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Automated free energy calculation from atomistic simulations

Sarath Menon,1, ∗ Yury Lysogorskiy,1 Jutta Rogal,2, 3 and Ralf Drautz1, †
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2Department of Chemistry, New York University, 10003 New York, United States

3Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
(Dated: July 20, 2021)

We devise automated workflows for the calculation of Helmholtz and Gibbs free energies and their tempera-
ture and pressure dependence and provide the corresponding computational tools. We employ non-equilibrium
thermodynamics for evaluating the free energy of solid and liquid phases at a given temperature and reversible
scaling for computing free energies over a wide range of temperatures, including the direct integration of P-
T coexistence lines. By changing the chemistry and the interatomic potential, alchemical and upscaling free
energy calculations are possible. Several examples illustrate the accuracy and efficiency of our implementation.

I. INTRODUCTION

Free energies are crucial for thermodynamic analysis and
provide valuable insight into the relative stability of phases
and their coexistence. The calculation of free energies from
atomistic simulations is far from trivial, also because free en-
ergies cannot be expressed easily as thermodynamic averages
that may be obtained in atomistic simulations directly.

Thermodynamic integration [1, 2] is widely employed to
compute free energies. In thermodynamic integration, the
system of interest is related to a reference system with known
free energy. A parameter switches the energy of the system of
interest to the reference system continuously and smoothly.
For example, the free energy of solids can be computed by
transforming from a non-interacting Einstein crystal to a
system of interest [3]. For liquids, reference systems such as
the ideal gas [4, 5], or pair potentials like Lennard-Jones [6]
or Uhlenbeck-Ford [7] are utilised.

Thermodynamic integration is computationally intensive
because many separate calculations are required for discrete
points along the non-physical path that connects the refer-
ence system to the system of interest [2]. Non-equilibrium
approaches to thermodynamic integration [8], in which the
system of interest is transformed to the reference system as
a function of time, lead to significant improvements in com-
putational cost and efficiency. Non-equilibrium calculations
for the computation of Helmholtz free energies have been
applied to solids [9] and liquids [10] within the framework
of the molecular dynamics code LAMMPS [11]. Employing
reversible scaling [12], non-equilibrium calculations are
carried out over thermodynamic state variables by relating
the switching parameter to temperature. In this way, the vari-
ation of the Helmholtz free energy with temperature can be
computed from a single non-equilibrium calculation starting
from the Helmholtz energy at a reference temperature. By
scaling temperature and pressure simultaneously, P-T phase

∗ sarath.menon@rub.de
† ralf.drautz@rub.de

boundaries can be computed within a single simulation [13].

In practical applications of non-equilibrium methods, sev-
eral simulations need to be combined, and parameters need
to be set, which makes the computational procedure cumber-
some for non-specialists. Therefore, automated protocols that
efficiently carry out non-equilibrium thermodynamic integra-
tion and establish a bridge from atomistic simulations to ther-
modynamics are highly desirable.

A general workflow can be subdivided into four broad
steps:

1. evaluation of basic properties such as volume or pres-
sure for the system of interest;

2. setting of reference system parameters to resemble the
system of interest as closely as possible;

3. time-dependent switching between the system of inter-
est and the reference system to compute the free energy;

4. temperature sweep to calculate the temperature depen-
dence of the Helmholtz or Gibbs free energy for con-
stant volume, pressure or along pressure-temperature
paths (i.e. for phase coexistence).

Several works implement parts of this workflow, but a
general, automated approach is not available. This limits the
widespread application of non-equilibrium methods for the
computation of thermodynamic properties.

Here, we present an entirely automated workflow im-
plementation, requires only minimal input and can be used
to calculate both Helmholtz and Gibbs free energies. The
workflow has four main applications: (i) calculation of the
Helmholtz and Gibbs free energy at a given temperature,
(ii) Helmholtz/Gibbs free energy calculation as a function
of temperature at constant volume/pressure, (iii) calculation
of the pressure-temperature coexistence line of two phases,
and (iv) free energy computation for alchemical changes
and upscaling. The workflow is suitable for single and
multi-component systems, but configurational contributions
to the free energy are not evaluated.

We demonstrate our automated workflow for calculating
the pressure-temperature phase diagram of Ti using an
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embedded atom method (EAM) interatomic potential [14].
In particular, we use three alternative methods that our
workflow implements for the computation of the phase dia-
gram. For multi-component applications, we demonstrate the
Helmholtz free energy calculation of a binary CuZr system
[15]. Also, we present an algorithm for alchemical changes
and upsampling in which the chemistry of the system or the
interatomic potential in use is continuously transformed. We
demonstrate upsampling by transforming between a relatively
computationally inexpensive EAM potential for Cu [16],
and the more expensive, recently developed atomic cluster
expansion (ACE) potential [17, 18]. Upsampling speeds
up the free energy calculations by a factor of five, with-
out loss of precision. Furthermore, in the CuZr system, we
employ alchemical transformations to integrate from Cu to Zr.

The remainder of the paper is organised as follows: in Sec-
tion II, we discuss the non-equilibrium calculation of free en-
ergy, followed by the temperature dependence of free energy
in Section III, and in Section IV, an algorithm for alchemi-
cal changes and upsampling is discussed. Finally, we demon-
strate the application of the algorithms in Section V, discuss
the practical implementation of the algorithms in the form of
a Python program in Section VI, and conclude in Section VII.

