
Discrete & Computational Geometry (2022) 68:964–996
https://doi.org/10.1007/s00454-022-00380-1

No-Dimensional Tverberg Theorems and Algorithms

Aruni Choudhary1 ·Wolfgang Mulzer1

Received: 31 July 2020 / Revised: 6 December 2021 / Accepted: 8 December 2021 /
Published online: 12 April 2022
© The Author(s) 2022

Abstract
Tverberg’s theorem states that for any k ≥ 2 and any set P ⊂ R

d of at least
(d + 1)(k − 1) + 1 points in d dimensions, we can partition P into k subsets whose
convex hulls have a non-empty intersection. The associated search problem of find-
ing the partition lies in the complexity class CLS = PPAD ∩ PLS, but no hardness
results are known. In the colorful Tverberg theorem, the points in P have colors, and
under certain conditions, P can be partitioned into colorful sets, in which each color
appears exactly once and whose convex hulls intersect. To date, the complexity of the
associated search problem is unresolved. Recently, Adiprasito, Bárány, and Mustafa
(SODA 2019) gave a no-dimensional Tverberg theorem, in which the convex hulls
may intersect in an approximate fashion. This relaxes the requirement on the cardi-
nality of P . The argument is constructive, but does not result in a polynomial-time
algorithm. We present a deterministic algorithm that finds for any n-point set P ⊂ R

d

and any k ∈ {2, . . . , n} in O(nd�log k�) time a k-partition of P such that there is a
ball of radius O((k/

√
n) diam(P)) that intersects the convex hull of each set. Given

that this problem is not known to be solvable exactly in polynomial time, our result
provides a remarkably efficient and simple new notion of approximation. Our main
contribution is to generalize Sarkaria’s method (Israel Journal Math., 1992) to reduce
the Tverberg problem to the colorful Carathéodory problem (in the simplified tensor
product interpretation of Bárány and Onn) and to apply it algorithmically. It turns
out that this not only leads to an alternative algorithmic proof of a no-dimensional
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Tverberg theorem, but it also generalizes to other settings such as the colorful variant
of the problem.

Keywords Tverberg theorem · Colorful Carathéodory theorem · Approximation
algorithm

Mathematics Subject Classification 68W25 · 52C99

1 Introduction

In 1921, Radon [27] proved a seminal theorem in convex geometry: given a set P of at
least d +2 points inR

d , one can always split P into two non-empty sets whose convex
hulls intersect. In 1966, Tverberg [34] generalized Radon’s theorem to allow for more
sets in the partition. Specifically, he showed that for any k ≥ 1, if a d-dimensional
point set P ⊂ R

d has cardinality at least (d +1)(k −1)+1, then P can be partitioned
into k non-empty, pairwise disjoint sets T1, . . . , Tk ⊂ P whose convex hulls have a
non-empty intersection, i.e.,

⋂k
i=1 conv(Ti ) 	= ∅, where conv( · ) denotes the convex

hull.
By now, several alternative proofs of Tverberg’s theorem are known, e.g., [3, 5,

8, 21, 28, 29, 35, 36]. Perhaps the most elegant proof is due to Sarkaria [29], with
simplifications by Bárány and Onn [8] and by Aroch et al. [3]. In this paper, all further
references to Sarkaria’s method refer to the simplified version. This proof proceeds by
a reduction to the colorful Carathéodory theorem, another celebrated result in convex
geometry: given r ≥ d +1 point sets P1, . . . , Pr ⊂ R

d that have a common point y in
their convex hulls conv(P1), . . . , conv(Pr ), there is a traversal x1 ∈ P1, . . . , xr ∈ Pr ,
such that conv({x1, . . . , xr }) contains y. A two-dimensional example is given in Fig. 1.
Sarkaria’s proof [29] uses a tensor product to lift the original points of the Tverberg
instance into higher dimensions, and then uses the colorful Carathéodory traversal to
obtain a Tverberg partition for the original point set.

Fig. 1 The colorful Carathéodory theorem. Left: the convex hulls of the three point sets intersect; Right: a
colorful triangle that contains the common point
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Froma computational point of view, aRadon partition is easy to find by solving d+1
linear equations. On the other hand, finding Tverberg partitions is not straightforward.
Since a Tverberg partition must exist if P is large enough, finding such a partition
is a total search problem. In fact, the problem of computing a colorful Carathéodory
traversal lies in the complexity class CLS = PPAD∩PLS [20, 23], but no better upper
bound is known. Sarkaria’s proof gives a polynomial-time reduction from the problem
of finding a Tverberg partition to the problem of finding a colorful traversal, thereby
placing the former problem in the same complexity class. Again, as of now we do not
know better upper bounds for the general problem.Miller and Sheehy [21] andMulzer
and Werner [24] provided algorithms for finding approximate Tverberg partitions,
computing a partition into fewer sets than is guaranteed by Tverberg’s theorem in
time that is linear in n, but quasi-polynomial in the dimension. These algorithms were
motivated by applications in mesh generation and statistics that require finding a point
that lies “deep” in P . A point in the common intersection of the convex hulls of a
Tverberg partition has this property, with the partition serving as a certificate of depth.
Recently Har-Peled and Zhou have proposed algorithms [16] to compute approximate
Tverberg partitions that take time polynomial in n and d.

Tverberg’s theorem also admits a colorful variant, first conjectured by Bárány and
Larman [7]. The setup consists of d + 1 point sets P1, . . . , Pd+1 ⊂ R

d , each set
interpreted as a different color and having size t . For a given k, the goal is to find k
pairwise-disjoint colorful sets (i.e., each set contains at most one point from each Pi )
A1, . . . , Ak such that

⋂k
i=1 conv(Ai ) 	= ∅. The problem is to determine the optimal

value of t for which such a colorful partition always exists. Bárány and Larman [7]
conjectured that t = k suffices and they proved the conjecture ford = 2 and arbitrary k,
and for k = 2 and arbitrary d. The first result for the general case was given by
Živaljević and Vrećica [38] through topological arguments. Using another topological
argument, Blagojević et al. [9] showed that (i) if k + 1 is prime, then t = k; and
(ii) if k + 1 is not prime, then k ≤ t ≤ 2k − 2. These are the best known bounds for
arbitrary k. Later Matoušek et al. [19] gave a geometric proof that is inspired by the
proof of Blagojević et al. [9].

More recently, Soberón [30] showed that ifmore color classes are available, then the
conjecture holds for any k.More precisely, for P1, . . . , Pn ⊂ R

d with n = (k−1)d+1,
each of size k, there exist k colorful sets whose convex hulls intersect. Moreover, there
is a point in the common intersection so that the coefficients of its convex combination
are the same for each colorful set in the partition. The proof uses Sarkaria’s tensor
product construction.

Recently Adiprasito et al. [1] established a relaxed version of the colorful
Carathéodory theorem and some of its descendants [4]. For the colorful Carathéodory
theorem, this allows for a (relaxed) traversal of arbitrary size, with a guarantee that the
convex hull of the traversal is close to the common point y. For the colorful Tverberg
problem, they prove a version of the conjecture where the convex hulls of the colorful
sets intersect approximately. This also gives a relaxation for Tverberg’s theorem [34]
that allows arbitrary-sized partitions, again with an approximate notion of intersection.
Adiprasito et al. refer to these results as no-dimensional versions of the respective clas-
sic theorems, because the dependence on the ambient dimension is relaxed. The proofs
use averaging arguments. The argument for the no-dimensional colorful Carathéodory
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theorem also gives an efficient algorithm to find a suitable traversal. However, the argu-
ments for the no-dimensional Tverberg theorem results do not give a polynomial-time
algorithm for finding the partitions.

Our contributions. We prove no-dimensional variants of the Tverberg theorem and
its colorful counterpart that allow for efficient algorithms. Our proofs are inspired
by Sarkaria’s method [29] and the averaging technique by Adiprasito, Bárány, and
Mustafa [1]. For the colorful version, we additionally make use of ideas of Soberón
[30]. Furthermore, we also give a no-dimensional generalized Ham-Sandwich theo-
rem [37] that interpolates between the Centerpoint Theorem and the Ham-Sandwich
Theorem [33], again with an efficient algorithm.

Algorithmically, Tverberg’s theorem is useful for finding centerpoints of high-
dimensional point sets, which in turn has applications in statistics andmesh generation
[21]. In fact, most algorithms for finding centerpoints are Monte-Carlo, returning
some point p and a probabilistic guarantee that p is indeed a centerpoint [11, 15].
However, this is coNP-hard to verify. On the other hand, a (possibly approximate)
Tverberg partition immediately gives a certificate of depth [21, 24]. Unfortunately,
there are no polynomial-time algorithms for finding optimal Tverberg partitions. In
this context, our result provides a fresh notion of approximation that also leads to very
fast polynomial-time algorithms.

Furthermore, the Tverberg problem is intriguing from a complexity theoretic point
of view, because it constitutes a total search problem that is not known to be solvable
in polynomial time, but which is also unlikely to be NP-hard. So far, such problems
have mostly been studied in the context of algorithmic game theory [25], and only
very recently a similar line of investigation has been launched for problems in high-
dimensional discrete geometry [12, 14, 20, 23]. Thus, we show that the no-dimensional
variant of Tverberg’s theorem is easy from this point of view. Our main results are as
follows:

– Sarkaria’s method uses a specific set of k vectors in R
k−1 to lift the points in the

Tverberg instance to a colorful Carathéodory instance. We refine this method to
vectors that are defined with the help of a given graph. The choice of this graph
is important in proving good bounds for the partition and in the algorithm. We
believe that this generalization is of independent interest and may prove useful in
other scenarios that rely on the tensor product construction.

