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In order to advance the mission of in silico cell biology, modeling
the interactions of large and complex biological systems becomes
increasingly relevant. The combination of molecular dynamics (MD)
and Markov state models (MSMs) have enabled the construction of
simplified models of molecular kinetics on long timescales. Despite
its success, this approach is inherently limited by the size of the
molecular system. With increasing size of macromolecular com-
plexes, the number of independent or weakly coupled subsystems
increases, and the number of global system states increase exponen-
tially, making the sampling of all distinct global states unfeasible. In
this work, we present a technique called Independent Markov Decom-
position (IMD) that leverages weak coupling between subsystems in
order to compute a global kinetic model without requiring to sample
all combinatorial states of subsystems. We give a theoretical basis
for IMD and propose an approach for finding and validating such a de-
composition. Using empirical few-state MSMs of ion channel models
that are well established in electrophysiology, we demonstrate that
IMD can reproduce experimental conductance measurements with
a major reduction in sampling compared with a standard MSM ap-
proach. We further show how to find the optimal partition of all-atom
protein simulations into weakly coupled subunits.

Markov state models | independent processes | molecular kinetics |

molecular dynamics | ion channels | optimal partition

he dynamics of proteins and their functions are of key
importance for biology. Molecular dynamics (MD) simu-
lations are a popular method for interrogating the motions of
proteins in various environments. A well-known limitation of
MD is the timescale mismatch between simulations and real
life. Despite advances in computer hardware and algorithms,
extreme timescale simulations remain orders of magnitude
shorter than many relevant protein processes. Since one re-
quires sufficient numbers of observations in order to obtain
statistical confidence, various strategies have been developed
to address this. One approach, building Markov state models
(MSM), enables the construction of simple models of long-
timescale molecular kinetics from many short off-equilibrium
MD simulations (1-6) — see Refs. (7, 8) for thorough reviews.
MSMs have successfully been built to obtain compact and yet
accurate representations of the kinetics of full proteins (9-16),
protein-ligand (17-22) and even protein-protein systems (23).
Although MSMs have significantly helped to reduce the MD
sampling problem, the fundamental problem that arises from
modeling increasingly large biomolecular systems remains. As
protein complexes become larger, the number of uncoupled
or weakly coupled subsystems increases. If each of these sub-
systems contain two or more substates, the number of global
systems states increases exponentially (24). Therefore, any

model treating the whole system by means of a global state
poses requirements on the MD sampling that are fundamen-
tally unscalable. This poses an inevitable problem as evolution
tends to lead to increased biological complexity, including the
optimization of processes through the formation of protein
complexes and puncta (25-28).

In practice, many current models based on MD simulation
of large biomolecular systems take the pragmatic approach
of ignoring most of the system’s dynamics. For example, if
one is interested in how an ion channel conducts ions across
a membrane, it may be sufficient to prepare the system in a
state of interest and collect sufficient statistics of ion passages
and perhaps local confirmational changes of the selectivity
filter residues, rather than trying to sample global conforma-
tional rearrangements of the protein complex on much longer
timescales. However, our field has a collective interest in devel-
oping whole cell and systems modeling for in silico medicine
which will necessitate the eventual understanding of these large
systems in a way that characterizes how all their components
interact, undergo transitions, and can be influenced by e.g.,
drug molecules, phosphorylation, and/or glycosylation states.

To this end, Noé & Olsson (24) have recently proposed dy-
namic graphical models which attempts to decompose protein
systems in a way similar to Ising or Potts models — subsys-
tems with states or “spins” that are coupled to one another.
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Dibak et al (29, 30) have developed a coupling of MSMs with
reaction-diffusion dynamics in order to establish an infras-
tructure in which MSMs can be integrated into whole-cell
models. Here we ask a more fundamental question, the answer
of which is important to all these integrative approaches: given
a large biomolecular system, how should we decompose it into
subsystems, such that these subsystems can be described by
independent or weakly coupled MSMs?

Fragmenting proteins at the modeling stage is compatible
with prior experience as macromolecules are often sub-divided
into structural or functional subunits (31). There is also evi-
dence that proteins are decomposable into “quasi-independent
groups of [spatially adjacent] amino acids” coined “protein
sectors” (32). Furthermore, experimental studies on drug bind-
ing or protein functional characterization often use isolated
domains or monomers with great success (33).

Estimating an MSM on the decomposed protein can signif-
icantly reduce the total sampling necessary. From concepts in
statistical physics, given a polymer of length N where each
subunit exists in one of k states, the total conformational
space is expressed as k™ (cf. Fig. 1). Modeling subsystems
of a constant size effectively restricts the number of states
that need to be sampled reversibly to a constant. Therefore
exponentially less sampling is required for modeling smaller
subsystems as compared to a global model (15, 24).

