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Abstract
Aims/hypothesis It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and
numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the
offspring’s phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the
current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS
deficiency.
Methods Heterozygous (+/−) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice.
The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type
parents.
Results Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose
and liver glycogen storage were increased when analysing wild-type male and female offspring of +/− eNOS fathers.
Wild-type male but not female offspring of +/− eNOS fathers had increased fasting insulin and increased insulin
after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression
of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A
and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/− eNOS fathers. The endocrine
pancreas in wild-type offspring was not affected.
Conclusions/interpretation Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of
the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/− eNOS fathers
developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and
Pgc1a gene expression due to altered methylation of these genes.
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Abbreviations
eNOS Endothelial nitric oxide synthase
FDR False discovery rate
GR Glucocorticoid receptor
iNOS Inducible nitric oxide synthetase
L-NAME N(γ)-nitro-L-arginine methyl ester
MeDIP Methylated genomic DNA

immunoprecipitation
miRNA microRNA
NO Nitric oxide
PGC-1α Peroxisome proliferator-activated

receptor gamma coactivator 1-alpha
WT Wild-type

Introduction

The ‘fetal origin of diseases’ hypothesis proposes that adult-
hood diseases originate through adaptation of the fetus to
environmental conditions in early life [1]. Another mechanism
responsible for programming events might be related tomater-
nal genes affecting the fetal phenotype independently of the
offspring’s genome [2–14]. These clinical association studies
stimulated the initiation of animal studies to identify the

underlying molecular mechanisms. Heterozygous (+/−)
female mice in which the Nos3 gene, encoding endothelial
nitric oxide synthase (eNOS), was knocked out and wild-
type (WT) female mice were bred with male WT mice.
Female offspring with normal Nos3 gene status but born to
heterozygous female eNOS knockout mice develop hepatic
steatosis [15], causally demonstrating that maternal genes
can epigenetically alter the offspring’s phenotype without
inheritance of the gene itself [15]. Paternal environmental
factors prior to mating likewise affect the offspring’s pheno-
type [1, 16]. It was shown that a pre-conceptional paternal
high-fat diet results in impaired glucose tolerance in female
offspring [17–21]. There are already studies suggesting that
paternal genes without transmission to the offspring might
likewise affect the offspring’s phenotype [22–24] (Fig. 1).

We have chosen male heterozygous eNOS knockout mice
to test this hypothesis, because eNOS plays an important role
in the control of testicular vascular function, and hence hetero-
zygous eNOS deficiency in male mice might create an
unfavourable testicular microenvironment. We hypothesised
that this could influence the offspring’s phenotype. We
analysed the impact of paternal nitric oxide (NO) deficiency
on epigenetic alterations in sperm. Next, we analysed the
phenotype of WT offspring of male heterozygous eNOS
knockout mice, followed by analysis of candidate genes (both
gene expression and related epigenetic alterations of
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differentially expressed genes) potentially responsible for the
observed phenotype.

Methods

For detailed methods, please refer to the electronic supple-
mentary material (ESM).

Breeding protocol and study protocol of eNOS-deficient mice
Male heterozygous mice (C57BL/6 J background) in which
the Nos3 gene encoding eNOS was knocked out [25] were
bred with C57BL/6 J female mice and their WT offspring
were compared with offspring from healthy male and female
C57BL/6 J mice. The breeding procedure is described in more
detail in ESM Fig. 1. Study design and experimental protocols
were conducted according to the local institutional guidelines
for the care and use of laboratory animals and were approved
by the animal welfare ethical committee of the state of Berlin.

Male and female offspring were kept for 24 weeks and
analysed separately. Body weight, length, abdominal diame-
ter, blood pressure and plasma creatinine were measured and
IPGTT was performed. Experimenters were blind to group
assignment and outcome assessment for the entire study.

Effects of NO deficiency on sperm development and epige-
netic alterations in the sperm A total of 30 C57BL/6 J male

mice were randomised into three groups and treated with
different doses of N(γ)-nitro-L-arginine methyl ester (L-
NAME) for 12 consecutive weeks.

Sperm total DNA methylation Mature sperm were isolated
from cauda epididymis. Sperm total DNA methylation was
performed as described before [26].

Sperm count and small RNA library construction Mature
sperm were isolated from cauda epididymis of male
C57BL/6 J mice and processed for RNA extraction as
previously described [27, 28]. Small RNA libraries
were constructed. After validation of library quality,
sequencing was performed by Il lumina HiSeq
(Illumina, UK).

Testicular morphology Testes were fixed, processed and
stained with haematoxylin and eosin, followed by computer-
aided image analysis.

Liver morphology Livers were fixed, embedded in paraffin
and cut into slices. Haematoxylin and eosin staining, Oil
Red O staining and immunohistochemistry were performed,
followed by computer-aided image analysis.