– Let diam(x) denote the diameter of a set x . We prove an efficient no-dimensional
Tverberg result:

Theorem 1.1 (efficient no-dimensional Tverberg) Let P be a set of n points in d
dimensions, and let k ∈ {2, . . . , n} be an integer.

(i) For any choice of positive integers r1, . . . , rk that satisfy
∑k

i=1 ri = n, there is
a partition T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk | = rk , and a ball
B of radius

n diam(P)

mini ri

√
10�log4 k�

n − 1
= O

(√
n log k

mini ri
diam(P)

)

such that B intersects the convex hull of each Ti .
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Fig. 2 Left: a 4-partition of a planar point set. Larger Tverberg partitions are not possible because there are
not enough points. Right: a 5-partition on the same point set with a disk intersecting the convex hulls of
each set of the partition

(ii) The bound is better for the case n = rk and r1 = . . . = rk = r . There exists a
partition T1, . . . , Tk of P with |T1| = . . . = |Tk | = r and a d-dimensional ball
of radius

√
k(k − 1)

n − 1
diam(P) = O

(
k√
n
diam(P)

)

that intersects the convex hull of each Ti .
(iii) In either case, the partition T1, . . . , Tk can be computed in deterministic time

O(nd�log k�).

See Fig. 2 for a simple illustration.

– and a colorful counterpart (for a simple example, see Fig. 3):

Theorem 1.2 (efficient no-dimensional colorful Tverberg) Let P1, . . ., Pn ⊂ R
d be

point sets, each of size k, with k being a positive integer, so that the total number of
points is N = nk.

(i) Then, there are k pairwise-disjoint colorful sets A1, . . . , Ak and a ball of radius

√
2k(k − 1)

N
max

i
diam(Pi ) = O

(
k√
N

max
i

diam(Pi )

)

that intersects conv(Ai ) for each i ∈ [k].
(ii) The colorful sets A1, . . . , Ak can be computed in deterministic time O(Ndk).

– For any sets P, x ⊂ R
d , the depth of x with respect to P is the largest positive

integer k such that every half-space that contains x also contains at least k points
of P .
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Fig. 3 Left: a point set on three colors and four points of each color. Right: a colorful partition with a ball
containing the centroids (squares) of the sets of the partition

Theorem 1.3 (no-dimensional generalized Ham-Sandwich) Let k finite point sets P1,
. . ., Pk in R

d be given, and let m1, . . . , mk, 2 ≤ mi ≤ |Pi | for i ∈ [k], k ≤ d, be any
set of integers.

(i) There is a linear transformation and a ball B ∈ R
d−k+1 of radius

(2 + 2
√
2)max

i

diam(Pi )√
mi

,

such that the hypercylinder B × R
k−1 ⊂ R

d has depth at least �|Pi |/mi� with
respect to Pi , for i ∈ [k], after applying the transformation.

(ii) The ball and the transformation can be determined in time

O

(

d6 + dk2 +
∑

i

|Pi |d
)

.

The colorful Tverberg result is similar in spirit to the regular version, but from a
computational viewpoint, it does not make sense to use the colorful algorithm to solve
the regular Tverberg problem.

Compared to the results of Adiprasito et al. [1], our radius bounds are slightly
worse. More precisely, they show that both in the colorful and the non-colorful case,
there is a ball of radius O

(√
k/n diam(P)

)
that intersects the convex hulls of the sets

of the partition. They also show this bound is close to optimal. In contrast, our result
is off by a factor of O(

√
k), but derandomizing the proof of Adiprasito et al. [1] gives

only a brute-force 2O(n)-time algorithm. In contrast, our approach gives almost linear
time algorithms for both cases, with a linear dependence on the dimension.

Techniques. Adiprasito et al. first prove the colorful no-dimensional Tverberg theo-
rem using an averaging argument over an exponential number of possible partitions.
Then, they specialize their result for the non-colorful case, obtaining a bound that is
asymptotically optimal. Unfortunately, it is not clear how to derandomize the aver-
aging argument efficiently. The method of conditional expectations applied to their
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averaging argument leads to a running time of 2O(n). To get around this, we follow
an alternate approach towards both versions of the Tverberg theorem. Instead of a
direct averaging argument, we use a reduction to the colorful Carathéodory theorem
that is inspired by Sarkaria’s proof, with some additional twists. We will see that
this reduction also works in the no-dimensional setting, i.e., by a reduction to the
no-dimensional colorful Carathéodory theorem of Adiprasito et al., we obtain a no-
dimensional Tverberg theorem, with slightly weaker radius bounds, as stated above.
This approach has the advantage that their colorful Carathéodory theorem is based
on an averaging argument that permits an efficient derandomization using the method
of conditional expectations [2]. In fact, we will see that the special structure of the
no-dimensional colorful Carathéodory instance that we create allows for a very fast
evaluation of the conditional expectations, as we fix the next part of the solution. This
results in an algorithm whose running time is O(nd�log k�) instead of O(ndk), as
given by a naive application of the method. With a few interesting modifications, this
idea also works in the colorful setting. This seems to be the first instance of using
Sarkaria’s method with special lifting vectors, and we hope that this will prove useful
for further studies on Tverberg’s theorem and related problems.

Updates from the conference version. An extended abstract [10] of this work appeared
at the 36th International Symposium on Computational Geometry. The conference
abstract omitted the details of the results of Theorems 1.2 and 1.3. In this version, we
present all the missing details.

Outline of the paper. We describe our extension of Sarkaria’s technique in Sect. 2 and
an averaging argument that is essential for our results. In Sect. 3, we present the proof
of the no-dimensional Tverberg theorem (Theorem 1.1). The algorithm for computing
the partition is also detailed therein. Section 4 contains the results for the colorful
setting of Tverberg (Theorem1.2) and Sect. 5 presents results for the generalizedHam-
Sandwich theorem (Theorem 1.3). We conclude in Sect. 6 with some observations and
open questions.

2 Tensor Product and Averaging Argument

Let P ⊂ R
d be the given set of n points. We assume for simplicity that the centroid

of P , that we denote by c(P), coincides with the origin 0, that is,
∑

x∈P x = 0. For
ease of presentation, we denote the origin by 0 in all dimensions, as long as there is
no danger of ambiguity. Also, we write 〈 · , · 〉 for the usual scalar product between
two vectors in the appropriate dimension, and [n] for the set {1, . . . , n}.

2.1 Tensor Product

Let x = (x1, . . . , xd) ∈ R
d and y = (y1, . . . , ym) ∈ R

m be any two vectors. The
tensor product ⊗ is the operation that takes x and y to the dm-dimensional vector
x ⊗ y whose i j-th component is xi y j , that is,

x ⊗ y = (xy1, . . . , xym) = (x1y1, . . . , xd y1, x1y2, . . . , xd ym−1, . . . , xd ym) ∈ R
dm .
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Easy calculations show that for any x, x ′ ∈ R
d , y, y′ ∈ R

m , the operator ⊗ satisfies:

(i) x ⊗ y + x ′ ⊗ y = (x + x ′) ⊗ y;
(ii) x ⊗ y + x ⊗ y′ = x ⊗ (y + y′); and
(iii) 〈x ⊗ y, x ′ ⊗ y′〉 = 〈x, x ′〉〈y, y′〉.
By (iii), the L2-norm ‖x ⊗ y‖ of the tensor product x ⊗ y is exactly ‖x‖‖y‖. For
any set of vectors X = {x1, x2, . . .} in R

d and any m-dimensional vector q ∈ R
m , we

denote by X ⊗ q the set of tensor products {x1 ⊗ q, x2 ⊗ q, . . . } ⊂ R
dm . Throughout

this paper, all distances will be measured in the L2-norm.

A set of lifting vectors.We generalize the tensor construction that was used by Sarkaria
to prove the Tverberg theorem [29]. For this, we provide a way to construct a set of k
vectors {q1, . . . , qk} that we use to create tensor products. The motivation behind the
precise choice of these vectors will be clear in the next section, when we apply the
construction to prove the no-dimensional Tverberg result. Let G be an (undirected)
simple, connected graph of k nodes. Let

– ‖G‖ denote the number of edges in G,
– Δ(G) denote the maximum degree of any node in G, and
– diam(G) denote the diameter of G, i.e., the maximum length of a shortest path
between a pair of vertices in G.
We orient the edges of G in an arbitrary manner to obtain an oriented graph. We use

this directed version of G to define a set of k vectors {q1, . . . , qk} in ‖G‖ dimensions.
This is done as follows: each vector qi corresponds to a unique node vi of G and its
co-ordinates correspond to the row in the oriented incidence matrix assigned to vi .
More precisely, each coordinate position of the vectors corresponds to a unique edge
of G. If viv j is a directed edge of G, then qi contains a 1 and q j contains a −1 in the
corresponding coordinate position. The remaining co-ordinates are zero. That means,
the vectors {q1, . . . , qk} are in R

‖G‖. Also,
∑k

i=1 qi = 0. It can be verified that this
is the unique linear dependence (up to scaling) between the vectors for any choice of
edge orientations of G. This means that the rank of the matrix with the qi ’s as the rows
is k − 1. It can be verified that:

Lemma 2.1 For each vertex vi , the squared norm ‖qi‖2 is the degree of vi . For i 	= j ,
the dot product 〈qi , q j 〉 is −1 if viv j is an edge in G, and 0 otherwise.