In this paper, we develop a mathematical framework of
decomposing MSMs into local subsystem MSMs, termed inde-
pendent Markov decomposition (IMD, Sec. IMD), and propose
a measure of decomposition quality, the dependency score (Sec.
MSM score of independence). We speculate that the IMD
strategy can forge a new connection to other uses of MSMs
such as those employed by the neuronal and cardiac modeling
communities. There, phenomenological MSMs parameterized
from electrophysiology data are used to predict the behavior
of action potentials (34-39). In Sec. Tetrameric ion channel
we describe how a decomposed MSM can be connected to a
phenomenological MSM. This new connection between fields
brings us closer to our goals of understanding these large sys-
tems and their behaviors, advancing in silico medicine. We
further showcase how the dependency score can be used to
find an optimal partition of a system that does not come with
clearly defined independent subunits (Sec. Ion channel parti-
tion). We validate our approach with a toy model, showing
that the decomposition approximation is high quality and that
the proposed validation score works even with limited data
(SI Appendix, Toy models). Finally, we demonstrate its appli-
cability to an all-atom MD dataset of the Synaptotagmin-C2A
domain (Sec. Synaptotagmin-C2A partition) and derive the
graph structure of inter-residue dependencies.

Independent Markov Decomposition

We first describe IMD for discrete-state MSMs before general-
izing it to time series with continuous descriptors.

Markov State models. An MSM consists of a discretization of
molecular state space into a disjoint set of states {Si, ..., Sn}
and a Markov chain transition matrix P(7) modeling a mem-
oryless jump process between these states. We can express
whether we are in the ith state or not by using indicator

—e— independent models
—e— full system model
—e— pairwise models

2 3 4 5 6
# independent sub-systems

Fig. 1. Scaling behavior of toy system consisting of n independent subsystems with
3 states each (S| Appendix, Toy models). Number of steps required to reversibly
sample all transitions shown for proposed independent models (blue line), full system
model (blue line) and pairwise models that are needed for computing the dependency
score (gray line). Shadowed areas indicate 95% confidence intervals.

functions:

xi(%) = {1 X € 5 1]

0 otherwise.
The vector x = [X1, ..., Xn] " is thus a “one-hot encoding” that
maps the continuous state x to the MSM discretization. For
this or any other choice of features x we can compute the
instantaneous and time-lagged correlation matrices Coo =
S x(xe)x " (x¢) and Cor = Y, x(x¢)X ' (Xt4+), respectively.
For a fixed state discretization, the transition matrix that
has maximum likelihood and also maximizes the variational
approach of conformation dynamics (VAC) (40) is:

P(7) = C5y' Cos. 2]

Let p: denote the probability distribution of being in any
of the n states at time ¢, for example po = [1,0, ..., 0] denotes
that we always start in state 0 at time 0. This vector can be
evolved in time using the transition matrix, until it converges
to the equilibrium distribution 7 = lim¢— oo ps:

pii. = pi P(7). 3]

An important concept for optimizing the parameters or hy-
perparameters of MSMs and other Markovian kinetic models
is the variational approach for Markov processes (VAMP)
(41). VAMP finds that a Markovian model that best approxi-
mates the high-dimensional continuous dynamics maximizes
the VAMP-n score:

n

Rn(P) = HC(;}/?COTC:J”

) 4
where we can either use n = 1 for the trace norm or n =
2 for the Frobenius norm. If we run molecular dynamics
at equilibrium conditions, and we can employ correlation
matrix estimators that provide Coo = C;; and symmetric
Cy- (detailed balance). In this special case, VAMP becomes
the VAC mentioned above, and the variational score simply
becomes R,,(P) = ||P(7)]|. In other words, the optimal MSM
is the one that maximizes the trace or the Frobenius norm
of the transition matrix, which is equivalent to maximizing
its eigenvalues. Since the eigenvalues equal the normalized
time-autocorrelation of the slowest processes (1, 42), the VAC
tries to find the Markovian model that best resolves the slowest
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Fig. 2. Operator decomposition and discretization on a test molecule. a) A test molecule is decomposed into two subsystems (blue and red). The two angles « and 3 span
subspaces A and B corresponding to the two subsystems, respectively. The space I is composed of all system degrees of freedom. The space 2 is the Cartesian product of
A and B and its dynamics are described by Perron-Frobenius operators P4 and Pp, respectively. The dynamics in €2 are given as the tensor product P4 ® Pg. b) The
molecule has metastable states at « = 0, w/2 and 8 = 0, 7 /2; the subspaces A and B can be discretized into MSMs with transition probability matrices P4 and Pg. The
quantities p;; and q;; are the transition probabilities from state 7 to j of subspaces A and B, respectively. c) The discretized dynamics in €2 are given by the tensor product
P, ® Pg, yielding the four states of the full molecule. d) lllustration of the four possible states of the molecule and the transitions between them.

processes of the molecular process under investigation (40, 43).
For a fixed state space discretization, optimizing the VAC
results in the MSM estimator (2). If we also want to search
over different state space discretizations, we can use VAC or
VAMP as a score in a hyperparameter optimization problem
(44) or optimize the VAMP score while representing x with
deep neural networks, leading us to VAMPnets (45).

