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1 INTRODUCTION 

It is not enough to react stereotypically to stimuli to enable adaptive and intelligent 

behaviour in a complex environment. Instead, from the large stream of information reaching the 

organism at any moment, the relevant information must be prioritised. A large body of research 

demonstrated that a wide range of complex cognitive functions such as goal-directed attention as 

well as perception and working memory rely on internally-generated signals modulating sensory 

input (Saenz, Buracas & Boynton, 2002; Self et al, 2013; Zhaoping, 2019). Despite the substantial 

role of these modulatory influences in cognitive functioning, to date little is known about how they 

are implemented in the brain and what their contents constitute (Bastos et al., 2012; Pozzi, Bothe 

& Roelfsema, 2018; Lillicrap et al., 2020).  

The modulatory influences are supported by a complex net of recurrent connections in the 

brain: Abundant anatomical projections run not only from early sensory regions towards 

downstream brain areas (feedforward) but also in the opposite direction (feedback) (Felleman & 

van Essen. 1991), thereby enabling interareal crosstalk even in the absence of sensory input. The 

feedback projections tightly connect brain areas within the visual system (Michalareas et al., 

2016). Studies of visual mental imagery and visual working memory confirm this tight connection 

functionally by showing a multi-level propagation of internally-generated representations from 

frontal eye fields and lateral occipital cortex all the way down to early visual areas (Ester et al., 

2015; Lee, Kravitz & Baker, 2012). These studies provide compelling evidence that feedforward 

and feedback signals are concurrently represented in the same visual brain regions. However, the 

signal representations strongly overlap at the level at which they were measured. Therefore, it 

remains unclear how the visual brain separates feedforward and feedback signals, thus avoiding 

the mixture of the perceived and the imagined. 
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Feedback projections do not only connect brain areas within the visual system but are also 

known to closely connect brain regions in different sensory systems (Rockland & Ojima, 2003; 

Rockland & van Hoesen, 1994; Eckert et al., 2008; Beer et al., 2013). This brings up an interesting 

complementary question: how are visual representations activated by signals from other sensory 

systems? There is abundant evidence that representations in one sensory modality can be triggered 

by those from the other sensory modality: Natural sounds and spoken words elicit selective 

responses in early visual, fusiform and parahippocampal areas (Vetter, Smith & Muckli, 2014; 

O’Craven & Kanwisher, 2000), tactile mental imagery can be initiated by visually presented cue 

(Schmidt & Blankenburg, 2019), while visual instructions can initiate speech mental imagery (Lu 

et al., 2019). What mechanisms underlie this prompt transition of signals across sensory systems 

remains to be investigated. 

Building on the previous studies, we pose two critical questions about feedback 

modulations coming from within the same or from a different sensory system, respectively: (1) 

How are visual feedback representations not confused with visual feedforward input? (2) 

How are visual representations activated by feedback signals from another sensory system? 

The next two chapters will describe state-of-the-art research addressing these two questions.  

1.1 How are visual feedback representations not confused with visual feedforward input? 

Research focusing on delineation of feedforward and feedback signals branched off in two 

directions, namely, the differentiation by: (1) frequency bands within which the signals are 

transmitted and (2) cortical laminae through which these signals pass. A series of studies led by 

Fries and colleagues (Fries at al., 2001; Fries, 2015) investigated how rhythmic synchronization 

subserves directional signal transmission. First, this research group demonstrated that perception 

of a visual stimulus enhances synchronization between V1 and V4 in the gamma-frequency band 
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in macaque brain (Bosman et al., 2012; Rohenkohl, Bosman & Fries, 2018). Next, they explored 

if there is a relation between frequency-band rhythms and directed (feedforward/feedback) 

anatomical projections in the primate visual system (Bastos et al., 2015; Mejias et al., 2016). They 

found that initially identified gamma-band rhythm carries signals in the feedforward direction, 

while alpha/beta band subserves signal transmission in the feedback direction. Finally, these 

correlations were also established between the synchronization bands estimated from MEG human 

data and directed anatomical projections based on macaque brain (Michalareas et al., 2016).  

Building on the revealed specific role of frequency-band rhythms in transmission of 

feedforward and feedback signals, it is natural to assume that the experimental task manipulations 

of feedforward/feedback information streams in humans may reveal their differential 

representation in frequency space. However, the explicitly manipulated feedforward and feedback 

influences were found to be homogeneously distributed in frequency space when measured with 

EEG in humans (e.g., Xie, Kaiser & Cichy, 2020) or did not align with the frequency bands 

predicted from the animal data (Canales-Johnson et al., 2021). Overall, this series of studies 

revealed that specific frequency-band rhythms carry signals in feedforward/feedback directions in 

the visual system. However, an experimental manipulation of the feedforward/feedback signals 

has not yet revealed their separation by frequency-bands in humans, possibly due to insufficient 

signal sensitivity of the human neuroimaging methods compared to primate electrophysiology.  

In contrast, explicit manipulation of the feedforward/feedback signals did reveal effective 

differentiation of these signals by cortical depth both in primates and humans (for a review see 

Self et al., 2019). In animal work, stimulus-induced activity in V1 was shown to first emerge in 

the middle laminae, whereas feedback activity induced by figure-ground segregation, maintenance 

in working memory and covert attention shifts emerged in the deep and superficial layers (van 
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Kerkoerle et al., 2017). The results of this functional study fully correspond to an early 

neuroanatomical finding (Rockland & Pandya, 1984): Abundant feedforward connections project 

predominantly to the middle layer, while sparse feedback connections terminate outside the middle 

layer (Felleman and Van Essen, 1991; Bastos et al., 2012; Barone et al., 2000). Furthermore, 7T 

fMRI in humans allowed for sufficient spatial resolution to test the differentiation of feedforward 

and feedback signals by cortical depth in humans. Consistent with the results of animal research 

(Self et al., 2013; Kerkoerle et al., 2017), feedback-induced activations in humans were identified 

in one of the outer grey matter depth bins (superficial or deep) using a diversity of paradigms and 

analysis pipelines (Muckli et al., 2015; Kok et al., 2016; Lawrence et al., 2018; Aitkens et al., 

2021; Yu et al., 2019). Feedforward activations were spread over the grey matter with some 

predominance at the middle cortical depth (Muckli et al., 2015; Kok et al., 2016). Thus, the signal 

separation by cortical layer was established in animal research and the depth-dependent studies in 

humans generally correspond to the animal findings.  

Despite the overall good alignment of the results across species, feedforward/feedback 

differentiation with 7T fMRI in humans faces several challenges. Firstly, previous studies 

estimated feedforward and feedback signals in isolation using separate tasks. Instead, feedforward 

and feedback signals should be estimated in close-to-equal conditions to show that the differences 

in cortical depth induced by these signals are not due to task-related effects. Additionally, 

feedforward and feedback streams naturally happen concurrently rather than sequentially and thus 

their spatial dynamics might simply differ when each signal is estimated in isolation (e.g., feedback 

signal estimated in the presence of sensory input vs. when eyes closed is likely to show different 

depth distribution). Secondly, the majority of the results in human studies are based on data 

acquired with conventional gradient-echo echo-planar imaging which despite having a high signal 
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sensitivity shows low spatial specificity and is susceptible to influences from large locally 

unspecific blood vessels distant of the activated cortical layer (Gagnon et al., 2016; Koopmans et 

al., 2010; Menon et al., 1995; Turner, 2002). The effect of these confounds can be diminished with 

careful experiment design, analysis and post-processing (Polimeni et al., 2010; Koopmans, Barth 

& Norris, 2010; Uludag & Blinder, 2018), but only to an extent.  

Altogether, in order to explore how visual feedback representations are not confused with 

visual feedforward input, we conducted Study I (described below in more detail), where we aimed 

to overcome the limitation of isolated signal estimation in cortical depth. Furthermore, we 

conducted Study II to address the challenge of low spatial specificity when measuring cortical 

depth-dependent responses. 

1.2  How are visual representations activated by feedback signals from another sensory system? 

While the first critical question was focused on the separation of feedforward and feedback 

signals within the visual system, here we address the research investigating how signals from 

another sensory system initiate visual representations. Several neuroanatomical studies found a 

feedback-type connection from auditory to visual early cortices - either direct ones or via higher-

order areas (Rockland & Ojima, 2003; Rockland & van Hoesen, 1994; Cappe & Barone, 2005). 

Next, a series of functional studies confirmed a direct link between the auditory signals and the 

content-specific responses propagating through the visual brain regions (Vetter et al., 2014; Vetter 

et al., 2020). It was found that natural sound categories (e.g., “human” and “inanimate”) can be 

decoded in sighted blindfolded participants from early visual areas, superior temporal gyrus and 

auditory cortices (Vetter et al., 2014). As of now, it is not entirely clear if this category information 

is relayed to early visual areas via multisensory regions such as superior temporal gyrus or via 

direct anatomical connections between the auditory and visual early areas. The presence of the 
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auditory-induced information in visual areas might be due to visual mental imagery triggered by 

natural sounds; however, a similar pattern of results was identified in congenitally blind 

participants speaking against visual mental imagery explanation (Vetter et al., 2020). Yet, only in 

the congenitally blind group - but not in the sighted group - the patterns identified in early visual 

cortices could be generalized across participants (Musz et al., 2021), pointing at differences in 

employment of these areas by the two groups. Overall, the line of research investigating auditory-

induced responses in early visual areas clearly demonstrates a possibility of the signal transfer 

across the sensory systems. 

A different approach could be used to test more specifically the mechanisms enabling 

activation of representations across sensory modalities. Namely, the representations in two sensory 

systems need to converge to a high-level abstract representation which can in turn elicit item-

specific responses in any of these systems (e.g., the same representation elicited in response to a 

spoken word “cat” and an image of a cat). Therefore, if we identify where and when modality-

independent representations emerge, we will characterize how visual representations are activated 

by signals belonging to the other modality.  

