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Chapter 1

Introduction

A property of the natural world is that its constituting elements group together into tightly
integrated sets, each of which has some independence from the other. This phenomenon,
which has been called near-decomposability [200], is fundamental for humans to understand
Nature and describe it in a succinct and treatable manner. In the biological world these
sets are called modules and their importance in evolution [223], development [162] and
disease [20] is increasingly being recognized.

Modules can be, for example, sets of molecules involved in a signaling or metabolic
pathway, sets of genes involved in a signaling cascade, sets of cells with similar expression
profiles, or sets of species that geographically co-occur. For some authors, a module is
related to some pre-specified notion of function, such as a developmental building block,
pathway, or cascade (e.g. [192] [187], [8]). For others, modules can be deduced in a function-
agnostic manner, by observing higher than expected co-occurrence between elements (
[209]).

The notion of modularity related to function forces upon us the debate of what consti-
tutes a biological function. Because any definition of function is, to some degree, arbitrary,
modules related to functions are employed more as an explanatory device for the practicing
biologist or physician. This role of modules as an explanans, a reasoning tool aimed at
describing a natural phenomenon, is essential in the description of biological phenomena.

On the other hand, the function-agnostic notion of modularity posits that in biological
systems exist sets of components that are grouped together by some objective, measurable
process. These processes can play out in evolutionary time, such as sets of genes co-
evolving, or in ontogenic time, such as sets of co-regulated genes. The concept of biological
module is not restricted to the molecular realm, as concepts of morphologic [153] and even
cognitive [197] modules have been developed.

Both notions of modularity have been fruitful in different senses. Furthermore, attempts
have been made to reconcile both notions. These attempts (e.g. [93,109,155,233]) have not
been so far completely successful [202], highlighting the complexity of biological processes.

In this work, I adopt this function-agnostic notion of modularity in an attempt to
automatically identify modules and analyze their biological relevance. Even without the
ambiguity introduced by the definition of function, there are many definitions of biological
module. Regardless of definition, the problem of finding modules is inherently combin-
atorial. It is the problem of finding subsets of a set that satisfy some desired property.
Because enumeration of all subsets is computationally unfeasible, heuristic algorithms are

1



2 Chapter 1 Introduction

usually employed, which in turn represent the problem using various mathematical tools,
for example, Integer Linear Programming (ILP) [238], Expectation Maximization [235] or
Matrix Decomposition.

In this work, I am interested in the relationship between the problem of finding modules
in biological systems and the matrix decomposition problem. If adequately formulated,
exploring some subspace of the space of matrices is equivalent to exploring the space of sets
with the desired property. Many methods for finding modules have been developed based
on the matrix representation, among them Non-Negative Matrix Factorization (NMF) [106]
and Singular Matrix Decomposition (SVD) [97].

If one adapts the matrix representation for the problem of finding modules, one relevant
property of matrices is their sparsity: the number of non-zero entries. By focusing on
matrices with few non-zero entries one can easily translate the result of a continuous
exploration of matrix space into the solution of a discrete problem. In particular, suppose
one is dealing with a set of m elements and wishes to choose from them k subsets that
collectively satisfy a property. Then one can identify a givenm×k matrixM with a solution
to this problem by saying that the i’th element is chosen for the j’th set if M [i, j] 6= 0.
The sparsity of matrix M directly translates into useful properties regarding the solution
to the combinatorial problem. Among such properties is the size of the intersection among
modules, as well as others that possess biological interpretability. This is one of the reasons
why sparse representations [43] have become increasingly popular in the last decades.

Regardless of the representation adopted for the problem of finding modules, or if
the sparsity of solutions is enforced or not, the many methods developed for identifying
modules have been greatly fruitful in biology and medicine.

In medicine, the discovery of molecular modules has been used to find candidates for
drug-targets [128, 207, 227], the elucidation of side effects [10], the understanding of can-
cer transcriptional machinery [3, 46, 211] and the characterization of neuropathologies [5],
among others. Underlying these approaches is the assumption that components of one same
module have similar effects on the phenotype of interest. Thus, the notion of modularity is
one of the main hypothesis of the network medicine idea: “Disease module hypothesis: Cel-
lular components associated with a specific disease phenotype show a tendency to cluster
in the same network neighborhood” [15]. This approach has led, for example, to suggest
that therapeutic effects of drug combinations are more likely if the targets lie within the
same module of the human protein-protein interactome [45].

In the study of evolution, both from phenotypic (e.g. [69, 104]) and genotypic (e.g.
[6, 215,226,237] standpoints, modularity has helped in the understanding of the origins of
variability, robustness, and evolvability [185,225].

However, problems concerning modularity remain open both from the applied and the
theoretical standpoints. Correspondingly, the mathematical formalization of modularity
needs to be upgraded in order to tackle these problems, as well as to adapt to recent
changes in biological knowledge. In particular, there are two current challenges that are
still not addressed with the current formalization of biological modularity.

1. The new types of data that have become available through high-throughput exper-
imental methods allows for a higher spatial, temporal, and conditional resolution
when observing biological systems. Based on these observations, the dynamic and
spatial-dependent nature of modules has become clear, and this must be reflected in
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new definitions and methods.

2. After decades of study, some theoretical questions regarding modules remain open.
Specifically, the evolutionary origin of modularity is still a topic of ongoing debate,
further fueled by the ongoing discoveries in biology. Recent observations show, for
example, that gene repertoires and the interactions among such genes do not evolve
at the same rate [138], or that the interplay between evolutionary and ontogenic
modules is far from understood [230].

In order to incorporate this new knowledge into a model of the evolution of modularity,
it is necessary to develop a mathematical framework, a vocabulary, with which to deal with
biological modules. This thesis is a proposal of such a framework, that readily provides us
with some biologically relevant results.

With this framework in hand, and by integrating gene expression and protein interac-
tion data I investigate the modular organization of the human interactome. In an attempt
to identify modules that respect the dynamic nature of this interactome, I arrive at two
requirements for a new definition of modularity. Firstly, that modules often overlap, that
is, that a single element can, under different conditions, be part of different modules.
Secondly, that modules should be reusable, that is, that they must appear in their entirety
across many different conditions.

Based on these two requirements I developed a new definition of modularity in terms
of a matrix decomposition method. This definition emphasizes the reusable property of
modules. With this definition and the corresponding method for finding modules, real
biological systems are analyzed.

Some of the results presented in this thesis have been published in the proceedings of
the 2015 International Conference On Computational Science [147], and in the Journal
of the Royal Society Interface [148]. These are presented here in improved and expanded
version, and integrated with a discussion on modularity on biological networks.
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Chapter 2

Background

This thesis is an application of mathematics and computer science to theoretical biology.
In this chapter, I introduce the basic concepts on which this work builds. The starting
point is graduate-level mathematics and undergraduate level biology. While some of the
notions defined here might seem too basic, I choose to introduce them when they need to
be viewed in a specific context in order to understand this work.

2.1 Mathematical Background

Clustering is the process by which items, or points, in a dataset are grouped into smaller
sets, called clusters, according to some notion of similarity. The aim is for any two points
belonging to one same cluster to be similar, and any two points belonging to different
clusters to be dissimilar. Points can be of various types, and in this work, we deal with
vectors and vertices of a graph. Often in the literature, it is assumed that clustering is a
partitioning of a set of points into clusters, but here we adopt a more general definition in
which any given point can belong to none, one, or more clusters.

In general, clustering is employed as a means of coarse-graining data, that is, of redu-
cing the original data set into a set of clusters that is smaller in size, but not in dimension.
If the notion of similarity is adequately chosen, this coarse-graining allows for a better
understanding of the data by humans, by abstracting the features that differentiate points
in different clusters. Ultimately, clustering helps in discovering previously unknown rela-
tionships in data, specifically, it helps find groups of data points that are in some sense
close together.

5



6 Chapter 2 Background

2.1.1 Data Clustering

We refer to the problem of grouping a set of points X = {x1, x2, . . . , xm} ⊂ Rn into
clusters C1, C2, . . . , Ck ⊂ X as data clustering. For this problem to be defined a notion of
similarity between points, such as a distance, must be fixed. Once this similarity is fixed,
data clustering becomes an unsupervised learning method, in which the boundaries of the
clusters are extracted from the data without the only human input being k, the number
of clusters.

The origins of data clustering lie in statistics applied to psychology [217], but it has
received renewed attention in the field of machine learning [24]. In its simplest form, data
clustering is a partition of X into pairwise disjoint clusters. This is exemplified with two
well known and widely used algorithms: k-means and agglomerative clustering.

Agglomerative Clustering

Agglomerative clustering also called hierarchical clustering or greedy clustering is perhaps
the simplest form of clustering. It starts with considering each point x ∈ X as a single
cluster. At each step, two clusters are merged into one if they are the most similar ones of
the currently existing clusters. Similarity between clusters is determined by the so-called
linkage criterion: a function that translates a distance defined for elements of X into a
distance defined for elements of P(X ), the power set of X . In particular, this function can
be applied to clusters. The most common form of linkage is known as complete linkage [56],
defined as follows.

d(A,B) = max({‖x− y‖ | x ∈ A, x ∈ B})

Agglomerative clustering thus merges clusters by similarity, starting with m singleton
clusters, until it arrives at a single cluster containing all of X . If one desires only k clusters,
the process can be stopped at the stage where exactly k clusters have been created. It has
the additional advantage that from its output one can deduce a hierarchical relationship
between clusters.

K-means

An alternative algorithm is k-means [140], which starts with a random set of k points
c1, c2 . . . ck ∈ Rm as putative centers of clusters. In each iteration, all of the points closer
to cj than to any other c are assigned to Cj , the j-th cluster, and the centroid (according
to Euclidean distance) of all of them, c′j , is computed. If

∑
j ‖cj − c′j‖ is smaller than

some pre-specified threshold, the algorithm terminates, otherwise for each j, cj takes the
value of c′j and the process is repeated. This simple process leads to a grouping of points
that are closer to points that belong to the same cluster than to points that belong to
different clusters. Thus, the notion of similarity used in the K-means algorithm is the
reciprocal of the Euclidean distance between points. Note that the average similarity of
points within each cluster achieved by this algorithm is not necessarily maximal, since the
k-means algorithm converges only to a local minimum.
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Figure 2.1: Distance is not sufficient for clustering. The Swiss Roll data set parti-
tioned into k = 4 clusters using a) k-means and b) diffusion maps.

Limitations of distance-based clusterings

Using notions of similarity based on distances (either Euclidean or not) might not be
enough in all applications. The Swiss roll data set (see Figure 2.1) is often used as an
example of this. In this example, it would be desirable if points belonging to the same
cluster were both close in R3 and in the manifold in which the data lie: i.e. the Swiss
roll itself. More specifically, it is an example of clusters that are defined more than just
by a pairwise relationship between points. In this case, the manifold in which the data
lie is a property defined by all data points collectively, regardless of their cluster, or at
least by a statistically large subset of them. Because such large scale properties are often
unknown and difficult to discern in higher dimensions, automated methods have been
developed to discover and incorporate them into the notion of similarity. Among such
methods, one can mention diffusion maps [126], the inclusion of connectivity constraints
into standard clustering methods [70], manifold learning [41], and the widely-used density-
based clustering [66].

Furthermore, in many applications, it is not reasonable to assume that each data point
belongs to a single cluster. Allowing for overlapping clusters is often necessary when looking
for biological modules, because of their dynamic nature. If an element of a biological system
(a gene, for instance), belongs under one condition to one module, this does not preclude
it from belonging to another module under another condition or, simply, in a different
time. Algorithms that allow for overlapping clusters include fuzzy C-means [27], the plaid
mode [125], and expectation maximization [196,235].

2.1.2 Decompositions into Sparse Matrices

Another way to look into the clustering problem is in terms of matrix products. Let us
consider the matrix X = [x1|x2| . . . |xm]ᵀ ∈ Rm×n whose rows are the vectors of X . Then,
for example, the k-means algorithm amounts to finding two matrices B ∈ {0, 1}m×k and
S ∈ Rk×n that solve the problem

minimize
B,S

‖X −BS‖2 (2.1)
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subject to the constraints:
∀i
∑
j

B[i, j] = 1

∀j
∑
i

B[i, j] ≥ 1.
(2.2)

The matrix S has the cluster centroids as rows, and the matrix B encodes to which
cluster each data point belongs. This kind of decomposition is also called vector quantiz-
ation [220] because it divides the space Rn where X lies into k cells, thereby discretizing
it.

With this representation, one can interpret clustering as representing the points in X as
a combination of some basis vectors, with some constraints in the coefficients. The rows of
matrix S represent these basis vectors, and the entries of matrix B the coefficients encoding
each of the points in X as combinations of these basis vectors. Solving the clustering
problem thus amounts to finding a suitable S in which to express the data, subject to
some conditions on the coefficients. Allowing for overlapping clusters, for example, can be
done by allowing the matrix B to be a probability matrix (all rows positive and summing
up to 1), thus minimizing the distance of each point to a weighted mean of the centroids
of the clusters it belongs to. This process of finding a suitable set of basis vectors with
which to represent data is known by the name of dictionary learning (see. [31] sect. 5.2 for
a review).

In the case where k < n, a decomposition of the form X ≈ BS is considered to be a
dimensionality reduction. Each data point is represented not by n scalars but by k scal-
ars. Dimensionality reduction implies a loss of precision when k < rank(X). In the case
when k > rank(X) the decomposition of X can be exact (i.e. X = BS). Many tech-
niques are available for dimensionality reduction, among them are Principal Component
Analysis [105], Independent Component Analysis, [96] and Latent Semantic Analysis [62].
Clustering and dimensionality reduction, however, have different interpretations that de-
termine the kind of conditions imposed on Equation 2.1.

In terms of interpretation there is one key difference between expressing the points in
X in a different basis, in particular one with a smaller dimension, and finding a clustering
of them. The notion of belonging to a cluster is a binary one. Even when allowing for
different degrees of belonging, it would determine whether a given data point belongs to
a cluster. One way to extract this information from an arbitrary matrix B is to consider
point i as part of cluster j if B[i, j] is greater than a certain threshold. Under the reasonable
assumption that the property of belonging to a cluster is described by a nonnegative scalar,
one can choose this threshold to be 0, thereby establishing a link between clustering and
the sparseness of matrix B.

For this reason, a natural choice for a generalized clustering paradigm is minimizing
‖X−BS‖ with B subject to some sparseness constraints. Sparseness of B can be quantified
by ‖B0‖, known as the zero-norm, or L0 norm of B, which is simply the number of its
non-zero entries. Note that ‖ · ‖0 is not a norm and that inducing some constraint of the
form ‖B‖0 ≤ α turns the problem into a non-convex one. For this reason, the zero-norm
is often replaced by ‖B‖1 =

∑
i,j |B[i, j]| which is convex, and has the property that most

of the solutions satisfying ‖B‖1 ≤ α also satisfy ‖B‖0 ≤ α [44, 63]. However, depending
on the sparsity constraints on B the dictionary learning problem can have very different
solutions.
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Dictionary learning has been approached from various angles, with the general aim of
finding a dictionary (set of basis vectors), in which the data is explainable in the sparsest
possible manner. The elements of this dictionary are called atoms, and they need not
constitute a basis in the traditional sense, but rather a frame. KSVD [139] is the most
popular algorithm for dictionary learning, but several others have been developed, including
some that were developed with other purposes in mind, of which Non-Negative Matrix
Factorization is an example.

Non-Negative Matrix Factorization (NMF), developed in the 1990s [127, 171], has the
aim of decomposing signals or other types of data into combinations of latent sources. It
works in the setting where X ≥ 0, and it is defined by imposing the following constraints
on Equation 2.1.

S ≥ 0
B ≥ 0.

(2.3)

The interpretation of the resulting matrices is similar to what has been discussed so
far. The matrix S encodes the so-called latent sources. Every observation (row of X) is
constructed as a linear combination of the latent sources. The matrix B encodes the coef-
ficients of these observations. The added restriction that B and S be both non-negative
was described by the original authors as enabling parts-based representations [127], be-
cause ”there cannot be a negative amount of a basic constituent in any sample, nor can the
composition of any basic constituent contain a negative percentage of any element” [171].
While the non-negativity assumptions, in particular, the one concerning S might not al-
ways be applicable, the advantages given by the interpretation of atoms as parts is very
attractive, not only in the field of image processing where it was originally introduced, but
also in the analysis of gene expression data [106], which is of particular interest here.

From early on, it was shown that NMF tends to yield very good approximations to
the data, even with rather rudimentary algorithms. However, the interpretability of the
results is sometimes hampered by two factors: the non-sparseness of the matrix S, and the
non-uniqueness of the solutions. Regarding the sparseness of solutions, several strategies
have been developed, for example adding constraints that fix the ratio between the L2 and
L1 norms for every column of B and every row of S [91], adding penalty terms for the L1
norm of matrices S and B [68], penalizing the variance in the entries of S and B [175],
and prescribing a distribution of row-sums for B [61]. Interestingly, the non-uniqueness of
the solutions has also been addressed by sparseness, by showing that if the matrix X is
sparse enough, the alternating optimization of B and S, the most commonly used method
for NMF, converges to a global optimum [58].

It is worth noting here that decomposing the matrix X as described above also provides
a representation of its columns as combinations of the columns of matrix B. In this case,
the i-th column of X is a combination of the k columns of B with coefficients determined
by i-th column of S. If the columns of S have each a single non-zero entry with value
1 then we say that this decomposition constitutes a feature clustering of X , because it
is not the data points that are clustered but their features. Such a feature clustering is
only possible when k < n. In Chapter 5 we will analyze in detail the relationship between
clustering and feature clustering, we pay special attention to the effects of sparsity.
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The Geometric Interpretation of Matrix Decompositions

As elaborated in [58] and [92], there is a nice geometric interpretation of NMF. The fact
that X ≥ 0 implies that all points in X lie in the positive orthant of Rn. Analogously, the
fact that all points in X are expressible (by NMF) as positive combinations of the rows
of S, means that X ⊂ ΓS where ΓS = {y | y =

∑
i αjS[i, :] ,αi ≥ 0 ∀i} is the simplicial

cone generated by the vectors that constitute the rows of S. Furthermore, because of the
constraint that S ≥ 0, ΓS is, itself, contained in the positive orthant of Rn. See Figure 2.2.
From these observations one can deduce that if many of the entries of the vectors in X are
zero (i.e. X is sparse), then the number of simplicial cones ΓS that fit between them and
the positive orthant is reduced [58].

Figure 2.2: Graphical representation of NMF. The points in X (red) are contained in
the simplicial cone generated by the rows of S (blue), which, in turn, is contained in the
positive orthant of Rn

.
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2.1.3 Networks

A graph G is defined by a tuple of two sets V and E, where V = {v1, v2, . . . vm} is known
as the set of vertices or nodes and E ⊂ V ×V is the set of edges. We say that two vertices
v1, v2 are connected if (v1, v2) ∈ E. Associated with a graph G = (V,E) is a matrix AG
known as the adjacency matrix, that satisfies AG[i, j] = 1⇔ (vi, vj) ∈ E. We call a graph
undirected if AG = Aᵀ

G. If G is undirected, the degree of a vertex deg(vi) =
∑
j AG[i, j]

is defined as the number of edges incident on v. We call a graph directed if AG 6= Aᵀ
G, in

which case we can define both the indegree and outdegree of a vertex vi as
∑
j AG[j, i] and∑

j AG[i, j] respectively.
Graphs are interesting mathematical objects in their own right, but also lend themselves

as representations of many sorts of phenomena. In the last decades, graphs whose nodes
and edges can be interpreted as representing real-world objects have become known as
Networks. The research on networks [158, 160] is increasingly popular, in part because
finding a common language to represent many phenomena has allowed for the discovery of
many common traits among them. In particular, biological phenomena have been studied
using the network approach with several good results [52].

Networks are useful when one needs to represent relationships among objects from a
finite, discrete set. In the field of biology, the vertices of networks are, variously, molecules,
species, or individuals. In this work, we are particularly interested in networks whose nodes
represent molecules, but much of the discussion that follows applies to any kind of network.
Edges in a network whose nodes represent molecules can represent physical, regulatory, or
other types of interactions that will be described in the next section.

There are many variations to the concept of network. For example, sometimes the
interactions represented by networks can be of different strengths, in which case edge-
weighted networks, represented by non-binary adjacency matrices, are useful. Furthermore,
these interactions are in some situations temporary or sometimes even instantaneous. For
this reason, a concept of time-varying networks has been developed [90]. If the edges can
belong to several of a finite number of types, networks with several types of edges, called
multiplex networks [19] can be useful.

There are several properties of networks that have found widespread application across
disciplines. One of them is known by the names of Modularity or Community Structure. A
network is said to be modular, or to present community structure if it can be decomposed
into a set of subnetworks, each of which has more edges among its own nodes than con-
necting to nodes not in it. In the early days of network science, community structure was
described in social [83], metabolic [187], and protein networks [184], among many others.
In biological applications, the requirement for a more detailed definition of modularity was
quickly recognized [86].