II. NON-EQUILIBRIUM CALCULATION OF FREE
ENERGY DIFFERENCES

We assume that the Helmholtz free energy for an initial
Hamiltonian Hi is known and the target is the computation
of the free energy for a final Hamiltonian H f . To this end, the
two Hamiltonians are combined into the Hamiltonian H(λ )
with a parameter λ that continuously switches between the
initial and final Hamiltonian,

Hi = H(λi) and H f = H(λ f ) . (1)

The reversible work for switching along λ is given by [2]

W rev
i→ f =

∫
λ f

λi

〈
∂H(λ )

∂λ

〉
λ ′

dλ
′ . (2)

If λ is varied as a function of time, the work done is given by,

W s
i→ f =

∫ t f

ti

dλ (t)
dt

∂H(λ )

∂λ
dt , (3)

where W s is the dynamic work done along the process, λi =
λ (ti) and λ f = λ (t f ). The time over which λ is switched,
t f − ti, is the switching time tsw. The free energy difference is
related to the dynamic work as,

∆F =W rev =W s−Ed , (4)

with Ed being the average dissipated energy. The energy
dissipation depends on the rate at which the Hamiltonian is
switched, with Ed → 0 for tsw → ∞. If the transformation is
slow and close to an ideal quasistatic process, the dissipated

energy when switching the system from the initial to the final
state is the same as for switching from the final to the initial
state [19]

Ed = Ed
i→ f = Ed

f→i , (5)

and therefore

∆F =
1
2
[W rev

i→ f −W rev
f→i] =

1
2
[W s

i→ f −W s
f→i] . (6)

The magnitude of energy dissipation follows as,

Ed =
1
2
[W s

i→ f +W s
f→i] . (7)

For the computation of the Gibbs free energy difference in
the isobaric ensemble only small modifications are necessary.
We relate the initial and final Hamiltonians with parameter λ

as before and include the dependence of pressure on λ , P(λ ),
with

Pi = P(λi) and Pf = P(λ f ) . (8)

The work done by switching is then obtained as

W s =
∫ t f

ti

dλ

dt

(
∂H(λ )

∂λ
+

∂P(λ )V
∂λ

)
dt , (9)

and for a quasistatic process

∆G =
1
2
[W s

i→ f −W s
f→i] . (10)

III. TEMPERATURE DEPENDENCE OF THE FREE
ENERGY

The temperature dependence of the free energy is computed
in two steps. First, the free energy difference between a refer-
ence system and the system of interest at constant temperature
Ti is obtained. In a second step, the free energy of the system
of interest at Ti is taken as the starting point for a temperature
sweep for the computation of the free energy in the interval
from Ti to Tf . We implement temperature sweeps

1. at constant volume,

2. at constant pressure,

3. along the pressure-temperature two-phase coexistence
line.

A. Free energy at constant temperature

The starting point is a reference Hamiltonian Hi for which
the free energy Fi(N,V,T ) is known. For the solid we use
an Einstein crystal and for the liquid an ideal gas combined
with the Uhlenbeck-Ford model [7]. In the Einstein crystal,
the atoms are bound to reference positions, which means that
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the free energy is computed for the given atomic configura-
tion and the configurational entropy is not included. This is
different for the liquid reference. In the liquid, atoms are free
to move and exchange and the configurational entropy is part
of the calculation. The free energy of the reference systems
is summarized in Appendix A. The combined Hamiltonian is
then written as

H(λ (t)) = (1−λ (t))Hi +λ (t)H f , (11)

and the integration over time is carried out from λ (ti) = 0 to
λ (t f )= 1. The free energy of the system of interest is obtained
by switching λ at constant temperature and volume,

Ff (N,V,T ) = Fi(N,V,T )+∆F . (12)

where ∆F is computed using Eq. (6). As the pressure for
Ff (N,V,T ) can be directly obtained, the Gibbs free energy
may be calculated as G f = Ff +PV . The evaluation of the
free energy at constant temperature from a known reference is
implemented in algorithm 1.

Algorithm 1 Compute free energy at constant T
1: calculate V at (NPT ) for H f
2: if solid then
3: for all atoms do
4: calculate:
5: average mean squared displacement 〈(∆rrr)2〉
6: spring constant k
7: setup reference Hi = HE (see Appendix A 1)
8: else if liquid then
9: calculate density ρ

10: setup reference Hi = HUF (see Appendix A 2)
11: for n independent runs do
12: equilibrate for time teq
13: switch λ : 0→ 1 over time tsw
14: calculate work W s

i→ f (Eq. (3))
15: equilibrate for time teq
16: switch λ : 1→ 0 over time tsw
17: calculate work W s

f→i (Eq. (3))

18: average over n independent runs ∆F = 1
2 [W

s
i→ f −W s

f→i]

19: calculate free energy
20: Ff (N,V,T ) = Fi(N,V,T )+∆F
21: if P is known then
22: G f (N,V,T ) = Ff (N,V,T )+PV

B. Temperature sweep

Next the free energy obtained in the previous section is
taken as the initial free energy Fi at the temperature Ti and
volume Vi. We employ reversible scaling[12] to sweep the
temperature at constant volume, constant pressure or along a
P-T phase boundary.

Apart from F(N,V,T ) and G(N,P,T ), by numerical differ-
entiation entropy

S =−
(

dG
dT

)
P

(13)

and specific heat

CP = T
(

dS
dT

)
P

(14)

are obtained.

1. Constant volume

For sweeping the temperature at constant volume we use
the relation

F(N,V,Tf ) = F(N,V,Ti)−
3
2

kBTf N ln
Tf

Ti
+

Tf

Ti
∆F , (15)

where ∆F is obtained from scaling the Hamiltonian at con-
stant temperature (Eq. (B3)). The derivation of this expres-
sion is summarized in Appendix B. The temperature sweep is
implemented in algorithm 2.

