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modeling competence were operationalized as five vari-
ables including decontextualized and contextualized
meta-modeling knowledge, complexity, and homogene-
ity of the modeling processes and a modeling product
score. In contrast to our expectations and common
assumptions in the literature, significant relationships
between the five variables were widely lacking. Only
the complexity of the modeling processes correlated
significantly with the quality of the modeling products.
To investigate this relationship further, a qualitative in-
depth analysis of two cases is presented. Implications
for biology teacher education are discussed.
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1 | INTRODUCTION

Influential science education standard documents, such as the Next Generation Science Standards
in the United States (NGSS Lead States, 2013), call upon teachers to engage their students in
authentic scientific practices (Osborne, 2014). Since modeling stands at the heart of any authentic
scientific endeavor (Giere, 1999), it is seen as an essential part of science teaching and learning
(Gilbert & Justi, 2016; Upmeier zu Belzen, Kriiger, et al., 2019). Consequently, scientific modeling
is proposed to stand in the center of science curricula, incorporating other scientific practices as
well (Lehrer & Schauble, 2006; Meister et al., 2021; Passmore et al., 2014; Windschitl et al., 2008).
However, this focus on scientific practices demands preservice science teachers to develop the
necessary prerequisites (“professional competences”; Baumert & Kunter, 2013) needed to be able
to plan lessons, teach, and reflect upon the teaching-learning processes professionally. Hence,
next to general pedagogical knowledge and competences, preservice science teachers need to
develop competences related to scientific practices—such as modeling—as part of their profes-
sional competences (Osborne, 2014); with modeling being one of such competences.

Empirical research has shown that teachers’ epistemic ideas about models and modeling
(i.e., meta-modeling knowledge) impacts their classroom instruction (Harlow et al., 2013; Vo
et al., 2015). However, meta-modeling knowledge is only one dimension in the current theoreti-
cal conceptualization of modeling competence, which also encompasses the teachers’ abilities
to engage in the modeling practices (Nicolaou & Constantinou, 2014) and their abilities to
develop a high-quality modeling product (Chiu & Lin, 2019). Although, each of those dimen-
sions of modeling competence is addressed by empirical research, the relationships between
preservice science teachers' meta-modeling knowledge, their modeling practices, and modeling
product are to date rarely studied (Cheng et al., 2021; Chiu & Lin, 2019; Louca &
Zacharia, 2012; Nielsen & Nielsen, 2021a) and was consequently emphasized as “[o]ne of the
most pressing needs for future research” (Louca & Zacharia, 2012, p. 486).



B | W] LEY-~ JRST GOHNER ET AL.

1.1 | Models and modeling in science education

Models are central tools for communicating and reasoning in science and essential to scientists
for explaining phenomena and for predicting possible outcomes (Giere et al., 2006; Godfrey-
Smith, 2006; Harré, 1970). Consequently, modeling competence is emphasized in standards and
curricula in many countries (ACARA, 2015; BCMOE, 2019; KMK, 2020; NGSS Lead
States, 2013; NRC, 2012; VCAA, 2016). Based on theoretical approaches in the philosophy of
science, scientific models can be defined as epistemic tools for sense-making (Knuuttila, 2011).
Accordingly, scientific modeling is the iterative and cyclic process of developing and using
models in science, aiming at investigating, representing, explaining, and predicting phenomena
(Giere et al., 2006; Passmore et al., 2014).

1.2 | Science teachers’' competences related to models and modeling
in science

One goal of teacher education is to equip future teachers with the prerequisites needed to plan
lessons, teach, and reflect upon the teaching-learning processes professionally (Baumert &
Kunter, 2013; Carlson & Daehler, 2019). Science teachers need to have meta-modeling knowl-
edge as well as the abilities to engage in modeling practices and to develop high-quality model-
ing products (Chiu & Lin, 2019; Nicolaou & Constantinou, 2014). Furthermore, science
teachers need related pedagogical content knowledge (PCK), including knowledge about teach-
ing with and about models and about how to conduct modeling activities in science classrooms
(Justi & Van Driel, 2006).

A multitude of research has been conducted on investigating pre- and in-service science
teachers' professional competences related to models and modeling, including, but not limited
to, teachers’ instructional practice regarding models and modeling in classrooms, as well as
their own meta-modeling knowledge and modeling practice (Khan, 2011; Krell & Kriiger, 2016;
Oh & Oh, 2011; Shi et al., 2021; Torres & Vasconcelos, 2015; Vo et al., 2015, 2019).

Most studies indicate that classroom practice typically gives students few opportunities to
meaningfully engage with models (Campbell et al., 2015; Khan, 2011). Studies on the instruc-
tional practice of teachers in science classrooms suggest that teachers encounter a multitude of
challenges and mainly focus on knowledge aspects represented in models, disregarding the pre-
dictive nature of models (Harlow et al., 2013; Nielsen & Nielsen, 2021b; Shi et al., 2021; Vo
et al., 2015, 2019). However, it is commonly assumed, that teachers' own ideas about models
and modeling shape their instructional classroom practice (Harlow et al., 2013; Vo et al., 2015,
2019). For example, Vo et al. (2015) observed that those teachers, who more strongly empha-
sized otherwise uncommon epistemic ideas (evidence, mechanism, and audience) and modeling
practices (evaluate and revise), employed better instructions during classroom practice. However
a later longitudinal investigation by the same authors, suggests this transfer is likely delayed
and takes place over vast timescales, often leading to changes in instructional practice only after
ayear (Vo et al., 2019).

Keeping in mind that teachers' own epistemic ideas can impact their classroom instruction,
it is alarming that most studies focusing on pre- and in-service science teachers’ meta-modeling
knowledge unravel rather uninformed views of teachers on models and modeling in science,
including naive realist views of models as simple copies of reality (e.g., Krell & Kriiger, 2016;
Torres & Vasconcelos, 2015). Moreover, only a fraction of science teachers expresses that
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models, as well as the underlying ideas represented in models, may be tested by deducing pre-
dictions (Krell & Kriiger, 2016).

Studies investigating teachers' modeling practice are rare, but the existing studies come to
similar results. It is, for example, consistently observed that some aspects of modeling practice
are challenging for teachers, especially the evaluation of models (Khan, 2011; Vo et al., 2015),
and, again, the predictive use of models (Gohner & Krell, 2020a). Gohner and Krell (2020a)
investigated the modeling practice of 32 secondary preservice biology teachers investigating a
black box. They observed that only 14 of these 32 secondary preservice biology teachers used
their developed models to predict the investigated system's behavior. Moreover, even among
these 14 secondary preservice biology teachers, the developed models were rarely evaluated
based on predictions in a repeated and systematic manner.

In summary, studies addressing teachers’ instructional practice regarding modeling their
epistemic ideas about models and modeling, and their modeling practice, suggest that the
potential of models as epistemic tools in teaching scientific practices is left untapped (Harlow
et al., 2013; Nielsen & Nielsen, 2021b). The existing body of empirical research, theoretical con-
siderations, and curricula highlight the epistemic nature of models as tools for scientific reason-
ing. However, in classroom settings models are still predominantly used by teachers for the
purpose of communicating scientific content, who are likely not fully aware of the potential,
models and modeling may have. While teachers’ epistemic ideas of models and their relation to
classroom instruction are quite well researched, studies connecting teachers’ modeling practice
with their classroom instruction and connecting teachers' epistemic ideas of models with their
modeling practice are widely lacking. Our study aims to fill this gap in science education
research. In the next section, our theoretical conceptualization of what constitutes modeling
competence will be briefly explained.

1.3 | Modeling competence in science education

In general, modeling competence is seen as one necessary element of teachers' professional
competences (Giinther et al., 2019; Osborne, 2014). Modeling competence is defined as a system
of the knowledge, skills, and abilities necessary to engage in the process of developing and using
models for reasoning in science, including motivational dispositions to apply these capabilities
for problem-solving in specific situations (Upmeier zu Belzen, van Driel, et al., 2019). When
achieving modeling competence, a person should better understand scientific concepts, develop
an appreciation of the nature of science, and advance in their mastery of the scientific process
(Gilbert & Justi, 2016).