An immediate application of Lemma 2.1 and property (iii) of the tensor product is
that for any set of k vectors {u1, . . . , uk}, each of the same dimension, the following
relation holds:

∥
∥
∥
∥
∥

k∑

i=1

ui ⊗ qi

∥
∥
∥
∥
∥

2

=
k∑

i=1

k∑

j=1

〈ui ⊗ qi , u j ⊗ q j 〉 =
k∑

i=1

k∑

j=1

〈ui , u j 〉〈qi , q j 〉

=
k∑

i=1

〈ui , ui 〉〈qi , qi 〉 + 2
k∑

1≤i< j≤k

〈ui , u j 〉〈qi , q j 〉

=
k∑

i=1

‖ui‖2‖qi‖2 − 2
∑

vi v j ∈E

〈ui , u j 〉 =
∑

vi v j ∈E

‖ui − u j‖2,

(1)
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where E is the set of edges of G.1
One of the simplest examples of such a set can be formed by selecting G to be the

star graph. Each of the k − 1 leaves correspond to a standard basis vector of R
k−1 and

the root corresponds to (−1, . . . ,−1) ∈ R
k−1. This is also the set used in Bárány and

Onn’s interpretation [8] of Sarkaria’s proof.
A more sophisticated example can be formed by taking G as a balanced binary tree

with k nodes, and orienting the edges away from the root. Let q1 correspond to the
root. A simple instance of the vectors is shown below:

q1

q2

q4 q5

q3

q6 . . .

The vectors in the figure above can be represented as the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q1
q2
q3
q4
q5
q6
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0 0 . . .

−1 0 1 1 0 0 0 0 . . .

0 −1 0 0 1 1 0 0 . . .

0 0 −1 0 0 0 1 1 . . .

0 0 0 −1 0 0 0 0 . . .

0 0 0 0 −1 0 0 0 . . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the i-th row of the matrix corresponds to vector qi . As ‖G‖ = k −1, each vector
is in R

k−1. The norm ‖qi‖ is either
√
2,

√
3, or 1, depending on whether vi is the root,

an internal node with two children, or a leaf, respectively. The height of G is �log k�
and the maximum degree is Δ(G) = 3.

2.2 Averaging Argument

Lifting the point set. Let P = {p1, . . . , pn} ⊂ R
d . We first pick a graph G with k ver-

tices, as in the previous paragraph, and we derive a set of k lifting vectors {q1, . . . , qk}
from G. Then, we lift each point of P to a set of vectors in d‖G‖ dimensions, by
taking tensor products with the vectors {q1, . . . , qk}. More precisely, for a ∈ [n] and
j ∈ [k], let pa, j = pa ⊗ q j ∈ R

d‖G‖. For a ∈ [n], we let Pa = {pa,1, . . . , pa,k} be
the lifted points obtained from pa . We have ‖pa, j‖ = ‖q j‖‖pa‖ ≤ √

Δ(G)‖pa‖. By

1 We note that this identity is very similar to the Laplacian quadratic form that is used in spectral graph
theory; see, e.g., the lecture notes by Spielman [31] for more information.
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the bi-linear properties of the tensor product,

c(Pa) = 1

k

k∑

j=1

(pa ⊗ q j ) = 1

k

⎛

⎝pa ⊗
⎛

⎝
k∑

j=1

q j

⎞

⎠

⎞

⎠ = 1

k
(pa ⊗ 0) = 0,

so the centroid c(Pa) coincides with the origin, for a ∈ [n].
The next lemma contains the technical core of our argument. The result is applied

in Sect. 3 to derive a useful partition of P into k subsets of prescribed sizes from the
lifted point sets.

Lemma 2.2 Let P = {p1, . . . , pn} be a set of n points in R
d satisfying

∑n
i=1 pi = 0.

Let P1, . . . , Pn denote the point sets obtained by lifting each pi ∈ P using the vectors
{q1, . . . , qk} defined using a graph G.

(i) For any choice of positive integers r1, . . . , rk that satisfy
∑k

i=1 ri = n, there is a
partition T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk | = rk such that the
centroid of the set of lifted points T := T1 ⊗ q1 ∪ . . . ∪ Tk ⊗ qk (this set is also a
traversal of P1, . . . , Pn) has distance less than

δ =
√

Δ(G)

2(n − 1)
diam(P)

from the origin 0.
(ii) The bound is better for the case n = rk and r1 = . . . = rk = n/k. There exists a

partition T1, . . . , Tk of P with |T1| = |T2| = . . . = |Tk | = r such that the centroid
of T := T1 ⊗ q1 ∪ . . . ∪ Tk ⊗ qk has distance less than

γ =
√

‖G‖
k(n − 1)

diam(P)

from the origin 0.

Proof We use an averaging argument to prove the claims, like Adiprasito et al. [1].
More precisely, we bound the average norm δ of the centroid of the lifted points
T1 ⊗ q1 ∪ . . . ∪ Tk ⊗ qk over all partitions of P of the form T1, . . . , Tk , for which the
sets in the partition have sizes r1, . . . , rk respectively, with

∑k
i=1 ri = n.

Proof of Lemma 2.2 (i) Each such partition can be interpreted as a traversal of the lifted
point sets P1, . . . , Pn that contains ri points lifted with qi , for i ∈ [k]. Thus, con-
sider any traversal of this type X = {x1, . . . , xn} of P1, . . . , Pn , where xa ∈ Pa , for
a ∈ [n]. The centroid of X is c(X) = (1/n)

∑n
a=1 xa . We bound the expectation

n2
E

(‖c(X)‖2) = E
(∥
∥∑n

a=1 xa
∥
∥2

)
, over all possible traversals X . By the linearity of
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expectation, E
(∥
∥
∑n

a=1 xa
∥
∥2

)
can be written as

E

⎛

⎝

∥
∥
∥
∥
∥

n∑

a=1

xa

∥
∥
∥
∥
∥

2
⎞

⎠ = E

⎛

⎜
⎜
⎝

n∑

a=1

‖xa‖2 +
∑

a,b∈[n]
a<b

2〈xa, xb〉

⎞

⎟
⎟
⎠

= E

(
n∑

a=1

‖xa‖2
)

+ 2E

⎛

⎜
⎜
⎝

∑

a,b∈[n]
a<b

〈xa, xb〉

⎞

⎟
⎟
⎠ .

We next find the coefficient of each term of the form ‖xa‖2 and 〈xa, xb〉 in the expec-
tation. Using the multinomial coefficient, the total number of traversals X is

(
n

r1, r2, . . . , rk

)

= n!
r1!r2! · · · rk ! .

Furthermore, for any lifted point xa = pa, j , the number of traversals X with pa, j ∈ X
is

(
n − 1

r1, . . . , r j − 1, . . . , rk

)

= (n − 1)!
r1! · · · (r j − 1)! · · · rk ! .

So the coefficient of ‖pa, j‖2 is

(n − 1)!
r1! · · · (r j − 1)! · · · rk

n!
r1! · · · rk !

= r j

n
.

Similarly, for any pair of points (xa, xb) = (pa,i , pb, j ), there are two cases in which
they appear in the same traversal: first, if i = j , the number of traversals is

(n − 2)!
r1! · · · (ri − 2)! · · · rk ! .

The coefficient of 〈pa,i , pb, j 〉 in the expectation is hence

ri (ri − 1)

n(n − 1)
.

Second, if i 	= j , the number of traversals is calculated to be

(n − 2)!
r1! · · · (ri − 1)! · · · (r j − 1)! · · · rk ! .
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The coefficient of 〈pa,i , pb, j 〉 is
rir j

n(n − 1)
.

Substituting the coefficients, we bound the expectation as

E

(
n∑

a=1

‖xa‖2
)

+ 2E

⎛

⎜
⎜
⎝

∑

a,b∈[n]
a<b

〈xa, xb〉

⎞

⎟
⎟
⎠ =

n∑

a=1

k∑

j=1

‖pa, j‖2 r j

n

+ 2
∑

a,b∈[n]
a<b

⎛

⎜
⎜
⎝

k∑

j=1

〈pa, j , pb, j 〉r j (r j − 1)

n(n − 1)
+

∑

i, j∈[k]
i 	= j

〈pa,i , pb, j 〉 rir j

n(n − 1)

⎞

⎟
⎟
⎠

=
k∑

j=1

r j

n

n∑

a=1

‖pa, j‖2

+ 2

n(n − 1)

∑

a,b∈[n]
a<b

⎛

⎝
∑

i, j∈[k]
〈pa,i , pb, j 〉rir j −

k∑

j=1

〈pa, j , pb, j 〉r j

⎞

⎠

=
k∑

j=1

r j

(
1

n

n∑

a=1

‖pa, j‖2
)

+
∑

a,b∈[n]
a<b

∑

i, j∈[k]

2〈pa,i , pb, j 〉rir j

n(n − 1)
−

∑

a,b∈[n]
a<b

k∑

j=1

2〈pa, j , pb, j 〉r j

n(n − 1)
.

