Chapter 3

Annotated Alignments

In the previous chapter we described formally the basic concepts behind the formulation,
scoring and application of profiles and alignments. This chapter can be viewed as an
amalgamation and extension of the two issues addressed there; the main contribution is the
theory for inclusion of profiles into alignments yielding the so-called pair-profile hits.

The initial part of this chapter is in line with the standard alignments of Section We
present modifications to extend the standard alignment dynamic programming algorithm
to include profiles. Building upon the previously introduced fundamentals of profiles, in
the second part of this chapter we describe a statistically motivated choice for the addi-
tional pair-profile parameters. The basic framework underlies the tool SimAnn [12]. As
an extension to the basic parameter choice, in Section we describe the possibility of
incorporating evolution of binding sites into annotated alignments. Pairwise alignments can
be interpreted as pair Hidden Markov Models (HMMs), and it is but natural to formalize
the annotated alignment approach in the pairHMM framework and highlight the subtle
differences involved. This constitutes the second last contribution of this chapter. Finally,
we provide simple simulation results, on random sequences, discussing the characteristics
and complexity of annotated alignments (Sections and .

3.1 Dynamic programming algorithm

In the following, we assume that the profile P as well as the position-specific scoring matrix
PSSM are provided. They can be obtained simply by following the procedure outlined in
Section Again, the background profile is taken to be I =1II; = 7,1 € 1...1.

Linear Gap Costs For the sequences x and y, the dynamic programming matrix M is
initialized as in the standard case, with M(i,0) = M(0,j) = 0. We motivated the recursion
rule (Section for the dynamic programming algorithm by considering the possible
alternatives — substitution, insertion or deletion — in which an optimal alignment of a pair
of prefixes (214, y1;) could end.

In the annotated alignment approach, this is extended to include the possibility that (z;, y;)
is the last nucleotide pair of a pair-profile hit. In other words, the optimal alignment ends
with a pair-profile state.
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Figure 3.1:  Dynamic Programming
Matriz The annotated alignment path
in the dynamic programming matrix is
shown. As before, the example is for the
sequences in Figure Instead of just
\ the three predecessor points, those corre-
/ sponding to the length of the profile previ-
/ ously are also considered. The pair-profile
jump is highlighted in red.
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The possible alternatives, therefore are as shown below:
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Observe that in the pair-profile case, it is essential that (x;_;11,yj—14+1) are aligned, other-
wise the pair-profile ending at (z;,y;) would contain gaps which is contrary to our objective
of retrieving perfectly aligned TFBS pairs. Let us denote ¢’ =i —1[l+1and 7 =7 —1+1
and the substrings z;; = (@i ... 2;) and yy; = (yj ... y;)-

Keeping the above observation in mind, the optimal alignment at (¢’,;’) should end only
with a substitution for a possibility to have a pair-profile hit starting there. The new
recursion rule includes this as following:

0,
M(i—1,7 —1) + s(zi,y5),

M(Zvj) = max M(Z - 1).]) - g (31)
M(i,j — 1) —g,

M(i', j") + PSA(z4, yjr j) — pen

Hence, if the optimal alignment of the substrings x1;, y1;, where ¢, j > [, ends with a pair-
profile hit then this implies that a pair-profile of length I ends at (z;,y;) and scores highest
amongst all other possibilities. The score for such a pair-profile, as shown, is calculated by
summing the PSA score of the last [ nucleotide pairs from x1;,y1; and subtracting penalty
pen from the optimal alignment score at (i', ') given by M(¢/, j'). Diagrammatically, Fig.
illustrates how the score is now calculated using the scores of the three predecessor points
as well as the (', j/)*" point.

Finally, the optimal alignment is the one with the maximum score and is generated by
traceback from the point (k,!) with the maximum score at maxy; M(k,!), where for every
pair-profile jump corresponding [ nucleotide pairs are emitted. As can be seen from the
recursion rule above, the time and space complexity are quadratic in the sequence length.
For each additional profile, an extra comparison needs to be performed where the corre-
sponding PSA score is calculated using the previous [ nucleotide pairs. This yields a time
complexity which is linear in the number and length of profiles. In Section we inves-
tigate the dependence of on sequence length as well number and length of profiles through
simulations on random sequences.
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3.2 Choice of score parameters

Affine Gaps  The extension to affine gap costs is equally straightforward with the new
recursion rules presented next. Keeping the notations for the gap costs g, and g, the
entries of the matrix corresponding to an end with a substitution (that is matrix M), are
calculated with the modified recursion rule:

0,
M(i —-1,57— 1) -+ s(a:i,yj),
M(i,j) = max q 1(i — 1,7 — 1) + s(4,y;),

M(7',7") 4 PSA(xis,yjr5) — pen
D(7,j") + PSA(xys,yj1;) — pen
[ I(7,5") + PSA(zyi,y;1;) — pen

The recursion rules for D and I remain the same. This is simply because ending with a pair-
profile hit implies the last character pair of the alignment is an aligned pair or a substitution.
Therefore the score can be calculated by using the matrix for the substitution. It is possible
to arrive at P state from a substitution, insertion, deletion or even another pair-profile state.
Coming from the pair-profile instance is equivalent again to coming from a substitution.
The optimal alignment is again generated by traceback.

