figure 1—arrow iii).
As a final step, we examined the influence of sampling
effort in time and space.

F I GURE 1 Workflow for finding summary statistics that distinguish patterns resulting from different metacommunity processes.

(i) Simulate metacommunity dynamics: Different combinations of metacommunity processes can be achieved by changing the values of

three key continuous model parameters—abiotic niche breadth (σi), competition strengths (αij), and probability of dispersal (ai). Each of the

three processes is included simultaneously, but the values of each parameter vary. Stochasticity is incorporated into each process through

probability distributions. Different combinations of these parameters will result in different time series of species abundances. (ii) Calculate

summary statistics from pattern: For each time series we calculate summary statistics that summarize metacommunity dynamics (for the full

list see Table 1). (iii) Infer metacommunity processes: Across all simulations and parameter combinations, use random forests to identify the

best summary statistics for distinguishing the model parameters. ME, mass effects; ND, neutral dynamics; PD, patch dynamics (PDi for

species i and PDj for species j); SS, species sorting
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We found that none of the summary statistics
examined was able to fully distinguish the different
simulated metacommunity processes or serve as a reli-
able indicator of metacommunity dynamics. Instead,
typically several metrics and analytical approaches
were necessary to evaluate the importance of each pro-
cess. Further, we showed that most inferences were
strongly influenced by the number of time points and
patches used in analyses, and we concluded that for
the breadth of metacommunity dynamics reproduced
by our model, insufficient sampling effort in time and
space may hinder our ability to infer metacommunity
processes in empirical studies.

METHODS

Simulations

Our goal with the simulations was to produce time series
of metacommunity dynamics from which we could apply
various metrics and analytical approaches intended to
retrieve the underlying processes. Our simulation varied
the three core processes—abiotic niche breadth, density-
dependent biotic interaction structure, and dispersal—
developed in Thompson et al. (2020) (overviewed in
Box 1). While simulation models are necessarily limited,
this metacommunity model allowed us to explore a wider

BOX 1 Model

The dynamics of the metacommunity are governed by a Beverton-Holt model (Beverton & Holt, 1957) growth
dynamics with generalized Lotka-Volterra competition:

Nix tþ1ð Þ¼ N̂ix tþ1ð Þ�Eix tð Þþ Iix tð Þ, ð1Þ

where N̂ ix tþ1ð Þ is the population size at time t before dispersal.

N̂ ix tþ1ð Þ¼Poisson max Nix tð Þ rix tð Þ
1þPS

j¼1
αijNjx tð Þ
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where Nix tð Þ is the population size of species i in patch x at time t, αij is the per capita interaction effect of spe-
cies j on species i, and S is the total number of species. Stochasticity in local demographic outcomes is incorpo-
rated through the Poisson draw. rix tð Þ is the density-independent growth rate of species i in patch x at time t
which is given by

rix tð Þ¼ e
� zi�envx tð Þ

2σi

� �2

, ð3Þ

where zi is the environmental optimum of species i, envx tð Þ is the environmental condition in patch x at time t,
and σi is the abiotic niche breadth of species i. The number of emigrants Eix tð Þ was determined as the outcome
of Nix tð Þ draws of a binomial distribution, each with a probability equal to ai. Î ix tð Þ is the probability that a dis-
persing individual of species i immigrates to patch x at time t and it is given by

bIix tð Þ¼
PM

y≠ xEiy tð Þe�LidxyPM
x¼1Eix tð Þ , ð4Þ

where M is the total number of patches, Eiy tð Þ is the number of immigrants of species i from another patch y, Li

is the strength of exponential decrease of dispersal with distance and dxy is the distance between patches x
and y.
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array of dynamics compared to earlier models. Simulated
metacommunities were composed of 100 patches with
coordinates randomly drawn from a uniform distribu-
tion and a starting regional richness of 50 species. Spe-
cies initial abundances were randomly drawn from a
Poisson distribution with λ¼ 0:5, which resulted in spa-
tial variation in occupancy and initial abundances.
Populations were reseeded every 10 time steps over the
first 100 time steps to ensure that all species were intro-
duced to each patch at least once, but with variation in
their order of arrival. We ran each simulation for 2200
time steps, including an initialization where the environ-
ment was held constant (200 time steps) and a burn-in
period (800 time steps); these were discarded. Follow-
ing the burn-in period, we retained every 20th time
step, leaving a total of 60 retained time steps per simu-
lation. The timescale in the simulations was somewhat
arbitrary and its relation to empirical communities
would depend on the generation time of the organisms
in question.