We bound the value of each of the three terms individually to get an upper bound on
the value of the expression. The first term can be bounded as

k∑

j=1

r j

(
1

n

n∑

a=1

‖pa, j‖2
)

= 1

n

k∑

j=1

r j

(
n∑

a=1

‖pa‖2‖q j‖2
)

= 1

n

⎛

⎝
k∑

j=1

r j‖q j‖2
⎞

⎠
n∑

a=1

‖pa‖2 ≤ 1

n

⎛

⎝Δ(G)

k∑

j=1

r j

⎞

⎠
n∑

a=1

‖pa‖2

= 1

n
(Δ(G)n)

n∑

a=1

‖pa‖2 < Δ(G)
n diam(P)2

2
,

wherewe havemade use of Lemma2.1 and the fact that
∑n

a=1 ‖pa‖2 < n diam(P)2/2
(see [1, 4.1]). The second term can be re-written as
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∑

a,b∈[n]
a<b

∑

i, j∈[k]

2〈pa,i , pb, j 〉rir j

n(n − 1)
=

∑

i, j∈[k]

2rir j

n(n − 1)

∑

a,b∈[n]
a<b

〈pa,i , pb, j 〉

=
∑

i, j∈[k]

2rir j

n(n − 1)

∑

a,b∈[n]
a<b

〈pa ⊗ qi , pb ⊗ q j 〉

=
∑

i, j∈[k]

2rir j

n(n − 1)

∑

a,b∈[n]
a<b

〈pa, pb〉〈qi , q j 〉

=
∑

i, j∈[k]

2〈qi , q j 〉rir j

n(n − 1)

∑

a,b∈[n]
a<b

〈pa, pb〉 = 2

n(n − 1)

∑

i, j∈[k]
〈qi , q j 〉rir j

∑

a,b∈[n]
a<b

〈pa, pb〉.

The expression
∑

i, j∈[k]〈qi , q j 〉rir j can be further simplified as

∑

i, j∈[k]
〈qi , q j 〉rir j =

∑

1≤i= j≤k

〈qi , q j 〉rir j + 2
∑

1≤i< j≤k

〈qi , q j 〉rir j

=
∑

1≤i≤k

‖qi‖r2i + 2

⎛

⎝
∑

vi v j ∈E

(−1) · rir j +
∑

vi v j /∈E

0 · rir j

⎞

⎠

=
∑

1≤i≤k

degree(vi )r
2
i +

∑

vi v j ∈E

−2rir j

=
∑

vi v j ∈E

(r2i + r2j − 2rir j ) =
∑

vi v j ∈E

(ri − r j )
2,

where we have again made use of Lemma 2.1. Substituting, the second term becomes

2

n(n − 1)

∑

(vi ,v j )∈E

(ri − r j )
2

∑

a,b∈[n]
a<b

〈pa, pb〉 < 0,

since we can use c(P) = 0 to bound
∑

a,b∈[n],a<b〈pa, pb〉=(−1/2)
∑n

a=1 ‖pa‖2<0.
The second term is non-positive and therefore can be removed since the total expec-
tation is always non-negative. The third term is

∑

a,b∈[n]
a<b

k∑

j=1

−2〈pa, j , pb, j 〉r j

n(n − 1)
=

∑

a,b∈[n]
a<b

k∑

j=1

−2〈pa ⊗ q j , pb ⊗ q j 〉r j

n(n − 1)

=
∑

a,b∈[n]
a<b

k∑

j=1

−2〈pa, pb〉‖q j‖2r j

n(n − 1)
=

k∑

j=1

‖q j‖2r j ·
∑

a,b∈[n]
a<b

−2〈pa, pb〉
n(n − 1)
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<

k∑

j=1

‖q j‖2r j · n diam(P)2

2n(n − 1)
=

k∑

j=1

‖q j‖2r j · diam(P)2

2(n − 1)
<

nΔ(G) diam(P)2

2(n − 1)
.

Collecting the three terms, the expression is upper bounded by

diam(P)2Δ(G)n

2
+ diam(P)2Δ(G)n

2(n − 1)
= diam(P)2Δ(G)n

2

(

1 + 1

n − 1

)

= diam(P)2Δ(G)n2

2(n − 1)
,

which bounds the expectation by

1

n2 · diam(P)2Δ(G)n2

2(n − 1)
= diam(P)2Δ(G)

2(n − 1)
.

This shows that there is a traversal such that its centroid has norm less than

diam(P)

√
Δ(G)

2(n − 1)
. ��

Proof of Lemma 2.2 (ii) (Balanced Case) For the case that n is a multiple of k, and r1 =
. . . = rk = n/k = r , the upper bound can be improved: the first term in the expectation
is

k∑

j=1

r j

(
1

n

n∑

a=1

‖pa, j‖2
)

= r

n

k∑

j=1

n∑

a=1

‖pa, j‖2 = r

n

k∑

j=1

n∑

a=1

‖pa‖2‖q j‖2

= r

n

⎛

⎝
k∑

j=1

‖q j‖2
⎞

⎠
n∑

a=1

‖pa‖2 = r

n
2‖G‖

n∑

a=1

‖pa‖2

<
r

n
2‖G‖

(
n diam(P)2

2

)

≤ r‖G‖ diam(P)2,

The second term is zero, and the third term is less than

k∑

j=1

‖q j‖2r j · diam(P)2

2(n − 1)
= r

k∑

j=1

‖q j‖2 · diam(P)2

2(n − 1)

= 2r‖G‖diam(P)2

2(n − 1)
= r‖G‖ diam(P)2

n − 1
.
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The expectation is upper bounded as

n2
E(‖c(X)‖2) < r‖G‖ diam(P)2 + r‖G‖ diam(P)2

n − 1

�⇒ E(‖c(X)‖2) <
r‖G‖ diam(P)2

n2

(

1+ 1

n−1

)

= r‖G‖ diam(P)2

n(n − 1)
= ‖G‖ diam(P)2

k(n − 1)
,

which shows that there is at least one balanced traversal X whose centroid has norm
less than

√
‖G‖

k(n − 1)
diam(P),

as claimed. ��

3 Efficient No-Dimensional Tverberg Theorem

In this section we prove the results of Theorem 1.1:

Theorem 1.1 (efficient no-dimensional Tverberg) Let P be a set of n points in d
dimensions, and let k ∈ {2, . . . , n} be an integer.

(i) For any choice of positive integers r1, . . . , rk that satisfy
∑k

i=1 ri = n, there is a
partition T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk | = rk , and a ball B
of radius

n diam(P)

mini ri

√
10�log4 k�

n − 1
= O

(√
n log k

mini ri
diam(P)

)

such that B intersects the convex hull of each Ti .
(ii) The bound is better for the case n = rk and r1 = . . . = rk = r . There exists a

partition T1, . . . , Tk of P with |T1| = . . . = |Tk | = r and a d-dimensional ball of
radius

√
k(k − 1)

n − 1
diam(P) = O

(
k√
n
diam(P)

)

that intersects the convex hull of each Ti .
(iii) In either case, the partition T1, . . . , Tk can be computed in deterministic time

O(nd�log k�).

3.1 Proof of Theorem 1.1 (i)

We lift the points of P to P1, . . . , Pn using a graph G and the associated vectors
q1, . . . , qk as in Sect. 2.2. The centroid c(Pa) coincides with the origin, for a ∈ [n].
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Applying Lemma 2.2, there is a traversal T := T1 ⊗ q1 ∪ . . . ∪ Tk ⊗ qk of the lifted
points, with |T1| = r1, |T2| = r2, . . . , |Tk | = rk , such that its centroid has norm at
most δ.

We show that there is a ball of bounded radius that intersects the convex hull of
each Ti . Let α1 = r1/n, . . . , αk = rk/n be positive real numbers. The centroid of T ,
c(T ), can be written as

c(T ) = 1

n

k∑

i=1

∑

p∈Ti

p ⊗ qi =
k∑

i=1

1

n

⎛

⎝
∑

p∈Ti

p

⎞

⎠ ⊗ qi

=
k∑

i=1

ri

n

⎛

⎝ 1

ri

∑

p∈Ti

p

⎞

⎠ ⊗ qi =
k∑

i=1

αi ci ⊗ qi ,

where ci = c(Ti ) denotes the centroid of Ti , for i ∈ [k]. Using (1),

‖c(T )‖2 =
∥
∥
∥
∥
∥

k∑

i=1

αi ci ⊗ qi

∥
∥
∥
∥
∥

2

=
∑

vi v j ∈E

‖αi ci − α j c j‖2. (2)

Let x1 = α1c1, x2 = α2c2, . . . , xk = αkck . Then

k∑

i=1

xi =
k∑

i=1

αi ci =
k∑

i=1

ri

n

⎛

⎝ 1

ri

∑

p∈Ti

p

⎞

⎠ = 1

n

n∑

j=1

p j = 0,

so the centroid of {x1, . . . , xk} coincides with the origin. Using ‖c(T )‖ < δ and (2),

∑

vi v j ∈E

‖xi − x j‖2 =
∑

vi v j ∈E

‖αi ci − α j c j‖2 < δ2.