3.2 Choice of score parameters

The proposed annotated alignment algorithm combines standard alignments with profiles.
Since inter-linking these concepts arbitrarily may lead to an unrealistic bias in the results,
therefore an appropriate parameter choice is crucial. In this section, we provide strategies
for the same.

We assume that the score parameters related to standard alignments are derived as discussed
in Section This means that the substitution scoring matrix s is derived as a log-
likelihood ratio of a distribution ¢ for evolutionarily related nucleotide pairs with respect
to an independent sampling of two letters from a background distribution 7.

On the same lines, the pair-profile related score for a profile P of length [ is derived using
the log-likelihood ratio of a distribution on pairs (u, v) of strings of length [ with respect to
the same background distribution 7. Such a distribution needs to reflect the properties of
the binding site profile we wish to search for. The two strategies for parameter derivation
differ in the choice of this distribution, as we see next.

A basic derivation for profile-related parameters, underlying the tool SimAnn [I2], is pre-
sented first. This is followed by an advanced formulation where TFBS-specific evolutionary
constraints are explicitly incorporated. This forms the basis of the improved version eSi-
mAnn.
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Chapter 3 Annotated Alignments

3.2.1 Basic formulation — SimAnn

Calculation of Profile Scoring Array (PSA)  In the basic formulation, we start with the
position-specific letter distribution P = (P!,...,P!) of a signal profile and consider two
strings u and v to be sampled independently from P. In the corresponding background
distribution all letters occurring in the strings are sampled independently from 7. More
formally, this leads to:

PSA(u, v) ::10g< IP(‘UP(V) ) (3.2)

[Ty m(wi)m(vs)
which on rewriting yields:

PSA(u, V) i= Zzl;log (PWP(”))

() (00)
- Zill"g (ifif) 2 s (i<(>))

=: PSSM(u) + PSSM(v)) (3.3)

where PSSM denotes the position-specific scoring matrix (see Section [2.1.2). Note the simple
additive form where the PSA score can be derived solely using the PSSM of the corresponding

profile. This additivity arises from the fact that we sample two strings independently from
P.

Calculation of Profile Penalty (pen)  Recall that the profile penalty pen has been intro-
duced for fine-tuning the balance between the two gapless scoring alternatives of the two
strings u and v: [ substitutions or one pair-profile hit. Comparing the pair-profile hit and [
substitution score distributions yields a log-likelihood ratio (LLR) test, wherein the profile
penalty can be chosen based on desired type I and type II error levels. That is,

!
PSA(u,v) — pen > Z s(ug, v;)
i=1

Using the definition of s presented in Section this can be written as:
l . .
P*(us) P (vi)
lo — = | > pen
(I

Since the calculation of all scores involved is based on the same background model «, it
cancels out here. This is equivalent to:

P(u)P(v)
Hi:1 ¢(Uz‘;vi)

Hence the log-likelihood ratio directly compares the pair profile measure P? and the measure
@' which arises from independently sampling ! evolutionarily related letter pairs from ¢.

LLRp2 4 (u,v) := log > pen (3.4)

In statistical testing language, this can be viewed as following. The null hypothesis Hy
is that the [ nucleotide pairs are aligned as consecutive substitutions from the standard
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3.2 Choice of score parameters

alignment model. The alternative hypothesis H; is that they are aligned as one pair-profile
hit of the profile P. If the test statistic is taken to be the log-likelihood ratio LLRp2 4
defined above, then pen is the threshold which has to be surpassed for the null hypothesis
to be rejected. That is, it can be interpreted as a cutoff in a log-likelihood ratio test. Thus
if the exact distribution of LLRp2 4 (u,v) under the two measures P2 and ¢' are known,
then pen can be calculated based on desired type I and type II error levels, as described in

Section 2.1.3

Calculation of Score distributions  Following the lines of the calculation of exact distri-
butions under the signal and background profile in the single sequence case (Section ,
we calculate the exact distributions under P? and ¢' of the LLR score by dynamic program-
ming. It is interesting to see how the score distribution in the pair-profile scenario (pair of
strings) compares with respect to that in the single string case.

