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a b s t r a c t

In this paper, we define and evaluate a weighting scheme for neighborhoods in point sets. Our
weighting takes the shape of the geometry, i.e., the normal information, into account. This causes
the obtained neighborhoods to be more reliable in the sense that connectivity also depends on
the orientation of the point set. We utilize a sigmoid to define the weights based on the normal
variation. For an evaluation of the weighting scheme, we turn to a Shannon entropy model for
feature classification that can be proven to be non-degenerate for our family of weights. Based on
this model, we evaluate our weighting terms on a large scale of both clean and real-world models.
This evaluation provides results regarding the choice of optimal parameters within our weighting
scheme. Furthermore, the large-scale evaluation also reveals that neighborhood sizes should not be
fixed globally when processing models. Finally, we highlight the applicability of our weighting scheme
within the application context of denoising.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Point sets arise naturally in many kinds of 3D acquisition
rocesses, like, e.g., 3D laser-scanning. As early as 1985, they
ave been recognized as fundamental shape representations in
omputer graphics, see [1]. Ever since, they have been used in
iverse applications, e.g., in archaeology [2], face recognition [3],
r traffic accident analysis [4].
Despite their versatility and their advantages—like easy ac-

uisition and low storage costs—point sets have a significant
ownside to them when compared with mesh representations:
hey are not equipped with connectivity information. This is
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mostly due to the acquisition process. Consider for example a
manually guided scanning device. The operator will scan those
areas of the real-world objects with very sharp features multiple
times. Consequently, occlusion is prevented and the whole geom-
etry is captured. Even though each scan can provide connectivity
information on the respectively acquired points, the complete
point set obtained via registration of the individual scans (see,
e.g., [5]) does not provide global connectivity information in
general. Thus, a notion of neighborhoods has to be defined and
computed for each point.

Many definitions of neighborhoods, combinatorial or geomet-
ric, with global or local parameters, have been proposed and
discussed (see Section 2). Furthermore, the concept of weighting
neighboring points is not new. For example, the pure selection
of a neighborhood causes an equal treatment of all neighbors.
Aside from this, isotropic weighting is one common way, eval-
uating Euclidean distances via a Gaussian weighting function.
This provides closer points with higher influence (see, e.g., [6]).
Additionally, other point set information can be incorporated,
like density or distribution (see, e.g., [7] or [8]). The inclusion of
normal deviation in the area of anisotropic weighting has also
been considered and discussed before (see [9,10]).

The research work presented here aims at investigating
anisotropic weighting terms in a broad framework, which in-
cludes usual weighting choices such as equal weights or sharp
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ut-off weights1 (Section 3). Our evaluation is processed via a
hannon entropy model (Section 4), which is based on the work
f [11,12]. Furthermore, we aim at evaluating the weighting
cheme on a large scale. This is to prevent over-interpretation
f findings obtained from a very small set of models. Overall, the
ontributions of this work are:

• Definition of a shape-aware neighborhood weighting utiliz-
ing sigmoid function weights based on normal variation;

• Presentation of a Shannon entropy evaluation model that
can be proven to be non-degenerate on our inputs;

• Large scale experimental evaluation of the proposed neigh-
borhood weighting concept;

• Discussion of the results with respect to both neighborhood
weighting and neighborhood sizes.

hile the content of this paper is deeply routed in the field of
raditional computer-aided design, in our concluding Section 6,
e will provide an outlook and several thoughts on the applica-
ion of the presented techniques within the context of machine
earning.

. Related work

Neighborhoods are very important in point set processing,
s almost all algorithmic approaches rely on them. A common
hoice is to use heuristics to determine sufficient notions like the
ize of a combinatorial or metric neighborhood. In the following,
e recall works discussing heuristic neighborhood definitions.
everal works have advanced from simple heuristics and derive
ore involved notions for better fitting neighborhood defini-

ions in different contexts. These are mainly obtained from error
unctionals, which we will also discuss.

.1. Heuristics

Most works consider either a combinatorial k-nearest neigh-
orhoodNk(·) or a metric ball Br (·) inducing a neighborhood. Both

of these notions have parameters to be tuned, namely the number
of neighbors k or the radius r of the neighborhood. Several works
have been presented introducing heuristics to find appropriate
values for k or r in different scenarios. The authors of [6] for
nstance use a global radius and change it to affect the running
ime of their algorithm. In [13], the authors fix a combinatorial
umber k of neighbors to be sought. Then, for each point pi from
he considered point set P , these k neighbors are found, which
ixes a radius ri to the farthest of them. Finally, the neighbors
ithin radius ri/3 are used. Therefore, their approach resembles
he geometric neighborhood in a local manner.

The method used in [14] is more involved. The authors recog-
ize that both a too large or too small radius r lead to problems
nd thus aim for a local adaption like [13]. A local density esti-
ate δi around each point pi ∈ P is computed from the smallest
all centered at pi, containing Nk(pi), where k is found exper-
mentally to be best chosen from {6, . . . , 20} ⊂ N. Given the
adius ri of this ball, the local density is set to be δi = k/r2i . In
second step, a smooth density function δ is interpolated from

he local density estimates δi, hence this weighting involves the
ncorporation of density-information into the weight assignment.

In the context of surface reconstruction, the authors of [15]
iscuss several choices for neighborhoods and corresponding
eights. While two of the three presented methods simply use
eometric neighborhoods, the third method takes a different
pproach. Namely, the authors collect all neighbors of pi in a

1 We consider the case of cut-off weights if starting from a given deviation,
ll points with greater or equal deviation are attributed weight 0.
2

‘‘large’’ ball ([15, page 7]) around pi. Then, they fit a plane to
his preliminary neighborhood and project all neighbors and pi
nto this plane. On the projections, a Delaunay triangulation is
uilt and the induced neighborhood of the triangulation is used
n the following computations, which localizes their approach and
espects different point distributions.

