Chapter 1

Introduction

1.1 Life, chemistry and computers

Past several centuries of research in the field of life sciences has revealed that all life can be
described as nothing but an interplay of chemical reactions involving chemical compounds
called proteins and nucleic acids. Proteins are responsible for regulating important bio-
chemical processes like those involved in metabolism or immune response. They also form
a major constituent of essential biological components like blood, cytoskeleton, hair, etc. In
essence, they are responsible for life itself! Nucleic acids are the basic chemical compounds
that encode the information necessary to produce proteins. Long chained molecules of
nucleotides form the genome of an organism and are responsible for the observed complex-
ity. Studying the function and structure of proteins and nucleic acids helps in elucidating
their biological relevance. Research devoted to extracting biological features through a
computational analysis of such long sequences of chemical compounds forms the core of
computational biology.

1.1.1 Biological preliminaries

In eukaryotes, the genetic information is encoded as a double-helix Deoxyribo Nucleic
Acid (DNA) consisting of nucleotides. Each nucleotide is composed of a sugar molecule,
a phosphate molecule and a base, which is one of adenine (A), cytosine (C), guanine (G)
or thymine (T). Hence, a DNA molecule can be spoken of in terms of the constituting
bases or nucleotides. The double stranded structure arises from the base-pairing of A with
T and C with G. The DNA in a cell is packaged into a nucleoprotein complex known
as chromatin. The fundamental repeat unit of the chromatin is the nucleosome which is
generally comprised of 146 base pairs of DNA wrapped around an octamer of proteins
known as histones.

Through a process known as transcription, certain stretches of the DNA known as genes
are transcribed into messenger RiboNucleic Acid (mRNA). After a pre-processing step
in which parts of the sequence (introns) are removed via splicing, the reduced mRNA
consisting of coding regions known as ezxons leaves the nucleus. Finally, mRNA molecules
are translated into proteins by cellular structures called ribosomes. This process of
DNA—-RNA—Proteins is referred to as the central dogma of molecular biology.

Although the genetic information is the same in all cells in an organism, not all cells have
the same subset of active (expressed) genes. The mechanisms responsible for the regulation
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1.1 Life, chemistry and computers

of gene expression — that is, determining which genes are to be expressed at a given time
and in response to a particular stimulus — are central to the process of cell specialization.
While each step in the gene to protein path can be regulated, of particular interest to us is
the regulation of transcription initiation.

The initiation of transcription requires information that is contained in cis-regulatory re-
gions in the genome. That is, regions located on the same strand that are close to the gene
being transcribed. Those lying close to the transcription start site are usually referred to
as promoters, while those that typically lie upto a hundred kilobases away are known as
enhancers (Figure [208], 26]. Regulatory proteins known as transcription factors (TFs)
bind to short (5 — 20 base pairs) degenerate motifs in these regions and thereby modulate
the rate of transcription initiation. The successful binding of TF's relies on an open chro-
matin structure which facilitates accessibility of TFs to their corresponding DNA binding
segments [217]. Different factors work in a combinatorial fashion to facilitate this chro-
matin modification through the formation of chromatin remodelling complexes (Figure
b). Finally, the spatial and temporal regulation of gene expression is mediated through the
combinatorial action of multiple different transcription factors. Identification of the bind-
ing sites (BSs) of transcription factors is essential to the characterization of the functional
elements of a genome. This dissertation fits in the niche of computational methods that
aim to identify and predict such binding sites.

The knowledge that functional sequences tend to be conserved across different species has
led to an increased effort in genome sequencing. At present, genomic builds of more than
30 different species — ranging from yeast and hedgehog to cow and mouse — have been
made available. Using cross-species comparisons to extract conserved sequence segments
has become the norm for filtering putative regulatory elements. Such phylogenetic com-
parisons that reveal evolutionarily conserved functional elements are described by the term
phylogenetic footprinting (reviewed in [198]).

Current computational methods that use phylogenetic footprinting to predict conserved
binding sites adopt a multi-step approach — individual sequences are searched for putative
transcription factor binding sites, sequence comparisons performed to extract conserved
regions and finally the single sequence predictions mapped to identify putative conserved
binding sites. It is the goal of this work to present an algorithm and statistical framework
that does the same in a novel simultaneous manner. Additionally, evolutionary character-
istics of regulatory sites differ significantly from those of the surrounding regions. Through
the proposed simultaneous framework, we also demonstrate how site specific evolutionary
behaviour can be considered while annotating for conserved binding sites.

The rest of the Chapter is structured as follows. Beginning with a concise discourse on
experimental methods for identifying TFBSs in the next section, we proceed to a discussion
on the representation and modelling of binding sites in Section [1.2.2] This is followed
by an overview of the computational methods for detecting TFBSs which do not employ
phylogenetic footprinting in Section [1.3] To discuss those that do, a brief detour into
the field of alignments is taken in Section [1.4] Here, we focus on methods that are most
relevant to this work with the theoretical details presented later in Chapter 2] Following
this, Section [1.5| presents the methods that use phylogenetic footprinting. Section [1.6
motivates the problem and presents a brief outline of the proposed approach. The Chapter
ends with the outline of the thesis.
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1.2 Transcription factor binding sites

As noted earlier, transcription factors bind short, degenerate motifs on the DNA. Experi-
mentally found instances of the binding sites of a factor can be studied to extract common
features shared by the sites. Usually, some positions are well-conserved across all sites
while some tolerate more variability in the corresponding nucleotides. This variability al-
lows a more flexible regulatory control over transcription. On the other hand, it results
in the protein being capable of binding other non-functional motifs. Searching for such
short, degenerate motifs in the genome, is a challenging task, both experimentally and
computationally.

1.2.1 Overview of experimental approaches

Perhaps the most concrete means to formulating and verifying biological hypotheses is
through wet-lab experiments. Annotating function to regulatory elements, establishing
identity of involved proteins, studying the interplay of different constituents and deciphering
the regulatory logic — all require experimental strategies for yielding biologically reasonable
results. In the following, we sketch the major schools of experimental strategies; for more
details see [50, [122].

A class of procedures takes advantage of the changes in the chromatin structure (pres-
ence/absence of nucleosomes) to identify putative regulatory regions. Such changes can be
detected as increased sensitivity of the nucleosome-free DNA to digestion with the enzyme
DNasel. This increased sensitivity is referred to as DNasel hypersensitivity [71], 114]. By
finding such regions, one can surmise about their regulatory relevance. Approaches build-
ing upon this basic idea include, amongst others, the works of Vettese-Dadey et al. [201],
McArthur et al. [125] and Crawford et al. [45]. However, the presence of DNasel hypersen-
sitivity only implies that the DNA segment is transcriptionally active but does not prove
its functional relevance.

To verify the functionality of a transcriptional regulatory element, functional assays using
reporter genes provide the most reliable approach. Reporter genes induce visually iden-
tifiable characteristics when expressed (eg. green fluorescent protein (GFP) glows green
under UV or luciferase produces light). By placing the test DNA sequence upstream of a
reporter gene, and introducing the resultant construct into a cell (transfection), changes in
expression of the reporter gene can be measured. This helps in determining if the test DNA
segment contains elements that alter reporter gene expression. The precise configuration
of the reporter construct depends on the regulatory element to be identified and designing
one is usually a non-trivial task. Directed studies as well as large-scale approaches in this
area include the works of Strauss et al. [I90], Siemen et al. [I79], Hallikas et al. [73] and
Muller et al. [137].