Pancreas morphology Pancreases were fixed, embedded in
paraffin and cut into slices. Haematoxylin and eosin staining

Fig. 1 Paternal programming hypothesis. The paternal genetic defects
might impact on the offspring phenotype via genomic–epigenomic inter-
actions without inheritance of the defective paternal genes. The paternal
genetic changes might affect the endocrine system and vascular function
in testes leading to alterations related to sperm quality and seminal fluid
composition, whichmight in turn trigger early epigenetic modifications in

sperm, e.g. miRNAs, tRNA-derived small RNAs (tsRNAs) and DNA
methylation [18, 20, 36, 37, 64, 65]. These early epigenetic alterations
might impact the offspring leading to late epigenetic changes in target
offspring organs with modified gene expression and phenotype without
transmittance of the paternal genetic change
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and immunohistochemistry were performed, followed by
computer-aided image analysis.

Liver glycogen content Glycogen content was determined
using the amyloglucosidase method [29].

Quantitative real-time PCR Quantitative real-time RT-PCR
was used to determine the relative expression levels of
mRNAs as described recently [15]. Sequences of primers used
are listed in ESM Table 1.

Quantif ication of gene-specif ic DNA methylation
Quantification of gene-specific DNA methylation was
achieved with methylated genomic DNA immunoprecipita-
tion (MeDIP), with minor modifications as described by
Weber et al [30].

Statistics For the statistical analysis of IPGTT glucose and
insulin, two-way ANOVA test followed by Bonferroni post
hoc test was conducted. The unpaired Student’s t test and
Pearson correlation analysis were applied for normally
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Fig. 2 SpermDNAmethylation inWT (n = 10) and +/− eNOS fathers (n
= 6) (a), sperm DNA methylation in mice treated with different doses of

L-NAME (b), sperm count (c), determination of testicular morphology:
Johnsen score (d), sloughing rate of spermatogenic cells (e) and volcano
plots of differentially expressed miRNAs: low-dose L-NAME

(0.15 mg/ml drinking water [DW], n = 10) group vs control group (n =
10) (f) and high-dose L-NAME (2 mg/ml DW, n = 10) group vs control
group (g). *p<0.05 vs WT fathers in (a); *p<0.05 and **p<0.01 vs
control group in (b), (c), (d) and (e)
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distributed data, while the Mann–Whitney U test and
Spearman correlation analysis were used for non-normally
distributed data. To correct for multiple testing in the gene
expression analysis, a false discovery rate (FDR) cut off was
set at 0.05 [31, 32]. Statistically significant differences were
considered as p≤0.05.

Results

Effects on sperm under conditions of NO deficiency Sperm
total DNA methylation in +/− eNOS fathers was lower than
that in WT fathers (Fig. 2a). Mature sperm has a haploid
chromosome set. Half of the spermatozoa from heterozygous
eNOS knockout mice therefore have an inactivated Nos3
gene; the remaining half have a normal Nos3 gene. We

therefore treated male WT mice with the identical genetic
background as the eNOS knockout mice with L-NAME and
then analysed the sperm. This sperm is a well-suited model to
analyse effects of reduced eNOS activity in the testes on the
maturation of genetically healthy sperm. We have chosen two
dosages of L-NAME. The lower dose does not increase blood
pressure, whereas the higher dose does. The mice treated with
the lower dose can thus be regarded as a model of heterozy-
gous eNOS knockout mice with sperm having only WT Nos3
genes, because blood pressure is not increased in heterozy-
gous eNOS knockout mice. Total DNA methylation in sperm
of mice treated with L-NAME decreased in a dose-dependent
manner (Fig. 2b). Sperm count, Johnsen scores and sloughing
rate of maturing sperm cells were not altered in mice on low-
dose L-NAME (Fig. 2c–e). Twenty-three microRNAs
(miRNAs) were downregulated and five miRNAs were
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upregulated in the low-dose L-NAME group (Fig. 2f). Only
six downregulated miRNAs were described previously (miR-
615-3p, miR-193a-5p, miR-199b-5p, miR-144-3p, miR-132-
3p, miR-8114) (ESM Tables 2–4).

Birth variables and adult body weight WT offspring born to
+/− eNOS fathers and WT mothers showed no differences in
birthweight, length and abdominal diameter when compared
with controls (ESM Fig. 2). There was no difference among
the groups regarding body weight (ESM Fig. 2, ESM
Table 5).

Blood pressure and kidney function Neither blood pressure
nor kidney function was different in WT offspring born to +/−
eNOS fathers and WT mothers as compared with controls
(ESM Table 5).

IPGTT During IPGTT, no differences in glucose concentra-
tions could be observed (Fig. 3). Higher insulin concentrations
after an i.p. glucose load, however, were found in animals
born to +/− eNOS fathers and WT mothers. Sex-specific
analyses showed higher insulin levels in male animals after
60 min of the IPGTT. The analyses of the insulin AUC for
offspring from +/− eNOS fathers and WT mothers showed a
higher AUC compared with controls. Considering offspring

sex revealed that this effect was significant only in male
offspring (Fig. 3).

Fasting plasma glucose and insulin WT offspring of +/−
eNOS fathers showed higher fasting glucose concentrations.
Sex-specific analyses revealed a numerically non-significant
elevation of fasting glucose in female and male WT offspring
of +/− eNOS fathers (Fig. 4a). Moreover, fasting plasma insu-
lin was significantly higher in male WT offspring of +/−
eNOS fathers (Fig. 4b).