Similar to the single sequence case, we use three natural choices. First we choose pen such
that for a pre-specified level a the type-I error probability Py (LLRp2 4(u,v) > pen) is
smaller than «. We call this the level a type-I error penalty. Second, we choose pen such
that the corresponding type-II error probability Pp2(LLRpz2 4 (u,v) < pen) is smaller than
a pre-specified level 5. We call this the level 8 type-II error penalty. Finally, we choose
pen such that the two error probabilities are equal, in which case we speak of the balanced
penalty.

Comments  SimAnn uses the above-described basic parameter formulation where profile
parameters are derived assuming independence between a pair of aligned putative binding
sites. In Section we discussed the ambiguities and problems associated with defining
and predicting a conserved TFBS hit. We mentioned also that the independent scoring
of individual hits disregards the binding site-specific evolutionary characteristics. It relies
solely on the single sequence hit scores and hence, may unduly penalize or favor a pair
of strings irrespective of their mutual relatedness. For example, for a poor profile, the
binding site may be quite degenerate. For a pair of closely related sequences, if a random
aligned stretch of contiguous nucleotide pairs consist mostly of distinct (mismatches) but
relatively high-scoring nucleotides, then the independent scoring may still score the stretch
as a conserved binding site. On the other hand, if the binding site evolution is taken into
account, it is quite unlikely that a high proportion of mutations (ie. distinct nucleotides)
is allowed to be considered as a conserved hit.

In the following, we provide modifications to the basic strategy to tackle this problem. By
incorporating binding site evolution into a simultaneous alignment approach, the aim is to
associate each aspect of the annotated alignment algorithm with an underlying evolutionary
process.

3.2.2 Incorporating evolution of binding sites — eSimAnn

Extending the SimAnn framework to treat a pair of strings as evolutionarily related bind-
ing sites involves modifying the parameter derivation; the underlying alignment algorithm
remains same. Still, for writing simplicity, we refer to the annotated alignment approach
with explicit incorporation of binding site evolution as eSimAnn.
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Figure 3.2: Incorporating binding site evolution. A motif is sampled from the position-
specific letter distribution of the profile and evolved according to a position-specific evolutionary
model (F81 or HB).

In this setting, the alternative hypothesis (H;) now is that a pair of strings represents
evolutionarily related binding sites. The first string in a pair is sampled from the profile
and then evolved to the second according to a profile-based evolutionary model (Figure
. Predicted hit-pairs are “conserved” binding sites — gaplessly aligned, evolutionarily
related profile instances. Beginning with a general setting, we demonstrate how any suitable
evolutionary model can be explicitly incorporated into the SimAnn framework. Next, we
demonstrate through two evolutionary models employed previously for modeling TFBS
evolution how such an incorporation can be carried out in practice.

General Procedure

Equipped with an evolutionary model, the PSA(u, v) can be calculated as the log-likelihood
ratio of observing the pair u,v as evolutionarily related binding sites represented by the
profile P versus each w;,v; sampled independently from the background distribution .
The PSA score at a position ¢ can then be calculated by considering the corresponding
position-specific letter distribution of the profile and the evolutionary distribution at that
position. Let p = p*(u,v1,t),...p (uy, vy, t) give the position-specific time-dependent tran-
sition probabilities under the profile, then the PSA score at a position ¢ in the profile is given

by:
P (u) p* (i, vi, t))
7 (i) (vs)
Hence the score of u;, v; at position i is calculated by comparing the probability of observing
u; in the first string and then evolving it according to 5° to v;.

PSA(u;, v;) := log < (3.5)

Comparing the above with Equation , we can see that the incorporation of binding
site relatedness into the score derivation leads to a loss of the simple additive form. At the
same time, the above derivation requires additional rate parameters. For a first approach to
estimate these parameters, given a substitution scoring matrix, we adopt the simple strategy
of assuming an evolutionary model like the Jukes-Cantor [90] for background sequence
evolution (details later).

The profile penalty pen now compares between the two alternatives of u, v being evolution-
arily related samples of P versus each (u;,v;) being a standard substitution. If we denote
the former by ¢, then at position i, ggl(u,,vl) = P%(u;)p* (us, vi,t). This simply leads to a
log-likelihood score formulated using the two distributions ¢ and ¢:

l ~
' P (u;, v;)
Mgt =l L, = ren 39
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3.2 Choice of score parameters

Hence, whereas previously (Equation ) we compared the distribution under indepen-
dent sampling of profile versus that under background evolution, here we compare the
distribution under TFBS evolution versus that under background evolution. The exact dis-
tributions under ¢ and ¢ can again be derived as described in Section and the profile
penalty chosen according to desired type I and type II error levels.