Another class of methods uses electrophoretic mobility shift assays [67, [92]. The underlying
idea here is to sieve the protein-bound from the unbound DNA using a gel, the rate of
moving through which depends on the size and charge of the molecule. The bound DNA
being heavier and larger would migrate slower than the unbound DNA. The ratio of the
bound to unbound DNA can then be used to calculate the affinity of a protein to the test
DNA sequence.
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Figure and text adapted from [1] and [34].

The technique of DNase footprinting [66] allows one to compare the cleavage pattern of
isolated DNA against that of the DNA in the presence of proteins. If the protein binds
the DNA, the corresponding stretch is protected against DNasel cleavage and therefore
fewer cleavage sites are found. In combination with the gel-shift assays described above,
the protected sites can be separated from the cleaved sites. This method allows the deter-
mination of the precise location of the protein binding sites. A high-throughput approach
based on the combination of gel-shift assays and DNasel footprinting is SELEX [197, [64],
also known as in wvitro selection, where a large pool of random DNA fragments is tested
against a protein. A drawback of these approaches is that often unintended DNA-protein
interactions are also detected.

For a known protein, chromatin-immunoprecipitation (ChIP) provides a powerful in vivo
strategy to determine its target locations. Using formaldehyde, the proteins are crosslinked
to the DNA, which is then fragmented into 100-500 bp long pieces. A protein-specific anti-
body coupled to a retrievable tag, is used to pull down (precipitate) the DNA-protein com-
plex from the pool of DNA fragments. Finally, the associated DNA is recovered, sequenced
and analyzed — either through amplification or through the use of DNA microarrays.

In a DNA microrarray, probe sequences of known DNA molecules are placed on an array
of inert substrate thus forming a collection of microscopic spots. By measuring the hy-
bridization levels of target sequences, one can determine their enrichment under different
conditions or locations. Using the DNA purified by ChIP, the precise location of the binding
regions on the sequence can be identified. This technique known as ChIP-on-chip provides
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an efficient and scalable way for the identification of binding sites of DNA-binding proteins
(Figure [L.2). Recently, through genome-wide analyses one can determine the binding sites
of a protein throughout the genome. Examples include articles by Ren et al. [161], Ho-
rak et al. [84], etc. More high-resolution and high-coverage methods [145], 27] have also
been proposed; for reviews of ChIP-chip advances see [34, 219] . Although an expensive
method, ChIP-chip is gaining popularity due to its ability to identify the TFBSs in an
unbiased manner. However, the dependence on a highly TF-specific antibody is usually a
major hurdle in performing ChIP-chip experiments.

Summary The conclusions that can be drawn from different experimental strategies
vary widely. While some approaches only identify regions that may be transcriptionally
active (eg. DNase hypersensitivity), others directly pin-point the binding of a protein to a
sequence (eg. ChIP-chip). Most do not clear the dilemma of whether binding necessarily
implies function (except probably devoted functional assays). Additionally, few approaches
are scaleable to genome-wide investigations. Recently, large scale approaches to map the
chromatin structure [222] [148], as well as high-resolution tiling arrays (eg. [93]) have opened
new avenues — both in the search for corroborating evidence for functional regulatory regions
as well as in providing a genomic view of protein-DNA interactions.

In brief, however, the task of identifying functionally relevant sequence elements is a daunt-
ing one. It is complicated by numerous factors like the amount of non-coding sequence
that is assumed to contain regulatory signals, the number and combinations of transcrip-
tion factors that are anticipated to be involved, and the cost and complexity of designing
experiments — all of which make experimental validation non-trivial. Integrated approaches
that make use of computational strategies to extrapolate on available experimental knowl-
edge are a critical necessity. In the following, we discuss this computational side of the
problem.

1.2.2 Representation and background

To design a computational strategy one requires a well-formulated representation (model)
of binding sites. Employing experimental knowledge of binding sites, where available, may
assist in making this choice. A model needs to satisfy two criteria — i) appropriately
reflect the shared features of experimentally verified sites and ii) be suitable for use in
mathematical and computational applications.

The first criterion enables comparison against the repertoire of known binding sites to
identify similar motifs. This contributes in applications aiming to predict novel instances of
binding sites for a factor. Combined with the second criterion, it also gives the possibility
to generate sample instances of known sites for analytical purposes. Representative models
used predominantly in current methods fulfill these criteria to quite some extent.

It is clear that using a single unambiguous sequence to represent a collection of known sites
with varying number of degenerate nucleotides may be insufficient. Along with being too
restrictive, it does not do justice to the TFBS characteristics, especially if the degeneracy
at some positions is high.
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By simply aligning the known binding sites, the small invariant core sequence of known sites
can be extracted and the number of occurrences of each nucleotide at each position counted.
This alignment forms the basis of two broad categories of TFBS models — sequence-based
and matriz-based.

Sequence-based This class uses a representative sequence (motif), which allows slight
mismatches, as the TFBS model. Using the alignment of experimentally verified sites, a
consensus sequence is formulated by considering the predominant base at each position in
the alignment. Thus, a consensus sequence is close to all known sites of a factor with some
mismatches. A more sophisticated version is one that incorporates ambiguous positions
too. These are either shown as possible alternatives in the same sequence representation
or by using the IUPAC nomenclature to indicate subsets of nucleotides. For example,
the consensus sequence for the binding sites of the yeast transcription factor CSRE is
CGGAYRRAWGG (taken from the SCPD database [224]), where Y is either C or T, R is
either A or G and W is either A or T.

Prior to their usage for representing transcription factor binding sites [60], consensus se-
quences have long been used for multiple sequence comparisons. For example, Kozak [106]
and Cavener [38], used consensus sequences to identify initiation of translation and termina-
tion sites. Waterman and colleagues [211] present algorithms for finding consensus patterns
and estimating their statistical significance. A detailed comparative study of consensus-
pattern finding methods in the early nineties can be found in [46].

Once formulated, a consensus sequence can then be used to search for putative TFBSs
by scanning novel DNA sequences for exact or inexact matches. How close a putative
site is to the consensus sequence is judged by the number of matching positions. Clearly,
the sensitivity of the consensus sequence in making predictions depends on the amount of
mismatches allowed to consider a site a putative hit while searching.

Although consensus sequences afford more leniency as opposed to strict single sequence,
they do not quantitatively represent the nucleotide distribution at each position in a binding
site. Additionally, when being used to predict new occurrences, it is often a complicated
task to decide the level of allowed mismatches. This is where the second class of matrix
based models comes handy.

Matrix-based The biases in the nucleotide distribution at each position in the TFBS
can be modeled probabilistically in a matrix framework, known as profiles. Although the
term profile has been variously used to mean position-specific count, weight or frequency
matrix, here it solely refers to position-specific frequency (probability) matrix.

A profile specifies the probability of observing a nucleotide at each position in the TFBS.
More formally, a profile P of length [ over an alphabet ¥ is an [ x |X| matrix (P;;) (i =
1,...1;j € ¥), such that P;; > 0 for all 4,5 and ZjeE P;; = 1 for all i. An example is
provided later in Chapter

The review by Stormo [I88] provides a thorough coverage of the developments in the field
of binding sites, from detection, representation to statistical properties, and is an excellent
reference. Although most relevant literature is cited therein, the classical article by Berg
and von Hippel needs mentioning here [20]. In this article, the authors showed that the
logarithms of base frequencies are proportional to the binding energy contribution of the
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bases. Their work forms the basis of most modern day approaches for studying binding
affinity (examples include Roider et al. [165]). Articles addressing the issue of representation
of binding sites, evaluation, and prediction include [166, 147, 150, 200].