We used a paradigm from object recognition research that could be suitable to study 

amodal representations. Previously used to track the spatiotemporal dynamics of visual signals 

(Shinkareva et al., 2011; Fairhall & Caramazza, 2013; Cichy et al., 2014; Kumar et al., 2017; 

Leonardelli, Fait & Fairhall, 2019), this paradigm can be also utilized to track perception time 

course in the other sensory systems. Notably, this paradigm allows to test for modality-independent 

representations, that is, when activity patterns elicited in response to two objects in one modality 

(e.g., images of two animals) resemble the activity patterns elicited by these objects in the other 

modality (e.g., hearing their names).  



 11 

Another close line of research demonstrated a possibility to generalize between natural 

sounds and natural scenes (Simanova et al., 2012; Jung, Fait & Walther, 2018). While these studies 

show correspondence in the brain regions supporting cross-modal representations, the inferences 

provided by these studies are likely to be constrained by the type of chosen stimulation: sounds 

and views of nature frequently co-occur (Hebb, 1949) throughout human’s lifetime, whereas 

spoken words and natural scenes do not have such a tight audiovisual association and are likely to 

require other mechanisms for cross-modal activation of representations. 

Overall, in order to investigate how visual representations are activated by feedback signals 

from another sensory system, we conducted Study III (described below in more detail). In this 

study, we tested a hypothesis that perception signals in two different sensory systems become more 

conceptual and modality-independent during object recognition, so that there is a point in time 

when the representations emerging in each modality can be generalized across these modalities.  

Altogether, in this work, we investigated how feedback signals coming from within the 

visual system or from a different sensory system - elicit visual representations. In this regard we 

addressed two respective research questions: (1) How are visual feedback representations not 

confused with visual feedforward input? (2) How are visual representations activated by 

feedback signals from another sensory system? Building on the research interrogating the first 

question, we conducted Studies I and II focusing on feedforward and feedback signal 

differentiation in cortical depth of V1 using 7T fMRI. Following the research which addresses the 

second question we conducted Study III, where we explored the mechanism of  cross-modal 

generalization using EEG.  

In Study I, we explored differentiation of feedforward and feedback signals by depth in V1 

grey matter. We used a mental rotation paradigm where participants were presented with an 
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oriented grating and were instructed to mentally rotate it in a certain direction for a certain amount 

of degrees. During the interval given to perform mental rotation, we read out the representations 

of the perceived (feedforward) and the mentally rotated (feedback) gratings from area V1 in 

superficial, middle and deep cortical depth bins approximating cortical laminae. Crucially, we used 

the same trials for assessing both feedforward and feedback signals, thereby avoiding the challenge 

of isolated signal estimation. We show a clear differentiation of the signal type by cortical depth 

which corresponds to the signal distribution in cortical laminae in primates: feedforward contents 

were more strongly represented in the middle compartment of grey matter, whereas feedback 

contents were more strongly represented in the outer (superficial and deep) cortical bins. Such 

spatial separation indicates that feedforward and feedback information streams majorly bypass 

each other within the same brain area which could be a mechanism for precluding a confusion 

between signals coming from the external world and the internally-generated contents.  

Study II built on the results from the Study I to more precisely estimate the signal-by-depth 

differentiation. In Study II we benchmarked three MR-sequences - gradient-echo, spin-echo, and 

vascular space occupancy - at 7T fMRI. We used a perceptual flicker paradigm to estimate 

information mainly carried by feedforward signals and working memory paradigm to estimate 

feedback signals during working memory maintenance. We demonstrated that the three tested MR-

sequences show correspondence in the separation of feedforward/feedback signals by cortical 

depth: feedforward and feedback information emerged in the middle and deep cortical 

compartments, respectively. The sharpest differentiation was achieved with the spin-echo 

sequence based on inter-compartment differences achieved when estimating each of the 

information streams. We conclude that the spin-echo method might offer a good compromise of 
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signal sensitivity and spatial specificity for future studies of feedforward/feedback mechanisms at 

7T fMRI.  

Study III addressed the question of how visual representations are activated by signals 

belonging to another modality. Specifically, we hypothesized that the neural representations in two 

different sensory modalities can converge towards conceptual representations that are modality-

independent. In Study III, we presented participants with images of objects and spoken words 

corresponding to the same objects while they were doing an orthogonal 1-back task. Using EEG 

and time-resolved multivariate pattern analysis we tracked visual and auditory category 

information to identify objects ‘category representations in each modality and across modalities. 

First, we found robust object category information in both visual and auditory modalities as well 

as a similar representational transition from individual-object level to a representation of the 

objects ‘category membership in each modality. These results suggest an analogous hierarchy of 

information processing across sensory channels. Despite the robust representations of objects and 

object categories in visual and auditory modalities, we did not find evidence for a shared supra-

modal code at the level of patterns extracted from EEG scalp electrodes. This result suggests that 

the contents of the different sensory hierarchies could be ultimately modality-unique.  

Overall, the results of our studies show that feedback signals within the visual system 

propagate all the way down to V1 enabling precise mental transformations (during mental rotation 

and working memory maintenance in Studies I and II, respectively) via effective delineation of 

feedback signals from sensory inputs and ultimately initiating distinct subjective experiences. This 

differentiation can be revealed with diverse MR-sequences at 7T fMRI, where spin-echo sequence 

could be particularly suitable for establishing cortical depth-specific effects in humans. However, 

we did not find modality-independent representations which, according to our hypothesis, may 
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subserve the activation of visual representations by the signals from another sensory system. This 

pattern of results indicates that identifying the mechanisms bridging different sensory systems is 

more challenging than exploring within-modality signal circuitry and this challenge requires 

further studies.  



A Chapter 2 “Study I: Perceived and mentally rotated contents are differentially represented in 

cortical depth of V1” (pages 15-35) was removed for copyright reasons. The text can be found 

here: https://doi.org/10.1038/s42003-021-02582-4 
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3 Study II: Benchmarking GE-EPI, SE-EPI and SS-SI-VASO sequences for depth-

dependent separation of feedforward and feedback signals in high-field MRI 

3.1 Introduction 

Recent advances in high-field fMRI have allowed neuroscientists to differentiate 

feedforward and feedback signals across cortical depth in the healthy human brain. Feedback 

signals were identified in superficial and/or deep grey matter compartments, whereas feedforward 

signals were found at the middle cortical depth or across all the cortical compartments (Bergmann 

et al., 2019; Lawrence et al., 2018; Iamshchinina et al., 2021b).  Such depth-specific separation of 

feedforward and feedback signals has been most firmly established in primary visual cortex 

(Muckli et al., 2015; Kok et al., 2016; Lawrence et al., 2018; Bergmann et al., 2019; Aitkens et al., 

2021; Iamshchinina et al., 2021b), but has also been found in somatosensory cortex (Yu et al., 

2019). In most of these studies, the depth-specific signal differentiation was established using 

gradient-echo echo-planar imaging sequence (GE-EPI). While GE-EPI yields strong blood-oxygen 

level dependent (BOLD) responses and thus offers high signal sensitivity, it is argued to offer 

relatively low spatial specificity (Menon et al., 1995; Turner, 2002; Koopmans et al., 2010; 

Polimeni et al., 2010; Gagnon et al., 2016). As spatial specificity is essential for the precise 

estimation of depth-dependent cortical profiles, alternative acquisition methods that offer higher 

spatial specificity have recently attracted attention: particularly, spin-echo (SE)-EPI BOLD 

(Yacoub et al., 2003; Duong et al., 2003; Olman et al., 2010; Boyacioglu et al., 2014) and the 

cerebral blood volume (CBV)-based laminar fMRI using the SS-SI-vascular space occupancy 

(VASO) method (Huber et al., 2014). On the flipside, however, these methods yield reduced signal 

sensitivity compared to GE-EPI (Zhao et. al., 2006; Huber et al., 2017). As the problem of signal 

differentiation in grey matter depth requires both high spatial specificity and signal sensitivity, it 
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is unclear how the tradeoff offered by each of the imaging methods pans out in a typical cognitive 

neuroscience experiment targeting feedforward and feedback information readout at 7T fMRI.  

Here, we benchmarked three MR-sequences at 7T - GE-EPI, SE-EPI and SS-SI-VASO - 

in their ability to differentiate feedforward and feedback signals in human early visual cortex (V1). 

The experiment consisted of four participants completing multiple scanning sessions with two 

complementary tasks: a perception task that predominantly probed cortical feedforward signals, 

and a working memory task that engages feedback signals. In the perception task, participants 

viewed oriented gratings while reacting to color changes of fixation cross. In the working memory 

task, they had to maintain specific grating orientations in working memory. We used multivariate 

pattern analysis to read out the perceived (feedforward) and memorized (feedback) orientations 

from neuronal signals across cortical depth. Basing our hypotheses on previous layer-specific 

work, we expected the perception signals to be predominantly encoded in the middle cortical bin 

and the working memory signals to emerge in one or both outer cortical bins (superficial and deep). 

We estimated these effects in every MR-sequence. For comparability of the results across the three 

imaging methods, we performed the same post-processing steps on the acquired data and estimated 

the effects on closely matching time intervals in the trial.  

Data analysis across all of the MR-sequences revealed the feedforward signal 

predominantly at the middle cortical compartment of area V1 and the feedback signal in the deep 

compartment. The results obtained with conventional GE-EPI generally agree with the results 

obtained with VASO and SE-EPI, indicating that GE-EPI is a suitable method for the exploration 

of signals in cortical depth with 7T fMRI. The VASO sequence showed weak representations of 

both feedforward and feedback signals, although the overall pattern of results corresponded to 

those found for the other sequences. Interestingly, SE-EPI was the only sequence yielding 
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statistically reliable differences between the cortical compartments that show feedforward and 

feedback modulations. We therefore suggest that in the context of a typical cognitive experiment 

such as here, SE-EPI may provide a suitable trade-off between spatial specificity and signal 

sensitivity. 