We bound the distance from x1 to every other xi . For each i ∈ [k], we associate
to xi the node vi in G. Let the shortest path from v1 to v j in G be denoted by
(v1, vi1 , vi2 , . . . , viz , v j ). This path has length at most diam(G). Using the triangle
inequality and the Cauchy–Schwarz inequality,

‖x1 − x j‖ ≤ ‖x1 − xi1‖ + ‖xi1 − xi2‖ + · · · + ‖xiz − x j‖
≤ √

diam(G)

√
‖x1 − xi1‖2 + ‖xi1 − xi2‖2 + · · · + ‖xiz − x j‖2

≤ √
diam(G)

√ ∑

vi v j ∈E

‖xi − x j‖2 <
√
diam(G) δ. (3)

Therefore, the ball of radius β := √
diam(G) δ centered at x1 covers the set

{x1, . . . , xk}. That means, the ball covers the convex hull of {x1, . . . , xk} and in par-
ticular contains the origin. Using the triangle inequality, the ball of radius 2β centered
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at the origin contains {x1, . . . , xk}. Then, the norm of each xi is at most 2β, which
implies that the norm of each ci is at most 2β/αi . Therefore, the ball of radius

2β

mini αi
= 2n

√
diam(G) δ

mini ri

centered at 0 contains the set {c1, . . . , ck}. Substituting the value of δ fromLemma 2.2,
the ball of radius

2n
√
diam(G)

mini ri

√
Δ(G)

2(n − 1)
diam(P) = n diam(P)

mini ri

√
2 diam(G)Δ(G)

n − 1

centered at 0 covers the set {c1, . . . , ck}.
Optimizing the choice of G. The radius of the ball has a term

√
diam(G)Δ(G) that

depends on the choice of G. For a path graph this term has value
√

(k − 1)2. For a
star graph, that is, a tree with one root and k − 1 children, this is

√
k − 1. If G is a

balanced s-ary tree, then the Cauchy–Schwarz inequality in (3) can be modified to
replace diam(G) by the height of the tree. Then, the term is

√�logs k�(s + 1), which
is minimized for s = 4. For this choice of G, the radius is bounded by

n diam(P)

mini ri

√
10�log4 k�

n − 1
,

as claimed.

3.2 Proof of Theorem 1.1 (ii) (Balanced Partition)

For the case n = rk and r1 = . . . = rk = r , we give a better bound for the radius of
the ball containing the centroids c1, . . . , ck . In this case, we have α1 = α2 = . . . =
αk = r/n = 1/k. Then, (2) is

‖c(T )‖2 =
∑

vi v j ∈E

‖αi ci − α j c j‖2 = 1

k2
∑

vi v j ∈E

‖ci − c j‖2.

Since ‖c(T )‖ < γ , we get

∑

vi v j ∈E

‖ci − c j‖2 < k2γ 2. (4)

Similar to the general case, we bound the distance from c1 to any other centroid c j . For
each i , we associate to ci the node vi in G. There is a path of length at most diam(G)

from v1 to any other node. Using the Cauchy–Schwarz inequality and substituting the
value of γ from Lemma 2.2, we get
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‖c1 − c j‖ ≤ √
diam(G)

√ ∑

vi v j ∈E

‖ci − c j‖2 <
√
diam(G) kγ

=
√
diam(G)‖G‖

k(n − 1)
k diam(P) =

√
k

n − 1

√
diam(G)‖G‖ diam(P).

Therefore, a ball of radius

√
k

n − 1

√
diam(G)‖G‖ diam(P)

centered at c1 contains the set c1, . . . , ck . The factor
√
diam(G)‖G‖ isminimizedwhen

G is a star graph, which is a tree. We can replace the term diam(G) by the height of
the tree. Then, the ball containing c1, . . . , ck has radius

√
k(k − 1)

n − 1
diam(P),

as claimed.

As balanced as possible. When k does not divide n, but we still want a balanced
partition, we take any subset of n0 = k�n/k� points of P and get a balanced Tverberg
partition on the subset. Then, we add the removed points one by one to the sets of
the partition, adding at most one point to each set. As shown above, there is a ball of
radius less than

√
k(k − 1)

n0 − 1
diam(P)

that intersects the convex hull of each set in the partition. Noting that

1√
n0 − 1

≤
√

k + 2

k

1√
n − 1

,

a ball of radius less than

√
(k + 2)(k − 1)

n − 1
diam(P)

intersects the convex hull of each set of the partition.

3.3 Proof of Theorem 1.1 (iii) (Computing the Tverberg Partition)

We now give a deterministic algorithm to compute no-dimensional Tverberg partition
T1, . . . , Tk . The algorithm is based on the method of conditional expectations. First, in
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Sect. 3.3.1 we give an algorithm for the general case when the sets in the partitions are
constrained to have given sizes r1, . . . , rk . The choice of G is crucial for the algorithm.

The balanced case of r1 = . . . = rk has a better radius bound and uses a different
graph G. The algorithm for the general case also extends to the balanced case with a
small modification, that we discuss in Sect. 3.3.2. We get the same runtime in either
case.

3.3.1 Algorithm for the General Case

As before, the input is a set of n points P ⊂ R
d and k positive integers r1, . . . , rk

satisfying
∑k

i=1 ri = n. Using tensor product construction, each point of P is lifted
implicitly using the vectors {q1, . . . , qk} to get the set {P1, . . . , Pn}. We then compute
the required traversal of {P1, . . . , Pn} using the method of conditional expectations
[2], the details of which can be found below. Grouping the points of the traversal
according to the lifting vectors used gives us the required partition. We remark that in
our algorithm, we do not explicitly lift any vector using the tensor product, thereby
avoiding costs associated with working on vectors in d‖G‖ dimensions.

We now describe a procedure to find a traversal that corresponds to a desired
partition of P . We go over the points in {P1, . . . , Pn} iteratively in reverse order and
find the traversal Y = (y1 ∈ P1, . . . , yn ∈ Pn) point by point. More precisely, we
determine yn in the first step, then yn−1 in the second step, and so on. In the first step,
we go over all points of Pn and select any point yn ∈ Pn that satisfies

E(‖c(x1, x2, . . . , xn−1, yn)‖2) ≤ E(‖c(x1, x2, . . . , xn−1, xn)‖2).

For the general step, supposewe have already selected the points {ys+1, ys+2, . . . , yn}.
To determine ys , we choose any point from Ps that achieves

E(‖c(x1, . . . , xs−1, ys, ys+1, . . . , yn)‖2) ≤ E(‖c(x1, . . . , xs, ys+1, . . . , yn)‖2). (5)

The last step gives the required traversal. We expand the expectation as

E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2)

= E

⎛

⎝

∥
∥
∥
∥
∥

1

n

(
s−1∑

i=1

xi +
n∑

i=s

yi

)∥
∥
∥
∥
∥

2 ⎞

⎠ = 1

n2 E

⎛

⎝

∥
∥
∥
∥
∥

(
s−1∑

i=1

xi +
n∑

i=s+1

yi

)

+ ys

∥
∥
∥
∥
∥

2 ⎞

⎠

= 1

n2

⎛

⎝E

⎛

⎝

∥
∥
∥
∥
∥

s−1∑

i=1

xi +
n∑

i=s+1

yi

∥
∥
∥
∥
∥

2 ⎞

⎠ + ‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi +
n∑

i=s+1

yi

)〉⎞

⎠

= 1

n2

⎛

⎝E

⎛

⎝

∥
∥
∥
∥
∥

s−1∑

i=1

xi +
n∑

i=s+1

yi

∥
∥
∥
∥
∥

2 ⎞

⎠ + ‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi

)

+
n∑

i=s+1

yi

〉⎞

⎠ .
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We pick a ys for which E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) is at most the average
over all choices of ys ∈ Ps . As the term

E

⎛

⎝

∥
∥
∥
∥
∥

s−1∑

i=1

xi +
n∑

i=s+1

yi

∥
∥
∥
∥
∥

2 ⎞

⎠

is constant over all choices of ys , and the factor 1/n2 is constant, we can remove them
from consideration. We are left with

‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi

)

+
n∑

i=s+1

yi

〉

= ‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi

)〉

+ 2

〈

ys,

n∑

i=s+1

yi

〉

.

(6)

Let ys = ps ⊗ qi without loss of generality. The first term is

‖ys‖2 = ‖ps ⊗ qi‖2 = ‖ps‖2‖qi‖2.

Let r ′
1, . . . , r ′

k be the number of elements of T1, . . . , Tk that are yet to be determined.

In the beginning, r ′
i = ri for each i . Using the coefficients from Sect. 2.2, E

(∑s−1
i=1 xi

)

can be written as

E

(
s−1∑

i=1

xi

)

=
s−1∑

i=1

k∑

j=1

pi, j
r ′

j

s − 1
=

k∑

j=1

r ′
j

s − 1

s−1∑

i=1

pi, j =
k∑

j=1

r ′
j

s − 1

s−1∑

i=1

pi ⊗ q j

= 1

s − 1

k∑

j=1

r ′
j

(
s−1∑

i=1

pi

)

⊗ q j =
(

1

s − 1

s−1∑

i=1

pi

)

⊗
⎛

⎝
k∑

j=1

r ′
j q j

⎞

⎠

= cs−1 ⊗
⎛

⎝
k∑

j=1

r ′
j q j

⎞

⎠ ,

where cs−1 = ∑s−1
i=1 pi/(s − 1) is the centroid of the first s −1 points. Using this, the

second term can be simplified as

2

〈

ys, E

( s−1∑

i=1

xi

)〉

= 2

〈

ps ⊗ qi , cs−1 ⊗
( k∑

j=1

r ′
j q j

)〉

= 2〈ps, cs−1〉
〈

qi ,

k∑

j=1

r ′
j q j

〉

= 2〈ps, cs−1〉
(

r ′
i‖qi‖2 −

∑

vi v j ∈E

r ′
j

)

= 〈ps, cs−1〉Ri ,
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where Ri = 2
(
r ′

i‖qi‖2 − ∑
vi v j ∈E r ′

j

)
. The third term is 2

〈
ys,

∑n
j=s+1 y j

〉
. Let y j =

p j ⊗ qm j for s + 1 ≤ j ≤ n. The term can be simplified to

2

〈

ys,

n∑

j=s+1

y j

〉

= 2
n∑

j=s+1

〈ys, y j 〉 = 2
n∑

j=s+1

〈ps ⊗ qi , p j ⊗ qm j 〉

= 2
n∑

j=s+1

〈ps, p j 〉〈qi , qm j 〉 = 2

〈

ps,
∑

p∈Ti

p‖qi‖2 −
∑

j :vi v j ∈E

∑

p∈Tj

p

〉

=
〈

ps, 2

(

‖qi‖2
∑

p∈Ti

p −
∑

j :vi v j ∈E

∑

p∈Tj

p

)〉

= 〈ps, Ui 〉,

where Ui = 2
(‖qi‖2 ∑

p∈Ti
p − ∑

j :vi v j ∈E
∑

p∈Tj
p
)
and Tj is the set of points in

ps+1, . . . , pn that was lifted using q j in the traversal. Collecting the three terms, we
get

‖ps‖2‖qi‖2 + 〈ps, cs−1〉Ri + 〈ps, Ui 〉 = αs Ni + βs Ri + 〈ps, Ui 〉, (7)

with

Ni = ‖qi‖2, αs := ‖ps‖2, βs := 〈ps, cs−1〉.