2.1.4 Network Clustering

Many biological networks are said to contain clusters, also called modules or communities,
which are defined as sets of nodes that are more connected among themselves than with
the rest of the nodes. The sole existence of such clusters is interesting from the biological
point of view [124, 187], but identifying and exhibiting clusters can also have advantages
akin to those of finding clusters in data. Finding clusters in networks helps us reveal
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previously unknown relationships involving the nodes and provides a coarse-graining of
the phenomena represented in the network. Finding such sets is known as community
detection, network modularity or, simply network clustering.

In a sense, network clustering is a generalization of data clustering, in that a distance
measure is provided among any two nodes and those which are closer together according
to this measure are put into the same cluster. However, data clustering, as treated in the
previous section, makes extensive use of the properties of any distance defined in Rn. The
fact that data points lie embedded in Rn restricts the possible relationships between points
in X so that, for example, if point x1 is close to point x2 but very far from point x3 we can
conclude that point x2 is also very far from x3, using the triangle inequality. A network
represents a binarization of this closeness relationship so that only pairs of nodes that are
connected are close to each other. However, allowing any edge to be present in the network
implies that the triangle inequality need not be preserved by the closeness relationship.

Given a network G = (V,E) and an integer k, the simplest form of the network cluster-
ing problem consists of partitioning V into k sets V1, V2, . . . , Vk that maximizes the number
of within-cluster edges and minimizes the number of between-cluster edges. A very com-
mon definition of modularity in networks elaborates on this by including a null model that
considers the number of expected edges between nodes of different degree. The result is
the quantity

Q(V1, V2, . . . , Vk) = 1
2 #E

∑
u,v∈V

[
AG[u, v]− deg(u)deg(v)

2 #E

]
δ(u, v) (2.4)

where δ(u, v) is equal to 1 if u, v ∈ Vj for some j and 0 otherwise [159]. This quantity,
sometimes referred to simply as modularity, is defined for a partition of V , but its definition
is extended for a network as the maximum over all possible partitions.

From a discrete point of view, network clustering implies searching through all possible
subsets of P(V ) in order to find sets of clusters such that nodes belonging to a cluster
are more connected among themselves than with nodes outside of the cluster. Needless to
say, this is a computationally intractable problem [29,199]. For this reason, most network
clustering methods seek to create a more distance-like relationship between nodes, for
example by adding edges in order to make the relationship of closeness a transitive one.

The random walk approach

Another possible way to make the relationship between nodes more distance-like is to
observe a stochastic process whose transition probabilities are connected to the adjacency
matrix. The most common of such processes is a random walker that moves between nodes
by choosing, at every time-step, a node at random from those adjacent to the node at which
it is currently located. If one has an ensemble of (possibly infinitely many) such walkers
going about the network starting with a given initial distribution, the amount of walkers
that are concentrated in a given node at a given point in time depends not only on the
number of edges incident on that node, but also on the number of edges incident on the
nodes adjacent to it. This amounts to propagating some of the connectivity information
from one node to its neighbors.

Formally, let µ be a probability density function (PDF) defined on V . A random walk
is a Markov process given by some transition matrix P ∈ Rm×m that is defined in terms
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of AG with the property that P [u, v] 6= 0 ⇔ AG[u, v] 6= 0. If we imagine an ensemble
of individual random walkers traversing the network as described above, µ(u) denotes the
fraction of them that are present in node u ∈ V . The most naive of random walks uses
the transition matrix defined by P [u, v] = 1

deg(u) . In the random walk setting, modules
in a network are defined as sets V1, V2, . . . , Vk ⊂ V for each of which one can find a
distribution µj whose support is Vj and that is slowly propagating with respect to P . This

last condition, which can be translated as
∑

u/∈Vj
P tµj(u)
t being small for all t, is meant to

capture the fact that random walkers cannot easily leave a module because most of the
edges from nodes in a module lead to other nodes within the same module.

Finding such sets is not an easy task. In this thesis I elaborate on the work presented
in [190], which I call the MSM Random Walk. This approach can be roughly divided into
the following steps: i) determine a set of nodes which we can safely said to belong to some
module, calling this set the core region and its complement the transition region; ii) define
a transition rate between any two nodes in the core region in terms of a continuous-time
Markov process; iii) using these transition rates, cluster the nodes using agglomerative
clustering with complete linkage, calling the resulting clusters modules; and iv) check if
some of the nodes not in the transition region can be put into one of the modules according
to their committor functions [18, 145] to those nodes. Let us now examine these steps, as
described in [190], in more detail.

To begin, we introduce

L(u, v) =


− 1

deg(u)p , u = v
k(u,v)

k(u)deg(v)p u 6= v, (u, v) ∈ E
0 otherwise

(2.5)

where k(u, v) = k(v, u) = Ag(u, v)(1 + A[u, :] · A[v, :]) measures how many neighbors do
u and v have in common, k(u) =

∑
v k(u, v) and p is a parameter that determines the

importance in the random walk dynamics that the degree of a node has, relative to the
number of common neighbors between adjacent nodes. Unless noted otherwise, we follow
the authors in [190] in assuming p = 1.

L(u, v) is the transition rate matrix of a continuous-time Markov process. In this type
of process, individual random walkers do not change node in every time step but, rather,
they have a waiting period in the node they are currently on after which they make a
jump. If a random walker is in a node u, the waiting time tu in that node is itself a
random variable distributed according to P[tu = t] = eL(u,u)∗t.

Because of the existence of waiting times, continuous-time random walkers are useful
for ruling out spurious modules. Since L(u, u) decreases with the degree of u, waiting
times tend to be smaller for nodes with few neighbors. This, in turn, leads to relatively
simple structures such as long lines or circles in G to be explored rather quickly by the
random walker. This contrasts with both discrete-time random walkers and the definition
of modularity introduced in Equation 2.4, both of which consider these simple structures
as modules simply because the size of these sets makes it difficult for the random walker
to leave [12].

After defining a continuous-time random walker via Equation 2.5, the algorithm pro-
ceeds as follows:
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1. Determining the core region: The set of nodes V is first divided into so-called
core and transition regions, denoted by M and T respectively. Given a number
α ∈ R, the core region is defined as

Mα = {u ∈ V |P>α µ∗(u) > µ∗(u)}

Where Pα = eαL and µ∗ is the invariant measure of the Markov process defined by
L in the case p = 0. Mα is a set into which random walkers tend to converge. More
specifically, it is the largest set in which an increase in density of random walkers is
observed, if these are originally distributed according to µ∗, and then left to move
around the network according to L. Given that α1 > α2 implies Mα1 ⊂ Mα2 , α
is called a meta-stability parameter, since the choice of its value induces a notion of
how stable are sets of nodes that are to be considered part of some module. We call
the set T = V \ Pα, the transition region for this random walker.

2. Defining the transition rate matrix: If we consider only the nodes in Mα, we
can define the transition probabilities between any two of them by

P̂α(u, v) =
∑
z∈V

Pα(u, z)qv(z), u, v ∈Mα (2.6)

where qv(z) is the probability that a random walker starting in z will reach v before
any other node inMα. qv(z) can be computed by solving a system of linear equations
as detailed in [145], and is known as the committor function for node v.

3. Clustering the nodes in the transition region The grouping of nodes into
clustering is done by what the authors of [190] call Hard Spectral Clustering. This
procedure amounts to an agglomerative clustering as described in Section 2.1.1, using
P̂α(u, v) as a similarity measure between nodes u and v.
The number of clusters is derived from the spectrum of P̂α(u, v). This is done by first
sorting the eigenvalues of P̂α(u, v) in decreasing order 1 = λ0 > λ1 > . . . > λ|Mα|,
finding two consecutive eigenvalues λg and λg+1 whose difference is significantly larger
than between any other pair of consecutive eigenvalues, and setting g to be the
number of clusters. This procedure is known as finding a spectral gap and is also
used, for example, in the diffusion maps [126] method.

4. Adding more nodes to the modules The final step of the MSM Random Walk
is to check if the nodes in the transition region should belong to one of the clusters
found in the previous step. The idea is as follows: if, with very high probability, a
random walker starting at some node v in the transition region enters some particular
cluster immediately after leaving the transition region, then the node v should be
attached to the cluster. This is measured by computing the committor functions
f1, f2, . . . , fg for each of the clusters, evaluating each committor function on each of
the transition region nodes, and ascribing a node u to cluster i if fi(u) is greater than
some threshold.

The result of the MSM Random Walk algorithm is a partition of the network into g
modules and a transition region. The transition region should not be confused with an
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extra module. The transition region is often not connected and, even when it is, it is often
the case that the nodes in the transition region are not more tightly connected among
themselves than to other modules.

2.2 Biological Background

Living organisms are made up of several kinds of molecules, among them some with very
complicated structure and consisting of several thousands of atoms, which we call proteins.
The species to which an individual belongs determines, roughly, the repertoire of proteins
it possesses, which can be of the order of between 103 and 105 different types of proteins
[116]. These proteins, through their complicated but stable three-dimensional structure,
interact mechanically and chemically with other proteins and with other types of molecules.
These interactions mediate the processes necessary for life: metabolism, development,
homeostasis, energy, and matter exchanges with the environment, reproduction, variation,
and, ultimately, evolution.

After centuries of observing such interactions, humans have grouped them into several
categories, sometimes called functions. The functions of any given protein can be many
and vary not only with its type, but also with the environment surrounding it and, in some
cases, its transient conformation. Among the functions that we ascribe to proteins are
those of catalysts, of signaling molecules, and of structural elements. Proteins that catalyze
chemical reactions are called enzymes and form the basis of metabolism: the set of chemical
reactions that help an organism transform the matter and energy in its environment into
forms that are necessary for it to maintain its identity and its dynamical state within
some delimited range. Proteins that serve as signaling molecules play the important role
of transmitting within and between organisms the information that mediates life. The
information conveyed can be, for example, the chemical or physical state of some part of
the organism or of its environment. Finally, proteins that serve as structural elements of
organisms are mostly rigid, with few interactions, and affixed to other proteins or molecules.
They play the role of scaffolding for maintaining the geometry of cells or tissues in order
for other processes to take place.

2.2.1 Production of proteins

Proteins, like all molecules, are subject to degradation due to interactions with other
molecules, the physical conditions surrounding them, such as temperature and pH, or,
simply, the stochastic oscillations of their components (see [213] p. 270 for a discussion).
This degradation must be compensated for homeostasis to be preserved. Furthermore, as
organisms develop, the total number of copies of any given protein fluctuates, in some
instances between zero and several billion. Many of these changes in the number of copies
are actually the responses that organisms have to changing environments (see [136] for
examples and analysis). Finally, in a given species, successive generations have the same
types of proteins (repertoire), in similar concentrations when exposed to the same condi-
tions. These processes can only occur if there is a dynamic and reliable process for the
production of proteins, which is uninterrupted across conditions or generations and also
modulated by the environment.
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The processes by which proteins are produced have been extensively studied for the last
century, and although many open questions remain and research is ongoing, we do have
a fairly complete understanding of them. I now present a brief summary of the processes
involved in protein production, but the reader is referred to [2] for an in depth discussion.
Proteins themselves are produced within cells by a molecular machine called ribosome,
in a process known as translation. The ribosome takes amino acids, the raw materials of
which proteins are built, and assembles them in specific linear sequences. During assembly,
proteins undergo conformational changes due to the forces acting between their constituent
atoms, until eventually, they achieve a conformation that enables them to take part in the
many molecular interactions within and among cells.

What determines the linear sequence of amino acids that are assembled by the ribo-
some is a molecule which, in itself, has a very specific sequence of monomers: the messenger
ribonucleic acid (mRNA). For every protein produced by an organism, there is a corres-
ponding mRNA, whose sequence determines the sequence of amino acids in the protein.
The monomers that constitute mRNA are of four types, and the specific sequence of a given
mRNA molecule is determined during its synthesis. The synthesis of mRNA is known as
transcription, and is mediated by several enzymes and other molecules. What determines
this sequence is, once again, the sequence of another polymer, called Deoxyribonucleic Acid
(DNA). DNA is a polymer, a long chain made up of between thousands and thousands of
millions of monomers, depending on the species. These monomers, known as nucleotides,
can be of four types, and the specific sequence in which they are assembled to form the
DNA is called a nucleic acid sequence. The complete set of nucleic acid polymers is called
Genome. Every cell of an organism contains a genome, and in every cell, it is, roughly, the
same.

The length of the genome (measured in nucleotides), is much longer than the length
(measured in amino acids) of any protein. There are three reasons why this is so. First,
in the above described processes of transcription and translation, the sequence in DNA
determines the sequence of a protein. However, it is only a fraction of the total length of
the genome that determines the sequence of a given protein. These fractions are called
coding regions and are commonly equated with the concept of the gene. We say that a gene
encodes a certain protein. In a given genome there are, depending on the species, between
a couple hundred to tens of thousands of genes. Second, the correspondence between
nucleotides and amino acids is not one to one, but rather three to one. The translation
table that determines the correspondence between triplets of nucleotides and amino acids
is called the Genetic Code. Third, the genome contains much more than coding regions.
There are vast regions of intergenic DNA that don’t encode any protein. Some of these
regions play roles in the processes which will be described below, while others are still of
unknown function.

DNA has chemical properties that make it very stable and that allow it to be replicated
during cell reproduction. The stability of the genome is also aided by other processes
and molecules that proofread it and repair it when damaged or wrongly copied. These
properties account for the fact that the genome that an organism possesses is shared
among all of its cells and is, for the most part, stable throughout its lifetime. Furthermore,
individuals of the same species have almost identical genomes. Large changes in genomes
occur mostly in evolutionary time scales, equivalent to thousands of generations, and they
are so gradual that by doing an agglomerative clustering on genomes, or fractions thereof,
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one can reconstruct the phylogenetic relationships of all extant species (e.g. [81] and [208]
for a discussion).

2.2.2 Gene regulation

We have described the relationship between the genome of an individual and the proteins
it possesses, which can be summarized as DNA being the blueprint for proteins. There
is, however, an apparent contradiction between the dynamical and fast changes in protein
content that allow for homeostasis and interactions with the environment, and the stability
of the genome across conditions and cells within an individual. The solution to this appar-
ent contradiction lies in a set of processes collectively known as gene regulation, whereby
the production of proteins is actively controlled at a wide range of temporal and spatial
scales.

The processes that make up gene regulation have been studied for the last 50 years and
are known to intervene in all stages of the production of proteins [103]. It is only through
gene regulation that different cells in a multicellular organism can be of different types, and
can group into different tissues and organs, despite the fact that all of them have the same
genome. It is also through gene regulation that cells, either individually or collectively, can
react to changes in the environment, including changes in chemical composition that affect
metabolism. Furthermore, diseases of all origins affect gene regulation and the organism’s
response to them is also mediated through gene regulation.

Gene regulation affects the production of proteins in response to conditions inside or
outside the cell. These conditions affect specific proteins that are either floating in the cell
cytoplasm or straddling the cell membrane. When a concentration of a certain molecule
increases inside the cell, for example, some proteins will bind to it, forming complexes
with a given three-dimensional structure. The same will happen with concentrations of
molecules outside the cell: these molecules will reshape the proteins straddling the cell
membrane, their change of conformation being visible from the inside of the cell. Further-
more, other physical forces like stress of temperature can also reshape these molecules. In
all the cases mentioned, the proteins whose shape has been modified will, due to this new
conformation, be able to interact with other proteins and, perhaps, change their conform-
ations. A sequence of such interactions, bindings, and changes of conformations is known
as a signaling cascade. The last steps of such a cascade involve proteins that interact with
DNA, thereby allowing or preventing transcription or translation to take place.

The interactions between proteins and DNA that are involved in regulation are mainly
of two types [129]. One type changes the three-dimensional conformation of DNA in the
vicinity of the gene in question. These changes allow other molecules, for example, those
enzymes necessary for transcription, to have physical access to the relevant sections of
DNA. The other type performs a process called recruitment, in which a protein first binds
to DNA, and then other molecules bind to it, and through this binding process position
themselves relative to DNA in a way that allows them to interact. The opposite process to
recruitment also occurs, whereby a protein binds to DNA and this prevents other proteins
from interacting with DNA. Proteins involved in recruitment and blocking of proteins to
DNA are called transcription factors.

There are other processes that can regulate the production of a gene after it has been
transcribed into mRNA [54]. For example, there are RNA-binding proteins that, if bound
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to mRNA, can prevent it from being translated. Furthermore, other molecules of RNA
can also block translation. A special kind of them, only a few hundred base-pairs long,
are called micro RNA (miRNA). So far, several hundred different miRNAs have been
discovered in humans, but for some of them, the mRNAs they target and the necessary
conditions are still unknown [36].

There are many other regulatory mechanisms that determine the production of proteins.
Some of them involve small molecules like methyl or acetyl groups that modify slightly the
chemical interactions which different nucleotides can have [79]. Others involve a set of
protein complexes known as nucleosomes, which serve as scaffolding elements for DNA.
The positions and conformations of nucleosomes determine which regions are physically
accessible for interactions [13,176]. Both of these modifications are long term, in the sense
that they survive throughout a cell’s lifetime and can even be inherited from an individual
to its offspring during early development [101,182]. In contrast, the action of transcription
factors, other DNA binding proteins and miRNA is transitory. The set of active regulatory
elements must thus be actively maintained.

2.2.3 Protein Interactions

In describing gene regulation and signaling cascades we have often alluded to protein
interactions. These are not the only processes in which protein interactions occur. It is
actually quite rare that in any of the functions described above (metabolism, signaling, and
structural) a protein acts straight out of translation without having previously interacted
with another protein.

When two proteins come in contact with each other, their three-dimensional structure
determines how they will interact [166]. In particular, proteins include several three-
dimensional features that enable these interactions, in a fashion similar to the notches
and grooves in a lock and key. These features, called domains, allow them to bind with
each other only in certain relative positions. Domains are, to a great extent, defined by
parts of the amino acid sequence of the protein [76]. However, their exact location on the
protein surface is determined, to a larger extent, by the amino acid sequences between
domains [174], which under the action of electrical forces fold in shapes that are always
consistent, but difficult to predict based on the amino acid sequence alone. The most
commonly observed conformation of a protein, called the native conformation, represents
a minimum in the energy landscape of conformations.

The results of protein interactions are of three kinds [166]. One, also called obligate
interactions, is the formation of complexes, when proteins remain bound for a long period
of time and in this bound state present new domains for new interactions. Complexes can
consist of two or more proteins. The second interaction is the change of conformation of
one of the proteins because the mechanical forces exerted by its interacting partner(s) can
offset the electrical interactions between its atoms in such a way that other, previously
inaccessible, conformations become the local minimum in the energy landscape of con-
formations. The third possible result is a change in the chemical properties of one of the
proteins by means of an addition of a small chemical group, usually a phosphate group,
into one of its amino acids. In any case, the interactions in which the protein, or protein
complex, can partake after a given interaction change.

Interactions occur when pairs of proteins randomly encounter each other in the in-
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tracellular or extracellular environment [229]. The frequency of these interactions can be
modulated by the concentration of the interacting proteins, which is determined both by
production and decay rates, as well as by the concentration of other recruiting proteins [51].
Finally, the selective permeability of the cell and nucleus membrane can also influence the
concentration of proteins in the different cellular compartments.

Interactions between pairs of proteins have been cataloged in the last two decades by
several technologies. Most of them report the ability of two proteins to bind together in
vitro, while others result from careful observations of in vivo interactions (see e.g. [221]
for a compendium), particularly signaling pathways. The former produce several orders of
magnitude more data than the latter. From both types of data, as well as other statistically
based methods, big protein interaction networks have been developed. These networks,
which are also known as interactomes, have thousands of nodes and hundreds of thousands
of edges [88]. It is important to mention that the data based on in vitro detection of
interactions ignores the fact that proteins need to coincide both spatially and temporally
in order to interact [130].

2.2.4 Effects of Evolution on Proteins

There is a rich interplay between the evolutionary process and protein repertoires, struc-
tures, and interactions. In order to talk about these relationships, it is necessary to further
specify the difference between a coding region and a gene.

A coding region is a physical entity, part of a DNA molecule that is composed of atoms
and that interacts with other molecules. By the processes described in the previous sections,
it is the coding regions that determines the composition and structure of proteins. A gene
is a concept –a class of coding regions that humans have devised. Every coding sequence
can, in principle, be associated with a gene. However, in practice, for every gene, there
are many possible coding sequences, all leading to sufficiently similar proteins to qualify
as homologous. The properties that two coding sequences must satisfy in order to be
considered as two different genes, as opposed to homologous, is a non-trivial question that
merits a lengthy discussion, which is beyond the scope of this work. In-depth discussions
can be found in [169] and [118].

For the remainder of this discussion, we will make the reasonable assumption that a
given coding sequence can be readily identified with one gene or another. Furthermore, we
will be using the term ‘genome’ in a loose sense, to refer to the specification, for example
in the form of a text string, of the set of coding sequences present in an individual. We
exclude for now non-coding sequences because we will concern ourselves only with the
evolution of proteins.

The concept of gene predates the discoveries of the molecular basis of inheritance, tran-
scription, or translation. For this reason, there are many other properties and relationships
between genes that are not related to their physical instances. Chief among them is that
genes are inheritable, in the sense that an individual and its offspring can safely be as-
sumed to have the same set of genes. However, this inheritance is not without variation,
and therefore the offspring are very likely to have different genomes.