A completely different route is taken by [16]. The authors first
alculate features of a point set based on differently sized neigh-
orhoods. Then, they use a training procedure to find the combi-
ation of neighborhood sizes that provides the best separation of
ifferent feature classes.
The inclusion of normal deviation and hence anisotropic

eighting into neighborhood concepts is part of the work [9]. The
pproach of the authors is to use a weighted principal component
nalysis, which fits our evaluation model. However, they rely on a
lobal neighborhood size and assign sharp cut-off weights while
e allow for changing neighborhood sizes and smooth weighting
erms.

.2. Error functionals

While the approaches presented above are based on heuristics,
ome works try to deduce an optimal k for the k nearest neighbor-
oods based on error functions. For instance, the authors of [17]
ork in the context of the Moving Least Squares (MLS) frame-
ork (see [6,18–20]) for function approximation. The authors
erform an extensive error analysis to quantify the approxima-
ion error both independent and depending on the given data.
inally, they obtain an error functional. This is then evaluated
or different neighborhood sizes k. The neighborhood Nk yielding
he smallest error is finally chosen to be used in the actual MLS
pproximation.
In contrast, the authors of [21] deduce an error bound on the

ormal estimation obtained from different neighborhood sizes.
tilizing this error functional, they obtain the best suited neigh-
orhood size for normal computation. The work of [17] heavily
epends on the MLS framework in which the error analysis is
educed, while the work of [21] depends on the framework of
ormal computation.
The authors of [12] take a more general approach in the con-

ext of segmentation of 3D point sets. They also use the concept
f combinatorial neighborhoods, going back to results of [11,22].
n order to choose an optimal value for k, the authors turn to
he covariance matrix, which is symmetric and positive-semi-
efinite. Thus, the matrix has three non-negative eigenvalues.
ollowing an idea of [23], in the work of [14], the authors grow
neighborhood and consider a surface variation as a measure to
row a neighborhood around each point pi. The same quantity

is used by [24]. However, the authors of [14] do not grow a
neighborhood, but choose a size k for it according to a consistent
curvature level. The authors of [12] do not stop at these infor-
mation, but proceed to consider three more quantities derived
from the eigenvalues of the covariance matrix reflecting point
set features, see [11,12]. Afterwards, following the concept of
entropy by Shannon [25], they evaluate combinatorial and geo-
metric neighborhood sizes via two error measures (see Section 4
for a detailed discussion).

3. Sigmoid weights

In contrast to the works listed above, our approach aims at
integrating the shape of the geometry, i.e., the normal informa-
tion, into the neighborhood definition. We will do so by enriching
a given combinatorial neighborhood with a set of weights that
are dependent on the normal variation within the neighborhood.
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o ensure a smooth transition of weights, we apply a sigmoid
unction to the angle deviation of the normals.

Given a set of points P = {pi | i ∈ [n]}, n ∈ N, correspond-
ng oriented unit-length normals ni ∈ S2, and local neighbor-
oods Ni ⊂ [n] for every i ∈ [n]. For a given weighting function

φ : [0, π] → [0, 1], (1)

we obtain the following weights

wij = φ
(
̸ (ni, nj)

)
for i ∈ [n], j ∈ Ni. (2)

The argument of φ is the deviation of the normals measured by
their angle, which ranges from 0 to π . We turn to this formula-
ion, because it has an obvious geometric interpretation. In order
o have an efficient implementation of the presented techniques,
he scenario can be reformulated in terms of the scalar product
f the normals, which avoids the costly computation of arccos.
Note that by the symmetry of the angle, the weights are

ymmetric, i.e., wij = wji. The weighting function φ shall assign
on-negative weights between 0 and 1. These weights should
orrespond to the similarity of the corresponding normals, i.e., a
mall angle should result in weights close to or equal 1, while a
arge angle should yield weights close to or equal 0.

Our choice for the weighting function is a sigmoid. A sigmoid
unction is visually characterized by its shape of an ‘‘S’’-curve,
ven though it is mirrored in our scenario, see Fig. 1. We will
onsider a family of sigmoid functions that provide different in-
erpolations between 1 and 0. The family is based on the trigono-
etric cosine function. It is related to the sigmoid used in [26],
owever, we alter it to be a monotonic falling curve between 1
nd 0 on the interval [0, π].

efinition 1 (Cosine-Sigmoid). Consider two given thresholds
a ∈ [0, π ] and b ∈ [a, π ]. Then, we define the sigmoid weighting
function sigcosa,b : [0, π] → [0, 1] as

x ↦→

⎧⎨⎩
1 x ∈ [0, a[ ,
1
2 cos

(
π (x−a)
b−a

)
+

1
2 x ∈ [a, b] ,

0 x ∈ ]b, π ] .
(3)

Note that for a ̸= b this function is C1 and smoothly transitions
from 1 to 0. In particular, both boundary values are included,
i.e., points can be given both weights 1 and 0, which corresponds
to fully taking them into account or to not taking them into
account at all. The threshold parameter a ∈ [0, π] translates the
curve along the x-axis and controls where the cosine curve starts.
Similarly, the threshold parameter b ∈ [a, π] controls where the
cosine curve ends, i.e., the curve’s decline is controlled by the dis-
tance between these two thresholds. In particular, when choos-
ing a = b = π , all inputs obtain uniform weight 1 while for a = b,
the function models a sharp cut-off at the chosen threshold. This
allows us to relate our weights to the uniform weights used
in [12] and to the sharp cut-off weights of [9], respectively.