3.2 Methods 

3.2.1 Participants 

Four adults (age in range from 28 to 35; 2 female) participated in the study. All participants 

had normal or corrected-to-normal vision. Each participant had extensive experience with 

participating in psychophysics studies at high-field fMRI and participated in two sessions per MR-

sequence (GE, SE, VASO), resulting in 6 sessions per participant and 24 sessions in total. 

Participants gave their written informed consent for participation in the study as well as for 

publicly sharing all obtained data in pseudonymized form. They received monetary reimbursement 

for their participation. One of the participants did not complete all the perception runs during the 

first session of GE and first session of SE measurements, and thus only the data from the second 

sessions of both sequences is utilized for the feedforward signal estimation. The study was 

approved by the ethics committee of the University of Leipzig, Germany.  

3.2.2  Stimuli  

Stimuli were grayscale luminance-defined sinusoidal gratings generated using MATLAB 

(MathWorks, Natick, MA) in conjunction with the Psychophysics Toolbox (Brainard, 1997). The 

gratings were presented in an annulus (outer diameter: 6.7° of visual angle, inner diameter: 1.3° of 

visual angle) surrounding a central fixation point. The gratings had a spatial frequency of 2 cpd 

(12.34 Hz) and a Michelson contrast of 50%. Stimuli were displayed on an LCD projector (DLR-
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RS49E, JVC Ltd.) on a rear-projection screen positioned behind the head coil within the magnet 

bore. Participants viewed the screen through a mirror attached to the head coil. 

3.2.3 Experimental procedure 

3.2.3.1 Training procedure 

Before entering the MRI scanner, participants underwent a training procedure which 

comprised a minimum of 4 runs for all the participants. At the start of each trial, participants briefly 

saw two randomly oriented gratings (Figure 1). A subsequently presented task cue indicated which 

of the gratings needed to be memorized for the upcoming task. After an 11 second retention time 

period a probe grating was shown. The grating was slightly tilted clockwise or counterclockwise 

with respect to the grating that had been cued; the amount of additional tilt was regulated in a 

staircase procedure (described below). The participants’ task was to indicate whether the probe 

grating was tilted clockwise or counterclockwise from the memorized grating. After each trial, 

participants received a 1 second feedback about their response correctness. The inter-trial interval 

was 2 seconds. Each training run consisted of 16 trials and took 4 minutes 54 seconds. At the end 

of each run, participants received feedback about their average accuracy.  

3.2.3.2 Experimental perceptual task 

To specifically investigate visual processing dominated by feedforward signals, we 

included two perceptual runs in the experiment. During these runs, gratings with the two target 

orientations (25° and 115°) were shown in a pseudo-randomized order. On each trial, one of the 

grating orientations was shown for 15 seconds, flickering at 2 Hz. The presentation was followed 

by a fixation cross, which lasted 9 seconds in GE and SE measurements and 10 seconds in VASO 

measurements. Participants had to monitor the fixation cross for occasional brief changes in color, 

to which they had to respond with a button press. Overall, on every run we recorded 16 trials 
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evenly split between the two orientations conditions. The perceptual task was performed in the 

experiment during runs 3 and 6 (out of 9 runs overall). The fixation dot changed 7.4±0.03 times 

per trial at random time points, leading to approximately 118 changes, to which participants 

responded on average 75+/-3% (Mean ± SD) of the time. As for the experimental runs, each 

perceptual task run took 6 minutes 42 seconds for GE and SE measurements and 7 minutes for the 

VASO measurements.  

3.2.3.3 Experimental working memory task 

In the scanner, participants continued to perform the working memory task they were 

trained on (Figure 1), but with three major changes. First, participants did not receive feedback on 

their performance. Second, the ITI was prolonged to 9 seconds for the measurements with GE and 

SE sequences and to 10 seconds with VASO sequences. This was done to reduce the temporal 

overlap between the perceptual trace from the probe grating shown on the previous trial and the 

current trial. The length of each trial (including ITI) was 24 seconds in the GE and SE sessions 

and 25 seconds for the VASO sessions. The difference in trial lengths also ensured that every trial 

was evenly divisible by a fixed number of TRs: with a 3 second TR used for GE and SE 

measurements, each trial comprised exactly 8 TRs; whereas with 5 seconds TR used for the data 

acquisition with VASO, each trial comprised exactly 5 TRs. Third, the sample gratings shown at 

the beginning of each trial were no longer randomly oriented, but always either 25° or 115° 

orientated away from the vertical axis. We limited the number of possible orientations compared 

to the training session to increase the signal-to-noise ratio for each grating orientation and thereby 

enable us to differentiate orientation signals at the level of cortical depth bins.  

Every run consisted of 16 trials. In each half of trials, one of the two possible orientations 

(25° versus 115°) was selected for memorization. Trial order was fully randomized. The 
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experiment consisted of 7 runs, which each lasted 6 minutes 42 seconds for GE and SE and 7 

minutes for VASO. The average time for completing the whole experiment in one session was 80-

85 minutes. 

The anatomical scans for each participant were acquired separately during other studies in 

MPI Leipzig. None of these scans were older than 6 months.  

We invited every participant two times per scanning sequence (GE, SE and VASO) to 

increase signal-to-noise ratio. Each participant was thus scanned in 6 experimental sessions. The 

order of the scanning sequences was randomized across the sessions for every subject.  

3.2.3.4 Staircase Procedure 

To maintain a sensitive accuracy range across the whole experiment, including the training 

runs and the fMRI experiment, we used a staircase procedure that adjusted the amount of additional 

tilt in the probe grating compared to the memorized grating. The initial difference between the 

memorized orientation and the probe grating was set to 20°. For each correct response in each 

subsequent trial, the difference between the probe and rotated grating was reduced by 0.5°, making 

orientation discrimination harder. Conversely, the difference was increased by 2° for each 

incorrect response, making discrimination easier. We imposed an upper limit of 40° on the 

orientation difference. Across all the MR-sequences participants’ performance ranged in between 

(mean ± standard deviation): 8.8°±5.1° .  
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Figure 1. Methods. A. Perceptual task. On each trial participants viewed a sample grating flickering at 2 Hz. They 

had to press a button when the fixation cross was turning red. B. Working memory task. On each trial, participants 

viewed two sample gratings, then a cue (“1” or “2” in the screen center) indicated which of the grating orientations 

was to be memorized. After a retention interval of 11 seconds, a probe grating was shown, and participants had 2 

seconds to report whether the probe was tilted clockwise or counterclockwise compared to the memorized grating. C. 

Sagittal slice of the anatomical image of a representative participant overlaid with the three average functional images 

acquired with different MR-sequences (GE-EPI, SE-EPI, VASO) and cortical depth bins approximating cortical layers 

(superficial, middle and deep) from an equi-volumetric model (see Methods). The cortex is mapped within the region 

of V1 with voxel eccentricity values 1-3°.  
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3.2.4 Parameters of data acquisition 

fMRI was acquired on a 7-T Magnetom (Siemens Healthineers, Germany) whole-body 

scanner using a single-channel-transmit/32- channel RF receive head coil (Nova Medical Inc, 

USA). fMRI data were recorded with an isotropic spatial resolution of 0.8 mm using GE-EPI, SE-

EPI and SS-SI-VASO. For the GE-EPI protocol we used the CMRR MB sequence (TR 3000 ms, 

TE 24 ms, number of slices 50, 78/90° flip angle, 148 X 148 mm2 FOV, GRAPPA acceleration 

factor 3, slice partial Fourier 6/8, coronal orientation, F >> H phase encoding direction) (Moeller 

et al., 2010; Feinberg et al., 2010). For the SE-EPI protocol we used the following parameters (TR 

3000 ms, TE 38 ms, number of slices ~30, 90° flip angle, 148 X 148 mm2 FOV, GRAPPA 

acceleration factor 3, slice partial Fourier 6/8, coronal orientation, F >> H phase encoding 

direction). For the SS-SI-VASO protocol we used the following parameters (TR 2837.90 ms, TE 

25 ms,  TI 650 ms, number of slices 26, 26° flip angle, 133.0 X 133.0 mm2 FOV, GRAPPA 

acceleration factor 3, slice partial Fourier 6/8, orientation T > C-28.2, A >> P phase encoding 

direction). Shimming was performed using the standard Siemens procedure. Anatomical data were 

acquired using a MP2RAGE sequence with 0.7 mm isotropic resolution (TR 5000 ms, TE 2.45 

ms, TI 900/2750 ms, flip angle 5/3, bandwidth 250 Hz/Px, 224 × 224 mm FOV, GRAPPA 

acceleration factor 3, slice partial Fourier 6/8, base resolution 320, sagittal orientation, A>>P phase 

encoding direction, scan time 10 min 57 sec).  

3.2.5 Functional and anatomical data preprocessing 

3.2.5.1 Bias field correction and segmentation of the anatomical image 

The DICOM data were converted to NIfTI format using SPM12 (Wellcome Trust Center 

for Neuroimaging, University College London). The volumes were bias field-corrected using a 

SPM-based customized script (Luesebrink, Sciarra, Mattern 2017). To implement cortical depth-
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specific analysis, we extracted grey matter segmentation for each subject. To do this, first we used 

the SPM 12 segmentation algorithm and then the brainmask was generated by adding up the white 

matter, grey matter and cerebro-spinal fluid masks. Then we applied the FreeSurfer (version 6.0.0) 

recon algorithm to perform segmentation of white matter, grey matter, generating their surfaces 

and a binary brain mask of the cortical ribbon (1 if the voxel falls into the ribbon, 0 otherwise 

(steps 5-31 of recon-all algorithm)). We ran the recon algorithm on the extracted brainmask from 

a T1-weighted image with a ‘-hires’ flag for the data with resolution higher than 1 mm (Zaretskaya 

et al., 2017). After running the recon algorithm, the Freesurfer-generated grey and white matter 

segmentations were visually inspected in each participant, the borders between CSF and grey 

matter as well as grey matter and white matter were manually corrected within the region 

corresponding to the field of view of functional scans. 