Algorithm 2 T sweep for constant V or P
1: if constant V then
2: F(N,V,Ti) from algorithm 1
3: else if constant P then
4: F(N,V,Ti) from algorithm 1
5: calculate G(N,P,Ti) = F(N,V,Ti)+PVi

6: for n independent runs do
7: if constant V then
8: equilibrate for time teq in NVT ensemble
9: switch λ : 1→ Ti/Tf over time tsw

10: calculate work W s
i→ f (Eq. (B3))

11: equilibrate for time teq in NVT ensemble
12: switch λ : Ti/Tf → 1 over time tsw
13: calculate work W s

f→i (Eq. (B3))
14: else if constant P then
15: equilibrate for time teq in NPT ensemble
16: switch λ : 1→ Ti/Tf over time tsw
17: calculate work W s

i→ f (Eq. (B6))
18: equilibrate for time teq in NPT ensemble
19: switch λ : Ti/Tf → 1 over time tsw
20: calculate work W s

f→i (Eq. B6)

21: if constant V then
22: average over n independent runs ∆F = 1

2 [W
s
i→ f −W s

f→i]

23: calculate F(N,V,Tf ) = F(N,V,Ti)− 3
2 kBTf N ln Tf

Ti
+

Tf
Ti

∆F
24: else if constant P then
25: average over n independent runs ∆G = 1

2 [W
s
i→ f −W s

f→i]

26: calculate G(N,P,Tf ) = G(N,P,Ti)− 3
2 kBTf N ln Tf

Ti
+

Tf
Ti

∆G

27: calculate S and CP using Eq. (13) and Eq. (14).

2. Constant pressure

For calculations at constant pressure, the Gibbs free energy
reference is obtained as Gi = Fi +PVi, where P is the pressure
at volume Vi. We then use

G(N,P,Tf ) = G(N,P,Ti)−
3
2

kBTf N ln
Tf

Ti
+

Tf

Ti
∆G , (16)



4

where ∆G is obtained from scaling Hamiltonian and pressure
at constant temperature (Eq. (B6)), see Appendix B. The tem-
perature sweep is implemented in algorithm 2.

3. P-T coexistence line

For sweeping temperature T along the coexistence line
P(T ) first an initial coexistence point between two phases
α and β is established, Gα(N,Pi,Ti) = Gβ (N,Pi,Ti). Then
scaling temperature and adapting pressure to continuously ful-
fill the Clausius-Clapeyron condition, a series of coexistence
points is obtained. The necessary equations are summarized
in Appendix B. The workflow is detailed in algorithm 3.

Algorithm 3 T sweep along P(T ) coexistence line
1: for system in α , β do
2: for Pi > 0 calculate G(N,P,Ti) for initial temperature Ti from

algorithm 1
3: calculate G(N,Pi,T ) for various temperatures from algo-

rithm 2
4: for Pi determine Ti such that Gα (N,Pi,Ti) = Gβ (N,Pi,Ti)
5: for system in α , β do
6: for n independent runs do
7: equilibrate for time teq in NPT ensemble
8: switch λ : 1→ Ti/Tf over time tsw
9: calculate pressure ∆Ps

i→ f
10: calculate work W s

i→ f
11: equilibrate for time teq in NPT ensemble
12: switch λ : Ti/Tf → 1 over time tsw
13: calculate pressure ∆Ps

f→i
14: calculate work W s

f→i

15: average n independent runs ∆P = 1
2 [∆Ps

i→ f −∆Ps
f→i]

16: average n independent runs W = 1
2 [W

s
i→ f −W s

f→i]

17: calculate Pf = (Tf /Ti)(Pi +∆P)
18: calculate G(N,Pf ,Tf ) = G(N,Pi,Ti)− 3

2 kBTf N ln Tf
Ti
+

Tf
Ti

∆G
19: with Gα (N,Pf ,Tf ) = Gβ (N,Pf ,Tf ) = G(N,Pf ,Tf )

IV. ALCHEMICAL CHANGES AND UPSAMPLING

For efficient defect formation free energies or for the com-
putation of phase diagrams, alchemical changes and upsam-
pling are useful. To this end, we provide algorithm 4 which
continuously transforms atoms and atomic interactions from
an initial system to the final system. Along the transforma-
tion path, each atom may change its chemistry as described
by the potential energy and mass. The integration is separated
into two steps. First, we evaluate the free energy difference
between the initial and final system by changing atomic inter-
actions along λ , but at constant atomic masses. We transform
according to Eq. (11) and the integration over time is carried
out from λ (ti) = 0 to λ (t f ) = 1. The free energy difference,
∆F , is then obtained from Eq. (6). In the second step, we
consider the free energy change originating from the change
in atomic masses. This contribution is given by,

∆Fmass =
3
2

kBT
N

∑
i=1

ln
(

m(i)
i

m( f )
i

)
, (17)

as briefly summarized in Appendix B 4.
Given the free energy Fi of the initial system, the free en-

ergy of the final system is given by,

Ff = Fi +∆F +∆Fmass . (18)

If only the interatomic potential is changed along the path
and the atomic masses remain constant, only the first step is
necessary and the algorithm may be used for efficiently com-
puting the free energy by starting from a less refined model of
the same chemistry, similar in spirit to the upsampling in the
TU-TILD approach [20].

Algorithm 4 Alchemical changes
1: define initial and final chemistry for each pair of atoms
2: define initial and final potential
3: set up Hi and H f
4: for n independent runs do
5: equilibrate for time teq
6: switch λ : 0→ 1 over time tsw
7: calculate work W s

i→ f
8: equilibrate for time teq
9: switch λ : 1→ 0 over time tsw

10: calculate work W s
f→i

11: if constant V then
12: average n independent runs ∆F = 1

2 [W
s
i→ f −W s

f→i]

13: calculate Ff (N,V,T ) = Fi(N,V,T )+∆F +∆Fmass
14: else if constant P then
15: average n independent runs ∆G = 1

2 [W
s
i→ f −W s

f→i]

16: calculate G f (N,P,T ) = Gi(N,P,T )+∆G+∆Gmass

V. APPLICATIONS

A. Convergence with system size and switching time

For analysing the dependence of the free energy on system
size and switching time we use bcc Fe with an EAM potential
[21]. We choose this particular system to facilitate compar-
ison with Freitas et al. [9]. We calculate the free energy at
1000 K and zero pressure for the bcc structure using algorithm
1 for various system sizes ranging from 128 to 16000 atoms.
The switching is carried out over 100 ps. The calculated free
energy, G(N), converges as a function of 1/N, where N is the
number of atoms in the system [22]. We can thus evaluate
G(∞), the free energy at the thermodynamic limit through an
asymptotic analysis of G(1/N). The difference in free energy,
G(∞)−G(N), is shown in Fig. 1 (a), after taking into account
corrections due to the fixed centre of mass [22]. From the fig-
ure, 3000 atoms are sufficient to obtain the free energy within
an accuracy of 0.01 meV/atom.