Profiles encapsulate the information about both the preferred and the alternative nu-
cleotides at a position. They can be used to evaluate how likely a new motif is to be a binding
site of a factor. Additionally, they can be used as a motif generator, where each nucleotide
is generated independently according to the position-specific distribution. In other words,
the probability that the profile P of length I generates a sequence u = (uy,...u;) € X! is
given by Pp(u) = [T'_, Pi(u;).

On the basis of profiles, position-specific weight matrices are formulated that allocate scores
to each nucleotide at a position in a string. The final score of the string is the sum of these
individual scores. Hence, the consensus string would have the best score while all other
sequences would have lower scores with the decreases depending on the difference to the
consensus. Such a score of a novel DNA sequence is then compared to a threshold to identify
whether it is a putative TFBS hit or not. Profiles form the core of the work presented
here and we will present examples and discuss formally the theoretical background and
application in Section of Chapter

Comments  We presented the two most common classes of TFBS representation — con-
sensus sequences and profiles. Both the classes share the assumption that each position in a
site behaves independently of the others, that is each position contributes additively. This
assumption is questionable as has been discussed in Benos et al. [I7] and Bulyk et al. [37].
Sophisticated models taking position-dependency into account or considering non-linear
contributions of each base have also been proposed [14] 55|, 83] [68].

1.3 TFBS methods that do not use cross-species comparisons

One look at the literature in computational biology from the last two decades would show
that a plethora of algorithms and applications for TFBS prediction have been proposed.
Classifying the various approaches along a certain axis is immensely complicated — use con-
sensus sequences, matrix models or position-dependent models, use comparative genomics
or gene expression data or clustering information or a combination of a subset or all of
them, use a priori information of binding preferences of a factor or discover new motifs
— the differences are in color as well as shade. Usually, the broadest and most applicable
classification is based on the last criterion, where methods are either:

e ab initio discovery methods — those which assume nothing about the binding prefer-
ences of a factor and use a set of DNA sequences believed to be co-regulated to learn
new motifs, or

e TFEFBS identification methods — those which use experimentally discovered binding
sites of a factor to identify novel occurrences matching the preferred description.

In this section, we focus on a subset of these classes of methods common during the pre-
genomic era — those which do not use cross-species comparisons. While their discussion is
relevant to understand the current state-of-the-art, their relevance to this work, a TFBS
identification method that uses cross-species comparisons, is limited.



1.3 TFBS methods that do not use cross-species comparisons

1.3.1 Ab initio discovery methods

As Brazma et al. [30] put it, the computational TFBS discovery problem is “in essence
extracting general rules from particular instances”. A set of input sequences believed to be
co-regulated is picked. These sequences are likely to share common motifs that might be
bound by one or more transcription factors. The aim is to find patterns that reflect the
characteristics of the most over-represented motifs in this set.

For a review over pattern discovery methods employed in computational biology, we refer
the reader to the detailed work of Rigoutsos et al. [I62]. Providing a machine learning
formulation of the problem, Brazma et al. |29, B0] also present a formal survey of pattern
discovery methods and their relation to each other. Stormo [I88] and Pavesi et al. [I50],
amongst other related issues, discuss both binding site representations as well as discovery
approaches. In an appreciable feat of patience and diligence, Sandve et al. [I71] have
compiled an almost-complete list of current motif discovery tools and categorized them
using a framework composed of four different levels. One can get a rough picture of the
number of such methods by the extended table in their supplementary material, which
lists more than hundred entries. A slightly older but similar, thorough work is that by
Héussler [77] who studied the various motif discovery methods and discussed representative
examples. Other than these recent works, an excellent and up-to-date review on motif
discovery methods is provided by Maclsaac and Fraenkel in [I17] and a recent introduction
into the issues related to motif discovery is described in the work of D’haeseleer [49].

Different authors adopt different sub-classification of motif discovery methods: enumera-
tiwe and alignment-based [117], bottom-up and top-down [29], pattern-driven and sequence-
driven |30}, 149], consensus-based and alignment-based [I50], or based on enumeration, de-
terministic optimization and probabilistic optimization [49]. Despite the various terminolo-
gies, in essence methods come in the two main flavors of enumerative and alignment-based
and we discuss them next.

Enumerative methods  This class of methods first exhaustively enumerates the solution
space by considering all possible patterns up to a certain (usually user-defined) length. Next,
the patterns are scored and the best scoring ones are output. The majority of methods in
this class are consensus sequence-based.

Tompa [194] used an enumerative method employing z-scores to rank motifs, for finding
ribosomal binding sites in prokaryotic genomes. In a similar approach for yeast downstream
sequences, van Helden et al. [199] allowed only exact matches to consensus sequences to
find short, contiguous over-represented motifs. In another tool MITRA [58], efficient data
structures are employed to cover the space of IUPAC patterns and a hypergeometric score
used to rank them. Other approaches include works by Staden [I86], Brazma et al. [31],
Sinha et al. [I81], Blanchette et al. [22], etc.

Recently, Tompa and others performed a large-scale evaluation of 13 motif discovery tools
(including non-enumerative tools) using both simulated and real data from fly, human,
mouse and yeast [195] and the tool Weeder [I5I] showed the best performance. Weeder
enumerates all motifs to a maximum length and weighs each according to the number of
sequences it occurs in and the level of conservation. However, while most of the tools
performed well on yeast datasets, the overall performance on other species was poor. Other
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contributions evaluating discovery methods include the works of Day and McMorris [46]
(compared consensus discovery methods) , Pevzner and Sze [154] (their metrics for method
evaluation were used in the study of Tompa et al. [195]), Hu and Kihara [85] (amongst
other things, studied the appropriate number of input sequences required), and Sandve and
colleagues [I71].

Exhaustive enumeration guarantees that all motifs of a certain length have been considered.
But enumerating the solution space gets increasingly difficult as the length of the patterns
increases. For an input sequence set of IV sequences of length m defined on an alphabet
of size A, the time complexity of enumerating the solution space of motifs of length L
with e allowed errors is O(NmA€L*) [149, 117]. Hence, usually methods adopt an upper
bound on the motif length as well as allowable errors. As a specific formulation, Pevzner
and Sze [154] considered the case of L = 15 and e = 4 in an artificial setting. They
proposed two graph-based approaches, WINNOWER and SP-STAR, that performed well
in comparison to the existing approaches. Suffix-tree based approaches provide a speed-up
in accessing the words of a text, and initial efforts using suffix trees in the context of motif-
discovery problems were made by Sagot and colleagues [167,,[121]. The tool Multiprofiler [97]
searches for all substrings with exactly k& mismatches to a given string, that is the k-
neighbourhood of the string. This neighbourood is then scanned for the motif by searching
it for recurring wordlets, subsequences of the motif. A hash-table based approach was
proposed by Buhler and Tompa [35] where [-length substrings are put together in the same
bucket if they have the same letters at x positions. These pre-processing steps save a
lot of time compared to complete sample driven enumeration. Afterwards, five iterations
of Expectation maximization (explained later) are carried out on every bucket and the
resulting motif instances are refined using the graph-based approach SP-STAR. Recently,
an improved version Aggregation [102] that provides a more than double speed-up on the
original algorithm has been proposed that analyses dense regions of the subspace rather
than dense points.

Alignment-based methods  Instead of enumerating all existing n-mers and checking how
well they are shared amongst the input sequences, this class starts the other way round. It
searches for local similarities in the input sequences with the hypothesis that a combination
of the most common patterns might form the basis of putative TFBSs. Thus, the only
limiting parameter is the motif length. Initial methods have focused on using multiple
sequence alignments to extract similar regions. However, the problem of finding the best
pattern in multiple sequences has been proven to be NP-hard [3], and usually methods adopt
heuristics. For review on methods as well as adopted heuristics, see Brazma et al. [30] and
references therein.