3.2.5.2 Cortical depth and ROI definition 

The grey matter segmentation acquired with Freesurfer was further utilized to obtain 

cortical depth-specific compartments. Deep, middle and superficial compartments were 

constructed using an equi-volumetric model (Waehnert et al., 2014; Huntenburg et al., 2018). In 

order to analyze depth-specific activity in early visual areas, we applied a probabilistic surface-

based anatomical atlas (Benson et al., 2014) to reconstruct the surfaces of area V1 for each subject. 

This is an atlas of the visual field representation (eccentricity and polar angle), and eccentricity 

values were used to select the foveal sub-part of the surface excluding the area occupied with the 

fixation cross (1-3°). The extracted surface ROI (V1) was then projected into the volume space 

and intersected with the predefined cortical compartments. In this way, we obtained the V1 ROI 

in the Freesurfer anatomical space at three predefined cortical depths. 
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3.2.5.3 Functional data preprocessing 

Functional volumes were realigned to the first volume of the middle run using SPM 

software (Statistical Parametric Mapping; SPM12). In the data acquired with VASO sequence, the 

nulled and not nulled frames were realigned separately (Finn et al., 2019), the not-nulled volumes 

were interpolated using 7th order spline function to correspond to the acquisition time of the nulled 

frames (the nulled volumes did not undergo temporal interpolation in our study, in order to reduce 

the sharing of informational content across time points). Motion traces of nulled and not-nulled 

frames were then visually inspected to ensure good overlap of these contrasts. The nulled data was 

then corrected with the not-nulled volumes using the dynamic division method (Finn et al., 2019).  

After the realignment, we ensured that the functional runs acquired with each scanning 

sequence were well aligned with each other in each participant. This is required for multivariate 

pattern analyses of high-resolution fMRI data. For this we computed inter-run spatial cross-

correlations of the signal intensities of the functional volumes. The resulting average spatial 

correlation of experimental runs was very high: (Mean ± SD) 0.97±0.03 in GE-EPI sessions, 

0.986±0.01 in SE-EPI sessions and 0.99±0.004 in SS-SI-VASO sessions. Further, functional-

anatomical alignments were checked visually to ensure that the functional scans were well aligned 

to the anatomical image at the location of the ROIs. 

After that, the data acquired with all the three sequences was high-pass filtered (removing 

signal with f<1/128 Hz). Before classification analysis, the functional time series of every voxel 

within the ROI was z scored to correct for the scaling differences in voxel intensities within every 

run (Lawrence et al., 2018).  
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3.2.5.4 Registration  

We linearly coregistered the extracted ROIs with predefined cortical depth compartments 

to the EPI volumes within each subject using the Symmetric Normalization (SyN) algorithm of 

ANTs (Avants et al., 2008). Specifically, first, the T1-weighted anatomical image was registered 

using linear interpolation to the EPI volume averaged over all the functional runs. Next, we 

registered the ROIs with the predefined cortical depths to the EPI volume using nearest neighbor 

interpolation and by applying the coordinate mapping (with the voxel size resampled to the 

functional runs (0.8 isotropic)) obtained in the previous step. The resulting ROIs included the 

following number of voxels per cortical depth and MR-sequence (Mean ± SD): GE-EPI 

(Mdeep=1170.8±90, Mmid=1083±62, Msuper=1170.2±109), SE-EPI (Mdeep=1026.1±197, 

Mmid=955.1±158, Msuper=1035±216), SS-SI-VASO (Mdeep=1120.8±97, Mmid=1037±95, 

Msuper=1120±143). 

3.2.6 Multivariate pattern analysis 

3.2.6.1 Data extraction 

Multivariate pattern analysis (MVPA) was performed in each subject and experimental 

session separately. To prepare the EPI data for the MVPA, we first extracted activity patterns for 

a V1 ROI with the predefined cortical depths from the functional images in the experimental task 

runs. Specifically, in each run, we extracted voxel-wise activation values for the 2 oriented grating 

conditions (25° and 115°) and 8 trials for each condition across trial TRs starting at trial onset.  

3.2.6.2 Classification 

MVPA was carried out using linear support vector machines (SVMs; libsvm: 

http://www.csie.ntu.edu. tw/~cjlin/libsvm/) with a fixed cost parameter (c=1). We performed 

classification both across all the voxels in the full grey matter ribbon of V1 (Supplementary Figure 
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1) as well as separately at each cortical depth of V1. To this end, we trained the SVM classifiers 

on multi-voxel response patterns from all the experimental runs within each experimental session, 

leaving out one run (i.e., using leave-one-out cross validation), to discriminate between the 2 

oriented gratings for each time point in the trial. All trials in the training set were utilized for the 

classifier training (8 trials per orientation and training set in perception task and 48 trials per 

orientation and training set in working memory runs). Next, we tested the SVM classifier using 

the trials of the left-out run (8 trials in both tasks). The classifier was trained on each time point in 

the trial using the data from the training set and tested on the corresponding time point in the test 

set. As a result, we extracted decoding accuracy for every TR of all the runs in the main experiment 

(chance level 50%). The results were organized in the form of the matrix for further statistical 

testing: participants (4) x experimental runs (number of runs depended on the working memory 

(7) or perception task (2)) x TRs (number of TRs depended on the scanning sequence (GE - 8; SE 

- 8; VASO - 5)).  

3.2.6.3 Statistical testing 

For the statistical assessment of feedforward and feedback effects, we preselected the time 

interval in the trial of a respective task. We estimated the feedforward effect by averaging over the 

classification accuracy obtained during the 12 seconds interval following stimulus presentation in 

the perception task trials. In GE- and SE-acquired data, the measurements at 6, 9 and 12 seconds 

were included in this analysis (Supplementary Figure 1). The first time point in the trial (after 3 

seconds) was excluded as uninformative, as it was too close to the stimulus presentation to carry 

reliable orientation information. In the VASO data, the classification accuracies obtained at 5 and 

10 seconds in the trial were averaged and underwent further statistical testing. Here, we did not 
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exclude the first time point (after 5s), since this later time point was likely to already contain 

information about the stimulus presentation.  

For the statistical assessment of feedback contents, we preselected the critical time interval 

based on previous studies (Harrison & Tong, 2009; Albers et al., 2013; Rademaker, Chunkaras & 

Serences, 2019) where working memory representations could be decoded starting from 6 seconds 

after stimulus onset. For GE and SE measurements, the critical interval in our study included 

measurements at 6, 9, 12 and 15 seconds, that is, all the time points starting from 6 seconds until 

one time point after the probe grating onset (at 13 seconds) (Supplementary Figure 1). We also 

included the time point after the probe grating presentation, since this measurement was too close 

to the presentation of the probe grating to be contaminated by it (Iamshchinina et al., 2021b). For 

the statistical analysis of VASO-based estimates, we included the time points starting from 6 

seconds or later, which resulted in measurements at 10 and 15 seconds. 

To test whether decoding of orientation in feedforward and feedback signals was 

significantly above chance and to compare the decoding between cortical depth bins, we used a 

linear mixed modeling approach (fitlme function, Matlab, The Mathworks Inc, 2014). First, in 

order to obtain a baseline against which the presence of the signal could be tested, we generated 

permuted null distributions of classification accuracies for each participant, timepoint and 

sequence. On each permutation, we reshuffled orientation labels for all trials before performing 

the classification (1,000 iterations with shuffled data labels). Then, we averaged the classification 

results of all the permutations and compared them to the original classification results (the 

empirical effect). The feedforward and feedback conditions were estimated separately due to 

substantial differences in the paradigms and trial time intervals chosen. The data from all the runs 

of all the participants were concatenated within each experimental session without averaging (i.e., 
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16 data points in the perception task (4 subjects X 2 sessions per imaging method X 2 experimental 

runs) and 56 data points in the working memory task (4 subjects X 2 sessions per imaging method 

X 7 experimental runs)). The linear mixed effects model included an intercept, classification 

accuracy as a response variable, cortical depth variable as a fixed effects portion of the model 

(categorical predictor), participants number as a grouping variable with the random-effects terms 

for intercept and cortical depth specified separately (assuming no correlation between them): 

classification accuracy ~1+depth_effect + (1|participants) + (depth_effect-1|participants).  

3.3 Results 

In this study, we compared the performance of three MR-sequences (GE, SE and VASO) 

in distinguishing feedforward and feedback signals in cortical depth of area V1. Using each MR-

sequence and 7T fMRI, we measured feedforward and feedback-dominated information emerging 

during perception and memorization of orientated gratings, respectively (Figure 1). We collected 

data from 4 participants, where each participant undertook two sessions per scanning method. 

Signal estimation was performed in separate grey matter compartments (superficial, middle and 

deep) extracted with an equi-volumetric model (see Methods). For each depth bin, we trained 

support vector machine classifiers to differentiate multi-voxel response patterns evoked by the 

different grating orientations. For this analysis, we focused on time points which were expected to 

carry robust perceptual signals (measurements at 5 and 10 seconds in VASO measurements and 

for other sequences: 6, 9 and 12 seconds) or memory signals (measurements at 10 and 15 seconds 

in VASO measurements and for other sequences: 6, 9, 12 and 15 seconds). By comparing 

classification in these time windows between the grey matter bins, we establish which of the MR-

sequences uncovers differences in feedforward and feedback signals across cortical depth. 
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3.3.1 Feedforward signals across cortical depth in V1 

We examined the cortical profile of orientation-selective activity measured during the 

perception task with the three MR-sequences. Firstly, we established whether the different 

perceived orientations could be successfully decoded at different cortical depth. Secondly, 

following the predictions based on previous animal and human work (Rockland & Pandya, 1979; 

Lawrence et al., 2019), we hypothesized that the middle cortical bin represents the perceived 

contents more strongly than the outer cortical bins averaged together. 

