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Abstract

In this thesis we study the mean curvature flow of hypersurfaces asymptotic
to the Simons’ cone

{x ∈ R
8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8}.

From the work of Bomberi, De Giorgi and Giusti we know that R
8 is foliated

by family of minimal hypersurfaces which are asymptotic to the Simons cone.
We start our flow with a smooth hypersurface which lies underneath one

of these foliating hypersurfaces (barrier) and which shares the symmetry
property of the cone and this minimal foliation. Following the work of
Ecker and Huisken, we show that given an initial bound on the gradient and
sign on the mean curvature, we can obtain that the bound on the gradient
is preserved by the flow and that the surface remains beneath the initial
barrier minimal hypersurface. This in turns tells us that bounds on the
second fundamental form and its derivatives are preserved. These combine
to give us our main result:

Mean curvature flow, starting with a hypersurface as described above,
will have a solution which exists for all time and which converges to a smooth
minimal hypersurface asymptotic to the Simons’ cone, belonging to the fam-
ily of hypersurfaces found in by Bombieri, De Giorgi and Giusti.
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Zusammenfassung

In dieser Arbeit untersuchen wir den mittleren Krümmungsfluss von Hy-
perflächen asymptotisch zum Simons Kegel

{x ∈ R
8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8}.

Aus den Arbeiten von Bomberi, De Giorgi und Giusti wissen wir, dass der R
8

durch eine Familie von minimalen Hyperflächen asymptotisch zum Simons
Kegel geblättert wird.

Wir beginnen unseren Fluss mit einer glatten Hyperfläche, die unter-
halb einer blätternden Hyperfläche (Barriere) liegt und welche die Sym-
metrieeigenschaften des Kegels und der minimalen Blätterung hat. Den
Arbeiten von Ecker und Huisken folgend zeigen wir: Ist eine Schranke an
den Gradienten und ein Vorzeichen an die mittlere Krümmung gegeben,
bleibt diese Schranke durch den Fluss erhalten und die Fläche bleibt unter-
halb einer zu Anfung angenommen oberen minimalen Barrierefläche. Dies
wiederum zeigt uns, dass Schranken an die zweite Fundamentalform und
ihre Ableitungen erhalten bleiben. Zusammengenommen ergibt sich unser
Hauptresultat:

Der mittlere Krümmungsfluss, beginnend mit einer Hyperfläche mit obi-
gen Eigenschaften, hat eine Lösung, die für alle Zeiten existiert und die
gegen eine glatte minimale Hyperfläche asymptotisch zum Simons Kegel
konvergiert, welche zur von Bombieri, De Giorgi und Giusti gefundenen
Familie von Hyperflächen gehört.

4



1 Introduction

Mean Curvature Flow (MCF) is the deformation in time of hypersurfaces
in the direction of their mean curvature. That is, we take an immersion
F0 : Mn 7→ R

n+1 and evolve it in time according to the equation

∂

∂t
Ft(p) = H(p, t), F(p, 0) = F0(p), p ∈M (1)

where H is the mean curvature vector H = −Hν and H denotes the mean
curvature.

We write M0 = F0(M) and Mt = Ft(M).

In [6], Ecker & Huisken developed methods to study the MCF of graphs.
They did this by first controlling key quantities such as the gradient and
height of these graphs and using this to obtain a variety of results, in par-
ticular curvature bounds and conditions under which the flow would exist
for all time.

A minimal hypersurface is one for which any sufficiently local, smooth
deformation will result in an increase in area. These hypersurfaces have
H = 0 and thus are stationary under MCF. Since MCF is the steepest
descent flow of the area functional, it is the ideal flow to use when one is
looking for minimal hypersurfaces.

Minimal hypersurfaces have also been studied within the more general
class of objects called sets of finite perimeter [11] or integral currents [15].
Within this context, which uses the language of Geometric Measure Theory
(GMT), one defines an area minimising hypersurface to be such an object
whose area (mass) increases whenever any (not just small) compact region
is altered.

In [3], the authors showed that the Simons cone
{

x ∈ R
2n : x2

1 + . . .+ x2
n = x2

n+1 + . . .+ x2
2n

}

which is smooth away from the origin, is area-minimising in the above sense,
by proving the existence of a function, the level sets of which form a foliation
of area-minimising hypersurfaces which includes the Simons cone as one of
its leaves.

There is, in fact, a rich class of quadratic cones of the form

qy2 − pz2 = 0, y ∈ R
p+1, z ∈ R

q+1 with p+ q ≥ 7 or p+ q = 6 & |p− q| ≤ 4

which are minimal and for which the results of this thesis hold. In the in-
terest of simplicity the body of the thesis contains the results only for the
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Simons cone in R
8. The main difference between these cones is their angle

and therefore the gradient of the hypersurfaces asymptotic to them. Ap-
pendix B contains versions of key equations and quantities which become
different when we consider these more general cones.

In [8], Hardt & Simon showed that these hypersurfaces are oriented, con-
nected, embedded, real analytic and star-shaped. Furthermore and most
importantly they are unique up to scaling, that is they can be represented
by {λx : x ∈ T 8} where T 8 is the leaf of unit distance from the origin and
〈ω, x̄〉 > 0, where ω is the normal to the hypersurface. Their methods rely
heavily on tools from Geometric Measure Theory.

We would like to take a different approach by using MCF to evolve cer-
tain classes of initial hypersurface to members of the above foliations, that is
in some sense construct them classically, without the use of GMT. We look
at a class of hypersurfaces that share the symmetry properties of this folia-
tion. The foliating function constructed in [3] can be written as a function
of two variables F (u, v) where u =

√

x2
1 + . . .+ x2

4 and v =
√

x2
5 + . . .+ x2

8.
Thus these hypersurfaces are invariant under the groups O(3)× {e(4)} and
{e(4)} × O(3). We regard these hypersurfaces being obtained by rotating
as a contour curve in the u, v plane using these groups. We will call such
hypersurfaces bi-rotationally symmetric.

Surfaces with a single rotational symmetry, in particular cylindrical
graphs, have been studied by [1],[17]. They have a tendency of develop-
ing ‘neck pinches’ and becoming singular. These singularities are of interest
and avoiding them requires terms in the evolution equations to be controlled
somehow. Surprisingly, with the bi-rotational symmetry in our case, the ge-
ometry takes care of these bad terms and under certain conditions allows us
to prove convergence results.

We draw inspiriation from the elegant and simple form of the mean cur-
vature of these hypersurfaces. For a bi-rotationally symmetric hypersurface,
the mean curvature takes the form

H = 3
νv
v

+ 3
νu
u

+A7
7

where νv = 〈ν, v̂〉, v̂ = (0,...,0,x5,...,x8)
v

, νu defined analogously, and A7
7 is the

curvature of the contour curve.

We require initially that H ≤ and νv ≥ C > 0 We take ν−1
v to be our

gradient. We also assume that our initial hypersurface lies beneath a sta-
tionary hypersurface M+ from the minimal foliation found in [3].
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In chapter five we show using [7] that a solution will exist for short time
and by a uniqueness argument based on a non-compact maximum principle
from [7], it must remain bi-rotationally symmetric if the initial hypersurface
has this symmetry. We show that the evolving hypersurface will stay above
M0 using the sign on the mean curvature. These results allow us to establish
a global gradient bound. From here we obtain that the curvatures and their
derivatives of all orders remain bounded which allows us to extend the short
time solution to one which exists for all times. We then show under a certain
condition that the flow remains below the barrier M+, which allows us to
find a limiting hypersurface M∞. Finally we show that the mean curvature
of these hypersurfaces must converge to zero everywhere, giving us that M∞
is a minimal hypersurface. The uniqueness of the minimising hypersurfaces
demonstrated in [16] tells us it must be a leaf of the foliation found in [3].

The following is our main theorem.

Theorem 1.1. Let M0 be a bi-rotationally symmetric hypersurface lying in
the region {v > u} with supM0

|∇mA| ≤ Cm <∞ for all m ≥ 0, satisfying

1) H ≤ 0

2) νv ≥ C > 0.

Then there exists a smooth bi-rotationally symmetric solution of MCF
which will remain in the region {v > u} and exist for all time.

Additionally, if M0

3) lies beneath a minimal hypersufaces M+ ⊂ {v > u} belonging to the
foliation found in [3], and we are able to write M+ as a graph over M0, and if

4) infM0
νv = 1√

2

the solution will remain beneath this minimal hypersurface, and converge
to an area minimising hypersurface belonging to the family of hypersurfaces
found in [3].

Under condition 4) we also obtain that the evolving hypersurfaces and
their limit are star-shaped.

Condition 2) is a reasonable assumption since above the origin a smooth
bi-rotationally symmetric hypersurface will have νv = 1 and if it is asymp-
totic to the Simons cone it will have lim|x|→∞νv = 1√

2
and thus must have
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a minimum as long as νv remains continuous.

Note that without the assumption on the sign of H, Mt may approach
the origin in finite time and become singular there (see [18]). Without the
upper barrier assumption one may have to use the full machinery of the min-
imal foliations construction combined with mean curvature flow to prevent
Mt from moving off to infinity. Certainly, if we consider the flow in lower
dimensions e.g. inside the cone {x ∈ R

2m,x2
m+1 + . . .+x2

2m > x1 + . . .+x2
m}

for m ≤ 3 the hypersurfaces Mt cannot obey a global height bound inside
this set, since, by the Bernstein theorem, there are no non-trivial minimal
hypersurfaces in these dimensions. Note that a global height bound from
above combined with regularity estimates for Mt would imply the conver-
gence to a minimal hypersurface (see chapter 9 of this thesis).