The copies of DNA contained in one individual and those contained in its offspring can
differ due to copying errors of several kinds [11] and, in the case of sexually reproducing
species, to recombination of the genomes of the parents. Furthermore, if one observes a
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population of a given species, each individual will have a different genome. Thus, both
in a fixed time and between successive generations, there is variability in the genomes of
individuals. It, therefore, makes sense to describe the state of a population (regardless of
the number of species) in terms of a distribution of the different possible genomes present in
it [214,222]. Notice that we make no assumption here about where these possible genomes
are drawn from. In particular, we do not rule out the possibility of genomes containing
different sets of genes.

The variability in genomes leads to variability in the phenotype of different individuals
and, ultimately, to differences in their fitness, that is, in the number of offspring each
individual leaves. This differential fitness, in turn, influences the distribution of genomes
in the next generation. This change in the distribution of genomes due to variability and
differential fitness, is the modern framework for studying evolution by natural selection [35].

The evolution of the distribution of the coding sequences for a given gene is what we
call the evolution of the gene. If this gene encodes a protein, we can therefore talk about
the evolution of proteins [172].

Because the activities undertaken by proteins are related to their interactions with
other proteins, changes in the conformation of a given protein can alter the functions of
many others. This is due in part to a single protein having several interactions, but also in
part because effects propagate through the protein interaction networks. For this reason,
the evolution of any given protein type is highly correlated with that of its interacting
partners [212], and as a result protein types with many interactions tend to evolve more
slowly than those with few interactions [71,72].



Chapter 3

Modularity and Reusability

A property of the natural world is that its constituting elements group together into tightly
integrated sets, each of which has some independence from the other. This phenomenon,
which has been called near-decomposability [200], has been successfully exploited by humans
in order to understand Nature and describe it in a succinct and treatable manner. In the
biological world these sets are called modules and their importance in evolution [223],
development [162] and disease [20] is increasingly being recognized.

This chapter discusses the general concept of modularity, with a special focus on the
notion of reusability, a property often ascribed to modules. The idea of modules acting
as reusable building blocks is pervasive in literature, and it appears often in the descrip-
tions of the complexity inherent to biological systems. However, alternative notions of
modularity are each accompanied by their own concept of reusability, so that finding a
common denominator for all becomes necessary. In this chapter, these different notions
are discussed and examples of each are reviewed. This will serve as an introduction to the
upcoming chapters, in which a formalization of reuse is presented, alongside algorithms
and empirical observations.

The concept of modularity has a long history in biology. In the early XIX century,
French naturalist Étienne Geoffroy Saint-Hilaire already touched upon materials of organ-
izations, what we would now consider structural modules, in terms of which an organism’s
adult phenotype could be described. Furthermore, in his writings, he suggested that such
modules were evolutionarily conserved, at a time when the theory of evolution had not been
fully articulated [7]. In the early XX century, when extensive observation of embryonic
development in vertebrates was undertaken, the notion of functional modularity was pos-
tulated among different parts of the developing body, for example, by Needham [156].

In the XX century, new notions of biological modularity emerged from three principal
fronts. First, the migration of biology into the molecular realm led to the study of sets of
molecules that are functionally or evolutionarily related. This direction has been further
explored in the last decades with the availability of high-throughput data sources (also
known as omics data) which make it possible to study molecules across many different
conditions and across species. Second, the refinement of comparative genomics, and the
recent appearance of the fields meta- and pan-genomics allow for the analysis of modularity
across large spatial and time scales. Third, the advances in the understanding of biological
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evolution allowed for considering new evolutionary aspects of modularity: the neutral
origins of modules, the relationship of modularity and co-evolution, or the type of selection
that modules are subject to.

In biology, modules can be made of molecules, for example, genes whose products are
involved in a signaling pathway or the enzymes involved in a certain metabolic pathway.
They can be morphological, such as sets of bones acting together and co-evolving [38]. They
can also be made of species, for example, those which co-occur in different ecosystems [16].
Furthermore, all these different types of modules can interact during development [59] and
evolution [154] both with modules of the same type and with modules of different types.

The consequences that such a modular organization has for biological systems have
been studied from many standpoints [37,192]. From a physiological point of view, modules
have been associated with responses to changing environments [107] and are thought to be
determined, at least in part, by regulatory mechanisms [21] coupled to physical processes
that affect cells [89]. From an evolutionary point of view, modules have been linked to
specific features of the genotype-phenotype map [178,224], which in turn have consequences
on the evolution of organisms, as outlined below.

The notion of modularity has been further developed to include a hierarchical organ-
ization of modules [137, 187], overlapping modules [122], or a dynamic membership of
elements into modules [4], ultimately yielding an intricate characterization of biological
complexity [148].

The identification of these different types of modules has led to the general suggestion
that biological processes can be described in terms of modules, be they molecular [87],
developmental [89], or some combination thereof. This view posits that the set of elements
involved in a given process is the union of those belonging to some collection of modules.
These modules act as building blocks. For example, the genes active in yeast during the
hypo-osmotic shift (a quick reaction of yeast to an elevation in the amount of free water
in its environment) are those regulated by Cmk1 plus those regulated by Pbt1 [195].

Almost any discussion of modularity (e.g. [37, 225]) alludes to two main features of
modules: independence from each other, and reusability across conditions. This work is
focused mostly on the latter, but the former is very relevant for the evolutionary dynamics
involving modules.

Independence of modules from each other [144] means that the elements comprising
one module interact more among themselves than with those comprising another module.
Independence enables groups of elements to vary independently of other modules, without
altering, in a countervailing fashion, other characteristics of the organism [131]. That is,
independence reduces pleiotropy, the phenomenon by which the number of characteristics,
or traits that are affected by a localized variation, is increased.

In an evolutionary setting, this reduction of pleiotropic effects of genes is known to
increase evolvability [224], which is defined as the capacity to generate heritable, selectable
phenotypic variation. The general argument supporting this assertion goes as follows: let
us suppose there are modules (e.g. set of genes or proteins) whose elements are interacting
more among themselves than with elements elsewhere in an organism. Then, the effects of
changes in the loci that encode these elements will be mostly isolated to the module. This
is because intermodular interactions are few and seldom. This leads to their deleterious
effects being diminished in severity, which in turn increases the number of changes that
turn out to be heritable. This leads to the accumulation of variation which has two



3.1 Reusability of modules as a Defining Feature 23

consequences: robustness [200] and allowing for faster exploration of the space of genotypes
(i.e. evolvability). Thus, reduction of pleiotropy contributes to the two components of
evolvability: ”(i) to reduce the potential lethality of mutations and (ii) to reduce the
number of mutations needed to produce phenotypically novel traits” [111].

The second frequently mentioned property of modules, reusability, is a central part of
this work.

3.1 Reusability of modules as a Defining Feature

In the study of the mechanisms leading to diversity, one often finds an allusion to a process
of redeployment [191] or a combination [194, 204] of existing components. Just as genes
can be co-opted [82] to perform novel functions, sets of genes have also been documented
as having multiple uses. Perhaps the most famous case of reuse of a set of genes is that
of the sonic hedgehog signaling pathway, which establishes the basis of patterning in the
early development of metazoans, leading to tissue specification and organ development,
but is also involved in specific cell type activation to maintain ocular tissue in the adult
vertebrate [164]. When a mechanistic description of the interactions among elements is
not known, the reusability of a set of elements is often enough to consider it a putative
building block, as in the case of coexpression modules [148].

One can thus distinguish the notion of reusability as applying to two different kinds of
components, which we call elements and modules. In this text, we consider modules to be
composed of elements (more precise definitions will follow), while elements are considered
to be atomic. With this definition, it is components which are the subject of reuse, and
one must pay special attention in every allusion to reusability, to the atomic or composite
nature of components.

Components which in a given setting appear atomic (as elements), might be treated as
modules in a different scenario. For example, the molecular instantiation of a gene might
appear elementary if one considers the process leading to its expression (in a simplified
case, a gene can be considered as fully active or not), but if one considers the process
that leads to its formation during, e.g. DNA duplication, it is indeed a series of more
elementary components (nucleotides) which are coming together. Thus, when describing
an instance of reusability, it is necessary to keep in mind the processes involved, and the
types of components on which they act.

Regardless of their nature, the novel combinations of components increases diversity
without increasing the repertoire of components, a process that has been termed exaptation
[82]. This idea is well summarized in François Jacob’s influential essay Evolution and
Tinkering [102]:

. . .[Evolution] is always a matter of using the same [components]∗, of adjusting
them, of altering here or there, of arranging various combinations to produce
new objects of increasing complexity. It is always a matter of tinkering [102, P.
1165].

Throughout his essay, and others that have revisited the theme, some confusion prevails
regarding three points: i) what is meant by components, ii) what is meant by objects, and

∗The original uses the word elements in place of components, this has been substituted to increase
clarity, as described below.
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iii) in what time scale does the process of producing said objects takes place. However,
regardless of the choices of components, objects, and time scales (i.e. integrative level
[167]), reusability is often mentioned as a defining feature of biological systems.

In this chapter, I establish commonalities between the approaches mentioned in said
work and by other authors, outline evidence in favor of each, and motivate the detailed
study of said process in the case of cell types. Different types of reusability are presented,
and for each of them, the components, objects and time scales are explicitly mentioned,
along with possible instances in which modules made of elementary components are also
subject of reuse.

3.2 Types of reusability

3.2.1 The evolution of organismal functions

Components Phenotypic traits
Resulting Objects Functions
Time scale Evolutionary time
Possible Modules Functional sets [170]
Module Example Metric traits of the different bones in the macaque

cranium [47]

The first choice for components, objects, and time scale that Jacob touches upon is
to talk about phenotypic traits as components, functions as objects, and to think of the
appearance of new functions in evolutionary time. This choice is very much in line with
the early naturalist tradition of evolutionary biology: comparing phenotypic traits across
different lineages, and examining their functions. The appearance of new functions by the
reuse of phenotypic traits is the process which Gould later called exaptation [82], and the
following are three examples of it.

• The physical and chemical functions of a gene product, which are only well defined
in terms of the repertoire of its interacting partners, is perhaps one of the simplest
phenotypic traits. The diversity of gene products present in animals, and in their
functions, is dwarfed by the diversity of forms of organismal functions present in these
[102]. Thus, it is reasonable to say that, through changes in the development and
expression programmes, new functions arise by different combinations of elementary
phenotypic traits.

The primary source of developmental differences between fruit flies and
foxes will prove to be not unique gene products but rather the way that
comparable, or the same, gene functions are differentially deployed in their
development [60]

We will further detail these types of reusabilities below.

• Bones have an early origin related to their capacity of storing phosphate, a neces-
sary nutrient for muscular activity, which has only seasonal availability in the sea,
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where vertebrates originated [177]. From this role as storage facilities, bones were
subsequently co-opted to serve several roles: struts for enabling large limbs, support-
ing structures for land-based animals, conduct for distribution of the central nervous
system, among others [82]. In this case, the basic elements are the bones themselves,
which predate any of the locomotive-related functions we now ascribe to them.

• The different bones and muscles that make up the four limbs of many animals have
been reused under different conditions leading to different functions: walking, swim-
ming, grabbing, etc. [37, Chapter 3]. For example, the function of grabbing performed
by primates using our forelimbs can be achieved by combining the fingers and as-
sociated muscles and ligaments. These elements predate by millions of years the
appearance of primates, and in the meantime, they have been recombined in many
other ways.

Sets of phenotypic traits which are developmentally and functionally interdependent
have been identified and called Functional Sets by Olson and Miller [170] in 1958. Ex-
amples abound across taxa of sets of phenotypic traits which co-occur in evolution and
development, as reviewed in [112] and [113]. The most commonly cited example are the
different traits identified in the cranium [47].

3.2.2 The activation of metabolic pathways

Components Genes
Resulting Objects Metabolic Functions
Time scale Metabolic time
Possible Modules Operons, regulons [99]
Module Example lac operon in E. coli

Just as genomes evolve in evolutionary time to adapt to changing conditions and in-
teractions, so do individual cells react to changing conditions by activating or repressing
different molecular mechanisms. These reactions are fast (in the order of seconds to hours),
and are mediated by different signaling mechanisms which lead to changes in the compos-
ition of a cell, in particular, in the number of transcripts of a gene and their localization
within the cell.

One important mechanism behind these fast responses is that of operons, groups of
genes under the control of a single regulatory signal, so that the genes in the group are
either transcribed together or not at all. In this case, the particular mechanism holding
together said module (of transcribable molecules of DNA) and maintaining its reusability
as a whole has been readily identified: the sequences of the different genes in an operon
are physically close in the 3D structure of the DNA, and their transcription is determined
by a combination of transcription factors binding a single promoter sequence (called the
operator).

One famous example is the lac operon in E. coli. The genes in this operon encode
proteins that allow the bacteria to use lactose, instead of glucose, its preferred energy
source. The lac operon genes are expressed when two conditions are met: lactose is
available and glucose is not available, each of which is sensed by a different molecule. The
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lac repressor is a protein that, in the absence of lactose, binds to the operator inhibiting
the transcription of the operon. Cyclic AMP is a molecule that is produced by E. coli
when glucose levels are low and allows for RNA polymerase to initiate transcription of the
operon. Finally, this leads to the metabolism of E. coli to switch from glucose to lactose
as a source of energy.

While this mechanism is best known in prokaryotes, equivalent mechanisms have been
identified in eukaryotes [108], although the regulatory architecture has changed drastically
in the latter. Nevertheless, the same principle of gene clusters controlled by few master
modulators applies to them.

Another mechanism for the coordinated activation of genes is that of motifs that are
found in the promoter sequences of several genes. Two good examples are the STRE and
PDS motifs in yeast (Saccharomyces cerevisiae). Unlike E. coli where the genes responsible
for the new metabolism are all regulated by a single promoter sequence, in the case of yeast
they are regulated by different promoters. Each of these contains motifs that are bound
by transcription factors which in turn are activated in response to environmental changes.
Thus, the metabolic shift from glucose to galactose requires the activation of the set of
genes containing the STRE motif in their promoter, as well as those containing the PDS
element [75]. Each of these sets, however, are not activated exclusively for the shift, the
former being activated as a response to many kinds of stress [67], and the latter dealing
with starvation [236]. This is a prime example of reusable functional modules, which are
combined to respond to a particular environmental challenge.

This second mechanism is also known as a combination of regulons to form a mod-
ulon [99]. A regulon being a set of genes sharing a regulatory mechanism (in the case
mentioned above these are specific motifs in their promoter sequences), and a modulon a
set of regulons and operons being combined (reused) to respond to a particular condition.
When these terms were originally proposed, the notion of overlapping modules (regulons)
being combined in various ways depending on conditions was also recognized [100].

3.2.3 The evolution of the pangenome

Components Genes
Resulting Objects Genomes
Time scale Evolutionary time
Possible Modules Functional systems [120]
Module Example RNA Interference System [33]

A pangenome is the union of all genes present in a given taxonomical clade. Its study
is of special interest to the field of metagenomics, as it allows for the identification of
species or other operational taxonomic units (OTUs) found in samples. For this reason,
as well as due to their very long evolutionary history, the best-studied pangenomes are
those of prokaryotes, although the study of plant pangenomes is recognized as increasingly
important [80].

The evolution of a pangenome starts with a single genome of the last common ancestor.
Variation and selection act on the DNA of all descendant organisms, creating the duplic-
ation, specialization, and deletions of genes. The changes in the repertoire of genes of the
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whole clade reflect diverse and complex processes that act on different time scales. Among
them is speciation, horizontal (or lateral) gene transfers, endosymbiosis, environmental
changes, and genetic drift, as well as mutation and recombination of genetic material. Im-
portantly, the evolution of pangenomes is affected by evolutionary forces that act on the
entire populations [143]

These processes lead to large clades having a smaller set of universal (present in all
species) genes than smaller clades. For example, it is estimated that only 8% of the
bacterial pangenome is universal, while most phyla have a larger percentage of universal
genes in their pangenome [123,134], including archaea [231].

However, the interactions among genes and among gene products also have an effect
on the evolution of the pangenome. For example, genes with a very large number of
interactions are present in a large number of species within a clade [117], and the most
conserved interactions are among the most conserved genes [206]. Furthermore, pairs of
genes whose products interact are known to co-evolve under certain circumstances [186],
thus establishing a mechanism by which organismal processes (e.g. metabolism [237],
regulation [198] or development) affect the evolution of the pangenome.

The phenomenon described above gives rise to reusable modules in the pangenome.
These are sets of genes that co-occur in several species within a clade. They have been
documented in bacteria [168] (specifically within movable elements of bacterial genomes)
and in archaea [119], the latter ones being sometimes laterally transferred from the former.
Examples of reusable modules in the pangenome are two mechanisms for information trans-
mission within the cell: the Ubiquitin Signaling System which regulates many enzymatic
reactions as well as gene transcription, and the RNA Interference System, a common gene
regulation mechanism also involved in preserving the integrity of DNA [33].

The identification of this type of reusable modules, sometimes termed Functional Sys-
tems, is key to understanding the early evolution of eukaryotes [120]. First, a set of common
modules has been identified in all eukaryotes. Then comparative genomics has been used
to identify the different archaeal and bacterial clades which could have laterally transferred
each of them to the predecessors of the last eukaryote common ancestor (LECA).

3.2.4 Cell differentiation

Components Genes
Resulting Objects Expression Patterns
Time scale Developmental time
Possible Modules cellular modules [8], protein machines [1], protein

complexes, patterning modules [89]
Module Example Genes responsible for hair patterning in A. thaliana

epidermis [23]

The different cells in a multicellular organism all have copies of the same genome.
However, these genes are active in different combinations depending on cell type and de-
velopmental state. Thus, if we consider developmental time, cell types arise from the reuse
of single genes in different developmental stages, and in different developmental outcomes.
That is, in a single multicellular organism we can observe the reusability of single genes by
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Figure 3.1: Histograms of expression breadths of all genes in 9 mammalian and one bird
genome, across 6 different organs. In the horizontal axis, the fraction of organs in which
expression of a gene was detected. A large fraction of genes can be seen to be constitutive.
The histogram is derived from the RNA-seq data published in [30]
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Figure 3.2: Histograms of expression breadths in all currently available Expression Atlas
experiments (Jan 2018), including plants and animals. The color shows the proportion of
genes, and the y axis the proportion of tissues in which a gene is present. Yellow bright on
the left indicates that, on most data sets, most genes are constitutive. Three studies stand
out as counter examples: two of them (MTAB2800 and MTAB2801) from one same author
on mouse and rat respectively, contradicting the results in [30], and another in tomato.
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comparing its constitution across different conditions or across different cell types. In this
case, reusability of single genes is referred to as Expression Breadth. In Figures 3.1 and
3.2 I have plotted the gene expression breadth for many different species, based on RNA-
seq expression data from [30] and [183] respectively. As can be seen, reusability at the
gene level is widespread, with many genes being constitutive, i.e. expressed in all observed
conditions. This distribution of expression breadths is independent of the technology used
to measure it [239]. Similar arguments can be made in the case of single cells or unicellular
organisms, if one considers, for example, the different parts of the cell cycle, as done in [55].

Since these genes and their products are involved in interactions, it is understandable
that the set of cell types in which a given gene is expressed is related to those in which its
interacting partners are expressed. If said gene holds always the same interactions, then
it will be co-expressed with all of its interaction partners, while if its interactions change
from cell type to cell type, this co-expression will be lower. In the study of protein-protein
interactions across cell types, both interaction regimes have been identified [64].

We verified that interacting protein pairs are more likely to be co-expressed than ran-
dom pairs of non-interacting proteins. For this, we computed the variance in expression,
a measure of the co-expression between a set of proteins, between pairs of interacting
proteins, and found this variance to be smaller than between randomly chosen pairs of
proteins (see Figure 3.3 a). Furthermore, we observed that connected sub-networks of
the protein-protein interaction network of sizes three and four have a smaller variance in
expression than random sub-networks of the same size. This is shown in Figure 3.3 b and
c, where variance in expression, is the average distance to the mean expression vector for
the nodes in a given subgraph. That is, for a given subgraph G′ with nodes VG′ , we define
its variance in expression as

〈 1
n

n∑
i=1

v(i)− aG′(i)〉v∈VG′ (3.1)

where n is the number of tissues in which expression was measured, v(i) is the expression
of protein v in the i-th tissue, and aG′(i) = 〈v(i)〉v∈VG′ . This confirms the intuition that
proteins which interact are more similarly expressed, even when this interaction is not
direct.

Given this correlation of expression across interacting partners, it is natural to ask if the
different expression patterns leading to stable phenotypes, which a cell can undergo, are
the result of reuse and redeployment of sets of genes. These sets of genes, termed variously
cellular modules [8], protein machines [1] or, simply, functional modules [181], have been
successfully identified, and their reusability documented. For example, several patterning
modules are reused across bilaterians in different muscle cell types [32]. Likewise, reshuffling
of protein complexes is considered a means to multiply functionality and simplify temporal
and spatial regulation [77]. Finally, these protein complexes themselves are combinations
of smaller protein core modules [40].