4. Evaluation model

Having presented the set of neighborhood weights in Eq. (2)
and the corresponding weighting function in Eq. (3) in the previ-
ous section, we will now describe the mathematical background
of our evaluation process. For this, we turn to the information
measures originally introduced by Shannon [25]. Specifically, we
will use a variation of the quantities derived in [11,12] as we
will present in Section 4.1. First, we will establish the necessary
notation and preliminary results.

Consider the covariance matrices Ci ∈ R3×3 given by

Ci :=

∑
wij(pj − p̄i)(pj − p̄i)T , (4)
j∈Ni

3

Fig. 1. Plots of the sigmoid sigcos
a,b (x) for three parameter choices on the

domain [0, π].

with i ∈ [n], where p̄i =
1

|Ni|

∑
j∈Ni

pj is the barycenter of the
eighborhood of pi, thus (pj−p̄i) is a column vector in R3 and (pj−

p̄i)T ∈ R1×3 its transpose, i.e., a row-vector. The weights wij are
chosen according to Eq. (2). The covariance matrix Ci is sym-
metric and positive-semi-definite. Thus, it has three non-negative
eigenvalues, which in the following we will denote by

λ1
i ≥ λ2

i ≥ λ3
i ≥ 0. (5)

Depending on the neighborhood Ni and the assigned weights wij,
we can prove the following proposition about the covariance
matrix Ci.

Proposition 1 (Non-degenerate Covariance Matrix). For a set
of points P = {pi | i ∈ [n]}, fix a point pi ∈ P and its neighbor-
hood Ni ⊆ [n], and consider the function sigcosa,b from Eq. (3) as
well as the covariance matrix Ci given in Eq. (4). Assume there
are ℓ1, ℓ2 ∈ Ni, ℓ1 ̸= ℓ2 such that pℓ1 ̸= pℓ2 and nℓ1 ̸= −nℓ2 . Then,
for some b ∈ [a, π], the sum of all eigenvalues of Ci is strictly
ositive, independent of the choice of a ∈ [0, π].

Note, that a non-degenerate covariance matrix can trivially be
btained by setting a = π . However, the proposition makes an
ven stronger statement, namely that degeneracy can be obtained
ndependent from the choice of a. Its proof follows from the
bservation that the weights wij are non-negative, as are all
igenvalues of Ci since Ci is positive semi-definite. Thus, the sum
f the eigenvalues is 0 if and only if all eigenvalues are. By a case
istinction on the zero set of the function sigcosa,b , we can then
rove that there exists some b ∈ [a, π] which results in strictly
ositive weights, which proves the proposition.

.1. Non-degenerate covariance matrix

Given the assumptions of Proposition 1, we can assume that
i ̸= 0 ∈ R3×3. Therefore, we can derive certain quantities from
he eigenvalues of the covariance matrix. In our context, we will
onsider the linearity Lλ, planarity Pλ, and scattering Sλ. These are
given by

Lλ
i =

λ1
i − λ2

i

λ1
i

, Pλ
i =

λ2
i − λ3

i

λ1
i

, Sλ
i =

λ3
i

λ1
i

(6)

and represent 1D, 2D, and 3D features in the point set, respec-
tively. See [11] for a derivation and a detailed explanation of these
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Fig. 2. Plot of the summand −x ln(x) from Eq. (7) for x ∈ [0, 1] as all
rguments Lλ

i , P
λ
i , and Sλ

i are taken from [0, 1].

uantities. As Ci ̸= 0, we have λ1
i ̸= 0, therefore the quantities

n Eq. (6) are well-defined. Furthermore, because of the ordering
f the eigenvalues given in Eq. (5), we have Lλ

i , P
λ
i , Sλ

i ∈ [0, 1].
ence, as

λ
i + Pλ

i + Sλ
i = 1,

each of these three quantities can be interpreted as the probabil-
ity of the considered point to be part of an intrinsic 1D, 2D, or 3D
part of the geometry. The authors of [11,12] consider the error

Edim
i = −Lλ

i ln(L
λ
i ) − Pλ

i ln(Pλ
i ) − Sλ

i ln(Sλ
i ). (7)

See Fig. 2 for a plot of each summand of the equation. Note
that while limx→0 ln(x) = ∞ it is limx→0 x ln(x) = 0, which fol-
lows from rewriting it as quotient and applying L’Hôpital’s rule.
Practically, the error measure Edim

i assesses to what extent the
eighborhood Ni indicates a corner, an edge point, or a planar
oint of the geometry. In particular, the extreme cases

λ1
i , λ

2
i , λ

3
i ) ∈ {(ρ, 0, 0), (ρ, ρ, 0), (ρ, ρ, ρ) | ρ ∈ R>0} (8)

all obtain Edim
i = 0. That is to say that if a point pi can be clearly

classified as part of a linear, planar, or scattered segment of the
point cloud, the classification error Edim

i will indicate this.
Note that in general applications, these extreme cases are

unlikely to occur. In particular in the presence of noise, the
quantities Lλ

i , P
λ
i , and Sλ

i will generally not satisfy Eq. (8). Thus,
the classification error Edim

i will be larger and therefore indicate
that the point could not clearly be classified as part of a linear,
planar or scattered segment of the point cloud.

We will use the classification error (7) in our quantitative
experiments in Section 5. Aiming for an as-clear-as-possible clas-
sification of points, we pursue as-small-as-possible values of Edim.
However, the above discussion depends on the assumptions pro-
vided in Proposition 1. In the following we will discuss cases in
which these assumptions are not satisfied.