To change the density-independent responses to
abiotic heterogeneity, we adjusted the abiotic niche
breadth parameter (σi) from weak (10) to strong (0.01)
(values were evenly distributed on a natural log scale). To
change the density-dependent biotic responses, we
adjusted the inter- and intracompetition strengths in four
different scenarios (for details see Thompson et al., 2020):
equal competition (αij ¼ αii), stabilizing competition
(αij < αii), mixed competition (αij can be less than or
greater than αii), and competition–colonization trade-off
(30% of species are competitively dominant [αij > αii], but
their dispersal rates are an order of magnitude lower, and
70% of species are subdominant and have stabilizing
competitive interactions). Finally, to change dispersal
rates, we adjusted the probability of dispersal parameter
(ai), ranging from metacommunities that were effec-
tively disconnected (0.00001) to fully connected (0.464)
(values were evenly distributed on a natural log scale).
The abiotic environment in any given patch varied
between 0 and 1 and was spatially and temporally
autocorrelated.

We ran 660 combinations of dispersal rate, abiotic
niche breadth, and competition scenarios for 15 randomly
generated replicate landscapes that varied in the location
of the patches and the environmental conditions. Land-
scapes were created by drawing xy coordinates in geo-
graphic space for each habitat patch from 1:100 and
converting these into a torus to avoid edge effects. This
resulted in 9900 simulation runs, but we only considered
the 7880 runs where at least 10 out of 15 replicates for a
parameter combination resulted in the persistence of at
least 2 species. This ensured that poorly replicated
parameter combinations did not drive the patterns.

Summary statistics

We calculated 85 summary statistics from each simulation
run. These included descriptive statistics (e.g., diversity met-
rics) as well as model-based statistics commonly used in
metacommunity ecology (e.g., variation partitioning frac-
tions) (see Table 1 for the main description of the statistics
and Appendix S1: Table S1 for a full tally of all the statistics
we used).

First, we calculated statistics that describe patterns of
species’ relative abundances (i.e., relative species com-
monness and rarity) based on Hill numbers (Chao
et al., 2014; Hill, 1973). 2D or Hill number 2 (hereafter
referred to as Hill 2) is the inverse Simpson’s diversity,
1D (Hill 1) is the exponent of Shannon’s diversity, and
0D (Hill 0) is species richness. We used two main ratios,
Hill 1/Hill 0 and Hill 2/Hill 0, to capture aspects of even-
ness in the metacommunity. When a community is
exactly even, Hill 2 or Hill 1 approximates Hill 0, and
therefore the ratio of these values is close to 1; their ratios
will be smaller when the community is uneven. Second,
we calculated the coefficient of variation (CV) of local
and regional abundance across all species through time
as a standardized index of variation (Loreau et al., 2003).
Third, we calculated both spatial and temporal beta
diversity of the Hill numbers as the ratio of the Hill num-
ber at the smaller, alpha scale (a given spatial or temporal
sample) to the larger, gamma scale (the sum of all spatial
or temporal samples). We also decomposed these beta
measures into richness and replacement components
(Podani & Schmera, 2011). Species replacement indicates
the turnover of species among samples, for example, due to
environmental filtering or competition (Legendre, 2014),
whereas richness differences may reflect differential coexis-
tence in different locations or dispersal limitation indepen-
dent of species replacement (Schmera et al., 2020). Finally,
we calculated the proportion of patches occupied for each
species and then calculated the species’ mean, minimum,
and maximum occupancy. Low occupancy can indicate dis-
persal limitation or the strength of competition, whereas
high occupancy could point to mass effects (Ehrlén &
Eriksson, 2000).

For the model-based statistics, we first used redun-
dancy analysis (RDA)-based variation partitioning
(Borcard et al., 1992) to quantify compositional variation
explained by (i) the environment and space using the
final time point and (ii) environment, space, and time
across the entire time series. We modeled the spatial
component using distance-based Moran’s eigenvector
maps (MEMs) calculated across all patches using the
dbmem function from the adespatial package in the R
programming language (Dray et al., 2019). We used all
MEMs that capture positive spatial autocorrelation in the
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TAB L E 1 Main types of summary statistics used as descriptors of metacommunity dynamics

Name Equation and parameters Variants Predictors and outputs Reference

A—Descriptive
statistics

Abundance and
occupancy ratios—
local scale (α)
metacommunity scale
(γ)

Hill numbers given by

qD¼ PS
i¼1

pqix

� � 1
1�q

, and ratios

given by 1D= 0D (Hill 1/Hill 0)

and 2D= 0D (Hill 2/Hill 0).
pix is the relative abundance of

species i in patch x. S is the total
no. species. q is sensitivity to

relative frequencies.