The actual mechanism of activation and deployment of said modules is still not fully
clear, with two complementary mechanisms being reported. On one hand, there is evidence
that expression profiles can be brought upon by the differential and combinatorial activa-
tion and repression of master regulators, each of which, in turn, activates or represses sets
of several genes. The existence of master regulators is well known, with examples including
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Nanog, Sox2 and Hox genes, and their effect can be so important that a change in the
expression of a single gene can induce a cell to switch from one to another cell type [53].
This same role is played by epigenetic critical switches, and such a notion has also per-
meated into medicine, where an underlying assumption of many authors is the existence
of core omigenes which are single-handedly responsible for the onset of disease (see [232]
for a review and criticism).

On the other hand, it is posited that the mechanisms determining the activation of
modules during cell differentiation are a complex network of transcription factors, target
specific RNAs, protein complexes, and molecules which can not be exactly called gene
products [141, 179]. The combinatorial transcription of these elements, mediated, for ex-
ample, by their sharing of regulatory mechanisms [74] or their grouping into operons [114],
their subsequent post-transcriptional regulation [14], as well as the different specificities of
protein interactions [28], determine the expression profiles of different cell types. Examples
of cell types that are not easily determined by a single gene switch, abound [94].

However, the existence of modules as reusable building blocks is not contingent on any
particular mechanistic explanation of module deployment. Furthermore, the theoretical
considerations explained above regarding the power of reusable building blocks in bringing
about more phenotypic diversity with less genotypic variation, are agnostic to any regulat-
ory machinery. In this work, a theoretical framework is presented with which to investigate
if said building blocks exist and if they are especially over-represented in natural systems.

3.2.5 The evolution of cell types

Components Genes
Resulting Objects Expression Programmes
Time scale Evolutionary time
Possible Modules Evolutionarily conserved cellular modules
Module Example exocytosis machinery, receptor machinery, and ad-

herens junctions [121]

In the previous sections, two kinds of reusable modules have been touched upon: one
which can be identified during evolution (co-evolution modules), and one which can be
identified during development (co-expression modules). In the case of cell types, it is nat-
ural to ask the question of whether the modules which are reused during the differentiation
process are also evolutionarily reused. To address this question, I will first explain briefly,
following the summary done in [8], what is the current understanding of the evolution of
cell types.

A cell type can be defined by the regulatory mechanisms that enable and maintain a
gene expression programme that is distinct within an organism. Therefore, the evolution-
ary origin of a new cell type necessitates the evolution of a unique regulatory signature,
including a set of transcription factors (and their cooperative interactions), which is re-
ferred to as a core regulatory complex (CoRC).

There is one example of cell type evolution, mentioned also in [8], which illustrates
the reusability, in evolutionary time, of modules, and its interplay with modules which are
combined during development.
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Neurons are an evolutionary unit, in the sense that their components co-evolve, since
their function has become so important (in some clades) that they are subject to joint
selective pressures. This means it is legitimate to talk about the evolution of neurons
[121, 165]. Among the many phenotypic traits of neurons is their expression of the whole
synaptic machinery (since most neurons exhibit both pre- and post-synapses).

The evolutionary origins of the synaptic machinery are a perfect example of module
recombination: exocytosis machinery, receptor machinery, and adherens junctions, all of
which predate the appearance of synapses, were combined into the synaptic machinery
sometime before the divergence of sponges from the rest of the animals. Since synapses
are parts of neurons, one can say that neurons evolved from the combination of these three
modules (along with many other modules originally used in other cell types [121]).

Interestingly, these evolutionary modules remain distinct developmental modules in
several clades. For example, in humans exocytosis is performed by various cell types
(e.g. pancreatic, platelets), adherens junctions are most famously known in epithelial
tissue [163], while part of the receptor machinery is actually constitutive in humans [28].

It must be noted, that in the case of cell types, evolutionary modules need not cor-
respond to developmental modules. While to our knowledge there is no known example
of such an event, we venture to conjecture the existence of the following scenario: i) an
existing protein complex is co-opted during evolution and added into a new cell-type ii)
in this new cell type its constituents are recruited into new interactions iii) the original
function of the complex is no longer under selective pressure iv) a mutation leads to change
in conformation in one of its components which renders the formation of the protein com-
plex impossible, but allows the new interactions of said component v) all descending cell
types inherit the components as part of new complexes, but the original complex is no
longer extant. Events of this type could be partially responsible for the disconnect of de-
velopmental and evolutionary lineage [8]: the phenomena in which sister cell types (closely
evolutionarily related) do not necessarily develop from a common progenitor cell type.

In each of the cases outlined above, it makes sense to talk of the reuse of individual
elements, and also of sets of these elements, which can be termed modules. It is the
reusability of modules which is the focus of this work, although in the upcoming chapters
we will see that there is a non trivial relation with the reusability of individual elements.

The types of module reusability listed above might not be mutually exclusive. In a
sense, some of them might be different interpretations of one same series of events. For
example, the evolution of the pangenome (i.e. the acquisition of new genes via lateral gene
transfer or gene duplication) is one mechanism by which new expression profiles, and thus
new cell types, can occur. Conversely, the appearance of new functions in an organism or
one of its sub-systems necessitates the appearance of new expression profiles and, often,
of new genes altogether. That being said, a module that is identified in a metabolic time-
scale is, in general, not related to any module which can be identified in an evolutionary
time-scale [202].

More concretely, let us take as an example the case cited above of the reusability of the
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exocytosis machinery in neuron synapses. From an evolutionary point of view, a new cell
type has emerged by bringing together the exocytosis machinery with several others. From
a developmental point of view, the regulatory mechanisms governing cell differentiation
activate the exocytosis machinery in some cell types and not in others. Likewise, during the
lifetime of a single neuron, this machinery gets transcribed at different moments, depending
on the cell’s state [115]. To further complicate matters, some of the factors responsible for
differentiation into neurons, are also part of the signaling pathways regulating exocytosis
activation in metabolic time [98]. Thus, one can talk of several modules related to this
process: a co-evolving set of genes (part of the pangenome), a set of genes whose expression
is sustained when differentiation takes place (part of the genome of a specific organism),
and a set of signaling molecules that get transcribed and deployed to respond to a lack
of vesicles, for example (part of the genome, transcriptome, and proteome of a particular
cell). These modules, however, need not be completely related, in the sense that the set
of molecules involved at one time for exocytosis-related tasks are only partial transcripts
or products of the genes that can be detected as expressed in a neuron, and that, in turn,
only some of these might have co-evolved, while others might be of recent recruitment into
the function.

This epistemic conundrum is beyond the scope of this work. Yet, we believe that one
must keep it in mind to avoid confusing the two roles of modules described by Callebaut [37]:
that of an explanatory device (explanans) and that of a phenomenon in need of explanation
(explanandum). In what follows, we limit ourselves to describing data obtained from
experiments and postpone any speculation about its biological relevance to the last chapter.

3.3 Consequences of reusability

The different types of module reusability described above share a common feature. The
reuse of modules in biological systems loosens the dependence on genomic variation for the
purpose of creating phenotypic variation, thus leading to an effective increase of the latter
[162]. This is straightforward to see when reusability leads to phenotypic traits such as
regulatory programmes or functions, in which case the gain in phenotypic variation depends
on the structure of the genotype-phenotype map [152]. In the cases when reusability leads
to variation in entire genomes, the phenotypic variation increases on a much larger scale,
and at a much slower pace. In either case, there are two pleiotropic mechanisms behind
the increase in phenotypic variation, each with its corresponding potentially deleterious
effects.

The first mechanism concerns the variations in the loci which encode elements inside
modules, be they proteins, miRNAs, morphological traits, etc. If a module is reused in
several conditions, the effects of said variations are pleiotropic because they appear under
all of these conditions. However, since the independence of modules limits the possible
deleterious interactions to those with other components within the module, there is a
decreased probability that these variations affect other modules.

The second mechanism concerns the variations in the loci that determine the reuse
of a given module. If variations increases reuse, all the processes that take place within
the module will be available at once under a new set of conditions. This also includes
the interactions with elements outside of the module, which, thanks to the independent
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property of modules, are limited in number. It is this second mechanism that allows us to
consider modules as building blocks that are combined verbatim into different phenotypes.

Reusability also affects the roles of modules as explanatory devices (explanans) for the
understanding of biological processes [37]. This is because descriptions of biological systems
in terms of building blocks are shorter than in terms of their individual components, thus
reducing the complexity of said descriptions in the Kolmogorov sense (as discussed in
e.g. [132] p. 749 ). This reduction in description length is proportional to reusability. In
this context, a proposed building block can range from a high reusability building block,
providing parsimonious descriptions of the observed phenotypes [234], to a single-use, ad-
hoc building block that is employed in a single condition.

We have reviewed different, alternative, notions of biological modularity, and how the
notion of reusability is applicable to each. This review complements other recent summaries
in literature (e.g. [225] or [144], by describing instances of modular organization in terms
of three variables: i) the components which comprise the modules ii) the objects which are
produced by arranging said modules in different ways and iii) the time scale in which such
arrangement takes place. For different combination of values for said variables, we have
shown examples of modules, all of which exhibit reusability. In the following chapters, we
set ourselves to identify such reusable modules and comment on their biological significance.
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Figure 3.3: Histograms of expression variance in connected subgraphs. All connected
subgraphs of sizes 2 (a), 3 (b) and 4 (c) were extracted from a Human Protein-Protein
Interaction network. Additionally, twice as many random subgraphs of the same size
were computed by uniformly sampling the network’s nodes, without any attention to their
connectivity. For each subgraph, the variance of the expression profiles was computed as
described by Equation 3.1. Both expression and network data come from [203].
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Figure 3.4: Synaptic machinery in neurons exhibits exocytosis machinery, re-
ceptor machinery, and adherens junctions. Image originally from Wikipe-
dia https://commons.wikimedia.org/wiki/File:Synaptic_stabilization_by_cell_
adhesion_molecules.svg, Copyright 2018 by user Svilca, and distributed under Creat-
ive Commons Attribution-ShareAlike 4.0 International https://creativecommons.org/
licenses/by-sa/4.0/legalcode The license explicitly allows for republishing the work
when attribution, copyright notice and license link is included.

https://commons.wikimedia.org/wiki/File:Synaptic_stabilization_by_cell_adhesion_molecules.svg
https://commons.wikimedia.org/wiki/File:Synaptic_stabilization_by_cell_adhesion_molecules.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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Chapter 4

A New Method for Finding Modules in
Networks

Several of the notions of biological modularity mentioned in the literature, and reviewed
in the previous chapter, allude to interactions between the elements of a module. These
interactions can be ecological, molecular, or evolutionary, to name a few. The most con-
venient way to represent interactions among sets of elements is by means of a network, or
graph, in which nodes represent elements and edges represent known interactions among
them.

The elements represented as nodes, however, can have dynamics that are not directly
related to interactions, especially not with interactions with other elements in the net-
work. For example, suppose that we can describe physically plausible (i.e. mechanically
and chemically compatible) interactions between a set of proteins using a network. The
transcription levels of the proteins in this set are determined by other mechanisms, and
these mechanisms will occur at different time scales. Thus, if one would like to determ-
ine what protein interactions take place in a given tissue, it would be necessary to have
both sources of information at hand. In general, information among the elements taking
part in interactions, such as their temporal or spatial dynamics, might bring additional
information that can expand the usefulness of interaction data.

In particular, simultaneously observing different kinds of interactions and data about
the temporal dynamics of the elements might be necessary in order to identify the functional
commonalities that define modules. That is, there could be certain types of modules – e.g.
those described in Section 2.1.4. – that cannot be identified using methods based solely on
networks, or modules that are based solely on co-occurrence data – e.g. those described
in Section 2.1.1. Combining these two sorts of data for the purpose of module detection is
an active field of research in which many different approaches have been proposed [151].

The problem treated in this chapter is the following: given a biological network and a
weight vector for each node describing its properties, identify sets of nodes that i) constitute
modules in the network and ii) whose corresponding vectors are close together in Euclidean
space. See Figure 4.1 for a schematic representation.

37



38 Chapter 4 A New Method for Finding Modules in Networks

Figure 4.1: Outline of the problem of finding network-modules of similar nodes.
Left: The input is information about a set of entities (shown here in a table, which asso-
ciates to each entity a weight vector in Rd), and interactions between them. Middle: This
data can be represented as a network of colored nodes, where the color acts as a represent-
ation of the data. Right: The problem consists of finding connected sets of nodes (shown
in different shapes in the right-most picture) each of which forms a network-module and
whose member nodes have similar weight vectors associated.

Formally, we are given a graph G = (V,E) and a function c : V → Rd which associates
nodes with weight vectors of dimension d, which represent, for example, properties of
a node. We wish to find sets M0,M1,M2 . . . ,Mk, satisfying Mj ⊂ V , and j1 6= j2 ⇒
Mj1 ∩Mj2 = ∅ and such that

I. For j ≥ 1 ,the nodes in Mj are more connected among themselves than to V \Mj

II. 〈Vj〉0<j≤k ≤ ω for some ω

where Vj = 〈‖〈c(x)〉x∈Mj − c(y)‖〉y∈Mj is the mean distance of the weight vectors of the
nodes belonging to set Mj , to the mean weight vector of said set.

Notice that we allow for a special set M0 of nodes that can not be adequately assigned
to modules.

In this chapter, we outline an approach for solving this problem, using an extension of
the MSM Random Walk algorithm. We apply this algorithm to artificial data and comment
on the applicability of this algorithm to biological data

4.1 The Node Weighted MSM algorithm

At a first glance, the problem stated above seems to be of combinatorial nature: finding,
among the many (but finite) combinations of sets, a combination that satisfies certain
properties. It must be noted, however, that the problem of finding an optimal partition of
a graph, is, like most set-partitioning problems, NP-complete [199]. Therefore, some sort
of approximation heuristics become necessary. In this work, we use a Continuous Time
Random Walker on the graph and identify its metastable sets as the sought-after subsets
(Mj)kj=0 of V .
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This follows the approach described in Section 2.1.4, with a modification to account for
the information contained in function c. For clarity, we will give a detailed description of the
algorithm, although it has similarities with the MSM Random Walk algorithm presented
in the aforementioned section and detailed in [190].

In contrast to the usual notation V = {v1, v2, . . . , vm}, we will assume, for simplicity,
that V = {1, 2, . . . ,m} is the set of nodes in the network. We then introduce a function
Q : Rd × Rd → R that denotes how similar the weight vectors of two nodes are, with
Q(c(x), c(y)) = 0 denoting that the weight vectors corresponding to nodes x and y are
identical. In order to compute Q, given the matrix C ∈ R|V |×d whose’ x-th (denoted by
C[x, :]) row is the vector c(x) for x ∈ V , we perform the following steps:

1. Normalizing the data Normalize the columns of C so that each of them has 0 as
minimum and 1 as maximum.

2. Defining the similarity measure between the weight vectors of the nodes
Make

Q(c1, c2) = 1− (c1 · c2). (4.1)

With this in hand, we define:

L(x, y) =


−
∑
z 6=x L(x, z) x = y

e−Q(c(x),c(y)) x 6= y, (x, y) ∈ E
0 otherwise

(4.2)

This is the transition rate matrix of a continuous-time Markov process. In this type of
process, each random walker waits for a random time interval after reaching a node,
before it jumps to another node. If a random walker is in a node x, the waiting time tx
in that node is itself a random variable distributed according to P[tx = t] = et L(x,x).

3. Determining the core region The set of nodes V is first divided into so-called
core and transition regions, denoted by M = ∪kj=1Mj and M0 respectively. Given a
number α ∈ R, the core region is defined as

Mα = {x ∈ V |Dµ∗(x) > µ∗(x)}

where the matrix D = eαL and µ∗ is a probability distribution on V . For µ∗, we
used both the invariant measure of L with p = 0 as defined in Section 2.1.4, and
the uniform distribution on a set of m elements. In the experiments reported below,
Mα does not change if you use these two choices of µ∗. As discussed in [190], the
parameter α specifies the granularity of the algorithm, in that larger values are more
suitable for detecting smaller modules. We follow the authors of [190] by evaluating
the algorithm with values of α spanning several orders of magnitude.

4. Defining the transition rate matrix If we consider only the nodes in Mα, we
can define the transition probabilities between any two of them by

P̂α(x, y) =
∑
z∈V

D(x, z)qy(z), x, y ∈Mα (4.3)
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where qy(z) is the probability that a random walker starting in z will reach y before
any other node inMα. This function is known as the committor function for node y
and can be computed by solving the system of linear equations as detailed in [145].

5. Clustering the nodes in the core region The grouping of nodes into modules
is done by agglomerative clustering as described in Section 2.1.1, using P̂α(x, y) as
a similarity measure between nodes x and y, and max as the linkage function. The
result of this process are k modules M1,M2 . . .Mk ⊂ V which provide a partition
of the core region, with k, the number of modules, derived from the spectrum of
P̂α(x, y) using the spectral gap method. That is, after sorting in descending order
the eigenvalues of P̂α(x, y), we find k such that λk and λk+1 are the pair of consecutive
eigenvalues whose magnitudes differ the most.

6. Adding more nodes to the modules The final step of the MSM Random Walk
is to check if the nodes in the transition region should belong to one of the modules
found in the previous step. The idea is that if with very high probability, a random
walker starting at some node v in a transition region enters a particular module
immediately after leaving the transition region, then the node v should be attached
to this particular module. This is measured by computing the committor functions
f1, f2, . . . , fk for each of the modules, evaluating the committor functions on each of
the transition region nodes, and assigning a node x to module j if fj(x) is greater than
some threshold. These functions compute the probability that a random walk driven
by L and starting in x ∈ M0 hits module j before any other module. The values of
the committor functions can also be computed using the procedure described in [145].

The set Mα identified in step 3 is the set of nodes that tend to absorb a random
walker that is moving between nodes in a rate, given by Equation 4.2 that decreases
exponentially as the similarity between weight vectors of the nodes increases. To gain some
intuition, consider a node x and two of its neighbors y and z such that Q(c(x), c(y)) =
Q(c(x), c(z))+1, and let us imagine an uncountable ensemble (or mass) of random walkers
moving around the network. Then Equation 4.2 dictates that the amount of walkers that
move from node x to node y is e times the amount of walkers that move from node x to
node z. The nodes in Mα are then those that gain walkers after log(α) units of time, if
the walkers are originally distributed according to µ∗. Conversely, the nodes in V \ Mα

are nodes from which the mass of random walkers leaves quickly. This can not happen if
the nodes are connected to a set of nodes that is highly interconnected. It is in this sense
that the nodes inMα can be said to belong to sets satisfying condition that for j ≥ 1 ,the
nodes in Mj are more connected among themselves than to V \Mj (condition I above).

Step 4 then clusters these nodes according to the probability of a given random walker
to transit between two nodes in a time period of length α. This probability, defined in
Equation 4.3 is determined by the transition rate matrix L, which describes dynamics in
which the mass of random walkers transits at a higher rate between nodes whose similarity
is higher, as defined in Equation 4.1. Let us note, however, that Equation 4.3 also implies
that the row-sum of P̂α, as expected for a stochastic matrix, is equal to 1.¶

¶This fact can be proven by a combination of the definition of matrix exponentiation and the fact that
that the row-sum of L is zero, a feature of all infinitesimal generators.
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This second observation implies that there are two contributions to the probability
of transition between two nodes: i) the similarity between their weight vectors, ii) the
total similarity between the weight vector associated with the starting node and those of
its neighbors. As we will see below, this fact is important in the understanding of the
algorithm’s behavior.

4.2 Experiments with Data Integration

4.2.1 Synthetic data

To test the scenarios under which the algorithm performs best, we generated artificial
networks whose weight vectors we control. For each network, we selected connected sets
of nodes and assigned to them distinct weight vectors. Then, we tried to recover these
sets using the Node Weighted MSM algorithm, and found that they were recovered with
acceptable recall, but that many false-positive modules were also found.

In this experiment, we created a series of random networks according to the Erdős–Rényi
G(m, ρ) model [65], which is a popular way to generate networks without any distinct to-
pological feature. To generate such network, one needs to fix m = |V | the number of nodes,
and ρ = |E|

m(m−1)/2 the density of edges. The network is then generated by instantiating all
m nodes and, for every pair of them, creating an edge between them with probability ρ.
This is equivalent to creating an adjacency matrix A where, for every pair of indices x and
y with x ≤ y, we set A(x,y)=1 and A(y,x)=1 with probability ρ.

In the experiment described below, m = 200 and ρ = 0.2. For each randomly generated
network, we define a set of pathways, where a pathway is a connected set of nodes such
that every all the weight vectors associated to the nodes in this set are similar, in the sense
of Equation 4.1. We call a node an outlier if it does not belong to any pathway. In this
case, we used d = 1, and the number np of pathways was varied between 2 and 5, and
they were all of a size 20 nodes. For each number of pathways, we generated 300 different
networks as described above, and in each network, we set the weight vectors c(x) of each
of its nodes in the following way:

1. For all x ∈ V , set its weight vector c(x) from a normal distribution with mean µo = 0.1
and standard deviation 0.1

2. For the j-th pathway (with 1 ≤ j ≤ np), do the following:

i. define its mean node weight as µj = 0.1 + cs + jcr. Here cs = 0.15 is a separation
in weight between the nodes belonging to pathways and outlier nodes, and cr =
0.98−cs−µo

np
is the separation between the mean node weights of different pathways.