Estimating the rate parameters  Given an appropriate substitution scoring matrix s, we
retrace the rate parameters by assuming that the background sequences evolved according
to a simple evolutionary model. We use the Jukes-Cantor (JC) model [90] (Section
model for simplicity, although more sophisticated models can be similarly employed. Given
a substitution scoring matrix s, we can write the probability that a pair of nucleotides is
related in terms of the log-likelihood scores:

$(u,v) = (%) % w(u)m(v)
Using the transition probabilities as derived from the JC model, we also get:
(u,v) = w(u)[e "6(u,v) + (1 — e ) (v)] Voowu,v

Hence, the unknown parameter pair pt, where p is the mean instantaneous substitution
rate and ¢ is the time elapsed, can be estimated from the above two equations.

After providing the generic approach of incorporating any evolutionary model for TFBS
evolution, we now describe how two evolutionary models, used commonly for modeling the
position-specific evolutionary properties of TFBSs, can be considered. It is worthwhile to
mention here that while both models provide a better approach to modeling position-specific
evolution in binding sites as compared to models that treat all positions similarly, each relies
on simplifying assumptions. Nevertheless, they provide a more realistic representation of
binding site evolution, as shown by Moses and colleagues [132]. We begin with the F81
model because of its simplicity and ease of incorporation into the SimAnn framework.

Using the Felsenstein 1981 model

To ensure that each position in a profile is treated differently with regards to evolutionary
characteristics, for an initial choice we adapted the Felsenstein 1981 model (F81) (Sec-
tion . Here, the probability of a substitution is proportional to the stationary dis-
tribution of the incoming nucleotide. Setting the stationary distribution at each position
i to the position-specific letter distribution under the profile P?, the model respects the
initial base composition through position-specific substitution rates. The position-specific
transition probabilities at a position ¢ are then given by:

ﬁi(ui, v, t) = e_“té(ui,vi) +(1- e_Ht)Pi(vi) Voo, (3.7)

where p is the rate of mutations per site and ¢ is the Kronecker delta function with §(u,v) =
1 if (u =v) and 0 otherwise.

Inserting the above probabilities into Equation (3.5)) and rearranging, the PSA score for the

pair of strings is given as:

l
PSA(u,v) := PSSM(u) + PSSM(v) + Z log [(W —1)e M 4 1]
i=1 i
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which is symmetric, since:
P (ug)p' (ui, vi, t) = P (03)p' (vi, wi, t)

Note how as time goes to infinity, the previous equation reduces to the simple additive
form in the case of independent scoring in Equation . However, when wu; # v;, the
contribution of the profile letter distribution in the additional term is lost and the score
depends purely on the evolutionary rate. While considering a rate slower than background
sequence has been proposed [132] it does not fully reflect the profile conservation properties
at each position. Currently, we use the rate as derived from the substitution scoring matrix

for background sequence (Section3.2.2)).

Using the Halpern Bruno model

As discussed in Section [2.2.3] according to this model, a position-invariant mutation rate is
combined with a position-dependent fixation rate to yield position-specific mutation rates

q'(u,v). Using a similar line of approach as the original article, Moses et al. [133] showed
that the mutation rate at a position ¢ in the profile is given as the following proportional-

ity:

- 1
ql(ui, Ui) X qB(Uz‘, U,‘) X % (38)

where .
_ P(vi)gs(vi, ui)
P(u;)as (ui, v;)
and qg(u,v) gives the background evolutionary model. If z = 1, then the rate is equal
to the background mutation rate gqg(u,v). Let us see how the above equations help in
modeling binding site evolution better.

We mentioned before (Section that functionally relevant positions in binding sites
evolve slower. For the time being, let us assume that the background evolutionary model
is the JC model, hence qg = ut/4. Hence, for equally likely nucleotides (P*(u;) = P¥(v;)),
the rate of substitution purely depends on the background evolutionary distance.

If x # 1, then the rate equation looks like:

o) o it P/ )
Q' (i, vi) o< pt 1 — (Pi(u;)/Pi(v;))

(3.9)

where, for increasing probability values at position ¢ under the profile for u;, the rate of
substitution to v; decreases. Thus, non-degenerate positions are conserved. On the other
hand, if P?(u;) is much lower than P?(v;), then the process favors substitution to the more
likely nucleotide at this position under the profile. Hence, the model suitably reflects the
position-specific evolution in the profile whereby degenerate positions mutate more while
non-degenerate positions are more conserved.

Given the rate matrix, the transition probabilities 5° at each position can again be derived
by exponentiating Qt. For a more detailed discussion on the use of the HB model for TFBS
evolution, see [134, [132]. Finally, plugging the resulting p'’s in Equations and ,
the PSA and pen under the HB model can be derived as before. Note again that the
above-derived scores are symmetric.
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3.3 A pairHMM perspective

Summary In this section, we provided strategies to determine the profile-related pa-
rameters based on statistical considerations. We also demonstrated how position-specific
evolutionary constraints in the profile can be incorporated in the proposed framework. Be-
sides the algorithm and parameter choice, another relevant aspect of pairwise alignments in
general, is their formalization in a probabilistic framework as pair Hidden Markov models
(pairHMMSs). Since annotated alignments build upon standard alignments, it is possible to
visualize them as an extended version of the standard pairHMM and in the following we
illustrate how.