Liver phenotype Liver weights, liver lobule dimensions, lobu-
lar inflammation connective tissue content and hepatic lipid
content were similar in all groups (ESMTable 6). Liver glyco-
gen content in both sexes, however, was higher in animals
born to +/− eNOS fathers and WT mothers (p<0.001) (Fig.
4c). In male offspring, no significant correlation was found
between liver glycogen and AUC of plasma glucose, or
between AUC of plasma glucose and AUC of plasma insulin
(Fig. 4d, e). However, AUC of plasma insulin was positively
correlated with liver glycogen (r = 0.452, p=0.03) (Fig. 4f).
For more details see ESM Table 7.

Liver eNOS/iNOS expressionLiver eNOS (Nos3) and inducible
nitric oxide synthetase (iNOS; encoded by Nos2) expression
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were comparable in animals born to +/− eNOS fathers (ESM
Table 8).

Pancreas morphology Size and density of pancreatic islets of
Langerhans and beta cell content of islets were similar in all
groups (Fig. 5).

Quantitative real-time PCR in the liverWT offspring of both
sexes born to +/− eNOS fathers and WT mothers
showed an altered expression of genes involved in lipid
and carbohydrate metabolism. Seventeen genes were
differentially expressed (Table 1). When analysing male
offspring born to +/− eNOS fathers and WT mothers
(p<0.05 and FDR <0.05), 19 genes were differentially
expressed (Table 2), with Gr (which encodes glucocor-
ticoid receptor [GR]; also known as Nr3c1) and Pgc1a
(which encodes peroxisome proliferator-activated recep-
tor gamma coactivator 1-alpha [PGC-1α]; also known
as Ppargc1a) showing the lowest p values and FDR.
Analysing female offspring born to +/− eNOS fathers
and WT mothers revealed no differences (Table 3).

MeDIP methylation analysis in the liver MeDIP analysis
revealed lower Gr exon 1A and Pgc1a promoter DNA meth-
ylation in WT male offspring of eNOS +/− fathers compared
with controls (Figs 6, 7). Correlation analysis between the
gene expression of liver Gr and Pgc1a and DNA methylation
of Gr exon 1A and Pgc1a promoter in WT male offspring of
eNOS +/− fathers revealed an inverse correlation.

Discussion

To test the advanced fetal programming hypothesis [2–13] for
paternal genes, we used a comparable approach as in our
previous study [15] by breeding male heterozygous eNOS
knockout mice with female WT mice and comparing the
phenotype of their WT offspring with the phenotype of
offspring with WT parents. NO deficiency in male mice
reduces sperm global DNA methylation and leads to complex
changes in non-coding miRNAs in sperm. WTmale offspring
of +/− eNOS fathers had increased fasting insulin, increased
insulin after glucose load and increased liver glycogen
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comparison of islet density (b), mean islet area (c) and beta cell content
(d) of islets in all (squares) (35 F:WT; M:WT and 24 F:+/−eNOS;
M:WT), male (triangles) (15 F:WT; M:WT and 9 F:+/−eNOS; M:WT)

or female (circles) (20 F:WT; M:WT and 15 F:+/−eNOS; M:WT)
offspring. F:+/−eNOS; M:WT, WT offspring of eNOS heterozygous
fathers and WT mothers; F:WT; M:WT, WT offspring of WT fathers
and WT mothers; XX, female offspring; XY, male offspring
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content. Since there were no alterations in the endocrine
pancreas and liver is the main site of insulin clearance [33,
34], we focused on the liver in our analysis. We found 19
genes differentially expressed in adult male offspring born to
+/− eNOS fathers andWTmothers, withGr and Pgc1a show-
ing the lowest p value and FDR, whereas no differences in
gene expression were seen in female offspring. DNA methyl-
ation of Gr exon 1A and Pgc1a promoter in male WT
offspring of eNOS +/− fathers was decreased.

Offspring sex dependency of paternal eNOS deficiency The
phenotype of female WT offspring of +/− eNOS fathers was
less pronounced. Only liver glycogen storage was increased.
Sex dependency of the offspring’s phenotype is a common
phenomenon in fetal programming [1]. One mechanismmight

be due to offspring sex-dependent transcriptional differences
[1, 16]. During preimplantation development, male and
female embryos display phenotypic differences that can only
be attributed to the transcriptional differences resulting from
their different sex chromosomes [35].