In Fig. 1 (b), we show the free energy with varying switch-
ing time tsw from 1 ps to 10 ns. We use a bcc cell with
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FIG. 1. (a) G(∞)−G(N) at 1000 K and zero pressure as a function of system size from 128 to 16000 atoms and a switching time of 100 ps.
(b) G(N = 6750) calculated for each switching time. G(∞) is shown in dashed red line. Switching times from 1 ps to 10 ns are used for 6750
atoms.

N = 6750 atoms at a temperature of 1000 K and zero pressure.
Even for the relatively short switching time of 50 ps, the free
energy can be evaluated with a precision of 0.1 meV/atom.
At 100 K, we obtain G(P = 0,T = 100K) = −4.263118(4)
eV/atom over tsw = 10 ns, which is in excellent agreement
with Freitas et al. [9].

B. Pressure-temperature phase diagram for Ti

To illustrate the robustness and efficiency of the algorithms,
we calculate the pressure-temperature phase diagram of Ti us-
ing an EAM potential [14]. We consider the bcc, hcp and liq-
uid phases in the pressure range of 0-5 GPa and temperature
range of 500-3000 K. The simulation cell consists of 4394
atoms for the bcc structure and 8878 atoms for the hcp and
liquid phases.

Using the algorithms introduced in this work, we calcu-
late the phase diagram using three different strategies. (i)
We localize points of pairwise identical Gibbs free energy
by sweeping temperature at constant pressure. This includes
three steps:

• Using algorithm 1 for the hcp and bcc phase, we calcu-
late G(P,T ) at T = 500 K and pressures from 0 to 5 GPa
in intervals of 0.25 GPa. For the liquid phase, G(P,T )
is calculated over the same pressure range, but at a tem-
perature of 1500 K. For all calculations, a switching
time of 50 ps was used.

• Starting from G(P,T ) calculated in the previous step,
we follow algorithm 2 to compute the dependence of
the free energy on the temperature. For bcc and liquid
phases, we scale the Hamiltonian of the system such
that a temperature range up to 3000 K is covered. For
hcp, the temperature range until 1500 K is traversed as
the structure is unstable at higher temperatures.

• At each pressure, from the crossings of the free ener-
gies as a function of temperature, the phase transition
temperature is located.

The calculated phase diagram is shown in Fig. 2. The thermo-
dynamic regions at which the bcc, hcp, and liquid phases are
the most favourable energetically are red, green, and blue.

(ii) We use algorithm 3 to sweep the P-T coexistence lines
directly. A prerequisite for algorithm 3 is a known coexis-
tence point (Pi,Ti) with Pi > 0. To this end, we use algorithm
2 to calculate initial coexistence points (Pi,Ti) at a low pres-
sure of 0.01 GPa for bcc-hcp (T = 1158 K) and bcc-liquid
(T = 1931 K). From these points, algorithm 3 is used to scale
the temperature up to 2200 K for bcc-liquid coexistence and
1000 K for the bcc-hcp coexistence over a time of 1 ns. The
calculated coexistence lines are shown in grey in Fig. 2. The
coexistence lines using algorithm 3 show excellent agreement
with coexistence points computed in (i).

(iii) We verify that the free energies along the coexistence
lines are indeed identical by carrying out calculations using
algorithm 1. The calculated coexistence points are shown in
grey circles for both the bcc-hcp and the bcc-liquid coexis-
tence lines.

We predict the melting point of the bcc structure at zero
pressure at 1913 K, in excellent agreement with the reported
value (1918 K [14]. We compute the hcp-bcc phase transition
temperature to be 1150 K. Our calculations are in good agree-
ment with direct molecular dynamics simulations (1150 K),
and lattice switch Monte Carlo method (1152 K) [14]. The
ω phase, which appears in the experimental phase diagram
[23] (P > 2 GPa, T = 0 K), always has a higher free energy
than the hcp structure as predicted by the EAM potential. In
order to arrive at the complete phase diagram, only minimal
user input, such as the required phases, and the corresponding
temperature and pressure ranges are required.

C. Phase diagram of Si

The selection of an interatomic potential for a particular
application requires the validation of the physical properties
predicted by the model. For Si, a wide range of interatomic
potentials were compared in order to assess their quality and
transferability in Ref. 24. In addition, the calculation of phase
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FIG. 2. The pressure-temperature phase diagram for Ti using an
EAM potential [14]. The regions of stability for bcc, hcp, and liquid
are shown in red, green, and blue, respectively. The gradients in the
color indicate decreasing free energy; darker color indicates decreas-
ing free energy. Coexistence lines calculated using algorithm 3 are
shown in grey. The coexistence line is further verified by using al-
gorithm 1, the results of which are shown as grey circles. The three
independent computations are in excellent agreement.

diagrams can provide further insight into the quality of an
interatomic potential. We calculate the pressure-temperature
phase diagram of Si using different interatomic potentials. We
consider five different potentials: Stillinger-Weber (SW) [25],
angular dependent potential (ADP) [26], spectral neighbour
analysis potential (SNAP) [27], Tersoff [28], and modified
embedded atom method (MEAM) [29]. As an initial step to
ascertain the validity of the potential, we calculate the melt-
ing temperature at zero pressure. We use 4096 atoms for both
solid and liquid simulation cells and use a switching time of
50 ps. For the Tersoff potential, the calculated melting temper-
ature is very low (< 1400 K), while for the MEAM potential it
is very high (> 2000 K), compared to the experimental value
of 1687 K. Therefore we do not consider Tersoff and MEAM
for further calculations. The melting temperature for the SW
potential is 1678 K, for ADP 1850 K and for SNAP 1405 K.