As suggested in recent literature (Chiu & Lin, 2019; Nicolaou & Constantinou, 2014;
Nielsen & Nielsen, 2021a), modeling competence can be divided into three dimensions: meta-
modeling knowledge, modeling practice, and the modeling product. In the following, we will
expand on each of these dimensions, highlighting the theoretical scope of this article.

1.3.1 | Meta-modeling knowledge

Meta-modeling knowledge is a term commonly used to describe epistemic ideas about models
and modeling. Schwarz et al. (2009) defined meta-modeling knowledge as knowledge about
“how models are used, why they are used, and what their strengths and limitations are”
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TABLE 1 Theoretical framework for meta-modeling knowledge (Upmeier zu Belzen, van Driel, et al., 2019)

Aspect Level I Level II Level III

Nature of  Replication of the Idealized representation Theoretical reconstruction of the
models phenomenon of the phenomenon phenomenon

Multiple Different model Different foci on the Different hypotheses about the
models objects phenomenon phenomenon

Purpose Describing the Explaining the Predicting something about the
of phenomenon phenomenon phenomenon
models

Testing Testing the model Compare the model and Testing hypotheses about the
models object the phenomenon phenomenon

Changing  Correcting defects in Revising due to new Revising due to the falsification of
models the model object insights hypotheses about the phenomenon

Note: This framework uses the term model object referring to the work of Mahr (2011). In the present article, the term modeling
product is used instead, because this term is more established in science education literature (e.g., Chiu & Lin, 2019).

(pp. 634-635). There are different approaches to conceptualize meta-modeling knowledge, each
of them defining related aspects (Schwarz et al., 2009) or dimensions (Crawford & Cullin, 2005)
as part of meta-modeling knowledge. One of the more common frameworks for meta-modeling
knowledge, which will be used throughout this study, was proposed by Upmeier zu Belzen, van
Driel, et al. (2019). They propose five aspects of meta-modeling knowledge: nature of models,
multiple models, purpose of models, testing models, and changing models. For each, three levels
of understanding are distinguished (Table 1). Level I is related to naive views, understanding
models as direct copies of reality and focusing on features of the modeling product itself, rather
than on the representational and predictive function of models. Level II is related to more
advanced views, understanding models mainly as idealized representations or media to visual-
ize and explain something, while level III adds the appreciation of the predictive power of
models as research tools (Upmeier zu Belzen, van Driel, et al., 2019).

Ke and Schwarz (2020, p. 5) distinguish between meta-modeling knowledge independent of
the specific learning context (i.e., decontextualized meta-modeling knowledge) and “epistemo-
logical knowledge about models and modeling in action” (i.e., contextualized meta-modeling
knowledge). The context-dependency of meta-modeling knowledge has been suggested to be an
issue of critical importance for assessing and teaching meta-modeling knowledge, which, there-
fore, should be further investigated in science education (Krell et al., 2014; Sikorski, 2019).

1.3.2 | Modeling practice

Science education literature addresses modeling practice in several theoretical frameworks that use
overlapping terms such as modeling activities (Fretz et al., 2002; Gohner & Krell, 2020a), model-
based learning practices (Louca & Zacharia, 2012), or modeling phases (Constantinou, 1999). In this
article, we will refer to modeling practice as an umbrella term encompassing any modeling behavior
or cognitive operation while being engaged in modeling. To the specific modeling practices carried
out by the participants in this study, however, we will refer to as modeling processes, which are
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FIGURE 1 Model of modeling (adapted from Krell et al., 2019)

specific sequences of observable and distinguishable operations, in turn, referred to as modeling
activities (GOhner & Krell, 2020a).

These modeling activities are incorporated in the model of modeling (Figure 1), which is the
theoretical framework used for the description of modeling processes in this article (see Krell
et al. (2019) for a detailed description).

The model of modeling distinguishes between the experiential world and the modeling
world (Gohner & Krell, 2020a; Krell et al., 2019) and aligns with the model of scientific activity
(NRC, 2012). Collecting data, making observations, and conducting experiments are part of the
real world “investigating” sphere (i.e., experiential world), while models are part of the theoreti-
cal “developing explanations and solutions” sphere (i.e., modeling world). Additionally, the role
of models as epistemic tools (Knuuttila, 2011) is emphasized in the model of modeling, when
new hypotheses are deduced or predictions are drawn from the model, which are then also
empirically tested (Dounas-Frazer & Lewandowski, 2018). Practically, the model of modeling
can be used to operationalize the assessment and description of modeling processes.

1.3.3 | Modeling product

The main outcome of any modeling process is the development of a tangible, visible, and com-
municable artifact (i.e., modeling product) that demonstrates the modeler's understanding and
that can be evaluated by specific criteria for its quality (e.g., epistemic criteria; Pluta
et al., 2011). In learning contexts, modeling products are understood to be of high quality, if
they externalize and express learners’ thoughts and help them visualize and examine



B | \W LEY-~ JRST GOHNER ET AL.

components of their theories (Jonassen & Ionas, 2008). Commonly in science education
research, modeling products are evaluated in a more content-related approach based on the
integration of specific components or relationships between these components (Chang
et al., 2020). Chiu and Lin (2019) identified “a lack of deep discussions on the topic of modeling
products” (p. 2). Most available studies analyze students’ modeling products as indicators for
evaluating students’ modeling practices and meta-modeling knowledge (Bamberger &
Davis, 2013; Cheng & Lin, 2015; Ergazaki et al., 2007; Schwarz et al., 2009).

Relevant to this study, modeling products can be evaluated for their quality, that is includ-
ing the components and relationships that are required to accurately explain and predict the
phenomenon, and evaluated for their complexity, that is the number of components and rela-
tionships in the model (G6hner & Krell, 2020a).

1.34 | Connecting meta-modeling knowledge, modeling practice, and
modeling product

Many researchers in science education propose modeling practices and meta-modeling knowl-
edge as the two broad constituent dimensions of modeling competence (e.g., Nicolaou &
Constantinou, 2014; Upmeier zu Belzen, van Driel, et al., 2019). Chiu and Lin (2019) propose to
add the modeling product as a third dimension as competent modelers are assumed to develop
the ability to construct high quality models. Some researchers claim, that meta-modeling
knowledge shapes or guides the practice of modeling (Lee & Kim, 2014; Nicolaou &
Constantinou, 2014; Schwarz et al., 2009). Others conceptualize it the other way around,
proposing that engagement in the modeling practice might contribute to the development of
meta-modeling knowledge (Gobert & Pallant, 2004; Schwarz & White, 2005). Empirical findings
propose that engagement in the modeling practices alone is not sufficient to foster meta-
modeling knowledge but that associated reflections on the practices are necessary to reach this
goal (Schwarz & White, 2005). This was also found in studies focusing on the broader construct
of scientific meta-knowledge (i.e., nature of science; Abd-El-Khalick & Lederman, 2000).
However, only a few studies had put the suggested relationships between the dimensions of
modeling competence to the test (Chiu & Lin, 2019; Sins et al., 2009).

Summarizing, meta-modeling knowledge, and modeling products have been studied by
many researchers and defined in a variety of approaches. However, process-oriented studies of
students’ or teachers’ engagement in modeling, opposed to meta-modeling knowledge and
modeling products, are still widely lacking in science education (Louca & Zacharia, 2012;
Nicolaou & Constantinou, 2014). Therefore, we set to identify and characterize meta-modeling
knowledge, modeling practices, and quality of modeling products in a sample of secondary pres-
ervice biology teachers and investigate the relationships between these three dimensions of the
modeling competence. This will provide valuable theoretical knowledge, which is also impor-
tant for understanding how to promote these dimensions in science teacher education
(Nicolaou & Constantinou, 2014).

1.4 | Aims and research question

The following research question will be addressed in this study: What are the relationships
between secondary preservice biology teachers' meta-modeling knowledge (contextualized and
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decontextualized), their modeling practices, and the quality of their modeling products while
engaging in a modeling task? Following common assumptions in the literature, we expect all
dimensions of modeling competence to be positively related.

