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Purely nonparametric methods are developed for general two-sample problems
in which each experimental unit may have an individual number of possibly cor-
related replicates. In particular, equality of the variances, or higher moments,
of the distributions of the data is not assumed, even under the null hypoth-
esis of no treatment effect. Thus, a solution for the so-called nonparametric
Behrens-Fisher problem is proposed for such models. The methods are valid
for metric, count, ordered categorical, and even dichotomous data in a unified
way. Point estimators of the treatment effects as well as their asymptotic dis-
tributions will be studied in detail. For small sample sizes, the distributions
of the proposed test statistics are approximated using Satterthwaite-Welch-type
t-approximations. Extensive simulation studies show favorable performance of
the new methods, in particular, in small sample size situations. A real data set
illustrates the application of the proposed methods.
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1 INTRODUCTION

Statistical comparisons of two independent groups are one of the most frequently occurring inference problems in sci-
entific research, eg, in biomedical or in social sciences. Many different statistical methods are available for making
inferences, eg, t-test type statistics for testing the equality of the means of normal samples (assuming equal or unequal
variances), 𝜒2- tests for binary data, Wilcoxon-Mann-Whitney (WMW) tests for testing HF

0 ∶ F1 = F2, the equality of
the two distribution functions of skewed or even ordered categorical data (assuming equal variances or shapes of the
distributions) or the Brunner-Munzel tests for testing the hypothesis formulated in terms of the WMW effect

H0 ∶ p = ∫ F1dF2 = P(X1 < X2) +
1
2

P(X1 = X2) =
1
2

(1)
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(allowing for different variances or shapes of the distributions).1-5 Here, X1 and X2 denote two independent random vari-
ables having distribution functions F1 and F2, respectively. The correct method to use depends on the shapes of the data

distributions and their scales. If Xi ∼ N(𝜇i, 𝜎2
i ), then p = Φ

(
𝜇2−𝜇1√
𝜎2

1+𝜎
2
2

)
and, thus, p = 1

2
if 𝜇1 = 𝜇2 even if the variances

𝜎2
1 and 𝜎2

2 are different. Here, Φ(x) denotes the standard normal cumulative distribution function. Testing the hypoth-
esis H0 ∶ p = 1

2
is therefore called the “nonparametric Behrens-Fisher problem” because inference methods upon the

relative effect p allow for heteroscedastic variances or shapes of the distributions even under the null hypothesis.2,6,7 Sta-
tistical methods, which do not rely on the assumption of equal variances, are especially meaningful when the distribution
under the alternative hypothesis of a statistic is important, eg, for the computation of confidence intervals for the effect
of interest.

All of these methods, however, are not applicable when measurements are taken with dependent replicates, eg, when
visual acuity or any blood parameters of mice sharing the same cage are measured. In all of these scenarios, the replicates
(ie, the observations coming from all mice sharing the same cage) should neither be assumed to be independent nor be
seen as observations coming from different subjects. Furthermore, using a summary measure (eg, means or medians) of
the replicates as a single observation would decrease precision of the effect estimates and thus decrease the powers of the
test procedures (see the illustrative simulation results in Section 6). Therefore, there is a need for statistical procedures
that allow the specific modeling of the dependent replicates. Under normality assumption of the data, the dependent
replicates can be modeled using a linear mixed model and the hypothesis of the equality of the means can be tested using
appropriate F-test statistics, eg, using SAS PROC MIXED.8,9 Replicated binary data can be analyzed using 𝜒2-square tests
for R × C contingency tables with clustered data.10,11 Dutta and Datta,12 Rosner et al (RGL),13 as well as Datta and Satten
(DS)14 generalized the WMW test to clustered data and their methods can also be used to analyze two independent groups
with dependent replicates to test the hypothesis of the equality of the distribution functions HF

0 ∶ F1 = F2 of the two
groups. This formulation of the null hypothesis is rather strict because (1) variances are assumed to be identical under
the null hypothesis and (2) the test statistics cannot be inverted into confidence intervals for the WMW effect p given in
(1). The computation of confidence intervals, however, is a rather important task in practice and even required in clinical
trials by regulatory authorities “Estimates of treatment effects should be accompanied by confidence intervals, whenever
possible...” (ICH E9 Guideline 1998, ch. 5.5, p25).15 The only known available inference methods that can be used for the
computation of confidence intervals for the relative effect p are the Brunner-Munzel test and its generalizations.1,3-5,16

Therefore, it is the aim of the present paper to generalize the applicability of the Brunner-Munzel test to situations in
which data is observed with (possibly) dependent replications.

When such data are observed, the numbers of the replications may or may not play an important role for the scientists.
Therefore, weighted as well as unweighted versions of the estimators of the treatment effects will be investigated and their
asymptotic distributions will be derived in a closed form. The results achieved in this paper generalize the ideas on previ-
ous attempts for testing the rather strict hypothesis H0 ∶ F1 = F2

7,17 or even for testing H0 ∶ p = 1∕2.7,18-20 In comparison
to these pioneering works, differently weighted estimators of the treatment effect p as well as unbiased variance estima-
tors will be proposed in the current paper. Furthermore, major attention will be given to the accuracy of the tests in terms
of controlling the nominal type-I error level as well as their powers to detect alternatives when sample sizes are rather
small. Here, it will be shown that the distributions of the tests can be approximated using t-distributions with approxi-
mated Satterthwaite-Welch degrees of freedom. The degrees of freedom are estimated in such a way that the new methods
coincide with the Brunner-Munzel test when single measurements are observed. Recently, Larocque et al21 developed
asymptotic weighted and unweighted tests for the nonparametric Behrens-Fisher problem and proposed two different
consistent estimators of the variance of the effect estimator that are either consistent (1) only under the null hypothesis
or (2) also even under the alternative. However, extensive simulation studies show that the tests based upon them tend
to be either way too conservative or liberal and, therefore, (3) the use of a linear combination of them is recommended by
Larocque et al21 in practical applications. Still and all, the resulting test cannot be inverted into confidence intervals for
the underlying effect because the linearly combined variance estimator is only consistent under the null hypothesis. The
test procedures proposed by Larocque et al21 are explained in detail in Section 5.1 and rigorously compared with the new
approach in extensive simulation studies.

The remainder of this paper is organized as follows. In Section 2, an example that motivated the research reported in
this paper is described. The statistical model and the quantity of inferential interest (nonparametric effect) are formally
introduced in Section 3. In Section 4, two estimators for the effect size are given and their asymptotic properties are
derived. The theories developed in Section 4 are applied in Section 5 for deriving tests and confidence intervals. The
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FIGURE 1 Boxplots of the body weights

finite-sample fidelity of the asymptotic theories is evaluated in Section 6 via simulation studies. In addition, in Section 6,
the performance of the new methods are evaluated in comparison with existing methods. The analysis of the motivating
data using the new methods is carried out in Section 7. Some remarks pertaining to data analysis strategies in light of the
new methods are discussed in Section 8. All technical details and proofs are placed in the Appendix.

2 MOTIVATING EXAMPLE

This research is motivated by a toxicological study involving small sample sizes and different numbers of dependent
replicates per unit.

The data is obtained from the National Toxicological Program study number C20536, which investigates the effect of
“specular hermatite” on body weights of male HSD rats.* Several rats share the same cage and thus, the cage is seen as
the experimental unit with the replications being the body weights of the rats. We consider the two dose groups “vehicle
control” and “30 mg/m3” of the active treatment and select the body weights of the rats after four weeks of treatment. In
total, n = 26 cages are involved in the trial, where the vehicle control group consists of n1 = 13 cages and the remaining
n2 = 13 cages are assigned to the active treatment group. We assume that the measurements obtained under the active
treatment are independent from those in the vehicle control group. It is very evident from the boxplots displayed in
Figure 1 (right) that the medians of the two groups are different. Therefore, it is of major interest to estimate the treatment
effect and to test whether there is any significant difference between these two groups along with the computation of
a confidence interval. The data also show slightly different variances. Furthermore, since sample sizes are very small,
the data should be modeled with a “general” statistical model without restrictive assumptions. Note that the raw data
(individual replicates) are displayed in the following boxplots.

Next, a general nonparametric model that allows for arbitrary distributions, different numbers of replicates per unit
as well as arbitrary dependency patterns among the replications will be discussed. In particular, no linear relationship
between the response variables and the treatment effects is not assumed. This will be explained in the next section.

3 STATISTICAL MODEL AND HYPOTHESES

We consider two independent samples with replicated observations that can be modeled by independent random vectors

Xik = (Xik1, … ,Xikmik )
′, i = 1, 2; k = 1, … ,ni, (2)

with distributions Xiks ∼ Fi, i = 1, 2. Here, mik denotes the number of replicates of subject k under treatment i. The
replicates Xiks may be arbitrarily correlated. We note that the numbers of replicates may not be under experimental control
and may be different for each subject involved in the study. The total number of subjects (units) involved in the study is
given by n = n1 + n2 and the total number of observations is given by N = m1 +m2 =

∑2
i=1

∑ni
k=1 mik. In order to allow for

metric, discrete, dichotomous, as well as ordered categorical data in a unified way, we use the normalized version Fi(x) =
1
2
[F(−)

i (x) + F(+)
i (x)] of the distribution function of Xiks, which is the average of the left-continuous, F(−)

i (x) = P(Xiks < x),
and the right-continuous, F(+)

i (x) = P(Xiks ≤ x), versions of the distribution function, respectively. The normalized version
of the distribution function has first been used by Lèvy22 and later by other works20,23-25 to derive asymptotic results
for rank statistics including the case of ties. The statistical model considered here does not entail any parameters by

*https://tools.niehs.nih.gov/cebs3/views/index.cfm?action=main.download&bin_id=1600&library_id=4877&fileIdsSelected=
1de2c1a6578948500157908016d60027 accessed on December 16, 2018.
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which adequate treatment effects could be described. Therefore, the distributions F1 and F2 are used to define a treatment
effect by

p = ∫ F1dF2 = P (X111 < X211) +
1
2

P (X111 = X211) , (3)

which is the generalized WMW effect p introduced in (1) to dependent replicates. If p < 1
2
, then the observations coming

from distribution F1 tend to be smaller than those coming from F2. If p = 1
2
, then the observations coming from these

two distributions are expected to be almost similar. Thus, the effect p can be interpreted as a measure of tendency to
larger or smaller values. As indicated in the introduction, the effect p = 1

2
does not imply that the distributions F1 and

F2 are identical; indeed, inference methods upon p allow for heteroscedastic variances, skewness or other shapes of the
distributions even under the null hypothesis H0 ∶ p = 1

2
. The derivation of appropriate inference methods requires (1)

consistent estimation of the effect in model (2) and (2) the computation of the asymptotic distribution of the estimates
along with the consistent estimation of its parameter estimates. Unbiased and consistent estimators of p as well as their
asymptotic normality will be established in the next section.