In view of the current state of research on MCF of hypersurfaces it also
seems a very difficult task to do away with the graph assumption on M0.
We are not aware of any results in this directions. Note also that we do not
assume M0 to be close in any sense to a minimal hypersurface.
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2 Definitions

We work in R
8 and define u =

√

x2
1 + . . .+ x2

4 and v =
√

x2
5 + . . .+ x2

8

Since the Simons cone and the minimal surfaces that foliate R
8, found

in [3] are bi-rotationally symmetric, we study evolving surfaces which share
the same symmetry. To this end we define the following:

At a given point we take {τ 1, . . . , τ 6, û, v̂} as a basis of R
8, where τ 1 to

τ 3 and τ 4 to τ 6 are each the normal coordinate system for S
3, and

û =
(x1, . . . , x4, 0, . . . , 0)

u
, v̂ =

(0, . . . , 0, x5, . . . , x8)

v
.

A bi-rotationally-symmetric surface is one which is invariant under the
group O(3) × {e4} ∪ {e4} ×O(3). Such a surface will include in its tangent
basis {τ 1, . . . , τ 6} and thus its normal (and τ7) will only have components
in the u,v plane.

We can decompose the normal to such a surface as ν = 〈ν, û〉 û+〈ν, v̂〉 v̂.
We denote νu = 〈ν, û〉 and νv = 〈ν, v̂〉 so that ν = νuû + νvv̂ and thus by
a simple calculation τ 7 = νvû − νuv̂. We note that {τ 1, . . . , τ 7} forms an
orthonormal basis for the tangent space. τ 7 will occasionally be referred to
as the pseudo-radial direction.

The mean curvature H of a bi-rotationally symmetric surface can be
calculated directly (see chapter 4 for a more detailed approach) by:

H = div(ν)

= div (νuû + νvv̂)

= νudivû + νvdivv̂ +D(νu) · û +D(νv) · v̂

= 3
νu
u

+ 3
νv
v

+
∂νu
∂u

+
∂νv
∂v

where ∂νu

∂u
= D(νu) · û , ∂νv

∂v
= D(νv) · v̂.

Now, since ν2
u + ν2

v = 1 we have

νuD(νu) = −νvD(νv)
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and thus

H = 3
νu
u

+ 3
νv
v

+D(νu) · û − νu
νv
D(νu) · v̂

= 3
νu
u

+ 3
νv
v

+
1

νv
(D(νu) · (νvû − νuv̂))

= 3
νu
u

+ 3
νv
v

+
1

νv
(D(νu) · τ 7)

We note that the (7, 7)-component of the second fundamental form is
A7

7 = ∂νu

∂u
+ ∂νv

∂v
= 1

νv

∂νu

∂τ7
= − 1

νu

∂νv

∂τ7
where ∂νu

∂τ7
= D(νu) · τ 7 (see Chapter 4)
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In the picture shown, νu = 〈ν, û〉 < 0 and νv = 〈ν, v̂〉 > 0

The contour curve shown in the above graph can be described by a
function v = h(u). It can be shown (chapter 4) that νv = 1√

1+h′(u)2
and

thus we consider the gradient to be ν−1
v . Motivated by this expression, a

hypersurface can be considered a graph if ν−1
v <∞ everywhere.
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3 The non-compact maximum principle

The following theorem is a slight modification of Theorem 4.3 from [7].

Theorem 3.1. Suppose that a manifold Mn with Riemannian metric g(t)
satisfies a uniform volume growth restriction, namely:

volt(Bt
r(p)) ≤ C exp(k(1 + r2))

holds for some point p ∈ Mn, for all r > 0 and a uniform constant k > 0
for all t ∈ [0, T ]

Let f be a function on Mn × [0, T ] which is smooth on Mn × (0, T ] and
continuous on Mn × [0, T ]. Assume that f and g(t) satisfy:

(i) ∂
∂t
f ≤ ∆tf+a·∇f+bf where the functions a and b satisfy supMn×[0,T ] |a| ≤

α1 and supMn×[0,T ] |b| ≤ α2 respectively for some α1, α2 <∞,
(ii) f(p, 0) ≤ 0 for all p ∈Mn,

(iii)
∫ T

0

(

∫

M
exp

(

−α2
2r
t(p, y)2

)

|∇f |2 (y)dµt

)

dt <∞, for some α2 <∞,

(iv) supMn×[0,T ]

∣

∣

∂
∂t
gij
∣

∣ ≤ α3, for some α3 <∞

Then we have f ≤ 0 on Mn × [0, T ]

From [10] we know that | ∂
∂t
gij | ≤ |2Hhij | ≤ C(n) |A|2 if our manifold

evolves by mean curvature. As long as |A|2 is bounded we therefore have
that condition (iv) is satisfied.

The Gauss equations tells us that RicMt ≥ −C(n) |A|2. The volume
growth condition follows from this and the volume comparison theorem (1.2
in [13]). In fact this gives us that area(∂Br(p)) ≤ c1e

c2r where c1 depends
on n and c2 depends on n and our bound for |A|2. Since in the integral in
condition (iii) we are integrating against an expression of the form e−α

2
2
r2 ,

this condition will be met by any function with gradient which grows at
most exponentially in r.

Therefore for any function satisfying (ii) with a gradient growing at
most exponentially in r and with |A|2 ≤ C <∞ the noncompact maximum
principle is applicable.

Corollary 3.2. Suppose the conditions of Theorem 3.1 hold and the function
f = f(x, t) satisfies the inequality:

(

∂

∂t
− ∆M

)

f ≤ a · ∇f − δ2f2 + C2

for some vector field a with supM×[0,t1) |a| < ∞ for some time t1 > 0, then
f satisfies the estimates

(i) f ≤ C/δ + 1/
(

δ2t
)

onM × (0, t1)
(ii) f ≤ C/δ + supM0

f onM × [0, t1)
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Proof. Set g = t
(

f − C
δ

)

thus we get:

(

∂

∂t
− ∆M

)

g = f − C

δ
+ t

(

∂

∂t
− ∆M

)

f ≤ ta · ∇f + f − C

δ
− δ2tf2 + tC2

= a · ∇g − 2tδCf + 2tC2 + t−1g − δ2t−1g2

= a · ∇g − 2δCg + δ2t−1g

(

1

δ2
− g

)

.

Let gδ = max
(

g − 1
δ2
, 0
)

. We calculate in the set where gδ > 0. (The
proof of Theorem 3.1 in [7] uses only that f is Lipschitz in the spatial
variable, so we can consider the condition (i) of Theorem 3.1 above in the
weak sense by multiplying by a test function. We are therefore allowed to
consider g2

δ even though it is not C2 on its zero set.)

(

∂

∂t
− ∆M

)

g2
δ ≤ 2gδa · ∇g − 4δCgδg + 2δ2t−1gδg

(

1

δ2
− g

)

− 2 |∇gδ|2

≤ 2gδa · ∇gδ − 2 |∇gδ|2 .

since gδ
(

g − 1
δ2

)

= g2
δ and gδ∇g = gδ∇gδ a.e. Then Young’s inequality gives

us

(

∂

∂t
− ∆M

)

g2
δ ≤

1

2
sup

M×[0,t0)
|a|2g2

δ .

Result (i) then follows from Theorem 3.1.

To prove (ii), we let fk = max (f − k, 0), k > 0 to be chosen later. We
can, on the set {f > k} express f as f = fk + k. Therefore we obtain from
the equations for f

(

∂

∂t
− ∆M

)

f2
k ≤ 2fka · ∇fk − 2|∇fk|2 − 2δ2fkf

2 + 2C2fk

= 2fka · ∇fk − 2|∇fk|2 + 2fk
(

−δ2f2
k − 2δ2fkk − δ2k2 + C2

)

.

If k ≥ C
δ

we obtain

(

∂

∂t
− ∆M

)

f2
k ≤ 2fka · ∇fk − 2|∇fk|2 ≤ 1

2
sup

Mn×[0,T ]
|a|2f2

k .

We now also need to assume that k ≥ supM0
f to ensure that fk = 0 at t = 0

and thus taking k ≥ C
δ

+ supM0
f we can apply the non-compact maximum

principle.
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4 Bi-rotational graphs

Bi-rotational Graphs

We consider a bi-rotationally symmetric surface as a contour curve rotated
around each axis using two SO(3)×{e4} type actions. The metric, connec-
tion, curvatures and their derivatives can all be calculated in terms of this
contour curve. To do this we define the following:

Let (φ1, φ2, φ3) 7→ Φ(φ1, φ2, φ3), (ψ1, ψ2, ψ3) 7→ Ψ(ψ1, ψ2, ψ3) be ‘stan-
dard’ embeddings for spheres in polar co-ordinates, likewise let ∂φ1

= ∂Φ
∂φ1

etc be their coordinate frame such that
〈

∂φi
,∂φj

〉

= (gij)
S3

. We will abbre-
viate Φ(φ1, φ2, φ3) as Φ(φ) for convenience.

For any function h : R
+ → R

+ we can define the embedding

F : R
+ × S

3 × S
3 → R

8 = (uΦ(φ), h(u)Ψ(ψ))

yielding the bi-rotationally symmetric surface formed by rotating the
contour curve described by h around both axes.