1. Abundance ratios—local
scale.

2. Occupancy ratios—local
scale where pi is relative
occupancy.

3. Abundance ratios—
metacommunity scale.

… (Hill, 1973)

Coefficient of variation in
community
abundance

CV¼CVt
PS
i¼1

Ni

� �
Ni is abundance of species i. S is

total no. species.

1. Local scale.
2. Metacommunity scale.

… (Tilman, 1995)

Beta diversity qDβ ¼
qDγ
qDα

qDγ is diversity at the
metacommunity scale and qDα is
at local scale. q was 0, 1 or 2.

1. Spatial beta diversity.
2. Temporal beta diversity.

… (Tuomisto, 2010)

Beta diversity

decomposition using
Jaccard-based indexes

BDTotal ¼
Pn�1

h¼1

Pn
i¼hþ1Dhi= n n�1ð Þ½ �

BDTotal ¼ReplTotalþRichDiffTotal
Dhi is dissimilarity between sites h

and i.

1. Beta diversity

decompositions in space.
2. Beta diversity

decompositions in time.

… (Legendre, 2014)

Proportion of patches
occupied across
species

pi ¼ si=sTotal
si is no. patches occupied by species i

and sTotal is total no. patches

sampled.

1. Mean proportion of
patches occupied across
species.

2. Minimum
3. Maximum

… (Ehrlén &
Eriksson, 2000)

B—Model-based
statistics

Variation partitioning
only in space

… … Predictors: Moran’s
eigenvector maps
(MEMs), environment

Output: Variation explained
by space (S) and
environment (E) (and
shared (S⩀E)) for final
time step

(Borcard
et al., 1992)

Variation partitioning in

time and space

… … Predictors: MEMs,

Environmental
variables, asymmetric
eigenvector maps

Output: Variation explained
by space (S), time (T)

and environment (E),
and shared (S⩀E, S⩀T,
T⩀E, S⩀E⩀T)

(Blanchet

et al., 2008)

Hierarchical modeling of
species composition

… … Predictors: Fixed effects:
Environment (second-
degree polynomial)

Random effects:
Space � time, Space,
Time

Output: Variation explained
by time, environment,

space, space-time, and
species associations.

(Ovaskainen
et al., 2017)
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analysis, because selecting specific MEMs does not fully
account for spatial autocorrelation in the residuals
(Peres-Neto & Legendre, 2010). While using a selection
procedure of MEMs can yield better results for individual
simulation runs, we kept the number of MEMs consistent
across simulation runs for comparability. We modeled
the temporal component using asymmetric eigenvector
maps (AEMs) using the aem.time function from the ade-
spatial package (Blanchet et al., 2008; Dray et al., 2019).
We used the percentage of variation explained by each
component in the random forest, regardless of its statisti-
cal significance.

Second, we used hierarchical modeling of species
communities (HMSC) (Ovaskainen et al., 2017), which is
a hierarchical Bayesian joint species distribution model
that uses fixed environmental predictors and spatiotem-
poral random effects to make community-level infer-
ences. We used species abundance with an assumed
Poisson distribution as the response variable. The envi-
ronmental variable was included as a fixed linear and
quadratic effect to fit the Gaussian-shaped response of
species to the abiotic environment. The spatial and tem-
poral structures of the data were modeled through
autocorrelated spatial, temporal, and spatiotemporal ran-
dom factors. The spatial random effect was modeled
using the x and y coordinates. The temporal random
effect was modeled using time step as a random temporal
coordinate. The spatiotemporal random effect was
modeled using the x, y, and time coordinates (for further
details see Appendix S1). The summary statistics we used
in the random forest consisted of partitioned explained
variation according to all fixed and random effects: envi-
ronment, space, time, space–time. We used both the raw
variation fractions and fractions standardized by total
amount of variation explained to account for differences
in the amount of residual variation across simulations.
We also used the estimates of species associations aggre-
gated into the proportion of positive or negative associa-
tions (Ovaskainen et al., 2019). HMSC was run across
4 Markov chain Monte Carlo (MCMC) chains, each with
1000 samples and a transient period of 5000 steps. While
this length of MCMC sampling does not lead to full con-
vergence, it was sufficient to provide estimates of the
summary statistics that we used in our analysis
(Appendix S1: Figure S10). HMSC was implemented
using the HMSC-R package in R (Tikhonov et al., 2020).

Random forests

We used random forest modeling (Breiman, 2001) to
assess the performance of the different summary statistics
to distinguish the simulated metacommunity processes.

