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Summary

A K,-factor in a graph G is a collection of vertex-disjoint copies of K, covering the vertex set
of G. In this thesis, we investigate these fundamental objects in three settings that lie at the

intersection of extremal and probabilistic combinatorics.

Firstly, we explore pseudorandom graphs. An n-vertex graph is said to be (p, 8)-bijumbled if
for any vertex sets A, B C V(G), we have e¢(A, B) = p|A||B| = ﬁm. We prove that for
any 3 < r € N and ¢ > 0 there exists an € > 0 such that any n-vertex (p, §)-bijumbled graph
with n € rN, §(G) > cpn and 8 < ep”~'n, contains a K,-factor. This implies a corresponding
result for the stronger pseudorandom notion of (n, d, 1)-graphs. For the case of K3-factors, this
result resolves a conjecture of Krivelevich, Sudakov and Szabd from 2004 and it is tight due
to a pseudorandom triangle-free construction of Alon. In fact, in this case even more is true:
as a corollary to this result, we can conclude that the same condition of 8 = o(p?n) actually
guarantees that a (p, 8)-bijumbled graph G contains every graph on n vertices with maximum

degree at most 2.

Secondly, we explore the notion of robustness for Ks-factors. For a graph G and p € [0, 1], we
denote by G, the random sparsification of G obtained by keeping each edge of G independently,
with probability p. We show that there exists a C > 0 such that if p > C(logn)'/*n%/3 and G
is an n-vertex graph with n € 3N and 6(G) > 27”, then with high probability G, contains
a K3-factor. Both the minimum degree condition and the probability condition, up to the choice
of C, are tight. Our result can be viewed as a common strengthening of the classical extremal
theorem of Corrddi and Hajnal, corresponding to p = 1 in our result, and the famous probabilistic
theorem of Johansson, Kahn and Vu establishing the threshold for the appearance of K3-factors
(and indeed all K,-factors) in G (n, p), corresponding to G = K, in our result. It also implies a
first lower bound on the number of K3-factors in graphs with minimum degree at least 2, which

gets close to the truth.

Lastly, we consider the setting of randomly perturbed graphs; a model introduced by Bohman,
Frieze and Martin, where one starts with a dense graph and then adds random edges to it.
Specifically, given any fixed 0 < a < 1 - % we determine how many random edges one must
add to an n-vertex graph G with 6(G) > an to ensure that, with high probability, the resulting
graph contains a K,-factor. As one increases @ we demonstrate that the number of random edges
required ‘jumps’ at regular intervals, and within these intervals our result is best-possible. This
work therefore bridges the gap between the seminal work of Johansson, Kahn and Vu mentioned
above, which resolves the purely random case, i.e., @ = 0, and that of Hajnal and Szemerédi (and
Corradi and Hajnal for r = 3) showing that when @ > 1 — % the initial graph already hosts the

desired K, -factor.






Zusammenfassung

Ein K, -Faktor in einem Graphen G ist eine Sammlung von Knoten-disjunkten Kopien von K.,
die die Knotenmenge von G iiberdecken. Wir untersuchen diese Objekte in drei Kontexten, die

an der Schnittstelle zwischen extremaler und probabilistischer Kombinatorik liegen.

Zuerst untersuchen wir Pseudozufallsgraphen. Ein Graph heifit (p, 8)-bijumbled, wenn fiir
beliebige Knotenmengen A, B C V(G) gilt e(A, B) = p|A||B| = B+/|A||B|. Wir beweisen, dass
es fiir jedes 3 < r € Nund ¢ > 0 ein € > 0 gibt, so dass jeder n-Knoten (p, 8)-bijumbled
Graph mit n € rN, §(G) > cpnund 8 < ep”~'n, einen K, -Faktor enthilt. Dies impliziert ein
entsprechendes Ergebnis fiir den stiarkeren Pseudozufallsbegriff von (n, d, 1)-Graphen. Im Fall
von K3-Faktoren, 16st dieses Ergebnis eine Vermutung von Krivelevich, Sudakov und Szabé aus
dem Jahr 2004 und ist durch eine pseudozufillige K3-freie Konstruktion von Alon bestmoglich.
Tatséchlich ist in diesem Fall noch mehr wahr: als Korollar dieses Ergebnisses konnen wir
schliefen, dass die gleiche Bedingung von 8 = o(p?n) garantiert, dass ein (p, 8)-bijumbled
Graph G jeden Graphen mit maximalem Grad 2 enthailt.

Zweitens untersuchen wir den Begriff der Robustheit fiir K3-Faktoren. Fiir einen Graphen G
und p € [0, 1] bezeichnen wir mit G, die zufillige Sparsifizierung von G, die man erhilt, indem
man jede Kante von G unabhiingig von den anderen Kanten mit einer Wahrscheinlichkeit p
behilt. Wir zeigen, dass, wenn p = w((logn)'/*n~2/3) und G ein n-Knoten-Graph mit n € 3N
und 6(G) > %" ist, G , mit hoher Wahrscheinlichkeit (mhW) einen K3-Faktor enthilt. Sowohl die
Bedingung des minimalen Grades als auch die Wahrscheinlichkeitsbedingung sind bestmoglich.
Unser Ergebnis ist eine Verstarkung des klassischen extremalen Satzes von Corrddi und Hajnal,
entsprechend p = 1 in unserem Ergebnis, und des beriihmten probabilistischen Satzes von
Johansson, Kahn und Vu, der den Schwellenwert fiir das Auftreten eines Kj3-Faktors (und
aller K,--Faktoren) in G (n, p) festlegt, entsprechend G = K, in unserem Ergebnis. Es impliziert
auch eine erste untere Schranke fiir die Anzahl der K3-Faktoren in Graphen mit einem minimalen

Grad von mindestens 2—", die der Wahrheit nahe kommt.
3

SchlieBlich betrachten wir die Situation von zuféllig gestorten Graphen; ein Modell, bei dem man
mit einem dichten Graphen beginnt und dann zufillige Kanten hinzufiigt. Wir bestimmen, bei
gegebenem 0 < @ < 1 — %, wie viele zufillige Kanten man zu einem n-Knoten-Graphen G
mit §(G) > an hinzufiigen muss, um sicherzustellen, dass der resultierende Graph mhW
einen K,-Faktor enthilt. Wir zeigen, dass, wenn man « erhdht, die Anzahl der benétigten Zu-
fallskanten in regelméBigen Abstdnden “springt”, und innerhalb dieser Abstidnde unser Ergebnis
bestmoglich ist. Diese Arbeit schlieft somit die Liicke zwischen der oben erwihnten bahn-
brechenden Arbeit von Johansson, Kahn und Vu, die den rein zufélligen Fall, d.h. @ = 0, 16st,
und der Arbeit von Hajnal und Szemerédi (und Corradi und Hajnal fiir r = 3), die zeigt, dass der

urspriingliche Graph bereits den gewlinschten K,--Faktor enthélt, wenn @ > 1 — } ist.

vii
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Notation

Here we discuss our notational conventions and general definitions. Many of these are standard
but some notation and terminology are more specialised and catered to our needs. A glossary
for quick reference is provided at the end of the thesis and lists the notation introduced here as

well as elsewhere in the thesis.

Basics: We use [n] to denote [n] U{0}. For 0 < ¢ < n € N, we define n!; to be the number of

ways to select a list of 7 distinct numbers from [n]. That is, nly := 1 and for 1 < ¢t < n, we have

n!
ny=——=nn-1)---(n—t+1).

(n—1)!

We use the notation x = y + z to denote that x < y + z and x > y — z and we say a property
holds with high probability (whp, for short), if the probability that it holds tends to 1 as some
parameter n (usually the number of vertices of a graph) tends to infinity. Givenaset A and k € N
we denote by A the set of all ordered k-tuples of elements from A, while (’2) denotes the set of
all (unordered) k-element subsets of A. For sets X, Y with Y not necessarily contained in X, we
use X \ Y todenote X \ (X NY). We use vg and e to denote the number of vertices and edges
in G respectively. We use A(G) (resp. 6(G)) to denote the maximum (resp. minimum) degree
of a graph G and a(G) denotes the independence number of G, that is, the size of the largest
independent set in G. Throughout we use log to denote the natural (base ) logarithm function.

Finally, we drop ceilings and floors unless necessary, so as not to clutter the arguments.

Constants: At times we will define constant hierarchies within proofs, writing statements such

as the following: Choose constants
O<ci<xox...<cpxd.

This should be taken to mean that given some constant d (given by the statement we aim to
prove), one can choose all the remaining constants (the c;) from right to left so that all the
subsequent constraints are satisfied. That is, there exist increasing functions f; fori € [€ + 1]
such that whenever ¢; < fiy1(c;+1) foralli € [€ — 1] and ¢, < fr+1(d), all constraints on these

constants that are in the proof, are satisfied.

Neighbourhoods and degrees: Given a graph G, a vertex v € V(G) and aset U C V(G), we
define the neighbourhood of v in U as Ng(v;U) = {u € U : uv € E(G)}. If U = V(G), we

simply write N (v) and if G is clear from context we drop the subscript. If two vertices uy, us €

Xvii



V(G) are given, then NG (u1, up) = Ng(u1) N Ng (1) denotes the common neighbourhood of u;
and up. We will also use this notation for an edge e = uju», taking that Ng(e) = Ng(uy, us).
Similarly, if S ¢ V(G) is some subset of vertices, NG (S) = N,esNg(u) denotes the common
neighbourhood of the vertices in S and if u = (uy,...,ur) is a tuple of vertices (an ordered
set), Ng(u) = Njc¢]NG(u;) denotes the common neighbourhood of the set of vertices in u.
The parameters NG (u1, u2; U), NG (S; U) and Ng (u; U) are all defined analogously as the sets of
common neighbours that lie in U. We follow the convention that N (0) = V(G). We also define
degrees degg; (1) = |[Ng(u)| with degs (u; U), deg; (S),degs (S;U), degs; (1) and deg (u; U)

defined analogously. Again, if the graph G is clear from the context then we drop the subscripts.

Edge subsets as subgraphs: Sometimes, given a graph G and a subset of edges E’ C E(G),
we will think of E’ as the subgraph Hg: := (V(E’), E’) of G, where V(E") is the set of vertices
that lie in edges in E’. We then use notation like 6(E”) := 6(Hgr) and degg/(v) := degy,, (v).
Furthermore, for a vertex set A C V(G), E’[A] denotes the edges induced by Hg: on X. That
is, E’'[A] :={e € E' . e C A}.

Triangles and cliques: Fora graph G andr € N, r > 2, we define K, (G) to be the set of copies
of K, in G. For example, K»(G) = E(G). When referring to a (copy of a) clique S € K- (G),
we will sometimes identify the copy with the set of vertices that hosts it. That is, we may think
of § € K,-(G) as a set of r vertices that host a clique in G as well as the copy of the clique itself.
Given a set of r-cliques £ C K, (G), we use the notation V(%) to denote all vertices that feature
in cliques in X, i.e. V() := UgesS. For u € V(G) we let K, (G,u) C K,-(G) denote the subset

of cliques containing u.

Now for a vertex v € V(G), we let Tr,, (G) denote the triangle neighbourhood of v: the set of
edges in E(G) that form a triangle with v in G. That is, Tr,,(G) = {¢ € E(G) : v € Ng(e)}.
Note that K3(G,u) = {f U {u}: f € Tr,(G)}.

We say that a clique S € K- (G) traverses vertex subsets Uy, . .., U, C V(G) if there exists some
ordering of S as § = {uy,...,u,} such that u; € U; for all i € [r]. Note that when the U; are
pairwise disjoint this simplifies to requiring that S contains one vertex from each U;. However,
at times we will deal with not necessarily disjoint sets U; and so this more delicate definition is

needed.

Matchings and factors: For an r-vertex graph H (usually K, ) and an n-vertex graph G, an H-
matching in G is a collection of vertex-disjoint copies of H in G. The size of an H-matching is
the number of vertex-disjoint copies of H in the collection. Note that when H = K3 is a single

edge, an H-matching is simply a matching and when H = K3, we will also refer to a K3-matching



as a triangle matching. If an H-matching covers the vertex set of G (implying that n € rN), then
we refer to the H-matching as an H-factor in G. Thus, when H = K3, an H-factor is a perfect
matching and when H = K3, we also refer to a Ks-factor as a triangle factor. At times, we will
refer to an H-matching as a partial H-factor. Although these two terms refer to the same objects,
we reserve the use of partial factors for when there is an aim for the partial H-factor/H-matching
to contribute to a full H-factor. Finally, if a partial H-factor covers the majority of the vertices

of G, we will sometimes (informally) refer to it as an almost H-factor.

Graph embeddings: Throughout, we will deal exclusively with ordered embeddings of graphs,
which we also refer to as labelled embeddings. Thus when we refer to an embedding of H in G,
we implicitly fix an ordering on V(H), say V(H) := {hj,...,h,,} and say that there is an
embedding of H onto an (ordered) vertex set {vi,...,v,,} € V(G) if v;v; € E(G) for all i
and j such that h;h; € E(H).

Vertex sets and tuples in tripartite graphs: For a portion of this thesis, we will be concerned
with the host graph being a balanced tripartite graph. In such a setting, we will take as convention
that the disjoint vertex sets that form the tripartition are labelled V!, VZ and V3 and are each of
size n. It will be useful for us to considered ordered tuples of vertices from these vertex sets.
We therefore fix V = {0} UV U (V! x V?) U (V! x V? x V3). That is, an element u € V is a
vector of some length 0 < £(u) < 3 such that for each i < £(u), we have that u contains exactly

one vertex from V*.

Vertex sets with elements removed: Given a graph G, a collection of vertices uy,...,us €

.....

V(G) and a subset of vertices W C V(G), we use the notation Wy, 5, to denote the subset W

with the u; removed. That is,

fie =WN\NWn{ug,...,ue}).

.....

Note that we do not impose that the u; need lie in W. We remark that we add a hat on the
removed vertices u; in this notation to distinguish it from similar notation, which we introduce
later, where vertices appear in subscripts without hats, signalling that these vertices are used for

certain purposes.

To ease notation, we will sometimes group together some of the collection of vertices we wish
to omit, as an ordered tuple. For example, if u = (uy,...,ur) € V for some ¢ € [3]y as above,
we define Wy = Wy, . a,.



Partial triangle factors in tripartite graphs: We will be concerned with embedding partial
triangle factors in a given host tripartite graph. Fort € [n]g, we therefore define D, to be the graph
on vertex set [¢] X [3], whose edge set consists of the edges {{(s,7), (s, j)} : s € [t],i # j € [3]}.

Thus D, simply consists of # labelled vertex-disjoint triangles.

Given a graph G on a fixed vertex partition V! U V2 U V3 as above, we define ¥/ (G) to
be the collection of labelled embeddings of D, into G, that map [¢] x {i} to a subset of V'’
for i € [3]. We will be interested in embeddings that fix certain vertices to be isolated.
Givenu = (u1,...,ur) € Voflength £ < 3asaboveandt € [n—1], we define ¥, (G) € ¥/ (G)
to be those ¥ € W (G) for which ¥ ((s,i)) # u; foralli € [¢] and s € [f]. ThatEs, we fix the ¢

vertices in u to be isolated in the embedding of D;.

We remark that if u = 0, then ‘PL (G) = ¥"(G) and also note that for an arbitrary u € V one has
that W%, (G) = W' (G,) where G is considered as a tripartite graph on partition Vﬁ1 v Vﬁ2 U Va3'

Finally, given a vertex v € V!, we denote by ¥, (G) C W/ (G) the set of embeddings y € ¥ (G)
for which ¢ ((1,1)) = v.

Induced subgraphs: For a graph G = (V,E) and some U C V, we define G[U] to be the
subgraph of G induced by U, thatis V(G[U]) = U and E(G[U]) = {e € E : e c U}. Similarly,
given disjoint subsets Uy, ..., Uy C V, we define G[Uy, ..., U] to be the k-partite subgraph
of G induced by Uy, ..., U, thatis V(G[U]) = U; U...U U and

E(G[Uy,....Ur])={e€E:ecUjU...UUrand lenU;| < 1foralli € [k]}.

Given a graph G and a collection of vertices u1, ..., uy, we consider the graph induced after
o = G[Va,,...a], where V.= V(G). For a

tuple of vertices u, the graph G is defined analogously.

removing the u;, by defining the shorthand G,

..........

The notation above will be used for large ‘host’ graphs G with n vertices. In relation to small
graphs (of constant size), we will adopt the following notation. Given a graph F and a vertex
subset W c V(F), F\ W denotes F[V(F) \ W] and if W = {w} we will drop the set brackets,
simply writing F \ w to denote F \ {w}.

Hypergraphs: If # is an r-uniform hypergraph for some r € N and v, u € V(¥€), deg” (v)
denotes the number of edges in /€ containing v, and codeg‘% (u, v) denotes the number of edges
of #€ that contain both u and v. If the hypergraph #€ is clear from context, we drop the
superscripts. If #€ is an r-uniform hypergraph with r > 3 and J is a 2-uniform graph on the
same vertex set V(#€), then #€; denotes the subhypergraph of 7€ given by all edges of F that

contain some edge of J.



Graph unions and differences: If G is a graph on the same vertex set as G we write G U G
to denote the graph on vertex set V(G) with edge set E(G) U E(G). For graphs G and G on the
same vertex set with G a subgraph of G, we let G \ G denote the graph on V(G) given by the
set of edges that feature in G but not in G. If 7€’ and #€ are r-uniform hypergraphs with #¢’ a
subgraph of €, then #€ \ 7’ is defined similarly.

Graph blowups: We write K,

mymo.....m, L0 denote the complete r-partite graph with parts

of size my,...,m,. For a graph J on r vertices {vy,...,v,} and my,...,m, € N, we define

the blow-up of J to be the r-partite graph J,,, .., with vertex set P U P, U ... U P,, such

.....

that |P;| = m; and forall i, j € [r] andw € P;, w’ € P; we have ww’ € E(J,,,
ifV,‘Vj € E(J)

m,) if and only

.....






Chapter 1

Introduction

In this thesis we study clique factors. We say a graph G contains a K,-factor if there is a
collection of vertex-disjoint copies of K, that completely cover the vertex set of G. When r = 3,
we often refer to a K3-factor as a triangle factor. As anatural generalisation of a perfect matching
in a graph, K, -factors are a fundamental object in graph theory with a wealth of results studying
various aspects and variants. However, unlike perfect matchings, it is not easy to verify whether
a graph G contains a K,.-factor or not. Certainly it is necessary that the number of vertices of G
must be divisible by r but given this, it was proved by Schaeffer [102] (in the case r = 3) and by
Hell and Kirkpatrick [92] (in general) that determining if a graph on n € rN vertices contains

a K, -factor is an NP-complete problem.

Given that we cannot hope for a nice characterisation of graphs which contain K,-factors, it
is natural to study the relationship between the property of containing a K,-factor and other
graph parameters. In particular, one can investigate notions of density and this leads to two
fundamental questions. From an extremal perspective, we can ask what density condition forces
the existence of a K,-factor. Here it makes sense to use the minimum degree of a graph as the
density parameter to avoid superficial examples, such as graphs with isolated vertices. From a
probabilistic perspective, we can ask what density condition forces the existence of a K,--factor
in almost all graphs that satisfy the condition. This corresponds to determining the threshold
for the appearance of a K,-factor in G(n, p). These questions are now well-understood, as we
will discuss in detail shortly, and they have inspired many further directions of research. Indeed,
problems concerning clique factors, as well as the proof methods that have been used to solve

them, have been highly influential in extremal and probabilistic combinatorics.

In this thesis, we explore three modern perspectives, each of which merge extremal and prob-
abilistic viewpoints. Firstly, we look at the setting of pseudorandom graphs (discussed in
Section 1.4), where we ask what conditions on density and pseudorandomness force the exist-

ence of a K,--factor. Here, by imposing a pseudorandom condition on a graph we mean (loosely)

1
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that we require the graph to emulate a random graph of the same density. Secondly, we look at the
robust setting (discussed in Section 1.5) which looks at clique factors in random sparsifications
of dense graphs. That is, in dense graphs G which are guaranteed to contain a K, -factor (as they
are above the extremal minimum degree threshold), we ask what density condition forces the
existence of K,.-factors in almost all subgraphs of G. Finally, we look at the randomly perturbed
setting (discussed in Section 1.6) which asks how many random edges need to be added to an
arbitrary graph of a given density in order to force the existence of a K,-factor. In each setting,
we are able to provide a complete answer to these questions in certain regimes of parameters,
in particular for triangle factors, by giving tight results. The main theorems of this thesis are
Theorem I in Section 1.4, Theorem II in Section 1.5 and Theorem III in Section 1.6. Before
discussing these results in detail, we first present the relevant context, looking at the extremal
setting in Section 1.1, the probabilistic setting in Section 1.2, and discussing the closely related

topic of Hamiltonicity in Section 1.3.

1.1 The extremal perspective

The earliest result on clique factors is the well-known theorem of Corradi and Hajnal [44], who

showed that a triangle factor is guaranteed if the host graph is sufficiently dense.

Theorem 1.1.1 (Corradi-Hajnal [44]). If G is an n-vertex graph with n € 3N and §(G) > %"

then G contains a triangle factor.

This theorem was then extended by Hajnal and Szemerédi [78] who determined the minimum
degree needed to guarantee a K,-factor for larger r € N. In fact, Hajnal and Szemerédi proved a
stronger result on so-called equitable colourings, solving a conjecture of Erdds, from which the
theorem below follows as a corollary. This is discussed further in Section 2.5. See also [105] for

a short proof of Theorem 1.1.2.

Theorem 1.1.2 (Hajnal-Szemerédi [78]). If3 < r € Nand G is a graph on n € rN vertices with

minimum degree §(G) > (1 — %)n, then G contains a K,-factor.

The result is tight, as can be seen, for example, by taking G to be a complete graph with a
clique of size 7- + 1 removed to leave an independent set of vertices, say /. One then has
that 6(G) = (1 - %)n — 1 and G does not have a K,.-factor. Indeed, any copy of K, in a family of
vertex-disjoint K,s can use at most one vertex of / but a K,.-factor should contain 7+ < |I| copies
of K.

This celebrated result thus captures a family of dense graphs that contain K, -factors, providing

a sufficient condition that is computationally easy to verify. However, the condition requires
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the host graph to be very dense and there are many other graphs containing K,-factors that are
not captured by Theorem 1.1.2. Indeed, as we will see in the next section, almost all graphs
contain K, -factors and this remains true when we focus on much sparser graphs. In this thesis,
we will explore these ideas further, showing that graphs that fall below the extremal minimum
degree threshold given by Theorem 1.1.2 and do not contain K,.-factors are atypical (Section 1.4)
and are close to containing a K, -factor (Section 1.6). Moreover, for triangle factors we will see
that the minimum degree threshold given by Theorem 1.1.1 actually guarantees much more than
2n

a single triangle factor, showing that graphs with 6(G) > 5* are robust with respect to containing

triangle factors (Section 1.5).

Before moving on we mention that Theorem 1.1.1 and Theorem 1.1.2 have inspired many results
in extremal graph theory, with generalisations obtained in several directions. Treglown [173]
obtained a degree-sequence version of Theorem 1.1.2 and Keevash and Mycroft [104] proved
an analogue of the Theorem 1.1.2 in the setting of r-partite graphs, whilst there are now several
generalisations in the setting of directed graphs (see e.g. [51, 52, 172]). Further results are

discussed in detail in Chapter 6.

1.2 The probabilistic perspective

Recall that the random graph G(n, p) consists of a vertex set [n] := {l,...,n} where each
edge is present with probability p = p(n), independently of all other choices. We say that a
function p* = p*(n) is a threshold for a (monotone increasing!) graph property P if there exists

constants C, ¢ > 0 such that:

(i) If p = p(n) = Cp*, we have that whp G (n, p) satisfies P.

(ii) If p = p(n) < cp* we have that whp G (n, p) does not satisfy P.

Moreover, we say that p* is a sharp threshold for P if for all € > 0, (i) remains valid with the
condition p > (1 + &)p* and (ii) remains valid with the condition p < (1 — &)p*. As is usual
in random graph theory, we will sometimes refer to the threshold for a graph property, despite
the fact that the threshold function is not unique (but rather unique up to a constant factor).
Thresholds give us a way to study the set of all graphs of a certain density with respect to a
certain graph property #. Indeed, standard results (see for example [95, Section 1.4]) show that
if  is monotone increasing with threshold p* and 1 < m < (’;) is such that m = w(p*n?), then

almost all graphs with n vertices and m edges satisfy . That is, a uniformly random graph

1A graph property P is monotone increasing if for two graphs G, G’ on n vertices, G being a subgraph of G’
and G satisfying # implies that G’ satisfies P.
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with m edges will whp satisfy P. Likewise, if m = o(p*n?) then almost all graphs with m edges
will not satisfy P.

In the early 1990s, the problem of determining the threshold for the property that G(n, p)
contains an H-factor? attracted the attention of Erdds (see [63]). Indeed, as well as raising the
general problem, Erdds particularly focused on the case when H = K3, addressing the expected
number p*('z‘) of random edges at the threshold p* for triangle factors in G(n, p) and stating

that ‘the correct answer will be probably about n*/3

edges but perhaps a little more will be
needed’, and he cautioned that ‘the lack of analogs to Tutte’s theorem may cause serious trouble’
in establishing the threshold. This caution turned out to be well-founded as for a number of
years even the case of triangles remained quite stubborn. However, in 2008, spectacular work
of Johannson, Kahn and Vu [96] not only resolved the problem for K3-factors, but the general
problem of H-factors for all so-called strictly balanced graphs H as well as the analogous
problem for hypergraphs. We discuss these variations in more detail in Chapter 6 and state their

result only in the case of clique factors here.

Theorem 1.2.1 (Johansson—-Kahn—Vu [96]). Let n € N be divisible by r € N where r > 3. Then
the threshold function for containing a K, -factor in G (n, p) is

pi(n) = n"2/" (logm)? ")

The fact that the threshold for containing K, -factors is at least p} (n) was known before [96] and
follows from the fact that p; (n) is the threshold for the property that every vertex is contained in
acopy of K- in G (n, p), as shown originally by Spencer [163] (see also [95, Theorem 3.22 (ii)]).
Establishing the upper bound on the threshold was much more challenging and initial progress
focused on triangle factors with Ruciriski [155] and independently Alon and Yuster [13], giving
an upper bound of n~'/?(logn)!'/?> on the threshold. Krivelevich [119] then improved this

to n=3/5

with a proof that is often cited as one of the first instances of the absorption method (see
Section 2.8). Kim [106] then improved the upper bound further to n~''/!8 before the problem
was finally resolved by Johansson, Kahn and Vu [96] with an involved probabilistic proof relying

on the use of entropy (see Section 2.3).

Recent results of Kahn [99, 100] in the setting of perfect matchings in random hypergraphs, along
with coupling arguments of Riordan [153] and Heckel [90] have established a sharp threshold
for K,-factors in G (n, p). We remark also that a recent breakthrough result of Frankston, Kahn,
Narayanan and Park [69], which gives a very general result for thresholds, gives an upper bound
on the threshold for containing a K,-factor in G(n, p) but falls short of the correct threshold,

requiring a log(r) factor rather than log(n)?/ "=,

2Recall from the Notation Section that an H-factor in a graph G is a collection of vertex-disjoint copies of H in G
that cover the vertex set of G.
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1.3 A detour to Hamiltonicity

Before discussing the results of this thesis, we briefly introduce another fundamental spanning
structure in graph theory. A Hamilton cycle in a graph G is a cycle covering all the vertices
of G and a graph that contains a Hamilton cycle is said to Hamiltonian. Hamilton cycles have
been thoroughly studied in many contexts and through studying Hamiltonicity, various new
phenomena have been discovered, setting trends for further research. Indeed many interesting
questions about clique factors (for example those we consider in Sections 1.5 and 1.6) have been
inspired by results for Hamiltonicity and establishing analogous results for clique factors often

poses a considerable challenge. Here, we collect the seminal results on the subject.

One of the cornerstone theorems of extremal combinatorics is the classical theorem of Dirac [55]

establishing the minimum degree threshold for Hamiltonicity.

Theorem 1.3.1 (Dirac [55]). Any n-vertex graph G with 6(G) > 5 is Hamiltonian.

This resultis tight by considering, for example, a complete bipartite graph with parts of size | 5 |+1
and [57]~1. Inrandom graphs, the threshold for Hamiltonicity was established by KorSunov [116]
and independently Pésa [149].

Theorem 1.3.2 (KorSunov [ 1 16], Pésa [149]). The threshold for Hamiltonicity in G (n, p) is k’%.

As with Theorem 1.2.1, the lower bound for the threshold is not difficult. Indeed, if p < c@
for ¢ < 1, then whp G (n, p) contains an isolated vertex and so cannot contain a Hamilton cycle.
Proving the upper bound for the threshold was a long-standing open problem in random graph
theory. KorSunov [116] in fact established a sharp threshold and Komlés and Szemerédi [114]
gave an even more precise threshold result using similar methods. An alternative (simpler)
approach to establishing the threshold for Hamiltonicity has only recently been discovered by
Frankston, Kahn, Narayanan and Park [69] and follows from their general result on thresholds
mentioned above. We refer the reader to the annotated bibliography of Frieze [70] for an in-depth

discussion of the many further results on Hamiltonicity in random graphs.

1.4 The pseudorandom perspective

Although Theorem 1.2.1 implies that almost all graphs of density w(p; (n)) have K, -factors, we
cannot use it to establish if some given graph G contains a K,.-factor. However, it suggests that
we can capture much sparser graphs with K, -factors that are not covered by Theorem 1.1.2, by

adding conditions that preclude atypical behaviour.
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This naturally leads us to the notion of pseudorandom graphs, which are, roughly speaking,
graphs which imitate random graphs of the same density. The study of pseudorandom graphs,
initiated in the 1980s by Thomason [169, 170], has become a central and vibrant field at the
intersection of Combinatorics and Theoretical Computer Science. We refer to the excellent
survey of Krivelevich and Sudakov [126] for an introduction to the topic. One way of imposing
pseudorandomness is through the spectral notion of the eigenvalue gap. This then leads to
the study of (n, d, 1)-graphs G which are d-regular n-vertex graphs with second eigenvalue A.
By second eigenvalue, what is actually meant is the second largest eigenvalue in absolute
value as follows. Given an n-vertex d-regular graph G, we can look at the eigenvalues of the
adjacency matrix A of G which, as A is a symmetric 0/1-matrix, are real and can be ordered
as A1 > A > ... = A,. The second eigenvalue is then defined to be A := max{|4;|, |1,]}.
It turns out that this parameter A controls the pseudorandomness of the graph G, with smaller
values of A giving graphs that have stronger pseudorandom properties. More concretely, the
relation is given by the following property of (n, d, 1)-graphs, see e.g. [126, Theorem 2.11],
which is known as the Expander Mixing Lemma and shows that A controls the edge distribution

between vertex sets. For any vertex subsets A, B of an (n, d, 1)-graph G, one has that

d
e(A, B) - —|Al[B]| < WIA||BI, (1.4.1)

where e(A, B) := [{uv € E(G) : u € A,b € B}| denotes the number3 of edges in G with one
endpoint in A and the other in B. Note that % is the density of the graph G, and hence one
would expect to see %lAl |B| edges between the vertex sets A and B in a random graph G. The

pseudorandom parameter A then controls the discrepancy from this paradigm.

It follows from simple linear algebra, see e.g. [126], that for an (n, d, 1)-graph, one has that A < d
always and moreover, as long as d is not too close to n, say d < 2, one has that 1 = Q(Vd).
Thus, we think of (n,d, 1)-graphs with 1 = ©(Vd) as being optimally pseudorandom. For
example, it is known that random regular graphs are optimally pseudorandom (7, d, 1)-graphs

whp [31, 43, 171].

A prominent theme in the study of pseudorandom graphs has been to give conditions on the
parameters, n, d and A that guarantee certain properties of an (n, d, 1)-graph. For example, it
follows easily from (1.4.1) that any (n, d, 1)-graph G with 2 < %2 contains a triangle as there is
an edge in the neighbourhood of every vertex. In particular, any optimally pseudorandom graph
with d = w(n?/?) must contain a triangle. Moreover, this condition is tight due to a triangle-free
construction of an (n, d, 1)-graph due to Alon [7] with d = ©(n?/3) and 1 = ©(n'/?). Alon’s
construction is optimally pseudorandom and Krivelevich, Sudakov and Szabé [127] generalised
it to the whole possible range of densities. That is, for any d = d(n) such that Q(n?*3) = d < n,

they gave a sequence of infinitely many » and triangle-free (n’, d, 1)-graphs with n’ = ©(n)

3Note that edges that lie in A N B are counted twice.
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and A = @(%2) In general, finding optimal conditions for subgraph appearance in (n, d, A)-
graphs seems very hard. Indeed the only tight conditions that are known are those for fixed size
odd cycles [11, 126]. With respect to spanning structures, before the work presented here, it
was only perfect matchings that had been well understood [32, 37, 126]. Whilst such questions
are interesting in their own right, they also have implications in other areas of mathematics. As
an example, we mention the beautiful connection given by Alon and Bourgain [8] (see also [2])
who used the existence of certain subgraphs in pseudorandom graphs to prove the existence of

additive patterns in large multiplicative subgroups of finite fields.

Here, we answer what has become one of the central problems in this area, by giving a tight

condition for an (n, d, 1)-graph to contain a triangle factor.

Theorem I*. There exists € > 0 such that any (n,d,A)-graph with n € 3N and 1 < ‘g—dz,

n

contains a triangle factor.

Theorem I* was conjectured by Krivelevich, Sudakov and Szabé [127] in 2004. Focusing solely
on optimally pseudorandom graphs, that is, setting 1 = ©(Vd), Theorem I* gives that any
optimally pseudorandom graph with d = w(n?/?) contains a triangle factor. Comparing this
to Theorem 1.1.1, we see that imposing pseudorandomness, which is easy to compute via the
second eigenvalue, allows us to capture much sparser graphs which are guaranteed to contain a

triangle factor.

Theorem I* (and the more general Theorem I below) conclude a body of work towards the
conjecture of Krivelevich, Sudakov and Szab6 and the proof of the theorem, discussed in detail
in Section 3.1, builds upon the many beautiful ideas of various authors, which have arisen in this

study. The first step towards the conjecture was given by Krivelevich, Sudakov and Szabé [127]

ed?
n?logn

themselves, who showed that 4 < for some sufficiently small ¢ is enough to guarantee

a triangle factor. This was improved to 1 < gn‘_ﬁjf by Allen, Bottcher, Han, Kohayakawa and

Person [3] who also proved that the same condition guarantees the appearance of the square

of a Hamilton cycle, a supergraph of a triangle factor (see Section 6.1.2 for more on this).

ed?
nlogn

Nenadov [145] then got very close to the conjecture, showing that 1 < guarantees a
triangle factor. Concentrating solely on optimally pseudorandom graphs, these results imply that
having degree d = w(n*?(logn)??), w(n**) and w((nlogn)?/?) respectively, guarantees the

existence of a triangle factor.

In a different direction, one can fix the condition that 4 < ssz for some small € > 0 and prove
the existence of other structures giving evidence for a triangle factor. Again, this was initiated by
Krivelevich, Sudakov and Szabé [127] who proved that with this condition, one can guarantee
the existence of a fractional triangle factor. That is, they showed that there is some function w
which assigns a weight w(T') € [0, 1] to each triangle T in a pseudorandom graph G, such that for

every vertex v € V(G), one has that the sum 3, . w(T') of the weights of triangles containing v
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is precisely equal to 1. Imposing {0, 1}-weights recovers the notion of a triangle factor and
a fractional triangle factor is thus a natural relaxation. Another interesting result of Sudakov,
Szabé and Vu [166] showed that when we have 1 < gsz, we have many triangles and these
are well distributed in the (n,d, A)-graph G. Indeed they proved a Turdn-type result showing
that any triangle-free subgraph of such a graph G must contain at most half the edges of G. A
more recent result due to Han, Kohayakawa and Person [85, 86] shows that A4 < 87‘12 guarantees
the existence of an almost triangle factor; that there are vertex-disjoint triangles covering all

but n%7/648 vertices of such an (n, d, )-graph.

We will deduce Theorem I* from a more general theorem (Theorem I below) which deals
with K,.-factors for all » > 3 and works with a larger class of pseudorandom graphs where we do
not restrict solely to regular graphs. Indeed, we will work with following notion of bijumbledness,
whose usage dates back to the original works of Thomason [169, 170], and whose definition

captures the key property of edge distribution, given for (n, d, 1)-graphs by (1.4.1).

Definition 1.4.1. Letn € N, p = p(n) € [0,1] and 8 = B(n, p) > 0. An n-vertex graph G =
(V,E) is (p, B)-bijumbled if for every pair vertex subsets A, B C V, one has that

le(A, B) — plAl|B|| < BVIAI|B. (1.42)

Note that, due to (1.4.1), (n, d, 1)-graphs are (%, A)—bijumbled. As with (n, d, 1)-graphs, we are
interested in finding conditions on the parameters n, p and §, that guarantee the existence of
certain subgraphs in n-vertex (p, 8)-bijumbled graphs. Our main theorem gives conditions for

the existence of K,--factors for all » > 3 in this setting.

Theorem 1. For every3 < r € N and ¢ > 0 there exists an € > 0 such that any n-vertex (p, 8)-

bijumbled graph with n € rN, §(G) > cpn and B < ep”~'n, contains a K,-factor.

We remark that the condition that §(G) > cpn is natural. Indeed Definition 1.4.1 implies that
almost all vertices will have degree at least cpn and some lower bound on minimum degree is
necessary to avoid isolated vertices. Theorem I* follows directly from Theorem I and much of
the context and past results discussed above have analogous statements when » > 4 with many
authors also working in the more general setting of (p, 8)-bijumbled graphs. In particular, for

all » > 3, a condition of 8 = o(p”"~'n) guarantees a copy of K, and before Theorem I the best

condition known for ensuring a K, -factor was 8 = o(lf;;n") due to Nenadov [145]. Another
result due to Han, Kohayakawa, Person and the author [83] appeared at roughly the same time
as that of Nenadov and gave a condition of 8 = o(p”n) for a K,-factor, which for r > 4 gives a
stronger result than the previously best known condition of Allen, Bottcher, Han, Kohayakawa
and Person [3]. Although this condition is weaker than Nenadov’s only when the bijumbled
graph is very dense, it turns out that the proof methods of both results will be useful in proving

Theorem 1.
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There is one key difference in the picture for the case when r = 3 and when r > 4: the tightness
of the condition 8 = o(p”~'n) for both the clique and the clique factor when r > 4 is unknown.
We defer a more in depth discussion of this to our concluding remarks (Chapter 6) and conclude
this section by again focusing on the most interesting case of triangle factors where we know that
Theorem I and Theorem I* are tight due to the construction of Alon [7] (and its generalisation to
the whole range of densities by Krivelevich, Sudakov and Szabé [127]) discussed above. Indeed,
one of the reasons that the Krivelevich-Sudakov-Szab6 conjecture (Theorem I*) has attracted
so much attention is that it marks a distinct difference between the behaviour of random graphs
and that of (optimally) pseudorandom graphs. In random graphs, we know that triangles appear
at density roughly p = n~', whilst for triangle factors the threshold is considerably denser,

namely p = n~23(logn)'/3

as given by Theorem 1.2.1. On the other hand, there exists triangle-
free, optimally pseudorandom graphs with density roughly n~!/3, but Theorem I asserts that any
pseudorandom graph whose density is a constant factor larger than this is guaranteed to have not
only a triangle but a triangle factor. Furthermore, it follows from Theorem I and (the proof of) a

result of Han, Kohayakawa, Person and the author [84] that even more is true.

Corollary 1.4.2. For every ¢ > 0 there exists an € > 0 such that any n-vertex (p, B)-bijumbled
graph with §(G) > cpn and B < ep®n is 2-universal. That is, given any graph F on at most n
vertices, with maximum degree 2, G contains a copy of F. In particular, any (n,d, A)-graph G

) 2, )
with A < % is 2-universal.

Our proof of Theorem I incorporates discrete algorithmic techniques, probabilistic methods, frac-
tional relaxations and linear programming duality, and the method of absorption. In Section 3.1

we discuss the proof in detail.

References: The results discussed in this section and proven in Chapter 3, as well as the theory
developed in Sections 2.6 and 2.7, represent work of the author [141] which has been submitted
for publication. An accompanying conference version [140] of this work deals solely with the

setting of Theorem I*.

1.5 The robust perspective

In this section, we restrict the discussion to triangle factors. Although, as we have seen, the
premise of Theorem 1.1.1 cannot be weakened, one can ask whether the conclusion can be
strengthened. Indeed, as we have seen in Section 1.2 and Section 1.4, the extremal examples
that force the minimum degree threshold of Theorem 1.1.1 to be large, are rare and atypical.
Therefore it is natural to expect that the minimum degree threshold actually guarantees much
more than just a single triangle factor. The aim here is to show that this is indeed the case and

we provide a robust version of the Corrddi—Hajnal theorem which shows that any graph G as in
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Theorem 1.1.1 is robust with the property of having a triangle factor: informally, there are many
triangle factors within G and these are well-spread around the graph. Before explaining our
results in detail, we take a brief detour to discuss robustness with respect to Hamiltonicity, which
has been explored extensively and acts as an indicative example for what type of robustness

results one can expect.

The idea that graphs satisfying Dirac’s condition (Theorem 1.3.1) are robustly Hamiltonian in
some sense, has been around for some time, with various measures of robustness being proposed.
For example, Sarkozy, Selkow and Szemerédi [156] showed that there exists a constant ¢ > 0
such that any n-vertex graph G with 6(G) > 5 contains at least ¢""n! > (c*n)" Hamilton cycles.
This is tight up to the value of ¢ and the authors of [156] conjectured that one can in fact
take ¢ = % — 0(1), which was settled by Cuckler and Kahn [50]. This value of ¢ is best possible,

as can be seen by considering G (n, p) with p = % +o(1).

Having a large number of Hamilton cycles is compelling evidence for such graphs being robustly
Hamiltonian but this property alone does not preclude the possibility that these Hamilton cycles
are somehow concentrated on a small part of the graph, for example that many of them share
a small subset of edges. Further research has gone into proving stronger notions of robustness,
for example showing the existence of many edge-disjoint Hamilton cycles [48, 143, 144] or the
existence of a Hamilton cycle when an adversary forbids the use of certain combinations of

edges [47, 122, 124]. We refer to the nice survey of Sudakov [165] on the matter for more details.

The notion of robustness we will be interested in here is that almost all spanning subgraphs
of G contain a Hamilton cycle. To formalise this, for some p € [0, 1] we define the random
sparsification of a graph G (with respect to p), denoted G ,, to be the graph obtained by keeping
every edge of G independently with probability p. Krivelevich, Lee and Sudakov [122] used
random sparsifications to show that graphs satisfying Dirac’s condition are robustly Hamiltonian.

They proved the following remarkable result.

Theorem 1.5.1 (Krivelevich—Lee—Sudakov [122]). There is a constant C > 0 such that for
allneNand p > C@, the following holds. If G is an n-vertex graph with 6(G) > 7, then
whp G, is Hamiltonian.

Of course, one cannot relax the minimum degree below Dirac’s threshold of % Moreover, the

.. J . . . log
condition on the probability cannot be significantly relaxed, asif c < 1 and p < ¢ n" then G,

will whp not be Hamiltonian (see Section 1.3).

Theorem 1.5.1 is a common strengthening of two cornerstone theorems in extremal and prob-
abilistic graph theory, namely Theorem 1.3.1 (corresponding to p = 1) and Theorem 1.3.2
(corresponding to G = K},). Another strength of Theorem 1.5.1 is that the robustness given by

this notion is relatively strong. Indeed, one can easily infer other notions of robustness from
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Theorem 1.5.1. For example, as every Hamilton cycle in a graph G survives in G, with prob-

ability p", by considering the expected number of Hamilton cycles in G ,, we can conclude that

any graph G with 6(G) > 7 has at least (1§;n)n Hamilton cycles for some ¢ > 0, which is only
slightly weaker than the aforementioned results counting Hamilton cycles [50, 156]. One can
also obtain many edge-disjoint Hamilton cycles by considering a random partition of the edges

of G.

For triangle factors, a robustness version of the Corrddi—Hajnal Theorem follows from the sparse
blowup lemma [2, Theorem 1.11]: This general result implies that fory > Oand p > C (l(’%) 12
any n-vertex graph G with minimum degree 6(G) > (% +7)n satisfies that G , whp has a triangle
factor. Turning this into an exact result in terms of the minimum degree condition requires more

work, and moving to smaller probabilities p is substantially harder.

Here we achieve both, showing that graphs G satisfying the properties of the Corrddi—Hajnal
Theorem are strongly robust for triangle factors: G, retains a triangle factor all the way down to
the threshold probability p for triangle factors. This is an analogue to Theorem 1.5.1 for triangle

factors.

Theorem IL. There is a constant C > 0 such that for all n € 3N and p > C(logn)'3n=2/3 the

following holds. If G is an n-vertex graph with 6(G) > 27" then whp G, has a triangle factor.

As with Theorem 1.5.1, both the minimum degree condition and the condition on the probability

are tight and Theorem II provides a common generalisation of Theorem 1.1.1 and Theorem 1.2.1.

Our proof of Theorem II builds on an alternative proof of Theorem 1.2.1 for triangle factors
in G(n, p) due to Allen, Béttcher, Davies, Jenssen, Kohayakawa and Roberts [6]. This proof in
turn shares some of the key ideas with that of Johansson, Kahn and Vu [96] (as well as [99, 100]),
in particular the use of entropy, but follows a different scheme of ‘building’ our triangle factor
one triangle at a time. This scheme provides the opportunity for us to strengthen the proof to

deal with incomplete graphs G. We defer a detailed discussion of our proof to Section 4.1.

As a corollary to Theorem II, we can provide a lower bound on the number of triangle factors in

every graph G with 6(G) > %"

Corollary 1.5.2. There exists a c > 0 such that any graph G withn € 3N vertices and §(G) > 27"

cn 2n/3
((log n)”z)

contains at least

triangle factors.

Corollary 1.5.2 follows easily from Theorem II by considering the expected number of tri-

angle factors in G, and the fact that each triangle factor survives in G, with probability p".
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Indeed, for a graph F let T(F) denote the number of triangle factors in F. Theorem II im-
plies P [T(Gp) > 1] > % for p > C(logn)'3n2/3, for G as in Corollary 1.5.2, and for n
sufficiently large. Since further E [T(G p)] =T(G)p" we get

1
2 n2/3

implying Corollary 1.5.2 for ¢ sufficiently small.

To our knowledge, Corollary 1.5.2 is the first of its kind and it gets close to the truth. Indeed,
letting n € 3N and H = G (n, g) be the binomial random graph with ¢ = % + o(1), we have that

whp H has minimum degree at least 2?" and the expected number of triangle factors in H is

2n/3

(V3

q"'n!
(n/3)!6"/3

=1 +0o(1))

It is believable that every graph as in Corollary 1.5.2 has at least this many triangle factors. As
a first step, removing the (logn)'/? from the expression in Corollary 1.5.2 poses an interesting

open problem.

We conclude this section by discussing several further results that have built on the idea of
using random sparsifications to give robustness. Recent results of Johansson [97] and Alon and
Krivelevich [14] strengthen Theorem 1.5.1 to establish ‘hitting time’ results and the existence
of families of edge-disjoint Hamilton cycles (whilst requiring a slightly stronger condition
that 6(G) > (% + &)n for some & > 0). Frieze and Krivelevich [71] studied Hamilton cycles in
random subgraphs of pseudorandom graphs and a recent breakthrough of Condon, Espuny Diaz,
Girdo, Kiihn and Osthus [38, 39] established a tight condition for the Hamiltonicity of random
subgraphs of the hypercube. In the setting of graphs satisfying a minimum degree condition, the
existence of long paths and cycles [57, 75, 123, 152] have also been extensively studied as well

as perfect matchings [74, 77].

References: The results discussed in this section and proven in Chapter 4, as well as the
theory developed in Sections 2.2 and 2.3, represent joint work with Peter Allen, Julia Béttcher,
Jan Corsten, Ewan Davies, Matthew Jenssen, Barnaby Roberts and Jozef Skokan [5] which is

currently being prepared for submission. A preliminary version of this work appeared in [45].

1.6 The randomly perturbed perspective

In the previous section, we discussed graphs G above the minimum degree threshold for clique
factors and the effect of taking random sparsifications, looking at subgraphs of the form G, =

G N G(n, p). In this section, we will use random edges to help with the existence of a clique
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factor, starting with dense graphs G below the extremal threshold and looking at graphs of the
form G U G(n, p) after adding random edges. We will see that when a graph G is dense and
avoids a clique factor, it is, in a sense, close to containing a clique factor, in that a small random
perturbation of G results in a graph which does contain a clique factor. Moreover, by exploring
the optimal amount of random edges needed in the whole range of positive densities, we bridge
the gap between the extremal (Section 1.1) and probabilistic (Section 1.2) perspectives for the

problem of clique factors.

The idea of studying the effect of random perturbations appeared almost simultaneously in
two distinct settings. In Computer Science, Spielman and Teng [164] introduced the notion
of smoothed analysis of algorithms. By randomly perturbing an input to an algorithm, they
could interpolate between a worst-time case analysis and an average case analysis. Their initial
work [164], for which they were awarded the 2009 Fulkerson prize, studied the smoothed
analysis of the simplex algorithm. In graph theory, Bohman, Frieze and Martin [23] introduced
the randomly perturbed model which, as with smoothed analysis, allows one to understand
the interplay between an extremal and probabilistic viewpoint. In their model one starts with
a dense graph and then adds m random edges to it. A natural problem in this setting is to
determine how many random edges are required to ensure that the resulting graph whp contains
a given graph F as a spanning subgraph. For example, the main result in [23] states that for
every T > 0, there is a ¢ = ¢(7) such that if we start with an arbitrary n-vertex graph G of
minimum degree 6(G) > 7n and add ¢n random edges to it, then whp the resulting graph is
Hamiltonian. This result characterises how many random edges we require for every fixed T > 0.
Indeed, if T > 1 then Theorem 1.3.1 implies that we do not require any random edges; that is
any n-vertex graph G of minimum degree §(G) > 7n is already Hamiltonian. On the other
hand, if 0 < 7 < % then the following example implies that we indeed require a linear number of
random edges: Let G’ be the complete bipartite graph with vertex classes of size tn, (1 — T)n.
It is easy to see that if one adds fewer than (1 — 27)n (random) edges to G’, the resulting graph

is not Hamiltonian.

In recent years, a range of results studying similar phenomena in graphs and hypergraphs have
been obtained, looking at spanning structures (see Section 6.1 for a detailed discussion of these),
as well as other aspects of the model such as Ramsey properties [53, 54, 128, 150]. Much of
this work has focused on the range where the minimum degree of the deterministic graph is
linear but with respect to some arbitrarily small constant 7. In this range, one thinks of the
deterministic graph as ‘helping’ G (n, p) to get a certain spanning structure and the observed
phenomenon is usually a decrease in the probability threshold of a logarithmic factor, as is the
case for Hamiltonicity as above. Recently, there has been interest in the other extreme, where
one starts with a minimum degree slightly less than the extremal minimum degree threshold for

a certain spanning structure and requires a small ‘sprinkling’ of random edges to guarantee the
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existence of the spanning structure in the resulting graph, see e.g. [56, 147]. Here, we will study

the full range of positive densities.

Balogh, Treglown and Wagner [19] first considered the H-factor problem in the setting of
randomly perturbed graphs. Indeed, for every fixed graph H they determined how many random
edges one must add to a graph G of linear minimum degree to ensure that whp G U G(n, p)

contains an H-factor. We only state their result in the case of clique factors.

Theorem 1.6.1 (Balogh-Treglown—Wagner [19]). Let r > 2. For every T > 0, there is a
constant C = C(t,r) > 0 such that if p > Cn™?" and G is an n-vertex graph with n € rN and

minimum degree 6(G) > tn then whp G U G (n, p) contains a K, -factor.

Theorem 1.6.1, unlike Theorem 1.2.1, does not involve a logarithmic term. Thus comparing the
randomly perturbed model with the random graph model, we see that starting with a graph of
linear minimum degree instead of the empty graph saves a logarithmic factor in terms of how
many random edges one needs to ensure the resulting graph whp contains a K,.-factor. Further,
Theorem 1.6.1 is best-possible in the sense that given any 0 < 7 < } and n € rN, there is a
constant ¢ = ¢(7,r) > 0 and an n-vertex graph G with minimum degree at least Tn so that
whp G U G(n, p) does not contain a K,-factor when p < cn™?/" (see Section 2.1 in [19] or

Section 5.1 of this thesis). However, as suggested in [19], this still leaves open the question of
1

how many random edges one requires if 7 > .
Here, we give a sharp answer to this question. Before we state our result we introduce some

notation which captures the tightness of our results.

Definition 1.6.2. [Perturbed thresholds for factors] Given some 0 < 7 < 1, and a graph H with r
vertices, the perturbed threshold p(H, ) for an H-factor satisfies the following#. There exists

constants C = C(H, 1), c = ¢(H,7) > 0 such that:
(1) If p = p(n) = Cp(H, 1), then for any n-vertex graph G with n € rN and 6(G) > 7n,
whp G U G(n, p) contains an H-factor.
(i) If p = p(n) < cp(H, 7),thenforalln € rN there is some n-vertex graph G with6(G) > n

such that whp G U G (n, p) does not contain an H-factor.

If it is the case that for sufficiently large n € rN, every n-vertex graph with minimum degree at

least Tn contains an H-factor we define p(H, 1) := 0.

4]t is not a priori clear that such a threshold exists, as we require the conclusions to hold whp but only impose a
constant factor separation from p(H, 7). In all the cases we consider, we will show that such a threshold does indeed
exist (and determine its value).
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Thus, Theorem 1.1.2 implies that p(K,,7) =0forall7 > 1 — % whilst Theorem 1.2.1 precisely
states that p(K,,0) = p*(n) = n=>/" (logn)? (r*~7)  Our main result deals with the intermediate

cases (i.e. when 0 < 7 < 1 — %).

Theorem I1I. Let2 < k < r be integers. Then given any 1 — é <Tt<l1- %,

p(Ky,7) =n"2*.

Thus, Theorem III provides a bridge between the Hajnal-Szemerédi theorem (Theorem 1.1.2)
and the Johansson—-Kahn—Vu theorem (Theorem 1.2.1). Notice that the value of p(K,,T)
demonstrates a ‘jumping’ phenomenon; given a fixed k the value of p(K,, 1) is the same for
all T € (%, ’_Tk“), however if 7 is just above this interval the value of p(K,, 7) is significantly

smaller.

Note in the case when k = r, Theorem III is implied by Theorem 1.6.1. Also appearing shortly
before this work [87] was a result [147] concerning powers of Hamilton cycles in randomly
perturbed graphs which implies the case when & = 2 and r is even (we discuss this in more detail
in Section 6.1.2). To help provide some intuition for Theorem III, note that n~2/¥ is the threshold
for the property that G (n, p) contains a copy of Ky in every linear sized subset of vertices; this
property will be exploited throughout the proof. Our proof uses the absorption method, and in
particular the novel ‘template absorption method’ introduced by Montgomery [136, 137] (see
Section 2.8). We also use ‘reachability’ arguments, introduced by Lo and Markstom [135], in
order to build absorbing structures. We use various probabilistic techniques throughout, such
as multi-round exposure, and we use regularity in order to obtain an almost factor. A detailed

discussion of our proof is given in Section 5.2.

References: The results discussed in this section and proven in Chapter 5, represent joint work

with Jie Han and Andrew Treglown [87].

1.7 Organisation

This thesis centres around three main theorems studying clique factors in different settings. We
prove Theorem I in Chapter 3, Theorem II in Chapter 4 and Theorem III in Chapter 5. As
mentioned above, our proofs rely on a range of different techniques and methods. In Chapter 2,
before proving our main theorems, we introduce these proof methods and build up the relevant
theory. After proving our main theorems, in Chapter 6 we then discuss related topics and

directions for future research, including several open problems and conjectures.

Further references: Beyond the main results of this thesis, we also present and discuss some

further results of the author that were established during the doctorate. The proofs of these
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are omitted but share some features with those given in the thesis. We mention joint work
with Jie Han, Yoshiharu Kohayakawa and Yury Person [83, 84] in Section 1.4 and in particular
Corollary 1.4.2 follows from both Theorem I and [84]. In Section 6.2.1, we discuss results
relating to factors in hypergraphs and present joint work with Hi€p Han and Jie Han [79, 80]
in the pseudorandom setting and joint work with Yulin Chang, Jie Han, Yoshiharu Kohayakawa
and Guilherme Mota [34] in the randomly perturbed setting. Finally, we present joint work with
Jie Han, Guanghui Wang and Donglei Yang [88] on clique factors in the Ramsey—Turén setting,

in Section 6.2.2.



Chapter 2

Tools and methods

Our proofs will draw on a variety of different techniques from extremal and probabilistic com-
binatorics. In this chapter we collect these tools, introducing the key concepts and discussing
the relevant theory. In Section 2.1, we list some well-known concentration inequalities. In
Section 2.2, we then discuss Szemerédi’s famous Regularity Lemma (Lemma 2.2.1), an ex-
tremely powerful tool in the study of dense graphs. We also list some consequences of the
definition of regularity. In Section 2.3, we introduce the entropy function for random variables
and discuss some properties of this concept. In Section 2.4 we then introduce the phenomenon
of supersaturation in dense graphs. In Section 2.5, we discuss known results that guarantee
large H-matchings in dense graphs including a result of Hajnal and Szemerédi [78] for clique
matchings and a result of Komlés [110] for general H-matchings. Section 2.6 is devoted to
discussing fractional matchings and fractional covers in hypergraphs. Using linear programming
duality, we derive simple conditions that guarantee the existence of perfect fractional matchings
in hypergraphs. In Section 2.7, we discuss a result of Kostochka and Rodl [117] which uses the
semi-random method to show the existence of large "almost perfect" matchings in hypergraphs
that satisfy pseudorandom degree conditions. Through a method of random sparsification due to
Alon, Frankl, Huang, R6dl, Rucifiski and Sudakov [10], we then derive results which guarantee
the existence of almost perfect matchings in hypergraphs given the existence of many perfect
fractional matchings. Finally, in Section 2.8, we discuss the absorption method and in particular
introduce the template method, a recent innovation due to Montgomery [136, 137] which has

proven to be a powerful tool in absorption arguments.

Most of the results and theory discussed in this chapter were known before the works of this thesis
and are given without proof. However in certain places, we deviate from previous literature and
sharpen, adjust and simplify proofs to suit our purposes. These results may be of independent
interest and useful in future works. In particular, we highlight the following two results. Firstly,

in Lemma 2.3.9 we show that random variables that have close to maximal entropy are close to

17
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uniform, sharpening a result of a similar flavour due to Johansson, Kahn and Vu [96, Theorem
6.2]. Secondly, in Theorem 2.7.3, we give a new result, giving almost perfect matchings in

hypergraphs that are robust with respect to containing perfect fractional matchings.

2.1 Concentration inequalities

We will frequently use concentration inequalities for random variables. The first such inequality,
Chernoff’s inequality [35] (see also [95, Theorem 2.1, Corollary 2.4 and Theorem 2.8]), deals

with the case of binomial random variables.

Theorem 2.1.1 (Chernoff bounds). Let X be the sum of a set of mutually independent Bernoulli

random variables and let 1 = E[X]. Then for any 0 < 6 < %, we have that
P[X > (1 +5)/l] < 3_52/1/3 and P[X < (1-6)1] < 6_62/1/2.

Furthermore, if x > 71, then P[X > x] < e™™.

We will also be interested in concentration inequalities when dealing with random variables
that are not mutually independent. We consider the following general setup. Let A be a finite
set and let A, be a random subset of A such that each element of A is included independently
with probability p. Let S be a family of non-empty subsets of A and for each § € S, let I
be the indicator random variable for the event S € A,. Thus each Is is a Bernoulli random
variable Be(p'S!). The following inequality, known as Janson’s inequality [94] (see also [95,

Theorem 2.14]) provides a bound for the lower tail in this case.

Lemma 2.1.2 (Janson’s inequality). In the setting laid out above, let X = Y ,gcsIs and A :=
E(X). Let Ax = Y. snr+0ElIsIT], where the sum is over not necessarily distinct ordered
pairs S,T € S. Then forany 0 <t < A,
2

P[X <A-t] <exp (_E) 2.1.1)
One instance of the setting above, which will be of particular interest, is the appearance of
subgraphs in random sparsifications of graphs. Recall that given a graph G and some p € [0, 1],
we denote by G, the random subgraph of G with V(G,) = V(G) in which every edge of G
is present independently with probability p. Given a subgraph F c E(G) of G (given by its
edge set), we denote by I the indicator random variable which is 1 if F' is present in G, and 0
otherwise. Chernoff’s inequality (Theorem 2.1.1) can be used to give sharp bounds on random

variables of the form X = Y pc# I, where ¥ C 2F (G) is a collection of edge-disjoint subgraphs
of G.
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However, when 7 consists of not-necessarily edge disjoint subgraphs of G, the situation becomes
more complicated and we appeal to Janson’s inequality (Lemma 2.1.2) which has the following

direct corollary providing a bound for the lower tail in this case.

Lemma 2.1.3 (Janson’s inequality for subgraphs). Let G be a graph and ¥ c 259 pe a
collection of subgraphs of G and let p € [0,1]. Let X = Y, pc#1F, let A = E[X] and let

A= Z E[IplF].

(F,F")eF2: FNF'#0
Then, for every € € (0, 1), we have

2,2
P[X <(1-g)d] <exp (—%)

If we additionally require a bound for the upper tail, we will use the Kim—Vu inequality [107]
(see also [12, Theorem 7.8.1]). Let X = X p.#IF as above. Given an edge ¢ € E(G), we

write £, for I(,y. With this we can write X as a polynomial with variables 7.:

X:Z nre.

FefFecF

Given some A C E(G), we obtain X4 from X by deleting all summands correspondingto F' € ¥

that do not contain A and replacing every ., with e € A by 1. That is,

Xa= > ] te

Fef: ACF ecF\A
In other words, X4 is the number of F € ¥ that contain A and are presentin G, U A.

Lemma 2.1.4 (Kim—Vu polynomial concentration). For every k € N, there is a constant ¢ =
c(k) > 0 such that the following is true. Let G be a graph and F c 2FC) be a collection
of subgraphs of G, each with at most k edges. Let X = Y p.#1F as above and 1 = E [X].
Fori € [k], define E; = max{E [Xa] : A C E(G), |A| =i}. Further define E' := max;¢[x] E;
and E = max{A, E'}. Then, for every u > 1, we have

P||X =] > c(EE)' k| < ce(G)< ™.
Finally we will need a basic concentration result for the hypergeometric distribution: A random

variable X is hypergeometrically distributed with parameters N € N and K,t € [N] if for
all k € [K]o, P[X = k] is the probability that when drawing ¢ balls from a set of N balls (K of
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which are blue and N — K red) without replacement, exactly k are blue. That is,

(o) (=)
P[X=k]=—F—.
(v)
We will use the following concentration inequality, which Chvétal [36] deduced from Hoeftding’s

inequality [93], see also [161].

Lemma 2.1.5. Let X be hypergeometrically distributed with parameters N € N, K € [N]p
andt € [N]gandlet 1 :=E[X] = % Then, for all € > 0, we have

P[IX =] > ed] < 2e72"(K/N)A,

2.2 Regularity

We will use the famous regularity lemma due to Szemerédi [ 168] which is an extremely powerful
tool in modern extremal combinatorics. The lemma and its consequences appeared in the form
we give here, in a survey of Komlés and Simonovits [113], which we also recommend for further
details on the subject. First we introduce some necessary terminology. Let G be a graph and
let A, B ¢ V(G) be disjoint subsets of the vertices of G. For non-empty sets X € A, Y C B,
we define the density of G[X,Y] to be dg(X,Y) = % Given ¢ > 0, we say that a
pair (A, B) is e-regular in G if for all sets X € A and Y C B with |X| > £|A| and |Y| > ¢|B]|
we have |dG (A, B) —dg(X,Y)| < €. We say that (A, B) is (g, d)-regular if (A, B) is g-regular
and dg (A, B) =d.

Furthermore, we say (A, B) is (g,d, 6)-super-regular if (A, B) is (&,d)-regular and satis-
fies deg;(v; A) > 6|A| for all v € B and likewise deg(v; B) > J|B| for all v € A. We
say that (A, B) is (&, d)-super-regular if it is (&,d,d — €)-super-regular. We say that a k-
tuple (Aj,...,Ax) of (pairwise disjoint) subsets of V(G) is (&, d)-(super-)regular if each of
the pairs (A;, A;) withi # j € [k] is (&, d)-(super-)regular. We call a k-partite graph G with
parts Ay, ..., Ak, (&, d)-(super-)regular if (A, ..., Ax) is an (g, d)-(super-)regular tuple in G.
In the interest of brevity, we use the term (super-)regular tuple interchangeably to refer to the tuple
of vertex sets (A1, ..., Ax) and also to refer to the (super-)regular k-partite graph G[A¢, ..., Ax]
that G induceson A U. ..UA,. Finally we say that (A, B) is (&, d*)-regularifitis (g, d")-regular
for some d’ > d. Similarly, we say (A, B) is (&, d*, 6)-super-regular if it is (g,d’, §)-super-
regular for some d’ > d and we say (A, B) is (g, d*)-super-regular if it is (&,d’, d — &)-super-
regular for some d’ > d. The corresponding definitions are made analogously for regular tuples
where we require the densities between all pairs involved to be at least d (and do not require

these densities to be equal).
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We say that a partition V(G) = VoUV  U- - -UV; is an g-regular partition if |Vy| < €|V(G)|, V1| =
.-+ = |V,], and for all but at most &£ pairs (i, j) € [¢] X [¢], the pair (V;, V;) is e-regular. We
refer to the sets V; for i € [t] as clusters and also use this term to refer to subsets V/ C V;
for i € [t]. We refer to Vj as the exceptional set and the vertices in Vjy are exceptional vertices.
Given an e-regular partition and d € [0, 1], we say R is the (&, d)-reduced graph of G (with
respect to the partition) if V(R) = [t] and ij € E(R) if and only if (V;,V;) is (&, d*)-regular. We
will use Szemerédi’s Regularity Lemma [168] in the following form which follows easily from
e.g. [113, Theorem 1.10].

Lemma 2.2.1 (Regularity Lemma). Forall 0 < & < 1 and mg € N there exists My € N such that
forevery 0 < d <y < 1, every graph G on n > My vertices with minimum degree §(G) > yn
has an e-regular partition Vo UV, U --- UV, with (&, d)-reduced graph R on m vertices such
that mg < m < My and 5(R) = (y —d — 2&)m.

We will further make use of the following well-known results about (super-)regular tuples. See,

for example, [113, Facts 1.3 and 1.5].

Lemma 2.2.2 (Slicing Lemma). Let 0 < ¢ < B,d < 1 and let (V1,V>) be an (&, d)-regular
pair. Then any pair (U}, Uy) with \U;| > B|V;| and U; C V;, i = 1,2, is (¢',d")-regular

with &’ = max{lfg, 2¢e} and some d’ > 0 such that |d’ — d| < e.

Lemma 2.2.3. Let 0 < € < d < 1 and (V1,Va) be an (&,d)-regular pair and let X, C V,
with |X2| > €|Va|. Then all but at most €|V, | vertices v € V| satisfy deg(v; Xp) > (d — &)|Xa].
Likewise, all but at most €|V vertices v € V| satisfy deg(v; X3) < (d + €)|Xs|

The following lemma can be proven by combining the two previous lemmas.

Lemma 224. Letk € Nand 0 < 6 < d < L withe < 5. If Z = (Vi,..., V) is an (&, d")-
regular tuple of disjoint vertex sets of size n, then there are subsets Vi C Vy,...,Vi C Vi with
[Vi| = [(1 = ke)n] for all i € [k] so that the k-tuple Z = (Vy,..., Vi) is (2g,(d — &)*,d — ke)-

super-regular.

Our next lemma shows that any sufficiently dense pair is automatically regular. It follows directly

from the definition of regularity.

Lemma 2.2.5. Let 0 < ¢ < 1 and (V,V») be a pair of vertex sets such that deg(v;;Va_;) >
(1 - &%) |Vai| for all i € [2] and v; € V;. Then (V1,V2) form an (8, (1- 82)+)-super-regular

pair.

The next lemma is an extremely useful tool, extending the control on the edge count in regular
pairs to be able to count the number of embeddings of small subgraphs. For a proof see, for

example, [1 13, Theorem 2.1].
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Lemma 2.2.6 (Counting Lemma). Given 0 < € < d < 1, m € N and H some fixed graph on r
vertices, let G be a graph obtained by replacing every vertex x; of H with an independent set V;
of size n and every edge of H with an (&, d*%)-regular pair. If & < ﬁ =: dy, then there are

at least (don)" embeddings of H in G so that each x; is embedded into the set V;.

For triangles, we will need a tighter counting lemma which controls the leading constant for the
number of triangles and can be applied in subgraphs of a regular triple. The following lemma

can be derived easily from the definition of e-regularity and we omit the proof here.

Lemma?2.2.7. LetQ < € < dy,d13,d2»3 < landletI be atripartite graph with parts vy v3
of size n such that (V,V7) is (&, d; j)-regular forall 1 <i < j < 3. Let X; C Viwith |X;| > en
foralli € [3]. Then,

|K3(C[X1 U X2 U X3])| = dy 2d) 3da 31 X1 || X2] | X3] + 10en°.

Finally, the following lemma further allows us to control the exact density of a super-regular pair
by deleting edges if necessary. We recall here that we say a pair (A, B) of disjoint vertex sets in

(e, d")-super-regular if it is (&, d’, d — €)-super-regular for some d’ > d.

Lemma 2.2.8. For all 0 < &€ < 1, there is some ny > 0, such that the following is true for
every n = ng and every bipartite graph G with parts Vi,V of size n. Suppose that (Vy,V3)

is (2, d*)-super-regular for some d such that 4 < d < 1 and dn> € N. Then there is a

spanning subgraph G’ C G so that (V,V3) is (4e, d)-super-regular in G’.

Proof. Let d’ > d be the density of (V{,V,). Fori € [2], letY; = {v € V; : deg(v;V3_;) <
(d’ —sz)n} and observe that by the &?-regularity of (V;, V) and Lemma 2.2.3, we have |Y;| < £%n
for both i € [2]. Let Ey C E(G) be the set of edges with at least one vertex in Y := Y, UY; and
let E := E(G) \ Ey. Letm = |Ey| < 2&’n®. Letp := d’TJZE_Im = di;,‘ez. Let E’ be a uniformly
random subset of E of size exactly p|E| € N and let G’ be the spanning subgraph of G with

edge set E’ U Ey. By construction, we have dg/(V1,V2) = d; we will show that (V1,V3) is
whp (4¢,d, d — ¢)-super-regular in G’.

Let A; C V; with A; > 4en, and let A = A; \ ¥; and B; = A; \ A] for both i € [2]. By &-
regularity in G, we have Z = |Eg (A}, A))| = (d’ £ 82)|A1||Aé|. Let now X = |Eg/(A], A))|.
Then X is hypergeometrically distributed with parameters N = |E|,K = Z,t = p|E| and
thus A == E [X] = pZ = (d + 2¢)|A{||A]]|. Since A > 8&3n?, it follows from Lemma 2.1.5 that

8.2

P[|X —2] >ed] < 2e728M(K/N)A ¢ 9 pmen®,

In particular, we have P [dg/ (A1, Ay) =d +4e] = 1 - 2e=e"n’, By taking a union bound over all

choices of Ay, A, we deduce that (V7, V3) is 4e-regular with probability at least 1 — 2¢2n-en?
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Similarly, we deduce that degs (vi;V3-;) > (d — &)n for each i € [2] and v; € V; with
probability at least 1 — 4ne=="". Note that this is automatically true for all v € Y as these vertices
retain their neighbours from G. Hence, taking another union bound, it follows that (V1, V3) is
whp (4¢,d,d — €)-super-regular in G’. Therefore, for all large enough n, there is a suitable

choice for E’. O

2.3 Entropy

In this section we explain basic definitions and properties related to the entropy function, which
will play a central r6le in Chapter 4. We will be following the notes of Galvin [72] and all proofs
we do not include here can be found or follow immediately from the results there. Throughout
this subsection we fix a finite probability space (Q,P). Recall also that log denotes the natural

logarithm function.