The terms αs, βs, ps are fixed for iteration s.

Algorithm. For each s ∈ [1, n], we pre-compute the following:

– prefix sums
∑s

a=1 pa , and
– αs and βs .

With this information, it is straightforward to compute a traversal in O(ndk) time by
evaluating the expression for each choice of ps . We describe a more careful method
that reduces this time to O(nd�log k�).

We assume thatG is a balancedμ-ary tree. Recall that each node vi ofG corresponds
to a vector qi . We augment G with the following additional information for each
node vi :

– Ni = ‖qi‖2: recall that this is the degree of vi .
– N st

i : this is the average of the N j over all elements v j in the subtree rooted at vi .
Since the subtree contains both internal nodes and leaves, this value is not μ + 1.

– r ′
i : as before, this is the number of elements of the set Ti of the partition that are
yet to be determined. We initialize each r ′

i := ri .
– Ri = 2

(
r ′

i Ni − ∑
vi v j ∈E r ′

j

)
, that is, r ′

i Ni minus the r ′
j for each node v j that is a

neighbor of vi in G, times two. We initialize Ri := 0.
– Rst

i : this is the average of the R j values over all nodes v j in the subtree rooted
at vi . We initialize this to 0.

– Ti , ui : as before, Ti is the set of vectors of the traversal that was lifted using qi .
The sum of the vectors of Ti is ui . We initialize Ti = ∅ and ui = 0.
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– Ui = 2
(‖qi‖2 ∑

p∈Ti
p − ∑

j :vi v j ∈E
∑

p∈Tj
p
) = 2

(
ui Ni − ∑

vi v j ∈E u j
)
, ini-

tially 0.
– U st

i : this is the average of the vectors U j for all nodes v j in the subtree of vi . U st

is initialized as 0 for each node.

Additionally, each node contains pointers to its children and parents. The quantities
N st , Rst are initialized in one pass over G.

In step s, we find an i ∈ [k] for which (7) has a value at most the average

As = 1

k

(
k∑

i=1

αs Ni + βs Ri + 〈ps, Ui 〉
)

= αs

k

k∑

i=1

Ni + βs

k

k∑

i=1

Ri +
〈

ps,
1

k

k∑

i=1

Ui

〉

= αs N st
1 + βs Rst

1 + 〈ps, U st
1 〉,

where v1 is the root of G. Then ys satisfies (5).
To find such a node vi , we start at the root v1 ∈ G. We compute the average As

and evaluate (7) at v1. If the value is at most As , we report success, setting i = 1. If
not, then for at least one child vm of v1, the average for the subtree is less than As ,
that is, αs N st

m + βs Rst
m + 〈ps, U st

m 〉 < As . We scan the children of v1 and compute the
expression to find such a node vm . We recursively repeat the procedure on the subtree
rooted at vm , and so on, until we find a suitable node. There is at least one node in the
subtree at vm for which (7) evaluates to less than As , so the procedure is guaranteed
to find such a node.

Let vi be the chosen node. We update the information stored in the nodes of the
tree for the next iteration. We set

– r ′
i := r ′

i − 1 and Ri := Ri − 2Ni . Similarly we update the Ri values for neighbors
of vi .

– We set Ti := Ti ∪{ps}, ui := ui + ps , andUi := Ui +2Ni ps . Similarly we update
the Ui values for the neighbors.

– For each child of vi and each ancestor of vi on the path to v1, we update Rst

and U st .

After the last step of the algorithm, we get the required partition T1, . . . , Tk of P . This
completes the description of the algorithm.

Runtime. Computing the prefix sums and αs, βs takes O(nd) time in total. Creating
and initializing the tree takes O(k) time. In step s, computing the average As and
evaluating (7) takes O(d) time per node. Therefore, computing (7) for the children of
a node takes O(dμ) time, as G is aμ-ary tree. In the worst case, the search for vi starts
at the root and goes to a leaf, exploring O(μ�logμ k�) nodes in the process and hence
takes O(dμ�logμ k�) time. For updating the tree, the information local to vi and its
neighbors can be updated in O(dμ) time. To update Rst and U st we travel on the path
to the root, which can be of length O(�logμ k�) in the worst case, and hence takes
O(dμ�logμ k�) time. There are n steps in the algorithm, each taking O(dμ�logμ k�)
time. Overall, the running time is O(ndμ�logμ k�) which is minimized for a 3-ary
tree.
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3.3.2 Algorithm for the Balanced Case

In the case of balanced traversals,G is chosen to be a star graph aswas done in Sect. 3.2.
Let q1 correspond to the root of the graph and q2, . . . , qk correspond to the leaves. In
this case the objective function αs Ni + βs Ri + 〈ps, Ui 〉 from the general case can be
simplified:

– for i = 2, . . . , k, we have that Ri = 2
(
r ′

i‖qi‖2 − ∑
vi v j ∈E r ′

j

) = 2(r ′
i − r ′

1); also,
we have

Ui = 2

⎛

⎜
⎜
⎜
⎝

∑

p∈Ti

p‖qi‖2 −
∑

p∈Tj
vi v j ∈E

p

⎞

⎟
⎟
⎟
⎠

= 2

⎛

⎝
∑

p∈Ti

p −
∑

p∈T1

p

⎞

⎠ ;

– for the root v1, Ri = 2
(
r ′

i‖qi‖2 − ∑
vi v j ∈E r ′

j

) = 2
(
(k − 1)r ′

1 − ∑k
j=2 r ′

j

)
; also,

we can write

Ui = 2

⎛

⎜
⎜
⎜
⎝

‖qi‖2
∑

p∈Ti

p −
∑

p∈Tj
vi v j ∈E

p

⎞

⎟
⎟
⎟
⎠

= 2

⎛

⎜
⎝(k − 1)

∑

p∈Ti

p −
∑

p∈⋃k
j=2 Tj

p

⎞

⎟
⎠ .

We augment G with information at the nodes just as in the general case, and use the
algorithm to compute the traversal. However, thiswould need time O(ndμ�logμ k�) =
O(ndk) since μ = (k − 1) and the height of the tree is 1. Instead, we use an auxiliary
balanced ternary rooted tree T for the algorithm, that contains k nodes, each associated
to one of the vectors q1, . . . , qk in an arbitrary fashion. We augment the tree with the
same information as in the general case, but with one difference: for each node vi ,
the values of Ri and Ui are updated according to the adjacency in G and not using
the edges of T . Then we can simply use the algorithm for the general case to get a
balanced partition. The modification does not affect the complexity of the algorithm.

4 No-Dimensional Colorful Tverberg Theorem

In this section, we prove Theorem 1.2 and give an algorithm to compute a colorful
partition.

Theorem 1.2 (efficient no-dimensional colorful Tverberg) Let P1, . . ., Pn ⊂ R
d be

point sets, each of size k, with k being a positive integer, so that the total number of
points is N = nk.

(i) Then, there are k pairwise-disjoint colorful sets A1, . . . , Ak and a ball of radius

√
2k(k − 1)

N
max

i
diam(Pi ) = O

(
k√
N

max
i

diam(Pi )

)
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that intersects conv(Ai ) for each i ∈ [k].
(ii) The colorful sets A1, . . . , Ak can be computed in deterministic time O(Ndk).

The general approach is similar to that in Sect. 3, but the lifting and the averaging
steps are modified.

4.1 Proof of Theorem 1.2 (i) (Colorful Partition)

Let q1, . . . , qk be the set of vectors derived from a graph G as in Sect. 2. Let π =
(1, 2, . . . , k) be a permutation of [k]. Let πi denote the permutation obtained by
cyclically shifting the elements of π to the left by i − 1 positions. That means,

π1 = (1, 2, . . . , k − 1, k),

π2 = (2, 3, . . . , k, 1),

π3 = (3, 4, . . . , 1, 2),

. . .

πk = (k, 1, 2, . . . , k − 2, k − 1).