4.2. Degenerate covariance matrix

In practical applications, the assumptions of Proposition 1 are
not always satisfied. Note here that the classification error Edim

i
is evaluated on a single point pi of the point set P . The following
reasons can hinder the correct evaluation:

(i) If the point set contains multiple duplicates of a point, more
than the sought-for number of neighbors k, all points in the
reported neighborhood collapse into a single point equal to
the barycenter of the neighborhood. Thus, C becomes 0.
i n

4

(ii) If a point pi has a flipped normal in comparison to all its
neighboring points pj, the argument x in the weight equa-
tion wij = sigcosa,b(x) becomes π and therefore, all weights
degenerate to 0 (except when a = π , which creates uniform
weights). This degeneration happens in particular for very
small or thin geometries as well as for faulty normal fields.

(iii) Even if the assumptions of Proposition 1 are satisfied, it
only states the existence of a suitable parameter b ∈ [a, π].
Therefore, choosing parameter b too small can cause all
weights in the covariance matrix (4) to degenerate to 0.

In the following evaluation, we prevent case (i) by requir-
ing the point sets to only contain distinct points. Furthermore,
we orient the normal field to counteract case (ii). Also, we in-
clude the parameter choice a = b = π to always have a valid,
non-degenerate choice for case (ii). Concerning a too small pa-
rameter b, we report a failure in the computation of the error
values for the point pi if

∑3
ℓ=1 λℓ

i = 0. By including the choice a =

π for the parameters, we ensure that each model has at least one
correctly evaluated error value Edim

i at each point pi ∈ P .

5. Evaluation results

In this section, we present our quantitative evaluation of the
weights presented in Eq. (2). For the evaluation, we utilize the
classification error Edim as defined in Eq. (7). Our clean models are
taken from a data set described in [27]. The authors provide ten
thousand clean and manifold surface meshes, which are obtained
by exporting only the boundary of the tetrahedral meshes used
in [27]. From these, we randomly select a subset of 1, 000 meshes
with uniform probability. Furthermore, we use 100 meshed mod-
els each from the real-world object scans provided by [28] and
by [29]. Finally, to test the scalability of our approach, we also
include the model ‘‘Pan et Oursons’’ from [30].

For all these models, we use the mesh information and its
manifold property to obtain oriented face normals. From these,
we compute vertex normals and then use these and the vertices
as point sets for our experiments. For each such point set P , we
consider the parameter sets

A := B :=

{
0,

π

6
,
π

3
,
π

2
,
2π
3

,
5π
6

, π

}
for the choice of a and b, respectively, where we ensure that
a ≤ b. We choose this range as a reasonable trade-off between
complexity of the experiments and exploration of the parameter
space. Note that in Section 5.5, we consider further parameter
values that are rooted in the application scenario considered
there. We use the combinatorial neighborhood notion,2 so that
for every pair (a, b) ∈ A × B and every point pi ∈ P , we calculate
its Edim

i value over the range of k, taken from

K := {6, . . . , 20}.

We assume this range for k, as it reflects typical, heuristic choices
for neighborhood sizes in the area of point set processing, see
the works discussed in Section 2, in particular [14]. For each
point pi in each point set P , we obtain an optimal parameter
triple

(
a∗

i , b
∗

i , k
∗

i

)
as(

a∗

i , b
∗

i , k
∗

i

)
= argmin

(a,b,k)∈A×B×K

Edim
i . (9)

Following the discussion from Section 4.2, we set Edim
i = ∞ if

the covariance matrix Ci for the point pi ∈ P degenerates for all
parameter choices (a, b, k) ∈ A × B × K.

2 For a point pi ∈ P , we consider the index i as well as the indices of the k
earest neighbors to p within P as neighborhood N , i.e., |N | = k + 1.
i i i
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Fig. 3. The effect of the different parameters on the fandisk model. The top row shows the classification error Edim
i from Eq. (7) for each point of the model, from

ow (white) to high error (dark blue). Note how the optimal weights from Eq. (9) have drastically reduced error in comparison to both equal weights (used by [12])
nd sharp cut-off weights (used by [9]). The red points indicate elements of the point set, for which the covariance matrix from Eq. (4) degenerates given the
hosen weights. Bottom row shows a feature classification according maximum value out of linearity (orange), planarity (white), and scattering (dark blue) as defined
n Eq. (6). Note how equal weights fail to consistently identify edge structures. The cut-off weights manage to identify planar areas well while over-pronouncing
dge structures. These are identified well by the weights from Eq. (9). (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
I
c

See Fig. 3 for an illustration of the classification error Edim on
he fandisk geometry as well as for a comparison of different
arameter choices (a, b). The top row shows the classification
rror Edim

i from Eq. (7) on each point of the geometry, colored
rom low error (white) to large error (dark blue). Note that when
ixing parameters (a, b), it is possible that the covariance matrix Ci
egenerates for every choice k ∈ K. This happens for the specific
hoice a = b = arccos(0.9) as used in [9]. We have colored the
espective points red. The optimal triple from Eq. (9) achieves
ignificantly lower classification error Edim

i than the equal weights
f [12] or the cut-off weights of [9]. The observed fluctuation in
lanar areas is due to (a) the utilization of combinatorial neigh-
orhoods, which do not always provide symmetrically shaped
eighborhoods on a synthetic geometry like the fandisk, as well
s to (b) the sensitivity of Edim

i to slight changes in the covariance
atrix.
The bottom row of Fig. 3 shows a feature classification ac-

ording to the maximum value out of linearity (orange), planarity
white), and scattering (dark blue) as defined in Eq. (6). Note
ow the equal weights of [12] classify almost all elements as
lanar and fail to identify edge structures. In contrast, the cut-off
eights of [9] identify all edges, but over-pronounce them. The
ptimal weight choice from (9) takes a middle ground between
hese two extremes, on the cost of identifying several clearly
lanar points as linear. Again, this stems to a certain extend from
he run a synthetic geometry. Observe that the equal weights and
he optimal weights do identify scattered points (one example
eing the topmost corner of fandisk) while the cut-off weights
ather fail to create a covariance matrix at corner points.
5

The images in Fig. 3 summarize our following experiments.
n order to compare with the findings of [12], we compute the
lassification error Edim

i for each point of every point set of the
three chosen model repositories [27–29] as well as of the single,
large model from [30]. In the following we report and interpret
our findings.