3.3 A pairHMM perspective

Standard pairwise alignments can be formalized in a probabilistic framework as pair Hidden
Markov models (pairHMMSs). Since annotated alignments build upon standard alignments,
it is intuitive to visualize them as an extended version of the standard pairHMM. In the
following, we formally present a pairHMM interpretation of annotated alignments. How-
ever, it should be stressed here that while the formalization of the model is in line with
the standard pairHMM methodology, the estimation of parameters is not performed via
training, as is the case in HMM-based approaches.

Brief background

A hidden markov model (HMM) consists of a set of hidden states connected by directed
transitions. Each state (except the silent state), emits a character with a certain emission
probability. Usually, we know the sequence of characters and are interested in finding the
corresponding state sequence that could have generated it. The standard approach is to
use the dynamic programming based Viterbi algorithm. Given a set of observed values and
a model, the Viterbi algorithm calculates the most probable state path for this observation
set. Mostly studied in the context of speech recognition (the tutorial by Rabiner [I57] is
a classic reference), hidden markov models are increasingly becoming popular in biological
applications.

In a pairHMM, instead of single characters, the states emit pairs of characters. Durbin et
al. [52] use the concepts of pairHMM to formalize pairwise alignments. A pairHMM for
standard alignments consists of three states (Figure : the match state M which emits
pairs of nucleotides, and the insert (I) and delete (D) states emitting a nucleotide and a gap.
PairHMMSs have been widely used for ab initio gene prediction approaches [100] 4, [130].
In the following, we build upon the established concepts to put annotated alignments in a
pairHMM framework.

Standard pairHMMs

Let us denote the transition probability matrix of the standard pairHMM (henceforth re-
ferred to as pHMM) by T'. The transition probabilities have to satisfy the constraint that
the probabilities of all transitions leaving a state sum to one. Usually, direct transitions be-
tween D and I are not allowed and the states I and D are symmetric. Hence, T1p = Tp1 = 0,
TM,D = TM,I and TI,:[ = TD,D-
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Figure 3.3: Pair HMM for standard alignments.

To make the forthcoming discussion on annotated pairHMMs easier, we add two silent
states Sy and Sp to the pHMM, as shown in Figure We refer to this as the extended
pairHMM epHMM whose transition probabilities are given by the matrix T. To make the
two topologies equivalent, we can construct T using 7', as follows.

For the match state M, we have TM7SI + TM,SD = 1. Since, again the two states D and I are
symmetric, this implies Ty s, = Tu,s, = 0.5. For the self-transition to M, hence:

Tus, Ts;m + TuspTsym = Tuu

which yields TSLM =T spM = Tuu. Similarly, for the silent states and the insert and delete
states, we have the following constraints:

Tsy1+ Toyw = 1= Topyp + T (3.10)
Tix+Trs =1 ="Top+ Tosp (3.11)

where the symmetry assumption of D and I implies 771 = Tpp and Trg, = Ths,. Again,
considering the self-transitions at I, we have:

TI,I + TI,SITSI,I =T11

which on using (3.11)) leads to:

All other entries of T are zero and the values for the states Sp and D can be symmetrically
calculated.
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3.3 A pairHMM perspective

(W)
&

Figure 3.4: Extended Pair HMM. The modified version of the standard pairHMM introducing
silent states Sy and Sp.

Annotated pairHMMs

To the modified pairHMM described above, we now add states corresponding to profiles
Pi,... P, of lengths ly,...,1,,, respectively. We refer to the new pairHMM as annotated
pairHMM — a pairHMM with pair-profile states included (denoted as ppHMM). The ex-
tended topology is shown in Figure[3.5] Each of the pair-profile states emits pairs of strings
which are either independent (SimAnn) or evolutionarily related (eSimAnn).

Transitions Let us denote the transition matrix for ppHMM by T'. Again, assuming the
states Sy and Sp to be symmetric, we set Tg, pp, = Ts, pp, =: p; and Tpp, s, = Tpp, s, = 0.5
for all 1 <7 < m. If we define
m
D= sz < 17
i=1

we can construct the rest of the T by multiplying the transition probabilities from S; or Sp
to the M,D and I states in T" by 1 — p. That is,

Tom=1-p)Tsn Tsr=(1—-p)Ts 1
Tspw=(1—p)Tspm Tspp=(1—p)Tspp

The estimation of these unknown probabilities p1,...,p,, is crucial since it influences the
proportion of pair-profile jumps. We will show how these can be estimated using the con-
cepts of log-likelihood ratio tests in a little while. First, we describe emission characteristics
in the ppHMM.