Let X : Q — S be a random variable, and note that we will sometimes use the notation X (w),
which is an element of S, for the value of X given the outcome w € Q. Given x € §, we

denote p(x) := P[X = x]. We define the entropy of X by

h(X) = ) =p(x)log p(x).
xeS
Entropy can be interpreted as a measure of the “uncertainty” of a random variable, or of how
much information is “gained” by revealing X. The following lemma shows that the entropy is
maximised when X is uniform, corresponding to maximal “uncertainty”. Define the range of X

as the set of values that X takes with positive probability, that is rg(X) = {x € S : p(x) > 0}.

Lemma 2.3.1 (maximal entropy). For every random variable X : Q — S, we have h(X) <

log(|rg(X)]) < log(|S|) with equality if and only if p(x) = ﬁfor allx € S.

Lemma 2.3.1 provides the key to using entropy in combinatorial arguments. Indeed, the basic
method relies on taking a uniformly random object F from some family # whose cardinality we
are interested in estimating. By analysing the entropy of the random variable F, using the tools
listed below, we can obtain bounds on the entropy which translate to bounds on the size of ¥ via

Lemma 2.3.1. We now further develop the theory.

Given random variables X; : Q — §; for i € [n], we denote the entropy of the random vec-
tor (X1,...,X,) by h(Xy,...,X,) = h((X1,...,X,)). The entropy function has the following
subadditivity property.
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Lemma 2.3.2 (subadditivity). Given random variables X; : Q — S;, i € [n], we have
n
X1, Xa) < ) (X)),
i=1
with equality if and only if the X; are mutually independent.

Intuitively, this means that revealing a random vector cannot give us more information than
revealing each component separately. We say arandom variable X : Q — Sy defermines another
random variable Y : Q — Sy if the outcome of Y is completely determined by X. For example
if X is the outcome of rolling a regular six-sided die and Y is 1 if this outcome is even, and O
otherwise, then X determines Y. Formally, X determines Y if there is a function f : Sx — Sy
such that Y (w) = f(X(w)) for all w € Q. If X determines Y, then no additional information is

needed to reveal Y once X is revealed. This is formalised in the following lemma.

Lemma 2.3.3 (redundancy). If X : Q — Sx and Y : Q — Sy are random variables and X
determines Y, then h(X) = h(X,Y).

If E c Qs an event with positive probability, we define the conditional entropy given the event

as
W(X|E) = ) =p(x|E) log p(x|E),

x€S
where p(x|E) = P[X = x|E]. Note that h(X|E) is the entropy of the random variable obtained
from X by conditioning on E, so that if Z has distribution P [Z = x] = P[X = x|E] then h(Z) =
h(X|E). Given two random variables X : Q — Sy and Y : Q — Sy, the conditional entropy
of X given Y is defined as

h(XIY) =By [A(XIY = )] = > p(AXIY =) (2.3.1)
y€eSy

= Z P [w] h(X|Y =Y (w)), (2.3.2)
wWEQ

where p(y) = P[Y = y]. As conditioning on an event or another random variable only gives us

more information, we have the following inequalities.

Lemma 2.3.4 (dropping conditioning). Given random variables X : Q — Sx andY : Q — Sy,

and an event E C Q we have

h(X|Y) < h(X) and h(X) > P[E] h(X|E).

Furthermore, if Y’ : Q — Sy is another random variable and Y determines Y’, then

h(X|Y) < h(X|Y").
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The following chain rule strengthens Lemma 2.3.2.

Lemma 2.3.5 (chain rule). Given random variables X : Q — Sx andY : Q — Sy, we have
h(X,Y)=h(X)+h(Y|X)

and more generally, for random variables X; : Q — S;, i € [n], we have

n
WX, Xn) = ) (Xl X, Xi).
i=1

Lemmas 2.3.1, 2.3.2 and 2.3.5 have the following conditional versions. Given a random vari-
able X : Q — Sx and an event E C Q, we define the conditional range of X given E
by rg(X|E) = {x € Sx : p(x|E) > 0}.

Lemma 2.3.6 (maximal conditional entropy). For every random variable X : Q — S and

event E C Q, we have

h(X|E) < log (rg(X|E)]) .

Lemma 2.3.7 (conditional subadditivity). Given random variables X; : Q — S;, i € [n],

andY : Q — Sy, we have

h(X1 o XalY) < 3 R(Y),
i=1
with equality if and only if the X; are mutually independent conditioned on Y.

Lemma 2.3.8 (conditional chain rule). Given random variables X; : Q — S;, i € [n], and Y :

Q — Sy, we have

n
WX, XalV) = D (XX Xin, Y).
i=1

The following lemma appears in [5] and will play an essential role in the main proof of Chapter 4.
It sharpens a similar lemma that appeared in [96]. It states that if a random variable has almost
maximal entropy, then it must be close to uniform. This can be seen as a stability result for
Lemma 2.3.1.

Lemma 2.3.9 (almost maximal entropy). For all 8 > 0, there is some ' > 0 such that the
following is true for every finite set S and every random variable X : Q — S. If h(X) >
log(|S|) — B’, then letting a = ﬁ andJ:={xeS:(1-B)a <P[X =x] < (1+p)a}, we have
that

[JJ| = (1 =B)IS| and P[XelJ]=(1-p). (2.3.3)

Proof. Let 5 > 0 be given and assume that 8 < 11—0. Fix B’ = %. Let X : Q — S be a random
variable with #(X) > log(]|S|) — 8’ and let a and J be as defined in the statement of the lemma.
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Further, we defineJ* = {y e S: P[X = y] > (1+§)a}and]‘ ={yeS:P[X=y]< (l—g)a}.
Note that [J]| = |S| = (|[J*| +|J7]).

Claim 2.3.10. We have |J*| < 'ngl.

Proof of Claim: Choose n < [4—3 so that n|S| = |_[4—3|S |]. Assume for contradiction that |J*| > n|S|
and let J* c J* be a set of size exactly 77|S|. Define X* by

P[X+=y]= (l+n)a ifyelJ*
(1 =&)a ifyif*,

2
where & = 171_77 is chosen so that 3, cgP[X* =y] = 1. Now it follows from Karamata’s

inequality and the fact that —x log(x) is concave on [0, 1], that A(X*) > h(X). We further
letY = 1if X* € J* and O otherwise. We then have that

R(X) < h(X*) = h(X*,Y) = i(X*|Y = DP[Y = 1] + h(X*|Y = 0)P[Y = 0] + h(Y),

where we used Lemma 2.3.3, the chain rule (Lemma 2.3.5) and the definition of conditional

entropy. Note that P [Y = 1] = n(1 + 1) and

h(Y) = -n(1+n)log (n(1+n)) — (1 =n(1+n))log (1 - (n(1+n))).

Therefore, using also Lemma 2.3.6, we get

h(X) <log (nIS)) n(1+n) +log (1 =n)IS]) (1 =n(1+n)) +h(Y)
= log (IS]) +log(mn(1 +n) +log(1l —n)(1 —n(1+n)) + h(Y)
=log (IS]) + (1 +n) (log(n) - log(n(1+n)))

+(1=n(1+n)) (log(l —n) —log(l —n(1+n)))
= log (1S1) = n(1 + ) log(1 + 1) + (1 =1 = ) log (25 .

1-1-n?

Using the approximation x — %2 < log(1 + x) < x, which holds for all x € (0, 1), in the

1— 2 2
forms log(1+7) > n (1 - %) and log (1_77_'7,72) = log (1 + 1_:77_772) < oo

5, we conclude

7 12
h(X)<log (IS) = n*(L+m) (1= F) + (1= = 11")

3 4 3
=log (IS) = n* = &+ L +n* <log (IS]) = % < log (IS]) - B/,

a contradiction. ]
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Similarly, we can show that |J~| < ngI and conclude that |J| > |S| - (JJ*|+|J7]) = (1 - B)|S|.

Furthermore, by the definition of J~ we have

Selx=yz ) (1—§)az(1—§)|S|(1—§)az(1—ﬁ).

yeJ yeS\(J*uJ-)

This completes the proof. O

2.4 Supersaturation

The following phenomenon was first noticed by Erdds and Simonovits in their seminal paper [64].
It states that if there are many copies of a given small subgraph in some host graph, then we can
also find many copies of a blow-up in the host graph (recall the definition of a graph blowup

from the Notation Section). It can be proven easily, e.g. by induction.

Lemma24.1. Letr,my,my,...,m, €N, let J be some graph onr vertices {vy,...,v,}andc >
0. Then there exists ¢’ = ¢’ (r,my,ma, ...,my,c) > 0 such that the following holds. Suppose G
is a graph on n vertices with n sufficiently large such that there are subsets Vy,...,V, C V(G)

and G contains at least cn” labelled copies of J with v; € V; fori € [r]. Then G contains
at least ¢'n™*~*" labelled copies of Jpm, m,

and |P;| = m; foralli € [r].

m, Wwith parts Py,..., P, such that P; C V;

.....

2.5 Matchings and almost factors in dense graphs

The Hajnal-Szemerédi theorem (Theorem 1.1.2) discussed in the introduction is in fact a corol-
lary to a more general theorem from which we can conclude the existence of large K -matchings
when the minimum degree is slightly less than the extremal threshold for Kj-factors. Indeed
Hajnal and Szemerédi [78] proved that any graph with maximum degree A has an equitable
colouring with A + 1 colours, that is, a colouring where the colour classes differ in size by at
most one. Applying this to the complement of G, which has maximum degree n — 1 — §(G),
we find a collection of n — §(G) vertex-disjoint cliques in G whose sizes differ by at most
one and that cover V(G). We will make use of the following general corollary, which we
obtain from the fact that when 6(G) = (4! — x)n for some 0 < x < 1, then the Hajnal-
Szemerédi theorem [78] on equitable colourings provides us with (% +x)n vertex-disjoint cliques.
Ifo<x< ﬁ, some of these cliques, say «, are of size k, and the others are of size k — 1,
hence we have n = ak + ((1 +x)n—a)(k —1) = @+ #(1+ kx)(k — 1). Solving this for @ gives

the following result.
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Theorem 2.5.1 (Hajnal- Szemerédi theorem for Ki-matchings [78]). Let n, k > 2 be integers
and let 0 < x < 1. Suppose that G is an n-vertex graph with §(G) > (% - x)n. Then G

contains a Ky-matching of size at least (1 — (k — 1)kx)[ ]

Note that in particular the case x = 0 gives the Hajnal-Szemerédi theorem (Theorem 1.1.2) for

factors discussed in Section 1.1.

We will also be interested in almost H-factors for general graphs H. Let y (H) be the chromatic
number of a graph H, that is, the minimum number of colours needed to properly colour the
vertices of H. Further, let y.,(H) := (y(H) — 1)#:’@)

colour class over all colourings of H with y (H) colours. The parameter y.,(H) is referred to

where o (H) is the smallest size of a

as the critical chromatic number of H. The following result of Komlés [110] is a crucial tool
in the proof of Theorem III in Chapter 5. It determines the minimum degree threshold for the

property of containing an almost H-factor.

Theorem 2.5.2. For every graph H and every a > 0, there exists ng such that if G is a graph

on n > ng vertices with 6(G) > (1 - ) n, then G contains a partial H-factor that covers

1
Xer (H)
all but at most an vertices of G.

This was later improved to a constant number of uncovered vertices by Shokoufandeh and
Zhao [158], but Komlés’ result suffices for our purposes. We will apply Komlés’ theorem to find
an almost H-factor in a reduced graph R of our (deterministic) graph G from Theorem III; here H

will be a carefully chosen auxiliary graph (not K,.!). We discuss this further in Section 5.2.

2.6 Fractional matchings in hypergraphs

Given an r-uniform hypergraph 7€, a fractional matching in J€ is a function f : E(F€) — Ry
such that ..., f(e) < 1 for all v € V(#). We say the fractional matching is perfect
if Y,vcefle) =1 forall v € V(5). The value of a fractional matching f is |f| :=
Yecke () f(€). The maximum value |f| over all choices of fractional matching f of 7, we

call the fractional matching number of F€, which we denote by " (F€).

A fractional cover of J€ is a function g : V(#) — Ryo such that for all e € E(¥), one
has 3, ¢, g(v) > 1. The value of a fractional cover g is |g| := X, cy (#) 8§(v). The fractional

cover number of 7€, denoted 7" (#€) is then the minimum value of a fractional cover g of 7€.

For an r-uniform hypergraph #€, the fractional matching number of #€ can be encoded as the
optimal solution of a linear program. Taking the dual of this linear program gives another linear

program that outputs the fractional cover number as an optimal solution. The strong duality
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theorem from linear programming thus tells us that 9*(#€) = 7*(¥#) for any hypergraph €.
Using this, one can derive the following simple consequences, see e.g. [118, Proposition 2]

or [86, Proposition 2.4].

Proposition 2.6.1. For any r-uniform hypergraph J€ on N vertices, the following hold.

1. 9*(J6) < % with equality if and only if there exists a perfect fractional matching in 5€.
2. ¥ (H) = H(HC) where §(HC) denotes the size of the largest matching in F€.

3. If g : V(H6) — Ry is a fractional cover and U C V(HC), then g’ :==g|y : U — Rygisa
fractional cover of F€[U] and hence |g’| = 3, cuy g(u) = T5(FE[U]) = 9*(F[U]).

Moreover, it follows from the strong duality theorem for linear programs (and the proof of
weak duality) that for an optimal solution, if a variable in the dual program is positive, then
its corresponding constraint in the primal program must be tight. These are what are known
as the ‘complementary slackness conditions’. Using them, one can derive the following further

proposition, see e.g. [118, Proposition 2] or [86, Proposition 2.4].

Proposition 2.6.2. If g : V(#) — Ryg is an optimal fractional cover, i.e. |g| = 7" (F6),
then 9*(#€) > @ where W .= {v € V(H) : g(v) > 0}.

We now explore some simple conditions that guarantee the existence of a perfect fractional
matching. Given a vertex subset U C V := V(H€) in a hypergraph €, a fan focused at U in F€ is
a subset F C E(H€) of edges of #€ such that [eNU|=1foralle e Fandene' N (V\U) =0
for all e # ¢’ € F. In words, each edge of a fan intersects U in exactly one vertex and outside
of U, the edges in a fan are pairwise disjoint. The size of a fan is simply the number of edges in
the fan. If U = {u} is a single vertex, we simply refer to a fan focused at u. The following two
lemmas give simple conditions that guarantee a perfect fractional matching. Their proofs follow
the method of Krivelevich, Sudakov and Szabd [127], see also [85, 86]. We include the proofs
here for completeness. We also remark that both Lemma 2.6.3 and the following Lemma 2.6.4
are provided in a form that eases their application. There is no attempt to optimise the conditions
of the statements (for example the upper bound on M in Lemma 2.6.3) and both results hold

under looser constraints on the parameters.

Lemma 2.6.3. Suppose J€ is an N-vertex, r-uniform hypergraph and there exists r < M < %
such that given any vertex v € V(#€) and any subset W C V(S€) \ {v} of at least M vertices,
there exists an edge in J€ containing v and r — 1 vertices of W. Then € has a perfect fractional

matching.

Proof. Firstly we note that the condition on #€ implies the following two consequences. We

have that
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(i) for all v € V(H€) there is a fan focused at v in 7€ of size 2M, and

(ii) every subset of at least 2M vertices of 7€ induce an edge in €.

Indeed, for each vertex v € V(#€) we can greedily construct such a fan F,. Whilst F,, has size
less than 2M, taking W = V() \ V(F,), we have that |[W| > N — —12M(r — 1) = M (using
here that M < ﬂr) and so we can find an edge containing v and r — 1 vertices of W which extends
the fan. Condition (ii) also holds because given a vertex subset W’ of at least 2M vertices, for

any w € W’, we have that there is an edge containing w and r — 1 vertices of W’ \ {w}.

Now suppose for a contradiction that #€ does not have a perfect fractional matching. Thus, by
Proposition 2.6.1 (1), if we take g : V(#) — R to be an optimal fractional cover of F€ so
that |g| = ¢ (F#€) = t*(F€) we have that |g| < % Hence, by Proposition 2.6.2, there exists
some vertex w such that g(w) = 0. Let F,, be a fan focused at w of size 2M, whose existence is
guaranteed by (i), and define U c V(#) tobe U := J{e \ {w}:e € F,,}. So|U| =2(r - )M
and using that )}, ., g(v) > 1 for each edge e € F,, and the fact that g(w) = 0, we can conclude

that 3,y g(u) = 2M.

Now consider V/ = V(#€) \ U. We have that |V’| = N — 2(r — 1)M and

V/|-2M N
P 2 —_ =
r

P(HV']) = 2M,

as we can greedily build a matching of this size by repeatedly appealing to (ii). Using Pro-
position 2.6.1 (2) and (3) we have that ), .y g(v) > % — 2M which gives a contradiction

as

N N
gl= D g+ Y g(v) 22M+(7—2M):—.

r
uelU veVv’

The proof of Lemma 2.6.3 shows that if #€ has large fans focused at each vertex (and no large
independent sets) then it must have a perfect fractional matching. In fact, it is not necessary that
the vertex fans be so large if we have an additional expansion property. This is the content of the

following lemma.
Lemma 2.6.4. Suppose F€ is an N-vertex, r-uniform hypergraph and there exists r < M| <
M, < % such that the following hold:

(i) Forallv € V() there is a fan focused at v in F€ of size M.

(ii) For every subset Wy C V(G) with |\Wy| = M, and every subset Wi C V(G) \ Wy
with |W{| = My, there exists an edge of € with one vertex in Wy and the other r — 1

vertices in Wy.
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Then H€ has a perfect fractional matching.
Proof. We start by noticing that (ii) leads to the following two consequences.

(a) ForallU c V(#€) with |U| = (r—1)My, fixing V' := V(H#€) \ U we have that forall U’ c V’
such that |U’| = My, there is a fan of size 2M, — M focused at U’ in FC[V’].

(b) Every subset of at least 2M, vertices of #€ induce an edge in /€.

Indeed, for U’ as in (a) we can build the fan Fy;- focused at U’ greedily. Whilst |Fy/| < 2Mp — M,
we have that W := V(G) \ (V(Fy+) U U’ U U) has size at least

N-QQM; - M)(r-1)-M,—(r—=1)M; 2N - Q2r—-1)M; > M,

as M < év—r Hence we can find an edge using one vertex of U’ and r — 1 vertices of W, which
extends the fan Fyv. The condition (b) also follows easily as taking W’ to be a set with 2M,
vertices, we have that for any W” c W’ with |W’’| = M|, there is an edge containing a vertex
in W” and r — 1 vertices of W \ W’ from (ii).

Now we turn to the main proof which is very similar to that of Lemma 2.6.3. We again fix g :
V(#€) — R to be an optimal fractional cover and suppose for a contradiction that |g| < % We
deduce the existence of a vertex w € V(¥#€) with g(w) = 0 and a fan F,, focused at w of size M.

Taking Uy := U{e \ {w} : e € F\, }, we have that |U;| = (r — )M} and },, ¢, g(u) = M.

Now consider V’ := V(FO)\U,. If 9*(HF[V']) = %—Ml then we can conclude that ), .y g(v) >
% — M, from Proposition 2.6.1 (3) which implies that |g| > % a contradiction. Hence
N N -M
S (HV]) < — =My = ——L, 2.6.1)
r

r

where N’ := |V/| = N—- (r — 1)M;. We fix g’ : V' — Ry, to be some optimal fractional
cover of FC[V’] with |g’| = 9*(F€[V’]). By Proposition 2.6.2, we therefore have that there
is some set Uy C V' with |Us| = M and g’(u’) = O for all u’ € U,. By (a) there exists a
fan Fy, of size 2M, — M focused at U, in #€[V']. Taking Z := (J{e : e € Fy,} \ Uz, we have
that |Z] = (r — 1)(2M> — M;) and similarly to before, using that for each edge e € Fy,
we have ), .. g’(v) > 1 and the fact that g’(u’) = O for all u’ € U,, we can conclude
that 3. ez 8'(2) = |Fu,| = 2M> — M.

Finally, we look at V/ := V' \ Z. We have that N”" := |V”’| = N’ = 2(r = )M + (r — 1) M/ and
using (b) and Proposition 2.6.1 (2), we have that

N —2M, _ N’+(I’— 1)M1
r r

9 (HEV]) > —2M>.
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Hence, by Proposition 2.6.1 (3), we can conclude that }, v ey v g (V) = w —2M,;. Com-
bining this with the lower bound on the sum of g’ values on Z implies that |g’| = 9*(#€[V']) =

w, contradicting (2.6.1). O

2.7 Almost perfect matchings in hypergraphs

It is well-known that hypergraphs that have roughly regular vertex degrees and small codegrees
contain large matchings. This is often referred to as Pippenger’s Theorem but there are in fact a
family of similar results, all following from the “semi-random" or “nibble" method, see e.g. [12,
Section 4.7]. Here we use the following explicit version which follows directly from a result of
Kostochka and Rodl [117].

Theorem 2.7.1. For any integers r > 3 and K > 4 there exists Ag > 0 such that for all A > Ay

the following holds. If #€ is an r-uniform hypergraph on N vertices such that:

1. forall vertices v € V(F), we have deg‘%(v) =A (1 + K loiA) and

2. forallu # v € V(H€), we have codeg” (u,v) < A=),
then J€ has a matching covering all but at most A~Y" N vertices.

Indeed, [117, Theorem 4] states that for all » > 3, Ky > 8 and reals 0 < §,y < 1, there exists

a Dy such that if #€ is an r-uniform hypergraph on N vertices with

D - Ko\/Dlog D < deg”(v) < D,

for all v € V(¥#€), where D > Dy, and codeg‘%(u, v) < C < D' for all pairs of vertices u # v,

(1-6)/(r-1)
then #€ has a matching covering all but at most O (N (%) ) vertices. In order to

derive Theorem 2.7.1 from this we fix Ky = 2K, 6 = ﬁ and y = %: :%. Letting Dg be the

resulting constant given by [117, Theorem 4], we fix Ag > Dy to be some large constant. Hence,
our conditions (1) and (2) of Theorem 2.7.1 guarantee that ¥ satisfies the conditions of [117,
Theorem 4] with D = A + K+/Alog A and C = A!~7. Now note that

€ (1 +0(1)A™ = (1 +0(1)ACr=2/Cr=1) _ o (A=(r=4)/(4r-1)

D
Combined with the fact that 1=¢ = #=l_ and A > A( is sufficiently large, it follows

r—1 4r(r-1)
from [117, Theorem 4] that the number of vertices uncovered by a largest matching is always

less than A~'/" N, as required.
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Clearly, in order to prove that a hypergraph 7 has a large matching, it suffices to establish the
conditions of Theorem 2.7.1 for a spanning subgraph #¢’ C €. An idea introduced by Alon,
Frankl, Huang, R6dl, Rucinski and Sudakov [ 10] is to find such an 7€’ as a random subhypergraph
of #€ and guarantee that the conditions of Theorem 2.7.1 hold for #” by using perfect fractional
matchings to dictate the probability with which we take each edge into #¢’. This idea was then
used in the context of finding almost K, -factors in pseudorandom graphs by Han, Kohayakawa

and Person [85, 86]. We will also adopt this idea and so give the following theorem.

Theorem 2.7.2. Forall3 <r e Nand(0 <n < %, there exists an Ng such that the following holds
forall N > Ny. Suppose F€ is an N-vertex, r-uniform hypergraph such that there exists t := 2N"
perfect fractional matchings fi, ..., f; : E(#€) — Ryg in J€ with the property that

t

Z Z fie) £2, (2.7.1)

i=1 ecE(#€):{u,v}Ce

for all pairs of vertices u # v € V(F€). Then € has a matching covering all but at most N'=/"

vertices.

Proof. We take a random subgraph 7’ C F€ be keeping every edge e € E(/€) independently
with probability p, = Xi_, @ noting that p, € [0, 1] for all e € E(F€) due to (2.7.1). We
fix A = % =N"and K = % and claim that €’ satisfies the conditions of Theorem 2.7.1 whp

as N tends to infinity.

To check that F€’ satisfies the conditions of Theorem 2.7.1, note that for each v € V we have

Blag” 0] = X p= 3 3O LSy f,~<e>)=§:A,
i=1

evee evee =] evee

using that each f; is a perfect fractional matching. Applying Theorem 2.1.1 then gives that

» log A K?log A
P|deg”’ (v) #A[1xK % < 2exp(—%)
K’nlog N
< 2exp (—%) (2.7.2)
1
< —
< V7

for N sufficiently large. Similarly, for u # v € V(¥€), we have that E [codeg'ﬂ),(u,v) =
2e{uvice Pe < 1Dy (2.7.1) and applying Theorem 2.1.1 gives that

P COng’%),(u,v) > Al/(zr—l)] < exp (_Al/(Zr—l)) <

1
V3’ (2.7.3)
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for large N. Hence taking a union bound over all vertices and pairs of vertices and upper
bounding the failure probabilities with (2.7.2) and (2.7.3) gives that #€’ satisfies the conditions
of Theorem 2.7.1 whp. Therefore for N (and hence A) sufficiently large, we can fix such an
instance of #€” and apply Theorem 2.7.1 which gives the large matching in #€¢’ and hence in /€,

concluding the proof. O

It will be useful for us to work with the following corollary to Theorem 2.7.2 which gives us
a sufficient condition for us to be able to generate the perfect fractional matchings needed in
Theorem 2.7.2 via a greedy process. Recall that for a 2-uniform graph J on V(¥€), #€; denotes
the subhypergraph of 7€ given by all edges of ¥ which contain some edge of J.

Theorem 2.7.3. Forall3 <reNand0 <y < #, there exists an N such that the following
holds for all N > Ny. Suppose J€ is an N-vertex, r-uniform hypergraph such that given any
graph J on V(¥€) of maximum degree at most N Y we have that € \ #€; contains a perfect

fractional matching. Then J€ has a matching covering all but at most N'~Y vertices.

Proof. We will prove this by appealing to Theorem 2.7.2 with n := ry and so we set out
to find ¢ := 2N perfect fractional matchings fi,..., f; such that (2.7.1) holds. We do this
algorithmically, finding the f; one at a time. We begin by defining J; to be the empty (2-uniform)
graph on V(F€) and for 1 < i <t we do the following. We find a perfect fractional matching f;
in €\ #€;, and add this to our family of perfect fractional matchings. We then define a graph G;

with vertex set V(F€) and a pair of vertices p € (V(f ))

Z file) > NT_n

pCecE (#)

forming an edge in G; if

Finally we define J;4 := J; U G; and move to step i + 1.

We claim that this algorithm does not stall and we complete our collection of ¢ perfect fractional
matchings. In order to check this, we need to verify that we can find a perfect fractional matching

in #C\ #C;; for each j € [¢]. This follows because at each step 7, we have that for any v € V(¥€),

D f@)=0-D > filo=r-1,

ueV (H)\{v} \{u,v}cecE (#) veeeE (#)

as f; is a perfect fractional matching. Hence the number of pairs p € (V(z'%; )) that contain v and

form an edge of G; is at most 2(r — 1)N". As this holds for all choices of v € V(F#) we have
that G; has maximum degree less than 2(r — 1)N". Thus for each j € [t], J; := Ulj.:ll G; has

maximum degree less than

2r = DN(j = 1) < 2(r = )Nt = 4(r = 1)N?" < N"7 = N"7,
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for N sufficiently large. So #€\#;, does indeed host a perfect fractional matching by assumption.

Finally we need to check condition (2.7.1) for each pair of vertices p = {u,v} € (V(‘%)). Note

2
that for any pair p € (V(f(‘) ) of vertices of #€ we have that

t

DI EE

i=1 \pcecE (/)

if p does not feature as an edge in any of the G;. On the other hand, we have that if p = {u, v} €
E(G ) for some j € [t], then note that because we forbid the edges of # containing {u, v} from

being used again we have that

t

N EINIGIEL

i=j+1 \pce€E (¥#)

Also we have that p ¢ E(G;) for i < j as otherwise there could be no weight on (edges

containing) p in f;. Hence

| -
) B I | =)

i=l \pcecE (#)

and using that

gt D fileo=1,

pCecE (#) uceckE (/)

gives that (2.7.1) holds for all p € (V(;e)) as required. So by Theorem 2.7.2, we have that 7

contains a matching covering all but at most N'=7/" = N'=7 vertices, concluding the proof. O

2.8 The absorption method

We will use the absorption method, which has appeared in various guises [60, 119] since the 90s
and was widely popularised by Rodl, Rucifiski and Szemerédi [154]. The basic idea, which we
now sketch, is to split the problem of finding a spanning structure into two tasks: finding some
absorbing structure and finding an almost spanning structure in the host graph G. In more detail,
the first task is to prove the existence of an absorbing structure that lies on some absorbing set
of vertices A C V(G) of the n-vertex host graph G. In the context of K, -factors, this absorbing
set will (usually) comprise of a small constant proportion of the vertices of G and the absorbing
structure will have a strong absorbing property that implies that for any set L ¢ V(G) \ A of o(n)
vertices, if |L| + |A| € rN, then G[A U L] contains a K,-factor. We then put the absorbing
set A to one side and our second task is to find an almost spanning structure which equates to

finding an almost K,-factor in G[V(G) \ A]. This almost factor will leave some small leftover
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set L C V(G) \ A of vertices uncovered, at which point we appeal to the absorbing property of

the absorbing structure to complete a K, -factor.

In recent years, the method has become an extremely important tool for studying the existence
of spanning structures in graphs, digraphs and hypergraphs, and novel variations of the method
have been developed to overcome certain challenges. Indeed, the method sketched above is quite
general (even after restricting the discussion to K,--factors) and often the challenge in absorbing
arguments is to define an absorbing structure in such a way that it has the key absorbing property
but can also be found in the setting of interest. Some recent innovations for the use of the method
have included the so-called lattice based absorption method developed in [81, 82, 103] and the
cascading absorption method developed in [119, 145], which we will build upon here in our

proof of Theorem I (see Section 3.1).

In this section we concentrate on a powerful new approach introduced by Montgomery [136, 137],
in his work on spanning trees in random graphs. The general idea is to use the following key

notion as an auxiliary graph to define absorbing structures in the host graph of interest.

FIGURE 2.1: A template 7 of flexibility 2. One can check that the key property is indeed satisfied.

Definition 2.8.1. A template 7 with flexibility t € N is a bipartite graph on 7¢ vertices with
vertex classes 7 and J; U J», such that |1| = 3¢, |J;| = |J2| = 2¢, and for any J C J,, with |J| =1,
the induced graph 7 [V (7") \ J] has a perfect matching. We call J, the flexible set of vertices for
the template.

See Figure 2.1 for an example of a template. The definition implies that a template is robust
with respect to having a perfect matching. It is not hard to come up with examples of templates,
indeed a complete bipartite graph certainly satisfies the condition. The utility of the notion for
defining absorbing structures that are possible to find in the desired host graphs, comes with the
fact that sparse templates exist. Indeed, Montgomery [136, 137] proved the following using a

probabilistic argument.
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Theorem 2.8.2. For all sufficiently large t, there exists a template of flexibility t and maximum

degree 40.

Han, Kohayakawa, Person and the author [84] then showed how to derandomise the argument
for the existence of templates and find templates with bounded maximum degree efficiently in

polynomial time.

We will appeal to the template absorption method twice in this thesis, once in our proof of
Theorem I (more specifically in proving Proposition 3.1.9) and also in proving the upper bounds
of Theorem III. The method has recently found many applications and has played an instru-
mental role in several significant breakthroughs in combinatorics. Indeed, we mention results of
Kwan [131], the author [139], and Ferber and Kwan [66] establishing the existence of (families
of disjoint) perfect matchings in random Steiner triple systems, the work of Glock, Kiihn, Mont-
gomery and Osthus [76] on decompositions of optimally coloured complete graphs into rainbow
spanning trees, the proof of Ringel’s conjecture by Montgomery, Pokrovskiy and Sudakov [138]

and the work of Ferber, Kronenberg and Luh [65] on 2-universality in random graphs.






Chapter 3

Clique factors in pseudorandom graphs

In this chapter we prove Theorem I, which we now restate for convenience, giving a pseudorandom

condition for the existence of clique factors in graphs.

Theorem I. (Restated) For every 3 < r € N and ¢ > 0 there exists an € > 0 such that
any n-vertex (p, B)-bijumbled graph with n € rN, §(G) > cpn and B < £p"'n, contains

a K,-factor.

The chapter is organised as follows. In Section 3.1, we discuss the proof in detail, introducing
key concepts such as diamond trees, shrinkable orchards and the cascading absorption process.
In doing so, we reduce Theorem I to proving two intermediate propositions (Propositions 3.1.8
and 3.1.9) and a lemma (Lemma 3.1.4). In Section 3.2 we then derive some properties of
bijumbled graphs. In Section 3.3 we study diamond trees and investigate what kinds of diamond
trees we can guarantee in our bijumbled graph. The key result in Section 3.3 is Proposition 3.3.1,
which will be crucial at various points in our proof. We then turn, in Section 3.4, to addressing
the necessary results for the cascading absorption process which forms a major part of the
proof of Theorem I. We prove Lemma 3.1.4 in Section 3.4.1 and discuss Proposition 3.1.8 in
Section 3.4.2, reducing it to two intermediate propositions which tackle small and large order
shrinkable orchards separately. We go on to prove the existence of shrinkable orchards of small
order in Section 3.5 and large order in Section 3.6. Finally we prove Proposition 3.1.9 which

provides the final absorption in the proof of Theorem I, in Section 3.7.

3.1 Proof reduction and overview

The proof of Theorem I rests on the shoulders of the previous results [3, 83-86, 127, 145]
working towards the conjecture of Krivelevich, Sudakov and Szabé. Indeed it is fair to say that

the solution of the conjecture would not have been possible without the insights and ideas of

39
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the many authors who tackled this problem. In this section, we discuss these as well as our
novel ideas and lay out the key concepts and scheme of the proof. In doing so, we will reduce
the theorem to several intermediate results, whose proofs will be the subject of the rest of the

chapter.

Our proof, like some of its predecessors [3, 83, 145], works by the method of absorption (see
Section 2.8). It turns out that finding an almost K,-factor in a (p, §)-bijumbled graph G as in
Theorem I, is easy. This follows from a simple consequence of Definition 1.4.1 which guarantees
that any small linear sized set of vertices contains a copy of K, see e.g. Corollary 3.2.5 (2) for
a precise statement. Therefore we can greedily choose copies of K, to be in our K,-factor and
continue this process until we are left with some small leftover set of vertices L, where small
here means, of size at most ern, say. However, at this point we get stuck; we have no way
of guaranteeing the existence of a K, in L and so we do not know how to get a larger set of
vertex-disjoint copies of K,. As usual with absorption, the idea is to put aside an absorbing set
of vertices which can absorb the leftover vertices L into a K, -factor. That is, before running this
greedy process to build a K, -factor, we find some special set of vertices X € V(G) which has
the property that for any small set of vertices L C V(G) \ X, there is a K,-factor in G[X U L]
(provided the trivial divisibility constraint that r|(|X|+ |L])). If we can find such an X in G, then
we can put it to one side and run the greedy argument to cover almost all the vertices which do
not lie in X, with vertex-disjoint copies of K,. We can then use the absorbing property to absorb

the leftover vertices L and get a full K,.-factor.

This leaves the challenge of defining some structure in G which has this absorbing property and
finding such a structure (on some vertex set X) in G. The building blocks of our absorbing
structure will be subgraphs that we call K,.-diamond trees. In words, a K,--diamond tree D =
(T, R, %) is the graph obtained by taking a tree T and replacing each edge ¢ € E(T) by a copy
of K, (the r + 1-vertex clique with a singular edge removed) whose degree r — 1 vertices are
the vertices of e and whose degree r vertices are new and distinct from previous choices, see

Figure 3.1 for an example. The following definition formalises this notion.

D=(T,RY) T=

FIGURE 3.1: An example of a K3-diamond tree D = (7, R, X) of order 9 shown on the left. The
removable vertices R are the larger vertices of 9 and the interior cliques X are the edges given in
grey. The auxiliary tree T is depicted on the right.
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Definition 3.1.1. A K, -diamond tree D of order m ina graph G isatuple D = (T, R,X) where T
is an (auxiliary) tree of order m (i.e. with m vertices), R C V(G) is a subset of m vertices of G
and' X C K,_1(G) is aset of m — 1 copies of K,_1 in G such that the following holds. There are
bijective maps p : V(T) — Rand o : E(T) — X such that:

* XisaK,_j-matching in G which is vertex-disjoint from Ri.e. V(S)NR = Q forall § € %;

» Foralle = uv € E(T), we have that V(o (e)) € Ng(p(u)) NNg(p(v)). Thatis, the r — 1-
clique o (e) € K,_1(G) can be extended to a copy of K, in G by adding the vertex p(u)
and likewise with p(v).

We refer to R as the set of removable vertices of D and to X as the set of interior cliques of D.
We define the vertices of D to be all the removable vertices and the vertices in interior cliques.
That is, V(D) := (UsezV(S)) U R. Finally we define the leaves of the diamond tree to be the

vertices which are images of leaves in 7" under p.

Note that a K,-diamond tree of order m has exactly (m — 1)r + 1 vertices. Krivelevich [119]
used K3-diamond trees in an absorption argument for triangle factors in random graphs which
is often cited as one of the first appearances of the absorption method. Nenadov [145] also used
this idea in his result that got within a log-factor of Theorem I. The utility of these subgraphs
in absorption arguments comes from the following key observation which shows that they can

contribute to a K,.-factor in many ways.

Observation 3.1.2. Given a K,.-diamond tree D = (T, R, ¥) in G, we have that for any removable
vertex v € R, there is a K,-factor of G[V (D) \ {v}]. Indeed, consider u = p~!(v) in V(T) and
the map ¢ : E(T) — V(T) \ {u} which maps each edge e of T to the vertex in e which has the
larger distance from u in 7. Then ¢ is a bijection and taking the copies of K, on o (¢) U p(¢(e))

for each edge e € E(T) gives the required K,-factor. See Figure 3.2 for some examples.

g“&. g
fa

SN il

DA A A

FIGURE 3.2: Some examples of the K3-factors found after removing a removable vertex from
the K3-diamond tree in Figure 3.1 (see Observation 3.1.2).

1Recall that we use the notation K,-_{ (G) to denote the family of (r — 1)-cliques in G.
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Observation 3.1.2 works for any underlying auxiliary tree 7. It turns out that in the (p, 8)-
bijumbled graphs G we are interested in, one can find K,-diamond trees of any order up to linear
size. Indeed, one can use the argument of Krivelevich [119] to construct these or a different
argument due to Nenadov [145]. The method of Nenadov gives diamond trees whose auxiliary
tree is a path whilst the argument of Krivelevich gives no control over the underlying auxiliary
tree which defines the diamond tree found. As a key part of our argument, we will need to prove

the existence of diamond trees which have extra structure, as we discuss shortly.

In order to utilise the absorbing power of diamond trees, we need to group them together in

collections. The following definition of an orchard captures how we do this.

Definition 3.1.3. We say a collection O = {Dy, ..., Dy} of pairwise vertex-disjoint K,.-diamond
trees in a graph G is a (k, m),-orchard if there are k diamond trees in the collection and each
has order at least m and at most 2m. We refer to k as the size of the orchard and m as the
order of the orchard2. We denote by V(Q), the vertices featuring in diamond trees in O, that
is V(O) = Ujer) V(D). Finally, if O” C O is a subset of diamond trees in an orchard O, we
call O’ a suborchard of O.

The term orchard here is supposed to be instructive, indicating that this is a ‘neat’ collection of
diamond trees that all have a similar order and are completely disjoint from one another. As noted
in Observation 3.1.2, a K,--diamond tree can contribute to a K,-factor in many ways. By grouping
together many vertex-disjoint K.-diamond trees into a (k, m),.-orchard such that km = Q(n), we
get a structure with a strong absorbing property, as the next lemma shows. We say a (K, M),.-
orchard O absorbs a (k, m),-orchard R if there is a ((r — 1)k, M),-suborchard O’ c O, such
that there is a K,-factor in G[V(R) U V(O")].

Before stating the lemma, we make a few remarks about this definition of absorption of orchards.
Firstly, note that the definition gives a K,-matching which covers all the vertices of R, that
is, the vertices of R are absorbed into disjoint copies of K,. However, we are also careful
that we do not destroy the structure of O in the process of this absorption. Indeed, removing
the K,-matching given by the absorption we are left with a suborchard O \ O’ of O. Finally,
we remark that the condition that O’ is a ((r — 1)k, M),-orchard stems from how we prove
absorption of orchards throughout. Indeed, as we will see, we will always prove that O absorbs
R by finding, for each diamond tree 8 in R, a set of r — 1 diamond trees Dy, ..., D, € O
such that there is a K,-factor in G[V(8) UV(D) U ... UV(D,_1)]. We will ensure that these
choices are distinct and thus O’ will be formed by taking all the choices of the D; for all B € R.

Lemma 3.1.4 (absorption between orchards). For any 3 < r € Nand 0 < {,n < 1 there

exists an € > 0 such that the following holds for any n-vertex (p, 8)-bijumbled graph G with B <

2Note that we abuse notation slightly here. Indeed we refer to the order of an orchard although this may not be
uniquely defined by the orchard. We take the convention that when we refer to the order of an orchard, we simply fix
one of the possible orders arbitrarily, noting that these possible orders differ by a factor of at most 2.
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ep"~'n. Let © be a (K, M),-orchard in G such that KM > {n. Then there exists a set B C V(G)
such that |B| < np*~*n and O absorbs any (k, m),-orchard R in G with

V(R)N(BUV(O) =0, k< 85 and kM < mK. (3.1.1)
r

Morally, Lemma 3.1.4 says that large orchards absorb small orchards. Here, by large we refer to
both the size and the order of the orchards. Indeed the second condition in (3.1.1) shows that the
larger orchard has to have a larger size than the smaller orchard. The third condition shows that
the ratio between the orders of the orchards is constrained by the ratio of the sizes. That is, the
larger O is compared to R with respect to their sizes, the smaller R can be than O with respect
to their orders. The first condition in (3.1.1) simply states that in order for O to absorb R,
we need that R avoids some small set of bad vertices B. This will be easy to implement in

applications.

Lemma 3.1.4 will be proven in Section 3.4.1. It provides us with an absorption property
between two distinct orchards. We will also need an absorption property within orchards
themselves, showing that we can find a large suborchard which hosts a K,-factor in G. Given
Observation 3.1.2, in order to find K,-factors on suborchards it suffices to find copies of K,

which traverse sets of removable vertices. We therefore make the following definition.

Definition 3.1.5. Given a (k, m),-orchard O = {D, ..., Dy} in a graph G, the K, -hypergraph
generated by O, denoted J€ = F(O), is the r-uniform hypergraph with vertex set V(#) = O
and with {D;,, ..., D; } for distinct iy, ...,i, € [k] forming a hyperedge in #€ if and only if

there is a copy of K, traversing? the sets R;,...,R; in G, where R; ; is the set of removable

ir

vertices of O;; for all j.

Appealing to Observation 3.1.2 then gives the following, as finding copy of K, traversing r sets

of removable vertices removes exactly one vertex from each set.

Observation 3.1.6. If O is an orchard of K,-diamond trees in a graph G and #€(O) contains a
perfect matching, then G[V ()] contains a K,.-factor.

We will be particularly interested in orchards which contain almost K,.-factors in a robust way.

This gives us the notion of a shrinkable orchard.

Definition 3.1.7. Given 0 < v < 1, we say a (k, m),-orchard in a graph G is y-shrinkable if
there exists a suborchard @ ¢ O of size at least yk such for any suborchard @’ C Q, we have

that there is a matching in 7€ := #€(O \ Q') covering all but k'~ of the vertices of #€.

3Here and throughout, when we say a copy of K, traverses r disjoint sets of vertices if it contains one vertex from
each set.
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Our first key proposition gives the existence of shrinkable orchards. It will be discussed in

Section 3.4.2 and proven in Sections 3.5 and 3.6.

Proposition 3.1.8 (existence of shrinkable orchards). For any 3 < r € Nand 0 < a,y <
21% there exists an € > 0 such that the following holds for any n-vertex (p,f3)-bijumbled
graph G with B < ep"~'n and any vertex subset U C V(G) with |U| > 5. Foranym € N
with 1 < m < n'/® there exists a y-shrinkable (k,m),-orchard © in G[U] with k € N such

that an < km < 2an.

Given Lemma 3.1.4 and Proposition 3.1.8, we know that we can find orchards which contain
almost K,--factors and that large orchards can absorb smaller orchards. This suggests the following
approach for giving an absorbing structure which can absorb leftover vertices in our (p, §8)-
bijumbled graph G. Find a sequence of vertex-disjoint shrinkable orchards, each on a linear
number of vertices. Each orchard in the sequence will have a larger order than that of the previous
orchard and the first orchard in the sequence will be composed of linearly many K, -diamond
trees of constant size. We can then run a cascading absorption through the sequence of orchards.
That is, given some small leftover set of vertices L (which is itself a (|L]|, 1)-orchard), we use
the first orchard in the sequence to absorb L. We then use that the first orchard is shrinkable
and so we can cover most of what remains of the first orchard with vertex-disjoint copies of K.
There will be some K,.-diamond trees of the first orchard left at the end of this and for these we
appeal to Lemma 3.1.4 to absorb this small suborchard using the second orchard. Then again,
the second orchard is shrinkable and so the remainder of the second orchard can be almost fully
covered with vertex-disjoint K,-s, leaving some small leftover suborchard uncovered. We then
repeat to absorb this leftover with the third orchard and continue in this fashion. In this way we
cascade the absorption through the orchards and each time we do this, we increase the order of

the orchard which we need to absorb.

This approach is promising but we need to cut this process off at some point and find a full K-
factor on the vertices which have not already been covered by vertex-disjoint copies of K. The
next proposition states that once the orchard has a large enough order, we can find a structure

that can fully absorb any leftover.

Proposition 3.1.9 (the final absorption). For any 3 < r € Nand 0 < a,n < 2% there exists

ane > 0such that the following holds for any n-vertex (p, 8)-bijumbled graph G with 8 < ep”'n
and any vertex subset W C V(G) with |W| > 7.

There exist vertex subsets A,B C V such that A ¢ W, |A| < an, |B| < np*~*n and for
any (k, m),-orchard R whose vertices lie in V(G)\ (AUB), with |A|+|V(R)| € rN, k < a*n'/®
and m > n"'8, we have that G[A U V(R)] has a K,-factor.
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We are now in a position to prove Theorem I, using only Lemma 3.1.4, Propositions 3.1.8
and 3.1.9, some simple properties of (p, 3)-bijumbled graphs and Chernoft’s Theorem (The-

orem 2.1.1).

Proof of Theorem I. For convenient reference throughout the proof, let us fix our constants

c 7
v = o A=y a=2 (=a* n:=¢ and r1:= 3 (3.1.2)

We further fix ng = ﬁ and € > 0 to be much smaller than nio and sufficiently small enough
to apply Lemma 3.1.4 and Propositions 3.1.8 and 3.1.9 with the parameters above. We also use
some simple consequences of Definition 1.4.1 which imply that, by choosing ¢ > 0 sufficiently
small, we guarantee that any vertex subset of size {pn contains a copy of K,_; whilst any
vertex set of size {n contains a copy of K, see e.g. Corollary 3.2.5. Moreover we note that
if 6(G) = (1 - %)n then it follows from Theorem 1.1.2 that G has a K,-factor and so we can
assume that 5(G) < (1 — 1)n. For such n-vertex (p, 8)-bijumbled graphs G with 8 < ep"~!n,
a well-known fact (see Fact 3.2.1) implies that by choosing € > 0 to be sufficiently small,
we can assume that n > ng in what follows as otherwise no n-vertex (p, 8)-bijumbled graphs
with 8 < ep”~'n exist and the theorem is vacuously true. Finally, another well-known fact (see
Fact 3.2.2) implies that (p, 8)-bijumbled graphs cannot be too sparse. In particular, with our
condition on 3, by choosing & > 0 to be sufficiently small, we can also assume that p > n~'/3 in

what follows.

Before finding our K,-factor in G we need to do some preparation. We begin by setting
aside a randomly chosen subset of vertices Y C V(G). We let each vertex be in Y with
probability . It follows from Chernoftf’s Theorem (see Theorem 2.1.1) and a union bound that
whp, we have that |Y| < 2an and deg(v;Y) > % for all v € V(G). Indeed, this follows
because E[deg(v;Y)] > capn = Q(n*?) for each v € V(G). Therefore, as n is large, we can
fix such an instance of Y. We will use the vertices of Y to find copies of K, containing ‘bad’

vertices later in the argument.

Next, we apply Proposition 3.1.9 to obtain vertex sets A c V(G) \ Y and B such that |A| <

2r=4y and we have the following key absorption property. Forany (k, m),-orchard R

an, |B| < np
whose vertices lie in V(G) \ (A U B), we have thatif |A|+|V(R)| € rN, k < ¢n'/®andm > n”/3
then G[A U V(R)] has a K,-factor. That is, A can absorb orchards whose order is sufficiently

large.

As sketched above, the idea is now to provide constantly many (namely, ¢ + 1) vertex-disjoint
shrinkable orchards Oy, Oy, ... O;, each on a linear number of vertices and whose vertices are
disjoint from A. The order of these orchards will increase slightly (namely, by a factor of n?)
at each step in the sequence. Due to our definition of ¢ (3.1.2), we can have that Qg has Q(n)

orchards of constant order while @, has orchards of order Q(n’/®). The point is that we will
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be able to repeatedly apply Lemma 3.1.4 and the fact that each orchard is shrinkable to create a
cascading absorption through the shrinkable orchards. Indeed Oy will be able to absorb leftover
vertices and each O; will be able to absorb any leftover K,.-diamond trees in O;_;, after using
that ©;_; is shrinkable to cover almost all of the vertices of ©;_; with disjoint copies of K.
Once this absorption reaches O;, we will be able to use A to absorb the leftover K,-diamond
trees in O, and complete a K,.-factor. In fact, when absorbing between orchards we do not use all
of O; to absorb leftover diamond trees in O;_; but rather a suborchard Q; c O; which contains
a y proportion of the K,-diamond trees in ©;. Indeed this Q); is provided by the fact that O; is
shrinkable (see Definition 3.1.7) and guarantees that removing diamond trees from Q; will not

prevent us from covering almost all of what remains of O; with vertex-disjoint copies of K.

In detail, we collect what we require in the following claim.

Claim 3.1.10. There exists vertex-disjoint orchards Ogy, O1, ..., O; in G such that following
properties hold.

(i) Forall0 <i <t, we have that V(O;) N (AUBUY) = 0.

(ii) For each 0 < i < t, fixing m; := n'*, we have that ©; is a (k;, m;),-orchard for some k;

such that an < k;m; < 2an.

(iii) Each O; is y-shrinkable with respect to some suborchard Q; C O; such that
ki =1Qil = vki.

(iv) For 1 <i < t, given any suborchard P C O;_; such that |P| < k;__ly, we have that Q;
absorbs P.

Before verifying the claim, let us see how we can derive the theorem using the claim. So suppose

we have found such orchards Oy, ..., O, and fix

X:=A U (Q V((’)l-)) .

Furthermore, note that as kymo = k; > yan > {n, by Lemma 3.1.4, there exists some set By C
V(G) such that |Bg| < np* ~*n and Q) absorbs any (k, 1)-orchard* R such that

k<in< X0 (3.1.3)

4Note that a (k, m),-orchard with m = 1 is simply a set of vertices. Each K,-diamond tree in the orchard has
order 1 and so is a single isolated vertex.
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and V(R) N (BoUV(Qy)) = 0. Indeed the condition on k comes from (3.1.1), using that my = 1
and our lower bound on k. Fix Z := Bg \ X and note that z := |Z]| < np* ~*n as Z is a subset
of By. Note also that X N Y = ( due to part (i) of Claim 3.1.10 and how we defined A.

FIGURE 3.3: A schematic to demonstrate the triangles found (and the vertex sets they cover) by our
four-phase algorithm that finds a K3-factor in G.

We are now ready to find our K,-factor S which we do algorithmically in four phases. See
Figure 3.3 for a visual guide to the cliques found in each phase. So let us initiate with S| = 0.
In the first phase we find copies of K, containing the vertices in Z, using some vertices in Y.
So let us order the vertices of Z arbitrarily as Z := {by,...,b,} and fix Y| := Y \ Z. Now
for 1 < j < z, we find an r-clique S; containing b; and r — 1 vertices of Y;. We add §; to Sy,
fix Y;11 :=Y; \ V(S;) and move to step j + 1. To see that we can always find such a clique, note
that for each j € [z] we have that

PR ¥ 2 gpn,

recalling our key property of ¥ and using the definitions of our constants (3.1.2). A simple
consequence of (1.4.2) (see e.g. Corollary 3.2.5 (1) (i)) implies that there is a copy of K,_;
in N(b;) NY; and so this forms an r-clique S; with b;. In this way, we see that we succeed at
every step j and at the end of the first phase we have a set of vertex-disjoint r-cliques S; in G of

size z, such that every vertex in Z is contained in a clique in Sj.

In the second phase we find the majority of the K,-factor which we do greedily. We initiate
with S =0 and W = V(G) \ (X U V(S;)). Now whilst |[W| > ¢n, we can find an r-clique S
in W. Again, this is a simple consequence of (1.4.2), see Corollary 3.2.5 (2). We add S to S»
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and delete its vertices from W. Therefore at the end of the second phase, we are left with some

vertex set L C V(G) \ X suchthat |L| < ¢{nand §; US; form a K,.-factorin G[V(G) \ (XU L)].

FIGURE 3.4: A closer look at phase 3 of the algorithm in the case r = 3.

In our third phase, we will find vertex-disjoint r-cliques 83 which cover L and use almost all the
vertices of X \ A. We begin by fixing ¢ := |L| and noting that L is an (¢, 1)-orchard which we
relabel as P_;. Now we run the following procedure for 0 < i < ¢ (see Figure 3.4). We first
absorb P;_1 using Q;. That is, we find a suborchard Q; C Q; such that there is a K,.-factor 7;
in G[V(P;-1) UV(LQ])]. We add the r-cliques in 7; to S3. Then, using that O; is y-shrinkable
(Claim 3.1.10 (iii)), we can define some P; C O;\ Q; such that [P;| < k; 77 and there is a perfect
matching in the K,-hypergraph #€(O; \ (Q;UP;)). By Observation 3.1.6, this perfect matching
gives a K,-factor R; in G[V(O; \ (Q;UP;))]. We add R; to S3 and move to step i + 1 or finish
if i = t. Note that in order to find 7; and Q in each step i > 1, we appeal to Claim 3.1.10 (iv),
whilst when i = 0, the existence of 75 and Q(’) is guaranteed by the fact that L is an (¢, 1)-orchard
with £ < ¢n as in (3.1.3) and L is disjoint from Z and hence By.

Let R := P, ¢ O,. We have that S; US, US3 is a K, -factorin G[V(G) \ (AUV(R))]. Hence
as r|n, we must have that 7| (|A| + |V(R)|). Moreover, R is a (k, m),-orchard with k < kt]_y <
(2an'’®)1=7 < @®n'/® and m = n’/%. Finally, note that V(R) N B = 0 due to property (i) of
Claim 3.1.10. Therefore, by the key property of the absorbing vertex set A in Proposition 3.1.9,
we have that there is a K, -factor S5 in G[A U V(R)]. It follows that S :=S; US, US3 U Sy is

a K,--factor in G, completing the proof.

It remains to establish Claim 3.1.10 and find the shrinkable orchards as stated. We will do
this algorithmically in decreasing order. The reason for this is that in order for (iv) to hold we
will appeal to Lemma 3.1.4 and therefore there will be some set of bad vertices B; which we
want O;_; to avoid. In fact, we will ensure that O;_; avoids B; for all i < j < t. This is not
necessary but eases our definitions (as we do not have to reintroduce vertices into the pool U; of

available vertices); the important condition in what follows is that O;_; avoids B; for all i.



3.1.  Proof reduction and overview 49

We start by fixing U4 := V(G) \ (AUBUY). Now for ¢ > i > 0 in descending order, we
apply Proposition 3.1.8 to find a y-shrinkable (k;, m;),-orchard O; such that an < k;m; < 2an
and V(O;) c U;;;. We then define U; as follows. As O; is y-shrinkable, it defines some
suborchard @; C O; as in condition (iii) of the claim. Now as kim; > yan 2 {n, it follows
from Lemma 3.1.4 that there exists some B; C V(G) with |B;| < np? ~*n such that if k and m
satisfy k < lg—i and km; < mk; and R is a (k, m),-orchard with V(R) c V(G) \ (B; UV(Q,))
then Q; absorbs R. We fix U; := U1 \ (V(O;) U B;) and move onto the next index i — 1.

Let us first check that the process succeeds in finding the shrinkable orchards Oy, . . ., Oy at each

step. Note that we start with |U;4| > n — 3an —np*~*

2r—4

n > n —4an. Moreover at each step i,
we remove at most n7p n < an vertices which lie in B; and at most 4ran vertices from U,
which lie in the orchard ©;. Indeed the orchard is composed of k; vertex-disjoint K, -diamond
trees of order at most 2m;, the number of vertices in each diamond tree is less than r times its

order and k;m; < 2an. Hence for all t > i > 0, we have that

Uil =2n—(t+2)-5ran >

[NSRIN

using that ¢ < %, @ = A% and the definition of A (see (3.1.2)) here. Hence Proposition 3.1.8 gives
the existence of O; at each step and verifies part (iii) of the claim. Note that the conditions (i)
and (ii) also hold simply from how we defined the O; and the fact that we found them in the

sets U;, each of which is a subset of U,,;.

Thus it remains to verify the absorption property between orchards, namely (iv). For each 1 <
i <t,wechose O;_1 tohave vertices in U; and hence V(O;_1)N(B; UV(Q;)) = 0. Therefore we
have by Lemma 3.1.4 that Q; absorbs any suborchard P ¢ O;_, with |P| < k ki

1=y .o 7 1=y ki
i1 Tk <5
1_
and kl._lymi < kimiy.

Now as m; = n'm;_; and n™* < SLr for n > ny, it suffices to show that k;__ly < k:fn_’l. To see
this, note that due to the fact that an < k;_ym;_1, k;m; < 2an, we have
2an 2an!*1 Zk;f‘n/l

kio < = < 2k;nt <
m;i-q m; Y

and using this as a lower bound for k7, it suffices to show that

22
K > 2n—

i-1 = y

This is certainly true as k;—; > k; > an'/® > ptly, recalling that 47’1 = 4y from (3.1.2). This

shows that (iv) holds for all i and concludes the proof of the claim and hence the proof. O

We remark that this proof scheme builds on that of Nenadov [145] (which in turn is influenced
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by that of Krivelevich [119]) who proved that § < ‘f(f; 2: suffices for a triangle factor in an n-

vertex (p, B)-bijumbled graph. Indeed, Nenadov also uses a result akin to Lemma 3.1.4 albeit

between orchards whose orders only differ by a constant factor. His absorbing structure then
contains a sequence of ®(logn) orchards whose order increases by a constant factor along the

sequence. Therefore the last orchard in the sequence contains constantly many diamond trees of

n
logn

transversal triangle and so transversal triangles between removable sets can be greedily found,

large order (of order O(

)). These can be fully absorbed because any three large sets host a

completing a triangle factor in the last step. Similarly, the (k, m)3-orchards used in his argument
are not imposed to be shrinkable but can be seen to host a triangle factor on all but o(k) of
the diamond trees by again applying a greedy approach of finding transversal triangles. The
necessity of the logn in the condition of Nenadov is thus due to needing ®(log n) orchards in
the absorbing structure and thus requiring slightly stronger properties of the (p, 8)-bijumbled

graph, for example the existence of triangles on sets of Q(2) vertices.

The key challenge in this chapter is then to prove Propositions 3.1.8 and 3.1.9. Both results rely
heavily on a technique we develop to provide the existence of K,-diamond trees in which we
have some control over the set of removable vertices. This control is rather weak; we cannot
guarantee that any fixed vertices appear as removable vertices but we can give some flexibility
over the choice of removable vertices. See Proposition 3.3.1 for the technical statement of what

W€ prove.

In order to prove Proposition 3.1.8, we build on the approach of Han, Kohayakawa and Person [85,
86]. Indeed, their result showing the existence of an almost K,-factor (covering all but some n'~¢’
vertices) in (n, d, 1)-graphs can be seen as a step towards proving the existence of shrinkable
orchards of order 1. The approach involves showing the existence of an almost-perfect matching
in a subhypergraph 7€’ of the K,-hypergraph generated by V(G). In order to do this, one needs
to carefully choose 7€’ and this is done by finding many fractional K,-factors in G which do
not put too much weight on (copies of K, containing) any given edge. Therefore, the methods
of Krivelevich, Sudakov and Szab6 [127], who proved the existence of singular fractional K-
factors, become pertinent. They use the power of linear programming duality to prove that certain
expansion properties guarantee the existence of fractional factors. In our setting, it turns out
that we need several distinct arguments to prove the existence of shrinkable orchards of different
orders. We follow the scheme of using fractional factors (in fact, fractional perfect matchings
in K,-hypergraphs, see Section 2.6) but need to adapt the method for different applications and
we rely crucially on probabilistic methods to actually prove the existence of orchards which

satisfy the necessary expansion properties.

It can be seen that Proposition 3.1.8 alone (for all orders of orchards) would lead via the same

ep’'n
loglogn*

proof scheme to a condition of 8 < In order to close the gap and achieve Theorem I,

Proposition 3.1.9 is necessary. To prove this, we appeal to the template absorption method
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(see Section 2.8) to define an absorbing structure. This method was previously used by Han,
Kohayakawa, Person and the author [83] to find clique factors in pseudorandom graphs and we
used this approach again in our result on 2-universality [84]. Here we combine this idea with
the absorbing power of orchards and prove Proposition 3.1.9 with a three-stage algorithm which

finds the absorbing structure necessary.

3.2 Properties of bijumbled graphs

Here we collect some properties of bijumbled graphs. These range from simple consequences
of Definition 1.4.1 to more involved statements catered to our purposes. We begin by showing

that we can assume that the graphs we consider have an arbitrarily large number of vertices.

Fact 3.2.1. Given any 3 < r € N and ng € N, there exists € > 0 such that any n-vertex (p, 8)-
bijumbled graph G withn € rN, §(G) < (1 - %)n and B < ep”~'n must have n > ny.

1

Proof. Let € > 0 such that & < Tnor Suppose for a contradiction that there exists an n-

vertex (p, B)-bijumbled graph with 6(G) < (1 — 1)n, B < ep"~'n and n < ng. Then due to the
upper bound on the minimum degree of G, there exists a vertexu € V(G) andasetW € V(G)\{u}
such that [W| = 2 and deg (u; W) = 0. However, from Definition 1.4.1, we have that

e({u}, W) 2 pIW| - sp’_]’”‘\/E > P2 (1 - evnr) > Z—n > 0,
r r r

a contradiction. ]

Fact 3.2.1 shows that by choosing £ > 0 sufficiently small, we guarantee that any bijumbled
graph G we are interested in either has a large number of vertices or has §(G) > (1 - %)n in
which case Theorem 1.1.2 implies the existence of a K,-factor and we are done. We will use
this at various points in our argument and simply state that we choose £ > 0 sufficiently small to

force n to be sufficiently large.
The following well-known fact states that bijumbled graphs cannot to be too sparse.

Fact3.2.2. Forany3 < r € Nand any C > 0, there exists an € > 0 such that any n-vertex (p, 3)-
bijumbled graph G with B < ep”'n has p > Cn™ Y/ =3) > cp~1/3,

Proof. Let & > 0 be such that &2 < nc%% and small enough that we can assume that

1 n=9;

.o 1
(i) p< -
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Indeed, from Fact 3.2.1, we can choose ¢ so that (i) holds and Cn~1/(?"=3) < % and so we are

done if we are not in case (ii).

We will also restrict to the case that
(iii) p > 5

To see that we can do this, suppose for a contradiction that there exists a (p, 8)-bijumbled
graph G = (V, E) with pn < % We appeal to Definition 1.4.1 and upper bound 2¢(G) = e(V, V)
by pn? + ep"~'n* < n — 1. Hence there must be some vertex u € V which is isolated in G.
But then defining W := V \ {u}, the lower bound of Definition 1.4.1 gives that e({u}, W) >

p(n—1)—ep™'nVn—12 pn(} — epn) > 0, a contradiction.

We now turn to proving the statement in full generality. Our aim is to construct large (disjoint)
vertex subsets U and W such that e(U, W) = 0. We do this in the following greedy fashion.
We initiate a process by setting U = ¢ and W = V(G). Now whilst |[W| > %, there exists
some u € W with deg(u; W) < 2p|W| < 2pn. Indeed this follows from Definition 1.4.1 as

D deg(w; W) = e(W, W) < p[W|* +2p"™' |W| < 2p|W[.
wew

We then choose such a u, delete it from W and add it to U, and also remove N (u; W) from W.

Let U and W be the resulting sets after this process terminates. It is clear that e (U, W) = 0 as we
have removed all the neighbours of each vertex u € U from W during the process. We also claim
that [W| > 7 and U > 16

to our assumptions (i) and (ii), we have that 1 + 2pn < 7 and so as W had size greater than

. Indeed, the last step removed at most 1 + 2pn vertices from W. Due

before this step, we indeed have that [W| > 5 as the process terminates. To see the lower bound

on the size of U, note that if this was not the case, then

1 n n
V(G)\ W[ =|Uyev ({u} UNG(u))| < Z Huy UNG ()] < UI(1+2pn) < 70—+ 2 < 7,
uelU
using assumption (iii) in the last inequality. This implies then that |[W| > =, a contradiction as

the process terminated.

Thus [W| > 3, |U] 2 ﬁ and from Definition 1.4.1, we have that
0=e(U,W) 2 plU||W|-ep  'ny|U|W|,

implying that p>" =3 > . Given our upper bound on &, this implies that p > Cn~!/(?=3) a5

et
required. =
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Our first lemma shows that few vertices have degree much smaller or much larger than expected

to a given set.

Lemma 3.2.3. For any 3 < r € N and n > 0 there exists an € > 0 such that if G is an n-

vertex (p, B)-bijumbled graph with B < ep”~'n then for W C V(G) we have that:

(i) The number of vertices v € V(G) such that deg(v; W) < %|W|, is less than

np2r—4n2

W]

(ii) For any q such that 2p < q < 1, the number of vertices v € V(G) such that deg(v; W) >

q|W|, is less than
np2r—2n2

q*| W]

Proof. Fix £ > 0 such that such that 4s> < 5. We prove only (ii), the proof of (i) is both similar
and simpler. We set B to be the set of ‘bad’ vertices i.e. vertices v such that deg(v; W) > ¢|W]|.
Thus we have that

qlBIIWI| < e(B,W) < p|BIIW| +&p"'ny|B|IW],

using the definition of B and (1.4.2). Rearranging gives that

2 2522
£ n
B < —2

(q-p)* W’

and using that p < % gives the desired conclusion using our choice of €. O

Next, we state some further consequences of Definition 1.4.1, showing that we can find cliques
traversing large enough subsets of vertices. The following lemma is very general and will be
used at various points in our argument. Due to its generality, there are some technical features.
Whilst these are all necessary for certain parts of our argument, we do not need all of these at
once. In fact for easy reference, we list the consequences of Lemma 3.2.4 that we will use, in
Corollary 3.2.5. This may also serve to digest the statement of Lemma 3.2.4, seeing how it is
applied in practice. We also refer the reader to the Notation Section for relevant definitions,
for example recalling that for a clique S and vertex subset U of a graph, deg(S; U) denotes the

number of common neighbours of (the vertices in) §, that lie in U.

Lemma 3.24. Forany3 <reNand0 <1 < 2% there exists an € > 0 such that the following
holds for any n-vertex (p,8)-bijumbled graph G with B < ep”~'n. Suppose that there are

integers x; € N, i € [r+ 1] such that x; > ... > x,+1 = 0 and for some r* € [r], one has that

Xi+Xiy1 +20 <2r =2, 3.2.1)
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m

forall 1 < i < r*. Definey := max{xjq; +1 : i [r*]1}. Then for any collection of
subsets U; C V(G) such that |U;| > tp¥in for all i € [r + 1], and any subgraph G of G

G\ G, we have that there exists a

with maximum degree less than t>p¥n, defining G’ :

clique S € K,«(G') traversing Uy, . .., Uy such that
degs (S;U;) > Tpr*lUjl,

Jorr*+1<j<r+1.

Proof. Fix € > 0 small enough to apply Lemma 3.2.3 (i) with n := % Further, fix y and G
as in the statement, setting G’ := G \ G. We will prove inductively that fori = 1,...,r", there
exists an i-clique S; € K;(G’) traversing Uy, . . ., U; such that degg, (S;; U;) > (%)ilUjl for all j
withi+1 < j < r+1. Note that S, is the desired copy of K, in the statement, using that 7 < 4,%

here.

So fix some i € [r*]. If i > 2, by induction we deduce the existence of S;_; as claimed and
fori < j <r+1,define W; C U; sothat W; := Ng/(S;;Uj). If i = 1, we simply set W; := U;
for all j. We thus have that
Wil = (2)7 0= ety (322)
=1z jl = p ’ it
fori < j <r+1. Now we appeal to Lemma 3.2.3 (i) and conclude that for each j withi+ 1 <
Jj < r+1, there is some set B; C V(G) such that deg; (v; W;) > £|W;| for all v € V(G) \ B;

and

np2r—4n2 774i_1p2r_3_i_le’l - Tp2r—3—i—xi+1n - Tpxi+i—1n - |W1|
Wil T - 4ir o4y T2

|B;| < (3.2.3)
Here, we used (3.2.2) in the second inequality, the definition of 1 and the fact the x; < x;;1 in the
third, (3.2.1) in the fourth and (3.2.2) once again in the final inequality. We can thus conclude
from (3.2.3) that there exists a vertex w; € W; such thatw; ¢ B foralli+1 < j <r+1. We
claim that choosing S; = S;_1 U {w;} completes the inductive step. Indeed S; € K;(G’) as w;
was chosen from the common neighbourhood of S;_; in G’. Also, fixingsomei+1 < j <r—1,
we have that Ng (w;) intersects W; = Ng/(S;-1; U;) in at least %lel vertices. Furthermore, at
most
2pn < Tiprintiy < ip"ﬁin < £|Wj|
22 4

edges adjacent to w; lie in G, using the definition of y, the upper bound on 7, the fact that x i< Xipl
and (3.2.2). Therefore we can conclude that for alli + 1 < j < r + 1, we have degs, (S;;U;) >

degg (Si; Wj) > £1w;| > (%)iIUjl, asrequired. This completes the induction and the proof. O
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We now collect some easy consequences of Lemma 3.2.4 for reference later in the proof.

Corollary 3.2.5. Forany3 <r e Nand 0 < 7 < 2% there exists an € > 0 such that the

following holds for any n-vertex (p, 8)-bijumbled graph G with B < ep”~'n. We have that:

1. For any subgraph G of G with maximum degree less than t>p"~'n we have the following.

(i) For any vertex subsets Uy, ...,U,_1 C V(G) such that |U;| > tpn fori € [r — 1],
there exists an (r — 1)-clique S € K,_1(G \ G), traversing the Us.