Analysis of the GE-EPI data yielded above-chance classification results in the middle 

cortical bin (t(26)=2.6, p=0.01) but not in the other bins (p>0.1). There was also no significant 

difference between the cortical bins (p>0.4) (Figure 1A). 

Analysis of the SE-EPI data revealed a highly significant above-chance classification 

results in the middle (t(26)=5.0, p<0.001) and superficial bins (t(26)=4.2, p<0.001) but not in the 

deep bin (p=0.7). In accordance with our hypothesis about a differential representation of the 

feedforward signal, we observed a higher classification accuracy for perceived orientation in the 

middle bin than in the superficial and deep bins averaged together (t(26)=2.7, p=0.01). Unpacking 

this effect, we found a higher classification accuracy for perceived orientation in the middle bin 

than in the deep bin (t(26)=4.9, p<0.001), with no difference between the middle and the superficial 

bins (p=0.7).  

Finally, analysis of the VASO data yielded above-chance classification results for 

perceived orientation in the middle cortical bin (on the trend-level; t(30)=2.0 p=0.06) and not in 

the other bins (p>0.2), with no significant differences between the cortical bins (p>0.3).  

Overall, we localized feedforward signals at the middle cortical depth bin of V1 for all the 

MR-sequences. However, we only observed a significant feedforward representation in the middle 
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cortical compartment of V1 when the data were acquired with SE-EPI, but not with the other 

sequences. This differential feedforward representation for SE-EPI was mainly driven by a 

difference between the middle and deep cortical bins. 

 

Figure 2. Results. A. Classification accuracy for decoding of perceived grating orientation in V1 measured with GE-

EPI, SE-EPI and VASO. Above-chance classification results for perceived orientation were found in the middle 

cortical bin in all the sequences and at superficial depth for SE-EPI. Significant differentiation across cortical depth 

only emerged for SE-EPI, where decoding was stronger in the middle bin than in the other two bin combined. B. 

Classification accuracy for decoding of memorized grating orientation. Above-chance classification results for 

memorized orientation were found in the deep cortical bin in all the sequences and in the deep and superficial cortical 

bins for SE-EPI. A significant differentiation between the middle and outer depth bins was again only achieved using 

SE-EPI. The colored dots represent experimental sessions (2) for each participant (4). The data points are to show the 

correspondence between two separate sessions within each participant. Note that the statistical analysis was performed 

using experimental runs unaveraged within each of the sessions. All error bars denote standard error of mean within 
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participants. Represented p-values are fixed effects coefficients estimated with a t-test for each cortical depth 

(uncorrected) +: p<0.07, *: p<0.05, **: p < 0.01, ***: p < 0.001.   

3.3.2 Feedback signals across cortical depth in V1 

Next, we examined differences in revealing feedback representations in human V1 across 

the three scanning sequences. We analyzed the orientation-selective activity acquired during the 

working memory task focusing our analysis on the retention time interval (see Methods). As for 

the analysis of the perception signal, we aimed to establish which cortical compartments carry the 

representation of the memorized item. Firstly, we established whether the different memorized 

orientations could be successfully decoded at different cortical depth. Secondly, following our 

predictions about the layer-specific distribution of feedback signals, we tested if any of the outer 

cortical bins represented the memorized contents more strongly than the middle cortical bin. 

Analysis of the GE-EPI data revealed above-chance classification results in the deep 

cortical bin (t(104)=2.8, p=0.007) but not in the other bins (p>0.2), with no significant difference 

between the bins (p>0.3).  

Analysis of the SE-EPI data yielded above-chance classification in both the deep 

(t(102)=2.7, p=0.008) and superficial (t(102)=2.9, p=0.004) bins, but not in the middle bin 

(p>0.26). Comparing feedback representations across cortical depth revealed that classification 

accuracy for memorized orientation in the outer bins averaged together was higher than the in 

middle bin (at the trend level; t(102)=1.8, p=0.07). Pairwise comparison between all three cortical 

compartments showed higher classification accuracy for memorized orientation in the superficial 

bin than in the middle bin at the level of trend (t(102)=1.9, p<0.06) with no difference between the 

rest of the bins (p>0.15).  
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Finally, analysis of the VASO data revealed above-chance classification results for 

memorized orientation only in the deep cortical bin (t(110) = 2.6, p = 0.009) but not in the other 

cortical bins (p>0.5), with no difference between the cortical compartments (p>0.6).  

Overall, we observed feedback signals in the deep cortical compartment of V1 for all the 

MR-sequences. However, we only observed a differential representation of feedback signals across 

the middle and outer cortical compartments of V1 when the data was acquired with SE-EPI, but 

not with the other sequences. This differential feedback representation for SE-EPI was mainly 

driven by a difference between the superficial and middle cortical bins.  

3.4 Discussion 

In the present study, we investigated depth-dependent separation of feedforward and 

feedback signals at 7T fMRI using three MR-sequences: GE-EPI, SE-EPI and SS-SI-VASO. We 

used multivariate pattern classification to read out information about the contents of feedforward 

and feedback information across cortical depth in area V1.  

For all three sequences, we were able to decode feedforward signals from the middle depth 

bin of area V1, while feedback could be read out from the deep cortical bin. This consistency 

indicates that the widely used GE-EPI (Muckli et al., 2015; Kok et al., 2016; Lawrence et al., 2018; 

Bergmann et al., 2019; Aitkens et al., 2021; Iamshchinina et al., 2021b) is a viable method for 

decoding information from cortical depth bins. This suggests that despite its lower spatial 

specificity than SE-EPI or VASO (Yacoub et al., 2003; Duong et al., 2003; Olman et al., 2010; 

Huber et al., 2014), the more sensitive GE-EPI measurements can detect depth-specific signals in 

V1. 

From the three sequences SE-EPI stood out by being the only sequence in our study that 

yielded a statistically reliable depth-specific separation of the feedforward and feedback signals, 
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where feedforward signals were significantly stronger in the middle bin compared to the outer bins 

and feedback signals were stronger in the outer bins compared to the middle bin. These results 

align well with previous animal research and 7T work in humans (Kok et al., 2016; Aitken et al., 

2021; Bergmann et al., 2019) and highlight SE-EPI as a particularly interesting MR-sequence for 

establishing layer-specific effects in experiments of the kind used here, through its favorable trade-

off between sensitivity and spatial specificity. 

The depth differentiation was mainly reflected in differences between the middle and deep 

bins. The estimates obtained in the superficial depth bin were found to be less consistent across 

the MR-sequences. This could be related to a bias towards the surface veins observed in the SE-

EPI measurements (Supplementary Figure 3, Uludag, Mueller-Bierl, Ugurbil, 2009) which could 

have impacted the effects obtained at the superficial cortical depth. Alternatively, however, the 

generally lower classification obtained with VASO may have missed signals at the superficial 

depth. Future studies need to establish whether feedback signals at the superficial cortical depth 

can be disentangled from nonspecific contributions such as surface-vein effects. For this, they 

could use model-based approaches (Markuerkiaga, Bath & Norris, 2016; Havlicek & Uludag, 

2020; Markuardt et al., 2017; Huang et al., 2021) or combine high-field MRI with different 

imaging methods (Kashyap et al., 2020; Huber et al., 2018). 

While SE-EPI yielded the clearest depth separation in the current benchmark study, several 

other aspects need to be taken into consideration when deciding between imaging protocols for 

future studies. First, SE-EPI sequences typically yield reduced BOLD sensitivity compared to GE-

EPI (Boyacioglu et al., 2014). In this context, it is worth noting that our study employed a design 

with few participants with long acquisitions each, which may be the experimental regime 

particularly suited for SE-EPI. Second, they are affected by unspecific factors, such as residual 
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venous signal contributions, sensitivity to B1-inhomogeneity, which can dramatically affect the 

quality of acquired data, and are limited by specific absorption rates, which can drastically reduce 

the number of slices that can be acquired (van der Zwaag et al., 2014; Marques & Norris, 2018). 

Given these limitations, future studies could employ improved protocols for SE-EPI looking to 

overcome currently present challenges (Norris et al., 2011; Mugler, 2014; Gagoski et al., 2015; 

Han et al., 2021). 

In our experiment VASO data showed low decoding accuracy for feedforward and 

feedback signals (Supplementary Figure 2 and 3). This unfavorable outcome could be partially 

due to lower temporal resolution of VASO measurements and thus lower statistical power in its 

analysis compared to other MR-sequences. Specifically in our study, the selection of time intervals 

for the assessment of feedforward and feedback cortical profiles was more challenging for VASO, 

because each TR covered larger temporal chunks within the trial (see Supplementary Figure 3).  

In sum, whether GE-EPI, SE-EPI or VASO are the most appropriate choice for dissociating 

feedback from feedforward signals will in practice depend on multiple factors of the experimental 

context. Our study contributes to mapping out the choice space by providing a single point in this 

space through benchmarking for a typical cognitive neuroscience experiment – however, future 

investigation is needed to populate this choice space further, with different protocols and 

paradigms. 



A Chapter 4 “Study III: Resolving the time course of visual and auditory object categorization” 

(pages 56-68) was removed for copyright reasons.  
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5 GENERAL DISCUSSION 

In this work, we aimed to understand how feedforward and feedback mechanisms support 

complex visual cognition in humans. To this end, we conducted three studies to explore how 

feedback modulations coming from within the same or from a different sensory system activate 

visual representations.  