4 POINT ESTIMATORS AND THEIR ASYMPTOTIC DISTRIBUTIONS

When no replicates were observed, the relative effect p can be estimated by plugging-in the empirical versions F̂1(x)
and F̂2(x) of the distribution functions F1 and F2 into the integral representation of p = ∫ F1dF2 given in (1). In our
situation (2), however, replicates of the measurements per unit may be apparent, and, thus, the traditional estimators of
the cumulative distribution functions may not be applicable in this situation. Furthermore, different weighting schemes
to incorporate the information from the numbers of replicates may play an important role in the definition of a reasonable
effect estimate. Here, we investigate two different versions of the empirical distribution functions and investigate their
impact on the interpretation of the resulting estimator as well as their asymptotic behavior in detail. As weighting factors
we use the sizes of the clusters and define estimators of the empirical distribution functions in a way that (1) larger
clusters add more weight to the estimator than smaller ones and (2) each cluster adds the same weight to the estimator
disregarding their sizes. Throughout this paper, the resulting estimators will be called weighted and unweighted estimators,
respectively. Let c(x) = 0, 1∕2, 1 according as x < 0,= 0, > 0 denote the normalized version of count function and consider
two different versions of empirical distribution functions

F̂(u)
g (x) = 1

ng

ng∑
k=1

1
mgk

mgk∑
s=1

c(x − Xgks) and F̂(w)
g (x) = 1

mg

ng∑
k=1

mgk∑
s=1

c(x − Xgks), g = 1, 2. (4)

Here, both F̂(u)
g (x) and F̂(w)

g (x) represent estimators of F(c)
g (x), where the sums of counts within each cluster are first

averaged, and then the mean of these averages is computed in F̂(u)
g (x), while the sums of all counts obtained from all obser-

vations are averaged in F̂(w)
g (x) for all x ∈ R. Thus, F̂(w)

g (x) basically is the standard version of the empirical distribution
function of a random sample. The impact of these two different weighting versions becomes noticeable when they are
plugged-in into the integral representation of p given in (1) to get the unweighted and weighted version of the estimators

p̂(u) = ∫ F̂(u)
1 dF̂(u)

2 = 1
n2

n2∑
k=1

1
m2k

m2ks∑
s=1

1
n1

n1∑
k′=1

1
m1k′

m1k′s′∑
s′=1

c(X2ks − X1k′s′ ), and (5)

p̂(w) = ∫ F̂(w)
1 dF̂(w)

2 = 1
m1m2

n2∑
k=1

m2ks∑
s=1

n1∑
k′=1

m1k′s′∑
s′=1

c(X2ks − X1k′s′ )

= 1
N
(R2·· − R1··) +

1
2
, (6)

where Rg·· = m−1
g

∑ng
k=1

∑mgk

s=1 Rgks and Rgks is the (mid)rank of Xgks among all the N observations.
Both estimators are means of the counts c(X2ks − X1k′s′ ); however, p̂(u) is an unweighted and p̂(w) is a weighted mean

of the normed placements F̂(u)
1 (X2ks) and F̂(w)

1 (X2ks), respectively. The main difference between these two estimators lies
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in their interpretation when being applied to data, ie, subjects/units with larger clusters stack the estimator with more
weight (p̂(w)), while every cluster stucks the estimator with the same weight (p̂(u)). The answer to “which estimator to use?”
depends on the specific research question and experiment and, therefore, the choice has to be made on a case-by-case
basis. Both estimators are identical in case of balanced clusters (m1k = m2k = M) and identical to the standard rank-based
estimator of the relative treatment effect when single observations were measured (m1k = m2k = 1). Note that weighted
means play an important role in statistical sciences and the weighted estimator is also often chosen in count data analysis
with offset variables.26

Both of the estimators p̂(u) and p̂(w) are unbiased and strongly consistent for p, if sample sizes (ie, the number of exper-
imental units) are reasonably large. The unbiasedness follows from E(c(X2ks − X1k′s′ )) = ∫ F1dF2, because X2ks and X1k′s′

are independent. The consistency is outlined in the Appendix. Next, the asymptotic distributions of the estimators will
be established. Note that each estimator is a sum of dependent random variables; thus, standard central limit theorems
do not apply and their asymptotic normality is not obvious at first hand. Brunner et al6 derived the asymptotic normality
of the estimator in case of single observations by exploring the so-called asymptotic equivalence theorem that introduces
sums of independent random variables which have the same asymptotic distribution as the estimator. Here, we will adapt
their results to dependent replicates.

Define the unobservable random variables Y1ks = F2(X1ks) and Y2ks = F1(X2ks). Then, under mild conditions on the
sample and cluster sizes, it can be shown that√

n(p̂(u) − p) =
√

n
{

Y
(u)
2·· − Y

(u)
1·· + (1 − 2p)

}
+ oP(1) (7)

√
N(p̂(w) − p) =

√
N

{
Y

(w)
2·· − Y

(w)
1·· + (1 − 2p)

}
+ oP(1), (8)

where

Y
(u)
g·· =

1
ng

ng∑
k=1

Ygk·, Y
(w)
g·· =

1
mg

ng∑
k=1

mgkYgk· and Ygk· =
1

mgk

mgk∑
s=1

Ygks

denote unweighted and weighted means of the (unobservable random variables) Ygks for g = 1, 2. This means that both
quantities

√
n(p̂(u) − p) and

√
N(p̂(w) − p) have the same distribution as the sums of independent random variables given

in the right-hand side of (7) and (8), respectively. However, note that Ygk· are independent but not identically distributed.
This occurs because each variable Ygk· has variance 𝜎2

gk = Var(Ygk·). For the derivation of the asymptotic normality, the
following assumptions on the sample and replication sizes are necessary, which ensure that variance components of the
limiting distributions exist. All of the following assumptions hold for g = 1, 2:

A1: n → ∞ such that n
ng

→ 𝜆(u)g A2: N → ∞ such that N
mg

→ 𝜆(w)
g

A3: 𝜎2(u)
g = lim

n→∞
n−1
g

ng∑
k=1

𝜎2
gk ∈ (0,∞) A4: 𝜎2(w)

g = lim
N→∞

m−1
g

ng∑
k=1

m2
gk𝜎

2
gk ∈ (0,∞)

A5: 1 ≤ mik ≤ M0 < ∞.

Then, it follows that √
n(p̂(u) − p)

D
→N(0, 𝜎2(u)) under A1, A3 and A5, and (9)√

N(p̂(w) − p)
D
→N(0, 𝜎2(w)) under A2, A4 and A5, (10)

respectively. Here,
𝜎2(u) = 𝜆(u)1 𝜎2(u)

1 + 𝜆(u)2 𝜎2(u)
2 and 𝜎2(w) = 𝜆(w)

1 𝜎2(w)
1 + 𝜆(w)

2 𝜎2(w)
2 , (11)

denote the sums of the variance components, respectively. The variances are, however, unknown and must be estimated
in real data applications. Consistent estimators will be developed in the next section.

4.1 Estimation of the variances
In the previous section, the asymptotic normalities of the quantities

√
n(p̂(u) −p) and

√
N(p̂(w) −p) have been established.

It turns out that limiting distributions of both random variables exist, the variances of which are given by 𝜎2(u) and 𝜎2(w)

defined in (11), respectively. Both of the variances 𝜎2(u) and 𝜎2(w), however, do not only consist of a sum of two variance
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constants, they both are rather a mean of variances. The upcoming arising task is the consistent estimation of these
sums of variances in this nonparametric framework. One solution for this problem is first estimating the variances of the
asymptotic equivalent sums in (7) and (8) using the unobservable random variables Ygks and in a second step replacing
them with observable random variables that are close enough to the Ygks in an appropriate norm. We will first derive
estimators for the variance 𝜎2(u)

g . Computing the variance of the mean Ygk· in the right-hand side of (7), we obtain by the
independence of Ygk· and Ygk′·, k ≠ k′,

Var
(

Y
(u)
g··

)
= 1

n2
g

ng∑
k=1

Var(Ygk·) =
1

n2
g

ng∑
k=1

𝜎2(u)
gk .

Thus, an unbiased and consistent estimator of 𝜎2(u)
g = lim

n→∞
ngVar(Y

(u)
g·· ) is given by the empirical variance

𝜎2(u)
g = 1

(ng − 1)

ng∑
k=1

(
Ygk· − Y

(u)
g··

)2
(12)

for g = 1, 2. The variance estimation of the weighted estimator p̂(w) is a more challenging task. Analogous to the above,
computing the variance of Y

(w)
2·· given in (8) yields

Var
(

Y
(w)
g··

)
= Var

(
1

mg

ng∑
k=1

mgkYgk·

)
= 1

m2
g

ng∑
k=1

Var(mgkYgk·) =
1

m2
g

ng∑
k=1

Var(Ygk·) =
1

m2
g

ng∑
k=1

𝜎2(w)
gk ,

where Ygk· =
∑mgk

s=1 Ygks. Thus, the variance components 𝜎2(w)
gk represent variances of the sums of the variables Ygks. In

comparison to the investigations with respect to the variance of the unweighted estimator, here, the variables Ygk· may
have a different expectation when cluster sizes are different. Therefore, the variance estimator is derived by considering
the squared deviation of Ygk· to its estimated expectation mgkY

(w)
g·· along with a bias correction. To this end, define the

known weight Kg = m−1
g

∑ng
k=1 m2

gk(mg − 2mgk)−1 for g = 1, 2 and consider the estimator

𝜎2(w)
g = 1

(1 + Kg)mg

ng∑
k=1

mg

mg − 2mgk

(
Ygk· − mgkY

(w)
g··

)2
. (13)

It is explained in the Appendix that 𝜎2(w)
g is an unbiased and consistent estimator of 𝜎2(w)

g . Both of the quantities 𝜎2(u)
g and

𝜎2(w)
g given in (12) and (13), are, however, not observable in real data applications. Therefore, the unobservable random

variables Y1ks = F2(X1ks) and Y2ks = F1(X2ks) are replaced by the observable random variables

Z(c)
1ks = F̂(c)

2 (X1ks) and Z(c)
2ks = F̂(c)

1 (X2ks), for c ∈ {u,w},

where F(c)
g denotes the empirical distribution function of sample g = 1, 2 defined in (4), respectively. Finally, these

variables replace the Ygks used in 𝜎2(u)
g and 𝜎2(w)

g , and thus, the estimators become

𝜎2(u)
g = 1

(ng − 1)

ng∑
k=1

(
Z
(u)
gk· − Z

(u)
g··

)2
and 𝜎2(w)

g = 1
(1 + Kg)mg

ng∑
k=1

mg

mg − 2mgk

(
Z(w)
gk· − mgkZ

(w)
g··

)2
, (14)

respectively. Combining these results, consistent estimators of the limiting variances 𝜎2(u) and 𝜎2(w) displayed in (11) are
given by

𝜎2(u) = n
n1

𝜎2(u)
1 + n

n2
𝜎2(u)

2 and 𝜎2(w) = N
m1

𝜎2(w)
1 + N

m2
𝜎2(w)

2 . (15)

It is shown in the Appendix that both estimators 𝜎2(u)
g and 𝜎2(w)

g are consistent. Based on the asymptotic distribution of
the effect estimators and their consistent variance estimation, test procedures for testing the hypothesis H0 ∶ p = 1∕2 as
well as confidence intervals for p can be derived. This will be explained in the next section.
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5 TEST STATISTICS

The asymptotic normality of the estimators p̂(c), where c ∈ {u,w} along with the consistent estimators of their variances,
can now be used for the derivation of appropriate test statistics for testing the null hypothesis H0 ∶ p = 1∕2. To this end,
define the quantities 𝑓 (u) =

√
n and 𝑓 (w) =

√
N and consider

T(c) = 𝑓 (c) p̂(c) − p
𝜎(c) , c ∈ {u,w}, (16)

where the superscript (c) refers to the weighted and unweighted estimation approaches, respectively. It follows from the
above that the variables T(c) follow, asymptotically, as f (c) → ∞, a standard normal distribution. Thus, under the hypothesis
H0 ∶ p = 1∕2,

T(c) = 𝑓 (c) p̂(c) − 1∕2
𝜎(c)


→N(0, 1), c ∈ {u,w}. (17)

For large sample sizes, the null hypothesis H0 ∶ p = 1∕2 will be rejected at level 𝛼, if |T(c)| ≥ z1−𝛼/2. One-sided test
results can be achieved in the obvious way. Extensive simulation studies show, however, that the test tends to be liberal
and to over reject the hypothesis when sample sizes are rather small. In order to provide an approximate version of the
tests that control the nominal type-I error rate in small sample size situations, the idea from the work of Brunner et al6

motivates us to approximate the distribution of T(c) by a central t𝜈-distribution and estimate its approximate degree of
freedom using Satterthwaite-Welch equations. This type of approximation is also known as Box-type approximation.27

The problem that arises here is that each of the variables Ygk· represents a mean of the variables Ygks; thus, each variable
may have a different variance 𝜎2

gk. Computing the variance of the variance estimators 𝜎2(c)
g involves sums of 𝜎4

gk and 𝜎3
gk,

quantities rather difficult to estimate in this setup due to overfitting issues. Therefore, we define approximate degrees of
freedom of the resulting t𝜈-distribution such that the methods coincide with the Brunner-Munzel test when cluster sizes
are equal to 1 and are given by

𝜈(u) =

(
𝜎2(u)

1 ∕n1 + 𝜎2(u)
2 ∕n2

)2

𝜎4(u)
1 ∕

(
n2

1(n1 − 1)
)
+ 𝜎4(u)

2 ∕
(

n2
2(n2 − 1)

) and 𝜈(w) =

(
𝜎2(w)

1 ∕m1 + 𝜎2(w)
2 ∕m2

)2

𝜎4(w)
1 ∕

(
m2

1(n1 − 1)
)
+ 𝜎4(w)

2 ∕
(

m2
2(n2 − 1)

) . (18)

For small sample sizes, the null hypothesis H0 ∶ p = 1∕2 will be rejected at level 𝛼, if

|T(c)| ≥ t1−𝛼∕2(𝜈(c)), c ∈ {u,w}, (19)

where t1−𝛼/2(𝜈(c)) denotes the (1 − 𝛼∕2)-quantile from the central t𝜈(c) -distribution with estimated degree of freedom 𝜈(c)

given in (18). Approximate (1 − 𝛼)-confidence intervals for p are given by

CI(c) =

[
p̂(c) −

t𝜈(c),1−𝛼∕2√
𝑓 (c)

𝜎(c); p̂(c) +
t𝜈(c),1−𝛼∕2√

𝑓 (c)
𝜎(c)

]
, c ∈ {u,w}. (20)

One-sided confidence intervals and tests can be computed in the usual way by using (1 − 𝛼)-quantiles and setting the
lower or upper bound of the confidence intervals to 0 or 1, depending on the direction. We note that 𝜈(c) → ∞ as f (c) → ∞
and, therefore, the approximation is asymptotically correct. Furthermore, 𝜈(u) and 𝜈(w) are identical when clusters are
equally sized (ie, mgk ≡ M). Furthermore, both of 𝜈(u) and 𝜈(w) are identical to the Brunner-Munzel degree of freedom
when mgk ≡ 1.