Independent Markov decomposition. Now we move beyond
the common concept of modeling the dynamics of the en-
tire molecular system by a single MSM and instead try to
decompose the system into almost independent MSMs. Let
us start with the simple example shown in Fig. 2a, where
a molecule consists of two domains A and B that are each
described by a two-state MSM describing whether the domain
is “closed” (o, 8 = 0°) or “open” (e, 8 = 90°). We assume
that the kinetics of both domains are statistically independent,
i.e. each domain switches states independent of the states of
the other one — we simultaneously have pa t+r = Pa(7)pa,:
and pg,i+- = Pg(7)ps,s (Fig. 2b). As the MSMs A and B
are statistically independent, the probability distribution of
the entire system follows Eq. (3) with

Pt = PALt QDB

P(7) = Pa(1) ® Pp(7), [5]

where ® is the Kronecker product (46) (see SI Appendix,
Markov operators). The vector p; now contains the proba-
bilities of being in the four combinatorial states (4 and B
open, A open and B closed, A closed and B open, A and B
closed), and P(7) is the 4 x 4 transition matrix between these
combinatorial states whose transition probabilities are simply
products of the individual transition events in subsystems A
and B (Fig. 2c, d).

Hempel etal.

The power of this approach is apparent when comparing
Figures 2b and c: If the dynamics in A and B are independent
or almost independent, we can estimate the sixteen transition
probabilities that parametrize the whole system using only
the eight elements of the transition matrices of the subspaces.
This advantage increases exponentially in larger systems: If
we have N (almost) independent domains with m states each,
distinguishing all states would require us to sample and es-
timate an exponential number of order of m?Y transitions,
while a decomposition into independent MSMs reduces this to
a polynomial number of Nm? transitions which can be scaled
to large systems.

The above example trivially generalizes to N systems with
P(r) = ®§V P; (7). We note that it is customary to dismiss
variables of the full state space I (Fig. 2a) that are assumed
to average quickly, e.g., solvent degrees of freedom. Thus the
modeled space €2 in practice only encompasses the variables
of interest, e.g., internal coordinates of a protein system.

An MSM score of independence. In practice, subdomains of
biomolecules or biomolecular complexes will not be exactly
independent. Moreover, the identification of a domain decom-
position into almost independent subdomains is a non-trivial
task. To enable algorithmic determination of almost indepen-
dent subdomains, we develop an independence score which
quantifies decomposition validity.

To this end we come back to the variational approach Eq.
(4). Conveniently, matrix norms follow simple rules when ap-
plied to a Kronecker product (SI Appendix, Markov operators).
In practice, we will apply the trace and Frobenius norms that
correspond to the VAMP-1 and VAMP-2 scores of the Koop-
man operator. The VAMP-2 score has successfully been used
in many practical applications (16, 45, 47, 48). If our molecu-
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lar system consists of N independent subdomains such that
its global MSM is a Kronecker product of N subspace MSMs
as described above, its VAMP score is the simple product of
VAMP scores (SI Appendix, VAMP score decomposition):

N
Ru(P) = [ [ Ba(P). (6]

I=1

Here, R, (-) denotes the VAMP-n score of the transition op-
erator. It could be the trace norm (VAMP-1) or Frobenius
norm (VAMP-2) of the associated transition matrix. Note
that Eq. (6) is a necessary but not a sufficient condition for
Markov independence. Significant deviations from equality in
Eq. 6 indicate that the assumption of independence is invalid.
However, in particular if separate MSMs P; can probe the
same molecular features it is possible to satisfy Eq. (6) even
though the subsystem MSMs are not statistically independent.
Eq. (6) must therefore always be used in conjunction with
appropriate constraints. Here, we choose between different
ways to assign independent molecular features to different
MSMs and check which of these assignments best satisfies Eq.
(6).