Opposite effects of maternal and paternal eNOS deficiency on
glucose homeostasis The same parental stimulus (heterozy-
gous eNOS deficiency that was not transmitted to the next
generation) causes different phenotypes in the offspring.
Male WT offspring of +/− eNOS fathers developed a pheno-
type consisting of increased fasting insulin, increased liver
glycogen storage and increased insulin secretion after glucose
load. It is remarkable that the effect on fasting glucose seems
to go in opposite directions in WT offspring of heterozygous

Table 1 Liver gene expression in both sexes

Gene F:WT; M:WT
(n=20–50)

F:+/−eNOS; M:WT
(n=20–26)

p value FDR Correlation with IPGTT insulin (AUC)

Spearman r p value FDR

Gr (Nr3c1) 1.00 ± 0.09 1.56 ± 0.14 4.9×10−6 1.3×10–4† 0.24 0.16 0.54

Igfbp2 1.00 ± 0.09 1.28 ± 0.12 1.9×10−4 2.4×10–3† −0.11 0.54 0.81

Igfbp1 1.00 ± 0.25 2.15 ± 0.45 2.7×10−4 2.4×10–3† 0.26 0.13 0.50

Fbpase 1.00 ± 0.07 1.19 ± 0.11 4.7×10−4 3.2×10–3† 0.06 0.71 0.80

Ampk 1.00 ± 0.09 1.21 ± 0.13 6.6×10−4 3.6×10–3† 0.03 0.88 0.88

Pgc1a 1.00 ± 0.07 1.56 ± 0.19 8.3×10−4 3.7×10–3† 0.18 0.19 0.57

Cpt1 1.00 ± 0.08 1.11 ± 0.10 1.7×10−3 6.4×10–3† −0.09 0.60 0.77

Tfam 1.00 ± 0.06 1.30 ± 0.08 2.7×10−3 9.2×10–3† 0.17 0.20 0.54

Ppar-Α 1.00 ± 0.05 1.35 ± 0.12 3.2×10−3 9.2×10–3† 0.14 0.29 0.56

Acc1 1.00 ± 0.07 1.43 ± 0.13 3.4×10−3 9.2×10–3† 0.21 0.12 0.65

Acsl3 1.00 ± 0.11 1.64 ± 0.21 4.3×10−3 1.1×10–2† 0.23 0.09 0.61

Acsl4 1.00 ± 0.07 1.38 ± 0.12 5.3×10−3 1.2×10–2† 0.08 0.57 0.77

Ppar- Γ 1.00 ± 0.07 1.37 ± 0.13 8.4×10−3 1.7×10–2† 0.30 0.02 0.27

Hsl 1.00 ± 0.07 0.99 ± 0.10 9.8×10−3 1.9×10–2† −0.27 0.12 0.54

Gys 1.00 ± 0.07 1.35 ± 0.13 1.0×10−2 1.9×10–2† 0.10 0.44 0.74

Cdkn1a 1.00 ± 0.11 2.20 ± 0.59 1.3×10−2 2.1×10–2† 0.09 0.53 0.84

Pdk4 1.00 ± 0.13 1.79 ± 0.42 2.5×10−2 4.0×10–2† 0.33 0.01 0.27

Nampt 1.00 ± 0.08 1.32 ± 0.14 3.8×10−2 5.7×10−2 0.12 0.37 0.67

Igfbp3 1.00 ± 0.12 0.88 ± 0.06 4.6×10−2 6.6×10−2 0.07 0.68 0.83

Srebf1c 1.00 ± 0.11 0.88 ± 0.09 5.7×10−2 7.6×10−2 −0.07 0.70 0.82

Nrf1 1.00 ± 0.03 1.11 ± 0.05 5.9×10−2 7.6×10−2 0.08 0.55 0.78

Gck 1.00 ± 0.06 0.81 ± 0.07 6.5×10−2 7.8×10−2 0.17 0.21 0.52

G6pase 1.00 ± 0.12 1.34 ± 0.12 6.6×10−2 7.8×10−2 0.16 0.24 0.50

Chrebp 1.00 ± 0.05 1.17 ± 0.10 9.9×10−2 1.1×10−1 0.24 0.06 0.54

Pck1 1.00 ± 0.07 1.13 ± 0.11 3.0×10−1 3.2×10−1 0.03 0.80 0.86

Pk-l 1.00 ± 0.05 1.06 ± 0.12 6.2×10−1 6.4×10−1 0.02 0.86 0.89

Fas 1.00 ± 0.08 0.94 ± 0.09 6.5×10−1 6.5×10−1 0.16 0.22 0.50

Data are given as mean ± SEM and normalised to the reference group (F:WT; M:WT)
† Significantly regulated gene with FDR <0.05. They are presented in ascending order according to FDR

F:+/−eNOS; M:WT, WT offspring of eNOS heterozygous fathers and WT mothers; F:WT; M:WT, WT offspring of WT fathers and WT mothers
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eNOS-deficient mothers (see supplementary Table 2 of our
previous publication [15] and Fig. 4). Fasting glucose was
numerically lower in WT offspring of +/− eNOS mothers. In
contrast, fasting glucose was significantly higher in WT
offspring of +/− eNOS fathers compared with controls (Figs
3, 4). Epigenetic alterations were likewise different
depending on the parental status of eNOS deficiency.
In female WT offspring of +/− eNOS mothers liver fat
content correlated significantly with fat storage-inducing
transmembrane protein 1 (Fitm1) gene expression and
Fitm1 methylation was significantly decreased, whereas
DNA methylation of Gr exon 1A and Pgc1a promoter
in male WT offspring of eNOS +/− fathers in compar-
ison with controls was lower while corresponding gene
expression was increased.