Emissions The background alignment states M,D and I behave as before, emitting single
pairs of nucleotides (from M) or a nucleotide and a gap (from D or I). The pair-profile states
emit pairs of strings which are either independent samples of the corresponding profile or
evolutionarily related ones. We resort to previously introduced notations: 7 corresponds
to the background letter distribution and PSPM; to the position-specific letter distribution
of the i*" profile. The distributions reflecting the evolutionary behavior of background
sequences and profiles are again taken to be ¢ and ¢, respectively, as in Section

The state M emits pairs of letters as following: a nucleotide is sampled from the background
letter distribution 7 and evolved according to an appropriate evolutionary model for a given
time ¢ to produce the second nucleotide.
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Figure 3.5: The annotated pairHMM. Additional states corresponding to profiles are added
to the extended pairHMM of standard alignments.

The pair-profile state PP; emits pairs of strings (u(i), v(i)) of length I;. Let us consider the
basic setting first where the pair is independently sampled from the position-specific letter
distribution of the profile P;. The probability of observing this pair of strings from the i
pair-profile state PP; is given by:

Pp, (u®,v) = T Pl )P (0]
J=1

where each string is independently sampled from the profile.

In the extended setting, the pair-profile states emit pairs of evolutionarily related instances
of the profile. Hence, the first string u(? is sampled from the profile P;. For a given
evolutionary distance ¢, the second string v is derived by evolving each position j of u®
according to p. The overall probability of observing the pair under the pair-profile model
is then:

lz . . . .
Pe, (u®,v0) := [T PI ()l (), o)
j=1

In both settings, the emission probabilities from the pair-profile states reflect the position-
specific probabilities under the corresponding profile.

Log-likelihood ratio thresholds

We now turn to the issue of estimating the transition probabilities in the annotated pairHMM.
Beginning with an intuitive example, we hope to show theoretically how the transition
probabilities in a simple HMM can be related to thresholds in log-likelihood ratio based
approaches.
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3.3 A pairHMM perspective

An example:  Consider the single sequence TFBS scanning problem for a single profile
P of length ! (discussed in Section [2.1.3). Modeling it as a simple HMM would imply
combining two states — a background state B and a profile state P. At every visit of B a
single letter from the background distribution 7 is emitted. At every visit to P, a single
string sampled from the respective position-specific probability distribution PSPM is emitted.
If the probability of jumping from the background to the profile state is given by p, then
the transition matrix for this simple HMM is:

‘—>B — P
B—|1—-p »p
P—|1—-p p

where p is unknown.

The sequence scanning problem can be re-phrased as following. Given an observed sequence
x, we wish to find the sequence of hidden states that gave rise to x. This in turn tells us the
putative instances of the underlying profile in x. Usually, this can be found by determining
the Viterbi path, that is, the path through the states of the HMM for which the probability
of emitting x is maximized. Clearly, the jumping probability p strongly influences the
Viterbi path — the more likely it is to jump to the profile state, the higher chances of a
putative profile instance. We now describe how a reasonable choice of p can be made using
a log-likelihood ratio based approach.

The comparable log-likelihood based approach for the above-described simple HMM is as
following. The two states B and P in the HMM correspond to two different probabilistic
sequence models — Pg(u) and Pp(u) — for generating a string u. The log-likelihood ratio
(LLR) of observing the string u of length [ in a sequence x is:

LLRpg(u) := log

Here, both the probabilities are given by:

If the LLR score exceeds a given threshold ¢, then u is considered an instance of the profile
given by P, else not. For a given sequence x of length n, this is carried out for all windows
of length [ to find putative instances of the motif. In Section [2.1.3] we presented how a
concrete choice of the threshold ¢ can be made based on the type I and type II error levels.
Modifying the notations introduced there for the purpose at hand, we have the type I error
given by:

OCP,B(t) = PB(LLRPB(X) > t) (3.12)

and the type II error given by:

Bp(t) :=Pp(LLRp g(x) < 1) (3.13)
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Thus, any choice of ¢ results in some balance between the two error probabilities and we
can calculate this balance exactly. Depending on the desired type I and type II error levels,
we can thus calculate the threshold ¢ which in turn influences the true and false positive
rates correspondingly.

Coming back to the HMM, we use these insights from the LLR based approach as follows.
At every step in the HMM, the Viterbi path has the choice between the background state B
and the profile state P. A string u of length [ can be emitted in the given sequence through
two cases:

Case 1: The next state visited is P and u is emitted from this state. The probability of
this event is

pPp(u)

Case 2: The next [ successive steps go to B and u is emitted from them. Here the proba-
bility is
(1-p)'Pg(u).