Studies I and II explored how the brain distinguishes feedforward and feedback 

representations within the visual system using different experimental paradigms and methods at 

7T fMRI. In Study I, we focused on the mechanisms for separation of feedforward and feedback 

representations in cortical depth of V1 grey matter. We demonstrated that in the mental rotation 

task, feedback contents were predominant in the outer cortical depth compartments (i.e., 

superficial and deep), whereas perceived contents carried mainly by feedforward signals were 

more strongly represented at the middle cortical compartment. This result demonstrates that 

concurrently represented information streams are separated by the cortical depth within the same 

brain region, the mechanism which may contribute to the delineation of the sensory input and the 

internally-generated contents.  

In Study II, we compared three MR-sequences with varying signal sensitivity and spatial 

specificity - gradient-echo, spin-echo and vascular space occupancy - in their ability to 

differentiate feedforward and feedback signals by cortical depth in V1. The resulting distribution 

of the signals in grey matter depth was consistent across all the three imaging methods: 

representations of perceived stimuli carried by feedforward signals emerged in the middle cortical 

compartment of area V1, while feedback signals (representation of an item held in working 

memory) were read out from the deep cortical compartment. Such correspondence among imaging 

techniques corroborates that the widely used gradient-echo (Muckli et al., 2015; Kok et al., 2016; 
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Lawrence et al., 2018; Bergmann et al., 2019; Aitkens et al., 2021; Iamshchinina et al., 2021b) is 

an appropriate method for decoding information from cortical depth bins. Critically, spin-echo 

sequence not only allowed to identify the reliable presence of the signals in the corresponding 

cortical compartments but also yielded reliable differences between the cortical compartments in 

representing the feedforward and feedback contents. This result indicates that the spin-echo 

method might offer a trade-off of signal sensitivity and spatial specificity suitable for a typical 

experiment manipulating feedforward/feedback signals at 7T fMRI.  

Study III explored how signals from a sensory modality other than vision elicit responses 

propagating through the visual system. Specifically, we tested a hypothesis that signals from two 

sensory systems can obtain modality-independent feature space which could be read out by both 

systems thereby enabling signal transition across them. Using EEG we tracked the time course of 

object category information in visual and auditory sensory systems to identify a timestamp of 

cross-modal generalization. We successfully identified object and object category representations 

in each modality by tracking auditory and visual signals in the course of object recognition. 

However, we did not observe significant cross-modal decoding and, thus, we did not find evidence 

for a transformation of representations from modality-specific codes to modality-independent 

conceptual representations. 

A substantial body of previous research demonstrated that top-down signals activate neural 

representations within the visual brain regions as a result of mental transformation (Albers et al., 

2013; Christophel et al., 2014; Christophel et al., 2018; Rademaker et al., 2019). Crucially, in 

Studies I and II we demonstrate how V1 functionally segregates external and internally-generated 

visual contents through cortical depth compartmentalization. Such signal segregation might 

underlie the differences in subjective experience of perceived and mentally represented contents, 
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whereas confusion of feedforward and feedback signals might cause symptoms of psychosis 

including hallucinations and delusions observed in diverse neurological conditions (Sterzer et al., 

2018; Haarsma, Kok & Browning, 2018). Further research is needed to establish the contribution 

of layer-specific signal differentiation in shaping coherent representation of the outer world.   

The results of Studies I and II align well with previous research investigating feedforward 

and feedback signals in V1 (Lawrence et al., 2018; Lawrence et al., 2019; Aitkens et al., 2021; 

Bergmann et al., 2018; Kok et al., 2016; Muckli et al., 2015; Huber et al., 2017). Notably, these 

studies utilized diverse paradigms manipulating the type of feedback (e.g., mental imagery, 

expectations, working memory). The consistency in results indicates that area V1 is not sensitive 

to the high-level top-down signals carrying information about a specific cognitive process which 

conjures up the low-level representation. However, previous 3T fMRI studies demonstrated an 

ability to extract other types of high-level information from area V1, such as categorical divisions 

(Williams et al., 2007; Vetter et al., 2014; Morgan & Muckli, 2016) and task-driven information 

(Seidemann & Geisler, 2018). A promising avenue for for future research is to investigate whether 

specific cognitive operations (e.g., expectation vs. short-term maintenance) can be differentiated 

at the level of V1 and whether the high-level information about a type of cognitive operation 

arrives in a different cortical depth compartment compared to the item-specific information, as 

predicted from neuroanatomical models (Markov et al., 2014; Bergman et al., 2019).  

Studies I and II challenge the previously suggested idea that mental images are 

‘‘perception-like’’ which was initially based on the observation in 3T fMRI studies that short-term 

memory and mental imagery contents resemble those evoked by bottom-up visual stimulation 

(Cichy, Heinzle & Haynes, 2012; Albers et al., 2013; Xu, 2021; Iamshchinina et al., 2021a). These 

finding in 3T fMRI studies corresponds to the observation in 7T fMRI research (Iamshchinina et 
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al., 2021b; Lawrence et al., 2018) that perception signals are represented not only in the middle 

cortical depth but can also be found in the outer cortical compartments dominated by feedback 

signals. This indicates an overlap in the in-depth distribution of the signals which can impact 

subjective experiences. However, the results of Studies I and II demonstrate that 

feedforward/feedback information streams dominate distinct cortical depth bins. Such a system 

where signals are only partially separated might be functionally beneficial - aiding subjective 

vividness of internally-generated representations through their partial overlap with the perceived 

representations, on the one hand, yet allowing for a reliable signal differentiation, on the other. 

Measuring feedforward/feedback signals using MR-sequence with improved spatial specificity in 

the future studies may refine our understanding of the crosstalk between feedforward/feedback 

information streams and its effects on cognitive functioning by gaining sharper signal 

differentiation and more precise mapping between cortical depth and observers’ subjective 

experiences (Persichetti et al., 2020).    

Studies I and II further offer a refined methodology for investigating feedforward/feedback 

differentiation in the human brain. They provide both the paradigm which effectively separates 

these signals in cortical depth and the MR-sequence which is conceivably more suitable for this 

purpose. Future studies could employ this combined methodology to establish a connection 

between feedforward/feedback signal transmission in cortical depth and across frequency-bands 

in humans. Figure-ground segregation studies in primates show that directed gamma-locked 

influences first emerge in the middle layer of area V1 and directed alpha-locked influences from 

V2-V4 first enter V1 through superficial and deep layers (Kerkoerle et al., 2014; Bastos et al., 

2018) - thus revealing a correspondence between the rhythms and cortical layers supporting them. 

Such correspondence has not yet been observed in humans. Recently developed paradigms allow 
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localizing feedforward/feedback signals within specific frequency bands using MEG (Stauch & 

Fries, 2021). Together, these methodologies would enable a spatiotemporally resolved view on 

feedforward and feedback dynamics in humans. 

In contrast to the results obtained within the visual system, we were not able to uncover 

how signals from one sensory system trigger selective responses in the other sensory system. Our 

hypothesis in Study III that auditory and visual representations converge to an abstract modality-

independent representation in the course of object recognition, was not confirmed. One possible 

reason is that object recognition represents a tangled interaction of driving feedforward and weaker 

modulatory feedback signals (Kar & DiCarlo, 2021). Since it is feedback signals which are likely 

to carry cross-modal representations, it might be challenging to measure them without increasing 

their signal-to-noise ratio, for example, via a task instruction emphasizing the necessity to abstract 

away from modality-driven details. Our experimental task did not impose such necessity, since we 

were particularly interested in measuring automatic processing of the object category 

representations and their possible cross-modal generalization in the absence of task-driven effects. 

Instead, reading/listening or making high-level cognitive judgements (e.g., category attribution) 

would aid more conceptual stimuli assessment independent of modality-specific features. In line 

with this, other manipulations which allow to increase feedback signal-to-noise ratio or reduce the 

impact of feedforward signals potentially impeding the extraction of the top-down information 

(e.g., backward masking) could improve tracking of feedback contents during object recognition.  

This work focused specifically on how feedforward and feedback signals activate visual 

representations within the visual system or across visual and auditory systems. However, at the 

moment the space of unknown regarding the organization of feedback signals and their interaction 

with feedforward inputs remains immense. There are at least three possible research directions that 
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could be pursued to unravel the mechanisms enabling feedforward/feedback information exchange 

in the brain: 

(1) Does task-relevant feedback to V1 target the center of the visual field or visual periphery 

or both? 

There are studies showing diverging results regarding the spatial distribution of high-level 

information across V1 cortical sheet: (1) enhanced feedback representations in the fovea compared 

to periphery; (2) enhanced feedback representation in the periphery compared to fovea; (3) 

homogeneous distribution of feedback information over the V1 space. 

The first group of studies comprising work by Zhaoping and colleagues demonstrated that 

providing conflicting inputs in the left and right eye results in feature misbinding and visual 

illusions in the peripheral vision but not in the center of the visual field (for review see Zhaoping, 

2019). These findings are interpreted as a result of task-relevant feedback from higher-order areas 

to V1 that majorly targets the foveal representation in order to facilitate object recognition and 

veto visual illusions. Thus, in this view task-related feedback signals prevail in the center of the 

visual field compared to visual periphery. This theoretical view (Zhaoping, 2019) is also supported 

by the results of the study (Williams et al., 2007), where participants assessed similarity of two 

objects shown in the visual periphery (more than 5 degrees outside of the fovea) but the object 

category information could be decoded specifically from within the foveal retinotopic cortex, 

presumably to enhance task performance. In direct contrast to the pattern of results showing 

enhanced feedback received by the fovea, the second group of studies demonstrated that the task-

relevant categorical feedback about natural sounds (Vetter et al., 2014) and visual context feedback 

signals from hippocampus (Smith & Muckli, 2010) could be extracted mainly from peripheral 

early visual regions. Furthermore, the third group of studies shows that information about task-
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relevant features (Serences & Boynton, 2007) could be extracted both from central and peripheral 

parts of the foveal retinotopic cortex. In line with this study a recent modeling work (Breedlove et 

al., 2020) showed that receptive fields of the feedback from higher processing levels (during 

mental imagery) are larger than those during perception possibly as a result of less sensitivity to 

stimulus variation in higher processing levels. Understanding how V1 receives and processes high-

level feedback is essential to unravel how task-relevant features are incorporated to update the 

percept. In Study I and II of the present work, we extracted feedback signals from the foveal part 

of V1 (0-3 visual degrees) which is presumably at odds with the second line of research. However, 

future studies are needed to more systematically explore the distribution of task-relevant top-down 

features in the cortical space of V1 and identify factors which impact this distribution.  