The basic idea is to find parameters of a binding site model that best describe the ob-
served sequence set and the corresponding optimization is carried out usually using one
of two popular core approaches: expectation mazimization and Gibbs sampling. For a de-
tailed introduction into the two algorithms, we refer the reader to the excellent book by
Liu [112].

Let us assume that a motif of length w is being searched in an input set of k sequences.
The background model is taken to be the uniform distribution, corresponding to equal base
frequencies.

10
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e Expectation-maximization — Given an initial setting of parameters, in this case
related to the binding site model, the aim is to find the binding site descriptor that
best explains the observed sequence set. The tool MEME (Multiple Expectation Max-
imization for Motif Elicitation) [10, I1I] can be used as a representative example for
discussion. In the E-step the likelihood of observing the data under the current model
is calculated. Then, in the M-step the parameters are updated so as to maximize this
likelihood. The steps are iterated until no gain is obtained and the corresponding
model is output. After removing the corresponding substrings from the input, the
algorithm is re-started to search for more motifs. Thus, MEME searches the space
of all binding site models for the one that best explains the observed input. The
EM is susceptible to be stuck in local maxima and hence usually it is initialized a
number of times to improve the results. Related approaches include Blekas et al. [25],
Improbizer [§] and PhyMe [180].

e Gibbs sampling — The basic idea here is to find the multiple alignment of small
sequence segments of the input set which is most likely to consist of samples from a
common binding site model. The Gibbs sampler is the representative example [108].
Initially, w-mers are picked randomly from each sequence. Keeping one sequence
fixed, a binding site model is formulated from the substrings of the rest of the se-
quences. Using this model, the likelihood of each w-substring in the fixed sequence
is calculated versus the background model. These probabilities are then used to pick
substrings in the next iteration, implying that positions which represent the model
best are more likely to be picked in the next iteration. The iterative process is car-
ried out until equilibrium is reached from which the more probable alignment can
be identified. Hence, Gibbs sampling is a stochastic version of EM with a wider ra-
dius of convergence. It is computationally expensive and requires multiple runs to
cover the various probability surfaces. Extensions to the basic algorithm include the
works of Neuwald et al. [144], Rocke et al. [I63], etc. and tools like AlignACE [87],
Ann-Spec [216], GLAM [65], SeSiMCMC [61], etc.

Other methods that fall in neither or both categories also exist. For example, the Consen-
sus method of Hertz and Stormo [79] adopts a greedy algorithm to save the best partial
alignments at each step, hoping that they will eventually lead to the optimal one.

Extending the work of Harbison et al. [75], Hu and others [85] came to the conclusion that
a combination of multiple motif discovery algorithms perform better than a single tool. In
their review article, Maclsaac and colleagues [117] suggest to adopt a consistent scoring
metric which is either based on hypergeometric enrichment [I3] or on the area under the
receiver operator characteristic curve (ROC). They also report that taking clustering of
binding sites into consideration also improves performance.

1.3.2 Methods using a priori knowledge

The objective here is to use available binding site data to search for novel matches according
to a pre-defined criterion. This has the pre-requisite that sufficient experimental data for
a factor is available. Although modern large scale experimental approaches are encourag-
ing, still detailed knowledge of transcription factors and their binding sites is insufficient.
Probably the largest and most popular database of known binding sites is the TRANSFAC
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database [123], [124]. However, many well-characterized factors have multiple similar ma-
trix descriptions in TRANSFAC, thus introducing a relatively high amount of redundancy
[169, 164] 174]. A smaller but better quality database is the JASPAR [168| 204] database;
other databases include SCPD [224], TRRD [103], 104], TRED [223], ABS [23], etc.

The standard approach is to get a binding site model, either by picking up one from such
databases or by formulating one from a collection of known binding sites, and show its
applicability on detecting known instances and predicting novel ones. Although the field
of TFBS identification approaches is immense, most existing approaches use additional
information. A few highlights of the basic approaches and tools for TFBS scanning are
mentioned below.

Tronche et al. [196] formulate a weight matrix from a database of known binding sites of
the transcription factor HNF1, and identify more than hundred liver-specific genes that can
be putative targets of HNF1. In a similar work, Fickett [63] considers MEF2 binding sites
in the upstream regions of muscle-specific genes. In a more recent work, Johnson et al. [89],
the authors form a position-specific scoring matrix of RE1 (repressor element) and validate
its applicability on a positive and negative training set.

The web tool TESS [I75] for TFBS scanning has a mismatch (consensus string) or score
(weight matrix) threshold which is user-defined and hence not statistically motivated. In
the database and search engine MAPPER [119] [120], the aligned known binding sites are
modeled using hidden markov models allowing indels. The authors built approximately
thousand such TFBS models and used them to scan sequences of various species using
statistically derived thresholds. The tool MATCH [98] adopts a TFBS hit scoring scheme
composed of two scores, a matrix similarity score and a core similarity score. The score
cutoffs for a match are statistically derived using either of three criteria: minimize false
positive error rates, minimize false negative error rates, and minimize the sum of both
errors. Other examples are PATSER [80] and the work of Rahmann et al. [I58]. The latter
forms the basis of the profile part of the algorithm presented in this thesis, and we shall
discuss it in more detail in Chapter

Summary All TEBS prediction methods — ab initio discovery or identification using a
priori knowledge — irrespective of the model used (consensus- or matrix- based) suffer from
the inherent problem that arises due to the short length and degeneracy of the TFBSs.
On top of that the sequence search space is large making it difficult to distinguish TFBSs
from background sequences. Usually additional support is used as an extra filter to reduce
the immense number of false predictions. And for our purposes, the concerned information
is conservation across species. Before going into the TFBS prediction methods that em-
ploy such cross-species comparisons, we present an insight into the issues, algorithms and
applications of alignments, the core of comparative genomics.

1.4 Alignments — why, what and how?

Alignments are a way to represent the similarities between sequences. In the field of compu-
tational biology, their relevance cannot be sufficiently stressed. From their use in extracting
meaningful information about the conserved and variable regions between sequences, iden-
tifying possible errors in molecular data to elucidating mutational processes responsible
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for these, alignments are indispensable. They fall in the more inter-disciplinary field of
sequence comparison methods which have their roots in signal processing and information
theory. How do sequence comparison methods fit into the field of molecular biology?

From a computational perspective, a genome is simply a large linear sequence of letters from
an alphabet. Parts of this sequence are responsible for encoding the molecular building
blocks and mechanisms needed for the sustenance of life. Different organisms share this
repertoire of bio-molecules and mechanisms, either identically or with some modifications.
These functional, structural and morphological similarities are attributed to the process of
evolution.

Through a process of mutational events, evolution “reuses, builds on, duplicates, and mod-
ifies successful structures” [72] to yield the similarities and differences observed in present-
day genomes. These mutational events include a) genome-scale changes like translocations
(exchange of regions between different chromosomes), transpositions (exchange on the same
chromosome), inversions (sequences reversed), duplications, etc. and b) local point mu-
tations like substitutions (a letter exchanged by another), insertions or deletions. Since
ancestral sequences are not available, one resorts to comparing contemporary sequences to
extract regions with high sequence similarities. The hope is to identify putative homologous
sequences, i.e. sequences that might have diverged from a common ancestor, and thereby
attribute similar functional or structural characteristics to them. This is where sequence
comparisons come into the picture.