Remark 1. When the numbers of replicates of any unit is way larger than those of the others, it may happen that the
weighted variance estimator 𝜎2(w)

g given in (14) becomes negative and, thus, the test statistics T(w) cannot be computed.
In this case, we propose to replace 𝜎2(w)

g by the asymptotically unbiased version

𝜏2(w)
g = 1

(ng − 1)

ng∑
k=1

(
1

mgk
Z(w)
gk· − Z

(w)
g··

)2

(21)
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in T(w) and in the confidence intervals given in (20). Throughout this manuscript, the resulting test will be denoted
as TW.

Remark 2. Note that the confidence intervals CI(c) as given in (20) may not necessarily be range-preserving, ie, the
lower bound may be small than zero and/or the upper bound may be larger than one. Range-preserving confidence
intervals for the effects p can be derived using the delta method and an appropriate transformation, eg, the logit(x) =
log(x∕(1− x)) or probit(x) = Φ−1(x) transformation function. For example, the logit-type confidence intervals for p are
given by

CI(c)Logit =
[
expit

(
CI(c)L

)
, expit

(
CI(c)U

)]
⊆ [0, 1], where

CI(c)L = logit(p̂(c)) −
z1−𝛼∕2√
𝑓 (c)

𝜎(c)

p̂(c)(1 − p̂(c))
and

CI(c)U = logit(p̂(c)) +
z1−𝛼∕2√
𝑓 (c)

𝜎(c)

p̂(c)(1 − p̂(c))
.

Here, expit(𝑦) = exp(𝑦)∕(1 + exp(𝑦)) denote the inverse of the logit function.

The quality of the proposed tests in terms of controlling the nominal type-I error rate 𝛼 and their powers to detect
alternatives will be investigated in extensive simulation studies in the next section.

5.1 Approach from the work of Larocque et al
Recently, Larocque et al21 proposed solutions for the nonparametric Behrens-Fisher problem with clustered data, where
clusters may contain observations from each group, respectively. Their methods are also valid in our model (2) and shall be
briefly explained as follows: The methods are intended to test under the null hypothesis H(L)

0 ∶ E(s(X111−X211)) = 0, where
s(x) denotes the sign function, respectively. Note that testing H(L)

0 is equivalent to testing H(L)
0 ∶ P(X111 < X211) = P(X111 >

X211), and thus, basically identical to testing H0 ∶ p = 1∕2. In order to estimate the treatment effect E(s(X111 − X211)),
define the variables

Sik =
m1k∑
s=1

m2k∑
l=1

s(X1ks − X2kl), i = 1, 2, k = 1, … ,ni, and S = 1
N1N2

n1∑
k=1

n2∑
k′=1

wikSik,

where wik are nonnegative weights associated with Sik. For the computation of the estimator of Var(S), let

S0
ik = wikSik and S1

ik = wik(Sik − m1km2kS) (22)

denote the noncentered (S0
ik) and centered (S1

ik) versions of the sums of signs Sik given above. For an easy representation
of the quite involved computation of the variance estimator, let S = (Sh

i𝑗)n1×n2 denote the matrices of the Sh
ik for h = 0, 1,

respectively. Note that, in the third term of the variance estimator in the work of Larocque et al,21p759 one of wik or wri must
be zero in our setting. To see this, suppose i is an index value in the first group. Then wri = 0 for any r because mi2 = 0.
Therefore, the expression of the variance estimator in the work of the aforementioned authors21p759 can be written as

𝜎2
Sh

= N
(N1N2)2

[
Vec(S′)′

{
In1 ⊗ (Jn2 − In2)

}
Vec(S′) + Vec(S)′

{
In2 ⊗ (Jn1 − In1)

}
Vec(S)

]
= N

(N1N2)2

[
Vec(S)′

{
(Jn2 − In2 )⊗ In1

}
Vec(S) + Vec(S)′

{
In2 ⊗ (Jn1 − In1)

}
Vec(S)

]
= N

(N1N2)2

[
tr
{

S(Jn2 − In2)S
′} + tr(S′(Jn1 − In1)S

]
,

where Vec(·) denotes the vector operator that stacks the columns of a matrix on top of each other and tr(·) denotes the
trace of a matrix, respectively. Based on the previous calculations, Larocque et al21 proposed three different estimators of
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the variance Var(S) as follows:

• 𝜎2
S0

that uses S0
ik given in (22) and is only consistent under the null hypothesis,

• 𝜎2
S1

that uses S1
ik given in (22) and is also consistent under the alternative hypothesis, and

• 𝜎2
S = 2

3
𝜎2

S0
+ 1

3
𝜎2

S1
as a linear combination of 𝜎2

S0
and 𝜎2

S1
.

These three different consistent variance estimators lead to three different versions of test statistics for testing H(L)
0 in

T(0)
L =

√
N S
𝜎S0

, T(1)
L =

√
N S
𝜎S1

, and T(F)
L =

√
N S
𝜎S

, (23)

respectively. Under the null hypothesis H(L)
0 , all three versions have a standard normal distribution. Note that only the test

statistic T(1)
L can be inverted into a confidence interval for the treatment effect, because the variance estimator used (𝜎2

S1
)

is consistent under the alternative hypothesis. However, all of the three versions of the tests will be used as competing
procedures in the simulation studies. Those will be explained and discussed in detail in the next section.

6 SIMULATIONS

All of the methods proposed in the previous sections are valid for large sample sizes. The arising questions are (1) “How
accurate do they control the nominal type-I error rate under the null hypothesis?” and (2) “How much power do the
procedures have to detect alternatives when sample sizes are small?” Extensive simulation studies were conducted to
find answers to these questions in different scenarios involving very small and moderate sample sizes in balanced and
unbalanced situations with different settings for the numbers of replications. Throughout the simulations, a two-sample
design Xik = (X1k1, … ,Xikmik )′, i = 1, 2; k = 1, … ,ni,was simulated with sample sizes n1,n2 ∈ {7, 10, 20} and cluster sizes

• Setting 1: mik = 1,
• Setting 2: mik = 2,
• Setting 3: mik are realizations of independent Binomial(4, 0.6) + 1 variables, and
• Setting 4: mik are realizations of independent Binomial(10, 0.3) + 1 variables.

Thus, single observations are modeled in Setting 1 in which the new procedures T(u),T(w) and TW are all equivalent
to the Brunner-Munzel test TBM, equally sized numbers of replications are covered in Setting 2 where the weighted and
unweighted estimators are identical but different to the Brunner-Munzel test, and different replication sizes are inves-
tigated in Settings 3 and 4 with sizes mik ∈ {1, … , 4} in Setting 3 and mik ∈ {1, … , 10} in Setting 4, respectively.
To investigate the impact of the shape of data distributions on the quality of the procedures, three different types of
distributions are considered in the simulation studies, namely,

• Multivariate normal: Xik ∼ N(0,𝚺ik) with covariance matrix 𝚺ik = Imik×mik𝜎
2
i + 𝜌(Jmik×mik − Imik×mik ). Homoscedastic

(𝜎2
1 = 𝜎2

2) as well as two different heteroscedastic scenarios with 𝜎2
1 = 1 and 𝜎2

2 = 2 and 𝜎2
1 = 1 and 𝜎2

2 = 3 with
correlation values 𝜌 ∈ {0, 0.5, 0.9} were investigated. Thus, both positive (the larger sample has the larger variance)
and negative (the larger sample has the smaller variance) pairing situations are covered within these settings;

• Multivariate lognormal: Xik = (X1k1, … ,Xikmik )′ where Xiks = exp(Yiks) and Yik = (Y1k1, … ,Yikmik )′ ∼ N(0,𝚺ik). Here,
the covariance matrices were chosen from 𝚺ik = Imik×mik + 𝜌(Jmik×mik − Imik×mik ) with correlation values 𝜌 ∈ {0, 0.5, 0.9}
(note that the actual correlation coefficients of the resulting lognormal distributions are different28);

• Ordinal data: Xik = (X1k1, … ,Xikmik )′ where Xiks = [Yiks] and Yik = (Y1k1, … ,Yikmik )′ ∼ N(0,𝚺ik). Here, the covariance
matrices were chosen from 𝚺ik = Imik×mik + 𝜌(Jmik×mik − Imik×mik ) with correlation values 𝜌 ∈ {0, 0.5, 0.9} and the symbol
[·] represents the rounding operator, respectively.

All simulations were conducted using R computational environment version 3.4.3 (www.r-project.org) each with
nsim = 10 000 simulation runs. Throughout the simulations, the newly developed tests T(u), T(w), and TW proposed in
(16) and (21) were implemented using the corresponding t𝜈(c) -approximation proposed in (19). They were compared with
the methods T(0)

L ,T(1)
L , and T(F)

L proposed by Larocque et al21 given in (23). Another competitor is the Brunner-Munzel
test TBM for the application of which the first observation Xik1 within each cluster Xik, i = 1, 2; k = 1, … ,ni, was used. The
aim of simulating the Brunner-Munzel test is exploring its difference to the Larocque test T(F)

L when single observations
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(see Setting 1) were observed as well as investigating if the new methods increase its power when replicates were observed.
Furthermore, we simulated the behavior of the rank-based methods for testing the hypothesis HF

0 ∶ F1 = F2 with clustered
data proposed by RGL13 and DS.14 These tests were computed using the clusrank R- package.29 The simulation results are
summarized for all the four settings 1 − 4, the three different correlation values, and sample size configurations for each
of the four different data distributions separately. Type-I errors are displayed by multiplying a factor 100 for the ease of
visualization.