In practice, we want to perform an IMD because often we
can not compute the global MSM P due to limited sampling
(Fig. 1), and we consequently do not know R, (P). Therefore,
we choose to only check the equality of Eq. (6) on pairs of
subsystems A, B, i.e., Rn(Pa,5) = Rn(Pa)-Rn(Pp). We then
search over possible partitions of the molecular system into
subsystems by evaluating the graph of pairwise dependencies
d(A, B):

d(A, B) = |Rn(Pa,B) — Rn(Pa) - Rn(P3g)| [7]

In practice, computing P4, p involves a new estimate of the
transition probability matrix in the joint space of two systems.
We show that our measure scales well with respect to limited
sampling (also compare SI Appendix, Toy models).

The product in Egs. (6) and (7) is purely a result of the
chosen basis set of MSMs (Eq. (1), SI Appendix, VAMP
score decomposition). In practical situations, it is desireable
to find a decomposition directly based on molecular features
such as distances or contacts instead of carrying out an MSM
discretization and estimation for each subsystem. When con-
sidering more general features x, there are two main changes to
discrete-state MSMs: (i) observables are propagated by a differ-
ent operator, called Koopman operator (49, 50), (ii) the joint
space of observables is easiest described by “stacking” obserable
feature vectors rather than by defining an MSM discretization
on the combinatorial space. For example, if ¥ 4 = (¢}, ¢3,...)
and ¥p = (Y§,1%,...) are the one-dimensional time series
of features ¥ € R of two systems A and B, the joint space
would be spanned by ap = (¢4, ¥5), (Wi, ¥%),...). The
transfer operator that describes the independent dynamics in
joint space is thus a block matrix of its constituting indepen-
dent sub-operators (also called a direct sum, see SI Appendix,
Markov Operators for details). This also means that inde-
pendent subsystem features are not correlated. Please note
that “stacking” in the MSM formulation would produce prob-
ability vectors not normalized to 1 and yield invalid (i.e. not
irreducible) MSM transition matrices in the joint space.

The trace and Frobenius norm of the Koopman operator
thus decompose as sums such that the dependency score reads

d(A,B) = |Rn(Ka) + Rn(KB) — Ru(Ka,B)| 8]

where K, the Koopman operator, takes the place of the transi-
tion matrix P. See SI Appendix, VAMP score decomposition
for the derivation. Please also note that working in observable
space entirely rules out discretization artifacts.

Results

Modeling a tetrameric ion channel using IMD. In cardiac elec-
trophysiology, Markov models have been used to model phe-
nomenological data from ion channels (37-39). Ion channels
are transmembrane proteins that respond to physiological
stimuli and selectively control the flow of ions in excitable
cells. Upon a change in membrane potential, voltage-gated
ion channels undergo conformational changes which modulate
ionic conductance. The symphony of ion channels collectively
facilitate the propagation of electrical signals in excitable tis-
sues, such as the heart and brain, and are important drug
targets (51, 52).

The plethora of both experimental measurements of ion
channel properties sets the stage for computational simulations
to provide molecular details and mechanistic insights (53).
While it is possible to fit a phenomenological MSM using
data from electrophysiological experiments, atomistic modeling
remains out of reach due to the long timescale of channel
opening. This is because single gate activation events are
rare, and many ion channels have multiple gates which need
to activate concurrently. Reversible sampling will further be
hampered by a combinatorial number of pathways that lead
to a fully open channel. We propose that for cases of non-
cooperative gates, IMD can help solve this problem, which we
demonstrate in the following series of numerical experiments.

We consider a voltage-gated tetrameric potassium ion chan-
nel with four identical subunits, each with a voltage sensor. To
construct an IMD, we exploit the independence of individual
subunits or gates and partition accordingly (Fig. 3al). This
produces four matrices P; € R?*2 1 < 4 < 4 that describe
individual gate opening and closing. As derived above, the
Kronecker product of subsystem transition matrices yields a
transition matrix P € R*®**¢ of the full ion channel (Fig. 3a2).
The 16 states enumerate all possible combinations of open and
closed gates of the full ion channel, a state space referred to
as S in the following. We note that this decomposition is only
possible between non-cooperative domains.

We construct a mapping to assign the 16 states of the
transition matrix P to those of a phenomenological MSM. Our
reference empirical model is the one developed in Ref. (54)
for this channel (Fig. 3b). In Ref. (54), channel symmetry is
used to define the full system states accordingly:

Co all gates closed
C1 1 gate open

2 gates open
C3 3 gates open
Cy all gates open

Mapping of the transition matrix into the space of these em-
pirical states can be obtained by converting the empirical
state definitions into crisp membership vectors xs € {0,1}?,
with each element indicating which empirical configuration a