1.4.1 Background

There are two perspectives of viewing the problem of sequence comparison: edit-distance
based and, more relevant to us, alignments. In the former, a process of edit operations
is used to convert one sequence to another. These operations correspond to mutational
events like substitutions, insertions and deletions, and hence allow a direct evolutionary
interpretation to the sequence comparison problem. Here, a sequence has the least distance
to itself and greater distances to less related sequences. Alignments are better framed in a
stmilarity context — a sequence is most similar to itself and this similarity decreases with
increasingly different sequences. Although both perspectives provide a means of measuring
the degree by which sequences are alike or different, they are not identical since different
series of mutational events, or equivalently different sequence of edit operations, may yield
the same alignment, which is neutral to evolutionary history. Under certain conditions,
Smith and Waterman [I82] showed that the two measures are equivalent in global align-
ments. Our focus is on similarity-based alignment methods which have been shown to be
more useful for identifying local similarities [I83].

1.4.2 Standard alignments — Model and Scoring scheme

The aim of alignments is to capture sequence relatedness that might reflect functional
similarities. To identify the biologically interesting instances of sequence similarities, it is
therefore essential to choose a scoring scheme that brings such instances to the forefront and
limits false positives. Thus equipped, the problem of identifying similar regions between two
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w1 2 3 4 5 6 7 8 9 10 11
zz: A C - G T A T A A T C
yy: A C C A T A T A - T C
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Figure 1.3: Ezample of standard alignment. A possible alignment of + = ACGTATAATC
and y = ACCATATATC under the standard alignment model. The alignment is coded as
A = (SSISSSSSDSS). Gaps as represented by dashes. Each column is scored according to
whether it is a substitution, insertion or deletion. The scores are summed to yield the alignment
score.

sequences reduces simply to identifying the outstanding alignments under such a scoring
scheme and model. Let x and y be two sequences of lengths m and n, respectively.

A gapped (global) alignment A between = and y introduces gaps in the sequences, while
maintaining their order such that the lengths of the resulting sequences x* and y* are
identical. The alignment stacks the gapped sequences one upon the other with no gap

being above another (Figure [1.3).

A column with nucleotide letters in each row is called a substitution (S), with identical
nucleotides referred to as matches and un-identical ones as mismatches. A column with a
gap in the first sequence and a nucleotide in the second is called an insertion (I) and the
other way round is called a deletion (D). Together, they are referred to as indels. Thus, an
alignment can be coded as a string of letters from the set {S,I, D} representing the sequence
of its columns. In practice, a deletion is not immediately followed by an insertion and vice
versa. An example of such an alignment is shown in Figure [1.3

Let ¥ be a finite alphabet, in our context consisting of the DNA nucleotides A, C, G, and
T. Hence, |X| = 4. If we define ¢(A) as the length of the alignment A and ng(A), np(A)
and n1(A) as the respective counts of substitutions, insertions and deletions, then:

A= (a,a0,...,ay4) € {S,D, T} (1.1)
is a valid alignment between the two sequences x and y iff
ng(A) +np(A) =m and ng(A)+ni(A) =n (1.2)
It is clear that an alignment with the above characteristics directly defines a mapping
A: B x B7 — (£4)HA) x (1) A)
(z,y) = (&% y"),
where ¥* := ¥ U {—} and 4(A) = ng(A) + np(A) + n1(A), implying that each column

constitutes a character pair from X*.

Scoring Scheme  Every column i in A is assigned a column score S¢(a;, z},y}). Each
substitution column contributes an additive substitution score, retrieved from a substitu-
tion scoring matrix s = (s(i,7)), 4,7 € X. And in the simplest case, every indel column
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contributes a subtractive gap penalty g. Thus for every column i, the scoring scheme in
standard alignments defines a score as:

vyf), ifa; =S
Selovi, 7, y7) = 7 40) L (1.3)
—g, if a; =D, 1

That is, a score as retrieved from a substitution scoring matrix s is added for every sub-
stitution column while a gap penalty g is subtracted for every indel. Finally, the score
S(A,z*, y*) for the complete alignment is simply calculated as the sum of the column

scores, or
0(A)

AI‘ ’y ZS Oy, zvyz (14)

It is worthwhile to mention here that treating each gap as a single mutational event and
hence penalizing all single gaps identically, is the simplest gap cost case (linear). It is widely
accepted that in reality multiple consecutive gaps are a result of a single mutational event.
Hence, a more flexible gap cost function that takes this into account needs to be employed.
Since the correct choice of score parameters is essential for the correct interpretation of
alignments, we discuss this in more detail Chapter For now, let us assume that the
scores and gap costs are appropriately set to reflect the evolutionary distance between the
concerned sequences. Once we have the model and the score parameters, it is possible to
define the optimal global alignment problem:

Given the scoring matriz s and the gap penalty g, find the alignment
with the highest score amongst all possible alignments between x and y.

A naive approach to calculating the optimal alignment could be to enumerate all possible
alignments, score and rank them. For a pair of sequences of length n each, it has been
shown that the number of alignments is exponential in n [210], making the naive approach
computationally infeasible for long sequences. More efficient dynamic programming based
approaches have since then been proposed to calculate both global and local alignments.
Alignments are global when the whole sequences are aligned, and local when the focus is on
subsequence similarities. The former is useful for reconstructing evolutionary history while
the latter is more relevant for finding shorter regions of high similarity within otherwise
weakly related sequences.

This work uses and builds upon a pairwise, dynamic programming based local alignment
approach and in the following, algorithms for multiple sequence alignments are not dis-
cussed. The interested reader is referred to reviews by Batzoglou [15], Wallace et al. [205],
and Apostolico et al. [9] for an overview of multiple sequence alignment approaches.

1.4.3 Overview of pairwise alignment methods

As with TFBS prediction methods (Section , classification of alignments and related
algorithms is non-trivial. In this section, we concentrate on the major algorithms in pairwise
sequence alignment methods; introductory textbooks by Gusfield [72], Waterman [210] and
Setubal et al. [I77] are excellent references for a more in-depth coverage. On the broader
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and more detailed algorithmic issues, the book by Sankoff and Kruskal [I73] is the classic
reference.

The simplest way to represent the relationship between a pair of sequences is through
dot-plots. Here, sequences are written as the top row and the leftmost column of a two-
dimensional matrix and a dot placed at the point in the matrix where the corresponding
row and column entries match. Dot plots provide a basic visualization of the similari-
ties between the sequences and are especially useful to identify self-similarities or repeats.
However, besides being qualitative, for large sequences they prove to be time-consuming.
Available tools for calculating and visualizing dot plots include Dotter by Sonnhammer and
Durbin [I84], Dotlet by Junier and Pagni [91], Gepard by Krumsiek et al. [I07], etc.

Dynamic Programming based approaches

Dynamic programming is perhaps the most widely used means of calculating alignments.
The underlying idea is to break a bigger problem into several smaller similar problems and
build upon their solutions to yield the solution to the bigger problem.

Saul Needleman and Christian Wunsch [143] first proposed a dynamic programming based
algorithm for calculating optimal global alignments with linear gap costs, yielding an O(n?)
complexity. A two-dimensional matrix is constructed where the row and column correspond
to the concerned sequences. Each cell in the matrix is filled using a recursion rule that
optimizes the score of the sequences uptil that point. The scores are calculated using a
DNA substitution scoring matrix and gap costs. A variation of the Needleman-Wunsch
(NW) algorithm was proposed by Smith and Waterman [I83] to calculate local alignments.
The annotated alignment algorithm is a variation of this Smith-Waterman (SW) algorithm
and we formally describe the dynamic programming algorithm in Chapter [2] For a detailed
coverage on the historical inception of dynamic programming into computational biology,
the review by Sankoff [I72] is an excellent reference. An introductory review to dynamic
programming is also provided in the work of Eddy [54].