Note that at any given point û = (Φ(φ),0) and v̂ = (0,Ψ(ψ)).
The hypersurface has tangent vectors given by

(u∂φi
,0) , (0, h(u)∂ψi

) , û + h′(u)v̂

and a metric of the form

(gij) = diag
(

u2(gij)
S3

, h(u)2(gij)
S3

, 1 +
(

h′(u)
)2
)

, (2)

with inverse

(gij) = diag

(

1

u2
(gij)S3

,
1

h(u)2
(gij)S3

,
1

1 + (h′(u))2

)

.

It is easy to see that the normal to such a surface will take the form

ν =
−h′(u)û + v̂
√

1 + h′(u)2
(3)

with νv = 1√
1+h′(u)2

and νu = −h′(u)√
1+h′(u)2

, and

τ 7 = νvû − νuv̂ =
û + h′(u)v̂
√

1 + h′(u)2
. (4)

The second fundamental form is defined by

Aij = 〈∂iν,∂j〉

13



which leads to a matrix of the form

diag

{

−uh′(u)
√

1 + h′(u)2
(Aij)

S3

,
h(u)

√

1 + h′(u)2
(Aij)

S3

, A77

}

(5)

where the (Aij)
S3

are 3×3 submatricies. In the (7,7)th position we calculate

∂

∂u

(

−h′(u)û + v̂
√

1 + h′(u)2

)

=
−h′′(u)

(

1 + h′(u)2
)

û + (h′(u)û − v̂)h′′(u)h′(u)

(1 + h′(u)2)
3

2

=
−h′′(u)(û + h′(u)v̂)

(1 + h′(u)2)
3

2

=
−h′′(u)

(1 + h′(u)2)
3

2

τ 7

using (4), and ∂û
∂u

= ∂v̂
∂u

= 0. This gives us

A77 =
−h′′(u)

√

1 + h′(u)2
(6)

and

A7
7 = − h′′(u)

(1 + h′(u)2)
3

2

. (7)

The mean curvature H = Σ7
i=1A

i
i is therefore given by

H = 3
h′(u)

u
√

1 + h′(u)2
+ 3

1

h(u)
√

1 + h′(u)2
− h′′(u)

(1 + h′(u)2)
3

2

(8)

which can be rewritten as

H = 3
νu
u

+ 3
νv
v

+A7
7. (9)

Note we can also write |A|2 as

|A|2 = 3
ν2
u

u2
+ 3

ν2
v

v2
+
(

A7
7

)2
(10)

We can also write

A7
7 = − 1

νu

∂νv
∂τ 7

=
1

νv

∂νu
∂τ 7

using the form of τ7 in (4).

∂νv
∂τ 7

= Dνv · τ 7 =
∂νv
∂u

τ 7 · û = − h′(u)h′′(u)

(1 + h′(u)2)2

and so

− 1

νu

∂νv
∂τ 7

= − h′′(u)

(1 + h′(u)2)
3

2

= A7
7.
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For MCF our immersion is of the form

F(p, t) = u(p, t)û + h(u(p, t), t)v̂.

Thus we have

∂F

∂t
=
∂u

∂t
(p, t)û +

(

h′(u(p, t), t)
∂u

∂t
(p, t) +

∂h

∂t
(p, t)

)

v̂

where h′ refers to the spacial derivative.
Taking the inner product with ν and using ∂F

∂t
= −Hν we get

−H =
∂u

∂t
νu + h′

∂u

∂t
νv +

∂h

∂t
νv.

Since νu = −h′(u)νv we get

∂h

∂t
(u, t) = −H

νv
. (11)

Derivative bounds on h versus derivative bounds on A

We wish to establish an equivalence between bounds on the derivatives of
the second fundamental form and bounds on the derivatives of our height
function h(u). It is easy to see that bounds on ||h′||Cm+1 will give us bounds
on ||A||Cm , for all m ≥ 0. To see the other direction we first calculate the
Christoffel Symbols.

Lemma 4.1. For a bi-rotationally symmetric surface the Christoffel symbols
are as follows:

i) Γkij =
(

Γkij

)S3

, 1 ≤ i, j, k ≤ 3 or 4 ≤ i, j, k ≤ 6

ii) Γ7
ij =

u(gij)
S
3

1+(h′(u))2
, 1 ≤ j, k ≤ 3

iii) Γ7
ij =

h(u)h′(u)(gij)
S
3

1+(h′(u))2
, 4 ≤ j, k ≤ 6

iv) Γk7j = 1
u
δkj , 1 ≤ j, k ≤ 3

v) Γk7j = h′(u)
h(u) δ

k
j , 4 ≤ j, k ≤ 6

vi) Γ7
77 = h′′(u)h′(u)

1+(h′(u))2

vii) Γkij = 0 otherwise

Proof.

Γkij =
1

2
gkl (∂iglj + ∂jgil − ∂lgij)
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i) Since the metric of the sphere appears as a sub-matrix in our metric
this is clear.

ii & iii) Assuming i, j 6= 7 we get

Γ7
ij =

1

2
g7l (∂iglj + ∂jgil − ∂lgij) =

1

2
g77 (∂ig7j + ∂jgi7 − ∂7gij) = −1

2
g77∂7gij

and the result follows.
iv) Again assuming 1 ≤ j ≤ 3 we get

Γk7j =
1

2
gkl (∂7glj + ∂jg7l − ∂lg7j) =

1

2
gkl∂7glj =

1

u2
(gik)S3

u(gij)
S3

=
δkj
u

v) Is proved in the same way
vii)

Γk77 =
1

2
gkl (∂7gl7 + ∂7g7l − ∂lg77)

Since gl7 = g77,l = g7k = 0 when l, k 6= 7 the only non zero term here is

Γ7
77 =

1

2
g77∂7g77 =

h′′(u)h′(u)

1 + (h′(u))2

Note that Γ7
77 ≤ 1

2 |h′′(u)| since x
1+x2 ≤ 1

2 .

Lemma 4.2. A surface, described by a contour curve rotated around each
axis as defined previously, for which

ν−1
v ≤ C1

and
||A||Cm−1 ≤ C2

hold, will satisfy
||h′||Cm ≤ C̃(C1, C2) <∞.

Proof. The function h(u) is bounded on compact sets of the positive u-axis.
A bound on ν−1

v gives a bound on the first derivative of h since ν−1
v =

√

1 + (h′(u))2.
We have by (7)

h′′(u) = ν−3
v A7

7

and so
|h′′(u)| ≤ C3

1 |A|.
For the higher derivatives we write out the covariant derivatives of A77.
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∇kAij = ∂kAij + ΓmkiAmj + ΓmkjAim

∇7A77 = ∂7A77 + Γk77A7k + Γk77Ak7 = ∂7A77 + 2Γk77A7k =
∂

∂u
A77 + 2Γ7

77A77

= −h′′′(u)νv +
(

h′′(u)
)2
h′(u)ν3

v + 2Γ7
77A77

where we have used the form of Aij given in (5) and A77 = −h′′(u)√
1+h′(u)2

from

(6).
Thus

h′′′(u)νv = −∇7A77 +
(

h′′(u)
)2
h′(u)ν3

v + 2Γ7
77A77.

Hence

|h′′′(u)| ≤ ν−1
v C

(

|A|2 , |∇A|2, h′′(u), h′(u)
)

.

where C is an expression depending on the quantities indicated, having none
of them in the denominator, where we used that Γ7

77 ≤ 1
2 |h′′(u)|.

Thus a bound on the first derivative of A coupled with a bound on the
lower derivatives of h gives us a bound on the third derivative.

Likewise if we have ∇m
7 A77 = νvh

(m+2)(u)+F (∇m−1A77, . . . , A77, h
m+1, . . . , h′,m)

where F is an expression in lower order quantities appearing as factors, and
h(m) denotes the m-th derivative of h indicate, we will get

∇m+1
7 A77 = ∇7∇m

7 A77 =
∂

∂u
∇m

7 A77 +mΓk77∇k∇m−1
7 A77 + 2Γk77∇m

7 Ak7

=
∂

∂u
∇m

7 A77 + (m+ 2)Γ7
77∇m

7 A77

= νvh
(m+3) +G(∇mA, . . . , A, h(m+2), . . . , h′,m)

where G is some new expression of the quantities indicated.
Thus for all derivatives we can get a bound of the form.

|h(m)(u)| ≤ ν−1
v C

(

m, ||A||Cm−2 , ||h′||Cm−2

)

.
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5 Short term existence, uniqueness & height bounds

This chapter relies on major input from my PhD supervisor Klaus Ecker.
The following short time existence theorem is a special case of Theorem

4.2 in [7].

Theorem 5.1. Let F0 : Mn → R
n+1 satisfy supMn |∇mA| ≤ Cm < ∞ for

all m ≥ 0. Then the mean curvature flow problem

∂F

∂t
(p, t) = H(p, t), p ∈Mn, t > 0 (12)

F (p, 0) = F0(p)

has a smooth solution on some time interval (0, T0) which smoothly attains
its initial data.

In particular, supt∈[0,T0) supMt
|∇mA| is finite for all m ≥ 0. This solu-

tion is a normal graph over M0.

In order to prove the uniqueness of this solution (which was not done
in [7] but should also follow by adapting some relevant theorem in [12]), we
first write out equation (12) in the case where the solution hypersurfaces Mt

are written as normal graphs over M0 with globally bounded second fun-
damental form AM0

. Not that we can introduce a global Gaussian normal
coordinate system around M0 in this case.