After calculating the melting temperature, we find the co-
existence line between cubic diamond and liquid at various
pressures. Additionally, we consider the β -tin phase, which is
a high-pressure polymorph in Si, and we estimate the coexis-
tence line for cubic diamond – β -tin and β -tin – liquid. The
calculated phase diagram is shown in Fig. 3. Note that we did
not include the sc-16 phase which is known to be stabilized in
the SW phase diagram [30] in contrast to experiments.

As shown in Fig. 3, the phase diagram predicted by the SW
potential is in good agreement with previous results reported
for the same potential [30]. Furthermore, our calculations pre-

FIG. 3. Pressure-temperature phase diagram of Si calculated using
three different potentials. SW potential [25], ADP [26], and SNAP
[27] potentials are shown.

dict the liquid – cubic diamond – β -tin triple point at 9.8 GPa
and 1205 K, in excellent agreement with previous calculations
using the SW potential [30].

The ADP and SNAP potentials cannot predict coexistence
of three phases, likely due to the exclusion of high-pressure
phases during the development of the interatomic potentials.
For ADP the only stable phases are cubic diamond and liq-
uid and the system does not transform to β -tin at high pres-
sure. The cubic diamond-liquid coexistence line is overesti-
mated by about 200 K at the range of pressures considered.
The SNAP also does not exhibit a phase transformation into
the β -tin phase. The cubic diamond-liquid coexistence line is
underestimated by about 300 K. Thus, our algorithms can be
employed for efficient calculation of phase diagrams as pre-
dicted by different interatomic potentials, providing valuable
information about the transferability of the potential at various
thermodynamic conditions.

D. Calculation of specific heat

Algorithm 2 provides free energies as a function of temper-
ature. Eq. (13) and Eq. (14) provide an efficient method to
compute the specific heat. It is worthwhile to stress that there
are no additional calculations required for CP; it is directly
available from algorithm 2.

Alternatively, CP can also be calculated from the fluctua-
tions in the isothermal-isobaric ensemble by

〈(δ (U +PV ))2〉NPT = kBT 2CP , (19)

where U is the internal energy.
To illustrate the calculation of CP, we use an EAM poten-

tial [16] for Cu and compute the free energy as a function of
the temperature using algorithm 2. We use a simulation cell
with 4000 atoms at zero pressure and a temperature range of
600-1200 K. The switching is carried out over 1 ns. To com-
pare with Eq. (19), we further run MD simulations in the NPT
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FIG. 4. CP of Cu calculated using an EAM potential [16]. Orange
line: algorithm 2 and Eq. (14), yellow circles: experiment [31], red
circles: MD calculations using Eq. (19).

ensemble with a system size of 4000 atoms over the same tem-
perature range at intervals of 100 K. For each temperature, the
MD simulation was run for 1 ns, and five independent calcu-
lations were run for each temperature to estimate the error.

The results are shown in Fig. 4. It is clear that both methods
show fair agreement with each other and experiment. How-
ever, Cp using Eq. (14) is obtained from a single calcula-
tion compared to longer MD runs for each temperature using
Eq. (19).

E. Gibbs free energy of the CuZr system

The algorithms presented in this work are applicable to
multi-component materials, but exclude the computation of
configurational entropy in the solid phase. We use CuZr as
an example and calculate the free energy for both CuZr (B2
structure) and CuZr2 (C11b structure) using an EAM potential
[15]. The simulation cells for CuZr and CuZr2 contain 2000
and 1472 atoms, respectively. We calculate the free energy
in the temperature range from 300-900 K and zero pressure
for both structures using algorithm 2. The calculated free en-
ergy is shown in Fig. 5 and compared to the results from Tang
and Harrowell [32]. Our calculations agree very well with
the reported values. By employing algorithm 2, however, it is
possible to obtain the free energy over the whole temperature
in a single simulation.

F. Alchemical changes and upsampling

We demonstrate algorithm 4 using two examples. In the
first example, we use upsampling in which a system is trans-
formed between two interatomic potentials. Such a scenario
is akin to algorithm 1, albeit with a more complex reference
system, and is similar to the TU-TILD approach [20]. Here,
we switch between a computationally cheap EAM potential
and a relatively more expensive ACE potential. To obtain the

FIG. 5. Free energy of the CuZr (red) and CuZr2 (blue). Solid
line: free energy calculated using algorithm 2, circles: reference
from Tang and Harrowell [32].

free energy of Cu using the ACE potential at a temperature
of 100 K and zero pressure, we follow two different routes
as illustrated in Fig. 6. One approach is to evaluate the free
energy directly starting from the reference Einstein crystal us-
ing algorithm 1. In the second approach, we compute the free
energy of the Cu EAM potential before the ACE potential.
Compared to ACE, the EAM potential is about two orders
of magnitude faster. From the EAM potential, we use algo-
rithm 4 to transform the system to the ACE potential. From
the free energy difference, ∆F , during this transformation, we
can calculate the free energy of Cu for the ACE potential, by
GACE, up = GEAM+∆F . As shown in Fig. 6, we find that both
routes arrive at the same result.

