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Abstract: Double sequences appear in a natural way in cases of iteratively given sequences if the iteration
allows to determine besides the successors from the predecessors also the predecessors from their followers.
A particular pair of double sequences is considered which appears in a parqueting-reflection process of the
complex plane. While one end of each sequence is a natural number sequence, the other consists of rational
numbers. The natural numbers sequences are not yet listed in OEIS Wiki. Complex versions from the double
sequences are provided.
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1 Introduction
While sequences are known as mappings from the set of natural numbers, double (two-sided) sequences are
based on the entire numbers. Although a double sequence can be rearranged in a sequence, such a rearrange-
ment does not necessarily result in a convergent sequence even if the two ends of the double sequence are
convergent (when the indices tend to +∞ or −∞). Of course, other combinations of the limit behavior are
possible. Double sequences appear in a natural way in the cases of iteratively given sequences if the iteration
recipe allows to determine besides the successors from the predecessors also the predecessors from their
followers.

Repeatedly, iteratively given sequences appear when applying the parqueting-reflection principle to cer-
tain circular domains of the (complex) plane; see e.g. [1]. A pair of double sequences arises when repeatedly
reflecting a certain circular rectangle at its boundary parts [2]. This pair of double sequences consists of
sequences, the tails of which are, on one hand, natural numbers sequences (see [3]) and, on the other hand,
made from rational numbers. Sequences can be extended to ones with complex numbers bearing similar
properties as their origins.

2 Recurrence relations
With a0 = b0 = 1 for k ∈ ℕ, the relations

a2k = 3a2k−1 + b2k−1, a2k+1 = a2k + b2k ,
b2k = a2k−1 + b2k−1, b2k+1 = a2k + 3b2k
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determine two real sequences. Obviously, both sets of equationsmay be solved for the lower indexednumbers
as

2a2k−1 = a2k − b2k , 2a2k = 3a2k+1 − b2k+1,
2b2k−1 = 3b2k − a2k , 2b2k = b2k+1 − a2k+1.

Hence, (ak , bk) is a pair of double sequences (ak), (bk), their first numbers being

. . . , a−4 =
−5
4 , a−3 =

−1
2 , a−2 =

−1
2 , a−1 = 0,

a0 = 1, a1 = 2, a2 = 10, a3 = 16, a4 = 76, . . . ,

. . . , b−4 =
1
4 , b−3 = 1, b−2 =

1
2 , b−1 = 1,

b0 = 1, b1 = 4, b2 = 6, b3 = 28, b4 = 44, . . . .

3 Properties of the double sequences
In order to determine the particular explicit numbers in the sequences, some properties are investigated.

Lemma 3.1. For any k ∈ ℤ the relations 3b22k − a
2
2k = 2

k+1 and b22k+1 − 3a2k+1 = 2
2k+2 hold.

Proof. For k = 0 and k = 1, the relations 3b20 − a
2
0 = 2 and b

2
1 − 3a

2
1 = 22 are true. By the recurrence relations,

for 0 < k,
3b22k − a

2
2k = 3(a2k−1 + b2k−1)

2 − (3a2k−1 + b2k−1)2 = 2(b22k−1 − 3a
2
2k−1)

= 2[(a2k−2 + 3b2k−2)2 − 3(a2k−2 + b2k−2)2] = 4(3b22k−2 − a
2
2k−2),

b22k+1 − 3a2k+1 = (a2k + 3b2k)
2 − 3(a2k + b2k)2 = 2(3b22k − a

2
2k)

= 2[3(a2k−1 + b2k−1)2 − (3a2k−1 + b2k−1)2] = 4(b22k−1 − 3a
2
2k−1)

hold, and for k < 0,

3b22k − a
2
2k =

3
4 (b2k+1 − a2k+1)

2 −
1
4 (3a2k+1 − b2k+1)

2 =
1
2 (b

2
2k+1 − 3a

2
2k+1)

=
1
8 [(3b2k+2 − a2k+2)

2 − 3(a2k+2 − b2k+2)2] =
1
4 (3b

2
2k+2 − a

2
2k+2),

b22k−1 − 3a
2
2k−1 =

1
4 (3b2k − a2k)

2 −
3
4 (a2k−b2k )

2 =
1
2 (3b

2
2k − a

2
2k)

=
1
8 [3(b2k+1 − a2k+1)

2 − (3a2k+1 − b2k+1)2] =
1
4 (b

2
2k+1 − 3a

2
2k+1).

Remark 3.2. Both formulas from the last lemma are unified as

31+[
k
2 ]−[

k+1
2 ]b2k − 3

[ k+12 ]−[ k2 ]a2k = 2k+1.
For convenience, the notation m1 = √3 will be further used.

Lemma 3.3. For k ∈ ℤ, we have m1b2k ± a2k = (m1 ± 1)2k+1 and b2k+1 ± m1a2k+1 = (m1 ± 1)2k+2.