Clearly, there are other scenarios that the final Viterbi path chooses from, but it will prefer
Case 1 over Case 2 whenever

Pp (u)

LLRpg(u) := log Po(u)

1

Above, the terms are rewritten to highlight that the choice of p can be formulated in terms
of an LLR cutoff. Thus, in this simple HMM, a reasonable estimate of the transition
probability can be made using the standard log-likelihood ratio test. Usually, given a
testset with known instances of profile hits, the transition probability is estimated using
training. The training set contains background sequences which have implanted samples
from the profile. The HMM is used to annotate the sequences for putative locations of the
profile hits. Comparing with the true knowledge, the corresponding true and false positive
rates can be calculated. Provided that the training set is sufficiently large and unbiased,
these estimates are fairly accurate. However, usually the availability of an appropriate
reference training set poses problems. Through the approach of estimating the transition
probability p using log-likelihood ratio test, we propose that the resulting type I and type
II errors provide reasonable estimates to the true and false positive rates characterizing the
statistical behaviour of the HMM given a choice of p.

Probability choice in the annotated pairHMM

We can now bring the same considerations to the annotated pair HMM. Suppose (u(i) , V(i))
is a pair of strings of length ;. When focusing on PP; we again have two cases to consider

Case 1: The next state visited is PP; and (u®,v(®) is emitted from it. The probability of
this is
piPp, (u(i) , v(i)).
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Case 2: The next [; successive steps go to M and (u?,v(?) is emitted from them. The
probability is ' '
(1 =) TyPu(u”, v1),

where

In the same sense as before we see that Case 1 is preferred over Case 2 whenever

Pr, (v P T
— .

(1) @)y . e 7 7
LLRp, u(u™, vt :=log Py(u®, v0)) pi

(Recall that T is the transition matrix which would have been used in the pHMM, that is
the version without any silent states.)

Since both P; and M provide a probabilistic model for the pair (u(i),v(i)) of length [; se-
quences, we can again calculate the type-I and type-II errors, which are

ap, u(t) := Py(LLRp, y(u®, v¥) > #)

and ‘ ‘
Bp, u(t) := Pp,(LLRp, y(u®,v)) < ¢).

Hence, using the ppHMM for TFBS annotation on a pair of sequences relies on the choice
of the transition probability to the corresponding pair-profile state. We presented how
this probability can be reasonably estimated without relying on extensive training sets and
based on sole statistical considerations. This jumping probability p influences the true and
false positive rates of the ppHMM and can be interpreted as the threshold in a log-likelihood
ratio test governing the corresponding type I and II errors ap, u(tp,;) and Bp, u(tp.i)-

3.4 Studying the properties of annotated alignments

Modifying the standard alignments by introducing additional states clearly influences align-
ment properties. In our case, these states correspond to profiles and hence the ensuing im-
pact depends on the profile considered. In this section, our objective is twofold — study how
the quality of profile exerts influence and analyze the effect of varying standard alignment
and profile parameters on the proportion of substitutions, indels and pair-profiles. To this
end, we run SimAnn (basic formulation) on simulated random sequence pairs of a fixed
sequence length using different parameter combinations and profiles.

3.4.1 Simulation setting

The experimental set-up is as follows. Random sequence pairs of a fixed length are generated
and analyzed with SimAnn using three profiles, each of length 9, of good, medium and poor
quality, respectively. Here, and in upcoming sections, we use the balanced quality for profiles
as described in Section 2.1.3
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Figure 3.6: Characteristics of annotated alignments. The left plot depicts the almost linear
increase in alignment scores with decreasing profile penalties for three profiles of poor, medium
and good quality. The alignment scores are highest in the case of the poor profile and decrease
as quality of profile improves. The right plot shows the variation in the proportion of pair-profile
hits as penalty decreases. The alignments get saturated with pair-profile hits at extremely low
cutoffs. As profile quality improves, the rise to this saturation is slower.

The respective count matrices are retrieved from the TRANSFAC [123] database. Each is
used to formulate the basic PSA. A wide range of values for the profile penalty is used.
For the standard alignment parameters, we consider a fixed match score and mismatch
and gap costs corresponding to two main settings. First, where mismatches and gaps are
discouraged (high costs) and second, where they are allowed (low costs). Since our focus
is on the broad interplay between substitutions and indels on one side and pair-profiles on
the other side, we take the gap extension costs arbitrarily to be half of the gap opening
costs.

3.4.2 Results and analysis

Consider the first standard alignment parameter setting along with high profile penalties.
Here, only matches are allowed. It is clear that while aligning random sequences, the
algorithm yields short consecutive stretches of matches as all else is prohibited. Indeed, the
proportion of matches in the alignment approaches 1 for all profiles (Figure @, while
that for mismatches, indels and pair-profiles it is almost negligible (Figures @ .