Algorithm 1
∆F =−3.5242 eV/atom
FE = 0.0065 eV/atom

Reference system
Einstein crystal

Algorithm 1
∆F =−3.6863 eV/atom
FE = 0.0072 eV/atom

Cu EAM
GEAM =−3.5177 eV/atom

Algorithm 4
∆F = 0.1612 eV/atom

Cu ACE
GACE, up =−3.6789 eV/atom

GACE =−3.6791 eV/atom

FIG. 6. Illustration of the two routes by which the free energy for Cu
within ACE can be calculated. Starting from the reference system,
it can be directly calculated using algorithm 1. Alternatively, first
the free energy of the EAM potential is calculated using algorithm 1,
after which the system is upsampled to ACE using algorithm 4.

The advantage of using upsampling to estimate the free en-
ergy can be understood from Fig. 7. In Fig. 7, we show the
energy dissipation, Ed in work done during switching in the
two routes discussed above: the energy dissipation during the
calculation of GACE for switching time of 10–100 ps is shown
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FIG. 7. Energy dissipation during the calculation of GACE using
algorithm 1 (red circles), and for switching between the EAM and
ACE potentials (blue circles).

in red, the energy dissipation during upsampling is shown in
blue. For all switching times considered, Ed is lower for up-
sampling by at least an order of magnitude. The energy dis-
sipation depends on the similarity of the two systems, and the
Cu EAM potential is a more favourable reference state than
the Einstein crystal. Thus, by using algorithm 1 to compute
the free energy for the computationally inexpensive potential,
and by switching it to the more expensive one, it is possible to
obtain free energies from switching times as low as 10 ps. For
a comparable accuracy, one needs at least 50 ps of switching
time for the direct calculation with the more expensive poten-
tial.

In the second example, we demonstrate the use of algo-
rithm 4 for switching of chemical species. For the binary CuZr
alloy in Section V E, we start in B2 structure at 800 K, which
is the experimentally observed stable crystal structure at this
temperature. We randomly swap 2% of Zr atoms to Cu and
use it as the initial state. We use algorithm 4 to switch to
52 at. % Zr. This particular concentration range was chosen
to compare the free energy of the system to that reported by
Tang and Harrowell [32] using the same interatomic poten-
tial. Along the integration path, the mass of the system is also
transformed by adding a free energy contribution due to the
change in kinetic energy as described in Appendix B 4. The
system consists of 16000 atoms, and the alchemical switching
is carried out over 100 ps. Additionally, we evaluate the free
energy at different concentrations at the same temperature us-
ing algorithm 1.

In Fig. 8 (a), the cumulative reversible work along the in-
tegration path is shown, while in 8 (b), the free energy as a
function of concentration along the integration path is shown.
We find good agreement with the free energy reported by Tang
and Harrowell [32] and calculations using Algorithm 1 even
at intermediate points along the path (Zr at. % = 48 to 52).

FIG. 8. (a) ∆F as a function of λ (t) along the alchemical integration
path that switches a 48 at. % Zr B2 structure to 52 at. % Zr in the
same lattice. (b) The free energy as a function of the Zr concentra-
tion calculated using algorithm 4 (red line). Values reported by Tang
and Harrowell [32] are shown as blue circles, while those calculated
using Algorithm 1 are shown as red circles.

VI. IMPLEMENTATION

We provide a Python library, CALPHY, that includes all
algorithms in this work. The library uses LAMMPS [11]
through the PYLAMMPSMPI interface [33, 34] to carry out the
molecular dynamics simulations. The library also provides
a command-line interface, where the necessary input options
are provided through a text file. The input file used for the cal-
culation of the free energy of CuZr system in the temperature
range of 300-900 K at 0 pressure (Section V E) is shown in
Fig. 9.

The input file contains basic information about the sys-
tem, such as the elements used in the calculations and atomic
weights, followed by the required calculations and molecular
dynamics options in separate blocks. In this case, we use algo-
rithm 2 to calculate the free energy over the given temperature
range. The algorithm is specified under the mode keyword in
the input file in the calculations block. Further informa-
tion, such as the temperature and pressure, is also provided in
the same block. The input structure to be used for the calcula-
tion is read in the LAMMPS data format. The input param-
eters pertaining to the molecular dynamics calculations are
switched in the md block, which contains information about
the interatomic potential, timestep, thermostat, and barostat
damping coefficients, as well as the switching and equilibra-
tion time. A detailed discussion of the input file is provided in
the documentation of the library [35].

The switching function λ (t), which couples the system of
interest and the reference system can have multiple functional
forms as discussed in Appendix B 5. In the case of solid sys-
tems, the switching between the system of interest and refer-
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#elements
element: [’Zr’, ’Cu’]
#atomic mass
mass: [91.224, 63.546]
calculations:
#calculation mode: temperature-sweep
- mode: ts

#required temperature range
temperature: [300, 900]
#required pressure
pressure: [0]
#file containing input crystal structure
lattice: [ZrCu.data]
#state of the system
state: [solid]
#number of independent simulations
nsims: 3

md:
#details of the inter-atomic potential
pair_style: eam/fs
pair_coeff: "* * ZrCu.eam.fs Zr Cu"
#timestep for MD simulations
timestep: 0.001
#thermostat and barostat damping
tdamp: 0.1
pdamp: 0.1
#timesteps for equilibration run
te: 25000
#timesteps for switching run
ts: 50000

FIG. 9. Input file for calculating F(T ) for the example discussed in
Section V E.

ence system is implemented using the fix ti/spring com-
mand [9] as implemented in LAMMPS. For liquid systems,
the pair_style ufm command [7] within LAMMPS is used
to model the interatomic interactions in the Uhlenbeck-Ford
model, for which the reference-free energy is calculated using
the splines provided in Ref. 7. In the case of algorithm 2,
it is necessary to ensure that the system remains in its initial
state (solid or liquid) and does not undergo a phase transfor-
mation as the Hamiltonian is scaled. To this end, Steinhardt’s
parameters [36] as implemented in the PYSCAL code [37] are
used to detect the amount of solid or liquid particles in a given
system.