We can alternatively think of M0 as being the zero level set in a foliation
of a uniform tubular neighbourhood of M0 given by the normal distance to
M0. There exists a global unit vectorfield ω perpendicular to the equidistant
level sets which equals the unit normal to M0 on M0. Then we are in an
analogous situation to the one considered in [2] chapter 2 although there
a Lorentzian ambient manifold is considered in contrast to the Euclidean
space in our case. This however will have no effect on our argument. If
some other complete hypersurface M can be written as a normal graph over
M0 we can consider the ‘height function’ γ = d|M on M where d is the
distance function to M0 (in [2] this corresponds to the time function to M
called t there). Since we are in Euclidean space, the function α in [2] corre-
sponds to the constant function 1 in our setting (since α = |∇Rn+1

d|−1 for
us).

A formula for the mean curvature of M can be found on page 160 in [2]
(γ is called u there). The particular form of the inverse metric (in our case
we use gij instead of ḡij used in [2]) is not important, but note that it is C∞

in ∂γ, the n-tuple of coordinate derivatives of γ. We do have to interchange
all the minus signs to plus and vice versa however in [2] (2.19) to account
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for the fact that we are in the Riemannian setting. The relevant equation
in our situation is

HM = 〈ν,ω〉 gij(∂γ)∂i∂jγ − 〈ν,ω〉 a(∂γ,AM0
) + 〈ν,ω〉HM0

(13)

where a is a smooth expression in ∂γ and AM0
, and gij is the inverse metric

onM . In [2], the factor −〈N,T 〉 called ν there has to be changed to + 〈ν,ω〉
again due to the Lorentzian situation in [2]. ν is the unit normal to M in
our setting. If (Mt) is a solution of MCF then γ will evolve according to the
equation

∂γ

∂t
= −〈ν,ω〉−1H

(derived in a similar manner to chapter 4 equation (11)), which leads to

∂γ

∂t
= gij(∂γ)∂i∂jγ + a(∂γ,AM0

) −HM0
. (14)

Remark: 1) One could have alternatively worked with the immersions

FM (p) = FM0
(p) + γω

where ω is the unit normal to M0 and calculated HM directly from this.
One obtains a similar equation to the one above.

2) In what follows we could even afford an addition dependence of a and
gij on γ.

Theorem 5.2. Under the conditions of Theorem 5.1 the solution found
there is unique.

Proof. We employ a standard comparison principle argument. However,
since we are in a non-compact situation we have to be careful. The solution
found in Theorem 5.1 is a normal graph over M0. Let γ, γ̃ both be solutions
to (14), corresponding to two solutions Mt and M̃t of (12). Set f = γ − γ̃.
We want to show that f satisfies an equation of the form considered in
Theorem 3.1. We can then write

∂f

∂t
= gij(∂γ)∂i∂jγ+ a(∂γ,AM0

)−HM0
− gij(∂γ̃)∂i∂j γ̃− a(∂γ̃, AM0

)+HM0

= gij(∂γ)∂i∂jf +
(

gij(∂γ) − gij(∂γ̃)
)

∂i∂j γ̃ + a(∂γ,AM0
) − a(∂γ̃, AM0

).

Note that the terms |∂γ|, |∂γ̃|, |∂2γ|, |∂2γ̃| and |AM0
| are all bounded

since our solutions retain bounded geometry on their common interval of
existence. We now write (calling yk the arguments of gij)

gij(∂γ) − gij(∂γ̃) =

∫ 1

0

d

ds
gij(s∂γ + (1 − s)∂γ̃)ds
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=

(∫ 1

0

∂

∂yk
gij(s∂γ + (1 − s)∂γ̃)ds

)

∂kf.

Hence

(

gij(∂γ) − gij(∂γ̃)
)

∂i∂j γ̃ = ck(∂γ, ∂γ̃, ∂2γ̃)∂kf

for a suitable expression c depending smoothly on ∂γ, ∂γ̃ and ∂2γ̃ since
gij = gij(y) is C∞ in its dependence on y.

Similarly,

a(∂γ,AM0
) − a(∂γ̃, AM0

) =

(∫ 1

0

∂

∂γk
a(s∂γ + (1 − s)∂γ̃, AM0

)ds

)

∂kf

and thus f satisfies an equation of the form

∂f

∂t
= gij(∂γ)∂i∂jf + b̃k∂kf

where |b̃| depends on ∂γ, ∂γ̃ and ∂2γ̃ and is therefore bounded due to the
estimates on the geometry of (Mt) and (M̃t). Noting that the Γijk, the
Christoffel symbols with respect to the metric gij , can be controlled in terms
of ∂γ and ∂2γ, and using the expression ∆Mf = gij(∂i∂j−Γkij∂kf) we finally
arrive at

∂f

∂t
= ∆Mtf +

〈

b,∇Mtf
〉

where b is bounded on Mt. To obtain b we have multiplied b̃ by an expres-
sion involving gij(∂γ). 〈·, ·〉 denotes the metric on Mt.

Since f = 0 at t = 0, applying Theorem 3.1 to both f and −f yields
f = 0 on the common time interval of existence.

Corollary 5.3. If M0 is bi-rotationally symmetric then so is the unique
solution to (12).

Proof. This follows easily from the bi-rotational invariance of M0 combined
with the uniqueness result of Theorem 5.2.

Theorem 5.4. Suppose that M0 ⊂ {v > u} and suppose that HM0
≤ 0.

Then v0 = infM0
v > 0 and Mt will satisfy

Mt ⊂ {v > u}

inf
Mt

v ≥ v0 > 0

for all time t ∈ [0, T0).
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Proof. A surface M0 which is smooth and lies within {v > u} will satisfy
infM0

v ≥ v0 > 0: Consider the set M0 ∩ B̄R(0). Within this compact set v
must obtain a minimum, or the set is empty. In the latter case M0 will lie
within the set {v > u} ∩ R

8 \ (BR(0)), and within this set v ≥ R√
2

as one

easily checks from the definitions of u and v.

By writing Mt as a normal graph of a function γ over M0 we obtain

∂γ

∂t
= −〈ν,ω〉−1H

where ω is the unit normal field to M0. The mean curvature of Mt remains
non-positive (see Lemma 6.2 in the following chapter) and therefore γ is
non-decreasing in t at every point in space. Hence γ is bounded below by
its initial value at every point in space. Since M0 ⊂ {v > u} and Mt lies
above M0 we also have that Mt ⊂ {v > u}.
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6 Evolution equations

In order to understand the evolution of our graphical hypersurfaces, we must
study the evolution of certain key quantities, In [6] the two quantities studied
were the height function and the gradient. What constitutes ‘height’ in our
case could be thought of in different ways.

The distance from the ‘axis’ v=0 gives one notion for height, a second,
as studied in chapter 5 gives the perpendicular distance from the initial
hypersurfaces as the height. A third notion for height defined in terms
of the value of the level set function which gives us the foliations either
for the Bombieri, Di Giorgi, Giusti minimal foliation (F1(u, v) = ε) or the
F2(u, v) = v2 − u2 = ε foliation.

Likewise what constitutes gradient could be thought of in several ways.
Like in [6] a gradient of the form 〈ν,V〉−1 is desirable, but the V can be
chosen in a number of different ways. Firstly we can take V = DF

|DF | where
F is the level set function for either foliation. This approach did not work,
but gave us some partial results, which are included in Appendix C. These
gradient functions correspond to the height functions above.

Instead, the approach we take looks at the evolving hypersurfaces as a
graph simply over the v = 0 plane with F = v our ”height” and V = v̂

our reference vector field, as seen in Chapter 4. In this setting we have

ν−1
v = 〈ν, v̂〉−1 =

√

1 + (h′)2. This mimics the work of [1],[17] studying
cylindrically symmetric hypersurfaces, but with additional suprising results.

Since bi-rotationally symmetric hypersurfaces can be described in a two
dimensional picture by taking their contour curve and rotating around each
axis using two SO(3)×{e4} actions, the contour curves themselves becomes
the focus of study for a great deal of this thesis.

Lemma 6.1.
(

∂

∂t
− ∆M

)

hij = |A|2 hij

Proof. From [10] we have

∂

∂t
gij = −2Hhij

(

∂

∂t
− ∆M

)

hij = −2Hhijg
lmhmj + |A|2 hij

Thus
∂

∂t
gij = 2Hgilhlmg

mj

Combining these two results we get

(

∂

∂t
− ∆M

)

gikhkj = −2Hgikhklg
lmhmj + |A|2 gikhkj + 2Hgilhlmg

mjhkj
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since ∇Mgij = ∆gij = 0.

Lemma 6.2. If H is initially non-positive everywhere it remains so for all
time.

Proof. Summing over the indicies in the above equation for Aij we get

(

∂

∂t
− ∆M

)

H = |A|2H

which satisfies condition (i) of Theorem 3.1, as long as the curvature remains
bounded. Furthermore, since we have |∇mA| ≤ Cm for all m ≥ 0 we get
that |∇H| is bounded and satisfies condition (iii), and thus we can apply
the non-compact maximum principle to this quantity.

We next wish to calculate the evolution of the gradient, but first we need
the following preliminary calculation. We refer here to chapter 3 of [2].

We consider M ⊂ R
n+1 to be a complete hypersurface and V to be a

smooth vectorfield on R
n+1 everywhere transverse to M which admits a flow

φτ in a uniform tubular neighbourhood Ω of M (note that M has such a
neighbourhood if it has bounded second fundamental form). i.e.

φ : Ω × (−ε, ε) 7→ Ω,
∂φ

∂τ

∣

∣

∣

∣

τ=0

= V, φ0(x) = x.