2 | METHODS
2.1 | Context of the study

This study is situated in the first phase of secondary preservice biology teacher education in
Germany. Secondary preservice biology teachers in Germany usually study two subjects (with
one of them being biology) in a six-semester bachelor's program, followed by a four-semester
master's program (concurrent teacher education programs). At the end of their studies, second-
ary preservice biology teachers are requested to having developed basic professional knowledge
and competences needed for their profession (Neumann et al., 2017). These include knowledge
and competences regarding inquiry and reasoning in science (KMK, 2019). A significant posi-
tive development of German secondary preservice science teachers' scientific reasoning compe-
tences over their course of studies has been described in empirical studies (Kriiger et al., 2020).

2.2 | Sample

The sample population consisted of secondary preservice biology teachers, enrolled in the bach-
elor or master teacher education program in one of two involved German universities. To
increase the likelihood of observing a variety of different modeling processes, a theoretical sam-
pling strategy—heterogeneous sampling (Patton, 1990)—was used in the present study. Previ-
ous studies suggest that the quality of scientific modeling is positively related to scientific
reasoning competences (e.g., Cheng & Lin, 2015) and general cognitive abilities (e.g., Nehring
et al., 2015). Therefore, these two variables were used as screening variables, employing
established pen-and-paper instruments (Kriiger et al., 2020; Liepmann et al., 2007). Fifty-seven
secondary preservice biology teachers, who had extreme scores (one half standard deviation
higher or lower than the mean scores of the respective norm sample) in both assessments, were
invited to participate in the study. Thirty-five secondary preservice biology teachers agreed to
participate, aged between 17 and 39, with an average age of 24 years. Twenty-two participants
were enrolled in the bachelor's program when participating in the study and 13 were enrolled
in the master's program. Eight of the secondary preservice biology teachers were additionally
enrolled in another scientific subject (including chemistry, physics, food science, agricultural
science, and computer science). The study was not mandatory for any university courses or
obligatory parts of the curriculum; participation was voluntary. Researchers and participants
had no formal relationships to one another.

2.3 | Black box modeling task

A black box modeling task was applied in this study. The black box approach is established in
science education research to study processes of scientific thinking and modeling (Lederman &
Abd-El-Khalick, 2002; Passmore & Svoboda, 2012). In this study, a water black box was used
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FIGURE 2 Model of the inner mechanism of the water black box used. Water is funneled into a first vessel
and then directed equally into two further vessels. If a specific volume of water is reached in each of these
vessels, the water flows out the black box through a siphon. As the siphons are installed on different heights, the
specific volume of water for each vessel differs (Krell et al., 2019)

(Figure 2). It can be explored by filling the black box with water (input), which then results in
measurable outputs of water (see Krell et al., 2019 for a detailed description of the black box). It
has been shown that black box approaches are suitable to elicit modeling processes, in which
models are used as epistemic tools to investigate the black box (Krell et al., 2019; Passmore &
Svoboda, 2012), including all steps considered in the model of modeling (Figure 1).

Giving an example, repeating an input of 400 ml six times, produces a pattern of 0, 400,
600, 400, 0, 1000 ml outputs. Typically, the third output cannot readily be explained by the par-
ticipants. In the model of modeling this resembles the perception of a phenomenon, which is a
starting point for modeling processes as described above, including the exploration of the sys-
tem (i.e., the black box), the activation of analogies and experiences (of what might be inside
the black box), the development of a (drawn) model and its evaluation regarding consistency
and representation. Using imagistic simulation, hypotheses (e.g., about the next output) can be
deduced from the drawn model and the model can be tested by making another input, leading
to the model's confirmation or rejection. In the latter case, the drawn model should be
modified.

To gain additional insights into the participants' reasoning processes, they were asked to
concurrently think aloud (Leighton & Gierl, 2007). This was practiced with three short exercises
as part of the introduction to the study, in which the participants also answered the question-
naire on decontextualized meta-modeling knowledge (see below), were informed that participa-
tion was voluntary, and signed an informed consent form. After these preparations, the
participants were brought into a room equipped with three video cameras, the black box, some
prefilled beakers of water, a bucket as water reservoir, and a chalkboard. The first author briefly
explained the basic functionality of the black box using a prepared script and provided the fol-
lowing task: “Draw a model of the inside of the black box.” Participants were informed, that
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there are no time constraints. The first author stayed in the room to prevent any technical
errors and, if necessary, to remind the participant to concurrently think aloud; otherwise, he
did not intervene.

2.4 | Data collection and analysis

All qualitative data analyses were done within the methodological frame of qualitative content
analysis, that is including category systems guiding analysis, coding by different persons, find-
ing consensus coding after discussion, and calculating Cohen's Kappa (k) as a measure of
intrarater- and interrater-agreement (Schreier, 2012). In addition, the following procedures of
data collection and analysis have been conducted in this study.

241 | Decontextualized meta-modeling knowledge

The participants’ meta-modeling knowledge was assessed based on the framework described
above (Upmeier zu Belzen, van Driel, et al., 2019), using an established pen-and-paper question-
naire which consists of five constructed response items (Krell & Kriiger, 2016). These items are
related to the five aspects nature of models, multiple models, purpose of models, testing models, and
changing models (Table 2). The questionnaire was given to each participant immediately before
engaging in the black box modeling task. In the questions, the respondents were asked to provide
their understanding of the five aspects related to the scientific discipline of biology; however, as
no more specific context was provided in the tasks and the questions have not been answered
during any kind of modeling activity, we will refer to what has been assessed in the questionnaire
as decontextualized meta-modeling knowledge (Ke & Schwarz, 2020). In total, 166 out of the possi-
ble 175 responses were analyzed from the 35 participants, as some participants did not respond to
all five questions or responses could not be assigned to any level. All responses to the question-
naire were qualitatively analyzed using an already established category system, by which a spe-
cific level can be identified (ranging from I to III; Table 1) in the responses for each of the five
aspects (Krell & Kriiger, 2016). Statements including multiple response levels were always given
the highest identified level. Each statement was coded twice by the first author and additionally
by a trained student assistant, achieving substantial intrarater-agreements (x = 0.68), and sub-
stantial interrater-agreements (x = 0.71).

242 | Contextualized meta-modeling knowledge

The transcripts of the participants’ modeling processes were analyzed by a trained student assis-
tant based on the same category system that has been used for the analysis of the questionnaire
(Table 2). Statements related to the five aspects of meta-modeling knowledge, verbalized by the
participants throughout their modeling process, were identified and coded accordingly. Hence,
this procedure aimed to assess the participants' contextualized meta-modeling knowledge or their
meta-modeling knowledge “in action,” respectively (Ke & Schwarz, 2020). In line with the eval-
uation of the questionnaire, participants expressing statements of varying levels throughout
their modeling process were given the highest level observed for each aspect. To secure the
quality of the analysis, 20% of the material (7 of the 35 transcripts) were randomly selected and
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coded twice over an interval of two weeks by the trained student assistant and once by the first
author. Cohen's Kappa indicated substantial intrarater- (x = 0.69) and substantial interrater-
agreement (x = 0.72).

243 | Modeling practice

For analyzing modeling practices, the behavior and verbalizations of the participants engaging in
the black box modeling task were videotaped. The verbalizations were then transcribed verbatim,
including selected behavioral aspects (e.g., making an input or observing an output). These tran-
scripts were initially analyzed qualitatively to identify single modeling activities. For this, an
established category system was used in the analysis. It consists of 9 main categories and 19 sub-
categories representing the modeling activities (Table 3). The nine main categories of the category
system stem from the model of modeling described earlier in this study (Figure 1; for a detailed
description see Krell et al., 2019). If necessary, the videos were considered as additional data
sources in the analysis. Each transcript was coded twice over an interval of two weeks by the first
author and additionally by a trained student assistant. Cohen's Kappa indicated almost perfect
intrarater-agreement (x = 0.83) and substantial interrater-agreement (x = 0.77).