Let P1, . . . , Pn be point sets in R
d , each of cardinality k. Let P1 = {p1,1, . . . , p1,k}

and P1, j = ∑k
i=1 p1,i ⊗ qπ j (i) be the point in R

d‖G‖ that is formed by taking tensor
products of the points of P1 with the permutation π j of q1, . . . , qk and adding them
up, for j ∈ [k]. For instance, P1,4 = p1 ⊗ q4 + p2 ⊗ q5 + · · · + pk ⊗ q3. This gives
us a set of k points P ′

1 = {P1,1, . . . , P1,k}. Furthermore,

k∑

j=1

P1, j =
k∑

j=1

k∑

i=1

p1,i ⊗ qπ j (i) =
k∑

i=1

k∑

j=1

p1,i ⊗ qπ j (i)

=
k∑

i=1

p1,i ⊗
⎛

⎝
k∑

j=1

qπ j (i)

⎞

⎠ =
k∑

i=1

p1,i ⊗
(

k∑

m=1

qm

)

= 0,

(8)

so the centroid of P ′
1 coincides with the origin. In a similar manner, for P2, . . . , Pn , we

construct the point sets P ′
2, . . . , P ′

n , respectively, each of whose centroids coincides
with the origin. We now upper bound diam(P ′

1). For any point P1,i , using (1) we can
bound the squared norm as

‖P1,i‖2 =
∥
∥
∥
∥
∥

k∑

m=1

p1,m ⊗ qπi (m)

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k∑

l=1

p1,π−1
i (l) ⊗ ql

∥
∥
∥
∥
∥

2

=
∑

vlvm∈E

∥
∥p1,π−1

i (l) − p1,π−1
i (m)

∥
∥2 ≤

∑

vlvm∈E

diam(P1)
2 ≤ ‖G‖ diam(P1)

2,

so that ‖P1,i‖ ≤ √‖G‖ diam(P1). For any two points P1,i , P1, j ∈ P ′
1,

‖P1,i − P1, j‖ ≤ ‖P1,i‖ + ‖P1, j‖
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≤ √‖G‖ diam(P1) + √‖G‖ diam(P1) = 2
√‖G‖ diam(P1).

Therefore, diam(P ′
1) ≤ 2

√‖G‖ diam(P1). We get a similar relation for each P ′
i . Now

we apply the no-dimensional colorful Carathéodory theorem from [1, Thm. 2.1] on
the sets P ′

1, . . . , P ′
n : there is a traversal X = {x1 ∈ P ′

1, . . . , xn ∈ P ′
n} such that

‖c(X)‖ < δ = maxi diam(P ′
i )√

2n

≤ 2
√‖G‖√
2n

max
i

diam(Pi ) =
√
2k‖G‖

N
max

i
diam(Pi ).

Let x1 = P1,i1 , . . . , xn = Pn,in where 1 ≤ i1, . . . , in ≤ k are the indices of the
permutations of π that were used. That means,

x j = Pj,i j =
k∑

l=1

p j,l ⊗ qπi j (l)
=

k∑

m=1

p j,π−1
i j

(m)
⊗ qm .

Then, we define the colorful sets A1, . . . , Ak as

A j := {
p1,π−1

i1
(i), p2,π−1

i2
(i), . . . , pn,π−1

in
(i)

}
,

that is, A j consists of the points of P1, . . . , Pn that were lifted using q j for j ∈ [k].
By definition, each A j contains precisely one point from each P ′

i , so it is a colorful
set. Let c j denote the centroid of A j . We expand the expression

c(X) = 1

n

n∑

j=1

Pj,i j = 1

n

n∑

j=1

k∑

l=1

p j,l ⊗ qπi j (l)
= 1

n

n∑

j=1

k∑

m=1

p j,π−1
i j

(m)
⊗ qm

= 1

n

k∑

m=1

n∑

j=1

p j,π−1
i j

(m)
⊗ qm = 1

n

k∑

m=1

⎛

⎝
n∑

j=1

p j,π−1
i j

(m)

⎞

⎠ ⊗ qm

=
k∑

m=1

1

n

⎛

⎝
n∑

j=1

p j,π−1
i j

(m)

⎞

⎠ ⊗ qm =
k∑

m=1

cm ⊗ qm .

Applying ‖c(X)‖2 < δ2, we get

∥
∥
∥
∥
∥

k∑

m=1

cm ⊗ qm

∥
∥
∥
∥
∥

2

=
∑

vl ,vm∈E

‖cl − cm‖2 < δ2,

where we made use of (1). Using the Cauchy–Schwarz inequality as in Sect. 3.1, the
distance from c1 to any other c j is at most

√
diam(G) δ. Substituting the value of δ,
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this is
√
2k diam(G)‖G‖/N maxi diam(Pi ). Now we set G as a star graph, similar to

the balanced case of Sect. 3.2 with v1 as the root. A ball of radius

√
2k(k − 1)

N
max

i
diam(Pi )

centered at c1 contains the set {c1, . . . , ck}, intersecting the convex hull of each A j ,
as required.

4.2 Proof of Theorem 1.2 (ii) (Computing the Colorful Partition)

The algorithm follows a similar approach as in Sect. 3.3. The input consists of the sets
of points P1, . . . , Pn . We use the permutations π1, . . . , πk of q1, . . . , qk to (implicitly)
construct the point sets P ′

1, . . . , P ′
n . Then we compute a traversal of P ′

1, . . . , P ′
n using

the method of conditional expectations. This essentially means determining a permu-
tationπi j for each P ′

i . The permutations directly determine the colorful partition. Once
again, we do not explicitly lift any vector using the tensor product, and thereby avoid
the associated costs.

We iterate over the points of {P ′
1, . . . , P ′

n} in reverse order and find a suitable
traversal Y = (y1 ∈ P ′

1, . . . , yn ∈ P ′
n) point by point. Suppose we have already

selected the points {ys+1, ys+2, . . . , yn}. To find ys ∈ P ′
s , it suffices to choose any

point that satisfies

E(‖c(x1, . . . , xs−1, ys, ys+1, . . . , yn)‖2) ≤ E(‖c(x1, . . . , xs, ys+1, . . . , yn)‖2).

Specifically, we find the point ys for which the conditional expectation expressed as
E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) is minimized. As in (6) from Sect. 3.3, this is
equivalent to determining the point that minimizes

‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi

)

+
n∑

i=s+1

yi

〉

= ‖ys‖2 + 2

〈

ys, E

(
s−1∑

i=1

xi

)〉

+ 2

〈

ys,

n∑

i=s+1

yi

〉

.

(9)

Let ys = ∑k
i=1 ps,i ⊗ qπ(i) for some permutation π ∈ {π1, . . . , πk}. The terms of (9)

can be expanded as

– first term:

‖ys‖2 =
∥
∥
∥
∥
∥

k∑

i=1

ps,i ⊗ qπ(i)

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k∑

l=1

ps,π−1(l) ⊗ ql

∥
∥
∥
∥
∥

2

=
∑

vlvm∈E

‖ps,π−1(l) − ps,π−1(m)‖2,
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using (1);
– second term: the expectation can be written as

E

(
s−1∑

i=1

xi

)

=
s−1∑

i=1

k∑

j=1

Pi, j
1

k
= 1

k

s−1∑

i=1

k∑

j=1

Pi, j = 0,

as in (8);
– third term: let π js+1 , . . . , π jn denote the respective permutations selected for

P ′
s+1, . . . , P ′

n in the traversal. Then

n∑

i=s+1

yi =
n∑

i=s+1

Pi, ji =
n∑

i=s+1

k∑

l=1

pi,l ⊗ qπ ji (l)
=

n∑

i=s+1

k∑

m=1

pi,π−1
ji

(m)
⊗ qm

=
k∑

m=1

(
n∑

i=s+1

pi,π−1
ji

(m)

)

⊗ qm =
k∑

m=1

∑

p∈A′
m

p ⊗ qm,

where A′
m ⊆ Am is the colorful set whose elements from Ps+1, . . . , Pn have

already been determined. Let Sm = ∑
p∈A′

m
p for each m = 1 . . . k. Then, the

third term can be written as

2

〈

ys,

n∑

i=s+1

yi

〉

= 2

〈
k∑

i=1

ps,i ⊗ qπ(i),

k∑

m=1

Sm ⊗ qm

〉

= 2
k∑

i=1

k∑

m=1

〈ps,i ⊗ qπ(i), Sm ⊗ qm〉

= 2
k∑

l=1

k∑

m=1

〈ps,π−1(l) ⊗ ql , Sm ⊗ qm〉

= 2
k∑

l=1

k∑

m=1

〈ps,π−1(l), Sm〉〈ql , qm〉

= 2
k∑

m=1

(

〈ps,π−1(m), Sm〉‖qm‖2 −
∑

vlvm∈E

〈ps,π−1(l), Sm〉
)

= 2
k∑

m=1

〈(

ps,π−1(m)‖qm‖2 −
∑

vlvm∈E

ps,π−1(l)

)

, Sm

〉

.

If τ is the permutation selected in the iteration for P ′
s , then we update A′

i = A′
i ∪

{ps,τ−1(i)} and Si = Si + ps,τ−1(i) for each i = 1, . . . , k.
For each permutationπ , the first and the third terms can be computed in O(‖G‖d) =

O(kd) time. There are k permutations for each iteration, so this takes O(k2d) time
per iteration and O(nk2d) = O(Ndk) time in total for finding the traversal.
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Remark 4.1 In principle, it is possible to reduce the problem of computing a no-
dimensional Tverberg partition to the problem of computing a no-dimensional colorful
Tverberg partition. This can be done by arbitrarily coloring the point set into sets of
equal size, and then using the algorithm for the colorful version. This can give a better
upper bound on the radius of the intersecting ball if the diameters of the colorful sets
satisfy

max
i

diam(Pi ) <
diam(P1 ∪ P2 ∪ . . . ∪ Pn)√

2
.

However, the algorithm for the colorful version has a worse runtime since it does not
utilize the optimizations used in the regular version.

5 No-Dimensional Generalized Ham-Sandwich Theorem

We prove Theorem 1.3 in this section:

Theorem 1.3 (no-dimensional generalized Ham-Sandwich) Let k finite point sets P1,
. . ., Pk in R

d be given, and let m1, . . . , mk, 2 ≤ mi ≤ |Pi | for i ∈ [k], k ≤ d, be any
set of integers.