The type-I error simulation results using homogeneous normal distributions are displayed in Table 1, for heteroscedastic
normal distributions having variances 𝜎2

1 = 1 and 𝜎2
2 = 2 are displayed in Table 2, for heteroscedastic normal distributions

where the two different groups have variances 𝜎2
1 = 1 and 𝜎2

2 = 3 are displayed in Table 3, results for lognormally
distributed data are given in Table 4 and empirical type-I error rates for ordered categorical data are displayed in Table 5,
respectively. First, it can be seen from Tables 1 to 5 that the methods T(0)

L and T(1)
L given in (23) tend to be either way too

conservative or too liberal throughout all of the investigated settings and data distributions. The test procedure T(F)
L tends

to control the type-I error level conservatively when sample sizes are rather small. The conservatism decreases when
sample sizes n1 and n2 get larger. The WMW-type test statistics tend to control the nominal type-I error rate reasonably
well, even under heteroscedasticity. When sample sizes are unbalanced and variances are heteroscedastic, the methods
tend to be slightly liberal or conservative, depending on size and variance allocations. However, neither the methods
proposed by Larocque et al21 nor the WMW-type tests can be inverted into confidence intervals for the effect p. The
newly developed methods T(w) and T(u) tend to control the nominal type-I error reasonably well in all the investigated
scenarios. When sample sizes are very small and correlation is very high the tests tend to be slightly liberal. The liberality
decreases with increasing sample sizes. Furthermore, it can be seen from Tables 1 to 5 that the weighting scheme of the
estimators does not impact the behavior of the tests. Sometimes, T(w) tends to be slightly more liberal than T(u). This occurs
because the standard error (SE) of p̂(w) is usually a bit “harder” to estimate as variances of sums are estimated rather than
variances of means. In all of the investigated scenarios, the weighted variance estimators 𝜎2(w)

i did not become negative
and all tests T(w) could be computed. However, to investigate the behavior of TW motivated in (21), the test was simulated
in all scenarios. It turns out that the test controls the nominal size well and sometimes even better than T(w). However,
when sample sizes are small and unbalanced, a conservative behavior of the test may become apparent. Summarizing the
findings discussed above, the new methods seem to be pretty accurate and their usage is recommended when the sample
sizes ni ≥ 7. In case of extreme small samples, an accurate control of the type-I error rate using asymptotic normal or
t-quantiles for these rank-statistics cannot be expected. Simulation studies using negatively correlated data show very
similar results to the reported above and are therefore omitted.

Next, the powers of all the methods was simulated to detect the alternative H1 ∶ p ≠ 1
2
. Two different balanced designs

were simulated, namely,

• Design 1: Xik ∼ N(𝜇i,𝚺ik) with 𝚺ik = I2×2 + 𝜌(J2×2 − I2×2) and 𝜌 ∈ {−0.8, 0.8}. Here, 𝜇1 = 0 and 𝜇2 = (𝜇1, 𝜇2)′ with
𝜇𝓁 = Φ−1(p)

√
2 for various values of p ∈ {0.5, … , 0.95}. Thus, the numbers of replicates mik ≡ 2 for all units and data

have a predefined relative effect of p.
• Design 2: Xik ∼ N(𝜇i,𝚺ik) with 𝚺ik = Imik×mik + 𝜌(Jmik×mik − Imik×mik ) and 𝜌 ∈ {−0.8, 0.8}. Here, 𝜇1 = 0 and 𝜇2 =

(𝜇1, … , 𝜇m2k )′ with 𝜇𝓁 = Φ−1(p)
√

2 for various values of p ∈ {0.5, … , 0.95}. The numbers of replications mik are
realizations of independent Binomial(4, 0.6) + 1 variables. Thus, Design 2 represents a setting with different numbers
of replications per unit. Note that the covariance matrix might be singular when 𝜌 = −0.8.

The sample sizes were chosen to be moderately large (ni = 20) for both of the designs. The power simulation
results (multiplied by a factor 100) are displayed in Tables 6 and 7 with 𝛼 = 5%. First, it can be readily seen that all
of the methods that take the replications into account have a higher power than the Brunner-Munzel test. It should,
however, be noted that the comparisons have to be confined to the newly proposed methods and the methods of
Larocque et al,21 ie, T(0)

L ,T(1)
L , and T(F)

L . More specifically, RGL and DS are designed for the null hypothesis H0 ∶ F1 = F2.
Hence, they should theoretically be sensitive to heteroscedastic settings as those setting are alternative points for the two
tests. Therefore, strictly speaking, these two tests have low powers. When comparing the new method with that of the work
of Larocque et al,21 the power simulation (especially Design 2 in Table 7 as follows) clearly shows the advantage of the
new methods when the within-cluster correlation is negative. Even for positive correlation, the new methods have slightly
better power compared to the work of Larocque et al.21 Furthermore, the type of weighting slightly impacts the powers of
the methods T(w) or T(u) and seems to depend on the correlations within the clusters. Comparing the two weighted tests
TW and T(w), it seems that the power of T(w) is slightly lower in some scenarios. This result may occur because the used
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n1 n2 rho1 T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS Setting

7 7 0 5.5 5.5 5.5 5.5 5 18.0 5.5 5.2 5.2 1
7 7 0 5.3 5.3 5.3 5.5 0 7.1 1.5 4.7 5.7 2
7 7 0 4.9 4.7 5.1 5.7 1.3 3.8 7 4.6 5.4 3
7 7 0 4.4 3.9 4.8 5.2 7.8 5.7 3.5 3.8 5.0 4
7 7 0.5 5.9 5.9 5.9 5.9 0.5 18.0 5.9 5.3 5.3 1
7 7 0.5 6.1 6.1 6.1 5.7 0.2 11.6 3.4 4.8 5.7 2
7 7 0.5 5.9 5.7 6.1 6.0 0.1 6.7 1.7 4.4 5.4 3
7 7 0.5 6.1 6.2 6.7 5.8 0.1 4.6 1.1 3.9 5.7 4
7 7 0.9 6.0 6.0 6.0 6.0 0.7 18.0 6.1 5.5 5.5 1
7 7 0.9 5.5 5.5 5.5 5.4 0.5 8.3 2.5 4.4 5.3 2
7 7 0.9 6.2 6.8 7.5 6.2 0.5 5.4 1.5 4.5 5.9 3
7 7 0.9 6.4 6.8 7.8 6.0 0.4 4.6 1.6 3.4 5.7 4

10 10 0 6.0 6.0 6.0 6.0 2.5 13.9 6.2 5.7 5.7 1
10 10 0 5.2 5.2 5.2 5.5 1.2 5.8 1.9 4.7 5.4 2
10 10 0 5.1 4.4 5.1 5.2 3.8 4.3 1.9 4.6 5.4 3
10 10 0 5.1 3.3 5.1 5.5 6.8 6.0 3.7 4.0 5.2 4
10 10 0.5 5.4 5.4 5.4 5.4 2.3 13.3 5.5 5.1 5.1 1
10 10 0.5 5.3 5.3 5.3 5.0 1.7 8.8 3.8 4.5 5.1 2
10 10 0.5 5.2 5.6 6.0 5.6 1.5 6.4 3.0 4.4 5.1 3
10 10 0.5 5.8 6.0 6.4 5.7 1.5 5.4 2.6 4.4 5.7 4
10 10 0.9 5.4 5.4 5.4 5.4 2.1 13.4 5.6 4.9 4.9 1
10 10 0.9 5.5 5.5 5.5 5.5 2.1 7.1 3.7 4.7 5.3 2
10 10 0.9 5.9 6.2 6.3 5.5 1.8 5.3 2.9 4.6 5.6 3
10 10 0.9 5.5 6.4 6.8 5.1 1.9 3.7 2.6 4.0 5.2 4
10 20 0 5.9 5.9 5.9 5.9 3.2 11.1 5.9 5.0 5.5 1
10 20 0 4.9 4.9 4.9 5.7 2.3 5.7 2.3 4.6 4.8 2
10 20 0 5.1 2.8 5.2 5.0 3.9 5.2 2.4 4.4 4.8 3
10 20 0 5.1 3.7 4.9 5.8 4.9 4.5 2.7 4.6 5.0 4
10 20 0.5 5.5 5.5 5.5 5.5 3.2 11.0 5.6 4.7 5.1 1
10 20 0.5 5.4 5.4 5.4 5.4 2.6 8.1 4.3 4.8 5.1 2
10 20 0.5 5.9 6.0 6.1 5.7 2.8 6.4 4.0 5.2 5.4 3
10 20 0.5 5.6 5.9 6.0 5.4 2.8 4.8 3.5 4.6 5.2 4
10 20 0.9 5.8 5.8 5.8 5.8 3.2 11.2 5.8 5.1 5.4 1
10 20 0.9 5.4 5.4 5.4 5.4 2.9 6.4 4.0 4.6 5.0 2
10 20 0.9 5.3 6.0 6.0 5.1 2.6 4.6 3.3 4.6 4.7 3
10 20 0.9 5.6 6.1 5.9 5.3 2.8 4.4 3.4 4.8 5.3 4
20 10 0 5.8 5.8 5.8 5.8 3.0 11.1 5.9 5.2 5.3 1
20 10 0 5.5 5.5 5.5 5.5 2.5 5.6 2.7 5.0 5.3 2
20 10 0 5.2 4.4 5.2 5.8 3.1 4.2 2.1 4.6 5.1 3
20 10 0 5.0 4.4 5.0 5.6 3.1 3.8 1.9 4.6 5.0 4
20 10 0.5 5.4 5.4 5.4 5.4 2.8 10.6 5.4 4.6 5.0 1
20 10 0.5 5.5 5.5 5.5 5.4 2.6 8.3 4.4 4.8 5.2 2
20 10 0.5 5.6 5.6 5.7 5.6 2.7 5.5 3.6 4.6 5.2 3
20 10 0.5 5.9 6.0 6.1 5.7 2.7 5.5 3.5 4.4 5.6 4
20 10 0.9 5.5 5.5 5.5 5.5 3.3 11.2 5.6 4.9 5.2 1
20 10 0.9 5.2 5.2 5.2 5.3 2.8 6.2 4.0 4.5 4.8 2
20 10 0.9 5.3 5.6 5.6 5.3 2.9 4.2 3.4 4.5 4.9 3
20 10 0.9 5.6 6.5 6.5 5.5 3.0 4.7 3.5 4.5 5.1 4

TABLE 1 Type-I error simulations
(𝛼 = 5%) using homogeneous multivariate
normal distributions for the repeated
measurements in both groups. Here, T(u)

and T(w) represent the new methods given in
(16); TBM the Brunner-Munzel Test; T(0)

L ,
T(1)

L , and T(F)
L the methods from the work of

Larocque et al21 given in (23); the RGL test
proposed by Rosner et al13; and DS the
method proposed by Datta and Satten14

variance estimators are based upon 𝜏2
i given in (21) along with a bias correction that results in an estimator with larger

variance.
All of the results and conclusions made here are, however, based on few selected designs of replications. Overall, it

seems that all of the methods have a substantial power to detect departure from the null hypothesis H0 ∶ p = 1∕2.
A general conclusion cannot be made due to the abundance of possible designs and sample size configurations. Addi-
tional theoretical power and efficiency investigations of rank-tests are found in the work of Janssen1 and references
therein.
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TABLE 2 Type-I error simulations using
heteroscedastic multivariate normal
distributions having variance 1 in group 1
and variance 2 in group 2. Here, T(u) and
T(w) represent the new methods given in
(16); TBM the Brunner-Munzel Test; T(0)

L ,
T(1)

L , and T(F)
L the methods from the work of

Larocque et al21 given in (23); the RGL test
proposed by Rosner et al13; and DS the
method proposed by Datta and Satten14

n1 n2 rho1 T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS Setting

7 7 0 5.5 5.5 5.5 5.5 0.8 17.3 5.5 5.5 5.5 1
7 7 0 5.5 5.5 5.5 5.9 0 6.9 1.3 5.1 6.1 2
7 7 0 5.2 4.3 5.9 5.8 6.0 5.7 3.1 4.3 6.0 3
7 7 0 5.3 3.7 5.5 5.7 7.9 7.8 4.2 3.4 5.5 4
7 7 0.5 5.5 5.5 5.5 5.5 0.6 17.2 5.5 5.4 5.4 1
7 7 0.5 5.3 5.3 5.3 5.6 0.1 11.9 2.7 4.3 5.2 2
7 7 0.5 5.8 5.9 6.1 6.2 0.5 8.5 1.8 4.0 5.7 3
7 7 0.5 5.7 5.5 6.1 5.9 1.0 7.8 2.1 3.6 5.2 4
7 7 0.9 5.6 5.6 5.6 5.6 0.6 17.9 5.7 5.4 5.4 1
7 7 0.9 5.6 5.6 5.6 5.5 0.2 10.2 3.1 4.2 5.1 2
7 7 0.9 6.6 6.6 7.5 5.8 0.2 5.0 1.2 3.7 5.7 3
7 7 0.9 6.1 6.4 6.9 5.7 0.1 4.4 1.2 4.1 5.2 4