From the resulting sequences of modeling activities, state transition graphs were built to visu-
alize each participant's modeling process (Andrienko & Andrienko, 2018). Each participant's state

TABLE 3 Activities of the modeling process (Krell et al., 2019)

Phase Category Sub-category (activity)
Exploration 1. Perception of a phenomenon
2. Exploration of the system 2.1. Input/output (exploratory)

2.2. Summarizing/describing observations
2.3. Input/output (pattern detection)
2.4. Recognizing patterns
3. Activation of analogies and experiences
Development 4. Development of model 4.1. Graphically develop model
4.2. Change model to optimize consistency
4.3. Change model to optimize representation

4.4. Reject model due to poor consistency/

representation
5. Evaluation of consistency and 5.1. Evaluate consistency
IEpresentation 5.2. Evaluate representation

6. Finding of consistency and representation

Prediction 7. Deduction of predictions
8. Evaluation of predictions 8.1. Input/output (to test predictions)
8.2. Confirmation of prediction
8.3. Falsification of prediction
9. Modification/rejection of model 9.1. Change model due to falsified predictions

9.2. Reject model due to falsified predictions
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transition graph consists of knots for each state (i.e., modeling activity) and edges depicting the
transitions between two modeling activities. The edges are assigned the number of transitions
observed between each modeling activity as weight.

All modeling processes were qualitatively evaluated based on the modeling activities shown
during the process and their sequential order visualized as state transition graphs. Additionally,
the state transition graphs were used to quantify the modeling practices for further analysis.
Two variables, the complexity and homogeneity of the secondary preservice biology teachers'
modeling processes, were estimated as described in Gohner and Krell (2020a, 2020b). This is
shortly described in the following.

Modeling processes are understood to be more complex, if they include various modeling
activities (Gohner & Krell, 2020a). Complexity was therefore estimated using the graph metric
known as “communities,” which involves counting all subgraphs within each state transition
graph (Porter et al., 2009). Participants may show a limited range of activities, resulting in state
transition graphs with more subgraphs, as some activities are not addressed and thus, not con-
nected to others. The basic communities score was further normalized by subtracting the commu-
nities score of each participant from the maximum communities score achieved in this study.

Modeling processes are understood to be more homogenous, if the observed modeling activi-
ties and the transitions between them are more equally distributed, leading to the state transi-
tion graph being more independent from a single knot (Gohner & Krell, 2020a). To estimate
homogeneity, the centrality of every state transition graph was determined. The centrality score
was reciprocally transformed, as centrality describes the dependence of a graph on a single knot
(Newman, 2010). To account for structural outliers, homogeneity was estimated using the sum
of the three measures of centrality: closeness centrality, degree centrality, and betweenness cen-
trality (Ronqui & Travieso, 2015).

244 | Modeling product

To assess the quality of the participants’ modeling products, a novel category system was induc-
tively developed, based on the previous work of the authors. As suggested by Bielik et al. (2018),
modeling products were considered of high quality when they included the components and rela-
tionships that are required to accurately explain the black box phenomenon (Figure 2). Here,
modeling products of high quality were expected to include three concepts, which were found to
be necessary to explain the water distribution inside the black box and the input and output pat-
terns (Krell et al., 2019): (1) The modeling product should contain water reservoirs filling up with
water, (2) the water reservoirs should be embedded in a parallel system of diverging paths, and
(3) water should be fully emptied at a specific fill level. The specific realization of these three con-
cepts can vary, incorporating alternative ideas; water reservoirs, for example, could be realized
through vessels, cisterns, or even sponges. As some modeling products could not be evaluated
based on their drawn appearance alone, the participants’ verbal statements during the develop-
ment of their modeling products were considered as an additional data source.

The participants’ final modeling products were photographed, digitally reconstructed, and
coded. However, in two cases, participants presented multiple final modeling products as possible
solution for the given black box task. To code the final modeling products, it was noted if each
concept was integrated, by being either drawn or described verbally. Participants' scores range
from zero to three, integrating neither of these concepts (=0), one (=1), two (=2), or all of these
concepts (=3) into their drawn modeling product or verbal descriptions thereof. Further attributes
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of the modeling products like their aesthetic appearance or fit to the obtained data have not been
evaluated. For participants with multiple final modeling products, only the highest scoring model-
ing product was considered in the statistical analysis. Every modeling product (N = 42) was coded
twice over an interval of two weeks by the first and once by the second author. Cohen's Kappa
indicated almost perfect intrarater- (x = 0.84) and almost perfect interrater-agreement (x = 0.82).

2.4.5 | Relationships between meta-modeling knowledge, modeling process,
and modeling product

Spearman’s rank correlations were calculated to analyze the relationship between decontextualized
and contextualized meta-modeling knowledge for each aspect, complexity, and homogeneity of the
modeling process, and the modeling product score. To obtain a measure of decontextualized and
contextualized meta-modeling knowledge, the participants’ mean score across the five aspects were
calculated. Furthermore, due to the rather small sample size, nonparametric tests were carried out.
Effect size measures have been calculated based on Lenhard and Lenhard (2016).

To provide in-depth insights into the potential nature and direction of the relationships
between secondary preservice biology teachers' meta-modeling knowledge, modeling practices,
and modeling products, sample cases will be qualitatively described. Hereby, the cases have been
selected based on the statistical relationships found in the quantitative analysis. The selected cases
were analyzed by reconstructing their individual modeling processes from the transcripts, which
are illustrated as codelines, showing the sequential order of the individual modeling activities.

3 | RESULTS

Aggregated scores for meta-modeling knowledge, modeling processes, and modeling products will be
provided in the following section. The full table with the individual scores can be found in Table S1.

3.1 | Decontextualized meta-modeling knowledge
Table 4 shows the distribution of response levels regarding the five aspects of meta-modeling

knowledge assessed with the questionnaire. Across the five aspects, the mean response levels
range from 1.97 for the aspect nature of models to 2.31 for the aspect multiple models. The mean

TABLE 4 Distribution of response levels regarding the fives aspects of decontextualized meta-modeling

knowledge
n responses n responses n responses Mean response
Aspect N level I level II level III level (+SD)
Nature of models 34 4 27 3 1.97 (+0.45)
Multiple models 35 1 22 12 2.31 (+0.52)
Purpose of models 33 7 13 13 2.18 (£0.76)
Testing models 30 2 18 10 2.27 (+0.57)
Changing models 34 3 24 7 2.12 (£0.53)
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TABLE 5 Distribution of response levels regarding the fives aspects of contextualized meta-modeling
knowledge identified within the modeling processes

n responses n responses n responses Mean response
Aspect N level I level II level III level (+SD)
Nature of models 21 4 2 15 2.43 (+£0.79)
Multiple models 7 3 0 4 2.14 (+1.07)
Purpose of models 16 2 10 4 2.13 (£0.62)
Testing models 15 0 5 10 2.67 (+0.48)
Changing models 11 2 4 5 2.27 (£0.79)

level assigned to the 166 responses from all participants is 2.17, suggesting, that the participants
understand models mainly as idealized representations or media to visualize and explain some-
thing (Upmeier zu Belzen, van Driel, et al., 2019).

3.2 | Contextualized meta-modeling knowledge

One-hundred twenty-five statements related to meta-modeling knowledge were identified in
the modeling processes of the 35 participants, which could be assigned to response levels of the
category system (Table 5). It should be noticed that the number of statements related to meta-
modeling knowledge in the modeling processes varies between the participants and the aspects
mentioned, depending on the length, and complexity of the modeling processes. For some of
the participants, up to sixteen statements related to meta-modeling knowledge were identified,
whereas 19 participants rarely verbalized anything related to meta-modeling knowledge, lead-
ing to the identification of less than 3 statements for each of these participants. Six participants
made no statements related to meta-modeling knowledge during their modeling processes at
all. Also, the number of statements differs between the aspects of meta-modeling knowledge
(Table S1).

Across the five aspects of meta-modeling knowledge, the mean response levels ranged from
2.13 for the aspect purpose of models to 2.67 for the aspect testing models (Table 5). The mean
level of contextualized meta-modeling knowledge was 2.39, indicating a slightly higher under-
standing compared to the decontextualized meta-modeling knowledge. However, this still sug-
gests that most participants understand models as idealized representations or media for
visualization and explanation.

Figure 3 compares the mean response levels of decontextualized and contextualized meta-
modeling knowledge for each aspect. A Wilcoxon signed-rank test revealed a significant differ-
ence between the participants' level of decontextualized and contextualized meta-modeling
knowledge for the aspect nature of models, with decontextualized meta-modeling knowledge
being significantly lower (z = —2.84, p = 0.005; d = 1.09, large effect size measure). For the
other aspects, no significant differences were found (i.e., p >0.05).