As profile penalties decrease, pair-profiles start competing with the matches. However,
the balance is still tilted towards matches since the algorithm is unable to extend the
alignment by filling in gaps, etc. Alignment scores increase almost linearly with decreasing
profile penalty. The scores are highest for the poor profile and lowest for the good profile.
Being more degenerate, the poor profile has a PSA which assigns greater scores to random
pairs of strings. In contrast, the good profile severely penalizes non-consensus pairs at a
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Figure 3.7: Proportion of mismatches and indels. As would be expected, the proportion
of both mismatches and indels is negligible at high mismatch and gap cost settings (marked
“high") and increases at lower cost settings (marked “low"). For each profile, as penalty is
lowered, the proportion of both mismatches (left) and gaps (right) attains a peak, with the
signal being weakest for the poor profile.

position yielding lesser scores to random sequences. For instance, the worst case PSA score
for the good quality profile here is —1610 while that for the poor quality profile is —403. In
the pair-profile framework, this is a directly emphasizes that a good quality profile better
distinguishes between random strings and profile instances. Relevant figures are shown in
Figure [3.6] This also highlights that the choice of profile-related parameters needs to be
equally sound as that of the standard alignment parameters, especially the profile penalty.
One needs a generic strategy to estimate the profile penalty for any existing or unknown
binding site profile.

Now, consider the last (mismatches and gaps allowed) standard alignment parameter set-
ting. At high profile penalties, the annotated alignments behave as standard alignments.
Lower costs imply an increase in the proportion of mismatches and indels. It also implies
that the alignments are in general longer. For all profiles, the proportion of substitutions
and indels reaches the same constant level, with no pair-profiles.

As the profile penalties decrease, there is a competition/trade-off between the matches and
pair-profile states (Figure right plots). The increase in proportion of the pair-profiles
is accompanied with a corresponding decrease in that of matches. The algorithm optimizes
the alignment score by introducing additional mismatches and indels to accommodate more
pair-profiles. This results in a rise in the proportion of mismatches and gaps for each profile,
as profile penalty decreases (the peaks in Figure . With further decrease in profile
penalty, the algorithm increasingly extends the alignment through pair-profiles themselves
and the peak in the proportion of mismatches and gaps starts falling.

For the good profile, curves for the substitutions and gap proportions remain higher than
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Figure 3.8: Proportion of matches and pair-profile hits. At low mismatch and gap costs,
it becomes easier for the alignment algorithm to extend the alignment using more pair-profile
states (bottom). With decreasing profile penalties, pair-profiles dominate the alignment, the
rate being fastest in case of the poor profile (in red, bottom right). Overall, at high cost settings,
the alignment length is smaller since short contiguous stretches of matches are output.



3.5 Influence of number of profiles and sequence lengths

the other two. This indicates that for the good profile, the algorithm does not falsely (since
random sequences) annotate as much pair-profiles as the weaker profiles. Hence, the lowest
pair-profile curve for the good profile (Figure [3.8)).

Comments  The straightforward observation from the above simple analysis is that stan-
dard alignments and pair-profiles compete for alignment space in annotated alignments.
Additionally, in the case of random sequences, the competition favors the pair-profile part
more when the profile considered is poorer as opposed to more specific. The basic PSA better
distinguishes random sequence pairs from TFBS hit pairs for the good profile. And finally,
the profile penalty needs to be chosen such that it takes this aspect into consideration.
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Figure 3.9: Time complexity. a) Running time of SimAnn at varying sequence lengths and
increasing number of profiles. b) Running time at varying sequence lengths with a single profile
of lengths 5,10, 15.

3.5 Influence of number of profiles and sequence lengths

We now turn to the empirical validation of the computational complexity (Section of
the proposed algorithm. For random sequence pairs of increasing lengths (500 — 6000) and
increasing number of profiles (0 — 4), Figure depicts the running time required. As
expected, with increasing sequence lengths, the computational time increases quadratically.
When no profiles are present, the case is reduced to that of a standard alignment, and with
increasing number of profiles the curves shift higher. In Figure the running time
for simulations with a single profile but of varying lengths is plotted. As profile length
increases, so does the computation time. The current implementation uses a modified
dynamic programming matrix structure where each cell has additional parameters in the
presence of profiles. This implies an increase in the space requirements as compared to the
standard alignment (no profile) case, although still remaining quadratic in the sequence
length (data not shown). Since the parameter calculation is not part of the core algorithm,
we choose the basic formulation (independent samples) for the PSAs and the respective
penalties. All experiments were performed on an Intel(R) Xeon(TM) (2.40GHz) machine.
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