10 10 0 6.0 6.0 6.0 6.0 2.3 14.1 6.2 6.0 6.0 1
10 10 0 5.4 5.4 5.4 5.7 1.3 6.0 2.1 5.2 6.0 2
10 10 0 4.8 4.3 5.2 5.8 4.7 4.9 2.2 4.7 5.4 3
10 10 0 4.9 4.3 5.1 5.6 5.6 4.8 2.6 4.2 5.4 4
10 10 0.5 5.2 5.2 5.2 5.2 2.1 13.4 5.4 5.3 5.3 1
10 10 0.5 5.3 5.3 5.3 5.6 1.4 9.5 3.9 4.7 5.2 2
10 10 0.5 5.7 4.8 5.6 5.3 1.4 7.3 3.0 4.0 5.3 3
10 10 0.5 5.7 5.8 6.2 5.4 1.5 6.8 3.2 4.1 5.4 4
10 10 0.9 5.0 5.0 5.0 5.0 2.0 12.6 5.2 5.1 5.1 1
10 10 0.9 5.4 5.4 5.4 5.2 1.5 8.2 3.5 4.4 5.1 2
10 10 0.9 6.1 6.5 6.4 5.4 1.8 5.1 2.7 4.7 5.6 3
10 10 0.9 5.7 6.7 7.3 5.9 1.7 5.5 2.5 3.6 5.1 4
10 20 0 5.5 5.5 5.5 5.5 2.9 10.9 5.5 3.8 5.2 1
10 20 0 5.1 5.1 5.1 5.7 2.4 5.7 2.6 3.9 5.1 2
10 20 0 4.8 3.8 5.0 5.2 3.4 4.2 2.2 3.4 4.6 3
10 20 0 5.3 2.8 5.7 5.6 7.3 5.6 4.2 4.0 5.3 4
10 20 0.5 5.4 5.4 5.4 5.4 2.7 11.0 5.4 3.8 5.1 1
10 20 0.5 5.2 5.2 5.2 5.3 2.2 8.5 4.0 3.9 4.6 2
10 20 0.5 5.3 5.3 5.5 5.4 2.2 6.2 3.3 4.1 4.6 3
10 20 0.5 5.3 5.6 5.7 5.4 2.4 5.5 3.6 4.4 4.9 4
10 20 0.9 5.6 5.6 5.6 5.6 2.8 11.2 5.5 3.9 5.2 1
10 20 0.9 5.7 5.7 5.7 5.8 2.8 7.5 4.4 4.7 5.2 2
10 20 0.9 6.2 6.1 6.3 5.4 2.9 4.9 3.5 4.9 5.3 3
10 20 0.9 5.2 5.9 6.1 5.2 2.4 4.6 3.0 4.8 4.5 4
20 10 0 5.5 5.5 5.5 5.5 3.1 11.5 5.9 6.6 5.7 1
20 10 0 5.2 5.2 5.2 5.6 2.5 5.8 2.8 6.5 5.6 2
20 10 0 5.3 3.7 5.6 5.9 2.3 4.1 1.8 6.3 5.6 3
20 10 0 5.6 4.7 5.5 5.5 5.1 4.7 3.0 5.8 5.7 4
20 10 0.5 5.4 5.4 5.4 5.4 3.2 11.3 5.6 6.4 5.5 1
20 10 0.5 5.6 5.6 5.6 5.5 2.8 9.0 4.7 5.4 5.4 2
20 10 0.5 5.0 4.8 5.1 5.2 2.3 5.7 3.3 4.4 4.8 3
20 10 0.5 5.4 5.5 5.8 5.3 2.5 5.5 3.4 4.7 5.0 4
20 10 0.9 5.7 5.7 5.7 5.7 3.4 10.9 5.9 6.4 5.7 1
20 10 0.9 5.4 5.4 5.4 5.2 2.8 7.3 4.3 4.7 5.1 2
20 10 0.9 6.0 5.8 6.5 5.5 3.2 5.8 3.9 3.7 4.7 3
20 10 0.9 5.6 5.4 6.3 5.9 3.0 5.2 3.8 3.8 4.6 4

Remark 3. The question whether the weighted or unweighted estimator should be used has not been answered yet.
A helpful selection criteria might be the asymptotic relative efficiency (ARE) of the corresponding weighted and
unweighted estimators of p. It follows from the asymptotic normal distributions of

√
n(p̂(u) − p) (7) and

√
N(p̂(w) − p)

(8) that we can define the ARE of these two sequences as

ARE = ARE
(√

N(p̂(w) − p),
√

n(p̂(u) − p)
)
=

𝜎2(w)∕N
𝜎2(u)∕n

= 𝜎2(w)

𝜎2(u) ·
n
N
, (24)
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n1 n2 rho1 T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS Setting

7 7 0 5.6 5.6 5.6 5.6 0.8 17.6 5.6 5.8 5.8 1
7 7 0 5.7 5.7 5.7 6.0 0 7.0 1.5 5.6 6.8 2
7 7 0 5.1 3.1 5.4 5.8 6.3 7.9 4.1 0.3 5.8 3
7 7 0 4.9 4.0 5.5 5.7 6.6 6.5 2.9 4.9 6.0 4
7 7 0.5 5.5 5.5 5.5 5.5 0.7 17.9 5.4 5.7 5.7 1
7 7 0.5 5.5 5.5 5.5 5.6 0.1 11.6 3.0 4.8 5.6 2
7 7 0.5 5.3 5.3 5.4 5.7 0.4 7.6 1.6 4.1 5.1 3
7 7 0.5 5.4 4.8 5.9 5.7 1.4 8.8 2.2 3.1 5.1 4
7 7 0.9 5.3 5.3 5.3 5.3 0.6 17.4 5.1 5.5 5.5 1
7 7 0.9 5.8 5.8 5.8 5.9 0.2 11.7 3.3 4.5 5.6 2
7 7 0.9 6.1 6.5 7.4 6.0 0.2 10.3 2.1 2.8 5.1 3
7 7 0.9 5.5 5.5 6.4 5.5 0.3 6.2 1.6 3.7 4.5 4

10 10 0 5.8 5.8 5.8 5.8 2.5 14.1 5.9 6.2 6.2 1
10 10 0 5.3 5.3 5.3 5.6 1.6 5.8 2.1 5.1 5.8 2
10 10 0 5.2 3.6 5.5 5.7 4.1 5.3 2.4 6.3 6.1 3
10 10 0 4.9 3.0 5.7 5.7 8.3 5.4 4.3 4.3 5.8 4
10 10 0.5 5.8 5.8 5.8 5.8 2.4 14.1 5.9 5.9 5.9 1
10 10 0.5 5.2 5.2 5.2 5.4 1.4 9.3 3.7 4.6 5.3 2
10 10 0.5 5.5 5.0 5.3 5.4 1.2 6.6 2.7 4.0 5.1 3
10 10 0.5 5.3 5.2 5.6 5.5 1.2 6.2 2.5 3.7 4.9 4
10 10 0.9 5.7 5.7 5.7 5.7 2.1 13.4 5.8 6.0 6.0 1
10 10 0.9 5.6 5.6 5.6 5.7 1.6 8.8 3.8 4.7 5.3 2
10 10 0.9 5.2 5.4 5.3 6.0 1.4 4.8 2.3 3.8 4.4 3
10 10 0.9 6.0 5.4 6.1 5.6 1.7 5.2 2.7 3.9 5.3 4
10 20 0 5.4 5.4 5.4 5.4 2.6 11.1 5.2 3.2 5.3 1
10 20 0 5.4 5.4 5.4 5.3 2.2 5.7 2.6 3.6 5.5 2
10 20 0 5.0 4.3 4.9 5.6 2.0 3.7 1.8 4.3 5.6 3
10 20 0 5.2 2.8 5.1 5.2 5.1 5.2 3.2 3.9 5.9 4
10 20 0.5 4.8 4.8 4.8 4.8 2.6 10.2 4.8 3.1 5.0 1
10 20 0.5 5.3 5.3 5.3 5.5 2.2 8.6 4.1 3.8 5.0 2
10 20 0.5 5.1 5.1 5.6 5.0 2.1 6.3 3.3 4.2 4.7 3
10 20 0.5 5.5 5.0 5.3 5.8 2.3 6.6 3.6 4.0 4.8 4
10 20 0.9 5.0 5.0 5.0 5.0 2.4 10.6 4.8 3.2 5.0 1
10 20 0.9 5.6 5.6 5.6 5.4 2.5 7.3 4.2 4.2 4.8 2
10 20 0.9 5.2 5.3 5.6 5.5 2.5 4.6 3.1 4.0 4.3 3
10 20 0.9 5.2 5.6 5.7 4.9 2.2 4.8 2.9 3.7 4.3 4
20 10 0 5.6 5.6 5.6 5.6 3.5 11.2 5.9 7.8 6.0 1
20 10 0 5.5 5.5 5.5 5.9 3.0 6.0 3.0 7.6 6.0 2
20 10 0 5.2 3.5 5.5 5.6 3.7 4.5 2.3 7.6 6.0 3
20 10 0 5.0 4.6 5.6 5.6 3.6 4.2 2.1 6.4 5.7 4
20 10 0.5 5.8 5.8 5.8 5.8 3.6 11.6 6.2 7.9 6.3 1
20 10 0.5 5.8 5.8 5.8 5.9 3.0 9.6 5.0 6.3 5.7 2
20 10 0.5 5.7 5.2 5.7 5.6 2.8 7.8 4.4 4.7 5.2 3
20 10 0.5 5.7 4.9 6.2 5.8 2.9 7.7 4.5 4.4 5.2 4
20 10 0.9 5.7 5.7 5.7 5.7 3.4 11.2 5.9 7.6 6.0 1
20 10 0.9 5.6 5.6 5.6 5.9 3.2 8.2 4.6 5.3 5.4 2
20 10 0.9 5.4 5.3 5.7 5.7 2.7 5.7 3.7 3.7 4.6 3
20 10 0.9 5.7 5.6 6.0 5.9 2.9 5.4 3.7 3.6 4.6 4

TABLE 3 Type-I error simulations using
heteroscedastic multivariate normal
distributions having variance 1 in group 1
and variance 3 in group 2. Here, T(u) and
T(w) represent the new methods given in
(16); TBM the Brunner-Munzel Test; T(0)

L ,
T(1)

L , and T(F)
L the methods from the work of

Larocque et al21 given in (23); the RGL test
proposed by Rosner et al13; and DS the
method proposed by Datta and Satten14

(see, eg, Boos and Stefanski30p14 ). Thus, in our case, the ARE indicates which of the two estimators has a smaller SE.
If ARE < 1, then the weighted estimator is more efficient; if ARE > 1, then the unweighted and both are of equal
quality if ARE = 1, respectively. For example, let n1 = n2 = n0 and assume that Var(Yiks) = 𝜎2 and Cov(Yiks,Yiks′ ) = 𝜏.
Since both the unweighted and weighted estimators are identical in case of equally sized clusters, consider a scenario
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TABLE 4 Type-I error simulations using
homogeneous lognormal distributions. Here,
T(u) and T(w) represent the new methods
given in (16); TBM the Brunner-Munzel Test;
T(0)

L , T(1)
L , and T(F)

L the methods from the
work of Larocque et al21 given in (23); the
RGL test proposed by Rosner et al13; and DS
the method proposed by Datta and Satten14

n1 n2 rho1 T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS Setting

7 7 0 5.8 5.8 5.8 5.8 0.7 18.0 5.9 5.4 5.4 1
7 7 0 5.3 5.3 5.3 6.3 0 6.5 1.4 4.9 6.0 2
7 7 0 4.7 4.5 4.9 6.0 2.9 4.1 1.1 4.3 5.2 3
7 7 0 5.0 4.0 5.1 5.8 6.4 6.0 3.3 2.9 5.7 4
7 7 0.5 5.4 5.4 5.4 5.4 0.6 18.2 5.5 5.0 5.0 1
7 7 0.5 5.8 5.8 5.8 5.6 0.2 11.9 3.0 4.4 5.4 2
7 7 0.5 6.2 6.2 6.6 5.6 0.2 8.7 2.3 4.7 6.0 3
7 7 0.5 6.3 6.5 6.9 5.7 0.2 4.4 1.0 4.4 5.9 4
7 7 0.9 5.6 5.6 5.6 5.6 0.6 17.8 5.6 5.1 5.1 1
7 7 0.9 6.2 6.2 6.2 5.6 0.5 8.9 2.7 4.8 5.8 2
7 7 0.9 6.5 6.8 7.5 6.1 0.5 5.2 1.5 4.4 6.0 3
7 7 0.9 6.6 7.5 8.6 5.9 0.4 5.2 1.7 3.6 5.8 4