5.1. Global (a, b, k) analysis

We analyze the total amount of (a, b, k) choices for all model
repository selections. Here, we count all points of all point sets
with their respective optimal parameter triple (a∗, b∗, k∗). The
corresponding four global histograms for the three model repos-
itories and the model from [30] are given in Fig. 4. There, each
point of each geometry contributes one unit in the histograms,
which report the number of points that choose a parameter
combination (a, b), with a on the x-axis and b on the y-axis.
Additionally, each such bar is colored according to the chosen
optimal neighborhood size k, from the lowest at the bottom to
the highest at the top. In summary, the classification error acts
similar on all data sets, i.e., in the comparison between clean and
real-world models.

On the large scale of 1, 000 point sets with a total of 7, 213, 429
points (Fig. 4(a)), we observe, that on average, a small choice for
parameter a and a similarly choice for parameter b are preferred.
This can be interpreted to say that it is desirable to take only
normals into account that exhibit a small deviation. In particular,
Fig. 4(a) suggests that the majority of points from the clean
models choose a neighborhood without any room for normal
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Fig. 4. Histograms of preferred sigmoid parameters (a∗, b∗, k∗) (Eq. (9)) with respect to minimal error values for Edim (Eq. (7)) over the range K when applied to
everal large model repositories. Each point of the respective point set(s) corresponds to one unit in the histogram. Additionally, each such bar is colored according
o the chosen optimal neighborhood size k, from the lowest at the bottom to the highest at the top.
eviation (a = b = 0). This is one notable difference to the his-
ograms on scanned models, Figs. 4(b) to 4(d), where these drastic
eights are almost never chosen.
It is particularly noteworthy that almost no points chose equal

eights a = b = π which highlights the benefit of our approach
ver that chosen by [12]. Furthermore, choosing a sharp cut-off
long the lines of [9], by a = b = π/6, occurs for about a quarter
f the points. However, about 38% rather go with a softer decrease
y choosing a = 0, b = π/6. A localized, i.e., model-depended,

discussion about the possibility to increase a and b for better
esults is given in the upcoming section.

In terms of scanned real-world models (Figs. 4(b) to 4(d)), we
nalyzed 100 point sets from each [28,29] and one large model
rom [30]. In comparison to the clean models, we do observe a
ifferent behavior. Namely, while small values for a and b are still
avored, the choice of a = 0, which was most prominent on clean
odels, is almost never made for scanned models. The chosen
eights indicate that mostly neighborhoods with a normal de-
iation of up to π/6 are taken into account. These are either all
eighted uniformly (a = π/6) or with gradually deteriorating

weights (a = 0). We interpret the parameter b to reflect the noise
omponents caused by the acquisition process. Therefore, choos-
ng the lowest possible choice of b causes several points pi ∈ P
to have degenerate covariance matrices Ci, independent of the
chosen neighborhood size k. See also the following section for a
more detailed discussion of this.

In conclusion, we see that weight-determination generally
favors a narrow window between parameters a and b. This cor-
responds to using a neighborhood with an overall small normal
deviation. The value b however depends on the geometry. Clean
models mostly attain smaller error values for very small values
of b, whereas real-world models require slightly larger of b to
obtain non-degenerate covariance matrices. All models from all
6

repositories have in common that they almost never report equal
weights as preferred weight assignment. Hence, when regarding
the classification error Edim

i , the equal weighting scheme of [12]
is inferior to the family of weights presented here. This becomes
obvious when comparing the values obtained from our experi-
ments, see Table 1. The classification error computed with our
weights (9) has lower minimum, average, maximum, and stan-
dard deviation than the error computed with the equal weights
of [12].

Sharp cut-off weights are only chosen as optimal weighting
by a subset of the real-world scans. As [9] used sharp cut-off
weights in the context of denoising, our results hint that this
weight set might be beneficial in the presence of noise. However,
for about 75% of the scanned models, when considering the
classification error Edim

i our weighting family still chooses weights
superior to the cut-off weights used by [9].

5.2. Local (a,b) analysis

In this section, we will discuss the (a∗, b∗) choices presented in
the previous section from a local, i.e., point-set-dependent, per-
spective. The respective results are presented in Table 2. There,
the first row corresponds to the clean models from [27] while
the other three rows correspond to the scanned real-world mod-
els from [28–30]. The columns present information about the
amount of points accepting minimal value a = 0, allowing (a−) or
forbidding (¬a−) a decrease of a, accepting minimal value b = a,
and allowing (b−) or forbidding (¬b−) a decrease of b. In this
scheme, the columns ¬a− and ¬b− denote the percentage of
those points for which a decrease of the respective parameter
results in a degenerate covariance matrix Ci, see Section 4.2.
Observe that we cover all possible cases. For easy comparability,
we provide the respective case numbers in percent, with the total
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Table 1
Quantitative comparison of the classification error Edim

i computed over different model repositories with weights by
[12] and our weights (9). Note that our weighting scheme always obtains lower minimal, average, and maximum
error as well as a lower standard deviation.

mini(Edim
i ) 1

N

∑N
i=1 E

dim
i maxi(Edim

i ) sdi(Edim
i )