The choice of these constant aims at distributing weights of pathways in a clear and
distinguishable manner, as illustrated in Figure 4.2.

ii. choose a starting node x uniformly at random from those not belonging so far to
any pathway.

iii. set the node weight c(x) of this x to be the value of a R-valued normally distributed
random variable with mean µj and standard deviation 0.01

iv. if the pathway is already of the desired size (in this case 20), exit this loop



42 Chapter 4 A New Method for Finding Modules in Networks

v. if the current node has a neighbor which is not yet in any pathway, choose it and
go back to iii.

vi. otherwise, pick one from among the neighbors of other nodes already in the pathway
and go back to iii. If all their neighbors are already in a pathway, delete this pathway
and start over from ii.

Figure 4.2: Distribution of node weights for the artificial networks. The different
constants described in the creation of synthetic data aim at making the node weights of
the nodes belonging to different pathways, and the outlier nodes, clearly distinguishable.
In experiments Cs = 0.15 and µnp = 0.98

After such a Node Weighted network was generated, the Node Weighted MSM al-
gorithm described in Section 4.1 was executed on it. The result was evaluated in two ways,
as described in Figure 4.3. First, the number of modules was estimated, by finding the
spectral gap of P̂α(x, y) according to the procedure described in Section 2.1.4. As can be
seen in Figure 4.3A , the number of discovered modules does not always match the number
of pathways. This is the case because often subgraphs which are made up of outlier nodes
are identified as a module. As the number of pathways increases, the number of such
subgraphs increases because connected sets of outlier nodes are cut-off from one another
by pathways in a fashion similar to regions of the plane induced by straight lines∗. Note
that outlier nodes should, in theory, be identified as part of the transition region M0.

The second way to evaluate the performance of the Node Weighted MSM algorithm
on artificial data, is by making sure that the pathways that we define in each of the
networks correspond to some of the modules found by the algorithm. To this end, for the
j-th pathway Wj (1 ≤ j ≤ np) we find M(Wj) ∈ {M1,M2 . . .Mk}, the module that best

∗While n lines divide a plane into 1 + n(n+1)
2 regions, such a strict relationship does not hold in graphs.

Yet, the probability of finding a connected set of outlier nodes all of whose vertices are pathway nodes does
increase with the number of pathways, given that these are of fixed size (20)
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matches the pathway, as the one that maximizes |Mj ∩M(Wj)|. Then we define the score
as

score =
np∑
j=1

|Wj ∩M(Wj)|
|Wj |

(4.4)

The histogram of this score over the 300 networks that we generated for each of different
np ∈ {2, 3, 4, 5} can be seen in Figure 4.3B.

These experiments on artificial data show two shortcomings of the Node Weighted
MSM algorithm: i) it is unable to correctly estimate the number of modules, and ii)
the modules found are smaller than those which were built into the data. The first is a
limitation more of the spectral-gap based heuristic employed for estimating the number of
modules. Indeed, metaheuristics [161] have been suggested for this problem, which arises
in all module-finding and clustering algorithms, and which highlights the fact that even
simple definitions of modules as those presented here are hard to capture in the dynamics
of stochastic systems. The second, while related to the former, also hints to a feature of the
Node Weighted MSM algorithm which must not be overlooked: even when two adjacent
nodes are very similar, the total number of neighbors each has can make the transition
rate between them small, thus leading to clusters being broken apart.

In order to investigate the effect these issues have on data-analysis tasks, we performed
also an experiment on real data for which some sort of ground truth was known.

4.2.2 Glioblastoma data

In every human, two copies of each autosomal gene should be present in each somatic
cell. However, it has been observed that some cells extracted from tumors have alterations
in the number of copies of certain genes. This is particularly important in the case of
tumor-suppressing genes, as some cease to function if one of their copies is not present in
a cell, while others only cease to do so when both copies are missing. Yet, copy number
alterations (CNA) occur in many other cells, so that identifying which such alterations are
over-represented in tumors can lead to a better understanding of tumorigenesis.

In particular, for Glioblastoma Multiforme (GBM), a type of cancer that develops
initially in the brain, several changes in copy number have been identified as leading to
tumor formation. These include increases in copy numbers of the MDM2, CDK4, CDK6,
CCND1 genes (the first two leading to tumor suppression being inhibited, the rest leading
to circumvention of apoptosis), as well as decreases in the copy numbers of CDKN2A,
CDKN2B and CDKN2C (all of them leading to the suppression of apoptosis) [157, 180].
However, the whole inventory of genes whose copy number alterations leads to GBM, is to
date not finalized.

We have conducted the following experiment, trying to corroborate with the Node
Weighted MSM algorithm the results described in [42]. We took the Human Protein
Reference Database (HPRD) Protein-Protein Interaction Network (Release 9, dated April
13, 2010), and set node weight vectors according to the the Copy Number Alteration
(CNA) dataset from The Cancer Genome Atlas (downloaded July 2013). The network
itself contains 39174 interactions among 9617 proteins, but we have selected only the
largest connected component for which the CNA dataset includes information, leaving us
with 8644 nodes. The CNA dataset has information on 203 patients, for each of which a
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Figure 4.3: Evaluation of artificial networks. Top: number of pathways found. Bot-
tom: clustering score.

tumor and a normal tissue sample were extracted and the difference in number of copies
between each was recorded. To simplify the analysis, we have discretized the DNA dataset
into two states: altered and non-altered.

Results

In the case of GBM, one of the best studied types of cancer, sets of genes are known to have
copy number alterations leading to tumorigenesis. This has been corroborated in several
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α
Number of

non-singleton
modules

sizes of
large modules Small modules

67 15 6530 2086

KCNH5 KCNH1
NPHP4 RPGRIP1

ZP2 ZPBP
DGCR8 RNASEN
GSTM2 GSTM3

UBE2H MARCH2
FCGRT CA6

HMGCL MS4A7

P2RX3 P2RX1 P2RX2
CLUAP1 CINP

SUCLG1 SUCLG2
YKT6 BET1L

CD86 MARCH8 CD80

670† 17 6462 2150

KCNH5 KCNH1
NPHP4 RPGRIP1

ZP2 ZPBP
DGCR8 RNASEN
GSTM2 GSTM3

UBE2H MARCH2
FCGRT CA6

HMGCL MS4A7

P2RX3 P2RX1 P2RX2
CLUAP1 CINP

SUCLG1 SUCLG2
YKT6 BET1L

CD86 MARCH8 CD80
SEMA3A SEMA3B
CLOCK ARNTL2

6700 19 6448 2159

KCNH5 KCNH1
NPHP4 RPGRIP1

ZP2 ZPBP
DGCR8 RNASEN
GSTM2 GSTM3

UBE2H MARCH2
FCGRT CA6

HMGCL MS4A7

P2RX3 P2RX1 P2RX2
CLUAP1 CINP

SUCLG1 SUCLG2
YKT6 BET1L

CD86 MARCH8 CD80
SEMA3A SEMA3B
CLOCK ARNTL2

UVRAG VPS33B C14orf133
RPE65 RBP4

Table 4.1: Modules found by the Node Weighted MSM algorithm on the HPRD
network with node vectors representing CNA data for GBM. With three different
values of α, a parameter controlling the size of clusters found, the modules found by the
algorithm are similar. In bold are the modules found for a value of α that were not found
for the previous value of α.

studies, including some with the same CNA dataset (e.g. [157]). Therefore, it is possible
to benchmark the clusters found with the Node Weighted MSM algorithm. Unfortunately,
as can be seen in Table 4.2, most of the genes whose CNA are known to lead to tumors
are either put into the very large clusters, or put into the transition region M0. Thus, the
Node Weighted MSM algorithm provides no useful information regarding these genes.

We contrast this with a simpler algorithm: removing the edges of the network which
connect nodes that differ in more than 1%, 5%, 10%, 15%, 20%, 50%, or 80% of the
samples, and considering the remaining connected components as clusters, and singleton
nodes as transition region. This algorithm, which we present solely for contrasting the
results of the Node Weighted MSM, we refer to as the Connected-Component algorithm.
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Figure 4.4: Spectra of L and Pα for the glioblastoma dataset

The results are detailed in Table 4.2, and discussed in the next section.

4.3 The Non-Locality of Modules and the Markov Property

We find that the much more simple algorithm of removing edges that connect nodes with
very different weights and then finding the connected components of the resulting network
outperforms the random-walk approach, at least in terms of capturing biologically relevant
nodes in modules. Likewise, we find that sets of nodes which are known to have very
similar weights are not necessarily captured in the same module. Below we propose an
explanation for these shortcomings.

Let us note that our intuition behind two nodes belonging to a same module is not
local in the network. For example, we might like that two nodes which hold the same
relationship to a given, core, set of nodes, are both assigned to it as module members.
In this case, what requirements one of the nodes must satisfy to belong to the module
depends on the requirements that the other node satisfies. These two nodes might be very
far away in the network, so that information about this might not be captured by any
Markov process, such as a random walker.

More concretely, let us consider some module which is known to be biologically relevant,
and which contains two nodes with identical neighbourhoods (both in adjacency and node
weights), which are on the edge of the module, i.e. they are neighbouring nodes outside
the module of interest. It would be desirable that the module finding algorithm is able
to distinguish that these two nodes belong to the module, irrespective of the connections
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α for Node Weighted Algorithm Threshold for Connected-Component Algorithm
0.67 6.7 67 670 6700 1%, 5% 10% 15% 20% 50% 80%

Genes mentioned in [149].
EGFR 14 0 0 0 0 0 0 0 1 (39) 2 (39) 1 1
PI3 14 17 14 16 18 0 0 0 0 0 1 1
PTEN 0 0 0 0 0 0 0 0 0 0 1 1
AKT1 14 0 0 0 0 308 (6) 308 (6) 22 (18) 12 (20) 10 (20) 1 1
AKT2 0 0 0 0 0 0 0 0 354 (2) 220 (3) 1 1
AKT3 14 17 14 16 18 0 0 0 2 1 1 1
MTOR 0 0 0 0 0 0 0 470 (2) 2 1 1 1
FOXO1 0 0 0 0 0 0 0 0 0 0 1 1
RPS6 14 17 14 16 18 0 0 0 0 0 1 1
MAPK1 14 0 0 0 0 0 0 151 (6) 101 (6) 65 (6) 1 1
MAPK3 0 0 0 0 0 157 (2) 157 (2) 2 (552) 2 1 1 1

Genes mentioned in [25].
TP53 14 0 0 0 0 11 (13) 11 (13) 2 (552) 2 1 1 1
RB1 14 0 0 0 0 0 0 309 (3) 214 (4) 143 (4) 1 1
CDKN2A 14 0 0 0 0 0 0 0 0 0 1 1
CDKN2B 14 17 14 16 18 0 0 0 0 0 0 1
PTEN 0 0 0 0 0 0 0 0 0 0 1 1
EGFR 14 0 0 0 0 0 0 0 1 (39) 2 (39) 1 1
PDGFRA 14 0 0 0 0 0 0 0 0 1 1 1
MET 0 0 0 0 0 0 0 207 (2) 1 (39) 2 (39) 1 1
CDK4 0 0 0 0 0 0 0 0 0 1 1 1
CDK6 14 0 0 0 0 0 0 249 (11) 1 (39) 2 (39) 1 1
MDM2 0 0 0 0 0 0 0 0 0 1 1 1
MDM4 0 0 0 0 0 0 0 0 2 1 1 1
MYC 0 0 0 0 0 360 (2) 360 (2) 2 (552) 2 1 1 1
MYCN 14 17 14 16 18 49 (2) 49 (2) 64 (2) 2 1 1 1
PIK3CA 14 0 0 0 0 0 0 350 (2) 2 1 1 1
CCND2 14 17 0 0 0 0 0 463 (2) 313 (6) 1 1 1
KRAS 14 17 0 0 0 0 0 0 0 1 1 1
CHD5 None None None None None None None None None None None None

Genes mentioned in [228].
CDKN2C 14 17 0 0 0 0 0 0 2 1 1 1
CDKN2A 14 0 0 0 0 0 0 0 0 0 1 1
CDK4 0 0 0 0 0 0 0 0 0 1 1 1
CDK6 14 0 0 0 0 0 0 249 (11) 1 (39) 2 (39) 1 1

Genes mentioned in [157].
NF1 14 17 14 16 18 0 0 451 (2) 321 (2) 1 1 1
PARK2 0 0 0 0 0 0 0 0 0 1 1 1
AKT3 14 17 14 16 18 0 0 0 2 1 1 1
FGFR2 14 0 0 0 0 299 (2) 299 (2) 331 (2) 228 (2) 151 (2) 33 (2) 1
IRS2 14 0 0 0 0 0 0 0 0 0 1 1
PTPRD 14 17 0 0 0 0 0 0 0 0 1 1
M0 sizes 952 1694 2086 2150 2159 7294 7294 6519 5066 3354 655 2

Table 4.2: Comparing the node weighted algorithm to a simple one based on
connected components. The node weighted algorithm places all relevant genes into
either the transition region, or very large modules. In contrast, the Connected-Component
algorithm places several relevant genes into smaller, meaningful modules.
Shown are the genes whose copy number alterations have been linked to GBM (by four
different authors), and the cluster in which they are located using two algorithms, each
with different parameters. The cluster numbers are shown in each row, and in parentheses
are shown the total number of genes put in that cluster by each algorithm. When clusters
sizes are not shown it is because they constitute especially large clusters. In the last row,
the size of M0, the transition region, of each analysis is shown.
Sizes not shown: In the Node Weighted Algorithm, for α = 0.67, cluster number 14 has
7660 elements. For α = 6.7, cluster number 17 has 6915 elements. For α = 67, cluster
number 14 has 6530 elements. For α = 670, cluster number 16 has 6462 elements. For
α = 6700, cluster number 18 has 6448 elements. In the Connected-Component algorithm,
for a threshold of 15%, cluster number 5 has 2619 elements. For 20%, cluster number 1
has 4565 elements. For 50%, cluster number 1 has 787 elements.
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they have to nodes outside the module. To exemplify this, let us consider a network as
outlined in Figure 4.5. In this case, nodes v3 and v′3 both belong to the module M1. If
we let c(v1) = c(v′1), c(v2) = c(v′2), and c(v3) = c(v′3), we have that the neighbourhoods of
v3 and v′3 are identical. That is, the weight vectors of v3 and v′3 are identical, they have
the same number of neighbors (two), and the weight vectors of their neighbors are also
identical . However, in random-walker based algorithms, part of what determines if v3 is
deemed as part of M1 or M2 is the neighbourhood of v1. Likewise, the algorithms answer
to the question of whether if v′3 is part of M1 or M3 is the neighborhood of v′1. We now
explain this in more detail.

Figure 4.5: Network counterexample

If we assume a value of α such that Mα covers the whole network, we have that,
according to Equations 4.3 and 4.2, the transition probability between nodes v1 and v3 is
given by

P̂α(v1, v3) =
∑
z∈VA

D(v1, z) qv3(z)

=
∑
z∈VA

qv3(z) eαL(v1, z).
(4.5)

Now, qv3(z) is the probability of a random walker starting in node z jumping to node
v3 before reaching any other node in VA, which is non-zero only for z ∈ {v1, v2, v3} (given
the assumption that Mα = VA), so that

P̂α(v1, v3) = qv3(v1)eαL(v1, v1) + qv3(v2)eαL(v1, v2) + qv3(v3)eαL(v1, v3). (4.6)

Since all transitions between M1 and M2 pass through v3, the amount of random walker
mass transitioning from v1 to v2 can only differ from that transitioning from v′1 to v′2 due to
the differences of transitions between v1 and v3, compared to between v′1 and v′3. Thus we
can assume that the second term of Equation 4.6 is the same as the equivalent term would
be for the transition probability between v′1 and v′3. Thus, P̂α(v1, v3) and P̂α(v′1, v′3) differ
only due to the differences between the neighbourhoods of v1 and v′1. If these differences
are big enough, then the agglomerative clustering step of the Weighted MSM algorithm
can lead to node v3 being assigned to M2 and node v′3 being assigned to M1, despite their
immediate neighbourhoods being identical.

This phenomenon is not restricted to the weighted networks we have been dealing with
so far. The most common definition of network modularity [159], for example, also exhibits
this phenomenon.
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Random-walk based methods for finding modules rely, to different extents, on the
Markov property of the random walker. This property makes the behaviour of the random
walker behave in a local manner, so that for example the transition rates (or probabilities)
for the random walker starting in nodes v1 and v2 in the examples above would be determ-
ined by their neighbourhoods and, to some extent, the neighbourhoods of their neighbors.
However, our intuition of module composition assumed that these nodes, being in the same
relation to the core of module M1 should also belong to it. This information, unfortunately,
is not local to nodes v3 or v′3, since they are in opossite sides of M1. For this reason, we
believe that a random-walk based approach will have limited success in the identification
of modules.
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Chapter 5

A New Method for Finding Modules in
Expression Data

Finding modules in biological systems is a task that has been approached from many
angles, among them the identification of co-occurring elements (genes, proteins, regulatory
elements) across a set of conditions. Finding such modules has many applications which
can be, roughly, grouped into two categories. The first is the creation of explanatory
devices (explanantia) to help us in the understanding of the evolution and development of
biological systems. By identifying sets of elements that co-occur, researchers can propose
mechanisms acting on these sets that determine or influence systemic biological phenomena,
such as metabolism in terms of pathways, or evolution in terms of evolutionarily conserved
modules. The second category is the identification of mechanisms that can be behind these
co-occurrences, which will in turn signal the existence of biological processes that compress
information and enforce a modular organization of systems. These different alternatives
are discussed in detail in Chapter 3. Here, a method for finding such modules is presented,
along with results of its application.

While many such methods exist and have been successfully applied in different scen-
arios, none of them aim to find modules which are highly reusable. As discussed in
Chapter 3, the property of modules of being reusable across different conditions is of-
ten mentioned in literature yet, to this date, an emphasis has been put on finding modules
which are as independent as possible. In this chapter, we show how these two properties
are related, and also not equivalent. Furthermore, by providing a method that explicitly
aims at finding maximally reusable modules, we are able to make data-driven statements
about the reusability of biological modules.

We continue with the assumption that biological systems are composed of a finite and
discrete set of elements, or units. One can observe whether each of those elements is
active or not in each of a given set of conditions. The aim is to group these elements
into modules, such that the elements which are active in any one condition is equal to
the union of some of these modules. In particular, we are interested in the groupings of
elements into modules that maximize the number of different conditions a module is used
in. In this chapter, the problem is formalized as a matrix decomposition problem, and we
attempt to develop some intuition on the difficulties inherent to the problem. Based on this
formalization we present a method for finding such groupings, as well as some analytical
results regarding this method. Finally, we present both numerical experiments that serve
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as proof of concept, and a direct application of this method into biological data, alongside
interpretation in terms of the reusability concepts discussed in Chapter 3.

The state of a biological system evolves continuously in time. However, most of the
observations that we make of it are of poor temporal resolution. This is especially true
when one considers high-throughput data, in which hundreds or thousands of variables
are observed simultaneously. For this reason, it is usually assumed that the conditions in
which a given biological system can exist, form a finite and discrete set.

In each of these conditions, the elements comprising a biological system (genes, proteins,
regulatory elements, etc.) can either be active or inactive. By considering activity a binary
property, and thus eliminating information on the level of activity, we aim to answer
questions regarding which components belong to which modules. Although we set aside
the information regarding activity levels, the results presented in this chapter are robust
to changes in such levels (As discussed in Corollary 5.3.2).

Given a discrete set of conditions, a discrete, finite and ordered set of elements X , and
ignoring activity levels, we can represent the conditions in which we observe a system as
a binary matrix C ∈ {0, 1}m×n where m is the number of elements in our system, n is the
number of observations we make of it, and C[x, i] = 1 iff element x is active in condition i.
These matrices are called presence/absence matrices. We denote by Ci the set of elements
active in the i’th condition, i.e. Ci = {x ∈ X |C[x, i] = 1}.

Definition 5.0.1. Given a presence/absence matrix C, we say that a set B = {b1, b2, . . . bk},
where each bj ⊂ X , is a decomposition of C if ∀i∃Si ⊂ B such that Ci = ∪b∈Sib. In
that case, we call each of the elements of B a module.

From this definition it follows that not all elements of P(X ), the powerset of X , can
belong to a decomposition. Since, if there exist two elements x1, x2 ∈ X such that C[x1, i] 6=
C[x2, i] for all i ∈ {1, 2 . . . n}, then any set containing both x1 and x2 can not be a module.

Conversely, a set b can be a module, only if there is at least one condition that contains
all of its elements. That is, for b ⊂ X to be a module, it is necessary that there exists a
non-empty set S(b) ⊂ {1, 2 . . . n} such that ∀i ∈ S(b), b ⊂ Ci holds. Here S(b) is the list
of conditions that include the elements of b. It is in this way that we encode the property
of modules being cohesive sets, treatable as units in their own right.