(ii) Forany Uy, ...,U, C V(G) such that \Uy| > tp*” *nand |U;| > tnfor2 <i <r,
there exists an r-clique S € K, (G \ G), traversing the Us.

2. For any Uy, ..., U, C V(G) such that |Uy| > tp" 'n, \U;j| > tpnfor2 <i <r-2

and |U,_1|,|Uy| = Tn, there exists an r-clique S € K, (G), traversing the Us;.

3. For any Wy, W,W> C V(G) such that |Wy|, |Wi|,|Wa| > tn, there exists an S €
K,_1(G[Wo]) such that deg(S; W;) > t2p"'nfor j =1,2.

Proof. Fix & > 0 small enough to apply Lemma 3.2.4. This is predominantly a case of plugging
in the values and checking the conditions of Lemma 3.2.4. For part (1), we let G’ = G \ G.
Then for (1)(i), we take r* = r —2,x; = 1for1 <i <r+1and y =r — 1. We thus have that
forie [r'],x;+x;41+2i=2+2i <2r—2and x;41 +i = 1 +i < r — 1 = y. Therefore taking U;
for 1 <i <r—1 with |U;| = 7pn (and defining U, = U, = U,_;), Lemma 3.2.4 gives us
an (r —2)-clique S” € K,_1(G’) traversing Uy, . . ., U,_5 such that deg, (S"; U,_1) = 72p"~'n >
0 (here Fact 3.2.2 shows positivity). Therefore choosing any vertex v € Ng/(S’;U,—1) and
fixing S = S” U {v} gives the required clique.

The other cases are similar. For part (1) (ii), we fix r* = r—1,x; =2r—4,x; =0for2 <i <r+1
and y = r — 1. Again, it easily checked that the conditions on the x; are all satisfied and so
applying Lemma 3.2.4 (fixing U, = U,) gives an (r —1)-clique S’ in G’ traversing U1, . .., U, _;
such that S’ has a nonempty G’-neighbourhood in U,. Therefore adding any vertex in this

neighbourhood to S’ gives the required r-clique S € K, (G’).

For part (2), we fix r* =r—1,x;=r—1,x; =1forallisuchthat2 <i <r—-2andx,_; = x, =
xr41 = 0. We also let G be the empty graph and so G = G’. Now note that for » = 3, we have x| =
2andx; =0andsox;+x;+2 =4 =2r—-2,whilstforr > 4, wehave x; +x,+2 =r+2 < 2r-2.
The conditions (3.2.1) for 2 < i < r* = r — 1 can be similarly checked. Therefore Lemma 3.2.4
gives an (r — 1)-clique S’ € K,_1(G) traversing Uy, ..., U,_; such that Ng(S"; U,) # 0 and so

as above, we extend S’ to the required r-clique S.

Finally, for part (3) we fix r* = r — 1, x; = O for all 1 < i < r and define our sets as U; = Wy
fori € [r — 1] and U, = Wy, U,y = W,. Applying Lemma 3.2.4 then directly gives the
required (r — 1)-clique S € K,_1(G[W;]) (again here G is taken to be empty). O
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3.3 Diamond trees

Recall the definition of diamond trees from Section 3.1, namely Definition 3.1.1. In this section
we prove the existence of diamond trees in our bijumbled graphs. The main aim is to prove the
following proposition which gives us some flexibility over which vertices feature as removable

vertices of our diamond tree. This will turn out to be very valuable at various points in our proof.

Proposition 3.3.1. Forany3 < r € Nand 0 < 7 < s there exists an & > 0 such that the

= 2
following holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”~'n. Forany2 < z < an
and any pair of disjoint vertex subsets U,W C V(G) such that |U|,|W| > 4arn, there exists

disjoint vertex subsets X,Y C U such that the following hold:

1. | X|+|Y|=z
2. |X| < max {1, 2} with § = a*p"'n;

3. for any subset Y’ C Y, there exists a K, -diamond tree D = (T, R, X) such that R = X UY’
and X C K,_1(G[W)) is a K,—1-matching in W.

Let us pause to digest the proposition. Firstly, note that by choosing Y’ = Y in (3) and varying z,
we can guarantee the existence of K,-diamond trees of any order up to linear in our bijumbled
graph G. However, the proposition is much more powerful than just this. The vertex set Y
and property (3) allow us flexibility in which vertices appear in the removable set of vertices
of the diamond tree we take from the proposition. We can start with z much larger than the
desired order of the diamond tree we want and then remove unwanted vertices from Y to end up
with some Y’ that we include in the removable vertices of the diamond tree. The point is that
by starting with a larger z (and hence larger |Y|), we can deduce stronger properties about the
vertices in Y, allowing us to then ensure properties of the set of removable vertices R that we
would otherwise have no hope in guaranteeing. There is a catch, as we are forced to include
the set X in any diamond tree we produce, but note that due to property (2), the size of X is
negligible compared to the size of Y. Indeed due to Fact 3.2.2, we have that ¢ is polynomial in n
(of order at least Q(n"~D/(27=3)) to be precise). Thus we can choose Y’ to be much smaller
than Y and still have the vertices in Y’ contribute a significant subset (at least half, say) of the
removable vertices of the diamond tree we obtain. We delay applications of Proposition 3.3.1
to later in the proof but refer the reader to Lemmas 3.5.6, 3.6.2 and 3.7.4 for a flavour of the

consequences of the proposition.

The rest of this section is concerned with proving Proposition 3.3.1. The idea behind the proof
is simple, we look to find a large (order z) K,-diamond tree in G with the property that many of
the removable vertices are leaves (the set Y). This allows us to pick and choose which leaves (the

set Y’) we include in our desired diamond tree, as we can simply remove the other leaves and their
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corresponding interior cliques>, see Figure 3.5 for an example. In order to find diamond trees
with many leaves, we introduce the notion of a scattered diamond tree and deduce the existence

of such diamond trees in a suitably pseudorandom graph.

3.3.1 Scattered diamond trees

One way to ensure a large set of leaves in a tree is to impose a minimum degree on all non-leaf

vertices. This leads to the following definition.

Definition 3.3.2. We say a tree T (of order at least 2) is d-scattered if every vertex in V(T) which
is not a leaf in T has degree at least §. As a convention we will also say that a tree of order 1 (a
single vertex) is -scattered for all 5. We say a diamond tree is D = (T, R, ) is §-scattered if its

underlying auxiliary tree T is d-scattered.

See Figure 3.5 for an example of a scattered K3-diamond tree. The following simple lemma
shows that most of the vertices in a scattered tree (and hence most of the removable vertices in a

scattered diamond tree) are leaves.

Lemma 3.3.3. Let 6 > 2 and suppose that T is a §-scattered tree of order m > 3. Then
defining X C V(T) to be the vertices® which have degree greater than 1 in T, we have that

m-—2

X| < .
X< 5

Proof. By the definition of d-scattered trees, we have that every vertex in X has degree at least 6.
We define x := | X|. Note that T[X] is a connected subtree of 7. Indeed, the interior vertices of
a path between any two vertices of 7 must lie in X (as they have degree at least 2). Hence T[X]

has exactly x — 1 edges and we can estimate the number of edges in T as follows:

e(T)=m—1= )" deg(v) - e(T[X]) 2 x5 - (x - 1).
veX

Rearranging, one obtains that x < 'g—:f, as required. O
We will show that we can find large scattered diamond trees in our bijumbled graph. To begin
with, we focus on diamond trees for which the auxiliary tree is a star, which we call diamond
stars. The next lemma shows that we can find large diamond stars in a suitably pseudorandom

graph.

5That is, for each unwanted leaf v € R in the diamond tree D = (T, R, X), we remove the interior clique in
which corresponds to the edge adjacent to the (preimage of) v in the defining tree T, as well as the leaf v itself.
6That is, X is the set of vertices of T which are not leaves.
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L
22r

Lemma 3.34. Forany3 < r e Nand 0 < a < there exists an € > 0 such that the
following holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”~'n, fixing § := a>p"'n.
Let Uy, Uy, Uy C V(G) be disjoint vertex subsets such that |U;| > anfori =0, 1and |U,| > arn.
Then there exists a K,.-diamond tree D* = (T*, R*,Z*) in G such that T* is a star of order 1 + 6
centred at x, say, with? p*(x) € Uy, R* \ {p*(x)} c Uy and ¥* C K,_1(G[U2]) is a K;_;-

matching in U,.

Proof. Fix & > 0 small enough to apply Corollary 3.2.5 (3) with 7 = @. Shrink Uy (if necessary)
to be a set of exactly an vertices. We claim that there is a matching M c K,_(G[U;])
of (r — 1)-cliques such that |[M| = an and each clique S € M has deg(S;U;) > 6, fori =0, 1.
Indeed, we can find M greedily by applying Corollary 3.2.5 (3) (with W; = U,_; fori =0, 1, 2)
repeatedly, adding an (r — 1)-clique S to M and removing its vertices from U, after each
application. While |M| < an, we have that |U,| > an and so we are indeed in a position to apply

Corollary 3.2.5 (3) throughout the process.

Now once we have found M, for each S € M and fori = 0, 1, let N;(S) := N(S;U;), that is,
the set of vertices in U; which form a K, with S. By construction we have that |Ny(S)| > ¢ for

each S in M and so
{(v,S) e Uyx M :v € No(S)}| = |M|6 = and.

Hence, as |Up| has size an (as we imposed at the start of the proof), by averaging, there exists
a vertex vo € Uy and a subset X* of § cliques in M such that v is in Ny(S) for all § € X*.
We can now construct our diamond star greedily, with vy as the image of the large degree
vertex. Sequentially, for each clique S in X*, choose a vertex u in Nj(S) which has not been
previously chosen and add the copy of K., on S, vo and u to the diamond star (adding u to R*).
As Ni(S) = ¢ forall S € * C M, there is always an option for # and so this process succeeds

in building the required diamond star. m]

Our next lemma builds on the scheme of Krivelevich [119] to construct large diamond trees. We

adapt his proof to guarantee that the diamond tree obtained is scattered.

Lemma 3.3.5. Forany3 <reNand(0 < a < 2% there exists an € > 0 such that the following

holds for any n-vertex (p, 8)-bijumbled graph G with B < ep”'n, fixing § := a*p"~'n. For
any 2 < z < an and any pair of disjoint vertex subsets U,W C V(G) such that |U|, |W| > 4arn,
there exists a 0-scattered K, -diamond tree Dy = (Tyc, Rge, Zsc) of order m such that 7 < m <

z2+06, Rse CU and E5c € K,_1(G[W]) is a K,_i-matching in G[W].

"Here p* : V(T*) — R* is the associated bijection in the definition of D*.
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Proof. Our proof is algorithmic and works by building a diamond tree forest, that is, a set of
pairwise vertex-disjoint diamond trees. At each step of the algorithm, we will add to one of the
trees in our forest, boosting the degree of a vertex in the underlying auxiliary tree by §, using
Lemma 3.3.4. By discarding trees when the sum of the orders of the trees gets too large, we will
show that one of the trees in our forest will eventually obtain the desired order after finitely many

steps of the algorithm. The details follow.

Initiate the process by fixing Uy C U to be an arbitrary subset of an vertices, Wy = 0 c W to
be empty and Dy, ..., D, with £ = an, to be the diamond trees which are defined to be the
single vertices in Uy. That is, for i € [£], the K,-diamond tree D; = (T}, R;, X;) corresponds
to an auxiliary tree 7; which is just a single vertex and thus R; is also a single vertex and %; is
empty. In general, at each step of the process we will have a family Dy, ..., D, (for some £ € N)
of vertex-disjoint K,-diamond trees such that for each i, the diamond tree D; = (T;, R;, %)
is O-scattered, has R; C Uy and ¥; € G[Wy]. Furthermore, we will have that Uy = U,-Em R;
and Wy = U; ¢, V(Z;) € W and maintain throughout thatan < |Up| < 2anand |Wy| < 2(r—1)an

Now at each step, given such a set Uy and family Dy, ..., D,, we apply Lemma 3.3.4 with U; =
U\ Uy and U, = W \ Wy, noting that the conditions on the size of U and W in the statement
of the lemma and the imposed conditions on the size of Uy and Wy throughout the process
indeed allow Lemma 3.3.4 to be applied. Thus, we find a K,.-diamond star D* = (T*, R*, ¥*) of
order ¢ + 1 with centre vg € Uy, R* \ {vo} Cc U\ Uy and X* C K,_1(G[U;]) a K, _;-matching.
As Uy is the union of the removable vertices of the family of diamond trees, we have that there
is some iy € [£] such that vo € R;,. We then update D;, by adjoining the diamond star to the
tree at v, we add all the vertices of R* to Uy and all the vertices of the (r — 1)-cliques in ¥,
to Wo. Now if there is a K,.-diamond tree among the (new) family Dy, . . ., D, which has order at
least z, we take such a diamond tree as D, and finish the process. If not, then we look at the size
of Uy. If |Uy| < 2an, we continue to the next step. If |Uy| > 2an, then we sequentially discard
arbitrary K,-diamond trees D; = (T}, R;,%;) from the family. That is, we choose a D; in the
family, delete R; from U, and delete the vertices that belong to (r — 1)-cliques in X; from Wj.
We continue discarding diamond trees until |Up| < 2an. Note that as [R;| < z < an for all j,
the updated Uy at the end of this discarding process will have size at least an as required. We

then move to the next step.

All the diamond trees in our family are d-scattered throughout the process and also Wy, as the
set of vertices featuring in interior cliques of a family of K,-diamond trees whose orders add up
to less than 2an, has size less than 2(r — 1)an throughout. It is also clear that as the order of
any diamond tree in our collection grows by at most ¢ in each step, the order of the diamond tree
which is found by the algorithm will be at most z + 6. It only remains to check that the algorithm
terminates but this is guaranteed because the number of diamond trees is decreasing throughout

the process. Indeed, we never add new diamond trees to the family and every < steps we have
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to discard at least one diamond tree from the family. If the algorithm does not terminate after
finding an appropriate Dy, then eventually we will be left with just one diamond tree 9 in the
family, but at this point the order of 9 would be at least an > z, contradicting that the algorithm

is still running. O

8 L L
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Vv/ VIV Vv/ V\ﬂ Vv/ V\ﬂ

FIGURE 3.5: A 6-scattered K3-diamond tree.

Using Lemmas 3.3.4 and 3.3.5 we can now deduce Proposition 3.3.1.

Proof of Proposition 3.3.1. Fix € > 0 small enough to apply Lemmas 3.3.4 and 3.3.5 and small
enough to force n to be sufficiently large in what follows. Let us first deal with the case
when z < 6 := a/2p’ ~1n. Here, we arbitrarily partition U into Uy and U, of size at least an,
fix U, = W and apply Lemma 3.3.4 to get a K,-diamond star D* = (T, R*,X*) of order 1 + ¢
with R* ¢ U and £* C K,_{(G[W]) a K,_;-matching in W. Let x € R* be the only non-leaf
vertex in R* and define X = {x}. Further, let ¥ c R* \ X be an arbitrary subset of z — 1
vertices. Now taking p* : V(T*) — R* and o* : E(T*) — X* to be the defining bijective
maps for D*, note that for any Y’ C Y, the set of vertices {p*"!(v) : v € Y U X} c V(T
span a sub-tree (or rather a sub-star) of T, say T. Therefore, taking D = (T, X U Y’ %)
where X := {o*(e) : e € E(T)} defines a K,-diamond tree with removable vertices Y’ U X.

Therefore (1), (2) and (3) of the proposition are all satisfied.

When § < z < an, the proof is similar. We apply Lemma 3.3.5 to get a d-scattered K,--diamond
tree Dge = (Tge, Rye, Lse) as given by the lemma and define X C Ry, to be the non-leaves
of Dy.. See Figure 3.5 for an example. In order to bound | X| and prove property (2), we appeal
to Lemma 3.3.3 which gives that

Ryl =2 _z2+45-2 _2

1X| < <
51

s—1 =67
using that z > ¢ in the final inequality.

We note that for n large (using Fact 3.2.2) we have that 6 > 4 (indeed ¢ is Q(n(r_l)/(zr_3))),
implying that |[X| < §. We fix ¥ C Ry¢ \ X to be an arbitrary subset of size z — | X| and claim
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that the conditions (1), (2) and (3) of the proposition are all satisfied. Indeed it remains only to
prove (3) and this follows similarly to above, by taking sub-diamond trees of Dy.. In detail, fix
some Y c Yandlet R =Y’ UX. Then if pse : V(Tse) — Ry and o : E(Tge) — Zge are
the defining bijective maps for Dy, we have that the set of vertices {p;)(v) : v € R} spans a
subtree T C Ty.. Indeed we simply deleted leaves from Ty, namely p . (x) for x € Ry \ Y’

Taking £ = {og.(e) : e € E(T)}, we have that D = (T, R, X) is the desired diamond tree. m|

3.4 Cascading absorption through orchards

In this section we discuss orchards in our (p, 8)-bijumbled graphs. We begin in Section 3.4.1
by proving Lemma 3.1.4 which details conditions for when one orchard absorbs another. In
Section 3.4.2, we then discuss the existence of shrinkable orchards, addressing Proposition 3.1.8
which tells us that we can find shrinkable orchards of all desired orders in the graphs we are
interested in. The proof of Proposition 3.1.8 requires many ideas and two distinct approaches.
Therefore, we defer the majority of the work to later sections and simply reduce the proposi-
tion here, splitting it into two ‘subpropositions’ which will be tackled separately. Recall that
Lemma 3.1.4 and Proposition 3.1.8 were the two ingredients we needed to prove the cascading

absorption through constantly many orchards in the proof of Theorem 1.

3.4.1 Absorbing orchards

Recall the definition (Definition 3.1.3) of an orchard and that we say a (K, M),-orchard O
absorbs a (k,m),-orchard R if there is a ((r — 1)k, M),-suborchard O’ c O, such that there is
a K,-factorin G[V(R) U V(O")].

In this section we prove Lemma 3.1.4, which is a generalisation of [145, Lemma 3.5]. The
lemma gives some sufficient conditions for an orchard to be able to absorb another orchard. Our
proof scheme follows that of [84] which gives a polynomial time two-phase algorithm for finding
the necessary K,-factor. The algorithm is a simple greedy algorithm and works by absorbing
each diamond tree B in the small orchard R, one at a time. In more detail, for each diamond
tree B in R, we find r — 1 diamond trees D, ..., D,_; € O such that there is a copy of K,
traversing the sets of removable vertices of B and the diamond trees Dy, . .., D,_;. This implies
that there is a K, -factorin G[V(B) UV (D) U...UV(D,_1)] (see Observation 3.1.2) and so we
can add the P; to the suborchard ©’, forbid them from being used again, and move to the next
diamond tree 8’ € R. Note that typically, we expect to succeed with this process. Indeed, the
set of removable vertices of diamond trees in O is linear in size (and remains linear even after
forbidding diamond trees D € O used for previous 8 € R) and so a typical vertex has Q(pn)

neighbours among this set of removable vertices. Hence, appealing to Corollary 3.2.5 (1) (i)
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which states that sets of size Q(pn) host copies of K,-_;, we can expect to find a copy of K,_; in
the neighbourhood of a typical removable vertex of 8 € R which lies on the removable vertices
of diamond trees in O. As long as this copy of K,_; traverses sets of removable vertices of
distinct diamond trees in O, we will succeed. With a few extra ideas and a bit of preprocessing
(for example partitioning O into r — 1 suborchards at the start), this intuition holds true and we
can successfully greedily start to build O’. In fact, if kM is small compared to pn, we can fully
form O’ in this way and no second phase is necessary. However, if kM is large compared to pn
we may run into trouble as with this greedy approach, it may be the case that the neighbourhood
of a removable vertex v of a diamond tree 8 € ‘R has too small a size by the time we come to
considering 8. Indeed, as we run this greedy process, we forbid the diamond trees (and their
removable vertices) which we add to ©’, from being used again. This could result in v having
much fewer than pn neighbours in the removable vertices of diamond trees in (the remainder
of) O and so we have no guarantee of finding a copy of K,_; in this neighbourhood. We resolve
this issue by running a two-phase algorithm and reserving half of O for the second phase. The
key point is that if a diamond tree 8 fails in the first round then it must be the case that all of the
removable vertices of 8 have small neighbourhoods amongst the removable vertices of diamond
trees in O. Given that throughout the process, many diamond trees in O will remain available
to use, pseudorandomness (more precisely, Corollary 3.2.5 (1) (ii)) tells us that the number
of vertices that do not have large enough neighbourhoods, is relatively small. Hence, as each
diamond tree B8 € R which failed in the first phase, has a set of removable vertices which are
atypical in this way, we can upper bound the number of diamond trees in R that fail in the first
round. This upper bound will then be used to show that in the second phase, we are successful
with each diamond tree, as throughout the second round, the number of removable vertices being
forbidden (due to being used to absorb other diamond trees in R) will be negligible and so the
neighbourhoods of vertices amongst the removable vertices of diamond trees in the half of O

reserved for this second phase, will remain large.

ng?

23r ;2

Lemma 3.2.3 with n3.2.3 = ” and Corollary 3.2.5 with 7 as above. Let O = {Dy,..., Dk} be
the (K, M), -orchard with each D; = (T;, R;, Z;) being a K,-diamond tree of order between M
and 2M. We start by arbitrarily partitioning O into 2(r — 1) suborchards of size as equal as
possible so that O = Ui(zrl_]) O; and each O, is a (K, M),-orchard with K; = Z(FK—_I) +1> %
For j € [2(r — 1)], we let

Proof of Lemma 3.1.4. We fix constants 7,1’ < and choose £ > 0 small enough to apply

Yj = U R,’
l'ZD,'GOj
be the set of removable vertices of the diamond trees which feature in the j*” suborchard.
Note that |Y;| > K;M > % > % for each j € [2(r — 1)]. We define B to be the set of
vertices v € V\V(O) such that for some j € [2(r—1)],deg(v;Y;) < §|YJ-|. By Lemma3.2.3 (i),
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we have that o
200 =Dn'p™ " n" s

|B| < .
mlnj |Y]|

due to our lower bound on the size of the |Y;| and our upper bound on "

Now as in the statement of the lemma, consider a (k,m),-orchard R = {By,..., B} of
diamond trees whose vertices liein V' \ (BUV(QO)). Fori’ € [k], let Q; be the set of removable
vertices of the diamond tree B;;. We will show that for each i’ € [k], there exists distinct
indices iy = i1(i’),...,ir—1 = i,—1(i") € [K] such that there is copy of K, which traverses
the sets O and R;,, ..., R; _,, where R;, is the set of removable vertices of D;, and likewise
foris,...,i,—1. Now, from Observation 3.1.2, we have that for such an r-tuple 8;/, O;,, ..., D;,__|,
there is a K,-factor in G[V(By) UV (D;,) V... UV(D;, _,)]. We will prove that one can choose
such indices iy, ...,i,—1 for each i” € [k] in such a way that no i € [K] is chosen more than
once. That is, for i’ # j’ € [k], the sets {i1(i’),...,i—1(i")} and {i1(j'),...,ir—1(j")} are
disjoint. Therefore our suborchard @’ c O can simply be defined to be the union of all the

choices of D;; (i) fori’ € [k] and j € [r - 1].

We now show how to find the indices i1 (i’), ..., i,_1(i") for each i’ € [k]. We will achieve this
via the following simple algorithm. We initiate the first round of the algorithm with O’ =0, I =
[k], Pj =0Ojand Z; =Y; for 1 < j <r - 1. Note that the O, for r < j < 2(r — 1) do not
feature in these definitions. This is because we will not use any diamond trees that lie Ui(:r;l) O,
in this first round. Now the algorithm runs as follows. For i’ = 1,...,k, we check if there
exists some set {D;, € P; : j € [r — 1]} such that there is a K, traversing Q;» and the sets of

removable vertices R;,, ..., R If this is the case then we delete D;; from P; and add it to O’

[
for j € [r — 1] and we also delete R;; from Z; for all j € [r — 1]. Furthermore, we delete i’
from I and move to the next index i’ + 1 (or finish this round if i’ = k). If it is not the case that
such diamond trees exist in the orchards P;, then we simply leave i” as a member of / and move

on to the next index.

At the end of the first round, we have some set / of indices remaining. We define ¢ := |/| at
this point. We will now use diamond trees in the orchards O; with r < j < 2(r — 1) to absorb
these remaining diamond trees B; with i’ € I. Thus we reset the process, setting P; = O
and Z; = Yy, for all j € [r — 1]. We then follow the same simple process in the second
round as we did in the first, running through the (remaining) i” € I in order and trying to find an
appropriate set of diamond trees {D;, € P; : j € [r — 1]} at each step. We claim that in this
second round, we can find such a set for every i’ € I and so by the end of the second round, the
set I is empty and O is such that G[V(R) U V(O’)] hosts a K,.-factor.

In order to prove this, our analysis splits into two cases. First consider when kM < %. In this
case, we in fact have that the second round is not even necessary as all indices succeed in the

first round. Indeed, note that every time we are successful for an index i’, we delete at most 2M
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vertices from each of the Z;. Therefore, at any instance in the first round of the process, we have

that any vertex v which is not in B has

- 2kM > ggr > Tpn,

deg(v;Z;) >

rlY;l Ipn
—2kM > Z—
2 4r

for all j € [r — 1], using our lower bound on the |Y;| and our upper bound on kM. But then, by
Corollary 3.2.5 (1) (i) (applied in this instance with G being the empty graph and G’ = G), there
exists a copy of K,_j traversing the sets N(v; Z;) for 1 < j <r—1. When v is any vertex in the
removable set of vertices Qs for some diamond tree $B;- in the process, this gives a copy of K,
traversing O and some sets of removable vertices R;; for diamond trees D;; € Pi,jelr-1],
as desired. In this way, we see that the process succeeds in every step of the first round to find
a suitable {i;(i") : j € [r]} for each i" € [k] and [ is empty (i.e. ¢ = 0) at the end of the round.

Note that we used here that the vertices of Q;s are not in B.

When &

16r < kM < mK, the second round may be necessary and we start with estimating ¢,
the size of [ after the first round. Now note that at the end of the first round, before we
reassign the sets Z; to removable vertices in diamond trees in O, for j € [r — 1], if we
take Q = ;¢ Qi, we have that there is no K, traversing Q and the sets Zy, ..., Z,_;. Indeed,
otherwise there would be an i’ € I and a vertex v € Q;» C Q which is contained in a K, with a
set of vertices {v;;, € Z; : j € [r — 1]}. This contradicts that the index i’ failed to find a suitable
set of i; in the first round. Thus, at the end of the first round, there is no K, traversing Q, and

the Z;, j € [r — 1]. Moreover we have that
KM {
Zi| > —-2kM > — > =—
1Zj] 2r 4r 4
using the upper bound on k from (3.1.1) and the fact that at most 2M vertices are deleted
from Z; every time we are successful with an index i” € I. Thus, we can conclude from

Corollary 3.2.5 (1) (ii) that at the end of the first round, tm < |Q| < Tp* ~*n. Therefore

szr—4n < Tp2n < 16Ter 16Trpn {pn

r= m m 4 T IM 16rM

where we used here our lower and upper bounds on kM to give an upper bound on % in the
third inequality, the fact that KM < n in the fourth inequality and our upper bound on « in the

final inequality.

We now turn to analyse the second round. Using our upper bound on ¢, we can upper bound the
number of vertices deleted in each Z; throughout the second round, and using this we have that
for any vertex v not in B, any j € [r — 1] and at any point in the second round,

ple+r—1|

deg(v; Z;) > 5 - 2tM > cpn_ {pn {pn

4r 8  8r
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Thus we can repeat the argument used for the case when kM was small, seeing that at every
step in the second round we are successful in finding an appropriate set of i; for j € [r — 1] for

each i’ € I. This completes the proof. O

3.4.2 Shrinkable orchards

Here we are concerned with the existence of shrinkable orchards in pseudorandom graphs and
verifying Proposition 3.1.8. We encourage the reader to remind themselves of Definitions 3.1.5
and 3.1.7 as well as Observation 3.1.6. In order to prove Proposition 3.1.8, we will appeal
to the methods of Sections 2.6 and 2.7. We will use Theorem 2.7.3 to reduce the problem to
establishing the existence of perfect fractional matchings in the appropriate K,.-hypergraphs and
we will then employ Lemmas 2.6.3 and 2.6.4 to find these perfect fractional matchings. In order
that our hypergraph has the desired properties to apply these lemmas we need to choose the

diamond trees which define our orchard carefully.

It turns out that different arguments are needed for finding shrinkable orchards of different orders.
In Section 3.5 we show how to find shrinkable orchards of small order, establishing the following

intermediate proposition.

Proposition 3.4.1 (existence of shrinkable orchards of small order). For any 3 < r € N
and 0 < 1,y < 2% there exists an € > 0 such that the following holds for any n-vertex (p, B)-
bijumbled graph G with B < ep”~'n and any vertex subset U C V(G) with |U| > 5. For
any m € N with

. _ _9,3
1 <m < min{p"2n'"2"7 n"/3},

there exists a y-shrinkable (k,m),-orchard © in G[U] with k € N such that an < km < 2an.

In Section 3.6 we then address shrinkable orchards with large order, which results in the following.

Proposition 3.4.2 (existence of shrinkable orchards of large order). Forany3 <r € Nand 0 <
a,y < 21% there exists an & > 0 such that the following holds for any n-vertex (p, 8)-bijumbled
graph G with B < ep”~'n and any vertex subset U C V(G) with |U| > 5. For any m € N with

prln<m<nal?,

there exists a y-shrinkable (k, m),-orchard © in G[U] with k € N such that an < km < 2an.

The proof of Proposition 3.1.8 is basically immediate from Propositions 3.4.1 and 3.4.2 but we

spell it out nonetheless.
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Proof of Proposition 3.1.8. We split into a case analysis based on the density p of our graph G.

7/8

First consider when p > n~'/19) Then we claim that p"znl‘zr37 > n'/® and so the desired y-

8

shrinkable orchard of all orders up to n’/® can derived from Proposition 3.4.1. Indeed we have

3 _r=2_n.3
that p"2n'=2""Y > p!= 277 and

due to our upper bound on y (and lower bound on r).

When p < n~ /(9 we have that p < n=%" ¥ again due to our upper bound on y. Hence we
can apply Proposition 3.4.1 to find y-shrinkable orchards of orders m < n’/® such that m <
pln < p"2n1‘2r37 and apply Proposition 3.4.2 to find y-shrinkable orchards with orders m

such that p”~'n < m < n’/3. This settles all cases and so gives the proposition. O

In both cases, a simpler argument works for the extreme cases, that is, when the order is small
in Proposition 3.4.1 or when the order is large in Proposition 3.4.2. Extra ideas are then needed
to push the approaches, extending the ranges of the two propositions so that they meet and
cover all desired orders. In more detail, an easier form of Proposition 3.4.1 can cover orders
which get close to p"~'n (see Proposition 3.5.5). Again the separation required depends on v,
explicitly m < p™~'n!=" *Y. This is already enough to cover all desired orchard orders when p is
large. On the other hand, a basic form of the argument for large order orchards gives shrinkable
orchards of order at least p”~'n when p is large and of order at least p!~" when p is smaller (see
Proposition 3.6.3). Interestingly, Fact 3.2.2 implies exactly that p!=" = Q(p"~2n) always and so
proves that when p is small (close to the lower bound of Q(n~!/(2"=3))) and our bijumbled graph
is sparse, both the simpler arguments for small orders and large orders as well as their extensions
are needed. Indeed using the simpler version, Proposition 3.5.5, for small orders and the full
power of Proposition 3.4.2 leaves a small gap in the orders and so does using Proposition 3.4.1
in conjunction with the easier Proposition 3.6.3. In order to help the reader through the next
two sections, in both cases we begin by presenting the weaker versions of the statements we
need. This then lays the foundation for the full proofs and allows us to discuss the more technical

aspects needed to push the ranges for which we can prove the existence of shrinkable orchards.

3.5 Shrinkable orchards of small order

Our first argument for proving the existence of shrinkable orchards works provided the order of
the orchard is not too large, establishing Proposition 3.4.1. Before embarking on this we have
to go through several steps. Firstly, in Section 3.5.1, we generalise the theory of shrinkable
orchards built up in Section 3.1, allowing slightly more flexibility for our consequent proofs. In

Section 3.5.2, we then use the theory of perfect fractional matchings (see Sections 2.6 and 2.7)
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to give conditions that guarantee an orchard is shrinkable. In Section 3.5.3, we show how this
immediately implies the existence of shrinkable orchards of small order. However this falls short
of Proposition 3.4.1 and in the rest of this section we push the ideas to extend the range of orders
we can cover, showing how to cleverly choose diamond trees of our orchard in Section 3.5.4

which allows us to prove the full Proposition 3.4.1 in Section 3.5.5.

3.5.1 From orchards to systems

We begin by generalising our definitions slightly, allowing us to work not just with orchards but

also set systems.

Definition 3.5.1. Given a graph G we say a set of pairwise disjoint subsets A ¢ 2V (%) is
a (k,m)-system if m < |Q| < 2m for each Q € A and |A| = k. That is, a (k, m)-system is just a

set family of k disjoint vertex sets of size between m and 2m.

Now given a (k,m)-system A in a graph G, the K, -hypergraph generated by A, denoted 7€ =

JE(A;r) is the r-uniform hypergraph with vertex set V(#) = A and with {Q;,,...,Q;.} € (’r\)
forming a hyperedge in #€ if and only if there is a copy of K, traversing the sets Q;,...,Q;,
in G.

Finally for 0 < y < 1, we say a (k, m)-system A in a graph G is y-shrinkable (with respect to )
if there exists a subsystem I' C A of size at least yk such that for any subsystem I'’ C I, we have

that there is a matching in #€ := #€(A \ I"; r) covering all but k!~ of the vertices of F€.

Note that given a (k, m),-orchard O we can define a (k,m)-system A as the sets of removable
vertices of diamond trees in @. That is, A := {Rp : D € O}. Then the K,-hypergraphs
generated by O and A coincide i.e. #€(A;r) = #(QO), and O is y-shrinkable if and only if A is
a y-shrinkable. However Definition 3.5.1 allows us slightly more flexibility, giving us the ability
to focus on subsets of removable vertices. The next observation highlights this and although the

result is trivial, it will be important for our proofs.

Observation 3.5.2. Supposer > 3,0 <y <land O ={Dy,...,Dr}isa (k,m), orchard in a
graph G with R; being the set of removable vertices of D; fori € [k]. Thenif A = {Qy,..., Ok}
is some (k,m’)-system (for some m’) such that Q; C R; fori € [k] and A is y-shrinkable (with

respect to r), then O is also y-shrinkable.

It will become clear why such a relaxation is useful for us and thus why we make this switch to

working with set systems.
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3.5.2 Sufficient conditions for shrinkability

We now explore conditions on set systems which guarantee shrinkability. We begin by giving
some local conditions on a set system which guarantee that it is shrinkable given that it lies in

the pseudorandom graphs we are interested in.

Lemma 3.53. Forany3 <r e Nand 0 < a,y < zr_lrz there exists an € > 0 such that the
following holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”'n. Suppose A c 2V (O

is a (k, m)-system such that m < n’/3

, km > an, pk > n? and:
1. There exists a subsystem I' C A such that |I'| = vk and the following holds with Y =
U{P : P € A\T}. Forevery Q € A, there exists a vertex v € Q such that

degs (viY) > apkm;
2. Foranyu € UpeaP and Q € A, we have that degg; (u; Q) < p"~'n'"""7.
Then A is y-shrinkable with respect to r.

Let us make a few remarks before proving the lemma. Firstly, note that condition (1), despite
the slight technicality necessary to avoid dependence on sets in I, is a natural condition. Indeed,
we are requiring that at least one vertex in each set is well connected to the other sets and has a
constant fraction of the degree that we would expect on average. Condition (2) is perhaps more
mysterious as it is unclear why having an upper bound on the degree of a vertex to another set
in the system is advantageous. The point is that this guarantees that each of the vertices has
a neighbourhood that is well-spread across the other sets of the set system, without being too
concentrated on any one other set. Within the proof this necessity manifests itself as we appeal
to Theorem 2.7.3 which tells us that a hypergraph #€ contains a large matching if whenever
we remove a small collection of edges of F#€ (that contain edges of some 2-uniform graph J
which satisfies a maximum degree condition), the resulting hypergraph has a perfect fractional
matching. So here we will need that when we disallow edges between certain pairs of sets from
being used (dictated by the graph J), we do not significantly alter the graph G in which we work
and the graph is still dense enough to prove the existence of a perfect fractional matching in the
relevant K,-hypergraph. Indeed, we will appeal to Lemma 2.6.4 to prove the existence of our
perfect fractional matchings. That lemma requires us to prove the existence of large fans at each
vertex of the hypergraph and the existence of edges in many different subsets of vertices. These
conditions boil down to finding appropriate transversal copies of K, in the underlying graph G. It
turns out that we can find these copies of K, given our conditions in the graph and the minimum
degree condition (1) of the statement of Lemma 3.5.3. In fact, we can find the appropriate copies

of K, even when we forbid the edges of some sparse subgraph G of G from being used (this is
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Corollary 3.2.5 (1)). The condition (2) will guarantee that when looking for perfect fractional
matchings in sub-hypergraphs (dictated by some choice of J) of the K, -hypergraph, the forbidden
edges of the graph G (also dictated by J) form a sparse subgraph G and so we can still find the

necessary copies of K. The details follow in the proof.

Proof of Lemma 3.5.3. Fix € > 0 small enough to apply Corollary 3.2.5 with 7 < g—j and small
enough to force n to be sufficiently large in what follows. Fixing I' C A as in condition (1), we
will show that for any I'” C T, the K,.-hypergraph € = #€(A \ I'’; r) has a matching covering all
but k'~ vertices of #€. So fix such a I, let A* := A \ I'” and let € := F€(A*; 7).

In order to show the existence of a large matching in #€, we appeal to Theorem 2.7.3. So let us
fix N = |V(#€)| and note that as N > (1 —y)k and k > an'/® due to our conditions on k and m,
we can assume that N is sufficiently large in what follows. Now fix some 2-uniform graph J
on V(#€) of maximum degree at most N” ¥ If we can show that 7 \ #€; contains a perfect
fractional matching, then we are done by Theorem 2.7.3 as, because J was arbitrary, the theorem

guarantees a matching covering all but at most N'=¥ < k!~ vertices of #€.

In order to study #€ \ #€;, we look at the forbidden edges of G which J imposes. That is, we
define

G,;= |J c¢le.el | alel
{01,02}€E(J) QeA*

where we recall that G [Q1, Q»] denotes the set of all edges in G between the sets Q; and Q>
and G[Q] denotes all the edges induced by G in the set Q (which are also not used when
considering #¢ \ #€;). We then have that for any vertex v € V(G), degg, (v) = 0if v € Upep-P
and if v € Q € A*, then

degg, (v) < Z deg;(v; P) < (N’27 + I)p"lnl_’37 <72prlpl77, (3.5.1)
PeNy (Q)U{Q}

using (2), the upper bound on the degrees in J and the fact that N < n.

Now defining G/, := G \ G, we have that € \ #€; is precisely the hypergraph obtained by
viewing A* as an (N, m)-system in G, and taking the K,-hypergraph #* = #((A*;r) in G/,.
Indeed, as there are no edges of G’J between two sets, Q1 and Q, say, which form an edge in J,
there can be no edge of #€ in #€* which contains both Q; and Q,. We therefore switch from
now on to considering #€* as the K -hypergraph generated by A* in G/,.

In order to prove the existence of a perfect fractional matching in #*, we will appeal to
Lemma 2.6.4, fixing M| = o>pk and M, = ak. Note that due to our lower bound on pk, we
certainly have that M; > r. We thus need to check that conditions (i) and (ii) of that lemma

hold. For (i), fix some Q € A*. From (1) we have that there exists some vertex v in Q such
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that deg (v; W) > apkm where W := Upc-P and so taking U := Ng, (v; W) we have that

k
|Ul > apkm — degg, (v) > a/p2 m,
using (3.5.1). Moreover, due to (2), we can split U into disjoint sets Uy, . . ., U,—; such that |U;| >
agfm for each i and we have that for any P € A*, there exists ani € [r—1] such that PNU c U,.

That is, we simply partition U into r — 1 roughly equal size parts such that vertices which lie in the
same P end up in the same part. Condition (2) of the lemma guarantees that U N P is small enough
for each P € A* and so we can do this partition in such a way that each of the U; are roughly
equal in size. We will now repeatedly find (r — 1)-cliques in G/, traversing the U; and build a
fan F of size M; in J€* focused at Q. We start with Fp being empty and each time we find a
copy S = {ui,...,ur—1} € K,1(G)) in G/, withu; € U; fori € [r — 1] we have that there exists
some sets Py,...,P,_1 € A" such that u; € P;. We add the hyperedge between Py, ..., P,_;
and Q to the fan Fy and delete any vertices in P; from U; fori € [r — 1]. We repeat this process
and note that we are successful in every step until Fp has size M;. Indeed this follows from

Corollary 3.2.5 (1) (i) as while |Fp| < Mj, we have deleted at most® M2m < aifm vertices

apkm
4r

from each U; and so |U;| > > Tpn, using our upper bound on 7 and our lower bound

on km.

We now turn to verifying condition (ii) of Lemma 2.6.4. We will show that given any r-tuple
of disjoint subsystems I'1,I'5, ..., [, € A* such that |[['y| = M| and |[;| > aTk for2 <i<r,
there exists a hyperedge of #* with one endpoint in each of the I';. Indeed, this follows from
Corollary 3.2.5 (1) (ii) as taking U; := Uper, P for i € [r], we have that there exists an r-
clique § € K, (G/}) traversing the U; which in turn gives the hyperedge. The condition (ii) of
Lemma 2.6.4 then clearly follows as any subsystem of I'* of size M, = ak can be splitinto (r—1)
subsystems of size at least (’Tk Note that in both applications of Corollary 3.2.5 (1) above we
used (3.5.1) to show that we could find cliques that avoid using edges of G ;. The lemma now

follows from Lemma 2.6.4. O

As previously noted, condition (1) of Lemma 3.5.3 is somewhat weak and just requires that each
set in the set system contains a vertex that acts typically. We now show how we can ‘clean up’ a
set system; losing sets which do not have a typical vertex in order to recover condition (1). This

allows us to focus on finding systems which satisfy condition (2) of Lemma 3.5.3.

Lemma 3.54. Forany3 < r € Nand 0 < a,y < =5 there exists an € > 0 such that the

- 2r 2

following holds for any n-vertex (p, 8)-bijumbled graph G with B < &p

r—1

n. Suppose A’ C
2V(O) s a ((1 + y)k, m)-system such that m < n'/®, an < km < 2an, pk > n” and for
any u € Upea'P and Q € AN’, we have that degg; (u; Q) < p’_lnl"37. Then there exists

a (k,m)-system A C A’ which is y-shrinkable with respect to r.

8Here we use that every set in A has size at most 2m.
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Proof. We fix & > 0 small enough to apply Lemma 3.5.3 and to apply Lemma 3.2.3 withn < %’2
The method of the proof is simple; we aim to apply Lemma 3.5.3 and so obtain A from A’ by
losing the sets which violate condition (1) of that lemma. By Lemma 3.2.3 (i), there are few
vertices which have small degree (< £|Y|) to any set ¥ which is large enough and so we can
expect that we do not lose many sets when transitioning from A’ to A. One complication is that
the definition of Y in condition (1) of Lemma 3.5.3 depends on the sets in the system and so
we cannot guarantee that a set satisfying (1) continues to satisfy the condition once other sets
have been removed. In order to handle this, we delete sets in the system one by one, creating a
process which will terminate with a system which has the desired minimum degree condition.

The details now follow.

We begin by fixing I'y € A’ to be some arbitrary subsystem of size (1 — y)k and we initiate the
process by setting @ = A’ and setting a ‘bin’ system ® which we initiate as being empty, that is,

we set ® = (). Throughout the process we also define W so that

W::UQ

QelHn®

is the subset of vertices that lie in (sets that belong to) the current system ® as well as the
system I'g. Now the process runs as follows. If there is a set P in @ such that deg(v; W) < apkm
for all v € P, then we delete P from ® and add it to ®. Hence if P € I'y then we also remove P
from W. We claim that this process terminates with |®| < yk. Indeed if this were not the case

then consider the process at the point where |®| = yk. At this point we have that

an
> —.
2

[

wi=| | o] kol -I®@)m=(k-2yk)m >
Qelp\®

Now Lemma 3.2.3 (i) implies that at most

np2r—4n2

n
< <vyan < ykm = |®|m,

Wi " Y 4 ||

vertices can have degree less than §|W| to W. This leads to a contradiction. Indeed, it follows
from how ® is defined that at this point in the process, | Upce P| > |®|m and forall v € Upco P,
we have deg(v; W) < apkm < %|W|. Indeed, if a vertex v € P € ® had a larger degree to W

then P would not have been added to ® in the process.

Hence when the process terminates we have that |®| < yk and we have that |@| = |A"\ ®| > k.
We fix A C @ of size k sothat g N ® C A. We also fixI' C A\ (I'o N ®) of size yk (which is
possible as [I'o N O] < (1 —vy)k). We claim that A is y-shrinkable with respect to r. Indeed, this
follows directly from Lemma 3.5.3 noting that condition (1) is satisfied in A with respect to I

due to how we constructed A. O
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3.5.3 The existence of shrinkable orchards of small order

We are now ready to prove the existence of shrinkable orchards by appealing to Lemma 3.5.4.
Indeed, we simply need to find orchards which satisfy the maximum degree condition given there.
This condition is immediate when the order of the orchards which we aim for is sufficiently small,

leading to the following easy consequence.

Proposition 3.5.5. Forany3 < r e Nand 0 < a,y < 2% there exists an € > 0 such that

the following holds for any n-vertex (p, B)-bijumbled graph G with B < £p”~'n and any vertex
subset U C V(G) with |U| > 5. For any m € N with

. _ _,3
1 <m < min{p"'n'"7, 078},

there exists a y-shrinkable (k, m),-orchard O in G[U] with k such that an < km < 2an.

Proof. We fix € > 0 small enough to apply Proposition 3.3.1 and Lemma 3.5.4 with @,y as
defined here and k£ € N such that an < km < 2an. Note that due to our upper bound on m,
we certainly have that pk > n¥. We begin by finding a ((1 + y)k, m),-orchard O’ in G[U].
This can be done by repeated applications of Proposition 3.3.1. Indeed we initiate a process by
fixing U’ = U and O’ = () and at each step we find some K,--diamond tree D of order m in U’, add
it to O’ and delete its vertices from U’. We claim that we can do this until O’ has size (1 +7y)k.

Indeed this follows because at any point in the process, |V(O’)| < (1+y)kmr = (1+y)arn <

IS RIS

due to our upper bounds on « and y. Therefore, throughout the process, we have that |[U’| >
and so it can be split into two disjoint sets of size at least 4arn. Applying Proposition 3.3.1
with z = m (and taking Y’ = Y in (3)) gives us the existence of the diamond tree at each step of

this process.

Now defining A’ = {Rp : D € O’}, to be the ((1 + y)k, m)-system generated by taking
the sets of removable vertices of diamond trees that lie in @', we have that A’ satisfies the
hypothesis of Lemma 3.5.4 due to the fact that m < pr‘lnl"37. Hence Lemma 3.5.4 implies
the existence of a subsystem A C A’ of size k which is y-shrinkable with respect to . Finally
taking O := {D € O’ : Rp € A}, we have that O is the required y-shrinkable (k, m),-orchard
by Observation 3.5.2. O

For dense graphs (that is, when p is large), Proposition 3.5.5 is already enough to establish
Proposition 3.1.8. On the other hand, for sparse graphs Proposition 3.5.5 can only be used for
orchards of very small order and becomes redundant as the order m approaches p”~'n. However,
in deriving Proposition 3.5.5, we were quite naive in our application of Lemma 3.5.4, using
the order of a diamond tree as an upper bound on the degrees of vertices to the removable

set of vertices of the diamond tree. For a set Q we expect a typical vertex v € V(G) to
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have deg(v; Q) < p|Q| and so we can hope that Lemma 3.5.4 can be applied to imply the
existence of shrinkable orchards whose orders approach p” ~2n, gaining an extra power of p over

Proposition 3.5.5. This is the content of the rest of this section.

3.5.4 Controlling degrees to removable sets of vertices

A reasonable approach when trying to apply Lemma 3.5.4 to deduce the existence of larger
order shrinkable orchards is to start with a larger (in size) orchard than we desire and crop
diamond trees which fail the bounded degree condition. This approach is reminiscent of how we
derived Lemma 3.5.4 from Lemma 3.5.3, where we greedily lost diamond trees which violated
condition (1) of Lemma 3.5.3. In this case though, our condition is harder to satisfy. Indeed, we
require that all vertices in a set in our system satisfy the degree condition and not just a single
vertex. In order to achieve this, we will need to appeal to (the full power of) Proposition 3.3.1 to
choose our diamond trees. As Proposition 3.3.1 does not give full control over the set of vertices
which end up as the set of removable vertices, we have to settle with being able to conclude
our desired upper bound on the degrees of vertices to a subset of the removable vertices. The

detailed statement is as follows.

Lemma 3.5.6. For any3 < r e Nand 0 < y,n < r% there exists an € > 0 such that the
following holds for any n-vertex (p, 8)-bijumbled graph G with B < ep”~'n and any vertex
subset U C V(G) with |U| 2 4. For any m € N with p 7 InY < m < p" 2072, there exists
a K,-diamond tree D = (T, R, X), of order at most 2m such that V(D) C U and there exists a
subset Q C R of removable vertices such that |Q| = m and all but at most nm vertices v € V(G)

have deg(v; Q) < p"~'n!-7.

Proof. Fix € > 0 small enough to apply Proposition 3.3.1 with @ = ﬁ
apply Lemma 3.2.3 with 73,3 =’ < % and small enough to force n to be sufficiently

large in what follows. We begin by splitting U into disjoint subsets U’ and W’ arbitrarily so

small enough to

that |U’[, [W’| > § = 4arn, noting that this is possible due to our definition of «.

Now fix some m with p"~'n'™Y < m < p"2n'"2" and define ¢ := p"~'n'""Ym™'. Note that
8p < pn? < g < 1 due to our conditions on m. As we aim to find a set Q of size m, the condition
that deg(v; Q) > p"~'n'~7 is equivalent to having that deg(v; Q) > ¢|Q|. As discussed above,
given a diamond tree of the correct order and a subset Q of m removable vertices, we can
appeal to Lemma 3.2.3 (ii) to bound the number of vertices which have high degree to Q.
However, the bound is not strong enough for our purposes so we instead appeal to the full power
of Proposition 3.3.1. The idea is to take Y to be much bigger than m. Therefore applying
Lemma 3.2.3 (ii) with respect to Y gives a stronger upper bound on the number of vertices which

have large degree (at least ¢|Y|, say) to Y. If we then take Q to be a random subset of Y, then
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we expect the density of the neighbourhood of a vertex in Q to have roughly the same density as
the neighbourhood of that vertex in Y. Hence, we can bound the number of vertices which have
large degree to Q by ‘carrying over’ the bound on the number of vertices which had large degree
to Y. The details follow.

First we fix 6 := azpr‘ln and z := min {an, 57’”} Note that for n large, due to Fact 3.2.2, §
will also be large. Now apply Proposition 3.3.1 to obtain disjoint subsets X,Y c U’ as in the
statement of Proposition 3.3.1. Note that | X| < %Z <mand |Y| = z— |X| > % for n sufficiently
large. Fix a subset Z C Y of size § and let B C V(G) be the set of vertices v € V(G) such
that deg(v; Z) > %|Z|. We claim that |B| has size at most ym. Indeed, noting that % > 2p,
Lemma 3.2.3 (ii) gives that

4y p2r=2,2 25,72y 2 Y pl=rm if 7 = om,
[t R 2 (3.5.2)
a*|Z| < nn* ' m? if z=an.

In the case that z = 67’", the estimate in (3.5.2) is less than pm for large n due to the condition
that vy < rlz and the fact that p > n~1/(2"=3) (Fact 3.2.2). In the case that z = an, the estimate

in (3.5.2) is less than 7m due to the fact that m < p"2n!=2¥ < n!=27,

For each v ¢ B, we have that deg(v; Z) < %|Z| and so we let N,, C Z be a subset of exactly %|Z|
vertices in Z such that N,, contains all the neighbours of v which lie in Z. Now consider a random
subset Q; C Z where we keep each vertex independently with probability p’ = %", noting
that 0 < p’ < 1 for large enough n. Clearly E[|Q1 |] = p’|Z| = 2m and for each v € V(G) \ B,
have that E[|Q 1NN, |] = p’|N,| = %. We get concentration for these random variables from
Theorem 2.1.1 which is strong enough to do a union bound and conclude that whp as n (and
hence m and gm) tend to infinity, we have that |Q | > mand |Q| NN, | < gm forallv € V(G)\B.
Therefore, for sufficiently large n, we can fix such an instance of 0 and take Q to be a subset

of Q1 such that |Q| = m. Therefore for all vertices v € V(G) \ B, we have that
deg(v;Q) < 1NN, <IQ1 NNy < gm=p"~'n'™,

We have that |B| < nm from above and we use the conclusion of Proposition 3.3.1 to give
a K,-diamond tree » = (T, R,X) with removable vertices R := X UQ Cc U’ c U and X
a K,_j-matching in W c U. We thus have that V(D) c U as required and the order of D
is |Q] + | X]| < 2m. m|

3.5.5 The existence of shrinkable orchards of larger order

Lemma 3.5.6 gives us the key to being able to push the methods above (which culminated in

Lemma 3.5.4) to be able to handle orchards with larger order. We remark that the flexibility
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given by dealing with (k, m)-systems and Observation 3.5.2 is necessary in order to handle this
extension. Indeed, this is due to Lemma 3.5.6 only giving control over the degree to a subset of

the removable vertices of the diamond tree generated.

Proof of Proposition 3.4.1. By Proposition 3.5.5 we can focus on the case that
pr—lnl—r3y <m< min{pr—2n1—2r3y’ n7/8}'

We fix € > 0 small enough to apply Lemma 3.5.4 with a354 = @’ := ‘Z’ and y354 = y and
small enough to apply Lemma 3.5.6 with y35¢6 = v’ := r3y and 7356 =1 < % Finally we
fix some k € N such that an < km < 2an. By repeatedly applying Lemma 3.5.6, we find
a (2k,m)-orchard Oy with V(Oy) c U and each D = (T,R,X) € Oy has the property that
there exists some distinguished subset Q5 C R of removable vertices such that |Qp| = m
and all but at most nm vertices v in V(G) have that deg(v;Qp) < p" 0!, Indeed, we
can find Oy by sequentially choosing diamond trees and deleting their vertices from U, using
n

that [V(QOp)| < 4ran at all times in this process and so [U \ V(Op)| > % and we can apply
Lemma 3.5.6.

Now we will crop our orchard Oy to arrive at an orchard for which we can apply Lemma 3.5.4 to
subsets of removable vertices. Similarly to the proof of Lemma 3.5.4, we do this by a process of
‘cleaning up’; losing diamond trees in the orchard which have lots of removable vertices which are
atypical. So let B; C V(G) be the set of vertices v € V(G) such that deg(v; Qp) > p"~'n!~
for some D € Oy as above. It follows that |[Bi| < nm -2k < <F. Next we delete D’
from Oy if |[B N Q| 2 5. Due to our upper bound on |B1|, we delete at most % of the
diamond trees 9’ from Oy. Let the resulting suborchard be @; C Oy and for each diamond
tree D = (T, R,X) € O define a distinguished subset Sp € Qp C R of removable vertices

such that |Sp| = 7 and

deg(v;Sp) < p" 0! = p" a7 forall D e Oy andalive | | Sp.  (353)
D'eO,

Let O, be an arbitrary suborchard of O so that |O;| = (1+7y)k. Moreover, let A’ = {Sp : D €

O,} be the ((1 +vy)k, 2)-system defined by the distinguished subsets of removable vertices for

the K,.-diamond trees in O,. Now due to (3.5.3), we have that Lemma 3.5.4 gives the existence

of some y-shrinkable (with respect to r) subsystem A C A’. Taking © :={D € O, : Sp € A}

thus gives a y-shrinkable (k, m),.-orchard as required, appealing to Observation 3.5.2. O
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3.6 Shrinkable orchards of large order

In this section, we establish the existence of shrinkable orchards with large order, proving
Proposition 3.4.2. Our approach is to find an orchard such that the K,--hypergraph 7€ generated
by the orchard is very dense. Again we will appeal to Theorem 2.7.3 which tells us that a
hypergraph 7€ has a large matching if whenever we remove a small collection of edges (dictated
by some 2-uniform graph J on V(#€)), there exists a perfect fractional matching in the remaining
hypergraph. In order to find these perfect fractional matchings in subhypergraphs of the K-
hypergraph /€, we will appeal to Lemma 2.6.3, which gives the existence of a perfect fractional
matching given that any vertex of the hypergraph is contained in many edges. More precisely,
we need that for any vertex v € V(F€) and large subset of vertices W c V(#€), there is an edge
of 7€ containing v and vertices in W. As we did with the small orchards, our first step is to
apply this theory of large matchings via perfect fractional matchings, to obtain a condition on an
orchard which guarantees shrinkability. This is the content of Section 3.6.1 and in Lemma 3.6.1
we derive such a condition (condition (3.6.1)) which allows us to greedily apply the results
above to find the relevant edges and hence perfect fractional matchings in sub-hypergraphs of
the K,-hypergraph #€(O).

For the rest of the section, we thus focus on finding orchards which satisfy the condition (3.6.1)
given in Lemma 3.6.1. This condition is essentially a density condition similar to the condition
of Lemma 2.6.3 above (indeed this lemma is used in the proof of Lemma 3.6.1) saying that we
need every vertex of our K,.-hypergraph #€ to be contained in many edges. However given that
we need to apply Lemma 2.6.3 in many different sub-hypergraphs of €, the condition (3.6.1) is
much stronger and requires us to find edges containing any vertex v € V(#€) and vertices from
arbitrary sets some of which are sublinear in size. A detailed discussion of the condition (3.6.1)

is given in Section 3.6.1.

We will then show in Section 3.6.2 that we can appeal to Proposition 3.3.1 to generate diamond
trees whose removable vertices are contained in many copies of K- and hence the condition (3.6.1)
will be satisfied. This will then allow us to prove the existence of shrinkable orchards of large
order in Section 3.6.3 . As in Section 3.5 however, this first argument will fall short of the range
of orders needed in Proposition 3.4.2. The rest of the section is thus concerned with extending
our methods to capture more orders. This leads us to a process which generates an orchard in
two rounds. The outcome of the first round is discussed in Section 3.6.4 and building on this, in
Section 3.6.5 we detail properties of the orchard after a second round of generation. Finally in
Section 3.6.6, we show that by generating orchards via this two-phase process, we end up with

orchards which are shrinkable. This allows us to complete the proof of Proposition 3.4.2.
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3.6.1 A density condition which guarantees shrinkability

We begin by applying Lemma 2.6.3 and Theorem 2.7.3 to give a density condition which we
can use to show that an orchard is shrinkable. This transforms our problem into finding orchards

which satisfy this condition.

Lemma 3.6.1. Forall3 <reNand0 <y < # there exists a ko € N such that the following
holds. Suppose that O is a (k, m),-orchard in a graph G with kg < k € Nand m € N. Fora
diamond tree D € O, let Ry denote its removable vertices and for a suborchard O’ c O, let
R(O’) .= Upcor Ry denote the union of the sets of removable vertices of diamond trees in O’.

Suppose that the following condition holds:

Forany D € O and P c O\{D} such that |P| > %, there exists a suborchard
P* = P*(D,P) C P suchthat |P*| < k'~ and for any disjoint suborchards
O1,...,0,5 C P\ P, with |O;| > k""" fori € [r - 3] and |Or_s| > vk,

there is a copy of K, in G traversing Rp, R(P*) and R(O;) fori € [r - 2].

(3.6.1)

Then O is y-shrinkable.

Let us take a moment to digest the density condition (3.6.1). For simplicity, one can think of P*
being a single diamond tree D* = D*(D, P). Indeed this is the setting that we will work in
first when applying Lemma 3.6.1. Simplifying further and just focusing on the case that r = 3,
the condition (3.6.1) then translates as having that for any K3-diamond tree D in the orchard and
large suborchard P c O, there is some diamond tree D* € P so that the pair {9, D*} has high
degree in the K3-hypergraph generated by P. Indeed for any small linear sized O; C P, there
is a hyperedge in #(O) containing D, D* and a diamond tree in O;. In general, when r > 4,
we need to guarantee traversing K,.s when some of the sets we look to traverse are smaller than
linear (size k'~" 3“V). Also later on we will need the full power of Lemma 3.6.1 which allows us
to choose the P* as a small suborchard as opposed to a single diamond tree. We now prove the

lemma.

Proof of Lemma 3.6.1. Let @ C O be an arbitrary suborchard of O of size yk. We will
show that O is shrinkable with respect to Q. So fix some arbitrary suborchard @’ ¢ Q and
let 7€ := (O \ Q’) be the K,-hypergraph generated by O \ Q’. We have to show that 7€ has

a matching covering all but at most k'~ vertices of J€.

In order to show the existence of a large matching in #€, as we did in Lemma 3.5.3, we appeal
to Theorem 2.7.3. So let us fix N = |V(¥€)| and note that as N > (1 — y)k, by choosing kg to
be large, we can assume that N is sufficiently large in what follows. Now fix some 2-uniform

graph J on V(¥€) of maximum degree at most N7 If we can show that € \ #€; contains a
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perfect fractional matching, then we are done by Theorem 2.7.3 as, because J was arbitrary, the

theorem guarantees a matching covering all but at most N'=¥ < k!=7 vertices of #€.

In order to prove the existence of a perfect fractional matching in #€ \ #€;, we appeal to
Lemma 2.6.3, fixing M := év—r Thus, we need to show that given any K,-diamond tree D €
V(#€) = O\ Q’ and suborchard Py C V(7€) \ {D} with |Py| = M, there is an edge in F€ \ F€;
containing P and r — 1 K,.-diamond trees in Py. So fix such a D and Py. Let P := Py \ Ny (D).

Therefore, we have that

Pl 2 Pol - N (D)) 2 & -y 2 LDy £
for k sufficiently large. Hence by condition (3.6.1), we have the existence of some P* =
P*(D,P) c P as in the hypothesis. Now we will iteratively define O; for 1 <i < r -2
as follows. We begin by fixing P’ = P and defining Qg := Ugep+(N;(C) U {C}). Now
for 1 <i < r -2, we update P’ by removing any diamond trees in Q;_; from P’ and then
define O; to be an arbitrary suborchard of P’ of size K=Y ifi e [r=3], and of size yk ifi = r-2.
If i = r — 2 we then end this process. If i < r — 2, we define Q; := Ucco,(N;(C) U{C}) and

move to the next index.

Let us check that we are successful in each round. Indeed this follows because at the beginning

of step 7 in the process, P’ has size
’ k 7 1-13 r? k 1-r3y+r? 1-r3
|’P|Z4——lk 7(1+N 7)24——}’]( Y yZ)/ka 7’
r r

for large k. Therefore there is always space in PP’ to choose our suborchard O; at each step i. Now
the condition (3.6.1) gives a copy of K, in G traversing Ry, R(P*) and R(O;) fori € [r —2].
This thus gives a hyperedge e in the K,-hypergraph #€ = F€(O \ Q') which has one vertex
as D, one vertex in P* C Py and one vertex in each of the O; C Py. Moreover this edge e lies
in #€ \ #€;. Indeed, by our construction of P* and the O;, there is no edge in J between any
pair of distinct sets in the family {{D}, P*, Oy,...,O,_»}. We have therefore established the
existence of a perfect fractional matching in #€ \ #€; due to Lemma 2.6.3 which implies that O

is y-shrinkable as detailed above. O

Lemma 3.6.1 gives a route to proving the existence of shrinkable orchards. Indeed, if the sets
of vertices which arise as pools of removable vertices of suborchards are sufficiently large, then
appealing to Corollary 3.2.5 can give the required transversal copy of K, in G, so that (3.6.1)
is satisfied. However, we cannot immediately derive such results because the size of the sets
required in (3.6.1) are too small. In particular, (3.6.1) forces only one set (namely R(O,_;)) to
be linear in size whilst all other sets that feature can have sublinear size. This is troublesome

because the examples we have from Corollary 3.2.5 to generate transversal copies of K., require
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at least two of the sets involved to be linear. Indeed, it can be seen from the more general
Lemma 3.2.4 that we cannot do any better than this. That is, in order to use Definition 1.4.1 and
our condition on S to derive the existence of a copy of K, that traverses a family of sets, at least
two of the sets in the family must be linear in size. Therefore in order to apply Lemma 3.6.1
and derive the existence of shrinkable orchards, we have to obtain orchards with some additional

structure. We start by exploring properties of singular diamond tress that we can guarantee.

3.6.2 Popular diamond trees

As was the case when we were interested in proving the existence of shrinkable orchards with
small order, Proposition 3.3.1 gives a powerful tool for proving the existence of diamond trees
with additional desired properties. Here we show that we can choose a diamond tree so that there

are many copies of K, formed with its removable vertices.

Lemma 3.6.2. Forany3 < r €e Nand 0 < a < 21% there exists an € > 0 such that the

r—1

following holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”~'n and any vertex

subset U C V(G) with |U| > 7. Suppose that m € N with

max{p' ™", p"'n} <m<n"?

and we have set families Wy, Wy, ..., W,_» C 2Y(G) such that:
1. Wy = a/pr_lnfor all Wo € Wy,
2. |Wi| =z apnforallW; e W;, 1 <i<r-3;
3. |(Wyoa| = anforall W,._, € W,_;
4. T123 Wil < 2m/4,

Then there exists a K,-diamond tree D = (T, R, X) in G[U] of order at least m and at most 2m
such that for any choice of sets W = (W, ..., W,_n) € Wy X --- X W,._y, there is a copy of K,
in G traversing R and the sets Wy, ..., W,_,.

Proof. Let us fix € > 0 small enough to apply Proposition 3.3.1 with @331 = @’ := 2% and
Corollary 3.2.5 with 7 = @ as well as being small enough to force n to be sufficiently large.
Note that our lower bound of Q(p”~'n) on m and Fact 3.2.2 imply that m tends to infinity as n
tends to infinity and so we can also assume m is sufficiently large in what follows. We begin by
splitting U into disjoint subsets U’ and W arbitrarily so that [U’|, [W’| > g = 4a’rn, noting that

”

this is possible due to our definition of a’. We further fix ¢ := a?p"~!n.
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a’n

Now we apply Proposition 3.3.1 with z := 97 = 75 and fix the sets X € U”and Y ¢ U’ which

are output. Note that

_ 1
L and Y =z |X] 2
1 2

olN

n

Z
|X|Smax E_W’

for n large.

Now for each choice of W = (W, ..., W,_3) € WyX---XxW,_,, we find some subset Y (W) Cc Y
of size % such that for every v € Y (W), there is a copy of K,_; in the neighbourhood of v
which traverses Wy, . .., W,_;. In other words, for every v € Y (W), there is a copy of K, travers-
ing Wy, ..., W,_, and {v}. We can find Y (W) by repeated applications of Corollary 3.2.5 (2).
In more detail, we initiate with ¥y = ¥ and Y (W) empty and in each step we find a copy
of K, traversing Wy, ..., W,_» and Yy. Taking v to be the® vertex of this K, that lies in Y,
we add v to Y(W), delete it from Y, and move to the next step. We continue for % steps
using that the conditions of Corollary 3.2.5 (2) are satisfied at each step. Indeed this is due to
the lower bounds on the sizes of W; in conditions (1), (2) and (3) of this lemma and the fact
that |Yy| = |Y]| = [Y(W)| > % > an throughout, using our upper bound on @ and our lower

bound on |Y| here.

Similarly to the proof of Lemma 3.5.6, we now take Q to be a random subset of Y by taking
each vertex of Y into Q independently with probability p’ := %. Thus E[|Q|] = ST’" and by
Theorem 2.1.1, we have that m < |Q] < %” with probability at least 1 — 2¢™"/%0. Furthermore,

for any fixed W € Wy X - - - X ‘W,._,, we have that
, Sm
B[IQNY(W)]] = p/[¥(W)] = =

Applying Theorem 2.1.1 again implies that the probability that |Q N Y(W)| = 0 is less
than e=>"/1%_ Therefore using that H{;OZ |'W;| < 2™/* and appealing to a union bound, we
can conclude that whp as n (and hence m) tend to infinity, we have that m < |Q] < 37’"
and Q N Y(W) # 0 for all choices of W € Wy X - -+ X W,._5. So for sufficiently large n we can
fix such an instance Q C Y and taking R := X U Q we have that a K,.-diamond tree D = (T, R, X)
with removable set of vertices R is guaranteed by Proposition 3.3.1. We claim that D satisfies
all the necessary conditions. Indeed, the fact that the order of D lies between m and 2m follows
from the fact that m < |Q] < 37’" and |X| < % whilst the fact that Q N Y(W) # 0 for each
choice of W = (W), ..., W,_,) guarantees that we have a copy of K, traversing O C R and the

sets Wo, ..., W, . O

9Here we refer to the vertex that lies in Y although there may be several (if the W; intersect the Y)). What we
mean here is the vertex v in the copy of K,- which is assigned to Y by virtue of the copy being traversing.
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3.6.3 The existence of shrinkable orchards of large order

Using Lemma 3.6.2 to generate the diamond trees that form our orchard, we can prove that the
orchard generated satisfies the condition of Lemma 3.6.1 and hence is shrinkable. This gives the

following.

Proposition 3.6.3. Forany3 <r e Nand 0 < a,y < 21% there exists an € > 0 such that

the following holds for any n-vertex (p, B)-bijumbled graph G with B < £p”~'n and any vertex
subset U C V(G) with |U| > 5. For any m € N with

1-r

7/8

max{p'~", p""'n} <m < n

there exists a y-shrinkable (k,m),-orchard © in G[U] with k € N such that an < km < 2an.