Clean [27] Weights [12] 0 0.6309891 1.071584 0.1896867
72,13,429 points Our (9) 0 0.2477968 1.012825 0.1882686
Scanned [28] Weights [12] 2.946194 · 10−8 0.3348262 1.071796 0.1967012
2,59,29,256 points Our (9) 0 0.2526083 0.9649821 0.1569379
Scanned [29] Weights [12] 0.001344446 0.2497551 1.048021 0.1144664
1,79,18,016 points Our (9) 0 0.2109502 0.9379431 0.09631257
Scanned [30] Weights [12] 0.003978099 0.3827366 0.9805029 0.1456077
11,99,992 points Our (9) 0 0.3200202 0.7774453 0.1337365
Table 2
Distribution of (a∗, b∗) choices into the three cases of (a) an attained minimum (a = 0, b = a), (b) a possible decrease
of the parameter without failure (a−, b−), and (c) impossibility of decreasing the parameter because it would cause
a degenerate covariance matrix (¬a−, ¬b−).

a = 0 a− ¬a− b = a b− ¬b− #points

Clean [27] 60.19% 39.81% 0% 36.80% 25.49% 37.72% 7,213,429
Scanned [28] 54.30% 45.70% 0% 43.50% 14.21% 42.29% 25,929,256
Scanned [29] 62.44% 37.56% 0% 36.86% 21.03% 42.11% 17,918,016
Scanned [30] 60.70% 39.30% 0% 37.33% 20.46% 42.21% 1,199,992
number of points for the respective repository given in the last
column.

Having all values in one chart, we directly observe the be-
avior assessed for parameter a in the previous section. There,
e stated that especially in the case of clean models, an as-
mall-as-possible value for a is favorable over larger values for a.
ndeed, Table 2 confirms this statement, as almost3 none of the
oints forbid a decrease of parameter a (cf. column ¬a−). This
ustifies the small values for a attained in the real-world scenarios
resented in Figs. 4(b) to 4(d) when compared to the values of a
ttained in the clean scenarios in Fig. 4(a). Semantically, this opts
or including just enough neighbors in the computation to make it
easible, i.e., to prevent a degenerate covariance matrix, but focus
n those that are as similar as possible with regard to the normal
ield.

The reported numbers on the parameter b also support the
bservation drawn before. It is chosen to be as small as possi-
le, i.e., as close to the chosen a without creating a degenerate
ovariance matrix. Over all repositories, b is chosen to create a
harp cut-off (b = a) in about 36% of the considered points. A
otable exception is the scanned data set [28], which allows for
3.5% of the points to choose a sharp cut-off. This is possibly
ue to lower noise levels and different geometry types in this
ata set when compared to the other scanned data sets [29,30].
urthermore, in about 42% of the scanned points and 37% of the
lean points, b is at least chosen to be as close as possible to a,
.e., the weighting scheme is chosen to be as close as possible
o a sharp cut-off, which cannot be realized because a further
ecrease of b would cause a degenerate covariance matrix. These
bservations justify the general weighting choice of sharp cut-off,
s chosen by [9], although the particular chosen values only prove
o be most effective in about one fourth of all models from the
ata set used here.
Summarizing the global and local analysis of the parameter

hoices (a∗, b∗), we draw the following conclusions:

• The utilized classification error favors weight determina-
tion with as-small-as-possible values for both parameters a
and b. That is, only points with as-similar-as-possible nor-
mals are considered, but out of these, all are allowed to
influence the computation as evenly as possible.

3 There are < 0.01% for each scanned repository that forbid a decrease, which
s not shown here due to rounding. In contrast to Proposition 1 (stating inde-
endence of the choice of a, rounding issues within the application prevented
decrease of a.
7

• Equal weights (a = b = π ), as used by [12], are never chosen
as optimal parameters to obtain a minimal classification
error Edim

i .
• Sharp cut-off weights as widely used in the literature, e.g., in

[9], attain minimal classification error for 36.8% of the clean
points and for up to 43.5% of the scanned points. This proves
their relevance in particular for real-world scenarios.

5.3. Global k analysis

As stated in the beginning of Section 5, for each point in
the utilized point sets, we also obtain a preferred neighbor-
hood size k∗

∈ K yielding smallest classification error Edim
i among

all choices (Eq. (9)). In Fig. 5, we present a histogram plotting
this data, i.e., for each neighborhood size k ∈ K, we show what
percentage of points from the respective model repository use
this k.

Note that the plot for the clean models shows a favor for an
as-small-as-possible neighborhood size k over larger neighbor-
hoods. In contrast, the scanned models show a different behavior.
Whereas the repository [28] also attains its peak at k = 6, it is
more equally distributed among the whole range, with a notable
second peak at k = 11. The models in [29], however, exhibit
an almost Gaussian bump around their maximal value k = 18.
Finally, the results for the model chosen from [30] are almost
uniform over the entire range, with a slight increase for growing
values of k.

In order to investigate scalability effects, we have included one
significantly larger model from [30] in our analyses. Note that the
general observations as made in Fig. 4, Table 1, Table 2, and Fig. 5
particularly hold for this model. Furthermore, despite the fact
that [12] focuses on these large-scale models, our weighting ap-
proach (9) still provides smaller classification errors as indicated
in Table 1. Thus, we cannot report any scaling issues.

For the clean models, we obtain an average neighborhood size
of k̄ = 10.55 with a standard deviation of σ = 4.77. For the
scanned models, those quantities are:

• k̄ = 12.09489, σ = 4.618431 [28],
• k̄ = 14.22883, σ = 4.487704 [29],
• and k̄ = 13.54247, σ = 4.398983 [30].

These findings suggest that variable neighborhood sizes yield
smaller error values with regard to the classification error Edim.
i
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Fig. 5. Histogram of preferred neighborhood sizes k∗ with respect to minimal error value Edim
i . To ensure compatibility over the different data repositories, we

ormalize by the total number of points and report the percentage of points choosing the respective neighborhood size.
f a global neighborhood size has to be chosen, then the average
alues provided by this analysis serve as reasonable choices, as
hey provide a good trade-off between a fixed neighborhood size
nd a low classification error. In order to further investigate the
enefit of varying neighborhood sizes, in the following section,
e turn to a point-set-dependent perspective.