Interpretation of modules

Let us consider a fixed matrix C ∈ {0, 1}m×n, and let us assume, for now, that there
exists a decomposition of said matrix into k modules. By the end of this chapter we
will know under which conditions such decompositions actually exist, but for our current
discussion, it is sufficient to assume that they do. With this in hand, I will now point out
two observations.

1. Identifying a decomposition B allows us to express each of the sets Ci in terms of the
modules comprising B instead of in terms of elements. In this sense, the specification
of B can be used as a dictionary that allows for descriptions in terms of elements
to be translated into descriptions in terms of modules. It is thus the case that the
problem of finding decompositions is related to the problem of Dictionary Learning
from the field of compressed sensing [139,234].
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2. Since the existence of a decomposition implies that one can express the columns of
matrix C as unions of other sets, we can consider the process of finding a decomposi-
tion a sort of change of basis. In particular, if k < m this constitutes a dimensionality
reduction.

In order to address the issues explained in Chapter 3, it is necessary to introduce the
following additional definitions.

Definition 5.0.2. If we are given a set of elements X and a set B = {b1, b2, . . . bk} ⊂ P(X )
we can define its Overlap, as :

O(B) =
∑
b∈B#b
#X

and its Density as
ρ(B) = O(B)

k

Definition 5.0.3. Given a decomposition B = {b1, b2, . . . bk} of a presence/absence matrix
C ∈ {0, 1}m×n we define the reusability of a module b ∈ B as

R(b) = #{i ∈ {1, 2 . . . n} |x ∈ b ⇒ C[x, i] = 1}

And the average reusability of the decomposition B as

R(B) = 1
k

k∑
j=i

R(bj)

For many values of k it is possible to find not only one but several decompositions of
C into k modules, some of them with differing reusability, as depicted in Figure 5.1.

The problem addressed in this chapter can then be formulated as follows: given a
presence/absence matrix C ∈ {0, 1}m×n, find a decomposition into k modules, that has
maximum average reusability. In the following sections, we present two different interpret-
ations of this problem, theoretical results concerning the existence of solutions, and an
algorithm that finds an approximate solution.

5.1 A Combinatorial Formulation

As stated in the previous section, this chapter deals with the problem of finding a decom-
position that satisfies a certain condition: i.e. having maximally reusable modules. The
search across the space of possible decompositions is not straightforward, as it is a set with
a size in the order of 22|X| . There is, however, a structure inherent to said space that leads
us to approach the problem through combinatorics. Namely, once a given element x ∈ X
is included in a module, no other element y ∈ X such that ∀i C[x, i] = 0⇒ C[y, i] = 0 can
be included in the same module. The existence of this constraint allows us to formulate
ours as an optimization problem with constraints.

The variables involved will be the entries of two matrices B ∈ {0, 1}m×k and S ∈
{0, 1}k×n, all of them binary. B[x, j] = 1 will signify that element x is in module bj , and
S[j, i] = 1 will signify that condition i is in S(bj), the set of conditions in which module j
is used.
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With these variables, the following Quadratic Program can be formulated:
Maximize: ∑

j,i

S[j, i] (5.1a)

Subject to: C[x, i] ≤
∑
j

B[x, j] · S[j, i] (5.1b)

k C[x, i] ≥
∑
j

B[x, j] · S[j, i] (5.1c)

∑
x

B[x, j] > 0 ∀j (5.1d)

Condition 5.1b ensures that if C[x, i] = 1 then (BS)[x, i] is not zero, while condition
5.1c ensures that if C[x, i] = 0 then (BS)[x, i] is zero. Finally condition 5.1d ensures that
all modules have at least one element.

This quadratic problem is not amenable to solution for large values of m and n. For
example, decomposing a matrix C ∈ {0, 1}62×18 into k = 40 modules takes over 1500
seconds on an 8-core 2.2GHz machine, using Gurobi 6.0∗ as a solver, using QCP relaxations
(number of nodes automatically selected), 500-node RINS heuristics applied every 10 nodes

∗https://gurobi.com
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Figure 5.1: Different decompositions have different reusabilities Two different de-
compositions of a given system can have modules with varying degrees of reusability (num-
ber of conditions using each module). On the left, a system consisting of 7 elements ob-
served across 3 conditions. On the right, two different decompositions of the system into
k = 4 modules. The dots indicate which modules are used in which conditions. The blue
and black rectangles symbolize, respectively, in which conditions and in which modules,
elements are present.

https://gurobi.com


5.2 A Matrix Decomposition Formulation 55

of the MIP search tree, and automatic tuning of Branch Variable Selection Strategy, Branch
Direction Strategy and Disconnected Component Strategy .

Furthermore, using this approach, decomposing a matrix into a given k1 modules is
completely independent from decomposing it into any other k2 modules. Being such a
computationally intensive task, it is a great disadvantage to not be able to further reuse
the results.

To overcome these two limitations, we present in the next section a matrix formulation
of the problem, along with heuristic algorithms that find approximate solutions in a reas-
onable time. Furthermore, they allow for finding solutions for a wide range of values of k,
which will become biologically interesting, as discussed torwards the end of the chapter.

5.2 A Matrix Decomposition Formulation

The problem of finding modules in expression data can also be formulated as a problem
of matrix decomposition. The many matrix decomposition methods presented earlier (see
Section 2.1.2) can be described, broadly, as expressing an input matrix as a product of
two, or more, output matrices. In this case, the input matrix encodes presence/absence
data and two output matrices are produced. The first encodes which elements belong to
which modules, and the second encodes which modules are active in which conditions.

Thus, the matrix C ∈ {0, 1}m×n described above can be decomposed into two matrices:
B ∈ {0, 1}m×k and S ∈ {0, 1}k×n that satisfy

C = σ(BS) (5.2)

where σ is the entry-wise signum function. Matrix B encodes the membership of ele-
ments into the different modules (B[x, j] = 1 means element x belongs to module j), while
matrix S encodes a representation of the data points as combinations of the characteristic
vectors of each module.

Definition 5.2.1. We call Matrix B ∈ {0, 1}m×k a decomposition of a matrix C ∈
{0, 1}m×n into k modules if there exists a matrix S ∈ {0, 1}k×n such that C = σ(BS),
where σ is the entry-wise signum function

We choose to keep the same name, decomposition, as that used in definition 5.0.1 since
both notions are equivalent. Indeed every set B = {b1, b2, . . . bk} ⊂ P(X ) induces a matrix
B ∈ {0, 1}#X×k, whose x, j’th entry B[x, j] = 1 iff x ∈ bj , and vice versa†. Likewise, for
every matrix S there is a collection S1, S2, . . . Sn of subsets of B, namely those indicated
by the rows of S, such that ∀i Ci = ∪b∈Sib

The product BS encodes which elements are present in which condition according to
the given B and S matrices. It must be noted that it is possible that in a given condition
i two different modules (say j1 and j2), both of which contain a given element x are
active. That is S[j1, i] = S[j2, i] = 1 and B[x, j1] = B[x, j2] = 1. If that is the case, then
(BS)[x, i] ≥ 2. Since we are dealing with binarized data, we consider an element to be
present in a condition regardless of its expression value (or number of copies). It is for this
reason that the signum function σ appears in Equation 5.2.

†We assume that the elements of B, and their corresponding columns of B are sorted in a consistent
manner (e.g. lexicographically according to the ordering of X ). We do this both for clarity of explanation
and when traversing computationally the space of such matrices, as will be discussed below.
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Additional assumptions

In order to simplify the exposition of the problem and the proposed approaches, we make
two additional assumptions. First, that matrix C is full column-rank, which in the case
of binary data is equivalent to requiring that the elements present in a condition are not
contained in those present in another. That is, for any two columns i1, i2 of C there exists
at least one x ∈ X such that C[x, i1] = 1 6= C[x, i2] = 0. This assumption is done without
loss of generality, which can be proved as follows. Consider a set of conditions encoded
by a matrix C such that Ci1 ⊂ Ci2 . We can then build a matrix C ′ that is identical to C
except it lacks the i2’th column and in its place has a column with 1s for the elements of
Ci2 \ Ci1 . C ′ satisfies assumption 1 and a decomposition of it is also a decomposition for
C.

The second assumption is that n ≤ k ≤ m. This makes this matrix decomposition
problem different to the usual problems in which k ≤ min(m,n), such as is dealt with in
NMF [127] or its binary version [146], which accept only approximate solutions. We assume
the first inequality because we want decompositions to be exact, that is ||C−σ(B S)|| = 0.
The second inequality is assumed because a collection of singleton modules are, trivially,
a decomposition of C (C = ImC for Im the m ×m identity matrix). Within this range,
there is always at least one decomposition for each value of k.

This second assumption implies that the optimization procedures (eg. [26]) used in
other matrix factorization methods, which aim at minimizing the error of the factorization,
are not directly applicable. Yet, let us note that a matrix B satisfying Equation 5.2
induces a feature clustering on the columns of C: if each column is said to be the m-
dimensional description of an object, matrix B clusters the features which are being used
in this description. Since clustering algorithms that satisfy the non-overlapping assumption
require that all rows of B have a single non-zero entry, and since this is, in general, not
possible for all values of k (see Theorem 5.3.3 below), we note that non-overlapping feature
clustering leads only to approximate solutions of Equation 5.2 (i.e. C ' BS). If we dismiss
the non-overlapping assumption there are actually many exact solutions for every k between
n and m. Each of these solutions constitutes an Overcomplete Feature Clustering of C,
that is, an overcomplete frame spanning the points given by the columns of C.

Rephrasing definitions in terms of matrices

In these terms, we can also rephrase Definition 5.0.2 presented above. If B is the matrix
corresponding to decomposition B, then O(B) = ||B||0

m , and ρ(B) = ||B||0
mk , the density of

matrix B. The density of a matrix, in turn, is inversely proportional to its sparsity, a term
which we define as mk − ||B||0.

Reusability of a decomposition (as per Definition 5.0.3) can be expressed in matrix
terms as the maximum density a matrix S can have while satisfying Equation 5.2. Thus,
the problem that we approach in this chapter is to find matrices B and S satisfying said
equation and maximizing the density of S, denoted as ρ(S).

We note that finding decompositions of a matrix C is related to the task of dictionary
learning [139], part of the compressed sensing practice. Dictionary learning consists of
finding a matrix B (called a dictionary) that optimizes the sparsity of S, which is the
opposite of the problem treated here.
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Figure 5.2: Sparsity and reusability are related. For each value of k (colors), a matrix C
was decomposed into k modules 1400 times. Shown is the average reusability and average
size of the modules of each such decomposition. Decompositions with smaller modules
(sparser B matrices) tend to be more reusable

.

5.2.1 On the relationship between reusability and sparsity

If matrices B and S constitute a decomposition of a matrix C as per Definition 5.2.1, then
maximizing its reusability means increasing the density of S. Let us consider the number
of non zero entries of the product BS. (BS)[x, i] = 1 iff ∃j such that B[x, j] = 1 = S[j, i].
Since C = σ(BS) and the number of non-zero entries in C is constant, then increasing the
number of non-zero entries in B (that is, making the modules in the decomposition larger)
will, at some point, lead to a decrease in the number of non-zero entries of S.

Intuitively, having sparse B necessitates a sparse S, since representing the elements
active in one condition as a combination of modules with few elements will require many
modules to be used. Conversely, under the assumption that B and S constitute a decom-
position of C, we can argue that if modules contain large numbers of elements, few will, in
general, be required to represent a condition encoded in a column of C.

This intuition can be corroborated for example in Figure 5.2. We must note, however,
that this does not always correspond to reality. That is, it is possible to find two decom-
positions, the first of which has both a larger average module size and a larger average
module reusability than the second one. However, after explorations such as those shown
in Figure 5.2, we approach the problem of finding maximally reusable decompositions in
two steps: First, decompositions with sparse matrices B are found, and then each of them
is modified in order to maximize its reusability.

The first step, increasing the sparsity of B, has been approached before, since the
sparsity of dictionaries leads both to computational efficiency in approximations, and to
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an increase in the effectivity of the algorithms employed therein [234]. That is, in the com-
pressed sensing scenario where k ≤ m,n, as B becomes more sparse, then the algorithms
found for approximating S (e.g. Basis Pursuit) become more likely to reach optimal solu-
tions.

Definition 5.2.2. Let B be a decomposition of C into k modules. We say that B is a
maximally sparse decomposition if any other decomposition B′ of C into k modules
is such that ||B||0 ≤ ||B′||0.

5.3 Analytical Results on the Sparsity of Decompositions

Before going deeper into the properties and conditions for the existence of decompositions,
I will briefly mention a result that further validates the choice of presence/absence matrices
over non-negative real-valued matrices.

Lemma 5.3.1 (Non-negative matrix factorizations (NMF) of a non-negative real valued
matrix induces a decomposition of the corresponding presence/absence matrix ). If C̃ ∈
Rm×n+ can be decomposed via NMF [127], into the product of two matrices B̃ ∈ Rm×k+ and
S̃ ∈ Rk×n+ , and B = σ(B̃) then there exists S ∈ {0, 1}k×n such that C = σ(C̃) = σ(BS).

Proof. Because C̃ = B̃S̃, we know that C̃[x, i] > 0 iff there exists j ∈ {1, 2 . . . k} such that
B̃[x, j] > 0 and S̃[j, i] > 0.

Now, if we call S = σ(S̃), then, by definition of σ, these two conditions can only be
satisfied if B[x, j] = 1 and S[j, i] = 1, which implies BS[x, i] ≥ 1. Therefore C̃[x, i] > 0
implies that σ(BS)[x, i] = 1

On the other hand, if σ(BS)[x, i] = 1 then there exists j such that B[x, j] = 1 and
S[j, i] = 1 which in turn imply that B̃[x, j] > 0 and S̃[j, i] > 0. Therefore σ(BS)[x, i] = 1
implies C̃[x, i] = 1.

This means that B̃ and S̃ are an NMF of C̃ if and only if C = σ(BS).

From this we can conclude the following:

Corollary 5.3.2 (NMF can not produce a basis matrix B that is sparser than a maximally
sparse decomposition for the corresponding binary matrix). Let C = σ(C̃) ∈ Rm×n+ which,
via NMF [127], is decomposed in the product of two matrices B̃ ∈ Rm×k+ and S̃ ∈ Rk×n+ ,
and let B be a maximally sparse decomposition of C = σ(C̃). Then ||B||0 ≤ ||B̃||0

Proof. The proof is by contradiction. According to Lemma 5.3.1, σ(B̃), which is as sparse
as B̃, is also a decomposition of C. If B̃ were sparser than B, then, σ(B̃) would be sparser
than B, contradicting the assumption that B is maximally sparse.

I now present two simple theorems, the proofs of which illustrate a procedure essential
for the algorithm presented in the next section.

Theorem 5.3.3 (Existence of a decomposition with zero overlap). Given a full-rank binary
matrix C ∈ {0, 1}m×n with exactly r different rows, B, a decomposition of C into k modules,
such that ||B||0 = m exists if and only if k ≥ r.
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Proof. Given a binary vector (e.g. a row or column of a binary matrix), we call the
set of indices in which its entries are non-zero its presence/absence pattern. Notice that
the presence/absence pattern of a d-dimensional vector can also be identified with an
integer between 0 and 2d − 1, whose binary representation is given by the vector. Let
c′1, c

′
2, . . . c

′
r ∈ {0, 1}n be the different rows of C.

• If k < r. Suppose t the there exists B, a decomposition of C into k modules, with
||B||0 = m. Since k < m the pigeonhole principle implies that there are columns
in B with more than one non-zero entry. The non-zero entries of each column of B
correspond to elements whose presence/absence patterns are the rows of C. Since
there are r > k such presence/absence patterns, at least one column ofB must contain
two non-zero entries whose corresponding elements have different presence/absence
patterns, again due to the pigeonhole principle.
That is, there is at least one column B[:, j] of B that has at least two non-zero entries,
say the x’th and the y’th, such that C[x, :] 6= C[y, :]. Since C[x, :] 6= C[y, :], there
exist at least one i such that C[x, i] 6= C[y, i], and we can assume, without loss of
generality, that C[x, i] = 1 6= 0 = C[y, i]. Since ||B||0 = m, the x’th row of B has only
one non-zero entry (the j’th). The only way that (BS)[x, i] = 1 = C[x, i] is satisfied,
is if S[j, i] = 1. This would imply that (BS)[y, i] = B[y, :]S[:, i] = 1 6= 0 = C[y, i],
which contradicts the assumption that B is a decomposition of C. Therefore no such
decomposition exists for k < r.

• If k = r, let B ∈ {0, 1}m×k be such that B[x, j] = 1 iff C[x, :] = c′j . This is always pos-
sible because of the definition of r. That is, all the elements whose presence/absence
pattern is identical are put into one same module. Thus, each row of B has only one
1-entry, i.e. ||B||0 = m. Now let’s make S such that S[j, :] = c′j . With matrices B
and S thus constructed, we have that for any x ∈ X , B[x, jx] = 1 where jx is the type
of row of C such that c′jx = C[x, :]. Furthermore, since all c′1, c′2, . . . c′r are different
(by definition), we have that ∀j j 6= jx =⇒ B[x, j] = 0
If C[x, i] = 1 we also have that S[jx, i] = 1. Since (BS)[x, i] = B[x, :] · S[:, i], and
both terms of this product have a non-zero entry in the jx’th possition, we have that
σ(BS)[x, i] = 1. Conversely, if C[x, i] = 0 we have that S[jx, i] = 0 and, since we
know that only the jx’th entry of B[x, :] is non-zero, it holds that B[x, :] · S[:, i] = 0.
Thus C = σ(BS) and thus B is a decomposition of C.

• If k > r, we proceed by induction. Suppose that Bk−1 is a decomposition of C
into (k − 1) modules with ||Bk−1||0 = m, and let Sk−1 be a matrix such that C =
σ(Bk−1Sk−1). Since (k − 1) < m then there is at least one column of Bk−1 which
has two 1’s, say B[x, j] = 1 = B[y, j]. To generate Bk, add a new column to Bk−1
that has 0’s in all rows except for the x’th, and make B[x, j] = 0. Matrix Bk thus
constructed has the same number of ones as Bk−1. To generate Sk, simply duplicate
the j’th row of Sk−1

We now know that for k ≥ r there is a decomposition of C (actually a maximally sparse
one). We can also prove that for all k between n and r − 1 a decomposition exists (albeit
not maximally sparse, as proved above).
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Theorem 5.3.4 (Existence of a decomposition). Given a full-rank binary matrix C ∈
{0, 1}m×n, and an integer k such that n ≤ k ≤ m, there exists a matrix B ∈ {0, 1}m×k
that is a decomposition of C.

Proof. For the most interesting case, we make use of a similar method as in the last point
of the previous proof.

• For k = n we can make B = C, and S = In.

• For k such that n < k < r, we proceed by induction. Consider a matrix Bk−1 ∈
{0, 1}m×(k−1) that is a decomposition of C, with some corresponding matrix S′.
Since (Theorem 5.3.3) ||Bk−1||0 > m then, by the pigeonhole principle, there exists
at least one row x such that Bk−1[x, j1] = 1 = Bk−1[x, j2]. We can now make a
matrix Bk ∈ {0, 1}m×k which is identical to Bk−1 except a) it has a new column
(the k’th) that is all 0’s except for Bk[x, k] = 1 and b) Bk[x, j1] = Bk[x, j2] = 0.
The corresponding matrix S can also be generated by adding a row to S′ that is
all 0’s except in the columns in which either S′[j′, :] = 1 or S′[j′, :] = 1, and simple
matrix multiplication shows that C = σ(SBk) Furthermore, it can be seen that
||Bk−1||0 = ||Bk||0 + 1, since we removed two 1’s (Bk[x, j1] and Bk[x, j2]) and added
only one (Bk[x, k]).

• For k ≥ r See theorem 5.3.3

In the proof of Theorem 5.3.4 we described a procedure such that, given Bk−1, a
decomposition of C into k − 1 modules, one can generate Bk, a decomposition into k
modules that has a smaller overlap. An intuitive explanation of this procedure is the
following: given that we know that there is some overlap, find two modules that share
elements, remove the common elements from them and move them to a new module.
Thus these elements are now part of one module less, thereby reducing the overlap of the
decomposition (see Figure 5.3). Given a matrix Bk−1 and the indices j1, j2 ≤ k − 1 of
two intersecting modules, we define as Pj1,j2(Bk−1) the decomposition of C into k modules
obtained by merging the overlap of modules j1 and j2 of Bk−1 into a new, k’th module, as
described above.

The function Pj1,j2(B) allows us to generate a decomposition for every k between n
and r. We start with Bn = C and iteratively make Bk+1 = Pj1,j2(Bk). This iterative
application of Pj1,j2(B) is possible because we know, by Theorem 5.3.3, that for k between
n and r there are is always at least one row of B that has two non-zero entries, and thus
we can talk of j1 and j2, two overlapping modules.

Corollary 5.3.5 (Maximal sparsity increases with k). For a given C ∈ {0, 1}m×m, if
we call B̃k a maximally sparse decomposition of C into k modules, then the sequence
||B̃n||0, ||B̃n+1||0, ||B̃n+2||0, . . . , ||B̃r||0 is non increasing.