Then we easily see that
[V, ei] = 0

on all Mτ , τ ∈ (−ε, ε) where ei form the frame for Mτ . Here [·, ·] denotes
the lie bracket of vector fields. We now define as in chapter 2 of [2]

V(HV) :=
∂

∂τ

∣

∣

∣

∣

τ=0

H(Mτ ). (15)

The following proposition is identity 2.9 from Proposition 2.1 in [2] which
can be understood as a second variation formula for M with respect to the
variation V .

Proposition 6.3.

∆M 〈ν,V〉 = 〈∇H,V〉 − 〈ν,V〉 |A|2 − V(HV) (16)
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Proof. We proceed as in [2] but note that we are in the Riemannian setting,
hence the different signs compared to the one in equation (2.19) stated there.
The quantity ν = −〈T,N〉 in [2] corresponds to our 〈ν,V〉. We are working
in an adapted frame where ∆ = eiei, and we can write V(HV) = V(gijhij)
where V(gij) = −V(gij) is for instance the variation of gij with respect to
V

∆〈ν,V〉 = eiei〈ν,V〉
= ei (〈Dei

ν,V〉 + 〈ν, Dei
V〉)

= 〈Dei
Dei

ν,V〉 + 2 〈Dei
ν, Dei

V〉 + 〈ν, Dei
Dei

V〉
=

〈

∇H − |A|2ν,V
〉

+ 2hij 〈ej , Dei
V〉 + 〈ν, Dei

Dei
V〉

= 〈∇H,V〉 − 〈ν,V〉|A|2 + hijV (gij) + 〈ν, DVDei
ei〉

= 〈∇H,V〉 − 〈ν,V〉|A|2 − hijV (gij) + V (〈ν, Dei
ei〉) − 〈DVν, Dei

ei〉
= 〈∇H,V〉 − 〈ν,V〉|A|2 − hijV (gij) − gijV (hij)

= 〈∇H,V〉 − 〈ν,V〉 |A|2 − V(HV).

Corollary 6.4.

(

∂

∂t
− ∆M

)

〈ν,V〉 = 〈ν,V〉 |A|2 + V(HV) −H

〈

ν,
∂V

∂xα
να

〉

(

∂

∂t
− ∆M

)

〈ν,V〉−1 = −2〈ν,V〉|∇(〈ν,V〉−1)|2−v|A|2−〈ν,V〉−2

(

V(HV) −H

〈

ν,
∂V

∂xα
να

〉)

Proof.

∂

∂t
〈ν,V〉 =

〈

∂ν

∂t
,V

〉

+

〈

ν,
∂V

∂t

〉

= 〈∇H,V〉 +

〈

ν,
∂V

∂xα

∂xα
∂t

〉

= 〈∇H,V〉 −H

〈

ν,
∂V

∂xα
να

〉

Combining this with Proposition 6.3 gives us our first result.

(

∂

∂t
− ∆M

)

〈ν,V〉−1 = −〈ν,V〉−2

(

∂

∂t
− ∆M

)

〈ν,V〉−2〈ν,V〉−3|∇〈ν,V〉|2

Gives us our second result since |∇〈ν,V〉|2 = 〈ν,V〉4 |∇(〈ν,V〉−1)|2
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Since the gradient we wish to study is 〈ν, v̂〉−1 we first study the evo-
lution of νv = 〈ν, v̂〉 to get some interesting results about the direction in
which the normal points.

Lemma 6.5. If Mt is bi-rotationally symmetric, we have

v̂(Hv̂) = −3
νv
v2
.

Proof. We define δαβv =

{

1
0

α = β, 5 ≤ α, β ≤ 8
otherwise

and δαβu similarly, and

write vectors as v̂ = v̂αeα where greek indices take the values 1 to 8.

v̂(Hv̂) = v̂
(

gijhij
)

= −v̂ 〈τ i, τ j〉hij − v̂ 〈ν,Dτi
τ i〉

= −v̂ 〈τ i, τ j〉hij − v̂ 〈ν,Dτi
τ i〉

= −2
〈

τ i,Dτj
v̂
〉

hij − 〈ν,Dv̂Dτi
τ i〉 − 〈Dv̂ν, Dτi

τ i〉
= −2

〈

τ i,Dτj
v̂
〉

hij − 〈ν,Dτi
Dτi

v̂〉 − 〈Dv̂ν, Dτi
τ i〉

Where we have used that v̂(gij) = −v̂(gij) and the commutative prop-
erties shown in Lemma 6.3.

(Dτi
v̂)α =

(

∂v̂

∂xβ

)α

(τi)β =
δαβv − v̂αv̂β

u
(τi)β =







0
τα
i

u

0

1 < i < 3
4 < i < 6
7

Thus
〈

τ i,Dτj
v̂
〉

= 1
v

for 4 < i = j < 6 and 0 otherwise.

Dτi
Dτi

v̂ = Dτi

τi

v
=

Dτ i
τi

v
− τi〈τi,v̂〉

v2
= −νv

v2
for 4 < i = j < 6 and 0

otherwise.
Finally Dv̂ν = 0 and thus

v̂ (H) = −3
νv
v2
.

Lemma 6.6. If Mt is bi-rotationally symmetric, we have

〈

ν,
∂v̂

∂xα
να

〉

= 0.

Proof. ∂v̂
∂xα

να = δ
αβ
v −v̂αv̂β

v
ναeβ

δαβv ναeβ = νvv̂ since δαβv picks out the last four entries of ν.
v̂αv̂βναeβ = v̂αναv̂ = 〈v̂,ν〉 v̂ = νvv̂ and thus we get the result.

Combining these three lemmas gives us the following.

25



Lemma 6.7. If Mt is bi-rotationally symmetric, we have

(

∂

∂t
− ∆M

)

νv = νv

(

|A|2 − 3
1

v2

)

. (17)

Lemma 6.8. Suppose M0 satisfies the conditions of Theorem 5.4 i.e. HM0
≤

0 and M0 ⊂ {v > u}. Suppose furthermore that infM0
νv ≥ C1 > 0 and as-

sume that M0 is bi-rotationally symmetric. Then our unique bi-rotationally
solution (Mt) satisfies νv ≥ C1 on Mt for all t ∈ (0, T0).

Proof. Theorem 5.1 implies that |A|2 is uniformly bounded on [0, T0) while
by Theorem 5.4 v is uniformly bounded below on Mt. Thus the coefficient
function |A|2 − 3 1

v2
is uniformly bounded. Therefore we can apply the non-

compact maximum principle (Theorem 3.1) to f = −νv, which is initially
non-positive, to conclude that νv ≥ 0 for all time. We next write out the
|A|2 in full (see equation (10) in chapter 4) to obtain

(

∂

∂t
− ∆M

)

νv = νv

(

3
ν2
u

u2
+ 3

ν2
v

v2
− 3

1

v2
+A7

7
2
)

= νv

(

3
ν2
u

u2
− 3

ν2
u

v2
+A7

7
2
)

≥ 0.

where we have used ν2
u = 1 − ν2

v and our result that v > u (Theorem
5.4) on our evolving hypersurfaces, and we can again apply Theorem 3.1,
this time to the function f = C1 − νv, to give us our result.

If in addition we have νv ≥ 1√
2

on M0 and therefore on Mt then the

following corollary holds.

Corollary 6.9. Suppose the conditions of Lemma 6.8 hold. If in addition
infM0

νv = 1√
2

(which gives that M0 is starshaped - see below) then on Mt

we have
(i) νv ≥ |νu|,
(ii) Mt remains a normal graph over M0

(iii) 〈x,ν〉 > 0.

Proof. If νv ≥ 1√
2

then we have |νu| =
√

1 − ν2
v ≤ 1√

2
, so νv ≥ |νu|.

This inequality is true on both M0 and Mt. We therefore have

〈νM0
,νMt〉 = νvM0

νvMt
+ νuM0

νuMt

νv is positive for all time and the second term is smaller in magnitude than
the first. Thus the inner product is always positive.
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Futhermore since v > u we have vνv > |uνu| so we can write

〈x,ν〉 = 〈uû + vv̂, νuû + νvv̂〉 = uνu + vνv > 0.

So not only does our surface remain a graph in our sense (i.e. νv > 0)
it also remains a graph in both the sense of normal graphs over M0 and in
the sense of radial graphs, albeit the latter with an unbounded gradient.
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7 Curvature estimates

Having established a lower bound for νv for all time we can now use this to
derive a curvature bound for all time.

Theorem 7.1. If M0 satisfies the conditions of Lemma 6.8 (required for
our gradient bound) and of the short time existence Theorem 5.1 then there
exists C2 = C2(infM0

νv, infM0
v, supM0

|A|2) such that

sup
Mt

|A|2 ≤ C2

for all t ∈ (0, T0).

Proof. Theorems 5.4 and 6.8 give us a lower bound on v and an upper bound
for ν−1

v respectively for all t ∈ (0, T0). Theorem 5.1 tells us there is some
bound on |∇mA| for all m ≥ 0 for a short time at least, which allows us
to apply the non-compact maximum principle to g considered below at the
end of the proof.