In summary, the meta-modeling knowledge of the participants, independent of being
decontextualized or contextualized, indicates an understanding of models as idealized represen-
tations or media for visualization and explanation as the predominant perspective on models in
our sample.
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FIGURE 3 Comparison of mean meta-modeling knowledge levels across the five aspects of meta-modeling
knowledge and with regard to the context of assessment, either decontextualized within the questionnaire or
contextualized as identified within the modeling processes. Points and triangles indicate mean values and lines
indicate the range of the mean value + two times standard error

3.3 | Modeling practice

As described above, the specific modeling practices carried out by the participants in this study are
referred to as modeling processes, which consist of different modeling activities. The length of the
participants' modeling processes varied between eight minutes to almost 2 h (mean length: 1 h
9 min). In these modeling processes, the participants conducted between six and eighteen (mean:
12) different modeling activities. The qualitative analysis revealed, that the modeling processes of
20 participants included modeling activities of exploration and model development. The modeling
processes of 14 participants additionally included activities of prediction. One participant's model-
ing process showed only modeling activities of exploration (i.e., no model development). By trans-
forming these modeling processes into state transition graphs, the complexity (mean: 4.94) and
homogeneity (mean: 1.50) of the modeling processes were quantified. Figure 4 illustrates three
examples of state transition graphs. The state transition graph of Claudia’s modeling process
(Figure 4a) is characterized by rather low complexity, as she included only a limited range of
modeling activities into her modeling process. In comparison to all transitions, the transitions
between modeling activities 2.1 (input/output, exploratory) and 2.2 (summarizing/describing
observations) occur more often, described by a medium homogeneity score. The state transition
graph of James' modeling process (Figure 4b) is characterized by medium complexity, as he
includes a higher number of different modeling activities in his modeling process. The transitions
between his modeling activities are rather equally distributed, reducing the dependence of the state
transition graph from specific knots (i.e., modeling activities), leading to a high homogeneity score.
Finally, the state transition graph of Raphael's modeling process (Figure 4c) is characterized by
high complexity, as he includes every modeling activity but one in his modeling process. However,
his homogeneity score is medium, as he transitions between the modeling activities 2.2
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FIGURE 4 Three examples of state transition graphs for Claudia (a), James (b), and Raphael (c). The
modeling activities (Table 3) are displayed as knots connected by their transitions, labeled with their occurrence

(summarizing/describing observations) and 2.3 (input/output, pattern detection) quite often in
comparison to the other modeling activities. A complete state transition graph combining the
modeling processes of all 35 participants can be found in the supplementary material (Figure S2).
A Mann-Whitney U test confirmed that participants with modeling processes, which
included activities of prediction, reached significantly higher complexity scores (M = 7.33,
SD = 1.72) than participants who did not include modeling activities of prediction (M = 3.15,
SD = 1.73; z = 4.70, p <0.001; d = 2.62, large effect size measure). Moreover, a correlation anal-
ysis (Spearman) between the complexity of the modeling processes and the length of the partici-
pants’ modeling processes revealed a significant correlation (r = 0.39, p = 0.021; medium effect
size measure). Other sample characteristics, like the subject combination of each participant or
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the enrollment status of the participants in either the bachelors' or masters’ program, could not
be shown to be systemically related to the modeling processes.

Summarizing, related to the modeling practices, the majority of our participants only
engaged in modeling activities of exploration and model development, while activities of predic-
tion were missing.

3.4 | Modeling product

Thirty-one participants produced a single modeling product at the end of their modeling pro-
cesses. Two participants produced multiple models as possible solutions for the given task

TABLE 6 Integration of the three necessary concepts by the participants

Concept 3 (water

reservoirs fully
Concept 1 (water Concept 2 (parallel emptying
reservoirs filling up) system of diverging paths) at specific fill level)

Verbalized 32(91.437%) 7 (20.00%) 11 (31.43%)
Drawn 32 (91.43%) 9 (25.71%) 3 (8.57%)
Verbalized and/or drawn 34 (97.142%) 9 (25.71%) 12 (34.29%)

TABLE 7 Overview of the number of concepts integrated by the participants verbally and/or drawn

Participants (n) integrating the concepts

Score (=number of Either verbally or drawn
concepts integrated) Verbally Drawn (=modeling product score)
0 2 (5.71%) 3 (8.57%) 1(2.86%)
1 20 (57.14%) 21 (60.00%) 18 (51.43%)
2 9 (25.71%) 11 (31.43%) 12 (34.29%)
3 4 (11.43%) 0 4(11.43%)
MisTY 1
ENN
N _/ Y
U
T
(a) (c) 1 . I
Ll
L 1]
A

FIGURE 5 Examples of modeling products. Misty's modeling product was scored with 1 point, Floyd's and
Jenny's modeling products with 2 points. Note that no participant drew a model that received full score (Table 6)
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(Claudia presented five, Kara two). One participant (Iris) removed all her drawn modeling
products before ending her modeling process, as she regarded none of the modeling products a
suitable solution. Together with Carlo, she was one of two participants who had no drawn
modeling product, although they verbalized their ideas.

The participants’ modeling product scores ranged between zero and three with a mean score
of 1.54 (SD = .73), indicating most participants were able to develop a model that integrates
one or two target concepts. Only four participants reached full score. Table 6 shows how often
each specific concept was integrated by the participants either verbally or drawn. Notably, no
participant was able to draw all three target concepts (Table 7).

The first concept (water reservoirs filling up with water) was included in all models except
one: Misty (Figure 5a) removed a vessel that she had drawn before from her final model,
claiming “it is physically not possible to work like that,” concluding that she cannot explain her
data with only this one concept. Instead, she proposed—but did not draw—a mechanism at the
bottom of the black box consisting of “something like a valve, regulated by pressure.” Alterna-
tive concepts like these were found with nine other participants. However, these concepts were
rarely evaluated as sufficient for the given task by the participants themselves. Of the remaining
33 models, seven also included the second concept (water reservoirs are embedded in a parallel
system of two diverging paths). For example, Floyd's model (Figure 5b) showed two vessels on
the bottom, filling up with water simultaneously. Though he did not draw the third concept
(water reservoirs being fully emptied at a specific fill level), as he was unsure how a mechanism
working like this could be drawn. Like Floyd, three other participants (Alice, Raphael, and Susi)
drew a model that included the first two concepts but were only able to verbalize the third con-
cept. In contrast, four participants (like Jenny; Figure 5c) were able to draw a mechanism,
which included the third concept of water reservoirs being fully emptied at a specific fill level.
This behavior was commonly explained with a tilting or turning mechanism. None of the par-
ticipants drew a siphon, like it is actually used in the presented black box (Figure 2). Moreover,
the second concept is drawn more often than explicitly verbalized, while the third concept is
drawn rarely but more often verbalized.

Additionally, a Mann-Whitney U test regarding the participants’ subject combinations revealed
that secondary preservice biology teachers studying a second scientific subject developed modeling
products with significantly higher modeling product scores (M = 2.13, SD = 0.84) as opposed to
secondary preservice biology teachers with nonscientific secondary subjects (M = 1.37, SD = 0.63,
z = —2.34, p <0.019; d = 0.86, large effect size measure). Neither the length of the modeling pro-
cesses, nor the participants’ enrollment status in either the bachelors' or the masters’ program
could be shown to be systemically related to the quality of the modeling products.

In summary, participant's modeling products were of medium quality, mostly incorporating
two of the three target concepts.

3.5 | Relationships between meta-modeling knowledge, modeling
practice, and modeling product

The correlation analyses (Spearman) between the two measures of meta-modeling knowledge,
the complexity and homogeneity of the modeling processes, and the modeling product scores
revealed that there are no significant relationships between the five variables with one excep-
tion: the complexity of the modeling processes significantly correlates with the modeling prod-
uct score (Table 8).
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TABLE 8 Correlation table for Spearman'’s rank correlations between the variables decontextualized and
contextualized meta-modeling knowledge, homogeneity, and complexity of the modeling processes, and the
modeling product score

Variable 2 3 4 5
1. Decontextualized meta-modeling knowledge  0.27 (n.s.)  0.17 (n.s.) 0.21 (n.s.) 0.05 (n.s.)