Proof. Fix € > 0 small enough to apply Lemma 3.6.1 with y36; = ¥ and Lemma 3.6.2
with @362 = @’ = @y. Fix some k € N such that an < km < 2an. We also ensure that & is
small enough to force n (and hence k, due to our upper bound on m) to be sufficiently large in
what follows. Now we begin by noticing that k < g-. Indeed we have that if p > n1/(2r=2),
then

plT<n<pTln<m,

while if p < n™1/(72)  then

Prln<Vn<p™ <m.
Therefore, for any p we have thatm > Vi and k < 222 < 271ryfp < 20,

Now we turn to finding our (k,m),-orchard in G[U]. We do this by finding one diamond
tree at a time as follows. For 1 < i < k, fix U; := U\ (U;<; V(Dy)) and note that |U;| >
|U| = 2arn > 7 throughout due to our condition on a. We then apply Lemma 3.6.2 to find a
diamond tree D; = (T;, R;, %;) such that V(D;) c U; and for any choice of i’ € [i — 1] and
disjoint subsets I1,...1,—» C [i = 1] \ {i"} with [I;| > pk for 1 < j <r -3, and |I,»| > vk
we have that there is a copy of K, traversing R;, R;» and the sets U[EIJ, Ry for j € [r - 2].
The existence of such a D; follows from Lemma 3.6.2. Indeed, we define Wy = {R; : i’ €
[i =11} W = {Upep Re = 1" C [i = 1],|I'| > pk} for1 < j < r -3 and finally we
define W, = {Upep Re : I’ C [i = 1],|I'| = yk}. We need to check that conditions (1)-
(4) of Lemma 3.6.2 are satisfied. Indeed condition (1) follows from our lower bound on m
whilst (2) and (3) follow from the fact that km > an and our definition of a’. Finally note that
each choice of a set in any of the ‘W; comes from a subset of [i — 1]. Hence we can upper
bound ]—[;;g |'W;| by (251 < 27%_ As discussed in the opening paragraph, we have that k < &
and so condition (4) of Lemma 3.6.2 is also satisfied. Thus Lemma 3.6.2 succeeds in finding the

necessary K,.-diamond tree at every step of this process.
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Let O = {D, ..., Dy} be the orchard obtained by this process. We claim that O is y-shrinkable
and to show this we appeal to Lemma 3.6.1 and so need to show that the density condition (3.6.1)
is satisfied by O. So fix some arbitrary 9; € O and P c O\ {D;} with |P| > ﬁ. We then
define D* = D*(D;, P) (this plays the réle of P* in (3.6.1)) to be the diamond tree in P with the
highest index. That is we define i* := max{i’ : D € P*} and set D* = D;-. Note that we may
have that i* < i but this will not be a problem. We claim that condition (3.6.1) is satisfied with
this choice of D*. Indeed, let Oy, ..., O,_, c P*\ {D*} be disjoint suborchards satisfying the
lower bounds on the sizes given by (3.6.1). For each j € [r — 2], define I; := {i’ : Dy € O;}.
Therefore we have that |1, 5| > yk. For 1 < j < r — 3 we have that |/;| > K1y > pk. This

follows from the fact that

kY s U2 s 120 S -l B0-1) »,

where we used the upper bound on 7 in the first inequality, the fact that k < +/n in the second
inequality (see the opening paragraph of the proof), and the fact that p"~'n < m < n’/%
in the last inequality. Now relabelling {i,i*} as {£y, €1} so that {5 < ¢;, we have that at
the point of choosing Dy, we guaranteed that there was a K, traversing Ry, Ry, and the
sets R(O;) = Uper, Ry for j € [r —2]. By Lemma 3.6.1 this completes the proof that O

is y-shrinkable. O

Proposition 3.6.3 establishes Proposition 3.4.2 when G is very dense. However when G is sparse
(when p < n~ V(272 to be specific), the lower bound of m > p'~" takes over and we are left with
a gap between the range covered by Proposition 3.6.3 and the desired range of Proposition 3.4.2.
Tracing the condition that m = Q(p'™") back through the proof, we can see that this was
necessary in order to prove Lemma 3.6.2. There, we used our key Proposition 3.3.1 to generate a
diamond tree where we had a large pool Y of vertices which were candidates for being removable
vertices. In order to establish the existence of the cliques we need in Lemma 3.6.2, we needed Y
to be linear in size. The sticking point then comes from the fact that Proposition 3.3.1 can only
guarantee a maximum factor of O(p”~'n) between the size of the pool of vertices Y and the
order of the diamond tree that we generate. Indeed, in Proposition 3.3.1 we are forced to include
the set X in the removable vertices of the diamond tree we generate and when Y is linear in
size, X could have size as large as Q(p'™"). It is unclear how one would improve on this and

find diamond trees with smaller order that are still contained in sufficiently many copies of K.

Thankfully, there is a way to circumvent this issue and apply our methods to close the gap
in the range of orders nonetheless. The key idea is to replace the diamond tree generated by
Lemma 3.6.2 with a set of diamond trees, that is, a small suborchard. Indeed, by grouping
together diamond trees, we can decrease their order but guarantee that the collective pool of
potential removable vertices for the group is still linear in size. Through following a similar

proof to that of Lemma 3.6.2, this has the outcome of being able to guarantee many copies
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of K, which contain a vertex in the removable vertices of one of the diamond trees in the group.
Moreover, in the proof of Proposition 3.6.3, we crucially used that we could generate diamond
trees from Lemma 3.6.2 to establish the density condition (3.6.1) of Lemma 3.6.1. We chose
an appropriate D* and used that it had been generated by Lemma 3.6.2 to prove the required
existence of transversal copies of K,. However, Lemma 3.6.1 allows for us to use a much larger
suborchard P* for this condition as opposed to a single diamond tree. Therefore there is hope to
incorporate the idea of using a suborchard instead of a single diamond tree in Lemma 3.6.2 whilst
maintaining the overall scheme of the proof. There are some further difficulties to overcome but

on a high level, this is the approach we follow in the next sections to establish Proposition 3.4.2.

3.6.4 Preprocessing the orchard

As discussed above, in order to prove Proposition 3.4.2 and remove the condition that m =
Q(p!'~") from Proposition 3.6.3, we need to replace the rdle played by D* in the proof by a small
suborchard P*. This allows us to prove an analogue of Lemma 3.6.2, where one now finds an
orchard whose collective set of removable vertices lie in many copies of K. Our shrinkable
orchard then, will be formed as the union of many of these smaller orchards. Indeed, in what
follows we will split k as k = £t and will aim to have ¢ smaller (£, m),-orchards contributing to
our shrinkable orchard O. Each of the (£, m),-orchards will have strong connectivity to the rest
of the orchard O.

In order to work with the fact that we are splitting k into ¢ sets of size £, we introduce a two-
coordinate index system, with (i, j) € [¢] x [£] indicating that we are referring to the j*”* object
in the i*" subset and we will work through these indices lexicographically. In more detail, we
let <;, denote the lexicographic order on the pairs (7, j) € [f] X [£€]. Thatis (i’, j") <p (i, ) if
and only if either ] <i’ <i—-1land1 < j <fori’=iand1 < j' < j— 1. Furthermore for

eachl <i<rand1 < j < ¢, we define

Ly ={@,j") e [l] x[€]: (@, j") <c (i, )}
to be the indices (i’, j') which come before (i, j) in the lexicographic order.

A hurdle that arises with our new approach is that we lose the symmetry provided by the fact that
both D and D™ in our applications of Lemma 3.6.1 were given by singular diamond trees. Indeed,
in our proof of Proposition 3.6.3, when verifying the condition (3.6.1) of Lemma 3.6.1, we use
that both the arbitrary diamond tree D = D; and the diamond tree D* = D*(D;, P) that we can
choose, were generated using Lemma 3.6.2. We now hope to generate our suborchards P* using
an equivalent to Lemma 3.6.2 and this will mean that we can no longer switch the roles of D
and P* when appealing to the conclusion of (the proof method of) Lemma 3.6.2. In particular,

this places a higher demand on the properties we need to conclude of our (¢, m),-suborchards.
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In more detail, we need to generate suborchards which are highly connected to all the other
vertices of the K,.-hypergraph #€(©). Therefore it no longer suffices to build our orchard in a
linear fashion, choosing diamond trees (or indeed suborchards) to be well connected (in terms of
the K,--hypergraph) with previously chosen diamond trees. We will instead generate our orchard
in two rounds. In the first round we fix a part of each diamond tree and using Proposition 3.3.1,
provide large pools of vertices which can extend the parts of the diamond trees chosen so far,
which we will then do in the second round. Lemma 3.6.4 details the outcome we draw from this

preprocessing first round.

Lemma 3.6.4. Forany3 <r eNand0 < a < 2,% there exists an € > 0 such that the following
holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”~'n, any vertex subset U C V(G)
with |U| > 5 and any k,m,t,{ € N such that k = t{,

an < km <2an and tm>p'™.

There exists vertex sets Z;;,Y;; C U and K,_1-matchingsIl;;, Y;; C K,_1(G[U]) for eachi € [t]
and j € [{] such that the copies of K,_1 ineach Y;; =: {S, : v € Y;;} are indexed by the vertices
in Y;; and such that the conditions (1;;) through (5;;) below are satisfied for all 1 < i <t
and1 < j < ¢

(lij) We have that |Z,'j| =m and |Hij| = |Z,'j| -1

(2ij) We have that Y] = [Y;;] = Y21,
(3ij) We have that the vertex sets Z;;, Y;j, V(I1;;) and V(Y ;) are all disjoint from each other.

(4ij) We have that AN A" = 0 for any choice of A € {Z;;,V(Il;;),Y;;,V(Y;;)} and'®

A e {Z,‘/j/,V(H,'fj/) : (i/,j/) € I<ij} U {Yijf,V(Yij/) 1< j’ <j- 1}

(5ij) For any choice of Y such thatY C Y;j, there exists a K,-diamond tree D = (T, R, X) such
that R = Z;; U Yand ¥ = IL; U Y,-j, where Yl-j C Y;j is defined to be

Yij = {S{} Ve Y c Yij}-

As mentioned above, in this first round we put aside part of every single diamond tree in
the (k, m),-orchard we are going to generate, thus partially defining the orchard. We also put
aside large pools of vertices which will be used to extend these diamond trees in the second

round of generating our orchard. The fixed parts of the diamond trees chosen in Lemma 3.6.4

0Crucially, we do not require that A is disjoint from all Y;» j» and V(Y j), only those that are in the same subfamily
indexed by 7.
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are the sets Z;; and the interior cliques I1;; whilst the pools of potential removable vertices and
interior cliques that can be used to extend the diamond trees chosen are given by the sets ¥;;
and Y;;, respectively. We make sure through the conditions (1;;) that these fixed sub-diamond
trees contribute a substantial portion of the final diamond trees that we are shooting for (which
will have order between m and 2m). We also guarantee through the conditions (4;;), that the
parts of the diamond trees that we put aside in this preprocessing round do not interfere with each
other, in that they are vertex-disjoint. Notice also that if we fix 7 € [¢], then the conditions (4;;)
for all j € [£] guarantee that the sets Y;;, V(Y;;), j € [£] do not intersect each other. This
is important because in the second round of generating our orchard, we will want to extend
all the diamond trees in the i** (£, m),-suborchard simultaneously and so we do not want any
interference between the choices of the extensions within such a suborchard. Also note that the
conditions (2;;) for fixed i € [¢] and all j € [£], guarantee that the collective pool of potential
removable vertices for the i’ (£, m),-suborchard (the set U je[e1Yij) is linear in size, as required.
Finally, the conditions (5;;) contain the heart of Proposition 3.3.1, allowing us to arbitrarily
extend any of the diamond trees we have so far using any subsets of the pools (the Y;;) of

potential removable vertices and interior cliques (the Y;;) we have put aside.

Our final remark on the statement of Lemma 3.6.4 is that we do not require e.g. ¥;; and Yy
fori # i’, to be disjoint. Indeed as we have ¢ suborchards and each has a linear collective pool of
potential removable vertices, there would not be enough space in the graph to keep these pools
disjoint. However, by requiring that the collective pool is much larger than all the vertices in our
orchard (that is, much larger than km), we guarantee that we will be able to proceed greedily in
our second round (Lemma 3.6.5) of defining the orchard, always having a large enough set of

potential removable vertices at each step.

Proof of Lemma 3.6.4. Let us fix € > 0 small enough to apply Proposition 3.3.1 with @331 =
a’ = 22++1 We will find these vertex sets and K,-_j-matchings algorithmically working through
the pairs (i, j) € [t]X[€] inlexicographic order. Soletus fix some (i*, j*) € [¢]x[£] and suppose
that we have already found Z;;,Y;;,I1;; and Y;; such that the conditions (1;;) through (5;;) are

satisfied for all (i, j) € I;+;+. We fix W* C U to be

wW* = (U {Z,'j UV(HU) 2 (i, ) € I<i*j*}) U (U {Yﬁj UV(Yi*j) l<j<j - 1}),

andlet U* := U\ W*. We use conditions (1;;) and (2;;) to upper bound the size of W* as follows.
‘We have that

W <rm((i* -1+ 1)+ @(j* —1) < rmtl +Varn < Qa + Va)rn,
4
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using that mtf = mk < 2an. Hence |U*| > % from our upper bound on a@. We will
find Z;«j«, Y+ € U and I+, Yy j» C K,_1(G[U"]) and so condition (4;+;+) will be satis-
fied. The required vertex sets Z;«;« and Y;« j~ are found by an application of Proposition 3.3.1. So
let us split U into disjoint subsets U” and W” arbitrarily so that |U’|, |[W’| > g > 4a’rn, noting

that this is possible due to our definition of a’. We further fix ¢ := a>p" 'nand z := m + ‘En

and note that z < a’n due to the fact that m < h% < 2an and our upper bound on a.

So Proposition 3.3.1 gives us that there exists disjoint vertex subsets X,Y c U’ c U* such

that | X|+1|Y|=zand |X|=1<mor

2z 2m
X| < =< —+
0 0

e

2+an -
£ azzpr—lg -

2y
ot T 2

using our upper bound on « and lower bound on ¢m in the last inequality. As |X| < m, we can

fix some Z;+j» C X UY such that X C Z;+j« and |Z;+ j«

we have that |V j«| = z—m = @ and so the size requirements on Z;+j+ in (1;+;+) and on Y}« in

= m. Therefore letting Yp+j« :=Y \ Z;+ -,

(2;+ j+) are both satisfied. Moreover, we also have that part of condition (5;+ ;+) is satisfied. Indeed,
for some ¥ C Y-, taking Y = YU (Z j+ \ X), Proposition 3.3.1 gives that there is a diamond
tree O = (T, R,X) with removable vertices R = X UY’ = Zpjx U Y and X a K,_;-matching
in G[U"].

Now in order to complete the proof of the lemma, we need to define the K, _;-matchings II;+ ;-
and Y+« and reason that the remaining conditions of the lemma are satisfied. This comes from
recalling how we proved Proposition 3.3.1 in Section 3.3.1 (see also Figure 3.5). There, we
applied Lemma 3.3.5 to find a large §-scattered K,-diamond tree Dy = (Tye, Ryer Zse). We
had that R;. = X UY was the set of removable vertices of Dg. and ¥ C Ry, was the set of
leaves in Dy.. The conclusion of Proposition 3.3.1 then followed readily as we could choose
which leaves in Y to include in a diamond subtree D of D,.. From this proof we see that we
can partition X, into Xg. =: II;+j« U Y+ j» where the (r — 1)-cliques II;++ are interior cliques
of the K, -diamond subtree of Dy, spanned by the removable vertices Z;:;-. Furthermore, we
can label Y-+ with the vertices in ¥;+ j+ so that (5;+j+) is satisfied. Indeed each vertex v in Y ;-
corresponds to a leaf of the diamond tree D, and so there is an interior clique S, € X;. such
that any sub diamond-tree which contains the non-leaves X of D, can be extended by adding v
to the set of removable vertices and S, to the set of interior cliques. As Dy, is a well-defined K-
diamond tree, we also have that condition (3;+;:) is satisfied and the size constraints of II;: ;-
= |Zj»

interior cliques of a diamond tree with removable vertices Z;- j-. |

— 1 as the set of

and Y;:j+ in (1;+j+) and (2;+;+) are also immediate, noting that |IT;: j«
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3.6.5 Completing the orchard

We will now use Lemma 3.6.4 to generate our orchard. This can be thought of as extending the
parts of the diamond trees (the Z;; and II;;) which were fixed in Lemma 3.6.4. The strategy
is very similar to that of Lemma 3.6.2 and Proposition 3.6.3. Indeed we take random subsets
of the pools of potential vertices in order to guarantee that the K,.-hypergraph generated by our
final orchard is sufficiently dense. The key difference here is that, as opposed to fixing our
orchard one diamond tree at a time, we appeal to Lemma 3.6.4 to fix part of all the diamond
trees in our orchard and then carry out the extensions on (¢, m),-suborchards. That is, we apply
the approach of Lemma 3.6.2 on the whole suborchard as opposed to a singular K,--diamond
tree. After doing this process for all suborchards we end up with an orchard which generates a

dense K,-hypergraph. This is detailed in the following lemma.

Lemma 3.6.5. Forany3 <r e N, 0 < a < 2,% and 0 < vy < 1 there exists an € > 0 such
that the following holds for any n-vertex (p, B)-bijumbled graph G with 8 < £p”~'n, any vertex

subset U C V(G) with |U| > 5 and any k,m, t,{ € N such that

k = tt, m > p"~n, tm > p'™", and  an < km < 2an. (3.6.2)

Then there exists a (k, m),-orchard © in G such that V(Q) c U and O can be partitioned into
suborchards @y, ..., Q; such that each Q; with 1 < i <t is an (£, m),-orchard and we have
the following property. For any i € [t], any D’ € O, any suborchard Q' C Q; with |Q’| > ﬁ
and any set of disjoint suborchards O1,...,0O; , c O with |O]| > pk for i’ € [r — 3]
and |O; _,| > vk, there exists a copy of K, traversing"! Ry, R(Q') and R(Oy) fori’ € [r -2].

Proof. Fix & > 0 small enough to apply Corollary 3.2.5 with 7 := ya, small enough to apply
Lemma 3.6.4 with @ and small enough to force n to be sufficiently large in what follows. We
begin by applying Lemma 3.6.4 to get vertex sets Z;;,Y;; and K, _j-matchings II;; and Y;;
for (i, j) € [t] x [£] satisfying (1;;) through (5;;) as listed in that lemma. Now we turn to
finding the diamond trees D;; for (i, j) € [¢] x [£] which will form our orchard O, so that the
suborchard Q; is defined to be Q; := {D;; : j € [{]} for each i € [¢]. We will appeal in
particular to condition (5;;) of Lemma 3.6.4 to find each D;; = (T;;, R;j,%;;). In more detail,
for each (i, j) € [t] x [€], we will find Yij C Y;; and apply (5;;) to find a diamond tree with

removable set of vertices R;; := Z;; U Y;.

Now for a set of indices I” C [f] X [£], we let Z(I") = U(; jyerrZ;j. In order to guarantee
the key property of O it suffices that for each i € [¢] we have the following. For any choice
of J C [£] with |J| > ﬁ and any choice of (i, jo) € [t] X [€] and subsets Iy, ..., [,_» C [t] X [{]

Here as before, for a diamond tree D, R ¢ denotes the set of removable vertices of D and for a suborchard @’ C
O, R(O’) denotes the union of the set of removable vertices of diamond trees in O’. That is, R(O’) := UpeceRp.
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with |I;| = pk fori’ € [r — 2] and |I,_»| > yk, the following holds. There exists a copy of K,

traversing UJGJYU, Z;. i, and the sets Z(Iy) for i’ € [r —2]. This is what we prove in what

i0Jjo

follows as we select our sets ¥; 2

We work through the i € [f] in order. Let Wy := U jyerr)xfe1(Zij Y V(IL;;)) and initiate
with Up = U \ Wy. Suppose that we are at some step i* € [¢] and we have fixed D;; =
(Tij,Rij, Z;j) for all i < i*. In this step, we will fix O;:; for all j € [£]. We define W;-
(U(i,j):l-q* V(Dij)) U Wy. We further define for each J C [{],

Y}'* = {v €U\ W;:veYyforsomeje[J]and S, € Y;+; N K, (G[U \ W;+]) }

In words, Yf keeps track of the vertices v which lie in one of the ¥;<; with j € J which we can
still use, in that the vertex v has not been used in a previous diamond tree and neither have the
vertices of its associated copy of K,_i, S,. Note that |W;-| < 4arn as a subset of vertices of
a (k, m)-orchard with km < 2an. Hence if |J| > %, we have that

|Y’|_ Van —4arn > ﬁ—4a/r n > 2an,
ar\ ¢ 4r

using conditions (2;;) and (4;;) of Lemma 3.6.4 for i = i* and our upper bound on a.

We now define a random subset ¥*" by taking each vertex v € Y7, into ¥ independently with

(€]
2\/» , noting that 0 < ¢ < 1 due to the fact that fm < km < 2an < 2+/an.
For j € [£], we define Yi*j =Y N Y«;. It follows from (2;;) that E[|I7,~*j|] =qlYijl £ %

for all j € [£] and an application of Theorem 2.1.1 as well as a union bound gives that with

probability g :=

high probability, |¥;«;| < m for all j € [£]. Note that in order to show that the upper bound
on the failure probability given by Theorem 2.1.1 is strong enough to beat a union bound of
the ¢ events, we use our lower bound on m and Fact 3.2.2. Furthermore, we have that with
high probability, for any choice of J C [£] with |J| > and any choice of (ig, jo) € [t] X [£]
and subsets Iy,...,1—» C [t] X [£] with |I;/| = pk forz € [r—2] and |I,—»| = yk, there
and the sets Z(I;) for i’ € [r — 2]. Indeed, this

follows from an application of Theorem 2.1.1 very similar to the proof of Lemma 3.6.2. For

exists a copy of K, traversing U ¢ g Y i Zigjo
a fixed J, (io, jo) and I for i’ € [r — 2] as above, we have that there is some subset X of an
vertices of Y;* such that each vertex in X has a copy of K,-_; in its neighbourhood which traverses

the sets Z;,;, and Z([) for i’ € [r — 2]. Indeed, X can be found by repeated applications

i0Jo
of Corollary 3.2.5 (2), deleting vertices from Y} " and adding them to X on each application.
Therefore E[|X N Y7|] = g|X]| = \/7'" and by Theorem 2.1.1, the probability that X N ¥ = 0

is less than e~ V@‘™/4  Due to the fact that m > m > p"~'n > n"=2/(27=3) because of our

lower bound on m and Fact 3.2.2, we have that this probability tends to 0 as n tends to infinity.
Moreover as there are less than k - (2K)"=2.2¢ < 27k choices for such a (i, jo), I fori’ € [r—2]

and J we have that a union bound gives the traversing copies of K, for all choices with high
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probability. Indeed, we have that

2arn < 2ar < dartm < \/c_ygfm’

rk <
m pr—l

using our conditions on km, m, {m and our upper bound on « from the hypotheses.

Therefore, we can fix an instance of Y?* which satisfies the desired conclusions that we have shown
happen with high probability. Foreach j € [¢], taking ¥;+; = ¥ " Ny; ;j and defining Y j =18, €
Yij:ve f’i*j}, we apply condition (5;;) fori = i* to get a family Q;+ of D;«j = (T}, Ri+j, Zi+ j)
for j € [€] such that for each j we have that R;+; = Zy+; U ¥;+j and £+ = I1;+; U Y5 This
completes the step for i* and we move to i* + 1 and repeat. Doing this for each 1 < i* < ¢

completes the proof. O

3.6.6 The existence of shrinkable orchards of smaller order

With Lemma 3.6.5 in hand, we can now complete the proof of Proposition 3.4.2 as follows.

Proof of Proposition 3.4.2. Fix € > 0 small enough to apply Lemmas 3.6.1 and 3.6.5 and
Proposition 3.6.3 all with the same @ and y and small enough that to guarantee that p >
Cn~Yr=3) with C := (%)l/r

ensure that »n is sufficiently large in what follows.

(see Fact 3.2.2). We also guarantee that € > 0 is small enough to

Now note that Proposition 3.6.3 directly implies the existence of the desired shrinkable orchard

7/8

if p!=" < p"norif p"~'n < p'" < m < n’/® and so we can assume from now on that

p"'n <m < min{p"",n"/8}. (3.6.3)
We are therefore in a position (due to our lower bound on m) to apply Lemma 3.6.5 but we
first need to fix k,¢,{ € N so that the conditions (3.6.2) are satisfied. We first fix £ € N so

1-r

that p!=" < &m < 2p'~". This is possible as m < p'™" and so there is a multiple of m in

the desired range. Next we fix r € N to be any integer such that an < tfm < 2an. Again,
this is possible because £m < 2p'™ < an""V/"=3) < an using Fact 3.2.2. So there is
indeed a multiple of {m in the desired range. Finally, we fix k = #£ and so we have that all the
conditions in (3.6.2) are satisfied with our choice of parameters. Before analysing the conclusion
of Lemma 3.6.5, let us point out a few further implications of our choices of parameters. Firstly,

we have that

1/2r 1/2r 1/2r
k—r37 > (%) > (ﬂ) > (pr—l) > p. 3.6.4)
n
Moreover
%S ? o< 21 <. (3.6.5)
prT'm ap’™'n
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where we use the upper bound on £m in the first inequality, the lower bound on km in the second
inequality and the fact that p > Cn™1/(>*=3 > Cn~'/" from Fact 3.2.2 in the last inequality.
Putting (3.6.4) and (3.6.5) together then gives that

KT > pko> €. (3.6.6)

Now we apply Lemma 3.6.5 and let O be the resulting (k, m),.-orchard partitioned into (£, m),-
suborchards Q;, ..., Q,. We will show that O is y-shrinkable by appealing to Lemma 3.6.1.
Firstly note that due to the upper bound of m < n’/® and the fact that k = @(%), by forcing n
to be sufficiently large, we can assume that & is also sufficiently large to apply Lemma 3.6.1.
We therefore just need to check the density condition (3.6.1) of the lemma. So fix some
arbitrary D € O and suborchard P ¢ O \ {D} such that P > ﬁ. By the pigeonhole principle,
there exists ani € [7] such that |P N Q;| > ﬁ. So fix such an i and define P* := P N Q;, noting
that we have that |P*| < k=7 due to (3.6.6). Now we simply need to check that for any choice
of suborchards Oy, ..., O,_, ¢ P\ P*, with |Oy| > k=" fori’ € [r — 3] and |O,_| > yk,
there is a copy of K, in G traversing Rp, R(P*) and the sets R(O;/) for i’ € [r —2]. This
is verified by the conclusion of Lemma 3.6.5, setting D’ = D, Q' = P* and O] = Oy
for i’ € [r — 2], noting that the lower bounds on the sizes of the O], are guaranteed by (3.6.6).

Hence O is indeed y-shrinkable by Lemma 3.6.1 and this concludes the proof. O

3.7 The final absorption

The aim of this section is to prove Proposition 3.1.9. In order to prove this, in Section 3.7.1 we
first define an absorbing structure whose vertex set will play the r6le of A in Proposition 3.1.9.
We then prove that it has the required absorbing property. Next, in Section 3.7.2, we prove that
we can find the absorbing structure in a suitably pseudorandom graph and show that this implies

Proposition 3.1.9.

3.7.1 Defining an absorbing structure

Recall from Section 2.8 the definition of a template and the fact that templates of flexibility ¢
with maximum degree 40 exist for all large enough ¢ (Theorem 2.8.2). We will use a template as
an auxiliary graph to define an absorbing structure which can contribute to a K,-factor in many

ways.

Definition 3.7.1. Let 7 be a template with flexibility ¢ on vertex sets / and J := J; U J,
with |I| = 3t and |J{| = |J2| = 2t. A K,-absorbing structure A of order M with respect
to 7 in G consists of a labelled K, _i-matching in G, E(A) := {S; : i € I} € K,_1(G) and a
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labelled (4¢, M),-orchard J (A) := {D; : j € J} such that the following holds for each i € 1
and j € J:

e S5in V(Dj) =0;
* if ij € E(7) then there is a vertex in the removable set of vertices R; of D; which forms

a K, with S; in G.

We say that A has flexibility t, which is inherited from the template by which A is defined. We
refer to the vertices of the absorbing structure, denoted V(A), which is all vertices which feature

in cliques in E(A) or diamond trees in J (A).

FIGURE 3.6: A Kj3-absorbing structure of order 3 and flexibility 2, whose defining template is the
template 7 displayed in Figure 2.1.

See Figure 3.6 for an example of an absorbing structure. Note that a K, -absorbing structure A

of flexibility ¢ and order M has less than
3t(r—1)+4t(2M - Dr+1) < 8rtM —rt +t < 8rtM (3.7.1)

vertices. The absorbing structure is defined in such a way that it inherits the robust property
that the template has with respect to perfect matchings but has such a property with respect
to K,--factors. The following lemma demonstrates this and reduces Proposition 3.1.9 to finding

an appropriate absorbing structure in G.

Lemma3.7.2. Forany3 <r e Nand0 < {,n < 2% there exists an € > O such that the following

holds for any n-vertex (p, B)-bijumbled graph G with 8 < ep”~'n. Suppose that t, M € N such
that tM > {n and there exists an K,.-absorbing structure A of flexibility t (with respect to some
template T ) and order M in G. Let A .= V(A).

Then there exists some vertex subset B C V(G), such that |B| < np* ~*n and for any (k,m),-
orchard R whose vertices lie in V(G) \ (AU B) with |A| + |[V(R)| € rN, k < ﬁ andm > M,
we have that G[A U V(R)] has a K-factor.



92 Chapter 3.  Clique factors in pseudorandom graphs

Proof. Fix € > 0 small enough to apply Lemma 3.1.4 with ¢ and 7, as defined here and small
enough to apply Corollary 3.2.5 with 7 := r{? Let O = {D; : j € J»} be the suborchard
of J(A) defined by those indices which lie in the flexible set J, of the template 7 which
defines A. Thus O is a (2¢, M),-orchard. Therefore, applying Lemma 3.1.4, we have that there
exists a set B C V(G) with |B| < np* ~*n and for any (k, m),-orchard R as in the statement of
the lemma, @ absorbs R. Indeed, note that in the notation of Lemma 3.1.4, we have that k, m

K

and M are as defined here while K = 27. Hence the condition that k < £- is precisely the

same as our presumption that k < - whilst the condition that kM < mK is guaranteed by

the fact that m > M and k < 57' Unpacking the conclusion of Lemma 3.1.4, we thus have

that for any such R there exists some subfamily P; C O such that |P| = (r — 1)k < §

and G[V(P1) UV(R)] has a K,.-factor. We will show that G[A \ V(P;)] also has a K, -factor

which will complete the proof.

Now note that for any P c O such that |P| = ¢, we have that G[A \ V(P)] has a K-
factor. Indeed let J := {j € J» : D ;i € P} be the indices of diamond trees that feature in
the suborchard P. By the definition of the template 7~, Definition 2.8.1, we know that there
is a perfect matching F ¢ E(7") in 7[V(7) \ J]. Now for ij € F, we can take a K,-factor
on §; UV(D;) in G guaranteed by the fact that S; forms a copy of K, with a removable
vertex of O; (Definition 3.7.1) and the key property of the removable vertices of a K,.-diamond
tree (Observation 3.1.2). As F is a perfect matching in 7[V(7") \ J], we see that by taking
these K,.-factors for each ij € F, we obtain a K,.-factor in G[A \ V(P)] as required.

If we had that |P;| = ¢, this would complete the proof. However we have that P; is actually
much smaller than this. Indeed |P;| < % We will proceed by finding some P, ¢ O \ P
such that G[V(P,)] has a K,-factor and |P;| + |P>| = t. We build P, by the following
greedy process. We initiate with O’ = O \ P; and P> = 0. Then at each time step, as long
as |P1| + |P2| + r < t we partition O into r parts O’ = O U --- U O, such that the sizes of

the parts are as equal as possible. We let R, be the union of the removable vertices of diamond

M>§_"

= el ™.

trees in the orchard O, for x € [r]. We have that each R, has size at least
Therefore, by Corollary 3.2.5 (2), there is a copy of K, traversing the Ry, x € [r]. This gives
some r-tuple of diamond trees Dy, ..., D, such that D, € O, for all x € [r] and there is
a K,-factor in G[V(D;) U --- U V(D,)], given by taking the copy of K, that traverses their
sets of removable vertices and applying Observation 3.1.2. We add Dy, ..., D, to P, and
delete these diamond trees from the orchard O’ which completes this time step. Clearly at all
points in this process there is a K-factor in G[V(7P,)] and we claim that this process terminates
when |P;| + |P2| is exactly equal to 7. Indeed if this is not the case, as we increase the size
of |P,| by exactly r in each step, we have that |P;| + |P2| = ¢ — s for some s € [r — 1]
at the end of the process. Let P3 ¢ O\ (P; U P;) be a set of s K,-diamond trees. Now
as V) := V(R)UV(P1)UV(P,) hosts a K, -factor, we have that r||V;|. Likewise, we know from
above that V, = A\ (U?: V(P;)) hosts a K,-factor and so r||V2|. Due to the fact that r divides
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the size of AUV(R) and AUV (R) =V UV, UV(P3), we can defer that r||V(P3)|. This is
a contradiction as P is a set of s K,.-diamond trees for some 1 < s < r — 1 and the number of

vertices in any diamond tree is 1 mod r. Therefore we can find 7P, as claimed.

Finally, taking P := P U P,, we are then done by taking our K,.-factor in G[A U V(R)] to be
the union of the K,-factor in G[V(R) U V(P;)], the K, -factor in G[V(P,)] and the K, -factor
inG[A\V(P)]. o

3.7.2 Finding an absorbing structure

Lemma 3.7.2 reduces Proposition 3.1.9 to finding an appropriate absorbing structure in G. In

this section we prove that this is possible by proving the following proposition.

Proposition 3.7.3. For any3 < r € Nand 0 < a < 5= there exists an € > 0 such that

"n and any

the following holds for any n-vertex (p,B)-bijumbled graph G with B < &p
vertex subset W C V(G) with [W| > 7. There exists an K,-absorbing structure A in G of

flexibility t = an'’® and order M = n"/® such that V(&) C W.

With Lemma 3.7.2 and Proposition 3.7.3, the proof of Proposition 3.1.9 follows readily as we

now show.

Proof of Proposition 3.1.9. Fix { := ¢~ and & > 0 small enough to apply Lemma 3.7.2 with {
and n as defined here and small enough to apply Proposition 3.7.3 with @373 = {. We can
therefore apply Proposition 3.7.3 to get an absorbing structure A in G with flexibility r = ¢n'/3
and order M = n’/3. We have that A = V(A) c W has size |A| < 87tM = an (see (3.7.1)). The

: . . . 1/8
conclusion then follows from Lemma 3.7.2 noting that k < ?n'/ implies that k < & = £4— =
/8
jg:z due to our upper bound on «. m]

Now in order to prove the existence of an absorbing structure as in Proposition 3.7.3, we will first
fix some template 7~ which will define A. Next, we will set aside a large matching IT ¢ K,_; (G)
of (r — 1)-cliques. These will be candidates for the K,_;-matching Z(A) in our absorbing
structure but we start with a much bigger set IT of size Q(n*/3). Moreover, to each (r — 1)-
clique S € IT we will associate a set of vertices Xg C G such that Xg ¢ Ng(S), |Xs| = Q(n'/?)
and, crucially, the sets { Xg : S € I1} are disjoint. We will find this K,-_;-matching IT with a simple
greedy procedure, appealing to Corollary 3.2.5 (3) to find each S € II (and its corresponding

neighbourhood set Xg), one by one.

After finding I1, we then turn to constructing the (4¢, M)-orchard J (A) for the absorbing
structure A. Again, this will be done greedily, fixing the diamond trees D € J (A) one at a time.

Let us consider fixing some diamond tree D; € J (A). Note that as we fix D;, we immediately
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get restrictions on which S € TI remain as candidates to play the role of certain S; € E(A).
Indeed, if the removable vertices of D; are disjoint from NgG(S) and ij is an edge in the
template 7 defining A, then there is no way S can play the role of S; in Z(A). Therefore as we
fix our diamond trees, we will aim to have that their sets of removable vertices intersect as many

of the X (and hence neighbourhoods Ng (S)) for § € I, as possible.

In order to do this, we will use the following lemma, which shows that we can find diamond trees
whose removable vertices intersect many prescribed sets (in our case this will be the sets Xg).

The proof of this lemma is a simple application of Proposition 3.3.1.

Lemma 3.74. Forany3 <reNand0 < a < 2% there exists an € > 0 such that the following

holds for any n-vertex (p, B)-bijumbled graph G with B < ep”'n.

Suppose %znz/ 3 < ¢ < an?®3 andwe have disjoint vertex subsets W, Uy, . .., Ug suchthat |W| > 7
and |\U;| > n'3 for all i € [£]. Then there exists a diamond tree D = (T, R, %) in G such that
the following conditions hold:

(i) £ C K,—1(G[W]) is a K,-—1-matching in W;

(ii) RC UleUi and R intersects €’ of the sets U; for some £’ > ﬁ;

(iii) The order of D is at most n?/3;

(iv) For all but at most n''* of the indices i € [£], we have that |V(D) N U;| < n'/°.

Proof. We begin by fixing y := # so that % < v < «a and we fix £ small enough to apply

Proposition 3.3.1 with @331 = @’ = % -1/(2r-3)

with C = % (see Fact 3.2.2). Now shrink each set U; so that it has exactly n'/3 vertices and

and small enough to guarantee that p > Cn

define U := UleU,-. Furthermore fix 6 := a’>p”~'n and apply Proposition 3.3.1 with U, W

and z = a’n. So we get disjoint subsets X,Y C U as in the outcome of Proposition 3.3.1.

Now firstly note that as |X| + |Y| = z = a’n, |U| = ¢n'® = yn = 4rz and each of the U;
have equal size, we must have that X U Y intersects at least ﬁ of the sets U;. We will choose
our D = (T, R,X) so that R intersects all the sets U; that X U Y intersects, thus guaranteeing
condition (ii). Indeed, if we let Y’ C Y be the minimal subset of Y such that there exists
noi € [€] withY NU; # 0 and Y’ N U; = 0, Proposition 3.3.1 gives the existence of a diamond
tree D = (T,R,X)sothat R=XUY  and ¥ C K,_1(G[W]) and so conditions (i) and (ii) are

satisfied.
In order to establish condition (iii), note that |[Y'| < £ < %/3 and if | X| > 1 then

2z 2 2n(r—1)/(2r—3) n2/3
B a/pr—l a’'Ccr-1 2
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due to our definition of C and the fact that {;_13 < % for all » > 3. Finally, condition (iv) is a
simple consequence of (iii). Indeed, if (iv) were not true, then as the U; are pairwise disjoint, we

would have that D has order greater than n'/2 - n'/% > n?/3  a contradiction. O

Let us return to sketching the proof of Proposition 3.7.3, considering now that we can use
Lemma 3.7.4 to find diamond trees D € J(A). As discussed above, the key property of
diamond trees generated by Lemma 3.7.4 is (ii), allowing us to find diamond trees that intersect
many of sets {Xs : S € IT} which we begin the proof with. The property (iv) will also be useful
as it shows that in the process of building J (A) one by one, we do not destroy many of the

sets X and most of them remain large and can be used by other D € J (A).

One potentially troublesome consequence of Lemma 3.7.4 is that the diamond trees it finds
are far too small (iii). Indeed the diamond trees in our orchard J (A) are supposed to be of
order M = n’/%. It turns out that this is not such a big hurdle as we can find a large diamond
tree disjoint from all the Xg and connect it to the diamond tree C output by Lemma 3.7.4. In
more detail, we can apply Proposition 3.3.1 to create a large (linear) pool Y of vertices that
can be removable vertices of some diamond tree which will be disjoint from all the vertices in
the sets Xs. We also consider the large (linear) pool of vertices Z that lie in some Xg \ V(C)
with S € IT such that the removable vertices of C intersect Xg. It is not hard to show (see for
example Corollary 3.2.5 (3)) that there is a copy of K, with one degree r — 1 vertex in Y and the
other in Xg+ C Z for some S* € I1. By also taking §* into 9 and choosing an appropriate Y’ C Y
to apply the key property of Proposition 3.3.1, we can obtain a diamond tree D of the correct

size that contains the diamond tree C output by Lemma 3.7.4.

More troublesome is the fact that the condition (ii) which gives that the removable vertices of C
intersect many of the desired sets Xg is, in fact, not strong enough. Indeed, consider some
fixed i € I for which we want to find a copy S; of K,_| to lie in E(A). If j, j* € Ng(i) and the
sets {Xs : S €I, Rp, N X5 # 0} and {X5 : S € ILRp, NXs # 0} (here, as usual, we use R
to denote the removable vertices of 9) are disjoint, then already there are no candidates for ;
in I1. To fix this, we actually need that when we choose a diamond tree D € J (A), we want Ry
to intersect almost all of the sets {Xs : § € IT}. We achieve this by iterating Lemma 3.7.4,
creating constantly many disjoint diamond trees C that together hit almost all of the Xg with
their removable vertices. We then connect all of these diamond trees C with a large diamond
tree disjoint from the sets Xg to obtain the desired diamond tree D € J (A). This connecting
process is similar (although slightly more involved) to the connecting process outlined in the
previous paragraph. We now give the full details for the proof of Proposition 3.7.3, concluding

this section and chapter.

Proof of Proposition 3.7.3. We begin by fixing & > 0 small enough to apply Corollary 3.2.5

a2

16 and to apply Proposition 3.3.1 and Lemma 3.7.4 each with « as in the statement.

with 7 :=
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We also make sure that € > 0 is small enough to force n to be sufficiently large in what
follows and small enough to guarantee that p > C’n~"/ (=3 for ¢’ := % using Fact 3.2.2. We
further fix some template 7~ with vertex sets / and J = J; U J, of flexibility # and maximum
degree 40 which we know exists for n (and hence ¢) sufficiently large due to Montgomery [136]
(see Theorem 2.8.2).

We will find an absorbing structure with respect to 7~ and so must prove the existence of
a K,_j-matching E(A) = {S; : i € I} C K,_1(G[W]) of 3¢ copies of K,_;, and a (4t, M)-
orchard J = J(A) = {D; : j € J} such that the conditions of Definition 3.7.1 are satisfied.
We will do this in three stages. In Claim 3.7.5, we fix some large matching I1 C K,_;(G[W])
of (r — 1)-cliques which will be candidates for the (r — 1)-cliques which will feature in E(A).
We will guarantee that the cliques in I1 are contained in many copies of K, which will help as we
proceed to build our absorbing structure. In Claim 3.7.6, we will fix the K, -diamond trees which
will form our orchard J for our K,-absorbing structure. We will carefully control how these
diamond trees intersect the cliques in our candidate set IT and their neighbourhoods. Finally, we

will show that we can find a suitable Z(A) c I so that we obtain the desired absorbing structure.

Claim 3.7.5. There exists a matching I1 = {S1,...,S¢} € K_1(G[W]) of € := an®? copies
of K,_1 and sets X;, ¢ W\ V(D) for each h € [{], such that the X}, are pairwise disjoint, each
has size | X,| = 2n'3 and for all h € [£] we have that X;, € N (Sp; W).

Proof of Claim: We can do this by way of a simple greedy process choosing such an (r — 1)-
clique S, and set X, in order for 2 = 1,...,£. When choosing S, and Xj,, we look at the set of

vertices V, € W which have not been used in previous choices of S, or X;,. We have that

1
Vil > W] = | Upren (Xp U Sp)| > g— -D(r-1 +2n1/3) > (E —2a/)n >

S

and an application of Corollary 3.2.5 (3) with Wy = W| = W, =V}, gives the desired S, and X},
in Vj, using that

T2pr—ln > TZCInl—(r—l)/(Zr—3) > 2]’11/3,
due to Fact 3.2.2. [ ]

Next we turn to fixing our (47, M)-orchard 7.

Claim 3.7.6. Let Sy, and Xy, for h = 1,...,€ be as in Claim 3.7.5. Then there exists a (4t, M)-
orchard J = {D,..., D4} such that V(J) C W and the following properties hold for
each Z)j = (Tj,Rj,Zj) with j € [4¢]:

1. The set of removable vertices R intersects at least (1 — a){ of the sets X, with h € [£];

2
2. V(D;) intersects at most C := l;(g)fé(ﬂ) of the Sy, with h € [(].
4r-1
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Before proving the claim, let us see how it implies the proposition. Indeed, taking the (4¢, M),
orchard J from Claim 3.7.6 as J (A), we just need to choose a K,_j-matching Z2(A) = {S; : i €
I} sothatS;NV(J) = 0 foralli € I and wheneverij € E(7"), we have that there is a vertex in R}
which forms a copy of K, with S;. We do this greedily, showing that for eachi =1,2,...,3¢in
order, there is a suitable choice for S; in I1. We initiate by fixing L C [£] to be the indices & € [{]
such that S, N V(J) = 0. By condition (2) in Claim 3.7.6, for large n we have that

IL| > €-4Ct > (1 - a)t,

at the beginning of this process, recalling that £ = an?3 and r = an'/8. Now fori = 1,...,3r,
we find an index h = h(i) € L such that S;, forms a copy of K, with a vertex in R; for all j
such thatij € E(7). We fix S; = S, and delete / from L. If this process succeeds in finding a
suitable 4 = h(i) for each i € I then the resulting Z(A) = {S; : i € I} along with J form the

desired K,-absorbing structure.

It remains to check that we are successful at each step. So consider step i* € [3¢]. We have
that |L| > (1—a)f—(i*—1) = (1 -2a){ at the beginning of the step, using here that n (and hence
{) is sufficiently large in the second inequality here. Now for each j € J which is a neighbour
of i* in the template 7, we have by Claim 3.7.6 (1) that there are at most a indices h € [{]
such that no vertex of R; forms a K, with §;, in G. Indeed for almost all choices of /1, we have
that R; N X, # 0 and X;, C NG (Sp). Given that 7~ has maximum degree 40, we have that this
gives at most 40a¢ indices & € L that would not be a good choice for 4(i*). Therefore there
are at least (1 — 42a)¢ indices h € L which can be chosen as A(i*) and we simply choose one

arbitrarily.

This shows that the algorithm is successful in generating the desired absorbing structure and so

it only remains to prove Claim 3.7.6, which we do now.

Proof of Claim 3.7.6: We will find the diamond trees D;, j = 1,...,4t one by one so that they

are vertex-disjoint and satisfy the two conditions in the statement of the claim as well as the

further following condition:
3. V(D) intersects less than Cn'/? of the X, with h € [£] in more than 2Cn'/® vertices.

We will initiate the process with IL := [£] and U}, = X, for all & € [£]. These sets Uj, will keep
track of vertices in X}, that we are still allowed to use, that is, those vertices which have not been
used in previously chosen diamond trees. Furthermore, the set I. c [£] will keep track of all
indices which are alive. When we choose a D; for some j € [4¢], we kill (and remove from IL)
all the indices h € [£] such that V(D) intersects X; in more than 2C n'/6 vertices. We also

kill any index & such that V(D)) intersects S;. Due to our conditions (2) and (3), we have that
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throughout the process,
L > €-4nC+Cn') 2 (1- %) i

2

for n large recalling that £ = an?3 and t = an'/8. Moreover, due to condition (3), at any point

in the process, for all alive indices 4 in L, the size of U, C X}, is at least

Unl > 1Xnl = > V(D) N Xyl =203 = 8tCn'/ > nl'/3,
J

J

for n sufficiently large. We remark that it is crucial in the previous two calculations that ¢ = n'/8
and so when choosing our diamond trees, we do not kill too many indices or make too many of
the sets X}, too small to be used by subsequent diamond trees. In fact any ¢ polynomially smaller

/6

than n!/¢ would suffice for this.

So let us suppose that we are at step j* € [4¢] where we look to find D+ and we have some fixed
set I of alive indices and subsets U, C X}, for h € IL.. We run a sub-algorithm that finds D
in two phases. We begin by setting K = IL. and C = (. The first phase of the sub-algorithm
works by finding at most C small order diamond trees whose removable vertices intersect many
of the Uy, for h € IL. The family C will collect these small order diamond trees and the set K
will keep track of the indices /4 in IL for which we have not yet intersected Uy,. In the second
phase of the algorithm, we will form D ;- by joining together the diamond trees in C so that they
form one diamond tree. By guaranteeing that our diamond trees in C have removable vertices
that intersect most of the sets Uy, we will guarantee condition (1) of the claim. Before starting,

we also initiate by setting W’ C W to be
W' =W\ (Unefe)(Sh U Xn) Uj<j» V(D)) .

In words, W’ is the subset of vertices of W that has not been used in any of the structures that we

have found so far. Finally we initiate a counter by setting s = 1.

At step s, we apply Lemma 3.7.4 on the sets W’ and {Uy, : h € K}. We thus find a K-
diamond tree Cs; = (T, R, X) which we add to C, which has the following properties guaranteed
by Lemma 3.7.4:

(1) X c K,—1(G[W’]) and we delete V(%) from W’;

(il) R C UperUp and defining Ky ¢ K to be Ky := {h' : RN Uy # 0}, we have
that |IK| > %. We delete K from IK;

(iii) The order of C; is at most n2/3;

(iv) Thereisaset J; c K, c K c [£] of at most n'/? indices, such that for all & € [£] \ J; we
have that |V (Cs) N Uy| < n'/°.
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Finding such a Cy concludes this step s. If |K| < “—f we terminate this phase and move on to

the next phase. If | K| > "2‘), we move to step s + 1.

We must check that the conditions for Lemma 3.7.4 are satisfied throughout this phase in order
to find the required diamond trees Cs at each step. Indeed this follows because

@ oy _ @ 2/3

7n/ =§fs|1K|sf=cm/
throughout and we have that |Uy,| > n'/? for all & € K as K c I is a subset of alive indices.
Finally we have |[W’| > 7 throughout this process. Indeed, note that due to condition (ii) and the
fact that we only continue until |K| < “—[ we have that the process runs for a maximum of C
steps, recalling the definition of C from condition (2) of the claim. That is, we have that |C| < C

throughout and so

W= W= " Skl +1XaD) = D\ V(D)1= ) V(C)

hell] j<j* ceC

—¢-3n'3 —8trm — cn*?

v

n

2
1

(— -4+ 8r)a)

\%

(3.7.2)

AIS

due to our upper bound on a, for n sufficiently large. This verifies that we find Cs at every step s

a/L’

of this process and so we finish this phase with |K| < and some family C = {Cy,...,C.}

of ¢ < C vertex-disjoint K,-diamond trees.

Now we describe how we generate O ;+ which will have all the diamond trees C; € C as sub-
diamond trees. We refer the reader to Figure 3.7 to keep on track of the many components that
contribute to our D ;+. One thing to note is that the sum of the orders of the diamond trees in C is
far too small for us to just build O, from the diamond trees in C. Indeed the sum of the orders
is O(n?/3) and we want D j+ to have order M = n’/3. Therefore we will have to find the majority
of the K,-diamond tree D« elsewhere. In order to prepare for this, we first split W’ arbitrarily
into Uy, Wy and Z; of roughly equal size and note that due to our lower bound (3.7.2) on |[W’|, we
have that each of these sets has size at least 1¢. Next we fix 6 := a*p"~'n and z = &*n and apply
Proposition 3.3.1 with respect to the sets Uy and Wy to get disjoint sets X,Y C Uy as detailed
there. Note that [X| < 2n*/3. Indeed if |X| > 1, then we have that |X| < % < 2p'™" < 2x%/3
due to Fact 3.2.2.

Now for 1 < s < ¢, define Z; := Uper,\1, (Un \ V(Cs)). In words, Z is the union of the sets Uy,
which C; intersects, after removing the sets Uy which Cs intersects in too many vertices and

then removing the vertices of C;. Now we have that for each s € [¢],

atn'/3

2
1Z] = (K| = [T (0" = n'/0) > — 206 > ‘1’—6” > Tn,
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FIGURE 3.7: An example of D+ and its components. In this case, we have ¢ =2, Ay = 1 and hy = h.

for n large, as the Uy are pairwise disjoint. Note also that as the K are pairwise disjoint,
the Z, are also pairwise disjoint for s € [c¢]. Now for 1 < s < ¢, apply Corollary 3.2.5 (3) to
find an (r — 1)-clique S; C K,_1(G[Zp]) such that there is a vertex z; € Z; N Ng(S;) and a
vertex xs € (X UY) N NG (S%). We delete the S from Zy and move to the next index s + 1 or

finish if s = c.

Now choose some Y’ C Y such thatx;, € X UY' for all s € [c] and

V/|+IX|+ > (IRg,|+1) =M.

s€lc]

This is easily done as |X| + |Y| = @?n is linear and |X|, |R¢, | < 2n*/3 for all s € [c] which is
much smaller than M = n"/8. By Proposition 3.3.1, there is a K,-diamond tree D = (T", R, i)
withR=XUY and ¥ c K,_(G[Wp]) a K, _1-matching in Wy € W’. Our diamond tree D ;- is
then obtained by connecting O and all the C; € C. In more detail, for each s € [c], there exists

some /i € K, such that z; € Uy, C X),,. We define
Rj = RUscle] (R, U{zs})  and  Zj = EUgere] (Be, U{SiHU{Sh, D),

where X¢ is the set of interior (r — 1)-cliques of Cs, we have that S, € K,_1(G[Z]) is
the (r — 1)-clique which forms a clique with both z; and x; defined above and Sy, is the (r — 1)-
clique corresponding to the set Xj_ (which contains z5) in Claim 3.7.5. We claim that there
exists a diamond tree D+ of order M which has R ;- as a set of removable vertices and X« as
a set of interior (r — 1)-cliques. Indeed we can form the defining auxiliary tree 7+ by starting

with the forest of the disjoint union of 7 and the T¢, for s € [c], where T¢, denotes the defining
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tree for the K,-diamond tree C;. For each s € [c], we then add a path of length two (with two
edges) between some vertex in V(T¢,) and V(T). The edges of this path correspond exactly to
the internal (r — 1)-cliques Sy, and S} and thus the vertices of this path correspond to x;, z5 and

some vertex in Rg, N Uy, for each s € [c].

This thus defines D+ and so we update all the Uj, to be Up, \ V(D;+) for h € [£] and kill any
indices & € IL such that either V(D) intersects Sy, or | X, NV (D;+)| > 2Cn'/®. We now need to
check that the conditions (1), (2) and (3) hold for O :. To see (1), note that R ;- contains all the R¢,
for s € [c] and so intersects X}, for all & € Uge(1K. Moreover taking KK as defined at the end of
finding the Cy, we have that [KK U (Uge[¢Ky)| > (1-%)¢and K| < £ and so this confirms (1).
To see (2), note that the only times we used vertices of the S, with & € [£] to construct D+ was
when we added the S, for s € [c] to the set of interior cliques. Thus we intersected exactly ¢ < C
of these with V(D,+). Finally we have that (3) for D;: is implied by the conditions (iv) when
we found the C,. Indeed, we have that R N (Upe[r1Xn) = Usele] (R, U {zs}) and so for any

index A that does not lie in Ugc[c1Js (which has size at most C n'/2), we have that

V(D) N Xp| < Z [(V(Cy) U {zs}) N Xpl+ < C(n'/® +1) < 2Cn'/S.

s€lc]

This concludes the process for finding 9« and doing this for all j* € [4¢] gives the desired

claim and hence the proposition. ] O






Chapter 4

Robustness for triangle factors

In this chapter, we prove Theorem II, which we restate below for convenience, showing that n-
vertex graphs G with n € 3N and minimum degree at least 2?" are robust with respect to containing

triangle factors, in that a random sparsification of such a graph G contains a triangle factor whp.

Theorem II. (Restated) There is a constant C > 0 such that for all n € 3N and p >
C(logn)'3n=23 the following holds. If G is an n-vertex graph with §(G) > %" then whp G,

has a triangle factor.

The chapter is organised as follows. In Section 4.1 we explain that the main instrument for
proving Theorem II is a result on triangle factors in random sparsifications of super-regular
tripartite graphs, Theorem II*. We then give an overview of the proof of this main technical
theorem, state the main propositions and lemmas needed for this and show how these imply
Theorem II*. More precisely, we shall formulate one proposition, Proposition 4.1.1, allowing us
to count certain partial triangle factors, one proposition, Proposition 4.1.2, allowing us to extend
a partial triangle factor by one triangle, and a key lemma, which we call the Local Distribution

Lemma (Lemma 4.1.3).

After this, we provide some results on triangle counts in Section 4.2, which will be useful in
the proofs of our propositions. In Section 4.3, we prove Proposition 4.1.1 and Proposition 4.1.2,
using Lemma 4.1.3 as a black box. In Section 4.4, we then show Lemma 4.1.3. An important

ingredient of this proof is a lemma which we call the Entropy Lemma (Lemma 4.4.4).

This will complete the proof of the main technical theorem, Theorem II*, and it will remain
to deduce Theorem II from Theorem II*. Before embarking on this, we need to build some
more theory. We begin in Section 4.5 by providing a stability statement of a fractional version
of the Hajnal-Szemerédi theorem. Next, in Section 4.6, we derive a sequence of probabilistic
lemmas which imply the existence of K3-matchings in various random sparsification settings. In

Section 4.7, finally, we show how Theorem II* implies Theorem II. The basic approach we use
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is a combination of the regularity method with an analysis of the extremal cases, as is common

in the area.

4.1 The main technical result and its proof overview

The main technical result we reduce Theorem II to is the following partite version with the

minimum degree condition replaced by regularity.

Theorem II* (main technical theorem). For every 0 < d < 1 there exists constants € > 0
and C > 0 such that the following holds for every n € N and p € (0,1) such that p >
C(logn)'Pn=23. If T is an (&, d*)-super-regular tripartite graph with parts of size n then r,

whp contains a triangle factor.

The reduction of Theorem II to this partite version uses the regularity method together with a
stability result for the fractional Hajnal-Szemerédi Theorem developed in Section 4.5 and an

analysis of the extremal cases. We give the full details in Section 4.7.

The main challenge of this chapter is proving Theorem II*, and in this section we will reduce
Theorem II* further to two intermediate propositions. We will then discuss the proof of these
propositions, outlining the remainder of the chapter and some of the key ideas involved. We
encourage the reader to recall the relevant terminology from the Notation Section on embedding

partial factors in tripartite graphs, in particular the definition of ¥’.
The first proposition counts partial triangle factors.

Proposition 4.1.1 (counting partial-factors). For all 0 < n,d < 1 there exists € > 0 and C > 0
such that the following holds for all sufficiently large n € N and for any p > C(logn)'/3n=2/3.

If T is an (&, d)-regular tripartite graph with parts of size n, then whp we have that
P'(Tp)| = (1=n) (pd)* (n1;)?, 4.1.1)

forallt e Nwitht < (1 —n)n.

Here the condition (4.1.1) should be read as I';, having roughly the ‘correct” number of embed-
dings of D,, the graph with  labelled disjoint triangles. Indeed, the term (pd) (n!;)? is the
expected number of embeddings of D, in a random sparsification of the complete tripartite graph
with probability pd, which provides a sensible benchmark for our model I",,. The (1 —7)" factor
is then an error term which we can control. In order to go beyond Proposition 4.1.1 to counting
subgraphs D, with larger ¢, we need different techniques. Our second proposition allows us to

extend partial triangle factors by embedding further triangles one by one.
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Proposition 4.1.2 (extending by one triangle). For all 0 < d < 1 there exists a,n,& > 0
and C > 0 such that for all sufficiently large n € N and for any p > C(logn)'3n=2/3, if T is
an (&, d)-super-regular tripartite graph with parts of size n, then whp the following holds in T,
foreveryt e Nwith (1 -m)n<t<n. If

[P ()] = (1=n)" (pd)™ (n!,)?, (4.1.2)

then
[P > a(pd)’ (n 1) |¥(T))]. 4.1.3)

Again the condition (4.1.2) in Proposition 4.1.2 should be read as I',, having roughly the ‘correct’
number of embeddings of D; and condition (4.1.3) then implies that I';, has roughly the ‘correct’
number of embeddings of D;.;. In contrast to Proposition 4.1.1 we now lose control of the error
term (given by «) but as we will only apply Proposition 4.1.2 for large #, we can make sure the
error term does not accumulate too much. Indeed, recall that our goal is merely to obtain one

triangle factor in the end.

We now show how Theorem II* follows from these two intermediate propositions before outlining
the proofs of these propositions.

Proof of Theorem II*. Given d choose 0 < ¢, % < 1 < a < d and note that by choosing C > 0
sufficiently large, we can assume that n is sufficiently large in what follows, as otherwise the
statement is trivially true. Let us fix " to be an (&, d*)-super-regular tripartite graph with parts
of size n. We can assume that dn? € N. Indeed, if this is not the case, then replace d with the
minimum d’ > d such that d’n> € N and note that, after redefining d (if necessary), we maintain
thatI"is (&, d*)-super-regular. Now letI"” be the (4+/g, d)-super-regular tripartite graph obtained
by applying Lemma 2.2.8 between each of the parts of I'. As I is a spanning subgraph of T it

suffices to find our triangle factor in ™.

Note that by our choice of constants, we have that whp both the conclusion of Proposition 4.1.1
(with 7 replaced by %) and the conclusion of Proposition 4.1.2 hold in I'" simultaneously. We

will now assume they hold and show that this implies
n
W)l 2 (1=02) @ (=) pay (nt)?, (.14

forall (1 —n*)n <t < n. Indeed, for r = (1 — n?) n, (4.1.4) readily follows from (the assumed

conclusion of) Proposition 4.1.1. Assume now (4.1.4) holds for some (1 -n%*)n < t < n.
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Since 1 < «a, we have that

(1 _ 772)” at—(l—nz)n > (1 _ T]z)n a,772" — (1 _ 772)n e—log(l/a)772n
n n
> (1 —772) (1 —log(é)nz) > (1-n)".

It follows from (the assumed conclusion of) Proposition 4.1.2 that (4.1.4) holds for ¢ + 1. In

particular, we have
W) = 9] = (1=72) " (pd)™ (n))? = 1,
p p

completing the proof. O

Thus it remains to prove Propositions 4.1.1 and 4.1.2. Proving Proposition 4.1.1 is relatively
straightforward: It follows from embedding the triangles of D, one by one greedily and counting
in how many ways we can embed each such triangle by using that all large enough vertex sets whp
induce roughly the ‘correct’ number of triangles in I"j,, which we establish in Lemma 4.2.1 using
regularity and Janson’s inequality (Lemma 2.1.3). The details for deriving Proposition 4.1.1 are

provided in Section 4.3.1.

The proof of Proposition 4.1.2 is much more involved and the main challenge of this chapter. In
order to count embeddings of partial triangle factors in ¥**! ("), one naive idea would be to
proceed as follows: We fix any triple u = (uy, us,u3) € V of vertices and count in how many
partial triangle factors from W' (I",,) these are isolated. If this number would be roughly the same
for each triple of vertices then we would be able to bound the size of ¥'*! (I"p) using bounds on
how many triples actually form triangles in I';, to extend a partial triangle factor from ¥/ (I";,)
by one triangle. However, we do not know how to prove that all triples of vertices behave
similarly in this sense. Hence, we need to resort to a more refined strategy, still considering
embeddings which leave certain vertices isolated, but doing so in stages, growing our set of
isolated vertices one vertex at a time. This step by step process is made precise in the following
Local Distribution Lemma, which is a key step of our argument. We will show that this lemma

implies Proposition 4.1.2 in Section 4.3.2.

Lemma 4.1.3 (Local Distribution Lemma). Forall0 < a,d < 1 and K > 0O there existsn,& > 0
and C > 0 such that for all sufficiently large n € N and for any p > C(logn)'3n™283, if T
is an (&, d)-super-regular tripartite graph with parts of size n, t € N such that (1 -n)n <
t <n e [3landu= (u,...,uc—1) €V then the following holds in I, with probability at
least 1 —n K. If

W5 (Cp) 2 (1=m)" (pd)™ ((n = 1) (n)*, (4.1.5)
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then for all but at most an vertices ug € V¢ we have, with v = (u,ur) € V, that

d\*(n-
IlP;(Fp)lz(E) (=) 1wy 4.1.6)

Again, (4.1.5) should be read as I', having roughly the ‘correct’ number (up to the error
term (1 — 7)") of embeddings of D, that avoid using vertices in u, where correct means what
we expect in a random sparsification of the complete tripartite graph with probability pd. The
conclusion of Lemma 4.1.3 then tells us that that for most choices of extending u to v, we have

roughly the correct number of embeddings of D, that avoid using the vertices in v.

For proving Proposition 4.1.2 in Section 4.3.2, we shall use Lemma 4.1.3 with £{ =2 and £ = 3

to prove a lemma, Lemma 4.3.1, which states that if for a vertex w € V! we have
WL (Tp) > (1=n)" (pd)* (n = 1)y (n!)?, 4.1.7)

then
W) > alpd)’ (n— )P, (Tp)l, (4.1.8)

where we recall that ¥/, (G) is the set of embeddings ¢ € W (G) for which ¢ ((1, 1)) = w, that
is, the first triangle is embedded so that its first vertex is w. Indeed, using Lemma 4.1.3, we
can see that if there are many embeddings of D, avoiding w (4.1.7), then for almost all choices
of further vertices w, € V? and w3 € V3, there will be many embeddings of D, avoiding all
3 vertices w, wyp, wi. Intuitively, (4.1.8) then follows due to the fact that we can expect many
of these triangles w, w, w3 to feature in I'), and each triangle that does, gives an embedding
of D,y which maps w to a triangle. We have to be very careful with the dependence of
these different random variables here and the essence of the proof of Lemma 4.3.1 (which is
done in Section 4.3.2) is to work with random variables that are independent from each other.
Now together with Lemma 4.1.3 for £ = 1 and our assumption (4.1.2), using the conclusion of
Lemma 4.3.1 (namely (4.1.8)), Proposition 4.1.2 follows readily as almost all choices of w € V!
satisfy (4.1.7).

We will now sketch some of the ideas involved in proving Lemma 4.1.3. To ease the discussion,
let us fix £ = 1 and hence u = @; the other cases are similar. In this case our assumption (4.1.5)
simply states that I";, has roughly the correct number of embeddings of D; and a simple averaging
argument will find some u = u, for which (4.1.6) holds with v = u. Fix some such vertex u. The

challenge now is to show that (4.1.6) holds for almost all choices of u,.

In order to do this, we fix some typical vertex v € V' \ {u}. We will aim to lower bound
the size of W, (') by comparing it to the size of W, (I';). Let us suppose, momentarily,
that Tr, (') = Tr,,(I',). In such a case, we can easily compare the sizes of W/ (I";,) and W%, (T,,).

Indeed, for every embedding ¢ € W/, (T,,) there are two cases. Firstly, if v is not in a triangle
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in ¢(D,) then ¢ € W, (T',) already. Secondly, if v is in a triangle {v, w2, w3} of ¥(D;),
then Tr, (")) = Tr,(I",) implies that {u, wy, w3} is also a triangle, hence we can switch the
triangle {v, w, w3} with {u, wp, w3} in ¢ to get an embedding ' € W, (I';,). This gives an

injection from W, (I",,) to ¥, (I',,), proving that ¥ (I',,) is also of roughly the ‘correct’ size.

Of course, the situation that Tr, (I',) = Tr, (I',) is wildly unrealistic. Let us loosen this and
suppose instead that
| Tr, (Cp) N'Try ()| = Q(pPn?). (4.1.9)

As we expect every vertex to be in @(p3n?) triangles, (4.1.9) can be interpreted as saying that a
constant fraction of the set of edges that form a triangle with v, also form a triangle with u. We
can only expect this to happen when p is constant and this is also a gross oversimplification of
our setting but serves to demonstrate a key idea of the proof. So for now, we take (4.1.9) to be the
case and note that as above, we can perform a switching, replacing triangles containing v with
triangles containing u to map embeddings in W/, (T',,) to embeddings in ¥ (I",), whenever the
embedding iy € ‘P’u (') has v in a triangle {v, wa, w3} such that {w,, w3} € Tr,(I';). We have,
by (4.1.9), that a constant proportion of the triangles containing v can be switched in this way but
we do not know that this translates to having a constant proportion of the embeddings in LP; (Tp,)
being switchable. It could well be that almost all (or even all) of the embeddings in W% (T";)
map v to a triangle {v, w, w3} such that {u, ws, w3} ¢ K3(I'),). What we need then, is to be
able to discount such a situation and show that each triangle containing v contributes to roughly
the same number of embeddings ¢ € W/ (I",,). Put differently, when we consider a uniformly
random embedding y* € \I’; (I"p), we want that the random variable T, which encodes the
triangle containing v in * (D, ), induces a roughly uniform distribution on the set Tr, (I',). Note
that it is possible that ¢/* leaves v isolated but this is unlikely (as ¢ is large) and so we ignore this

possibility for this discussion.

We can now see how entropy enters the picture as it provides a tool for studying distributions, and
how far they are from being uniform. Let us now consider v as not fixed anymore. Our argument
will take a uniformly random ¢* € W% (",) and consider the random variables T, which describe
the triangle containing each vertex v € V!. Due to the fact that ‘I’; (I",) is roughly the ‘correct’
size, we have that ¢ * has large entropy. Moreover, ¢ is completely described (up to labelling) by
the set {T,, : v € V!} and so the entropy of * can be decomposed as a sum of individual entropy
values /(T;,) of the T, using the chain rule (Lemma 2.3.5) for example. We will be able to use
random properties of I';, (for example that no vertex is in too many triangles) to conclude that
no single 7', has too large entropy. This will thus imply that for almost all vertices v € V!, the
entropy of 7, is large. Therefore, by applying Lemma 2.3.9, we will be able to conclude that for a
typical vertex v € V!, the random variable T, induces a roughly uniform distribution on Tr,, (I" )

as desired. This idea is formalised in what we call the Entropy Lemma (Lemma 4.4.4).
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Our discussion above is premised on (4.1.9). In reality, a typical vertex v will have Tr, (")
completely disjoint from Tr, (I",,) and so the switching argument outlined above cannot possibly
work. However, we can still compare the sizes of W, (I",) and ‘I”v (")) by noting that a constant
proportion of Tr, (I',) and Tr, (I',) are drawn from the same distribution. By this we mean the
following. For a typical v, by using regularity properties, there will be Q(n?) edges F ¢ E(I')
in the joint neighbourhood (with respect to I') of u and v. Consider revealing all edges in I',,
apart from those incident to u or v. After this, F, := F N E(I',) is revealed and whp has
size |Fp| = Q(pn?); each edge e € F, has the potential to land in both Tr, (I',,) and Tr, (I';,),

depending on which random edges incident to # and v appear.

Moreover, without having revealed the random edges incident to u or v yet, we can associate a
weight to the edges e in F),, which encodes the number of embeddings of D;_; in I',, which
avoid u, v and the vertices of e. Now, revealing the edges incident to v, we have that for
every e € Tr, (") N F,, the probability that a uniformly random embedding ¢* € ¥/, (T';,) uses
the triangle {v} U e, is directly proportional to the weight of e in F,,. The Entropy Lemma
(Lemma 4.4.4) discussed above tells us that the random variable T, € Tr, (I';,), encoding the
triangle containing v in a uniformly random ¢* € W’ (T';), has a roughly uniform distribution
in Tr, (I')). From this, we can deduce that the weights of edges in F), are ‘well-behaved’ in that
many of the edges in F, have a sufficiently large weight. This in turn gives that ¥ (") will
be large, as when we reveal the edges incident to u, we can expect that Tr, (I",,) contains many
(i.e. Q(p3n?)) edges of large weight from F »- Bach such edge e contributes many embeddings

in W, (I",) which map u to a triangle with e.

In order for all of this to work, we need our Entropy Lemma (Lemma 4.4.4) to be very strong,
due to the fact that the edges in the F),, defined above contribute only a small fraction of edges
in Tr, (I',). Pushing the strength of the Entropy Lemma is one of the main novelties of the
current work, in comparison to previous arguments for triangle factors in random graphs [6, 96],

and requires a delicate analysis.

Remark: Many of the results in this chapter state that I, whp satisfies some statement of
the form “if A, then B", where A and B are certain graph properties. Indeed, we see
examples of this Propositions 4.1.1 and 4.1.2 and Lemma 4.1.3. In symbols, these res-
ults posit that P[A = B] = 1 — o(1). We remark that this is not equivalent to showing
that P [B|A] = 1 — o(1). Indeed,

P[AN-B] =P[-B|A]P[A],

and so if P[B|A] = 1 — o(1), then we have that P[A = B] = 1 — o(1). That is, the
statement P [A = B] = 1 — o(1) is weaker than the statement P [B|A] = 1 — o(1) and
thus (potentially) easier to prove. As is usual in random graph theory, we will often separate

the randomness in our proofs, showing first that in any subgraph G C I that satisfies some
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set of properties P = {#}, we have that if A occurs then B must occur also. We then show
that G = I', whp satisfies all the properties in P. At other times, we directly upper bound the
probability P [A N —B].

4.2 Counting triangles in I,

The purpose of this section is to prove that certain properties of I';, hold with high probability
when I is a (super-)regular tripartite graph and p is sufficiently large. These properties regard
triangle counts in I',, and their proofs use the properties of regular tuples given in Section 2.2 and
the probabilistic tools outlined in Section 2.1. Our first lemma gives an estimate on the number

of triangles induced on vertex subsets.

Lemma 4.2.1. For all 0 < &’ < d < 1 and L > 0O there exists € > 0 and C > 0 such that
the following holds for all sufficiently large n € N and for any p > C(logn)'3n™23. If T
is an (&,d)-regular tripartite graph with parts V', V2, V3 of size n, then with probability at

least 1 — n~L we have that
|K3(Tp[ X1 U X2 U X3])| = (pd)’ |1 X1 |1 Xo||1X5] + ' p R, 4.2.1)

forall X, C V', X, CV?and X3 C V.