Hempel et al.
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Fig. 3. Reconstructing the Hodgkin-Huxley model from a simple discrete model. a) Pipeline of steps required to assemble a full channel model from a single subunit model
that describes opening and closing of a single subunit in the vicinity of the others (step 1). Kronecker product between all four sub-unit models assembles a model that still
distinguishes between all combinatorial states (step 2). Empirical state definitions account for channel symmetries (step 3). Black denotes open, white closed, and gray
undefined subunit. b) Graphical depiction of full channel model in empirical state space. Note the symmetry of the channel, i.e. that at this stage only the number of open
subsystems is known. c) Relaxation from a closed state into the native state at 63 mV. We show conductance predicted by IMD (left column) and classical MSM (right column)
using different amounts of sampling. Note that the classical approach only yields results in the high sampling regime where all empirical states are connected. Results are
compared to the original Hodgkin-Huxley model (red dashed line). d) Sampling time necessary to estimate a decomposed MSM (left column) compared to a classical full
system MSM (right column) for ten realizations of the Markov chain. We show the percentage of fully connected models in our ensemble of realizations (top row) and the 1st
and 4th implied timescale computed from it (bottom row). Note that for the classical MSM, extreme amounts of sampling are necessary to even estimate all system-inherent

implied timescales.

full system configuration s € S belongs to. For example, the
membership vector describing any state s, with one open gate
would be x5, = (0,1,0,0,0), i.e., these states are associated
to macroconfiguration Cy. The full membership matrix is
constructed by stacking x = [Xs1, Xsa, - Xs16] € 10,1}°%10.
Subsequently, the transition-matrix is coarse-grained following
(55, 56) Pempirical = Iz 'x IIP x € R°*® with IT = diag(m)
the diagonal matrix of the stationary distribution 7 in full
space and in empirical space I, = diag(x” 7).

Choosing rates o and § from the original work by Hodgkin-
Huxley (34) at a voltage of 63 mV, we produce a simple discrete
model. Using this model, we can generate sample trajecto-
ries from which to construct MSMs in accordance with Sec.
Computational experiments. We estimate a model for the full
system from this data by applying the aforementioned pipeline.
Using this derived full system model, experimental observ-
ables from electrophysiology experiments can be assessed by
relaxation of the Markov chain from a non-equilibrium distri-
bution (e.g. a closed configuration) into the equilibrium at
this particular voltage (57, 58). We start from a configuration
of fully closed states and further assume that the channel
only conducts ions if it is open, i.e., our observable is only
non-zero for the open state. This experiment is the compu-
tational analog to a voltage jump experiment from resting
to +63mV in voltage clamp mode. Shown in Fig. 3c, the
modeled conductance of the channel over time is reported.
The predicted conductance time-series is compared with the
numerically integrated ordinary differential equation for the
potassium ion channel derived by Hodgkin and Huxley (34).
We find that IMD can accurately reproduce the full channel
dynamics.

IMD models were built by separately fitting four single

Hempel etal.

gate trajectories (i.e. a full system trajectory split into its
subsystems) and assembled using the aforementioned steps.
For comparison, traditional MSMs were fit to sample trajec-
tories computed from the full system transition matrix in its
empirical state definition. We note that we compare IMD
sampling to the empirical 5-state formulation (which does not
resolve all 16 combinatorial states). In this way, we can rule
out that the described sampling advantages of IMD are an
artifact of exploited channel symmetry.

The reduction in the amount of sampling needed due to the
use of IMD can be quantified in terms of the length of simula-
tion required to form a fully connected transition matrix. In
Fig. 3d we present the percentage of connected IMD estimated
on an ensemble of ten realizations of the Markov chain and
compare to a classical MSM. It is computed as a function of
simulated time (in ms), i.e., shows how probable a modeler
can estimate a connected Markov model, IMD or classical,
from a fixed amount of sampling. We note that the classical
MSM approach can only estimate all system-inherent implied
timescales when all empirical states are reversibly sampled,
i.e., only for very large amounts of data. The higher com-
putational efficiency of IMD is evident from the much faster
convergence of implied timescales as a function of simulation
length (Fig. 3d), showing a reduction in sampling by three
orders of magnitude, from tens of seconds to tens of millisec-
onds (Fig. 3d). For example, ionic conductance is reasonably
approximated with 100 ms of sampling and the IMD approach
(3c).

Here, we have presented an example where each gate oper-
ates independently. In practice, the gating behaviors of most
ion channels are not completely independent, but are instead
coupled. In this case, the decomposition yields an approximate
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model of the real dynamics, see SI Appendix, Weakly coupled
systems for a discussion. The theoretical limit is posed by
the assumption of stationarity that underlies MSM estimation.
It is violated if external influences are strong and on similar
timescales as the processes to be modeled. External influences
that are much faster than the local dynamics are incorporated
as an average over Markov states, similar to water molecules in
regular MSMs. As demonstrated in the SI Appendix, Fig. S1,
modeling of weakly coupled systems is possible in a robust
fashion.