The NW and SW algorithms use a gap cost system where each gap is penalized equally.
Variations of alignment algorithms that consider more sophisticated gap cost models have
also been proposed. A linear gap cost version of the basic dynamic programming approach
was presented by Gotoh [70].

Additionally, the above approaches have a quadratic space and time complexity in the
length of the sequences. Hence, for long sequences they prove infeasible. More space- and
time-efficient algorithms have also been proposed. For example, Hirschberg [82] proposed a
linear space alignment algorithm which calculates the dynamic programming matrix using
a divide and conquer method that breaks the matrix into two halves that are calculated
independently. In another effort, Myers and Miller [140] applied these concepts for the
linear gap cost case in Gotoh’s approach. A review on linear space alignment methods is
provided by Chao et al. [40].

An optimal alignment need not necessarily be the biologically correct one. Additionally,
when sequence similarity is low, optimal alignment algorithms can be extremely sensitive
to parameter choice while biologically meaningful similarities should be robust to such vari-
ations. To deal with such ambiguities, researchers often study alternative alignments with
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nearly-optimal scores, ie. suboptimal or near-optimal alignments. A quadratic complex-
ity dynamic programming based algorithm that forms the basis of later approaches is the
Waterman-Eggert [212] algorithm which calculates the k& best non-intersecting alignments
(described in Chapter . Linear space implementations for calculating suboptimal align-
ments have since then been proposed (eg. [86}, 39, [142]). The review article by Vingron [202]
traces the developments as well as the various notions of near-optimal alignments.

Heuristic approaches

Despite the advances in dynamic programming approaches in terms of efficiency, it is still
infeasible to be used for genomic length sequences. Heuristic methods, also known as k-tuple
methods, provide a faster although not necessarily an optimal solution. These methods
are especially useful in large-scale database searches where it is understood that a large
proportion of the candidate sequences will have essentially no significant match with the
query sequence. The underlying idea is to first find short contiguous stretches of aligned
nucleotides and to use these stretches as anchors to extend the alignment.

The two most popular heuristic methods are BLAST [7] and FASTA [111]. Given a query
sequence to be searched against a database of sequences, the latter first builds a hash table
of all k-tuple matches between the two. Nearby k-tuples separated by a constant distance
in both sequences are joined into a short local alignment. Finally, using these short local
alignments as seeds, it builds the longer alignment using dynamic programming. BLAST
essentially follows the same strategy but evaluates only the most significant word matches.
Seeds that are being extended in ways that are not typical of truly homologous sequences
are thrown out. In recent years, numerous heuristic approaches on similar lines have been
proposed, with varying seeding strategies (for a review see Brown et al. [32]). Other relevant
reviews include those by Ureta-Vidal et al. [I98] and Batzoglou [15].

Summary  While the discussion here focussed mainly on pairwise alignment approaches
(mostly dynamic programming based), the field itself has been much explored. For review
articles providing an overview of the initial efforts in protein and DNA alignments, we refer
the reader to those by Waterman and colleagues [211}, 209]. Apostolico and Giancarlo [9]
also trace the broad developments in the field of sequence comparisons, although the focus
is more on bridging between the computational, mathematical and biological expectations
from alignments. A detailed review of the more sophisticated algorithms for pairwise align-
ments is provided by Myers [I39]. More recently, the review article by Batzoglou [15]
discusses the various standard as well as novel alignment algorithms, covering wide areas
like multiple sequence alignments and synteny rearrangements.

Research in the field of alignments has revolved not just around algorithms and tools, but
also around other related issues like parameter choice (eg. [203]) and statistical significance
of alignments (eg. [95, [6]). While both are interesting fields in themselves, for the purpose
of this thesis, the discussion is restricted to the introduction of the theory behind common
strategies for parameter choice (Chapter [2)).
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1.5 TFBS methods that use cross-species comparisons

Having given a brief insight into both, single sequence TFBS prediction methods and align-
ments for comparative genomics, we are now in a position to explore TFBS prediction
methods that employ cross-species comparisons. Additionally, the aim of comparative se-
quence analysis is to take advantage of the underlying evolutionary relationship between
the sequences. To this end, during the discussion we highlight those that explicitly consider
TFBS evolution.

1.5.1 Ab initio discovery

Searching for short, degenerate motifs in sequence sets which can be comparatively much
larger, may yield a low signal-to-noise ratio. Phylogenetic footprinting-based TFBS discov-
ery methods usually either restrict the input sequence sets to only conserved stretches or
apply a conservation filter on the predicted motifs.

McGuire et al. [128] used the Gibbs sampling based approach AlignACE [87] to search for
motifs in microbial genomes with the input sequence set restricted to regions conserved to
E. coli. In a similar approach, McCue et al. [126] used an extended Gibbs motif sampler
to search for binding sites conserved in the upstream of several proteo-bacterial genomes.
Xie et al. [221] predict motifs that are both conserved across multiple genomes as well
as over-represented across the genes of the species. For reviews on the existing methods
as well as issues related to using phylogenetic footprinting for motif discovery, we suggest
the articles by McCue and colleagues [127] and more recently, by Prakash et al. [I56] and
Maclsaac et al. [117].

Methods explicitly modeling binding site evolution  Although a wide variety of compar-
ative motif discovery methods exist, only a few model evolution of binding sites explicitly.

PhyMe [I80] proposed by Sinha and Tompa, combines the two axes of over-representation
and conservation using expectation maximization. The authors use a probabilistic model
dependent on the evolutionary distance between the respective species to model the rela-
tionship between orthologous binding sites. Like MEME [10], the objective is to find the
binding site description that best explains the data. The probabilistic model for binding
site evolution takes into account the observation that binding sites evolve under selectional
constraints as prescribed by their representative profiles. The algorithm EMnEM [I32] is
also based on MEME, but here the binding site evolution is modeled by assuming an overall
slower rate of evolution as compared to the surrounding sequences.

A Gibbs sampling based approach that explicitly models binding site evolution is Phy-
loGibbs, proposed by Sidharthan et al. [I78]. It assumes that mutations are introduced at
a fixed rate but the probability of selection to fix the mutation is proportional to the profile
distribution at a position. Again, two models of evolution are considered, background and
binding site, and the algorithm searches for all binding sites that can describe the input
data given in the form of multiple sequence alignments.
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1.5.2 Methods using a priori knowledge

Current comparative methods in this field perform the task in two main steps. In one
step, conserved regions of two orthologous sequences are extracted using a method-specific
alignment algorithm and a conservation criterion. In a separate step, binding site models
(usually position-specific scoring matrices (PSSMs)) are used to scan individual sequences
for putative TFBSs. Finally, the alignment and annotation results are combined to predict
conserved TFBSs (Figure . The following exposition provides a concise overview of
existing comparative TFBS identification methods. The emphasis is on method-specific
strategies adopted to deal with the above-mentioned core issues, namely:

e extraction of conserved regions — this corresponds to the alignment algorithm used
and the conservation criterion defined,

e TFBS scanning — this covers the TFBS model used and the derivation of a hit cutoff,
and finally,

e combining the last two — this addresses how the conservation information and the
single sequence scanning results are combined.