Proof. Choose 0 < ¢, é < &,d,L and fix T and p > C(logn)'n=?/3. We first show (a

stronger version of) the lower bound holds using Janson’s inequality.
Claim 4.2.2. With probability at least 1 — e™", we have

8/p3n3

8 ’

|K3(Tp [X1 U X2 U X3])| = (pd)’ | X:]|X2]| X5] — (4.2.2)

forall X, V', X, C V?and X3 C V.

Proof of Claim: Fix X; C V!, X, C VZand X3 C V3 and let Y := K3(I'[X; U X5 U X3]). We may

assume that 3
’

En
1X111X2]1X5] > e 2 en’, (4.2.3)

with the first inequality holding as otherwise (4.2.2) is trivially true and the second inequality
holding by our choice of €. In particular, we have | X;| > en for alli € [3] and thus Lemma 2.2.7

implies |Y| > d3|X1||X2||X3] — 10en>. Consider now the random variable

X =K (XU X uXa]) = ) o,
TeYy
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where for each triangle 7 € Y, Ir is the indicator random variable for the event that 7" is present
inT",. Let
A=E[X] = p Y] 2 (pd)’|Xi||Xa]|X3] ~ 10ep*n’, (4.2.4)

which in combination with (4.2.3) implies 1 > ¢ p3n3. Furthermore, we have

A= > E[IrIp] < p°-|Y|-3n+p° Y] = AGBnp* + 1), 4.2.5)
T, T’eY: TNT'#0

where the inequality follows from the fact that there are at most |Y| - 3n pairs of triangles inter-
secting in exactly one edge, no pairs intersecting in exactly two edges and |Y| pairs intersecting

in three edges. Hence Janson’s inequality (Lemma 2.1.3) implies

222 3,330
P[X < (1-¢)d] <exp (—82—5) < exp (—%)

2A
&3 p3n’ & p3n3
< - + -
< exp( T2np? ) exp( 1 )
< exp (—4n)

for all large enough n. Here, we used that 1 > gp3n3 (see (4.2.4)) in the second inequality,

and (4.2.5) in the third (more precisely, we used that (4.2.5) implies that A < 6Anp? or A < 2)).

By (4.2.4), we have (1 - €)1 > (pd)’|Xi[|Xal1Xs] — 11ep®n® > (pd) (X1 [|Xal|Xs| = (£) pn’.
Hence, taking a union bound over all choices of X| C VI, X, € V2, X3 C V3, we deduce
that, (4.2.2) holds with probability at least 1 — 23 - ¢™" > 1 — ¢ forall X; C V', X, C
V2, X5 C V3. ]

We now show that the upper bound holds in the case when X; = V' for all i € [3].

Claim 4.2.3. With probability at least 1 — n=2L we have

7 ,3.,3
IK3(Tp)| < (pd)’n® + =5

Proof of Claim: Let ¥ = K3(I') and let X = |K3(I'p)| = X7y It with Ir being the indicator
random variable for the event that a triangle T appears in I';,, as above. By Lemma 2.2.7, we
have |Y| = dn® + 10en>. Tt follows that

A:=E[X] = (pd)’n® + 10ep*n’. (4.2.6)

and Ez = 1. Hence E’ = max{l,np?} < A'/?and E = A. Let u = 1'/1% and let ¢ = ¢(3) be the

Using notations from the Kim—Vu inequality (Lemma 2.1.4), we have E; < np?, E;» = p
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constant from Lemma 2.1.4. Then, for large enough n,
c(EE")' 213 < 3% 231 < g
Hence, we have
P[X > (1+¢&)A] < 10cn*e™ < e < 2

for all large enough n. Here, the middle inequality follows from (4.2.6) which implies 1 > nlog n,
due to our choice of £ and C. This finishes the proof of the claim as (1+&) < (pd)*n’+ (%) p*n’

by (4.2.6) and our choice of . [ |

We now conclude the proof of the lemma. With probability at least 1 — n~~ both claims above
hold simultaneously. Suppose now both claims hold and fix X; C V. X, ¢ V3, X5 C V3.
Let U = ({X1, VI \ X1} x {X2, V2 \ X2} X {X3, V3 \ X3}) \ {(X1, X2, X3)} and observe that

IK3(T'p [ X1 U X2 U X3])| = |K3(I)p)| = Z |K3(T", [U1 U U, U Us))|
(U1, U2, U3)eU

< (pd)*1X1|1Xal|X5] + &'pPr.

Here we used Claim 4.2.3 to bound |K3(I",)| and (4.2.2) to bound each |K3(I",, [U; U U, U U3])|.

This completes the proof. O

As acorollary, we can conclude that we have the expected count of triangles at almost all vertices.

Corollary 4.24. Forall 0 < &’ < d < 1 and L > O there exists € > 0 and C > 0 such that
the following holds for all sufficiently large n € N and for any p > C(logn)'n=2/3. If T is
an (&, d)-regular tripartite graph with parts of size n, then with probability at least 1 — n™t we
have that

[Tr, (Tp)| = (1 £ &) (pd)’n?,

for all but at most 'n vertices v € V(I).
Proof. Choose 0 < ¢, L < & < ¢’,d, % and let G C I" be any graph with
K3(G[X1 U X2 U Xs])| = (pd)’|Xil| Xal | X5] = p°r, (4.2.7)

forall X; C V!, X, C V? and X3 C V3. Since (by Lemma 4.2.1 and our choice of constants) this
is satisfied by I';, with probability 1 — n~L, it suffices to show that G satisfies the conclusion of
Corollary 4.2.4. Fori € [3], let X; be the set of vertices v € V' with |Tr, (G)| < (1-¢&")(pd)*n?,
and let Y; be the set of vertices v € V! with |Tr, (G)| > (1+&’)(pd)>n?. We claim that | X | < %.
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Indeed, assuming the contrary, we have

g’Z(pd)3n3

0 < (pd’|X,||VHV?| - épn’,

IK3(G[ X1 VUV < (pd)* | X3 |V2 IV -
by our choice of €. This contradicts (4.2.7). Similarly, we can bound the sizes of X, and X3,

and Y1, ¥» and Y3, completing the proof. O

Sometimes, we will need an upper bound on |Tr, (I",,)| which works for all v € V(I'). For this
we simply upper bound this quantity by the number of triangles in G (3n, p) containing a specific

vertex using a result of Spencer [162] (see also [159]).

Lemma 4.2.5. For all L > 0 there exists C > 0 such that the following holds for all sufficiently
large n € N and for any p > C(logn)'3n=2/3. If T is a tripartite graph with parts of size n,
then with probability at least 1 — n™" we have that

ITr, (Tp)| < 10p°n7,
for all vertices v € V(I').

In the remainder of this section we prove some more technical properties of I, which will be
useful in the proofs of Proposition 4.1.2 and Lemma 4.1.3. The ultimate goal will be to lower
bound the number of triangles at a fixed vertex but we will need this lower bound to hold in a
robust way, allowing us to apply the count with respect to various prescribed sets of edges and

vertices which we either want to avoid or want to be included in the triangles.

Our next lemma follows simply from well-known concentration bounds but we wish to highlight
the slightly subtle (in-)dependencies of the random variables involved. Given a vertex u of our
graph I', by saying that a random subset of vertices/edges is determined by (I';),, we mean that
the set, as a random variable, is completely determined by the random status of edges in [';. In

other words, the random set is independent of the status of edges adjacent to u in I'),.

Lemma 4.2.6. Forany 0 < a < 1and L > 0, there exists a C > 0 such that the following holds

-2/3

for all sufficiently large n € N and for any p > C(logn)'3n=2/3. Suppose T is a tripartite graph

with parts of size n and u € V(I'). Then we have the following.

1. Suppose X C Nr(u) is a random subset of vertices determined by (I'y),. Then with

probability at least 1 — ™" we have that the following statement holds in T .
If |X| > an then |X N Nr, (u)| = <5=.

2. Suppose F C Tr,(I') is a random subset of edges determined by (I'y),. Then with

probability at least 1 — n=1 we have that the following statement holds in Ip.
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3.2
If|F| = aan then |F NTr, (I'p)| > (lpzn '

Proof. Choose é < % a. Let G; C T', be the graph on V(I") consisting of all edges adjacent

tou and G, = (I'z), =T, \ Gy. For all w € Nr(u), let I,, be the indicator random variable for
the event that the edge uw appears. By assumption, our random sets X and F depend only on G,

and clearly the random variables /,, depend only on G .

Part 1 now follows from Chernoff’s inequality (Theorem 2.1.1). Indeed we have that
P[1X N, ()] < % and |X| > cm] <P [|XONrp(u)| < ? | IX| > a/n]

and it suffices to show that P [|X N N, (u)| < “5%]| < n~L holds for any instance of G, and X

with |X| > an. Fixing such an instance and letting Y = [X N Nr, (u)| = X, cx Iw, we have

that Y is a sum of independent random variables with expectation 1 = E [Y] = p|X| and so
]P[Y < %] <Py < % < U8 < gmapn/8 < oL

b

for sufficiently large n, as required.

For part 2, we start by noting that A(G,) < 4pn with probability at least 1 — n=>L by another
simple application of Chernoff’s bound (Theorem 2.1.1) and a union bound over all vertices. We

have that

ap’n®

PFNTr,(Tp)| < and |F| > apn®| <

ap’n?

P||F NTr,(Tp)| < ,|F| > apn® and A(G,) < 4pn| +P[A(G,) > 4pn] <

3.2
aprn |F| > apn® and A(G») < 4pn 2L

+n

P||F N Tr, (T,)| <

Thus it suffices to prove that P [lF NTr, (Tp)| < <2 23 "2] < n2L for any instance of G such
that A(G») < 4pn and |F| > apn®. So let us fix such an instance of G, and F C Tr, (T).
Let ¥ = {{uwi,uwz} : wiwy € F} and for A = {uw,uw,} € F, let I = I, 1, be the
indicator random variable for the event that both edges of A appear in G;. We will now use

Janson’s inequality to show that many pairs of edges in ¥ are present in G . Let

Z=|FNTr,(Tp)| = Z Ia
AEF

be the random variable counting the number of triangles containing # and an edge in F. Then

A:=E[Z] = p*|F| = ap®n* > C*logn. (4.2.8)
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Furthermore, we have that

A= > E[Iala] < 8p*|Fln+ p*|F] = A(1 +8p°n). (4.2.9)
(A,A)€F2: ANA'#0

Here, the inequality follows from the fact that there are at most || -2 - A(G,) = |F| - 8pn
pairs (A, A’) € F72 intersecting in exactly one edge, and || pairs intersecting in two edges.

Hence Janson’s inequality (Lemma 2.1.3) implies

P[Z</—l]<ex —/1—2 < ex 4
=2 =P8R ) = TPTR(1+ 8p2n)

<ex —i + ex —L
=P\ T16) TP T 1282

_ a3 _
<nCrem” <p?t

>

for all large enough n. Here, we used (4.2.9) in the second inequality, the fact that 1 + 8pn® < 2
or 1 +8pn? < 16pn? in the third, (4.2.8) in the fourth and our choice of C in the final inequality.
This completes the proof. O

Finally, we show that for most pairs of vertices # and v in the same part, there are many edges
appearing in I", that lie in their common neighbourhood (with respect to I'). We need this to hold
even when we forbid certain vertices from being used. This leads to the following statement,
for which we direct the reader to the Notation Section for the relevant definitions of e.g. V
and Tr, (G).

Lemma 4.2.7. Forall 0 < d < 1 there exists € > 0 and C > 0 such that the following holds for
all sufficiently large n € N and for any p > C(logn)'*n=23. If T is an (&, d)-super-regular
tripartite graph with parts V', V2, V3 of sizen, € € [3], u = (u1, ... ,ue_1) €V andu € V¢ then
with probability at least 1 — e we have that

dd pn?
ITr (Ta) N Try (T) N E(T,)] > Z ,

for all but at most 2&n vertices v € V¢.

Proof. Choose 0 < s,% < dand fixT, € € [3],u = (u1,...,ur—1) € Vand u € V¢ as in
the statement of the lemma.oof We first use regularity to show that there are many edges in the

deterministic graph.

Claim. We have
d’n?
|Tr, ([a) N'Try, (Fa)| 2 5

for all but at most 2en vertices v € V°.
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Proof of Claim: We will prove the claim in the case that £ = 3, the other cases are identical.
Fori € [2], let X; = Nr(u; V%) and for v € V3 \ {u}, let ¥;(v) = Np(u,v; Vi) € X;. Since T
is (&, d)-super-regular, we have |X;| = (d—2&)nforbothi € [2] (we need the factor of 2 in front
of the ¢ here to take account of the fact that we are potentially missing a vertex in u). Fori € [2],
let R; c V3 be the set of vertices v € V3 for which |Y;(v)| < (d —2¢)?>n and let R = R; U R.
It follows from the e-regularity of (V,V?) and Lemma 2.2.3, that |R;| < &n for both i € [2]
and hence |R| < 2en. Furthermore, for every v € V2 \ R, it follows from the e-regularity of the
pair (V2,V3) that |E(I') n (Y1 (v) UY>(v))| > (d — 2¢)°n*. This completes the proof by our

choice of &. []

Observe now that each edge in E(I') N Nr, (u, v) = Tr, (I'z) N'Try, (Iz) is present independently
in I, and hence it follows from Chernoff’s inequality (Theorem 2.1.1) that for all vertices v

satisfying the conclusion of the claim, we have that

dS 2 dS 2
P |[Tr, (Ta) N Tr, () N E(T,)] < Z” ] < exp (— 1}? )s e 2,

for sufficiently large n. This completes the proof after a union bound over choices of v € V¢. O

4.3 Embedding (partial) triangle factors

In this section we will prove Proposition 4.1.1 and reduce Proposition 4.1.2 to Lemma 4.1.3. As
we have already shown in Section 4.1 that Theorem II* follows from Propositions 4.1.1 and 4.1.2,

it will only remain to prove Lemma 4.1.3 after this section, in order to establish Theorem IT*.

4.3.1 Counting almost triangle factors

Here we prove Proposition 4.1.1.

Proof of Proposition 4.1.1. Choose &, % < &’ < n,d and fix some I" and p as in the statement

of the proposition. By Lemma 4.2.1, we have whp that
K3 (Tp [X1 U X2 U Xa])| = (pd)*| X1 X2l |X5] £ &'pPn, 4.3.1)

forall X; € V!, X, € V?and X3 C V3. We will show by induction on ¢ thatif T",, satisfies (4.3.1),
then it satisfies
[W(Tp)| > (1 =)' (pd)* (ny)*, (4.3.2)

for all integers t < (1 — n)n, as claimed. Firstly, note that (4.3.2) is trivial for r = 0, recalling

that by definition n!g = 1. Suppose now (4.3.2) holds for some integer 0 < ¢ < (1 — n)n. Fix
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some § € W/(I',) and let X; C V', i € [3], be the sets of vertices which are not in ¢ (D,). Note
that | X;| = n —t for all i € [3]. Now the number of triangles which extend ¢ to an embedding
in ‘P”l(FP) is precisely |K3(I',, [ X1 U X» U X3])| and by (4.3.1), we have

IK3(Tp [ X1 U X2 U X3])| 2 (pd)| X111 X2] | X5] — &' p*n®

e’ 3 3
NP (pd)’(n—1)
> (1-n)(pd)*(n-1)°,

> (pd)*(n—1)> -

by our choice of constants. It follows from the induction hypothesis that

[P 2 W) (1 =) (pd)* (n = 1)

> (1=n)*(pd)* ™D (nl11)?,

finishing the proof. O

4.3.2 Extending almost triangle factors

In this subsection, we will prove Proposition 4.1.2 using the Local Distribution Lemma (see
Lemma 4.1.3) as a black box for now. We first reduce Proposition 4.1.2 to the following
lemma, which concentrates on adding a triangle at a fixed vertex. Recall that given G C T, a
vertex v € V! and some ¢ € N, we denote by ¥, (G) C ¥ (G) the set of embeddings ¥ € ¥ (G)
for which ¢ ((1,1)) = v.

Lemma 4.3.1 (adding a triangle at a fixed vertex). For all 0 < d < 1 there exists a,n,& > 0
and C > 0 such that for all sufficiently large n € N and for any p > C(logn)'3n=2/3, if T is
an (&, d)-super-regular tripartite graph with parts of size n, then whp the following holds in T,
forallt e Nwith (1 —=n)n <t <nandforallveV' If

WL(Tp)| > (1=n)" (pd)* (n— 1)1 (n!y)?,

then
W] > a(pd)(n — )P4 (T))].

We first show how Proposition 4.1.2 follows from this.

Proof of Proposition 4.1.2. Choose 0 < s,% <n<n < a<xa < d Now by our

choice of constants (also choosing K > 5) and taking a union bound over all choices of ¢
with (1-n)n <t <n,¢ € [3]and u = (uy,...,ur—1) € V we have whp that the conclusion

of Lemma 4.1.3 holds in I";, for all such choices and also the conclusion of Lemma 4.3.1 holds
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with " and o’ replacing 7 and a. We will now show that given these conclusions hold in I"p,,
we have the desired statement of Proposition 4.1.2. So fix some r € Nwith (1 -np)n <t <n

and suppose that
W' (Tp)| = (1=m)" (pd)* (n!)’.

Let U; C V! be the set of vertices u; € V! for which

d\*n-
W (T, = (E) (=) 4.3.3)

It follows from (the assumed conclusion of) Lemma 4.1.3 (with £ = 1) that we have |U;| > %

Now as

=) s (L) - par - Dy
0] \ 7 =170 1APa) AR = A )

2
and (1%) (1 =n)" > (1 -n")", we have that

N

W) = of (i) (pay "),

for every u; € Uy, from (the assumed conclusion of) Lemma 4.3.1 and (4.3.3). Therefore, we

have that
PG = D (T,
uy el
> (L) - 1)
~2\10 P
> a(pd)*(n—1)’|¥'(Tp)l,
by our choice of constants. This finishes the proof. O

It remains to prove Lemma 4.3.1. Before embarking on this, we sketch some of the key
ideas involved. For this discussion, we fix some ¢t € [n] and v € V! that we think of as
satisfying the conditions of Lemma 4.3.1 (including the “if" statement). We will say that a

pair (wz, w3) € V2 x V3 is good if
t n—n?2
P () =2 () 1Pyl

where w = (v, wp, w3). Note that we can appeal to the Local Distribution Lemma (Lemma 4.1.3)
twice (once with £ = 2 and once with £ = 3) to conclude that almost all pairs (w2, w3) € V> x V3
are good. That is, for almost all choices of (w2, w3) € V> x V3, we have that there are roughly
the ‘correct’” number of embeddings of D, that avoid w = (v, w,,w3). Moreover, due to I

being super-regular, there will be some proportion of these (w», w3) (say, at least %d3n2) that
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form triangles with v in I". So we have some set W c V2 x V> of size at least %d3n2 such that
all (wp,ws3) € W are good and have that {v, wy, w3} € K3(I'). The conclusion of Lemma 4.3.1
will then follow if we can prove that at least, say, %3 |W| triangles {v, wy, w3} with (wy, w3) € W,
appear in I',. Of course, every triangle in I" appears in I';, with probability p? and so this is

something we can expect to be true but we cannot appeal to standard tools to prove this.

The issue here is that W itself is a random set as the property of being good depends on the random
edges that appear in I',. Indeed, in order to determine whether an edge (w2, w3) € VZxV3is
good or not, we need to count the number of embeddings of D, inI",, that avoid w = (v, wp, w3)
and so certainly need to know that random status of edges inI", to carry out this count. However,
crucially, W does not depend on all the random edges. Indeed, for any (w2, w3) € VZxV?3, we can
determine whether (w5, w3) is in our set W without knowing the random status of edges adjacent
to v. Indeed, as the property of being good only depends on counting embeddings that avoid v,
the random status of edges adjacent to v has no bearing on whether an edge (w», w3) € VZ2xV?is
good or not. Therefore, by appealing to a two-stage revealing process (see Lemma 4.2.6 (2)), we
will be able to prove Lemma 4.3.1 if we know that at least, say, %|W| of the pairs (wy, w3) € W
host edges in I',, as then we will be able to conclude that roughly a p? proportion of these edges

in W N E(I"),) extend to triangles with v in T',.

Again, requiring that %lWl edges in W appear in I'j, is certainly a natural thing to expect
as each edge appears with probability p, but again the set W containing good edges, depends
heavily on the random status of edges in I'[V2,V3]. Our aim is to use a two-stage revealing
process (Lemma 4.2.6), manipulating independence, as above. Again here, it is crucial that
we are counting embeddings that avoid vertices. That is, if e = {wp, w3} € E(T'[VZ,V?]),
then in order to determine the number of embeddings that avoid (v, wy, w3), we do not need
to know the random status of e and in fact more is true. The number of embeddings of D,
avoiding (v, wp, w3) is independent of the random status of all (w,,u3) with uz € Np(wa; V?3).
Therefore our approach is to lower bound the number of edges in |[W NI",| by grouping together
edges in W according to their VZ-endpoint. This gives hope to use a two-stage random revealing
argument (appealing to Lemma 4.2.6 (1)) to conclude that roughly the expected number of good

edges appearin I'j,.

However, there is an oversight in the discussion above. The point is that our definition of
whether an edge (w,, w3) € V2 x V3 is good or not does not only rely on counting embeddings
avoiding w = (v, w2, w3), we also need to know the size of ¥} (I';)|. Therefore, if e =
{wa, w3} € E(I'[V?,V?]), then in order to determine if (wy,ws) is good, we actually need
to reveal the random status of e itself as well as all the random edges between V> and V>
(to determine [P (I",)]). To remedy this, we adjust our definition of good to be independent
of [¥(I",)|. We will therefore give a grading of the possible range of |‘Pi3 (I'p)| and show that

the desired conclusion holds with respect to each grade (see Claim 4.3.3 in the proof). In order
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to be able to perform a union bound over all of the possible grades, we need an upper bound on
how large |¥% (T",)| can be (whp) and this is provided by Claim 4.3.2. This idea allows us to
remove [P (I",)| from the definition of being good, leading to the definition of being sound in
the proof. Hence we have that for e = {w,, w3} € T'[V?, V3], whether (w5, w3) is sound or not
relies only on counting embeddings avoiding w = (v, wp, w3) and so is independent of whether e
appears in I, and in fact, as sketched above, the ‘soundness’ of (w5, w3) is independent of the
random status of all (w»,u3) with uz € Np(w;V?). We therefore consider potential triangles
one vertex at a time and we refine our definition of sound to handle this, leading to the definition
of sound tuples in the proof. We now give the full details of the proof of Lemma 4.3.1.

Proof of Lemma 4.3.1. Choose 0 < &, % <n<n < a<dandfix pand I' as in the
statement of the lemma. We begin by showing the following simple claim which gives a weak

upper bound on the number of embeddings that avoid a fixed vertex v;.

Claim 4.3.2. We have that the following statement holds whp in I',. For any t € N such
that (1 —n)n <t <nand vy € V!, we have that

W5 (Tp)| < n°p™ (n— 1) (n))*. (4.3.4)

Proof of Claim: Fix some 7 € N and v € V! as in the statement of the claim. Then
W, (D) < ¥, (Knn)] < (1= 1D (1)

and so, as each embedding of D; in I" appears in I, with probability p3, we have that A :=
E [l‘Pgl (Fp)l] < p¥(n—-1)!;(n!;)?. Therefore, appealing to Markov’s inequality gives that

1
B 1%, ()] > 3™ (n= Dl (nl)?] < B[ 195, (T, > na] < —.
Taking a union bound over the choices of v € V! and ¢t € N with (1 —n)n < t < n completes the

proof of the claim. n

Claim 4.3.2 gives us an upper bound on the size of ‘Ptﬁl (") that holds whp, whilst the statement
of the lemma gives a lower bound. Our next claim replaces the lower bound in the statement of
the lemma, with lower bounds independent of |‘Pisl (I"»)|. These lower bounds will depend on a
parameter s € Z and we make the following definitions which will define the range of s we are
interested in. Firstly let 5o be the largest s € Z such that 2° < (1 — n)". Further, let 51 be the

minimum integer s € N such that 2°d* > n3. So we have that

1 —3tlog(d
> -n and s1$30gn 3tlog(d)

log (1 —
5 > og(l1-mn

+1<2
log?2 Ta

log 2

Finally, let $ := {s € Z : 59 < s < s51}. We now state our second claim.
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Claim 4.3.3. Foranyt € Nwith (1 -n)n <t <n, s € S and vi € V', with probability at
least 1 — n™*, the following statement holds in L. If

|‘"Plﬁ] Tp)l = 2°(pd)* (n = 1)Y (n!y)?, (4.3.5)

then
W (Tp)| > 2 a(pd)* ™) (n = 1) (nla)™.

Before proving Claim 4.3.3, we show how the lemma follows from the two claims. Taking a
union bound, we can conclude that whp the conclusion of Claim 4.3.3 holds for all choices of ¢, s
and v (noting that |$| < nlogn), as well as the conclusion of Claim 4.3.2. Now suppose that

this is the case and let t € N with (1 —n)n <t <nandv e V. If
5 (Cp)l = (1=m)" (pd)* (n = 1)1 (nly)?, (4.3.6)
then, letting s* € Z be the maximum integer s € Z such that
W, (Cp)| = 2°(pd)* (n = 1)1 (n!)?,

we have from (the assumed conclusion of) Claim 4.3.2 and (4.3.6), that s* € 5. Therefore, from

(the assumed conclusion of) Claim 4.3.3, we have that that
W, (Tp)] 2 2 a(pd)* D (n = D)1 (nl1)? 2 a(pd)* (n = 1) W,(T))],

as required, where we used that [W% (I",)| < 25*1(pd)3 (n - 1)!;(n!;)?, by the definition of s*.

Thus it remains to prove Claim 4.3.3.

Proof of Claim 4.3.3: Let us fix some choice of t € Nwith (1 —n)n <t <n,s € Sandv; € V1.

Given some ¢ € [3], we call a sequence of vertices u = (uy,...,ur) € V sound if
£-1 _
5 (Tp)l 2 (8va) 25 (pd)™ ((n = 1)  (n1)*".

Note that (4.3.5) holds if and only if (v;) is sound. Also note that for any u = (uy,...,ur)
and i € [{], we can determine whether u is sound or not without knowing the random status of
edges adjacent to u; in I', as determining whether u is sound relies on counting embeddings that

avoid u;.

We now formulate a sequence of steps, that we will prove later, claiming that certain properties
hold. Let X»(v{) C Nr(vy; V?) be the set of vertices up € Nr-(vy; V?) such that (v, u») is sound

and degp(vy, u2; V3) > #

Step 1. With probability at least 1 — n™, the following statement holds in rp.
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If (v1) is sound, then | X>(v1)| > d—zn.

Given v, € V2, let X3(v1,v2) € Nr(vi,va; V?) be the set of vertices u3 € Nr(vi, v2; V?) such
that (vy, va, u3) is sound. Furthermore, let Y3(v,v2) C X3(vy,v2) be the set of those u3 such
that vous € E(FP).

Step 2. With probability at least 1 — n~% the following statement holds in Iy, for every v, € V2,

pd*n

If (v1) is sound and v, € X>(vy), then we have |Y3(v,v2)| > =5—.

Letnow Z’(vy) = {(uz,ug) eV2xV3:iur e Xo(vi),uz € Y3(v1,u2)} and Z(vy) = {(up, u3) €
Z'(v1) : {vi,uz,us}isatriangleinI'),} = Tr, (I';) N Z’(vy). We will use Steps 1 and 2 to

deduce the following.

Step 3. With probability at least 1 — n™, the following statement holds in rp.

If (v1) is sound, then |Z'(v1)| > #.

Step 4. With probability at least 1 — n™>, the following statement holds in T -

If1Z'(vy)| = pﬁnz, then we have |Z(vy)| > (pcé—);nz.
Before we prove the claims in Steps 1 to 4, let us deduce Claim 4.3.3. Note that assuming the
statements in Steps 3 and 4 hold in I', we have that if (v;) is sound then [Z(v)| > %
by combining both the claims. Furthermore, for all (u3,u3) € Z(vy), the vector (v, uz, u3) is

sound and hence |‘I‘%1 - ([p)] = 6425 (pd)*¥ ((n - 1)!,)*. Therefore

LU, 03

PHEIE D 1% ()
(uz,u3)€Z(v1)
3.2
5 pd)n”
32
> 2 a(pd) P ((n = 1)) (nla)?,

- 64a2° (pd)* ((n - 1)1,)?

as required. Now as the statements of Steps 3 and 4 hold simultaneously in I";, with probability

at least 1 — n™*, this concludes the proof of the claim. It remains to prove Steps 1 to 4.

Proof of Step 1. For i = 2,3, let A; := Nr(vy;V’). Furthermore, let Aé C V2 be the set of
vertices up € V? for which (vi, u») is sound and let Al C V2 be the set of vertices u, € V? for
which deg(vy, us; V3) > #. Note that X>(vy) = A, N A N AJ. Since (V1, Vi) is (&, d)-super-

regular, we have |A;| > (d—&)nfori = 2,3. Since (V2, V3) is e-regular, we have |[AY] > (1-&)n
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by Lemma 2.2.3. Finally, it follows from Lemma 4.1.3 with £ = 2 and 5 replaced by n’, that with

probability at least 1 — n~, if (v;) is sound then we have that |AJ| = (1 — @)n and hence
Mol =140 4304712 2
as claimed. Here we used that (v1) being sound implies that
W, (Tp)| 2 2%(pd)* (n = D1 (n!)* = (1= 7")"(pd)™ (n = 1)1 (n1y)?,

in our application of Lemma 4.1.3. ]

Proof of Step 2. Fix some v, € V2. Let X3 = X3(v1,v2) and Y3 = Y3(v1,v2) C X3. It follows
from an application of Lemma 4.1.3 with £ = 3 and 5’ replacing 7, that the following statement

holds in I'), with probability at least 1 — ns.

. dZ
If (v1) is sound and vy € X5(vy), then |X3| > S,

n

Here we used here that v, € X;(v) implies that degr(vl,vz;V3) > % as well as the fact

that (v, v2) being sound implies that

W4, 5, (Do)l 2 8Va2 (pd)™ ((n = 1)11)*(n) 2 (1 =7")"(pd)* ((n = D)1)* (ny),

in order to appeal to Lemma 4.1.3.

Now note that, in order to determine X3, we do not need to reveal edges adjacent to v,. That is,
the random set of vertices X3 is determined by (I';,),. Therefore, by Lemma 4.2.6 (1) we have

that with probability at least 1 — n~® the following statement holds in I" p-

If | X3] > L8, then |V3| > 242
Therefore with probability at least 1 — n~/, both the above statements hold in I'), and so by
combining them we have the desired statement of this step for v, € V2. Taking a union bound

over all v, € V2 then completes the proof. [

Proof of Step 3. This is a simple case of combining Steps 1 and 2. Indeed with probability at
least 1 — n=> both the statements of Steps 1 and 2 hold in I",. Taking this to be the case, if (v{)
is sound, we then have that

dn pd*n B pd’n®

z' = Y- > — .
Z’o0l= Y )|z 5 o =
up€Xz(v1)

as required. [
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Proof of Step 4. This is a direct application of Lemma 4.2.6 (2). Indeed, note that Z’'(v|) C
Tr,, (') is arandom subset of edges determined by (I';, ) ,. The conclusion of Step 4 then follows

immediately from the lemma. [

This concludes the proof of Claim 4.3.3 and hence the lemma. ] O

4.4 Proof of the Local Distribution Lemma

The purpose of this section is to prove the Local Distribution Lemma, Lemma 4.1.3. We will
begin by reducing Lemma 4.1.3 to another lemma, Lemma 4.4.1 below, using a simple averaging
argument. Before proving Lemma 4.4.1, we will then take a detour, establishing an Entropy

Lemma (Lemma 4.4.4) which will be crucial for the remaining proof.

4.4.1 A simplification

Given some #,£ and u = (uy,...,us—1) as in the statement of Lemma 4.1.3, we aim to prove
a lower bound on the size of ‘I”u i for almost all of the u, € V. Given that ‘P; is large, a
simple averaging argument shows that (4.1.6) is true ‘on average’ (i.e. if we take the average
of |‘P’2’ﬁ[ (T',)| over all uy € VY). The challenge comes in proving that (4.1.6) holds for almost
all choices of u¢. In order to do this, we compare the difference in the sizes of ¥, ay for different

choices of u, € V¢. The key step is given in the following lemma.

Lemma 4.4.1. For all 0 < a,d < 1 and K > 0 there exists n,e > 0 and C > 0 such that

‘or all sufficiently large n € N and for an > C(logn)'3n=2/3,
J fficiently larg for any p g

if T' is an (&,d)-super-
regular tripartite graph with parts of size n, t € N such that (1 -nm)n <t <n, € € [3], u =
(1. .. ue1) €V andu € V¢ then the following holds in "), with probability at least 1 — nkK.

If
WG 2 (Cp)l = (1=n)"(pd)> ((n = 1)!)  (nl) ",

then
d 2
1) > (5] 1)

for at least (1 — a)n vertices v € V¢,
Indeed, with Lemma 4.4.1 in hand, Lemma 4.1.3 follows easily.

Proof of Lemma 4.1.3. Fix s,é < np<d,a FixI''t e Nwith (1-n)n <t <n, € [3]
and u = (uy...,ur—1) € V. By applying Lemma 4.4.1 with K + 1 replacing K and taking a
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union bound, we have that with probability at least 1 — n~X, the conclusion of Lemma 4.4.1

holdsin G =T, forall u € V¢. So suppose that this is the case and further suppose that
IW,(G) = (1=m)"(pd)™ (n = 1)1 (nt)*E

Now, for eachyr € W, (G), we have y € ¥/, i (G) for exactly n—t choices of u, € V¢. Therefore,

we have that

D ()] = (n=D)|¥4(G)).

uev?

By averaging, there must be some u* € V¢ such that

¥, 4 (6] = () 4(G))

n

> () = (pd) " (= D1 ()

= (1-n)"(pd)* ((n - D) (n)*".

The result now follows from applying the assumed conclusion of Lemma 4.4.1 with u* playing

the role of u. O

4.4.2 The Entropy Lemma

In this section, we will prove a key lemma, Lemma 4.4.4, which we call the Entropy Lemma. We
start with some definitions. Given some tripartite I' with parts of size n, some € € [3], t € [n]
and some ¢ € W/ ("), we define I/ (¢) c V? to be the vertices in V¢ which are isolated in the
embedded subgraph ¥ (D). If £ is clear from context, we will drop the superscript. If we are

further given some v € V¢, we define

. 0 ifv eIy,
(Nypy V) 2 jed) ifvel(y),

where J = [3] \ {¢}. So y, either returns an empty set, indicating that the vertex v is isolated
in ¥ (D;), or it returns the pair of vertices which are contained in the triangle containing v
in ¥ (D;). We also define the function

1 ify, #0,
Y, (@) = 1[{y, # 0}] =
0 ify, =0,

which returns 1 if v ¢ I(i) and 0 otherwise. Note that for any ¢ € [3] the set {¢, : v € V¢}
completely determines the (unordered) subgraph ¢ (Dy).
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For a fixed u € V¢ and v € V¢ \ {u}, we will be interested in the distribution of ¥ if y*
is chosen randomly among a set of embeddings we wish to extend. In order to analyse this,
we use entropy. See Section 2.3 for the definition and basic properties. We remark that there
will be two independent stages of randomness in the argument. First, there is the random
subgraph I, C T, and second, there will be a randomly chosen ¢* € W (I",,). In particular, the
values of the entropy function 4 (y*), h(y}) are random variables themselves. However, once we
fix a particular instance G = I',, these values are deterministic. We proceed with the following

definition which will be convenient to ease notation in what follows.

Definition 4.4.2. Forn € N, p = p(n) € (0,1) and 0 < d < 1, we define

H=H(n,p,d) =log ((paf)3 . nz) .

To see the relevance of this function, note that in a random sparsification of the complete tripartite
graph K, ,,., with probability pd, we would expect a given vertex to lie in (pd)>n? triangles.
Therefore if we fix a vertex v and take a uniformly random triangle containing v, we expect
the entropy of the random variable which chooses this triangle, to be roughly H(n, p,d). The
function H can thus be seen as benchmark for the maximum entropy (recalling Lemma 2.3.1)
of a randomly chosen triangle containing a fixed vertex. Our aim will be to show that, for most
choices of fixed vertex v, H is a good approximation for the entropy of the random variable ¢/},

discussed above.

We begin with observing that the function H provides an appropriate upper bound on the entropy

we will be interested in.

Observation 4.4.3. For all 0 < &’ < d < 1 and L > 0 there exists £ > 0 and C > 0 such that
for all sufficiently large n € N and for any p > C(logn)!'/3>n=2/3,if " is an (&, d)-super-regular
tripartite graph with parts of size n, t € [n], € € [3], u = (u1,...,ur_1) € V and u € V¢ then
the following holds in I',, with probability at least 1 —n~ L.

For * chosen uniformly from lI”Q’ﬁ(l“p), we have that A(y}|Y, (y*) =1) < H(n,p,d) + &’ for

all but at most &’n vertices v € V.

Proof. Choose 0 < ¢,

least 1 —n~L,

By Corollary 4.2.4, we have that with probability at

’ 1
< S,d,z.

L
C

[Try (Tp)| = (1 £ &) (pd)’n?,

for all but at most &’n vertices v € V¢. In particular, for each such v, we have log|Tr,, (Tpa,a)l <
H(n, p,d) + ¢’. Therefore, by Lemma 2.3.1, we have h(y}|Y, (¢*) = 1) < H(n, p,d) + &’ for

all v as above and for y* € ¥, .(I";,) chosen uniformly at random. O
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The main purpose of this section is to provide a partial converse to the above observation, showing
that for almost all vertices v € V¢, H is a good approximation for the entropy h(y Y, (™) =1).

The full statement is as follows.

Lemma 4.4.4 (Entropy Lemma). Forall0 < 8,d < 1 and L > 0 there existsn, e > Qand C > 0
such that for all sufficiently large n € N and for any p > C(logn)'3n=2/3, if T is an (e, d)-
super-regular tripartite graph with parts of size n, t € Nsuchthat (1 —n)n <t <n,{ € [3],u=
(1. .. ue1) €V andu € VE then the following holds in I, with probability at least 1 — nL.
If

WG 2 (Cp)l = (1=n)"(pd)* ((n = 1)!)" (nl)* ",

and y* is chosen uniformly from V', .(T'},), then we have that h(,|Y, (¥*) = 1) 2 H(n, p,d) -8

for all but at most Bn vertices v € V¢,

In the remainder of this section, we will prove Lemma 4.4.4. Recall that we have V(I') =
V(['p) = VI U V2 U V3 with each V' of size n. As above, for ¢ € [n], an embedding ¢ € ¥ (I")
and some ¢ € [3], we denote by I(i) = I () the vertices in V¢ which are not contained in
the subgraph ¢ (D,). In the proof, we will describe ¢ by revealing the status of ¢, one by one
for each v € V¢ according to some linear order o~ of V¢. In order to do so, we need to make
some further definitions. Firstly we denote by w <, v that w occurs before v in the ordering o.
Now given some fixed ¢, ¢ and ¢ as above and an ordering o of V¢, we will be interested
in revealing ¢y € ¥/ (I') according to the ordering o as follows. We imagine processing the
vertices v € V¢ in order and as we process each vertex v we reveal its status in i by revealing y,,.
Either v is not in a triangle in ¥ (D;) or v is in a triangle, in which case, we are given the other
vertices of the triangle containing v in ¢ (D;). Now consider the moment before processing some
vertex v € V. At this point, we know all the triangles in (D) that contain vertices w € V¢
such that w <, v. We are interested in which vertices are candidates to feature in , at this

point and the following definition captures this.

For some fixed ¢,  and ¢ as above, an ordering o of V¢, some u € V, some j € [3] \ {¢} and

some v € V¢ we define

ALy, o, u) = aEVI{:ag U .

weVl w<g v

and Ay, (Y, 0, u) = U ey Aﬂ. (¥, o, u), where J := [3] \ {€}. We think of these vertices as being
‘alive’ at the point just before processing v (when we are about to reveal y,,). By ‘alive’, we
mean that it is still possible that i, reveals that a € Aﬂ (¥, o, u) is in a triangle with v. All other
vertices a € V/ \ A'é (¥, o, u) are already embedded in triangles with vertices w € V¢ which
come before v in the ordering o (or lie in u in which case we are forbidden from including them

in a triangle in ).
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Triangles with alive vertices

In this subsection, we will prove that most vertices v € V¢ are in the expected number of triangles
with the other two vertices still being ‘alive’. This will be useful in the proof of the Entropy

Lemma, Lemma 4.4.4.

Lemma 4.4.5. Forall0 < 7 <d <1 and L > 0 there exists € > 0 and C > 0 such that for

133=213 if T is an (&, d)-regular tripartite

all sufficiently large n € N and for any p > C(logn)
graph with parts of size n then the following holds in I", with probability at least 1 — nL.
Iften-1], €3, u= (ur,...,ur1) €V,ueVlye V. .(T'p) and o is an ordering

of V¢, then there are at most tn vertices v € V¢ for which

[Try (T,) N E(TIA, (0, 0w > (pd)’ | [1AL (. o, w)] +7(pd)n?, (4.4.1)
jel

where, as above, J = [3] \ {{}.

Proof. Choose 0 < ¢, é <& <x1,d, % Let G C IT" be any subgraph satisfying

|K3(G[X1 U X2 U X3])| < (pd)’|X:]|1Xa||1X5] + &' pn, (4.4.2)

for all X; € V!, X € V2, X3 € V3 and note that I', is such a subgraph with probability
at least 1 — n~F by Lemma 4.2.1. We will show that G already satisfies the conclusion of
Lemma 4.45. Letl e [3],t € [n—1],u= (uy...,up_1) € V,ur € Vi, y € ¥, ,(G) and
let o be an ordering of V¢. Enumerate V¢ = {vf, ..., v{} according to the ordering o, that is,
in such a way that vf <o -+ <o vi. Define U C V¢ to be the set of vertices satisfying (4.4.1).
We will show that |U| < 7n. We split V¢ into intervals as follows. Let 7/ := T K= [%] and
fork=1,...,K,let

Wk:{vf:1+(k—1)-‘r'n$i<1+k-r’n}

and U =UNWy. Fixsome k € [K] andletiy :=1+[(k—1)-7'n] and wy := vfk (that is, wy
is the first vertex in Wy). Let X, = Uy and X; = A{Vk (W,o,u) for j € J=[3]\ {¢}. It follows
that, for any z € Uy,

ITro (G Vi1 XiD| = [Trz(G[Xe U AL (¢, 0, u)])]
> (pd)* | 1AL, o, w)] +7(pd)*n’
jeJ
> (pd)? l_[ (I1X;] —7'n) +7(pd)’n?
jeJ

3 G F 3.2
> (pd) B'X"+2(pd) .
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Here, the first inequality follows from the fact thatz >, wy and thus A, (¢, o, u) C Ay, (¥, 0, u)
for every z € Ug. The second inequality follows from the fact that z € U and the third from
the fact that |A£(w, o,u)| > |A{vk (¥, o,u)| — 7'n for all z € Uy since z and wy, are close in the

ordering o. By summing over all z € Uy, it follows that
-
|K3(G[X1 U X2 U X3])| = (pd)* X1 || Xa]|X3] + E(Pd)3|Xf|"2-

Combining this with (4.4.2) gives |Ux| = |X¢| < f—fl;n < %Zn by our choice of constants. It

follows that |U| = Zle |Uk| < 7n, as claimed. m|

Proof of the Entropy Lemma

Here, we will prove Lemma 4.4.4. The proof is quite long and so we will break it up into
smaller claims along the way. Our proof works by contradiction. As |‘I’;u ('p)]| is large, we
know that h(y*) is large as y* is chosen uniformly at random from ‘P;u (I"p). Moreover, using
the chain rule (Lemma 2.3.5), we can decompose h(¥*) as the sum of local entropy values
depending on the y},. Now we assume that there are a significant number of bad vertices v for
which the local entropy value A (¢ |Y, () = 1) is too small. We will then apply the chain rule
(Lemma 2.3.5) using an ordering on the vertices which places these bad vertices at the beginning
of the ordering. This has the effect that the shortcoming of their contribution to the overall
entropy h(y*) is felt the most. We then upper bound the contribution of the entropy values at
other (good) vertices, and hence conclude that the overall entropy A(¥*) is too small, giving a
contradiction. In order to achieve this upper bound, we rely on random properties of I';, and we
have to split the entropy values further, delving into the average that outputs the entropy values

and looking at individual embeddings.

Proof of Lemma 4.4.4. Choose 0 < 6, & <7 <n <6<y < pf,d, 1. FixILt €N, (€
[3],u= (uy...,ur_1) € V,and u € V¢ as in the statement of Lemma 4.4.4. Assume G C I'is
a subgraph of I with V(G) = V(I') which satisfies the following properties for all € ¥, .(G)

and every ordering o of V°.
(P.1) For all vertices v € V(G), we have

|Tr, (G)| < 10p°n°.

(P.2) There are at most 7 vertices v € V¢ for which

ITro(G) N E(GLA (W, o) > (pd)® [ ] 14l 0w+ w(pd)*n’.
JjelBIN{¢}
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By Lemmas 4.4.5, 4.2.5 and a union bound, I';, satisfies these properties with probability at
least 1 —n~L and therefore it suffices to show that any G satisfying the above properties, satisfies

the conclusion of Lemma 4.4.4.

To ease notation, let ¥ := ‘P’u 4(G). Furthermore, let " be chosen uniformly from ¥. We may

assume that
®| > (1-n)"(pd)* ((n - D) (nl)*,

as otherwise there is nothing to prove. In particular, by Lemma 2.3.1, we have

h(y™) > nlog(1 —n) +3tlog(pd) +3log(n!;) — 3log(n)
> 3tlog(pd) + 3log(n!;) — on, (4.4.3)

where we used < ¢ and that # is large enough in the last step.

Assume for a contradiction that there are at least Sn vertices v € V¢ such that h(y:|Y, (y*) =
1) < H(n,p,d) — Band let U c V¢ be a set of these exceptional vertices of size |U| = yn. We
will derive an upper bound on 4 (y*) which contradicts (4.4.3). Recall that I(y) = I (¢) c V¢

is the set of vertices which are isolated in ¥ (D;). We begin as follows

hW™) =h (W' ¥ eve, 1Y) (4.4.4)
=h ({wv}vevf’ I(‘// )) +h (l// |{¢’v}v€V"9 I(l// )) (445)
< h({¥l}veve, 1)) +log(t!) (4.4.6)
=h({Yi}veveI(W)) + h (I(¥")) +log(t!) (4.4.7)
< H ({03} yey el 1) +log(t) + log ((’Z)) 448)
= h({Y}}yevel 1)) +log(nly). (4.4.9)

Here, we used Lemma 2.3.3 in (4.4.4) and the chain rule (Lemma 2.3.5) in (4.4.5) and (4.4.7).
In (4.4.6), we used Lemma 2.3.6 coupled with the fact that the set {i, },cy¢ completely de-
termines the (unordered) subgraph ¥ (D;). Indeed, note that there are ¢! embeddings ¢ € ¥
which map to the same subgraph ¢ (D;), namely one for each choice of ordering of the triangles.
Finally, in (4.4.8) we used Lemma 2.3.1.

Now, in order to estimate this sum further, we fix some ordering o of V¢ in which the vertices

in U come first, thatis w <, w’ forall w € U and w’ € V¢ \ U. We then reveal vertices in that
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order and apply the conditional chain rule (Lemma 2.3.8). That is,

W byeve IWN) = D0 R l{Ws cw <o vh 1))

vev?
< Y RWLIWH) + DL R cw <o vhIWY),  (44.10)
veU veVOU

where we applied Lemma 2.3.4 in the second step. We treat the vertices in U separately to those
in V¢ \ U. To ease notation, we make the following definition. For ¢ € ¥ and v € V¢, we
let £,,(1¥) denote the number of vertices w € V¢ such that w <, v and w ¢ I(i). Let us first

address the vertices in U.

Claim 4.4.6. For allv € U, we have that

B < %YV W) (log ((pyn = 1, ))?) - 5) .

Proof of Claim: Now, for each v € U, we have

h(Wil(Y")) < (Y 1Yy (¥))
=Py (y") = 1AW Y, (") = D+ P [Yy (") = 0] h(y Y, (¥7) = 0)

<P[Y,(y") = 1] (H(n, p,d) - )

_ % > Yo w) (H(n, p.d) - B).

Yye¥

Here we used Lemma 2.3.4 and the fact that /() determines Y,, (¥*), the definition of conditional
entropy (2.3.1), and the definition of U. Furthermore, we havet,, (/) < ynforallyv € Uandy € ¥

since U comes at the beginning of the ordering o-. Therefore,

log ((pd)? (n = 1, ))?) = log ((pd)* (1 = 7))
=H(n,p,d)+2log(1l —7y)

= H(n’p’d) _4y

B

> H(n,p,d) - 5

Combining this with our upper bound on A(y7} |1(¥™)) above completes the proof of the claim.
|

We will now deal with the vertices outside U. Given v € V¢ and ¢ € W, we write

W (o) = h (W17 = 1), Y5, = Ywhwe<,v) -

Claim 4.4.7. The following is true for all y € V.
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(i) Forallv € V¢, we have

2
W (v, y) < log ((pa)(n - 1, (9))?) +log (%) loe ((n—?W) '

(ii) There exists a set B(y) c V¢ with |B()| < 6n, such that for all v € V¢ \ B(¢), we have
W (v ) < log ((pd)*(n = 1,(1))?) +5.

Proof of Claim: The first inequality follows from (P.1) and Lemma 2.3.6. Indeed, for all v € V¢,

we have

W (v,¢) <log (|Tr, (G)])
< log(10p*n?)

10 ’
= log ((pd)*(n = 1,(1))?) + log (z) +log (m—fW) '

For the second inequality, we will use (P.2) in combination with Lemma 2.3.6. We have that for

all but at most 7n vertices,

W (v,¢) < log (|Try (G) N E(G[Ay (¥, o, w)])])

< log (<pd>3 [ 14l @, o,wl+ r(pd>3n2)

jeJ

< log ((pd)3(n — 1 W))? +T(pd)3n2) . (4.4.11)

Observe that £, (¢) < (1 - %)n for all but at most % vertices v € V¢, In particular, we have

2n2

oTn” 2, L o
4

> -Tn” =2 —=-1n°,

(n—1,(y))* =

2
At
for all but at most % vertices v € V¢ (we used that T < § here). Plugging this back into (4.4.11),

we get

W (v,9) < log ((146) - (pd)* (n - 1,(¥))?) < 5 +1og ((pd)*(n = 1, (¥))?)
for all but at most (7 + g)n < 6n vertices v € V¢, ]

We will now use Claims 4.4.6 and 4.4.7 to finish the proof. Indeed, it follows from Claim 4.4.6
that

D) < % IR AT (log ((pay*(n =1, ))?) - §) (44.12)

velU ye¥vel
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Furthermore, using Claim 4.4.7, the definition of conditional entropy (2.3.2) (and Lemma 2.3.6
to conclude that &' (v,¥) = 0if Y, (¢) = 0), we have

Y R W <o R IW) = Y D @R ()

veVO\U veVO\U Yer

< ﬁ l/;y(én + N1 (¢) + Z Y, (¥)log ((pd)S(n _ fv(l//))z)), 4.4.13)

veVOU

where

N = Y V) (log (%) +2log (n—+(¢))) '

veB(y)

Let now

M@) = Y @l (b m-n @), ad M) =Y R 5

vev? velU

Then, combining (4.4.10), (4.4.12) and (4.4.13), we get

B hoer W) < g > (M) + N1 W) +0 = Na(w). (4.4.14)

Yye¥
We will bound each of these terms one by one.

Claim 4.4.8. For all y € ¥, we have that

M () = 3tlog(pd) +21og(n!,), N (¥) < Vén and Na(y) > y*n.

Before we prove Claim 4.4.8, let us finish the main proof. Combining Claim 4.4.8 with (4.4.14),
we get (using 6 < ) that

h ({05 ey e (™)) < 3tlog(pd) +2log(n!y) + (6 + V6 = y*)n
< 3tlog(pd) +2log(n!;) — 20n.

Plugging this back into (4.4.9), we get that h(y*) < 3tlog(pd) + 3log(n!;) — 26n, contradict-

ing (4.4.3). Hence it remains to prove Claim 4.4.8.

Proof of Claim: Let ¢ € ¥ and observe that {z, (¢) : v € VE\ I(¢)} = [t — 1]o. Thus

M@)= Y log((pd)(n-1,w))?)

veVAI(y)

t—1
= > log ((pd)3(n - k)z) = 3tlog(pd) + 2log(n!,).
k=0
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We now turn to bounding N (). We define B’ =: B(y) \ (i) and observe that |B’| < |B(¥)| <
on. Further, let K = {t, () : v € B’}. Enumerate K = {ky,...,kp/} sothatk; > ... > kp|
and observe that k; < n —i for all i € [|B’|], by virtue of the the fact that ¢, (¢) <t < n -1 for
allv € B’ and, as B’ N I(¥) = 0, we cannot have that ¢, (/) = ¢,/ () for v # v/ € B’. Hence

0 n
N@W) = > Yo(y) (log( )+21°g(m))

veB’

Sénlog( ) ZZIOg )
< énlog (d_) +26nlog(n) — 2log((én)!)
< dnlog (%) +26n (10g(n) —log (6n))

< \/gn,

where we used (6n)! > (22) %" in the second to last line. Finally, let U’ = U \ I() and observe

that, since 7 < 7y, we have |U’| > % Therefore,

No(y) = Z '8 y’n

veU’

as claimed. [] O

4.4.3 Counting via comparison

In this subsection, we will prove Lemma 4.4.1 which, as we have shown in Section 4.4.1,
completes the proof of the Local Distribution Lemma (Lemma 4.1.3) and hence our main
technical theorem, Theorem I1*. Elements of the proof of Lemma 4.4.1 were already sketched in
Section 4.1 but before embarking on the details, we outline and reiterate some of the key ideas,
ignoring the technicalities in order to elucidate the general proof scheme. For this discussion, we
fix some (g, d)-super-regular tripartite graph I', fix £ = 1 and some ¢ € [n] close to n. We also
fix a vertex u € V¢ which we think of as satisfying the “if" statement in Lemma 4.4.1 and some
typical v € V¢ which we aim to show satisfies the conclusion of Lemma 4.4.1. By typical, we
mean that v € V' satisfies certain conditions that we have shown whp almost all vertices in V¢
satisfy. For example, we can assume that ¢}, has large entropy, when * is a uniformly random

embedding in ¥/, (T",,), from the Entropy Lemma (Lemma 4.4.4).

Now our aim is to lower bound the number of embeddings ¢ of D, that leave v isolated and
we concentrate on the subset of embeddings that place u in some triangle (as ¢ is large we can
expect that almost all embeddings do place u in a triangle). Refining further, we will only count

embeddings that place u in a triangle with an edge that lies in some special set F ¢ E(T'[V2, V?]).
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To define F, we begin by concentrating on edges in Tr,, (I") N Tr,, (I"). That is, any edge in F will
form a triangle with both u and v. We then take F' to be the edges in Tr, (I") N Tr, (I") which
appear in I';,. Note that we do not require that for an edge wows € F, any of the edges vw;

or uw; withi = 2,3, lie in ', just that they lie in I'.

To motivate this definition, we consider a multi-stage revealing process as in Lemma 4.2.6.
First, we reveal all edges of I',, that are not adjacent to u or v. The definition of F comes from
the fact that at this point in the process, any edge in F has the potential to lie in Tr, (I",,) and
also Tr, (I',), depending on which random edges are adjacent to the vertices u and v. Now note
that, in particular, if an edge e = wows € F does end up in Tr, (), then it will contribute to
embeddings that avoid v and place u in a triangle. We introduce a weight function £ on F (we
will in fact define it more generally on E(I'[V?, V?3])) which precisely counts the contribution to
our desired lower bound, from embeddings which use the triangle u U e = {u, wp, w3}. That is,
for all wows € F, we have that £ (w;w3) encodes the number of embeddings of D;_; (with 7 — 1
triangles) in I', that avoid v and the vertices u, wo, w3. Therefore, as we can assume F is large
(as v is typical, using Lemma 4.2.7), our desired conclusion will follow if we can lower bound

the £ values in (some subset of) F.

The central idea of the proof is that we can lower bound ¢ values in F' by reasoning about
embeddings that place v in a triangle (and avoid u). Indeed, if we consider a uniformly ran-
dom embedding ¢* € ‘PL (I'p), as v is typical, we know from Lemma 4.4.4, that the random
variable ¢, which encodes the triangle containing v in ¥ (D;), has high entropy. Appealing to
Lemma 2.3.9 then implies that the distribution of ¢, in Tr, (I",,) is close to uniform and hence
for almost all edges f € Tr, (I'5), we have that P [WS =f ] is large (in that it is close to the
average). Moreover, we have that P [WV‘ =f ] is directly proportional to £(f) by the definition
of £. Therefore, using Lemma 4.2.6 (2) (and observing that the { values do not depend on
random edges adjacent to u or v), we can see that we must have a significant proportion of the
edges in F having large ¢ values. Indeed, if this were not the case, then it would be very unlikely

that almost all edges in Tr,, (I',,) have large £ values.

We can therefore conclude that there is some subset Fy, C F of half the edges in F such that £ (f)
is large for all f € Fy . Finally, through another application of Lemma 4.2.6 (2), we can show
that many edges in Fz end up in Tr,(I",,) and therefore contribute to the lower bound on the
number of embeddings that leave v isolated. We now give the full details of the proof.

Proof of Lemma 4.4.1. Choose 0 < ¢, - <&’ < np < f < fB < % < a,d, % FixTI, p =
pn), € [3,A-gpn <t <nu= (u..,u)€Vandu e V’asin the statement
of Lemma 4.4.1. We define J := [3] \ {¢} and label the indices of J by ji, j» € [3] so

that J = {1, j2}.
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Now for a subgraph G of I, we will make some definitions relative to G and posit certain
properties of G. Our proof will then proceed by first proving that any G satisfying all the
properties, satisfies the desired conclusion of the lemma. After this we will show that whp we
can take that I, satisfies all the defined properties, which will complete the proof. Herein, we
fix some subgraph G of I" for the discussion. Our first property comes from the statement of the

lemma.

(Q.1) We have
[¥;.4(G) > (1= m" (pd)> ((n = 1)1 (n!)*".

For v € V¢, we now define the set of edges which lie in G and in the common neighbourhood

(with respect to I') of both « and v. In symbols,
F(v) = Tr,(T3) N Tr, (Ta) N E(G) C V' x V2, (4.4.15)

Note that here (and throughout this proof), for convenience, we will think of edges in e =
{y1,v2} € E(T[V/' U V7)) as ordered pairs (y,y2) € VIt x V12,

Now let * be chosen uniformly from ‘I”u 4 (G). We define the following subsets of V¢, recalling
the definition of H(n, p, d) from Definition 4.4.2.

Zi={veVi hWilY,(y*) =1) > H(n,p,d) - B},
Zy={v eVl i (G)] = (1 &) (pd)’n’},
dspnz}

R

Z3 = {v eViLF(v)| >

Z=7Z1N7ZyNZs.

Our second property of G posits that Z is large.

(Q.2) If (Q.1) holds in G then
|Z| = (1 - a)n.

We now define the weight functions we will be interested in. For v € V¢ \ {u} and (w, w,) €
V,{' X Vf, define £, (w1, w2) to be ¢ times the number of labelled embeddings of D;_; into G4, ¢
in which both w; and w, are isolated vertices. That is,

Lowiwy) =1 WY (Gpao)l. (4.4.16)

Wi, W2

For our last property of G, we need a further definition. For v € V¥, consider F(v) as in (4.4.15).

We split F(v) in half according to the values of the weight function ¢,,. That is we partition F(v)
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into Fs(v) and Fr.(v) so that {(y1, y2) < {(z1,22) forall (y1,y2) € Fs(v) and (z1,22) € FL(v),
and |Fs(v)| = |Fr(v)| £ 1. Our final property gives that G has many triangles containing u

(resp. v) and the edges of Fy (v) (resp. Fs(v)).

(Q.3) If v € Z, then
d5p3l’l2
20
for both F’ = Fy.(v) N Tr,(G) and F’ = Fs(v) N Tr, (G).

|F'| =

We now proceed by taking that G satisfies (Q.2) and (Q.3) and showing that it then satisfies
the desired conclusion of the lemma. We will do this by proving that if G satisfies (Q.1) then

every v € Z satisfies

d 2
W, ,(G)] = (E) (G,

which in combination with the fact that G satisfies (Q.2), gives what is needed. So let us fix
some v € Z. We define the following sets of embeddings.
W, = lP;’ﬁ(G) N Ttg’ﬁ(G),
Y= Ttg,ﬁ(G) \ ¥;s and
Pus =P (G) \ Pay.
In words, W consists of those embeddings which leave both u and v isolated whilst embeddings
in ¥,,; leave u isolated but have v contained in a triangle, and vice versa for ¥,;. Clearly, we
have
|‘Pl@,,;(G)| = [Was| + |¥yal, and
|T;,§(G)| = [Was |+ [Pus|.

If [Wsp| > (%)ZPI‘; ;(G)|, we are done and so we may assume that

d 2
Youl =2 11-—
%0l ( (10)

In what remains, we will compare the sizes of ¥,,; and ¥,,5. Let { = £, be the weight function
as defined in (4.4.16). Observe that

1
¥4 (G)] 2 S 1% 4 (G)]. 4.4.17)

Wyal = Z Z(y1,y2), and
(¥1,2) €Try, (Ga)
Vol = Z L(y1,y2).

(y1,y2) €Try (Ga)
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Recall that we took ¢* to be a uniformly random embedding in W%, . (G). Note thaty/}|Y, (") = 1
is a random variable taking values in S := Tr, (G3) and the distribution of ¢} Y, (¢*) = 1 is

determined by ¢. That is, for all (z;,z2) € S,

B[y = (o)t (0] = =S80 {Gnz)

_ - . (4.4.18)
Z(yyes £ (1, y2) |¥yal

Moreover, as v € Z C Z,, we have that log(|S|) < log(1 + &’) + H(n, p,d) and therefore,
using also that v € Z C Z;, we can apply Lemma 2.3.9 (with 28’ replacing ') to obtain some
set W* € S = Tr, (G;) with the following properties (using (4.4.18) to unpack the conclusions

here):
@ D, Lviwa) = (1-B)¥al;

(wi,wo) eW”

(ii) There exists some value £ such that for each (w1, w,) € W*, we have that
L(wi,wo) = (1£8);
(iii) We have (1 — B)|S| < |[W*| < |S].

Therefore we can estimate the size of W,,; using (i) to (iii) in that order, as follows:

|Tvﬁ|§(ﬁ) Z L(wi,wa)

(Wi, wy) W™
1+ -
< (125w
-B

< (i J_r/;) ISIZ < 22(pd)’n?. (4.4.19)

In the last inequality, we used that |S| = |Tr, (Ga)| < (1 +&")(pd)*n?* since v € Z C Z,.

We are now going to lower bound |¥,| in a similar way. However, the entropy argument
above only shows that ¢ is ‘well-behaved’ on S = Tr, (G3) but nothing about Tr, (G4). Using
(Q.3) though, we can infer though that ¢ is ‘well-behaved’ on a large part of F(v), as defined
in (4.4.15). Recall also our definitions of F7 (v) and Fg(v).

Claim 4.4.9. We have {(y1,y2) > (1 = B){ for all (y1,y2) € Fr(v).

Proof of Claim:

By (Q.3), we have that

d5p3n2

20

|Tr, (GE) NFs(v)| =
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noting that Tr,, (G;)NFs(v) = Tr, (G)NFg(v) due to the fact that Fs(v)  E(T';). Furthermore,
it follows from (iii) and the fact that v € Z C Z;, that

Tty (Ga) \ W*| < BITr, (Ga)l < 28(pd)°n*.
Hence, as 8 < d, we can conclude that W* N Fg(v) # 0 and so

(1-p)¢ < min_ ¢(yi,y2) <  max (y1,¥2) £ min 1, ¥2)s
20 ()’1,)’2)€W*§ Iy (yl,yz)EFs(V)g Y (yl,yz)EFL(V)§ Mk

using (ii) in the first inequality. [

We now appeal to (Q.3) to lower bound the size of |¥, ;| as follows:

Waol= > L)

(y1,2) €T, (Ga)

> Z £(y1,¥2)
(¥1,y2) €Tr, (G )NFL(v)

> (1-p)|Tr, (Ga) N FrL(v)|

. {_d5p3n2

— 4.4.20
2 s ( )

where we used Claim 4.4.9. Putting (4.4.17), (4.4.19) and (4.4.20) together, we get that

715,32 2 2
{dpn>d d_

¥ 2 Vsl 2 —— 2 =[Pl 2
Wi, (G| 2 [Wus ] >3 5o/ Pvil 2 150

¥, (G,

as required.

It remains to verify that for G = I}, the statements in (Q.2) and (Q.3) hold with probability at
least 1 —n~K. We start with (Q.2), which follows simply from Corollary 4.2.4 and Lemmas 4.2.7
and 4.4.4. Indeed, from those results (using that % < %) and a union bound, with probability
at least 1 — n~2X | we have that | Z,| > (1 — &’)n, |Z3| = (1 = 2&)n and if (Q.1) holds in G = 'y
then |Z;| > (1 — B’)n. It then follows easily by our choice of constants that the statement of
(Q.2) holds in G =T, with probability at least 1 — n=2X.

For (Q.3), we will appeal to Lemma 4.2.6 (2). Note that for a fixed v € V¢ \ {u} the value
of £, (wyi, wy) for (wi,ws) € Vg‘ X Vlf does not depend on the random status of any of the edges
containing u or v. Indeed, our definition of £, counts only embeddings that leave both u and v
isolated. We also have that the random set of edges F(v), as defined in (4.4.15), is independent of
the random status of any edges adjacent to u or v. Consequently, in the language of Lemma 4.2.6,
we have that the random sets of edges Fy.(v) and Fs(v) are determined by (I'y),, (resp. (I's) ).
Therefore, for a fixed v € V¢, two applications of Lemma 4.2.6 (2) (once for u and Fr (v) and

once for v and Fg(v)) give that with probability at least 1 — n~(2K+D e have that (Q.3) holds
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for v. Here we used that v € Z C Z3 implies that |Fp(v)|,|Fs(v)| > dsl‘%"z. Taking a union
bound over all v € V¢, we have that (Q.3) holds in G = ') forall v € V¢, with probability at
least 1 — n~2K . A final union bound gives that with probability at least 1 — n~X, both (Q.2) and
(Q.3) hold in G =T";, which completes the proof. O

4.5 Stability for a fractional version of the Hajnal-Szemerédi the-

orem

In this section we discuss some fractional variants of the Hajnal-Szemerédi theorem (The-
orem 1.1.2). We will use the results here in our proof reducing Theorem II to Theorem II* in
Section 4.7. The starting point is to relax the notion of a K-factor to that of a fractional Ky-
factor in an analogous fashion to the fractional perfect matchings introduced in Section 2.6.
That is, for a graph G, a fractional Ki-factor in G is a weighting w : Kx(G) — Ry such
that X g ek, (G,u) @(K) = 1 for all u € V(G). If all cliques K € Ky (G) are assigned weights
in {0, 1}, we recover the notion of a Kj-factor and so the definition of a fractional Ky -factor is
more general. However, from an extremal point of view, the same minimum degree condition
is needed to force both objects. Indeed, focusing on the case when n € kN, the Hajnal-
Szemerédi theorem (Theorem 1.1.2) gives that graphs G with n vertices and minimum degree
at least (X2)n have Kj-factors and hence fractional Ky-factors whilst the same construction
proving the tightness of Theorem 1.1.2 can be used to show tightness for fractional factors, as
we now show. Take a graph G to be a complete graph with n € kN vertices with a clique
of size 7 + 1 removed to leave an independent set of vertices /. Therefore G has minimum
degree 6(G) = (%)n — 1 and suppose for a contradiction that G has a fractional Ky-factor
given by a weight function w : Kx(G) — Rso. Then we have that > g <k, (G,u) @(K) = 1 for
all u € V(G) and note that for w # w’ € I, we have that K; (G,w) N Kx(G,w’) = 0 as [ is an

independent set. Therefore

PR ED DY w(K)ZIII:%+1

K eKi (G) wel KeKy (G,w)

but we also have that

Dowm=p Y k=1,

K €Ki (G) ueV(G) KeKy(G,u)

a contradiction. The results of this section, which may be of independent interest, will give
stability for this phenomenon, showing that if we avoid the construction detailed above (and
other similar constructions), by imposing that a(G) < (% — n7)n for some n > 0, then a weaker

minimum degree condition of 6(G) > (% — y)n for some y = y(n) > 0, suffices to force a
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fractional K-factor. Here we will only focus on the cases k = 2 and k = 3, as these are all we
will need. However all results shown in this section hold more generally for all k£ > 2, as shown
in [5].

As with our results on fractional perfect matchings in hypergraphs in Section 2.6, here we
will also use that the existence of a fractional Kj-factor can be encoded by a linear program
whose dual is a covering linear program which assigns weights to vertices such that every clique
is sufficiently ‘covered’. The duality theorem from linear programming will then be used to

transfer between the two settings.

Theorem 4.5.1 (stability for fractional Hajnal-Szemerédi). For every n > 0 and k € {2, 3},
there is some vy > 0 such that the following is true for all n € N. Let G be an n-vertex graph

with 6(G) > (% - y)n and a(G) < (% - n)n. Then G contains a fractional Ky -factor.

Proof. We begin by making some observations. First, note that the existence of a fractional K-
factor in a graph G is the same as saying that there exists a perfect fractional matching in
the k-uniform hypergraph 7€ = #€(G) with vertex set V(#€) = V(G) and the edge set of #€
corresponding to the set of k-vertex cliques in G. Note that for k = 2, #0(G) = G. Now,
as discussed in Section 2.6, we can encode the existence of a perfect fractional matching (and
hence a fractional K-factor in G) as a linear program which calculates the fractional matching
number ¥*(¥#€). Indeed from Proposition 2.6.1 (1), we have that G has a K;-matching if and
only if #*(#€) = . Moreover, taking the dual of the linear program that calculates ¢ (7€) gives
a covering linear program in which we place non-negative weights on the vertices of G, with
minimum sum, subject to the constraint that the total weight on the vertices of each element
of Ki(G) = E(JC) is at least 1. The optimal outcome of the covering linear program, we call
the fractional cover number of 7€, denoted 7*(#€), and the strong duality theorem from linear
programming implies that to prove the existence of a Ky -factor, it suffices to prove that 7*(#€) >
- Unpacking this and returning to the graph perspective, we have that Theorem 4.5.1 follows if

we prove the following claim.

Claim 4.5.2. For every n > 0 and k € {2,3}, there is some y > 0 such that the following
is true for all n € N. Let G be an n-vertex graph with 6(G) > (% - ¥)n and a(G) <
(3 = n)n. Suppose c : V(G) — Rsq is any weight function such that for each Q € Ky(G) we
have 3, co c(v) 2 1. Then 3, cy gy c(v) = T

Proof of Claim: We begin by addressing the k = 2 case and prove that for this we can simply
take y = %. So fix a graph G as in the claim. Let g : V(G) — Rsq be an optimal fractional
cover of G (see Section 2.6 for the definition). It suffices to show that 3, ¢y (G) 8(v) = 7 as
we have that 3, cy (g)c(v) = 7°(G) = [g| for all weight functions ¢ : V(G) — Ry¢ such
that for each ¢ € E(G) we have ., c(v) > 1. Now by Proposition 2.6.2, if g(v) > 0 for
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all v € V(G) then |g| > 5 and we are done. So assume this is not the case and let the vertices

of G be vy,...,v, in order of decreasing weight, i.e. g(v;) > g(v;) ifi < j.