Finding Independent Markov Partition for tetrameric ion chan-
nels. For our previous example, we prescribed a convenient
partitioning scheme for the ion channel system. In contrast, in
real-world situations a complex system may involve multiple
independent subsystems but the coupling graph is unknown a
priori. For instance, it might not be clear how to find indepen-
dent protein segments of an unknown protein. A method is
necessary to aid in the development of viable partitions which
produce independent subsystems.

In this section we demonstrate how the dependency defined
in Sec. MSM score of independence can be used as a score
to bisect clusters of coupled subsystems from weakly coupled
ones. The idea is to compute all possible pairwise dependencies
between all subsystems and to use them as edge weights in a
graph. If they exist, (almost) independent clusters of strongly
coupled subsystems will be revealed by analyzing this graph.
Once identified, these clusters might be modeled with single
subsystem transition matrices within the IMD framework.

For the purposes of demonstration, we zoom out from a
single channel protein to a membrane patch (Fig. 4a). In
our setup, this patch contains a dimer of channels which
we model to be coupled by a weak, cooperative coupling.
Individual channels are modeled using the same parameters
as the above ion channel model but contain the additional
element of an external deactivation switch (Fig. 4b). In a
cellular environment, such a switch could, for example, be an
inhibitory ligand that binds and unbinds at a certain rate. It is
modeled as a Markov process with probability 0.01 to change
its state. The deactivation switch alters the conformational
dynamics of each gate such that the probability to close or to
stay closed is 95%. Thus, by construction, it is not possible
to decompose a channel MSM into single gate MSMs because
each gate is now coupled to the deactivation switch. Further,
the strength of the intra-channel coupling can be controlled by
a linear mixture parameter A\. The dynamics described above
correspond to A = 1, strong coupling. The coupling can be
entirely deactivated by setting A = 0. See SI Appendix, Dimer
model for implementation details.

We generate discrete time series data from a transition
matrix that models a dimer with these properties (SI Appendix,
Dimer model and Computational experiments). From the
data, the dependency d is computed for all possible pairs of
subsystems. This involves the estimation of transition matrices
for two isolated subsystems and comparing them with the
transition matrix estimated in the joint space using Eq. 7. For
example, one such pair could be the deactivation switch of one
channel and a gate of the other channel.

A natural representation of these pairwise norms between
subsystems is a graph. It is formed by nodes (subsystems) and
dependency-weighted edges; no assumption about its structure
is made (e.g., that it is a fully connected graph). For the

numerical experiment described in this section, our analysis
yields the graph shown in Fig. 4d.

The graph is visualized by positioning the subsystems or
graph nodes with the Fruchterman-Reingold algorithm (59,
60) which is sensitive to the edge weights. This means that
subsystems with high dependency are grouped together. This
helps us to visually identify clusters of coupled subsystems.
Groups of subsystems that are far apart in this representation
are coupled relatively weakly. We find that dependencies
between subsystems of the same channel are significantly larger
than zero while inter-channel interactions yield dependencies
close to zero (see Fig. 4d). Further, reducing the coupling
strength within a channel does not alter our qualitative results
(Fig. 4c). The observed bifurcation of dependencies is due
to the two types of coupling in the system (gate-gate vs.
gate-deactivation switch) and is a feature of the dimer model
system.

In summary, our results show that we can learn the con-
nectivity of a network of subsystems from discrete, simulated
time series data. In particular, the dependency score provides
an approach to find an optimal partition of a system with
multiple types of coupling.

Finding Independent Markov Partition for all-atom simula-
tions of Synaptotagmin-C2A. To showcase the applicability of
the dependency score, we apply our method to a 180 ws molec-
ular dynamics data set of the C2A domain of Synaptotagmin-1
(Syt). Syt is a crucial player in the neurotransmitter release
machinery (61). In our previous study we have found that
single loops of its C2A domain can be described indepen-
dently of each other using a hand crafted partition (15). Here,
we attempt to find an optimal partition by using the depen-
dency score at the residue resolution (Sec. Application to MD
dataset). Instead of working with MSM transition probabili-
ties, we directly work in protein feature space in order to omit
discretization artifacts.

We find that indeed, Syt-C2A can be partitioned into de-
fined subunits, or conformational switches, using a VAMP-2
based dependency score (Fig. 5). This partition contains
the conformational switches defined in our last study (15):
In particular, the C78 switch (Fig. 5, blue) emerges as an
independent cluster in the Fruchterman-Rheingold projection,
confirming our previous results. However, even though two con-
formational switches in the Calcium Binding Region (CBR),
CBR-1 and 2 together (Fig. 5, green and red), have low
dependency to the other protein residues, describing these
loops independently is an approximation that is only partially
backed by this current study. Similar results are obtained
when using a VAMP-1 based dependency (SI Appendix, Fig.
S2).