.4. Local k analysis

We will now consider the standard variation of the neighbor-
ood sizes taken over a single model for Edim. We aim to bet-
er understand and investigate the hypothesis formulated above,
.e., the statement that a variable neighborhood size contributes
o lower classification error.

In order to interpret the neighborhood sizes, we consider a
ox–whisker plot over all standard deviations within the respec-
ive models in Fig. 6. That is to say, the boxes indicate the first,
econd (median), and third quartile of the standard deviations of
eighborhood sizes for the indicated model repository. In par-
icular, most approaches in the literature use—and are evaluated
n—a setting with a fixed neighborhood size k. In our analysis,
his would correspond to a standard deviation around 0, indi-
ating no or small changes to the neighborhood size within a
eometry. However, it is obvious from Fig. 6 that all standard
eviations are located well away from 0. Even considering the
inima, i.e., the lower whiskers of the boxes, they reside at 2.7,
.1, and 4.4, respectively, indicating that at least these small
ariations in neighborhood size are necessary to minimize the
lassification error. Note that the variation of neighborhood size is
ost notable for the clean model repository, where the standard
eviation of chosen neighborhood sizes goes up to 5.46. This is in
ontrast to the scanned data from [29], where the models are not
ery diverse, which is reflected in the almost uniform standard
eviation of the chosen neighborhood sizes.
In summary, from the global and local analysis of the obtained

eighborhood sizes k, we draw the following conclusions:

• All standard deviations lie well above 0, i.e., the considered
classification error favors variable neighborhood sizes over
constant-size neighborhoods.

• This behavior is more pronounced for scanned models [28]
and [29] than for clean models [27].

• The classification error favors smaller neighborhood sizes
for clean models, however for scanned models this behavior
is not preserved.
8

5.5. Application scenario

Building on the observation from the previous section that
varying neighborhood sizes can contribute to better performance
and in order to evaluate our proposed methodology in an appli-
cation scenario, we turn to the normal filtering stage of the point
set denoising algorithm proposed in [9]. This first stage is part
of a larger, iterative process of three stages that removes noise
from an input geometry. We focus on the first stage to not have
the effect of our weighting scheme be confounded by procedures
within the more complex pipeline (we provide the names of the
parameters of the algorithms in brackets in the following). In each
iteration (parameter p), a weighted covariance matrix is built. The
algorithm is using a sharp cut-off weight function (parameter ρ),
optimizes the eigenvalues of the covariance matrix (parameter τ ),
and uses those to update the respective point normals afterwards.

For the experiment, we followed the experimental pipeline
of the original article [9]. Namely, we took the four geome-
tries (Cube, Fandisk, Octahedron, Rockerarm) as discussed in the
original publication [9], together with three more geometries
(Bearing, Sharp Sphere, Fertility), see Fig. 7. The models were
given as meshes and provided the oriented point normals, as they
were obtained from the mesh information as weighted vertex
normals that served as ground truth normals in the experiment.
Afterwards, we applied Gaussian noise in normal direction with
amplitudes 0.3ℓ and 0.6ℓ, where ℓ denotes the mean of all dis-
tances from points to their respective six nearest neighbors. To
measure the deviation from the ground truth normals, we make
use of the mean squared error (MSE) given as

MSE(N, Ñ) =
1
n

n∑
i=1

∥ni − ñi∥
2
2, (10)

where N = {ni | pi ∈ P} are the ground truth and Ñ = {ñi | pi ∈

P} are the changed normals of the geometry P .
The default values for the normal filtering were taken from [9]

and the parameters (p, ρ, τ ) are set as follows:

• Cube with (150, 0.95, 0.3),
• Fandisk with (150, 0.9, 0.3),
• Octahedron and Rockerarm with (80, 0.9, 0.25),
• and Bearing, Sharp Sphere, and Fertility with (100, 0.9, 0.25).

For the allowed neighborhood range, we first let the default
normal filtering of [9] identify the neighborhoods. Then, for each
point pi, we took the number of neighbors ki identified and let
Ki := {ki − 10, . . . , ki + 10}. If this caused negative values,
we omitted them. Afterwards, each point chose a neighborhood
according to the least error (Eq. (7)) before and in each iteration.
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Fig. 6. Box–whisker plot for the standard deviations obtained by the different models. Each model contributes its own standard deviation as a data point for the
diagram. Therefore, the leftmost column represents 1,000 data points (from [27]), the center column represents 100 data points (from [28]), and the rightmost
column represents 100 data points (from [29]).
Fig. 7. Geometries from left to right with number of vertices in brackets: Cube (1,906), Bearing (3,475), Fandisk (6,475), Sharp Sphere (8,354), Fertility (9,239),
Octahedron (16,395), and Rockerarm (24,106).
We set parameters a = b = arccos(ρ) w.r.t. the processed
eometry, as this algorithm is tailored to benefit from a sharp
istinction. In the cases where the covariance matrix degenerates
s all weights become 0, we use the default neighborhood size
nd equal weights for such points.
This allows us to study the effect of including our weighting

cheme into a larger application by comparing to the results
btained by [9]. Furthermore, we can compare both the original
esults of [9] and the results of our enhanced weighting pipeline
o the ground truth normals provided by the noiseless models. In
able 3, the MSE results are shown, where MSE(Noise) compares
round truth and noisy input, MSE [9] compares ground truth
nd the result of [9] with its default parameters, and MSE(ours)
ompares ground truth and the result of the enhanced normal
iltering pipeline.