Therefore g(v,) = 0 and since v,, has at least (% - %)n neighbours, we see that for each i

such that v;v, € E(G), we have g(v;) > 1. In particular, g(v;) > 1 for each i < (% - %)n.
Furthermore, the vertices {vi i > (% + %)n} do not form an independent set, so there is an edge
within this set; at least one endpoint of this edge has weight at least 1, and in particular each
vertex v; with (3 — #)n < i < (3 + Z)n has weight at least 1. Summing the weights g(v;), we

obtain that |g| is at least 5 as desired.

Next, we prove the claim for k = 3. So let 7 > 0 and choose 0 < y < 5. Fix some graph G
as in the claim and let ¢ : V(G) — Ry be an optimal fractional cover of the 3-uniform
hypergraph #€ = #€(G) defined at the beginning of the proof. As in the k = 2 case, it suffices to
prove the claim for the weight function ¢ = g. Again, we order the vertices of G as vy, ..., v,
so that g(v;) > g(v;) if i < j, and by Proposition 2.6.2, we can assume that g(v,) = 0. For
convenience of notation, we relabel v, as u; = v,,. Now from the minimum degree condition,
at least (3 — y)n vertices are neighbours of u;. Consider the last ( — 5y)n of these neighbours
according to the order on the vertices. Since y <« 1 they do not form an independent set and so
contain an edge uu3. Since Zle g(u;) > 1, and g(u;) = 0, one of these vertices has weight at

least % In particular, g(v;) > % whenever i < (% +4y)n.

Now let g* := g(v(1/3-2)n)- If g > 1 then we have

Z gvi) = (3 -2y)n+1-6yn>

i€[n]

Wi

and we are done; so we can assume g* < 1. Next, we let G’ denote the subgraph of G induced by
vertices v; withi > (3 +4y)nandletii := v(G’) = (3 —4y)n. If eis any edge in G’, then e has a
common neighbourhood in G of size at least (% — 2y)n, and so in particular e extends to a copy
of K3 in G by adding a vertex whose weight is at most g*. Thus the function ¢’(u) := #g(u)
on V(G’) is a weight function on V(G’) taking values in Ry¢ and such that },., ¢’(u) > 1 for
each e € E(G’). Furthermore every vertex in G’ has at most (% +y)n non-neighbours in G, at

most all of which are in G’, so the minimum degree of G” is at least /i — (3 +y)n > (3 — £)it

asy < 7. We also have that @(G’) < (3 —n)n < (3 - Z)i.

We are therefore in a position to apply the the case k = 2 of Claim 4.5.2 to G’, with g replacing i
(recalling that taking y as % suffices in this case). We conclude that

Z c’(u) >

ueV (G’)

= (5-2y)n

N =
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and so

* * n
2,80 zg (5-2y)n+g 6yt (1-g) - (5 -2)n> 3.

i€[n]

as desired. ] m]

We will in fact need some more general results. First we want to be able to set (potentially different
but close to uniform) weights A(u) for each u € V and obtain a weighting w : K (G) — R such
that Y x ek, (G.u) @(K) = A(u) for all u € V(G). The case of fractional Ki-factors corresponds
to setting A(u) = 1 for all u € V(G).

Corollary 4.5.3. For everyn > 0 and k € {2, 3}, there is some y > 0 such that the following is
true for all n € N. Let G be an n-vertex graph with §(G) > (% —y)nand a(G) < (% - n)n.
Let A : V(G) — N be a weight function with A(u) = (1 + y)% 2vev(G) AW) forallu € V(G).
Then there is a weight function w : Kx(G) — Ryq such that Yk ek, (G,u) @(K) = A(u) for
allu € V(G).

Proof. Fix some k € {2,3} andn > 0. Choose 0 < y < y" < n. Now let G and A be as in
the statement of the corollary. We define an auxiliary graph H by blowing-up every v € V(G)
to an independent set of size A(v) (that is, every edge is replaced by a complete bipartite graph).
Then, with N = v(H) = ¥,y (G) A(v), we have 6(H) > (&5 — /)N and a(H) < (§ — 7)N.
Hence, we can apply Theorem 4.5.1 to H and obtain a weight function wy : Ky (H) — Rxo
such that X grck, (G,x) @ (K') = 1 for all x € V(H). We define w : Kx(G) — Rxo by w(K) =
2krek, (H[k]) @H(K'), where H[K] is the subgraph of H induced by the blown-up vertices

of K. This weight function w satisfies the desired conditions. O

Next, we extend yet further to guarantee an integer-valued weight-function w : Kx(G) — N. In
order for this to work, we need that our function A assigns each vertex a sufficiently large weight.
In applications this will be guaranteed as our weights A will be proportional to the number of
vertices n of a host graph but Theorem 4.5.4 will actually be applied to the reduced graph R
after applying the regularity lemma to the host graph and hence the number of vertices of R (the

parameter n in Theorem 4.5.4) will be bounded by some constant.

Theorem 4.5.4 (stability for fractional Hajnal-Szemerédi with integer weights). For everyn > 0
and k € {2, 3}, there is some y > 0 such that the following is true for all sufficiently large n € N,
Let G be a connected n-vertex graph with 5(G) > (52 — y)n and «(G) < (+ —n)n. Let A :
V(G) — N be a weight function such that A(u) = (1 £ %)% Zvevc) AW), A(u) = n** for
all u € V(G) and k divides 3., cy Gy A(v). Then there is a weight function w : Kx(G) — N
such that 3k ek, (G.u) @(K) = A(u) for allu € V(G).
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Note that for £ = 3, the requirement that G is connected is readily implied by the minimum

degree condition in this theorem.

Proof of Theorem 4.5.4. Fixsome k € {2,3}andn > 0. Choose y < 5 and suppose G and A are
given as in the statement. We will construct w in three steps. Define 1’ : V(G) —» N by A’ (u) =
A(u)—k|Ki (G, u)|n* > 0. By Corollary 4.5.3, there is some weight function w’ : Kx(G) — Rsq
such that Y g ek, (G,u) @' (K) = A'(u) for all u € V(G). We define w” : V(G) — N such that,
for each K € Ki(G),

(i) w’(K) e {|_w’(K) +knk |, [ (K) + knk'l}, and

(i) k Xkek, ()@ (K) =2ev () A(V).

Note that this is possible since by construction the unrounded sum satisfies (i) and since k
divides 3., ¢y (g) A(v). Furthermore, for each u € V(G), we have } k <k, (G,u) @' (K) = A(u) £

nk=1 (since the unrounded sum would be exactly correct and |Ky (G, u)| < n*~1).

Finally, we obtain w from w’’ via the following iterative process. As long as possible, we identify
pairs u,v € V(G) such that ¥ g ek, (G.u) @ (K) > A(u) and Y g ek, (G.v) @”(K) < A(v). If k =
3, we claim that there is an edge in the common neighbourhood of u and v. Indeed, since 6(G) >
(% — y)n, we have that the common neighbourhood of u, v has size at least (3 —2y)n > (1 —n)n
and so contains an edge wiw,. Let K, = {u,wi,wy} and K, = {v,w,ws}, and decrease
the weight of K,, by 1 and increase the weight of K,, by 1. If k = 2, we do the following:
Since @(G) < 7, G is not bipartite and hence contains an odd cycle. Since G is connected, this
implies that there is a walk from u to v of even length (even number of edges). We take a shortest
such walk (in terms of edges) and note that every edge is traversed at most twice by this walk.
We decrease the weight of the edge at # and then alternate increasing and decreasing the weight
of the edges along the walk. Note that in both cases the total weight at u decreases by 1 and the

total weight at v increases by 1, while the total weight at any other vertex remains unchanged.

Note that 3, ey (G)|4(v) = Xk ek, (v,6) @(K)| decreases by 2 in every step. So this process
finishes after at most n* steps. Clearly, at this time, we have YK ek (v.G) @(K) = A(v) for

allv € V(G) and w(K) > w”(K) —2n* > 0 for all K € K;(G), completing the proof. O

4.6 Triangle matchings

In this section, we detail some probabilistic lemmas which allow us to find a triangle matching,
that is, a collection of vertex-disjoint triangles, in various settings. These will be useful in

proving Theorem II in Section 4.7. Recall that the size of a triangle matching is the number of
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triangles it contains and we write V(7") for the set of vertices covered by a triangle matching 7.
The first lemma allows us to find a triangle matching in G, if G contains many triangles. We
refer the reader to the Notation Section for any notational conventions (for example, the definition
of G[ X1, X2, X3]).

Lemma 4.6.1. For all u > 0 there exists C > 0 such that the following holds. Let k,n € N, p >

Cn~23 and let G be an n-vertex graph.

(i) Assume that for every set X C V(G) with |X| > 3k, G[X] contains at least un> triangles.

Then, whp, G, contains a triangle matching of size at least 5 — k.

(ii) Assume that ng > k and V(G) = V1 UV, U Vi is a partition into sets of size at least ny so
that for every X; C V; with |X;| > k for all i € [3], G[X1, X2, X3] contains at least un®

triangles. Then, whp, G, contains triangle matching of size at least no — k.

Proof. Let > 0and set C = 50u~2. Let p, k, n, G be given as in the statement. We will deduce

the lemma from the following claim.

Claim 4.6.2. The following holds whp for all X C V(G). If G[X] contains at least t > un’
copies of K3, then the number of triangles in G ,[ X] is at least %p3t.

Proof of Claim: This is a straightforward application of Janson’s inequality (Lemma 2.1.3) and the
union bound. Note that the total number of choices of X is at most 2". Fix one such choice. The
expected number of triangles in G, [X] is p3t > up3n?, and we have A < 2max(pn?, p3n?).

Hence Janson’s inequality tells us that the probability of having less than % p3t triangles is at

most
2,6,6 2 Cul
exp ( - W) < exp ( - & mln(pnz,p3n3)) <exp (- =n)
and by our choice of C and the union bound, the claim follows. |

We only prove (i) as (ii) is similar. Suppose that 7~ is a maximal collection of vertex-disjoint
triangles with [7| < 5 — k. Then X := V(G) \ V(7) has size at least 3k but G ,[X] does not

contain a triangle. Thus, the claimed result follows from the above claim. O

The next lemma allows us to find triangles which cover a given small set of vertices, using edges

in specified places.

Lemma 4.6.3. For any 0 < u < 11W’ there exists C > 0 such that the following holds for
everyn € Nand p > Cn 23 (logn)'/3. Let G be an n-vertex graph, and let vy, . ..,v¢ € V(G)
be distinct vertices with ¢ < p’n. For eachi € [£), let E; C Tr,.(G) be a set of edges that form
a triangle with v; such that |E;| > un®. Moreover, suppose Ay, ..., A; € V(G)\ {vi,...,v¢}
are disjoint sets for some t € N. Then, whp, there is a triangle matching T = {Ty, ..., T;} in G,
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such that for each i € [{] the triangle T; consists of v; joined to an edge of E; and |A; NV (T)| <
12ul|Ak| + 1 forall k € [t].

1

Proof. Given 0 < pu < 155, we set C = 1000p~!. We can assume p = Cn~23(logn)'/3

, since

the probability of any given collection of triangles of G appearing in G, is monotone increasing
in p.

We use a careful step-by-step revealing argument and choose 71, ..., T, one at a time. We will
call an edge e € E(G) alive if its random status is yet to be revealed. Given k € [f] and i € [{],
say that Ay is full at time i if |Ax " V({T1,...,Ti—1})| = 12u|Ag|. Let X; be the union of the
sets Ay that are full at time i. For each step i € [£] in succession, we will reveal certain edges
of G, and then choose a triangle 7; among the edges revealed. Specifically, we first reveal the
random status of all edges in G adjacent to v;, which do not go to vy,...,vs, X; or a vertex
of Ty, ..., T;—;. Let the edges amongst these that appear in G, be denoted by S;. We then reveal
all alive edges of E; which form a triangle with v; using two edges of S;. From these edges we

pick any that appears, fixing the resulting triangle 7;, and move on to the next i.

Observe that by definition we do not reveal any edge of G, twice; and if we successfully choose
a triangle at each step we indeed obtain the desired triangle matching. To begin with, we argue
that when we come to v;, most edges of E; are potential candidates to be in 7;. Note that any
edge of E; which is adjacent to any v; or 7; will not be a candidate; there are at most 3u’n
such vertices, which are adjacent to at most 3u’n® edges of E;. Any edge adjacent to X; is
also not a candidate; we have | X;| < % < Q—‘n and hence there are at most %nz edges adjacent
to X;. We also have that any candidate edge of E; must be alive. When we reveal edges at
some v ;, with probability at least 1 — n~2 by Chernoff’s inequality (Theorem 2.1.1), we reveal at
most 2pn = 2Cn'3(logn)'/? edges, and hence we reveal at most 4C2n?/3 1og2/3 n edges of E;

in this step. Since there are at most u’n steps, in total we will have revealed less than n7/4

edges
of E; whp. Note that any edge in E; which has not been ruled out for reasons outlined above, is
a candidate at the beginning of step i, for forming 7; with v;. Putting this together then, we have
that whp, for each i there remains at least % un? candidate edges of E; at the beginning of step i.

We denote this set of candidate edges by F;.

When we reveal edges at v;, for each edge of F; we keep the edges from v; to the endpoints of F;
with probability p?, and so the expected number of edges of F; whose ends are both adjacent to v;
in G, is PAF| > %pz;mz. Applying Janson’s inequality (Lemma 2.1.3), we have A < p3n’,

which is tiny compared to the square of the expectation, so with probability at least 1 — n=>

, at
least % p’un? edges of F; are revealed to lie in Ng »(vi). We now reveal which of these edges
survive in G ,; by Chernoff’s inequality (Theorem 2.1.1) and by our choice of C, with probability

at least 1 — n™2, at least % p3un? of these edges survive in G p» and in particular 7; exists.

Taking a union bound, the probability of failure at any step is o(1). m]
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The next lemma allows us to find a reasonably large triangle matching using a possibly sparse
set of edges, each of which extends to many triangles; we will use this to deal with nearly
independent sets which have size larger than %n Recall that we denote by deg; (e; X) the size of
the common neighbourhood of an edge e inside a set X. Recall also that given a set of edges E,
we will sometimes think of E as the graph Hg = (V(E), E) where V(E) denotes the set of
vertices contained in edges in E. We use notation like 6(E) := 6(Hg) and degg (v) = degy, (v).
Furthermore, given a set of vertices A C V(G), E[A] is used to denote the set of edges in E that
are contained in A, that is, E[A] :={e € E : e C A}.

Lemma 4.6.4. For any 0 < u < Wloo there exists C > 0 such that the following holds for

all n,8,61,6, € N, every n-vertex graph G and every p > Cn~*3(logn)'/3.

(i) Let X1, X2, X3 C V(G) be disjoint sets of size at least {5, and let E C E(G[X1]) be a
set of edges such that degg (v) > 6 for all v € X; and degg(e; X;) > un forall e € E
andi =2,3. Let no,n3 € Nwithny, + n3 < min(é,,u5n). Then, whp, there is a triangle
matching T = {T1,...,Tn4ny} in G, with n; triangles consisting of an edge e € E

together with a vertex of X; for each i = 2, 3.

(ii) Let X1, Xo C V(G) be disjoint sets of size at least ;. Let E; € E(G[X;]) be sets of edges
such that degg, (v) > 6; for all v € X; and deg(e; X3-;) > pn forall e € E; and i € [2].
Let n; € N with n; < min(6;, u>n) for each i € [2]. Then, whp, there is a triangle
matching T = {T1,...,Ty,4n,} in G, with n; triangles consisting of an edge e € E;

together with a vertex of X3_; for eachi € [2].

Observe that, unlike other lemmas in this section, both cases of this lemma are very tight and
we can’t even guarantee more vertex-disjoint triangles in the underlying graph G. If the edges E
have small maximum degree however, the situation is somewhat easier and we will make use of

this in the proof of Lemma 4.6.4. We obtain the following lemma.

Lemma 4.6.5. For all u > 0 there exists C > 0 such that the following holds for all n € N,
every n-vertex graph G and every p > Cn=23(logn)'/3. Suppose that E is a subset of E(G)
with A(E) < un and un < |E| < p*n®. Suppose in addition that for each edge e € E there is
a given set X, of size | X.| = un consisting of vertices v € V(G) \ V(E) such that e € Tr, (G).

Then, whp, there is a triangle matching Ty, . . . , Ty in G ,, where each T; consists of an edge e € E
together with a vertex of X., such that £ > 1|(51|n'
Proof. Let0 < % < p. We may assume that p = Cn=2/3(logn)'/3 and that n is large enough

for the following arguments. We will deduce the lemma from the following claim.

Claim 4.6.6. Whp the following is true for all X C V(G) with | X| < % IfIE[V(G)\X]| > %
and | X, \ X| = '“—2" for all e € E, then there is a triangle in G,[V(G) \ X] consisting of an
edge e € E together with a vertex of Xe.
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Proof of Claim: This is a straightforward application of Janson’s inequality and the union bound.

Note that the total number of choices of X is at most n!1/(#)  Fix one such choice. Let Y

denote the number of suitable triangles in G,[V(G) \ X] and note that A := E [Y] > w >
2 |E] A 5 2 4.2

C*log(n)~-. Furthermore, we have A < 2max(p’|E[n*, 1) < 2max(;p nad, ) < 2A4. Hence,

by Janson’s inequality (see Lemma 2.1.3), the probability of having less than /5' triangles is at

most 2

exp ( - @) < n CIElm,
The claim now follows by taking a union bound and noting C > lll [
Assume now the high probability event in the claim occurs and let 71, ...,7, be a maximal
triangle matching as in the statement of the lemma. Suppose for contradiction that £ < EL and

10un

let X be the set of vertices covered by 71, ...,T,. We have |E[V(G) \ X]| = |E| — | X|un = %
and | X\ X| > ,un—% > % forall e € E, and hence there is a suitable triangle in G, [V (G) \ X]

which extends the triangle matching, a contradiction. O
We are now ready to prove Lemma 4.6.4.

Proof of Lemma 4.6.4. Let( < % < . We begin by proving (i/). We may assume that § < p’n

and that n is large enough for the following arguments.

Let G1, G2, G3 be independent copies of G, /3. Observe that G; U G U G3 is distributed
like G, for some p’ < p and therefore it suffices to show that G U G, U G3 contains our
desired triangle matching 7~ whp. In what follows we will find 7~ as the disjoint union of three
triangle matchings 77, 7> and 73. For i € [3], the edges of G; will be used to find the triangles
in 77 and we will reveal G, G, and G5 at different stages of our process, making use of their

independence.

Let B :={v € X; : degg(v;X;) > pun},andlet S .= X; \ B. If [B| > ny+n3, let 7] =T, =
0, né = né = 0, and move to the last stage of the process, in which we find 73. Otherwise,
fix n} := min(ny + n3 — |B|, n2) and n} := ny +n3 — |B| — n}, = max(0, n3 — |B|). In a first round
of probability we find a triangle matching 77 of size n/, in G|, each triangle containing an edge
in E[S] and a vertex in X,. This triangle matching exists whp due to Lemma 4.6.5. Indeed
we have that A(E[S]) < un (by the definition of S) and deg(e; X») > un for all e € E[S]. It

remains to estimate |E[S]|. For this, note that

|E[S]]

v

IS1(6 - |BI)
({6 = 6)(n2 +n3 — |B)
f—o(nz +n3 —|B|) = un. (4.6.1)

v

1
2
1
2

vV
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Furthermore, if |[E[S]| > p?n? then we can shrink E[S] to some subset having size exactly u?n>.

Applying Lemma 4.6.5 then gives a triangle matching of size at least ¢ > ‘foﬂl. If E[S] was

shrunk to have size ,uznz, then ¢t > {l—on > né and if not, then

n(nz +n3 — |B|)

>n +n3—|B| >nl,
400un 2 +n3 =Bl 2 my

using (4.6.1). In either case we can pick a sub-triangle matching 77 of the desired size n/).

We now fix $” = S\ V(77). Similarly to the previous stage, we will use G, to find a triangle
matching 7; of size n/ such that each triangle contains an edge in E[S’] and a vertex in X3. We
still clearly have that A(E[S’]) < un and deg(e; X3) > un for all e € E[S’]. Moreover, we have
that

|E[S]| = |E[S]| - pn - 2n5 > (2 — 2un) (ny + n3 — |B) = pun,

where we used (4.6.1) and the fact that 2né vertices of S were used in 77, each of which has
degree at most un in E[S]. Therefore, as in the previous phase, Lemma 4.6.5 gives the existence
of at least n} vertex-disjoint triangles in G3, each of which contain an edge of E[S’] and a vertex

in X3. From this, we choose our triangle matching 7; of size n;

In our final phase we find a triangle matching 73 in G3 to complete 7 = 77 U 7, U 73 as desired.
Let X" = X; \ (V(71U 7)) fori € [3] and note that B C X|”. Further, fori € [2], letn]’ = n; —n]

and note that each n;" > 0 and n/

2
size n;’ for each i = 2,3. Since n} +nf < ny+n3 <6 < wn, it follows from Lemma 4.6.3,

+nf = min(|B|,ny + n3). Pick disjoint subsets B; C B of

that whp there is a triangle matching 73 of size n}’ + n} in G3[X{" U X7’ U XJ'] consisting of n;’
triangles which contain an edge in E[X{’] and one vertex in X/, for each i = 2,3. Indeed, in
applying Lemma 4.6.3, we can fix ¢t = 0 (we do not need to use the full extent of the lemma
here) and fori = 1,2 and v € B;, we choose a collection of at least & i edges f in Tr, (G) such

1
that | f N X["| = |f N X/'| = 1. These edges exist as

degp (v: X|") > degp (v X)) — [V(TTUTR)| > un — 46 > &

and for each edge e € E[X]'], degg(e,X]") > un — [V(TT U T)| = & fori = 1,2. To
conclude, we have that whp all three stages of the process above succeed and we have a triangle
matching 7 =71 U7 U T3in G, as in (i).

Part (i) is similar to part (/). We begin again by noting that we can assume ¢; < un fori = 1,2.
We will again find three triangle matchings 77, 73, 73 whose union will give us our desired
triangle matching 7~ and we again use three independent copies G, G2, G3 of G, 3, finding the
triangles in 7; using the edges of G; for i € [3]. For convenience, let us also fix 4’ = 5. Now

fori =1,2,let B; := {v € X; : degg, (v; X;) > u'n} and if |B;| > n;, then shrink B; to have
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size n; (that is, take B; to be a subset of {v € X; : degg, (v; X;) > u'n} of size n;). Further,

fori € [2],let S; := X; \ B; and define n] = n; — |B;|. Let us assume for now that n| < n}.

In G, we now find 77, a triangle matching of size n| with each triangle containing an edge
in E[S)] and a vertex of S;. If n{ = 0 there is nothing to prove here and in the case that nj > 1
(and so |By| < ny), such a triangle matching exists whp due to Lemma 4.6.5 (applied with u’
replacing u). Indeed, the verification of the conditions of Lemma 4.6.5 is almost identical to
our proof of the existence of 77 in part (i). One slight difference is that, for an edge e € E[S}]
we cannot use all of N(e; X») to give the set X, needed in Lemma 4.6.5. Indeed, we need to
discount vertices in B, but as |By| < ny < w’n and [N(e; X,)| > un, we can certainly have at

least u’n vertices in N(e; S2).

Given that we succeed in finding 77, we now turn to finding 75 in G,. For this we define S} =
S; \ V(71) for i = 1,2 and we aim to find n} vertex-disjoint triangles, each containing an
edge in E3[S]] and a vertex of S|. If n) = 0, then the existence of 7; is immediate. For
the case when n) > 1, we again appeal to Lemma 4.6.5 (with u’ replacing u). Note that
due to the fact that né > 1, we have that B, contains all high degree vertices and so, in

particular, A(E>[S}]) < u’n. Also using this, we have that

[E[S5]1 = |E[S2]| = [V (T7) N Salu'n
5(1Xa = [B2]) (62 = |Ba) = nfu'n

n ’ ’ ’
0 —nu'n

\%

\2

> (45— ')y > w'n,

where in the last two inequalities, we used that n] < n and that we are in the case that n} > 1.
Finally, it is not hard to see that |[N(e;S7)| > u'n for all e € E>[S)] and so the conditions of
Lemma 4.6.5 are indeed satisfied and whp we get our desired triangle matching 7;. For the
above, we needed that n] < n}. In the case that n) > nj, we can run exactly the same proof
except that we first find 7; and then find 77 after.

Finally, we find 73 in G3 by applying Lemma 4.6.3. Indeed, similarly to our proof for part (7),
we fix §7 = S\ V(7;) for i € [2] and we know that for each i € [2] and v € B;, we have at
least # edges f € Tr,(G) such that [f N S| = [f NSy | = 1. Therefore, as |B;| + |Bz| =
ny+ny—nj—nj < 2u°n, Lemma 4.6.3 gives that whp, there exists a triangle matching 75 in G3,
of size |B;| + | B2|, such that for each i € [2] and v € B;, there is a triangle in 73 containing v,
some vertex in S;" and a vertex in S ;. Altogether, we have that whp, we can find all the
triangle matchings 7; and 7~ = 77 U 7, U 73 provides the desired triangle matching, completing

the lemma. O
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4.7 Reduction

We are now in a position to prove Theorem II, assuming Theorem II*. Our proof relies on the
use of the Regularity Lemma (Lemma 2.2.1), we refer the reader to Section 2.2 for the relevant
definitions. Before giving the details, let us briefly sketch the approach. Given G with n € 3N

vertices and minimum degree at least %n, we separate three cases.

Our first case is that there is no set S of about % vertices such that G [S] has small maximum degree.
In this case, we apply the Regularity Lemma (Lemma 2.2.1) and observe that the (&, d)-reduced
graph R has no large independent set. By the Hajnal-Szemerédi Theorem for K3-matchings
(Theorem 2.5.1), we find a large triangle matching 7 in R, and make the corresponding pairs
of clusters super-regular by removing a few vertices to obtain a subgraph T of G. If T were
spanning in G, and the clusters were balanced, we would be done by Theorem II*. In order to fix
this, we need to remove a few more triangles covering the vertices outside 7' (which we do using
Lemma 4.6.3) and then further triangles to balance the clusters of 7' (using Lemma 4.6.1). For
the latter we use the k = 3 case of Theorem 4.5.4 to find a fractional triangle factor which tells
us where to remove triangles: this is the point where we use the fact that G has no large sparse

set. We obtain the following lemma (whose proof we defer to later).

Lemma 4.7.1 (No large sparse set). For every sufficiently small yu > O there exists constants C >
0and 0 < d < u such that the following holds. Letn € 3N, p > Cn=%/3(logn)'’? and suppose G
is an n-vertex graph with 6 (G) > (% - %)n such that there isno S C V(G) of size at least (% —2u)n

with A(G[S]) < 2dn. Then whp G, contains a triangle factor.

Note that in the case that there is no large sparse set, we can reduce the minimum degree necessary

slightly.

Our second case is that there is a set S of about % vertices such that G[S] has maximum degree
at most 2dn, but there is no second such set in G — S. The idea here is that we will remove a few
triangles from G in order to obtain a subgraph of G which can be partitioned into sets X;, X, of
sizes | Xp| = 2| X | = %”, such that all vertices of X; are adjacent to almost all vertices of X, and
vice versa (here Lemma 4.6.4 will be very useful). Note that, with this degree condition, X, can
be very close to the union of two cliques of size about £; this leads to a ‘parity case’ in which we
have to be very careful, which is something of a complication. If we can arrange for the correct
parities however, it will be easy to split X; into two sets, each of which induces a super-regular
triple with one of the ‘near-cliques’ and apply our Theorem II*. If we are not in the parity case,
we will apply the Regularity Lemma to X; and find an almost-spanning matching AM* in the
reduced graph R. We proceed similarly as in the previous case, making these pairs super-regular,

removing ‘atypical’ vertices and then balancing the pairs. Here, we make sure that every triangle

we remove has two vertices in X, and one in X to keep the right balance between the two parts.
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Finally we can partition X; into smaller sets and form balanced super-regular triples with the
edges of M* in order to apply our Theorem II*. We obtain the following lemma (whose proof

we defer to later).

Lemma4.7.2 (One large sparse set). Forevery sufficiently small yu > 0, there exists constants C >
0 and 0 < 7,d < p such that the following holds for all n € 3N and p > Cn~>/3*(logn)'/3.
Suppose G is an n-vertex graph with §(G) > %n, and suppose S is a subset of V(G) with |S| >
(% —1m)n and A(G[S]) < tn. Suppose further that there is no S" C V(G) \ S of size at
least (% —2u)n with A(G[S']) < 2dn. Then whp G, contains a triangle factor.

Our third and final case is that there are two vertex-disjoint sets S, S> each of which has
size about 5 in G and small maximum degree. In this case G must be very close to a balanced
complete tripartite graph. We start by partitioning V(G) into sets X, X, and X3 of size around %,
so that (X1, X5, X3) is an (g, d*, §)-super-regular triple, where d is close to 1, but § can be quite
small (we need 6 > & in order to apply Theorem II*). We remove some carefully chosen
vertex-disjoint triangles in order to balance the X; and to remove some ‘atypical’ vertices. This
leaves us with a balanced (g, d*)-super-regular triple for some d close to 1, and Theorem IT*

finds the required triangle factor, giving the following.

Lemma 4.7.3 (Two large sparse sets). There exists constants C,t > 0 such that the following
holds for alln € 3N and p > Cn~?3(logn)'/3. Suppose G is an n-vertex graph with §(G) > %n,
and suppose S| and Sy are disjoint subsets of V(G) with |S;| > (% —7T)nand A(G[S;]) < tn for

eachi=1,2. Then whp G, contains a triangle factor.
Before we give proofs of these three lemmas, we show how they imply Theorem II.

Proof of Theorem II. Choose 0 < u; <« 13 < 1 where 13 is chosen small enough to apply
Lemma 4.7.3. Let 1,d> < up be the constants returned by Lemma 4.7.2 with input wu, and
choose 0 < y; < 1,d>. Finally, let d; < p be the constant returned by Lemma 4.7.1 with
input w1 and choose 0 < % < dy. Letn € 3N and let p > Cn~?/3(logn)'/? and suppose that G

. . 2
is an n-vertex graph with 6(G) > %'

If G contains no subset of size at least (% — 21)n vertices with maximum (induced) degree
at most 2dn, then by Lemma 4.7.1, G, contains a triangle factor whp. We may therefore
suppose G contains a subset S of vertices of size at least (% - 2,ul)n > (% —72)n with maximum
degree A(G[S1]) at most 2din < 1on. If there isno S, € V(G) \ Sy of size at least (3 — 2u2)n
with maximum degree A(G[S>]) at most 2d»n, then by Lemma 4.7.2, G, contains a triangle
factor whp. We can therefore suppose that G contains a subset S, disjoint from §; of size at
least (% - 2u)n = (% — 73)n with maximum (induced) degree at most 2dan < t3n. So by

Lemma 4.7.3, G, contains a triangle factor whp. O
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The remainder of the section (and indeed the chapter) is devoted to proving the three lemmas.

4.7.1 Case: No large sparse set

Proof of Lemma 4.7.1. Fix some 0 < p << 1 and choose 0 < mLO <e<xd<u Let My > mog

be returned by Lemma 2.2.1 with input mg, € and fix y = % - % and 0 < é < MLO Assume
also that n > Mj. Let p and G be as in the statement and let G|, G, G3 be independent copies

of G,/3; we will show that G| U G2 U Gj satisfies the desired properties whp.

We apply Lemma 2.2.1 to G, and obtain an (&, d)-reduced graph R on m vertices with my < m <
My and minimum degree at least (% - % -d-2&)m > (% — 2d)m. Recall that we identify the
vertex set of R as [m] with each i € [m] corresponding to a cluster V; in the e-regular partition
of V(G).

Claim 4.7.4. We have a(R) < (% — p)m.

Proof of Claim: Suppose for a contradiction that R contains an independent set / of size (% —u)m.
Now call an index i € I bad if there are more than v/em indices j € [m] \ {i} such that (V;,V;)
is not e-regular. Due to the fact that the V; form an e-regular partition, we have that there are
at most 24/em bad indices. Let I’ be the set obtained from I after removing bad indices and
so |I’| > (% - 37")m Now in |J;¢; V; there must exist at least %n vertices, each of whose
degree into |J;¢;- V; exceeds 2dn, otherwise removing all such vertices would leave a set S
whose existence is forbidden in the lemma statement. By averaging, there is some i* € I’ such
that Q—‘|V,-*| of these vertices are in V;«. Let U+ C V;» be this subset of high degree vertices. Now
vertices of V;+ can have at most |V;-| neighbours in V;-, and at most vem - - < +/en neighbours
in sets V; such that j € I and (V;+,V;) is not e-regular (as i* € I’). So the vertices of U;- all
have at least %n neighbours in total in sets V; such that j € I, j # i* and (V;+,V;) is e-regular.
By averaging, there is one of these sets V; such that the density between U;- and V; exceeds %d .

But (V;+, V;) is e-regular and has density less than d; this is a contradiction. [

We apply the Hajnal-Szemerédi Theorem for K3-matchings (Theorem 2.5.1) to R, which gives us
a triangle matching 7 * in R covering at least (1 —13d)m vertices. We denote by T* := V(7 ) the
setofindicesintriangles of 7. By Lemma2.2.4, thereare V/ C V; foreachi € T* suchthat [V/| =
[(1 —3&)|V;|] and, for every triangle ijk € 77, the triple (V/, VJf, V) is (2e,(d - &)*,d - 3¢)-
super-regular. LetT = (J;cr- V/ be the set of vertices in G which are in a cluster V/ corresponding
to a triangle of 7. Let X = V(G) \ T. Observe that | X| < en+13dn+3en < 14dn. LetW Cc T

be a set such that

(i) [WNV/|=(3+ )2 foreachi € T*,

(i) degs(viW) > %|W| for each v € V(G), and
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(iii) we have that degg (v;V/ N W) = (3 + 1) degg(v;V/) for each i € T* and v € V(G)
with degs (v V/) 2> e|V/|.

Such a set W can be found by choosing each vertex of T independently with probability % and
applying Chernoff’s inequality (Theorem 2.1.1) and a union bound.

We will start by covering X. We will not use vertices that belong to 7'\ W in order to maintain

super-regularity properties.

Claim 4.7.5. Whp in G|, there is a triangle matching 71 C K3(G{[W U X]) so that X Cc V(77)
and |V(T7) N V/| < 50Vd|V/| for all i € T*.

Proof of Claim: Let g := 4vd and enumerate X = {vi,...,ve}, noting that £ < ﬂzn. For
eachi € [{],let E; := E(G[W])NTr,, (G). Note that, since deg(v; W) > %|W| forallv € V(G),
we have |E;| > jin? for all i € [£]. Finally, let A; = V! for eachi € T*. The claim now follows

readily from Lemma 4.6.3. |

Letnow V" = V/\V(7) foreachi € T*. We would like to apply Theorem II* to the super-regular
triples (V/”, VJf’, V(') for each ijk € 7. However, these triples are not necessarily balanced.

The next claim corrects this.

Claim 4.7.6. Whp in G, there is a triangle matching T, C K3(G2[W \ V(71)]) so that |V \
V()| = L 552 foralli €T

Proof of Claim: The key idea in this proof is to use fractional factors to dictate how we remove
triangles in order to balance the parts. More specifically, we will apply our stability theorem
for the fractional Hajnal-Szemerédi theorem with integer weights (Theorem 4.5.4), using that
the reduced graph has large minimum degree and no large independent sets. In detail, let R’ =
R[T*] and let A : T* — N be given by A(i) = [V/'| - L%ﬁ]. Note that (% - 60\/3)}% <
A@) < [%%], and that }; .7+ A(Q) = n - 3|7| - 3|‘7'*||_%%J is divisible by 3. Also, we have
that §(R’) > 6(R) — 13dm > (% - 15d)|R’| and a(R’) < (3 — pu)m < (3 — £)|R’|. Hence, by
Theorem 4.5.4 (and the fact that d < ), there is a weight function w : K3(R’) — N such that
foreachi € T we have Y g ck, (r,i) @(K) = A(i). We claim that we can remove w(ij k) triangles
from G2 [V/" NW, V]f' nw, V,;' N W] for each triangle ijk of R’, making sure that all our choices
are vertex-disjoint. Indeed, observe that for any choice of X;, € V;" N W such that |X,,| > d;
for h € {i, j, k}, we have |K3(G[X;, X;, Xi])| > 15513113 due to Lemma 2.2.7 and the (&, d")
regularity of G[V;,V;, Vi]. Furthermore, observe that [V N W| > % - o for each i € T".
Hence, Lemma 4.6.1 (ii) implies that whp there are 27—0 S>3 (% -1 vertex-disjoint triangles

inG[V/ N W, V]f’ nw, Vlg’ N W] foreachijk € K3(R’), so we can select the desired number of

triangles for each K € K3(R’) one at a time. [
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Let now V/”" = V" \ V(7) for all i € T* and observe that we have covered all vertices except for
those in J;cr- V/”. We claim that (V/”, VJT”, V/")is (5e, (d/2)*, d[8)-super-regular forallijk €
7*. Indeed, this follows from the Slicing Lemma (Lemma 2.2.2), and from deg(v;V]f”) >
deg(v; V; \W) > %degG(v; ij) > %lV}fl for all v € V; and the analogous inequalities for other
pairs. Finally, we apply Theorem II* to each of these triples individually in G3 to obtain (whp)

a triangle matching 73 covering exactly U;er- V/". O

4.7.2 Case: Two large sparse sets

Next, we deal with the case when G has two large sparse sets; i.e. it looks similar to the extremal

complete tripartite graph. This is the easiest case; we will not need the regularity lemma.

Proof of Lemma 4.7.3. Choose 0 < é KTKp <K mlﬁ. Let n € 3N be large enough for the
following arguments and let p > Cn~?/3(logn)!/3. Let G and sparse sets S; and S, be given as
in the statement. Let G, G, G3 be independent copies of G /3. We will find a triangle factor

in G{ UGy U Gs.

Claim 4.7.7. There is a partition V(G) = X; U X» U X3 such that

(i) |Xi|= (% + p%)n foralli € [3],
(ii) deg(v;X;) > pnforalli # j € [3]andv € X;,
(iii) d(Xi,X;) 2 1-pCforall1 <i<j<3,

(iv) Foreachi € [3], if|X;| 2 5, thendeg(v; X;) 2 |X;|—4pn forallv € X; and j € [3]\{i}.

Proof of Claim: Fori € [2],let Z; = {v € V(G) \ (51 US>) : deg(v;S;) < pn}. LetU; = S; UZ;
fori € [2] and U3 = {v € V(G) : deg(v;S:) > (3 — 2p)nforeachi € [2]}. Note that,
since 6(G) > %n, Z and Z, are disjoint and hence U; and U, are disjoint as well. Furthermore,
by definition, Us is disjoint from U, and U;. Let Z’ := V(G) \ (U; U U, U Us) be the set of
remaining vertices. Partition Z’ = Z{ U ZJ U Z] so that Z/ = 0 if |U;| > % and |U;| + |Z]| < §
otherwise. Finally, let X; = U; U Z! for all i € [3]. Note that V(G) = X; U X5 U Xj is indeed a

partition.

We will first show that the sets Z;, Z, and Z’ are small. Leti € [2]. Since |S;| > (% - 7)n,
each vertex of S; has at least (% - 2‘r)n non-neighbours in §;, and so at most 27 non-neighbours
outside S;. Therefore, the total number of non-edges between S; and V(G) \ S; is at most tn”
(using here that we certainly have |S;| < 5 fori = 1,2). Since every v € Z; has at least 7 non-
neighbours in S;, this implies |Z;| < 47n. Moreover, the number of non-edges between U; U U,

and Z’ is at most 2tn? + (|Z1| + |Z2|)n < 10Tn?. Observe that every v € Z’ has at least pn
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non-neighbours in U} UU, (otherwise it would be in U3), and therefore |Z’| < pgn, by our choice
of 7. We now show that this implies condition (7). Indeed, we have that |Si],[S>| = (} = 7)n
where the lower bounds are directly from our assumption and the upper bounds are due to the
fact that every vertex in S; has (% — 7)n neighbours outside of S; for i = 1, 2. For each i, we add
at most (47 + p®)n vertices to S; to obtain X; and so we have that |X;| = (3 £ p”)n fori = 1,2.

Finally, the bounds on |X3| can be deduced from the fact that the X; partition V(G).

Furthermore, for each v € Z’, we have deg(v; S;) > pnsincev ¢ Z; fori € [2], and deg(v; Us) >
pn for otherwise v would be in Us. Clearly, we also have that deg(v; X;) > pnforalli € [2], ) €
[3] \ {i} and v € X; and so (if) holds. Moreover, we have deg(v; X;) = |X;| —2rnforall v € S,
and [ = 2,3 as v already has at least (% - ZT)n non-neighbours in S;. Since |Z; U Z{| < p'n,
this implies d (X1, X;) > 1 — p® fori = 2,3. Similarly d(X», X3) > 1 — p°.

Finally, let 7, j € [3] be distinct. If |X;| > %, then X; N Z’ = () by construction. Now if i = 1
ori =2, thenitis clear that deg(v; X;) > |X;| —4pnforallv € X; as v as deg(v; X;) < 2pn and
so v already has many non-neighbours in X; (considering the size of X; given in (7)). If i = 3,
then for any v € X;, we have that deg(v; X;) > deg(v;S;) > (% - 2p)n > |X;| - 4pn. This
establishes (iv). [

We now perform a stage of removing some vertex-disjoint triangles in order to obtain a balanced

tripartite graph.

Claim 4.7.8. Whp in G, there is triangle matching 71 C K3(G1) so that |X; \ V(71)| =
X\ V(T =X\ V(TD| = (5 - pO)n.

Proof of Claim: If all three sets X, X, X3 have size exactly %, we are done. Otherwise, one or

two of these sets has size exceeding %.

Case 1. Assume first that only one set exceeds % in size and, without loss of generality, this set
is X1. Letny == 5 —|X3|and n3 = 5 —|X3|, and let E = E(G[X1]). Observe that 6(E) > |X;| -
% = ny+n3. Furthermore, we have deg(e; X;) > |X;|—10pn > 7 for bothi = 2, 3. Therefore, by
Lemma 4.6.4 (i), there is a triangle matching 77 of size n +n3 in G| such that the triangles in 77
all have two vertices in X, n, of them have their third vertex in X5, and n3 of them have their third
vertex in X3. We then have | X; \ V(71)| = |X2 \ V(TD)| = X3\ V(TD)| = & - [X1| > (§ - p%)n,

as claimed, by our definitions of n, and n3.

Case 2. Assume now that there are two sets (say X; and X,) exceeding % in size. Fori € [2],
let n; := |X;| — 3 and E; = E(G[X;]). Observe that, fori € [2], 6(E;) > n; and deg(e; X3-;) >
|X3-i| = 10pn > 7 for all e € E;. Therefore, by Lemma 4.6.4 (i), there is a triangle matching 77
of size nj + ny in G, with n| triangles having two vertices in X; and one in X3, and n; triangles
having two vertices in X, and one in X;. Therefore, we have |X; \ V()| = | X2 \ V(T)| =
X3\ V(T)| = |X3] = (% — p%)n, as claimed. [ |
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Let now X/ = X; \ V(77) and observe that | X[| = |X]| = |X;|. Define

Y!:

4

{v € X/ : deg(v; X/) < (1= £)IX}]| for some j € [3] \ {i}} .

Since d(X/,X}) = 1~ 4p% for all 1 < i < j < 3, we have |Y/| < 4p°n for each i € [3].
Furthermore, for each i € [3] and vertex v € Y/ there are at least %p2n2 triangles of G

containing v and one vertex in each X J’ \Y J’ for j € [3] \ {i}. Indeed, we have that
deg(v; X)\Y)) > deg(v; X)) = 2IV(TD)| - Y]] > %,

for each j € [3] \ {i} =: {J1, j2}. Due to the defining condition of the ij , we then have that for
eachx € N(v; X;l \ ijl), we have that deg(v, x; X/’.2 \ Y;z) > %n. This implies the claimed lower

bound on the number of triangles containing v € Y.

By applying Lemma 4.6.3 (with r = 0), whp in G, we can find a triangle matching 7; C K3(G>)
with each triangle using one vertex from each partand such that Y{UY;UY; € V(72) C X{UXJUX]
and [V(73)| < 3(1Y{|+ Y31+ [¥3]) < pn.

Let now X;" := X/ \ V(7;) for each i € [3] and observe that |X]"| = |[X)'| = |[X]| 2 (% -
2p*)n. Furthermore, (X{", X5, X7') is (y/p, (1 = p)*)-super-regular by Lemma 2.2.5. Hence,
by Theorem II*, whp there is a triangle matching 73 in G3 covering the X;’". Together with 77

and 7; this gives a full triangle factor in G ,. O

4.7.3 Case: One large sparse set

Finally, we deal with the second case sketched in the discussion at the beginning of Section 4.7,
when there is one large sparse set but not a further disjoint one. We will use several of the ideas

from the previous two lemmas, and so will abbreviate the details in places.

Proof of Lemma 4.7.2. Fix some 0 < y << 1 and choose 0 < mLO <e<xd<xu Let My > mog

be returned by Lemma 2.2.1 with input mg, € and fix 0 < é KT K p K MLO Assume
that n € 3N is large enough for the following arguments. Let p, G and S be as in the statement of
the lemma and let G, .. ., G5 be independent copies of G /5. We will show that Gy U ... U G5

contains a triangle factor whp.

We begin with a claim that gives us a lot of structure. For n > 0 we will call a set X C
V(G) n-strongly connected! if e(X’, X \ X’) < % — nn? for all X’ C X, where we denote
by e(X,Y) = |X||Y| — e(X,Y) the number of non-edges between X and Y. Furthermore, we say
that X is n-close to complete if e(G[X]) > (% - 77)|X|2 and deg(v; X) > 1—10|X| forall v € X.

1This definition might appear somewhat strange now but will assure that the reduced graph in this proof is
connected.
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Claim 4.7.9. Whp there is a triangle matching 71 in G| U G, and disjoint sets X1, X, C V(G)
so that
(i) X1UXo =V(G)\ V() and |Xi| = 2 = (1 = p)n,
(ii) deg(v;X3-;) = (1 —4p)|X3-| foralli € [2] and v € X;,
(iii) X is 8d-strongly connected or there is a partition X, = X»,1UX5 2 so that, foreach j € 2],

we have that | X> ;| > 7 is even and X, ; is 200d-close to complete.

Proof of Claim: Let Y} = {v € V(G)\ S : deg(v; S) < pn}. LetU; = SUY; and U, = V(G) \ Uj;.

With a similar (and simpler) proof to that of Claim 4.7.7, one can show that

(P1) deg(v;U,) = |Uz| —2pn for all v € U; and deg(v; Uy) = pn forall v € Uy,
(P2) |Ui| = (3 £ p®)nand |Uz| = (5 £ p®)n, and

(P3) d(U;,Uz) > 1 - pS.

Let o = 10d and let Uy = U,,; U U, 1 be the partition of U, which maximises e(Us 1, Uz 2).
Throughout this proof, we will have to distinguish between two cases: either U, is o-strongly-
connected (this we will call the connected case from now on) or e(Uz 1, Uz2) > % —on?
(which we call the disconnected case). Although the process is very similar for both, we will

handle them separately, starting with the disconnected case.

The disconnected case. We claim that

Q) Uzl = (3 £20)nand e(Us, ;) > 3|Us, ;|*> — 20n® for both j € [2], and

(Q2) deg(v;Us,j) = 1 forany j € [2] and v € U, ;.

Indeed, (Q1) follows from the case assumption and the fact that 6(G) > 2?", and (Q2)
since U 1, U, are chosen to maximise non-edges in between (otherwise, moving a vertex

violating (Q2) to the other set increases the count).

In a first round of probability (G ), our goal is to balance the sizes. Assume first that |U;| >
z. Let np = 0if |Up| is even and ny = 1 otherwise, and let n3 = |Uj| = 5 —ny > 0.
Let E = E(G[U]), and observe that 6(E) > ny + n3. Furthermore, we have deg(e; U ;) >
|Us,j| = 10pn > 7 for both j € [2] by (P1) and (Q1). Therefore, by Lemma 4.6.4 (i), whp
there is a triangle matching ‘7}’ of size np + n3 = |Uy| — % in G| with each triangle having two

vertices in U; and one vertex in U, (ny have their third vertex in U,; and n3 have their third
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vertex in Us5). Let U] = U; \ V(7") and U} ;= U, \ V(7)) for i, j € [2]. By construction,
we have |U}| = 2|Uj| = % - 2|U;| > 2(3 - p°)n and |U} ;| is even for both j € [2].

Assume now that |U;| > %" Observe that for each j € [2] and X C U, ; of size |X| > §, we
have |K3(G[X])| = % by (Q1). Thus, by Lemma 4.6.1 (i), there are triangle matchings of
size 1z in each of G[U,,;] whp for both j = 1,2. Thus, we can pick a triangle matching 7’
of exactly 5 — |U,| from these, again taking either one or no triangle in U,,; depending on its
parity. By construction, we then have |Uj| = 2|U{| = 2|U;| > 2(% -p°, )n and |Uij| is even for
both j € [2] (where U] and Ué,j are defined as above by removing the vertices of 7;” from the

sets U; and Uy ; ).

Finally it remains to deal with the case that |U;| = 2|U;| = 2?” Note that as |U;| is even in

this case, we have that |U,, 1| and |U, | have the same parity. If they are both even, there is no
need to take any triangles in 7;” and we can move to the next stage. However, if they are odd
in size, we have to do a little more work. We say a triangle T is transversal if |V(T) N U;| =
[V(T)NU,, | = |V(T)NU,| = 1. We aim to prove the existence of a single transversal triangle
in G;. In order to do this, we first show that there are at least 7> transversal triangles in G.
Indeed, without loss of generality suppose that [U 1| < |Uz2| and let Yy C U,,; be the set of
vertices y in Uy 1 such that deg(y; U;) > (1 — p?)|U;|. Due to (P3), we have that |Yp| > 10+
Now for each vertex y € Yy, as |Ua,1| < |Uz,2| we have that y has some neighbour z in U, > and
due to (P1) and the fact that y € Y, we have that deg(y, z; Uy) > %’n and hence y is contained
in at least ’%n transversal triangles. Considering all y € Y, thus gives the existence of 7n?
transversal triangles in G. A simple application of Janson’s inequality (Lemma 2.1.3) gives that
whp at least one of these transversal triangles survives in G and so taking 7,” to be this single
triangle, U] = U; \ V(7,’) fori € [2] and Ué’j = U, ; \ V(7)) for j € [2], we again have in this
case that |U}| = 2|U]| = 2(|U;| - 1) > 2(% — p°)n and |U; ;| is even for both j € [2].

In a second round of probability (G2), we will remove ‘atypical’ vertices in U]. From this
point onwards, we will only remove triangles with one vertex in U{ and two vertices in Ué,j
for some j € [2], thus maintaining the right balance between U| and U, and the parity of Ué,1
and U, ,. For j € [2],let Y5 ; = {v e Ué,j s deg(v;U]) < |U{| - £n} and for each v € Y, ;
let £, = {ujuy : uy € Ul,up € Ué,j \ Y2 j,vuiuy € K3(G)}. It follows from (P3) (and
counting non-edges between U; and U,) that |V, ;| < 2p°n for both j € [2]. Furthermore,
(P1) and (Q2) imply that |E,| = (p — %)n . (1—10 - p4)n > p?nforall v € Y5 UYs,. Thus, by
Lemma 4.6.3, whp there is a triangle matching 7,” of size at most 4p°n in G, [U] U Uj] of the
desired form (each triangle having one vertex in U and two vertices in Ué,j for some j € [2])
such that Y, 1 UY2p, c V(7,”). Let 71 = 7,/ U T7,”, X; = U/ \ V(7,”) and X3 ; = Ué’j \V(7{")

for each i, j € [2]. These resulting sets have all the desired properties (i)-(iif).

The connected case. This case is very similar but less technical since we do not have to worry

about the sets U | and U . We will therefore skip some details.
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In a first round of probability (G1), our goal is to balance the sizes. The case |Uj| > 7 is
completely analogous to the disconnected case and we find a triangle matching 7,” of size |U; |- 5
in G with each triangle having two vertices in U; and one vertex in U,. Let U] = U; \ V(7))

for i € [2]. By construction, we have |U;| = 2|Uj| = % =2|Uy| = 2(% —ps)n.

Assume now that |U,| > %” Observe that for every set Z c U, with |Z| < dn and every v €
Uy \ Z, we have deg(v; Uy \ Z) > (% — d)n and thus there are at least dn” edges in N(v; U, \ Z).
Indeed due to the fact that there is no set $” C X, with [S’| > (3 — 2u)n and A(G[S’]) < 2dn,
we can find dn® edges by repeatedly removing high degree vertices from N(v; U, \ Z) and taking
the edges adjacent to them. Thus there are at least 1—‘6113 triangles in G [U, \ Z]. It follows from
Lemma 4.6.1 (i) that whp there are at least %n vertex-disjoint triangles in G [Uz]. Let 7" be a
triangle matching consisting of exactly 5 — |Uj| of these and let U] = U; \ V(7,’) fori = 1,2.

By construction, we have |U}| = 2|U/| = 2|U;| > 2(} - p°)n.

The process of removing bad vertices v in U] such that deg(v; U]) < |U{| - %n is analogous
to (and simpler than) the disconnected case and an application of Lemma 4.6.3 gives a triangle
matching 7,” € K3(G2[U{ U U;]) containing all the bad vertices and such that defining 77 =
7,/ VT, and X; = U] \ V(7,") fori = 1, 2, gives the required conditions for the claim. Here in
order to verify condition (iii), we use that for any X C X, we have

_ _ U, |? ) 1X)? 2
e(X, X0\ X) <e(X, U\ X) < 4 10dn” < I — 8dn~,

using that |U| — | Xz| < 3|V(77)| < pn. [ ]

The disconnected case now follows without much more work, as we show now. Let us first remove
more atypical vertices of our near-cliques. For j € [2],let Z; ; == {v € X5 ; : deg(v; X3 ;) <
|Xa, ;| - Vdn}. Observe that, since X>,j is 200d-close to complete, by counting non-edges
in X ; we have |Z; ;| < 10Vdn for both j € [2]. Note that any two vertices in X» have at
least 7 common neighbours in X; by Claim 4.7.9 (ii) and for j € [2], any vertex v € X3 ;
has deg(v; X2, \ Z2,;) = 55 by Claim 4.7.9 (iii) and our upper bound on |Z; ;|. Hence it
follows from Lemma 4.6.3 that whp (in G3) there is a triangle matching 7; of size at most 20Vdn
in G3[X; U X»] with each triangle having one vertex in X and two vertices in X, (both of which
are in the same X» ;) covering Z 1 U Z55. Let X/ = X; \ V(72) and Xé,j = Xo,; \ V(72) for
each i, j € [2]. Let X{ = X1,,1 U X1,,2 be a partition such that |X1”j| = %|X2’7j| for each j € [2]
(note that here the parity of |Xé’j| is important). Now, for both j € [2], X 1', U Xé’j induces
a (d1/6, (1- d1/3)+)-super—regular triple (after splitting Xz/,j arbitrarily in two sets of equal
sizes) by Lemma 2.2.5. Therefore, by Theorem II*, whp there are vertex-disjoint triangles in G4

covering the remaining vertices.

Thus, we may assume that X, is 8d-strongly connected. This case is very similar to the proof of

Lemma 4.7.1. Let n; := |X;| for both i € [2] and recall that n, = 2n;. We apply Lemma 2.2.1
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to G [ X,] with input my, € and fixing y := % —gto getan e-regular partition X, = VoUV U. ..UV,
for some myg < m < My. Let R be the corresponding (&, d)-reduced graph (seen as a graph

on [m]) and observe that we have §(R) > (% — 2d)m and, as in the proof of Lemma 4.7.1,
we have a(R) < (% — p)m. Tt is well-known that every graph H contains a matching of
size min{§(H), L@J }. Indeed, if v(H) is even this is the k = 2 case of Theorem 2.5.1, whilst
if n is odd this can be derived from Theorem 2.5.1 by adding a vertex to H that is adjacent
to all other vertices. We conclude that R contains a matching M* of size (5 — 2d)m; let R’
be the subgraph of R induced by M* := V(M™). Note that §(R’) > (% — 6d)m and we claim
that R’ is connected. Indeed, if not, there is a set B ¢ V(R’) such that e(B,V(R’) \ B) = 0.
Observe that |B|, |V(R’) \ B| = §(R’) > (% —6d)m. Letnow X’ := J,cp Vi and so that | X’| =
(4 £20d)|X,|. Furthermore, we have e(X’, X» \ X’) < (d +4d + 2&)n” and consequently

(X", Xo\X') > |X[| X\ X' |—6dn? > (% + 20d|x2|)-(% - 20d|X2|)—6dn2 > XL _gap?,

contradicting the fact that X, is 8d-strongly connected.

By Lemma2.2.4, there are V; C V), foreach h € M* such that |V]| = [(1-2¢)|V}|] and, for every
edge ht € M*, the pair (V;,V)) is (2¢, (d — &), d — 2¢)-super-regular. Let Y = X5 \ Upem+ V),
be the set of vertices in X, which are not in a cluster V; corresponding to a vertex in an edge
of M*. Observe that |Y| < 2en + en + 4dn < 5dn, where the terms in the upper bound come
from bounding the number of vertices in sets V}, \ V}’l for h € M*, the number of vertices in Vj
and number of vertices in a set Vj, for h € [m] \ M*, respectively. Let W C X, \ Y be a set such
that

L. [WnV/|=(}+55)2 foreach h € M,
2. degs(viW) > %|W| for each v € X5, and

3. we have that degs(v;V;, N W) = (3 + I)degg(v;V}) for each h € M* and v € X,
with degg (v; V) > €|V]|.

Such a set W can be found by choosing each vertex of X \ Y independently with probability %
and applying Chernoff’s inequality (Theorem 2.1.1) and a union bound.

We will start by covering Y. We will not touch vertices outside of W in order to maintain

super-regularity properties.

Claim 4.7.10. Whp in G3, there is a triangle matching T, C K3(G) of size |Y| with each triangle
having two vertices in WUY C X, and one in Xy, sothatY C V(72) and |V(T2)NV]| < SOX/EIV}’J
forall h e M*.
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The proof is essentially identical to the proof of Claim 4.7.5 (appealing to Lemma 4.6.3) and
we omit the details. Let now X" = X; \ V(72) for each i € [2] and let V;” = V| \ V(73) for

each h € M*. We will now balance the sizes of the clusters V,;’.

Claim 4.7.11. Whp in G4, there is a triangle matching 73 C K3(G4) with each triangle having
one vertex in X{" and two vertices in W, so that |V, \ V(T3)| = L%%J forallh e M*.

Proof of Claim: Let A : M* — N be given by A(h) = |V| - | 22|, Note that we have

10m
(£ —-60Vd)22 < A(h) < [15227, and that 3¢ pz+ A(h) = o =2|T3| =2 M*|| 35 | is even. Note
alsothat §(R’) > (3-6d)m > (1-6d)|R’|anda(R") < a(R) < (3—p)m < (3-5)|R’|. Hence,

by applying Theorem 4.5.4 to the connected graph R’, there is a weight function w : E(R’) —» N
such that for each h € M* we have X /¢, () @(h€) = A(h). We claim that we can remove w(h()
triangles from G4[ X 1”, V;l’ nw, Vé’ N W] for each edge i€ of R’, making sure that all our choices
are vertex-disjoint. Indeed, let Yy,...,Y,, C Xl” be disjoint sets of size at least % . [%] and
observe that fori = 1,2 we have thatdeg(v; X;” .) > | X3 ;| -4pn foreachv € X/” by Claim4.7.9.
Since p <« n% < g, this implies that, for each k € [m] and h € M*, the pair (Y, V" N W)
is (s, (1- 32)+)—super—regular, appealing to Lemma 2.2.5. It further follows from the Slicing
Lemma (Lemma 2.2.2) and the choice of W that (V,;"nW, V,;'nW) s (10e, (d/10)*)-super-regular
for each hf € E(R’). Hence the triple (Yi, V," "W,V N W) is (10g, (d/10)")-super-regular for
each ht € E(R’) and k € [m]. Furthermore, we have [V, N W| > % - 72 Hence, an application
of Lemma 2.2.7 and Lemma 4.6.1 (ii) implies that whp, there are 27—0 . % vertex-disjoint triangles
in G4[Yx, V;' "W,V N W] for each h¢ € E(R’) and k € [m]. Thus we can select the desired
number of triangles for each ¢ € E(R’) one at a time greedily as follows. When we look to
find a triangle corresponding to the edge hf € E(R’) with h < £ (one of w(h{f) many), we
take the triangle from G4[Y,,, V;” N W, V;” N W], ensuring that it is vertex-disjoint from previous
choices. From above we have that there is a collection of at least % . % vertex-disjoint triangles
in G4[Yp, V) NW, V"N W] to choose from and at most 3 max{A(h), 1({)} < % 22 < % <22 are
unavailable due to their vertices having already been used in triangles in our triangle matching.

This shows that the greedy process will succeed in finding a triangle matching 73 in G4 such
that 73 contains w(h{) triangles in G4[X{",V;" " W,V;" 1 W] for each edge hl of R’. [

Let now X/ = X" \ V(73) for eachi € [2] and V" = V" \ V(73) for all h € M* and observe
that we have covered all vertices except for those in X" U XJ”. Since |X{”| = %le’”|, we can

partition X{"" = J,epm+ X" into | M| sets of size exactly L%%J. Observe that deg(v; X]”) >
1

|X]"| — 4pn for each v € X{” and vice versa by Claim 4.7.9. Since p < ;- < &, Lemma 2.2.5
implies that, for each e € M* and h € M, the pair (X", V}’l”) is (a, (1 - 82)+)-super—regular.
Furthermore, the pair (V;”,V;") is (8¢, (d/8)*)-super-regular for each 1 € M” by the Slicing
Lemma (Lemma 2.2.2) and deg(v;V;”) > deg(v;V;\ W) > }LdegG(v; V) = %|Vé| forallv €
V" and vice versa. Therefore, (X;7,V;”,V;") is (8¢, (d/8)")-super-regular for all hf € M*.

Finally, we apply Theorem II* to each of these triples individually in G5 to obtain whp a
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triangle matching 7 covering exactly X{” U XJ”’.  So we have that whp all of the triangle

matchings 77, . .., 7 exist and taking 7 = 77 U 7>, U 73 U 74, we have that 7 is a triangle factor

in G, as required. O






Chapter 5

Clique factors in randomly perturbed

graphs

In this Chapter, we establish the perturbed thresholds for clique factors, proving Theorem III,

which we restate here for convenience.

Theorem IIl. (Restated) Let 2 < k < r be integers. Then given any 1 — % <t<1-k1

r

p(Ky,7) = n2k,

Let us also recall the definition of a perturbed threshold for factors.

Definition 1.6.2. (Restated) Given some 0 < 7 < 1, and a graph H with r vertices, the perturbed
threshold p(H, ) for an H-factor satisfies the following. There exists constants C = C(H, ), ¢ =
c(H, ) > 0 such that:

1) If p = p(n) = Cp(H, 1), then for any n-vertex graph G with n € rN and 6(G) > tn,
whp G U G(n, p) contains an H-factor.

(i) If p = p(n) < cp(H, 7),thenforalln € rN there is some n-vertex graph G with6(G) > tn
such that whp G U G (n, p) does not contain an H-factor.

If it is the case that for sufficiently large n € rN, every n-vertex graph with minimum degree at

least Tn contains an H-factor we define p(H, 7) := 0.

The lower bounds on perturbed thresholds in Theorem III follow from a simple construction
which we detail in Section 5.1. The main difficulty of Theorem III is to prove the upper

bounds on the perturbed thresholds and the rest of this chapter is devoted to proving these. In
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Section 5.2, we give an overview of the proof, discussing how we use the absorption method
to split the problem into finding an absorbing structure and an almost factor in G U G (n, p).
We also discuss how we will split the edges of (copies of K, in) our desired factor between the
deterministic dense graph G and the random graph G (n, p). In Section 5.3, we give a technical
result which will be used to embed subgraphs in G (n, p). In Section 5.4, we then provide the
details of how to find an almost factor in G U G(n, p). Sections 5.5 and 5.6 are then devoted
to proving the existence of an absorbing structure in G U G (n, p). There is a lot of work to be
done here and slightly different approaches are necessary to deal with different values of k and r.
In Section 5.5 we deal only with edges coming from our deterministic graph G, finding many
copies of certain subgraphs of our desired absorbing structure. In Section 5.6, we then introduce
random edges to ‘fill in the gaps’ and obtain an absorbing structure in G U G (n, p). Finally, in

Section 5.7 we bring everything together to prove Theorem III.

5.1 Lower bound construction

In this section we give a construction that provides the lower bound in the proof of Theorem III.
Our construction is a generalisation of that used for the lower bound in Theorem 1.6.1 (see
Section 2.1 of [19]). We will make use of the following result, which can be readily shown using

the second moment method, see for example [95, Remark 3.7].

Theorem 5.1.1. For every k > 2 and for every 0 < € < 1 there exists a constant ¢ > 0 such that

if p < en™?%, then

lim P[G(n, p) contains a Kr-matching of size en] = 0.
n—oo

Let k and r be as in the statement of Theorem III. Consider any 1 — % <Tt<l1- % andlety >0
such that (1-y)(1-%2) = 7. Now to show that p(K,, 7) < n"*K we choose 0 < c < & < 1,7,

2/% and let n € rN. We will show that there exists an n-vertex graph G

fix some p = p(n) < cn”
with §(G) > 7n, such that whp G U G(n, p) does not contain a K,-factor. Note that we can
assume that r is sufficiently large, as our desired conclusion is a “whp” statement. We define G
to have vertex classes A and B such that |B| = [tn] + 1 and |A| = n — | B|, with all possible edges

in G except that A is an independent set. So §(G) > |B| - 1 = 1n.

Before proving formally that whp G U G (n, p) does not contain K, -factor, let us sketch the idea.
Suppose for a contradiction that there is K,-factor K in G U G (n, p) and consider the average
intersection of a copy of K, in K with the set A. As A covers more than a @ proportion of the
vertices, we have that the average intersection size of a copy of K- in K with A must be strictly

larger than & — 1. However the only way this can happen is if, when we look at the intersections
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of cliques in K with A, we see linearly many cliques of size at least k. This will contradict the

conclusion of Theorem 5.1.1. Let us now formally prove this.

From our choice of ¢ > 0, we have from Theorem 5.1.1, that whp G (n, p)[A] = G(|A|, p) does
not contain a Ky-matching of size £*. Here, we used that [A| > 7 is linear in n. Observe that
any copy of K, in G U G(n, p) either contains a K in A, or uses at least r — (k — 1) vertices

of B. Thus, whp, the largest K,-matching in G U G (n, p) has size less than

| B en  (1-vy)n 2 en ( Y\n n
—+—< + +— < 1——)— -,
r—k+1 r r r—k+1 r 2 r<r

using that n is sufficiently large here. This concludes the proof of the lower bounds in Theorem III.

We remark that when 7 < %, the construction is perhaps a bit surprising as there is no need to
include the edges within B in order to meet the minimum degree condition. However in this
case we have that k > % and so, if p is close to n~2lk copies of K,_x will be in abundance
in G(n, p)[B]. Therefore one would easily be able to extend copies of K in A to full copies
of K, in G U G(n, p) even if B was empty in G. This shows that the determining factor for all
such constructions (with a complete bipartite graph between A and B and A being independent)

is the presence of large K matchings in the set A, as in our proof above.

5.2 Proof overview

It remains to prove the upper bounds in Theorem III and in this section we sketch some of the
ideas involved in the proof, which will be the subject of the remainder of the chapter. So fix
some k,r € N and 7 > 0 as in Theorem III, let C = (r, k,7) > 0 be some sufficiently large

-2/k

constant and fix some p > Cn Now our aim is to show that for an n-vertex graph G

with n € rN and §(G) > 7n, we have that whp G U G(n, p) contains a K,-factor. As with
the proof of Theorem I in Chapter 3, we will use the absorption method to find a K,-factor
in G U G(n, p). As discussed in Section 2.8, this reduces the problem into finding an absorbing
structure on some vertex subset A (which contains a small constant proportion of the vertices

of G) and finding an almost K,.-factor that leaves a leftover set of o(n) vertices uncovered.

Now before addressing these two subproblems, let us discuss a much easier task: finding a copy
of K, in G U G(n, p). Note that it might be the case that both G and G (n, p) are K,-free (whp
for G(n, p)). Thus, to build even a single copy of K,, we may have to use both deterministic
edges (from G) and random edges (from G (n, p)). In order to do this, we define the following
subgraph of K.

Definition 5.2.1. Forr € Nand k € Nsuchthat 2 < k < r, let r*,¢q € N be such that k(r* —
1)+g =rand 0 < g < k. Then Hgyet = Hyet(r, k) is the complete r*-partite graph with
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..... .q°
We also define Hget to be K- \ Hget, 1.€. the complement of Hge; on the same vertex set.

Some examples are given in Figure 5.1. Note that when k& = r, Hge is simply an independent
set of size k = r and Hge is an r-clique. The motivation for this partition comes from the
following observation. We can build a copy of K- in G U G (n, p) by taking Q(n") copies of Hget
in G and then applying Janson’s inequality (Lemma 2.1.3) to conclude that we can ‘fill up’ the
independent sets in some copy of Hge by Kis and a K, and obtain a copy of K,. With a few
more ideas, one can repeatedly apply this naive idea to greedily obtain an almost K, -factor (see
Theorem 5.4.1).

The task of defining and building an absorbing structure in G U G (n, p) is much more involved
and will be done in several steps. The first step is to find small building blocks for the absorbing
structure which we will call reachable paths. Given two vertices u, v, a reachable path will be
a (constant size) subgraph P of G containing both u# and v and such that both P\ u and P \ v
host K, -factors. The simplest example of this is finding a copy of K | with u and v playing the
role of the non-edge. We will also use longer paths which are defined by gluing copies of K~
together sequentially at vertices of degree r — 1. We remark that these reachable paths are exactly
the K,--diamond trees as used in Chapter 3 (see Definition 3.1.1), restricting to diamond trees
whose auxiliary trees are paths. However, our focus in this chapter is different and, in particular,
the end-points of the paths (1 and v above) will play a crucial role. Indeed, our argument starts by
first proving that # and v are reachable, meaning that there are many reachable paths relative to u
and v, for every pair of vertices u, v € V(G). Once this is established, we will be able to greedily
piece together reachable paths into larger (but still constant size) absorbing gadgets. Finally, we
will piece together absorbing gadgets to build a linear sized absorbing structure. At this point
we will use the femplate absorption method of Montgomery [136, 137] (see Section 2.8) in order
to define the absorbing structure. That is, we will use an auxiliary template (Definition 2.8.1) to
dictate how we interweave our absorbing gadgets, which will ensure that the resulting absorbing

structure has a strong absorbing property, in that it can contribute to a K,.-factor in many ways.

Note that for all of this to work, we need to rely on both edges in G and G (n, p) to find our
absorbing structure. Indeed, even for the most basic building blocks, the reachable paths, we
will need to build certain subgraphs with deterministic edges and “fill in the gaps’ with random
edges. For this, we will need much more involved arguments than finding singular copies of K,
as discussed above. Indeed, our reachable paths (crucially) contain copies of K | and we will
also be interested in finding reachable paths relative to fixed endpoints. This complicates matters
and in order to guarantee that both the deterministic and random parts of the reachable paths
can be found (with sufficient abundance) in G U G(n, p), we have to adopt several different

approaches.
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FIGURE 5.1: Some examples of the graphs Hge; and H et from Definition 5.2.1 for each case:
. @r=9k=q=r"=3,
2. b)yr=11,k=3,q=2,r" =4,
3. ©r=6,k=4,g=r"=2.