Discussion

Over the past several decades, MSM methodology has matured
into a valuable tool for MD data analysis (1, 3, 4, 7, 8, 13, 20—
23, 42). For practitioners, modeling MD data with MSMs
remains a non-trivial task, especially as researchers turn their
focus towards the study of progressively larger biomolecular
complexes. This development comes with an increasing number
of (metastable) states that demands vast amounts of sampling
time and hampers our attempts to rigorously model protein
dynamics. We believe that the classical MSM method is
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Fig. 4. Visualization of channel dimer. a) Two channels located in a membrane. Each channel consists of four gates (akin to Hodgkin-Huxley model, depicted by cylinders) and

one desensitization switch (depicted as appendix to four-bundle).

b) States and possible transitions of individual channels (simplified, short lived switch-deactivated open states

not shown). As both channels have the same dynamics, only one is shown as an example. c) Dependency score as a function of coupling strength as defined by linear mixture
parameter A. Color code: Grey denotes scores between two molecules, black intra-channel pairs. d) Graph of pairwise dependencies between all channel subunits for A = 1.
Edges are color coded according to dependency scores between two systems. Nodes belonging to a single channel are color-coded accordingly, squared nodes represent

deactivation switches.

reaching a point where the combinatorial explosion of states
becomes a critical bottleneck. It is a fundamental problem
that is inherent to any method which seeks to describe the
global protein state (24).

One possible solution is to appreciate the notion of inde-
pendent protein segments (32) and to split large systems into
smaller, more manageable ones. In this spirit, we have pro-
posed Independent Markov Decomposition. For practitioners,
this means that, for example, an ion channel is modeled as a
set of individual gates as opposed to a single protein. This
approach approximates the system as a set of independent
subsystems and is naturally agnostic to global system size.
In this paper we have shown how the conceptual idea of de-
composed MSMs relates to the underlying transfer operator
formulation, what sampling advantages can be expected, and
how to use the proposed dependency score to find an optimal
partition of an unknown system.

Using the tetrameric potassium ion channel as a model
system, we have shown that we can estimate a fully converged
model with approximately three orders of magnitude less sam-
pling when compared to a classical MSM. IMD therefore has
the potential to leverage sampling efforts for large biological
systems into a regime which is achievable with state-of-the-art
simulation techniques and computer hardware. This effect
is due to data being used more efficiently while small com-
promises are made by a mean-field-like approximation. For
systems with potentially weak couplings, the validity of the
approximation can be checked with our dependency score a
posteriori. We further posit that due to the tremendous sam-
pling advantages, the estimation errors introduced by weak
couplings are likely to be smaller than the sampling error for
classical global state MSMs.

Our results suggest that IMD improves the assessment of
sampling convergence for large systems. As real-world MD

Hempel etal.

datasets are usually very high dimensional, in practice, it is a
non-trivial task to assess whether the sampling is converged.
Often, researchers can only speculate by using semi-empirical
tests, i.e., matching of high-level experimental observables to
model predictions. IMD offers a more rigorous way to tackle
this problem. For example, when modeling a single protein
loop, it is much easier to see if the process is sampled reversibly,
a question that can be difficult to answer with a classical MSM
on global states.

Furthermore, we have proposed a dependency score that
quantifies the coupling between two subsystems. As there is no
general rule how to define protein subsystems, the dependency
score serves as an objective function to judge IMD approxi-
mation quality and to find an optimal partition of unknown
systems. In a numerical test system of a switched dimer model
with weak cooperative coupling, the dependency score has
robustly bisected clusters of strongly coupled subsystems from
weakly coupled ones. It thus enabled IMD estimation without
knowing the dependency graph structure a priori.

In order to optimally partition a system in practical ap-
plications, sufficiently large biomolecular system could be
first partitioned into minimal subsystems such as residue side-
chains. Scoring the dependency between these subsystems can
reveal the structure of the dependency graph and thus give
rise to a definition of (almost) independent protein segments.
We have shown that for the C2A domain of Synaptotagmin-1,
the dependency score can be used to identify clusters of sub-
systems that are linked relatively weakly between each other.
These subsystems are similar to the conformational switches
identified and independently modeled in Ref. (15). For future
work, in particular for larger biomolecular complexes, it will
however be desirable to incorporate experimental knowledge
about size and properties of “protein sectors” (32).