Proof. Let Bk and Bk+1 be two maximally sparse decompositions of a given matrix C, with
k and k + 1 modules respectively. Suppose that ||Bk||0 ≤ ||Bk+1||0. If k < k + 1 ≤ r we
know, by Theorem 5.3.3, that ||Bk||0, ||Bk+1||0 > m. By applying the procedure described
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Figure 5.3: Given Bk−1 ∈ {0, 1}m×(k−1), a decomposition of matrix C with n ≤ k ≤ r, this
simple procedure produces Pj1,j2(Bk−1) a sparser decomposition of C, consisting of one
more module. Two modules with non-empty intersection are chosen, then the intersection
is removed from both and put into a new module.

above we can compute B′k+1 = Pj1,j2(Bk) which, we know, has a smaller 0-norm than Bk.
Therefore we have exhibited B′k+1, a decomposition of C into k+1 modules that is sparser
than Bk+1, which contradicts the assumption that the latter was maximally sparse. If
k = r, we have proven (Theorem 5.3.3) that ||Bk||0 = m = ||Bk+1|| and thus the sequence
does not decrease.

Lemma 5.3.6 (Sparsity can only decrease with new data). Let B , B′ ∈ {0, 1}m×k be two
decompositions, the first of them of a matrix C ∈ {0, 1}m×n and the second of a matrix
C ′ ∈ {0, 1}m×(n+1), such that all rows of C are also rows of C ′. If B is maximally sparse
then ||B′||0 ≥ ||B||0

Proof. Let us call S and S′ the matrices that satisfy C = σ(BS) and C ′ = B′S′. Let us
assume that it is the i’th column of C ′ that is missing in C. It can readily be seen that B′
is also a decomposition for C, we just need to remove the i’th column of S′. Thus if B is
maximally sparse, then ||B′||0 ≥ ||B||0.

Therefore, if the set of elements we examine remains the same, observing more condi-
tions will not yield sparser, more parsimonious representations of the processes generating
this data.

We have now established two properties of the smallest amount of overlap a decom-
position can have: 1) it is decreasing with the number of modules, 2) when new data is
added it can not decrease. Additionally, we presented proofs of the existence of exact
decompositions, as well as a method based on the function Pj1,j2(B) to generate such de-
compositions. These decompositions, however, are not necessarily maximally sparse. In
the following section, we make use of this same function Pj1,j2(B) to develop a heuristic
method for finding very sparse decompositions.
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5.4 Greedy and Heuristic Algorithms for Finding Sparse De-
compositions

Maximally sparse decompositions are of particular interest because they provide the most
parsimonious interpretation of the data, as well as a starting point for finding highly
reusable decompositions. Moreover, as stated in Lemma 5.3.6, their sparsity is an upper
bound to the sparsity of any representation of a superset of the data, provided the set of
features remains the same. So far, we have only provided methods to find decompositions,
but none to maximize their sparsity.

Let us consider again the method described in section 5.3 (p. 60) that, given Bk−1
a decomposition into k − 1 modules, yields Pj1,j2(Bk−1), a decomposition into k modules
with higher sparsity. In general, there is not a single pair j1, j2 of modules that are
overlapping. If one wishes to find a maximally sparse decomposition into k modules, one
might be tempted to find the pair of most overlapping modules and perform with them
the procedure described in the proof of theorem 5.3.4. This can be regarded as a greedy
algorithm.

There are at least two reasons why this greedy approach might not work. First, we have
no guarantee that Bk−1 is itself maximally sparse. Second, there is no reason why even
a maximally sparse Bk−1 would, under this procedure, be turned into a maximally sparse
Bk. Indeed, by starting with a given Bk−1 and applying iteratively Pj1,j2 , each iteration
with different pairs j1, j2 one can see that sparser Bk−1 does not necessarily guarantee
sparser Bk.

Having this in mind, we propose an algorithm that attempts to find, for every k ∈
{n, n+1, n+2, . . . , r+1, 2}, the 0-norm of the sparsest decomposition of C into k modules.
It does so by starting with a given decomposition with n modules and successively adding
new modules (see Figure 5.3) to create sparser decomposition.

The algorithm keeps, at all times, a set Ak ⊂ {0, 1}m×k of, at most, l candidate
decompositions of every size k between n and r. For every k, all elements of Ak are taken
as starting points for generating new decompositions of size k + 1 by using the function
Pj1,j2(B) for different choices of j1, j2. Among these new candidates, and the ones already
in Ak+1, the l sparsest are chosen and put into Ak+1. The rest are used to iteratively
generate, using always the greedy choice of j1, j2 (the two most overlapping modules),
decompositions of larger and larger numbers of modules. Afterward, decompositions are
added into the corresponding Ak if they are sparse enough. The details can be seen in the
listing of Algorithm 1.

When the algorithm finishes, one can find in Ak, decompositions of C into k modules
each of which was generated, using Pj1,j2(B) iteratively with the greedy choice of j1, j2,
from decompositions of k′ < k modules which were, in turn, generated from smaller
decompositions with non-greedy choices j1, j2. A visualization of an execution of the
algorithm can be found in Figure 5.5.

This algorithm makes use of four subroutines.



5.4 Greedy and Heuristic Algorithms for Finding Sparse Decompositions 63

Input Data:
C ∈ {0, 1}m×n presence-absence matrix;
q number of different candidates to keep for each number of modules;
l how many iterations will a candidate be propagated forward ;
r number of different rows in C

Output: [Bn, Bn+1, . . . , Br] Decompositions of C into k modules for k ∈ {n . . . r}

k ← n;
An ← [C,C, . . . q-times . . . C];
for k ← n+ 1 to r do

Bk−1 ← Ak−1[0];
(j1, j2)← I(Bk−1);
Ak ← [Pj1,j2(Bk−1)];

end
for k ← n to r − l do

Props← [ ];
for i← 1 to q do

A← Ak[i];
pairs← Ĩq(A) ;
for (j1, j2) ∈ pairs do

Props← Props'[Pj1,j2(A)];
end

end
Ak+1 ← Ak+1'Props;
for k2← k + 1 to k + l do

Props = [ ];
for B ∈ Ak2 do

(j1, j2)← I(B);
Props← Props'[Pj1,j2(B)];

end
Ak2+1 ← The first q2 elements of Ak2+1 + Props, as sorted by ‖ · ‖0;
Ak2 ← The first q elements of Ak2, as sorted by ‖ · ‖0 ;

end
Ak+l+1 ← The first q elements of Ak+l+1, as sorted by ‖ · ‖0;

end
for k ← n to r do

Bk ← Ak[0];
end

Algorithm 1: Heurisitc Algorithm. An explanation of the different subroutines used in
this algorithm can be found in Table 5.1
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Pj1,j2(B)
As defined in page 60, that given a matrix B with k columns, returns a
matrix with k + 1 columns that is result of removing from the j1’th and
j2’th modules of B the elements they have in common, and adding them in
a new module

‖ · ‖0 A subroutine for finding the zero norm of a matrix, that is, for computing
the number of non-zero entries. Returns an integer.

I(B) A subroutine for computing the two most intersecting pairs of columns of
B. Returns a pair of integers.

Ĩq(A)
A subroutine for finding q different pairs of columns of A with non-zero in-
tersection. If only less than q exists, it returns as many as possible. Returns
a list of, at most, q pairs of integers.

' A list concatenation operation

Table 5.1: Subroutines used by Algorithm 1

5.5 Experiments

5.5.1 Evaluation on small examples

In order to get an idea of how well this heuristic algorithm works, we developed a set of test
matrices C which are small enough to compute, by exhaustive enumeration, a maximally
sparse decomposition.

This exhaustive enumeration takes advantage of the fact that the features present in
a given module must be a subset of the features present in at least one condition. This
greatly reduces the number of possible decompositions, allowing us to find decompositions
of C into up to seven modules which would otherwise be impossible if we were to explore
the set of all 9 × 7 matrices. Still, the size of matrices we can attempt to decompose is
very limited and thus a heuristic approach is necessary.

As can be seen in Figure 5.4, finding the maximally sparse decomposition is easier for
large k’s. As explained above, the set Ak of candidate decompositions of size k is the
result of an iterative application of Pj1,j2(B) with a greedy choice of j1, j2 starting from
several different initial decompositions into fewer modules. The number of such smaller
decompositions is larger for large k, and thus it is reasonable that the heuristic performs
better for larger values of k.

5.5.2 Evaluation on ecological data

In ecology, a presence/absence matrix [9] is a binary matrix that encodes, for a set of
locations whether a given biological species is present in that location or not. These
matrices have long been studied with the aim of identifying communities of species that
co-occur [78].

As a proof of concept of the sparsity maximization method outlined above, we take
the data from a study done on n = 41 tropical birds over m = 72 locations in Peru [216].
Clustering of this data has been attempted before in order to find groups of species that
have strong ecological relations or to define groups of locations with similar properties. In
this case, we take the second approach.



5.6 Extending the algorithm to maximize reusability 65

Figure 5.4: Performance of the heuristic algorithm on 600 test matrices. We generated
600 matrices C ∈ {0, 1}9×4 for which we found the maximally sparse decomposition for
k ∈ {5, 6, 7} via exhaustive enumeration. We then used the proposed heuristic to find
decompositions of the same sizes. Shown are the histograms in the difference in 0-norm
between the decomposition obtained by the heuristic algorithm and the one obtained by
exhaustive enumeration.

We applied our heuristic algorithm both to the real data from and to simulated data.
The real data [216] was first transformed so as to group together locations with identical
bird presence in order to find the value of r = 62. The simulated data consists of matrices
C with the same 0-norm, the same r and the same dimensions. By comparing the estimated
lower bound for the 0-norm of decompositions between real and simulated data (Figure 5.6)
one can observe that modules (of locations) of the real data, while overlapping, could in
principle overlap much less than if the presence/absence data were generated at random.

5.6 Extending the algorithm to maximize reusability

For each of the decompositions output by this algorithm, we maximize its average reusab-
ility by gradient ascent. This is done by removing elements from modules (i.e. 1’s are
removed from matrix B, the decomposition) as long as the identity C = σ(B S) holds for
some matrix S. The elements are removed in order, starting from the one whose removal
increases the average reusability of B the most. Notice that the over-complete property of
the decomposition still holds after this removal.

We call the decomposition of a matrix C into k as reusable as possible modules a
Maximally Reusable Modular Decomposition (MRMD). The two most important features
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Figure 5.5: An example of the execution of the Algorithm 1 on a matrix C ∈ {0, 1}9×4

Figure 5.6: Minimum overlap possible for an exact clustering into k clusters, of the data
on bird populations [216] (red with markers) and of random matrices of the same sparsity
and dimension (other lines).

of MRMDs is that they constitute a decomposition as defined above, and that the modules
that comprise them are maximally reusable. The modules of an MRMD can overlap among
themselves, although they tend not to because maximizing reusability tends to minimize
overlap.



5.7 Results 67

5.7 Results

As detailed in Section 2.2, gene expression is the process whereby a single genome can
produce distinct types and states of cells that we observe in an individual. The processes
governing gene expression are manifold and are subject to evolutionary and developmental
forces. In particular, as discussed in Section 3.2.4, it is interesting to test whether the
expression profiles of different cell types can be described as the combination of a set of
building blocks. In this chapter, we present some results addressing this question.

5.7.1 The Data

We are interested in data describing the presence and absence of elements that convey
information about the different cell types. It does not escape our attention that by consid-
ering only such binary data we ignore the richness that different levels of expression provide
to biological systems. However, as was argued earlier, from a conceptual point of view this
abstraction is sufficient, especially when one considers the results of Lemma 5.3.1.

To test the generality of the observations, we choose three types of data. The first is
protein expression data as measured by Expressed Sequence Tags (ESTs). The second is
micro RNA (miRNA) expression data and the third is ecological data derived from the
observation of species across several geographical locations. The details of these data sets
are provided below.

EST data

This data was originally used in the paper by Souiai et. al. ( [203]) for exploring the
persistence of protein-protein interactions across different human tissues. It comprises the
expression of a total of m = 17141 proteins across n = 22 tissues: blood, bone, brain,
connective tissue, eye, heart, intestine, kidney, liver, lung, lymph node, mammary gland,
muscle, ovary, pancreas, placenta, prostate, skin, stomach, uterus, testis, and thymus. The
data set was assembled by the authors of [203] as follows:

1. Clusters of ESTs were searched for in release 214 of the Homo sapiens UniGene
database [193]. For each cluster, an entry of the database includes the tissues in
which it was present and the level of expression: high or low. From each of these
entries, the cluster ID and tissue were saved.

2. The cluster ID was mapped into a protein using the UniProt translation files.

3. The authors found 17141 proteins expressed across 45 tissues. However, some of
these tissues had less than 1000 proteins and the authors decided to exclude them,
resulting in only 22 tissues.

4. This data can be found in the supplementary material of [203].

miRNA data

The second type of data we use is miRNA expression data as measured by quantitative
RT-PCR [34]. The regulation of miRNA is influenced both by gene regulation and external



68 Chapter 5 A New Method for Finding Modules in Expression Data

chemical stimuli [84], thus making miRNA presence/absence patterns a reflection of both
endogenous and exogenous factors. Importantly, miRNA expression data has the advantage
of being small enough that one can produce and analyze several replicates of the random
equivalents of it. We use the data sets that are listed in Gene Expression Omnibus [17]
using the platform GPL13987‡. Choosing a single platform ensured that datasets were
comparable, and at the moment in which the experiments were performed this was the
mRNA expression platform with the largest number of experiments. For these datasets, a
threshold of 35 PCR cycles without detection was used to consider miRNA not present in
a condition. We tested with threshold values between 25 and 35 and found no difference
with the results shown here.

Randomized equivalents

In order to assess the significance of the bounds on reusability that we compute for bio-
logical systems, we compare the decompositions of these to decompositions of two types
of random systems. These random systems are randomized equivalents of the biological
systems, and each has some commonalities with it, as described below.

The first type, which we call density-preserving random equivalents (DP-Rand),
are random binary matrices such that the number of elements active in every condition
remains the same as in the real matrix, but the identity of these elements is randomized.
These are the most basic of random models since they only guarantee that, on average,
every element is used the same number of times, and each condition has the same number of
active elements. This rudimentary model aims at discerning properties of random matrices
that are due solely to the average number of times an element is used, which, in a sense,
can be interpreted as the throughput of the transcription machinery. It is important to
compare with this random model because very dense systems can seem to make very high
reuse of any modules found therein, simply because elements are very frequently used. It
must be noted, however, that satisfying the assumptions noted in Section 5.2leads to a
non-uniform sampling of the space of such matrices, which makes computing likelihoods
and p-values beyond the scope of this work.

The second type of randomized matrices preserve the distribution of element usage, that
is, there is the same number of condition-specific elements, the same number of elements
active in two conditions, and so on. Element usage is also known as expression breadth
[239]. We call this second type Row sum sequence preserving random equivalents
(RSS-Rand). Sampling from the subset of matrices with fixed row-sums (also called
marginals) is important for distinguishing the effect of random co-occurrence of elements.
The omission of this effect in the study of ecological presence/absence matrices has led to
great controversy [49] as well as to decades of development of sampling algorithms [39].

For all miRNA data sets, 50 DP-Rand and 50 RSS-Rand equivalents were computed,
while for the EST-based protein expression data only 4 of each kind were computed. The
way these two kinds of matrices are created from a given matrix C ∈ {0, 1}m×n is described
below. For both cases, since one of the assumptions in this work is that, in the matrices
being decomposed, the set of elements active in one condition cannot be a subset of those
active in another, some of the randomly generated matrices are discarded as follows. Given

‡Those with accession numbers GSE37766, GSE48910, GSE48909, GSE48908, GSE47652, GSE45387
and GSE33045 (divided into fluid and plasma subsets)
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a randomly generated matrix R, the condition is checked by computing RRᵀ, and checking
if its i1, i2 entry is strictly smaller than

∑
xR[i1, x]. If this is not the case, the matrix is

discarded and a new one is generated.

The DP-Rand

DP-Rand equivalents of a matrix have the same number of non-zero entries as the original
matrix, with only three restrictions: 1) that all rows must have at least one non-zero entry,
2) that all columns must have at least one non-zero entry, and 3) that no column has a set
of non-zero entries which is a subset of those of another column. To build such a DP-rand
equivalent to a matrix C, the first step is to build a matrix R whose entries are valued
between 0 and 1 and are drawn from a uniformly distributed random variable. Those
entries of R which are smaller than the density of C are set to 1, the rest are set to 0.

In order to satisfy the first two conditions stated above a post-processing step is per-
formed. If any row or column has zero non-zero entries, a random entry from it is set to
1 in it, and an entry chosen at random from R is set to 0. This process is repeated until
all rows and columns have a non-zero sum. To check that the third condition is satisfied,
the procedure described above using the product RRᵀ is performed, and if the matrix R
is rejected, it is discarded and a new one is generated.

The RSS-Rand

The second type of matrices is RSS-preserving random matrices (RSS-Rand). These
preserve the distribution of row sum sequence in the input matrix C, which is a stronger
condition than both preserving the per column density or preserving its row-sum distribu-
tion. That is, if the original matrix has nq rows with q ones, then the random matrix will
also have nq rows with q ones.

The process to generate these random matrices starts with an empty matrix R. Then,
for every row index x ∈ {1 . . .m}, the row sum nx =

∑
iC[x, i] is computed, and nx

entries of R are chosen at random without replacement using the function sample from the
random module of python 2.7 §. These entries are set to 1 in the x’th row of R. After doing
this for all values of x ∈ {1 . . .m}, the rows of R are shuffled, and the matrix is checked
as described above for conditions contained in others, and if rejected, it is discarded and
another created from scratch.

5.7.2 The Modules Found

For a given dataset, real or random, MRMDs are computed for all possible number of
modules k. For each of them, three quantities are extracted: mean module size, maximum
module size, and Shannon entropy of the module reusability distribution. This last quantity
measures how uniformly reusable the modules of a decomposition are: it is low if all of
them have the same reusability, and high if reusabilities are uniformly distributed. In order
to compare real datasets and their randomized equivalents using one of these quantities,
we measure the average, over k, ratio between the quantity in the randomized dataset and
the quantity in the real dataset.

§https://docs.python.org/2/library/random.html

https://docs.python.org/2/library/random.html
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On average, the modules that make up MRMDs are smaller in biological systems than
in their random equivalents. Simultaneously, the maximum module size is larger. For an
example of how these distributions look like in a miRNA expression data set, or in the
protein expression data, see Figures 5.8 and 5.9 respectively. To reconcile small average
module sizes with large modules, it is necessary that several very small modules be present.

Maximum module size is a consequence of the element usage distribution, since a lot of
constitutive, or almost constitutive elements lead to very large modules. Thus, this can be
replicated in RSS-Rand equivalents of a system, which preserve element usage distribution
(Figure 5.11 middle). Mean module size, however, is always lower in real systems than in
systems with the same element usage distribution (Figure 5.11 top). Here, we note that the
real systems studied here exhibit an element usage distribution that is markedly different
from the expected (binomial) distributions of row-sums of a random matrix with the same
density (Figure 5.7).

Figure 5.7: Element usage histograms in the miRNA data is markedly different
than what is expected at random. In red is the binomial distribution that one would
expect of the number of conditions in which different miRNAs are used, given the over-
all probability of miRNA usage (density of each presence/absence matrix). In blue bars
are the actual usage distributions for different miRNA experiments. Figure originally
published in [148]

If the number k of modules is fixed, then smaller modules imply a smaller overlap
between them. This smaller overlap, in turn, can be interpreted into more independence
between modules, and thus, the results shown here corroborate the hypothesis of near
decomposability [201] of natural systems. However, since these small module sizes can
also be recovered in RSS-Rand equivalents of the systems studied, we suggest that near
decomposability is related to the element usage distribution.
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Properties of the modules found

A quantitative and qualitative analysis of the modules found was carried out. These were
made by contrasting to the two random matrix models.

Reusabilities are more uniformly distributed

A given decomposition, even when maximally reusable, have individual modules of dif-
ferent reusabilities. When decomposing biological systems into MRMD, we find that the
component modules have a more uniform distribution of reusabilities than those of random
systems (Figure 5.11 bottom). This implies the existence of modules that are condition-
specific, as well as modules that are constitutive or almost constitutive. Importantly, these
modules which are present in all or almost all conditions, are also the largest in the sys-
tems we analyzed (see Figure 5.9 top for an example). This combination of small and large
modules is not exclusive of MRMD, but modules that are both large and reusable are (see
Figure 5.10 for an example on a miRNA expression dataset for k = 26).

One important lesson from the systems analyzed here is that reusability is not char-
acteristically high in biological systems. We conclude this from the fact that, of the nine
systems studied, four had average reusabilities that were close (within one standard devi-
ation of the mean) to the ones exhibited by their DP-Rand equivalents.

Module size distribution determined by element usage distribution

We observe that the module size distribution found in both the miRNA and tissue ex-
pression data is also observed when decomposing RSS-Rand random equivalents of those
systems. Since RSS-Rand matrices were generated aiming to preserve the element usage
distribution of the original matrices, we conclude that module size distribution is greatly
influenced by element usage distribution. In hindsight, this is to be expected for two
reasons. First, according to our definition of MRMD, condition-specific elements will be
grouped into condition-specific modules. Second, the number of elements used in any par-
ticular subset of conditions is constrained by the number of elements whose usage is equal
to the size of the said subset.