We choose the same test function as for Theorem 3.1 in [7]. Let

φ(r) =
r

1 − kr

Note that if 1 ≤ r ≤ a and k < 1
2a then 1 ≤ φ(r) ≤ 2a

φ′(r) =
1

1 − kr
+

kr

(1 − kr)2
=

1

(1 − kr)2

φ′′(r) =
2k

(1 − kr)3

(

∂

∂t
− ∆M

)

ν−2
v = 2ν−2

v

(

− |A|2 +
3

v2

)

− 6
∣

∣∇ν−v 2
∣

∣

2

(

∂

∂t
− ∆M

)

|A|2 ≤ −2 |∇|A||2 + 2|A|4
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Let g = φ(ν−2
v ) |A|2. Choosing k <

supM0
ν2

v

2 we obtain
(

∂

∂t
− ∆M

)

g = φ

(

∂

∂t
− ∆M

)

|A|2 + |A|2 φ′
(

∂

∂t
− ∆M

)

ν−2
v

−2∇φ · ∇ |A|2 − φ′′ |A|2
∣

∣∇ν−2
v

∣

∣

2

≤ φ
(

−2 |∇|A||2 + 2|A|4
)

− 2

(

1

1 − kν−2
v

+
kν−2

v
(

1 − kν−2
v

)2

)

ν−2
v |A|4

|A|2
(

1 − kν−2
v

)2

(

2ν−2
v

(

3

v2

)

− 6
∣

∣∇νv−1
∣

∣

2
)

− 2∇φ · ∇ |A|2 − 4ν−2
v φ′′ |A|2

∣

∣∇ν−1
v

∣

∣

2

= −2kg2 +
|A|2

(

1 − kν−2
v

)2

(

2ν−2
v

(

3

v2

)

− 6
∣

∣∇ν−1
v

∣

∣

2
)

−2∇φ · ∇|A|2 − 8 |A|2 ν−2
v k

(

1 − kν−2
v

)3

∣

∣∇ν−1
v

∣

∣

2 − 2φ |∇|A||2

≤ −2kg2 +
2 |A|2 ν−2

v
(

1 − kν−2
v

)2

3

v2
− 2∇φ · ∇|A|2

− 6
(

1 − kν−2
v

)3

∣

∣∇ν−1
v

∣

∣

2 |A|2 − 2φ |∇|A||2

Young’s inequality can be used to simplify the second term.

2ν−2
v |A|2

(

1 − kν−2
v

)2

3

v2
≤ ε2g2 +

9

v4ε2
(

1 − kν−2
v

)2

where we take ε2 ≤ k.

The third term can be estimated similarly:

−2∇φ · ∇|A|2 = −∇φ · ∇|A|2 − 4|A|ν−1
v φ′∇ν−1

v · ∇|A|
= φ−1∇φ · ∇g + φ−1 |∇φ|2 |A|2

−4|A|ν−1
v φ′∇ν−1

v · ∇|A|

≤ 2ν−1
v φ′

φ
∇ν−1

v · ∇g +
4ν−2
v (φ′)2

φ

∣

∣∇ν−1
v

∣

∣

2 |A|2

+
2ν−2
v (φ′)2

φ

∣

∣∇ν−1
v

∣

∣

2 |A|2 + 2φ |∇|A||2

=
2

ν−1
v

(

1 − kν−2
v

)∇ν−1
v · ∇g +

6
(

1 − kν−2
v

)3

∣

∣∇ν−1
v

∣

∣

2 |A|2 + 2φ |∇|A||2

Combining these results we get the following.
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(

∂

∂t
− ∆M

)

g ≤ 2

ν−1
v

(

1 − kν−2
v

)∇ν−1
v · ∇g −

(

2k − ε2
)

g2 +
9

v4ε2
(

1 − kν−2
v

)2

≤ 2

ν−1
v

(

1 − kν−2
v

)∇ν−1
v · ∇g −

(

2k − ε2
)

g2 +
9

v4
0ε

2 (1 − 2k)2

where v0 is a lower bound for v. Note we have (chapter 4)

∣

∣

∣

∣

∣

∇ν−1
v

ν−1
v

(

1 − kν−2
v

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ν−1
v ∇νv

(

1 − kν−2
v

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

νuA
7
7

νv
(

1 − kν−2
v

)

∣

∣

∣

∣

∣

≤ CA7
7 ≤ C|A|

The function g satisfies the inequality of the form required for f in Corollary
3.2(ii), since φ(ν−2

v ) ≥ 1. This gives us that supMt
|A|2 will be bounded by

a value depending on supM0
|A|, supM0

νv and v−1
0 .
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8 Derivatives of curvature

The following is taken from [5] Chapter 3 and [7] section 3.4.

Theorem 8.1. Suppose our initial hypersurface M0 satisfies the conditions
of Theorem 7.1 and in addition M0 has a bound on |∇mA| for all m ≥ 0,
then our evolving hypersurfaces maintain a bound on |∇mA| for all m ≥ 0
for all time.

Proof. This is a proof for the m = 1 case, the proof for the higher order
cases are contained in appendix A. Let

f1 = |∇A|2
(

Λ0 + |A|2
)

fm = |∇mA|2
(

Λ0 + |∇m−1A|2
)

We shall use
(

∂

∂t
− ∆M

)

|∇A|2 ≤ −2|∇2A|2 + C(n)|∇A|2 |A|2

from [7]. We then calculate

(

∂

∂t
− ∆M

)

f ≤ −2|∇2A|2
(

Λ0 + |A|2
)

+ C(n)|∇A|2|A|2
(

Λ0 + |A|2
)

−2|∇A|4 + |A|2|∇A|2 − 2∇|∇A|2 · ∇ |A|2

The last term can be estimated by

2∇|∇A|2 · ∇ |A|2 ≤ 8|A| |∇A| |∇|∇A|| |∇|A|| ≤ 8|A| |∇A|2 |∇2A|

≤ 2|∇2A|
(

Λ0 + |A|2
)

+
8 |A|2

Λ0 + |A|2
|∇A|4

where we have used Kato’s inequality

|∇|∇A|| ≤ |∇2A|

and ab ≤ εa2 + 1
4εb

2 to get the result.
This gives us

(

∂

∂t
− ∆M

)

f ≤ C(n)|∇A|2|A|2
(

Λ0 + |A|2
)

−
(

2 − 8 |A|2

Λ0 + |A|2

)

|∇A|4 + |A|2|∇A|2
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Since |A|2 ≤ c0 we must also have that

|A|2

Λ0 + |A|2
≤ c0

Λ0 + c0

The inequality becomes

(

∂

∂t
− ∆M

)

f ≤ −
(

2 − 8c0
Λ0 + c0

)

|∇A|4 + C(n, c0,Λ0)|∇A|2

Choosing Λ0 so that 2 − 8c0
Λ0+c0

= 3
2 and estimating

C(n, c0,Λ0)|∇A|2 ≤ 1

2
|∇A|4 +K

we get
(

∂

∂t
− ∆M

)

f ≤ −|∇A|4 +K

but since we have

|∇A|4 ≥ f2

(Λ0 + c0)
2

we get
(

∂

∂t
− ∆M

)

f ≤ −δf2 +K

where both δ and K depend only on n and c0.
Thus we get that f and thus |∇A| will become bounded at t > ε even if

it is initially unbounded.

The higher derivative bounds follow the same argument. This is a strong
induction argument which requires all lower derivatives of A to be bounded
after some small time.
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9 Long time existence & convergence

Theorem 9.1. Under the conditions of Theorem 8.1 the short time solution
of Theorem 5.1 can be extended to a smooth solution for all time.

Proof. The conditions allow us to reapply all estimates of the previous chap-
ters at time To

2 say to restart the flow using Theorem 5.1. The smooth tran-
sition between the solution starting at t = 0 and this new one is ensured by
the uniqueness Theorem 5.2.

Theorem 9.2. Suppose that in addition to the conditions of the last theorem
M0 lies below an area-minimising hypersurface M+ of the foliation in [3]
which in turn is contained inside the set {v > u}, and that M+ can be
written as a normal graph over M0. Suppose also that νv ≥ 1√

2
on M0.

Then the flow Mt remains below M+.

Proof. We know from Corollary 6.9 that under the condition infM0
νv = 1√

2
,

Mt can be written as normal graph over M0, as can M+ by our assumption.
Thus we can apply the same arguments used in Theorem 5.2 to the function
f = γ− γ+ where γ, γ+ denote the normal height functions for Mt and M+

respectively. Note that γ+ satisfies equation (14) in chapter 5, but with
zero time derivative. f satisfies the assumptions of Theorem 3.1 since M+,
being an area minimising hypersurface from [3], has by [8] globally bounded
geometry, i.e. all derivatives of γ+ are globally bounded. Since f ≤ 0 at
time t = 0 this inequality is maintained and therefore Mt stays below M+

Theorem 9.3. Under the conditions of Theorem 9.2, in addition to the
conditions stated in Theorem 9.1, the flow Mt has a smooth limit for t→ ∞.

The limiting hypersurface M∞ is smooth and starshaped.

Proof. Consider the function h(·, t) as defined in chapter 4. Taking an arbi-
trary u-value we get

h(u, t) − h(u, t0) =

∫ τ

τ0

∂h

∂τ
(u, τ)dτ = −

∫ τ

τ0

H(u, τ)

νv
dτ.

from equation (11) in chapter 4.
Since H ≤ 0 and the surface lies beneath M+, we have that this is a

bounded monotone function in t and thus must converge pointwise for all u
values as t → ∞. Let us call this limiting function h(·,∞). Rotating this
function around both axes gives us a limiting hypersurface M∞.

We have (by Theorems 7.1 & 8.1) that there exists constants Cm such
that each surface Mt has ||A||Cm ≤ Cm < ∞ and thus we have (chapter
4) that ||h′||Cm+1 ≤ C̃m for all m ≥ 0. We can, by standard arguments,
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conclude that h(u, t) converges in C∞ on compact subsets of the u-axis
and thus the curvatures of the limiting hypersurface are also bounded. In
particular this gives us that the mean curvature of the surfaces converge in
C∞ uniformly on compact subsets of the u-axis.