Random forests have a number of useful characteristics
for our purpose: (i) they can be used for both regression
and classification problems (note that dispersal and abi-
otic niche breadth parameters are continuous, while the
competition scenario is categorical); (ii) they are non-
parametric, allowing any relationship between predictor
and response; (iii) they can be used to rank the impor-
tance of the predictors; and (iv) they can deal well with
correlated predictors (Breiman, 2001).

To determine which set of summary statistics were bet-
ter at predicting each of the three metacommunity pro-
cesses, we divided the summary statistics into seven
different groups according to their characteristics (e.g.,
descriptive vs. model-based) (Table 2) and used them as pre-
dictors of each metacommunity process, resulting in a total
of 21 random forest models (with 500 trees each) (Table 2).
The variable importance is determined by observing how
much the prediction error increases when each variable is
permuted, while the other variables remain the same
(Breiman, 2001; Liaw & Wiener, 2002).

Because some simulations were discarded (see preced-
ing discussion), we analyzed 6596 simulations (Table 2) for
the simple metacommunity descriptors. In addition, some
of the model-based statistics could not be calculated for
some communities, for example, we could not calculate
covariances of transient species that occurred in only one
time step. As a result, the numbers of simulations used in
the random forest for the HMSC (5728) and all summary
statistics (5185) were lower.

The minimal model was selected using recursive fea-
ture elimination and a 10-fold cross-validation procedure
that partitioned the data into test and training, where the
partition was random across the entire set of simulations.
The model was fit with all of the predictors to the train-
ing data and tested with the held-back samples, where
each predictor received an importance value. The algo-
rithm then kept the “n” most important variables, refit
the model, and tested it again with the held-back sam-
ples. This procedure was repeated for 10 to 50 “n” predic-
tors (Appendix S1: Figure S1). The algorithm determined
the best number of predictors and the best predictors
based on the prediction accuracy (with the held-back
samples). The whole procedure was repeated 10 times
(Ambroise & McLachlan, 2002; Svetnik et al., 2004).

Sensitivity analysis to spatial and temporal
sampling effort

We calculated the summary statistics on the “full” time
series, except for the “spatial-only” variation partitioning,
which was calculated only on the last time point. The full
time series was obtained after burn-in and the
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subsampling regime, so the full time series was actually
only 5% of the entire simulation.

Empirical data are inevitably limited in space and
time. We therefore investigated the effect of sample limi-
tation by repeating our analyses on a subset of patches
and time points, as would be the case in most empirical
studies. For this question, we used simulations that had
stabilizing competition (αij < αii), intermediate levels of
abiotic niche breadth (4.64159), and intermediate levels
of dispersal (0.00215), which yielded a gamma diversity
above one. Then we randomly sampled m of 100 patches
where m = 4, 8, 12, 16, …, 100, repeated 1000 times. We
also sampled t of 60 time points, where t = 4, 8, 12, 16, …,
60; this was not repeated because time points are sequen-
tial. We subsampled time and space factorially for every
combination of number of patches and time points. To
calculate the effect of missing time points or patches, we
calculated the so-called error half-life. The error half-life
is the minimum number of patches or sequential time
points needed to reduce the “error” in the summary sta-
tistic by half.

RESULTS

Comparing explanatory random forest
Models 1–7

For the simulation scenarios explored in this study, we
found that both spatial and temporal dynamics were

necessary to distinguish metacommunity dynamics
employing the metrics used in this study. Including sta-
tistics that are measured through time increased the
explanatory power of the random forests by up to 59%
compared to cases where only spatial variation was con-
sidered, namely, when temporal variation was incorpo-
rated into the descriptive statistics (Table 2—Model 1 vs.
Model 2) and in the RDA-based variation partitioning
(Table 2—Model 3 vs. Model 4).

We also found that several summary statistics were
complementary and captured different aspects of met-
acommunity dynamics. For instance, the most important
summary statistics for inferring variation in dispersal rates
were the ratio of occupancies at a local scale (Hill 1/Hill 0),
the total richness difference in time, and the variation par-
titioning time (T) component. Of these, the ratio of occu-
pancies had a unimodal relationship with dispersal,
richness differences in time had a decreasing relationship
with dispersal, and the variation explained by time (T)
increased with dispersal (Appendix S1: Figures S5–S7). In
all, we found that including descriptive and model-based
summary statistics increased the explanatory power by up
to 22% (Table 2—Models 6 and 7).