(2) Are feedforward and feedback effects driving and modulatory, respectively?   

In this work, we followed a common view on feedback signals as exerting modulatory 

effects on sensory representations, which are, based on animal findings, assumed to be weaker 

than the feedforward input driving neuronal responses in V1 (Klink et al., 2017; Kerkoerle et al., 

2017). One prominent reasoning to support this view is that V1 neurons, which further project to 

multiple downstream areas processing distinct input features, are not fully suppressed by the 

selective feedback from these downstream areas but keep supplying them with the feedforward 

input (Seidemann & Geisler, 2018). However, it has been shown in a series of studies (Covic & 

Sherman, 2011; De Pasquale & Sherman, 2011; Bastos et al., 2012) that modulatory and driving 

cells are present both among those projecting down- and upstream the visual hierarchy, hence 

making driving and modulatory effects at the level of neural populations orthogonal to the 

direction of the information stream. Driving feedback signals are considered essential, for 

example, for the predictive coding theory, since top-down predictions need to elicit responses in 
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their targets - cells which report prediction errors (Bastos et al., 2012). Future studies are needed 

to find out when feedback mediates modulatory and driving effects on sensory input (van Loon et 

al., 2016) and how it affects the contents of the feedback representations.  

(3) How strongly feedforward/feedback information streams depend on the respective 

anatomical projections?  

One of the premises of the current work was that abundance of feedback anatomical 

projections in the visual system necessitates massive recurrence in visual cognition. However, a 

recent study shows that cortico-cortical projections estimated over a hundred brain areas could 

predict the functional connectivity within frequency bands for feedforward - but not feedback - 

signal transmission (Vezoli et al., 2021). One of the suggested reasons for such a divergence 

between the feedback anatomical projections and the feedback functional connectivity is a 

possibility for the brain to flexibly establish functional connections between the areas depending 

on learning. Yet, the present empirical evidence (Jia et al., 2020) suggests the opposite: orientation 

discrimination learning in humans increases feedforward rather than feedback layer-to-layer 

connectivity possibly through gating of perceptual decisions via sensory plasticity. An exciting 

avenue for the future studies would be to investigate the effects of learning on employment of 

feedforward and feedback anatomical projections and establishing whether learning is the core 

factor improving the mapping between the feedback cortico-cortical projections and functional 

connectivity. 

To summarize, this work focused on how feedforward and feedback signals are 

differentiated within the same sensory system and integrated across sensory systems. The results 

of our studies elucidate how perceived and internally-generated contents initiated by top-down 

signals are simultaneously represented in different cortical compartments of area V1. These results 
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reflect a general strategy for implementation of multiple cognitive functions within the same 

sensory system. For the more precise estimation of signal-by-depth separation in humans, we 

mapped out the choice space of paradigms and MR-protocols suitable for a typical cognitive 

neuroscience experiment thus further contributing to optimization of acquisition pipelines for 

depth-specific imaging at 7T fMRI. In this work, we did not find how sensory signals from one 

sensory system initiate visual representations and suggested experimental manipulations which 

could further test mechanisms for cross-modal signal transmission. With this, our results contribute 

to a large body of research interrogating how feedforward and feedback signfals give rise to 

complex visual cognition.  
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7 SUPPLEMENTARY MATERIALS  

7.1 Supplementary Material – Study I  

Supplementary materials for “Study I: Perceived and mentally rotated contents are differentially 

represented in cortical depth of V1” (pages 93-99) were removed for copyright reasons. The text 

can be found here: https://doi.org/10.1038/s42003-021-02582-4 
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7.2 Supplementary Material - Study II 

 

Supplementary Figure 1. Left column. Classification time series of feedforward (perceived) contents (i.e. grating 

orientations) extracted from the full grey matter ribbon (all voxels included in classification analysis) and represented 

for every MR sequence. During the stimulus presentation phase of the trial, a significant representation of perceived 

grating orientation  emerged in the analysis of GE- and SE-acquired data (t(26)=2.96, p=0.007, t(26)=3.1, p=0.004 for 

GE and SE, respectively). VASO data yielded above-chance classification results for perceived orientation at the level 

of trend (t(30)=1.9, p=0.07). Thus, we established the presence of the feedforward signal in the data acquired with all 
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the sequences. Somewhat weaker representational strength obtained from VASO measurements could be due to 

coarser time resolution and consequently the inclusion of less time points in this analysis. Right column. Same as the 

left column but for the feedback (working memory) classification results. The analysis based on all the voxels in the 

V1 ROI showed an above-chance classification results for memorized orientation in all the sequences (t(104)=1.9, 

p=0.06, t(102)=2.8, p=0.005, t(110)=2.6, p=0.01 for GE, SE and VASO sequences, respectively). Thus, our results 

indicate that it is possible to decode working memory representations from the data acquired not only with GE 7T 

fMRI (Lawrence et al., 2018) but also SE-EPI and VASO scanning methods.



 

 

 

Supplementary Figure 2. Left column. Time series of classification accuracy for feedforward contents (perceived 

orientation) extracted from the three approximated cortical depth bins and represented for every MR sequence. Right 

column. Same as the left column but for the feedback contents (memorized orientation). 
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Supplementary Figure 3. Exclusion of the voxels potentially containing input from vein vessels in the data 

acquired during perception task with SE-EPI sequence. Voxels with the lowest intensity and highest variance 

(criteria taken from Menson et al., 1993) were excluded before performing the classification analysis at different 

percentages (from 2% to 19% of voxels, x-axis). We assumed that if voxels at the superficial cortical level contain 

macrovasculature, the exclusion of these voxels should decrease the classification accuracy in the superficial bin but 

not in the middle or deep bins. Fitting linear slopes in the classifier estimates obtained from each cortical bin revealed 

a significant decrease in decoding from the superficial compartment (blue, slope significantly different from 0 slope, 

p=0.02), as more voxels were excluded. Such a tendency was not observed in the middle (pink) and deep (cyan) 

cortical bins (p=0.3 and p=0.5, respectively). 
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8.2 Summary of the Main Results 

Vast majority of visual cognitive functions from low to high level rely not only on 

feedforward signals carrying sensory input to downstream brain areas but also on internally-

generated feedback signals traversing the brain in the opposite direction. The feedback signals 

underlie our ability to conjure up internal representations regardless of sensory input – when 

imagining an object or directly perceiving it. Despite ubiquitous implications of feedback signals 

in visual cognition, little is known about their functional organization in the brain.  

Multiple studies have shown that within the visual system the same brain region can 

concurrently represent feedforward and feedback contents. Given this spatial overlap, (1) how 

does the visual brain separate feedforward and feedback signals thus avoiding a mixture of 

the perceived and the imagined? Confusing the two information streams could lead to potentially 

detrimental consequences. Another body of research demonstrated that feedback connections 

between two different sensory systems participate in a rapid and effortless signal transmission 

across them. (2) How do nonvisual signals elicit visual representations?  

In this work, we aimed to scrutinize the functional organization of directed signal 

transmission in the visual brain by interrogating these two critical questions. In Studies I and II, 

we explored the functional segregation of feedforward and feedback signals in grey matter depth 

of early visual area V1 using 7T fMRI. In Study III we investigated the mechanism of cross-modal 

generalization using EEG. 

In Study I, we hypothesized that functional segregation of external and internally-

generated visual contents follows the organization of feedforward and feedback anatomical 

projections revealed in primate tracing anatomy studies:  feedforward projections were found to 
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terminate in the middle cortical layer of primate area V1, whereas feedback connections project to 

the superficial and deep layers. We used high-resolution layer-specific fMRI and multivariate 

pattern analysis to test this hypothesis in a mental rotation task. We found that rotated contents 

were predominant at outer cortical depth compartments (i.e. superficial and deep). At the same 

time perceived contents were more strongly represented at the middle cortical compartment. These 

results correspond to the previous neuroanatomical findings and identify how through cortical 

depth compartmentalization V1 functionally segregates rather than confuses external from 

internally-generated visual contents.  