Some modules are enriched for Gene Ontology terms

The Gene Ontology is a widely used resource that links gene names with a set of annota-
tions of function and cellular localization [50]. A widely used metric of functional similarity
between genes is the number of terms they are both annotated with (correcting for the
overall frequency of terms) [150]. This notion of similarity is extended to a notion of func-
tional relatedness within a set of genes, which can be computed as the overall enrichment
of terms in that set, as opposed to random sets of the same size [95].

After analyzing the presence/absence of proteins in 22 human tissues using the data
from [203], and linking said proteins to the genes encoding them, we can perform such
analysis on the modules making up a MRMDs. The result is that several of the modules
found in MRMD are functionally related (Figure 5.12), in the sense that they are signific-
antly (p < 0.01 after Bonferroni correction for multiple testing) enriched for Gene Ontology
terms.
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In order to assess the significance of these enrichments, we perform, for every k, ag-
glomerative clustering of the genes based on Jaccard distances of the sets of tissues in
which the corresponding proteins are expressed. This method guarantees, in the case of
binary expressions that we deal with here, that proteins grouped together are co-expressed
in the greatest possible number of tissues. We use this method as a sort of null model
which with to compare the biological relevance of the modules which make up an MRMD.

The result, shown in Figure 5.12, is that MRMD have a larger number of modules
made up of functionally related genes than do clusterings which were done ex hypothesi
to maximize the number of functionally related genes clustered together. This is despite
the fact that the criterion for finding MRMD is simply to maximize reusability, without
including any additional functional information.

The formalization presented in this chapter, along with the corresponding algorithms
and analytical results, provide a framework for the study of modules from the standpoint
of reusability. This will allow for future assessment of statements regarding the reusability
of biological modules, their size distribution, and their dependence on element-wise usage
distribution. In the next chapter we discuss the biological implications of the findings
presented here, and outline possible future research questions in this direction.
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Figure 5.8: Mean size and reusability entropy of MRMDs of real and randomized
systems Biological systems can be decomposed into smaller and more uniformly reusable
modules than random equivalent systems, regardless of the number of modules. Top left:
an example of how the average module size of maximally reusable modular decompositions
(MRMDs) changes with the number of modules (k) for a miRNA expression data set (GSE
47652) and 100 randomized versions of it, 50 that preserve the column density (blue) and 50
that preserve the row sum distribution (green). The average module sizes of the MRMDs
of these random versions are within the ranges shown in the light shaded regions, and
the dark shaded regions contain one standard deviation around the mean. Top right:
The ratios of Area Under the Curve (AUC) between the red curve and each of the curves
corresponding to the randomized systems are all greater than 1, which summarizes that
MRMDs of real systems are made of smaller modules. The ratio between two AUCs is
equivalent to the ratio of two averages. Bottom left: For all possible k, the entropy of the
distribution of module reusability was computed for the same miRNA expression data set
and its 100 random equivalents. Low entropy implies all modules have the same reusability.
The shaded regions show the range (light) and one standard deviation around the mean
(dark) of the entropies of module sizes for DP-Rand (blue) and RSS-Rand (green) random
equivalents of the system. Bottom right: The ratio of AUCs of module reusability
entropies is below 1, indicating higher reusability entropy for the real system. Figure
originally published in [148]
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Figure 5.9: Module size distributions and size/reusability relationship When de-
composed into maximally reusable decompositions (MRMDs), biological systems have a
wider range of module sizes and more large and highly reusable modules than random
equivalents of the DP-Rand type; these features are recovered in RSS-Rand equivalents.
The expression data on human tissues [203] and two random equivalents of it (shown in
different columns) were decomposed into MRMDs consisting of between 22 and 4000 mod-
ules. Top: for all MRMDs computed, a histogram of module sizes and reusabilities. In
this case, the real system has more large and very reusable modules, as well as small and
condition-specific modules, than the DP-Rand system. Bottom: as the number of mod-
ules in an MRMD increases, the average module size decreases for both real and random
systems. Yet, the real system always exhibits a few very large modules, as well as more
very small modules than a totally random system. Figure originally published in [148]
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Figure 5.10: The bimodality of the distribution of sizes of modules is not exclus-
ive of MRMDs, but the reusability of large modules is. On the GSE47652 dataset,
1529 decompositions were obtained, most of which were far from maximally reusable. Each
consisted of k = 26 modules of different sizes. In the vertical axis are different ranges of
mean decomposition reusability (number of decompositions in each range shown on the
right). The center figure shows the size distribution of the modules in decompositions
of different mean reusabilities. Also shown is the reusability of individual modules, after
being separated into small (left) and large (right). The separation was chosen at size 120,
which divides the two modes of the size distribution. Only decompositions that are close
to optimal exhibit the large, highly reusable modules. Originally published in [148]
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Figure 5.11: Difference between MRMD of all datasets and their random equi-
valents Maximally reusable decompositions (MRMDs) of all data sets studied exhibit both
smaller average module size and larger maximum module size than random equivalents of
the system. Each system and its random equivalents were decomposed into MRMDs of all
possible numbers of modules and, for each, three quantities were computed: the average
module size (top), maximum module size (middle), and entropy of the module reusability
distribution (bottom). Here are shown the distributions of the ratios between the average
of each quantity in a randomized system, and the average in the real system, as shown in
Figure 5.8. While mean and maximum module sizes can be replicated by random systems
with the same row sum distribution as the real system (RSS-Rand), the same can not be
said of the distribution of module reusabilities. Shown in parentheses are the number of
conditions in which each system was observed. Figure originally published in [148]
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Figure 5.12: GO term enrichment analysis of modules in MRMDs MRMDs have
more modules that are significantly enriched for Gene Ontology terms than agglomerative
clusterings or randomly chosen modules with equivalent sizes. Using the data in [203],
and for various values of k each of three types of groupings of proteins into modules was
performed: MRMD, Agglomerative Clustering with Jaccard coefficient as similarity metric,
and random grouping into k modules of the same sizes as those in the MRMD. For each
obtained module, the p-value of its enrichment (Fisher test, implemented in [210]) to the
most-enriched-for GO term was computed and a histogram of these p-values was made.
The histogram only shows those enrichments with p < 0.01 after Bonferroni correction
for both the number of GO terms and number of modules. For each value of k, the total
number of modules each method returns with an enrichment with a p-value < 0.01 is also
shown. Figure originally published in [148]



78 Chapter 5 A New Method for Finding Modules in Expression Data



Chapter 6

Discussion and Conclusion

Within the framework presented here, any system can be decomposed into modules. In
order to distinguish them, in this discussion, from other notions, we call them Phenotypic
Building Blocks (PBBs). PBBs represent reusable modules that can be redeployed and
combined across different conditions [191].

There are many ways in which said redeployments can differ across systems and con-
ditions. For example, if we observe one system under two different sets of conditions, one
given PBB could be condition-specific in the first set, and very often reused in the second
set. Likewise, under the same set of conditions, one system could deploy a number of, for
example, condition-specific PBBs, while another system could instead deploy only reusable
modules. Thus, studying redeployments can serve as a way to compare both systems and
collections of conditions.

In this work, we have focused on comparing systems, in particular, on how much reuse
can be done of the different PBBs that comprise them. We do this because reusability is
often mentioned as a property of biological modules, and we aim to understand to what
extent is reusability characteristic of biological systems.

Let us recall that, for a given k, the MRMD is just one in many decompositions of a
system into k PBBs. Since the criteria for finding MRMDs is to maximize reusability, and
no other biological information is taken into account, we can not make any claim about
their biological relevance. However, their mean reusability is, by definition, an upper bound
on the mean module reusability of any decomposition into k modules, in particular any
whose modules are in some sense biologically relevant.

In this work, we have found that an average reusability of their PPBs does not seem to
be a defining feature of biological systems. This observation does not contradict the idea
that biological systems are composed of a set of redeployable modules. Rather, it shows
that other systems, even those which deploy their individual components in a random
fashion, could also be seen by an external observer as being composed of such modules. In
a sense, the existence of redeployable modules is in the eye of the beholder, especially, if
they only have access to presence/absence matrices describing the behavior of the system.

Thus, we believe that the statement that biological systems are composed of redeploy-
able modules has been prematurely brought forward (e.g. by [60], [110] or [191]), since
a mechanistic understanding of such redeployment is still not fully agreed upon. When
investigating such mechanisms, care should be taken not to confound the two epistemic
roles of modularity: that of an explanatory device (explanans) and that of a phenomenon
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in need of explanation (explanandum) [37]. Such confusion might lead to a horseshoeing
of the notion of reusable modules into the understanding of biological complexity. The
methods presented here can help in preventing this, by providing two null models against
which to compare any putative observation of biological reusability.

The uniformity of the distribution of PPB reusability (as quantified by its Shannon
entropy), is consistently higher in biological systems than in their random equivalents.
For an adequate interpretation of this result, one must keep in mind that MRMDs are
constructed to maximize average reusability. This implies that if one constructs random
systems and decomposes them into MRMDs, the resulting modules have very similar re-
usabilities, while this is not the case for the real systems analyzed here. This uniformity
in the reusability distribution is greatly influenced by the presence of large constitutive or
almost constitutive PBBs, which seems to be a hallmark of biological systems.

The intuition that the reusability of a PBB is anticorrelated with its size is wrong in the
case of biological systems. On the one hand, these systems exhibit very large constitutive
PBBs. On the other, even when these systems are decomposed into very small PBBs some
of those are condition specific.

The distribution of PBB sizes is in itself interesting. On the one hand, it has been
shown that devising models of the evolution of sets of biological elements can be greatly
improved by understanding the module size distributions (see, e.g. [189] and [218] for the
study of sizes of paralog gene and protein families respectively). Thus, the understanding
of how modularity has evolved can be aided by studying the distribution of module sizes.
On a more practical side, if one has estimates of the distribution of module sizes, it is
possible to better calibrate module-finding algorithms (e.g. [22, 159, 190]), most of which
have parameters that determine the module sizes they detect (see [219] for a discussion).
Finally, the significance of the results of gene enrichment analysis depends on the null mod-
els used, and these models can be improved if a distribution of module sizes is incorporated
into them, as discussed in [133].

Furthermore, studying in tandem the distributions of PBB sizes and reusabilities (like
those reported in this work), could shed light at bounds on the processes shaping the
modular organization of biological systems.

For example, if one adopts the theory that modules have evolved as a response to
changing but recurrent environments, these distributions could shed some light on the
magnitude and frequency of these changes. In [107], the authors introduce a model of the
evolution of modularity, in which the modules found in the evolved (artificial) individuals
correspond to common features in two alternating fitness functions used for selection in
an artificial evolution experiment. More concretely, the population in said experiments
consists of circuits made of logical gates which undergo variation by rewiring, and are
evaluated for selection by matching their computed truth table to that of target logical
functions. Two target functions G1 and G2 are alternated every 20 generations and the
resulting best-adapted individuals can not only correctly compute both functions (a few
generations after the switch), but they also exhibit a modular design. This modular design
consists of sets of gates that are not removed or rewired when a switch in the target function
occurs. In a sense, these ”conserved” sub-circuits are equivalent to the PBBs introduced
in this work.

We posit that if the changes in target functions are drastic, then adaptations for one
environment would be mostly useless for another, thus leading to low reusability of com-
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ponents. On the contrary, if functions G1 and G2 are similar, then large reusable modules
will appear. The more similar the functions are, the larger the reused modules will be.
It is in this sense that we can infer the magnitude of changes in the environment (target
functions) by observing the size distribution of PBBs.

One of the most interesting consequences of the results presented here has to do with
the near decomposability of biological systems. Since, for a given number of PPBs, a
larger average PPB size implies more overlap among them, we can say that decompositions
into smaller PPBs are decomposition into more independent modules. The maximally
reusable decompositions studied here exhibit large, highly reusable modules, as well as
many small, almost condition-specific modules. Interestingly, this particular PBB size
distribution is approximated by random systems in which element usage is the same as
in the real system. This statement is true both for maximally reusable decompositions
(MRMDs), but also for less reusable decompositions. These two facts suggest that part of
the observed independence of biological modules could be due to the peculiar element usage
distributions found in nature: one in which both seldom used and always used elements
are overrepresented.

This distribution of element usage (also known as expression breadth), which can be
described as U-shaped, has been reported in genes of both human [239] and mouse [73], and
is also present in the different species whose tissue expression is reported in the Expression
Atlas (Figure 3.2), as well as those studied in [30] (Figure 3.1). This same usage distribution
is also found when studying the presence/absence of genes across species [135], as well as
in some artificial systems [173]. In the latter, it has been related to the overall frequency
of components [142].

The fact that such U-shaped distributions of element usage are so widespread, and that
they can be related as described above to the near-decomposability of biological systems,
suggests that further study on the adaptive value of such distribution is needed. So far there
is, to our knowledge, no work on the fitness of distributions of individual element usage.
Rather, non-adaptive explanations for the distribution of genes across species have been
suggested [48, 85], in which drift would be responsible for genes present in few genomes,
and selection would determine which genes are present in many genomes.

Studying the relationship between element usage distribution and modularity can aid
not only in understanding the evolutionary origins of the latter. It can also serve as a
tool for the assessment of the significance of any putative module or sets of modules.
In the field of ecological interactions, it was long ago recognized that any identification
of communities should be considered against the backdrop of a null model that takes
into account the column and row sums of presence/absence matrices [49, 205]. Models for
generating such random equivalents of these matrices have a long history, starting from the
simple interchange of species between islands [188], and ending up with the theoretically
well-grounded curveball algorithm [39]. The conclusions of influential studies (e.g. [57])
have been overturned when more accurate random models were available.

The results here shown, highlight the relevance of a null model for biological modu-
larity, one which takes into account, among other things, module size and element usage
distributions. Such a model would have practical implications in the form of better stat-
istics for module-finding and enrichment-analysis algorithms, and would also help better
define what are the defining features of biological modularity.
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As has been argued extensively in Chapter 3, suggesting that biological modules are
reusable requires more precise definitions. One such possible definition is the formalization
presented in Chapter 5. In Chapter 4 we argue that any definition of modules, and the
corresponding methods, need to take into account non-local interactions of elements, as
the composition of one module is contingent on the composition of others. Furthermore, to
avoid modularity being a self-fulfilling prophecy, one must keep in mind the assumptions
built into algorithms, and the epistemic biases when interpreting their results. Steps in this
direction include the development of null models to assess the significance of statements
on the existence of biological modules, their reusability, or their independence.



Abstract

Abstract
Biological systems are often described as being composed of a set of semi-independent

modules, each of which can be ascribed its own function, evolutionary history, develop-
mental origin, or a combination thereof. One commonly accepted property of such modules
is that they are redeployed across different conditions, so that sets of elements that have
been jointly subject to evolutionary processes are re-purposed. This property of being
composed of reusable modules has been suggested as a hallmark of biological systems, and
its significance, both in an evolutionary setting and from a purely epistemic point of view,
has been long debated in literature.

In this work, a formalization of the notion of module reusability is provided, along
with an algorithm and a series of measurements that can be used to study it. The final
objective is to provide a concise and mathematically-expressible vocabulary with which to
express statements about reusability, along with the mathematical and computational tools
to assert their validity. For this purpose, references in literature to the reusable nature of
biological modules are organized, and a common minimum description is proposed.

In brief, systems are represented by a presence-absence matrix, whose columns repres-
ent conditions and whose rows represent elements. This matrix is then decomposed into
a product of two matrices, using a stochastic gradient descent algorithm, one of which
represents the compositions of modules, and the other one representing the usage of this
modules across different conditions. This decomposition is such that the resulting modules
are maximally reusable, and so upper bounds can be estimated for many properties related
to reusability. Analytical results are provided that help describe the space of decompos-
itions of a system, and which relate the problem at hand with other, related, problems
studied with the use of matrices.

Example applications of this framework are provided in this work, both for synthetic
and real biological data. The conclusion of these experiments is that the amount of mod-
ule reusability observed in a system is dependant on the reusability of individual elements.
Furthermore, it is suggested that biological systems exhibit modules which are not par-
ticularly reusable when compared to randomly-generated systems. Finally, the results
presented here suggest that a feature specific of biological systems is the distribution of
such reusabilities, with a large amount of condition specific and constitutive modules being
present.
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Zusammenfassung
Biologische Systeme werden oft so beschrieben, dass sie aus einer Reihe von halb-

unabhängigen Modulen bestehen, denen jeweils eine eigene Funktion, eine eigene Evol-
utionsgeschichte, ein eigener Entwicklungsursprung oder eine Kombination davon zuges-
chrieben werden kann. Eine allgemein akzeptierte Eigenschaft solcher Module ist, dass
sie unter verschiedenen Bedingungen wiederverwendet werden, so dass Sätze von Elemen-
ten, die gemeinsam evolutionären Prozessen unterworfen waren, wiederverwendet werden.
Diese Eigenschaft, aus wiederverwendbaren Modulen zu bestehen, wurde als Kennzeichen
biologischer Systeme vorgeschlagen, und ihre Bedeutung, sowohl in einer evolutionären
Umgebung als auch aus rein epistemischer Sicht, wird in der Fachliteratur schon lange
diskutiert.

In dieser Arbeit wird eine Formalisierung des Begriffs der Wiederverwendbarkeit von
Modulen vorgelegt, zusammen mit einem Algorithmus und einer Reihe von Messungen,
die zu seiner Untersuchung verwendet werden können. Das endgültige Ziel ist es, ein
prägnantes und mathematisch ausdrückbares Vokabular bereitzustellen, mit dem Aussagen
über die Wiederverwendbarkeit gemacht werden können, zusammen mit den mathemat-
ischen und rechnerischen Werkzeugen, um ihre Gültigkeit zu bestätigen. Zu diesem Zweck
werden Verweise in der Literatur auf die Wiederverwendbarkeit von biologischen Modulen
geordnet und eine gemeinsame Mindestbeschreibung vorgeschlagen.

Kurz gesagt, Systeme werden durch eine Präsenz-Absenz-Matrix dargestellt, deren
Spalten Bedingungen und deren Zeilen Elemente repräsentieren. Diese Matrix wird dann
mit Hilfe eines stochastischen Gradientenabstiegsalgorithmus in ein Produkt aus zwei Mat-
rizen zerlegt, von denen die eine die Zusammensetzungen von Modulen und die andere die
Verwendung dieser Module über verschiedene Bedingungen hinweg darstellt. Diese Dekom-
position ist so beschaffen, dass die resultierenden Module maximal wiederverwendbar sind,
und so können obere Grenzen für viele Eigenschaften, die mit der Wiederverwendbarkeit
zusammenhängen, geschätzt werden. Es werden analytische Ergebnisse bereitgestellt, die
helfen, den Raum der Dekompositionen eines Systems zu beschreiben, und die das vorlie-
gende Problem mit anderen, verwandten Problemen in Beziehung setzen, die mit der Ver-
wendung von Matrizen untersucht wurden.

Beispielanwendungen dieses konzeptionellen Rahmens werden in dieser Arbeit sowohl
für synthetische als auch für reale biologische Daten bereitgestellt. Die Schlussfolgerung
aus diesen Experimenten ist, dass das Ausmaß der Wiederverwendbarkeit von Modulen
in einem System von der Wiederverwendbarkeit der einzelnen Elemente abhängt. Außer-
dem wird vorgeschlagen, dass biologische Systeme Module aufweisen, die im Vergleich zu
zufällig generierten Systemen nicht besonders wiederverwendbar sind. Schließlich legen die
hier vorgestellten Ergebnisse nahe, dass ein spezifisches Merkmal biologischer Systeme die
Verteilung solcher Wiederverwendbarkeiten ist, wobei eine große Menge an zustandsspezi-
fischen und konstitutiven Modulen vorhanden ist.
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[45] F. Cheng, I. A. Kovács, and A.-L. Barabási, Network-based prediction of drug
combinations, Nature communications, 10 (2019), pp. 1–11.

[46] F. Cheng, C. Liu, B. Shen, and Z. Zhao, Investigating cellular network hetero-
geneity and modularity in cancer: a network entropy and unbalanced motif approach,
BMC systems biology, 10 (2016), p. 65.

[47] J. M. Cheverud, Phenotypic, genetic, and environmental morphological integration
in the cranium, Evolution, (1982), pp. 499–516.

[48] M. J. Choudoir, K. Panke-Buisse, C. P. Andam, and D. H. Buckley, Gen-
ome surfing as driver of microbial genomic diversity, Trends in microbiology, 25
(2017), pp. 624–636.

[49] E. F. Connor and D. Simberloff, The assembly of species communities: chance
or competition?, Ecology, 60 (1979), pp. 1132–1140.

[50] G. O. Consortium, Gene ontology consortium: going forward, Nucleic acids re-
search, 43 (2015), pp. D1049–D1056.

[51] L. Dai, T. Zhao, X. Bisteau, W. Sun, N. Prabhu, Y. T. Lim, R. M. Sobota,
P. Kaldis, and P. Nordlund, Modulation of protein-interaction states through
the cell cycle, Cell, 173 (2018), pp. 1481–1494.
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