10 10 0 5.4 5.4 5.4 5.4 2.2 13.4 5.6 5.1 5.1 1
10 10 0 5.2 5.2 5.2 5.3 1.3 6.0 2.2 4.6 5.3 2
10 10 0 4.6 3.2 4.7 5.3 4.9 4.9 2.8 4.3 4.7 3
10 10 0 4.6 3.3 4.9 5.7 5.1 4.7 2.5 4.8 4.6 4
10 10 0.5 5.6 5.6 5.6 5.6 2.1 13.4 5.7 5.3 5.3 1
10 10 0.5 6.0 6.0 6.0 5.5 1.7 9.8 4.3 5.1 5.9 2
10 10 0.5 5.8 5.8 6.2 5.5 1.7 5.9 3.0 4.2 5.7 3
10 10 0.5 5.5 5.6 6.2 5.4 1.4 6.2 2.8 4.5 5.4 4
10 10 0.9 5.7 5.7 5.7 5.7 2.1 13.5 5.8 5.5 5.5 1
10 10 0.9 5.9 5.9 5.9 5.5 2.2 7.4 3.7 5.0 5.6 2
10 10 0.9 5.8 6.3 6.2 5.5 2.1 3.9 2.6 4.8 5.5 3
10 10 0.9 5.4 6.1 6.1 5.3 1.8 3.1 2.2 4.5 5.0 4
10 20 0 5.2 5.2 5.2 5.2 2.6 11.0 5.3 4.6 4.9 1
10 20 0 5.4 5.4 5.4 5.8 2.4 5.6 2.6 4.9 5.2 2
10 20 0 5.0 3.7 5.2 5.4 3.4 4.4 2.1 4.8 4.9 3
10 20 0 5.2 4.3 5.0 5.7 3.4 4.0 1.8 4.2 5.1 4
10 20 0.5 5.7 5.7 5.7 5.7 2.9 11.7 5.7 4.8 5.2 1
10 20 0.5 5.4 5.4 5.4 5.5 2.5 8.2 4.3 4.6 5.1 2
10 20 0.5 5.8 5.9 6.0 5.9 2.8 6.0 3.8 4.8 5.3 3
10 20 0.5 5.6 6.1 6.2 5.8 2.6 4.8 3.2 4.7 5.1 4
10 20 0.9 5.6 5.6 5.6 5.6 2.9 11.0 5.6 4.8 5.2 1
10 20 0.9 5.6 5.6 5.6 5.5 2.9 6.8 4.2 4.8 5.1 2
10 20 0.9 5.5 6.3 6.3 5.3 3.0 4.6 3.6 4.9 4.9 3
10 20 0.9 5.6 6.0 6.0 5.4 2.6 4.0 3.1 4.5 5.1 4
20 10 0 5.5 5.5 5.5 5.5 3.1 11.0 5.6 5.1 5.3 1
20 10 0 5.0 5.0 5.0 5.6 2.3 5.3 2.5 4.7 4.8 2
20 10 0 5.1 4.3 5.4 5.9 3.4 4.1 1.9 4.8 5.0 3
20 10 0 5.1 3.8 5.1 5.5 7.4 5.4 3.6 4.6 5.0 4
20 10 0.5 5.3 5.3 5.3 5.3 2.9 11.0 5.4 4.7 5.0 1
20 10 0.5 5.2 5.2 5.2 5.4 2.4 8.0 4.3 4.6 4.9 2
20 10 0.5 5.2 5.4 5.6 5.7 2.4 5.3 3.3 4.6 4.8 3
20 10 0.5 5.8 5.9 5.8 5.7 2.6 5.2 3.5 4.9 5.3 4
20 10 0.9 5.4 5.4 5.4 5.4 3.2 11.4 5.5 5.0 5.1 1
20 10 0.9 5.8 5.8 5.8 5.6 2.9 6.9 4.2 4.8 5.3 2
20 10 0.9 5.8 6.3 6.3 5.7 3.0 4.7 3.7 4.6 5.5 3
20 10 0.9 5.6 6.8 6.5 5.4 2.7 4.6 3.4 4.4 5.2 4

in which all cluster sizes are equal except one of them, ie, let m11 = … = m1n1 = m21 = … = m2,n2−1 = 1 and let
m2n2 = m0 > 1. Routine calculations show that ARE ⋛ 1 if

𝜏 ⋛ 𝜎2

n0−1+1∕m0

n2
0

− 1
m2

m0(m0−1)
m2

2
− m0−1

m0n2
0

, (25)
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n1 n2 rho1 T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS Setting

7 7 0 6.4 6.4 6.4 6.4 0.3 16.6 5.0 4.7 5.8 1
7 7 0 5.2 5.2 5.2 6.1 0 6.0 1.0 4.4 5.5 2
7 7 0 5.0 4.3 5.1 6.5 7.2 5.5 3.1 3.9 5.4 3
7 7 0 4.9 3.4 5.4 6.3 11.6 7.0 5.4 4.0 5.3 4
7 7 0.5 6.2 6.2 6.2 6.2 0.3 16.4 5.0 4.8 5.7 1
7 7 0.5 6.0 6.0 6.0 6.2 0.1 11.2 2.8 4.7 5.6 2
7 7 0.5 6.0 5.8 6.9 6.3 0.3 10.1 2.0 4.2 5.6 3
7 7 0.5 5.7 6.0 6.6 5.9 0.4 7.9 1.8 4.2 5.4 4
7 7 0.9 5.8 5.8 5.8 5.8 0.3 16.5 4.7 4.5 5.6 1
7 7 0.9 6.3 6.3 6.3 6.4 0.4 8.9 2.4 4.8 5.9 2
7 7 0.9 6.0 6.2 6.5 5.9 0.2 3.5 1.0 4.4 5.8 3
7 7 0.9 6.0 6.4 7.0 6.3 0.2 2.4 0.7 4.0 5.6 4

10 10 0 6.1 6.1 6.1 6.1 1.9 12.9 5.4 5.0 5.8 1
10 10 0 5.2 5.2 5.2 6.1 1.3 5.7 2.2 4.7 5.2 2
10 10 0 5.2 3.8 5.2 5.7 3.4 4.2 1.7 4.7 5.3 3
10 10 0 5.2 4.0 5.2 6.0 3.3 4.1 2.1 4.3 5.2 4
10 10 0.5 5.8 5.8 5.8 5.8 2.0 13.2 5.2 4.7 5.5 1
10 10 0.5 5.1 5.1 5.1 5.4 1.4 8.7 3.4 4.3 4.8 2
10 10 0.5 5.9 6.1 6.3 5.5 1.4 6.1 2.8 4.9 5.7 3
10 10 0.5 5.7 5.8 5.9 5.6 1.3 5.4 2.6 4.4 5.3 4
10 10 0.9 5.7 5.7 5.7 5.7 1.8 12.4 5.0 4.6 5.3 1
10 10 0.9 6.2 6.2 6.2 5.9 1.8 7.4 3.4 5.1 5.8 2
10 10 0.9 5.6 5.8 5.8 5.8 1.5 3.6 2.3 4.5 5.3 3
10 10 0.9 5.7 6.4 6.7 5.7 1.9 4.3 2.5 4.6 5.2 4
10 20 0 5.4 5.4 5.4 5.4 2.5 10.8 5.0 4.6 5.0 1
10 20 0 5.1 5.1 5.1 5.6 2.1 5.2 2.4 4.5 4.9 2
10 20 0 5.1 4.2 5.0 5.7 3.0 3.8 1.9 4.6 5.1 3
10 20 0 5.1 3.8 5.2 5.7 4.1 4.6 2.7 4.4 5.0 4
10 20 0.5 5.7 5.7 5.7 5.7 2.9 10.6 5.4 4.9 5.2 1
10 20 0.5 5.3 5.3 5.3 5.7 2.5 8.1 4.1 4.8 4.8 2
10 20 0.5 5.3 5.6 5.7 5.9 2.5 5.5 3.4 4.7 5.0 3
10 20 0.5 5.7 5.6 6.3 5.5 2.5 6.3 3.6 4.4 5.1 4
10 20 0.9 5.2 5.2 5.2 5.2 2.4 10.1 4.8 4.2 4.7 1
10 20 0.9 5.4 5.4 5.4 5.5 2.7 6.4 3.6 4.6 4.9 2
10 20 0.9 5.4 5.7 5.8 5.3 2.6 4.1 3.1 4.7 4.9 3
10 20 0.9 6.1 6.8 6.5 5.9 2.9 4.7 3.5 4.8 5.7 4
20 10 0 5.8 5.8 5.8 5.8 2.9 10.4 5.3 4.9 5.3 1
20 10 0 5.8 5.8 5.8 5.5 2.3 5.5 2.5 4.9 5.5 2
20 10 0 4.6 3.9 5.1 5.6 3.2 3.6 1.8 4.5 4.5 3
20 10 0 5.4 3.6 5.5 5.7 4.7 4.9 2.7 4.3 5.2 4
20 10 0.5 5.5 5.5 5.5 5.5 2.6 10.7 5.0 4.6 5.0 1
20 10 0.5 5.9 5.9 5.9 5.6 2.8 8.4 4.5 5.1 5.4 2
20 10 0.5 5.7 6.0 6.4 5.7 2.6 6.5 3.8 4.8 5.3 3
20 10 0.5 5.4 5.7 5.8 5.5 2.3 4.6 3.0 4.6 4.8 4
20 10 0.9 5.8 5.8 5.8 5.8 3.0 10.7 5.4 5.1 5.3 1
20 10 0.9 5.6 5.6 5.6 5.9 2.7 6.6 4.1 4.8 5.2 2
20 10 0.9 6.0 6.4 6.4 6.0 2.7 4.6 3.4 5.0 5.6 3
20 10 0.9 5.8 6.4 6.4 5.8 3.0 4.3 3.4 4.7 5.4 4

TABLE 5 Type-I error simulations using
rounded normal distributions. Here, T(u)

and T(w) represent the new methods given
in (16); TBM the Brunner-Munzel Test; T(0)

L ,
T(1)

L , and T(F)
L the methods from the work of

Larocque et al21 given in (23); the RGL test
proposed by Rosner et al13; and DS the
method proposed by Datta and Satten14

where m2 = n0 − 1+m0. For example, if n0 = 10 and m0 = 2, an intraclass correlation value of about 𝜏 = 0.35 leads to
ARE = 1 (see Figure 2). Thus, the powers of both the weighted and unweighted tests T(w) and T(u) are expected to be
identical (for large sample sizes) in this specific scenario. If 𝜏 = 0, it follows that T(w) has a higher power than T(u), and
thus, the weighted estimator is preferred. Otherwise, in case of large correlations, the unweighted estimator should
be used. The aforementioned findings are numerically justified in a simulation study with n1 = n2 = 30, m0 = 10.
Data X11, … ,X2,n2−1 were generated from normal distributions with variance 1, whereas the only cluster X2n2 was
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TABLE 6 Power simulations (𝛼 = 5%) using
homogeneous multivariate normal distributions with
positive intracluster correlation 𝜌 = 0.8 for the repeated
measurements in both groups. Here, T(u) and T(w)

represent the new methods given in (16); TBM the
Brunner-Munzel Test; T(0)

L , T(1)
L , and T(F)