(i) There is a linear transformation and a ball B ∈ R
d−k+1 of radius

(2 + 2
√
2)max

i

diam(Pi )√
mi

,

such that the hypercylinder B × R
k−1 ⊂ R

d has depth at least �|Pi |/mi� with
respect to Pi , for i ∈ [k], after applying the transformation.

(ii) The ball and the transformation can be determined in time

O

(

d6 + dk2 +
∑

i

|Pi |d
)

.

This is a no-dimensional version of a generalization of the Ham-Sandwich theorem
[33]. We briefly describe the history of the problem before detailing the proof.

The centerpoint theorem was proven by Rado in [26]. It states that for any set of n
points P ⊂ R

d , there exists some point cp(P) ∈ R
d , called the centerpoint of P , such

that cp(P) has depth at least �n/(d + 1)�. The centerpoint generalizes the concept of
median to higher dimensions. The theorem can be proven using Helly’s theorem [17]
or Tverberg theorem.

The Ham-Sandwich theorem [33] shows that for any set of d finite point sets
P1, . . . , Pd ⊂ R

d , there is a hyperplane H which bisects each point set, that is, each
closed halfspace defined by H contains at least �|Pi |/2� points of Pi , for i ∈ [d]. The
result follows by an application of the Borsuk–Ulam theorem [18].

Živaljević and Vrećica [37] and Dol’nikov [13], independently, proved a general-
ization of these two results for affine subspaces (flats):
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Theorem 5.1 Let P1, . . . , Pk be k ≤ d finite point sets in R
d . Then there is a (k − 1)-

dimensional flat F of depth at least |Pi |/(d − k + 2) with respect to Pi , for i ∈ [k].
For k = 1, this corresponds to the centerpoint theorem while for k = d, this is the
Ham-Sandwich theorem, and thereby interpolates between the two extremes.

We prove a no-dimensional version of this theorem, where 1/(d − k + 2) can be
relaxed to be an arbitrary but reasonable fraction. In fact, we prove a slightly stronger
version that allows an independent choice of fraction for each point set Pi individually.
The idea ismotivated by the result of Bárány et al., who showed in [6] that under certain
conditions of “well-separation”, d compact sets S1, . . . , Sd ⊂ R

d can be divided by a
hyperplane that such the positive half-space contains an (α1, . . . , αd)-fraction of the
volumes of S1, . . . , Sd , respectively. A discrete version of this result for finite point
sets was proven by Steiger and Zhao in [32], which they term as the generalized Ham-
Sandwich theorem. Our result can be interpreted as a no-dimensional version of this
result, but we do not have constraints on the point sets as in [6, 32].

Without loss of generality, we assume that the centroid c(P1) = 0.Wefirst approach
a simpler case:

Lemma 5.1 Let c(P1) = . . . = c(Pk) = 0 and m1, . . . , mk, 2 ≤ mi ≤ |Pi | for i ∈ [k],
be any choice of integers. Then the ball of radius

(2 + 2
√
2)max

i

diam(Pi )√
mi

centered at 0 has depth at least �|Pi |/mi� with respect to Pi , for i ∈ [k].
Proof Consider any point set Pi and a no-dimensional �|Pi |/mi�-partition of Pi . From
[1, Thm. 2.5], we know that the ball B centered at c(Pi ) = 0 of radius

(2 + √
2) diam(Pi )

√
�|Pi |/mi�

|Pi | < (2 + √
2) diam(Pi )

√
2

mi
= (2 + 2

√
2) diam(Pi )√

mi

intersects each set of the partition. Let H be any half-space that contains B. We
claim that H contains at least one point from each set in the partition. Assume for
contradiction that H does not contain any point from a given set in the partition.
Then, the convex hull of that set does not intersect H , and hence B, which is a
contradiction. This shows that B has depth �|Pi |/mi�. Let B ′ be the ball of radius
(2 + 2

√
2)maxi diam(Pi )/

√
mi centered at the origin. Then B ′ has depth at least

�|Pi |/mi� with respect to Pi for each i = 1, . . . , k. ��
We prove an auxiliary result that will be helpful in proving the main result:

Lemma 5.2 Let P1, . . . , Pk ⊂ R
d1 be finite point sets. Let v be any vector in R

d1 and
project P1, . . . , Pk on the hyperplane H via 0 with normal v. If some set X ⊂ H has
depth α1, . . . , αd respectively for the projected point sets, then X × Rv ⊂ R

d1 has
the same depths for the original point sets, where Rv is the one dimensional subspace
containing v.
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Proof Consider any half-spaceH ⊂ R
d1 that contains X × Rv . ThenH contains Rv ,

so it can be written as Ĥ×Rv , where Ĥ ⊂ H is a half-space containing X . Ĥ contains
at least αi points of each Pi . By orthogonality of the projection, H also contains at
least αi points of each Pi , proving the claim. ��
Proof of Theorem 1.3 (i) Given point sets P1, . . . , Pk with c(P1) = 0, we apply orthog-
onal projections on the points multiple times so that their centroids coincide. In the
first step, we set v1 = c(P2). Let l1 be the line through the origin containing v1 and
let Hv1 be the hyperplane via 0 with normal v1. Let f1 : R

d → Hv1 be the orthogo-
nal projection defined as f (p) = p − 〈p, v〉v/|v|2. Let P1

1 , . . . , P1
k ⊂ R

d−1 be the
point sets obtained by applying the orthogonal projection on P1, . . . , Pk , respectively.
Under this projection c(P1

1 ) = c(P1
2 ) = 0. In the next step we set v2 = c(P1

3 ) and
define l2 and Hv2 analogously. We project P1

1 , . . . , P1
k onto Hv2 to get P2

1 , . . . , P2
k

with c(P2
1 ) = c(P2

2 ) = c(P2
3 ) = 0. We repeat this process k − 1 times to get a set

of points Pk−1
1 , . . . , Pk−1

k ⊂ R
d−k+1 with c(Pk−1

1 ) = . . . = c(Pk−1
k ) = 0. Using

Lemma 5.1, there is a ball B of radius

(2 + 2
√
2)max

i

diam(Pk−1
i )√

mi
< (2 + 2

√
2)max

i

diam(Pi )√
mi

of the required depth. Applying Lemma 5.2 on Pk−2
1 , . . . , Pk−2

k ⊂ R
d−k+2, B ×	k−1

also has the required depth. Repeated application of Lemma 5.2 gives us B × 	k−1 ×
	k−2 × · · · × 	1. Since the Cartesian product may have more than d co-ordinates,
we apply a linear transformation so that the subspace spanned by the orthogonal set
	1, . . . , 	k−1 is R

k−1. Then, B × R
k−1 has the desired properties. ��

Proof of Theorem 1.3 (ii) To compute the vectors v1, . . . , vk−1, we note that

vi = c(Pi−1
i+1 ) = c( fi−1 ◦ fi−2 ◦ · · · ◦ f1(Pi−1

i+1 )) = fi−1 ◦ fi−2 ◦ · · · ◦ f1(c(Pi−1
i+1 )),

by linearity of the projection. Therefore, at the beginning we first compute each cen-
troid c(Pi ) and in each step we apply the projection on the relevant centroids. The
projection is applied 1 + · · · + k − 2 = O(k2) times. Computing the centroid in the
first step takes O

(∑
i |Pi |d

)
time. Computing the projection once takes O(d) time, so

in total O(dk2) time. Finding the linear transformation takes another O(d6) time. ��

6 Conclusion and FutureWork

We gave efficient algorithms for a no-dimensional version of Tverberg theorem and
for a colorful counterpart. To achieve this end, we presented a refinement of Sarkaria’s
tensor product construction by defining vectors using a graph. The choice of the graph
was different for the general- and the balanced-partition cases and also influenced the
time complexity of the algorithms. It would be interesting to find more applications of
this refined tensor product method. Another option could be to look at non-geometric
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generalizations based on similar ideas. It would also be interesting to consider no-
dimensional variants other generalizations of Tverberg’s theorem, e.g., in the tolerant
setting [22, 30].

The radius bound that we obtain for the Tverberg partition is
√

k off the optimal
bound in [1]. This seems to be a limitation in handling (4). It is not clear if this is an
artifact of using tensor product constructions. It would be interesting to explore if this
factor can be brought down without compromising on the algorithmic complexity. In
the general partition case, setting r1 = . . . = rk gives a bound that is

√�log k� worse
than the balanced case, so there is some scope for optimization. In the colorful case,
the radius bound is again

√
k off the optimal [1], but with a silver lining. The bound

is proportional to maxi diam(Pi ) in contrast to diam (P1 ∪ . . . ∪ Pn) in [1], which is
better when the colors are well separated.

The algorithm for colorful Tverberg theorem has a worse runtime than the regular
case. The challenge in improving the runtime lies a bit with selecting an optimal graph
as well as the nature of the problem itself. Each iteration in the algorithm looks at each
of the permutations π1, . . . , πk and computes the respective expectations. The two
non-zero terms in the expectation are both computed using the chosen permutation.
The permutation that minimizes the first term can be determined quickly if G is chosen
as a path graph. Thisworsens the radius boundby

√
k − 1. Further, computing the other

(third) termof the expectation still requires O(k)updates per permutation and therefore
O(k2) updates per iteration, thereby eliminating the utility of using an auxiliary tree
to determine the best permutation quickly. The optimal approach for this problem is
unclear at the moment.
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