Taken together, in parental eNOS deficiency the offspring
phenotype strongly depends on whether the genetic defect
was present in the mother or in the father. The different conse-
quences of the same parental genetic defect (eNOS deficien-
cy) can probably be explained by different impacts of eNOS
deficiency for the maturation of the egg or the intrauterine
development of the embryo (Figs 1, 2) [1, 16]. Paternal
eNOS deficiency affects maturation and development of the
sperm and finally alters the epigenome of the sperm, poten-
tially causing long-lasting secondary epigenetic alterations
resulting in an adult phenotype characterised by increased
fasting insulin, increased insulin after glucose load and
increased liver glycogen content. Studies showing that a pre-
conceptional paternal high-fat diet results in an impaired
glucose tolerance in female offspring due to epigenetic sperm

Table 2 Liver gene expression in male offspring

Gene F:WT; M:WT
(n=10–22)

F:+/−eNOS; M:WT
(n=10)

p value FDR Correlation with IPGTT insulin (AUC)

Spearman r p value FDR

Gr (Nr3c1) 1.00 ± 0.15 1.79 ± 0.11 1.80×10−7 4.85×10–6† 0.21 0.41 0.74

Pgc1a (Ppargc1a) 1.00 ± 0.10 1.96 ± 0.15 6.52×10−6 8.80×10–5† 0.16 0.45 0.76

Acsl4 1.00 ± 0.09 1.84 ± 0.17 4.17×10−5 3.74×10–4† 0.15 0.47 0.71

Acsl3 1.00 ± 0.15 2.37 ± 0.29 5.54×10−5 3.74×10–4† 0.24 0.25 0.68

Tfam 1.00 ± 0.08 1.58 ± 0.04 8.99×10−5 4.85×10–4† 0.18 0.39 0.75

Pdk4 1.00 ± 0.15 2.47 ± 0.37 1.25×10−4 5.08×10–4† 0.39 0.06 0.54

Igfbp1 1.00 ± 0.35 2.23 ± 0.43 1.32×10−4 5.08×10–4† 0.33 0.19 0.73

Igfbp2 1.00 ± 0.16 1.47 ± 0.20 1.93×10−4 5.79×10–4† −0.10 0.69 0.81

Gys 1.00 ± 0.07 1.68 ± 0.19 1.93×10−4 5.79×10–4† 0.01 0.97 0.97

Fbpase 1.00 ± 0.10 1.22 ± 0.16 7.60×10−4 2.05×10–3† 0.02 0.94 0.98

Acc1 1.00 ± 0.12 1.71 ± 0.13 1.75×10−3 4.22×10–3† 0.23 0.28 0.69

Nampt 1.00 ± 0.12 1.83 ± 0.25 1.87×10−3 4.22×10–3† 0.30 0.16 1.08

Chrebp 1.00 ± 0.07 1.36 ± 0.06 3.09×10−3 6.42×10–3† 0.21 0.33 0.74

Ampk 1.00 ± 0.15 1.12 ± 0.14 4.61×10−3 8.89×10–3† −0.13 0.63 0.77

Pck1 1.00 ± 0.07 1.44 ± 0.17 8.08×10−3 1.45×10–2† −0.11 0.60 0.77

Nrf1 1.00 ± 0.05 1.21 ± 0.05 1.22×10−2 2.06×10–2† 0.15 0.49 0.70

G6pase 1.00 ± 0.15 1.64 ± 0.14 1.31×10−2 2.08×10–2† 0.28 0.18 0.97

Cdkn1a 1.00 ± 0.12 3.22 ± 1.37 2.27×10−2 3.40×10–2† 0.28 0.18 0.97

Cpt1 1.00 ± 0.12 0.92 ± 0.09 2.72×10−2 3.87×10–2† −0.32 0.21 0.71

Hsl 1.00 ± 0.10 0.85 ± 0.10 5.59×10−2 7.55×10−2 −0.53 0.03 0.41

Srebf1c 1.00 ± 0.21 0.90 ± 0.11 6.07×10−2 7.81×10−2 0.02 0.93 1.00

Igfbp3 1.00 ± 0.19 0.83 ± 0.05 1.01×10−1 1.24×10−1 0.19 0.46 0.73

Ppar-α 1.00 ± 0.07 1.14 ± 0.09 2.57×10−1 3.02×10−1 −0.08 0.72 0.81

Ppar-γ 1.00 ± 0.10 1.10 ± 0.10 5.54×10−1 6.23×10−1 0.57 0.003 0.08

Pk-l 1.00 ± 0.10 0.96 ± 0.08 8.00×10−1 8.64×10−1 0.12 0.58 0.78

Fas 1.00 ± 0.16 1.04 ± 0.18 8.82×10−1 9.04×10−1 0.20 0.35 0.73

Gck 1.00 ± 0.10 1.02 ± 0.12 9.04×10−1 9.04×10−1 0.25 0.24 0.72

Data are given as mean ± SEM and normalised to the reference group (F:WT; M:WT)
† Significantly regulated gene with FDR <0.05, and genes are presented in ascending order according to FDR

F:+/−eNOS; M:WT, WT offspring of eNOS heterozygous fathers and WT mothers; F:WT; M:WT, WT offspring of WT fathers and WT mothers
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and target organ alterations [17–19, 21] fit well with our
findings.