The tool ConSite [109] is the prototypical comparative TFBS identification method. Align-
ments are generated and conserved regions extracted. Then, individual sequences are
scanned for putative hits using a score cutoff which does not consider the background
letter distribution. Finally, only those hits that are situated in conserved regions and lie at
equivalent positions in the alignment are output as conserved pairs. It is possible here that
a true hit is missed either due to underlying alignment errors or failing to cross the matrix
score threshold. Additionally, an aligned pair need not necessarily be devoid of indels (dis-
cussed later in Chapter . The tool was evaluated on a set of experimentally verified sites
in human-mouse sequences. The authors show that incorporating conservation information
improves performance significantly as opposed to single species scanning. However, the
exceptionally good performance comes at the cost of more false predictions.

Another example is CisOrtho [2I] which provides a multi-step framework for C.elegans
and C.briggsae comparisons. The outline of the approach is shown in Figure Briefly,
binding site matrices are formulated by using the tool HMMER [53] for aligning known
binding sites. These are then used to scan for the top NN scoring hits. The score threshold
again has no statistical motivation. Known ortholog sequence pairs that do not contain
high-scoring hits are filtered out and the highest scoring hits in the rest are paired. The
hit pairs are sorted according to hit scores and level of conservation. Hence, the sequences
themselves are not aligned.

Dieterich et al. [5I] use a modified version of the Waterman-Eggert algorithm [212] to
calculate suboptimal local alignments and extract conserved non-coding blocks. For TFBS
scanning, the statistically motivated method of Rahmann et al. [I58] is used, where putative
hits on the reference genome are identified. Finally, those hits that lie inside the conserved
non-coding blocks are considered as conserved binding sites.

Other than the basic approach of aligning, scanning and combining the results, a variety
of methods that include auxiliary information like gene expression, or clustering of binding
sites have also been proposed. This can either be gene expression data like in oPossum
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Figure 1.4: Two step approach to conserved TFBS prediction. Binding site models (usu-
ally PSSMs) are scanned across individual sequences to search for matches. Separately, the
sequences are aligned to find highly conserved regions. Finally, the individual sequence hits are
mapped onto the conserved regions to predict conserved TFBSs. As can be seen, the indels in
the aligned hits are either ignored completely, or allowed only to a conservative limit.
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Figure 1.5: An example of a multi-step tool. The program pipeline of the tool Cis-Ortho [21]
is shown. Sequence information about C. elegans and C. Briggsae is processed to extract
orthologous non-coding sequences. In a separate step, each sequence is scanned for putative hits
using a position weight matrix. Finally, the sequences are aligned and top-scoring hits retrieved.
Most current methods adopt such a multi-step approach to conserved TFBS prediction.
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[191], clustering of TFBSs in conserved regions as in rVista [113], or relative positional
preferences in Footer [44].

Another class of methods uses prior knowledge of TFBSs to construct the alignments. Pu-
tative TFBS hits on the single sequences are paired and used as anchors for producing
either global [I8] or local alignments [I31]. While ConReal [18] focuses on generating an
ordered chain of conserved TFBSs, thus not aligning regions that do not contain them,
SITEBLAST [I31] is a BLAST-like heuristic where the TFBS hits are used as seeds. The
method of Hallikas et al. [73] also falls in this category. Here, the sequence of hit pairs is
aligned using a scoring scheme that considers clustering of sites, binding affinity and con-
servation, though the underlying sequences themselves are not aligned. Recently, Blanco
and colleagues presented different perspective to the problem of combining alignments and
TFBS scanning [24]. Individual sequences are scanned for putative hits using TFBS ma-
trices, from TRANSFAC [123] and JASPAR [I68]. The putative hits are labeled with the
corresponding factor. Finally, this sequence of labels is aligned using a modified version of
the optimal alignment algorithm proposed by Waterman et al. [214] to generate TF-map
alignments. Hence, the nucleotide alphabet is abstracted to the alphabet of TFBS labels.
The authors show superior performance of the method in predicting conserved regulatory
elements missed by other traditional approaches.

Methods explicitly modeling binding site evolution =~ Monkey [134] is one of the few exam-
ples of methods that explicitly consider the TFBS evolutionary properties while searching
for conserved TFBSs. It takes as input a pre-generated multiple alignment and then using
the TFBS profiles compares the likelihood of observing the sequences under two evolu-
tionary models, background and TFBS-specific. For the latter, it uses the Halpern-Bruno
model [74], shown previously by the authors [I133] to accurately model TFBS evolutionary
properties. Since the alignment and annotation steps are de-coupled, the algorithm needs
to employ heuristics for the aligned TFBSs containing gaps. More detail is provided in
Chapter

From the population genetics viewpoint, an approach has been proposed by Mustonen et
al. [138] for modeling TFBS evolution. Here, the authors present and use a model for TFBS
evolution in a method that calculates the likelihood of observing a set of aligned sequences
under different modes of evolution. They also show that the specific evolution of binding
loci can be integrated into a bioinformatics scoring procedure.

1.6 Motivation and proposed approach

In the preceding sections, we explored TFBS prediction methods that use cross-species com-
parisons to extract regions of high conservation. We saw that the rationale behind focussing
on conserved regions is that they are likely to contain functionally relevant sequence fea-
tures known to evolve slower than non-functional ones. Thus, a TFBS prediction approach
relying on this principle should be able to align orthologous regulatory sequences and si-
multaneously predict conserved transcription factor binding sites. Although a plethora of
approaches exist that provide a combination of conservation and TFBS annotation (reviews
are provided in [I98, 207]), to the best of our knowledge, none achieves this simultane-
ously.
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A conserved TFBS pair should be one where single sequence hits represent the binding site
profile and be accordingly evolutionarily related. It is widely accepted that evolutionary
properties of TFBSs differ significantly from those of the surrounding sequences [127, [69]
48, 133, [19], [115] 105, 138, 215]. However as we saw, most current TFBS prediction methods
based on phylogenetic footprinting do not consider TFBS-specific evolutionary properties
while defining a conserved binding site. In one set of approaches, a conserved binding
site is a site which lies in a highly conserved region, where the conservation criterion is
usually percentage sequence identity. In such a region, the chances that the aligned site
contains indels is almost negligible, irrespective of whether the corresponding motif on the
other sequence is a TFBS or not. Examples include Wasserman et al. [206], Ji et al. [88],
Dieterich et al. [51], etc. In another set of approaches, a site in a reference genome that
is perfectly align-able with other species is taken to be conserved. Hence, the TFBS is
assumed to evolve like the background. Methods in this category include Chiang et al. [41],
Kellis et al. [99], Cliften et al. [43], etc. In yet another setting, a conserved binding site is one
which has a TFBS at the equivalent position in the alignment. For example, ConSite [109],
rVista [113], CisOrtho [21], etc.

Combined, the two issues discussed in the last two paragraphs address the core problem
of what constitutes a conserved TFBS? High surrounding sequence conservation (sequence
identity) does not necessarily imply high binding site conservation. In fact, even inside
a binding site, conservation is not uniform. Research has shown that binding sites have
a slower rate of evolution than the surrounding sequence, with functionally relevant posi-
tions evolving slower [I33]. It has also been shown that degenerate positions too exhibit
selectional constraints [I05]. Can we take the TFBS-specific evolutionary properties into
account while searching for conserved TFBSs?

Using a simple conservation criterion in the aligned binding site locations equates to ignoring
the binding site specific evolutionary properties. A well-conserved sequence region may yield
false predictions arising from high sequence similarity. Searching for high scoring TFBS hits,
usually at equivalent positions in the alignment, implies assuming independence between
the individual hits. In a more divergent sequence pair, more non-consensus nucleotide
substitutions in a true TFBS may lead to a lower score, thus increasing the proportion of
false negatives. Ideally, a method must be capable of predicting conserved TFBSs during
alignment with background and TFBS evolutionary models to score the alignment.