Our analysis splits into three cases depending on the structure of Hge; or equivalently, the values

of r and k. The cases are as follows:

1. Hge is balanced i.e. ¢ = k and so 7 € N,
2. x(Hger) =7" > 3 and Hge is not balanced i.e. k < 7 and 7 ¢ N,

3. x(Hger) = 7" =2 and Hye is not balanced i.e. 5 < k <.

Examples of each case can be seen in Figure 5.1. By carefully partitioning edges between G
and G (n, p) depending on the case we are in, we will be able to show that there are reachable
paths between pairs of vertices. When k > 5 (case 3), there is an added complication as we
cannot prove the reachability for every two vertices and have to pursue a weaker property, namely,
building a partition of V(G) such that the reachability can be established within each part. This

stems from the fact that in this range, G may be disconnected.

Ultimately then, we can run a similar argument in case 3 and establish the existence of reachable
paths in G U G (n, p) for all cases. However, in order to go on and build absorbing gadgets and
eventually, an absorbing structure, we need the existence of many reachable paths between a pair
of vertices u and v. As soon as we introduce random edges, the number of reachable paths will
be too small to run the greedy arguments used to build the absorbing structure. In order to handle
this, we will introduce the random edges of G (n, p) only in the very last stage, when proving
the existence of the full absorbing structure in G U G (n, p). Thus, we will first be occupied with
finding many reachable paths and absorbing gadgets which use these reachable paths, restricting
our attention only to the deterministic edges which will contribute to our eventual absorbing
structure. Therefore all our notions of reachable paths and absorbing gadgets will be defined
relative to certain subgraphs of K, that we will find using deterministic edges. In order to
motivate our definitions, we will keep track of the ‘gaps’ in reachable paths and absorbing

gadgets, that we will eventually fill with random edges. The details of this process of defining
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and finding an absorbing structure, are given in Sections 5.5 and 5.6 but before embarking on
this, we provide some probabilistic machinery in Section 5.3 and prove the existence of an

almost K,--factor in Section 5.4. Theorem III will then be proven in Section 5.7.

5.3 Embedding subgraphs in random graphs

In this section, we will discuss embeddings of subgraphs in G(n, p). The main result is a
technical lemma (Lemma 5.3.2) which will be crucial to our proof of Theorem III. This technical
lemma will follow from Janson’s inequality (Lemma 2.1.2) but provides us with much more
than the immediate consequence (Lemma 2.1.3) for embedding subgraphs in G(n, p). These
strengthenings are necessary as we will need to embed subgraphs with certain vertices already
fixed. We will also need to consider families of different subgraphs at the same time and we will
need to have flexibility, being able to conclude the existence of many embeddings in G (n, p),
allowing us to find an embedding that avoids certain vertices and belongs to any large enough
specified subset of the embeddings we are interested in. All of this is provided by Lemma 5.3.2,
leading to its technical nature. Before embarking on Lemma 5.3.2, we define a graph parameter

that will simplify our exposition.

Recall Janson’s inequality (Lemma 2.1.2) and consider the random graph G (n, p) on an n-vertex
set V. Note that we can view G(n,p) as A, with A := (‘2/) Following [95], for a fixed
graph F, we define ®f = @ (n, p) := min{n"? pH : H C F, ey > 0}. This parameter helps to
simplify calculations of Ay in the context of counting the number of embeddings of the graph F
in G(n, p). As previously mentioned, we will also be interested in the appearance of graphs
in G (n, p) where we require some subset of vertices to be already fixed in place. Therefore, for

a graph F, and some independent! subset of vertices W c V(F'), we define
Op w = Dp w(n,p) =min{n"" " "HWIpH : H C F, ey > 0}.

Recall that F \ W denotes F[V(F) \ W] and note that ®f = ®f g and Pp\w > P w for
any F and independent set W c V(F). If W = {w} for a single vertex w € V(F), we drop the
set brackets and simply write ®f ,, and ®f\,,. Let us collect some more simple observations

concerning ®r and ®f w which will be useful later.

Lemma 5.3.1. The following hold for all n € N:

1. Let C > 1 be some constant, 2 < k € Nand p = p(n) > Cn~**. Further, let k' € N
with2 < k' < k and F := Ky, then we have that @, > Chn.

1With respect to F i.e. E(F[W]) = 0.
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2. As above, let C > 1 be some constant, 2 < k € N and p = p(n) > Cn~>*. Suppose
now k" € Nwith3 < k' < k and let F, := K, be the complete graph on k' vertices with
one edge missing. Further, let w € V(F,) be one of the endpoints of the missing edge.

Then ®F, > Cn and ®r, ,, > min{Cn'~2/* Cn**} > Cn'/*.

3. Let F3, F4 be graphs with vertex subsets W3 C V(F3), Wa C V(F3), let @3 := O, w,
and @4 := ®f, w, and suppose that ©3, D4 > 1. Let Fs be the graph formed by the union
of F3 and F, meeting in exactly one vertex x € (V(Fz) \ W3) N (V(F4) \ Wy), and let Fg be
the graph obtained by taking a disjoint union of F3z and Fy. Then letting W5 := W3 U Wy,

we have that ® g, w, > min{®3, Oy, 3P40~} and Dr, ws = min{®3, Dy}.

Proof. For parts 1 and 2, it suffices to consider the case k’ = k. For part 1, we have a simple
calculation. Let H be a subgraph of K; with vy vertices and ey > 0 edges. As vy < k, we
obtain

_ vy (vg-1) _ _
n"H p°H > p"H (Cn~ %) "2 > Cp'H-0u=D = Cop.

For part 2 first note that as F, € Ky = F1 we have that ®r, > ®f, > Cn. Let H be a subgraph
of K, with ey > 0. If w ¢ V(H), the calculation from part 1 gives that n"# p# > Cn. So
suppose w € V(H). Now let us distinguish two cases, depending on whether the vertex u is
in V(H), where u is the vertex in K, such that uw is a non-edge. If u € V(H), we have that

—2/k(%—1)

nVH—lpeH 2 nVH—ICn Z CnVH_l_(VH_l_z/k) Z an/k,

again using that vy < k. Likewise, if u ¢ V(H), we have that

an—lpeH > an—lp("gi) > cpa-DU=vu/k) Cnl—z/k,

where the last inequality follows as (v —1) (1 — %) is minimised in the range 2 < vy < k—1

atvg =2 and vy = k — 1. This shows that ®F, ,, is bounded as desired.

Part 3 also follows from the definition. Indeed, suppose a subgraph H of F5 with ey > 0 is a
minimiser of the term in the definition of @, w, and note that H can be expressed as H = H3UHy
with H3 and H,4 being edge-disjoint subgraphs of H and each H; being a subgraph of F; fori = 3, 4.
Now for i = 3,4, define ¥; := n"Hi""HilWil pHi and note that ¥; > ®; if ey, > 0. If ey, = 0,
then egy, = ey > 0 and ®py w, = W4 > @4. Similarly, if e, = 0, then @py w, = V3 > ®3. So

we can suppose that ey, e, > 0. In this case we have that
Dy wy = n"HTVHIWIDEH > Wl > @3@un,

where the n~! term comes from the fact that x might be counted as a vertex of both Hj

and Hs. Establishing that ®f, w, = min{®3, ®4} is essentially identical, except that we do
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not have to worry about the vertex x and in the case that ey, > 0 for each i = 3,4, we get

that @, w, > ¥3¥4 > min{®P3, D4}, using that 3, D4 > 1 here. O

We now turn to a technical lemma for embedding constant-sized graphs in G (n, p). Lemma 5.3.2
provides the basis for a greedy process in which we find some larger (linear size) graph in G (n, p).
We will require that the embedding of our larger graph has certain vertices already prescribed
and repeated applications of Lemma 5.3.2 will then allow us to embed the remaining vertices
of the graph in a greedy manner. So it is crucial that we can apply the lemma to any subset
of s (remaining) indices while avoiding any small enough set of (previously used) vertices from

being used.

Lemma 5.3.2. Let n,t(n),s(n) € N, 0 < 8 < % and L,v,w,e € N such that Lt, sw < %
and (i) < 2" Let Fy,...,F; be labelled graphs with distinguished vertex subsets W; C V(F;)
such that |W;| < w, |V(F; \ W)| = v, e(F;) = e and e(F;[W;]) = 0 for all i € [t]. Now
let V be an n-vertex set and let Uy, ..., U; C V be labelled vertex subsets with |U;| = |W;| for
alli € [t]. Finally, suppose there are families Fi,...,F; C (‘v/) of labelled vertex sets such that

foreachi € [t], || = Bn*.
Now suppose that 1 < s(n) < t(n) and p = p(n) are such that

2v+7v!
ﬂZ

s B> ( (5.3.1)

2v+7v!
) min{Ltlogn,n} and ®" > ( ) n,

B2
where ® := min{®p, w, : i € [t]} and ®" := min{Dfg,\w, : i € [t]} with respect to p = p(n).
Then, whp, for any V' C V, with |V’| > n — Lt and any subset S C [t] such that |S| = s
and U; NU; =0 fori # j € [s], there exists some i € S such that there is an embedding (which
respects labelling) of F; in G (n, p) on V which maps W; to U; and V (F;) \ W; to a labelled set
in F; which lies in V.

Note by ‘labelled’ here we mean that for all j, the j*"* vertex in W; is mapped to the j*" vertex
in U;; moreover the j'"* vertex in V(F;) \ W; is mapped to the j'" vertex in some labelled set
from ;.

Proof. Let us fix S C [¢z] with |S| = s and a vertex subset V' C V as in the statement of the
lemma. Let U := U;cgU; and fix V7 := V’\ U. Note that (V' \ V') U U intersects at most gnv of
the elements of #; for each i and so we can focus on a subset " of each #; of at least 'gn" sets
which are all contained in V. For each i € S and each labelled subset X € ¥, let Ix ; denote
the indicator random variable that X U U; hosts a labelled copy of F; with W; mapped to U;. To
ease notation sometimes we write Ix instead of Ix ;. Note that Z := > {Ix; : X € Ujes¥,'}
counts the number of suitable embeddings in G(n, p). (So here if X is in a of the collections ¥,

then there are a indicator random variables in this sum corresponding to X.)
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An easy calculation (using the first part of (5.3.1)) gives that E[Z] > 2 for large enough n. We

will show that
E[Z]?

Az < ,
z = 16 min{Ltlogn,n}

(5.3.2)

and thus by Janson’s inequality (2.1.1), P[Z < %] < exp(-2min{Ltlogn,n}). If Ltlogn <

n, taking a union bound over the (at most 2*) possible sets S and the (;’,) < exp(Lz(1 +logn))
possible V', we have that whp, Z > 1 for all such S and V’; if Ltlogn > n, we instead bound
both the number of V’ and the number of S by 2" (using that (i) < 2" here) and draw the same

conclusion. So in both cases Z > 1 whp for all such S and V’ and we are done.

Now it remains to verify (5.3.2). Firstly let Z; := }{Ix; : X € ¥;}. Then

2

= Z E[Z/E[Z;]. (5.3.3)

i,jeS

B[z) = (Z B[]

ieS

To ease notation, let ¥ := Ujes¥, and for X, X" € F, we write X ~ X’ if, assuming X €
¥i, X' € ¥}, the labelled copies of F; on X U U; and F; on X" U U; intersect in at least one edge.
We split Az as follows:

Az = Z ElIxIx]
(X.X') eFXFX~X"}

- ZAZf + Z Z E[IxIx], (5.3.4)

ieS {(i,j)eS%i#j} {(X,X')eﬁ’xst(:X~X'}
where Az, is defined analogously to Az for the random variable Z;.

Recall that for integers a and b, write a!p :=a(a—1)---(a—b+1). Fix 1 < k < v. There
are (Z)v Ik < (Z)v! ways that two labelled v-sets share exactly k vertices. Fixing two such v-sets,

there are at most n!(2,_x) < n*"7*

ways of mapping their 2v — k vertices into V. Let f; denote
the maximum number of edges of a k-vertex subgraph of F; \ W;, taken over all i € [f]. Then

we have that fori # j € S,

v
v 2vin?vpe  2V*)IE[Z]E(Z;]
, 1 ,2v=k 2e—fi l J
E ElIxIx/] < (k)v.n p < - < s .

{(X,X/)E?;’XT-_J{:X~X’} k=1

Here, we crucially used that any copy of F; on X € ¥, does not have edges intersecting U;
for j # i. Note that the penultimate inequality follows by definition of ®’. The last inequality
follows as gnvpe <E[Z;] foralli € S.

Using the above calculation (and the second part of (5.3.1)) to compare (5.3.4) and (5.3.3), we

E[Z]?
32n

summand of (5.3.4) in a similar fashion. For a fixedi € S, let 1 < k < v. We let g; denote the

see that the right-hand summand of (5.3.4) is less than . We now estimate the left-hand

maximum number of edges of a subgraph of F; which has k vertices disjoint from W;. We have,
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similarly to before, that

% % 2 2
v _ v _ _ 2Vy!In“Y p=
Az, < Z (k)v!kn!(zv_k)pze 8k < (k)v!n2" kp2esk < Tp
k=1 k=1
Thus,
v e 2
spn’ p
s2VvIn®’ p%¢ (5.3.1) ( 2 )
ZAZi < < "
~ ) 32 min{Ltlogn,n}
(Lres EIZD)®  _ E[z]?
= 32min{Ltlogn,n} 32min{Ltlogn,n}
So bringing both summands together, (5.3.2) holds and we are done. O

In its full generality, Lemma 5.3.2 will be a valuable tool in our proof. However, we will also have
instances where we do not need to use the full power of the lemma. For instance, setting s = 1
and W; = U; = 0 for all i € [¢] (and L = 0), we recover a more standard application of Janson’s

inequality to subgraph containment which we state below for convenience.

Corollary 5.3.3. Let 8 > 0, 1 <t < 2" and F some fixed labelled graph on v vertices. Then
there exists C > 0 such that the following holds. IfV is a set of n vertices, F1,...,F: C (‘:) are
Sfamilies of labelled subsets such that || > n¥ and p = p(n) is such that ®r > Cn, then whp,

for each i € [t], there is an embedding of F onto a set in F;, which respects labellings.

5.4 An almost factor

In this section we study almost factors and prove Theorem 5.4.1 below. As is the case throughout,
in this almost factor, the edges of G which contribute to the copies of K, will be copies of Hget
as defined in Definition 5.2.1. We will rely on G(n, p) to then ‘fill in the gaps’, providing
the missing edges i.e. Hye, to guarantee that each copy of Hye is in fact part of a copy of K,
in GUG(n, p). Note that y (Hger) = [ ] and recall the definition of y., discussed in Section 2.5.

When k divides r, we have ycr(Hget) = £ = x(Hge) and when k does not divide r, we

have yor (Hget) = | 5| —X—— = ~.
Xc ( det) LkJr—(r—kL%J) k

Thus, the almost factor result of Komlds, Theorem 2.5.2, guarantees the existence of a partial H ge-
factor in G which covers almost all the vertices. However, given such a partial factor we cannot
guarantee that the correct edges appear in G (n, p) in order to extend each copy of Hyge in the
partial factor to a copy of K,.. We aim instead to greedily build a partial K,-factor and guarantee
that at each step there are Q(n") copies of Hge. To achieve this, we use the Regularity Lemma

(Lemma 2.2.1) and apply Theorem 2.5.2 to the reduced graph of G. Then by the Counting
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Lemma (Lemma 2.2.6), each copy of Hge in the reduced graph will provide many copies of Hget
inG.

Theorem 5.4.1. Let 2 < k < r € Nand a,y > 0. Then there exists C > 0 such that
if p > Cn %% and G is an n-vertex graph with 6(G) > (1- % +7vy)n, then G U G(n, p) whp

contains a partial K,-factor covering all but at most an vertices.

Proof. Choose 0 < mio xexd<xy, a/,% and define dy := % > ‘t—f. Further, let My =
My(mog, €) be returned by Lemma 2.2.1 and choose 0 <« % < g, MLO Now let n € N be

sufficiently large and G be a graph as in the statement of the theorem. Apply Lemma 2.2.1 to G
with Note that by Lemma 2.2.1, the resulting (&, d)-reduced graph R has m > mg vertices and
satisfies 5(R) > (1 — £ + Z)m. Let the size of the clusters in the regularity partition be n’ and
note that MLO < n’ < en. Now by Theorem 2.5.2, as m > my is sufficiently large, there exists a
partial Hge-factor H covering all but at most “4—’" vertices of R. Let Uy, ..., U, € (V(R)) such

r

that the U span disjoint copies of Hgeq in H.

Next, let F be the collection of subsets W C V(G) such that there exists some j € [¢] for
which W intersects each U € U; in at least "T”/ elements (and W contains no vertices of clusters
from outside of U). Here we say that U; hosts W. Moreover, we call a copy of K, in W crossing

if it contains precisely one vertex from each cluster in the class U;.

We claim that whp, every W in F contains a crossing copy of K, in G U G(n, p). Indeed,
fix some W € ¥ and suppose U; hosts W. Then there are subsets Wy,..., W, C V(G) and
clusters {U,...,U,} = U; such that W; C U;,

an’ an

>_a
2 T 2M

|W;| =

Uie,W; S Wand Uy, Us,...,U, formacopy H of Hyee in R. By Lemma 2.2.2, for every U;U; €
E(H), we have that G[W;, W;] is a (%£)-regular pair with density at least d — &. Thus by
Lemma 2.2.6 G[W] contains at least (dOT‘m,)r = Q(n") copies of Hge; where in each such copy
of Hge¢ precisely one vertex lies in each of Wy, . . ., W,; let Cy denote this collection. Now noting
that F := Hye = K, \ Hye is a collection of disjoint cliques of size at most k, Lemma 5.3.1 (part
1 and 3) implies that @ > Cn. Also, we have that || < 2". Thus for C > 0 sufficiently
large, Corollary 5.3.3 gives that for every W € ¥ there is a copy of Hget from Cy, which hosts a
labelled copy of Hge in G (n, p); thus the claim is satisfied.

One can now use the claim to greedily build the almost K,--factor in GUG (n, p). Indeed, initially
set K := (0. At each step we will add a copy of K, to K whilst ensuring K is a partial K,-factor
in G U G(n, p). Further, at every step we only add a copy K of K, if there is some j € [¢] such

that each vertex in K lies in a different cluster in U (recall each U consists of r clusters).
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Suppose we are at a given step in this process such that there exists some cluster U; € U;

t an’

(for some j) that still has at least <5~ vertices uncovered by K. This in fact implies that every
cluster in U; contains at leas % vertices uncovered by %; these uncovered vertices correspond
precisely to a set W € ¥ which is hosted by ;. Hence by the above claim there is a crossing
copy of K, in (G U G(n, p))[W]. Add this to K. Thus, we can repeat this process, increasing
the size of K at every step, until we find that for every j € [¢], all the clusters in U; have at

least (1 — §)n’ vertices covered by K.

That is, whp there is a partial K,-factor in G U G (n, p) covering all but at most

Cm,x +(am><’)+|V|<
2 m 1 n ol < an

vertices, as desired. Note that the first term in the above expression comes from the vertices in
clusters from the classes U;; the second term comes from those vertices in clusters that were

uncovered by H. O

Note that one can in fact establish the case k = r in a much simpler way because the copies of K,

that we look for can be completely provided by G (n, p), see e.g. [95, Theorem 4.9].

5.5 The absorbing structure - deterministic edges

The aim of this section and the next is to prove the existence of an absorbing structure A
in G’ := G U G(n, p). The main outcomes are Corollaries 5.6.6, 5.6.8 and 5.6.9, which will be

used in the next section to prove Theorem II1.

The key component of the absorbing structure will be some absorbing subgraph F ¢ G’. We
will define F' so that it can contribute to a K,-factor in many ways. In fact we will define F' so
that if we remove F from G’ and we have a partial factor covering almost all of what remains
(Theorem 5.4.1), then no matter which small set of vertices remains, the properties of F allow us
to complete this partial factor to a factor in G’. There are some complications, and the absorbing
structure will have different features depending on the exact values of minimum degree and the

size of the cliques we want in our factor.

Our absorbing subgraph will be comprised of two sets of edges, namely the deterministic edges
in G and the random edges in G (n, p). Initially, we will be concerned with finding (parts of) the
appropriate subgraph in G. In fact, we will need to prove the existence of many copies of the
deterministic subgraphs we want, as we will rely on there being enough of these to guarantee
that one of them will match up with random edges in G (n, p) (Section 5.6) to give the desired

subgraph. Therefore it is useful throughout to consider, with foresight, the random edges that
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we will be looking for to complete our desired structure, as this also motivates the form of our

deterministic subgraphs.

The smallest building block in our absorbing graph will be K, the complete graph on r + 1
vertices with one edge missing, say between w; and wy. This is useful for the simple reason
that it can contribute to a K,-factor in two ways, namely K, | \ {w;} fori = 1,2. We introduce
the following notation to keep track of the partition of the edges between the deterministic graph

and the random graph. Recall the definition of a blowup of a complete graph K. y, from

1:725--5

the Notation Section.

Definition 5.5.1. Suppose t,r,r1,r2,...,r; € N such that ZE:] r; = r + 1. We use the notation

H:: (Kt i’j)v

F1sF25eees re?

for not necessarily distinct 7, j € [t], to denote the (r + 1)-vertex graph K], ., . with two
distinct distinguished vertices: wq in the i’ h part (which has size r;) and w, in the j - part (which

has size r;).

Definition 5.5.2. Let r € N and consider an (r + 1)-vertex graph F with two distinguished
vertices w and w,. (Typically we will take F = H as in Definition 5.5.1.) We then write F to
denote the graph on the same vertex set V(K ) = V(F) such that E(F) := E(K_ )\ E(F),

where we take the non-edge of K, to be wiw,. Thus K ., CcFU F.

Remark: Note that our use of the notation F is non-standard here, when referring to (r + 1)-
vertex graphs, we will always be interested in taking the complement of with respect to K | and

not K, 1.

We think of H, H and K, as all lying on the same vertex set throughout with the two distin-
guished vertices wy, w, being defined for all three. The following graph gives the paradigm for

how we split the edges of K| between the deterministic and the random graph.

Definition 5.5.3. For r € N and k € Nsuch that2 < k < r, letr*,q € N be such that k(r* —
)+g=rand0<gq <k ThenHo:= (K . ...7"r").

Some examples of Hy and Hy can be seen in Figures 5.3 and 5.4. Note that if w; and w, are
the distinguished vertices of Hy, then Hy \ w; for i = 1,2 are both copies of the graph Hge
from Definition 5.2.1. Also note that Hy is a disjoint union of k-cliques as well as a disjoint
copy of K; +1- Thus, when g < k — 1, it follows from Lemma 5.3.1 and Corollary 5.3.3 that the
graph Hy is abundant? in G (n, p) when p > Cn~2/¥ for some large enough C. Furthermore,
as we will see, the minimum degree condition for G along with supersaturation arguments

(Lemma 2.4.1) will imply that there are Q(n"*!) copies of Hy in G. This suggests the suitability

2Specifically, one can see that whp any linear sized set in V(G (n, p)) contains a copy of Hy.



178 Chapter 5. Cligue factors in randomly perturbed graphs

of this definition as a candidate for how to partition the edge set of K, , between deterministic
and random edges. We remark that the case when g = k is slightly more subtle and we have to

adjust our decomposition accordingly. We will discuss this is more detail in the next section.

5.5.1 Reachability

In this subsection, we define reachable paths and show that we can find many of these in our
deterministic graph G, when the graphs used to define such paths are chosen appropriately. The
main results are Proposition 5.5.6, Proposition 5.5.7 and Proposition 5.5.12 which deal with
Case 1, 2 and 3 respectively. We first define a reachable path which is a graph which connects

together (r + 1)-vertex graphs as follows.

Definition 5.5.4. Let r,7 € N and let H = (H',H?,...,H") be a vector of (r+ 1)-vertex
graphs H' such that each H' has two distinguished vertices, w’i and wé. Then an H-path is the
graph P obtained by taking one copy of each H' and identifying wg with w‘i”, fori e [t—1].

We call wi and w), the endpoints of P.

In the case where H' = H?> = ... = H' = H for some (r + 1)-vertex graph H, we use
the notation H = (H,t) and thus refer to (H,t)-paths. For H = (H',H?,...,H"), we also
define H := (ﬁ, ﬁ, ... ,ﬁ) where H' is as defined in Definition 5.5.2.

We give some explicit examples of H-paths later in Figure 5.6. In the following, as we look to find
embeddings of H-paths and larger subgraphs in G and G (n, p), we will always be considering
labelled embeddings. Therefore, implicitly, when we define graphs such as the H-paths above,

we think of these graphs as having some fixed labelling of their vertices.

Again, the motivation for the definition of H-paths comes from considering K ,, with ver-

r+1°

tices w1, wp such that wyw, ¢ E(Kr_+1)' Indeed, then a (K~

r+l°

t)-path P has two K,.-matchings,
each missing a single vertex; one on the vertices of V(P) \w% , and one on the vertices of V(P) \w?,.
Our first step is to find many H-paths in the deterministic graph G, for an appropriately defined H.

In particular, we are interested in the images of the endpoints of the paths.

Definition 5.5.5. Let 8 > 0, t,r € Nand H = (H',...,H") be a vector of (r + 1)-vertex
graphs (each of which is endowed with a tuple of distinguished vertices). We say that two
vertices x, y € V(G) in an n-vertex graph G are (H; 8)-reachable (or (H, t; 8)-reachable if H =
(H,...,H) = (H,1)) if there are at least Sn’"~! distinct labelled embeddings of the H-path P
in G such that the endpoints of P are mapped to {x, y}.

As discussed before, the graph Hy from Definition 5.5.3 will be used to provide deterministic

edges for our absorbing structure. That is, we look for (Hy, t)-paths in G for some appropriate ¢.
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FIGURE 5.2: An example of H; and Hi forCase 1 (a)r =9,k = q = r* =3 (see Definitions 5.5.1-5.5.2
and Proposition 5.5.6 for the definitions).

However, for various reasons there are complications with this approach. Sometimes using a
slightly different graph H will allow more vertices to be reachable to each other. Also, as is
the case below when ¢ € N, it is possible that Hy is not sufficiently common in the random
graph G(n, p). Therefore, we have to tweak the graph Hj in order to accommodate these
subtleties. This is the reason for using a vector of graphs H as we will see. We will look first
at Case 1, when 7 € N and so Hy contains a copy of K, ,- This is too dense to appear in
the random graph G (n, p) with the frequency that we require and thus we define H; as in the

following proposition.

Proposition 5.5.6. Lety > 0, n,r,k € Nsuchthat ¢ =: r* €N, 2 < k < r and n is sufficiently
large. Let Hy := JINK_, | where J, := (Klgrkﬂ)kl,r* + 1, 1), as defined in Definition 5.5.1, and
we consider K | to be on the same vertex set as J, with a non-edge between the distinguished
vertices of J1. Likewise, let H| := (I(Iir]:'l)kl L,r*+1)NK_, | be the same graph with the labels
of the distinguished vertices switched. See Figure 5.2 for an example of Hy (and H{| which is

identical).

Then there exists a 81 = Bi(r,k,y) > 0 such that for any n-vertex graph G of minimum
degree 5(G) > (1 - % +y)n, any pair of distinct vertices in V(G) are (Hq; B1)-reachable
where Hy = (Hl,Hi).

Proof. Fix some graph G as in the statement of the lemma. Let wy, w, be the distinguished

U r#1,1)NK 7, as defined in Definition 5.5.1. Fixapairx,y € V(G).

verticesof H| = (Kk,k,...,k,l’

We will show that for any z € V(G) \ {x, y}, there are at least 8] n"~! labelled embeddings of H,
which map w; to x and w; to z, for some 3| = (7, k,y) > 0. Once we have established this
property, this implies the proposition. Indeed, by symmetry, we can also find 5] n"~! embeddings

72
of H; which map wi to y and w; to z. Set 8 := '871 Thus there are at least

(I’l _ 2) 'ﬂinr_l A (Iginr—l _ r2nr—2) > ﬂanr—l
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FIGURE 5.3: An example of Hy, Ho, H(’) and F(’) for Case 2 (b) r = 11,k = 3,q = 2,r* = 4 (see
Definitions 5.5.1-5.5.3 and Proposition 5.5.7 for the definitions).

distinct embeddings of the Hj-path in G such that the endpoints are mapped to {x, y}, as desired.
This follows as there are n—2 choices for z; at least ﬂin"l choices for the copy of H; containing x
and z; at least (ﬂin"] — r2n"~2) choices for the copy of H | containing z and y that are disjoint

from the choice of H; (except for the vertex z).

So let us fix x,z € V(G). The proof now follows easily from Lemma 2.4.1. As kr* = r, we
can express the minimum degree as 6(G) > (1 — ri +y)n. Thus any set of at most r* vertices
has at least yn common neighbours. Therefore we have at least (yn)” labelled copies K of K-
where V(K) = {x1,...,x+} C Ng(x) and {x2,...,x+} C Ng(x) N Ng(z). This follows by

first choosing {x3,...,x,+} and then x; with the right adjacencies. Thus, by Lemma 2.4.1 we
have ﬁin"‘l labelled embeddings of the blow-up, H; \ {w, wz} = K]Z*_l «. - Of these cliques,

crucially within the correct neighbourhoods (NG (x) and NG (x) N NG (z)) to ensure that together
with {x, z} they give us the required embeddings of H;. i

Note that an E-path P has endpoints which are isolated. The other vertices of P liein copies
of Ki and these copies are disjoint from each other except for a single pair of Kis that meet
at a singular vertex. See Figure 5.6 for an example. We now turn to Case 2, as described in
Section 5.2. Here we can use the graph Hy from Definition 5.5.3. We also use a slight variant

of Hy where we redefine the distinguished vertices.

Proposition 5.5.7. Supposey > 0,n,r, k € N, suchthat nis sufficiently large,2 < k < 5 and 1 ¢
..... kqs1 1:2) be

the same graph as Hy with distinguished vertices in distinct? parts of size k (see Figure 5.3).

v

Then there exists By = Ba(r, k,y) > 0 such that for any n-vertex G of minimum degree 5(G)
(1- é +y)n, every pair of distinct vertices x,y in V(G) are (Hp; B2)-reachable where Hy :=
(Ho, Hj, H, Hp).

Proof. Fix some graph G as in the statement of the lemma and let x, y € V(G) be arbitrary. We

know that 6(G) > (1 - £ +y)n > (1 - =15 +y)n. Therefore every set of at most * — 1 vertices

3Note that this is possible as we are in the case where the number of parts, r* of Hy is at least 3.



5.5. The absorbing structure - deterministic edges 181

has a common neighbourhood of size at least yn. We will appeal to Lemma 2.4.1 to give us the

whole H>-path in one fell swoop. Let J be a graph with vertex set

V(J) = {xla .. -,xr*—laZI,Wl,- . ‘7wr*—2922,u13 .. -,ur*—2,Z3,y1, .. -ayr*—1}7
and E(J) consisting of r*-cliques on the vertex sets {xy, ..., X 1,21}, {21, Wi, .-, Wr—2,22},
4r*-3
{z2,u1,...,uy+_3,z3} and {z3, y1, ..., yr+—1}. We claim that if we can find % copies of J
in G such that x; € Ng(x) and y; € Ng(y) fori = 1,...,r" — 1, then we are done. Indeed,

consider a blow-up J’ of J with parts

(k) (k) (k+g-1) yr,(g+1) 117 (k) (k) (2k-1)
x®,. . x 7 wlath o wio o w )z,
(g+1) 77(k) (k) (k+q-1) y, (k) (k)
ol o, oWz y 0y,

where the parts correspond to the vertices of J in the obvious way and the size of each part
is indicated by the superscript. Now if we have a copy of J' in G5 = G[V(G) \ {x,y}]
with X; C Ng(x) and Y; € Ng(y) foralli = 1,...,r" — 1, then this gives us an embedding of
an Hj-path. Indeed for i = 1,3, arbitrarily partition Z; := {z;} U Z/ U Z!" with |Z!| = g — 1
and |Z]'| = k — 1 and partition Z, := {z}} U ZJ U Z) with |Z]| = |Z}/| = k — 1. Then {x, z{} U
Z; Ut X and {y, 23} U Z5 UT_T! Y; both give copies of Ho whilst {2, 25} U Z/" U Z, U2 W,
and {73,723} U Z{ U Z] ULCIZ U; both give copies of H/, where in all cases the distinguished

vertices appear in the first set of the union.

It suffices then, by Lemma 2.4.1, to find % embeddings of J in G with the x; € Ng(x)
and y; € Ng(y). We can do this greedily. Indeed if we choose the x; and y; first, followed by z;
and z3, then 7z, € Ng(z1) N N (z3) and then the remaining vertices, we are always seeking to
choose a vertex in G which has at most 7* — 1 neighbours which have already been chosen. Thus,
by our degree condition, we have at least yn choices for each vertex with the right adjacencies. To
ensure that these choices actually give an embedding of J we then discard any set of choices with
repeated vertices, of which there are O (n*" =), and thus the conclusion holds as 7 is sufficiently

large. O

Consider an H_z—path which we denote P, (see Figure 5.6 for an example). It is formed by
copies of K and K; . Which intersect in at most one vertex and such that the endpoints of P,
lie in copies of K(;+1' Furthermore, note that the endpoints of P, are in distinct connected
components. This will be an important feature when we start to address the random edges of
our absorbing structure as it will allow us to use Lemma 5.3.1 to conclude certain statements
about the likelihood of finding our desired random subgraph in G(n, p). This motivated the

introduction of H in the previous proposition.
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In Case 3, we cannot hope to prove reachability between every pair of vertices. Indeed our
minimum degree in this case is §(G) > (1- % +y)nand k > 5 and so itis possible that 6(G) < 5
and G is disconnected. Thus, as in [82, 89], we use a partition of the vertices into ‘closed’
parts, where we can guarantee that two vertices in the same part are reachable, with some
set of parameters. We adopt the following notation which also allows us to consider different

possibilities for what vectors we use for reachability.

Definition 5.5.8. Let H be a set of vectors, such that the entry of each vector in H is an (r + 1)-
vertex graph endowed with a tuple of distinguished vertices. We say that two vertices in G
are (‘H; B)-reachable if they are (H; 8)-reachable for some H € H.

We say that a subset V of vertices in a graph G is (H; 8)-closed if every pair of vertices* in V
is (H; B)-reachable. We denote® by N4 g(v) the set of vertices in G that are (H; 3)-reachable

tov.

Thus, in this notation, the conclusion of Proposition 5.5.6 states that V(G) is (Hy; B1)-closed for
all G satisfying the given hypothesis (and similarly for Proposition 5.5.7). Notice that if a set V
is (H; B)-closed in a graph G it may be the case that two vertices x, y € V are (H; 8)-reachable
whilst two other vertices z, w € V are (H’; 8)-reachable for some distinct H, H' € H of different

lengths.

It will be useful for us to consider the following notion.

Definition 5.5.9. Let H, FH be two sets of vectors as in Definition 5.5.8. Then
H+H:=HUHU(H - H),
where H - H is defined to be the set

H-H:={HH) :=H,..  H A, . H):
H:=(H'...,H)eH H:=(H, .. H)eH).

That is, FH+9H comprises of all vectors that lie in 4, 9, or that can be obtained by a concatenation

of a vector from H with a vector from .
As an important example, defining H(H, < t) := {(H,s) : | <s < t}, we have that
H(H, < l]) +(]’{(H, <th)=HH, <t +1).

In what follows we will apply the following simple lemma repeatedly.

“Note that we do not require the vertices of the H-paths which give the reachability to lie in V.
SIf H consists of just one vector H, we simply refer to sets being (H; 8)-closed and use Ny g(v) to denote the
closed neighbourhood of a vertex.
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Lemma 5.5.10. Let r € N and let Hy, Hy be two sets of vectors of (r + 1)-vertex graphs,
each of which is endowed with a tuple of distinguished vertices and suppose that ty = |Hy|
and ty := |Hy| are both finite. Suppose G is an n-vertex graph with n sufficiently large and
let x,y € V(G). Suppose there exist Bx, By, & > 0, and some subset U C V(G) with |U| > en
such that for every z € U, x and z are (Hy; Bx)-reachable and z and y are (H,; B)-reachable.
Then x and y are (Hy + Hy; B)-reachable for  := BBy ),

yty

En

Proof. By the pigeonhole principle, there exists some U’ C U such that |U’| > et and
some H, € Hy, H, € H, such that for every z € U’, z and x are (H; 3x)-reachable
and z and y are (H; y)-reachable. Suppose H has length s, and H, has length s,. Thus,
fixing z € U’, there are at least ﬁxﬂyn(“x+“y)r‘2 pairs of labelled vertex sets S, and Sy in G
such that there is an embedding of an H .-path on S, U {x, z} mapping endpoints to {x, z} and
an embedding of a H ,-path on the vertices S, U {y, z} which maps the endpoints to {y, z}. Of
these pairs, at most

sxsyan(sx+sy)r—3

are not vertex-disjoint or they intersect {x,y}. Hence, as n is sufficiently large we have at
least %n(““y)r‘z vertex-disjoint pairs which together form an embedding of an (Hy, H)-
£

path. As we have at least h choices for z, this gives that x and y are ((H, H,); 3)-reachable

and (H,,Hy) € Hy +H,. O

We now turn to proving reachability in Case 3. The following two lemmas together find the

partition we will work on. Similar ideas have been used in [82, 89].

Lemma 5.5.11. Suppose y > 0 and n,r,k,q € N suchthat 5 <k <r-1,r=k+qandnis
sufficiently large. Let ¢ = [é‘l and fort € N define

H' = H(Hy, <2") ={(Hp,s):1<s<2'},

where Hy = (K,% 2,2) is as defined in Definition 5.5.3 with distinguished vertices w1 and w».

,q+1’°

Then there exists constants 0 < B = Bi(r, k,y), @ = a(r, k,y) such that any n-vertex graph G
of minimum degree 5(G) > (1 - % +y)n can be partitioned into at most ¢ — 1 parts, each of

which is (H; B5)-closed and of size at least an.

Proof. Fix some graph G as in the statement of the lemma. Firstly, observe that there is
some 1 = n(r, k,y) > 0 such that in every set of at least ¢ vertices, there are two vertices which
are ((Hy, 1); n)-reachable. Indeed, fix some arbitrary set of vertices S = {vy,...,v.} C V(G),
and for v € V = V(G), define ds(v) := |{i € [c] : vv; € E(G)}|. Let ds := ZVE"T‘W be the
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average. Then we have that

Z ds(v) = Z degs(vi) > ¢ (1 - é +y) n = (1+cy)n.
]

vev i€lc

Thus 3, ¢y (dsz(v)) > n(‘zzs ) > %n by Jensen’s inequality. By averaging over all pairs we
have that there exists a pair i # j € [c] so that both v; and v; are in the neighbourhood of at

least y?n vertices. That is, |Ng(v;) N Ng(vj)| = yn.

Therefore there are at least y*n? edges in G with one endpoint in NG (v;) N Ng(v;). Applying

2
k,g—1

where the first vertex class lies in NG (v;) N NG (v;). Thus together they form copies of Hy with

Lemma 2.4.1 this ensures that there is 7 = (r, k, ) > 0 so that there are yn" ! copies of K

distinguished vertices v; and v;; so v; and v; are ((Ho, 1);n)-reachable in G.

Note also that there is some fixed o’ = a'(r,k,y) > 0 such that [Ny, 1),or (V)| = a'n for
every v € V(G). Indeed, this follows as there are at least # edges in G with one endpoint
in Ng(v). So, by Lemma 2.4.1, there is a fixed @” = a”'(r, k,y) > 0 such that there are at
least @’”’n” embeddings of Hy which map w; to v. Setting @’ := %ﬁ, this implies that there are at

least a’n vertices which are ((Hy, 1); @’)-reachable to v.

Now choose 0 < & < a/’,%, n =: no and n; = 259%77?—1 fori =1,...,c. Set B} = ne.
As in the statement of the lemma, define H' := H(H,, < 2') for values of ¢+ < ¢ and note
that H' + H' = H'*'. We will be interested in (H";n,)-reachability and so we will use the
shorthand notation N, (v) := N. 4, (V). Let € be the maximal integer such that there exists a set

of ¢ vertices, vi,...,ve withv; and v not (HE, nc—¢)-reachable for any pair j # j' € [£].

Suppose £ = 1. Then V(G) is (H ™ ';._1)-closed. As H ™' ¢ HC and ._; > 3%, the lemma

holds in this case.

We also have that £ < ¢ — 1 from our observations above, so we can assume 2 < £ < ¢ — 1. Now

fix such a set of ¢ vertices, v1, ..., ve. We make the following two observations:

(i) Anyv € V(G)\ {v1,...,v¢}isin Ne——1(v;) for some j € [£] from our definition of ¢,
as otherwise v could be added to give a larger family contradicting the maximality of .
Indeed, this follows because two vertices that are not (H' =, nc—-¢)-reachable are certainly

not (7—(6_‘)_1 ; e—¢—1)-reachable by definition.

(i) |Ne—e—1(v;) N Ne—e—1(vj)| < en for every pair j # j' € [£]. This follows from
Lemma 5.5.10 as otherwise we would have that v; and v are (H ¢ ne_¢)-reachable, a

contradiction.

We define U; := (Nc_g_l(vj) U{v;})\ (Ujle[f]\{j}Nc_g_l(vj/)) for j € [£], and Uy :=
V(G) \Uje[r1Uj. Now for j € [£], we have that U is (?lc_[_l;nc_g_l)—closed. Indeed, if there
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was a j € [£] and uy,u € Uj not reachable, then {uj,uz} U {vi,...,ve} \ {v;}, is a larger
family contradicting the definition of £. Thus, the U; almost form the partition we are looking
for except that it remains to consider the vertices in Uy. For these, we greedily add them to the

other U;. We have that for each u € Uy,
’ ’ 5
IN(Hy,1),0r (1) \ Up| 2 a’'n — |Up|za’n - N > Len. (5.5.1)

Here the second inequality holds due to (i), (ii) and the definition of the U;; the final inequality
holds by our choice of £. Thus, there is a j such that |[N (g, 1),o'(u) NU;| > en, and we add u to
this U}, arbitrarily choosing such a j if there are multiple choices. Let Vi, . .., V¢ be the resulting

partition.

Applications of Lemma 5.5.10 show that each V; is (H;n.)-closed. Indeed suppose, for
example, that wi and wy are two vertices that lie in Uy and are added to U; in the process
of defining V;. Then for each i = 1,2, taking W; = N(g,.1),o-(w;) N U;, an application of
Lemma 5.5.10 with U = W, gives that for any x € U;, w; and x are (H’;n’)-reachable
where H' = H(Hy, < 27"+ 1) and ' = % Another application of Lemma 5.5.10,
this time with U = W, then gives that w; and w, are (H"’;p"")-reachable with H" = H(Hy, <
26761 42) ¢ H  and " = % > ne-¢ > P5. Showing other cases of reachability within

each V; are similar. We are now done since for each j € [{],
(@
|Vj| > |Uj| > |N(H0’1),af(vj) \ (N(Ho,l),a/'(vj) N Uo) | > a'n—ften = an,

where a :=a’ — e > ne—¢ 2 ne = 5. O

The rough idea for how to handle Case 3 is to run the same proof as in the other cases on each
part of the partition given by Lemma 5.5.11. The point of Lemma 5.5.11 is that we recover the
reachability within each part, albeit at the expense of allowing a family of possible paths used
for reachability. However, in the process, we lose the minimum degree condition within each
part. The purpose of the next proposition is to fix this, by adjusting parameters and making the
partition coarser. Thus, we recover a minimum degree condition which is not quite as strong as

what we had previously but good enough to work with in what follows.

Proposition 5.5.12. Suppose y > 0 and n,r,k,q € N such that 5 < k <r—-1,r =k+gq
2,2) as defined in Definition 5.5.3

and Hj = (K]%’q +1» 1,2) be the same graph with distinguished vertices in distinct parts of the

and n is sufficiently large. Let ¢ := |'§'| and let Hy = (K,% T

bipartition® (see Figure 5.4). We define the following family of vectors of (r + 1)-vertex graphs

This is analogous to the graph H(’) defined in Proposition 5.5.7.
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FIGURE 5.4: An example of H, Ho, H{ and F(’) for Case 3 (c) r = 6,k = 4,9 = r* = 2 (see
Definitions 5.5.1-5.5.3 and Proposition 5.5.12 for the definitions).

(endowed with tuples of vertices):

c(2¢*1+1)
H; = U {H € {Ho,Hy} : H[1] = H[t] = Hy and H[i] = H{, for some 2 <i < — 1},
t=3

where H[i] denotes the i entry of H.

Then there exists a(r, k,y) > 0 such that for all € > 0, the following holds. There exists 0 <
Ba(r,k,v,&) such that for any n-vertex graph G with minimum degree §(G) > (1 — % +vy)n,
there is a partition P of V(G) into at most ¢ — 1 parts such that each part U € P satisfies the
following:

(i) Ul = an;
(ii) All but at most en vertices v € U satisfy degs (v;U) > (1 - é + %)|U|;

(iii) U is (H3; B3)-closed.

Proof. Thisis asimple case of adjusting the partition already obtained after applying the previous
lemma, Lemma 5.5.11. Let «, ,8§ be defined as in the outcome of Lemma 5.5.11 and let P’ be
the partition of V(G) obtained, with vertex parts denoted Vi, ..., V,. Fix u := % We create
an auxiliary graph J on vertex set {Vi, ..., Vy} where fori # j € [s] we have an edge V;V; in J
if and only if there are at least un’ edges in G with one endpoint in V; and one in V;. Then
our new partition £ in G will come from the connected components of J. That is, if Cy, ..., C;
are the components of J, then for i € [¢], we define U; := U jiviec;Vj and let # consist of
the U; with i € [t]. Then certainly point (i) of the hypothesis is satisfied for all U;. Also (i)
is satisfied. Indeed, suppose there exists i € [¢], with degg(v;U;) < (1 — % + %)lU,-l for at
least en vertices of U;. Thus, for such vertices deg; (v; (V(G) \ U;)) > %n and by averaging
there exists some V;(,) € #’ such that V() N U; = 0 and degs (v; V(1)) = %n We average
again to conclude that there is some j, j* € [s] such that V; c U;, V;» N U; = 0 and V; contains
at least 5n vertices v which have degree deg (v;Vjr) > %n This contradicts our definition

of J as then V;V}» should be an edge of J and thus in the same part of $.
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Thus it only remains to establish reachability. We begin by proving the following claim which is

a slight variation of Lemma 5.5.10.

Claim 5.5.13. Let H® be as defined in Lemma 5.5.11. Suppose x,y € V(G) and that there exist
(not necessarily disjoint) sets Sy, S, C V(G) such that for any zx € S, x and z, are (H®; B})-
reachable and for any zy € Sy, y and z,, are (H®; B})-reachable. If there exists at least un?
edges with one endpoint in Sy and one endpoint in Sy, then x and y are (H; Y')-reachable for
some By = By (u, B%,c) > 0 and H € H3 of length at most 2+ 4 1.

Proof of Claim: Letting w{, w} be the distinguished vertices of H|,, we have, by Lemma 2.4.1,

r+1

that there are at least u’n"*" embeddings of H|, into G which map w/ to S, and w} to S, for

7 nr+1
22c¢
embeddings of H_ such that the image of w] and x are (Hy; §})-reachable and the image of w/,

some u’ = p’(u) > 0. By averaging, there exists H,, Hy, € H® such that there are

and y are (Hy; B})-reachable. By considering the embeddings of H,, H, and H; which join

to give an embedding of an (H, Hj, Hy)-path (that is, ignoring choices of embeddings which

y-73
are not vertex-disjoint), we see that x and y are ((Hy, Hj, Hy), B3 )-reachable with g := gffl .

This completes the proof of the claim. [

Recall the partition P’ = {V|,Va, ..., Vi}. Further consider any part U € P. First suppose U =
V; for some j. Now given any x,y € U, by Lemma 5.5.11, x and y are already (H), s)-reachable
for some s < 2¢. However, (Hp, s) does not contain a copy of H|, and so is not a valid vector in
the family 3. We therefore apply Claim 5.5.13 with S, = S, = V; \ {x, y}, to conclude that x
and y are (H; p})-reachable for some H € H of length at most 2¢*1 4+ 1. Indeed since V; sends
fewer than un? edges out to any other part V; of £’ and |V;| > an, the minimum degree condition
on G ensures that there are at least 2un” edges in G [V;] and hence un®edgesinS, = S y allowing
Claim 5.5.13 to be applied.

Next suppose U is the union of more than one part from P’. If x e V; CUandy € V; C U,
fori # j € [s] and V;V; € E(J) as defined above, we can again apply Claim 5.5.13, this time
with S, = V; and Sy = V;, to conclude x and y are (H; B})-reachable for some H € H3 of
length at most 2*! + 1. Therefore, we just need to establish reachability for vertices x, y such
that x € V;, y € V; with V;V; ¢ E(J) but such that V; and V; are in the same component of J.
If i # j, there is a path of (at most c) edges from V; to V; in J; if i = j there is a walk of
length 2 < ¢ in J that starts and ends at V; = V; (i.e. traverse a single edge in J). In both
cases we can repeatedly apply Lemma 5.5.10 to derive that x and y are (FH3;33)-reachable
with B3 := (2(;%)6 . It is crucial here that we apply Claim 5.5.13 in all cases to establish
the reachability here (even when i = j) in order to guarantee that the vectors witnessing the

reachability contain a copy of H( and hence indeed lie in H3. O
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We remark that the reason for the introduction of H in Proposition 5.5.12 is two-fold. Firstly,
it allows us to establish reachability between parts from Lemma 5.5.11 which have many edges
between them. Moreover, as in Proposition 5.5.7, we have that for every H € Hs, if P is
an H-path, then the endpoints of P are in distinct connected components of P (see Figure 5.6 for

an example), which is something that we will require later.

5.5.2 Absorbing gadgets

We now turn our focus to larger subgraphs which we look to embed in our graph and which will
be used as part of an absorbing structure. These are formed by piecing together the H-paths of
the previous subsection and the aim will be to obtain subgraphs with even more flexibility, in
that they will be able to contribute to a factor in many ways. The key definition is a graph which

we call an absorbing gadget, which we define below.

Before this though, let us recall from Definition 5.5.4 that for a vector H = (H VH?, ... H' )
of (r + 1)-vertex graphs H' such that each H' has two distinguished vertices, w and w, an H-
path is the graph P obtained by sequentially gluing together the graphs H' at their endpoints.
That is, for all 2 < i < ¢, H' is glued to H'~! by identifying w‘i with w;‘l. The endpoints of the

path P are then taken to be w{ and w),.

Definition 5.5.14. Letr,s € N, let H be an r-vertex graph and let H := {H; ; :i € [r],j € [s]}
be alabelled family of vectors of (r+1)-vertex graphs (with tuples of distinguished vertices). Then
an (H, H)-absorbing gadget is a graph obtained by the following procedure. Take disjoint H; ;-
paths for I <i < rand 1 < j < s and denote their endpoints by u; ; and v; ;. Place a copy
of Hon {v;; :i € [r]} foreach j € [s]. For 2 <i < r, identify all vertices {u; ; : 1 < j < s}
and relabel this vertex u;. Finally relabel u; ; as w; for j € [s] and let W := {w,w2,...,w},

which we refer to as the base set of vertices for the absorbing gadget.

An example of an absorbing gadget is given in Figure 5.5. Recall that we always consider K,
to have two distinguished vertices which form the only non-edge of the graph. In the previous

section we commented on how a (Kr‘+1 s

t)-path P with endpoints x and y has two K,.-matchings
covering all but one vertex; the first misses x, the other misses y. The point of the absorbing gadget
is to generalise this property, giving a graph which can use any one of a number of vertices (the
base set) in a K,--matching. In more detail, suppose s,z € Nandforall1 <i<rand1 < j <,
define H; ; = (K

- 1) the vector composed of ¢ copies of K. Furthermore fix the labelled

family H := {H; ; : i € [r],j € [s]} (which is simply rs copies the vector (K

r+l1°’

t) with each
copy indexed by ani € [r] and a j € [s]) and fix H = K,.. Now consider the (H, H)-absorbing
gadget F which is obtained by taking s copies of H = K, and rs copies of the (K

r+1°

t)-path and

gluing these graphs together at certain vertices according to Definition 5.5.14 (see Figure 5.5
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FIGURE 5.5: An (H, K3)-absorbing gadget with H := {H, ; : i € [3],j € [4]} such that each H; ; =
(K;, 3). The base set of the absorbing gadget is W := {w, wy, w3, wq}.

for an example with r = 3 and s = 4). Let W = {wy,...,w,} be the base set given by the
definition of the absorbing gadget. We claim that F has the property that for any j* € [s], there
is a K,-matching covering precisely (V(F) \ W) U {w;-}. Indeed, we have that for all j # j*
and i € [r], there is a K,-matching in the H; ;-path P; ; which uses” v; ; and not the other
endpoint of P; ;. Then there is a K,-matching in the H ;--path which uses w ;+, a K,-matching
in the H; j:-path for 2 < i < r which uses u;, and a copy of K, on {v; j« : i € [r]} which

completes the desired K,--matching.

More generally, for any s,7* € N, letting H = H(K |, <t") = {(K_,,t) : | <t < 1"} be the
set of vectors whose lengths are at most #* and whose entries are all K|, we have that for any
labelled family of vectors H := {H; j : i € [r], j € [s]} where each H; ; is an element from H,
an (H, K, )-absorbing gadget F has the same property. That is, if W = {wy, ..., w,} is the base
set of F, then for any j € [s], there is a K,-matching covering precisely (V(F) \ W) U {w}.

As in the previous subsection, we begin by showing that there are many absorbing gadgets in
the deterministic graph. Again, although we are interested in (H, K, )-absorbing gadgets for
some H consisting of vectors, all of whose entries are K, we split the edges of our absorbing
gadget and rely on the deterministic graph to provide many copies of a subgraph of the gadget.
In particular, we will use here our paradigm Hyge, defined in Definition 5.2.1. The following
general proposition allows us to show that we can find many absorbing gadgets if all the vertices

which we hope to map the base set to, are reachable to each other.

Definition 5.5.15. Let r, s € N. Let H be a finite set of vectors, such that each entry of each
vector in H is an (r + 1)-vertex graph with a tuple of distinguished vertices. We write H (r X s)

for the collection of all ordered labelled sets H := {H; ; : i € [r],j € [s]} where each H, ; is

7We label all vertices in this discussion as in Definition 5.5.14.
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an element from H. If H consists of a single vector H we write H(r X s) := H(r X s). That

is, H(r X s) is the ordered labelled (multi-)set with each element a copy of H.

Proposition 5.5.16. Let a,y,B’ > 0, so, k,r € N and let H be a finite set of vectors, such that

each entry of each vector in H is an (r + 1)-vertex graph with a tuple of distinguished vertices.

Then there exists B = B(a,y,B’, 50, k,r,H) > 0, such that for sufficiently large n, if G is
an n-vertex graph with vertex subset U C V(G) such that U is (H;p’)-closed, \U| = an
and §(G[U]) > (1 - % +y)|U|, then for any set X = {x1,...,x5} C U with|X| < so, there exists
some H € H(r X s) and some (H, Hg.;)-absorbing gadget F with base set W = {wy,...,ws}

v(F)=S embeddings of F in G which map w; to x; fori € [s].

such that there are at least fn
Proof. Firstly notice that for a fixed s < s¢, there are a finite number (i.e. |H|"*) of (H, Hget)-
absorbing gadgets F such that H € H(r X s) and F has a base set of size s. Let 5 be the set
of all such absorbing gadgets, let f := |F| and set Q := max{vp — s : F € F;}. We claim
that there is some 8" = 8" («, y, 8, so, k, r, H) > 0 such that with G and U as in the statement
of the proposition and X ¢ U of size s, there are at least 8”72 subsets S C V(G) \ X of Q
ordered vertices such that there is an embedding of some F' € ¥ in G which maps the base
set of F' to X and the other vertices to a subset® of S. Given this claim, the conclusion of
the proposition follows easily. Indeed, by averaging we get that there is some F € ¥ and at
least ﬁTﬁnQ ordered subsets S of Q vertices in V(G) as above, that correspond to an embedding
of F. Then setting 8 := Q‘;'/f’ we get that there must be at least Sn*F~* embeddings of F' in G
which map the base set to X. Indeed for each such embedding F’ of F, the vertex set V(F’) \ X

lies in at most Q!n2~(V#=) different ordered sets of vertices S C V(G).

So it remains to find these 8”’n< ordered subsets S. We will show that S can be generated in a
series of steps so that every time we choose some a vertices, we have Q(n®) choices. We will use

the notation of Definition 5.5.14. Firstly we select r — 1 vertices Y = {y2,y3,...,y,}in U\ X
IU\X |

r—1

which we can do in ( ) = Q(n"~') many ways. Now repeatedly find disjoint copies of He
inU\ (XUY) and label these {z; j : 1 <i<r,1 <j <s}suchthat{z; ;:1 <i<r}comprise
a copy of Hge for each j € [s]. In order to do this we repeatedly apply Lemma 2.4.1 and the
degree condition which we can take to be §(G[U]) > (1 — £ + %)|U| (ignoring any neighbours
of vertices that have already been chosen in §). Hence there are Q(n"*) choices for these copies

of Hdet-

Now for 2 < i < rand 1 < j < s, we have that y; and z; ; are (H; j,[’)-reachable for
some H; ; € H of length t; ; say. Thus there are B'n"%.i~1 embeddings of an H; j-path Pin G
which map the endpoints of P to {y;, z; j}. We ignore those choices of embeddings of P which

rlij

use previously chosen vertices of S, of which there are O (n"%-i=2). Similarly, for I < j < s, x 7

and z;; are (Hy j,8")-reachable for some H; ; € H, so select an embedding of an H ;-path

8In particular, if v < Q then not all of the vertices of S are used in this embedding.
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in G which maps the endpoints to {x;, z1, ;j} and has all other vertices disjoint from previously
chosen vertices. This gives an embedding of an (H, Hget)-absorbing gadget in G which maps
the base set W to X, v; jto z; j for2 <i <r, j € [s] and maps u; to y; fori € [r]. Choosing
unused vertices arbitrarily until we have a set S of Q vertices, the claim and hence the proof of

the proposition are settled. o

5.6 The absorbing structure - random edges

In this section, we will introduce the edges of G (n, p) and show that G U G (n, p) contains the
absorbing structure we desire. The absorbing structure will be formed by choosing absorbing
gadgets rooted on certain prescribed sets of vertices. The absorbing gadgets will be (H, K;.)-
absorbing gadgets F* for some H consisting of vectors whose entries are all K . In order to
obtain these absorbing gadgets, we consider the absorbing gadgets of just deterministic edges
which we looked at in the previous section and show that with high probability, one of these
matches up with random edges to get the required subgraph F*. We begin by investigating the
absorbing gadgets that we look for in the random graph.

5.6.1 Absorbing gadgets in the random graph

Recalling Definitions 5.2.1 and 5.5.14, let H := {H; ; : i € [r],j € [s]} be a labelled family
of vectors of (r + 1)-vertex graphs and suppose that there is an embedding ¢ of an (H, Hge)-
absorbing gadget F’ in G which maps the base set of the gadget to some U c V(G), with |U| = s.
Recalling Definition 5.5.4, define H := {H_,] :i € [r],j € [s]}. Now in order to complete
this absorbing gadget F’ into one which has the form that we require, we have to find a labelled
embedding of an (H, Hye()-absorbing gadget F onto the ordered vertex set o(V(F’)) in G (n, p).
The following lemma will be used to show that there are sufficiently many embeddings in G (n, p)
of the necessary F's defined as above. Indeed, the lemma lower bounds the parameters ®r\w
and @ w (where W is the base set of the absorber) which we will use to count embeddings of F
in G (n, p) via arguments using Janson’s inequality. Indeed, we will soon appeal to Lemma 5.3.2
to prove the existence of absorbing gadgets F C G (n, p) which match up with the deterministic
absorbing gadgets F’ C G, as discussed above. Lemma 5.3.2 requires lower bounds on the ®
values of the absorbing gadgets F, which can be seen as requiring that the gadgets F' are sparse
enough that we can expect to see many of them in G(n, p). Note that, crucially, we will be
interested in finding absorbing gadgets F in G (n, p) with fixed base sets (hence our interest in
the values ®f w ). This will allow us to interweave our absorbing gadgets in a calculated way,

leading to an absorbing structure with strong absorbing properties.
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FIGURE 5.6: Some examples of H-paths for various H (see Definition 5.5.4 and Propositions 5.5.6, 5.5.7
and 5.5.12 for relevant definitions):

1. (a)AnEpathWithr:9andk=q=r* =3.
2. (b) An Hp path withr = 11,k =3,g =2 and r* = 4.
3. (c) An Hj -path where H3 = (Ho, Hy, Hj, Ho) € H3 and we have r =6,k =4 and g =r* = 2.

It is worth noting that as F is uniquely defined by F”’, it is in fact the way that we chose our

deterministic absorbing gadgets, that guarantees the following conclusions.

Lemma 5.6.1. Let k,r,s € Nand C > 1, with2 < k < r and suppose p = p(n) > Cn~2/k.
Suppose H is such that:

1. H € H((r Xs) if £ €N, recalling the definition of Hy from Proposition 5.5.6;
2. H e Hy(rxs)ify ¢ Nand k < 5, recalling the definition of Hy from Proposition 5.5.7;

3. H e Hs(rxs)ifk > %, recalling the definition of H3 from Proposition 5.5.12.

Then if F is an (H, Hyy)-absorbing gadget with base set W such that |W| = s, we have
that ®p\w > Cn and ®p w > Cnl/k,

Proof. We recommend that the reader refers to the examples in Figure 5.6 to help visualise some
of the ideas in this proof. Note that as the endpoints of an Hj-path are isolated, we have that
the base set of an (Hy(r X s), Hge) absorbing gadget F is also an isolated set of vertices and
s0 ®p w = ®p\w. Defining Ky + Kj as two copies of K; which meet in a singular vertex,
we have that F'\ W consists of disjoint copies of K and r X s disjoint copies of Kj + Ky, one
for each H_l—path used in F. Therefore Lemma 5.3.1 (1) shows that ®k, > Cn, and repeated

applications of Lemma 5.3.1 (3) show that ®, ., > Cn and in turn ®\w > Cn as required.

Case 2 is similar. Here we have that ¢ = r — k| 7] < k and each of the base vertices w of F' lie

in a copy, say F,,, of the graph defined as follows. Take a copy of K;+1 and a copy of Ky that
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meet in exactly one vertex, which is one of the vertices of the nonedge in K; .- Furthermore, we
have that the base vertex w is the other vertex in the nonedge of this copy of K; .1- We have that
each of the F,, is disconnected from the rest of F and an application of Lemma 5.3.1 (1), (2)
and (3) gives that ®f, \,, > Cn and ®f, ,, > Cnl/k if g > 2. If ¢ = 1, then F,, is an isolated
vertex w and a copy of Ky so we have ®f, ,, = @\, > Cn. Now note that F \ (U, ew Fyy)

consists of copies of K, K K,+1 and a copy of K, (in the copy of Hge in F) which intersect

g+1°
each other in at most one vertex. Furthermore, one can view F \ (U,,ew Fy,) as being ‘built
up’ from these copies in the following way: there is an ordering (starting with Hge) on these

copies of Ky, K

g+ K441 and K, such that, starting with the empty graph and adding these

copies in this order, each new copy shares at most one vertex with the previous copies already
added, and at the end of the process we obtain F'\ (U, ew F),,). Each time we add a copy, we can
apply Lemma 5.3.1 (3) and then again to add in the F,, (to obtain F)). This leads us to conclude

that ®p\w > Cn and @ w > Cn'/* as required.

In Case 3, let ¢ = r — k < k and let us fix some H € H3(r X s) which then defines our F.
For each w € W, let F,, be the connected component of F which contains w. Due to the
definition of 3, and in particular the fact that each H € 93 contains a copy of H|) as defined in
Proposition 5.5.12, we have that F,, # F,, for all w # w’ € W. Also, for ¢ > 2, it can be seen
that F), is a graph obtained by sequentially ‘gluing’ copies of K; . to vertices of degree g — 1.
This gluing finishes with a copy of K being attached to a vertex of degree g — 1 (signifying
that we have reached a copy of H( in the vector H) and with w being a vertex of degree g — 1
in the resulting graph. Similarly to the previous case, applications of Lemma 5.3.1 (2) and (3)
imply that ®f, \,, > Cn and ®f, ,, > cnl/k if g = 2 and if ¢ = 1, we see that F,, is an
isolated vertex, namely w itself. Also as before, we have that F \ (U,, cw F,,) consists of copies
of Ky, K;+1’ K441 and a copy of K, which intersect each other in at most one vertex. Thus,
introducing the ordering of these copies as in Case 2, we can apply Lemma 5.3.1 repeatedly to

obtain the desired conclusion. O

We will use Lemma 5.6.1 to prove the existence of our desired absorbing gadgets in G’ =
G U G(n, p). Before embarking on this however, we need to know how we wish our absorbing

gadgets (in particular their base sets) to intersect in G’.

5.6.2 Defining an absorbing structure

Recall from Definition 2.8.1 that a template 7 with flexibility m € N is a bipartite graph on 7m
vertices with vertex classes [ and J; U Jy, such that |I| = 3m, |Ji| = |J2| = 2m, and for any
J C J», with |J| = m, the induced graph 7 [V(7) \ J] has a perfect matching. Recall also that

we call J; the flexible set of vertices and that for all m sufficiently large, templates of flexibility m
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and maximum degree 40 exist (see Theorem 2.8.2). We will use a template here as an auxiliary

graph in order to build an absorbing structure for our purposes.

Definition 5.6.2. Let m,t* e Nand 7 = (I = {1,...,3m},J1 UJ, = {1,...,2m} U {2m +
1,...,4m}, E(7)) be a bipartite template with maximum degree A(7") < 40 and flexibility m

as defined above. Further, let
H:=HK,  ,<t')={(K 1)1 <t <t}

be the set of vectors of length at most #* whose entries are all K.

A (¢*-bounded) absorbing structure A = (11, Z, Z,) of flexibility m in a graph G’ consists of a
vertex set Z = Z1 UZ, C V(G’) which we label Z; := {z1,...,zom} and Z» := {Zoms1> - - - » Zdm }
and a set IT := {¢y,..., @3, } of embeddings of absorbing gadgets into G’. We require the

following properties:

e Fori € [3m], setting N(i) := {j : (i,j) € E(7) c I xJ} and n(i) := |N(i)|, we have
that ¢; is an embedding of some (H, K, )-absorbing gadget F; such that H € H(r X n(i))
and the base set of F;, which we denote W;, is mapped to {z; : j € N(i)} C Z by ¢;.

* The embeddings of the absorbing gadgets are vertex-disjoint other than the images of the
base sets. That is, for all i € [3m], ¢;(V(F;) \ W;) C V(G’) \ Z and ¢;(V(F;) \ W;) N
wir(V(Fp) \Wy) =0 foralli #i” € [3m].

We call Z, the flexible set of the absorbing structure.

Thus the absorbing structure is an embedding of a larger graph which is formed of 3m disjoint
absorbing gadgets whose base vertices are then identified according to a template of flexibility m.
We will refer to the vertices of ‘A which are the vertices which feature in the embedding of this

larger graph. That is,
VA = | e\ Wil Jz.

i€[3m]
Remark 5.6.3. If A is a t*-bounded absorbing structure of flexibility m, then it has less

than 125¢*r>m vertices in total (using that we assume A(7") < 40 here).

In our proof, we will bound #* by a constant and look for an absorbing structure on a small linear
number of vertices. The key property of the absorbing structure is that it inherits the flexibility
of the template that defines it, but in the context of K,-matchings, as detailed in the following

remark.

Remark 5.6.4. If G’ contains an absorbing structure A = (I1, Z, Z;) of flexibility m, then
for any subset of vertices Z C Z, such that |[Z| = m, there is a K,-matching in G’ covering
precisely V(A) \ Z.
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Indeed given such a Z, letting J be the corresponding indices from J, we have that 7[V (7 \ J)]
has a perfect matching. The perfect matching then indicates, for each i € [3m], which vertex z;,
of Z to use in a K,-matching of the corresponding absorbing gadget. That is, for each i, if ¢; is
‘matched’ to z;, by the perfect matching, then we take the K,.-matching covering ¢; (F;\W;)U{z}, }
(which exists by the key property of the absorbing gadget mentioned after Definition 5.5.14) and

then take their union.

We remark that our use of templates to define our absorbing structure in this way is reminiscent
of the original application of Montgomery [136, 137] who used a template to dictate how
absorbers are connected. His interest was in spanning trees and thus his absorbers were used
to give flexibility over which vertices are included in certain paths in the tree. In relation to
(hyper-)graph factors, although the use of templates had been used in several instances before
this work (see for example [131, 146]), we are not aware of work before this which uses the
template method in the same way as we do here. Indeed, most applications of the template
method use a template to define a fixed absorbing structure which is then found in the graph.
This is similar to our application of the method in Section 3.7 for example. Here our approach
comes from a different angle. Instead of fixing representatives for all the vertices in / and J of a
template 7~ and then defining structures that correspond to the edges of the template, we rather
focus only on the neighbourhoods in 7~ of vertices in /, and use these to define our placement of
absorbing gadgets. As previously mentioned, this is more in line with the original application of
the method by Montgomery [136, 137], who worked with certain ‘absorbing paths’ as absorbing
gadgets.

5.6.3 The existence of an absorbing structure

In order to prove the existence of an absorbing structure, we must find embeddings of absorbing
gadgets in our graph. In the previous section we found many embeddings of certain absorbing
gadgets with deterministic edges and thus it remains to find embeddings of complementary
absorbing gadgets, using only random edges. Therefore we will turn to Lemma 5.3.2, which is a
general result regarding embeddings in random graphs. However, there is still some work to do in
the application of this lemma and the following proposition shows how we can use Lemma 5.3.2
repeatedly in order to embed a larger graph. We state the proposition in a more general form
than just for showing the existence of absorbing structures as we will also use the result at other
points in the proof. As the statement of the proposition is somewhat technical, we recommend
that the reader sees how it is applied in Corollaries 5.6.6, 5.6.8 and 5.6.9 to help with digesting
it.

Proposition 5.6.5. Let k4, Ky, Ke, Ky, k € N and B > 0. Then there exists ng > 0 and C > 0
such that the following holds for any 0 <n <no, n € Nandt =nn € N.
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Suppose that F, . . ., F; are labelled graphs with distinguished base vertex sets W; C V(F;) such
that |W;| < Ky, vi = |V(F;) \ Wi| < ky, e(F;[W;]) =0 and e(F;) < k. foralli € [t]. Suppose
further that p = p(n) such that ®p,\w, = ®r\w,(n,p) > Cn and ®f, w, = P, w;(n,p) >
Cn''* foralli € [t]. LetV be ann-vertex set, and Uy, . .., U; C V be subsets such that |U;| = |W;|

for each i € [t], and defining
di) ={j e [t] :UinU; # 0}],

we have that d(i) < kq. Finally, suppose that 1, F3, . . . , F; are families of vertex sets such that

each F; contains pn"t ordered subsets of V of size v;.

Then whp there is a set of embeddings ¢1, 2, ...,¢; such that each ¢; embeds a copy of F;
into G (n, p) on'V with W; being mapped to U; and V (F;) \ W; being mapped to a set in F; which
does not intersect Ujc[ U;. Furthermore for i # i’, we have that ¢;(V(F;) \ W;) N @i (V(Fy) \
W) = 0.