2. Contextualized meta-modeling knowledge 0.25 (n.s.) 0.10 (n.s.) —0.08 (n.s.)
3. Complexity —0.01 (n.s.) 0.41 (p <0.05)
4. Homogeneity 0.11 (n.s.)

5. Modeling product score

Note: N = 29 for correlation analyses including contextualized meta-modeling knowledge and N = 35 for the other analyses.
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FIGURE 6 Sequence diagram showing the modeling process of Raphael in detail

Based on Mann-Whitney U tests, no significant differences between modeling processes
which included modeling activities of prediction, and modeling processes which did not include
modeling activities of prediction, were found for the variables decontextualized meta-modeling
knowledge (p = 0.61), contextualized meta-modeling knowledge (p = 0.19), homogeneity
(p = 0.59), and modeling product score (p = 0.51).

3.6 | Exemplary cases

In the following section, we present and discuss two exemplary cases to give more qualitative
and holistic insights into the nature of the investigated relationships. With these two cases, we
were especially interested in the only statistically significant relationship that was found
between the modeling practices and the modeling products. Therefore, two cases with similar
values along the complexity of the modeling processes and quality of the modeling products
were chosen (case 1: Raphael, with high complexity score and high product score; case 2:
Angelina, with medium complexity score and medium product score). These cases not only
shed light on possible explanations for the found statistically significant relationship, but also
generate insight into the other, statistically nonsignificant relationships as well.
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3.6.1 | Example 1: Raphael

Raphael's modeling process (Figure 6) takes 1 h and 6 min and consists of 77 events. In his
modeling process he shows a wide diversity of different modeling activities including explora-
tion, model development, and prediction, and therefore received a high complexity score of
17 (Table S1).

He starts his modeling process by filling 400 ml of water into the black box twice, observing
an output of roughly 400 ml after the second input. After documenting his observations on the
board, he draws an initial modeling product (event 5) including the idea of an overflow vessel
with a volume of 400 ml. From this modeling product, he deduces the hypothesis, that whatever
his next input maybe, the output should be the same and tests his hypothesis by filling 100 ml
of water into the black box. Contrary to his expectation, he cannot observe any output, which
leads him to falsify and discard his modeling product as “obviously wrong.” He then enters a
longer phase (events 11-25) of modeling activities of exploration, collecting data by varying his
input volumes and speeds until he recognizes a repeating pattern in the collected data (event
26). From this, he tries to develop a second modeling product retracing his collected data step
by step while also simultaneously predicting the next output for each data point and testing it
on the black box. Although this directly fails in the first step, as he predicts an output of 100 ml
and observes only 50 ml, this leads him to the important observation, that the volume is some-
how halved inside the black box. This motivates Raphael to modify his modeling product,
adding a second compartment in which water is equally distributed. He then constantly
switches between modeling activities of exploration and model development, collecting data,
retrospectively explaining his collected data and modifying existing or developing new model-
ing products, which mostly add more compartments (events 35-50). Still not being able to
explain all his observations, he concludes, that he needs a mechanism that “if a critical volume
is reached, empties all the water or even more.” Without integrating this idea into his drawn
modeling product, he assumes that a very big input of 1300 ml would completely empty the
black box, regardless of what is still left inside. Confirming this assumption, he verbalizes that
the only thing unknown is the number and volume of compartments inside the black box
(event 57). Therefore, with the black box now being empty again, he does a series of very small
inputs comparing the outputs to his current modeling product (events 58-68). The now
repeated observation of small inputs being halved, leads him to reason, that the black box con-
tains two compartments. However, the small inputs did not help him in reasoning about the
volume of each of the compartments, but he deduces the hypothesis “that the maximum vol-
ume of the black box should be around 1200 ml.” After testing and falsifying this hypothesis
(events 70-74), he claims “I am all out of ideas” and draws his final modeling product
(Figure 7), which reaches the highest modeling product score. It includes the concepts

RapwAEL f _

S,

FIGURE 7 Modeling product of Raphael
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1 (modeling product contains water reservoirs), 2 (water reservoirs are embedded in a parallel
system), and 3 (water fully empties at a specific fill level), with concept 3 being verbalized, as he
is unsure how to draw such a mechanism. After evaluating the appearance of his modeling
product to an audience with “nobody will understand this, if I am not explaining it,” he deems
his modeling product sound “I think, the inside looks something like this.” and ends his model-
ing process without further testing his modeling product to validate or falsify it.

Contrasting his modeling practice and modeling product, Raphael's answers to the question-
naire assessing decontextualized meta-modeling knowledge are all typical level 2 answers
(M = 2.00), in which he consistently highlights models as idealized representations or media
for visualization and explanation. During his modeling practice, only two statements showing
his contextualized meta-modeling knowledge (M = 2.50) could be identified: In his first state-
ment, he verbalizes a perspective on models more consistent with his answers to the question-
naire (“my model could be an explanation”; level 2). However, in his second statements he also
makes clear, that he sees his model as a “hypothetical idea” (level 3), which better fits his
modeling practice.

3.6.2 | Example 2: Angelina

Angelina's modeling process (Figure 8) takes 1 h and 1 min and consists of 62 events. In her
modeling process, she shows a lower diversity of different modeling activities and only includes
activities of exploration and model development. This leads to a medium complexity score (11).
Angelina starts her modeling process with one input of 400 ml. After observing no output,
she inputs another 400 ml very slowly, resulting in the siphon inside the black box not empty-
ing the vessel fully, but letting the 200 ml of water trickle out slowly. After documenting her
observations, she follows up with a third, now faster, input, leading her to observe an output of
1000 ml as both vessels inside empty through their respective siphon. From this, Angelina ver-
balizes the idea of a vessel connected to a tilting mechanism (events 9-11). However, she does
not attempt to draw a modeling product yet. Instead, she focuses on generating more data, fol-
lowing up with numerous, varying inputs, and observation of the outputs. She documents
everything in a very thorough and systematic manner (events 12-26) until she claims to

Sequence of activities: Angelina
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FIGURE 8 Sequence diagram showing the modeling process of Angelina in detail
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recognize a reoccurring pattern. Still, she is unable to predict the next outputs from the previ-
ously collected data and continues to collect even more data, going into increasingly longer
activities of summarizing her previous observations. After verbalizing the idea, that “to explain
the varying outputs, multiple vessels with different volumes are necessary” she finally draws a
modeling product, depicting three tilting vessels with different volumes. Reflecting on her
“mathematically-oriented approach” and still not being able to explain her data with her model-
ing product, Angelina discards it. Activating the analogy of a wheel, she draws her final model-
ing product (Figure 9), consisting of a round, revolving vessel with different compartments. It
reaches a medium modeling product score as it includes the concepts 1 (modeling product con-
tains water reservoirs) and 3 (water fully empties at a specific fill level). With this modeling
product she is now able to explain her inconsistent data. However, she expresses, that she is not
convinced the modeling product is fully sound and can be seen as “provisional.” With this
Angelina ends her modeling process.

Although, her scores regarding the modeling practice and modeling product are quite differ-
ent than Raphael's, the scores of Angelina for decontextualized and contextualized meta-
modeling knowledge perfectly match the scores of Raphael. Her answers to the questionnaire
assessing decontextualized meta-modeling knowledge are also typical level 2 answers through-
out (M = 2.00), like Raphael, highlighting models as idealized representations or media for visu-
alization and explanation. Even her two statements assigned to contextualized meta-modeling
knowledge (M = 2.50) are quite similar to Raphael: In her first statement, she is consistent with
her answers in the questionnaire (“There are different containers, tilting and having different
volumes, which explains the unregular volumes coming out”; level 2). In another statement,
she reflects about her practice on a meta level, claiming that seeing her idea as a provisional
model helps her thinking about it (level 3).