As evident from the sample input configuration, CALPHY
provides an automated way for free energy calculations with
minimal user input. As classical MD simulations are utilised
in CALPHY, only the vibrational contributions to the free en-
ergy are considered.

The CALPHY library is available in a public repository [38],
along with a collection of examples, including those presented
in this work.

VII. CONCLUSION

We implement four different algorithms for the automated
calculation of free energies. The algorithms can be applied in
different scenarios, such as calculating free energies at con-
stant temperature and pressure, calculating the free energy
over a given temperature range, and the direct calculation of
coexistence lines. We demonstrated the efficiency, accuracy,
and user-friendliness of our implementation by calculating the
complete pressure-temperature phase diagrams of Ti and Si.
The algorithms can be also be employed for multi-component
systems. Additionally, we present an algorithm for alchem-
ical changes and upsampling which can efficiently calculate
free energies over a given concentration range.

To facilitate the use of these algorithms, we provide a
Python library and command-line program CALPHY. With the
help of the framework provided, complex properties such as
melting temperature or phase transition temperatures can be
easily calculated.
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Appendix A: Reference free energy

1. Free energy of solids

The Frenkel-Ladd path [3] is commonly used to calculate
the Helmholtz free energy in solids from the Einstein crystal.
The Hamiltonian of the reference state is given by

HE =
N

∑
i=1

[
ppp2

i
2mi

+
1
2

miω
2
i (∆rrri)

2
]
, (A1)

where mi is the mass, ωi the oscillator frequency and ∆rrri is
the vector of particle i from its equilibrium position. The
Helmholtz free energy is given by

FE(N,V,T ) = 3kBT ∑
i

ln
(

h̄ωi

kBT

)
. (A2)

The spring constants ki = miω
2
i needs to be estimated such

that the vibrational frequencies are as close as possible to the
solid of interest. A common approach [9] is to estimate ki
from the mean-square displacement, 〈(∆rrri)

2〉, of the atoms

1
2

ki〈(∆rrri)
2〉= 3

2
kBT . (A3)
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In addition, a correction due to the fixed centre of mass [22]
needs to be added to the free energy;

δF = kBT ln
[

N
V

(
2πkBT
Nmω2

) 3
2
]

(A4)

2. Free energy of liquids

The choice of a reference system for a liquid is more com-
plicated than for a solid. A typical reference system is the
ideal gas. However, a direct switching path between a liq-
uid and ideal gas can cross the liquid-vapour coexistence line,
leading to hysteresis [39].

The Uhlenbeck-Ford (UF) [7] model can be used as a refer-
ence system [10]. The UF model is a purely repulsive pair po-
tential with a single parameter. The interaction decays quickly
and smoothly providing an advantage over the Lennard Jones
potential in terms of truncation or long-range corrections. Fur-
thermore, the UF model only has a stable liquid phase, pre-
venting hysteresis associated with phase transformations. The
UF model is given by

HUF =
N

∑
i=1

ppp2
i

2mi
−

N

∑
i< j

pkBT ln(1− exp(−(ri j/σ)2)) , (A5)

where ri j is the inter-particle distance, σ the length scale and p
a non-negative scaling factor that controls the strength of the
interaction. The free energy of the UF model is represented
as,

FUF = Fig +F(ex)
UF . (A6)

The excess free energy of the UF model is expanded as

F(ex)
UF (x,T ) = kBT

∞

∑
n=1

B̃n+1(p)
n

xn , (A7)

with x ≡ bρ and the number density ρ . The reduced virial
coefficients b≡ (πσ2)(3/2) and B̃n+1(p) can be computed ex-
actly. An accurate numerical representation of the free energy
using splines is available in literature [7]. The free energy of
the ideal gas is given by

Fig = NkBT
(

lnρ−1+∑
n

cn lncn

)
+3kBT ∑

i
lnΛi . (A8)

The concentration of species n is denoted cn, Λi is the
de Broglie thermal wavelength

Λi =

√
h2

2πkBT mi
. (A9)

where h is the Planck’s constant.

Appendix B: Reversible scaling

Here, we summarise key formulae from Ref. 12. In re-
versible scaling, the Hamiltonian is linearly scaled to λH. The
partition sum Q remains unchanged when T and λ are scaled
such that T/λ is constant. Or, in other words, the change
of the Hamiltonian with λ has the same effect on the parti-
tion function as the scaling of the temperature to T/λ while
keeping H unchanged. If one further takes into account the
temperature scaling in the kinetic energy and the definition
of the Helmholtz free energy from the partition function Q as
F =−kBT lnQ, one arrives at

F(N,V,T/λ ) =
3
2

kBT N
lnλ

λ
+

F(λ ,N,V,T )
λ

. (B1)

where F(λ ,N,V,T ) is the free energy of the scaled
Hamiltonian. Therefore, from computing F(λ ,N,V,T ) the
Helmholtz free energy F(N,V,T/λ ) can be directly obtained,
and scaling along λ provides the temperature dependence of
F(N,V,T/λ ). For the change of F with λ on has

∂F(λ ,N,V,T )
∂λ

= 〈U〉 , (B2)

and

∆F =
∫

λ f

1
〈U〉dλ ≡Wrev, (B3)

with T = Ti and λ f = Ti/Tf .
For the Gibbs energy at a given pressure P, a scaling to λH

changes the partition function in the isobaric ensemble in the
same way as a scaling of temperature and pressure to T/λ and
P/λ , therefore

G(N,P/λ ,T/λ ) =
3
2

kBT N
lnλ

λ
+

G(λ ,N,P,T )
λ

. (B4)

This identity may be exploited to evaluate the Gibbs free en-
ergy along different pressure paths by assuming that the pres-
sure changes with λ , P = P(λ ). Then

∂G(λ ,N,P(λ ),T )
∂λ

= 〈U〉+ dP(λ )
dλ

〈V 〉 , (B5)

and

∆G =
∫

λ f

1
〈U〉+ dP(λ )

dλ
〈V 〉dλ ≡Wrev (B6)

Three different pressure paths will be illustrated in the follow-
ing.