L the methods
from the work of Larocque et al21 given in (23); the RGL
test proposed by Rosner et al13; and DS the method
proposed by Datta and Satten14

p T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS

Design 1
0.5 5.7 5.7 5.7 5.3 3.8 6.4 4.6 5.3 5.6

0.55 9.6 9.6 9.6 8.6 6.8 10.7 8.1 8.9 9.4
0.60 21.8 21.8 21.8 20.3 16.7 23.5 19.1 20.7 21.5
0.65 41.7 41.7 41.7 38.1 35.9 44.1 38.7 40.2 41.1
0.70 67.0 67.0 67.0 62.1 60.0 69.2 63.5 65.4 66.4
0.75 86.6 86.6 86.6 82.5 82.4 88.0 84.8 85.9 86.3
0.80 97.2 97.2 97.2 95.3 96.1 97.6 96.7 97.1 97.2
0.85 99.7 99.7 99.5 99.2 99.5 99.7 99.6 99.0 99.7
0.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Design 2
0.50 5.4 6.2 5.7 5.3 3.6 4.8 4.0 5.0 5.3
0.55 9.6 9.7 9.2 8.6 6.6 8.3 7.1 8.1 9.4
0.60 23.4 23.2 21.7 20.7 18.0 21.9 19.4 20.0 23.0
0.65 42.7 43.8 42.0 37.9 35.9 40.0 37.3 39.7 42.2
0.70 68.8 68.5 66.1 61.7 62.3 67.8 64.0 56.6 68.2
0.75 88.3 88.2 87.0 82.2 84.2 86.9 85.3 82.0 87.8
0.85 99.8 99.8 99.8 99.4 99.5 99.8 99.7 99.7 99.8
0.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TABLE 7 Power simulations (𝛼 = 5%) using
homogeneous multivariate normal distributions with
negative intracluster correlation (ICC) 𝜌 = −0.8 for the
repeated measurements in both groups. Here, T(u) and T(w)

represent the new methods given in (16); TBM the
Brunner-Munzel Test; T(0)

L , T(1)
L , and T(F)

L the methods
from the work of Larocque et al21 given in (23); the RGL
test proposed by Rosner et al13; and DS the method
proposed by Datta and Satten14

p T(u) TW T(w) TBM T(0)
L T(1)

L T(F)
L RGL DS

Design 1
0.50 4.1 4.1 4.1 5.4 2.8 0.0 0.6 4.8 5.1
0.55 35.2 35.2 35.2 9.4 29.9 0.0 12.7 37.2 38.2
0.60 89.4 89.4 89.4 19.3 86.3 0.1 63.0 90.1 90.6
0.65 99.8 99.8 99.8 38.4 99.6 1.2 94.9 99.8 99.8
0.70 100.0 100.0 100.0 61.7 100.0 2.8 98.7 100.0 100.0
0.75 100.0 100.0 100.0 82.8 100.0 5.7 99.0 100.0 100.0
0.80 100.0 100.0 100.0 95.1 100.0 8.2 99.2 100.0 100.0
0.85 100.0 100.0 100.0 99.4 100.0 11.4 99.4 100.0 100.0
0.90 100.0 100.0 100.0 100.0 100.0 13.3 99.3 100.0 100.0
0.95 100.0 100.0 100.0 100.0 100.0 16.2 99.3 100.0 100.0

Design 2
0.50 5.1 5.5 5.2 5.2 4.5 1.3 1.3 5.4 5.6
0.55 17.3 19.5 16.4 7.9 6.1 1.9 1.4 14.3 19.3
0.60 54.6 53.9 46.1 14.8 13.6 7.8 5.9 37.8 57.2
0.65 82.0 81.6 80.9 27.3 22.5 9.7 8.2 78.9 83.7
0.70 97.8 97.2 96.9 47.7 36.4 14.2 14.5 96.2 98.1
0.75 99.9 99.8 99.7 67.3 43.0 17.8 19.3 99.7 99.9
0.80 100.0 100.0 100.0 84.4 46.4 18.3 18.9 100.0 100.0
0.85 100.0 100.0 100.0 94.7 64.8 24.9 30.1 100.0 100.0
0.90 100.0 100.0 100.0 99.5 53.8 34.3 34.1 100.0 100.0
0.95 100.0 100.0 100.0 100.0 53.2 11.0 12.7 100.0 100.0

generated from N(𝜇,V), where 𝜇 =
√

2𝜙−1(p)(1, … , 1)⊤ and V = I + 𝜌(J − I). Here, 𝜌 was chosen according to (25).
The results are displayed in Table 8.

It can be seen from Table 8 that the powers of the three tests are almost identical if ARE = 1. Otherwise, if ARE < 1,
the weighted test T(w) has a higher power than T(u) and vice versa if ARE > 1. Roughly speaking, T(w) is more efficient
than T(u) if the clustered data are low or mildly correlated. Investigations of the ARE of the tests will be part of future
research.31,32
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FIGURE 2 Boxplot of standard error of the relative effect size estimates. The true effect size is p = 0.5. A, Normal distribution;
B, Lognormal distribution [Colour figure can be viewed at wileyonlinelibrary.com]

ARE < 1 ARE = 1 ARE > 1
p T(u) TW T(w) T(u) TW T(w) T(u) TW T(w)

0.50 0.0536 0.0331 0.0583 0.0521 0.0464 0.0537 0.0490 0.0362 0.0572
0.55 0.1083 0.0785 0.1152 0.1036 0.1002 0.1135 0.1021 0.0776 0.1067
0.60 0.2696 0.2274 0.2993 0.2793 0.2759 0.2927 0.2756 0.2110 0.2639
0.65 0.5449 0.5006 0.5896 0.5464 0.5458 0.5563 0.5389 0.4240 0.4883
0.70 0.7988 0.7825 0.8417 0.7998 0.8052 0.8057 0.7936 0.6595 0.7037
0.75 0.9466 0.9406 0.9627 0.9497 0.9518 0.9465 0.9480 0.8297 0.8535
0.80 0.9949 0.9955 0.9975 0.9924 0.9937 0.9913 0.9935 0.9292 0.9385
0.85 0.9999 1.0000 1.0000 0.9999 0.9999 0.9989 0.9997 0.9743 0.9764
0.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9931 0.9936

TABLE 8 Power simulations (𝛼 = 5%) of
the unweighted and weighted tests T(u),TW
and T(w) when the asymptotic relative
efficiency (ARE) as given in (24) is smaller
than, equal to, or larger than 1

7 DATA EVALUATIONS

In this section, the data set introduced in Section 2 will be analyzed. We will test the null hypothesis H0 ∶ p = 1∕2 using
the two new methods T(u), T(w) as given in (19), and also compute the modified version TW of T(w) as indicated in (21).
We add the Brunner-Munzel test TBM for comparative purposes for the computation of which the first observation within
each cluster was used. The three methods T(0)

L , T(1), and T(F)
L for testing H0 ∶ E(S) = 0 as given in (23) were also computed

and compared with the aforementioned methods. Note that these differ only in the estimation of the asymptotic variance.
Furthermore, for testing the null hypothesis H0 ∶ F1 = F2, the methods proposed by RGL13 and DS14 were computed. For
all of the different methods, point estimators of the treatment effect, their SEs, test statistics, 95% confidence intervals, as
well as p-values are reported. We used 𝛼 = 0.05 for all of the data evaluations and interpretations.

TABLE 9 Results for the body weight irritation study. Here, T(u) and T(w) represent the new methods given
in (16); TBM the Brunner-Munzel Test; T(0)

L , T(1)
L , and T(F)

L the methods from the work of Larocque et al21

given in (23); the RGL test proposed by Rosner et al13; and DS the method proposed by Datta and Satten14

Test Confidence Interval
Method Point Estimators (p̂(c), S) SE(p̂(c)) Statistic Lower Limit Upper Limit p-value

Results for testing H0 ∶ p = 1∕2
T(u)

L 0.6607 0.0911 1.7646 0.4725 0.8489 0.0907
TW 0.6800 0.0913 1.9723 0.4913 0.8687 0.0606
T(w)

L 0.6800 0.0903 1.9930 0.4918 0.8682 0.0599
TBM 0.7160 0.1094 1.9742 0.4902 0.9418 0.0600

Results for testing H0 ∶ E(S) = 0 (Larocque et al (2010))
T(0)

L 0.1157 0.0336 1.7209 NA NA 0.0853
T(1)

L 0.1157 0.0292 1.9785 0.0011 0.2304 0.0479
T(F)

L 0.1157 0.0322 1.7953 NA NA 0.0726
Results for testing H0 ∶ F1 = F2

RGL -2.1565 NA NA 0.0310
DS -1.7423 NA NA 0.0814

Here, p̂(c) estimates the probability that the bodyweights from vehicle treated rats is smaller than from those under treatment.
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FIGURE 3 Boxplot of standard error of the relative effect size estimates. The true effect size is p = 0.75. A, Normal distribution;
B, Lognormal distribution [Colour figure can be viewed at wileyonlinelibrary.com]

Since several rats share the same cage, the cage is assumed to be the experimental unit and the rats represent the
replicates. Here, the numbers of cages in the two dose groups are identical (n1 = n2 = 13), while the numbers of replicates
are different. The statistical analysis of the data is displayed in Table 9. First, it can be seen that both the unweighted
p̂(u) as well as the weighted estimator p̂(w) are just slightly different. The estimated SEs are also about the same. This
occurs, because the replicates have a medium correlation. Furthermore, the data do not provide the evidence to reject
the null hypothesis H0 ∶ p = 1∕2 at 5% level of significance. All of the results are, however, borderline and a remarkable
improvement can be detected. The test decisions for testing H0 ∶ F1 = F2 differ slightly. However, both p-values indicate
a difference in terms of the distributions.

8 DISCUSSION

Dependent replications are observed in many experiments and there is a need for adequate statistical procedures that
can be used for modeling them. Reducing the replications to single observations by either using their means, medians, or
strictly using the first observation cannot be recommended because a lot of the information provided by the replications
is not effectively used. Therefore, this strategy results in a loss of power and cannot be recommended for practitioners.
Furthermore, data often follow a skewed distribution or are even observed on ordinal scales. Thus, there is a need for
purely nonparametric flexible methods that can be used for analyzing such data in a unified way. Ranking procedures are
known to be a robust and powerful statistical analysis tool for which parametric distributional assumptions are doubtful.
Rosner et al14 and DS13 proposed rank-based WMW-type test procedures for testing HF

0 ∶ F1 = F2 formulated in terms of
the distribution functions of the data. This hypothesis implies that variances of the data across the two groups are identical.
In particular, confidence intervals for the underlying effect cannot be computed in general nonparametric models. In this
paper, purely nonparametric methods for testing hypotheses formulated in terms of the WMW-effect p given in (1) have
been introduced. All of the methods neither imply that variances nor data distributional shapes are identical even under
the null hypothesis. Thus, the nonparametric Behrens-Fisher problem with dependent replications has been investigated.

Different weighting schemes (weighted and unweighted) for estimating the treatment effect p have been investigated
from a theoretical as well as empirical point of views. The choice of the weighting scheme to use depends on the spe-
cific study question and one cannot be recommended over the other for all situations. When, for example, exchangeable
correlation structure can be assumed, the strength of the ICC present in the data could be used as a guiding factor. We
conducted a small-scale simulation to shed some light on the effect of ICC on the precision in the estimation of the relative
treatment effect. We examined the effects of ICC on the precision of the estimator for two distributions. Figures 2 and 3
show boxplots constructed from SEs computed from all possible sample sizes (n1,n2 ∈ {7, 10, 20}) and cluster sizes (miks
generated from Binomial(10, 0.3) + 1 and Binomial(4, 0.3) + 1) combinations (total of 18 numbers) for different values
of ICC.