3.6.3 | Summary of the two cases

The cases of Raphael and Angelina illustrate two approaches to the modeling task at hand,
which differ in their integration of the modeling product into the modeling practice: Raphael
uses his modeling product as an epistemic tool by constantly switching between modeling
phases of exploration, model development and predictions, in which he strongly relies on his
modeling product to test his ideas. This test-driven modeling practice leads him to expose flaws
in his modeling product, which he overcomes by then integrating new ideas (i.e., analogies) into
his modeling product. Interestingly, while he shows this test-driven modeling practice with his
initial, most simplistic modeling product of an overflow vessel (lowest modeling product score),

PueeUuNA

FIGURE 9 Modeling product of Angelina
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he does not show this with his final modeling product (highest modeling product score). In con-
trast, Angelina approaches the modeling task using a more data-driven approach. After a long
phase of exploration, collecting a lot of observations in a data table, she develops her first
modeling product in the last third of her modeling practice attempting to explain the observed
data retrospectively. While this also helps her in generating new ideas about the inner mecha-
nism of the black box, she does not test her modeling product by drawing hypotheses and
predicting outputs from the modeling product. Instead, she compares newly collected data to
her previous observations and changes her modeling product to fit the data retroactively. Lastly,
regarding their meta-modeling knowledge, both Raphael and Angelina achieve exactly the same
scores for contextualized and decontextualized meta-modeling knowledge, although their
modeling practice and product widely differ.

4 | DISCUSSION

In the present study, we set out to identify, characterize, and test the correlation between the
three dimensions of modeling competence: meta-modeling knowledge, modeling practices, and
modeling product. These three dimensions were operationalized as five variables, including
decontextualized and contextualized meta-modeling knowledge for the meta-modeling knowl-
edge dimension, complexity and homogeneity of the modeling processes for the modeling prac-
tices dimension, and a modeling product quality score. This approach aimed to uncover the
relationships between the three dimensions, which literature proposes to be highly and posi-
tively related (Gobert & Pallant, 2004; Lee & Kim, 2014; Schwarz & White, 2005) but has not
been investigated comprehensively yet (Chiu & Lin, 2019; Louca & Zacharia, 2012; Nicolaou &
Constantinou, 2014).

41 | Meta-modeling knowledge

In line with earlier studies, the 35 secondary preservice biology teachers’ decontextualized
meta-modeling knowledge seems to be rather limited (Table 4), as their views of models in
their answers to the questionnaire suggest mainly medial perspectives on models (Krell &
Kriiger, 2016; Torres & Vasconcelos, 2015). More sophisticated views of models, in which
models are seen as epistemic tools that are being tested by deducing and testing predic-
tions, are rarely addressed (i.e., level III; Krell & Kriiger, 2016). However, theoretically
less informed views about scientific models, reflecting a naive understanding of models as
copies of reality, were also only rarely observed, contradicting previous reports of these
being quite common (Torres & Vasconcelos, 2015). For contextualized meta-modeling
knowledge, it is suggested that specific contexts, including the black box modeling
task used here, provoke more elaborate views of models (Ke & Schwarz, 2020). While
this could be confirmed for the aspect nature of models (Figure 3), the average level of
contextualized meta-modeling knowledge is only slightly higher compared to the
decontextualized assessment and not significantly different statistically (Table 5). This
may suggest that the specific black box modeling task used in this study emphasizes the
hypothetical character of models, as the secondary preservice biology teachers are con-
structing their own hypothetical model, being made aware that models do not have to be
final solutions or ready-made explanations (e.g., Raphael). Generally, the participants’
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decontextualized and contextualized meta-modeling knowledge varies between the differ-
ent aspects of meta-modeling knowledge, suggesting unstable views about scientific
models (cf., Krell et al., 2014).

4.2 | Modeling practice

Regarding the participants’ modeling practices observed in this study, only some individual
modeling processes can be seen as meaningful engagement, characterized by reflective insight,
elaborate relational reasoning and monitoring the models’ structure, and modeler's goals lead-
ing to the systematical testing of hypotheses and scoping of variables (Sins et al., 2005). While
the correlation analysis between the complexity of the modeling processes and the length of the
participants’ modeling processes revealed a significant positive correlation, the nature of this
relation does not become particularly clear, considering the qualitative data collected. However,
it is obvious that with longer time on task, there is a higher probability of addressing more
modeling activities. Still, only half of the modeling processes observed included activities of pre-
diction. This is in line with previous studies suggesting that the predictive use of models is chal-
lenging for most sample groups, including teachers and students (Krell & Kriiger, 2016;
Passmore et al., 2014). Additionally, it is suggested in the literature that an evaluation of the
modeling products by attempts of falsification or by systematically testing alternative hypothe-
ses is also important for scientific modeling (Louca & Zacharia, 2015). Neither of these behav-
iors could be observed. A more in-depth discussion of our findings regarding the modeling
practices including a comparison to other scientific practices like experimentation can be found
in Gohner and Krell (2020a).

4.3 | Modeling product

In our sample group and for the given modeling task of the black box, the quality of the
modeling products was rather low, with not a single participant drawing a modeling prod-
uct incorporating all three necessary concepts (Table 6). This indicates a high difficulty of
the given black box modeling task, which was initially chosen over an authentic and
content-rich biological problem to reduce the influence of prior knowledge on the second-
ary preservice biology teachers’ modeling processes. This advantage of the black box
approach, on the other hand, is potentially limiting the generalizability of our findings
and highlights the importance of context and content knowledge for modeling (Ruppert
et al., 2017). This is further emphasized by some of our sample characteristics: secondary
preservice biology teachers studying a second scientific subject developed modeling prod-
ucts with significantly higher modeling product scores than secondary preservice biology
teachers with a nonscientific secondary subject. However, it is not evident from the quali-
tative data, if this correlation is grounded in the higher content knowledge, especially
regarding physics knowledge, of participants studying two scientific subjects or if they are
simply more familiar in working with scientific models. Regarding the latter, we rarely
observed participants labeling and keying all the elements of their modeling products or
developing explicit comparative modeling products, which was also observed by
Bamberger and Davis's (2013) regarding student's modeling products prior to an instruc-
tional intervention.
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4.4 | Relationships between meta-modeling knowledge, modeling
practice, and modeling product

Investigating the relationships between the three dimensions reveals that not all relationships
proposed in the literature were observed in the present study. While the relationship between
modeling practices and modeling products was found to be statistically significant, no statistical
evidence was found for the most commonly proposed relationship between meta-modeling
knowledge and modeling products.

44.1 | The relationship between modeling practice and modeling product

In this study, a positive significant correlation between complexity of modeling processes and
quality of modeling products was found (Table 8). This finding suggests a positive relationship
between modeling practices and modeling products. This is reassuring, given that the analysis
of modeling products is commonly used as a proxy for the more time-consuming analysis of
modeling practice (Bamberger & Davis, 2013; Cheng & Lin, 2015; Ergazaki et al., 2007; Schwarz
et al., 2009). However, the correlation coefficient indicates a medium effect size, suggesting a
shared variance of about 17%. Most participants developed modeling products of rather low
quality (Table 6 and Table S1). This matches their modeling processes of rather low complexity,
which often did not include modeling activities of prediction. While in theory, this could be
explained by low-quality modeling products limiting modelers in their modeling activities, mak-
ing them unable to deduce suitable hypotheses and test them, no direct evidence for this causal
relationship could be found in the qualitative data. Quite the contrary, the case of Raphael illus-
trates that even the most simplistic modeling product of a single overflow vessel can be used to
deduce a hypothesis leading to the modeling product being tested and revised. Moreover, other
observations suggest that the relationship between modeling practice and modeling product
might be more complex. Raphael, ending his modeling process without testing his final highest-
scoring modeling product in the same predictive manner, suggests that a high-quality modeling
product does not automatically lead to complex modeling practices, although attempting a falsi-
fication of a developed model is considered to be an utterly important modeling practice (Giere
et al., 2006).

Comparing Raphael's approach to the modeling task at hand with Angelina's approach, indi-
cates that the perceived soundness—how we suggest to call it—of a modeling product may
explain if and when a modeling product is used for predictions during the modeling practice.
Raphael deems his modeling products as sound enough to reason with them and to test ideas,
until his final modeling product is so sound it can be presented as a solution to the task. In con-
trast, Angelina, who shows a more data-driven approach and does not predict from her model
at all, as she perceives all her modeling products, including the final one as not very sound
(or “provisional”). She makes clear, that she is unsure in multiple instances, as she is not able
to reproduce or to explain the black box phenomenon retrospectively until her final modeling
product. This factor of perceived soundness could also explain, why Angelina does not draw a
model at all during the first two thirds of her modeling practice, as she perceives her data as
rather unsound until she recognizes a pattern, from which she is able to develop her first
modeling product.