We found that descriptive statistics were more informa-
tive than model-based statistics for detecting variation in
dispersal and density-dependent biotic interactions, even
with fewer predictors (Table 2—Model 2 vs. Model 5). The
descriptive statistics in Model 2, such as variation in com-
munity biomass through time and the ratios of occupancy
(evenness), captured more variation in metacommunity

TAB L E 2 Different sets of summary statistics were more or less informative at explaining the variance in each of the three

metacommunity processes. We used random forests to compare the performance (classification success/R2) of sets of summary statistics. The

higher the classification success or the R2, the better are the sets of summary statistics at explaining variation in each of the three

metacommunity processes: Density-independent responses to abiotic conditions (abiotic responses), density-dependent biotic interactions

(biotic interactions), and dispersal. We ran 7 different random forests (each with a different subset of summary statistics) for each of the 3

processes for a total of 21 random forests. The minimal model kept the most important summary statistics for each metacommunity process

through a recursive backwards elimination algorithm. The minimal model for each metacommunity process can contain different summary

statistics

Explanatory model
Summary statistics
used as predictors

No.
simulations

Biotic
interactions Dispersal

Abiotic
responses

1—Spatial descriptive statistics Spatial statistics in
Table 1A

6596 69.78% 57.51% 32.48%

2—Temporal and spatial descriptive statistics All statistics in Table 1A 6596 83.29% 85% 48.39%

3—Variation partitioning (VP) in space Table 1B—VP in space 5613 32.99% 0% 35.6%

4—Variation partitioning in space and time Table 1B—VP in time and
space

6590 49.71% 59.05% 49.14%

5—Hierarchical modeling of species
composition (HMSC)

Table 1B—HMSC 5728 78.6% 63.85% 51.33%

6—All summary statistics All summary statistics
(Table 1)

5185 90.24% 85.88% 61.78%

7—Minimal model Subsets of model 6 5185 90.55% 86.77% 62.49%
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dynamics than RDA or HMSC (Figure 2). Measures of tem-
poral variability and the relative abundances of species were
also important. Furthermore, these statistics were more
informative when combined with other statistics, such as
beta diversity (Appendix S1: Table S1).

Model-based statistics tended to be more informa-
tive when including time or species interactions. RDA-
based variation partitioning using only space and envi-
ronment, but no time (Model 3), had the lowest perfor-
mance to distinguish metacommunity dynamics
(Table 2). Once we included temporal dynamics, the
RDA-based variation partitioning increased the classi-
fication success for different types of biotic interactions
to 50% and explained more variation in dispersal (59%)
and responses to abiotic conditions (49%) (Table 2—
Model 4). The amount of variation explained in dis-
persal, an explicitly spatiotemporal process, was partic-
ularly sensitive to the inclusion of time, increasing
from 0% to 59%. Likewise, the random forests for biotic
interactions and abiotic responses were more success-
ful when we included time. HMSC, which included
time and summary statistics of species interactions,
had a greater predictive power of metacommunity pro-
cesses than RDA with time (Table 2—Model 5 vs.
Model 4). The best improvement was in the classifica-
tion of biotic interactions (success rate 79% for Model
5 vs. 50% for Model 4).

Including all descriptive and model-based statistics
together (Model 6) yielded better performance for all
three simulated metacommunity processes than using
one type of statistic. Several statistics provided comple-
mentary information that was useful for distinguishing
metacommunity processes (Table 2). However, this ran-
dom forest included up to 85 predictors (all predictors in
Appendix S1: Table S1), and very little predictive ability
was lost when we reduced it to a minimal model through
backwards selection (Table 2). These minimal models
included a different subset of statistics depending on the
inferred process (Figure 2). The most informative statis-
tics had the smallest variance at each parameter value
but exhibited the most variation across parameter space
(Figure 3a,e,i vs. Figure 3c,d,h).

Density-dependent biotic interactions

The minimal model to distinguish different types of biotic
interactions had a classification success of 91%. Stabilizing
competition was easiest to distinguish with the available
summary statistics (3% error rate), while the competition–
colonization trade-off was the most challenging to separate
from the other types (20% error rate). The most important
summary statistic that helped to distinguish biotic

interactions was the CV of abundance at the local scale
(Figure 2 and Appendix S1: Figure S2). This was lowest
under stabilizing competition, increased with equal compe-
tition and mixed competition, and was highest with
competition–colonization trade-offs (Figure 3a). Under sta-
bilizing competition, local diversity was higher, whereas the
increased variability in the other scenarios was due to the
stronger competitive effects (Chesson, 2000; Thompson
et al., 2020).