M∞ can be shown to be starshaped using the same arguments in Corol-
lary 6.9.

Theorem 9.4. Under the conditions described above, the limiting hypersur-
face is minimal, that is it has H ≡ 0.

Proof. Writing

∫ ∞

t0

|H(u, t)|
νv

dt = h(u,∞) − h(u, t0)

and using the existence of the two minimal barrier surfaces, we have h(u,∞)−
h(u, t0) bounded for all u in any compact interval [a, b] and so

∫ ∞

t0

∫ b

a

|H(u, t)|dudt ≤
∫ b

a

∫ ∞

t0

|H(u, t)|
νv

dtdu =

∫ b

a

∫ ∞

t0

∂h

∂t
dtdu

=

∫ b

a

h(u,∞) − h(u, t0)du < C(a, b) <∞

Since ∂H
∂t

= ∆H +H |A|2 and |∆H| ≤ C|∇2A| we have a global bound

on |∂H
∂t

| depending on the bounds on |A|2 and |∇2A|. We thus get that

∂

∂t

∫ b

a

|H(u, t)|du ≤
∫ b

a

∣

∣

∣

∣

∂

∂t
H(u, t)

∣

∣

∣

∣

du < C

with this constant depending on a, b and bounds on |A|2 and |∇2A|.
These two statements tell us that

lim
t→∞

∫ b

a

|H(u, t)|du = 0

by a standard calculus lemma, since the mean curvature converges uni-
formly on compact subsets we obtain

∫ b

a

|H(u,∞)|du =

∫ b

a

lim
t→∞

|H(u, t)|du = lim
t→∞

∫ b

a

|H(u, t)|du = 0

for any interval (a, b). So HM∞
≡ 0

Theorem 9.5. Under the conditions described above the limiting surface
M∞ is area minimising.

Proof. [16] tells us that the class of minimal surfaces which are asymptotic
to the Simons cone is unique up to diffeomorphism, and thus our surface
must be one of those surfaces, and thus is area minimising.
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A Higher derivatives of the curvature

The argument for the higher derivatives of |A|2 is contained here. They
follow the same argument.

fm = |∇mA|2
(

Λ0 + |∇m−1A|2
)

From [7] we have that

(

∂

∂t
− ∆M

)

|∇mA|2 ≤ −2|∇m+1A|2+C(m,n)
∑

i+j+k=m

|∇mA||∇iA||∇jA||∇kA|

In particular if we have |∇iA|2 ≤ c0 for all i ≤ m−1 we get from Young’s
inequality

(

∂

∂t
− ∆M

)

|∇mA|2 ≤ −2|∇m+1A|2 + C(m,n, c0)
(

1 + |∇mA|2
)

(

∂

∂t
− ∆M

)

|∇m−1A|2 ≤ −2|∇mA|2 + C(m,n, c0)

Thus
(

∂

∂t
− ∆M

)

fm ≤ −2|∇m+1A|2
(

Λ0 + |∇m−1A|2
)

+C(m,n, c0)
(

1 + |∇mA|2
) (

Λ0 + |∇m−1A|2
)

−2|∇mA|4 + C(m,n, c0)|∇mA|2 − 2∇
(

|∇mA|2
)

· ∇
(

|∇m−1A|2
)

Again the final term can be estimated with

2∇
(

|∇mA|2
)

· ∇
(

|∇m−1A|2
)

≤ 8|∇m−1A| |∇mA| |∇|∇mA|| |∇|∇m−1A||

≤ 8|∇m−1A||∇mA|2|∇m+1A| ≤ 2|∇m+1A|2
(

Λ0 + |∇m−1A|2
)

+8
|∇m−1A|2

Λ0 + |∇m−1A|2 |∇
mA|4

again using Kato’s and Young’s inequality.
Using that |∇pA| ≤ c0 for p ≤ m− 1 and gathering terms we get.

(

∂

∂t
− ∆M

)

fm ≤ C(m,n, c0)
(

1 + |∇mA|2
)

−
(

2 − 8
|∇m−1A|2

Λ0 + |∇m−1A|2
)

|∇mA|4

Choosing Λ0 so that the coefficient of |∇mA|4 is −3
2 and using Young’s

inequality

C(m,n, c0)|∇mA|2 ≤ 1

2
|∇mA|2 +K(m,n, c0)

we get.
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(

∂

∂t
− ∆M

)

fm ≤ −|∇mA|4 +K ≤ − f2
m

(Λ + c0)
2 +K

Our strong induction argument assumes we have |∇iA|2 ≤ c0 for all
i ≤ m − 1 for all time. Corollary 3.2 then tells us that |∇mA| will be
bounded.

B A class of quadratic cones

Take y ∈ R
p+1 and z ∈ R

q+1. Let u = |y|, v = |z| and n = p + q + 1 with
n ≥ 8 or n = 7 & |p− q| ≤ 4. Then the surface defined by

qu2 = pv2

is an n-dimensional minimal cone [14] with pv2 > qu2 foliated by minimal
surfaces [16]. The long term existence result (Theorem 9.1) holds for all of
these cones, and the remaining theorems in Chapter 9 hold for cones where
p ≥ q

A curve in the u, v plane can be rotated around both axes to give a bi-
rotationally symmetric surface as shown in chapter 4. The main difference
is the mean curvature

H = p
νu
u

+ q
νv
v

+Ann

Most of the thesis follows through with requisite changes to indicies and
dimension. Due to the change in the angle of the cone, the lower bound for

v in Theorem 5.4 in the set {v > u}∩R
8 \ (BR(0)) would now be

√
qR√
p+q

. The

major change is in Theorem 6.8. Firstly equation 17 of chapter 6 becomes

(

∂

∂t
− ∆M

)

νv = νv

(

|A|2 − q
1

v2

)

and the proof of Theorem 6.8 is

Proof.

(

∂

∂t
− ∆M

)

νv = νv

(

p
ν2
u

u2
+ q

ν2
v

v2
− q

1

v2
+ (Ann)

2

)

= νv

(

ν2
u

( p

u2
− q

v2

)

+ (Ann)
2
)

≥ 0

because we are on the side of the cone where pv2 > qu2
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Since the cone would have a different angle to the one in the main body
of this thesis we now may require in addition that

νv ≥
√
p√

p+ q

initially, so Corollary 6.9 will now tell us that
√
qνv ≥

√
p|νu| giving us along

with
√
pv >

√
qu

〈x,ν〉 = uνu + vνv ≥
√
quνu +

√
pv|νu|

q
≥ 0

and thus under this extra condition on M0 we get that the evolving hyper-
surface stays star shaped.

Furthermore, part (ii) of Theorem 6.9 and subsequently Theorem 9.2
only hold in the case p ≥ q.

C Additional gradient estimates

The following is an additional result with no bearing on the main body of the
thesis. Due to its length the reader may choose not to read it. It contains
an approach that was taken initially and abandoned, which gives enough to
get a long term existence result, but not convergence.

My initial (and unsuccessful) approach was to proceed in analogy with
the settings taken in [6]. There we can consider Euclidean space to be
foliated by the level sets of F = xn+1 with the vector field V = en+1 forming
the normal vectors to these level sets. We can consider a non-compact
surface bounded between two minimal surfaces with height given by F |Mt

and gradient 〈ν, V 〉−1 and see that the surfaces will flow to one of the leaves
of this foliation.

In our setting we again have Euclidean space foliated by minimal sur-
faces, expressed as some level sets of a function F as given in [3] with the
vector field of normals ω = DF

|DF | . We take that height to be F |Mt and gra-

dient 〈ν,ω〉−1. We expect the height to be bounded by its initial maximum
and expect the gradient to be well behaved. Unfortunately this approach
did not work, although we did obtain some estimate proving that the grai-
dient 〈ν, V 〉−1, V = DF

|DF | , where F = v2 − u2 grows at most linearly in time
and so is bounded on every finite time interval, which is enough to prove
long term existence, but not convergence.

The evolution of the height function can be easily calculated.
We define F2 = u2 − v2
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Lemma C.1. We have:
a) ∆RnF2 = 0
b) ∆MF2 = 2 〈ν, ν̄〉 − 2HM |x| 〈ν,ω〉

Proof. a) is clear

b)

∆MF2 = ∆RnF2 −D2F2(ν,ν) + HM · DF2

= −2δ̄ijνiνj − 2H 〈ν, x̄〉
= −2 〈ν̄,ν〉 − 2H 〈ν,ω〉 |x|

Lemma C.2. We further obtain:
(

∂
∂t

− ∆M

)

F2 = −2 〈ν̄,ν〉
Proof.

∂

∂t
F = DF · ∂x

∂t
= −HM · DF

= −HM |DF | 〈ν,ω〉

Corollary C.3. For a bi-rotationally-symmetric surface we get:

(

∂
∂t

− ∆M

)

F2 = 2(ν2
v − ν2

u)

We define the gradient here to be

w = 〈ν,ω〉−1

Lemma C.4.

ω(H) ≥
(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2 − w−1 |A|2

Proof.