Proof. For k = 0 and k = 1, the relations m1b0 ± a0 = m1 ± 1 and b1 ± m1a1 = 4 ± 2m1 = (m1 ± 1)2 hold.
For 0 < k,

m1b2k ± a2k = m1(a2n−1 + b2k−1) ± (3a2n−1 + b2n−1) = (m1 ± 1)(b2k−1 ± m1a2n−1)
= (m1 ± 1)[(a2k−2 + 3b2k−2) ± m1(a2k−2 + b2k−2)] = (m1 ± 1)2(m1b2n−2 ± a2k−2),

b2k+1 ± m1a2k+1 = a2k + 3b2k ± m1(a2k + b2k) = (m1 ± 1)(m1b2k ± a2k)
= (m1 ± 1)[m1(a2k−1 + b2k−1) ± (3a2k−1 + b2k−1)] = (m1 ± 1)2(b2k−1 ± m1a2k−1),
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and for k < 0, taking into account (m1 ± 1)(m1 ∓ 1) = 2,

m1b2k ± a2k =
m1

2(b2k+1 − a2k+1)
±
1
2 (3a2k+1 − b2k+1)

=
1
2 [(m1 ∓ 1)b2k+1 − m1(1 ∓ m1)a2k+1] =

m1 ∓ 1
2 (b2k+1 ± m1a2k+1)

=
m1 ∓ 1

2 [3b2k+2 − a2k+2 ± m1(a2k+2 − b2k+2)]

=
m1 ∓ 1

4 [(3 ∓ m1)b2k+2 − (1 ∓ m1)a2k+2] =
(m1 ∓ 1)2

4 (m1b2k+2 ± a2k+2)

= (
(m1 ∓ 1)2

4 )
−k
(m1b0 ± a0) = (

(m1 ∓ 1)2
4 )

−k
(m1 ± 1)

= (
(m1 ∓ 1)2

4 )
−k−1m1 ∓ 1

2 = (
(m1 ∓ 1)

2 )
−2k−1
= (m1 ± 1)2k+1,

b2k−1 ± m1a2k−1 =
1
2 [3b2k − a2k ± m1(a2k − b2k)] =

m1 ∓ 1
2 (m1b2k ± a2k)

=
m1 ∓ 1

4 [m1(b2k+1 − a2k+1) ± (3a2k+1 − b2k+1)] =
(m1 ∓ 1)2

4 (b2k+1 ± m1a2k+1)

= (
(m1 ∓ 1)2

4 )
−k
(b−1 ± a−1) = (

(m1 ∓ 1)2
4 )

−k

= (
4 ∓ 2m1

4 )
−k
= (

m1 ∓ 1
2 )

−2k
= (m1 ± 1)2k .

With the formulas from Lemma 3.3, the terms of the sequences are determined.

Theorem 3.4. For k ∈ ℤ, the double sequences (ak) and (bk) are given via

2a2k = (m1 + 1)2k+1 − (m1 − 1)2k+1, 2m1a2k+1 = (m1 + 1)2k+2 − (m1 − 1)2k+2,
2m1b2k = (m1 + 1)2k+1 + (m1 − 1)2k+1, 2b2k+1 = (m1 + 1)2k+2 + (m1 − 1)2k+2.

4 Complex version
The double sequence pair (ak , bk) of rational numbers handled inℚ(√3) has the counterpart inℚ(√3, i).

For k ∈ ℤ, define complex numbers as

c2k = (−1)ka2k , c2k+1 = (−1)k+1im1a2k+1, d2k = (−1)k+1im1b2k , d2k+1 = (−1)k+1b2k+1.

Then the recursion relations for ak and bk are reflected into ones for ck and dk as
ck = −im1ck−1 + dk−1, dk = −ck−1 − im1dk−1 with c0 = 1, d0 = −im1,

2ck−1 = im1ck + dk , 2dk−1 = im1dk − ck with c−1 = 0, d−1 = 1.

The first terms are

. . . , c−4 = −
5
4 , c−3 =

1
2 im1, c−2 =

1
2 , c−1 = 0,

c0 = 1, c1 = −2im1, c2 = 10, c3 = −16im1, c4 = 76, . . . ,

. . . , d−4 = −
3
4 im1, d−3 = −1, d−2 =

1
2 im1, d−1 = 1,

d0 = −im1, d1 = −4, d2 = 6im1, d3 = 28, d4 = −44im1, . . . .

Their properties are

|dk|2 − |ck|2 = 2k+1, |ck| + |dk| = (m1 + 1)k+1, |dk| − |ck| = (m1 − 1)k+1,

c2k + d
2
k = (−2)

k+1, ckdk + ckdk = 0, −ickdk = ickdk = |ckdk|

for k ∈ ℤ.
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