Dispersal

The minimal model explained 87% of the variation in dis-
persal in the simulated metacommunities (Table 2). Here,
our measure of community evenness, the occupancy ratio,
emerged as the most important summary statistic (Figure 2
and Appendix S1: Figure S3). This statistic had a U-shaped
relationship with dispersal (Figure 3e). Low dispersal
resulted in a relatively high evenness, suggesting that most
species occupied a relatively similar number of patches,
despite variation. At intermediate dispersal, species effec-
tively tracked their niches, and their abundance varied
depending on existing environmental conditions
(i.e., strong species sorting). High dispersal again resulted in
a relatively high evenness, suggesting that most species
were distributed evenly across the landscape due to mass
effects (Figure 3e).

Density-independent responses to abiotic
conditions

The minimal model to explain variation in density-
independent environmental filtering captured only 62%
of the variation. The most important summary statistic
for inferring the responses to abiotic conditions was the
environmental (E) component of variation partitioning
through time and space (Figure 2 and Appendix S1:
Figure S4). This component had a hump-shaped relation-
ship with the strength of abiotic conditions (Figure 3i).
When species responses to abiotic variation were strong
(i.e., σi—niche breath—is small), temporal variation in
the environment reduced abundances and species rich-
ness, allowing stochasticity to play a large role such that
the environmental (E) component explained relatively lit-
tle variation in community composition. When responses
to the abiotic conditions were weaker (i.e., intermediate
σi), the environmental (E) component explained the most
variation in community composition because species
could respond to environmental variation by moving to
more suitable patches. Finally, when the responses to
abiotic conditions were very weak (i.e., σi is large), the
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amount of variation explained by the environmental
(E) component was again low, because variation in envi-
ronmental conditions did not lead to changes in commu-
nity composition (Figure 3i).

Sensitivity analysis

When we reduced sample completeness to be more in
line with what is more typical in empirical studies, the
summary statistics were not equally affected (Figure 4).
We evaluated the error half-life of the summary statistics
when time was fully sampled but patches were not,
and vice versa. Some summary statistics were more sensi-
tive to the loss of sampled patches, while some were
more sensitive to reduced coverage in time. When time
was fully sampled (which will be somewhat subjective in
empirical studies), total beta diversity in time, beta diver-
sity in space (Hill 1 and 2), compositional replacement in
time, and richness differences in time, as well as all of
the environmental (E) and shared components of spatio-
temporal variation partitioning, were robust to a reduced
number of sampled patches. These statistics needed less
than 8% of patches sampled to reduce the error rate by
half. On the other hand, the spatial (S) component of var-
iation partitioning was very sensitive to the loss of pat-
ches and reached half the error at 72% of patches
remaining (Appendix S1: Table S2, Figure S8). When
space was fully sampled, minimum and maximum pro-
portion of patches occupied, the space–time component
(S⩀T) of variation partitioning, beta diversity in space
and time (Hill 1 and 2), and the CV of abundance at the
local scale were robust to the loss of time points
(i.e., only 8% of time points are needed to reduce the
error rate by half). On the other hand, the space–
environment shared component (S⩀E) of variation par-
titioning and replacement and richness differences
through time needed more than 80% of time points to
reduce the error rate in half (Appendix S1: Table S3,
Figure S9).

Some statistics were sensitive to the loss of both time
points and patches, as measured by the difference

between values calculated over the entire space or time
(i.e., true values) and values calculated from under-
sampled patches or time points (i.e., sample values). For
example, the CV of abundance at a local scale, which is
critical for detecting biotic interactions, was not very sen-
sitive to the number of time points, but the difference
between true and sampled values decreased as more pat-
ches were sampled (Figure 4a). Richness differences
through time were highly sensitive to the number of time
points sampled, becoming more accurate as more time
points were sampled, but less sensitive to the number of
patches sampled. However, the estimates became more pre-
cise as more patches were sampled (Figure 4b). Finally, the
mean proportion of patches used by species was more sensi-
tive to the loss of sampled patches than time points. When
the entire 100-patch metacommunity was sampled, 30% of
the time points were sufficient to produce reliable estimates,
whereas when few patches were sampled, even complete
temporal sampling led to large discrepancies between esti-
mated and true values (Figure 4c).

DISCUSSION

Overall, we found that accounting for temporal dynamics
was necessary to distinguish simulated metacommunity
processes with the summary statistics included in this
study. This suggests that neither a snapshot of communi-
ties in a single time point nor substituting space for time
in observational studies is sufficient to quantify the
underlying processes in metacommunities. While this
may not seem particularly surprising since meta-
communities are clearly dynamic in time, the vast major-
ity of empirical metacommunity studies largely ignore
the role of time. Empirical findings also support the need
to account for temporal dynamics in metacommunity
ecology (Tatsumi et al., 2020).