Polymorphisms in the human NOS3 gene (encoding
eNOS) are associated with alterations in the composition of
seminal plasma. eNOS deficiency-mediated changes in semi-
nal plasma might thus also be a contributing factor [36, 37].
Maternal eNOS deficiency may affect egg maturation and
intrauterine development [1, 15]. In this context, it is of note
that parental diabetes has opposite effects on offspring
birthweight [38], most likely due to the different effects of
paternal and maternal diabetes on spermatogenesis and
oocyte/intrauterine development, respectively.

Can the phenotype in male offspring be explained by an
upregulation of GRs? The hepatic phenotype in WT male

offspring of heterozygous eNOS-deficient fathers is in agree-
ment with studies showing that exposure to hepatic GR inhi-
bition lowers glucose in ob/ob mice [39] and that hepatic GR
blockade decreases glucose production and improves insulin
resistance [40, 41]. Excess glucocorticoid exposure causes
hyperglycaemia and insulin resistance. Our finding of no
differences in the glucose response to glucose load in WT
male offspring of heterozygous eNOS-deficient fathers vs
WT offspring of WT parents but marked differences with
respect to insulin levels betweenWTmale offspring of hetero-
zygous eNOS-deficient fathers and controls (Figs 3, 4)
suggests that paternal eNOS deficiency causes insulin resis-
tance in the WT male offspring of male heterozygous eNOS
knockout mice. In the liver, glucocorticoids increase glycogen
storage [42]. We assume that an increased expression of the

Table 3 Liver gene expression in female offspring

Gene F:WT; M:WT
(n=10–28)

F:+/−eNOS; M:WT
(n=10–16)

p value FDR Correlation with IPGTT insulin (AUC)

Spearman r p value FDR

Ppar-α 1.00 ± 0.08 1.48 ± 0.18 8.45×10−3 9.94×10−2 0.41 0.02 0.27

Ppar-γ 1.00 ± 0.10 1.54 ± 0.19 9.70×10−3 9.94×10−2 0.44 0.01 0.27

Gck 1.00 ± 0.08 0.68 ± 0.08 1.10×10−2 9.94×10−2 0.02 0.89 1.00

Cpt1 1.00 ± 0.12 1.30 ± 0.16 2.36×10−2 1.52×10−1 0.29 0.26 1.00

Ampk 1.00 ± 0.10 1.30 ± 0.21 3.07×10−2 1.52×10−1 0.27 0.30 0.90

Gr (Nr3c1) 1.00 ± 0.12 1.32 ± 0.24 3.37×10−2 1.52×10−1 0.04 0.89 1.00

Fbpase 1.00 ± 0.11 1.16 ± 0.16 5.60×10−2 1.89×10−1 0.22 0.39 0.88

Igfbp1 1.00 ± 0.37 2.06 ± 0.82 5.60×10−2 1.89×10−1 −0.06 0.82 1.00

Igfbp2 1.00 ± 0.09 1.09 ± 0.09 6.47×10−2 1.93×10−1 −0.31 0.22 1.00

Hsl 1.00 ± 0.12 1.12 ± 0.16 7.15×10−2 1.93×10−1 0.002 1.00 1.00

Acc1 1.00 ± 0.09 1.25 ± 0.19 1.91×10−1 3.97×10−1 0.20 0.27 0.91

Pgc1a 1.00 ± 0.09 1.32 ± 0.27 1.91×10−1 3.97×10−1 0.13 0.46 0.83

Cdkn1a 1.00 ± 0.18 1.52 ± 0.32 2.01×10−1 3.97×10−1 −0.10 0.57 0.91

Igfbp3 1.00 ± 0.14 0.94 ± 0.11 2.06×10−1 3.97×10−1 −0.21 0.41 0.79

Tfam 1.00 ± 0.08 1.13 ± 0.10 3.28×10−1 5.67×10−1 0.22 0.23 1.00

Srebf1c 1.00 ± 0.11 0.85 ± 0.15 3.36×10−1 5.67×10−1 −0.22 0.39 0.88

Fas 1.00 ± 0.08 0.88 ± 0.11 3.64×10−1 5.77×10−1 0.16 0.38 0.93

Gys 1.00 ± 0.11 1.14 ± 0.15 4.64×10−1 6.51×10−1 0.13 0.47 0.79

Pk-L 1.00 ± 0.06 1.12 ± 0.19 4.78×10−1 6.51×10−1 −0.04 0.85 1.00

Pdk4 1.00 ± 0.20 1.37 ± 0.62 4.90×10−1 6.51×10−1 0.26 0.15 1.00

Acsl3 1.00 ± 0.16 1.18 ± 0.24 5.14×10−1 6.51×10−1 0.18 0.32 0.86

Nrf1 1.00 ± 0.04 1.05 ± 0.08 5.51×10−1 6.51×10−1 0.07 0.71 1.00

G6pase 1.00 ± 0.17 1.15 ± 0.15 5.54×10−1 6.51×10−1 0.05 0.79 1.00

Acsl4 1.00 ± 0.11 1.09 ± 0.12 5.93×10−1 6.67×10−1 −0.07 0.69 1.00

Pck1 1.00 ± 0.11 0.93 ± 0.13 7.00×10−1 7.48×10−1 0.04 0.84 1.00

Chrebp 1.00 ± 0.08 1.06 ± 0.15 7.21×10−1 7.48×10−1 0.28 0.11 0.99

Nampt 1.00 ± 0.11 1.00 ± 0.11 9.83×10−1 9.83×10−1 0.001 1.00 1.00

Data are given as mean ± SEM and normalised to the reference group (F:WT; M:WT)