Proof. Fix !, := Ky, + 2k, and let g < S22~ +26e+9) (7 V(¢! + K, + k,,))~'. The idea here is
to greedily extract the desired embeddings, finding them one at a time in G(n, p). To achieve
this, we use the multi-round exposure trick, having a constant number of phases such that in each
phase we find a collection of embeddings. At the beginning of each phase we ‘reveal’ another
copy of G(n, p) on the same vertex set and focus only on the indices for which we have not yet
found a suitable embedding, showing that in any sufficiently large subset of these indices there is
an index for which we can find a suitable embedding. At each phase, we will apply Lemma 5.3.2
and so we first need to slightly adjust the sets we are considering in order to be in the setting of

that lemma.

Firstly let us adjust each F; so that it has ], non-base vertices and «, edges. To each F;
add «, — e(F;) isolated edges. Then add isolated vertices until the resulting graph has «?, + |W;|
vertices and redefine F; as the resulting graph. Note thatif p = p(n) is such that @ \w, (n, p) >
Cn and @f, w,(n,p) > Cn'/* for the original F; as in the statement of the proposition, then
these conditions are preserved under the above changes to F; for each i, by Lemma 5.3.1. We
also arbitrarily extend each set in each #; to get sets of size «;,. As we can extend with any
vertices not already in the set, it can be seen that we can have families ; of size at least 8/n*v
for some B8’ > 2% which we now fix. Clearly, a set of valid embeddings of these new F; (where®
the new vertices of F; are mapped to the new vertices from a set in ;) will also yield a set of

embeddings of the original graphs we were interested in.

Now let us turn to the phases of our algorithm. We will generate G(n, p) in k + 1 rounds

so that G(n, p) = Uf;rll G with each G; an independent copy of G(n, p’), where p’ is such

9This will be guaranteed in applications of Lemma 5.3.2 as the lemma is concerned with labelled embeddings.
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that (1 — p) = (1 — p’)**!. Note that for any graph F, vertex subset W c V(F), constant ¢ > 0
and probability p, one has that ®p\w (n,cp) = ¢'®p\w (n, p) for some constant ¢’ between 1

and ¢,

Likewise, multiplication of the probability by some constant ¢ > 0 results in
multiplication of @y by some constant factor. Hence, choosing C > 0 sufficiently large,
we can guarantee that if ®g,\w, (n, p) > Cn and ®f, w,(n, p) > Cn'/* as in the statement of
the proposition, then ®g,\w; (n, p’) > C’n and ®f, w;(n, p’) > C'n'/* with C’ such that C’ >

’
2kv+9K‘// P4

77 Y. WefixsuchaC >0andforj=1,...,k, we define
tj = ' =K (kg + 1) logn)’~!  and sj= t_,n_l/k logn = ' I * (kg + 1)’ ~t(logn)’.

We also define tr41 := (kg + 1)sx = n((kq + 1) log n)k, Sk+1 o= 1 and #5540 := 0.

Now, as discussed, we look to choose embeddings one by one in order to reach the desired
conclusion. Therefore, for the sake of brevity, at any point in the argument let us say that an
embedding ¢; of F; is valid if it maps W; to U; and maps V(F; \ W;) to a set in ¥; which is
disjoint from U := U;¢[;)U; and also disjoint from ¢ (V(F;» \ W;»)) for all indices i’ € [¢] for
which we have already chosen an embedding. Our claim is that whp (with respect to G (n, p))
we can repeatedly choose valid embeddings until we have found embeddings for all ¢ indices
inT := {1,...,t}. We therefore need to show that we never get stuck and that this greedy
algorithm always finds a valid embedding. In order to do this, we split the algorithm into £ + 1
phases and rely on the edges of G ; in the j th phase where we will find ¢ j—tj4+1 valid embeddings.
We will show that for all j € [k + 1], conditioned on the fact that the algorithm has succeeded
so far, we have that whp (with respect to G ; = G(n, p”)) the algorithm will succeed for a further

phase. The conclusion then follows easily as there are constantly many phases.

So let us analyse the j* phase and condition on the fact that the process has been successful
so far and so there are ¢; indices that remain for us to find embeddings for. Let us further
fix a specific set!® of ¢; indices 7; C T that remain and some set of already chosen valid
embeddings {¢; : i € R;} where R; := T \ T,. By the law of total probability, it suffices to
condition on this fixed set of embeddings so far and show that whp (with respect to G ;) we
can repeatedly find valid embeddings, each time removing the corresponding index from 77,
until there are ¢;,; indices remaining. So let V]f’ = UieRjt,o,-(V(F,-)) U U and for i ¢ R,
define ?;(j) ={SeFH: :85n VJ’.’ = (0}. We have that |Ti(j)| > %/n"/v as |V]f’| < %n due
to our condition on r9. We then apply Lemma 5.3.2 to the sets ?;(j ) such that i € T;, and
where 1,5}, %, K, K., Ky, ke and p’ play the roles of ¢, s, 8, L,v,w, e and p respectively. Let

us check that the conditions needed for the lemma are satisfied. Indeed, we certainly have

1°Note that when j = 1 we must have that 77 =T.
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that t; < k1 < B2 sk, < B% and (1) < (") < 2". Moreover, when 1 < j < k,

2k(,+9K/ P4

,B’ZV v)tj lognand C'n > (

DKLH9 7 )
C’'s;n'k = C'tjlogn > ( —V) n,

ﬁ/Z

by our definition of C’, whilst for j = k + 1, C'spsn'/k

= w(tr+1 logn). This verifies the
conditions in (5.3.1) in all cases and so we conclude that whp, given any set B of at most «/ 7;
vertices and any set S; of s; indices in T such that the sets U; with i € §; are pairwise disjoint,
there is an index i* € §; and a valid embedding of F;+ in G; which avoids B;. This then
implies that the greedy process will succeed throughout this phase. Indeed, we can now initiate
with B; = () and repeatedly find indices i € T; for which we have a valid embedding ¢;. We
add this embedding to our chosen embeddings, add the vertices of it to B; and delete the index i
from T;. The conclusion that we drew from Lemma 5.3.2 above asserts that we continue this
process until we have 7;,1 indices remaining in 7, which is precisely what we need. Indeed,

for 1 < j < k, if we have more than ¢;,; indices in 7} left then by the upper bound on d(i)

for i in T taking a maximal set S C T such that U; are all pairwise disjoint for i € S, we have

that |S| > Ktﬁl > s;. In the final phase when j = k + 1 we can simply find embeddings one at a

time as sg+1 = 1. This concludes the proof. O

As corollaries, we can conclude the existence of absorbing structures in G U G(n, p). We split

the cases here as Case 1 and 2 are much simpler.

Corollary 5.6.6. Let k,r € N such that either 2 < k < 5 or k = r and let y > 0. There
exists 9 > 0 and C > 0 such that if p > Cn™>'* and G is an n-vertex graph with minimum
degree 5(G) > (1 - é +y)n, then for any 0 < n < no and any set of 2nn vertices X € V(G),
whp there exists a 4-bounded absorbing structure A = (I, Z,Z;) in G’ .= G U G(n, p) of
flexibility m := nn, which has flexible set Z) = X.

Proof. We look to apply Proposition 5.6.5 and simply need to establish the hypothesis of the
proposition. Consider a bipartite template 7 = (I = {1,...,3m},J1UJ, = {1,...,2m}U{2m+
1,...,4m}, E(7)) as in Definition 5.6.2; recall such a template exists (see Theorem 2.8.2).
Fix Zy = X = {Zom+1, - - - » Zam } and choose an arbitrary set of 2m vertices Z; € V(G) \ Z, which
we label {zy, ..., 22m}. Now towards applying Proposition 5.6.5, we set ¢ := 3m and for i € [¢]
we define the sets U; := {z; : j € N(i)} where N(i) is as in Definition 5.6.2. Note that we can
set kg = 1600 as we start with a template 7~ with A(7") < 40, so for any set N(i) c J (of at
most 40 vertices), there are at most 1600 indices i’ € I = [3m] such that N(i") N N(i) # 0.

Now, fixing i, the collection ¥;, which we will use when applying Proposition 5.6.5, will be
obtained from Proposition 5.5.16. Indeed, this proposition implies, along with Propositions 5.5.6
and 5.5.7, that there is some B > 0 such that the following holds with @ = 1 if 7 € N (Case 1)

and a = 2 otherwise (Case 2).
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Claim 5.6.7. For any set U of at most 40 vertices, there is an (H,(r X |U|), Hgy)-absorbing
gadget' F’ such that there are at least n"F'~\U! embeddings of F’ in G which map the base
set of the absorbing gadget to U.

For each i, apply Claim 5.6.7 with U; playing the rdle of U to obtain a collection #; of ordered
vertex sets from V(G) that combined with U; each span such an absorbing gadget F/ = F’.
For each such embedding of F/, if we have an ordered (H,(r x |U;]), Hyer)-absorbing gad-
get F; (in G(n, p)), on the same vertex set, then we obtain the desired embedding ¢; of a
(Ka(r x |Ui]), Ky )-absorbing gadget in G U G (n, p), where K, is a (K, , 2a)-path. Applying
Proposition 5.6.5 with small enough 7 > 0 thus gives us the absorbing structure, upon noticing

that the conditions on ®f, w, and ®F,\w, are satisfied by Lemma 5.6.1. m]

The third case, when 5 < k < r—1, follows the exact same method of proof. The main difference
comes from the fact that we do not have many absorbing gadgets for all small sets of vertices
in the deterministic graph but only for sets which lie in one part of the partition dictated by
Lemma 5.5.12. Therefore we look to find an absorbing structure in each part of the partition.
Thus when we apply Proposition 5.6.5, we do so to find all these absorbing structures at once, in

order to guarantee that these absorbing structures are disjoint. The conclusion is as follows.

Corollary 5.6.8. Let 5 < k < r—1 be integers, and define q :=r -k, ¢ := [:7] andy > 0. Then
there exists @ > 0 such that the following holds for all 0 < & < %. There exists C > 0andng > 0
such that if p > Cn™*'% and G is an n-vertex graph with minimum degree 5(G) > (1- % +7)n,
then for any 0 < n < ng there is a partition P = {V1,Va, ..., V,, W} of V(G) into at most c parts
with the following properties:

e |Vi| = anforie€ [p];
o |W| <ens

* 8(GIVi]) = (1= %+ J) Vil for each i € [p];

r

 For any collection of subsets X; C V; such that 1.8n|V;| < |X;| < 2n|V;| and | X;| even
foralli € [p], whp there exists a set of c(2*! + 1)-bounded absorbing structures {A; =
(I;, Z;, Zip) 1 i € [p]} in G’ := G U G(n, p) such that each A; has flexibility m; := .4
and has flexible set Z;y = X;. Furthermore V(A;)) NV(Ay) =0 foralli +i’ € [p].

Proof. We begin by applying Proposition 5.5.12 to get a vertex partition $ with at most ¢ — 1
parts and in each part U €  we remove any vertex v which has internal degree degg; (v;U) <

(1-£+2)|U|, and add v to W. The resulting partition is the partition we will use. Choosing &s 5.1

1Recall here the definition of H{ from Proposition 5.5.6, of H; from Proposition 5.5.7 and Hge; from Defini-
tion 5.2.1. The notation H, (r X |U|) is also defined as in Definition 5.5.15.
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in the application of Proposition 5.5.12 to be less than £, we have that the first three bullet points

are satisfied. Below we show the last bullet point, and to aid readability we temporarily fix i = 1.

Now given a set of X; C V| we choose aset Z; C Vi \X| suchthat |Z;| = 2m,. Further, according
tosometemplate 7 = (I = {1,...,3m},J1UJr = {1,...,2m }U{2m+1,...,4m}, E(T)) as
in Definition 5.6.2, we label Z; according to J; and X according to J, and identify sets Uy C X
for each i’ € [3m;] according to the neighbourhood of i" in 7. As in Corollary 5.6.6, by
Propositions 5.5.12 and 5.5.16 there exists some 8 > 0 such that for each i’ € [3m ], fixing s;» =
|Ui| the following holds. There is some H;, € H3(r x s;) and some (H,,, Hye)-absorbing
gadget F, such that, defining vy = v F, there are at least fn"" %" embeddings of F, in G which
map the base set of F}, to Uy. Each of these embeddings gives a candidate vertex set for which
we could embed an (Q_i,, Hgyer)-absorbing gadget, say Fj» to get a copy of a (K, K, )-absorbing
gadget in G’, with base set U, where K € H(r X sy) and H = H(K", |, < c(2¢*! +1)). Using
Lemma 5.6.1, we can now apply Proposition 5.6.5 (provided n > 0 is sufficiently small) to get
the desired embeddings of all the F;» which gives an absorbing structure A; as in the statement of
the corollary. We in fact apply Proposition 5.6.5 for alli € [p] at once which gives the collection

of absorbing structures as required. O

Before proving the upper bound in our main result, Theorem III, we give one last consequence

of Proposition 5.6.5 which will be useful for us.

Corollary 5.6.9. Suppose that2 < k < r and y,B > 0. Then there exists « > 0 and C > 0
such that the following holds. Suppose G is an n-vertex graph with disjoint vertex sets U, W such
that |U| < an, |W| > Bn and for allv € UUW, deg;(v;W) > (1 - £ +y)|W|and p = p(n)
is such that p > Cn=2%. Then whp in G U G(n, p) there is a set of |U| disjoint copies of K, so

that each copy of K, contains a vertex of U and r — 1 vertices of W.

Proof. Firstly, let 7* := [£]. By the fact that deg; (v; W) > (1 - £ +y)|W| forallv e UUW,
we have that each vertex u € U is in at least (%n)r distinct copies of K. | in G such that the
other vertices of each copy lie in W, and u is contained in the nonedge of each K, ,. Thus by
Lemma 2.4.1, there exists some 8’ > 0 such that each u € U is in 8/n"~! copies of Hye with the
other vertices of each copy in W, and u in the part of size ¢ := r — (r* — 1)k in Hge. Let F,, be
the collection of (r — 1)-sets of vertices in W that, together with u, give rise to these copies of
Hge; containing u. Set F,, := Hge = K, \ Hget with an identified vertex w,, in the clique of size ¢
in Hgye;. Thus an ordered embedding in G (n, p) of F,, which maps w,, to u and V(F,) \ {w,} to
an ordered set in F;, will give an embedding of K, in G UG (n, p) containing u and vertices of W.
By Lemma 5.3.1 we have that ®f, ,,, > Cn'/* and ®r,\w, = Cn. Thus, provided @ > 0 is
sufficiently small, an application of Proposition 5.6.5 gives the desired set of embeddings of K

inGUG(n,p). O
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5.7 Perturbed thresholds for clique factors

In this section we prove the upper bound of Theorem III. Fix some sufficiently large n € rN
and let G be an n-vertex graph with 6(G) > (1 — é +y)n. We will show that there exists C =
C(y,k,r) > 0 such that if p > Cn=?/%, then G’ := G U G(n, p) whp contains a K,-factor.
Again, we split the proof according to the parameters. We first treat Cases 1 and 2 together (i.e.
when 2 < k < 5 or k = r). Here we avoid many of the technicalities which occur in Case 3 and

the main scheme of the proof is clear.

Theorem Il upper bound: Proof of Cases 1 and 2. Suppose 2 < k < 5 or k = r, and
let C,C” > 0 be chosen so that we can express G(n,p) = U‘J‘.ZIG]- with each G; a copy
of G(n, p’) where p’ > C’n"?/% and C’ > 0 is large enough to be able to draw the desired
conclusions (whp) in what follows. In the following, we will reveal the graphs G ; for j € [4]
at different points in the argument, making use of their independence. We will assume that
each G satisfies some property that occurs whp in G(n, p’) and show that if this is the case,
then we can find a K.-factor. A simple union bound implies that whp all the G ; indeed satisfy
their given properties and so whp we find a K,.-factor in G U G(n,p) = G U (U‘]‘.ZlG 7). Now
fix 0 < 7 < min {55%—, 70} where g is as in Corollary 5.6.6 and consider X’ € V(G) to be the
subset generated by taking every vertex in V(G) in X’ with probability 1.97, independently of the
other vertices. Whp, by Chernoft’s theorem (Theorem 2.1.1), we have that 1.8yn < |X’| < 2nn
and for every vertex v € V(G), degg(v;X’) > (1 - é + %’)lX’L Take an instance of X’
where this is the case and let X := X’ if |X’| is even and X := X’ U {x} for some arbitrary
vertex x € V(G) \ X’ if |X’| is odd. Apply Corollary 5.6.6 to get a 4-bounded absorbing
structure A = (I1, Z, Z) in G U G with flexibility % and flexible set Z, = X. Remark 5.6.3

implies |V (A)| < 500r’nn < L.

Then letting V' := V(G) \ V(A), we have that §(G[V']) > (I — £ + Z)|V’|. Choose a :=

min {a5_6,9, %}, where as6.9 is the constant obtained when applying Corollary 5.6.9 with

Y

constants r, k, 5,1 playing the roles of r, k, y, B respectively.

Apply Theorem 5.4.1 to obtain a partial K,-factor K in (G U G,)[V’] covering all but at
most an vertices of V. Let Y denote the set of those vertices in V’ uncovered by K. Apply
Corollary 5.6.9 to obtain a partial K, -factor K5 in (G U G3)[X U Y] which covers Y and covers
precisely (r — 1)|Y| < Bln < Z|X| vertices of X. Let X be the set of those vertices in X not
covered by %>. We have that 6(G[X]) > (1- é + %)le so we can apply Theorem 5.4.1 to
obtain a K,-matching K7 in (G U Gy4) [X] which covers all but at most % vertices of X. Here,

we used that | X| > %~ is linear in size.

By Remark 5.6.4 we know that for any subset X’ of X of size %, there is a K,-matching

covering precisely V(A) \ X”. Thus, |V(A)| - % is divisible by r. Therefore, as the only
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vertices in V(G) uncovered by V(% U %) are those from (V(A) \ X) U X, there must be a

(sub-)K,-matching K3 C K which covers all but exactly % vertices of X.

Let X be the set of vertices of X that are covered by cliques in K> U %3. Thus |X| = %

and by Remark 5.6.4 there is a K,-matching K, in G U G| covering precisely V(A) \ X.
Hence, K := K| U K, U K3 U Ky gives a K,-factor in G U G (n, p) as required. O

If 5 < k <r -1, we have to overcome a few technicalities. The idea is to apply Corollary 5.6.8
and to apply the same approach as above in each of the parts of the resulting partition to find
a K,-factor. Of course we also have to incorporate the vertices of the exceptional class W into
copies of cliques in our factor; this is straightforward using Corollary 5.6.9. So we cover these

vertices first before embarking on finding an almost factor.

More subtle is a problem that arises from divisibility. That is, when we cover each part
with K,-matchings according to the scheme above, we cannot guarantee that we are left with a
subset of the flexible set of the right size to apply the key property of the absorbing structure.
Therefore we embed ‘crossing’ copies of K- in our flexible sets in order to resolve this divisibility
hurdle at the end of our process. We find these copies in the following manner. Consider the
graph F := Kf%h[%]
part V; contains at least y’n’~! copies of F for some y’ > 0. Now let F be the graph consisting

. Because of our minimum degree condition and Lemma 2.4.1, every

of a copy of K =l and a copy of K = joined at a single vertex x, say. If we consider F
2 2

and F \ x = F[V(F) \ {x}] to have the same vertex set so that F \ x = K,_; \ F, then F UF is
a copy of K. Also note that it follows from Lemma 5.3.1 that ®= > C’n for p > C'n"2/%. We
will look for embeddings of K, = F U F in G U G (n, p) such that the vertex x is mapped to one

part of the partition and the r — 1 other vertices lie in another part of the partition.

Theorem 111 upper bound: Proof of Case 3. Suppose 5 < k <r—1,q:=r—kandc := |'§'|.
Now let C,C’ > 0 be chosen so that we can express G(n, p) = ULIGJ- ue, (Gi1 U Gjp) with
each G, G;1 and G, a copy of G(n, p’) where p’ > C’n~?/* and C’” > 0 is large enough to be
able to draw the desired conclusions (whp) in what follows. As in the proof of cases 1 and 2,
in each random graph we will use, we will assume that some high probability event occurs, and
then prove the existence of a K,.-factor. As we have a constant number of independent random

graphs, this will prove that whp a K,.-factor exists in G U G (n, p), as required.

We use our first copy of G(n, p’) to find the crossing copies of K, discussed above. Apply
Corollary 5.6.8, letting @1 > 0 be the outcome of the corollary with input r, k,y. Choose 0 <
£ < min {%,05.6.9}, where @569 is the constant obtained when applying Corollary 5.6.9
with r, &, %, % playing the rdles of r, k, y, 8 respectively. Thus, Corollary 5.6.8 yields a parti-
tion Vi,...,V,, W of V(G) where p < ¢ and |W| < en. Note §(G[V;]) > (1 - £ + Z)|V;| for
each i € [p]. Thus for eachi € [p — 1] and every subset V' C V(G) of at least n — c(r — 1)r
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vertices, Lemma 2.4.1 implies that there exists some vy’ = y’(r, k,y) > 0 such that there are
at least y’n" choices of pairs (S,v) € (V,p_‘?“) X (V' N'V;) such that S hosts a copy of the

graph F := K _,_1_ ,_1, discussed above.
(= 1.l51

Therefore, using that ®+ > C’n with the graph F as described above, we can apply Corollary 5.3.3
to conclude that for any subset V' of vertices of at least n — c(r — 1)r vertices and any i € [p—1],
there is a copy of K, in GUG | which has r — 1 vertices in V;,| and one vertex in V;. Therefore, we
can greedily choose copies of K, so that we have a set R := U;¢[,-1]R; of disjoint copies of K,
in G UG such that R; contains r — 1 copies of K, with one vertex in V; and r — 1 vertices of V1.
Let R, := 0 and R; := V(R) NV, fori € [p], where V(R) denotes the vertices which feature in
cliques in R. Note that |[R| =7 =1, |R2| = |[R3| =--- = [Rp—1| =r(r — 1) and |R,| = (r - 1)2.
We will incorporate these R; into our flexible sets in order to use the copies of K- that they define

to fix divisibility issues that arise in the final stages of the argument.

Now fix 0 < 7 < min {m, 170} where 79 is as in Corollary 5.6.8 and for each i € [p]
consider X/ C V(G) to be a subset selected by taking every vertex in V; \ R; with probability 1.97,
independently of the other vertices. Whp, by Chernoff’s theorem (Theorem 2.1.1), we have
that 1.8n|V;| < |X!| < 25|Vi|-r(r—1) and for every vertex v € V;,deg; (v; X/) > (1—%+%) |X!|.
Therefore, for each i, take an instance of X/ where this is the case and let X; := X/ UR; if | X!|+|R;]|
is even and X; := X/ U R; U {x} for some arbitrary vertex x € V; \ (X U R;) if |X]| +|R;] is odd.
Apply Corollary 5.6.8 to get a collection {(A; = (I1;, Z;, Z;») : i € [p]} of absorbing structures
in G U G, such that each A; has flexibility % and flexible set Z;; = X;. By Remark 5.6.3 we
have that A := U;c[,)V(A;) is such that |A| < 125¢22¢*rnn < Zn.

Therefore, setting V' := V(G) \ (W U A), we have that for every w € W U V', deg;(w; V') >
(1 - %+ 2)|v’| and so an application of Corollary 5.6.9 yields a partial K,-factor % in G U G3
of |W| cliques, each using one vertex of W and r — 1 vertices of V’. Setting V" := V(G) \
(AU V(%)), we have that §(G[V"]) > (1 — £+ Z)|V”|. So, as in the previous proof, we
let ap := min {a5_6,9, %}, where @569 is obtained from Corollary 5.6.9 (where % and n play
the roles of y and B respectively), and we apply Theorem 5.4.1 to obtain a partial K,-factor K,
in (GUG4)[V"'] covering all but at most a,n vertices of V”’. Let Y be the set of vertices from V"’

uncovered by K and set ¥; :=Y NV, for each i € [p].

Now foreachi € [p] a simple application of Corollary 5.6.9 yields a K,.-matching %;; in GUG;
which covers Y; and uses precisely (r — 1)|Y;| < %n < 17—6|X /| vertices of X/. Note that we do
not use any vertices of R = U;¢[,]R; in these cliques. For each i € [p] let X; be the vertices
of X; \ R; not involved in copies of K, in K;1. As 6(G[X;]) > (1 - % + X)|X;| and | X;| is linear,

we can apply Theorem 5.4.1 to obtain a K,-matching K in (G U G;2)[X;] which covers all but

at most @ vertices of X;, for eachi € [p].
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Note that we will not use the full matchings K7 in our final factor. So (ignoring for now the K-
matchings K7), it remains to cover the vertices in (V(A;) \ X;) U R; U X; for each i € [p].
We do so by means of the following algorithm. We initiate with the K7, R; as above and
set Z; := V(%;1) N X; and Kj := O foralli € [p], and seti’ = 1. Now whilst [Z;/| < @ —-r+1,
remove a clique from K7, add it to K> and add its vertices to Z:. Once this process stops,
add @ —|Z | copies of K, in R;» to K2, and add all their vertices in X;to Zj forj=1i,i"+1.
If i’ < p — 1, repeat this process, setting i’ =i’ + 1. Note that when i’ = p, R;» = () and there are
no cliques which we could add in this process. However, setting Ko = K1 UK> Uje (o] (Ki1 UKi2)
we have that |V(%y)|, n, and |V (A;)| - % are divisible by r for each i, so we can deduce that

the algorithm takes no cliques from R, and terminates with |Z;| = @ forall i € [p].

Finally, by the key property of the absorbing structure (Remark 5.6.4), we have that for each i €
[p], there is a partial K,.-factor K;3 in G U G, covering V(A;) \Z- and thus U;c,1%Ki3 U Ko is
the desired K,--factor in G U G(n, p). O



Chapter 6

Related works and future directions

In this chapter, we conclude the thesis by discussing connections with other lines of research and
the questions that remain open in the field. In Section 6.1, we discuss other related spanning
structures that have been studied in the settings explored in this thesis. We discuss universality in
Section 6.1.1, powers of Hamilton cycles in Section 6.1.2 and H-factors for different graphs H,
in Section 6.1.3. In Section 6.2, we then introduce some further models and related questions
about clique factors. In Section 6.2.1, we look at analogous questions to those studied in this
thesis, in the context of hypergraphs. In Section 6.2.2, we consider clique factors in the so-called
Ramsey—Turan setting and finally in Section 6.2.3, we address some further notions of robustness
for clique factors. Before all of this, we discuss what remains to be proven for clique factors in

our three principal settings of interest.

For pseudorandom graphs, Theorem I (and Theorem I*) give us a complete understanding for
triangle factors due to the dense triangle-free pseudorandom construction of Alon [7] discussed
in Section 1.4. Several further constructions [40, 115] of pseudorandom triangle-free graphs have
also been given which are (near-)optimal. For r > 4, Theorem I gives that any n-vertex (p, 8)-
bijumbled graph G with 8 = o(p”~'n) contains a K,-factor. However, it is not known whether
this condition is tight, even for the existence of a singular copy of K,. This represents a key
challenge in the understanding of pseudorandom graphs. Various authors [41, 68, 126, 166]
have stipulated that n-vertex K,-free (p, 8)-bijumbled graphs exist with 8 = ©(p"~'n). Such
graphs would witness the tightness of Theorem I, as well as Conjecture 6.1.1 discussed below,
for all values of r > 4. Focusing on optimally pseudorandom graphs (that is, fixing 8 = ©(y/pn)
in (p, B)-bijumbled graphs), we expect to be able to find K. -free optimally pseudorandom graphs
with p = Q(n~"/>*=3)). The best known construction comes from a recent improvement of
Bishnoi, Ihringer and Pepe [22] who give K,--free optimally pseudorandom graphs of density p =

O(n~ Y=Y Further interest in finding denser such graphs comes from a recent remarkable
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connection discovered by Mubayi and Verstraéte [ 142] that shows that if, as we expect, the K-
free optimally pseudorandom graphs with density p = Q(n~"/(?*=3)) do exist, then it is possible
to improve the lower bound on the off-diagonal Ramsey numbers to match the upper bound
and thus determine the asymptotics of this extremal function. In detail, they show that if these
pseudorandom graphs exist, then the off-diagonal Ramsey number is R(r,7) = ¢"~1*0() a5 ¢
tends to infinity. In fact, even a construction with p = w(n~'/") would improve on the current

best known lower bound on off-diagonal Ramsey numbers due to Bohman and Keevash [24].

In the robust setting, Theorem II only dealt with triangle factors. We believe that our methods
can also be used to tackle factors for larger cliques and give a robust Hajnal-Szemerédi theorem
(Theorem 1.1.2). That is, there exists a C > 0 such that for any with n € rN, p > Cpj(n)
and n-vertex G with 6(G) > (1 - %)n, the graph G, whp contains a K,-factor. Here pj(n)
denotes the threshold for K, -factors as in Theorem 1.2.1 (also given below (6.0.1)). We do not
believe that significant new ideas would be needed for this, but that it would be technically much
more involved, in particular in the analysis of the extremal cases which was done for triangle

factors in Section 4.7. Consequently, we concentrated only on triangle factors here.

In the randomly perturbed setting, we have almost completely resolved the K,--factor problem.

The only cases that Theorem III does not resolve is when 7 = } % cees ’r;z Note however
for2<k<r—-land7t:=1- %, Theorem III gives that
n Mk < p(Ky, 1) < n7 2D,
In fact, one can slightly improve the lower bound, giving that
(K. 7) = p(Kx, 0) = pi(n) = /¥ (log )™ F0). (6.0.1)

Indeed, as in our lower bound construction (Section 5.1), take G to be complete graph on n
kn

vertices with a clique of size =* removed. Letting / be the resulting independent set of vertices,
if p = o(p}) then whp we have that the number of copies of Ki4; in G(n, p) is less than,
say, (logn)® by Markov’s inequality, whilst the number of vertices in / which do not lie in
copies of Ky is at least n'=°(1)| as can be seen by a second moment calculation (see e.g. [95,
Theorem 3.22]). This precludes the existence of a K,-factor in G U G(n, p), as the average
intersection of a clique in such a factor with the vertex set / would be k& and we cannot find a
family of disjoint cliques in G (n, p)[I], whose average size is k, given the restrictions above.
This leaves a gap between the upper and lower bounds and Han, Treglown and the author [87]
suggested to study these ‘boundary’ cases. In recent work, Bottcher, Parczyk, Sgueglia and

Skokan [29] addressed this question. For triangle factors, they completed the picture by showing

that p(K3,1/3) = 105 =, confirming that the lower bound given here is in fact the correct value for

the perturbed threshold. For larger cliques they showed, perhaps surprisingly, that the behaviour
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is more complicated and the lower bound given here is not always the correct answer. For
example, they gave a construction giving a polynomial improvement, showing that there is
some & > 0 such that p(Kj4, 1/4) > n~%/3*¢. The full picture of the perturbed thresholds for

cliques at these boundary values remains a mystery and provides an interesting challenge.

6.1 Related spanning structures

The study of clique factors is part of a wider research aim of understanding spanning structures
in graphs. This is a large field with many interesting results and open problems. Here, we discuss

some key themes in the area in relation to the settings studied in this thesis.

6.1.1 Universality

As a broad general aim, we want to understand conditions for the existence of all subgraphs
in graphs and not just singular examples such as clique factors. In order to achieve this,
we can categorise graphs according to their maximal degree, leading to the following notion.
For 2 < k € N, we say an n-vertex graph G is k-universal if for any graph F' on at most n
vertices, with maximum degree at most k, G contains a copy of F. Understanding universality

in graphs seems to be a considerable challenge and many beautiful conjectures remain open.

A moment’s thought may suggest that a Ky4-factor is the ‘hardest’ maximum degree k graph
to find in a graph G, as a clique is the densest graph with maximum degree k and a clique factor
maximises the number of cliques. This intuition appears to hold true and has manifested in various

settings. For example, we know from the theorem of Hajnal and Szemerédi (Theorem 1.1.2)

k_
k+1

Bollobas and Eldridge [25], and independently Catlin [33], conjectured that the same minimum

that any n-vertex graph G with §(G) > (757)n contains a Ky -factor and that this is tight.
degree condition actually guarantees k-universality. This has been proven for k = 2,3 [1, 9, 49]
(and large n when k = 3) but remains open in general. In the case of random graphs, we
know from the theorem of Johansson, Kahn and Vu (Theorem 1.2.1) that the threshold for the
appearance of a Ky.-factor is py ,(n). The recent breakthrough result of Frankston, Kahn,
Narayanan and Park [69] on thresholds implies that for any n-vertex graph F with maximum
degree k, the threshold for the appearance of F in G(n, p) is at most p; ., (n). Note that this is
not implying that G(n, p) is k-universal whp when p = w(p;,,(n)) as we can only guarantee
that some fixed F appears whp. However, the stronger version that p; ,(n) is the threshold
for k-universality is believed to be true but only verified for k = 2 [65]. We remark that in
general the 2-universality question is considerably more assailable than the general case due to
the fact that every maximum degree 2 graph is a union of disjoint cycles and paths whilst for

larger k, no such simple structural classification exists.
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We believe that the same phenomenon occurs in pseudorandom graphs and conjecture the
following, which implies that the condition in Theorem I that forces a Ky -factor in fact forces

all maximum degree k subgraphs.

Conjecture 6.1.1. For any 2 < k € N and ¢ > O there exists an &€ > 0 such that any n-

vertex (p, 8)-bijumbled graph with 6(G) > cpn and 8 < ep*n is k-universal.

Note that Corollary 1.4.2 settles Conjecture 6.1.1 for the case k = 2. For k > 3, the best known
result comes from the sparse blow-up lemma of Allen, Bottcher, Han, Kohayakawa and Person [2]
which gives a condition of 8 = o(p3¥*1/2p) guaranteeing k-universality in a (p, 8)-bijumbled
graph. One thing that sets aside the pseudorandom setting in stark contrast to the extremal and
probabilistic settings is that, as discussed above, it might be possible to replace a Kyi-factor as

the benchmark for the ‘hardest’ graph to find in the host graph, by a single copy of K.

We also believe that there is robustness for universality and conjecture the following.

Conjecture 6.1.2. For any k > 2, there exists a C > 0 such that for alln € Nand p > Cp} .,

the following holds. If G is a graph with 6(G) > (%)n then whp G, is k-universal.

Conjecture 6.1.2 is a common strengthening of the conjecture of Bollob4as—Eldridge—Catlin [25,
33] and the threshold for universality and so a full solution to this conjecture at this point would
be remarkable. However, establishing the case k = 2 seems attainable and would be very

interesting.

Finally, in the randomly perturbed setting, we propose the following strengthening of Theorem III.

Conjecture 6.1.3. Let2 < k’ < k+ 1 be integers. Then given any 1 — % <Tt<1- %, there

exists a C > 0 such that the following holds for all
p = Cp(Kys1,7) = Cn 2.
For any n-vertex graph G with 6(G) > tn, whp G U G (n, p) is k-universal.

Conjecture 6.1.3 would be best possible due to Theorem III. The case k = 2 and k” = 3 was proven
by Parczyk [148] who also conjectured the same as Conjecture 6.1.3 for the subcase k' = k + 1
and all £k > 2. Moreover, a solution to the case k = 2 and k’ = 2 was announced in [29].
For k > 5 and k' = k + 1, Bottcher, Montgomery, Parczyk and Person proved a weaker version
of Conjecture 6.1.3, showing that for any fixed maximum degree k graph F, adding G (n, p)
with p = w(n?/**1)to a graph G with positive density, guarantees the existence of F in G (n, p).
Proving this weakening of Conjecture 6.1.3 for all values of 2 < k&’ < k + 1 would be a natural
first step and would provide compelling evidence towards the conjecture. Finally we remark that
thresholds for universality with respect to all (bounded-degree) trees have also been studied in

the randomly perturbed setting [27, 98, 121].
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6.1.2 Powers of Hamilton cycles

Aside from studying all subgraphs through universality, one can also look at other natural
examples of spanning structures. For 1 < k € N, we say an n-vertex graph G contains the k'"
power of a Hamilton cycle if it contains a copy of the graph obtained by taking a cycle C,, of
length n and adding an edge between any pair of vertices that have distance at most k in C,,.
When k = 1, this just corresponds to G being Hamiltonian. For k = 2, we say G contains the
square of a Hamilton cycle. Powers of Hamilton cycles are a natural generalisation of Hamilton
cycles and are well-studied. Note that for k > 2, if G hasn € (k + 1)N vertices then the existence
of the k' power of a Hamilton cycle in G implies the existence of a Ky ,1-factor in G. Therefore
any threshold for containing the k’” power of a Hamilton cycle must be at least as large as the

threshold for a Ky, -factor.

In the extremal setting, perhaps surprisingly, it turns out that the minimum degree thresholds
coincide. Indeed, Komlés, Sarkdzy and Szemerédi [111, 112] proved a strengthening of The-
orem 1.1.2 for large n € N by showing that any n-vertex graph with 6(G) > (%)n contains
the k' power of a Hamilton cycle. This confirmed conjectures (for large n) of Pésa (see [58])
for squares of Hamilton cycles and Seymour [157] for higher powers. In the probabilistic
setting, the situation is different and we see a separation between the thresholds for Ky,i-
factors, p; ., = n=2/k+1) (Jog n)?/ (k*+k) (see Theorem 1.2.1), and the thresholds for k*” powers
of Hamilton cycles, which has been shown to be n~Yk_ For k > 3, this threshold follows from
a general result of Riordan [151] using an argument based on the second moment method. For
squares of Hamilton cycles, the problem of establishing the threshold took much longer and was
only recently proven by Kahn, Narayanan and Park [101] by sharpening their general method

from [69] for giving bounds on thresholds.

In the pseudorandom setting, in contrast to the other settings studied in this thesis, Theorem I*
is, in some sense, the first result of its kind, giving a tight condition on pseudorandomness
to guarantee the existence of a spanning structure. Indeed, even the case of Hamilton cycles
remains an intriguing open problem. Krivelevich and Sudakov [125] conjectured that a condition

of 1 = o(d) is sufficient in (n, d, 1)-graphs and proved the currently best known bound of

B (loglogn)?d
~ " \logn(logloglogn) |

For conditions forcing larger powers of Hamilton cycles in (n, d, 1)-graphs, it is known [3] that
a condition of A = o(d*/?>n=3/?) suffices for squares and A = o(d3*/?n'3%/2) for k'" powers
with k > 3. Itis unclear how close these conditions are to being optimal and the only obstructions
known come from the pseudorandom Ky -free graphs already discussed at the beginning of this

chapter. In particular, we currently have no idea whether the optimal pseudorandom conditions
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for k'" powers of Hamilton cycles and Ky, -factors coincide, mirroring the extremal case, or

whether they are separated, as may be suggested by probabilistic intuition.

In the robust setting, a corollary of the sparse blow-up lemma of Allen, Bottcher, Han, Ko-
hayakawa and Person [2] gives that for all £ > 0 and n-vertex graphs G with 6(G) > (% +é&)n,

(10%)1/ Zk, then G, whp contains the k'™ power of a Hamilton cycle. For squares

ifp=w
of Hamilton cycles, this was improved by Fischer [67] giving a condition of p > n~ /%2 It
is believable that for all £ > 2, an analogue of Theorem II holds in this setting and that the
conclusions of the above results remain true without the £ in the minimum degree condition and

with probability values all the way down to the threshold in random graphs, n~'/¥.

In randomly perturbed graphs, there has been a lot of interest in powers of Hamilton cycles,
although the full picture remains elusive. Indeed, current research has focused on either the
range of small positive densities [20, 28] or densities near the extremal threshold [21, 56] where
several tight results [15, 147] have been established for certain powers and values of minimum
degree. In particular, a result of Nenadov and Truji¢ [147] implies, among other things, the
case when k£ = 2 and r is even in Theorem III and that adding w(n) random edges to a graph
with minimum degree n for v > %, guarantees the square of a Hamilton cycle. At the other
extreme, concentrating on arbitrary n-vertex dense graphs G with 6(G) > tn for some 7 > 0,
Bottcher, Montgomery, Parczyk and Person [28] showed that there exists an = n(t, k) such
that G U G(n, p) whp contains the k' power of a Hamilton cycle whenever p > n'/¥=7_ This
deviates from the observed behaviour of the randomly perturbed model with respect to other
spanning structures, for example Hamilton cycles [23] and general H-factors [19], where only a
logarithmic factor in probability is saved when adding an arbitrarily dense graph, compared to
the purely random threshold. In the spirit of Theorem III, it would be very interesting to establish
optimal perturbed threshold probabilities for the square of the Hamilton cycle, in the full range
of minimum degrees 6(G) = 7n for some 0 < T < 2, to bridge the gap between the extremal and
probabilistic settings. Note that lower bounds follow from Theorem III for triangle factors and the
result of Nenadov and Truji¢ [147] mentioned above gives a matching upper bound when 7 > %
showing that the perturbed threshold for squares of Hamilton cycles and triangle factors match
in this range of minimum degree. The range 0 < 7 < % remains wide open and it would be
very interesting to determine at what point the thresholds for triangle factors and the squares of
Hamilton cycles separate. Moreover, for small 7 > 0 we can see that the picture is quite different
to the ‘jumping’ phenomenon we saw for clique factors. Indeed, the best known upper bound
is p!/27 as mentioned above and for 0 < T < %, Bennett, Dudek and Frieze [21] improved on

~2/3 coming from Theorem III, showing that p = w(n~"/(27#7)) is necessary.

the lower bound of n
As 1 approaches 0, this gets close to the threshold for the square of the Hamilton cycle in the
random graph. Therefore, it can not be the case that we have some window 0 < 7 < 79, for
which the perturbed threshold is fixed. It would therefore be very interesting to determine the

exact dependence of the perturbed threshold on 7 here.
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6.1.3 H-factors

Here we briefly discuss general H-factors, where one interesting in covering the vertex set of
a graph G with n € rN vertices with vertex-disjoint copies of some r-vertex graph H. In this
thesis, we studied the case where H = K, and an eventual aim is to understand all H-factors.
Towards this, a common tactic is to study other example cases, for instance the case where H is

acycle.

The extremal and probabilistic settings for H-factors are now both reasonably well understood.
Indeed, concluding a large body of work (see [129]), Kiihn and Osthus [130] characterised, up
to an additive constant, the minimum degree which ensures that a graph G contains an H-factor
for an arbitrary graph H. For H-factors in random graphs (and indeed random hypergraphs), the
threshold depends on the so-called 1-density of H defined as

er

d*(H) := max{ 7 cFCH, vp > 2}. (6.1.1)

VF —
At the same time as solving the problem for clique factors (Theorem 1.2.1), Johansson, Kahn and
Vu [96] made huge progress on this problem for general H. They conjectured that the threshold

for the appearance of an H-factor in a binomial random (k-)graph is
C(n; Hyn™ V4" (H), (6.1.2)

where €(n; H) is an explicit polylogarithmic factor which depends on the structure of H; see [96]
for details. Furthermore, they proved that the conjecture is true when we replace the £(n; F') term
by some function which is n°()) and they determined the exact threshold for all so-called strictly
balanced (k-)graphs H, in which case one has £(n; H) = (logn)'/¢#. The conjecture has now
also been proven for the so-called non-vertex-balanced graphs H, by Gerke and McDowell [73].

In this case, one has that £(n; H) = 1.

For pseudorandom graphs, to our knowledge, very little is known for H-factors beyond the
results of this thesis although some initial upper bounds on thresholds follow from the sparse
blow-up lemma [2] (see the discussion on universality in pseudorandom graphs in Section 6.1.1).
A bold conjecture would be that the situation observed for K3 (Theorem I¥) holds in general
and the same optimal pseudorandom condition that forces a singular copy of H in fact forces
an H-factor. It would be very interesting to explore whether this phenomenon occurs for general
odd cycles. Indeed, the case H = Cyy4 is essentially the only case where we understand the
optimal pseudorandom condition [11, 126] forcing a singular copy of H and so this provides a

benchmark for studying Cyx.-factors.

In the robust setting, the situation is similar and it is only triangle factors (Theorem II) for

which we have a full understanding. Again, the sparse blow-up lemma [2] gives a general
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result, showing that if for an n-vertex graph G we have 6(G) = (X ;71};1 + 8) n for some € > 0
1/A(H)
and p = w (10511) , then G, whp has an H-factor. Whilst the minimum degree condition

here is asymptotically optimal for some H, the probability is much larger than the threshold
for H-factors for all H on at least 3 vertices. In the same vein as Theorem II it would be
interesting to explore whether for all H-factors one can get a strong robustness theorem which

captures both the extremal and random thresholds.

Balogh, Treglown and Wagner [19] gave a general theorem for H-factors in randomly perturbed
graphs showing that by starting with an arbitrarily dense graph G, the amount of random
edges needed from G (n, p) decreases by the log-factor £(n; H) in (6.1.2) and adding G (n, p)
with p = w(n~ V4 (H)) suffices to find an H-factor. Note that, as mentioned above, for certain
graphs H, we have €(n; H) = 1 and so we see that the randomly perturbed threshold actually
matches the purely random threshold. That is, adding a graph of small linear minimum degree
to G (n, p) does not help substantially to create an H-factor for these cases. The result of Balogh,
Treglown and Wagner [19] is tight for minimum degrees of the form 7n with 0 < 7 < vy
and establishes p(H, ) in this range (recall Definition 1.6.2 for the definition of a perturbed
threshold for factors). The problem is still wide open for larger values of 7. The methods used
here to prove Theorem III are likely to be useful for the general problem, although we suspect
how p(H, 7) ‘jumps’ as T increases will depend heavily on the structure of H. Thus we believe it
would be a significant challenge to prove such a general result. Very recently, Bottcher, Parczyk,

Sgueglia and Skokan [30] established the full picture for cycle factors, that is, when H is a cycle.

6.2 Related topics

In this section, we conclude by discussing related topics to those studied in this thesis. This
includes some further results of the author whose proofs share some aspects with the proofs

given in this thesis.

6.2.1 Hypergraphs

The study of clique factors transfers naturally to the setting of k-uniform hypergraphs (k-graphs
for short) when k£ > 3. We denote by j{,(k) the k-uniform clique on r vertices and %) (n, p)
denotes the binomial random hypergraph with each edge of :;{,i") sampled independently with
probability p = p(n). There has been significant interest in factor problems in hypergraphs and
establishing tight results has been a challenge, even in the simplest case of perfect matchings.
Indeed, in the extremal setting, the problems seem to be far more difficult than the corresponding

questions in graphs and the picture is complicated by different notions of minimum degree. We
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refer to the excellent surveys of Kiihn and Osthus [129] and Zhao [174] for a detailed account
of what is known. For random hypergraphs, establishing the threshold for perfect matchings
was known as Shamir’s problem (see [59]) and, as with the clique factor thresholds in graphs,
this was a famous open problem which attracted a lot of attention. The methods of Johansson,
Kahn and Vu [96] for graph factors (see Theorem 1.2.1 and Section 6.1.3), also transferred to the
hypergraph setting and they were able to resolve the thresholds for many % -factors, including

perfect matchings and indeed all %, ,(k) -factors (see (6.1.2) above).

In sparse hypergraphs, it is well-known that simple pseudorandom conditions requiring that the
hypergraph is roughly regular, guarantee the existence of an almost perfect matching (see Sec-
tion 2.7). However, in order to guarantee perfect matchings (and indeed other spanning struc-
tures), stronger notions of pseudorandomness are required. Here we focus on a natural gener-

alisation of the notion of bijumbledness in Definition 1.4.1, defining a k-graph #€ = (V, E) to

be (p, B)-jumbled if for all (not necessarily disjoint) Ay, ..., AxCV we have
1/2
e(A1,...,Ar) =p ]_[ 1A i,Bl_[ 1Al 6.2.1)
i€lk] i€lk]
where e(Ay, ..., Ar) denotes the number of tuples (ay,...,ar), a; € A;, which form an edge

in #€. In jumbled hypergraphs the picture becomes considerably more complex than in graphs.
Indeed it turns out that the only subgraphs that one can guarantee by imposing conditions on
jumbledness are linear subgraphs, those in which pairs of hyperedges intersect in at most one
vertex. Building on previous work [42, 109, 132, 133] mainly concerned with dense hypergraphs
(the so-called quasirandom regime), Hi€p Han, Jie Han and the author [79, 80] recently gave
the best-known conditions on pseudorandomness that guarantee different linear subgraphs of
hypergraphs. These include all fixed sized linear subgraphs as well as F -factors for linear
and loose Hamilton cycles. In particular, we could show that n-vertex (p, 8)-jumbled k-graphs
with a mild minimum degree condition contain a perfect matching when 8 = o(p*/**1nk/?).
For k = 3, this gives 8 = o(p>/?n3/?) which improved on the previous best-known bound of
Lenz and Mubayi [132] who worked in a more restrictive setting of hypergraph eigenvalues and
whose condition corresponds to 8 = o(p'%n3/?) in jumbled hypergraphs. Our proofs in [79, 80]
rely on the template absorption method (see Section 2.8) and for & -factors we build absorbing
structures in a similar fashion to our proof of Theorem III (see Section 5.6). The tightness of our

results in pseudorandom hypergraphs is unclear as no good constructions are known for % -free

pseudorandom hypergraphs.

In randomly perturbed hypergraphs, Yulin Chang, Jie Han, Yoshiharu Kohayakawa, Guilherme
Mota and the author [34] determined, up to a multiplicative constant, the optimal number of
random edges that need to be added to a k-graph # with minimum vertex degree Q(n*~!) to
ensure an & -factor with high probability, for any & that belongs to a certain class of k-graphs,

which includes all k-partite k-graphs. As with the results of Balogh, Treglown and Wagner, we
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observed that in the setting of hypergraphs, we lose the logarithmic factor £(n; &) in the random
threshold (6.1.2), when starting with a dense hypergraph. In particular, for perfect matchings,
this settled a problem of Krivelevich, Kwan and Sudakov [120] who looked at perfect matchings
in randomly perturbed dense k-graphs satisfying a more restrictive co-degree condition that
every (k — 1)-set of vertices lies in Q(n) edges. Our proofs in [34] share many features with
the proof of Theorem III given here. Establishing a corresponding perturbed result for general
hypergraph clique factors poses an interesting open problem and we expect the techniques

developed here in the proof of Theorem III to be useful for this.

6.2.2 The Ramsey—Turan perspective

In this section we discuss a recent trend of studying clique factors in the Ramsey—Turdn setting. As
demonstrated in Section 1.4, the extremal constructions that force the minimum degree thresholds
for clique factors (Theorem 1.1.2), are atypical. We saw (Theorem I) that by additionally
imposing pseudorandom conditions on the host graph, one can capture much sparser graphs
that contain clique factors. However, one may argue that the pseudorandom condition given
by the notion of bijumbledness (Definition 1.4.1) is quite strong and weaker pseudorandom
notions may suffice to preclude the atypical behaviour of the extremal constructions. Perhaps
the weakest pseudorandom condition one can impose on the host graph is to simply block the
existence of large independent sets. This was proposed by Balogh, Molla and Sharifzadeh [18]
who showed that for any 7 > % an n-vertex graph G with n € 3N, 6(G) > tn and a(G) = o(n),
contains a triangle factor. One can also consider stronger independence conditions which force
the existence of cliques in linearly sized sets. Here, we let ax(G) denote the k-independence
number of a graph G, that is, the largest size of a Ky-free set of vertices in G. Nenadov and
Pehova [146] proposed the study of what minimum degree and k-independence conditions force

the existence of K,.-factors and provided some initial results.

These questions were inspired by the analogous question for Turdn problems where one is
interested in the density needed to force the existence of a fixed sized subgraph H. Again,
the extremal examples are far from typical and contain large independent sets. Imposing an
upper bound on independence numbers then leads to improvements on the density needed. This
field, known as Ramsey—Turan theory, was initiated by Erdds and Sés [62] and led to a wealth
of results, see e.g. [160] for an overview. In more detail, for a fixed graph H, define! the
function RTy (H) to be the maximum 7y > 0 such that for any © < 7y and @ > 0 there exist H-
free graphs G with n vertices, e(G) > nn? and a;(G) < an for all sufficiently large n. Much
research [16, 26, 61, 167] has focused on establishing the value of RTy (H) for various k € N

and graphs H, with a particular emphasis on establishing whether RTy (H) is non-zero.

IThis function is usually denoted by ®, (H) and defined (equivalently) in terms of a limit of Ramsey-Turdn
numbers, see e.g. [16].
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In the setting of clique factors, it turns out that the sublinear independence conditions are not
enough to force factors in sparser graphs with density approaching 0. Indeed, already for
any 7 < % and n sufficiently large, one can take G to be the union of two disjoint cliques whose
sizes add to n. Such a G has the property that ax (G) < 2k for all fixed k € N whilst choosing
the sizes of the cliques in G appropriately, we can guarantee that 6(G) > 7n and that any K-
matching will leave uncovered vertices. Therefore, in order to study sparser graphs we need to
relax our expectations, moving away from studying K,-factors and instead focusing on almost

factors which are as large as possible, in that they cover all but a constant number of vertices.

Definition 6.2.1. Given 7 € (0, 1], r € N and an n-vertex graph G, we say a K,-matching in G
is T-quasiperfect if it covers all but £(r — 1) vertices of G where ¢ := L%J. When T is clear from

context, we will simply call the matching quasiperfect.

1
2’

uncovered. Therefore, with an additional condition that n € rN, a quasiperfect K,.-matching is in

Notice that when 7 > a K,-matching is 7-quasiperfect if it leaves at most r — 1 vertices
fact a K,--factor. For (almost) all values of 7 the definition of quasiperfect matchings captures the
largest possible size of a matching we can hope for when looking at graphs G with 6(G) > tn and
some bound on independence numbers. Indeed, generalising the construction above, if @ =T
and % ¢ N, we can take G to be £ = I_%J disjoint cliques of equal size 7 and choose n such
that 7 is equal to (r — 1) mod r. Then there are no copies of K, using more than one of the
large cliques in G and in each clique any K, -matching must leave r — 1 vertices uncovered due

to divisibility constraints.

It turns out that the divisibility constraints given by the construction outlined above are the
‘worst-case scenario’ when we impose an appropriate independence condition. Indeed, in recent
work, Jie Han, Guanghui Wang, Donglei Yang and the author [88] showed that with certain
minimum degree independence conditions, we can always guarantee a quasiperfect matching.
The first result of this kind was predicted by Alon and proven by Balogh, McDowell, Molla
and Mycroft [17] who showed that for every 7 > % there exists an @ > 0 such that every
graph G on n vertices with 6(G) > tn and a(G) < an contains a K3-matching covering all
but 4 vertices. In order to systematically study optimal conditions guaranteeing the existence of
quasiperfect K,--matchings and K,--factors in the Ramsey—Turdn setting, we [88] introduced the
following extremal function. For r € N and an integer 1 < k < r, define the Ramsey—Turan
factor threshold, denoted by RTF (K, ), as the largest 79 > O such that for all 0 < 7 < 79

and @ > 0, there exists n-vertex graphs G with §(G) > mn and a;(G) < an such that G does

not contain an n-quasiperfect K,-matching, for all sufficiently large n.

Before discussing the known results for Ramsey—Turdn factor thresholds, we remark on a con-
nection with the randomly perturbed setting. Indeed, given that the conditions ax (G) = o(n) are

typical in sparse graphs of a certain density, results in the Ramsey—Turdn model have implications
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for the randomly perturbed model. These corollaries are often best possible (apart from the fact
they leave a constant number of vertices uncovered) as one needs the random graph to provide
small independence numbers in order to give the existence of factors in the perturbed model.
Moreover, as noticed by Nenadov and Pehova [146], one in fact obtains something stronger.
Indeed, in the perturbed model, one fixes an arbitrary graph G (which satisfies a dense minimum
degree condition) and asks for p such that G U G (n, p) contains a given factor whp. From
Ramsey-Turdn results we can conclude that whp, G (n, p) has the property that no matter how
an adversary places a graph G (satisfying a minimum degree condition), the resulting graph will

have a given factor (or quasiperfect matching).

Moreover, constructions for the randomly perturbed setting provide lower bounds on Ramsey—
Turén factor thresholds. In particular, our constructions given here for Theorem III when
6(G) = tn for some 1 — % <t<l1- % (see Section 5.1) can be shown to have sublinear k-
independence numbers and have the property that any K,-matching leaves a linear number
of vertices uncovered (see [88] for more details). This implies that RTF;(K,) > 1 — % for
all 1 < k < r. In [88] we conjecture that this is in fact the true value and the picture follows that
of Theorem III.

Conjecture 6.2.2 (Han—Morris—Wang—Yang[88]). For 1 < k < r € Nwith r > 3,

RTF,(K,)=1- %

Several cases of Conjecture 6.2.2 have been established. Indeed, the case k = 1 is essentially the
Hajnal-Szemerédi Theorem (Theorem 1.1.2). The case k = 2 (and r > 4) was shown by Knierim
and Su [108] and, due to the connection above, this reproved Theorem III for these values of k, r.
The case k = 2 and r = 3 follows from the aforementioned result of Balogh, McDowell, Molla
and Mycroft [17] and a result of Nenadov and Pehova [146]. In [88], Han, Wang, Yang and
the author established Conjecture 6.2.2 for k = r and k = r — 1, thus completing the picture
for r = 3,4. Our proofs use similar techniques to our proof of Theorem III in Chapter 5 but we
also needed to adopt the lattice-based absorption method developed in [81, 82, 103], in order
to get the optimal number of vertices uncovered by our K, -matchings. For larger values of r,
the conjecture is open for intermediate values for k (namely, 3 < k < r —2). It would be very

interesting to close this gap.

6.2.3 Further notions of robustness

We close this thesis by discussing some further notions of robustness for clique factors. Many
of these have been studied in the setting of Hamiltonicity and we refer to the excellent survey

of Sudakov [165] for a detailed account of this. In the clique factor setting, it seems very
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little is known. For this discussion, we say an n-vertex graph G is r-full forr > 3 if n € rN
and 6(G) > (1 - 1)n. We will also refer to n-vertex graphs G with 6(G) > % as Dirac
graphs. Thus for r > 3 the Hajnal-Szemerédi theorem (Theorem 1.1.2) gives that every r-full
graph contains a K,-factor and Dirac’s theorem (Theorem 1.3.1) gives that every Dirac graph is
Hamiltonian. As we discuss at the beginning of this chapter, and prove for r = 3 in Theorem II,
we expect that random sparsifications of r-full graphs contain K,--factors whp, with probabilities
right down to the threshold for K, -factors. The only other result towards robustness for clique
factors, that we are aware of, is a result of Coulson, Keevash, Perarnau and Yepremyan [46] that
establishes the existence of rainbow K, -factors in suitably bounded colourings of r-full graphs?.

It is interesting to consider other notions of robustness for K,.-factors in r-full graphs.

Firstly, as mentioned for triangle factors in Section 1.5, it would be interesting to establish how
many K, -factors are necessarily contained in an -full graph. In particular, it would be interesting
to establish that there is some constant ¢ = ¢(r) such that in any n-vertex r-full graph the number
of distinct K,-factors is at least (cn)*(!=1/"). This would be tight up to the value of ¢ and is
established for triangle factors in Corollary 1.5.2 with an extra log factor. One can also consider
edge-disjoint K,.-factors. By considering a random partition of edges, Theorem II implies that
any n-vertex 3-full graph contains a family of at least Q(n?*/3(logn)~'/3) edge-disjoint triangle
factors. In terms of upper bounds, by considering triangles at a fixed vertex v with deg(v) = 27"
it is clear that one cannot hope for more than 5 edge-disjoint triangle factors. In fact one can do
slightly better than this by considering a construction similar to that of Nash-Williams [143] for
the number of edge-disjoint Hamilton cycles in Dirac graphs. Indeed, let n € 3N and m := %.
Consider the n-vertex complete tripartite graph on vertex parts X UY U Z such that | X| =m +2
and |Y| = |Z| = m — 1. Let G be the graph obtained from this tripartite graph by adding the
edges of some cycle C of length m + 2 on the vertices of X. It is easy to check that G is 3-full.
Moreover, any triangle factor in G must contain at least 2 edges of C. Hence G contains at
most LmT”J = | 5] + 1 edge-disjoint triangle factors. This leaves a big gap and it would be very

interesting to bring these bounds closer together.

Finally we mention the study of Maker-Breaker games. We only give a brief account here and
refer the reader to [91] for a comprehensive treatment of the area. Given an r-full graph G, the
Maker-Breaker K, -factor game on G is played by two players, Maker and Breaker. The players
take it in turns to claim edges with the aim of Maker being to create a K, -factor and the aim of
Breaker being to stop Maker. By convention, Breaker has the first move. Moreover, in order to
make life harder for Maker, we can give Breaker extra moves. We say the game is b-biased if for
every one move of Maker, Breaker gets b moves. The question is then to determine for what b
Maker is able to win the game. When G = K,,, this was recently studied and Liebenau and
Nenadov [134], building on results in [4], proved that for r > 4, if b = o(n?/("*?)) then Maker

has a winning strategy for the K, -factor game on G = K, whilstif b = w(nz/ (”2)) then Breaker

2In fact they need the slightly stronger minimum degree condition of §(G) > (1 - } + &)n for some & > 0.
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has a winning strategy. For r = 3, Allen, Bottcher, Kohayakawa, Naves and Person [4] showed

that b = o ((l san) 1 2) leads to Maker’s win whilst b > 4n'/? is Breaker’s win, leaving a window
for the so-called bias threshold that remains open. The proof of Liebenau and Nenadov [134] for
Maker’s strategy works by showing that Maker can claim a pseudorandom graph that has certain
properties and showing that such a pseudorandom graph is guaranteed to contain a K,-factor.
In this way the ideas given here in Chapter 3 are pertinent and indeed Liebenau and Nenadov
use the cascading absorption idea used here (see Section 4.1) and in [145] to study K, -factors
in pseudorandom graphs. The obvious open problem here is to close the gap for the triangle
factors and it is believed [4] that one can remove the log factor in the condition for Maker’s
win. Beyond this it would be interesting to explore K, -factor games in r-full graphs G other
than K,,. Indeed, for the Hamilton cycle Maker-Breaker game defined analogously, Krivelevich,
Lee and Sudakov [122] proved that Maker can win in any Dirac graph if the biasis b = o (10%)
lo

i = is the threshold bias for the Maker-Breaker game for Hamilton cycles in the

This is tight as

complete graph, and provides another notion of robustness in Dirac graphs.



Glossary

Here we provide a glossary of notation used, for the convenience of the reader. The definitions

here are provided to serve as a quick reminder for the reader and are not supposed to be formal

definitions. The precise definitions can be found in the Notation section or within the text (in

which case we direct the reader to the relevant section).

Z,N,R
n!;
X=y+z
whp
Ak
()
X\Y
VG
€G
A(G)
6(G)
a(G)
log
NG (v)
Ng(S;U)
degs;(S;U)
degp/(v)
6(E)
E’[A]
K. (G)
K, (G,u)
Tr, (G)
Vi
vV
{(u)

the integers, the non-negative integers, the real numbers

the number of ways to choose ¢ distinct numbers from [7]

implies thatx < y+zandx >y —z

with high probability i.e. with probability tending to 1 as »n tends to oo
the set of ordered k-tuples of elements in a set A

the set of all k-element subsets of a set A

the set X \ (X NY) when X and Y are sets

the number of vertices of a graph G

the number of edges of a graph G

the maximum degree of a graph G

the minimum degree of a graph G

the independence number of a graph G

the natural logarithm function

the set of neighbours of a vertex v in a graph G

the set (N, esNg(v)) N U for vertex sets S,U C V(G)

the size of the neighbourhood |Ng (S; U)| for vertex sets S, U C V(G)
the number of edges in a subset E” C E(G) containing a vertex v

the minimum value of deg, (v) over all vertices that lie in some edge in E’
the set of edges in E’ € E(G) thatliein A C V(G)

the set of copies of K, in a graph G

the set of copies of K, that contain a vertex u in a graph G

the set of edges that form triangles with a vertex v in a graph G

a vertex part of a tripartite graph with vertex partition V! U V2 U V3
the set of ordered tuples of vertices of a tripartite graph on V! U VZ U V3
the length of a tuple u € V
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¥ (G)
¥ (G)
¥4(G)
G[U]
G[U,, ..
Ga
F\W
F\w
deg”(v)
codeg’%(u, V)
Sy

Ukl

dg(X.,Y)
(Q,P)
p(x)
h(X)
rg(X)
h(Xi, ..
h(X|E)
p(x|E)
h(X|Y)

,Xn)

GLOSSARY

the set of vertices W \ {uy,...,us}

the set of vertices W \ {u : u € u}

the graph consisting of 7 labelled vertex-disjoint triangles

the set of embeddings of D, in a tripartite graph G (that respect labellings)
the set of embeddings of D, that avoid vertices inu € V

the set of embeddings ¢ of D, into G such that ¥ ((1,1)) = v

the graph induced by G on a vertex subset U

the k-partite graph induced by G between vertex subsets Uy, ..., Uy

the graph induced by G on V;; = V(G);

the graph induced by F on V(F) \ W

the graph induced by F on V(F) \ {w}

the number of edges containing a vertex v in a hypergraph 7

the number of edges containing two vertices # and v in a hypergraph €
the subhypergraph of € defined by all the edges of /€ that contain an edge
of J, where J is a 2-uniform graph with V(J) = V()

the graph with vertex set V(G) = V(G) and edge set E(G) U E(G)

the graph with vertex set V(G) = V(G) and edge set E(G) \ E(G)

the hypergraph with vertex set V(#€) = V(#€’) and edge set E (7€) \ E(#€")
the complete r-partite graph with parts of sizes my, my, ..., m,

the blowup of a graph J with the i’ vertex of J blown up to a set of size m;
the binomial random graph (see Section 1.2)

the threshold for containing K, -factors (see Theorem 1.2.1)

the number of edges between vertex sets A and B (see Section 1.4)

the random sparsification of a graph G with probability p (see Section 1.5)
the perturbed threshold for an H-factor (see Definition 1.6.2)

a parameter for a random variable X in applications of Janson’s inequality
(see Lemma 2.1.2)

a parameter for a random variable X in applications of Janson’s inequality
for subgraphs (see Lemma 2.1.3)

the density of G between vertex sets X and Y (see Section 2.2)

a finite probability space (see Section 2.3)

probability that a random variable X equals x (see Section 2.3)

entropy of a random variable X (see Section 2.3)

range of a random variable X (see Section 2.3)

., X,) (see Section 2.3)

conditional entropy of X given an event E (see Section 2.3)

entropy of the random vector (X, ..

probability that X equals x given an event E (see Section 2.3)

conditional entropy of X given Y (see Section 2.3)
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x(H) chromatic number of a graph H (see Section 2.5)
Xer (H) critical chromatic number of a graph H (see Section 2.5)
o(H) the smallest size of colour class over all proper colourings of H with y(H)

colours (see Section 2.5)

|£] the value of a fractional matching f in a hypergraph 7€ (see Section 2.6)

9*(H6) the fractional matching number of 7€ (see Section 2.6)

I (HE) the matching number of 7€ (see Section 2.6)

gl the value of a fractional cover g in 7€ (see Section 2.6)

T(HC) the fractional cover number of 7€ (see Section 2.6)

T a template graph (see Definition 2.8.1)

B,C,D a diamond tree (see Definition 3.1.1)

SILY,E K, _1-matchings (see e.g. Definition 3.1.1)

O,P,R,Q,J anorchard (see Definition 3.1.3)

FE(O) the K,--hypergraph defined by an orchard O (see Definition 3.1.5)

AT, 9,0 a system of pairwise disjoint vertex sets (see Definition 3.5.1)

FE(A; 1) the K, -hypergraph generated by A (see Definition 3.5.1)

<L the lexicographic order on pairs (i, j) € [¢] X [£] (see Section 3.6.4)

I;; the indices coming before (i, j) according to <y, (see Section 3.6.4)

A a K, -absorbing structure (see Definition 3.7.1)

J, K, L index sets appearing in the proof of Claim 3.7.6

r a tripartite graph with n vertices in each part (see e.g. Section 4.1)

IC(y) the vertices in V that are isolated in an embedding y € ¥’
(see Section 4.4.2)

/s the pair of vertices that lie in a triangle with v in the embedding ¢ (D)
(see Section 4.4.2)

Y, (y) the indicator function for the event that v is not isolated under ¢
(see Section 4.4.2)

v* a uniformly random embedding y € ¥*(T",,) (see Section 4.4.2)

H(n,p,d) a benchmark function for maximum entropy (see Definition 4.4.2)

o a linear ordering on V¢ (see Section 4.4.2)

w<gV w appears before v in the ordering o (see Section 4.4.2)

A"’; (¥, o, u) the set of alive vertices in be at the point of revealing ¢ at vertex v

according to a linear ordering o (see Section 4.4.2)

ty () the number of vertices before v in the order o, that are not isolated under
(see proof of Lemma 4.4.4)
Ly (Wi, wo) a weight function that encodes the number of embeddings ¢ € ¥~V (G)

that avoid v, w and w, (see (4.4.16))

e(X,Y) the number of edges missing between sets X and Y (see proof of
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GLOSSARY

Lemma 4.7.2)

a partite subgraph of K, (see Definition 5.2.1)

the complement of Hget (see Definition 5.2.1)

a graph parameter capturing the expected number of the densest subgraph
of F in G (n, p) (see Section 5.3)

as above but with embeddings that have some independent set W of vertices
of F already fixed (see Section 5.3)

the clique on k vertices with one edge removed (see Section 5.3)

a copy of K’ _ with distinguished vertices in the i’ h part and the j

13 20eesT,
part (see Definition 5.5.1)

the complement of an (r + 1)-vertex graph H with respect to K,

(see Definition 5.5.2)

a specific graph with two distinguished vertices (see Definition 5.5.3)

a vector of (r + 1)-vertex graphs, each with two distinguished vertices

(see Definition 5.5.4)

a vector with ¢ copies of H (see Definition 5.5.4)

the complement of a vector of (r + 1)-vertex graphs H (see Definition 5.5.4)
a specific (r + 1)-vertex graph with two distinguished vertices

(see Proposition 5.5.6)

as H; with the two distinguished vertices switched (see Proposition 5.5.6)
the vector (Hy, H{) (see Proposition 5.5.6)

as Hy with different distinguished vertices (see Proposition 5.5.7)

the vector (Ho, H(, H, Ho) (see Proposition 5.5.7)

a set of vectors H (see Definition 5.5.8)

the set of vertices that are (H, B)-reachable to v (see Definition 5.5.8)

the set of vertices that are (H, 8)-reachable to v (see Definition 5.5.8)

the set of concatenations of vectors in H with vectors in

(see Definition 5.5.9)

the set of vectors that lie in one of H or HH or are a concatenation of a vector
in H with a vector in H (see Definition 5.5.9)

the set of vectors of length at most ¢ whose entries are all H (see Section 5.5)
the set of vectors H(Hy, < 2) (see Lemma 5.5.11)

a set of specific vectors H (see Proposition 5.5.12)

the i*" entry of a vector H (see Proposition 5.5.12)

a labelled family of vectors of (r + 1)-vertex graphs (see Definition 5.5.14)
collection of ordered labelled sets H whose entries lie in H

(see Definition 5.5.15)

ordered labelled multiset H whose entries are all H (see Definition 5.5.15)

the labelled family of vectors obtained by taking the complement of each
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entry of H (see Section 5.6)

two copies of K meeting at a singular vertex (see proof of Lemma 5.6.1)
an absorbing structure (see Definition 5.6.2)

the 1-density of H (see (6.1.1))

the logarithmic factor in the threshold for an H-factor (see (6.1.2))

the k-uniform clique with r vertices (see Section 6.2.1)

the binomial random k-graph (see Section 6.2.1)

the largest size of a Ki-free subset of vertices in G (see Section 6.2.2)
the Ramsey—Turan threshold for H (see Section 6.2.2)

the Ramsey—Turdn factor threshold for K, (see Section 6.2.2)
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