In summary, most current methods for conserved TFBS prediction depend on a predeter-
mined optimal alignment. They perform the TFBS annotation step separately from the
alignment step. In the end, the predictions of the former are combined with the conserva-
tion information of the latter to output putative conserved TFBS hits. Depending on the
quality of the concerned profile (ie. how specific is it?) or the relatedness of the sequences
(ie. how similar are they?), it is possible that the underlying alignment fails in detecting
such conserved pairs. We also saw how few methods explicitly model binding site evolution
while searching for conserved TFBSs.

In this thesis, we propose a simultaneous alignment and annotation method — an extended
pairwise alignment algorithm that addresses exactly these issues by providing a direct com-
bination of the two steps to yield “annotated alignments”. It introduces the possibility of
annotating parts of an alignment as pair-profile hits. We also provide statistically motivated
strategies for calculating the additional score parameters. Such an extended alignment ap-
proach and scoring scheme allows for local rearrangements in the alignment to bring together
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putative conserved hits. The algorithm is implemented as the SimAnn program [12]. To
take binding site evolution into account, a modified scoring scheme is additionally presented
and forms what is referred to as eSimAnn.

1.6.1 Brief outline

The aim of our method is to combine a locally optimal alignment of two sequences with
an annotation with conserved pairs of TFBS profile hits. We therefore add the possibility
of assigning parts of the alignment directly to such perfectly aligned pair-profile hits. This
extension in the alignment scheme is introduced to allow for a different scoring of these hit
pairs as follows.

Assume that we wish to search for conserved instances of a profile P of length [. A stretch
of [ consecutive gaplessly aligned positions can be scored in the extended alignment model
in two possible ways. Either by scoring each aligned pair with the standard substitution
scoring matrix s. Or by using a profile scoring array PSA and subtracting a profile penalty p.
The profile scoring array assigns a score to every pair of strings of length [ and reflects how
well the gapless alignment of this pair fits to the motif described by P. The profile penalty
is a tuning parameter meant to maintain the balance between the two alternatives. Hence,
how a pair of strings is scored determines the difference between the standard alignment,
the basic parameter estimation underlying SimAnn and the parameter estimation with
evolution of binding sites underlying eSimAnn.

1.6.2 Annotated alignments — Model and Scoring scheme

To embed pair-profiles into the alignment model, along with the usual substitution and
indel columns, we introduce additional columns representing pair-profile instances. For
simplicity, we focus on only one TF whose binding sites are represented by the profile P of
length [. Extensions to multiple factors are equally straightforward. The background profile
is taken to be II = (7;);, j € ¥, where 7 gives the uniform distribution. The definition of
the alignment remains same — it is the introduction of a new labeling scheme that is novel
here.

Model  Given a single profile P (equally extendible for multiple profiles), an alignment A
can now be coded as a string of letters from the extended set {S,I,D, P}, where a column
labeled as P means that the corresponding [ pairs of characters are gaplessly aligned and
assigned to the profile P. In the example alignment of Fig a gap interrupted the
putative conserved binding site locations in the alignment of the two sequences x and y. In
the annotated alignment scenario, x and y can be aligned differently such that the gap is
shifted out to predict perfectly conserved TFBS hits. Fig depicts how the binding sites
are labeled as a pair-profile column in the alignment.

Thus, if the number of occurrences of the letter P in an alignment A of x (length m) and y
(length n) is denoted by np(A), and ng(A),np(A) and ni(A) remain the respective counts
of substitutions, insertions and deletions, then:

A= (061,062, ce ,Oég(A)) S {S,D,I,P}E(A) (1.5)
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Chapter 1 Introduction

w1 2 3 4 5 6 7
zi: A C — G TATAA T C
y: A C C A TATAT - C
a: S S I S P D S

Figure 1.6: FExzample of annotated alignment. For the sequence pair of Figure a possible
alignment under the annotated alignment model is shown. Here the alignment is coded as
A = (SSISPDSS), where P corresponds to the pair-profile column for the profile representing
the TATAA box. The putative hit location is brought forth by local rearrangement of the
alignment.

is a valid alignment between x and y iff
ns(A) + np(A) +1 x np(A) =m and ng(A) +ni(A) +1xnp(A) =n (1.6)

where ¥* := ¥ U{—} and ((A) = ng(A) +np(A)+ni(A) +np(A), implying that a column
can either be a character pair from ¥* or a stretch I of nucleotide pairs from %! x 3.

Scoring Scheme  Clearly, the scoring scheme for annotated alignments has contributions
from both the standard alignment part and the profile part. As before, each column of the
alignment has an associated score. For substitution and indel columns, the standard align-
ment parameters s (substitution scoring matrix) and g (gap cost) still form the backbone
of this aspect of annotated alignments.

For the pair-profile columns, two new parameters are introduced: the profile-scoring array
(PSA) and the profile penalty (pen). The PSA of a profile P of length [ assigns real-valued
scores to every pair of nucleotide strings of length [, implying it is a function

PSA: (¥ x X) = R.

The profile penalty acts as a tuning parameter to decide between the two alternatives: [
substitutions versus one pair-profile instance. It should be emphasized here that the PSA
and pen need to be chosen such that a balance is maintained both amongst the profiles
(for the case of multiple profiles) and between the profiles and the standard alignment such
that none is unduly over- or under-represented in the optimal alignment. We elaborate
upon a strategy for the derivation of these parameters based on desired error constraints in
Section For the present discussion, let us assume that an appropriate choice for each
has been made.

A column representing a pair-profile instance of P is scored by summing the corresponding
[ entries from the PSA and subtracting the profile penalty pen. Hence, the column score S,
is defined as:

s(z},yr), if ; =S
Selow, 7, y7) = { —8, if ; =D, 1 (1.7)
PSA(z},y;) —pen if a; =P and 27,y € !
Analogous to the definition given in Equation (1.4), the score of the alignment is again
the sum of scores of the individual columns and the optimal alignment is the one with

the maximum score. Since our focus is on short conserved stretches, we then modify the
standard local alignment algorithm to generate optimal alignments with pair-profiles.
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1.7 Thesis structure

1.7 Thesis structure

This thesis proposes annotated alignments, a novel alignment approach that combines bind-
ing site profiles and alignments. Each juncture in the thesis is discussed with particular
emphasis on both aspects.

Chapter [2| formally presents the theoretical concepts needed for describing profiles and
alignments. With regards to the former, the discussion is segregated into two parts: First,
the construction of profiles from experimentally verified binding site sequences is formalised.
Second, the use of profiles for searching putative novel binding sites is described. With
regards to alignments, we discuss the standard local alignment algorithm and parameter
choice. The chapter ends with a brief discourse on probabilistic models for modelling
evolutionary processes.

Annotated alignments are introduced and described in detail in Chapter [3] At the onset,
the extended dynamic programming algorithm is discussed. Next, a statistical framework
for estimating profile-related parameters is formalised. In this context, we discuss two vari-
ations: a basic formulation that considers independence of binding sites and an extended
formulation which incorporates position-specific evolutionary considerations for modelling
binding site relatedness. Following this, we deviate slightly to formalise annotated align-
ments in a pair Hidden Markov Model framework. The chapter ends with an assessment of
characteristics of annotated alignments and algorithm complexity.

In Chapter 4] we test various aspects of the proposed approach. A proof of principle for
the theoretical derivations for parameter choice is provided through simulations. Through
simulated as well as real data analysis, different aspects of the annotated alignment approach
are compared to multi-step approaches. The influence of varying evolutionary distance and
profile quality is assessed.

The thesis ends with summarizing comments and perspectives for future directions in Chap-

ter [l
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