From Table 3, an immediate observation is that allowing indi-
idual neighborhood ranges reduces the overall error compared
o the default values used in the normal filtering. This becomes
bvious as all values in the column MSE(ours) are smaller than
hose in column MSE [9]. Thus, the algorithm benefits from indi-
idual neighborhood ranges as discussed in Section 5.4, instead
f setting one global neighborhood size parameter.
One interesting observation can be made by incorporating the

SE(Noise) values into the comparison. For most of the models
onsidered, these values outperform the normal filtering results.
o explain this, consider that the point normals are influenced
y the mesh properties, i.e., the faces and their areas affect
he normals provided as ground truth. The filtering procedures
hus sometimes worsen the results as it tries to clearly arrange
ormals corresponding to points which represent a planar area,
hereas points lying on (sharp) edges in a mesh receive normals
either belonging to the areas meeting at that edge. This points
owards future work and improvements of [9], but is irrelevant
n the context of this paper as the main message to be taken
rom these experiments is that utilizing optimized neighborhood
election over a wider range of k does positively influence the
erformance of the algorithm.
9

6. Conclusion

In this article, we investigated a family of weights (Eq. (2)) for
point set processing. These weights are based on the normal simi-
larity. The family includes common choices such as equal weights
or sharp cut-off weights at a given threshold. Furthermore, we
presented an evaluation model for neighborhood weights based
on a Shannon entropy classification error (Eq. (7)). We have
performed a large-scale evaluation of our weight family on four
data sets. The first set consisted of 1,000 clean surface meshes
from the work of [27]. The second and third set consisted of 100
real-world scans taken from each [28] and [29]. Additionally, we
included a scanned model from [30] with over one million points.

A statistical analysis revealed that the optimal weight pa-
rameters should lead to a neglect of non-similar normals, yet
include mid-range normal points with a low weight. Specifically,
equal weights, as used in the literature discussed in Section 2
and in particular in [12] do not obtain minimal error values.
Furthermore, sharp cut-off weights as used, e.g., by [9] do perform
well on certain scanned models, but are also generally inferior
to more flexible weighting terms. Finally, it became obvious in
the evaluation that neighborhood sizes have to be variable over a
point set as only these variable sizes attain minimal error values.
The potential of this variability of neighborhood sizes was shown
by incorporating point-wise neighborhood size ranges within a
normal filtering stage in a point denoising algorithm [9], yielding
smaller mean squared errors compared to the original pipeline.

While this article addresses a variety of possible weighting
choices and neighborhood sizes, to cover the most widely used
versions from the literature, several aspects are left as future
work. Further research consists of running the large-scale analysis
on a broader range of neighborhood sizes, comparable to [12].

Not only with the publication of the versatile PointNet archi-
tecture, machine- and deep learning techniques gradually con-
quered the realm of point set processing [31]. Subsequently, a
wide variety of publications arose that tackle several problems
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Table 3
Mean squared errors (MSE) for several models corrupted by noise 0.3ℓ and 0.6ℓ with ℓ being the mean distance of all distances
among six nearest neighbors. Our approach outperforms that of [9] in all examples considered.

0.3ℓ 0.6ℓ

MSE(Noise) MSE [9] MSE(ours) MSE(Noise) MSE [9] MSE(ours)

Cube 0.018171157 0.004720763 0.003817538 0.067785183 0.041014649 0.017185731
Bearing 0.019149792 0.092202990 0.06311642 0.087963467 0.105885719 0.099716185
Fandisk 0.015985698 0.047105692 0.033043562 0.059076477 0.067027229 0.052858261
Sharp sphere 0.033954089 0.152198571 0.124993406 0.091947551 0.162334741 0.143099697
Fertility 0.134043694 0.220368116 0.197418828 0.232151395 0.25364564 0.25100736
Octahedron 0.287851891 0.282346769 0.275334065 0.304714745 0.277547626 0.271626537
Rockerarm 0.017150895 0.081370198 0.067150116 0.063687905 0.084070141 0.078171864
related to point set processing. These touch on multiple areas
discussed in this paper. For instance, the PointCleanNet archi-
ecture was designed for denoising and outlier removal of point
ets [32]. Another representative of machine learning technology
or point sets is the NormNet architecture, which derives point-
ise normal estimations for three-dimensional point sets [33].
problem naturally approached using normal information on
point cloud is (semantic) segmentation. In a sense, our op-

imized neighborhood weights do segment the point set into
everal, small parts with consistent normal information. In con-
rast, large-scale segmentation approaches via machine learning
re available, e.g., utilizing edge-convolution networks [34]. All
hese machine learning approaches have in common that they de-
end on large sets of well labeled training data. In its generality,
ur approach can add to these developments in many ways. Aside
rom improving the (semi-)automated generation of training data,
t can support the selection of neighborhood weights and sizes
hat serve as architecture input. Additionally, the direct incorpo-
ation of normal information on the neighborhood-level supports
opological consistence, outlier resistance, and coherence of both
he considered point set as well as the algorithmic procedure
pplied to it. Investigating these potentials of our methodology
n the machine learning context is, however, left for future work.

As a closing remark, we would like to point out that several
lgorithms developed within the geometry processing commu-
ity are heavily dependent on one or more parameters. These
arametric values are often fine-tuned during an experimen-
ation phase that is run on a small and limited data set. Our
arge-scale analysis in this paper highlights the importance of
systematic setup for parameter evaluation. In particular, we
ere able to show that the usually globally chosen neighborhood
ize parameter yields better results when used within a bilat-
ral weighting scheme that incorporates normal information and
arying neighborhood sizes. We hope that this work encourages
urther research on the applicability of algorithms and their pa-
ameters ‘‘in the wild’’ to ensure applicability and robustness of
he developed methods.
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