An aspect excluded in this conceptual study is the discretiza-
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Aouspuadap

Fig. 5. Dependency-network between residues of Syt-1 C2A depicted using a stan-
dard graph layout (Fruchterman-Rheingold algorithm). a) VAMP-2 normalized depen-
dency network. Edge weights are indicated by colorbar. Nodes are colored according
to an unsupervised classification by the k-means algorithm (k = 8). b) Visualization
of protein structure with color coded segments from our VAMP-2 analysis (colors
correspond to classification in panel a). VAMP-1 yields similar results (not shown
here, see Sl Appendix, Fig. S2).

tion of MD data, a step which can be crucial in practical MSM
applications (4, 62). We note that subsystem MSMs have
smaller dimensionality and therefore discretization errors are
smaller compared to the higher-dimensional full system. This
implies that IMD may reduce discretization artifacts compared
to classical MSMs. However, implications of the discretiza-
tion error should be discussed when applying the dependency
score as it is unclear how the error propagates to joint space
probability estimates.

In this work, we propose that one way to keep pace with
our interest in modeling large biological systems is by using
a decomposition technique. For large systems, IMD is more
data efficient and might be easier to apply than classical global
state MSMs. We believe that interrogating local features, e.g.,
ligand binding pockets, instead of global system states can
be more informative and give better predictions at reduced
computational cost. Because this approach comes with all the
established methods and software of the MD MSM community,
we anticipate that IMD will have a broad application basis for
in-silico biology.

Materials and Methods

Computational experiments. Gate opening and closing rates of the
toy potassium ion channel were obtained from the Hodgkin-Huxley
model. Under voltage clamp conditions and neglecting the sodium
and leak currents, we are left with the potassium ion channel

contribution. The current is given as follows,
Ic = Gi(Vin = Vi) = Gen* (Vi = Vi),

where I is the current, G is the conductance, gy is the maximal
conductance, V;, and Vi are the total transmembrane potential
and potassium ion reversal potential respectively. Here n € [0, 1] is
a dimensionless quantity corresponding to channel activation. The
time dependence of n is described using the following ODE,

dn

= (Vi) (1 =) = Bu (Vi)

where a, and (3, are the kinetic rates (s_l) of activation and
deactivation respectively. In the original Hodgkin-Huxley model
(34), the voltage sensitivity of the ion channel is modeled by the
voltage dependence of the rates a,, and S,

0.01(10 — Vi)

exp (7IOI(YT”) — 17

Bn(Vim) = 0.125 exp (%) .

an(Vim) =

The term n? is the joint probability that the four independent
subunits of the tetrameric potassium ion channel are concomitantly
open. Thus «,, and By, are the kinetic rates for an individual subunit
to open and close respectively. This set of ODEs were integrated
using the odeint function provided by scipy (63) to serve as the
ground truth for later comparison with IMD and MSM results.

We apply our framework to discrete time series data with known
full system dynamics. For each system that we are using, details and
generator matrix are given in the SI Appendix, Secs. Toy systems,
Dimer model.

Generally, a transition matrix describing a (full) test system
(possibly including couplings) is chosen, akin to P(7) in Eq. 5.
Time series are generated using the Markov chain sampler imple-
mented in pyEMMA /msmtools (64). Subsequently, full system
states are mapped to individual subsystem states, yielding subsys-
tem trajectories which are parallel in time. Estimation of subsystem
transition matrices (P;(7) in Eq. 5) is followed by assembly of a
full system transition matrix. The latter is utilized to extract full
system observables such as implied timescales.

Application to MD dataset. The protocol that was used to obtain MD
simulation data and featurization of Syt-C2A is described in detail
in Ref. (15). In particular, as in the cited study, we use heavy
atom coordinates of the superposed protein. We are aware that this
could potentially yield spurious correlations, however a) no better
descriptor of the slow dynamics could be found and b) we want to
ensure compatibility to our previous study.

Each residue is encoded as a vector of flattened coordinates Y;
and the dependency is computed on each pair of residues. The
pairwise features are the stacked vectors [Y;, Y;]. Note that when
directly working on coordinate features, unlike in the MSM exam-
ples, the dependency decomposes as a sum, not as a product (SI
Appendix, VAMP score decomposition). Furthermore, the depen-
dency is normalized to untangle the amount of kinetic variance from
actual dependency, i.e.

4= Bn(D) + Ba(2) — Ba(1,2)
min(Ry (1), Rn(2))

with Ry (z) being the VAMP-n-score of residue z. The VAMP-n-
score is computed with PyEMMA (64).

Note that in the case of high dependency scores, the two ob-
servable features might be proxies of the same process, however
one of them could encode an additional one. Dividing by the min
ensures we are only normalizing to the processes contained in both
subsystem vectors.

€[0,1] 9]

Data availability. The code that implements our discrete models
and reproduces the presented results can be found in our GitHub
repository. The molecular dynamics data set of Synaptotagmin
C2A is available upon request.
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