No gene showed significant regulation with FDR <0.05, and genes are presented in ascending order according to FDR

F:+/−eNOS; M:WT, WT offspring of eNOS heterozygous fathers and WT mothers; F:WT; M:WT, WT offspring of WT fathers and WT mothers
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hepatic GR may have similar consequences. It was reported
that GR interacts with insulin degrading enzyme [43]. Since
the liver is the primary site for insulin clearance [33, 34],
upregulated hepatic GR expression might likewise lead to
increased insulin levels. This pathway is androgen-
dependent [43]. Hepatic androgen-dependent GR effects on
insulin might explain the observed phenotype of increased
plasma insulin levels in male WT offspring of male heterozy-
gous eNOS knockout mice.

The human GR gene (also known as NR3C1) comprises
nine exons in which exons 2 to 9 are the protein-encoding
region. This gene has a long complex promoter region (the
5′ untranslated region) which is similar to the mouse and rat
Gr gene [44]. The mouse Gr gene has five distinct promoter
regions which are 1A, 1B, 1C, 1D and 1E. Exon 1A is found
32 kb upstream from exon 2, and its expression was only
detected in tissues with high GR content [45, 46]. Thus, Gr
exon 1A was selected for DNA methylation analysis and
indeed we saw decreased methylation of Gr exon 1A and
increased Gr gene expression in the liver of male WT

offspring of eNOS-deficient fathers. TheGR gene in particular
has been shown to be sensitive to early-life environmental
conditions, and this effect has been attributed to epigenetic
mechanisms [47].

PGC1a methylation and gene expression DNA methylation
of the PGC1a gene promoter modulates insulin resistance and
is strongly associated with plasma fasting insulin [48, 49]. A
study in patients with non-alcoholic fatty liver disease showed
that PGC1a promoter methylation was inversely correlated
with liver PGC1a mRNA expression. In addition, PGC1a
promoter methylation was inversely correlated with HOMA-
IR, fasting glucose and insulin. PGC1a promoter methylation
was also inversely correlated with PGC1a promoter methyla-
tion [50]. A study done in a rat fetal programming model
likewise found an alteration in DNA methylation and tran-
scription of Pgc1a. The genetic and epigenetic modifications
of PGC1a provide a potential mechanism linking early-life
nutrition insult to long-term metabolic disease susceptibility
[51].

Gr exon 1A:

TACGCAAAGGAAAGAACATGCCGGTAGGAGCCTGC

TCGTCAAACGAGGTGTGAATCTAGCTTCTTCTAGA

AAAAGCAGCCTGCGTCACATCGAAGCCAGATTTGG

TTCTTTGCTCTGAGAGCGGTTAGGCTAGTGGAGGG

CAGGCTTCCGTGACAACTGGTACAGGGACAGGTGC

AGTGTGGGTCCCACAGATATGAACTCTGATAAATC

GTGCATGAGCTACTCTGCGTAAGAATGGAGAAGAG

AGCAGCCCAGCTCCCACCCTCCTGGGGTTCCCATC

GCAGCCTGATCATATGCAGCCTTCTCAGCCAGGAA

GATGTTTCAGATCCTGCTTCGTTAGAGTGTCTGGG

AGGAAGGTAAGTG
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Fig. 6 MeDIP methylation analysis of Gr (Nr3c1) gene exon 1A and Gr
expression in the liver: (a) genomic organisation of Gr exon 1A region
with putative transcription start site (TSS) and beyond the position of
CpG dinucleotides; amplified sequence is shown in the box (primer bind-
ing sites are underlined and analysed CpG dinucleotides are in bold
letters); (b) degree of DNA methylation in amplified region; (c) hepatic
expression of Gr in all (squares) (35 F:WT; M:WT and 24 F:+/−eNOS;