Furthermore, it is especially interesting that evidence for a relationship between modeling
practices and modeling products was found by evaluating the modeling products based on the
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concepts they integrated (i.e., their content) and not by using epistemic criteria, like for example
parsimony or conceptual coherence (Pluta et al., 2011). This adds more evidence to a potential
influence of context on performance (Krell et al., 2014; Schwarz, 2002; Sikorski, 2019). Content
knowledge (and therefore context) can be seen as a limiting or moderating factor, whose impor-
tant role for scientific modeling has already been emphasized by different authors (e.g., Ruppert
et al., 2017). As most of the participants in this study were studying biology as their only scien-
tific discipline (n = 30), they might lack relevant physics knowledge to develop an appropriate
modeling product for the inner mechanism of the black box. The task of discovering a black
box is rather abstract, and hence, not representative for problem solving in authentic, content-
rich scientific contexts (Leden et al., 2020). Therefore, it remains unclear how exactly domain-
specific and situated content knowledge moderates the quality of the modeling products, as well
as meta-modeling knowledge and modeling processes. Our findings emphasize a strong need
for a systematic analysis of the role of content knowledge for modeling in research and the
importance of context for interventions in educational settings.

4.4.2 | The relationship between meta-modeling knowledge and modeling
practice

In general, statistical evidence for a relationship between meta-modeling knowledge and
modeling practices, as well as meta-modeling knowledge and the two other variables consid-
ered in this study (Table 8), were surprisingly absent. This contradicts common assumptions of
meta-modeling knowledge guiding the practice (Louca & Zacharia, 2012; Schwarz et al., 2009)
and indicates that meta-modeling knowledge might not be a valid predictor for the quality of
engagement in modeling practices and the modeling product. Of course, the small sample size
of this study and the limitations discussed below have to be considered in the generalizability of
these findings, but they clearly showthat more research regarding this relationship is needed.
Based on the average scores of meta-modeling knowledge, the present findings suggest that
the secondary preservice biology teachers in our sample with rather low levels of meta-
modeling knowledge are somehow able to engage in elaborate modeling practices. These
modeling practices could be observed as modeling processes, which are characterized by high
complexity and homogeneity scores, and include activities of prediction, using their models for
reasoning about the black box (e.g., Raphael). On the contrary, some participants with high
levels of meta-modeling knowledge, describing models consistently as hypothetical entities for
knowledge generation, showed less elaborate modeling practices, including no activities of pre-
diction in the herein observed modeling processes. These participants typically used their
modeling products just to illustrate and communicate their solution (Carlo, see Table S1).
Although Ke and Schwarz (2020) propose that meta-modeling knowledge in action might be
stronger related with the practices (in contrast to abstract, decontextualized meta-modeling
knowledge), the average contextualized meta-modeling knowledge was also not found to be sig-
nificantly related to the complexity of the modeling processes. However, the response levels for
both decontextualized and contextualized meta-modeling knowledge widely varied across the
statements of single participants (e.g., Claudia, see Table S1), suggesting unstable views of
models. In line with the observations regarding modeling products in this study, it seems likely
that meta-modeling knowledge is activated by the participants based on the context of assess-
ment and the aspect of meta-modeling knowledge they address. This is in concurrence to previ-
ous studies, discussing the context-dependency of meta-modeling knowledge and the construct
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of modeling competence as a whole (Gobert & Pallant, 2004; Krell et al., 2014; Sikorski, 2019;
Sins et al., 2009).

The qualitative analyses of the presented cases of Raphael and Angelina shed some light on the
relationship between meta-modeling knowledge and modeling practices. On the one hand, their
direct comparison provides more evidence to the absence of a relationship between meta-modeling
knowledge and modeling practices, as both show the exact same scores regarding meta-modeling
knowledge but engage in completely different modeling practices. On the other hand, the case of
Angelina clearly shows someone with consistent scores over all assessed dimensions of modeling
competence, implying there might be a relationship, which just could not be found to be of statisti-
cal significance in this study. Qualitative analyses of the other cases, not presented in this study,
indicate, that single responses regarding the aspects testing models and changing models often are
in line with the observed modeling processes. However, these statements leave unclear whether
meta-modeling knowledge guides the practice or engagement in practices promotes understanding
(Gobert & Pallant, 2004; Schwarz et al., 2009). Moreover, our findings suggest that helping second-
ary preservice biology teachers improve their meta-modeling knowledge, for example in university
courses, may not necessarily improve their modeling practice (Shi et al., 2021).

4.5 | Limitations of the study

This study has some limitations. First and foremost, the sample size is modest and only consists
of secondary preservice biology teachers, which potentially limits the generalizability of our
findings to this specific sample group. We hope our study can give an example to investigate
other sample groups of science teachers. Further limitations must be considered regarding our
methodology. As in most similar studies, meta-modeling knowledge (decontextualized and con-
textualized) was assessed as views on models (Krell & Kriiger, 2016; Schwarz et al., 2009).
Nicolaou and Constantinou (2014), though, distinguish between two dimensions of the over-
arching construct of modeling metaknowledge: the herein investigated meta-modeling knowl-
edge (the epistemological awareness about the purpose and use of models) and metacognitive
knowledge of the modeling process (the understanding of the actual modeling process).
Recently it has been suggested to also assess the latter (Lazenby et al., 2020). Yet to date,
there is no established form of assessment in science education research, which addresses this
dimension of metacognitive knowledge of the modeling process. The development of such an
assessment tool based on a coherent and sound theoretical framework and independent of the
traditional approaches to meta-modeling knowledge might yield further insights into the con-
struct of modeling competence and its development (Nicolaou & Constantinou, 2014). Addi-
tionally, the participants in this study were not explicitly asked for verbalizing contextualized
meta-modeling knowledge, leading to incomplete data sets, as not every participant verbalized
thoughts about every aspect of meta-modeling knowledge throughout their modeling processes.
Regarding the assessment of the modeling processes, the black box as a modeling task may have
limited the participants in their engagement, as it is a rather abstract and complex task (Leden
et al., 2020). Furthermore, we cannot be sure if all reasoning processes of the participants are
fully revealed by them concurrently thinking-aloud. For the quality of the modeling products,
the participants were limited to develop their modeling products by drawing. Although this
approach is quite common in science education research (Chang et al., 2020), modeling prod-
ucts could also be developed via computational modeling or hands-on modeling. The given
black box modeling task, which allowed only for drawing, may have limited some of the
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participants in their modeling processes. Also, it should be acknowledged, that an evaluation of
the modeling products based on epistemic criteria may yield further insights (Pluta et al., 2011).
However, this was not applicable in the present study given the overall lack of complexity and
variance of the modeling products.

Finally, this study solely focused on the modeling competence of secondary preservice biol-
ogy teachers, without taking their ability to teach modeling competence to students into consid-
eration, which is suggested to be even more challenging for teachers (Shi et al., 2021) and
develops over vast time frames (Vo et al., 2019).

5 | CONCLUSION

The present study shows that the established assumptions, held by many science education
researchers, about the dimensions that constitute modeling competence and their relationships,
might not be empirically valid, at least for secondary preservice biology teachers. Firstly, our
findings highlight that secondary preservice biology teachers' meta-modeling knowledge is not
a reliable indicator for their engagement in modeling practices or for modeling competence in
general. Secondly, the quality of modeling products seems to be a more reliable proxy assess-
ment, as it corresponds to the observed modeling practice in this study. However, it becomes
clear, that a valid assessment of secondary preservice biology teachers’ modeling competence
needs to consider meta-modeling knowledge, modeling practices, and modeling products holis-
tically. Although more research is needed regarding the metacognitive knowledge of the model-
ing process or the influence of context on modeling, we hope that our study provides valuable
insights for researchers, who work on an assessment of modeling competence. Untangling the
construct of modeling competence further, could lead to further development of educational
interventions, aiming to foster modeling competence in teachers and, consequently, improve
the integration of models and modeling in classrooms worldwide.
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