1. Constant pressure

For computing the temperature dependence of the Gibbs
free energy at constant pressure, in Eq. (B4) we change P to
λP on both sides so that it becomes

G(N,P,T/λ ) =
3
2

kBT N
lnλ

λ
+

G(λ ,N,λP,T )
λ

. (B7)
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Therefore, for constant pressure simulations the pressure in
the scaled Gibbs free energy G(λ ,N,λP,T ) needs to increase
linearly with λ . Eq. (B5) reads

∂G
∂λ

= 〈U〉+P〈V 〉 , (B8)

and

∆G =
∫

λ f

1
〈U〉+P〈V 〉dλ . (B9)

2. Pressure as a function of temperature

We would like to compute the Gibbs free energy along
a given P-T path. As the variation of the temperature is
achieved through scaling with λ from a reference tempera-
ture T , we use T/λ to indicate the varying temperature. Then
from Eq. (B4) we have

G(N,P(T/λ ),T/λ ) =
3
2

kBT N
lnλ

λ
+

G(λ ,N,PRS,T )
λ

,

(B10)
with the scaled pressure

PRS = λP(T/λ ) , (B11)

and Eq. (B5) reads

∂G
∂λ

= 〈U〉+ dPRS(λ )

dλ
〈V 〉 , (B12)

with

dPRS(λ )

dλ
= P(T/λ )− (T/λ )

dP(T/λ )

d(T/λ )
. (B13)

3. P-T coexistence

The P-T scaling may be used for tracking the coexistence
boundary between two phases [13]. We take P(T/λ ) as the
line along which the Gibbs energy of two phases α and β are
identical,

Gα(N,P(T/λ ),T/λ ) = Gβ (N,P(T/λ ),T/λ ) . (B14)

This means that

Gα(λ ,N,PRS,T ) = Gβ (λ ,N,PRS,T ) . (B15)

As we track the coexistence, a change of λ must maintain the
condition

∂Gα

∂λ
=

∂Gβ

∂λ
, (B16)

which from Eq. (B12) implies

〈U〉α +
dPRS(λ )

dλ
〈V 〉α = 〈U〉β +

dPRS(λ )

dλ
〈V 〉β , (B17)

and provides a condition for the P-T coexistence path,

dPRS(λ )

dλ
=
〈U〉α −〈U〉β
〈V 〉α −〈V 〉β

, (B18)

which is the Clausius-Clapeyron equation. From this, the
pressure change along the coexistence line is obtained,

∆P =
∫

λ f

1

〈U〉α −〈U〉β
〈V 〉α −〈V 〉β

dλ . (B19)

To make contact to non-equilibrium thermodynamics, the
scaling parameter λ is varied with time and thermodynamic
expectation values are replaced by instantaneous values,

dPRS

dt
=

dλ

dt
Uα(t)−Uβ (t)
Vα(t)−Vβ (t)

, (B20)

and the pressure difference is estimated as

∆P = PRS(λ (t f ))−PRS(λ (ti)) =
∫ t f

ti
dt

dλ

dt
Uα(t)−Uβ (t)
Vα(t)−Vβ (t)

.

(B21)
This defines the coexistence line PRS(λ ) in the scaled system.
The coexistence pressure in the unscaled system at tempera-
ture Tf may be obtained from Eq. (B11) at λ (t f ) = Ti/Tf by
using λ (ti) = 1 and PRS(1) = Pi as

Pf = P(Tf ) = (Tf /Ti)PRS(Ti/Tf ) = (Tf /Ti)(∆P+Pi) . (B22)

4. Kinetic energy contribution to the free energy

For the purpose of switching the chemistry along an inte-
gration path in algorithm 4, the mass m of the required atoms
also needs to change along the path. We assume that the mass
does not change along the path, and add the kinetic energy
contribution to the free energy.

The Hamiltonian of a system of N particles is:

H =
N

∑
i=1

ppp2
i

2m
+U(rrr1,rrr2...rrrN), (B23)

where pppi and rrri are the momenta and position of particle i
and U is the potential energy. The corresponding Helmholtz
free energy is,

F(T ) =−kBT ln
∫

drrr exp(−U/kBT )+3kBT
N

∑
i=1

lnΛi(T )

(B24)
Λ(T ) is the de Broglie wavelength given by Eq. (A9)
Upon a change of mass from m(i)

i to m( f )
i from the initial

to final state, the corresponding de Broglie wavelength also
changes, which leads to,

∆F(T ) = 3kBT
N

∑
i=1

ln
(

Λ
(i)
i (T )

Λ
( f )
i (T )

)
=

3
2

kBT
N

∑
i=1

ln
(

m(i)
i

m( f )
i

)
(B25)
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5. Switching function

The choice of the functional form of the switching func-
tion λ (t) in algorithm 1 affects the energy dissipation dur-
ing the switching process [40]. For algorithm 1 in solids,
the fix ti/spring command in LAMMPS [9] allows for two
functional forms: (i) a linear function λ (t) = t/tsw and (ii) a
function of the form:

λ (t) = τ
5(70τ

4−315τ
3 +540τ

2−420τ +126) (B26)

where τ is t/tsw. This function has vanishing slopes at the
ends of the switching process, and is shown to reduce the en-
ergy dissipation [40]. Similar to solids, we implement both
functional forms for liquids, and provide the option to choose
either of the functions. For the other algorithms, we employ a
linear function for λ (t).
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