M:WT), male (triangles) (15 F:WT; M:WT and 9 F:+/−eNOS; M:WT) or
female (circles) (20 F:WT; M:WT and 15 F:+/−eNOS; M:WT) offspring
(**p<0.01 and ***p<0.001 vs F:WT; M:WT); and correlation of DNA
methylation and gene expression in all (d), male (e) or female (f)
offspring. F:+/−eNOS; M:WT, WT offspring of eNOS heterozygous
fathers and WT mothers; F:WT; M:WT, WT offspring of WT fathers
and WT mothers; XX, female offspring; XY, male offspring
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Pathophysiological and clinical implications Many studies
have indicated that insulin resistance can be caused by
fetal programming. Also, paternal factors prior to mating
may influence the epigenome of the sperm and hence the
adult offspring’s phenotype [1, 16, 52, 53], as was
observed in our study. Male heterozygous eNOS knockout
mice might be a model of the human endothelial dysfunc-
tion sometimes observed in elderly fathers or fathers with
hypertension [54–57]. If our findings can be translated to
humans, paternal endothelial dysfunction in men might be
a risk factor for developing insulin resistance in offspring.
Our current study also supports the advanced fetal
programming hypothesis as set out in our previous study
[15], where we could demonstrate a maternal Nos3 gene-
driven epigenetic alteration of the offspring’s phenotype.
Our current study now proposes a non-environmental
mechanism of fetal programming driven by altered pater-
nal Nos3/NOS3 gene function [58, 59] primarily affecting
the sperm epigenome and later in life the methylation of

offspring target organ genes, resulting in our case in a
liver phenotype.

Our current study and the previous study [15] have some
general implications:

(1) They break with the classical laws of inheritance. The
phenotype of WT offspring born to either male or
female heterozygous eNOS knockout mice should be
identical to offspring from WT parents. However, this
was not the case for offspring of either heterozygous
eNOS knockout fathers as shown in this study or
heterozygous eNOS knockout mothers as shown previ-
ously [15].

(2) They challenge a key research tool developed to under-
stand gene function: murine transgenic or knockout
animal models. Genetically altered animal models may
not only reflect causality between a certain genetic alter-
ation and a resulting phenotype. Altered parental genes
may additionally induce epigenetic changes affecting the

Pgc1a promoter:

GGCTCCGTTTAGAGTTGGTGGCATTCAAAGCTGG

CTTCAGTCACAGTGTGATGCTTGAAGCCTCCCAAA

GGCCAAGTGTTTCCTTTTCTTTCTTCTATTTTTTT

TTTCCTCTCTCTCTAAGCGTTACTTCACTGAGGCA

GAGGGCTGCCTTGGAGTGACGTCAGGAGTTTGTGC

AGCAAGCTTGCACAGGAGAAGGGAGGCTGGGTGAG

TGACAGCCCAGCCTACTTTTTAATAGCTTTG+1TCA

TGTGACTGGGGACTGTAGTAAGACAGGTGCCTTCA

GTTCACTCTCAGTAAGGGGCTGGTTGCCTGCATGA

GTGTGTGCTGTGTGTCAGAGTGGATTGGAGTTGAA

AAAGCTTGACTGGCGTCATTCGGGAGCTGGATGG
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offspring’s phenotype. This notion is supported by
human genome-wide association studies [60]. The clini-
cal implications of our study should be further investi-
gated in monogenic inherited diseases such as
thalassemia.

Study limitations We used inbred mice for our experiments
(see also ESM Fig. 1). However, founder fathers for the
control group (WT offspring of WT fathers and WT mothers)
and fathers for the investigated group (WT offspring of hetero-
zygous eNOS fathers and WT mothers) are different. Thus,
additional unknown genetic differences in the fathers used to
generate the control group and the investigated group cannot
be fully excluded. It is a study limitation that epigenetic
changes caused by paternal NO deficiency were analysed at
only two time points, in sperm and in the adult animal at the
time of characterisation of the adult phenotype. Dynamic
epigenetic changes, particularly during fetal development,
and their impact on the adult phenotype are important topics
of follow-up projects.

We performed IPGTT by measuring glucose and insulin at
0, 15 and 60 min and not for a longer duration on account of
animal welfare. However, IPGTT for only 60 min showed
differences among the groups and this duration for IPGTT
was reported as a suitable approach previously [61–63].
Although group means for insulin AUC comparing WT male
offspring born to heterozygous fathers and WT mothers with
controls were clearly different (Fig. 3h), it needs to be
mentioned that the variation of individual data in the groups
was quite high. This might be due to the fact that this variable
is calculated based on several measurements. There might be
variations in the amount of glucose injected, the time of blood
taking after glucose injection, the body weight of the individ-
ual animals as well as variation of the insulin ELISA used. All
these variables potentiated the variability of insulin AUC.
This is for example completely different from reports of organ
weight. Here just the variability of the weight measurement
method accounts for the variability of the variable. Moreover,
we did not analyse fat tissue and muscles. Given the pheno-
type, this would have been of interest. Furthermore, we
screened for differentially expressed genes by using a large
but limited list of candidate genes known to be involved in
liver fat and carbohydrate metabolism. We did this because
the approach was successfully used in our initial study [15].

Conclusions This study shows that paternal genes without
passing on to the offspring can influence the offspring’s
phenotype by altering the epigenome in the sperm and subse-
quently later in certain organs in adulthood. The same genetic
defect in either the father or the mother without transmission
to the next generation results in different offspring pheno-
types. Our data specifically suggest that heterozygous eNOS

deficiency in male mice might cause an unfavourable testicu-
lar environment influencing the sperm epigenome. These
primary sperm epigenetic alterations may trigger long-lasting
epigenetic and subsequent phenotypic alterations in offspring
target organs (Fig. 1).
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