For the more precise estimation of signal-by-depth separation revealed in Study I,  next we 

benchmarked three MR-sequences at 7T - gradient-echo, spin-echo, and vascular space occupancy 

- in their ability to differentiate feedforward and feedback signals in V1. The experiment in Study 

II consisted of two complementary tasks: a perception task that predominantly evokes feedforward 

signals and a working memory task that relies on feedback signals. We used multivariate pattern 

analysis to read out the perceived (feedforward) and memorized (feedback) grating orientation 

from neural signals across cortical depth. Analyses across all the MR-sequences revealed 

perception signals predominantly in the middle cortical compartment of area V1 and working 

memory signals in the deep compartment. Despite an overall consistency across sequences, spin-

echo was the only sequence where both feedforward and feedback information were differently 

pronounced across cortical depth in a statistically robust way. We therefore suggest that in the 

context of a typical cognitive neuroscience experiment manipulating feedforward and feedback 

signals at 7T fMRI, spin-echo method may provide a favorable trade-off between spatial 

specificity and signal sensitivity. 
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In Study III we focused on the second critical question - how are visual representations 

activated by signals belonging to another sensory modality? Here we built our hypothesis 

following the studies in the field of object recognition, which demonstrate that abstract category-

level representations emerge in the brain after a brief stimuli presentation in the absence of any 

explicit categorization task. Based on these findings we assumed that two sensory systems can 

reach a modality-independent representational state providing a universal feature space which can 

be read out by both sensory systems. We used EEG and a paradigm in which participants were 

presented with images and spoken words while they were conducting an unrelated task. We aimed 

to explore whether categorical object representations in both modalities reflect a convergence 

towards modality-independent representations. We obtained robust representations of objects and 

object categories in visual and auditory modalities; however, we did not find a conceptual 

representation shared across modalities at the level of patterns extracted from EEG scalp electrodes 

in our study. 

Overall, our results show that feedforward and feedback signals are spatially segregated in 

the grey matter depth, possibly reflecting a general strategy for implementation of multiple 

cognitive functions within the same brain region. This differentiation can be revealed with diverse 

MR-sequences at 7T fMRI, where spin-echo sequence could be particularly suitable for 

establishing cortical depth-specific effects in humans. We did not find modality-independent 

representations which, according to our hypothesis, may subserve the activation of visual 

representations by the signals from another sensory system. This pattern of results indicates that 

identifying the mechanisms bridging different sensory systems is more challenging than exploring 

within-modality signal circuitry and this challenge requires further studies. With this, our results 
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contribute to a large body of research interrogating how feedforward and feedback signals give 

rise to complex visual cognition. 
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8.3 Kurzfassungen der Ergebnisse  

Ein Großteil der visuell-kognitiven Funktionen, auf niedrigen und höheren Ebenen, beruht 

nicht nur auf Feedforward-Signalen, die sensorische Eingaben zu nachgeschalteten 

Gehirnbereichen übertragen, sondern auch auf intern erzeugten Feedback-Signalen, die das Gehirn 

in die entgegengesetzte Richtung durchqueren. Die Feedback-Signale liegen unserer Fähigkeit 

zugrunde, innere Repräsentationen aufzurufen, unabhängig von sensorischen Eingaben – bei der 

Vorstellung eines Objekts oder der direkten Wahrnehmung. Trotz allgegenwärtiger Implikationen 

von Feedback-Signalen in der visuellen Wahrnehmung ist wenig über ihre funktionelle 

Organisation im Gehirn bekannt. 

Mehrere Studien haben gezeigt, dass innerhalb des visuellen Systems dieselbe Hirnregion 

gleichzeitig Feedforward- und Feedback-Inhalte darstellen kann. Angesichts dieser räumlichen 

Überlappung (1) wie trennt das visuelle Gehirn Feedforward- und Feedback-Signale und 

vermeidet so eine Vermischung des Wahrgenommenen und des Imaginierten? Eine Verwechslung 

der beiden Informationsströme könnte potenziell nachteilige Folgen haben. Eine andere 

Forschungsgruppe zeigte, dass Feedback-Verbindungen zwischen zwei verschiedenen 

sensorischen Systemen an einer schnellen und mühelosen Signalübertragung über sie beteiligt 

sind. (2) Wie rufen nicht-visuelle Signale visuelle Repräsentationen hervor? 

In dieser Arbeit untersuchten wir die funktionelle Organisation der gerichteten 

Signalübertragung im visuellen Gehirn, indem wir diese beiden kritischen Fragen näher 

betrachteten. In den Studien I und II untersuchten wir die funktionelle Trennung von Feedforward- 

und Feedback-Signalen in der Tiefe der grauen Substanz des frühen visuellen Bereichs V1 mithilfe 
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von 7T-fMRT. In Studie III untersuchten wir den Mechanismus der modalen Verallgemeinerung 

mittels EEG. 

In Studie I stellten wir die Hypothese auf, dass die funktionelle Trennung von extern und 

intern generierten visuellen Inhalten der Organisation von anatomischen Feedforward- und 

Feedback-Projektionen folgt, die in Anatomiestudien von Primaten gezeigt wurden: Es wurde 

festgestellt, dass die Feedforward-Projektionen in der mittleren kortikalen Schicht des 

Primatenbereichs V1 enden, während Feedback-Verbindungen in die oberflächlichen und tiefen 

Schichten projizieren. Wir haben hochauflösende schichtspezifische fMRT und eine multivariate 

Musteranalyse verwendet, um diese Hypothese in einer mentalen Rotationsaufgabe zu testen. Wir 

fanden heraus, dass rotierte Inhalte in den äußeren kortikalen Tiefenkompartimenten (d. h. 

oberflächlich und tief) vorherrschen. Gleichzeitig waren die wahrgenommenen Inhalte stärker im 

mittleren kortikalen Kompartiment vertreten. Diese Ergebnisse entsprechen den bisherigen 

neuroanatomischen Befunden und zeigen auf, wie V1 durch die kortikale 

Tiefenkompartimentierung funktionell getrennte visuelle Inhalte von intern erzeugten Inhalten 

trennt, anstatt sie zu verwechseln. 

Für die genauere Schätzung der Signal-durch-Tiefe-Trennung, die in Studie I gezeigt 

wurde, haben wir als nächstes drei MR-Sequenzen bei 7T – Gradienten echo, Spin-Echo und 

Gefäßraumbelegung – hinsichtlich ihrer Fähigkeit, Feedforward- und Feedback-Signale in V1 zu 

unterscheiden. Das Experiment in Studie II bestand aus zwei sich ergänzenden Aufgaben: einer 

Wahrnehmungsaufgabe, die überwiegend Feedforward-Signale hervorruft, und einer 

Arbeitsgedächtnisaufgabe, die auf Feedback-Signalen beruht. Wir verwendeten eine multivariate 

Musteranalyse, um die wahrgenommene (Feedforward) und gespeicherte (Feedback) 
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Gitterorientierung aus neuronalen Signalen über die kortikale Tiefe auszulesen. Analysen über alle 

MR-Sequenzen hinweg ergaben Wahrnehmungssignale überwiegend im mittleren kortikalen 

Kompartiment des Bereichs V1 und Arbeitsgedächtnissignale im tiefen Kompartiment. Trotz einer 

Gesamtkonsistenz über die Sequenzen hinweg war Spin-Echo die einzige Sequenz, bei der sowohl 

Feedforward- als auch Feedback-Informationen statistisch robust über die kortikale Tiefe 

unterschiedlich ausgeprägt waren. Wir schlagen daher vor, dass im Kontext eines typischen 

kognitiven neurowissenschaftlichen Experiments, bei dem Feedforward- und Feedback-Signale 

bei 7T fMRT manipuliert werden, die Spin-Echo-Methode einen vorteilhaften Kompromiss 

zwischen räumlicher Spezifität und Signalempfindlichkeit bieten kann. 

In Studie III haben wir uns auf die zweite kritische Frage konzentriert – wie werden visuelle 

Repräsentationen durch Signale aktiviert, die zu einer anderen Sinnesmodalität gehören? Hier 

haben wir unsere Hypothese auf Studien des Gebiets der Objekterkennung aufgebaut, die zeigen, 

dass abstrakte Repräsentationen auf Kategorieebene im Gehirn nach einer kurzen Reizpräsentation 

ohne explizite Kategorisierungsaufgabe entstehen. Basierend auf diesen Erkenntnissen nahmen 

wir an, dass zwei sensorische Systeme einen modalitätsunabhängigen Repräsentationszustand 

erreichen können, der einen universellen Merkmalsraum bereitstellt, der von beiden sensorischen 

Systemen ausgelesen werden kann. Wir verwendeten EEG und ein Paradigma, bei dem den 

Teilnehmenden Bilder und gesprochene Worte präsentiert wurden, während sie eine dazu 

unabhängige Aufgabe durchführten. Wir wollten untersuchen, ob kategoriale 

Objektrepräsentationen in beiden Modalitäten eine Konvergenz zu modalitätsunabhängigen 

Repräsentationen widerspiegeln. Wir erhielten robuste Darstellungen von Objekten und 

Objektkategorien in visuellen und auditiven Modalitäten; konnten in unserer Studie jedoch keine 
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konzeptionelle Darstellung finden, die auf der Ebene der Muster, die von EEG-

Kopfhautelektroden extrahiert wurden, über alle Modalitäten hinweg geteilt wurde. 

Insgesamt zeigen unsere Ergebnisse, dass Feedforward- und Feedback-Signale in der Tiefe 

der grauen Substanz räumlich getrennt sind, was möglicherweise eine allgemeine Strategie zur 

Implementierung mehrerer kognitiver Funktionen innerhalb derselben Hirnregion widerspiegelt. 

Diese Differenzierung lässt sich mit diversen MR-Sequenzen bei 7T fMRT aufzeigen, wobei Spin-

Echo-Sequenzen besonders geeignet sein könnten, um kortikale Tiefen-spezifische Effekte beim 

Menschen nachzuweisen. Wir fanden keine modalitätsunabhängigen Repräsentationen, die 

unserer Hypothese zufolge der Aktivierung visueller Repräsentationen durch die Signale eines 

anderen Sinnessystems dienen könnten. Dieses Ergebnismuster weist darauf hin, dass die 

Identifizierung der Mechanismen, die verschiedene sensorische Systeme überbrücken, schwieriger 

ist als die Untersuchung von Signalschaltungen innerhalb einer Modalität, und diese 

Herausforderung erfordert weitere Studien. Damit tragen unsere Ergebnisse zu einer 

umfangreichen Forschungsarbeit bei, die untersucht, wie Feedforward- und Feedback-Signale zu 

komplexer visueller Wahrnehmung führen. 
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