ω(H) = ω
(

gijhij
)

= −ω 〈τ i, τ j〉hij + ω 〈ν,Dτi
τ i〉

= −ω 〈τ i, τ j〉hij − ω 〈ν,Dτi
τ i〉

= −2
〈

τ i,Dτj
ω
〉

hij − 〈ν,DωDτi
τ i〉 − 〈Dων, Dτi

τ i〉
= −2

〈

τ i,Dτj
ω
〉

hij − 〈ν,Dτi
Dτi

ω〉 − 〈Dων, Dτi
τ i〉

38



Since ω = x̄
|x| we can proceed by calculating these three quantities di-

rectly. Firstly:

(Dτi
ω)α =

(

Dτi

x̄

|x|

)α

=
δ̄αβ
|x| τ

β
i − x̄αxβ

|x|3 τ
β
j =

δ̄αβ
|x| τ

β
i − ωα 〈x, τ i〉

|x|2 (18)

(Dτi
Dτi

ω)α = τγi
∂

∂xγ

(

δ̄αβ
|x| τ

β
i − x̄αxβ

|x|3 τ
β
i

)

= τγi



δ̄αβ

∂
∂xγ τ

β
i

|x| − τ̄αi xγ
|x|3 −

δ̄αγxβ + x̄αδγβ
|x|3 τβi −

x̄αxβ
∂
∂xγ

τβi

|x|3 + 3
x̄αxβxγ
|x|5 τβi





= δ̄αβ

(

(Dτi
τ i)

β

|x| − 2
τβi 〈τ i,x〉

|x|3

)

− ωα

(

2p+ 1 + 〈Dτi
τ i,x〉

|x|2 − 3Σi 〈x, τ i〉2
|x|4

)

For i 6= 2n− 1 we get 〈x, τ i〉 = 0

Dτi
τ i =







− 1
u
û 1 ≤ i ≤ p

− 1
v
v̂ p+ 1 ≤ i ≤ 2p

−A7
7ν 2n− 1

(19)

Noting that
∑2p

i=1 〈Dτi
τ i,x〉 = −2p we get

(Dτi
Dτi

ω)α =
û

u

α − v̂

v

α
+A7

72δ̄
α
βν

β

|x| − 2δ̄αβ
τβ2n−1 〈x, τ2n−1〉

|x|3

−ωα
(

1 +A7
7 〈ν,x〉
|x|2 − 3 〈x, τ2n−1〉2

|x|4

) (20)

Now,
〈

τ 2n−1,Dτ2n−1

x̄
|x|

〉

= ν2
v−ν2

u

|x| + ν2
uv

2−ν2
vu

2

|x|3 = ν2
vv

2−ν2
uu

2

|x|3 = −w−1〈x,ν〉
|x|2

So we get:

〈

τ i,Dτj
ω
〉

=



















1
|x| 1 ≤ i = j ≤ p

− 1
|x| p+ 1 ≤ i = j ≤ 2p

−w−1〈x,ν〉
|x|2 i = j = 2n− 1

0 Otherwise

To calculate the Dων term, we must recall the definition of the deforma-
tion of Mt created by ω, the first order approximation of this deformation
is:

ω : ν 7→

(

νu

(

1 − ε u
2

|x|3
)

− ενv
uv
|x|3
)

û +
(

νv

(

1 + ε v2

|x|3
)

+ ενu
uv
|x|3
)

v̂
√

1 + 2ε
(

ν2
v
v2

|x|3 − ν2
u
u2

|x|3
)
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Thus

Dων =
d

dε
ν

∣

∣

∣

∣

ε=0

= −
(

ν2
v

v2

|x|3 − ν2
u

u2

|x|3
)

ν −
(

νu
u2

|x|3 + νv
uv

|x|3
)

û +

(

νv
v2

|x|3 + νu
uv

|x|3
)

v̂

Thus we get the first term in the ω(H) equation:

〈

τ i,Dτj
ω
〉

hij =
p

|x|
(νu
u

− νv
v

)

−w
−1 〈x,ν〉
|x|2 =

p

uv|x| 〈x, τ2n−1〉−
w−1 〈x,ν〉

|x|2

−2
p

uv|x| 〈x, τ2n−1〉 + 2p
w−1νuνv

uv
=

2p

|x|uv
(

−uνv + vνu + ν2
uνvu− νuν

2
vv
)

=
2p

|x|uv
(

−ν3
vu+ ν3

uv
)

=
2p

|x|

(

−ν
3
v

v
+
ν3
u

u

)

≤ pν4
v + ν4

u

|x|2 w−1 + p

(

ν2
v

v2
+
ν2
u

u2

)

〈ν,Dτi
Dτi

X〉 = ν
α
τ
γ
i

∂

∂xγ

(

δ̄αβ
|x| τ

β
i −

x̄αxβ
|x|3 τ

β
i

)

= ν
α
τ
γ
i

∂

∂xγ

(

τ̄αi

|x| −
x̄α 〈x, τ i〉

|x|3
)

=
〈ν̄,Dτi

τ i〉
|x| − νατ

γ
i xγ τ̄

α
i

|x|3 − νατ
γ
i xγ τ̄

α
i

|x|3 − w−1

(

τ i 〈x, τ i〉
|x|2 − 3 〈x, τ i〉2

|x|4

)

=
〈ν̄,Dτi

τ i〉
|x| − 2

〈x, τ 2n−1〉 〈ν, τ̄ 2n−1〉
|x|3

−w−1

(

〈Dτix, τ i〉 + 〈x,Dτi
τ i〉

|x|2 − 3 (vνu − uνv)
2

|x|4

)

=
〈ν̄,Dτi

τ i〉
|x| +

4νuνv (vνu − uνv)

|x|3

−w−1

(

2p+ 1 − 2p− 〈x,ν〉A7
7

|x|2 − 3 (vνu − uνv)
2

|x|4

)

=
〈ν̄,Dτi

τ i〉
|x| − 2

(

ν2
v − ν2

u

) 〈x,ν〉
|x|3 + w−1

(

〈x,ν〉A7
7

|x|2 − 3
(vνv + uνu)

2

|x|4

)

=
〈ν̄,Dτi

τ i〉
|x| − 2

(

ν2
v − ν2

u

) 〈x,ν〉
|x|3 + w−1

(

〈x,ν〉A7
7

|x|2 − 3
〈x,ν〉2
|x|4

)

2νuνv (vνu − uνv)

|x| =
vνv − uνu −

(

ν2
v − ν2

u

)

(vνv + uνu)

|x| = −w−1−
(

ν2
v − ν2

u

) 〈x,ν〉
|x|
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〈Dων, Dτi
τ i〉 =

〈

Dων, p
û

u
+ p

v̂

v
+A7

7ν

〉

So

〈Dων, Dτi
τ i〉 =

w−1 〈x,ν〉H
|x|2 +

uνu + vνv
|x|3 (−uνu + vνv)A

7
7

Thus

ω(H) = −
(

ν2
u − ν2

v

)

A7
7 + pνu

u
− pνv

v

|x| + 2
(

ν2
v − ν2

u

) 〈x,ν〉
|x|3

−w−1

(

〈x,ν〉A7
7

|x|2 − 3
〈x,ν〉2
|x|4

)

+
w−1 〈x,ν〉H

|x|2 − w−1 〈x,ν〉
|x|2 A7

7 + 2
w−1 〈x,ν〉

|x|2 A7
7

=

(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2

+2p
w−1νuνv

uv
+

2 〈x,ν〉
(

ν2
v − ν2

u

)

|x|3 +
3w−1 〈x,ν〉2

|x|4

=

(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2 +
w−1 〈x,ν〉2

|x|4

+2p
w−1νuνv

uv
+

2 〈x,ν〉
|x|5

((

ν2
v − ν2

u

) (

u2 + v2
)

+ (uνu − vνv) (uνu + vνv)
)

=

(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2 +
w−1 〈x,ν〉2

|x|4

+2p
w−1νuνv

uv
+

2 〈x,ν〉
|x|5 (uνv − vνu) (vνu + uνv)

≥
(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2 − w−1p

(

ν2
u

u2
+
ν2
v

v2

)

− 2

|x|2

≥
(

ν2
v − ν2

u

)

H

|x| +
w−1 〈x,ν〉H

|x|2 − w−1 |A|2 − 2

|x|2

Since
(

ν2
u − ν2

v

) (

νu

u
+ νv

v

)

− νu

u
+ νv

v
= 2νuνv

(

νu

v
− νv

u

)

= 2|x|w−1 νuνv

uv

and
(

ν2
v − ν2

u

) (

u2 + v2
)

+(uνu − vνv) (uνu + vνv) = v2ν2
v−u2νu+u2ν2

v−
v2ν2

u − v2ν2
v + u2νu = (uνv − vνu) (uνv + vνu) = (uνv − vνu) 〈τ 2n−1,ω〉
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Finally, since
(ν2

v−ν2
u)

|x| = D2F (ν,ν)
|DF | and 〈x,ν〉

|x|2 = D2F (ν,ω)
|DF | , combining lemma

C.4 with Lemma 6.4 we get the following result.

Theorem C.5.

(

∂

∂t
− ∆M

)

w ≤ −w−1|∇w|2 +
2

|x|2 ≤ 2

|x|2

And so, by Theorem 3.1 we get the following corollary, giving a bound
on the gradient.

Corollary C.6.

sup
Mt

w ≤ sup
M0

w + Ct

Proof. Let w1 = w − Ct Where supM0

2
|x|2 ≤ C <∞ Thus

(

∂

∂t
− ∆M

)

w1 ≤ 0

We can now employ Theorem 7.1 to conclude curvature estimates on
every finite time interval [0, T ] since they hold as long as we have a bound
on w,w hich here depends on T . These in turn allow us to extend the solution
according to the argument in Theorem 9.1. Therefore, Corollary D.6 implies
longtime existence of our solution.
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