Indeed, we found that RDA-based variation par-
titioning, one of the most popular methods used to distin-
guish metacommunity-level processes, had generally
poor performance at distinguishing metacommunity pro-
cesses. This is likely because variation partitioning does

F I GURE 2 The minimal model kept the most important summary statistics for each metacommunity process through a recursive

backwards elimination algorithm. In random forests, variable importance is determined by observing how much the prediction error

increases when each variable is permuted. The best number of predictors was 50 for the density-dependent biotic interactions, 32 for

dispersal, and 29 for density-independent responses to abiotic conditions, but here we show the 20 best performing summary statistics for

each process. The minimal model for each metacommunity process contains different sets of summary statistics (summary statistics not

shared between processes are blank). The 20 best-performing summary statistics for each process are ordered from top (yellow—most

important) to bottom (purple—less important) from each minimal model (Model 7). CC trade-off refers to the scenario of competition–
colonization in the strength of biotic responses. For the definition of all summary statistics see Table 1 and Appendix S1: Table S1. HMSC

refers to hierarchical modeling of species communities
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not take into account species interactions and temporal
dynamics. In addition, Sokol et al. (2017) found that
unimodal response curves hindered the ability of varia-
tion partitioning as a reliable metacommunity diagnostic
tool, probably because of the difficulty in modeling bell-
shaped or more complex responses with the linear
models underlying RDA (Viana et al., 2021). Using met-
rics that describe community dynamics, rather than
model fits, was ultimately more informative and useful
for inferring metacommunity processes.

Modeling approaches that jointly accounted for abiotic,
biotic, spatial, and temporal responses, such as HMSC, pro-
vided more power to distinguish metacommunity processes
than did RDA-based approaches. Particularly relevant for
the inference of metacommunity processes is that HMSC
explicitly estimates positive or negative interspecific associa-
tions (Ovaskainen et al., 2017). Although the utility of using
species associations for inferring the importance of species
interactions is still debated (Blanchet et al., 2020), our
results nevertheless suggest that these model-based statistics

F I GURE 3 The three most important summary statistics for predicting the underlying metacommunity processes (rows) as determined

by the minimal random forest model (Model 7): (1) coefficient of local-scale variation in community abundance, (2) ratio of occurrence at

local scale (Hill 1/Hill 0, this ratio is a measure of relative species rarity, which will be smaller when the community is uneven), and

(3) environmental (E) component of variation partition through time and space. For the definition of all summary statistics see Table 1 and

Appendix S1: Table S1. The color of the diamonds in the top right of each panel corresponds to the color in Figure 2 and shows the relative

importance of each summary statistic. In panels (d–i) the ribbons represent the 1st and 3rd quartiles, while the middle lines represent the

median values, mirroring the values used in the boxplots of panels (a–c). CC trade-off refers to the scenario of competition–colonization in

the strength of biotic responses. The values on the x-axis for dispersal and abiotic responses were the values of the parameters’ abiotic niche
breadth (σi) and the probability of dispersal (ai) used for the simulation. For each process we highlighted with yellow ribbons the most

important summary statistic (equivalent to the yellow diamond) to add contrast

12 of 16 GUZMAN ET AL.



increase our ability to distinguish among different types of
biotic interactions.

Finally, we found that including a combination of
descriptive statistics as well as model-based statistics pro-
vided the best results for determining metacommunity
processes. Model-based statistics alone neither represen-
ted the most important summary statistics for all mini-
mal models nor provided the highest explanatory power
for the random forests. Unfortunately, many studies used
model-based statistics alone (Cottenie, 2005; Ovaskainen
et al., 2019; Soininen, 2014, 2016). These results suggest
that using a combination of descriptive and model-based
statistics will increase our ability to infer metacommunity
processes.

Sensitivity analysis

Limited sampling in space or time affects summary statis-
tics in different ways. For example, some summary statis-
tics, like the mean proportion of patches used, were more
sensitive to the loss of patches, while the CV of abun-
dance and richness differences were more sensitive to the
loss of time points. As a result, we suggest that using a

variety of summary statistics improves inference and can
help reduce the sensitivity of an entire analysis to
undersampling. A next step is to consider how temporal
scale (duration of temporal sampling) can interact with
temporal undersampling (frequency of sampling) to
affect inferences about metacommunity structure
(Castillo-Escrivà et al., 2020).