It can be seen from the figures that, for both distributions and effect sizes, the weighted analysis is preferred for low ICC
(−0.4 to 0.4) and unweighted analysis is preferred otherwise. It is also interesting to see that high positive correlations
show widely varying SE based on sample size and cluster size combinations compared to high negative correlations.
As one would expect, the estimation is best in terms of low SEs for both weighted and unweighted analysis when the
correlation is near zero.
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In this paper, methods for specific clustered data were investigated. Clusters involving data from both treatment
groups were not considered in this manuscript. The generalization of the estimating approaches to general clustered data
designs will be part of future research. Furthermore, we restricted ourselves to two different weighting schemes. These
can be generalized to “arbitrarily weighted” estimators by using a general weighting framework similar to the work of
Larocque et al.21 The motivating example represents a part of a complex study involving more than two treatment groups.
The generalization of the methods to the several sample case will be considered in future investigations and appropriate
global testing as well as multiple contrast test procedures for testing hypotheses formulated in terms of relative effects as in
the work of Konietschke et al33 will be explored theoretically as well as empirically. Resampling methods to approximate
the distribution of the tests in both the two- and several sample case appears to be an intriguing option for small sample
sizes. Since data is not exchangeable in the general setup considered here, studentized resampling (permutation or boot-
strap) methods shall be explored. The aim of these methods is to mimic the asymptotic distribution of the test statistic
(which turned out to be standard normal). A general theory for resampling methods is provided by other works1,34-36 and
will serve as an excellent basis for the development of such methods. Another important issue to tackle is allowing the
cluster size to be informative.12
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APPENDIX

PROOFS

A.1 Underlying model
Given are two independent samples with dependent replicated data that can be modeled by independent random vectors

Xik = (Xik1, … ,Xikmik )
′, i = 1, 2; k = 1, … ,ni (A1)

with distributions Xiks ∼ Fi, i = 1, 2.
mik is the number of replicates of subject k under treatment i.
N =

∑2
i=1

∑ni
k=1 mik is the total number of observations.

mi =
∑ni

𝑗=1 mi𝑗 i = 1, 2.
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A.2 Proof of strong consistency of relative treatment effect estimates

|||p̂(c) − p||| = ||||∫ F̂(c)
1 dF̂(c)

2 − ∫ F1dF2
|||| = ||||∫ F̂(c)

1 dF̂(c)
2 − ∫ F1dF2 − ∫ F1dF̂(c)

2 + ∫ F1dF̂(c)
2

||||
=

||||∫ (
F̂(c)

1 − F1

)
dF̂(c)

2 + ∫ F1d
(

F̂(c)
2 − F2

)||||
≤ ||||∫ (

F̂(c)
1 − F1

)
dF̂(c)

2

|||| + ||||∫ F1d
(

F̂(c)
2 − F2

)||||
=

||||∫ (
F̂(c)

1 − F1

)
dF̂(c)

2

|||| + ||||∫ (
F2 − F̂(c)

2

)
dF1

||||
≤ ‖‖‖F̂(c)

1 − F1
‖‖‖∞ + ‖‖‖F̂(c)

2 − F2
‖‖‖∞ as

→ 0; whenever n1,n2 are sufficiently large and mgk are bounded.

A.3 Proof of asymptotic equivalence for the unweighted estimator in (5)
In a first step, we decompose the estimator as follows:

p̂(u) − p = ∫ F̂(u)
1 dF̂(u)

2 − ∫ F1dF2

= ∫
(

F̂(u)
1 − F1

)
dF2 + ∫ F1d

(
F̂(u)

2 − F2

)
+ ∫

(
F̂(u)

1 − F1

)
d
(

F̂(u)
2 − F2

)
= Y

(u)
2·· − Y

(u)
1·· + (1 − 2p) + ∫

(
F̂(u)

1 − F1

)
d
(

F̂(u)
2 − F2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶An

.

Now,

An = ∫
(

F̂(u)
1 − F1

)
d
(

F̂(u)
2 − F2

)
= 1

n1

1
n2

n1∑
k=1

n2∑
l=1

∫
(

F̂1k − F1
)

d
(

F̂2l − F2
)

and, thus,

A2
n = 1

n2
1

1
n2

2

n1∑
k=1

n1∑
k′=1

n2∑
l=1

n2∑
l′=1

∫
(

F̂1k − F1
)

d
(

F̂2l − F2
)
∫

(
F̂1k′ − F1)d(F̂2l′ − F2

)
.

Notice that

E(An) =
1

n1

1
n2

n1∑
k=1

n2∑
l=1

E
[
∫ (F̂1k − F1)d(F̂2l − F2)

]
= 0,

which follows by applying Fubini's theorem and that F̂1k is an unbiased estimator of F1. Then, to complete the proof, it
suffices to show that E(nA2

n) = o(1) as n tends to infinity. To show this, we consider two cases.

Case 1: k ≠ k′ or l ≠ l′. For example, if k ≠ k′, we know that X1k and X1k′ are independent

E
[
∫

(
F̂1k − F1

)
d
(

F̂2l − F2
)
∫

(
F̂1k′ − F1

)
d
(

F̂2l′ − F2
)]

= E
[
∫

(
F̂1k′ − F1

)
d
(

F̂2l′ − F2
)

E
[
∫

(
F̂1k − F1

)
d
(

F̂2l − F2
)||||X1k′ ,X2l,X2l′

]]
.

Again, by applying Fubini's theorem and the fact that F̂1k is an unbiased estimator of F1, it can be seen that the
inner expectation is zero. Therefore,

E
[
∫

(
F̂1k − F1

)
d
(

F̂2l − F2
)
∫

(
F̂1k′ − F1

)
d
(

F̂2l′ − F2
)]

= 0.

By symmetry, we get the same expectation when l ≠ l′.
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Case 2: k = k′ and l = l′. Since both distribution functions are bounded in [0, 1],

||||∫ (
F̂1k − F1

)
d
(

F̂2l − F2
)|||| ≤ 2 ⇒

(
∫

(
F̂1k − F1

)
d
(

F̂2l − F2
))2

≤ 4

and, thus,

1
n2

1

1
n2

2

n1∑
k=1

n2∑
l=1

E
[
∫

(
F̂1k − F1

)
d
(

F̂2l − F2
)]2

= O
(

1
n1n2

)
.

From the two cases we have,

E
(

nA2
n
)
= O

(
n

n1n2

)
= O

(
n−1)

since, by Assumption A1, n∕ni = O(1) as n → ∞ for i = 1, 2.

A.4 Proof of Asymptotic Equivalence for the Weighted Estimator in (6)

With the same arguments as above, we first decompose the random variable
√

N(p̂(w) − p) in the following way:

p̂(w) − p = ∫ F̂(w)
1 dF(w)

2 − ∫ F1dF2

= ∫
(

F̂(w)
1 − F1

)
dF2 + ∫ F1d

(
F̂(w)

2 − F2

)
+ ∫

(
F̂(w)

1 − F1

)
d
(

F̂(w)
2 − F2

)
= Y

(w)
2·· − Y

(w)
1·· + (1 − 2p) + AN ,

where

AN = ∫
(

F̂(w)
1 − F1

)
d
(

F̂(w)
2 − F2

)
= 1

m1

1
m2

n1∑
k=1

n2∑
l=1

∫
(

m1kF̂1k − m1kF1
)

d
(

m2lF̂2l − m2lF2
)
.

Furthermore,

A2
N = 1

m2
1

1
m2

2

n1∑
k=1

n1∑
k′=1

n2∑
l=1

n2∑
l′=1

∫
(

m1kF̂1k − m1kF1
)

d
(

m2lF̂2l − m2lF2
)

·
(

m1k′ F̂1k′ − m1k′F1
)

d
(

m2l′ F̂2l′ − m2l′F2
)
.

Here, it can be similarly shown that E(AN) = 0 and, thus, it remains to show that NE(A2
N) = o(1).

Case 1: k ≠ k′ or l ≠ l′. The proof in this case is similar the one for unweighted estimator.
Case 2: k = k′ and l = l′. Here also, assuming the cluster sizes are uniformly bounded, ie, mik ≤ M0 < ∞ for all i = 1, 2

and k = 1, … ,ni,

||||∫ (
m1kF̂1k − mm1k F1

)
d
(

m2lF̂2l − m2lF2
)|||| ≤ 2M2

0 ⇒

(
∫

(
m1kF̂1k − m1kF1

)
d
(

m2lF̂2l − m2lF2
))2

≤ 4M4
0 .

Combining the two cases,

E
(

A2
N
)
= O

(
n1n2M2

0

m2
1m2

2

)
= O

(
N−2)

by Assumption A2. Therefore, NE(A2
N) = O(N−1).
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A.5 Proof of the consistency of unweighted variance estimator in (14)
First, note that E[𝜎2(u)

g − 𝜎2(u)
g ]2 → 0. Therefore, it is enough to show that E[𝜎2(u)

g − 𝜎2(u)
g ]2 → 0. To that end, note that17

E
(

F̂(u)
s (Xgk𝓁) − Fs(Xgk𝓁)

)2
= O(n−1),

for s ≠ g. Now, we are ready to prove the consistency

E[𝜎2(u)
g − 𝜎2(u)

g ]2 = 1
(ng − 1)2 E

[ ng∑
k=1

{
(Z

(u)
gk· − Z

(u)
g·· )2 − (Ygk· − Y

(u)
g·· )2

}]2

= 1
(ng − 1)2 E

[ ng∑
k=1

(
Z
(u)
gk· − Z

(u)
g·· − Ygk· + Y

(u)
g··

)(
Z
(u)
gk· − Z

(u)
g·· + Ygk· − Y

(u)
g··

)]2

≤ 1
(ng − 1)2 E

⎡⎢⎢⎢⎢⎣
ng∑

k=1

(
Z
(u)
gk· − Z

(u)
g·· − Ygk· + Y

(u)
g··

)2
ng∑

k=1

⎛⎜⎜⎜⎜⎝
Z(u)
gk· − Z(u)

g·· + Ygk· − Y (u)
g··

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤2

⎞⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎦
≤ 4ng

(ng − 1)2

ng∑
k=1

E
(

Z
(u)
gk· − Z

(u)
g·· − Ygk· + Y

(u)
g··

)2

=
4ng

(ng − 1)2

ng∑
k=1

E

⎧⎪⎪⎨⎪⎪⎩
(

Z
(u)
gk· − Ygk·

)2
− ng

(
Z(u)
g·· − Y (u)

g··

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

⎫⎪⎪⎬⎪⎪⎭
≤ 4ng

(ng − 1)2

ng∑
k=1

E
(

Z
(u)
gk· − Ygk·

)2

≤ 4ngM2
0

(ng − 1)2

ng∑
k=1

mgk∑
𝓁=1

E
(

F̂(u)
s (Xgk𝓁) − Fs(Xgk𝓁)

)2
, s ≠ g

=
4ngM2

0

(ng − 1)2 O(ngn−1).

The first inequality is by Cauchy-Schwartz, while the last one is using the inequality (
∑q

i=1 ai)2 ≤ q2 ∑q
i=1 a2

i and that
1 ≤ mgk ≤ M0 < ∞ for all g = 1, 2 and k = 1, … ,ng.

A.6 Proof of the consistency of weighted variance estimator in (14)
Note that E[𝜎2(w)

g − 𝜎2(w)
g ]2 → 0 under the aforementioned assumptions. Therefore, it is sufficient to show that

E[𝜎2(w)
g − 𝜎2(w)

g ]2 → 0. Again, it can also be proved that17

E(F̂(w)
s (Xgk𝓁) − Fs(Xgk𝓁))2 = O(N−1),

for s ≠ g. Since (1 + Kg)−1 = 1 + O(m−1
g ) and (mg − 2mgk)−1 = m−1

g + O(m−2
g ), we only need to show that

m−2
g E[

∑ng
k=1(Z̃

2
gk· − Ỹ 2

gk·)]
2 → 0,where Z̃gk = Z(w)

gk·−mgkZ
(w)
g·· and Ỹgk = Ygk·−mgkY

(w)
g·· . Along the same lines of manipulations
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as in the proof of the unweighted variance estimator,

E

[ ng∑
k=1

(
Z̃2
gk· − Ỹ 2

gk·

)]2

≤ mg(M0 + 1)2

m2
g

ng∑
k=1

m2
gkE

(
Z(w)
gk· − Z

(w)
g·· − Ygk· + Y

(w)
g··

)2

≤ (M0 + 1)2M0

mg

ng∑
k=1

mgkE
[(

Z(w)
gk· − Ygk·

)
−

(
Z
(w)
g·· − Y

(w)
g··

)]2

= (M0 + 1)2M0

mg
E

[ ng∑
k=1

mgk

(
Z(w)
gk· − Ygk·

)2
− mg

(
Z
(w)
g·· − Y

(w)
g··

)2
]

≤ (M0 + 1)2M0

mg

ng∑
k=1

mgkE
(

Z(w)
gk· − Ygk·

)2

≤ (M0 + 1)2M4
0

mg

ng∑
k=1

mik∑
𝓁=1

E
[

F(w)
s (Xgk𝓁) − Fs(Xgk𝓁)

]2
, for s ≠ g

=
(M0 + 1)2M4

0

mg
O(mgN−1).
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