General discussion and caveats

The relative importance of the summary statistics
depends to some extent on the assumptions made in the
simulation model. For example, we assumed that all the
species had the same dispersal rate, but variation in dis-
persal rates would likely reduce the degree to which
observed patterns can be used to assess dispersal pro-
cesses (e.g., Monteiro et al., 2017). We made a similar
assumption about niche breadth, where all the species
had the same breadth but different optima and all pat-
ches were the same size. Differences among species in
their niche breadth would again influence our ability to
infer these processes from observed patterns. By modify-
ing these and other assumptions, future studies can

F I GURE 4 Sampling fewer patches or time points increases the difference between an estimated summary statistic and its true value

(i.e., when the metacommunity is fully sampled in space and time). The coefficient of variation in abundance at a local scale (a), the richness

differences through time (b), and the mean proportion of patches occupied (c) vary in their sensitivity to loss of patches or time points. The

middle lines represent the mean difference between the true value and the sampled value, while the ribbons represent one standard

deviation
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identify the robustness of the relationship between the
processes and summary statistics.

We also assumed that all species were governed by the
same metacommunity dynamics. However, when different
species, or different locations, within a metacommunity are
governed by different dynamics, significant departures from
these expectations can emerge (Leibold et al., 2022). Empiri-
cal metacommunities may not support this assumption and
may in fact have different subassemblages of taxa governed
by distinct metacommunity dynamics (Thompson et al.,
2017). Furthermore, more complexity is inherent in meta-
communities with trophic interactions, which can further
complicate analyses (Guzman et al., 2019). Nevertheless, an
approach and workflow like ours that considers a multitude
of metrics aimed at capturing a diverse set of dynamic pat-
terns should also be useful when applied to these sorts of
complexities in metacommunities.

Our analysis also uncovered another critical source
of uncertainty in empirical metacommunity analysis
that likely contributes to its typically low explanatory
power—undersampling in space and time. Our sensitivity
analysis shows that while some of the metrics are robust
to small sample size in space or time, very few are robust
when both space and time are undersampled. If empirical
metacommunity studies sample only a few of the relevant
patches or time points, understanding the processes that
structure metacommunities might not be possible. Fortu-
nately, there has been continued growth in the monitor-
ing and compilation of longer-term time series of
communities that vary in space (i.e., metacommunity
time series) (see e.g., Dornelas et al., 2018), making
us hopeful that more empirical metacommunity
analyses with sufficient temporal sampling could be
forthcoming.

CONCLUSIONS AND FUTURE
DIRECTIONS

Although we recognize that our investigation leaves
many questions to be answered, we believe it provides an
important step forward to help improve the empirical
investigation of metacommunities. In particular, we pre-
sent a proof of concept that illustrates that most previous
empirical approaches for analyzing metacommunities are
limited by focusing on only a few metrics or analytical
approaches, as well as by limited sampling, especially
through time. However, analyses can be greatly improved
by using multiple metrics and analyses that provide com-
plementary information on the relative importance of the
core metacommunity processes (dispersal, biotic interac-
tions, abiotic responses), so long as metacommunities are
also adequately sampled in time and space.

We can also use our approach to develop hypotheses
for experimental interventions, by testing the relation-
ships between the important summary statistics and the
core processes (Figure 3). For example, based on our sim-
ulations, we found that community evenness had a U-
shaped relationship with dispersal. One could explore
whether these relationships are altered when dispersal is
altered, in the context of habitat fragmentation or the
addition of dispersal corridors.

In addition to applying and improving our minimal
model for empirical studies, a methodological next step
could be to use the summary statistics identified here in an
Approximate Bayesian Computation (ABC) framework
(Pontarp et al., 2019). Such a framework would use simu-
lated data and summary statistics to determine the posterior
distribution of parameters of interest (e.g., dispersal rate)
based on the distance between empirical data and summary
statistics. This method can be used with an absolute model
fit to assess how well the simulation model explains empiri-
cal data (Pennell et al., 2015).

In all, we highlight two main take-home messages
from our study. First, although the majority of studies of
metacommunities focus on static patterns of species
abundances and distributions, we found that temporal
dynamics were key for distinguishing the processes
driving metacommunity dynamics. Indeed, temporal
dynamics improved our ability to explain variation in
density-dependent, density-independent, and dispersal
processes by up to 60%. Second, although there can never
be a one-to-one matching of pattern to process, we showed
that the use of multiple summary statistics simultaneously
was essential for disentangling processes. We found that
both model-based and descriptive statistics were needed for
the highest performance in inferring metacommunity
processes and may be crucial in reducing inference uncer-
tainty and accuracy when metacommunities are under-
sampled (i.e., virtually always). Although further testing is
needed, the minimal models we propose here represent a
step toward inferring the relative strengths of the three key
metacommunity processes—dispersal, biotic interactions,
and abiotic responses—in any empirically measured
metacommunity.
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